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PREFACE

Location, scheduling and design problems are assignment type problems with
quadratic cost functions and occur in many contexts stretching from spatial
economics via plant and office layout planning to VLSI design and similar prob-
lems in high-technology production settings. The presence of nonlinear inter-
action terms in the objective function makes these, otherwise simple, problems
NP hard. In the first two chapters of this monograph we provide a survey
of models of this type and give a common framework for them as Boolean
quadratic problems with special ordered sets (BQPSs). Special ordered sets
associated with these BQPSs are of equal cardinality and either are disjoint
as in clique partitioning problems, graph partitioning problems, class-room
scheduling problems, operations-scheduling problems, multi-processor assign-
ment problems and VLSI circuit layout design problems or have intersections
with well defined joins as in asymmetric and symmetric Koopmans-Beckmann
problems and quadratic assignment problems. Applications of these problems
abound in diverse disciplines, such as anthropology, archeology, architecture,
chemistry, computer science, economics, electronics, ergonomics, marketing,
operations management, political science, statistical physics, zoology, etc. We
then give a survey of the traditional solution approaches to BQPSs. It is an
unfortunate fact that even after years of investigation into these problems, the
state of algorithmic development is nowhere close to solving large-scale real-
life problems exactly. In the main part of this book we follow the polyhedral
approach to combinatorial problem solving because of the dramatic algorith-
mic successes of researchers who have pursued this approach. In particular, we
define and utilize in Chapters 4 and 5 the concept of a “locally ideal” lineariza-
tion to obtain improved linear programming formulations of these problems. A
locally ideal linearization is a linearization that yields an ideal, i.e., minimal
and complete, linear description of each pair or certain sets of pairs of variables
in the quadratic interaction terms of the objective function. In a way, using
this concept of formulating BQPSs is analogous to investigating thoroughly a
few threads of a cobweb as a starting point for a full-fledged study of the entire
cobweb. In Chapter 6 we compare alternative formulations of some schedul-
ing problems analytically and give some results on the facial structure of their
associated polytopes. Chapter 7 deals with the affine hull and the dimension
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of quadratic assignment polytopes and their symmetric relatives. Chapter 8
reports some very preliminary computational results.

By comparison to traveling salesman problems and other combinatorial opti-
mization problems where we know a lot about the facial structure of the associ-
ated polytopes — knowledge that has been put to use in the actual optimization
of large-scale problems — little such operational knowledge has been accumu-
lated so far for quadratic assignment problems. We hope that this monograph
will help focus interest and provoke more work along polyhedral lines of inves-
tigation into the fascinating world of location, scheduling and design problems.
We are confident that following this line of work and implementing a proper
branch-and-cut algorithm will push the limits of exact computation far beyond
the current ones. Due to space and time limitations we have not included a sur-
vey about the polyhedral/polytopal methods that we employ in the main part
of this book. There are now several texts available where the reader can find
the pertaining material covered in detail. In particular, any unexplained termi-
nology can be found in Chapters 7 and 10 of M. Padberg’s Linear Optimization
and Eztensions (Springer-Verlag, Berlin, 1995).

The writing of this monograph has been made possible in part by the financial
support that Professor Karla Hoffman of George Mason University and Pro-
fessor Padberg have received from ONR. We would like to thank Dr. Donald
Wagner of the Office of Naval Research for his continued support.

New York City Manfred Padberg
Minendra P Rijal
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LOCATION PROBLEMS

This monograph analyzes various classes of Boolean quadratic problems with
special ordered set constraints (BQPSs) in order to develop a practical approach
to solving these problems. The BQPS provides a framework of mathematical
abstraction for a variety of scheduling, design and assignment problems with a
combination of linear assignment and quadratic interaction cost, not necessarily
nonnegative, that arise in a wide variety of real-life contexts. We start with a
detailed discussion of quadratic assignment problems which appear to have their
roots in three separate spheres of scientific interest — in spatial economics which
has a long history of its own, see e.g. Weber [1909], and in industrial engineering
and computer science, both of which are comparatively young disciplines.

Koopmans and Beckmann [1957] introduced the classical quadratic assignment
problem in the context of analyzing the problem of locating economic activ-
ities in an exchange economy. The problem of assigning indivisible economic
activities to locations is essentially a matching of a set of n economic activities
to a set of n locations so as to maximize the benefits of locating the respective
economic activities. Given aset N = {1,...,n} of economic activities and their
possible locations, the assignment of an activity ¢ € N to a location j € N ac-
crues a benefit while the interaction between every two activity-location pairs
(¢,7) and (k,€) for i # k € N and j # £ € N results in an interaction cost;
see Figure 1.1. Koopmans and Beckmann [1957] describe a variation of the
plant location problem of maximizing the total assignment benefits net of the
interaction cost as an example of the problem of locating economic activities.

The plant location problem represents an idealization of a variety of practical
decision problems. The quadratic terms in the cost (revenue) function arise due
to circumstances which make the profitability of locating a plant at a certain
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Plants Locations
(1,2) (5,5)
1 1
2 2
3 3
(2.3) (4,1)
4 4
5@ —9 5
(3,4)
A feasible 5 x 5 plant-location pairing Edges with quadratic cost of the pairing

Figure 1.1 A 5 x 5 plant-location assignment example

location dependent on the configuration in which the remaining plant-location
pairs are matched. A typical example of a “direct” interaction cost is the cost
of transportation for the flow of commodities (or bundles of commodities) be-
tween plants; more generally, the benefits of improvements in one location that
extend to adjacent locations or the detrimental effects of noise, vibration or
pollutants stemming from the surrounding plants can also be viewed as the
interaction cost of a given set of plant-location matchings. The cost of inter-
plant transportation considered in Koopmans and Beckmann [1957] gives rise
to the quadratic terms in the cost function. This interplant transportation
cost comprises two components: a location independent amount of flow be-
tween plants and a plant assignment independent transportation cost between
locations. Defining two n x n matrices T = (t;x) and D = (d;,) where

t;x = total amount to be transported from plant 7 to plant £ and
d;je = unit transportation cost from location j to location ¢,

for 7,k,j,£ € N, the interaction cost of interplant transportation, i.e. the
quadratic part of the objective function, are given by t;xd;j, with ¢;; = 0 and
d;; = 0 for all 7,5 € N. On the other hand, the semi-net revenue —c;;, the
revenue before subtracting the interplant transportation cost that is generated
from the operation of a plant ¢ € N at a given location j € N, gives rise to
linear assignment terms in the revenue (cost) function. Note that the matrix
T need not be symmetric. Koopmans and Beckmann [1957] assume that the
unit transportation cost satisfy a triangular inequality

dij < djp +di; for 1 <145,k < n,



Location Problems 3

which means that transportation from location i to location j via a third loca-
tion k is at least as expensive as direct transportation. Moreover, it is assumed
that flows and distances are nonnegative, i.e. tjx,d;e > Oforall1 < ¢,7,k, €< n.

Denoting the plant-location pairings by an n x n matrix X = (z;;) where

o — 1 if economic activity ¢ € N 1is located at location j € N,
7 1 0 otherwise,

the Koopmans-Beckmann location allocation problem (KBP) can be stated as
the following zero-one quadratic optimization problem.

min E CijTij + E E tirdjeTijTre

ijEN i kENjLEN
subject to Z zij =1 forjeN (1.1)
iEN
Zz;jzl forte N (1.2)
JEN

Zij 6{0,1} fori,57 € N. (13)

The equalities (1.1), (1.2), (1.3) model the requirement that each plant is in-
divisible and has to be matched with exactly one location in the KBP. Denote
the set of all feasible exact matchings of these indivisible plants to locations by

X, = {X € R™"™: X = (z;;) where z;; satisfies (1.1),(1.2),(1.3)}.
The KBP can then be stated, in matrix notation, also as
min {tr(T(XDXT)): X € A, },
where tr(-) denotes trace of a square matrix, i.e. the sum of its diagonal

elements.

Koopmans and Beckmann [1957] formulate this location allocation problem as
the following mixed zero-one linear programming problem.

min E Cij Tij + E E djngjz

LjEN i,k€EN j LEN
subject to Xea, (1.4)
tikzi; + Z z:c; — tikTrj — zf‘f =0 fori,j,k e N (1.5)
LEN LeN

>0 fori,j,k,£€ N (1.6)
z:]ezo for i,j,EeN- (17)
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The new variables z£ correspond to the quadratic terms ¢;xz;jzie of the ob-
jective function of the KBP and model the flow from location j to location £ of
the commodity supplied by plant i to plant k. The constraints (1.5) express the
fact that the production of the commodity supplied by plant 7 to plant & from
location j plus the total inflow of that commodity into location j must equal
the consumption of the same commodity plus its total outflow from location j,
i.e. these constraints are the usual flow conservation constraints of network
theory. The constraints (1.7) express the fact that there is no flow from plant ¢

to itself. We note that
2/ =0 foralli,j k€N (1.7q)

holds as well since there is no intralocational transport (case ¢ = k) and since
no two plants can be at the same location (case ¢ # k), but these constraints
are not stated explicitly in the original article. Besides the nonnegativity con-
ditions on the flow variables, the remaining constraints are the assignment
constraints (1.1), (1.2) and (1.3). The correctness of the formulation follows
since by the triangular inequality for the transportation cost we do not need to
consider any transshipments. Thus for every feasible assignment of plants to
locations the remaining flow problem decomposes into n? trivial flow problems
that assure that each plant z supplies each plant k directly with ¢;; units of the
required commodity. Dropping the variables (1.7), (1.7a) from the formulation
it follows that we have n? zero-one variables, n?(n — 1)? flow variables and
n%(n — 1) 4+ 2n equations.

Let us now briefly summarize some of the characteristics of optimal solutions
to this mixed zero-one formulation of the KBP and its straight-forward linear
relaxation obtained by relaxing the assumption of indivisibilities of plants, i.e.
by replacing the constraint set (1.3) by 0 < z;; < 1foralll <z,j < n, as
detailed in Koopmans and Beckmann [1957]. Assuming that dj, > 0 for all 1 <
j # £ < n and that the semi-net revenue terms c;; are location independent, i.e.
cij = ¢i forall 1 <4, j < n, an optimal solution to this linear relaxation problem
is to distribute each plant in equal fraction 1/n over all locations in which case
there is no need for transportation, i.e. z!‘f =0 for all ¢, §,k,£ € N. Moreover,
if the flow coefficients t;; for all 1 < ¢ # k < n are positive, this fractional
solution is the unique optimal solution. If some of the flows are equal to zero
then alternate optima exist. Presence of at least one positive flow coefficient
t;x for some 1 < i # k < n is sufficient to preclude the existence of any
integral optimal solution. In contrast, in the absence of the quadratic terms we
retrieve the famous linear assignment or marriage problem (we will have more
about this problem in Chapter 2) which always has an integer optimal solution
that can be found easily using one of the various network flow algorithms; see
Ahuja et al. [1993]. In addition, such an integer optimal solution is always
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stable, in other words, there is no incentive for any plant owner to relocate his
plant in some location other than the one prescribed by the overall optimal
integral solution. Thus, this optimal plant assignment is sustainable in an
exchange economy governed solely by a market mechanism operating through
a profit-maximizing response of each and every plant owner. This is not the
case when there are quadratic terms in the cost function; see Koopmans and
Beckmann [1957] for a more detailed discussion.

The particular linearization sz = tixx;jTr¢ used by Koopmans and Beck-
mann [1957] shifts some of the data from the objective function into the con-
straint set. The resulting problem formulation is data-dependent, it has an
interesting interpretation, but it looses the property of having only zero-one
variables, since the flow variables of the formulation take on the discrete values
of 0 or t;;. To stay in a pure zero-one environment — which has its advantages
and disadvantages — we use a different linearization later on because it will
permit us to integrate the KBP and various other quadratic zero-one problems
into a unifying framework.

1.1 A Modified KB Model

Instead of accepting the historical formulation of the problem at face value, let
us play with it and examine different aspects of the underlying real problem.
To remove the assumption about the triangularity of transportation cost, which
may be unrealistic, we note that the flow conservation constraints (1.5) can be
replaced by transportation-type constraints

—tik:cij+2sz:0, “tikxkj‘{'zz:gj =0 fori#k,j€N. (1.5a)
LteN LeEN

It follows that for every feasible assignment of plants to locations the resulting
transportation problem decomposes into n? trivial transportation problems and
thus we have the correctness of the changed formulation. Indeed, every feasible
solution to the changed formulation is feasible for the Koopmans-Beckmann
formulation, but not vice versa. The changed formulation has n? zero-one

variables, n?(n — 1)? flow variables and 2n?(n — 1) + 2n equations.

Inspecting the changed formulation we can draw several conclusions. First, we
can derive a trivial lower bound on the quadratic part of the objective function
of the KBP as follows. Let dj = min{d;, : 1 < j# ¢ <n}for 1< j<n. Then
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from the first part of (1.5a) we find that
tikdjezijTre > djTie ijh
heN

foralll <i# k<nand 1l < j#¢<n From (1.7) it follows that this
inequality holds also for all 1 < ¢ = k < n. Moreover, since t;; = 0 and
zpjzi; = 0forallk # ¢, 1 < j <nand X € &}, the inequality holds as well for
all 1 < j = £ < n. Consequently, summing over all i, k,j,£ € N and using the
Koopmans-Beckmann linearization zfj” = t;kTijTrn again we find that

Z Z tikdjeTijTre > Z (d; Z tik)Zij .

i,kEN jLEN ijEN  kEN

So the optimal objective function value of the KBP is greater than or equal to

min Z (c,‘j + dj Z t,‘k)z,‘j c XedX, ). (LWB)
i,jEN kEN

Thus by solving the linear assignment problem (LWB) we get a lower bound
on the KBP. Moreover, if dj = d for 1 < j < n and ¢;; = 0 for all 7 and j,
then the minimization problem is trivial and its objective function value equals
dZi,kEN tix. Surprising as it may seem, (LWB) is sometimes sharp for the
linear programming relaxation of the changed formulation; see Chapter 1.5.
Second, from (1.5a) and (1.6) we find immediately that

=0 forallf#j €N ifty =0, (1.5b)

no matter what ¢ # k € N. Thus we can drop all corresponding flow variables
and constraints from the formulation since we need not fool our computer into
believing that these flow variables or constraints exist. Third, suppose that
tix = tr; # 0 for some ¢,k € N. From the Koopmans-Beckmann linearization
it follows that

z:‘jl = tikZijThe = LhilreZij = z;ft forall £#j €N if tix = tss, (1.5¢)
i.e. the flow between plants i and k is symmetric irrespective of their location.
Knowing these identities we will, of course, reduce the necessary number of
variables and change the objective function of our model accordingly; but the
identities (1.5c) also affect the number of equations (1.5a). For if you look at
the constraints (1.5a) for ¢ < k and assume that t;; = tx; where ¢,k € N then

you find that the constraint pair corresponding to tg; is identical to the one
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for t;x when you use the identities (1.5¢). Thus for each j € N we need only one
pair of the constraints (1.5a) with ¢ < k, say, if t;z = tx; # 0. Consequently, if

a = number of off-diagonal elements ¢;x = 0 and
b = number of elements t;;, = t; #0 withi # k € N,

it follows that we can formulate the KBP with n? zero-one variables, n?(n —
1)2 — (a4 b)n(n — 1) flow variables and 2n%(n — 1) — 2(a + b)n + 2n equations.
So if the matrix T of interplant shipments is symmetric with a = 0, then
b = n(n — 1)/2 and the number of flow variables equals n?(n — 1)%/2, i.e. it is
half the original number of flow variables, and the number of equations (1.5a)
is reduced to about half the original number, i.e. to n?(n — 1) + 2n equations.

We know from the assignment problem that the rank of the constraint matrix
given by (1.2) and (1.3) equals 2n — 1. So we can expect the rank of the
system (1.5a) to be deficient as well. Indeed, adding the first part of (1.5a) for
all j € N and subtracting from it the sum of the second part of (1.5a) over
all j € N as well we create the trivial equation 0 = 0 where we have used
equation (1.3). Consequently, from these elementary rank considerations we
find that we can drop additional b + 1 equations from the formulation, which
now has 2n?(n — 1) — 2n(a + b) — b + 2n — 1 equations in the symmetric case.
Of course, this is only a preliminary investigation into the rank of the required
equation system. We will deal fully with the issue of finding a minimal equation
system of full rank in Chapter 7.

If n becomes large, then it can be expected that a substantial number of the
interplant shipments t;; equals zero since it is realistic to assume that plants
exchange goods with only a small subset of the other plants. Thus the above
changes should bring about a substantial reduction in the size of the model.
Indeed, by a simple observation one can always create zero elements in the flow
matrix T even if initially there are none. Let p € N, define

ap =min{tip : 1 <i#p<n}, Lp=min{tpr :1<k#p<n},

and suppose a, > 0 or B, > 0. We define new objective function coefficients

o = Cpi t+ p D pen dej + Bp D _gen dje for t=p,l<j<n
v Cij otherwise,

tip—ap, fork=p l1<i#p<n
th, = tor —Bp fori=p l<k#p<n

tik otherwise.

It follows from a straight-forward calculation, using d;; = 0 for 1 < j < n and
the fact that X € &, implies that zpjz,, = 0forany pe N and 1 < j # £ < n,
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that for all X € &,

Z ngmij + Z Z tipdjeijTre = Z CijTij + Z Z tirdjeTijTe.

i,jEN i,k€EN jLEN i,JEN i,keEN jLEN

Now we have created at least one zero element in the flow matrix, we can reapply
the reasoning and iterate until the correspondingly recalculated o, = 8, = 0
for all p € N, i.e. every row and every column of T has at least one off-diagonal
element equal to zero. Note that if T is a symmetric matrix then the new flow
matrix that results is symmetric as well. In case that T has symmetric as well
as asymmetric elements, then in order to preserve symmetric elements we use
a = min{ap, By} in the updating formulas for ¢;; and t;; instead of ap and S,.

The preceding goes by the name of “reduction procedures” in the literature and
we will have more on that in Chapter 3. Since the sparsity of the flow matrix
T gives rise to a formulation of the KBP having fewer flow variables and fewer
equations (1.5a) we will assume that the matrix T has been reduced accordingly.
We shall call the formulation of the KBP that results from the changes that we
have just discussed the modified Koopmans-Beckmann formulation.

1.2 A Symmetric KB Model

In the modified formulation of the KBP we have utilized the symmetry of
possibly only few elements of the flow matrix T. Let us assume now that both
matrices T and D are entirely symmetric. Using the symmetry of the elements
tir and dj, as well as t;; = d;; = 0 for 1 <4 < n you prove e.g. by induction on
n > 2 that

Z Z tikdjgl'ij.’l)kIZQ Z Z tikdjl(xij$k£+xi£xkj)~

i,k€ENjLEN i<k€N j<LEN

For all X € X, it follows that z;jzge + ziezr; € {0,1} foralll < i<k < n
and 1 < j < £ < n. We will use this fact in Chapter 4 when we linearize
symmetric quadratic terms in a zero-one framework. At present let us linearize
the quadratic terms in the spirit of Koopmans and Beckmann and introduce
new variables
€H = ti(zijere + wigrj) for 1<i<k<n,1<j<e<n

Like in the general Koopmans-Beckmann case the symmetric flow variables ffj‘
assume the discrete values of 0 or t;; for every X € X,. Adapting an old “trick”
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to linearize quadratic zero-one terms, see Padberg [1976], we can write down
linear relations as follows.

—tlk(xtj +z:l) +€z < 0

—tie(Tre + Trj) + E,E,‘ < 0
tic(zij + Tie + Tee + 2xj) — EEE <t
Tij, Tie, Tk, sz‘E,J > 0.

This gives 3n%(n—1)?/4 inequalities in n2+n?(n—1)2/4 nonnegative variables.
When we intersect this constraint set with the requirement that X € &, and
make the appropriate substitutions in the objective function, we get a mixed
zero-one linear program that models the symmetric KBP correctly; see also the
introduction to Chapter 4 where we discuss the linearization in the context of
zero-one variables in greater detail. Now we calculate

-1 n -1 n
fof + Z € =t Z (zijzre + Tiezrj) + tik Z (ziezkj + zijTre)
j=1

j=+1 j=1 j=t+1

=tk | Tke sz]'i' Z x;])+zz£(zxk1+ Z l'k]

j=£+1 j=£+1

=tik(2re + Tig — 2TipTke),

where we have used that X € X,,. But z;pzp, = 0forall X € A, 1 <i<k<n
and 1 < ¢ < n. Consequently every feasible solution to the mixed zero-one pro-
gram satisfies the linear equation that results from dropping the term 2z;pz,.
Using the new equations, the equations (1.2) and the nonnegativity of the flow
variables we show next that the third set of the 3n%(n—1)?/4 inequalities above
is redundant. Forlet 1 <r<s<mnand1l<g < h<n From (1.2)and the
new equations we calculate

n n g—1 n
2rs = t,_.(z zr; + Z.r_.]) + tre (Trg + Tsg) — Z{;‘f - Z EL + trs (zrn + T an)
=1 =1 &=

t=g+1
h—1 n n
e Y etk S (—tm(xr]n.] +Ze;‘;+ Z e )
=1 e=h+1 {g,h}#5=1 =341
n—1 n
= 2| tr(@rgt T tzagtTa) €+ Y D

{9,h}#5=1 {g,h}#t=3+1
Consequently, since fﬁf > 0 we find that the constraints

trs(xrg+wrh+xsg+xsh)_§:g_<..trs for1<r<s<n,1<g<h<n,
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are superfluous and can be dropped from the formulation. Like we did above
we calculate next

k—1 k—1 n
Z Z 5;;81 = Z (xlj'rkl + xilxk]) + Z (xijtl + l'kll'cj)
=1 i=k+1 1=1 i=k+1
ty#0 t ke #0 tix #0 tix#0
:xk5+xk]—2.rk¢.‘ck1 if t;x #0 forall : € N — k,
< Tre+ Ty if t;x =0 for some: € N — k,

where we have used that X € X, implies Y some jeij <1 and the nonnega-
tivity of the z;;. We can drop the quadratic term 2z;,zx; like we did before.
Thus we get linear equations that must be satisfied by every feasible solution
to the mixed zero-one program corresponding to k& € N with t;; # 0 for all
i € N — k (the “dense” columns of the matrix T) and the corresponding less-
than-or-equal-to linear inequalities for the “sparse” columns of T, i.e. those
columns that have at least one off-diagonal element equal to zero. Using the
nonnegativity of the flow variables, the new set of equations/inequalities implies

fi’;‘l S tik(xk£+ I:k]) fOl‘ ) < k € N, 5;63 S tik(xk[+zkj) fOI' k < l € N

Consequently the first two sets of the 3n?(n — 1)2/4 inequalities are implied
by the new equations/inequalities. Thus they can all be dropped from the
formulation. Let us denote

D={keN:tyy>0foralliec N—k}, S={k€N:k¢gD},

i.e. D is the index set of all dense columns of the matrix T and S = N — D
its complement in N. Summarizing we get the following mixed zero-one linear
program for the symmetric Koopmans-Beckmann problem or SKP, for short.

min Z CiyTi; +2 Z Z d,tff‘]l

1,JEN 1<kEN j<LEN
subject to X€An (1.8)
-1
~tik(zee+oke) + D€L+ Z et = fori<k€N,eN (1.9)
j=1 =241

—(Tke + T5) +Z—§., + Z —5,‘1—0 for j <£€ N and k € D(1.10)

i=k+41
k-1 1
~(exet i)+ Y e+ Z €t <0  forj<teNandkes(l1l)
=1 1=k41
tix #0 tix#0

>0 fori<keN,j<eeN.(112)
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If all nondiagonal elements t;; of T are positive, then the formulation of the
symmetric KBP has n? +n?(n —1)?/4 nonnegative variables and 2n +n%(n — 1)
equations.

Like we did above let us now discuss the effect that nondiagonal elements ¢;; = 0
have on the size of the formulation. So if @ denotes as before the number of
off-diagonal zero elements of the matrix T, then from the equations (1.9) of
the formulation it follows that an(n — 1)/4 variables {ff must all equal zero.
Thus there is no need to introduce them nor their corresponding equations
into the model. Assuming that D = 0, i.e. that the flow matrix T is in
reduced form, it follows that n? + n?(n — 1)2/4 — an(n — 1)/4 nonnegative
variables, 2n — 1 + n%(n — 1)/2 — an/2 equations and at most n?(n — 1)/2
inequalities (1.11) suffice to model the symmetric KBP correctly. In particular,
there are no equations of the type (1.10). The number of inequalities does not
bother us; we can generate them “on the fly” as needed by a dynamic simplex
algorithm, see e.g. Padberg [1995]. Indeed, scrutinizing the derivation of (1.11)
we can find more valid inequalities since from (1.1) we calculate in fact

k-1 n

1 1 .
ki ¢

E o6t E y Ekj = Tkj + The — 2Tk The — Thj E Tie — The E zij.
-1 ik i=k41 ik iEN—k iEN—k

ti #0 te#0 ti=0 tix=0

Consequently using X € X, again we find that in addition to (1.11) the in-
equalities

k-1 n
1 1 .
E zi; + E afff%— E ti—kéff}-gl forj<fe€ N andk €S, (1l.1la)
T BN

k-1 n
1 1 .
) i —&5 <1 1 £e N and k 1.11%
leEN_kxzz + .E=1 tik&] + '=EH1 tikfkj < orj<feNandkesS ( )
ty=0 tix#0 tik#0

are satisfied by the feasible solutions of the mixed zero-one program corre-
sponding to the SKP. To formulate the SKP the system (1.8),...,(1.12) suf-
fices, but (1.11a) and (1.11b) may be needed for a complete linear description
of the convezification of the mixed-discrete solution set of the SKP, i.e. for the
underlying polytope in the space of dimension n? +n%(n —1)?/4—an(n—1)/4.
There are at most n%(n — 1) inequalities (1.11a) and (1.11b) i.e. polynomially
many in terms of the parameter n, and thus the inequalities (1.11), (1.11a) and
(1.11b) can be checked in a reasonable amount of time. Of course, like (1.11)
the inequalities (1.11a) and (1.11b) are not needed if for some k € S t;; = 0
foralli e N.
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Reading the constraints (1.9) carefully we find the following. For each pair (¢, k)
with 1 < 7 < k < n and t;; > 0 the submatrix or “block,” formed by the
n(n — 1)/2 columns corresponding to the flow variables ffjl withl<j<f¢<n
and the n rows corresponding to the terms —t;x(z;¢ + zx¢) for 1 < £ < n,
is the incidence matrix of an undirected complete graph K, having n nodes.
Moreover, distinct pairs (z, k) with ¢;x > 0 gives rise to blocks that are disjoint
in the overall constraint matrix given by (1.9). Since the incidence matrix of K,
has rank n for all n > 3, we can now calculate the rank of the equation system
of symmetric KBPs with D = 0. The rank of (1.1) and (1.2) equals 2n — 1
and the corresponding submatrix is disjoint from the above blocks. There are
n? —n—a nonzero elements in T and thus the rank of the entire equation system
equals 2n — 1 +n(n%? —n —a)/2, i.e. after dropping one of the constraints (1.1)
the system of equations of symmetric KBPs with D = 0 has full row rank; see
also Table 1.2 for an illustration when n = 5 and a = 6.

The preceding rank consideration has shown that all equations (1.9) are re-
quired in the formulation of the SKP. Assuming that D = @, i.e. that the
flow matrix has been reduced so that every column contains an off-diagonal
zero entry, the question is whether or not there are any additional equations
that must be taken into consideration. Equations are important because they
determine and are determined by the dimension of the set of feasible solutions.
As it turns out there are in general more equations required for sparse SKPs.
To find more valid equations for this problem we use the following identity for
X € X, and U C N which is readily verified e.g. by induction on |U]| > 2.

Z (.’l},'jl‘kl + .’lligxkj) = (Z l‘,‘j)(z zpe) for 1 <j< €< n.

i<keU ieU keU

Let U C N be such that t;; > 0 for all i # k¥ € U and assume that N — U
satisfies [N — U| > 2 and ¢; > Ofor all ¢ # k € N — U as well. In other
words, we take any partitioning of the set of plants into U and N — U so that
every plant exchanges goods with every other plant in U and likewise for all
plants in N — U. Such a partitioning of N may, of course, not exist. If it does
not exist we conjecture that for D = @ the equations (1.9) are a minimal and
complete description of the affine hull of the polytope of the feasible solutions
to the SKP. So suppose U and N — U exist. Then we calculate for arbitrary
1 <j < £<n as follows.

1 1
D Dl D Dl 11
i<keu "k i<keN-U

= - E (zijTre + Tiexrj) + E (ZijTre + TieTr;)
i<keU i<keN-U
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ROED ORENENCEDPENCED P

ieU keU ieU keU
=1- E Tij — E Ty
ieU keU

Thus we have for all U C N that qualify the additional equations

Zl‘ij— Z Tie — Z yff+ Z yff:O, (1.11¢)

ieU iIEN-U i<keU i<keN-U

for all 1 < ¢ < j < n where we have set y,-';-‘ = %{ff. Note that (1.11c) is
symmetric in U and N — U. Consequently, only half the number of all possi-
ble equations (1.11c) matters. If the flow matrix T is reduced, but relatively
“dense”, then there are potentially many such additional equations that have to
be taken into consideration. The question that ensues is the one of the minimal-
ity of the system of equations that is necessary to describe the affine hull of the
polytope given by the convez hull of the feasible solutions to (1.8),...,(1.12).
Nothing i1s known about such a minimal system at present. In Chapter 7 we
discuss what we know about the case of a dense matrix T. From a numerical
problem-solving point-of-view it is desirable, if not imperative, to study the
question of the minimality of the equation system since most problems tend
to be sparse, unless they are randomly generated. Randomly generated prob-
lems are hardly ever representative of what the practitioner of combinatorial
optimization needs to solve.

Similarly to what we did to derive (1.11a) and (1.11b) we can derive additional
valid inequalities for the SKP polytope from the last observations, i.e. new
inequalities that all mixed-zero-one solutions to (1.8),...(1.12) must satisfy.
Like in the case of the additional equations the question that ensues is simply
where to stop and/or to look for new inequalities that truly “matter”. To this
end one distinguishes between valid inequalities that define facets of the SKP
polytope and those that do not. Facet-defining inequalities are inequalities
that are required in an ideal, i.e. minimal and complete, linear description
of the SKP polytope and moreover, such a description is quasi-unique. So in
principle we know what we have to look for when we wish to describe symmetric
Koopmans-Beckmann or related combinatorial optimization problems by the
way of linear equations and inequalities. It is perhaps ironic to note the fact
that the study of quadratic assignment problems from this polyhedral point-
of-view is roughly where pertaining studies of the notorious {raveling salesman
problem were over twenty years ago. You will find any unexplained terminology
used in this section in Chapters 7 and 10 of Padberg [1995].
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Having obtained the reduced formulation utilizing the sparsity of the flow ma-
trix T, we can scale the remaining flow variables and write the entire program
as a pure zero-one programming problem. This is done by introducing new vari-
ables yfje = (1/t,-k)£,~kf, like we did in (1.11c). As a consequence, the objective
function changes and clearing the t;; in (1.9), the elements of the constraint
matrix are 0, +1 or —1. These details are left to the reader.

Every feasible zero-one solution to symmetric KBPs has exactly n + (n? —n —
a)/2 variables equal to one. From the rank consideration it thus follows that we
have at least n! highly degenerate bases for the relaxed linear program. Mas-
sive primal degeneracy can cause problems for most simplex-based computer
software. In addition, many of the cost coefficients of the objective function
are equal in value and due to the structure of the constraint set we can ex-
pect a high degree of dual degeneracy as well. One kind of degeneracy of a
linear program can usually be dealt with by solving e.g. the associated dual
linear program. To have both primal and dual degeneracy in a linear program,
frequently, spells unmitigated numerical disaster. It would therefore be naive
to expect that large scale KBP-type linear programs can be solved easily by
“off-the-shelf” simplex algorithms. Rather — and this is the case with most
other difficult combinatorial optimization problems as well — advanced pivot
strategies and creative use of simplex-based software are an absolute necessity
for numerical success, unless it so happens that n is fairly small or a very close
to its maximum of n(n — 1). Alternatively, non-simplex-type algorithms must
be utilized for the resolution of the linear programs.

1.3 A Five-City Plant Location Example

We now illustrate by way of a small example how the KBP arises in a real-
life situation. We will also illustrate the effect on the size and the “goodness”
of the formulations that result from the various formulation devices that we
have discussed above. Suppose a company is faced with a decision to open 5
new plants in 5 major cities of the United States: Chicago, Detroit, Houston,
Los Angeles and Philadelphia. This simple decision scenario is complicated
by the fact that the output of a plant is an input to the production process
of another plant. Hence, a certain number of units of the output of a plant
located at one of the potential sites has to be transported to another plant
located at some other potential site. Such interplant shipments result in cost
which depend on both the interacting plants and their locations; see Figure 1.2;
these cost are represented as t;xd;, in the formulation of the KBP. The cost of
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Philadelphia

Los Angeles

ouston

W

Figure 1.2 United States plant-location assignment example

assigning plants to locations is represented by c;; in the formulation. To keep
our framework general, some ¢;; may be zero or negative. Table 1.1 summarizes
the information on how many units ¢;; of products have to be transported from
plant ¢ to plant k, the distance d;; between every pair of potential locations
and the cost c;; of locating these plants at different potential locations. The
entries in the intercity distance table are the actual aerial distances between the
cities of Figure 1.2 expressed in units of 100 miles which we take to equal the
unit transportation cost. The interplant shipments and the linear assignment
cost (third table) have been chosen by us arbitrarily.

The unique optimal solution to this example is to locate plant 1 in Detroit,
plant 2 in Chicago, plant 3 in Philadelphia, plant 4 in Los Angeles and plant 5
in Houston with a total cost of 1,812. You can verify this by enumerating all
5! = 120 assignments of plants to locations that are possible for n = 5, by
evaluating their cost and choosing the minimum cost assignment. Of course,
enumeration becomes impossible — even on the fastest computers that will ever
be built - if n becomes large, where “large” means - today — about n = 15.

The relaxation of Koopmans and Beckmann’s mixed zero-one linear program-
ming formulation (1.4),...,(1.7) gives a linear program with 650 nonnegative
variables and 260 equations. As we have discussed above, the optimum linear
programming solution to this problem equals z;; = 0.2 for 1 < 7,57 < 5 and
all flow variables have a value of zero. The corresponding optimum objective
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[ Interplant Shipments ] | Intercity Distances ]
Plants 1 2| 3[4]5 Cities L H D P C
1 0 8 8 4 2 L 0 22 32 39 28
2 8 0 7 6 4 H 22 0 18 22 15
3 8 7 0 0 6 D 32 18 0 7 4
4 4 6 0 0 9 P 39 22 7 0 11
5 2 4 6 9 0 C 28 15 4 11 0
Cities
Plants L H D P C
1 26 44 4 24 54
2 0 0 44 26 28
3 0 134 2 0 10
4 6 28 18 2 134
5 46 0 36 82 0

Table 1.1 Data for a Koopmans-Beckmann problem with n = 5 U.S. cities

function value equals 149.6, which is a truly bad lower bound on the minimum
cost of 1,812 for the mixed zero-one problem.

The relaxation of the changed Koopmans-Beckmann formulation (1.4), (1.5a)
and (1.6) gives a linear program with 425 nonnegative variables and 210 equa-
tions. Its optimum solution is not integer, indeed it has many “fractional”
variables, but its optimum objective function value equals 1,511.6 which is a
far better lower bound on the true minimum of 1,812 than the previous one.
This is not surprising as the replacement of the “aggregated” equations (1.5) by
their “disaggregated” form (1.5a) forces many flow variables to become positive.

Observing that the interplant shipments matrix T is symmetric and as a = 2
zero off-diagonal entries we can write down the modified Koopmans-Beckmann
formulation. This would give us a linear program with 205 nonnegative vari-
ables and 90 equations. Since the transshipment matrix has dense columns we
can apply the reduction procedure described in Chapter 1.1. In Figure 1.3 we
show how the reduction procedure transforms the flow matrix T and how it
changes the linear assignment cost matrix C = (¢;j). The encircled elements
are used in the reduction and the reduced matrix T/ has a = 6 zero off-diagonal
elements. This gives a linear program with only 165 nonnegative variables and
72 equations. Solving the linear program we find a solution with an objective
function value of 1,714.0, which is better than the previous one. Note that a
substantially smaller linear program was sufficient to get this improved result.
While for a small problem like this one the problem size reduction may not be
impressive, the size of the linear program does matter when n grows larger. The
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088 4 (2 06 620 02620
8 076 4 6 0 76 (4 20320
T=| 8 7006 |~[6 7 006 ~|6300¢6]|=T

4 600 9 2.6 00 9 22000

(24069 0 0469 0 006090
26 44 4 4 5 510 352 248 340 286 510 352 248 340 286
0 0 44 26 28 0 0 44 26 28 968 616 532 658 492

c=| o134 2 0 10]|=] 0134 2 0 10|=] 01 2 0 10]|=¢

6 28 18 2 13 6 28 18 2 134 6 28 18 2 13
46 0 36 82 0 6 0 36 8 0 46 0 36 8 0

Figure 1.3 Reduction of T in the U.S. example to increase sparsity

relaxation of the symmetric KBP (1.8),...,(1.12) using the reduced matrix T’
gives — in terms of variables — an even smaller linear program. It has 95 non-
negative variables, 44 equations of the type (1.9) and 50 inequalities (1.11). For
your convenience, we have displayed the entire constraint matrix in Tables 1.2
and 1.3, except the equations (1.11c) of which there are ten in this case. As
you can see the linear program that we wish to solve is highly “structured.”
Moreover, remember that after scaling, see Chapter 1.2, all nonzero entries of
the matrix are either one (+) or minus one (—). Solving first the linear pro-
gram with 95 variables and 44 equations we find an objective function value of
1,700.0. Now 8 inequalities of type (1.11) are violated by the optimum solution
to the linear program. We add them to the existing linear program, reopti-
mize and we get the optimal integer solution with an objective function value
of 1,812. Thus our linear programming relaxation has a relative error of 0%
in this particular, small instance of the SKP. In Table 1.4 we summarize the
reduction in size and the corresponding linear programming solution values.

In Chapter 7.1 we shall give a data-independent formulation for the Koopmans-
Beckmann problem with n? + n?(n — 1)2/2 nonnegative variables and 2n(n —
1)2—(n—1)(n—2) equations. Moreover, we show that this is a minimal system
of equations of full rank. For our example problem with n = 5 this gives a linear
program with 225 nonnegative variables and 148 equations. Solving this linear
program we find a zero-one valued solution with an objective function value of
1,812, i.e the optimal solution to the problem.

In Chapter 7.3 we utilize the symmetry of the data and give a data-independent
formulation of the symmetric Koopmans-Beckmann problem having n?+n2(n—
1)2/4 nonnegative variables and 2n — 1+ n?(n—2) equations, which we will also
show to be a minimal system of equations of full rank for the problem. For our
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No of vars | No of equns | Value zpp
Original KBP 650 260 149.6
Changed KBP 425 210 1,511.6
Modified KBP 165 72 1,714.0
Symmetric KBP 95 44 (8) 1,812.0

Table 1.4 Reduction in problem size and LP values for the U.S. example

example problem with n = 5 this gives a linear program with 125 nonnegative
variables and 84 equations. Solving this linear program you find the optimal
zero-one solution to the problem as well.

Since n = 5 is very small it is not surprising that small linear programs provide
optimal zero-one solutions; for large n many more inequalities are needed to
assure this outcome. Yet the preceding should have convinced you that elemen-
tary tricks and mathematics can be used to bring the size of KBP-type mixed
zero-one optimization problems “down” substantially and that the chances of
finding optimal solutions are improved dramatically by a thorough analysis of
the problem. In Chapters 4-7 we study some of the required additional inequal-
ities for the Koopmans-Beckmann and related problems.

1.4 Plant and Office Layout Planning

Rational factory planning and plant layout was recognized by industrial engi-
neers of the 1940s and 1950s as a topic of immense practical and theoretical
interest. Many articles — mostly in the Journal of Industrial Engineering — at-
test to this fact, see e.g. Apple [1950], Armour and Buffa [1963], Buffa [1955],
Cameron [1952], Hillier [1963], Hillier and Connors [1966] among others for fur-
ther historical references. The problem remains of paramount interest for the
1990s and beyond as regards the design of automated storage/retrieval systems
and mechanized production units as well as the determination of the most func-
tional layout of e.g. private and public office buildings. The general problem
here is the location of work centers, storage bins, departments, etc. in relation
to each other so as to produce a best layout in terms of material flow, communi-
cation flow, accessibility and so forth. We shall illustrate this general problem
by a hospital layout problem from the 1970s. In this case several clinics of a
public hospital are to be located relative to one another so as to minimize the
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total distance in meters that its patients must walk to receive treatment in the
hospital’s clinics.

Alwalid N. Elshafei, who worked at the time at the Institute of National Plan-
ning in Cairo (Egypt), describes his problem as follows:

“ .. The hospital concerned (the Ahmed Maher Hospital) is located in
a rather densely populated part of Cairo. It 1s composed of siz major
departments: Out-patient, In-patient, Dental Research, Accident and
Emergency, Physiotherapy and Housekeeping and Maintenance, each
department occupying a separate building. In recent years the center
of gravity of activity within the hospital has been moving steadily from
the wards towards the Qut-patient department. As a result, this latter
department has been becoming more and more overcrowded with the
average daily number of patients now exceeding 700, and with these
patients having to move along 17 clinics in the department. The loca-
tion of the clinics relative to each other has been criticized for causing
too much traveling for patients and for causing bottlenecks and seri-
ous delays. It was therefore decided to conduct a study aimed at an
improvement in the layout of the department leading to a reduction in
the total distance traveled by patients and hence in the frequency of
bottlenecks and congestions ...”; see Elshafei [1977].

Like in the Koopmans-Beckmann problem we have thus a number of plants
(clinics) and a number of possible locations for them. These locations are at
certain distances from each other that can be measured and/or estimated rea-
sonably well. Patients travel between the clinics and their respective numbers
constitute the “interplant flows” of the KBP. These flow numbers can be esti-
mated in a representative way by conducting a patient count for each pair of
clinics over a reasonable time period, e.g. over a year’s time. Thus we have,
in principle at least, the same problem as in the KBP: we wish to assign the
clinics to locations so as to minimize the total distance in meters travelled by
the patients of this hospital per year.

In plant layout planning there is, however, an additional complication. The
departments or clinics may have different space requirements in terms of the
square meters occupied by them. If this is the case, a “trick” that usually works
is to split the bigger departments in “dummy” smaller departments which are
all of equal size. By assigning “infinite” flows among the dummy departments
that result from splitting a big department, one can usually capture most of
the location problem adequately. We note, however, that differences in space
requirements certainly deserve further attempts at the modeling level to get
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Facility’s Function Opt Loc Facility’s Function | Opt Loc
1 | Receiving and Recording 17 11 | X-Ray 10
2 | General Practitioner 18 12 | Orthopedic 13
3 | Pharmacy 19 13 | Psychiatric 7
4 | Gynecological and Obstretric 11 14 | Squint 5
5 | Medicine 12 15 | Minor Operations 15
6 | Paediatric 9 16 | Minor Operations 16
7 | Surgery 3 17 | Dental 8
8 | Ear, Nose and Throat 14 18 | Dental Surgery 4
9 | Urology 1 19 | Dental Prosthetic 6
10 | Laboratory 2

Table 1.5 The 19 facilities, their functions and optimal locations

a better formulation of it. However, in the case of Elshafei’s hospital layout
problem this idea worked and we quote from his paper:

“ .. The outpatient department is composed of a recerving and record-
ing room, a waiting room and 17 clinics. There is also an administra-
tion section, a lecture room, a staff housing facility and stairs between
floors. The flow of patients s, however, confined between the receiving
and recording room and the 17 clinics, i.e. 18 facilities in total. Thus
it was decided to fir the other sections at their original location and
investigate the relative location of the 18 facilities. All the facilities
needed roughly the same area with the exception of the Minor Opera-
tion section which occupied nearly double the space necessary for any
other facility. Thus it was split in two pseudo facilities which have to
exist beside each other. As a result, the total number of facilities s
19 ...7; see Elshafei [1977].

In Table 1.5 we have reproduced the 19 facilities that result, their respec-
tive functions and optimal locations. We are faced now with the problem of
determining the data for the problem. Data collection and/or estimation is
frequently a hairy problem and it is instructive to see how it was done in this
case:

“ .. Estimates of the patient flows between clinics were available on
a yearly basis. Entries in the flow matriz were obtained by averaging
the flow between each pair of clinics, thus generating a symmetric
matriz. The distances between locations were actually measured by
tracing the paths taken by patients while moving from one location to
another. Whenever the movement involved a change in floors, the
corresponding vertical distance was multiplied by a subjective factor
of 8. It was noticed that a patient, after being through a sequence of
visits to more than one clinic, must return to the first clinic he visited
to mark off his card. In doing so he traces, more or less, the same
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Loo19f 12§ 70/ 73 111 13§ 11)] 41 36| 51] 141 24 36 11 511 119 119 24 12

Table 1.6 Distance and flow matrix for 19 facilities

path he has taken in his forward trip because all the clinics are in the
same building and there is only one main corridor per floor. Thus the
distance matriz can also be taken to be symmetric even for pairs of
locations on two different floors ... The flow between pseudo facilities
15 and 16 is put equal to an extremely large number so as to force
them to be in two adjacent locations ...”; see Elshafei [1977].

In Table 1.6 we have reproduced in the upper triangular part the flows between
the clinics and in the lower triangular part the distances of the respective
locations. Of course, there is no flow from any clinic to itself and the distance
from any location to itself equals zero. Thus we can formulate the problem as
a symmetric Koopmans-Beckmann problem.

To solve the problem Elshafei [1977] devised, jointly with Mokhtar S. Bazaraa,
a heuristic or suboptimal algorithm and found an “acceptable” solution to the
quadratic assignment problem for the Ahmed Maher Hospital in reasonable
computation time. The solution that the heuristic produced had a total value of
11,281,887 patient meters per year as opposed to the 13,973,298 patient meters
per year that the existing layout of the hospital required. Thus a decrease
of roughly 19.2% in meters to be walked on an annual basis was achieved, a
substantial ezpected gain for the patients of Cairo’s hospital.

The question that remained open until 1993 was simply: how “good” was the
solution produced by the heuristic algorithm and more importantly, how much
more potential was there to improve the walking burden of Ahmed Maher
Hospital’s patients? Of course, we do not have a floor plan of the hospital
and its physical shape today may very well have changed from what it was in
the 1970s. An optimal solution to the SKP with the data of Table 1.6 was
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No of vars | No of equns | Value zpp
Original KBP 130,682 13,756 0.0
Changed KBP 117,325 13,034 NA
Modified KBP 19,513 2,109 5,059,178.5
Symmetric KBP 9,937 | 1,101 (751) | 8,138,457.5

Table 1.7 Reduction in problem size and LP values for the hospital layout example

calculated by T. Mautor [1993]. The solution was actually found by Bazaraa
and Sherali [1980] and to quote from their paper they wrote “... We also
obtained a significant improvement over the best known solution to Elshafei’s
hospital layout problem ...” With hindsight — because Mautor showed it in 1993
— their statement was too modest. But it took 13 years to prove that fact, i.e.
the optimality of their solution.

It turns out that an optimal assignment of the various clinics to locations pro-
duces 8,606,274 patient meters per year which indicates that the improved lay-
out due to Elshafei’s “acceptable” solution could itself be improved by roughly
23.7%. In terms of the original situation this means that a reduction of about
38.4% in annual patient meters walked was achievable by a more functional
layout of the Ahmed Maher Hospital. Evidently, the patients of this Cairo
hospital had a very good reason to complain about the location of its clinics.

In Table 1.7 we show the sizes of the various mixed-integer programming for-
mulations that we have discussed in the previous sections when applied to the
data of Table 1.6. Given the sheer size of the original and the changed KBP
formulations we did not solve the linear programming relaxation of either prob-
lem. Indeed, from our discussion in Chapter 1.1 we know that the optimum
solution to the linear programming relaxation of the original KBP formulation
equals z;; = 1/19 for 1 < ¢,j < 19, all flow variables being equal to zero. Since
the linear part of the objective function has all ¢;; = 0, we thus get an optimal
objective function value of 0.0 which is the most trivial bound for this problem.
The linear programming relaxation of the modified KBP formulation gives an
optimal objective function value of 5,059,178.5. We computed it by generating
the entire linear program of size 2,109 x 19,513 and solving it directly using the
CPLEX routine dualopt of CPLEX Optimization Inc, with the steepest-edge
pricing option. To do so required about 3 minutes of elapsed CPU time on our
computer; see below.
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The flow matrix of Table 1.6 has 112 nonzero entries which gives a density
of 31% and as you can verify from the table, the flow matrix is already in
reduced form. The resulting symmetric KBP has thus 1,101 equations in 9,937
nonnegative variables, of which there are 361 zero-one variables. But there are
also the inequalities (1.11) that have to be taken into account, as well as the
inequalities (1.11a) and (1.11b) which we can use to improve the lower bound on
the quadratic assignment problem. So we wrote a FORTRAN program to solve
the associated symmetric KBP including the inequalities (1.11), (1.11a) and
(1.11b), but not any of the possible equations (1.11c). To do so required about
7 days of intense work by one of the authors. The program implements the
dynamic simplex algorithm, see Padberg [1995], where constraints and variables
are both dropped and added dynamically. In Chapter 8 we describe the various
components of the computer program in greater detail and a complete listing
is contained in Appendix A.

There are 9,747 inequalities (1.11), (1.11a) and (1.11b) to be considered in this
case. To solve the various linear programming relaxations we used the program
package CPLEX Callable Library of CPLEX Optimization Inc, as subroutines.
To optimize the entire linear programming problem took about 45 minutes of
elapsed CPU time on a Solaris 2.4 computer running on a single dedicated
processor of this machine — which makes our computer comparable to a Sun
SPARC workstation 20. Its objective function value equaled 8,138,457.5, which
is thus a lower bound on the optimum objective function value of the quadratic
assignment problem. To find the lower bound, the biggest linear programming
problem ever solved had at most 5,934 variables and 1,852 constraints, i.e.
all remaining variables and constraints were checked outside of the LP solver
properly speaking.

Our procedure also incorporates a heuristic algorithm and the fixing of cer-
tain variables which is mathematically correct using the linear programming
reduced cost and a heuristically obtained upper bound. Our heuristic found a
best value of 9,806,342 which is about 13% better than Elshafei’s solution value.
The computation time to find twenty “acceptable” solutions was negligible and
took less than 1 second. (Their respective solution values range from 9,806,342
to 13,617,354 with a mean value of 12,084,204.6.) Due to the relatively large gap
between the linear programming lower bound and the heuristic upper bound,
the program fixed only 391 variables to zero. This left a mixed zero-one prob-
lem with 9,546 variables. The missing constraints of the type (1.11) — they
are necessary for a formulation of the problem — were then added automati-
cally. The resulting problem had 9,546 variables of which 357 must be zero-one
and 4,366 equations and/or inequalities. This problem was fed into CPLEX’s
branch-and-bound routine mipoptimize and an optimal solution to it was com-
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puted. All calculations were done automatically and to solve this problem from
scratch took about two hours of elapsed CPU time on our computer until the
program stopped and the optimal solution displayed in Table 1.5 was obtained.
The optimal objective function value of the mixed zero-one problem is thus
about 5.75% above the optimum value of its linear programming relaxation
and the optimum solution to the problem agrees with Mautor’s [1993] solution.
We note that all numerical cost values of this section have to be multiplied by
a factor of two to make them comparable to the value published in an updated
version of QAPLIB [1991].

1.5 Steinberg’s Wiring Problem

The late 1950s were marked not only by the emergence of rock’n roll, but also
by the advent of the computer age. Computer production had become com-
mercialized and as a result, engineers working in the computer industry began
to pose themselves questions as to how to mechanize the layout of a computer,
see e.g. Glaser [1959], Kodres [1959], Loberman and Weinberger [1957] and
Steinberg [1961]. Young, hopeful academics — like Paul Gilmore [1962], Don-
ald Knuth [1961] and the late Eugene Lawler [1960, 1963] — also got involved,
formulated problems arising in the computer industry and proposed methods
for their solution. Computing power was, of course, insufficient in the fifties
and the amount of core memory much too limited to permit the optimization
of most of the proposed formulations because of sheer problem size. Moreover,
suitable algorithms for the resolution of the resulting combinatorial optimiza-
tion problems were simply not available and, in the rush of things happening,
the underlying mathematics of the proposed formulations were frequently not
studied in sufficient detail.

Leon Steinberg, who worked for Remington Rand Univac, describes one of these
problems — the computer backboard wiring problem - in the following words,
see Steinberg [1961]:

“ .. Let us suppose that we are given a set E = {E1,Es,...,E,} of n
[computer] eléments and we are told that E; is connected to Ej by ti;
wires. If we set t;; = 0, we obtain the symmetric connection matriz
T = (t,,);z:ll':l In addition, let r points Py, P, ..., P, be given,
where r > n. If d is some metric and dog = d(Pq, Ps), the matriz

will also be symmetric, with zeroes down the diagonal ...”

We have taken the liberty of changing Steinberg’s C;j’s to t;j;’s. The opti-
mization problem that arises is, of course, the optimal placing of the computer
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Figure 1.4 Section of the backboard of a Univac Solid-State Computer

elements on the backboard so as to minimize some weighted measure of the to-
tal wire length. Here “length” is the length given by the metric that we choose
to work with. This is typically the Euclidean norm or the Manhattan norm.
That is, if (z«, Yo) and (zg, ys) are the Cartesian coordinates of the points P,
and P in the plane, then

do(Pa, Pp) = /(20 — 26)? + (Ve — 1)?
is the Euclidean distance of P, and Pg and their Manhattan distance is
di(Pa, Pp) = |za — zp| + |y — ysl,

i.e. do(Pq, Pg) is the fo-norm and di(Pg, Pg) the £1-norm in R2. Introducing
r — n “fictitious” elements E,41,..., E, with no wires running to them or
between them, ie. ¢;; = 0for1 < i< rn+1<j <7, wegetrelements
and r positions that have to be paired, where the objective is to minimize the
weighted total wire length of the assignment. Suppose that the elements E; and
E; are assigned to positions Py(;) and P,;), respectively. Since ¢;; wires connect
E; and Ej, the required wire length of the connection equals t;;d( Py, Ps(j))
in the metric d. Thus adding over all 1 < i < j < n we obtain a measure
of the required total wire length which we wish to minimize. Evidently, every
element F; (including the fictitious ones) must be assigned to some position P,
and every position P, must be assigned to some element E;.

As you must have guessed already, Steinberg’s problem is another instance
of the symmetric Koopmans-Beckmann problem and thus we know how to
formulate the problem as a mixed zero-one linear program. Steinberg, a com-
puter engineer, devised a heuristic algorithm to find an “acceptable” solution
to the problem. Of course, he must have been, at the time, quite unaware of
the Koopmans-Beckmann problem which had more or less just been published
in the journal Econometrica, a journal that a computer engineer would have
hardly read in those days (and, most probably, would not consult even today).

Rather than giving a contemporary application, we shall illustrate the fun-
damental usefulness of combinatorial optimization in computer design by the
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backboard wiring problem from Steinberg’s article of 1961. About 35 years
have passed since its inception and an optimal solution to this problem — for
which we can choose several norms to measure the distances in the objective
function - is still elusive today, despite innumerous attempts at its solution.

Figure 1.4 shows a section of the backboard of a modified Univac Solid-State
Computer — a computer dinosaur of the fifties that you find today, perhaps, in
a museum. The dots Py, Ps, ..., P3s indicate the possible positions where the
electronic elements must be placed. As you see from the picture, the positions
form a regular grid in the plane and any two adjacent dots are at a distance of
1 unit, both vertically and horizontally.

In Table 1.8 we state the upper-triangular part of the connection matrix T and
the lower-triangular part of the distance matrix D in the Manhattan norm.
Thus there are, for instance, 29 wires connecting elements £4 and Es and 316
wires connecting elements E); and Ej;. There are indeed only 34 elements
that have to be placed in 36 possible positions; so F35 and E3¢ are “fictitious”
elements as discussed above and thus two positions will be empty in every
assignment. From the bottom part of Table 1.8 we see that point P3 is 2
distance units away from P, while Ps¢ is 11 distance units away from P, etc.

While the distance matrix — except for the diagonal elements - is full of nonzero
elements, the connection matrix T is comparatively sparse: there are 36 x
36 = 1296 possible entries and only 344 nonzero entries, which gives a density
of T of 26.5%. Indeed, Steinberg [1961] writes “... an average connection
matriz contains over 60 per cent zeroes ...” We know from our discussion in
the previous sections that the density of the matrix T impacts the problem
size of the resulting mixed zero-one optimization problem tremendously. Yet
reading the contemporary literature on solution attempts to solve Koopmans-
Beckmann problems one gets the feeling that the matrix T is assumed to be
dense — just like the distance matrix — and no one seems to have tried to exploit
the sparsity of the matrix T that was already noted by Steinberg in 1961 in any
systematic effort at the formulation stage of the problem. Of course, attempts
to utilize sparsity in the design of heuristics for the problem exist.

Table 1.9 shows the number of variables and equations of the four formulations
that we have discussed in this chapter when applied to Steinberg’s wiring prob-
lem. As you can verify from Table 1.8, the flow matrix T is already in reduced
form. Since Es5 and Esg are fictitious elements and since there are no other
isolated elements, there are thus 21,420 inequalities (1.11) from the symmetric
KBP formulation that have to be taken into account as well.
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Formulation No of vars | No of equns | Value zpp
Original KBP 1,680,912 93,384 0.0
Changed KBP 1,588,896 90,792 NA
Modified KBP 218,016 12,283 5,250.0
Symmetric KBP 109,656 | 6,263 (6,233) 7,793.96

Table 1.9 Reduction in problem size and LP values for the wiring problem

The solution of the modified KBP took about 181 hours or 7-;— days of elapsed
CPU time on our computer (see Chapter 1.4). The length of the linear pro-
gramming calculations is of lesser concern to us than the lack of the goodness
of the bound that is obtained. It turns out that the simple lower bound (LWB)
of Chapter 1.1 gives precisely the same value of 5,250 which equals the total
flow of the problem because d; = 1 for 1 < j < 36. LWB can, of course, be
computed in a split second.

The solution of the linear programming relaxation of (1.8),...,(1.12) includ-
ing the automatic generation of 6,233 inequalities (1.11), (1.11a) and (1.11b)
produced a lower bound of 7,793.96. In view of the best known solution value
of 9,526, see Skorin-Kapov [1990], this can be taken either way: either it is a
bad lower bound - which is possible — or the best known solution is not good —
which is also possible. This is indeed so because if we assume that the optimal
objective function value is 10% above the optimal LP value, then we expect
the mixed integer optimum to have an objective function value of about 8,574.
On the other hand, 10% may be too optimistic.

To calculate the lower bound took roughly one month of elapsed CPU time on
our machine. There are several ways to explain the seemingly long duration
of the linear programming calculations. One is the slowness of the computer
utilized — which is a fact. Far faster machines exist and it was impossible
for us to utilize the “parallelization” devices that the Solaris 2.4 computer
offers for particularly simply structured FORTRAN programs. We are using
only one processor of this machine and at 50MHertz this makes our computer
considerably slower than most lapfop computers presently available. Secondly,
our LP solver appeared to have particularly unusual numerical difficulties with
the linear programs, especially in the “endgame” of the optimization, i.e. when
it was pinpointing down the exact LP optimum. The numerical difficulties may
be explained by the fact that the developer did not encounter linear programs
similar to our ones in the code development phase — a hypothesis that can be
tested by running our problems using e.g. IBM’s OSL routines. As OSL was not
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available to us we could not pursue this avenue. There is another explanation
for the unexpected numerical behaviour of the problem. It might just be that
the “right” cuts are missing from (1.11), (1.11a), (1.11b), i.e. those facet-
defining inequalities for the SKP polytope that move the objective function
into the neighborhood of the optimum mixed zero-one objective function value.
See Chapter 9.5 of Padberg [1995] for more detail.

In any case, we are confident that — possibly by using LP algorithms other than
simplex algorithms — these difficulties can be overcome. The important question
concerns the goodness of the lower bound. Our calculations have improved the
best known lower bound of 7,480, see Chakrapani and Skorin-Kapov [1994],
somewhat to 7,794. This bound was obtained through an essentially minimal
development effort of only about 7 days after which the computer was set to
run. It is clear that much more effort is needed and should be expended to solve
this interesting riddle posed to combinatorial optimizers well over 35 years ago.

1.6 The General Quadratic Assignment Problem

Lawler [1963] proposed a generalization of the Koopmans-Beckmann-Steinberg
problem called the quadratic assignment problem (QAP) and stated the prob-
lem as follows

n n n n
min Zzzzaijuxijfckgi XeXA,, (1.13)

i=1j=1k=1¢=1

where A}, is as defined before and a;;i, are n? arbitrary cost coefficients for
i,j,k,£ € N. Because z;jz;; = z;; for all z;; € {0,1} and 1 < 4,j < n, we can
define ¢;; = a;j;; and write the objective function as the sum of a linear part and
a quadratic part as in (1.13), but with a;;;; = 0 for all 1 < 7,j < n. Since for
X € &, it follows that z;;zx; = zj;zjr =0foralll1<i# k<nand1<j<n,
the corresponding objective function coefficients are irrelevant. Thus we can
assume without loss of generality that the objective function of (1.13) satisfies

a;jkj = ajijk =0 foralll<i,k<n,1<j<n.

Now observe that z;jzxe = zrezij. Hence with our conventions we can write
the objective function of a quadratic assignment problem as

E cijTij + E E (aijre + areij)TijTre,

1,jEN i<ke€N j<LeEN
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where the a;jr¢ satisfy the stated conditions. To write this in matrix form,
2 . .
denote by x € R™ vector formed by “stringing” out the rows of the matrix X €

AXp;1.e. the components of x are ordered as (z11,...,Z1n,Z21,.--,Z2n,- - -, Tnl,
ey Znn). Let
AP, = {x € R™ : x satisfies (1.1),(1.2) and (1.3)}. (1.14)

Define Q € R"**7* ¢ be the upper triangular matrix with zero-diagonal

O Q2 Qs ... Qun
O O Qi ... Q2
Q= : : S : , (1.15)
O O O ... Quin
O O o ... (@)

where O € R™*™ consists of zeroes only and Q;x € R**" for 1 <i< k <nis

0 @irk2 + Gk2i1 .- Gilkn + Qknil
ai2k1 + G142 0 ... Qi2kn + Gkni2
Qix =
Gink1 + Gklin  Gink2 + Qk2in - - 0

The QAP can then alternatively be stated as follows
min{cx +xTQx : x € AP,}, (QAP)

where Q € R"™*"” is of the form (1.15) and ¢ € R"” is the vector of the cij’s
arranged like x.

Letting a;jr¢ = t;xdje the KBP can also be stated in the form of a QAP. Since
in the KBP we assume always that ¢;; = d;; = 0 for all 1 <7 < n, we have the
above assumptions about the a;jz¢ automatically satisfied. The entry of row j
and column £ of the matrix Q; is in this case given by txdj¢ + tr;de; where
1<i<k<nand1<j €< n.

In the general case of a QAP the submatrices Q;; of Q will be asymmetric.
Whenever all Qi for 1 < ¢ < k < n are symmetric, we call the resulting
problem the symmetric quadratic assignment problem or SQP, for short. Sym-
metry of Q;; means that a;jxe + Gkei; = Gierj + arjie forall 1 < i <k < n
and 1 < j, £ < n. Consequently, if ajjre = @ier; OF @ijre = akji¢ for all
1 < 4,5,k £ < nin (1.13), then the QAP is symmetric. In the case of the
Koopmans-Beckmann problem, we get a SQP if either the interplant shipment
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matrix T or the distance matrix D is symmetric; see also Chapter 1.2. Like in
the case of the KBP it follows that the objective function of the SQP can be
written as

Z CijTij + Z Z (@ijre + areij)(TijTre + TieZj)- (1.16)

1,JEN i<k€N j<tEN

In the SKP we have assumed symmetry of T and of D and thus Qijke = Qkesj
follows, which explains the factor of two in the objective function of the SKP.

A wide variety of applications of the QAP and the KBP has been reported in
the literature; some of the major applications are:

®  in electronics, the backboard wiring problem, the problem of minimizing
the “latency” in magnetic drums and the synthesis of sequential switch-
ing circuits; see Glaser [1959], Knuth [1961], Kodres [1959], Lawler [1960,
1963], Steinberg [1961];

®  in chemistry, the analysis of chemical reactors for organic compounds; see
Ugi et al. [1979];

®  in ergonomics, the design of control panels and typewriter keyboards; see
Burkard and Offerman [1977], Land [1963], Pollatschek et al. [1976];

®  in sports, the ranking of teams in a relay race; see Heffley [1977];

®  in architecture, the computer aided design of facility layout; see Elsha-
fei [1977], Krarup and Pruzan [1978];

®  in the ranking of archeological data; see Grotschel and Wakabayashi [1989],
Opitz and Schader [1984], Tiishaus [1983];

= in the balancing of turbine runners; see Laporte and Mercure [1988], Schle-
gel [1987];

®  in scheduling, the problem of minimizing mean completion time; see Bur-
kard [1990];

= in information retrieval, the optimal ordering of interrelated data on a
magnetic tape; see Burkard [1990];

®  in contemporary computer manufacturing, the design of computer chips
and of very large integrated systems (VLSI design); see Grotschel [1992],
Jinger et al. [1994], Korte et al. [1990], Lengauer [1990], Martin [1992],
Weissmantel [1992].
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Since its introduction in the late 1950s, a steady stream of literature has flowed
on the theory and applications of the QAP and the computation of exact and
approximate solutions of it. Many well known combinatorial optimization prob-
lems can be modeled as special cases of the QAP. The traveling salesman prob-
lems and the triangulation problems are two important examples of the so-
called NP-hard problems, see e.g. Garey and Johnson [1979] for definitions
of various terms of complexity theory that we employ), which occur as special
cases of the QAP; and hence, the QAP itself is NP-hard. Simply put, this
means that the existence of a polynomial-time (or technically good) algorithm
for the QAP would imply the same for a whole host of other difficult combina-
torial optimization problems, i.e. that the class P of polynomial-time solvable
combinatorial problems coincides with the problem class NP for which only
non-deterministic polynomial-time methods are known. Most researchers in
our field believe that P # NP, but at present this is an article of faith. For
the QAP even the problem of finding a feasible solution which is guaranteed to
approximate the optimal objective function value by some € > 0 is N'P-hard;
see Sahni and Gonzales [1976]. Moreover, Dyer et al. [1986] show that solving
the average case takes exponential time, when the objective function coeffi-
cients of QAPs are taken from some simple sample space of random numbers.
Thus QAP is by all known measures a truly difficult combinatorial optimization
problem.

Allowing only quadratic terms in the cost function may still be a restrictive
assumption for a real-life situation. Some of the commodity bundles flowing
between pairs of plants might have, for example, one or more commodities in
common. A reassignment of plants to locations in such a situation leads to
some reshuffling of the flows of intermediate commodities between plants. In
addition, the production process can always be adjusted to input availabilities.
To capture interactions of an order greater than two, cubic, quartic, ..., or,
even n-adic assignment problems may have to be taken into account. They can
be modeled using higher-order polynomials; see Padberg and Wilczak [1993]
for the linearization of general polynomials in zero-one variables.
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In addition to location problems, a truly amazing variety of scheduling and
design problems has been formulated by numerous professionals in industrial
engineering, management science, computer science and the social sciences
as Boolean quadratic problems with special ordered set constraints (BQPSs).
These include notorious problems such as the traveling salesman problem and
seemingly innocuous, but AP-hard optimization problems such as the uncon-
strained quadratic zero-one optimization problem. In this chapter we collect
a representative number of these problems with the aim of classifying them
into a schema that will permit us to detect commonalities and differences for
further in-depth study of the essential problem classes. Right from the out-
set, we wish, however, to make clear that we do not advocate the exclusive
treatment of every zero-one optimization problem that fits into our framework
within the classes of BQPSs that we consider. Additional structural properties
of a combinatorial optimization problem — if present — must be exploited fully
in order to achieve numerical success and while we subscribe to the often heard
maxim “...as global as possible, as local as necessary ...”, we do it with the
right amount of caution.

2.1 Traveling Salesman Problems

Given a set of cities and traveling cost between these cities, the traveling sales-
man problem (TSP) seeks to find a least cost tour starting from a home-city,
visiting each of these cities exactly once and finally returning to the home-city.
The TSP can be stated as a special case of the KBP; see Koopmans and Beck-
mann [1957]. If we define the elements of the matrix D as the cost of travel

35
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between the cities and the matrix T to be a fixed cyclic permutation matrix of
the following form

0 1 0 0

0 01 ... 0
T=(ta)=|: : : ~ |,

00 0 ... 1

1 0 0 ... 0

then the resultant KBP given by min{tr(T(XDXT)) : X € X,} is the TSP.
That is, defining AP, as in (1.14), the TSP can be formulated as

min{x’ Qx: x € AP, }, (TSP)

where Q € R™**"* is an upper triangular matrix partitioned as in (1.15) and

OD O .. DT
O OD ... O
Q: o y
O 0O O .. D
O 00 .. O

with O € R"*" as defined before. Moreover, if the distance matrix D is
symmetric, then the resultant TSP is a symmetric TSP while an asymmetric
distance matrix results in the case of an asymmetric TSP. For a proof that the
formulation (TSP) is correct see e.g. Burkard [1990].

The fact that the TSP can be formulated as a KBP is a mathematical curiosity
that has had — at least so far — no consequence for the numerical side of prob-
lem solving for this problem. Indeed, the study of the TSP in its “natural”
formulation due to Dantzig, Fulkerson and Johnson [1954] has progressed to
the point where TSPs with 10,000 cities can be optimized today; see Jinger,
Reinelt and Rinaldi [1995] for an excellent recent overview.

2.2 Triangulation Problems

Given an n x n input-output matriz of an economy divided into n sectors, the
triangulation problem (TP) seeks to permute the rows and columns of this
input-output matrix simultaneously so as to minimize the sum of the entries
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above the main diagonal in the permuted matrix; see Leontief [1951], Leon-
tief [1963], Leontief [1966] and e.g. Hoffman and Padberg [1985] for more
detail. The TP can also be stated as a special case of the KBP; see Korte
and Oberhofer [1968, 1969] and Burkard [1990]. If we define D as the input-
output matrix, i.e. if the d;j, denote the amount of flow from sector j to sector
¢ of the economy for 1 < j,£ < n, and T as an upper triangular matrix with
tirx = 1 if ¢ < k, 0 otherwise for 1 < i,k < n, then the resultant KBP given by
min{tr(T(XDXT)) : X € X,} is the TP. Defining AP, as in (1.14), the TP
can then be formulated as

min{xTQx: x € AP,}, (TP)

where Q € R"""” is an upper triangular matrix partitioned as in (1.15) and

O DD ..D
O OD ... D
Q= - J
O 0O O .. D
O o0 o .. o0

with O € R™*"; see also Burkard [1990]. If the input-output matrix D is
symmetric, then interchanging rows and columns simultaneously does not de-
crease the sum of entries above the main diagonal and all n! permutations are
equally good (or bad) in terms of the objective. From an applied point of view,
economies are hardly symmetric in this sense and so the problem of finding an
optimal triangulation is a real one when D is not symmetric.

In numerical analysis the same problem arises when one attempts to reorder
the rows and columns of a sparse nonsymmetric matrix simultaneously so as
to produce as few non-zero entries above the main diagonal as possible. To
achieve the objective all that has to be done is to replace the non-zero elements
of the matrix by ones, whereas the zero elements remain zeros. The related
problem of reordering the rows and columns of a sparse nonsymmetric matrix
independently of each other leads to a similar, but different mixed zero-one
formulation.

Like in the case of the travelling salesman problem, the triangulation problem
and its relatives can be formulated and studied more directly than via the QAP
— which has produced substantially better computational results than what one
might expect from the computational record of QAPs to date. Grotschel et
al. [1984, 1985b] formulate the TP as a linear ordering problem (LOP) defined
in a digraph. A linear ordering (or, permutation) of a finite set V with |[V|=m
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is a bijective mapping o : {1,...,m} — V. Given a complete digraph D,, =
(V, A,) with arc weights d;; for all (7, j) € A, a tournament is a sub-digraph
D = (V, A) of D, such that for every two nodes u and v it has exactly one arc
with endnodes in u and v. A linear ordering of the nodes of D is an arc-set
{(u,v) : 07 (u) < 0~'(v)} that induces an acyclic tournament and vice versa.
The LOP seeks to find a maximum weight spanning acyclic tournament in the
digraph Dy ; see also Reinelt [1985] for an excellent treatment of LOP.

The TP, also called permutation problem (see Young [1979]), can also be formu-
lated as a feedback arc set problem (or, dicycle covering) and an acyclic subgraph
problem as shown by Grotschel et al. [1984]. Given a digraph D = (V, A) with
arc weights d;; for all (7, j) € A, the acyclic subgraph problem seeks to find an
acyclic subdigraph D' = (V, A") of D with A’ C A such that Z(i’j)GA, dj is
maximized. Given a digraph D = (V, A) with arc weights d;; for all (%, j) € A,
the feedback arc set problem seeks to find an arc set A’ C A such that every
dicycle in D contains at least one arc of A’ and Z(i,j)eA’ d;; is minimized. A
minimum weight feedback arc set induces a maximum weight acyclic subdi-
graph and vice versa; see also Jiinger [1985] for an excellent treatment.

2.3 Linear Assignment Problems

Given two sets of n items and some cost of pairing any two items drawn one
each from these two sets, the linear assignment problem (LAP) seeks to find a
minimum cost of pairing of these 2n items such that every pair consists of an
item drawn from each of these two sets. Given a LAP with cost coefficients c;;
of pairing an item ¢ from the first set with an item j from the second set for
1 < i,j < n, if we redefine the quadratic cost coefficients of the QAP as follows

Giip = { cij if (4,5) = (k,9),

0  otherwise,

then we obtain the LAP as a special case of the QAP. Of course, to do so is from
a computational point of view disadvantageous, because the LAP, also called
the personnel assignment problem (see Thorndike [1950]), can be solved very
efficiently and in polynomial (O(n®)) time in the worst case; see e.g. Ahuja et
al. [1993].
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Figure 2.1 A layout of a small condition-code circuit made up completely of
standard cells (Source: Lengauer [1990])

2.4 VLSI Circuit Layout Design Problems

In the design of electronic circuits of modern computers, very large scale inte-
gration (VLSI) has made it possible that hundreds of thousands of transistors,
integrated on few square centimeters of a silicon chip, perform an enormous
number of operations at an incredible speed. An electronic circuit is most of-
ten described as a netlist of a collection of components and their connecting
wires. These components may be transistors, gates or more complicated subcir-
cuits or cell blocks described recursively by the same mechanism. An instance
of a cell block is described by the pins at which wires connect to it, a name
identifying the type of the cell block and a name identifying the cell block in-
stance. The circuit layout problem that arises in VLSI design (see Figure 2.1)
is the problem of finding an assignment of the geometric co-ordinates of the
netlists in the plane or in one of a few planar layers such that the requirements
of the fabrication technology are met and the associated cost is minimized; see
Lengauer [1990], Grotschel [1992], Jinger et al. [1994] and Miiller [1993] for
excellent accounts on this problem.

On the lowest level, the layout is a set of masks that guide the fabrication
process of the circuit. Different sets of design rules, which are much alike in
structure, specify the requirements that each mask has to meet in isolation
and as a collection of mutually consistent entities. The circuits are usually
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Figure 2.2 Example of a sea-of-cells master (Source: Grotschel [1992])

iso-oriented rectangles but are sometimes polygonal. They are circular only
in analog circuitry. However, the circuit layout, today, is not carried out on
the mask data level. It is composed topologically as a set of rectangular or
connected rectangular regions of grids connected by wire paths running along
the edges of the grid.

Even with the presently available technology, the circuit layout problem cannot
be addressed from a total system’s point of view. Instead it is carried out in a
hierarchical fashion starting with large blocks of circuit components, which are
themselves laid out recursively in a similar fashion. Moreover, at each stage in
the hierarchy, the process of circuit layout is broken down into subproblems of
component placement and routing, usually with a stage or two of compaction
in between them. More often than not, the placement does not assign cells to
locations on a fixed grid but rather yields a floorplan. A floorplan is a tiling
of rectangular cells representing the circuit. During the general cell placement
phase following the determination of the logic that will perform the full task
of a circuit, this logic is cast in silicon, i.e. placed onto the substrate surface,
so that certain cost criteria, e.g. the area necessary for wiring, is minimized.
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A feasible 5 x 3 logic-base cells pairing Edges with quadratic cost of the pairing

Figure 2.3 A 5 x 3 circuit layout design example

Since the placement phase uses rough estimates of the necessary wiring area
in the cost function, it is beneficial to reiterate the placement as soon as the
global routing is done whereby these cost estimates can be refined.

There are two types of layout methodologies: full-custom layout and sem:-
custom layout. In full-custom layout, the designer starts with an empty silicon
while in semi-custom layout he usually has a prefabricated silicon that already
contains all switching elements or gate arrays. However, the technology that is
currently in wide use falls somewhere in the boundary between full-custom and
semi-custom layout. This technology is known as the sea-of-gates technology.

In the sea-of-gates layout style, see Figure 2.2 and Figure 2.4, a rectangular
master chip filled with transistors is given. The layout procedure is carried out
to decide whether channels should be routed and if routed, how they should
configured. Only a fraction among a large number of transistors can be used
since the connection areas of the remaining ones are occupied by wires, thus
rendering them unusable. Among the feasible masters, a master, as small as
possible, is chosen such that the given circuit can be realized on it. This
master consists of a set N = {1,...,n} of base cells where a set of logic cells
M = {1,...,m} with m > n are to be assigned such that all logic cells fit
without any two logic cells overlapping each other and all nets are routed. The
circuit layout problem seeks to accomplish such an assignment with a smallest
possible total net length.
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Figure 2.4 Cell placement in the sea-of-cells technology (Source: Grétschel [1992])

Defining

S 1 if logic cell ¢ € M is assigned to base cell j € N,
71 0 otherwise,

the VLSI circuit layout design problem (CLDP), ignoring the routing problem,
can be formulated as the following zero-one program; see Grotschel [1992].

min Zi,kEM Zj;éteN QijkeTijTre
subject to Yjentij=1 forieM (2.1)
z;; €{0,1} forie M,j €N, (2.2)

where a;jre = tixdje + Aoijke for all i,k € M and j # £ € N. Here t;; denotes
the number of nets between logic cells i and k, d;; denotes the distance between
the base cells j and ¢, 0;;x, denotes the number of overlapping base cells, if logic
cells ¢ and k are assigned to base cells j and ¢, and X is a penalty parameter
for such overlaps; see Figure 2.3. The CLDP does not explicitly model the

requirement that no two logic cells may overlap each other, but the model
penalizes such occurrences.
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[ No. of nets between L. cells ] [ Distance between B. cells ]
L. Cells 1 2 3 4 5 B. Cells 1 2 3
1 0 2 2 1 1 1 0 1 2
2 2 0 1 2 1 2 1 0 1
3 2 1 0 1 2 3 2 1 0
4 1 2 1 0 1
5 1 1 2 1 0

Table 2.1 Data for a circuit layout design problem with m = 5,n = 3

Example. We illustrate the CLDP with a small example where we want
to minimize the total wire-length required to assign five logic cells to three
available base cells. Table 2.1 summarizes the information on the number ;%
of nets between logic cells and the distance dj¢ between base cells. In addition,
we assume a penalty for overlap of 10 for each pair of logic cells assigned to the
same base cell to formulate this problem as a CLDP. An optimal solution to
this example is to assign logic cells 1 and 2 to base cell 1, logic cells 3 and 5 to
base cell 2 and logic cell 4 to base cell 3 with a total cost of 44. This problem
has four alternative optimal solutions. m]

The CLDP is related to the QAP in the sense that the CLDP has quadratic
terms in the objective function like the QAP, but it is different from the latter
since it has one instead of two sets of assignment type constraints. In addition,
the CLDP does not have linear terms in the objective function. The CLDP
is N'P-hard in general; see Grotschel [1992]. Let Q € R™”*™" be the upper
triangular matrix with zero-diagonal given by

O Q2 Qi3 ... Qim
O O Qa3 ... Qo
Q= : : D : , (2.3)
0O 0 O .. Quotm
O O o ... (0]

where the submatrices Q;r € R*"*" for 1 <i< k < m are
0 aik2 ... Gitkn
aizkr 0 ... @Gi2kn

Qi =

@inkl Qink2 - -- 0
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Then the CLDP can alternatively be stated as

min{xTQx : x satisfies (2.1) and (2.2)}. (CLDP)

2.5 Multi-Processor Assignment Problems

The multi-processor assignment problem (MPP) arises as a problem of allocat-
ing the tasks of a software system to the processors in a distributed computing
environment; see Stone [1977]. In a distributed computing environment, the
task modules in a working set of a modular program may be assigned to dif-
ferent processors at load time or/and be allowed to float from one processor to
another processor during program-execution. This leads to two types of mu-
tually conflicting cost: interprocessor communication cost and computational
cost of the program. Interprocessor communication cost is reduced if all the
program modules in a working set are co-resident in a single processor during
the execution of the whole working set. Computational cost, on the other hand,
is reduced if program modules are assigned to the processors on which they run
most efficiently. In a typical multi-processor environment, memory, control and
arithmetic capability constitute a processor unit, two or more of which are con-
nected through a data link or high-speed bus. Concurrent execution of different
task modules is allowed, while a task can be executed by only one processor at
any particular moment. Some modules may have a fixed assignment reflecting
the capability of the computing environment while many others are free to float
between processors during execution to improve program execution speed. In-
terprocessor communication cost is very expensive and hence program modules
assigned to the same processor are assumed to incur no additional overhead
cost of communication.

Given a modular program consisting of a set of tasks M = {1,...,m} and a
set of processors N = {1,...,n} with different processing speeds, the multi-
processor assignment problem seeks to minimize the sum of the total task pro-
cessing and communication time at any given interval. Each task has to be
assigned to a processor but each processor can process any number of tasks
and typically m > n. Due to variable speeds of the processors, c;; time units
are required to process a task ¢ € M by a processor j € N. If a task 7 is
assigned to a processor j and a task k is assigned to a processor ¢ for i,k € M
and j # ¢ € N a communication time of t;zd;, is required where t;; is the
number of units of data to be transferred between tasks ¢ and k and dj, = dy;
is the time required to transfer one unit of data between a pair of processors
j and £. Moreover, a time fj; = f¢; is required for set up if the processors
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Figure 2.5 A 5 x 3 task-processor assignment example

j # £ € N communicate. The total communication time a;ji¢ is given by
aijke = tikdje + fje for i,k € M and j # £ € N, see Figure 2.5 and moreover,
Aijke = Aigkj for all i,j,k‘,[.

Defining

o 1 if task ¢ € M 1s assigned to processor j € N,
71 0 otherwise,

the MPP can be formulated as the following zero-one program; see Magirou
and Milis [1989].

min ZieM zjeN CijTij + Zi,keM Zj;élEN AijkeTijTke
subject to ZjEN zij =1 forieM (2.4)
z;; € {0,1} forie M,j € N. (2.5)

Example. We illustrate the MPP with a small example where we want to
minimize the total communication time required to process a modular program
consisting of five tasks on three processors. Table 2.2 summarizes the informa-
tion on the task/processor speeds ¢;;, the number of units ¢;; of data transferred
between tasks, the time units dj, required to transfer one unit of data between
pairs of processors and the set-up time f;, if processors communicate. Setting
aijke = tikdje + fje for i,k € M and j # £ € N we formulate this problem
as a MPP. The unique optimal solution to this example is to assign task 2 to
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Processors [ Amount of data-transfers |
Tasks 1 2 3
Tasks 1 2 3] 4 5
1 145 82 89 1 0 3 2 1 3
2 20 | 93 | 134 — T35 totz 211
3 79 | 46 | 169 T3tz toTo13
4 68 [ 117 | 5 T2 to ot
5 123 | 134 | 116 e R B R )
[ Transfer time per data-unit | [ Communication set-up time |
Processors 1 2 3 Processors 1 2 3
1 0 1 2 1 0 6 11
2 1 0 1 2 6 0 7
3 2 1 0 3 11 7 0

Table 2.2 Data for a multi-processor problem with m = 5,n =3

processor 1, tasks 1, 3 and 5 to processor 2 and task 4 to processor 3 with a
total cost of 409. m]

Although the MPP has quadratic terms in the objective function and one set of
assignment type constraints like the CLDP, it is different from the latter since
the quadratic terms in the MPP are symmetric in the sense that a;jre = aix;
for i,k € M and j # £ € N in the MPP (while quadratic terms in the CLDP
may be asymmetric) and also that the MPP, unlike the CLDP, has linear terms
in the objective function. For n > 3, the MPP can be shown to be equivalent
to the multi-way cut problem in a graph, see Stone [1977], and hence the MPP
is N"P-hard in general; see Magirou and Milis [1989)].

If the communication cost between a pair of tasks is independent of the proces-
sors they are assigned to, i.e. if a;jr¢ = a;x for all j # £ € N, then the minimand
of the objective function of the MPP can also be expressed as follows

Z:iEM ZjEN CijTij + Zi,kEM Ej;tleN QijkeTijTre

=D ieM 2jen CijTij + DikeM 2jreeN BijTijTre

= iem 2jen CiiTij + X kem >jen airij(1 — kj)

=3 iem Dojen Cii%ii T i pen Gik 2jen Tij ~ doikeM 2_jeN FikTijTk;
=D iem Sjen CiiTii + 2 i kem ik — 2ikeM 2ojeN BikTijThj-

This variation of the MPP is similar to the graph partitioning problem described
in Chapter 2.8, except that the direction of optimization is reversed, which is,
however, immaterial if no sign restrictions are imposed on the objective function
coefficients.
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Let Q € R™**™" be partitioned as in (2.3), O € R™®*" be as defined before
and redefine the submatrices Q;r € R"*" 1 < i< k < m to be

0 @i1k2 ... Gilkn
a;1k2 0 co. @i2kn
Qir =
@i1kn  @i2kn .. 0O

The MPP can then alternatively be stated as

min{cx + xT Qx : x satisfies (2.4) and (2.5)}. (MPP)

In accordance with a given situation, the objective function of minimizing the
total running time can be appropriately modified. For example, one may wish
to minimize the total dollar value of program execution. In this case the in-
termodular reference cost is measured in dollars per transfer and the processor
assignment cost is measured in dollar amounts by taking into account the rel-
ative processor speeds and the relative processor cost per computation.

2.6 Scheduling Problems with Interaction Cost

Scheduling of operations to work-centers is a common decision problem faced
by operations managers of modern manufacturing and service organizations
alike. There exists a rich variety of scheduling problems according to different
performance measures. A scheduling problem with particular interaction cost
is considered by Carlson and Nemhauser [1966]. This type of problem arises
when several activities are competing for the simultaneous use of a limited
number of homogeneous facilities. For example, when scheduling courses in a
university there may be several courses competing to be scheduled in the same
time periods. An “interaction cost” or “cost of conflict” arises when students
find two or more desired courses scheduled during the same time period. A
course-schedule is feasible if every course is scheduled in exactly one time-
period. On the other hand, any number of courses can be scheduled during the
same time-period. A course-schedule is optimal if the total cost of conflict is
minimal. Since the problem of scheduling activities with interaction cost arises
in various contexts besides course-scheduling, we give a general mathematical
statement of it.
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Activities Facilities
(1,1) (5,1)
1 & —e
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3 o2
(2,3) (4,3)
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5
(3.3)
A feasible 5 x 3 activity-facility pairing Edges with quadratic cost of the pairing

Figure 2.6 A 5 x 3 activity-facility assignment example

Given a set of activities M = {1,...,m}, a set of facilities N = {1,...,n} with
m > n and corresponding interaction cost a;; define

_J 1 ifactivity i€ M is scheduled in facility j € N,
Tii =1 0 otherwise.

The scheduling problem of minimizing the interaction cost, which we call CSP
hereafter, can now be stated as follows; see Figure 2.6.

min Qi keM 2jeN BijTijTkj
subject to YjenTij=1 forieM (2.6)
zi; € {0,1} forie M,j € N. (2.7)

Example. We illustrate the CSP with a small example where we want to
minimize the total quadratic cost of interaction resulting from assigning five
activities to three facilities. A pair of activities assigned to the same facility
gives rise to a quadratic interaction cost that is independent of the facility where
this pair of activities is assigned to. Table 2.3 summarizes the interaction cost
a;j between every pair of activities. An optimal solution to this example is to
assign activity 1 to facility 1, activities 2 and 5 to facility 2 and activities 3
and 4 to facility 3 with a total cost of 42. There are six alternative optimal
solutions to this problem. ]

The CSP is related to the MPP in the sense that both of them have quadratic
terms in the objective function and one set of assignment type constraints.
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[ Job interaction cost ]

Jobs 1 2 3 4 5
0[] 22]32]39] 28
22 0 18 22 14
18 0 7 4
39 22 7 0 11
28 14 4 11 0

O ] Of B =
[
)

Table 2.3 Data for a class-room scheduling problem with m =5,n =3

However, these two problems are different because the quadratic cost of inter-
action occurs in the CSP between a pair of jobs assigned to the same machine
while only those tasks that are assigned to different processors incur quadratic
cost in the MPP. Moreover, the quadratic terms in the CSP are independent
of the facility to which we assign an interacting pair of activities. The CSP,
unlike the MPP, does not have linear terms in the objective function.

Let Q € R™”?X™" be partitioned as in (2.3), O € R™"*" be defined before and
redefine the submatrices Q;x € R"*” for 1 <i < k < m to be

ik 0 .o 0
0 aix
QZk = . . . .
0 0 e Qg
The CSP can then alternatively be stated as
min{xT Qx : x satisfies (2.6) and (2.7)}. (CSP)

Carlson and Nemhauser [1966] outline a heuristic utilizing Dorn’s [1961] re-
sults on Lagrangian multipliers to obtain a local minimum of the CSP. The
local minimum obtained by their procedure is a global minimum if the cost
function is convex, or equivalently, if the matrix A = (a;;) for i € M and
k € N is positive semidefinite. Since by definition of the problem, the matrix
A is symmetric, nonzero and has a;; = 0 for all : € M, the matrix A is, how-
ever, always indefinite; but the objective function value corresponding to the
fractional solution obtained by this procedure can be used as a lower bound
for the original problem; see Carlson and Nemhauser [1966] for detail. We will
show in Chapter 4 that the zero-one formulation of the CSP yields a variation
of the clique partitioning problem, which we describe later in this chapter. Thus
the CSP is an A'P-hard problem in general and has a variety of applications:
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®m  in zoology, economics, marketing, political science, anthropology etc., as a
clustering problem or as the problem of partitioning a given set of objects
into homogeneous disjoint classes, see Grotschel and Wakabayashi [1989],

®  in computer science, as a subproblem in VLSI design for the placement of
cells and routing of nets in a silicon chip; see Kernighan and Lin [1970].

2.7 Operations-Scheduling Problems

We now consider a class of scheduling problems which generalize the CSP. In
the class-room scheduling problem, the interaction cost terms are independent
of the work-center to which a pair of activities giving rise to interaction cost
is scheduled. However, the interaction cost in the OSP is a function of the
interacting pair of activities as well as the work-center where they are scheduled.
Moreover, the OSP, unlike the CSP, also has linear assignment cost in the
objective function. We call this problem the operations-scheduling problem
(OSP) for its applications in the problem of scheduling operations to work-
centers. Given aset M = {1,2,..., m} of operations competing to be scheduled
in aset N = {1,2,...,n} of work-centers with [M| > |N| > 2, the cost of
assigning an operation ¢ € M to a work-center j € N gives rise to the linear
cost c¢;; while assigning a pair of operations i,k € M to the same work-center
j € N gives rise to quadratic interaction cost a;rj. A feasible operations-
schedule is an assignment such that each operation is scheduled in exactly one
work-center. On the other hand, any number of operations can be scheduled
in a work-center; see Figure 2.7.

Defining

S 1 if operation ¢ € M is scheduled in work-center j € N,
71 0 otherwise,

the operations-scheduling problem of minimizing the total assignment and in-
teraction cost can be stated as follows

min ZieM ZjeNCij‘”ij +Zi,keM ZjeN ik TijTkj
subject to djenij=1 forie M (2.8)
z;; € {0,1} forie M,j € N. (2.9)

Example. We illustrate the OSP with a small example where we want to
minimize the total quadratic cost of interaction resulting from assigning five
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A feasible 5 x 3 operations-work-center pairing Edges with quadratic cost of the pairing

Figure 2.7 A 5 X 3 work-center assignment of operations example

operation to three work-centers. A pair of operations assigned to the same
work-center gives rise to a quadratic interaction cost that is dependent on the
work-center where this pair of operations is assigned to. Tables 2.4 summarizes
the information on operations processing times c¢;; and interaction cost a;x; for
each of these three work-centers. The unique optimal solution to this example
is to assign operations 3 and 4 to work-center 1, operation 1 to work-center 2,
operations 2 and 5 to work-center 3 with a total cost of 147. O

Let Q € R™?*™" be partitioned as in (2.3), O € R™*” be as before and
redefine the submatrices Q;;x € R"*" for 1 <i< k < m to be

QiK1 0 e 0
0 agpe
Qik = . . . .
0 0 oo Qikn

The OSP can then alternatively be stated as
min{cx + xT Qx : x satisfies (2.8) and (2.9)}. (OSP)

The OSP generalizes a number of combinatorial optimization problem, e.g.
the graph partitioning problem, the cligue partitioning problem, the maz cut
problem and the Boolean quadric problem that we describe later in this chapter.
Hence, a wide range of the applications of these problems arising as special
cases of the OSP are subsumed as the applications of the OSP. Thus, the
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Machines [ TInteraction cost (Machine 1) ]

Jobs | 1] 21 3 Jobs | 1] 2] 3] 4] 5

1 129117 | 38 T 0 |14 [ 24 | 35 | 24

2 [ 14119127 2 [ 14| 025 [16 [ 19

3 |16 129 |14 3 [24 |25 | 0] 5] 4

4 [34 123121 4 |35 |16 9] 013

5 [38]39 113 5 |24 19| 413 ] 0

[ Interaction cost (Machine 2) ] [ Interaction cost (Machine 3) ]

Jobs 1 2 3 4 5 Jobs 1 2 3 4 5
1 0 22 32 39 28 1 0 18 | 30 29 28
2 22 0 18 22 15 2 18 0 7 18 11
3 32 18 0 7 4 3 30 7 0 21 14
4 39 22 7 0 11 4 29 18 21 0 15
5 28 15 4 11 0 5 28 11 14 15 0

Table 2.4 Data for an operations-scheduling problem with m = 5,n =3

OSP is an N'P-hard problem in general and represents an idealization of a
variety of practical decision problems ranging from clustering problems, i.e.
the partitioning of a given set of objects into homogeneous disjoint classes, to
electronic circuit layout problems that arise in VLSI design in the context of
computer chip manufacturing.

2.8 Graph and Clique Partitioning Problems

A set F of edges in a graph G = (V,E) is called a n-partitioning of G if
there exists a partition {Wy,..., W,} of the set V of the nodes of G such that
V=Wu  -UW, W,nW;=0forl<i<k<n Wi#0forl<i<n
and F = U'_, BE(W;), where E(W;) = {e € E : e has both endpoints in W;}.
Given a weighted connected graph G = (V, E) with edge weights a;; for all
e = (i,j) € E, the graph partitioning problem (GPP) seeks to partition the
nodes of G into n < m = |V| subsets so as to minimize the total weight of the
edges with end nodes in two different subsets, i.e. the edges that are cut as a
result of the partitioning {Wj, ..., W,} of the graph G; see Figure 2.8.

If we require that each partition be such that the subgraph G[W;] induced by
W; for 1 < i < n is a clique, i.e. a complete (but not necessarily maximal)
subgraph of G, then the resultant partitioning is called a clique partitioning.
The associated optimization problem is the clique partitioning problem (CPP).



Scheduling and Design Problems 53

\_—/

A 6-node graph A 2-partition of the graph

Figure 2.8 A 6-node graph and its 2-partition

If G is a complete graph, then every partition of the node set of G induces a
clique partitioning; see Figure 2.9. Hence, the GPP and the CPP are exactly
the same in this case. The clique partitioning problem in a general sparse graph
can be reduced to that one on a complete graph by assigning edge weights of
—oo to the missing edges of the graph and changing the objective function; see
below our discussion of the optimization problem.

The GPP arises in various contexts ranging from clustering of qualitative and
quantitative data to VLSI layout design. For example, one important applica-
tion (Kernighan and Lin [1970]) of the GPP is the placing of components of an
electronic circuit onto printed circuit cards or substrates, so as to minimize the
number of connections between cards. The objective of minimizing the num-
ber of interconnections between cards is justified because connections between
cards have high cost when compared to connections within a board. Another
application (Kernighan and Lin [1970]) consists of the problem of improving
the paging properties of programs for use in computers with paged memory
organization. A program is a set of connected entities, such as subroutines,
procedure blocks, or single instructions and data items. Possible flow, transfer
of control or reference from one entity to another represent the connections
between entities. The problem is to assign entities to “pages” of a given size
such that the total number of references between the objects lying in different
pages is minimized.

The CPP also has a wide range of applications. For example, the so-called
problem of aggregation of binary relations into equivalence relations, which is
basically the clustering problem of finding a “best” partition of a set of given
objects into non-overlapping classes of homogeneous objects, can be modeled
as the CPP; see Grotschel and Wakabayashi [1989] for details. Other inter-
esting applications of the CPP in a wide range of disciplines are reported in
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Barthélemy and Monjardet [1981], Grotschel and Wakabayashi [1989], Marco-
torchino and Michaud [1980, 1981a, 1981b], Opitz and Schader [1984], Tiishaus
[1983].

Defining
o — 1 if node i € V belongs to set W;,
Y71 0 otherwise,

where n < m = |V|, the problem GPP of partitioning the nodes of V into n
classes of nodes achieving the stated objective can be stated mathematically as

maz Z(i,k)eE ZjEN QiR ZTijTkj
subject to Yjenzij=1 forieV (2.10)
z;; € {0,1} forieV,j €N, (2.11)

where N = {1,...,n}. We note that given any solution z;; to (2.10) and (2.11)
W,-:{iEV:x,-j:I}

for 1 < j < n. It follows that W; # 0 and W;NW; =0 for1 <i<j < n.
Consequently, F' = U"_, E(W;) is an n-partitioning of G. On the other hand,
it is straightforward to show that every n-partitioning gives rise to a feasible
solution to (2.10) and (2.11). Secondly, we note that the objective function
accounts for the total weight of all edges with both ends in the sets W; for
j € N and it is maximized. We calculate using (2.10)

Z Zaikxij:ckj = Z Zaik$ij(1_ Z -”Ctj)

(i,k)EEJEN (i,k)EEJEN LeV—k
= E ik — E E Ak Tij E Tej-
(i,k)EE (i,k)EEjEN LeV -k

Thus the objective function of GPP achieves the minimization of the total
weight of all edges that are cut by the partitioning. This follows because
for every feasible solution z;; to (2.10) and (2.11) 3 ,cy_; ze; € {0,1} and
Y eev - 2ej = 1if and only if zx; = 0, ie. kg W;, forany je€ NandkeV.

To find a clique partitioning in a sparse graph G = (V, E)) with edge weights aik
for all (i, k) € E, define weights a;x = a; for all (i,k) € E, aix = —00 otherwise.
Let E* denote the set of all possible edges on the node set V of G. We replace
the weights a;x in the objective function of GPP by a;k, replace E by E* and
solve the corresponding problem. If the optimum solution to this problem has
an objective function value of —oco, then the clique partitioning problem in G
has no feasible solution for the given value of n. Otherwise, let the sets W;
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Figure 2.9 A 6-node complete graph and its 2-partition

for 1 < j < n be defined as before from an optimal solution to the problem.
It follows that E(Wj;) is a clique in G for 1 < j < n and by construction,
F = UJ_ E(W;) is a clique-partitioning maximizing the objective function of
GPP when the original weights a;; of the sparse graph G are used. But then it
follows from the previous reasoning that the clique-partitioning that we have
found is optimal. We note for completeness that the assignment of weights of
—oo to the “missing” edges of G corresponds to requiring that z;;zx; = 0 for
1 < j<nandall (i k) € E*— E. This has implications for the linearization
of this particular quadratic programming problem.

Let the nodes of the graph associated with the GPP represent jobs in the CSP,
then it follows that the GPP is a generalization of the CSP where a pair of
Jjobs can be assigned to an identical machine only if there is an edge joining the
nodes representing these jobs. Hence, the GPP and the CPP over a complete
graph are of same general form as the CSP.

Let Q € R™™»X™" be partitioned as in (2.3), O € R"*" be as defined before
and redefine the submatrices Q;x € R™*" for 1 <7 < k < m to be

a,-k(I) 0 0
0 ik(1)
Qix = : ’ k: ) : ,
0 0 e a,-k.(l)

where a;x(I) = aix if (¢, k) € E, 0 otherwise. Then the GPP can be stated as
maz{xT Qx : x satisfies (2.10) and (2.11)}. (GPP)

Both the GPP and the CPP are AP-hard in general; see e.g. Garey and
Johnson [1979].
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2.9 Boolean Quadric Problems and Relatives

Given a set M = {1,...,m} and a vector x € R™ with components zy, ..., Zp,,
the unconstrained Boolean quadric problem (BQP) studied by Padberg [1989]
is the quadratic zero-one optimization problem

maz cx +xTQx
subject to z; € {0,1} forl<i<m, (2.12)

where ¢ € R™ is a vector of rational numbers and Q € R™*™ is an upper trian-
gular matrix with zero-diagonal. Many problems arising in network and graph
theory, such as the min cut problem, the stable set (or independent set) prob-
lem, etc., have been formulated as BQPs; see e.g. Hammer (Ivanescu) [1965].

A close relative of the BQP is a combinatorial optimization problem called the
equi-partitioning problem (EQP) and has been studied by Conforti et al. [1990].
Given a weighted connected graph G = (V, E) with edge weights a;; for (¢, k) €
E, the EQP seeks to partition of the node set V into two subsets S and V — S
with S| = [|V|/2] or |S| = [|V|/2] so as to minimize the total weight of the
cut edges with one endpoint in each subset. Like the BQP the EQP is N'P-hard
in general and arises in the study of the ground state of spin glasses having zero
magnetization; see Barahona and Casari [1987]. Defining

I 1 ifnodei€ V isinset S,
*7 1 0 otherwise,

the EQP is the quadratic zero-one optimization problem

min Z a;rz;(l —zp) : Zx,- =|VI/2], zi € {0,1} forall i € V
(i,k)EE i€V

Setting S = {i € V : z; = 1} for an optimal solution x € R” to this problem
we have the desired equi-partition of G into two “almost equal” halves, where
v = |V|. Since Z(i,k)eE aixzi(l —zg) = Z(i,k)EE ik T; — Z(i'k)eEa,-kxi:ck we
can find a vector ¢ '€ R? and an upper triangular matrix Q € R¥*? with zero-
diagonal by simply supplying a;x = 0 for all edges (¢, k) ¢ E on the node set V'
of G. Consequently we can write the equi-partioning problem in the form

mazx cx + xTQx
subject to 3 .oy i = [|V]/2] (2.13)
z; € {0,1} for1 <i<w. (2.14)
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The BQP, a NP-hard problem in general, is equivalent to a combinatorial op-
timization problem called the maz cut problem on the complete graph K, ; =
(V',E') where V' = VU{m+ 1} and £/ = EU{(i,m+ 1) : ¢ € V}; see
Padberg [1989] and Barahona et al. [1989]. Given a weighted complete graph
G = (V', E') with edge weights a. for all e € E’, the max cut problem (MCP)
seeks to find a partition of the node set V'’ into two subsets such that the to-
tal weight of the cut edges with one endpoint in each subset is maximized. If
all the edge weights are nonpositive (or equivalently, all the edge weights are
nonnegative and the direction of the optimality is minimization) and we re-
quire that the node set should be partitioned into two nonempty subsets, then
this variation of the max cut problem is called min cut problem. The min cut
problem is polynomially solvable; see e.g. Ahuja et al. [1993]. The BQP or
equivalently the MCP arises in a variety of contexts. For example, the prob-
lem of determining the partitioning function for the Ising model of spin glasses
having nonzero magnetization arising in Statistical Physics can be formulated
as the BQP; see Barahona and Casari [1987].

The max cut problem is also equivalent to the problem of finding a maximum
edge weight bipartite subgraph in a graph and has been studied by Barahona
et al. [1985) if all the edge weights are non-negative.

2.10 A Classification of Boolean Quadratic Problems

Given a set V = {1,...,v} and a vector x € R? with components z,...,z,,
the constrained Boolean quadratic problem (BQP() is the quadratic zero-one
optimization problem

min  cx+ xTQx
subject to 3 ics wi=b; forj=1,... k (2.15)
z; € {0,1} forl1<i<wv, (2.16)

where S; C V for 1 < j < k are nonempty subsets of V' and U}‘zlSj =V for
some k > 0. The BQP is formally the special case of the BQP¢ if k£ = 0. The
EQP has a single constraint (2.15) with S; = V and b = b, = ||V|/2].

We will now unify and schematize all problems presented in the first two chap-
ters, by expressing them as Boolean quadratic problems with special ordered
sets constraints (BQPS). The BQPS is the special case of the BQPc where
b; =1for 1 <j<kin(2.15). The BQPS is evidently AP-hard in general.
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Figure 2.10 A classification of BQPSs

Our classification scheme of BQPSs is based on three characteristics, which we
will utilize to derive “locally ideal” linearizations for each one of these problem
classes. These three classification parameters are:

(i) number of classes of assignment type constraints, since one set of assign-
ment type constraints leads to a disjoint set of constraints while two sets
of assignment type constraints lead to a constraint set with nonempty but
well-defined intersections;

(ii) symmetry/asymmetry of the submatrices Q;; for 1 < ¢ < k < m or
1 < i < k < nin the partitioning (1.15) or (2.3) of Q, as the case may be;

(iii) variability of the diagonal elements of the submatrices Q;x in case of those
problems which have all off-diagonal elements equal to zero.

Figure 2.10 summarizes the membership of all BQPSs, that we have considered
so far, according to the various strata in our classification scheme.
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SOLUTION APPROACHES

The quadratic assignment problem (QAP) has attracted a surpassing algorith-
mic research interest since its introduction in 1957 by Koopmans and Beck-
mann. A wide variety of algorithms and heuristics have been developed to
solve the QAP exactly or approximately. Moreover, since all the problems
described in Chapter 2 are closely related to the QAP, one could modify the
available exact and approximate techniques for the QAP and utilize them to
“solve” every one of these problems. While this is conceptually correct, we do
not recommend to solve e.g. traveling salesman problems this way, because the
largest size QAP solved to optimality, so far, has n = 30; see Clausen [1994],
Mans et al. [1992], Pardalos et al. [1994], and Resende et al. [1994]. More to
the point, this means that existing algorithms for QAPs are nowhere close to
solving practical problems arising from real-life applications to optimality. This
state of affairs is unsatisfactory, but not surprising since very little is known
about the mathematical properties of QAPs. A straight-forward application of
the appropriately modified QAP algorithms to solve its variants can thus not be
expected to solve large-scale instances of these problems. While many authors
propose (different) mixed zero-one formulations of QAPs, they are hardly ex-
ploited in the numerical computations and the facial structure of the associated
integer polyhedra has not been studied in any detail.

On the other hand, researchers who pursued the polyhedral approach and stud-
ied the facial structure of the integer polyhedra associated with combinatorial
optimization problems other than the QAP have utilized their results to develop
astoundingly successful polyhedral cutting plane algorithms. This is the case e.g.
for the traveling salesman problem, see Applegate et al. [1994], Grotschel and
Padberg [1985], Padberg and Grotschel [1985], Padberg and Rinaldi [1991], the
set partitioning problem, see Hoffman and Padberg [1993], Padberg [1973], the

59
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linear ordering problem, see Grotschel et al. [1984], the clique partitioning prob-
lem, see Grétschel and Wakabayashi [1989], the fixed-charge network problem,
see Padberg et al. [1985], Van Roy and Wolsey [1985, 1987], Wolsey [1989], the
capacitated network problem, see Araque ef al. [1990], etc. In all these cases,
the research focused first on developing the mathematical foundations for the
respective problems. Computational studies were performed in all cases after
the first step was done, i.e. after the underlying integer polyhedra were mathe-
matically understood to a sufficient degree. Notable among the computational
studies, Padberg and Rinaldi [1991] outline the following key ingredients to a
successful application of polyhedral cutting plane algorithms to solve A'P-hard
problems:

(1) a heuristic procedure to find good feasible solutions,
(ii) efficient separation algorithms to find violated inequalities of a partial de-
scription of the associated polyhedra,
(ii1) a carefully designed interface with the linear programming solver and
(iv) a branching procedure that combines the ideas of branch and bound and
polyhedral cutting plane techniques.

This relatively recent approach to combinatorial optimization goes frequently
(but not always) by the name of branch-and-cut. Using this approach Padberg
and Rinaldi [1991] optimize 42 different traveling salesman problems on nodes
ranging from 48 to 2,392 cities, which give rise to integer programming prob-
lems on up to more than two million variables. A more recent study by Hoffman
and Padberg [1993] reports the optimization of 55 pure set partitioning prob-
lems having up to one million variables and 13 set partitioning problems with
base constraints with up to 85,000 variables arising in the real-life context of
airline crew scheduling. For other successful applications of polyhedral cutting
plane methods, see Barahona et al. [1989], Crowder et al. [1983], Grotschel et
al. [1992], Van Roy and Wolsey [1987] and others. A substantial body of liter-
ature on the facial structure of polytopes associated with some of the problems
described in Chapter 2, e.g. the Boolean quadric problem, the max cut prob-
lem, the equi-partitioning problem, the graph partitioning problem, already
exists and provides leads to the study of the facial structure of BQPSs.

Polyhedral cutting plane methods are robust, versatile and utilize the existing
body of knowledge accumulated through research from various perspectives on a
given class of problems. In Chapters 4-7 we study the facial structure of several
of previously described BQPSs to lay the foundations for a polyhedral cutting
plane algorithm to solve reasonably large size practical problem instances of
BQPSs. Since it may be possible to utilize some of the key elements of the
presently available solution techniques within the framework of a polyhedral
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cutting plane algorithm for BQPSs, we review some of the current solution
approaches to quadratic zero-one problems with assignment type constraints.

A number of both exact and approximate solution techniques to solve QAPs has
been reported in the literature. The exact techniques fall into four categories:

(1) enumeration (simple and straight-forward);

(ii) branch-and-bound algorithms; see e.g. Burkard and Derigs [1980], Ed-
wards [1980], Gavett and Plyter [1966], Land [1963], Lawler [1963], Mans
et al. [1992, 1993], Nugent et al. [1968], Pardalos and Crouse [1989], Rou-
cairol [1987];

(iii) traditional cutting plane algorithms; see e.g. Balas and Mazzola [1980],
Bazaraa and Sherali [1980], Kaufman and Broeckx [1978];

(iv) dynamic programming algorithms; see Christofides and Benavent [1989)].

3.1 Mixed zero-one formulations of QAPs

The quadratic assignment problem is a nonlinear zero-one optimization problem
and as such very little is known about it. While several authors attempt to
attack nonlinear integer optimization problems in a nonlinear framework, it is
fair to state that these approaches have failed so far to produce any tangible
numerical results of significant proportions. Rather the prevailing tendency is to
linearize the corresponding nonlinear problem and to cast it as a pure or mixed
integer linear optimization problem. Most nonlinear optimization problems in
integer variables are tractable and some become treatable this way. In the case
of the quadratic assignment problem one introduces new variables

yff =ZijTke for ¢,j5,k,£ € N.

Lawler [1963] proposes the following mixed zero-one formulation of the QAP.

min Ei,jeN CijZij + ) ijEN 2k LeN a:cfy:cf
subject to Xex, (3.1)
Tij + The — 2y,‘ >0 for ¢,j,k,£ € N (3.2)
Ez’,jeN Ek LEN yij =n? (3.3)
y,] € {0,1} for 7,7, k,£ € N,(3.4)

where ), is the set of all n x n permutation matrices. It is an easy exercise to
show that the above formulates the QAP correctly, i.e. if X € X, then y“ =
z;jx¢ satisfies the constraints (3.1),...,(3.4) and vice versa, if (x,y) sa.tlsﬁes
the constraints (3.1),...,(3.4) then y{ff = z;jzke. Since z;; € {0,1} is part of
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the constraints of X,, and y:j = zjjz;; = z;; for all 4,5 € N one can reduce
the number of necessary new variables somewhat. Moreover, yfj‘ = IijTke =
zrezi; = yy; and X € A, implies that yfjj = z;jzr; = 0 and y]’f =zjiz;y =0
for all i # k € N. Consequently, it suffices to introduce n?(n — 1)2/2 new
variables in addition to the n? variables z;; to formulate the QAP as a mixed
zero-one linear programming problem correctly; see also Chapter 1.6 on this
point and on how the objective function is affected by the preceding. It follows
that 1 + 2n + n%(n — 1)2/2 linear constraint in n% 4+ n%(n — 1)?/2 zero-one
variables suffice to formulate the QAP as a zero-one linear program.

From a geometric point of view the formulation (3.1),...,(3.4) is a particulary
bad formulation: it pays no heed to such things as the linear description of
the affine hull of the convex hull of the discrete solution set of the QAP nor
the proximity of the linear inequalities (3.2) to the facets of the corresponding
polytope. Maybe indicative of the common knowledge that (3.1),...,(3.4) is
a rather “loose” formulation of the QAP is the fact that we have been un-
able to track any numerical computation using this formulation. To satisfy
our curiosity and to confirm the predictable experimentally, we have generated
the corresponding linear program for the five-city plant-location example of
Chapter 1.3 (using all n* new variables of the original formulation). The lower
bound obtained this way is the most trivial bound obtainable, namely zero.
Yet the contemporary literature repeats the above formulation and does so
without any criticism, see e.g. Burkard [1990], except to note that “...a large
additional amount of variables and constraints ...” is needed. If you linearize,
a large number of variables is unavoidable and a huge number of constraints
may be dictated by the geometry of the problem. Since we have learned how to
optimize large scale traveling salesman problems for instance, the sheer num-
ber of variables and constraints should hardly impress anybody anymore. It
remains to address the underlying mathematics and geometry of the problem.

Rather than attempting to review all formulations of QAPs that have been
proposed in the literature — most of them are interrelated anyway - let us
consider the following formulation of the QAP in the same set of new variables
ytf introduced above, see Drezner [1995], Frieze and Yadegar [1983], Resende
et al. [1994].

min ), ien CijTij + )i jeN 2ok teN affyt
subject to ZjEN zi; =1 forie N (3.5)
Zjeinj:]' forte N (36)
S Y = ke for jk, L€ N (3.7)

[



Solution Approaches 63

Z?zly,kf =Tk fori,k,{ €N (3.8)
Soper U5 =y fori,j,L €N (3.9)
Soi=1 Y = i fori,j,ke N  (3.10)
y;; =z fori,j €N (3.11)
yll‘j‘ >0 fori,j,k,£€ N, (3.12)

z;; € {0,1} for i,5,k,£ € N, (3.13)

To verify the correctness of the formulation for the QAP is left as an exercise
for the reader. At first sight we need thus about n? +n* variables and 2n +4n3
equations to formulate the QAP, not counting (3.11), (3.12) and (3.13). Clearly,
the new variables yfj" satisfy all of the equations that we have stated and thus
instead of Lawler’s 2n + 1 equations we have now considerably more. (To de-
rive Lawler’s formulation (3.1),...,(3.3) as a relaxation of (3.5),...,(3.13) is
left as a recommended exercise for the reader.) Note that the zero-one require-
ment (3.4) has been replaced by the weaker requirement (3.12); so the resulting
linear program has precisely n? zero-one variables. Like we did before — see also
Chapters 1.1, 1.2 and 1.6 — we can reduce the number of new variables that
must be considered to n?(n — 1)2/2 using elementary properties of the feasi-
ble solutions to the problem that we have also used above. This shows that
some of the equations (3.7),...,(3.10) are superfluous - utilizing the symme-
tries yfj‘ = y;c"l some of them are simply “repeats” of others — and it is not
difficult to see that 2n + 2n2(n — 1) constraints in n? + n?(n — 1)2/2 variables
suffice to formulate the problem correctly.

Now we have considerably more equations in the same set of variables and it
remains to show how many equations are truly required. As we shall see in
Chapter 7.1 a proper analysis of the formulation shows that the geometry of
the problem requires exactly 2n(n — 1) — (n — 1)(n — 2) equations if n > 3.
While we will reduce the necessary number to the bare minimum, this means
nevertheless that roughly n3 equations are required to formulate the problem
in geometric terms correctly. Traditionally, such geometric considerations have
been ignored — we can get away with 2n + 1 equations, right? — | but mathe-
matically and numerically this kind of thinking has not gotten very far either.
Nevertheless, authors continue to propose formulations that have “as few con-
straints as possible” for the QAP and other difficult combinatorial optimization
problems. For instance, probably due to the sheer size of their natural formula-
tion, Frieze and Yadegar [1983] propose the following “reduced” formulation for
the QAP; see also Assad and Xu [1985], Bazaraa and Sherali [1980] and Car-
raresi and Malucelli [1992b] for similarly “shortened” formulations that pay no
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attention to the underlying geometry of the problem.

ke, ke
min Zz JEN Cij Tij + Zz JEN Zk LEN al] y:]

subject to  (3.5),(3.6),(3.11),(3.12),(3.13) and
Zi,jEN y:»cjl = NZTk¢ fOl‘ k,[ E N (314)
D kteN yfj[ = nz;j fori,7 € N (3.15)

It is not difficult to see that this is a “relaxation” of (3.5),...,(3.13) which
formulates the QAP correctly as well. Now we have about 2n + 2n? equations
and thus a substantial reduction in terms of the number of equations. Or so it
seems. Of course, this kind of thinking has nothing to do with the geometry
of the problem, for if the reduction of the number of equations is the goal
of problem formulation (and by consequence, of numerical problem solving)
then we can do vastly better. It has been known since the early 1970s, see
e.g. Padberg [1972], that every integer program in bounded variables can be
formulated using a single equation. More precisely, it followse.g. from Lemma 1
of Padberg [1972] that the following mixed zero-one program formulates the
QAP correctly.

. ke, ke
min E CijTij + E E a5 Y5

i,jEN 1,JEN k LeEN
subject to (3.5),(3.6), (3. 11) (3.12),(3.13) and

_ Z 1+2n 277, 2_(i- 1)n—-]x
1,jEN

+ Z Z 9n Z—(k=1)n— £+22n —-(i=1)n— ]) £ _ . (316)
1,JEN Kk LEN

Indeed, by a full application of Lemma 1 of Padberg [1972], we can reduce
the resulting number of equations from 2n + 1 to 1 and the digital size of the
coefficients of the resulting constraint matrix is about n?, i.e. their digital size
is polynomially bounded in the parameter n of the QAP. Thus theoretically
at least we can reduce the “staggering” number of about 4n3 to a single one
while ensuring “polynomiality” of the resulting transformation. Evidently, the
“chase” for compact formulations of the QAP has taken place many years ago
— with meager computational and numerical results — and we hasten to state
explicitly that (3.16) is not recommended for numerical computation. If the
method of solution for QAPs is based ezclusively on some form of enumeration
— implicit or otherwise — then compactness of the formulation, i.e. the formu-
lation of a combinatorial optimization problem with as few linear constraints
as possible, may matter. But these considerations do not matter at all if the
overall problem is embedded into a continuum, such as it is done when we use
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linear programming, assignment problem-type relaxations and the like, in the
numerical solution of such problems. A minimal system of equations to rep-
resent the linearized formulation of the quadratic assignment problem in the
space of n? 4+ n%(n — 1)2/2 variables of this section is given in Chapter 7.1.

3.2 Branch-and-bound algorithms for QAPs

Branch-and-bound is an implicit enumeration method utilizing, typically, em-
bedded linear programming problems to solve pure-integer or mixed-integer
optimization problems. Assuming a finite set of integer values for the inte-
ger variables it proceeds by partitioning the integer solutions into — typically
- mutually exclusive sets. By refining the partitioning and solving a relaxed
problem over the restricted solution set, a sequence of lower bounds is gener-
ated that is weakly monotonously increasing when we assume minimization as
the sense of the overall optimization problem. If it so happens — and given the
finiteness of the solution sets, it must happen eventually — that a solution is
found with integer values in the required components, the solution is compared
to the best one found so far and, if applicable, it is recorded as the best one
with its corresponding objective function value. This gives an upper bound on
the objective function and the objective of branch-and-bound is to assure that
the worst lower bound coincides with the best upper bound, at which point
the algorithm terminates. The algorithm typically proceeds by creating a bi-
nary search tree which is obtained by branching on a single variable that looks
somehow “promising” for the creation of two new subproblems. This basic
idea for branch-and-bound dates from the 1950s and for many years it was the
only integer programming algorithm that was commercially available. This has
changed since about 1990 with the introduction of ideas from branch-and-cut
into commercial software systems such as CPLEX of CPLEX Optimization, Inc
and IBM’s OSL optimization package.

Numerous strategic games are possible within the general framework of branch-
and-bound and we refer the reader to Nemhauser and Wolsey [1988] for an
overview. The questions that are typically addressed are the selection of
branching variables, the selection of the next subproblem to be worked on,
“look-aheads” to limit the search, etc. Rather than creating two new problems
every time the algorithm branches, the exploitation of parallel computers to
create p > 2 branches at a time has been investigated as well, see e.g. Can-
non [1988] and Cannon and Hoffman [1990] in the context of the branch-and-cut
algorithms for linear zero-one optimization problems. Here p is the number of
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“processors” that are available at the time when branching takes place. In the
context of the quadratic assignment problem, Roucairol [1987] and others have
devised special branching schemes to exploit parallel processing. Like in the
case of general zero-one problems a linear speed-up can typically be realized as
the number of parallel processors is increased. At present this appears to be true
when the number of processors is relatively small and we are not aware of per-
taining studies for massively parallel computers and their potential for speeding
up branch-and-bound algorithms for difficult combinatorial problems. Due to
communication problems between the processors a less-than-linear speed-up is
predictable.

The application of branch-and-bound to the solution of QAPs relies on the
philosophy of generating lower bounds quickly and cheaply. The pertaining
work starts apparently with Gilmore [1962] and Lawler [1963] who derived the
following Gilmore-Lawler lower bound for QAPs. Let us denote by

. ke .
z2QAap = man Z Cij Tij + E Z a;;TijThe : Xed,
iLjEN 1,JENk,JEN

the optimal solution value of QAP and for 7, € N

. ke . —
fij = min E a;;Tke : Xed,,z;=1
kLEN

fij can be computed by solving a linear assignment problem with the additional
restriction that z;; = 1 for some ¢, j € N. By construction we have

(eij + fij)zij < mij(eij + Z affzie)
kLeN

for all 2,7 € N and X € &,,. Consequently,

GLB = min Z (C,‘j + f,'j):c;j : XeXx, < ZQAP
1,jEN

and thus by solving n?+1 linear assignment problems a lower bound on zgap is
obtained. Moreover, if x* solves the linear assignment problem GLB on the left
hand side of the inequality, then we get an upper bound for zgap by evaluating
the objective function value of QAP in terms of x*. By comparison to the
overall problem that we wish to solve the computation of the Gilmore-Lawler
bound GLB is relatively cheap, we can partition the set of all permutations
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by assigning some z;; the value of one and/or zero and iterate. In addition,
we can utilize the dual variable information provided for by the calculation of
GLB to cleverly select promising subproblems to be chosen in the branching
scheme. This gives a basic branch-and-bound algorithm for the QAP which
leaves many strategic choices to play with.

Example 1. For the data of our example problem of Chapter 1.3, see Table 1.1,
we calculate the Gilmore-Lawler matrix with elements ¢;; + f;; for i,j € N

632 440 228 334 290
720 466 361 447 339
F= 564 512 191 265 209
500 359 168 219 296
618 375 250 377 218

This is done by solving the n? linear assignment problems. Solving the resulting
linear assignment problem GLB we get a lower bound of 1,677 and as it so
happens, an upper bound of 2,010 on the optimal value zg4p = 1,812 of this
particular problem.

The objective function of the QAP consists of a linear and a quadratic part.
Using the assignment constraint (3.5) and (3.6) it is possible to “shift” some
of the data from the quadratic part to the linear part — like we did in Chap-
ter 1.2 in order to reduce the number of off-diagonal nonzero entries of the flow
matrix. The intuitive reason behind such a “reduction” of the quadratic part
is the desire to reduce the relative impact of the quadratic part of the objec-
tive function and to increase the relative importance of its linear part. As we
have seen in Chapter 1.2 this intuitive reasoning has the definite consequence
of reducing the number of new variables that are necessary when we linearize
the quadratic terms. “Reduction” has attracted a great deal of interest in the
literature.

In the context of the Koopmans-Beckmann problem the following rules have

been investigated, see also Chapter 1.2:

s Burkard [1973] subtracts from each column of the flow matrix T and the
distance matrix D its minimal off-diagonal element.

= Edwards [1980] reduces T and D to yield matrices T and D, respectively,
which have zero principal diagonals and off diagonal elements given by:

- Z‘ tik E ik E., tik
tik = tie — LEy — TGID -t GeDD

- E dje Z dje Z dje
dje = dje — S - S + Gy
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®m  Roucairol [1987] proposes two different reduction schemes. The first con-
sists of subtracting from each row of T and D its minimal off-diagonal
element and then to subtract from each column of the reduced matrices
its minimal off-diagonal element. The second reduction scheme is iterative
and goes as follows: for each one of T and D pick 2n elements sequentially
such that the greatest element of the reduced matrix at each iteration is
decreased by as much as possible without letting any entry in the reduced
matrices become negative.

Evidently, one can play endless games with different reduction schemes and the

set of choices is rather unlimited. Before we come back to the question of a

rational choice of the reduction parameters let us illustrate reduction by way

of an example.

Example 2. In Chapter 1.1 we have stated explicit formulas for a particular
reduction and in Table 1.3 we give its application to the five-city example of
Chapter 1.3. Calculating the corresponding Gilmore-Lawler matrix like we did
in Example 1 we find
762 522 322 448 362
1154 741 594 745 556
F = 396 398 122 174 145
324 243 104 131 222
412 243 114 211 102

Solving the corresponding linear assignment problem GLB we get a lower bound
of 1,619, which is worse than the one obtained without any reduction, and as it
so happens, an upper bound of 1,812 which is the optimal value zgap = 1,812
for this particular problem, except that we have no proof of this fact yet.

It follows from the example that reduction per se does not guarantee a bet-
ter lower bound on zgap. The question of “reducing the data optimally” so
as to guarantee e.g. a best possible Gilmore-Lawler bound for the given data
ensues and has been dealt with in a very interesting paper by Frieze and Yade-
gar [1983]. They consider the reduction of the afj‘ of the objective function
of the QAP in a very general form. Write the reduced coefficients bff in the
following decomposed form:

b = alf — ajee — Bike — vije — bijk, (3.17)

where a, 3,v,6 € R™" are arbitrary real vectors. Substituting (3.17) into the
objective function of QAP transforms it into

Z dijzi; + Z Z b aijeke, (3.18)

i,jEN i,jEN k,LEN
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where dij = cij + ) pen @ij + 2 pen Beij + D pen Yije + D pen bije for i, j € N.
Now let us denote like we did before in the GLB calculation

3 . ke . —
fij =min E bij Tre: X € Xn,:c,-j =1
ELEN

For given a,3,~,6 € R"™ we can compute all f,-j as before and it follows that

GLB(a,B,7,8) =min{ Y (cij + fij)zij : X € Xn p < 2gap,
i,JEN

for all possible choices of a, 3,, 68 € R, Consequently, to find a best possible
(generalized) Gilmore-Lawler bound using a most general form of decomposi-
tion of the objective function coefficients of the quadratic part of QAP, we are
interested in finding

maz{GLB(a,3,7,8): a,8,7,6 € R"s}. (3.19)

To make matters short, Frieze and Yadegar [1983] show that v € R™ and
5 € R do not matter at all in the reduction scheme, ie. we might as
well set them equal to zero. Moreover, they show that the maximum (3.19)
equals the minimum objective function value of the linear programming re-
laxation (3.5),...,(3.12) of the QAP. Their result shows that the best lower
bound that reduction plus a bounding scheme in the spirit of Gilmore [1962]
and Lawler [1963] can provide for is obtainable via the solution of a single linear
program. Similar, less complete results of this variety can be found in Assad
and Xu [1985] and Carraresi and Malucelli [1992a, 1992b]; see Rijal [1995] for
more detail. Frieze and Yadegar investigate the use of Lagrangian relazation to
find/approximate the maximum value of GLB(a, 8, ~, §). While the avoidance
of the solution of a large-scale linear program may have been a reason to ex-
plore alternatives in the past, we think that the progress in linear optimization
made in the meantime warrants a different thinking, especially in view of the
limited size of QAPs actually optimized to date.

A different approach to obtaining lower bounds for QAPs and KBPs utilizes
the algebraic properties of the eigen values of symmetric matrices. To facilitate
the discussion of these approaches to lower bounds for the KBP, we consider
the following nonlinear programming problem:

mn Z:wtsN CijTyy + Zi,JGN Zk,lEN tid;eyi; yYxe
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subject to X € AP, (3.20)
Yi; = Tij fors,j€N (3.21)

ZJEN Yijyi; =1 forte N (3.22)

Y en YisYk; =0 fori# ke N.(3.23)

If x =y € AP, and z;; = y; = 1 then y;;y;; = 1 and wyiyr; = 0 for
1 < i # k < n; thus, the constraints (3.22) and (3.23) are redundant. Hence,
the nonlinear programming problem is a formulation of the KBP. Moreover, if
we replace the constraint (3.21) by y € AP,, we obtain a relaxation of the KBP;
consequently, the optimal objective function value of this relaxation problem is
a lower bound for the KBP. Since, in this relaxed problem the variables x and
y are unrelated, the problem decomposes into two subproblems

min Z Cijxij 1 Y € AP, ¢, (3.24)
ijEN

min Z Z affyijykg : y € AP,, y satisfies (3.22) and (3.23) » . (3.25)
i,jEN kLEN

The subproblem (3.24) is a linear assignment problem, which can be solved
using a variety of network optimization techniques or simply by any linear
programming solver. The subproblem (3.25) is a nonlinear programming prob-
lem, which is difficult to solve. It has been shown, using Lagrangian multiplier
techniques of solving unconstrained nonlinear programming problems if the
matrices T and D are asymmetric, see Rendl and Wolkowicz [1992], and using
the orthogonal diagonalization property of symmetric matrices if the matrices
T and D are symmetric, see Finke et al. [1987], that the objective function
value of this nonlinear programming problem lies between min Y ., Xi7vk,
and maz 3 i_, A7k, see Hoffman and Wielandt [1953] and Finke et al. [1987],
where A; and v; for 1 < 1 < n are respectively the eigen values of the matrices T
and D. Moreover, if the requirement that y € AP, is dropped, then the objec-
tive function value of the relaxation problem is, in fact, given by min 3_1; A7,
see Finke et al. [1987], which is equal to the ranked product of these two sets
of eigen values whereby the largest eigen value from one set is paired with the
smallest eigen value from the other set.

It has been empirically verified that if the matrices T and D are not reduced
further, a lower bound for many instances of the KBP obtained using the eigen
value decomposition is negative, see e.g. Hadley et al. [1992]; this lower bound
is dominated by a trivial lower bound of 0 for the KBP with only nonnegative
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cost coefficients. Hence, all algorithms that utilize the eigen value approach to
calculate a lower bound for the KBP work on matrices obtained by decomposing
T and D in order to augment the influence of the linear assignment subproblem
and to reduce the influence of the the nonlinear subproblem in the calculation
of the overall lower bound for the KBP. Since a smaller fluctuation of eigen
values of the matrices T and D is likely to lead to a smaller bandwidth within
which the ranked products of these two sets of eigen values lie, the matrices
T and D are decomposed so that the spreads of these matrices are minimized.
The spread of a square matrix T is given by, sp(T) = maz; ;|\ — ;| for
i # j € N. Since there is no simple formula to compute the spread, Finke et
al. [1987] propose to minimize the upper bounds of spreads of these matrices
by utilizing Mirsky’s approximation [1956]. Mirsky’s formula for calculating an
upper bound of spread of eigen values of a square matrix T is

1/2

n n n 2
sp(T) < |2) ) th —(2/n) (Z t,-,->
i=1

i=1 k=1

Finke et al. [1987] decompose the matrices T and D as follows

tixr =tk — fi — fr — ik for all i,k € N,i # k,

d;je :djg—hj —hg—Sjg forall €€ N,j £ ¢,
where the reduction parameters that minimize an upper bound of sp(T) are

fi = (Chartie —tii—2)/(n—2)
. _ tii—2f; fori=k
=10 otherwise,

where z = (3771, Yooy tik — 9oiey tii) /2(n— 1).

The reduction parameters h; and sj¢ for 1 < j,€ < n that minimize sp(D) can
be calculated similarly. Rendl and Wolkowicz [1992] show that this reduction
scheme is equivalent to minimizing the variance of the corresponding set of
eigen values. The reduced matrices T = (#;x) and D = (d;;) have row and
column sums equal to zero and zeroes along the main diagonals. Moreover,
this reduction scheme not only reduces the magnitude of quadratic terms in the
objective function but it also preserves symmetry of these matrices. Resultant
to this reduction scheme, the objective function coefficients ¢;; in the linear
assignment subproblem are replaced by ¢;; = 2h; Z?#:l tik-

Rendl and Wolkowicz [1992] state that this lower bound can be further improved
since the matrices T and D are reduced independently without any consider-
ation of the linear cost matrix C in the reduction scheme of Finke, Burkard
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and Rendl [1987]. Rendl and Wolkowicz [1992] outline an iterative eigen value
decomposition approach that also works for the cases when the matrices T and
D are not necessarily symmetric. To improve the overall lower bound for the
original problem, Rendl and Wolkowicz [1992] compute the derivative of a suit-
ably perturbed minimal scalar product of the ranked eigen values as well as the
subdifferential of the lower bound for linear part in the cost function and move
along the steepest ascent direction, which improves the overall lower bound by
taking a step size which preserves the optimal basis of the linear assignment
problem. The linear assignment problem that is considered there is given by

min {2?21 Z?:lfijxij X E APn} with

Tij = cij +2hy oy tie + 26 gy dje — 2k 3oy i
= 2nfih; + (ti — 2fi — rii)sj; + ris(dj; — 2hj — s55) + riisjj,

fi, hi,rii and s;; for ¢, j € N as defined above. The lower bound derived there
is given by the sum of the minimum of the ranked products of the eigen vectors
and the objective function value of an optimal solution to the linear assignment
problem. The resulting iterative procedure for deriving a lower bound has a
complexity of O(n®) per iteration.

3.3 Traditional cutting plane algorithms

Several researchers have pursued methods based on Benders’ decomposition,
see Benders [1962], to solve QAPs or at least, to derive a lower bound for the
QAP. The basic idea behind these algorithms is to use an enlarged nonlinear
formulation of the QAP by introducing a set of new variables and constraints.
The iterative approach works with a master problem and a subproblem. The
subproblem is a linear programming problem obtained by fixing some of the
variables (usually, the original variables) in this reformulated problem, while
the master problem is a reformulation of the original problem with primal and
dual solution vectors of the subproblem as its parameters; hence, it is also a
linear programming problem. A subproblem in this scheme is usually a simple
problem that has a closed-form solution which can be derived using the duality
theory of linear programming or can be solved using an efficient algorithm, e.g.
a network flow algorithm. Starting with some feasible solution vector, first the
master problem is solved. Given this solution to the master problem, the sub-
problem is solved to yield both primal and dual solution vectors. Assuming the
feasibility of the original problem (which is true in all the problems of interest to
us), if the solution to the subproblem satisfies all the constraints of the master
problem, we have an optimal solution to the original problem. Otherwise, any
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violated constraint (also called a cutting plane since it cuts off the current solu-
tion obtained as a solution to the subproblem) is added to the master problem
and the enlarged master problem is solved and the whole procedure is repeated
again. This reiterative procedure is continued until a solution to the subprob-
lem that satisfies all the constraints of the master problem is found. Moreover,
every solution to the master problem corresponding to a feasible solution to
the subproblem at any stage in the iterative procedure furnishes a lower bound
for the overall problem. On the other hand, the objective function value of the
original problem corresponding to a feasible solution to the subproblem yields
an upper bound for the overall problem.

In practice, this method usually turns out to be computationally very expen-
sive due to poor convergence of the lower and upper bounds to a single bound.
Kaufman and Broeckx [1978], for instance, use this procedure to derive a lower
bound, but they couple it with a suboptimal heuristic solution to the origi-
nal problem. The whole scheme is accelerated by terminating this iterative
algorithm when the difference between lower and upper bounds falls within a
certain prespecified range.

Various reformulations of QAPs which lend themselves very well to Benders’ de-
composition have been proposed in the literature. Kaufman and Broeckx [1978]
formulate the QAP using n? additional variables and n? additional constraints
as follows:

min Zi.jeN Yij
subject to x € AP,
fiizis + ko Yoty @Ffare —vij < fij for 1 <i,j <m,

where AP, is defined in (1.14), yi; = z;j; Z:zlzz;laffxu and f;; is the
optimal objective function of the linear programming problem given by

fij = maz E affa:u I XE AP, ,
k,LeN

The master problem, they consider is
min{z: z > Z uls( Z aff:c,-j — fij)forpe P,z2>0,x € AP,},
ijEN kLEN

where u? = (ufj, for 1 <4,j < n) for p € P are the finite set of extreme points
of the dual of the subproblem given by

min{yi; : Y affere—yij < fij, yi; > 0 fori,j € N}.
k,LeN
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Bazaraa and Sheriali [1980] introduce another formulation of the QAP using
n?(n — 1)?/2 new variables and 2n? new constraints as follows:

. ke, ke
min E E a;; Yij

i<kEN j£LEN

subject to X € AP, (3.26)

Z Z y —(n—19z;; =0 forl<i<n-1,j€N (3.27)
k=i+1j#LeN

Z Z yl’-‘f—(k—l)xH:O for2<k<nfleN (3.28)
i=1 ¢£jEN

0<yf<1 fori<keN,j#LeN,(329)

where yff = zjjzre and afjl = (¢ij + cre + aijre)/2 for 1 < @ < k < n and
1 < j # ¢ < n. Bazaraa and Sheriali [1980] also outline an algorithm based on
Benders’ decomposition. The master problem, they consider is given by

n—1 n
min{z : z > Z Z ufj(n—i)xij—Jf-Z Z vi(k—1)zge—w? for p € P, x € AP, }

i=1jEN k=2LeN

where wP = 3, pen Dizeen Whike and wP = (uf, v}, why,, fori < k €
N,j#1¢Lc¢€ N) for p € P are the finite set of extreme points of the dual of

the subproblem given by
min{ Z Z affy:‘]e .y satisfies (3.27),(3.28) and (3.29)}.
i<kEN jLEN

Balas and Mazzola [1980] give the following formulation for the QAP with
interaction cost terms a t>0forallijk € N:

min 2
subjectto  z 2 > (frewke+ Y affui)ere— Y freyre (3.30)
kLEN ijEN kLEN
X,y €AP,, (3.31)

where fre = maz{}_; ,cn aif2ij : x € AP,}. Balas and Mazzola [1984] outline
a cutting plane algorlthm to solve nonlinear zero-one programming problems in
general. Their algorithm starts by generating some linear inequalities, e.g. gen-
eralized cover inequalities, implied by the constraint set of the original problem.
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These inequalities furnish a set of constraints to a linear programming relax-
ation of the original problem. If an optimal solution to this linear programming
relaxation is feasible to the original problem, we have an optimal solution to
the original problem. Otherwise, additional linear inequalities implied by the
original problem and violated by the solution to the relaxation problem are
identified and appended to the linear relaxation problem. This process is reit-
erated until the linear relaxation yields an optimal solution that does not violate
any constraints implied by the original problem. Burkard and Bonniger [1983]
utilize the formulation due to Balas and Mazzola [1980] and develop a heuristic
cutting plane procedure to find possibly several suboptimal solutions to the

QAP.

3.4 Heuristic procedures

There is a plethora of traditional and modern heuristic procedures for the
quadratic assignment problem. The major traditional heuristic approaches out-
lined in the literature either utilize construction methods, see Gilmore [1962],
to find one or more suboptimal solutions by enlarging a partial permutation
according to some criteria or perform one or more pairwise exchanges, see
Heider [1972], until no further improvement can be made. Other so-called
meta-heuristics like simulated annealing, see Burkard and Rendl [1984], Lut-
ton and Bonomi [1986] and Wilhem and Ward [1987], tabu search, see Skorin-
Kapov [1990] and Taillard [1991] and genetic algorithms, see Brown et al. [1989]
and Mihlenbein [1989], have also been used to find suboptimal solutions to the
QAP. Despite their interesting and entertaining names which are borrowed
from thermodynamics, psychology and genetics it seems, these heuristics are
Jjust that — hit-and-run attempts to solve difficult problems with as little math-
ematics as possible. This is vain, of course, because for the QAP even the
problem of finding a feasible solution which is guaranteed to approximate the
optimal objective function value by some € > 0 is NP hard, see Sahni and
Gonzales [1976]. In other words, no polynomial time heuristic can provide any
guarantee as to the quality of the solution. Moreover, Dyer et al. [1986] show
that solving an average case takes exponential time, if the objective function
coefficients of QAPs are taken from some simple sample space of random num-
bers. Heuristics do play arole in the exact solution of QAPs, however, provided
they are designed to run fast and provide “reasonable” solutions quickly.
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3.5 Polynomially solvable cases

Quadratic assignment problem. Several researchers have identified con-
ditions on input parameters under which the resultant QAP can be solved in
polynomial time. As already pointed out in Chapter 2, the linear assignment
problem is a polynomially solvable special case of the QAP. Christofides and
Gerrard [1976] show that the KBP can be solved in O(n?) time if the matrices
T and D are each a weighted adjacency matrix of a tree and — by solving a
series of linear assignment problems — if the matrix T is a weighted adjacency
matrix of a double star. Furthermore, Rendl [1986] shows that the KBP can be
solved in @(n3) time if both matrices T and D are weighted adjacency matrices
of series-parallel graphs containing no bipartite subgraph K3 5.

Multi-processor assignment problem. Stone [1977] shows that the MPP
for n = 2 can be modeled as a min cut problem. A general task graph can
be associated with the MPP. A task graph is an ordered pair of nonempty set
of nodes and a family of two-element subset of nodes which represent an edge
between the corresponding nodes. Nodes in a task graph represent the set of
tasks of a modular program while the edges represent the inter-module linkages.
The edge weights indicate the amount of data to be transferred between two
tasks. To model the MPP as a minimum cut problem, Stone [1977] modifies the
task graph as follows: first, two nodes each representing a processor are added
and one of them is designated as a source node while the other is a sink node.
For each node other than the source and sink nodes, two edges one each to the
source and sink are added. The weight of an edge emanating from the source
(sink) carries the weight equal to the amount of time required to process the
task corresponding to the sink (source) node. The weight of an edge between a
pair of tasks is equal to the total communication time between two processors
if any reference occurs between two modules. Now any standard mazimum flow
algorithm can be applied to the modified graph and by virtue of the famous maz
flow min cut theorem, see Ford and Fulkerson [1962], every optimal solution to
the max flow problem yields a corresponding minimum weight edge cut set.
Moreover, the minimum weight edge cut set also defines an optimal solution to
the original MPP with the interpretation that if an edge between a task node
and source (sink) is in the min cut, then the corresponding task is assigned to
the processor corresponding to the sink (source) node. Thus, the MPP for n = 2
is equivalent to the min cut problem and hence can be solved in polynomial
time. Moreover, the MPP can be solved in O(mn?) if the task graph is a tree,
see Bokhari [1981], and in time O(mn?) if the task graph is series-parallel, see
Bokhari [1987].
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Graph partitioning problem. The GPP is polynomially solvable if the
associated graph is series-parallel or 4-wheel free, see Chopra [1992] or if the
quadratic interaction cost matrix is positive semidefinite, see Carlson and Nem-
hauser [1966].

Boolean quadric problem and relatives. In a special case in which a;; are
nonnegative for 1 <7 < k < m and ¢; are arbitrary for ¢ = 1,...,m, the BQP
is solvable in polynomial time, see Balinski [1970], Rhys [1970], Picard and
Ratliff [1975], Hansen [1979] and Padberg [1989]. A graph can be associated
with the Boolean quadric problem as follows: create a node corresponding to all
variables and join a pair of nodes by an edge if they have a nonzero interaction
cost in the objective function. Various polynomially solvable cases of the BQP
have been characterized on this associated graph. The BQP is polynomially
solvable if this graph is series parallel, acyclic or bipartite with a;r < 0 for all
1 < i < k < m, see Barahona [1986] and Padberg [1989].

The max cut problem is polynomially solvable for planar graphs, see Had-
lock [1975], graphs that are not contractible to K5, see Barahona [1983], weakly
bipartite graphs, see Grotschel and Pulleyblank [1981], or graphs with no long
odd cycles, see Grotschel and Nemhauser [1984].

3.6 Computational experience to date

Branch-and-bound type algorithms, some of which utilize a linear program-
ming relaxation of the QAP, have so far been the most successful methods for
obtaining optimal solution to the QAP. An instance of the QAP of size n = 30
and four instances of the QAP of size n = 20 (including one from the Nugent
et al. test problem collection) available from the test problem file QAPLIB,
see Burkard et al. [1991], have been reportedly solved to optimality so far, see
Mans et al. [1992], Clausen [1994], Resende et al. [1994]. Mans et al. [1992]
have solved QAPs of size n = 20 in reasonable times by using the branch-and-
bound algorithm developed by Mautor and Roucairol [1992] which exploits the
parallel computer technology available today. Clausen [1994] solves an instance
of the QAP of size n = 20 from Nugent et al. [1968] and likewise, Resende et
al. [1994] solve three other instances of the QAP of size n = 20. In addition,
Christofides and Benavent [1989] report the solution of several instances of the
tree QAPs in which the flow matrix is the weighted adjacency matrix of a
tree; the largest size of the QAP, they solved using a dynamic programming
algorithm, has n = 25.
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Besides exact solution methods, various algorithms have been proposed to ob-
tain the lower and upper bounds of the QAP. Skorin-Kapov (1990) calculates
upper bounds of problems of size up to n = 90 by applying the tabu search tech-
nique of obtaining suboptimal solutions. Resende et al. [1994] calculate lower
bounds of all 63 instances of the problems with n < 30 from the QAPLIB by
solving linear programming relaxations of the associated QAPs. In 54 out of 63
instances, their lower bounds are at least as good as or better than best avail-
able lower bounds reported in the literature. The linear programming based
lower bounds originally proposed by Frieze and Yadegar [1983] and significantly
improved since then are uniformly better than the lower bounds obtained from
all other algorithms, except the eigen value based algorithms. Though in some
instances including one instance of the test problem of size n = 30 from Nu-
gent et al. [1968], the eigen value based algorithm reportedly produced the best
available lower bounds, the linear programming based lower bounds are better
than the former ones in a substantially large majority of the problems from the
QAPLIB.
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In this chapter and the next one we discuss linear programming (LP) formula-
tions of the scheduling, design and assignment problems described in Chapters 1
and 2 as classes of BQPSs (Boolean quadratic problems with specially struc-
tured special ordered set (SOS) constraints). A formulation of a combinatorial
optimization problem is any system of equations and/or inequalities the integer,
mixed-integer, zero-one or mixed zero-one solutions of which are in one-to-one
correspondence with the “feasible” configurations or objects over which we wish
to optimize. In most cases of practical interest many, seemingly different for-
mulations of a combinatorial optimization problem exist if it can be formulated
at all in this sense. The LP formulations of the BQPSs that we derive in this
chapter are based on the concept of a “locally ideal” linearization. A locally
ideal linearization is a linearization that yields an ideal, i.e., minimal and com-
plete, linear description of the polytope corresponding to each pair or certain
sets of pairs of variables in the quadratic interaction terms of the objective
function; see Padberg [1995] for a complete treatment of polyhedral/polytopal
theory and any definitions that we leave unexplained in this monograph. In a
way, using the concept of local idealization to formulate BQPSs is analogous
to investigating thoroughly a few threads of a cobweb as a starting point for a
full-fledged study of the entire cobweb.

An illustrative example of a locally ideal linearization is due to Padberg [1976].
For every pair of variables (z;, zx) giving rise to quadratic terms in the uncon-
strained Boolean quadratic optimization problem (BQP), a new variable y =
z;z) is introduced; and hence, corresponding to (z;,zk,y) there are exactly
the four feasible zero-one vectors given by (0,0,0), (1,0,0), (0,1,0) and (1,1,1).
The following constraints have been suggested in the literature to linearize each
resulting quadratic product term: z; + ¢ —y < 1,—z; —z; + 2y < 0, z;, 2 <

79
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T

Figure 4.1 Traditional and locally ideal linearizations of the BQP

1,z;,zx,y > 0; see e.g. Fortet [1959], Lawler [1963] and others. The six extreme
points corresponding to the polytope in R? defined by these seven inequalities
include two fractional(=non-integer) points (1,0,1/2) and (0,1,1/2) in addition
to the four zero-one extreme points; see the left part of Figure 4.1. On the
other hand, Padberg [1976, 1989] linearizes the quadratic product term using
the constraints: z; + rx —y < 1,—2; +y < 0,—zx +y < 0,y > 0. These
constraints are an ideal linear description of the convex hull of the four feasible
solution vectors given above, see the right part of Figure 4.1, because their
extreme points are precisely the four zero-one points over which we wish to op-
timize. With the necessary generalizations this is what we mean by a “locally
ideal” linear description of a combinatorial optimization problem.

We denote throughout this chapter M = {1,...,m} and N = {1,..., N}. Lin-
earizing every pair of variables giving rise to a quadratic term in the objective
function of the BQP, Padberg [1989] formulates the BQP as the LP problem
given by

maz {Z ciz; + Z qiryik - (X,¥) € me} , (0QPn,)

i=1 i<keM
where QP,, is the polytope defined by the convex hull of solutions (x,y) €
R™(M+1)/2 {4 the following system of linear inequalities in zero-one variables:
—z; +yir <0 fori<keM (41)
—zr+yix <0 fori<keM (4.2)
T4 —yix <1 fori<keM (4.3)
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Yir > 0 fori<keM (4.4)
z; € {0,1} forie M. (4.5)

For every pair 1 < i < k < m each one of the inequalities (4.1),...,(4.4) de-
scribes a facet of the polytope QP,, which is another aspect of a locally ideal
formulation of a combinatorial optimization problem. This means, in particu-
lar, that the system of inequalities (4.1),...,(4.4), like the traditional system
mentioned above, is a formulation of the BQP. It is a better formulation than the
traditional one because the solution set of the linear programming relaxation
of (4.1),...,(4.4) is properly contained in the relaxed solution set of the tradi-
tional formulation. More precisely, two fractional extreme points per quadratic
term of the traditional formulation are eliminated by the locally ideal formu-
lation. In its totality the corresponding locally ideal LP relaxation, however,
still has many fractional extreme points that must be “cut off” by facets of
QP,, other than those given by (4.1),...,(4.4). There are, of course, plenty
of facets of QP,, other than the “trivial” ones given by (4.1),...,(4.4); see
Padberg [1989]. Indeed, the BQP is an AP-hard optimization problem which
is as difficult as the traveling salesman problem.

The SOS constraints in the BQPSs have a special structure. All of these SOS
are of equal cardinality; in addition, they either are disjoint or have well-defined
joins. This special structure suggests that we should be able to modify and
specialize the linearization of the (unconstrained) BQP to obtain locally ideal
linearizations of our problems. As a general rule, it is always advantageous to
use all the information that is available from the structure of a given problem to
derive its locally ideal linearization and thereby a formulation of optimization
problem. In what follows, we derive LP formulations of the major classes of the
BQPSs described in Chapters 1 and 2 following this general approach. To do so
we proceed as follows: first we derive locally ideal linearizations of the BQPSs
introduced in Chapters 1 and 2 by running a computer program for the double
description algorithm, see Padberg [1995], to obtain explicit linear descriptions
for “small” values of an underlying parameter m or n. In a second step we
then generalize our empirical findings to arbitrary values of the parameters in
question. In this monograph we give — with minor exceptions — the results of
the second step only and hide the laborious ezperimental part of our work from
the eyes of the reader. It is clear that for n = 2 the problems GPP, OSP,
MPP and CLDP can be formulated as a BQP in a smaller set of variables by
elimination and substitution using the equations of the form z; + z; = 1. So
we shall assume n > 3 throughout the chapter.

Rather than reviewing the proof methodology used throughout this chapter,
we refer the reader to the survey paper by Grotschel and Padberg [1985],
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which contains an excellent summary thereof, or to Chapters 7 and 10 of Pad-
berg [1995].

4.1 Graph Partitioning Problems
We define new variables y;; = Z?:x zijegj fori <k € Mand 1 <j<nto
consider the GPP, see Chapter 2.8, and assume throughout that m > n > 3;
counting yields that there are m(m — 1)/2 y-variables. Denoting by DGP P
the discrete set

(x,y) c Rmn—}-m(m—l)/Z .
Yizij=1 forie M
Yik = Z?:x zijzer; fori<keM ’
z;; € {0,1} forie M,jEN

DGPP™ =

the GPP can be written as
m—1 m
min{z 3 qava (x,y) € DGPP;"},
i=1 k=i+1
where ¢;x = a;x(I) are defined in Chapter 2.8.
To obtain a linear formulation for DGPP]" in zero-one variables, we consider

the “local” polytope P given by P = conv(D) where n > 3 and D is defined
by

(x,y) € R¥+1:

D= Z?:lxij :ln fOI‘lSZS?
TED D VE DY
zi; €{0,1} for1<i<2,jEN

The set of zero-one vectors of the discrete set D is shown in Table 4.1. Let P, be
the polytope given by (x,y) € R?"*! satisfying the equations and inequalities:

dozij=1 for1<i<?2 (4.6)
j=1
zTij+ x5 —y<1 forjeN (4.7)
Z:clj—Z:cgj+y§1 for#£#SCN (4.8)
JES JES
z;; >0 for1<i1<2,7€N (4.9)

y>0. (4.10)
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T11 T12 Tin r21 r22 T2n Y
1 0 0 1 0 0 1
1 0 0 0 1 0o 0
1 0 0 0 0 1 o
0 1 0 1 0 0
0 1 0 0 1 o 1
0 1 0 0 0 1 o0
0 0 1 1 0 COR—
0 0 1 0 1 0o 0
0 0 1 0 0 11

Table 4.1 The feasible 0-1 vectors of the local polytope P of GPP

Remark 4.1 The system of equations and inequalities (4.6), ..., (4.10) is valid
for all (x,y) € P and thus P C Pr.

Proof. Let (x,y) € D. Then (x,y) satisfies (4.6) and (4.9). Since y =
Z;':l z1jT9; and z;; > 0for 1 <i<2, j €N, (x,y) satisfies (4.10). To prove
that (4.7) is satisfied, we calculate z,; + z2; — y = z1; + 95 — Z?:I T2 <
z1]+z21 —zy1jz2j = 21+ x2j(1—x15) € {0,1} < 1for all 1 < j < n. Moreover,
since Z,es Z1j —Zjes rojty=1- Z]EN 521 = 2.5es5T2j +ZJEN ZT1jT25 =

= ien-s (1 — &2j) = 35 22i(1 — @15) < 1, (7 4.8) is satisfied. Thus it
follows that D C P, and hence, P = conv(D) C Pr. ]

We order the components of (x,y) as (z11,.-.,Zin, Z21, - - -, Z2n,Y) and denote
by @;; € R?" with its components indexed in the same order as x a unit vector
with one in its (i, j)** component. Let u;; € R?**! be obtained from u;; by
appending zero at the end and let v € R??+! be another unit vector with one
in its last component.

Proposition 4.1 The dimension of P equals 2n — 1 for alln > 3.

Proof. Since the two equations in (4.6) are linearly independent, dim(P) <
2n—1. We establish dim(P) > 2n—1 by showing that every equation ax+fy =
v that is satisfied by all (x,y) € P is a linear combination of (4.6).

(l) Since (ulk-l-IIgj)EPfOI‘j;ékEN, Qi = Qg foralllfiﬁ?,j,keN.



R4 CHAPTER 4

(i) Since (uyj + ug), (uy; +ug; +v) € P for j # k € N, using (i), 8 = 0.

Consequently, ax + 8y = v becomes Z?=1 o1 Z?:l rjj = a1 + az for all
(x,y) € P; which is a linear combination of the two equations (4.6). O

Proposition 4.2 Inequality (4.10) defines a facet of P.

Proof. By Remark (4.1), (4.10) is valid for P. Let F = {(x,y) € P : y = 0}.
Since (u1; +u9; +v) € P but not in F, F' is a proper face of P. Suppose there
exists a valid inequality ax + By < v for P such that every (x,y) € F satisfies
ax+ By =7.
(1) Since (u11 +ug;) € F for 2 < j < n, agj = ag forall 2 < j,k < n.
(i1) Since (ujj +ug) € F for 2 <j<n, aj; =ay forall2<j,k < n.
(ii1) Since (uy; + uz1), (uy; +ugk) € F for 2 < j # k < n, from (i) a2 = ax
for all 2 < k < n. By a similar argument using (ii), a1 = a1 for all

2<k<n.
Consequently, ax + Sy = v becomes Z?:l ;1 Z;:] zij + By = ai + aa;
equivalently, Sy = 0 for all (x,y) € F and the proposition follows. ]

Proposition 4.3 Inequality (4.9) defines a facet of P for 1 <1< 2, jEN.

Proof. Inequality (4.9) is trivially valid for P. WROG we prove this proposi-
tion for i = j = 1. Let F = {(x,y) € P: 211 = 0}. Since (uj; +uz; +v) € P
but not in F, F is a proper face of P. Suppose there exists a valid inequality
ax + fy < v for P such that every (x,y) € F satisfies ax + By = 7.

(i) Since (1 +usy) € F for 2 < j<n, ay; = ay; forall 2 < j,k < n.

(ll) Since (111]‘ + u21), (ll]j + 1122) € F for 3 < j<n, ay = a.

(iii) Since (uiz + w2 + v), (w12 + ugj) € F for j # 2,5 € N, agj = azy for all

j, k€ N and g =0.

Consequently, ax + By = v becomes (a1 — a12)z11 + Z?:l 0 Z?:lxij =
a2 + ag9; equivalently, (a1 — aj2)z1; = 0 for all (x,y) € F. )

Proposition 4.4 Inequality (4.7) defines a facet of P for j € N .

Proof. By Remark (4.1), (4.7) is valid for P. WROG we prove this proposition
for j=1. Let F = {(x,y) € P:z1;+ 221 —y = 1}. Since (w2 +uz2+v) € P
but not in F, F is a proper face of P. Suppose there exists a valid inequality
ax + By < v for P such that every (x,y) € F satisfies ax + By = v.

(i) Since (uy; +uz1) € Ffor2<j<n, a1 =ajp forall2 <j,k <n.

(ii) Since (w11 +ug;) € F for 2 < j < n, agj = ag forall 2 < j,k < n.
(iii) Since (ui; + ug;), (u1; + uz1), (w11 +uz; +v) € F for 2 < j < n, from (i)

and (i) @11 = a1 — B and az; = az; — B forall 2 < j, k < n.
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Consequently, ax + By = v becomes —f(z1; + 221 —y) + Z:?zl Q52 Z?zl zi; =
—B + ai2 + age; equivalently, —B(z11 + 221 —y) = —F for all (x,y) € F. 0O

Proposition 4.5 Inequality (4.8) defines a facet of P for @ #S C N.

Proof. By Remark (4.1), (4.8) is valid for P. Let F = {(x,y) € P : } ;s 15—

2 jes T2j+y = 1}. Since (ujg+uyy) € Pforallp € Sandg € N—S but not in

F, F is a proper face of P. Suppose there exists a valid inequality ax+ 8y < vy

for P such that every (x,y) € F satisfies ax + Sy = 7.

(1) Since (uip +uzy) € Fforpe Sand g€ N — S, a1p = a1y and agy = ag;
for all p,r € S and g,s € N — S.

(1) Since (uyp + ugy), (uir +uz, +v) € Fforpe S,ge N—Sandr €N,
alp—a1y =f =az—ay forallpe Sand g € N—-S. From (i) 14 = ay,
and ag, = ay, forall p,r € Sand g,s e N - S.

Thus ax+ fy = v becomes ﬂ(ZjES z1j _Zjes Ta; +y)+2?=1 aig Z?zl zij =
B+aig+as, for some g € N —S; equivalently, B(3 0, c5 215 = ;5 22i+y) = B
for all (x,y) € F. o

Remark 4.2 An optimal solution to maz{cx+qy : (x,y) € P} is characterized
by two cases:

(i) if there exists p # r € N such that cip + cor > c1i+ c2i +q foralli € N
then an optimal solution 1s £1; = x9¢ = 1 and z1; = zox = y = 0 for all
t#JE€Nand k £ £ € N where j # € € N and c1j + cae > c1p + Cor for
alp#r€N.

(1) if the condition in (1) does not hold then an optimal solution is z1; = xo; =
y=landziy =0 for 1 <i <2, k#j€ N wherecyj +ca > cip +Cop
forallpe N.

Proposition 4.6 The solution of Remark (4.2) is an optimal solution to the
LP problem maz{cx+qy: (x,y) € PL} where (c, q) is an arbitrary cost vector.

Proof. Let (x*,y*) be the solution vector defined in Remark (4.2). By Re-
mark (4.1), P C Pp and trivially, (x*,y*) is an extreme point of P in both
cases of Remark (4.2). We g.ve, in each of these two cases, a polytope P’ D P,
over which (x*,y*) is optimal. Hence (x*,y*) is, a forterior:, optimal over Pr.
Suppose we are in case (i) and an optimal solution to P is given by z1; = 22, = 1
and z1; = z9r =y =1foralli # j € N and k # £ € N. We consider three
subcases. First, assume that c3; > cz¢ and define P’ = {(x,y) € R?*+1 .
SioiTik=1for1 <i<2zyj+zj—y<1lzixg >0for1 <i<2,1<k<
n,y > 0}. The dual to this problem is min{u; + uz +w : u; > ¢ for 1 < i <
2,j#k € Nyuy+w > cij,us +w > cg5,—w > q,w > 0}. The vector given
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by u1 = c15 — 25 + c2¢, Uz = ca¢, w = Ca; — ca¢, is feasible to the dual problem
with objective function value c1_,~ + c2¢. On the other hand, suppose cz; < co.
WROG assume ca; < ¢33 < -+ < o and thus £ = n. Assume ¢ > 0 and define
P ={(x,y) € R2+1 Zk (zig=1for1<i<2,5"7, x-S eaty <
lforl <k <n-—1,z;6k > 0forl < i< 2,k € N,y > 0}. The dual to
this problem is min{u; + uz + Zz;ll wg U + z:f:_kl wy > cypforl < k <
n—1,u; —Zf"kl wy > copforl <k <n—1u; > cip,us > czn,zn_llwr >
¢,w > 0}. The vector given by u; = ¢1; — ¢, u2 = con,wx = 0for1 < k <
P—2,Wp_1 =q—Con+Cop, Wk =Co k41— C2k forp<k <n—1where 1 <p<
n—1 such that ca,—cgop < ¢ and c2n—c2p—1 > g, is feasible to the dual problem
with objective function value c1j + can = c1j + c2¢. Next assume ¢ < 0 and de-
fine P/ = {(x,y) e R+ : 30 ey =1for 1 <i<2,210+22m—y < 1, 2ix >
0fori=1,2, k € N,y > 0}. The dual to this problem is min{u; + us + w :
u; > cpfori =1,2, k# €€ Nyuj+w > cipfori =1,2,w > q,w > 0}. The
vector given by u; = c1j,us = cop — w,w = min{cor —cox : k # £ € N} is
feasible to the dual problem with objective function value c¢;; + c2¢. Moreover,
in all subcases, the dual objective function value equals c1; + c2¢, which is also
equal to that of (x*,y*) and hence, by LP duality (x*,y*) is optimal over P’.
Next consider case (ii) of Remark 4.2 and assume that an optimal solution to
Pisgiven by 1 = 29 =y =1land zp =0for 1 < i< 2, k#j€N.
WROG assume c¢p; < ¢92 < --- < ¢on and define P’ = {(x,y) € R?"+1 .
Zzzlzik =1forl < i < 2,Zi=1x1k —Eizlx% +y <lforl < £ <
n—1,z1;+29 —y < lyzzp > 0forl1 <i <2,k € N,y >0} The dual
to this problem is min{u; + us + Z:;ll vy +w:up + Z:;; vg > cye for j #
¢ 6 N Uy +Z:_‘lvk +w > cyj,up — Z:;;vk > copforj # £ € Nyug —

k—; vp +w > czj,zz_ll vg—w > q,w > 0}. If ¢ < 0 then the vector given by
up = c1j+4q,u2 = caj+¢q,w = —q,v; =0 for all 1 <k < n—11isfeasible to the
dual problem with objective function value ¢1; + c2; + ¢. On the other hand,
if ¢ > 0 then the vector given by u; = c1j + ¢c2j — Can, U2 = Con,w = 0, v =
Oforall 1 <k <p—1,vp =qg—con+Cop, vk = Copq1—C2 forallp<k <n-1
where 1 < p < j is such that ¢ > ¢, — ¢2p and ¢ < can — c2p—1, is feasible to
the dual problem with objective function value c;j +c2j +¢. Moreover, the dual
objective function value is equal to that of (x*,y*) and hence, by LP duality
(x*,y*) is optimal over P’. u]

Summarizing we have just proven the following.

Proposition 4.7 The system of equations and inequalities (4.6),...,(4.10) s
an ideal linear description of the local polytope P, 1.e. P = Pr.
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Considering all equations and inequalities resulting from the locally ideal lin-
earization of the variables giving rise to quadratic terms in the objective func-
tion, we formulate the GPP as the LP problem given by

m—-1 m
mm{z Z QikYik - (X,Y)GGPPII"}, (OGPP)
i=1 k=141

where GPP" is the polytope defined by the convex hull of solutions (x,y) €
Rmn+m(m=1)/2 t5 the following equations and inequalities in zero-one variables:

n
inj =1 forie M (4.11)
j=1

i +xr; —yix <1 fori<keM,jEN (4.12)

inj_zxkj‘f‘yiksl fori<keM,jENO#SCN (4.13)
j€S j€s

z;; >0 forie M,jEN (4.14)

Yir > 0 fori<keM (4.15)

z;; € {0,1} forte M,5 € N. (4.16)

It is not difficult to prove that (4.11),...,(4.16) formulates the GPP cor-
rectly. Indeed, a similar, less complete formulation of the GPP has been put
forth by Chopra and Rao [1989a, 1993]. Their formulation includes the con-
straints (4.11), (4.12), (4.14) and (4.15) and the constraints (4.14) for S = {j}
and S = N — {j} only, where j € N. It is shown there that these con-
straints define facets of the polytope GPP]*. We will show here only that the
rest of the inequalities in (4.13) not included in their formulation of GPP are
also facet defining for GPP™. Chopra and Rao [1989a, 1993] also prove that
dim(GPP*) =m(n — 1)+ m(m — 1)/2.

Proposition 4.8 Inequality (4.13) is facet defining for GPP™ for@ # S C N.

Proof. Let the components of x be ordered as (211, ..., Z1n, Z21,-- -, ZTmn) and
those of y be ordered as (yi2,¥13,-- -, Yim, Y23, - - -, Yym—1,m). Denote by u;; €
R™" with its components indexed like those of x, a unit vector with one in its
(i,7)*" component. Likewise denote by ¥;x € R™(™m=1)/2 indexed like y another
unit vector with one in its (i,k)"® component. Let u;; € R™P+m(m=1)/2 he
obtained from u;; by appending zeroes in the last m(m — 1)/2 components
and v € R™+m(m=1)/2 he obtained from ¥;; by appending zeroes in the
first mn components. Let z;(j) = Ziel u;; + Zi(kelvik for j € N where
I C M ={1,...,m}. By a similar argument as in Remark (4.1), it follows
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that (4.13) is valid for GPPJ*. WROG, we prove the proposition for i =

1,k =2. Let F = {(x,y) € GPP: Zjesxlj - Zjes z2; + y12 = 1}. Since

(urg + zp\{1}(p)) € GPP}, for allp € S and g € N — S but not in F, F is

a proper face of P. Suppose there exists a valid inequality ax + By < v for

G PP such that every (x,y) € F satisfies ax + By = 7.

(1) Since (ulj +uge+ugp +zM\{112,k}(r)), (u1j+ugg+ukg +ZM\{1,2’k}(T')) eEF
forje S, e N-S3<k<mp#r+#g,r€ N where p# g € N,
arp =aggforall3<k<m, pgeN.

(i) Since (uy; + w2e + urp + zZar\{1,2,53(7)), (W
Zpm\{1,2,ik}(r)) € F for j € ;£ € N-5,3
Bir =0forall3<i<k <m.

(iii) By similar arguments as in (1) and (ii) of Proposition (4.5), ajp = a;r, ;g =
ajs,a1p — 01g = Pra = agg —ag, forall p,re Sand g,s €N - S.

Consequently, ax+B8y = 7 becomes B12(3 ;¢ 215 =2 ;e s T2 +y12)+ 2 i) ig

Z?zl zij = P12 + Y v, ;g for some g € N — S; equivalently, ﬂlg(zjes T —
Zjes z2j + y12) = B2 for all (x,y) € F. Hence, the proposition follows. ]

j +ue+
<i<k

The LP relaxation of our formulation of GPP has exponentially many con-
straints. So the first question to ask is whether or not we can solve the re-
sultant LP problem — practically or theoretically — in polynomial time. This
is indeed the case. To this end we must show that the separation problem,
see e.g. Padberg [1995], for the exponentially many constraints (4.13) can be
solved in polynomial time. Let (X,5) € R™*+m(m=1)/2 gatisfy (4.11), (4.12),
(4.14) and (4.15) and the inequality y < 1. These are polynomially many con-
straints in m and n and they can be checked in polynomial time. To check
the constraints (4.13) we need to find for fixed ¢ and k with 1 <7 < k < m,
zik = min{}_;cs(~Fij +Tkj) 1 0 # S C N}. Using (4.11) and that y < 1,
it follows that z;x = 0 for S = ® or S = N and hence we can replace the
requirement § # S C N by S C N. That is, z;x = min{zyzl(-—ﬁj + Tkj)zj
z; € {0,1} for 1 < j < n}. This zero-one LP problem is trivially solvable; an
optimal solution is given by z; = 1 if T;; > Tx;,0 otherwise for j € N. Hence
if g;; > 1 + zix and only then, the corresponding constraint (4.13) is violated.
Consequently we can solve the LP relaxation in polynomial time.

4.2 Operations Scheduling Problems

To consider the OSP, see Chapter 2.7, we define new variables y;x; = ZijTk;
for1 <i< k <m,1<j<nand assume m > n > 3; counting yields that



Locally Ideal LP Formulations | 89

there are mn(m — 1)/2 y-variables. Denoting by DQSP the discrete set

(x,y) c ]Rmn+mn(m-1)/2 .
n .
m_ Zj:lxij:l fOI’lEM
bQSP = Yikj = Tijer; fori<keM,jEN [’
zij € {0,1} forie M,jEN

the OSP can be written as
n

m m~—1
min E E CijTij + E
i=1 k

i=1j=1

3
3

Z‘Iikjyikj ((x,y) € DQSPrT} ;
1j=1

=i

+

where g¢ix; = a;r; + api; in terms of the ajx; of Chapter 2.7. For further
use we note that the GPP can be obtained from the OSP by the way of the
transformation:

n
Yik = Zl‘,‘jl‘kj foralll1<i<k <m. (4.17)
ji=1

To obtain a linear formulation for DQSP]*, we consider the local polytope P
given by P = conv(D) where n > 3 and D is defined as follows:

(x,y) € R®":
D Z?zlxij =1 for1<i<2
B Yi =Ty forl1<j<n

zi; €{0,1} for1<i<2 1<j<n

The set of zero-one vectors of the discrete set D is shown in Table 4.2. Let Py,
be the polytope given by (x,y) € R3" satisfying

n
dwj=1 for1<i<2 (4.18)
ji=1
—z;;+y; <0 for1<i<2,1<j5<n (4.19)
n
:c1j+x2j—yj+2yl§1 for1<j<n (4.20)
j#L=1
y; >0 for1<j<n. (4.21)

Remark 4.3 The system of equations and inequalities (4.18), .. .,(4.21) is valid
for all (x,y) € P and thus P C Py.
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T3 12 Tin %21 T2 Ton Y1 Y2 Yn
1 0 0 i 5 5 1 0 0
1 0 0 0 1 o 0 o0 0
1 0 0 0 1 0 o0 0
0 1 0 1 0 o0 0 o
0 1 0 0 1 o o0 1 0
0 1 0 0 0 1 0 o0 0
0 0 1 1 00 0 0
0 0 1 0 1 o 0 o0 0
0 0 1 0 0 1 0o o 1

Table 4.2 The feasible 0-1 vectors of the local polytope P of OSP

Proof. Let (x,y) € D. Then (x,y) satisfies (4.18). Since y; = z1;z25, (X,y)
satisfies (4.21). To prove that (4.19) is satisfied, we calculate —z;; + y; =
—z;j(1 —z) € {0,-1} < Oforall 1 <i#k<2,1<j<n If Z?#dw =
Z?#:lxu:cu = 1 then z;; = z9; = 0 and thus, z1; + z2; — z1j22; = 0
for all (x,y) € D. If z1; + z2; — 2122 = 1 then Z?#:l z1¢z2¢ = 0 and
thus, z,; + z2; — y; + E;l#l:l Ye = 215 + T25 — Z1;T25 + Z?;ﬁl:l Z1eToe < 1
for all (x,y) € D; consequently, (4.20) is satisfied as well. Thus D C P and

P = conv(D) C Pr. o
We order the components of (x,y) by (z11, ..., Z1n,Z21,- .-, Z2n, Y1, ---,Yn) and
denote by u;; € R2" with its components indexed in the order (11,...,1n, 21,

...,2n) a unit vector with one in its (i,7)*" component. By ¥V; € R™ we denote
another unit vector with one in its j** component. Let u;; € R3" be obtained
from u;; by appending n zeroes in the last n components and v; € R3" be

obtained from ¥; by appending 2n zeroes at the beginning.

Proposition 4.9 The dimension of P given by dim(P) = 3n—2 for alln > 3.

Proof. Since the two equations (4.18) are linearly independent, dim(P) < 3n—
2. We establish dim(P) > 3n — 2 by showing that every equation ax+ By = v
that is satisfied by all (x,y) € P is a linear combination of (4.18).
(i) Since (wjx+ug;) € Pfor 1 <j#k<n,a;j =apforall1 <i<2, 1<
Jk<mn.
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(i1) Since (uyj + ug), (uy; +ug; +v;) € Pfor1 < j#k < n, B; =0 for all

1<j<n
Consequently, ax + B8y = v becomes Zf____l a1 Z;zl rij = Z?___l a;; for all
(x,y) € P; which is a linear combination of (4.18). O

Proposition 4.10 Inequality (4.21) defines a facet of P for 1 < j <n.

Proof. By Remark (4.3), (4.21) is valid for P. WROG we prove this propo-

sition for j = 1. Let F = {(x,y) € P : y;» = 0}. Since (u;] +ug; +v;) € P

but not in F', F is a proper face of P. Suppose there exists a valid inequality

ax + By < v for P such that every (x,y) € F satisfies ax + By = 7.

(1) Since (uj; +ug;) € Ffor2<j<n, agj =ag forall2< 5,k <n.

(i1) Since (uj +ug) € Ffor2<j<n, oy =aj; forall2< 5,k <n.

(iii) Since (uyj +ugg),(uy;+ug;+v;) € Ffor2<j#k <nwherel <k <n,
agg — ag; = P for all 2 < j # k < n and hence from (i), ; = 0 and
ag; = agj for 2 < j < n.

(iv) Since (u1; + ug;), (w12 + ug;) € F for 2 < j < n, using (i), a1 = a;y;j for

all2 < j <n.
Consequently, ax + By = v becomes Sy + Z?:I ;1 2;1:1 zij = a1 + ao1;
equivalently, 1y, = 0 for all (x,y) € F and the proposition follows. m]

Proposition 4.11 (4.19) defines a facet of P for1 <i<2, 1 <j<n.

Proof. By Remark (4.3), (4.19) is valid for P. WROG we prove this proposi-

tionfori=j = 1. Let F = {(x,y) € P: —z11+y = 0}. Since (u;; +uz) € P

but not in F', F is a proper face of P. Suppose there exists a valid inequality

ax + By < v for P such that every (x,y) € F satisfies ax + By = v.

(1) Since (w12 +ugj) € F for2 < j<n, azj =ag forall 2 < j,k < n.

(i1) Since (uy; +ug) € Ffor2<j<n,aij =ay; forall 2< 5,k <n.

(ii1) Since (u1x +ug;), (wix +ugr +vr) € Ffor 1 < j#k <n, azj —ax = Bk
for all 1 < j # k < n and hence from (i), §; = 0 and as; = oay; for
2<j<n

(iv) Since (uy; + uz1), (w11 +ug; +vy) € F for 2 < j < n, from (i), a1; =
ay; —p forall2<j<n.

Consequently, ax + By = v becomes B1(—z11 + y1) + ZLI ;o Z;‘=1 Tij =
a1z + ag9; equivalently, B1(—z11 +y1) = 0 for all (x,y) € F. 0O

Proposition 4.12 Inequality (4.20) defines a facet of P for 1 < j < n.
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Proof. By Remark (4.3), (4.20) is valid for P. WROG we prove this propo-

sition fori = j = 1. Let F = {(x,y) € P:zy1+Zo1 —y1 + D 4oy = 1}.

Since (uj2 + u23) € P but not in F, F is a proper face of P. Suppose there

exists a valid inequality ax + By < v for P such that every (x,y) € F satisfies

ax+ By =7.

(1) Since (u1; +ugj) € Ffor2<j<n, azj =ag forall2<j,k <n.

(1) Since (w11 +u21 +vi),(un +ugj) € Ffor 2 <j<n, as; —az = f for
all2<j<n.

(ii1) Since (uij +uz; +v;) € F for 1 < j <n, using (ii), a1y — a; = g; for all
2<j<n.

(iv) Since (uij +uz1), (uy; +ug; +v;) € F for 2 < j < n, ag — az; = f for
all 2 < j < n and hence using (i1), f; = —f; for 2 < j < n.

Thus, ax+By = v becomes S2(z11+22; —y1+2?=2 y¢)+Z?:1 o Z?zl z;j =
Q1o+ ag + PBa;ie. Po(Tii + 2o —y1 + Y g ye) =Pz forall (x,y)e F. O

Remark 4.4 An optimal solution to maz{cx+ qy : (x,y) € P} is character-
1zed by two cases:

(i) if there exists 1 < p # r < n such that c1p + c2r > c1; + c2; + ¢; for all
1 < i< n then an optimal solution is T1; = T2p = 1,21; = Top =y = 0
foralll<i#j<nl1<k#f<nandl<t<nuwherel<j#L<n
and c1j + ¢ > c1p +cap for all1 <p#r <n.

(i1) if the condition in (i) does not hold then an optimal solution is z,; =
zyj =y =land zip = yp =0 for 1 <i <2, 1 <k #j < n where
c1j+coj+¢qi >ciptceap+gp foralll <p<n.

Proposition 4.13 The solution of Remark (4.4) is an optimal solution to the

LP problem maz{cx+qy : (x,y) € PL} where (c,q) is an arbitrary cost vector.

Proof. Let (x*,y*) be the solution defined in Remark (4.4). By Remark (4.3),
P C Pp and trivially (x*,y*) is an extreme point of Pr in both cases of
Remark (4.4). We give, in both cases, a polytope P’ D Pr over which (x*,y")
is optimal. Hence (x*,y*) is, a forteriori, optimal over the polytope Pr.

Suppose we are in case (i) and an optimal solution to P is given by z;; =
zog = land z;, =z =y =0foralll <i# j<nl1<k#£L<n
and 1 < t < n. We consider two subcases. First, assume that ca; > cae
and define P’ = {(x,y) € R3 : S0 zix = 1forl < i< 2, -z +y <
0,21 + @25 — Yj + D jzp=1 Y6 < Lzig 2 0,96 2 0for 1 <i < 2,1 <k < n}.
The dual to this problem is min{u; + uz + w : uj — vix > cip forl < i <
2,1<j#k<nu—vjj+w>cjfori=12vi+v+w2>gforl <
j# k< nouy vy —w > gjvieg > 0forl <i<21<k < n}. The
vector given by Uy = C1j — €25 + C2¢, U2 = C2¢, W = C25 — C2¢, V1k = maz{clk +
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gk — 25,0}, vk = cop —cgx for all 1 < j # k < n,v1; = vg; = 0 is feasible
to the dual problem with objective function value c¢i; + co¢. Next, assume
that co; < co¢ and define P’ = {(x,y) € R®" : Shoj @ik = 1forl <1<
2, =ik +yr < 0,255 > 0,y > 0for1 <i<2/1<k<n}. The dual to this
problem is min{u; + up : u; —vig > cip for 1 <1< 2,1 < k < n,v1p + vop >
grfor1 <k < nyu >0forl <i<2/1< k< n}. The vector given by
U] = €15, U2 = C2¢,V1k = C1j — Clk, U2k = C2¢ — C2k for all 1 < k < n is feasible
to the dual problem with objective function value ¢;; + c2¢. In both subcases
the dual objective function value is equal to that of (x*,y*) and hence, by LP
duality (x*,y*) is optimal over P’.

Next consider case (i1) of Remark 4.4 and assume that an optimal solution to
Pisgivenby z1; = x9j =yj = land 25 =y =0for 1 <1 <2, 1 <k #
j < n. Define P = {(x,y) € R¥ : 5 p_ zir = 1for 1 <i<2 -z +yx <
Oforl1 << 2,1< k< n,ry+ 225 —yj +Z?¢k=1yk < lLzi > 0,y >
0forl <i<2,1<k<n}. The dual to this problem is min{u; + u2 + w :
Ui — Uk 2 cpforl <i< 21 <j#k<nu—vj+w>c;forl <i<
2,15+ vgj —w > gqj,vig > 0forl <i<21<k<nw>0} Ifg <0
then the vector given by u; = ¢;; + ¢; for 1 < ¢ < 2, vix = ¢ix — cij + g for
1<i<2,1<j#k<n,v; =vy =0,w= —g;j is feasible to the dual problem
with objective function value ¢;; + ¢2; + ¢j. On the other hand, if ¢; > 0 then
the vector given by u; = maz;cij, us = c1j +c2j +¢j — U1, Vig = U1 —Cix, Vog =
ug — cok for all 1 < k£ < n,w = 0, 1s feasible to the dual problem with the same
objective function value. Moreover, the dual objective function value is equal
to that of (x*,y*) and hence, by LP duality (x*,y*) is optimal over P’. O

We now state a proposition which summarizes the preceding.

Proposition 4.14 The system of equations and inequalities (4.18),...,(4.21)
s an ideal linear description of the local polytope P, i.e. P = Pr.

Considering all equations and inequalities resulting from the locally ideal lin-
earization of the variables giving rise to quadratic terms in the objective func-
tion of the OSP, we formulate the OSP as the LP problem given by:

m n m—-1 m n
min ¢ > > eijzi; + D30 D qusviki 0 (x,y) €QSPT Y, (OQSP)
i=1j=1 i=1 k=it1j=1

where QSP] is the polytope defined by the convex hull of solutions (x,y) €
Rmnrtmn(m=1)/2 t5 the following equations and inequalities in zero-one vari-
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ables:
n
dzij=1 forl<i<m (4.22)
j=1

—zi; +yix; <0 forl1 <i<k<m, 1<j<n(4.23)
—zkj+ i <0 forl<i<k<m, 1<j<n(4.24)

n
Tij+ Tk~ vk + P vike <1 for 1<i<k<m, 1<j<n(4.25)
j#L=1
Yik; > 0 forl1<i<k<m, 1<j<n(4.26)
z;; € {0,1} for1<i<m, 1<j<n. (4.27)

Proposition 4.15 OQSP* formulates of the Operations Scheduling Problem.

Proof. By similar arguments as in Remark (4.3) it follows that DQSP* C
QSP™. Let (x,y) € QSP*. We show that y;x; = ;¢ foralll <i<k<m
and 1 < j < n. Suppose that there exists ] < p<g<mand1<r <n
such that ypgr # Tpr24r. Using (4.23), (4.24) and (4.26), we conclude y,5r = 0
whenever z,, = 0 or 2, = 0. So necessarily zpr = z4r = 1. But from (4.26) we
get contradiction to (4.25) and hence, yp4r = 1. Since all the extreme points of
QSP™ are zero-one valued and in DQSP]*, the proposition follows. ]

In Chapter 5.2 we give more results about the polytope QSP*. The LP re-
laxation of our formulation of the OSP has polynomially many variables and
polynomially many equations and inequalities and hence, it is polynomially
solvable. We also note that the OSP with machine independent quadratic in-
teraction costs for all pairs of jobs was shown to be identical to the GPP in
Chapter 2. Thus we have the option of working either with the OSP, which
formulates the problem in a larger space of variables with polynomially many
constraints, or with the GPP, which is defined in a smaller space of variables but
with an exponential number of constraints. The choice of formulation in such
a situation has to be based on the relative strength of alternative formulations
in approximating the associated polyhedra. We will show in Chapter 5.1 that
the linear relaxation of the OSP formulation, in this special case, is dominated
by the GPP formulation but equivalent to the formulation due to Chopra and
Rao [1989a, 1993].
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4.3 Multi-Processor Assignment Problems

To consider the MPP, see Chapter 2.5, we define new variables yff =2ijThe +
zipxrj for 1 <i<k<mand 1< j<¥f<nand assume m > n > 3; counting
yields that there are mn(m — 1)(n — 2)/4 y-variables. Denoting by DQP P
the discrete set
(x,y) c Rmn+mn(m—l)(n—l)/4 .
" zii=1 forieM
DQPP = 25=1 % ; .
QPP; yff::c;j:rkg-i-:r,‘g:rkj fori<keM,j<feN ’
z;; €{0,1} forie M,jEN

the MPP can be written as
ming > chzii+ Y, Y. aifyl(x,y) € DQPPT
1,JEN i<keEM j<LEN
where q’»‘-‘ = aj;ke + Akei; 1N terms of the a;; o of Chapter 2.5.
1) J J J

To obtain a linear formulation for DQP P} in zero-one variables, we consider
the local polytope P given by P = conv(D) where n > 3 and D is

(x,y) € RPHI/Z,

Sz =1 for1 <i<2
D= 26 =gy . forj<fl€EN
Y13 = T1Toe+ T1eTo; forj <t e
z;; €{0,1} forl1<i1<2,7€N

In Table 4.3 we show all zero-one vectors of the discrete set D where we have
abbreviated yff to yf for 1 < 7 < £ < n. Let Pr be the polytope of all
(x,y) € RMn+3)/2 gatisfying

n
dwj=1 for1<i<?2 (4.28)
j=1

j—1 n
—wy -z )yt ) ;<0 forjEN  (4.29)
e=1 e=j+1
Z(zlj — 95 — 2 ¥ — Z yif) <0 for @ # S C N(4.30)
JES j>LeEN-S J<EEN-S

yis >0  for j<£€ N.(4.31)
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EIVEY) Tin  To1 Tap  Tay Tan-l T Yi wo¥ Y2 - Ynoy
1 0 1 0 0 0 0 0 0 0o ... 0
1 0 0 0 1 0 0 0 0 0 1 0 ... 0
1 0 0 0 0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1 0 0 0 0 0

Table 4.3 The feasible 0-1 vectors of the local polytope P of MPP

Remark 4.5 The system of equations and inequalities (4.28), ..., (4.31) is valid
for all (x,y) € P and thus P C Pr.

Proof. Let (x,y) € D. Then (x,y) satisfies (4.28). Since yf]l = zyjTa +

z1z2; > 0, (4.31) is satisfied. To prove that (4.29) is satisfied, we calculate

—21j = T2j + gy Vi Domj 41 Vi = —E1 = 22j + e (315 T2 + T1ewa;) =

—z1j — 225 + 215(1 — za5) + (1 — z15)x25; = —2215225 € {0, -2} < 0. Likewise,
0

we calculate - s(21j =2 = Xissen-s Yie — Lj<teN—s yfj) =2 jes(®15 =

225 — Ysen—s(T1j22e+ 210225)) = D ses(@1j — T2 —T1(1 = D pes T20) — (1=

Ytes T10)T2j) = =2 i es(T2j = 2pes T15%20) = =2 jes T2 (1= D pes T15) €
{0,-2} < 0; i.e., (4.30) is satisfied as well. Thus, D C P and hence, P =

conv(D) C Pp. a
We order the components of x by (z11,...,Z1n, Z21,..., Z2n) and those of y by
W3, ., v, vid, vl v3, .y ). Let Wy € R?" with its components

ordered like those of x be a unit vector with one in its (4, j)'* component and
by V'ﬁ € R™"-1)/2 with its components ordered like those of y be another
unit vector with one in its (f;)”‘ component. Let u;; € R™"+3)/2 be obtained
from W;; by appending n(n —1)/2 zeroes in the last n(n —1)/2 components and
v} € R"(n+3)/2 be obtained from V2! by appending 2n zeroes at the beginning.

Proposition 4.16 The dimension of P equals n(n+3)/2 —2 forn > 3.
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Proof. Since the two equations (4.28) are linearly independent, dim(P) <
n(n + 3)/2 — 2. We establish dim(P) > n(n + 3)/2 — 2 by showing that every
equation ax + By = v that is satisfied by all (x,y) € P is a linear combination
of the equations (4.28).

(1) Since (uy; +uy;), (uy; +U21+fo) €Pfor1<j<{t<nm, :B%f = Qrgj — Qe
for all 1 < j < € < n. Since (uye + ug), (w1 + uz; + vf]‘?) € P for
1<j<{t<n, ﬁf]‘f:au—agj forall 1 < j < ¢ <n. Hence, ,Bff:Oand
agj =agy foralll < j<f<n.

(i1) Since (uyj + ug;), (uie + uy; +vff) €Pforl<j<{t<n, ,Bff =y —aie
for all 1 < j < £ < n. Moreover, by (i), a1; = ayeforall 1 < j < £ < n.

Consequently, ax + By = v becomes Zi?:l @i )i i = Z?___l a;; for all
(x,y) € P; which is a linear combination of the equations (4.28). a

Proposition 4.17 Inequality (4.31) defines a facet of P for1 < j < £ < n.

Proof. By Remark (4.5), (4.31) is valid for P. Let F = {(x,y) € P : yff = 0}.

Since (uyj + uge + vff) € P but not in F, F is a proper face of P. Suppose

there exists a valid inequality ax + By < v for P such that every (x,y) € F

satisfies ax + By = v.

(1) Since (u1p + ugy), (u1p + v2r + viy) € F for 1 < j < p < n except when
p:jandr:(,ﬂlz;:agp—azrforl§p<r§nexceptwhenp:j
and r = £. Since (ui, + us), (w1, + vop + vf;) €Fforl<p<r<n
except when p = j and r = ¢, ,B%; = agr — agp. Hence, oy, = ay, for
1§p<r§nandﬂf;:Oforalll§p<r§nexceptwhenp:jand
r=~{.

(ii) Since (w1p + ugp), (ir + uz.), (Wip +v2r + Vi) € Fforl1 <p<r<n
except when p = j or 7 = £, by a similar argument as in (i), @1, = a;, for
al1<p<r<an

Consequently, ax + By = v becomes Z?:l i Z?:l zij + ﬂffyf;i = Z?:l it

equivalently, ffyif = 0 for all (x,y) € F. w

Proposition 4.18 Inequality (4.29) defines a facet of P for1 < j < €< n.

Proof. By Remark (4.5), (4.29) is valid for P. Let F' = {(x,y) € P : —21; —
T2j + 39y Y + Sop—j 41 Y3 = 0}. Since (uyj + uy;) € P but not in F, F is
a proper face of P. Suppose there exists a valid inequality ax + By < v for P
such that every (x,y) € F satisfies ax + B8y = v.

(i) Since (w1p,uzp), (wip+uz+vip) € Fforj #p,1<p<r<n,ff =ay-
ayr forallj #p,1 <p < r <n. Since (u1r+u2r),(u1r+u2p+vf;) € F for
J#7r1<p<r<n, and thus i) = asr —ag, forallr #j,1<p<r <
Hence, Bf;:Oandagr:agp forallp#j#r,1<p<r<n.
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(i) Since (u1p,uzp), (U1, +ug+vip) € Fforj#p, 1<p<r<n, ap=arp
forallp # j #r, 1<p<r<n

(ii1) Since (uip,ugp), (U1 +uy; +V1p) (uy; +u2p+v11) € Fforl<p<j<n,
,Blp = a1p—@1j = agp —agj for all 1 < p < j < n. By asimilar argument,
ﬁlz}], = p — Oy = gp — g5, 1.6, 0 = agp —ﬂlz'}’, and ag; = agp — 511 for
all 1 < p < j < n. Moreover, a;; = ajp, — ,612}’ and agj = agp — ﬁl] for all
1<]<p<nandﬂ2]—ﬁf}forl§p<j<r§n.

Consequently, ax + By = v becomes Z?=1 Qip I gy Tit — ,Blzz(zlj + Ty —

i—ll vy + Zt-;+1 ylf) Ef , @ip for some p such that 1 < p < j; equiva-

lently, —ﬁlp(xl, TR S b/ Srejp1 ¥3E) =0 for all (x,y) € F. 8]

Proposition 4.19 Inequality (4.30) defines a facet of P for0 # S C N.

Proof. By Remark (4.5) it follows that (4.30) is valid for P. WROG, assume

S={1,...,s} and let F = {(x,y) € P: 3 ;_ (21 — x5 — St=ss1 iy = 0}

Since (u1¢+uzj+uff) forsomel1 < j<s,s+1<f¢<nisin P butnotin F,

F is a proper face of P. Suppose there exists a valid inequality ax + By < v

for P such that every (x,y) € F satisfies ax + By = 7.

(1) Since (uip+ugp), (u1p+uzr+v rYe Fforl<p<r<s, ﬁ1 = agp — aar
forall 1 < p < r < s. Since (u1r + ua), (ur,r + ugp + v? ) € F for
1<p<r<s, B} =ay—ayforalll <p<r<s Thus, ﬁ =0 and
agp =g foralll <p<r<s.

(i) Since (u1p +ugp), (Ui +uzr), (Wip + vz +vi7), (1r +uzp + viz) € F for
s+1<p<r<n, ﬂlp_Oandaz =ag foralls+1<p<r<n.

(iii) Since (ujr + uz),(up + Uz +viy) € Ffor1 <p<s,s+1<r
a1p = a1, — Piy. Since (uyp +uzp) (uip + ugr + vf’) € Fforl<
s,s+1<r<n, azp_a1,+ﬂ1p forall 1 <p<s, s+1<r<n

<n
p<

Consequently, ax+8y = vy becomes Zi:l Qir Y pe1 z,g+ﬂ1p Zjes( z1j+zoi+

2 " 2
Yten—s Uii) = 2i=; @ir; equivalently, B Lies(—T1j+225+ 2 penos yii) =
0 for all (x,y) € F where 1<p<s,s+1<r<n =]

Remark 4.6 An optimal solution to maz{cx + qy : (x,y) € P} is character-

1zed by two cases:

(i) if there ezists 1 < p<r < n such that c;p + cor + ‘hp > c¢15 + co; oT
cip + car + ‘11p > c1i +co; for all 1 < i < n then an optimal solution 1s
Tip=Tor = Yip =1 and:cl,_zzk_yfﬁZOforalll <i#p<t where
2<t#r<n.

(ii) if the condition in (i) does not hold then an optimal solution is 1, =
zop=1landzy; =z =yfl =0for1<i#p<n1<k#p<nand
1<r<t<n wherecip+coyp >c1i+cz foralll <i<n.
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Proposition 4.20 The solution of Remark (4.6) is an optimal solution to the
LP problem maz{cx+qy : (x,y) € Pr} where (¢, q) is an arbitrary cost vector.

Proof. Let (x*,y*) be the solution defined in Remark (4.6). By Remark (4.5),
P C Pp and trivially, (x*,y*) is an extreme point of Pr in both cases of
Remark (4.6). We give, in both cases, a polytope P’ D Pr over which (x*,y*)
is optimal. Hence (x*,y*) is, a forteriori, optimal over the polytope Pr.

Suppose we are in case (i) and an optimal solution to P is given by =, ,_; =
zgn:yff;_l:1andzli:zgk:yf::OforalllSi;ﬁn—lgn,lgkg
n—1,1<r<t<n-—1, where we have WROG assumed p =n—1 and r = n.
Deﬁne P ={(x,y) € RA(n+3)/2 . Z: (Tig = 1for 1 <4 <2, -z — o +
Ze LY+ e k+13/1k S Ofor 1 <k < m 3y (212 — T2 — Zr=s+1 yiz) <
Oforl1 <s<n-1,%,_,( :L'lg-'}-l'zg Zr s41Y3r) <0forl<s<n—1}
Using (4.28), the 1nequa11ty Srer (et T2 — Y sl ¥?7) < 0 is equivalent
to Ze:,+1(m —To— Y ol 1y%e) <0forl <s<mn-1; hence, P/ D Py.

The dual to this problem is min{s; + s : s1 — t; + ZZ_J ;’2; v =
c1jfor 1 <j<n—1,8—tn = cCin,s2 — 1 ‘Ze—j ug+zl_j vy = cg5 for 1 <

j < n—1s8 —t, = Con,tr + 15 — ;rl Zl_v¢>q forl < r <

n,tg > 0for1 < ¢ < nyup,vg > 0forl < £ < n—1}. The vector given
by s1 = (c1n—1 4 cin + ¢85 _1)/2,52 = can + (C1n-1 — C1n + ¢ih_1)/2,te =
(c1n—1+can+qi%_y —cre—cae) for 1 < £ < nyup = maz{(cre — c1,e41 — C2e +
62,g+1)/2,0} for 1 < {<n—-1u,=0 if ug >0, —(Clg —C1,41 — C2e + 62‘g+1)/2
otherwise, for 1 < ¢ < n — 1 is feasible to the dual problem with objective
function value ¢1,n—1 + c2n + qff‘n_l. This objective function value is equal to
that of (x*,y*) and hence, by LP duality (x*,y*) is optimal over P’.

Next consider case (ii) of Remark 4.6 and assume an optimal solution to P is
given by z21p, = 2o, = L,zyj =22 =y¥t =0for 1 <j<n-11<r<s<n.
Deﬁne P’ = {(x,y) € R*n+3)/2 z:zl zip = 1for1 <1< 2, —21p — T2k +
Zz L YiE+ Y e=k+1 yip S Ofor 1 <k <n 3 (z1e— 220 — 37,4y ¥37) <
Oforl<s<n- I,Z;zl(—x1¢+xu—zr ,+1y1[) <0for1<s<n-1}
Using (4.28), the inequality — > ;_,(z1¢ + T2 — }:r_sﬂ y?7) < 0 is equivalent
t0 D pesy1(Tre — T2 — Y ;o ¥iE) < 0for 1 < s < n—1; hence, P' D Py.
The dual to the corresponding problem is min{s; + s2 : 51 —t; + ZZ_J

n—1 n—1

=3 l—'j ug + El—g
coj for1 < j<n—1,s=con,tr+1t, — t—r“l Ze r‘Ug >q¥kforl<r<
s where 2 < s < n,ty > 0for1 < ¢ < n,u,ve ZOforlglgn—l}. The
vector given by s1 = ¢1n,82 = C2n,te = (C1n + Can — €12 —c2¢)/2 for 1 < £ <
n,up = max{(cie — 1,041 — C2e + c2041)/2,0} for 1 <€ <n—1,v, =0 if up >
,—(cu — €141 — C2¢ + €2,¢+1)/2 otherwise, for 1 < £ < n — 1 is feasible to
the dual problem with objective function value C1n + c2n- This dual objective

vy =cjforl <j<n-1s :Cln,82—t
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objective function value is equal to that of (x*,y*) and hence, by LP duality
(x*,y*) is optimal over P’. O

The following proposition states that a locally ideal linerization has been ob-
tained.

Proposition 4.21 The system of equations and inequalities (4.28),...,(4.31)
ts an ideal linear description of the local polytope P, 1.e. P = Pr.

Considering all equations and inequalities resulting from the locally ideal lin-
earization of the variables giving rise to quadratic terms in the objective func-
tion of the MPP, we formulate the MPP as the LP problem given by:

m

min chijrzj+ Z Z qzkjlyff: (x,y) €QPPT, (OQPPFT)

i=1j=1 i<k€EM j<LeEN

where Q P P™ denotes the convex hull of solutions (x,y) € Rmrtmn(m=1)(n-1)/4
to the following equations and inequalities in zero-one variables:

n

Y ay=1  forieM (4.32)
=1
-1 n
oy — okt Y U+ D U <0 fori<k€MjEN (4.33)
=1 =341

Sey-zo - Y, w- Y UE)<0 fori<keMO#SCN (4.34)
JES J>LEN-S J<LEN-S
vii>0  fori<keM,j<teN (4.35)

z;; € {0,1} fori € M,j € N. (4.36)

Proposition 4.22 OQPP is a formulation of the Multi Processor Assign-
ment Problem.

Proof. By similar arguments as in Remark (4.5), DQPP* C QPP;". Let
(x,y) € QM PP]*. We show that yf‘j‘ = zijTre + ziexpj foralll <i <k <m
and 1 < j < £ < n. Suppose that there exist 1 <p<r<m,1<g<s<n
such that ypi # TpgTrs + TpsTryg. If zpg = zry = 0, then using (4.35) it follows
from (4.33) that y7% = 0. On the other hand, if 2,y = 2,4 = 1 then from (4.32)
and (4.36) z,s = zrs = 0; and thus, by a similar argument as above, y;7 = 0.
So necessarily zpy # zry € {0,1}; WROG we assume zp, = 1 and z,;, =1
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for some 1 < g < h < n. By a similar argument as above, we have that
forg#d#handg#t#h,y;fi:0foralll§d<tandy{,f=0for
t<d<n Then using (4.34) for p = i,7 = k and S = {g}, we conclude
1= ;cpg Zd 1 ypd + Ed g+1 ypg = yp" Moreover, using (4.33) we conclude
Zd—l Ypd +Ed—g+l ypg <1 and thus y =0foralll<t<yg,yy, =0 forall
g<t#h<n, ypg = 1. Hence, we get a contradiction to our assumption that
Yoy # TpgTrs + TpsZrg. Since all extreme points in QP P, are zero-one valued
and in DQP P}, the proposition follows. m]

Though our formulation of the MPP has exponentially many constraints, its
LP relaxation can be solved in polynomial time in the parameters m and n
because the corresponding separation problem is polynomially solvable. Let
(X,¥) € Rmntmn(m-1)(n-1)/4 gatisfy (4.32, (4.33) and (4.35). These are poly-
nomially many constraints in the parameters m and n and can thus be checked
in polynomial time. To check the constraints (4.34) we need to find for fixed
iand k with 1 < i<k <m, zie = maz{Y;es(Tij — Tej — Xjoren—s i —
D j<teN— sUf):0# S C N} Defining z; = 1 if j € S,0 otherwise, we can
rewrite zix = maz{327_, (%ij—Fk;) 25— L=y (Lot Uiz (1=20)+ g ;1 T (1
z))z 1< Zj:l zj <n-1,2€{0,1}} = max{Zj:I(% —Tkj — iﬁll yz; -
Z?:j+l yfje)zi +Z?:1(Zi”11 yfzj +Z?:j+1 yi‘cjl)zj z:1< Z?:l zi<n—1l,z €
{0,1}}. Using (4.32), it follows that z; = 0 for 3 7_, zj = 0 or Z;zl zj = n;
i.e., the inequality (4.34) for fixed ¢, k is not violated. Hence, we can eliminate
the constraint 1 < Z?:l z; < n—1 altogether. But then by (4.35), our separa-
tion problem is an instance of the BQP with nonnegative quadratic cost coeffi-
cients, which is polynomially solvable as shown in Picard and Ratliff [1975] and
Padberg [1989]; see also Padberg and Wolsey [1983]. Furthermore, if z;; > 0
and only then the corresponding constraint (4.34) is violated. Hence we can
solve the LP relaxation our formulation of the MPP in polynomial time.

To prove more interesting facts about QP P, let us order the components of
x ER™ as (z11,-..,&1ny -+, Tmly -+, Tmn) and those of y € Rm”(m 1)(n~1)/4
as (yll""7y%?’""yﬁz""’yﬂn’y%g""7y12’"' 7y1n 1’y21""’ym 1,n— 1)

respectively; that is, (vif, 433, vi2, u3%, ui3, v33, w3?, ud%, v33) explicitly shows
the ordering of all components of y for m =3 and n = 3. Let u;; € R™" with
its components ordered like those of x be a unit vector with one in its (7, )"
component and v5f € R™?(m=1(n=1/4 ordered like y be another unit vector
with one in its (w )”‘ component. Let u;; € RmMr+mn(m=1)(n=-1)/4 he obtained
from W;; by appending mn(m—1)(n—1)/4 zeroes in the last mn(m—1)(n—1)/4
components and v € Rmntmn(m=1)(n=1)/4 be obtained from v¥{ by append-
ing mn zeroes at the beginning. Let z5(g,h) = > ;csuig + ZzEM—S u;, +
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Yies LickeM—5 Vg + 0 ies Liskem—s Vig foil <g<h<mnandzs(g,h) =
PiesWig + Liep—s Wik T Dies Dickem—s Vih T 2ies Liskem—s Vin 10T
1< h<g<nwhere M ={1,2,...,m} and S C M. Likewise, let zps(j) =
Yijuijfor1<j<n

Proposition 4.23 The dimension of the M PP polytope dim(QPP]") equals

m(n — 1)+ mn(m — 1)(n—1)/4 for allm >n > 3.

Proof. Since the m equations (4.32) are linearly independent, dim(QPP*) <

m(n—1)+mn(m—1)(n—1)/4. We establish dim(QPP}*) > m(n—1)+mn(m—

1)(n — 1)/4 by showing that every equation ax + By = 7 that is satisfied by

all (x,y) € QPP is a linear combination of the m equations (4.32).

(i) Since (zam(4), 2m-x1(4,¢)) € QPP for 1 < k < m,1 < j < ¢ < n,
agj — kg = Zfz‘ll ff + Z;’;kﬂﬂﬁ. for all 1 < j < £ < n. Since
(2m(€), - 13 (6,5)) € QPP for 1 < j < £< n, gy — o = oy BE +
Y ikt ﬁ}é Hence ak; = ais and Efz_ll ff + er;k+1ﬁ;;§ = 0 for all
1<k<m,1<j<{f<n.

(i1) Since (zp—(i}(4,€), 2m—1ik}(4,€)) € QPP for 1 <i <k <m,1<j<
£ < n, o+ B = are+ Z;;ll i+ ZI;;:H ﬂigf + 2 re ka1 ﬁff for all
1<i<k<m1<j<f<n Byf(i, f‘f:—ﬂ;‘f and hence, }‘j‘:Ofor
alll<i<k<mand1<j<{<n.

Consequently, ax + B8y = ¥ becomes E:’;la“ Z?:ﬁ‘ij = E:nzl a;, for all

(x,y) € QPP™; which is a linear combination of the m equations (4.32). O

Proposition 4.24 (4.35) defines a facet of QPPT for1 < i<k <m,1<
j<€<n.

Proof. By Proposition (4.22), (4.35) is valid for QPP*. Let F = {(x,y) €
QPP! . y{‘f = 0}. Since zpr—i}(¢,§) € QPPJ, but not in F, F' is a proper face
of QP P. Suppose there exists a valid inequality ax+ By < « for P such that
every (x,y) € F satisfies ax + By = 7.

(i) Since (2m(9),2m-1(p}(9,h)) € F for p € M — {i,k},1 < g < h < n,
Opg — Qph = S Bee + Z:":pHBSQ for all p € M — {i,k},1 < g <
h < n. Since (zpm(h), zm—-{p}(h,g)) € F for p € M — {i,k},1 < g <

h <n, app —apy = Z’:;: ﬂf;‘ + Z:n:p+1 ﬂ;;‘ and hence, ap,y = app and
Pl Bk =0forallpe M —{i,k},1<g<h<n

(i1) Since (zM_{r}(g,hS, zM—{pr}(9,h)) € F for p,r € M — {i,k},p < r and
1<g<h<n ap+ ﬂ;ﬁ,‘ = aph + 25;11 ﬂf; + Z:;;H ﬂ;? + Z;nzr-f-l ﬂ;?
forallp,re M —{i,k},p<rand1<g< h<n. By (i),ﬂ;g = - p;' and
hence, ;g =0forallp,re M —{i,k},p<rand1<g< h<n.
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(iii) Since (zm(9), 2m(h), 2pm—1p3(9, h), 2m—{p}(h,g9)) € F for p € {i,k},1 <
g < h < n except when g = j and h = ¢, apy = app and Zf;ll ﬁf;‘ +
Z:;p“ ﬂ;g =0 forall pe {i,k},1 < g < h < n except when g = j and
h = £. But, then from (i), ﬁfgh =0 foralll < g < h < n except when
g=jand h=2¢.

Consequently, ax + By = vy becomes Z:’;l Qig Z;;l Zip + ,Bffyff = sz=1 Qig;

equivalently, lzfyff =0 for all (x,y) € F where 1 < g < n. a

Proposition 4.25 Inequality (4.33) defines a facet of QPP for1 <i<k <
m,1<j<n.

Proof. By Proposition (4.22), (4.33) is valid for QPP*. Let F = {(x,y) €
QPP —zij — zi; + + S Si=js1 U5 =0} Since 2 (J) € QPP" but
not in F', F' is a proper face of QP P]"*. Suppose there exists a valid inequality
ax + By < v for P such that every (x,y) € F satisfies ax + By = 7.

(i) Since (2p(g), zm(h), 2p—1p} (9, h), 2M—1p}(h,g)) € F forp € M,1 < g <
h < nand g # j # h, it follows like in (i) and (ii) of Proposition (4.24)
thatﬁ;;‘: p"—Oforalll<s<p<r<ml<g<h<nand

9 FiFh

(ii) Since (zm(9), z2m-1p}(9,5)) € F forp € M1 < g # j < n, apg = apj +
Zf;iﬂfg +Z;n=p+1ﬁ;g for 1 <p<ml<yg<j<nand apy =
apj + Y B+ B for1<p<m1<j<g<n.

(iii) Since (zpr—{r3(9,7), 2m- {p,}(g J)EFforl<p<r<ml<g#j<n
except when p = ¢ and r = k WROG assumlng g < j, we have ap, +

1
ﬁpé = Qpj +Zp 1ﬂ Z _p+1 +Z =r+1 . From (11) TJ == ;é
and hence, ;{, 0foralll§p<r§ml§g<]§nexcept

when p = 7 and r = k. By a similar argument, we get [35]9 = 0 for all
1<p<r<ml<j<g<nexcept when p =i and r = k. Thus
from (ii), ap; = apg forp € M — {i,k},1 < j# g < n, apg = ap;j +ﬁfjg
forp€ {i,k},1<j<g<n, ap=ay+p forpe{ik},1<g<j<n
and B = gt for 1< g<j<h<n.

Consequently, ax + ,By = vy reads Y%, @igy 4 l:l,‘,g + ﬁf] (—zij — xk] +

-1 _kj
Zi 1 Yid +Ze_]+1 yz = Y% @ip; equivalently, ﬂz] (—zij —zkj +25 1 yzl +
Eezjﬂy”)_Oforall(xy)Ethereng;éJSn o

Proposition 4.26 Inequality (4.34) defines a facet of QPP™ for1 <i< k <
mP#SCN.
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Proof. By Proposition (4.22), (4.34) is valid for QPP*. WROG, let S =

{1,...,s} and F = {(x,y) € QPP}, : 37_ (2ij — zkj — D=y ¥) = O}.

Since zpr-i}(4,¢) € QP Py, but not in F for j € 5, ¢ S, F is a proper face of

QPPT. Suppose there exists a valid inequality ax + By < v for P such that

every (x,y) € F satisfies ax + By = v.

(i) Since (2m(9), zm(h), zm—(p} (9, R), 2M—{p}(h,g)) € F for p € M,1 < g <
h <'s, we get like in (i) and (ii) of Proposition (4.24) apg = aph,,@ =0
forallpe M,1<g< h<s.

(ll) Since (ZM(g)’zM(h)’ZM—{p}(g’h)l zM—{p}(h’g)) € F for p € M,s+1 <
g < h < n, by a similar argument as in (i), apy = aph,ﬁ;;' = 0 for all
pEM,s+1<g<h<n.

(ii1) Since (zpm(9), 2m(h), zm—1p}(9, R), 2Mm—(py(h,9)) € Ffor1 < g < s,5+1 <
h < n,p € M — {i, k}, using similar arguments as in (i), apy = app and
ﬂ’h—OforallpEM {i,k},1<g<s,s+1<h<n

(iv) Smce (zm(9), 27~ {k}(g,h)) € Fforl1<g<s,s+1<h< n, using (iii)
we have agy = app + Moreover, since (zp(h), zp—giy(h, g)) € F for
1Sggs,s+lghgn,aih:aig-{—ﬁfg"foralllSggs,s+1§h§n.

Consequently, ax + By = v becomes 310 ain Y j_y Tie + ﬁtg Yies(—zij +

Tkj + ) pen-— sy,,)—ZI"lam,ie 1kg 2jes(— Tij + Thj + D pen— sy;J)“O
forall(xy)erhere1<g<ss+1<h<n



LOCALLY IDEAL LP FORMULATIONS II

In this chapter we continue our investigations into the locally ideal linearization
of the major problem classes from Chapters 1 and 2. In particular, we study
here the VLSI circuit layout design problem, a general model that comprises all
BQPSs considered so far, the quadratic assignment problem and its symmetric
relative. Except for the symmetric quadratic assignment problem, complete
characterizations of the associated local polytopes are obtained. Like in the
case of our results of Chapter 4, these local polytopes are of interest on their
own whenever the substructures that we study occur in a quadratic zero-one
optimization problem. In all cases we obtain from the locally ideal linearization
formulations of the respective problems that in most cases improve on existing
formulations for these problems.

5.1 VLSI Circuit Layout Design Problems

To consider the CLDP, see Chapter 2.4, we define new variables yfj‘ = Z;jTke
forl <i<k<mand1l < j#¢< n and assume m > n > 3; counting
yields that there are mn(m — 1)(n — 1)/2 y-variables. Denoting by DQDP™
the discrete set

(x,y) I= Rmntmn(m-1)(n-1)/2 .
n .
m _ Z':]"’ijzl forie M
DRDPY = yigje::l:,'jl‘kg fOl‘i(kEM,j#EGN ’
zi; € {0,1} forie M,jEN

105
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the CLDP can be written as

m—-1 m
=i+l

i=1 1j=1j

n n

> gk (x,y) € DQDPT Y,
#£=1

where qff = @jjke+ akeij In terms of the a;jx, of Chapter 2.4. We note that the
y-variables in the MPP can be obtained from the CLDP by the transformation:

uif = zijzee+ ziezy;  foralli<keM,j<f€EN. (5.1)

To obtain a linear formulation for DQDP)" in zero-one variables, we consider
the local polytope P given by P = conv(D) where n > 3 and D is defined as
follows; see Figure 5.1:

(x,y) c Rn(n-{»l) .
Z?:lxij =1 for1<i1<2
yff =zyjze for1<j#€<n
z;; €{0,1} forl1<j<mn

Let Pp be the polytope given by (x,y) € R™"+1) satisfying

n

domij=1 for1<i<?2 (5.2)
j—l

Zy +Zy =0 forl<j<n-—1 (5.3)
j#e=1 j#e=1
n

—zj+ Y wE<0  for1<j<n (5.4)
j#e=1

yii>0 for1<j#€<n (5.5)

Remark 5.1 The system of equations and inequalities (5.2),...,(5.5) is valid
for all (x,y) € P and thus P C Pyp. There are n + 1 equations in (5.2) and

(5.8) and 21, — Tan — Yopoy Y34 + 500, ' y2n = 0 is redundant for Pp.

Proof. Let (x,y) € D. Then (x,y) satisfies (5.2). We calculate z1; — z2; —
’)' n

Z];s( 1(y1] yu) = Iy — T2j — E];g[ 1(Z1jT20 — xlﬂfzg) = Zy; — T25 —

z1(1 =) +zo;(1—y5) = Il](UQJ —xlj:czj = 0 and hence (5.3) is satisfied as

well. By calculating —z1; + 3.7, 415 = —T15 + 21 Y oise—y T2e = —Z1jT25 €
{0,—-1} <01 <j< it follows that (5.4) is satlsﬁed Thus, D C Pr and
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(1,1) (1,2) (1,3) (11 (1,2) (1.3)

(2.1) (21)

(2,2) (2.2)

(2,3) (2,3)

(33) (32) (3.1)

Node and edge variables used in the

The cobweb of all node and edge variables of QD P3 locally ideal linearization of QD P}
J 3

Figure 5.1 The locally ideal linearization of CLDPs

P = conv(D) C Pr. There are n + 1 equations (5.2) and (5.3). To show the
stated redundancy, we sum all equations (5.3) for 1 < j < n—1 and use (5.2) to

obtain £1,—on —Z;:ll yffl-{—zzz—ll y?7 = 0. Hence, this equation is redundant

for all (x,y) € Pr. 0

We order the components of x as (¢11,...,&Z1n,Z21,--.,L2,) and those of y
2,n—1 — S

as (y37,...,u3n, vih u3s, v, vy T ). Let w;; € R?M with its

components ordered like those of x be a unit vector with one in its (%, ;)"
component and fo € R™"=1) ordered like y be another unit vector with one
in its (ff)”‘ component. Let u;; € R*™+1) be obtained from u;; by appending
n(n —1) zeroes in the last n(n— 1) components and vi¢ € R"("+1) be obtained

from fo by appending 2n zeroes at the beginning.

Proposition 5.1 The dimension of P equals n? — 1 for all n > 3.

Proof. We write the equations (5.2) and (5.3) in matrix form as A1x+ Ayy =
b where A = (A, A,). Partitioning A = (A’, A”) columnwise so that A’
corresponds to Z;1,Za21, Y57, . ..,yff‘n_l, we have A’ = L, where L, € RP*? is
a lower triangular matrix and p = n + 1. Thus, dim(P) < (n+ 1)(n — 1). We
establish dim(P) > (n + 1)(n — 1) by exhibiting (n + 1)(n — 1) + 1 linearly
independent zero-one vectors belonging to P. Consider the matrix Z whose
rows are formed by the following vectors:

(1) the vector uy, + uz, € P,

(ii) 2(n — 1) vectors uyj +ug € P for £ € {j,n} where 1 < j<n-—1,
(iii) (n—1)(n —2) vectors uy; +ugps € Pfor1 <j#¢<n-—1,
(iv) n— 1 vectors uj, +up; € Pfor 1 <j<n-—1.
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Partitioning Z = (Z’,Z") such that Z" corresponds to Zan, %37, ..., ¥i% 1,
we have that modulo row permutations Z’' = L, where L, € RP*? is a lower
triangular matrix and p = (n + 1)(n — 1) + 1. Hence these (n+ 1)(n — 1) + 1
vectors are linearly independent.

Proposition 5.2 Inequality (5.5) defines a facet of P for 1 < j#£<n.

Proof. By Remark (5.1), (5.5) is valid for P. Let F = {(x,y) € P : y}{ = 0}.
Since (uyj + uge + vff) € P but not in F, F is a proper face of P. Since all
vectors used in the proof of Proposition 5.1 except u;4 +uap +v1h for a pair of

indices 1 < g # h < n satisfy ylh > 0 at equality, the inequality (5.5) defines a
facet of P for 1 < j#£< n. O

Proposition 5.3 Inequality (5.4) defines a facet of P for 1 < j < n.

Proof. By Remark (5.1), (5.4) is valid for P. Let F = {(x,y) € P : —z1; +
Z ap= ly“ = 0}. Since (u1] + uyj) € P but not in F, F is a proper face of
P. Since all vectors used 1 m the proof of Proposition 5.1 except uj, +uy, for g
satisfy —z14 + Zg?fh:l Z’/1g < 0 at equality, the inequality (5.4) defines a facet
of Pfor1<j<n. m]

Remark 5.2 An optimal solution to maz{cx + qy : (x,y) € P} is character-

1zed by two cases:

(i) if there exists 1 < p # r < n such that C1p + cor + ql;; > cl, + c9; for
all 1 < i < n then an optimal solution s 1, = Tor = ylp 1 and
:clj:xggzyf]‘i:Oforalllsj;épSn and 1 <f#r<n.

(i) if the condition in (i) does not hold then an optimal solution is z1p =
zop = 1 and 35 :xgg:yf;i:()forlgj;épgn,l§€¢p§n where
Cip + Cop > €15 + ¢z forall1 < j < n.

Proposition 5.4 The solution of Remark (5.2) is an optimal solution to the
LP problem maz{cx+qy : (x,y) € PL} where (¢, q) is an arbitrary cost vector.

Proof. Let (x*,y*) be the solution vector defined in Remark (5.2). By Re-
mark (5.1), P C Pr and (x*,y*) is an extreme point of Pr in either case of
Remark (5.2). The dual to maz{cx + qy : (x,y) € Pr} is min{u; + uz :
u1+vJ—wJ =cjforl <j<n-1, ul——wn = Cin,uz — vj = Coj for 1 <
j<n—1us = an,—vj+v(+’w1 > q tforalll < j # £ < n}. The vec-
tor given by Uy = 2 — Con,Uz = C2n,Vj = Can — Cgj foralll < j < n,w; =
z—c1j —cgjforalll < j < n where z = c1p + c2r + qf; in case (i) of Re-
mark (5.2), c1p + cop otherwise, is feasible to the dual problem with the same
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objective function value as that of (x*,y*). Hence by LP duality, (x*,y*) is
optimal over Py, in both cases. O

Proposition 5.5 summarizes what we have proven in this section.

Proposition 5.5 The system of equations and inequalities (5.2),...,(5.5) is
an ideal linear description of the local polytope P, 1.e. P = Pr.

Considering all equations and inequalities resulting from the locally ideal lin-
earization of the variables giving rise to quadratic terms in the objective func-
tion of the CLDP, we formulate the CLDP as the LP problem given by

Z Z Z Z ¥ty . (x,y) € QDPI 3, (OQDP)
i=1 k=i4+1j=1j#£=1

where QD P denotes the convex hull of solutions (x,y) € Rmnt+ma(m=1)(n-1)/2
to the following system of equations and inequalities in zero-one variables:

n
Zx,»j:1 forie M (5.6)
n
—.’L'ij-{-xkj-i'-zyi Zy’f— fOl‘i<k€M,l§an—1(5.7)
j#e=1 j#e=1
x,]+2y“<0 fori<k€M,jEN (5.8)
j#e=1

y”>0 fori<keM,j#2€N (5.9)

z;; € {0,1} fori<keM,j#L€N. (5.10)

Proposition 5.6 OQDP]" is a formulation of the VLSI Circuit Layout Design
Problem with m + m(m — 1)(n — 1)/2 equations, where m > n > 3.

Proof. By a similar argument as in Remark (5.1), DQDP* C QDP*. Let
(x,y) € QDP™. We show that y}‘f = zijzpe for all 1 < ¢ < k < m and
1<j;é€<n Suppose that there exist ] < p<g<mand1<r#s<n
such that yJ! # zprzg,. Using (5.6),...,(5.9), we conclude yi; = 0 whenever
zpr = 0 or 4, = 0. So necessarily z,, = z4, = 1. But, then using (5.6)
and (5.9) and an identical argument as above, we conclude from (5.7) where

t=pk=gand j=rthat 1 =z, = Zp# 1ypr = ypr, which contradicts
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the assumption that yJ! # z,rzgs. Since, all extreme points in QDP;" are
zero-one valued and in DQDP[™, the first part of the proposition follows. The
rest follows by a simple counting argument. o

The LP relaxation of our formulation of the CLDP has polynomially many
variables and polynomially many equations and inequalities and hence, it is

polynomially solvable.

To say more about the formulation of the CLDP that we have just obtained,

let us order the components of x € R™" as (£11,.--,Z1ny---s&mls-- -, Tmn)
mn(m—1)(n—-1)/2 22 2 m2 21
and those ofylelzl}2 ( X 1)/ as (yll,...,yl'f,.,.3,3y11 N T T T
mn mn— mun-1y, - 22 .23 32 21 .23 31 33 21
Yi2 - Uin !y21""!ym—1,n)1 ie. (yil, Vi1 ¥i1r Yi1s Yizs Yia, Yiz, Y1z, Vi3,

vo2, y3L, u32, y32 u33, y3k, U3, yas, va3) explicitly shows the ordering of all com-
ponents of y for m = 3 and n = 3. Let W;; € R™" with its components
ordered like those of x be a unit vector with one in its (7, j)!* component and
fo € Rmn(m=1)(n=1)/2 grdered like y be another unit vector with one in its
(f,’jl)‘h component. Let u;; € R™*+mn(m=1)(n=1)/2 be obtained from ;; by ap-
pending mn(m—1)(n —1)/2 zeroes in the last mn(m—1)(n—1)/2 components
and vff ¢ Rmrtmn(m=1)(n-1)/2 e obtained from V:-‘f by appending mn ze-
roes at the beginning. Let z(s,,s,, .5,)(t1,t2,...,t) = Ef:lZiES._, u;, +

-1 o it .
Zig=1 Zi=i+1 Zjes,(zjaesk vjt; + Zj>eesk sz:f) and zm(j) = 2?:1“1'1'
where M = {1,2,...,m}.

Proposition 5.7 The dimension of the CLDP polytope dim(QDPJ) equals
m(n — 1)+ m(m — 1)(n — 1)?/2 for allm > n > 3.
Proof. We write equations (5.6) and (5.7) in matrix form as Ajx + A,y =b
where A = (A, A,). Partitioning A = (A’, A”) so that A’ corresponds to z11,
e EmL Y Y Y YT TR L YA Yt Ym a1, WE
have that modulo row permutations A’ = L, where L, € RP*? is a lower trian-
gular matrix and p = m+m(m—1)(n—1)/2. Thus, dim(QDP*) < m(n—1)+
m(m—1)(n—1)?/2. We establish dim(QDPT") > m(n—1)+m(m—1)(n—1)?/2
by exhibiting m +m(m—1)(n—1)?/2+1 linearly independent zero-one vectors
that belong to QDPT™. Consider the matrix Z whose rows are formed by

(1) the vector zp(n) € QDPT,

(ii; m(n — 1) vectors z(s,,s,)(J,n) E QDP for1 <j<n-—15 = {1,...,1},
Sy ={i+1,...,m} where 1 <i<m,

(iii) m(m — 1)(n — 1)(n — 2)/2 vectors z(s, s,,5,)(J, £, n) € QDP for 1 < j #
<n—-1,8 ={1,...,i},So={i+1,...,k},Ss={k+1,...,m} where
1<i< k <m,and

(iv) m(m — 1)(n — 1) vectors z(s, s5,)(n,j) € QDP* for 1< j<n-1,5 =
{1,...,4,k+1,....m},So={i+1,...,k} where 1 <i<k <m.
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Partitioning Z = (Z/,Z2") such that Z" corresponds to  Z2p,...,Tnn, Y27, ...,
mn ,2n mn 2n mn 3n mn mn
Yii s ¥%2-- Y12 - Win-- o Yin-1 Y210 - Y2 n-1 - - Ym—1 n—1) W€ have

that modulo row permutations Z’ = L, where L, € RP*? is a lower trian-
gular matrix and p = m(n — 1) + m(m — 1)(n — 1)2/2 + 1. Hence, these
m(n — 1)+ m(m — 1)(n — 1)2/2 + 1 vectors are linearly independent. a

Proposition 5.8 (5.9) defines a facet of QDPP for 1 <i<k <m,1<j+#
£<mn.

Proof. By Proposition (5.6), (5.9) is valid for Q DP*. Since all vectors of the
proof of Proposition 5.7 except z({m-1},{m},M-{m-1,m})(g, h,n) forall 1 < g #
h < n —1 satisfy yzﬁl’g > 0 at equality, (5.9) defines a facet of QDP* for
t=m-—1,k=mand 1 <j#¢<n-—1. By appropriately permuting the
indices of these vectors and using similar arguments as above, it can be shown
that all inequalities (5.9) define facets of QDP". m]

Proposition 5.9 Inequality (5.8) defines a facet of QDP* for1 < i < k <
m,1<j<n

Proof. By Proposition (5.6), (5.8) is valid for Q DP*. Since all vectors of the
proof of Proposition 5.7 except za(9) = z(am (0})(9,n) foralll < g <n -1
satisfy —Zm—1,g+) pun=1 ym?, ; < 0at equality, (5.8) defines a facet of Q DP"
fori =m—1,k=mand 1< j<n-—1. By appropriately permuting the indices
of these vectors and using similar arguments as above, it can be shown that all
inequalities (5.8) define facets of QDPI*. o

5.2 A General Model

We now consider a model that generalizes all BQPSs considered so far in this
chapter. Define mn zero-one variables z;; for 1 <i < mand 1 < j <n and
n?m(m — 1)/2 variables yfj" =zijzpefor 1 <i<k<mand 1< j¢<nwith
m > n > 3. Denoting by DQGP* the discrete set

(x,y) I= Rmn+n2m(m—l)/2 .

" zi;=1 forieM
DOQGP™ = Z:IZU ,
QGP; yigj[:xijxkl fori<ke N,j,LeN
.’L‘i]'E{O,l} forie M,jeN
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we define this general linear optimization model as

’"’”{ZZ%% + Z Z ZZqZ‘yff (x,y) € DQGP"‘}

i=1j=1 i=1 k=i41j=1¢£=1

where for 1 < j<n qlk]‘ = aikj + ai; in terms of the a;;; of Chapter 2.6 and
for 1 < j#¢<n, q” = @ijk¢ + Greij In terms of the a;jrs of Chapter 2.4.
Projecting out all y” for 1 < j < n from the general model yields the CLDP,
while projecting out all y’cz for 1 < j # £ < n yields the OSP. Since the MPP
can be obtained from the CLDP by symmetrization (see 5.1), the GPP can be

obtained from the OSP by aggregation (see 4.17) and all problems considered
so far in this chapter can be obtained as special cases of this general model.

To obtain a linear formulation for DQGP[* in zero-one variables, we consider
the local polytope P given by P = conv(D) where n > 3 and D is defined as
follows; see Figure 5.2:

(x,y) € RPN
n

D= j=1 iy =1 for1<i<2
- y?f =zjzge for1<j,£<n

z;; €{0,1} forl1<j<n

Let Pp be the polytope given by (x,y) € R*’*+27 satisfying

Yaey=1 for1<i<2 (5.11)

n
—zy+ Y =0 forl<j<n (5.12)
—p+ Y ¥ =0 forl<j<n-1 (5.13)
yi>0 forl1<j£<n. (5.14)

Remark 5.3 The system of equations and inequalities (5.11), ...,(5.14) s valid
for all(x,y) € P and thus P C Pr. There are 2n+1 equations in (5.11), (5.12)
and (5.13); the equation —zon +3 5, Y27 = 0 is redundant for all (x,y) € Pr.

Proof. Let (x,y) € D. Then (x,y) satisfies (5.11). From (5.11) we calculate
~21j+ e Vi = — T Uy T1j%oe = T+ Yoy T2 = —21j+ 215 =0
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Figure 5.2 The locally ideal linearization of the general model

and hence (5.12) is satisfied as well. By a similar argument, (5.13) is satisfied.
Thus, D C Pr and P = conv(D) C Pr. There are 2n+1 equations (5.11), (5.12)
and (5.13). To prove the stated redundancy, we take the linear combination

of (5. 11) (5.12) and (5.13) given by Y7o, 2 = Tyer 2 + Sjms(—21; +
DY y Zn (=225 + > 7=y yuz = —ZTon+Y ey y?7 which equals 0 for all

feasible (x y) € PL, hence, the remark follows. O

We order the components of x as (z11,...,Z1n,Z21,...,Z2n) and those of y
2, = s

s (v, . v, v v,y Ly ). Let wy; € R?M with its

components ordered like those of x be a unit vector with one in its (z, )
component and v t € R™ ordered like y be another unit vector with one in
its ( ) component Let u;; € R” *+2n be obtained from u;; by appendlng n?

zeroes in the last n? components and v € R™"+27 be obtained from ¥ VIJ by
appending 2n zeroes at the beginning.

Proposition 5.10 The dimension of P equals n?> — 1 for alln > 3.

Proof. We write the equations (5.11) in ascending order of ¢ and those of (5.12)
followed by the ones of (5.13) arranged in ascending order of j in matrix form
as A1x+ Ay =b. Let A = (AI,AZ) Partltlomng A= (A’ A"") such that
A’ corresponds to Z1in, Zan, Y27 ,y12 R T i yln,yln, .. ,yln l, we have that
A’ is a lower triangular matrix of dimension 2n + 1. Thus, dim(P) < n? — 1.
We establish dim(P) > n? — 1 by exhibiting n? linearly independent zero-one
vectors belonging to P. Consider the matrix Z whose rows are formed by
the vectors uy; + uge + v ¢t € Pfor 1< j£<n. Partitioning Z = (Z',2")
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columnwise so that Z’ corresponds to the variables y tfor 1 < j, £ < n, we have
that Z’' = I, where I, € RP*P is an identity matrix and p = n?. Hence, these

n? vectors are linearly independent. m]

Proposition 5.11 (5.14) defines a facet of P for 1 <i<m,1< j,¢< n.

Proof. By Remark (5.3), (5.14) is valid for P. Since all vectors used in the
proof of Proposition 5.10 except uyy + ugp +v1h for a pair 1 < g, h < n satisfy
ylg > 0 at equality, (5.14) for 1 < j,£ < n defines a facet of P. a

Remark 5.4 An optimal solution to maz{cx + qy : (x,y) € P} is Ty =
Tor = ylp =1 where 1 < p,r < n and cip + cor +q1p Z c1j + cae +q for all
1<j,6<n

Proposition 5.12 The solution of Remark (5.4) is an optimal solution to the
LP problem maz{cx + qy : (x,y) € Pr} where (c,q) is arbitrary.

Proof. Let (x*,y*) be the solution vector defined in Remark (5.4). By Re-
mark (5.3), P C Pr and trivially, (x*,y*) is an extreme point of Pr. Let
P’ = PLU{(x,y) € R . —zo + 57 y¥ = 0}. By Remark (5.3),
P;, = P’. We show that (x*,y*) is optimal over P’ and hence optimal over
P;,. The dual to the maximization problem over P’ is min{s; + s2 : i — u;i; =
cjforl < i< 2,1 <5< nyupj+up > qllforl < j,€ < n}. The vector
given by 57 = s2 = (c1p+czr+q1p)/2 ujj =8 —¢jfor1<i<2,1<5< n
is feasible to the dual problem and its objective function value cyp + c2r + ‘11p
equals that of (x*,y*). Thus by LP duality (x*,y*) is optimal over P’. ]

We now state a proposition which summarizes the preceding.

Proposition 5.13 The system of equations and inequalities (5.11),...,(5.14)
is an ideal linear description of the local polytope P, i.e. P = Pr.

Considering all equations and inequalities resulting from the locally ideal lin-
earization of the variables giving rise to quadratic terms in the objective func-
tion of the general model, we formulate the general model as the LP problem

min{ Y cijzi; + S5 il (xy)€QGPT ), (0QGPY)

i.JEN i<keM j<LeN
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where QG P is the polytope defined by the convex hull of solutions (x,y) €
Rmn+n’m(m=1)/2 {4 the following equations and inequalities in zero-one vari-
ables:

Zx,,- =1 forieM (5.15)

—T;; + y = fori<keM,jEN (5.16)
J z]

—zk,-+§:yf;:0 fori<keM1<j<n-—1 (5.17)

vt >0 fori<keM,jLeN (5.18)

z;; € {0,1} forie M,jEN (5.19)

Proposition 5.14 OQGP™ is a formulation of the general model with m +
m(m — 1)(2n — 1)/2 equations where m > n > 3.

Proof. By a similar argument as in Remark (5.3), DQGP* C QGP*. Let
(x,y) € QGP™. For any pair 1 < 7 < k < m, consider the linear combination of
equations (5.15), (5.16) and (5.17) given by 37_) zij =3 i) zkj+y ;- (—2ij+

DIy yff) - ZJ 1(—:1:;” + 3 1ytJ) = —Zkn + Y.y, Y5 which equals 0 for
all (x,y) € QGPT; hence, —zg, + Ejzlyij =(0foralll1 <i< k<m
are redundant. We show that yfje = zijzpeforalll <i<k<mand 1<
7,€ < n. Suppose that there exist 1 < p< g <mand 1l < rs < n such
that y§! # zpr24s. Using (5.16), (5.17) and (5.18) and the equations shown
to be redundant, we conclude yJi = 0 whenever z,, = 0 or z5, = 0. So
necessarily z,, = £y, = 1. But, then using (5.15) and (5.18) and an identical
argument as above, we conclude from (5.16) and (5.17) and the redundant
equations that 1 = z,, = 3_,_, y¥f = y2, which contradicts the assumption
that yJ! # xp,;rgs Since all extreme points in QG P]* are zero-one valued and
in DQG’ , the first part follows. The rest follows by counting,. ]

The LP relaxation of our formulation of the general model has polynomially
many variables and polynomially many equations and inequalities and hence,

it is polynomially solvable.

To get more insight into this model, we order the components of x € R™"

as (Z11,.-,T1n, -+ Tmly--- ;L',,m) and those of y € R" 'm(m=1)/2 a4 (¥?1,
~',yﬁlv~-,yﬂl,--~,yﬁn»y12w- )y12)"'7y12 )t ayln ay21)"'7ym-1,n)' Let’

W;; € R™” with its components ordered like those of x be a unit vector with
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one in its (7, )" component and fo € RV’m(m=1)/2 ordered like y be another
unit vector with one in its f,’j[)‘h component. Let u;; € R™*+n°m(m=1)/2 e
obtained from u;; by appending n?m(m—1)/2 zeroes in the last n?m(m—1)/2
components and vff € R™"+" *m(m=1)/2 he obtained from v“ by appending mn
zeroes at the beglnmng Let z(s,,s,,..,5,) (1,12, .. thl Ziesg u;, +

-1 ¥4
i Ez=i+1 Zjes, 2 tesi Vjiﬁ where M = {1,2,.. .,m}‘

Proposition 5.15 The dimension of the polytope associated with the general
model is given by dim(QGPT) = m(n—1)+m(m—1)(n—1)2/2 form > n > 3.

Proof. We write all equations (5.15) and (5.16) in matrix form as A1 x+Asy =
b and let A = (A, A;). Partitioning A = (A’, A”) such that A’ corresponds
to z11,.. ~vxmlvy??’ s ~7yn"’y%3a e '7yi’§2n’ o 'vyi’:znlyg?7 s 'vyg:zn7 = 'ymr—ll,nv
we have that modulo row permutations A’ = L, where L, € RP*? is a lower
triangular matrix and p = m(n — 1) + m(m — 1)(n — 1)2/2. Thus, dim(P) <
m(n—1)+m(m—1)(n—1)?/2. We establish dim(P) > m(n—1)+m(m—1)(n—
1)2/2 by exhibiting m(n — 1) + m(m — 1)(n — 1)?/2 + 1 linearly independent
zero-one vectors that belong to @G PT*. Consider the matrix Z whose rows are
formed by the following vectors:
(i) the vector zp(n) € QGPT,
(i) m(n — 1) vectors z((iy,m-{i})(J,n) EQGPT for 1 <i<m,1<j<n-1,
and
(iii) m(m—1)(n—1)?/2 vectors 2({i) (k) M—{ik)), (0, 6n) EQGP for 1 < i <
k<m,1<jf<n-1
Partitioning Z= (7, Z”) such that Z" corresponds t0 Lon, .-y Tmn, YT, .-,
YT YR Y YT T, Y, YRy, We have that modulo row
permutations Z’ = L, where L, € RP*? is a lower triangular matrix and p =
m(n—1)+m(m— 1)(n 1)2 /2+1 Hence, these m(n—1)+m(m—1)(n—1)32 /2+1
vectors are linearly independent.

Proposition 5.16 Inequality (5.18) defines a facet of QGP;* for1 <i<k <
m,1<j,¢<n.

Proof. By Proposition (5.14), (5.18) is valid for QGP}*. Since all vectors of
the proof of Proposition 5.15 except z({i},{k},M_{,-,k})(g,h,n) foralll < g #
h < n — 1 satisfy y"h > 0 at equality, (5.10) defines a facet of QG P} for
1<i<k<mand 1 < g,h < n —1. By appropriately permuting the indices
of these vectors and by similar arguments, even when j = n or £ = n or both,
it can be shown that all inequalities (5.18) define facets of QG P} o
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Remark 5.5 From (5.16) we have y,k]. =ZTij — Y iaem 11/:] foralll <i<k<

m and 1 < j < n. We can thus eliminate the variables y, for1<i<k<m
and 1 < j < n from the general model and formulate this model also in the
same variables as the CLDP by approprzately modifying the objective function
coefficients. Moreover, eliminating y ! from (5.17) for 1 < i < k < m and
1<j<n-1, weobtazn(57)for1<z<k<mandl<]<n—1 A
similar elimination ofy” from (5.18) for 1 <i<k<mandl <j=£<n
yields (5.8) for 1 <i <k <m and 1 < j < n. The remaining equations and
inequalities in the general model are the same as those of the CLDP; hence, the
two formulations are equivalent.

5.3 Quadratic Assignment Problems

To consider the QAP, see Chapter 1.6, we define new variables y,’-‘f = zijzy, for
1<i<k<n, 1< j# €< n. Counting yields that there are n?(n — 1)2/2
y-variables. Denoting by DQAP, the discrete set

(X,y) € ]Rn2+n2(n—1)2/2
Z:‘lx”_l forj€N
DQAP, = St zij=1 forieN ,
yé_m,]z‘“ fori<k€n,j#£LeN

z;; € {0,1} fori,jEN
the QAP can be written as
{3 Y+ 3 30 3 3 k() € DQAR, |
i=1j=1 i=1 k=i+1j=1j#L=1

where qff = @jjke + Akei; 10 terms of the a;jx¢ of Chapter 1.6.

To obtain a linear formulation for DQAP, in zero-one variables, we consider
the local polytope P given by P = conv(D) where D is defined as follows;
see Figure 5.3:

(x,y) €ER™:
Zjnzl zy; =1
D= Yz & =1

¥y =220 for2<i<n,2<j<n
zi5,zi1 €{0,1} for1<j<n,2<i<n
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L1 (12) (1.3) (1,4) (1,1) (1,2) (1,3) (1,9

°
(4,4) (2.1) (2.1)
(4.3) (2.2
(4.2) [) (2.3)
(4,1) (2.9) (4.1)
(34) (33) (3.2) (3.1) (3.1)

Node and edge variables used in the

The cobweb of all node and edge variables of QAP locally ideal linearization of QAP
(1

Figure 5.3 The locally ideal linearization of QAPs

Let Pr be the polytope given by (x,y) € R™ satisfying

n
> a=1 (5.20)
j=1

Yoza=1 (5.21)
i=1

n
—zy; + Zy‘li =0 for2<j<n (5.22)
i=2
n .
_x“+2y‘1}:0 for2<i<n-1 (5.23)
j=2
2y >0 (5.24)
vi; >0 for2<i<n2<j<n (5.25)

Remark 5.6 The system of equations and inequalities (5.20), . .., (5.25) is valid
for all (x,y) € P and thus P C Pr. There are 2n — 1 equations in (5.20), ...,
(5.23). Moreover, the equation —Tn1 + Y ;_oy}; = 0 is redundant for all
(x,y) € Pr.
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Proof. Let (x,y) € D. Then (x,y) satisfies (5.20), (5.21), (5.24) and (5.25).
To prove that (5.22) is satisfied as well we calculate

n n

il _ — : . )

-1 + E yi; = -2+ E zinzy; = —21; + (1 — z11)z1; = —z15210.
1= 1=2

But z521; = 0 for all (x,y) € D and thus, (5.22) is satisfied. The proof that
(5.23) are satisfied goes likewise. Thus, D C P and hence, P = conv(D) C Pr.
There are 2n — 1 equations in (5 20),...,(5. 23) The linear combination of

(5.22) and (5.23) given by 3°°_, x1p+2, 2 Yip)— 2pe 2 (—Zp +3 02 y’l’;) =
_Z;::z zi1p + Z =2 y1, Zp 2 Tpl = —Tm1 + ijlypjl = 0 where we have

used (5.20) and (5 21). Hence, —z,1 + Z?:z y7# = 0 is redundant. w
We order components of x as (z11,...,Z1in,Z21,--.,Zn1) and those of y as
(W3, . yd, .y, yth). Let W, € R?™~! with its components ordered

like those of x be a unit vector with one in its (i,j)** component and by

_kl € R(n=1(n-1) w1th 1ts components ordered like those of y be another unit
)th

vector with one in its component. Let u;; € R(" ) be obtained from u,J

by appending (n — l)2 zeroes in the last (n — 1)? components and v 1 ¢ R
be obtained from v* 1j ! by appending 2n — 1 zeroes at the beginning.

Proposition 5.17 The dimension of P equals (n — 1)? for alln > 2.

Proof. We write all equations (5.22) and (5.23) in ascending order of j and
i respectively followed by the equation (5.20) and (5.21) as Ajx + Ay = b
and let A = (A;,Ap). Partitioning A = (A’, A”) columnwise so that A’
corresponds to £12,...,Z1n,Z21,..-,Tn-1,1, T11, Tn1, We have that A’ is a lower
triangular and of dimension 2n — 1. Thus dim(P) < n? - (2n—1) = (n — 1)%
We establish dim(P) > (n—1)? by exhibiting (n —1)? + 1 linearly independent
zero-one vectors that belong to P. Consider the matrix Z whose rows are
formed by the vectors u;i,uy; + ui; + v‘li for 2 < 7,j < n which are all in P.
Partitioning Z = (Z', Z") columnwise so that Z’ corresponds to 11 and y}} for
2 < i,j < n, we have Z' = I, where I, € RP*P and p = (n — 1) + 1. Hence,
these vectors are linearly independent. a

Proposition 5.18 Inequality (5.24) defines a facet of P.

Proof. By Remark (5.6), (5.24) is valid for P. Moreover, all vectors except
u;; used in the proof of Proposition 5.17 satisfy (5.24) at equality. o

Proposition 5.19 Inequality (5.25) defines a facet of P for 2 <i,j <n.
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Proof. By Remark (5.6), (5.25) is valid for P. Moreover, all vectors except
u1]~+u21+v’1}~ used in the proof of Proposition 5.17 satisfy (5.25) for2 < i,j < n
at equality. m]

Remark 5.7 An optimal solution to maz{cx + qy : (x,y) € P} is character-
1zed by two cases:

(i) if there exists 2 < p,r < n such that c1p + cr1 + qlp > c11 then an optimal
solution is 1, = T, = y{}, =1landzy; = o = y“ =0forall2<i,7<n
where i £ r and j # p.

(ii) if the condition in (i) does not hold then an optimal solution is z1; = 1
and z1; = i1 = yﬁ =0 where2<i,j <n.

Proposition 5.20 The solution of Remark (5.7) is an optimal solution to the
LP problem maz{cx+ qy : (x,y) € PL} where (c,q) is arbitrary.

Proof. Let (x*,y") be the solution vector defined in Remark (5.7). By Re-
mark (5.6), P C P and trivially, (x*,y*) is an extreme point of P in
either case of Remark 5.7. The dual to maz{cx + qy : (x,y) € Pr} is
min{s+t s—uj =c¢yyfor2 <j<nt—wv =cn for2<z<n u; + vk >
g for2<i<n-1,2<j<nuy >q11 for 2 < j <n}. Letz—clp+cr1+q1p
if we are in case (i) of Remark (5.7) and z = ¢y, if we are in case (ii). The vector
s=z—cpi,t =Cpyyuj =z2—cp1—cyj for 2<j<n,v; =cqp—cip for2<i <
n — 1 is feasible to the dual problem. Its objective function value is equal to
that of (x*,y*) and hence, by LP duality (x*,y*) is optimal over P’. m]

We now summarize what we have proven in this section.

Proposition 5.21 The system of equations-and inequalities (5.20), . ..,(5.25)
is an ideal linear description of the local polytope P, 1.e. P = Py,

Considering all equations and inequalities resulting from the locally ideal lin-
earization of the variables giving rise to quadratic terms in the objective func-
tion of the QAP except for z;; > 0 which is redundant for the QAP, we
formulate QAP as the LP problem given by:

mind S ezt Y. Y, au (x¥) €QAP.y,  (OQAP,)

iJjEN i<keN j#LEN
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where QAP, is the polytope defined by the convex hull of solutions (x,y) €
R +n7(n=1)*/2 ¢4 the following equations and inequalities in zero-one variables:

n
inj =1 forie N (5.26)
j=1
n
i=1
i—1 n
e S X A0 BrieNsEteN G2
k=1 k=i+1

j—-1 n
_zij+Zy;cJ£+ Zy;fl:O forjeN1<k<i<n-1 (529)
=1

£=j+1
i-1 n
—ei Y U+ D Ui =0 forjENi<keN (5.30)
=1 £=j+1
yfjeZO fori<keN,j#LEN (5.31)
z;j €{0,1}  fori,j€ N. (5.32)

Proposition 5.22 OQAP, is a formulation of Quadratic Assignment Problem
with 2n + n(n — 1)(2n — 1) equations.

Proof. By a similar argument as in Remark (5.6), DQAP, C QAP, and
—znj + Y311 UM +Z’Z___J~+ly’;£ =0foralll <k <n-1,1<j < nare
redundant for QAP,. Let (x,y) € QAP,. We have to show that yff = Z;jTke
foralll<i< k<mnandl <j+#¥¢<n. Suppose thereexist 1 < p < r < nand
1 < g # s < nsuch that yp; # z,9z,;. WROG we can assume that g < s. If
zpy = 0 then from (5.28) for ¢ = p, j = g and £ = s we conclude using (5.31) that
Ypg = 0 and we conclude likewise when z,, = 0. So necessarily z,y = z,, = 1.
Then by (5.30), yp5 + ZlEN\{s,g} y;‘; = 1. Since z,, = 1 implies z,, = 0 for
all 1 < £# s < n, by a similar argument, we conclude ZZEN\{s,g} y;_f; =0 and
thus, y;7 = 1. Since, all extreme points in QAP, are zero-one valued and in
DQAP,, the first part follows. The rest follows by counting. 0

The QAP, formulation takes into account the symmetry z;;jzre = zez;; for
1 <14,j,k,€ < n as well as the duplication of the equations (2.6) and (2.7) in
equations (2.8) and (2.9) of Frieze and Yadegar’s [1983] formulation that we
have discussed in Chapter 3. Resende et al. [1994] propose a formulation of the
QAP similar to our OQAP, formulation, but their formulation has n(n — 1)
more equations than our formulation. Moreover, the above formulation OQAP,



122 CHAPTER 5

does not give complete consideration to the minimality of the equations describ-
ing the affine hull of QAP,. We return to this issue in Chapter 7.1.

5.4 Symmetric Quadratic Assignment Problems

To consider the Symmetric Quadratic Assignment Problem (SQP), see Chap-
ter 1.6, we define new variables yff = zjjTre + Tiezyj for 1 < @ < k < n,
1 < j < £ < n. Counting yields that there are n?(n — 1)2/4 y-variables.
Denoting by DSQP, the discrete set

(x,y) € Rn2+n2(n—1)2/4 :
Sk xij=1 forjeN
_l.l‘,'j'—_-l forie N ,
yfj‘:xij:ckz+xig:ckj fori<keN,j<fl€EeN
zij € {0,1} fori,7 €N

DSQP, =

the SQP can be written as
n n
mind 3o Y cams 4+ 30 30 3 O abfht (e) € DR
i=1j=1 i=1 k=i4+1 j=1£¢=j+1

where q” = Qjjke + Gkeij in terms of the a;jr¢ of Chapter 1.6. We to note that
the SQP can be obtained from the QAP by the transformation:

yff = Z;jTke + TigThj forall1<i<k<n, 1<j<€<n, (533)

since in the SQP we assume symmetry of the cost coefficients, i.e. qU = qll
forl<i<k<nand1<j<f¢<n.

To obtain a linear formulation for DSQP,, in zero-one variables, we consider
the local polytope P given by P = conv(D) where D is defined as follows:

(x’y) EIRsn_li
Sz =1 for1 <i<?2
D= Eflx,, <1 for1<j<n
yH  =znzo+aijza for2<j<n
z;; €{0,1} for1<i<2,1<j<n

In Table 5.1 we show all zero-one vectors of the discrete set D where we
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Ty Ti2 %13 Tin  T21 T T3 Ton Y2 Yo y"
1 0 0 0 0 1 0 0 T 0 0
1 0 0 0 0 0 1 0o o0 1 0
1 0 0 0 0 0 1 0 o 1
0 1 0 0 1 0 0 o1 0 0
0 1 0 0 0 0 1 0 o0 o 0
0 1 0 0 0 0 0 1 0 o0 0
0 0 1 0 1 0 0 0 1 0 0
0 0 1 0 0 1 0 0 0 o 0
0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 1 0 0 00 0 1
0 0 0 1 0 1 0 0o o0 o 0
0 0 0 1 0 0 0 0 0 o 0

Table 5.1 The feasible 0-1 vectors of the local polytope P of SQP

have abbreviated y?¢ to y¢ for 2 < £ < n. Let Pp be the polytope given by

(x,y) € R3~! satisfying
n
D e =1
j=1

n
2
—Z11 — 21+ E yljl =
j=2

—@1; — 295 + 41} <0
Z11 + T15 + T21 + Taj —yf{ <1
-1 — Z(-’Eij -4 <0
JES
z;; >0
vi] >0

for1<i<2

for2<j<n

for2<jiji<n

for1<i<2,0#SCN-({1},
IS|<n-3

for1<i<2,1<j<n

for2<j<n.

(5.34)

(5.35)

(5.36)
(5.37)

(5.38)

(5.39)
(5.40)
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Remark 5.8 The system of equations and inequalities (5.34), . . ., (5.40) ts valid
for all (x,y) € P and thus P C Pr.

Proof. Let (x,y) € D. Then gx y) satisfies (5.34), (5.39) and (5.40). Us-
ing (5.33), —z11 — T21 + Z oVl = —%T11 — T + Z] o(Z11T25 + Z1jT91) =
—1,’11(1 - Z]:Z (L'z]) — 1721(1 Z]_leJ) = —2:8111‘21 = 0 hence (5 35)

satisfied as well. Using (5.33) and (5.39), —z1; — zoj + ¥ = —z1; — 2o +
T11Tj + 215821 = —215(1 —2o1) —225(1—211) <0 for 2 < j < n; hence, (5.36)
is satisfied as well. We write 11+ 21 + 214+ T2j — y11 = +x11 +Io1+zo5—

T11T9j— 121 = T11(1—Za;)+21(1—221)+z21+225 for2 < j < m. There are
two possible cases: (i) if £1; = 1 or z;; = 1, then 1?11+1'1]+l'2}+1'2] y11 =1;
(i1) if 217 = z1; = 0 then 11 + x5 + 221 + T2 — yll = z91 +22j < 1 where the
last inequality follows from (5.34) and (5.39). Finally, using (5.33) and (5.39),

—Ti1 — Z]es(“’u 911) = —Ti — Z es(‘cu T1122; — T15221) = —Ti1(l —
Yies Thi) = 2 jes Tij(1—xk1) <0 for 1 <i<2,0#SC N-{1},|S]<n-3
where 1 < i # k < 2 and hence, (5.38) is satisfied as well. Thus, D C Pp and

hence, P = conv(D) C Pr. m]
We order the components of x as (211, ..., Z1n, L21,...,Z2n) and those of y as
(¥32,...,9°1). Let u; € R2" with its components ordered like those of x be a
unit vector with one in its (i, j)** component and ¥v?¢ € R"~1! ordered like y

be another unit vector with one in its )”‘ component Let u;; € R®~! be
obtamed from u;; by appending n -1 zeroes in the last n — 1 components and

vt € R3"~1 be obtained from ¥ v2t by appending 2n zeroes at the beginning.

Proposition 5.23 The dimension of P is given by dim(P) = 3n—4 forn > 4.

Proof. Since the three equations in (5.34) and (5.35) are linearly independent

and P C Pr, dim(P) < 3n — 4. We establish dim(P) > 3n — 4 by showing

that every equation ax + By = v that is satisfied by all (x,y) € P is a linear

combination of (5.34) and (5.35).

(i) Since (uip +uz.) € P for 2 < p,r < n, ajp = ajr forall 1 <¢<2,2<

p,r < n.

(ii) Since (u1p +uz.), (W11 +uzr +vi) € Pfor 2 < p,r < n, a1p = an — i}
for all 2 < p,r < n. Moreover, by (i), ozlr = a1+ ,811 forall2<r <n.

(iii) Since (11 + vy + v37), (Ui, + ug +viyePfor2<r < n, ap] + agr =
a1y + as for all 2 < r < n. Moreover, by (i) and (i), {7 = 7] for all
2<p,r<n.

So ax + By = v becomes Zz | Cir Zp L Tip + B (211 — a1 + Zp ) y“) =
Z?:l a;, for (x,y) € P where 2 < r < n, i.e. a linear combination of the
equations (5.34) and (5.35). 0
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Proposition 5.24 Inequality (5.40) defines a facet of P for all2 < j < n.

Proof. By Remark (5 8), (5.40) is valid for P. Let F = {(x,y) € P : y¥ = 0}.
Since (u;; + uy; + V11) € P but not in F, F is a proper face of P. Suppose
there exists a valid inequality ax + By < v for P such that every (x,y) € F
satisfies ax + By = v.

(1) Since (uip+uy,) € Fforl <p,r<n,ajp =ajrfor1 <i<2,2<p,r<n.

(i1) Since (uip+uz,), (w1 +us,+vij) € Ffor2<r#j<n, a;1+p% =aip
for all 2 < r # j < n. Moreover, by (i), a;; = a1, — 3] forall 2 < r #
Jj <n.

(1ii) Since (uj; + ugp + v“) (a1, + ugy +v1’1’) € Ffor2 <p#3j<n,
a1 +ag, = ajp+ag forall 2 < p# j < n. Moreover, by (ii), a1 —a1p =
ag —azp=—fF forall2<p#j<n.

So ax + By = v becomes 212 1 Qir Z: 1 l'lp + B (=211 — @21 + Ep 2 3/11) +

(B = Byt = iy @ir; equivalently, (] — BH)yi] = 0 for all (x,y) € F
where 2 < 7 < n. Since F' is a proper face of P, the proposition follows. m]

Proposition 5.25 Inequality (5.39) defines a facet of P for all1<i<2,2<
Jj<n.

Proof. By Remark (5.8), (5.39) is valid for P. WROG assume 7 = 1 and let
F = {(x,y) € P : zy;; = 0}. We consider the two cases: (i) j = 1 and (ii)
J # 1. First, consider case (i). Since (u1; + ug; + vZ) e P but not in F, F is
a proper face of P. Suppose there exists a valid inequality ax + By < v for P
such that every (x,y) € F satisfies ax + By = v.

(1) Since (ujp4uy,) € Fforl <p,r<n,ap=ajfor1 <i<2,2<pr<n.

(ii) Since (u1p +uar), (W1p + sy + vi%) € F for 2 < p,r < n, s, = g + fif
for all 2 < p,r < n. Moreover, by (i), as, = as; — BF forall 2 < p < n.

(iii) Since (u1p + uz1 + vi¥), (g, + ugy + v2) € F for 2 < p,r < n, ajp +
ﬂ“ = ay, + % for all 2 < p,r < n. Moreover, by (i), ﬂ“ = B3] for all
2<p,r<n.

Consequently, ax+ By = 7 becomes (a1 —alr+5f’{)z11+2?=l Qir Z;::l Zip+

2 .

B (—zn—za+ 35, YY) = S22, air; equivalently, (a1 — aqr + 8221, =0

for all (x,y) € F where 2 < r < n. Consider case (ii). Since (u;; +us; +vf’1) €

P but not in F, F is a proper face of P. Suppose there exists a valid inequality

ax + By < v for P such that every (x,y) € F satisfies ax + By = v.

(i) Since (wip +uy) € Ffor 2 < p,r < n,p#j, a1p = ai, for 2 < p,r <

n,p# j#rand azp = ay, for2<p,r<n.
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(i) Since (u1p + uz,), (U1 +uz +vij) € Ffor2 <p# j<n2<r<n,
a1, = an + B forall2 < p # j < n,2<r < n. Moreover, by (i),
alr:all+ﬂ12f forall2<r#j<n.

(iii) Since (uip + uz,),(ulp + ug + V?’l’) € Ffor2<p#j<n2<r<n,
g = gy + B2 for all 2< p # j < n,2 < r < n. Moreover, using (i) and
(i1), azp—a21+[)’11 and ﬂlzf =p# forall2<p,r<np#j#r.

Thus ax+,3y = v becomes 57_, oy Y op=r Tip +(a1j —arr)zyj + B (—zi1 —

Ty + Yoy Yib) = S22, air; equivalently, (a1j — a1,)z1; = 0 for all (x,y) € F
where 2 < r < n. a

Proposition 5.26 Inequality (5.36) defines a facet of P for all2 < j <n.

Proof. By Remark (5.8), (5.36) is valid for P. Let F = {(x,y) € P : —z; —
25 + y? = 0}. Since (u1; +usp) € P, for some 2 < p, j < n, but not in F, F
is a proper face of P. Suppose there exists a valid inequality ax + By <« for
P such that every (x,y) € F satisfies ax + By = 7.

(1) Since (uip +uz,) € Ffor2<pr<np#j#r ajp=oaj for 1 <i<
2,2<pr<npEiE.

(ii) Since (u1p + uar), (urr + uar +v¥)ye Ffor2<pr<np#j#r,
a1p = a1 + B for all 2 < p,r < n,p # j # r. Moreover, by (i),
ajr =ap + B3 forall2<r#j<n.

(iii) Since (uy, + ug,),(ulp tun +vEeEFfor2<p<np#ji#j#m
oy = agl +,3“ for all 2<p<np#j#r. Moreover, by (i), agp =

as + BiY and B = p? fora112<p,r<np;£]¢r
(iv) Since (U11+uzp+v“) € Ffor2<p<n, a2p+,811 = ag; + 8% e,
Qagp — Qgj = ,B fora112<p<n

(v) Since (ui; +uzp+v11) (u1p + ug; +v11) €Ffor2<p<mn,an+agy=
a1p + g1, e, a1 — a1p = 21 — Qgp for all 2 < p < n; in particular,
@11 — aj = g1 — agj. Moreover, from (ii) and (ii), @15 = a1p — azp + @3;
for2<p<n.

Consequently, ax + By = 7 becomes Y7, @i, > =1 Zip + B (—x1 — z21 +

Sor_y Ui) + (ar — azj)(—z1; — x2j +Ui1) = Loy ir; equivalently, (azr —

ag)(—Z1j — z25 + y?) = 0 for all (x,y) € F where 2 < r < n. Hence, the

proposition follows. 0

Proposition 5.27 Inequality (5.37) defines a facet of P for all2 < j <n.

Proof. By Remark (5.8), (5.37) is valid for P. Let F = {(x,y) € P : z11+z1;+
a1+ T2 — y2 = 0}. Since (u1p+uz,) € Pforsome2<p<r<n,p#j#r,
but not in F, F is a proper face of P. Suppose there exists a valid inequality
ax + By < v for P such that every (x,y) € F satisfies ax + By = 7.
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(1) Since (ujj +uzp) € Ffor2<p#j<n,ay=oayfor2<pr<np#
it

(ii) Since (ujp +ug;) € Ffor2<p#j<n,aip=a, for2<p,r<n,p#
j#T

(ili) Since (uyp + ug + vf’l’) €Ffor2<p<nm, aip—oai, =P — B for all
2<pr<n. Moreovzer, by (i1), lzf = 212{ forall2 <p,r<n,p#j#r.

(iv) Since (uyy +ugp + vi)), (up+us+vih) € Ffor2<p<mn, a1y —agp =
Q21 — Qgp for all 2 S D S n.

(v) Since (uyp + uz;), (w11 + uy; +vi)eFfor2<p<np#j, on—oap=
—pB¥ forall2< p<m,p#j.

Consequently, ax 4+ By = v becomes Y7, a;, ZZ=1 ip + B (—z11 — xo1 +

Zzzz YY)+ (@11 — arr + B (211 + 21+ T + Toj — Y3]) = an1 + az, + B

equivalently, (a11 — a1, + B2]) (211 + Z1j + 221 + 25 — y23) = (11 — a1y + %)
for all (x,y) € F where 2 <r < n. a

Proposition 5.28 Inequality (5.38) defines a facet of P for all1 <1< 2,0 #
SCN-{1},15]<n-3.

Proof. By Remark (5.8), (5.38) is valid for P. WROG assume i = 1 and let
F={(xy)€P:—z11-Y;c5(z1;—y}1) = 0}. Since (uy;+uz,+v}]) € P for
some r € S, but not in F', F' is a proper face of P. Suppose there exists a valid
inequality ax+ By < = for P such that every (x,y) € F satisfies ax+ 8y = v.

(i) Since (ujr +uz) € F forp € S;r € S, a1p = ayr for p,r ¢ S and
agp = ag, forallp,r € S.

(ii) Since (w1, 4+uzp), (U1 +ugp+v¥) e Fforpe S,r €S, ayr = ayy + B2,
ie ai,—ay; =¥ forallpe S,r ¢ S. By (i), B2 = g2 forallp,r € S.

(iii) Since (uyp + ug; + vf’l’),(un +uy + vf’l’) € Fforpe S, ayp+ax =
a1 + agp. By (i), a1p = ay, for all p,r € S.

(iv) Since (ui, +uz +v3), (w1 +ugy +v¥) e Fforpe S,r ¢ S, oy, +ag +
B = ai +agp + Pop forallp e S,r ¢ S. By (iii), f = agp — a2y and

ff:ﬁf{ for all p,r ¢ S. , )

(v) Since (uip + uz.), (W1p + ugy + vih) € F for p,r € S, azr = ag + B}
for all p,» & S. By (iv), B2 = as, — a2 for all » ¢ S. Moreover, by (i),
agp = ag, for all 2 < p,r < n.

(vi) Since (uyy + ugp + Vi), (i, +us +vi) € Fforpe S,;r ¢ S, any +
agp + 6?’1’ =ai,+an+ P forallpe S, r ¢ S. By (v), ﬁf’l’ = a1y — Q11
for all p € S,r ¢ S. Moreover, by (ii), a1p — @11 = agr — ag for all
peS2<r<n.
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Consequently, ax + By = v becomes (11 — a1p)z11 + (1p — 1r) Zees Tie+
a1r Y _pgs Tre + (a21 — @2r)To1 + azr Sorea Tae+ (anr — a1p) Yopes YL + (a1p —
an) Ypp VB = Yiop air + (a1p — ann)(=211 — 221 + Xjop ¥if) + (a1r —
a1p)(—211 — Ypes(@ie — ¥3)) = Tizy cir; equivalently, (a1, — a1p)(=211 —
Ses(xie —y3) =0 forall (x,y) € F where pe S, ¢ S. m]

We have the following conjecture for P = conv(D) which is true for 3 < n < 9.

Conjecture 5.1 The system of equations and inequalities (5.34), .. .,(5.40) s
an ideal linear description of the local polytope P for n > 5.

The linear system of the conjecture, though complete, is not minimal for n = 3
and n = 4. For n = 4, by dropping all of the three inequalities (5.36) for
2 < j < n and for n = 3, by dropping any one of the two inequalities {5.36), let
us say, the inequality (5.36) for j = 3, we obtain an ideal description of P from
the above system of equations and inequalities. Moreover, for n = 3, since the
inequality (5.37) for j = 3 given by z1; + 13+ Z21 + 23— 37 < 1is equivalent
to Z11 4 T12 4 T21 + To2 — y?2 > 1, these inequalities (5.37) for j = 2 and 3 can
be replaced by an equation z11 + z12 + T21 + 22 — yff =1.

Using the conjecture, we consider the following equations and inequalities to
linearize yﬁ]‘f = Ty + Lo,y foralll <j < ¢ < n and a pair of indices 7 and
swithl <r<s<n:

n

Zx,_, =1 for i € {r,s} (5.41)
1=1
-1 n
—Tyj — T, +Zy3 + Z yfj =0 for1<j<n (5.42)
£=1 =341
—er—r,]+y:j <o for1<j<¢<n (5.43)
rr1+xr,+z,1+z,g—yﬁf§1 for1<j;<€<n (5.44)
. . 83 se 0#SCN-{j},j€EN,
—ry =Y met 3 v Y vii<o for | FO T TIPS (5.45)
tes 1>¢€€eS 1<t€S
zi; >0 fori € {r,s},1<j<n (5.46)
vi>o for1 <j<{£<n. (5.47)

Using symmetry and similar arguments as done previously, we consider the
following system of equations and inequalities to linearize the variables yks for
all 1 < i< k < nand a pair of indices r and s with 1 <r <s < n:
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n

Z Ty =1 for j € {r,s} (5.48)
i=1
1—1
—x,r—r,5+Zy Z ¥k =0 for1<i<n (5.49)
k=1 k=it1
—Tir —Tis+ Y5 <0 for1<i<k<n (5.50)
z.r+zkr+ri,+xka-y:‘rs <1 for1<i<k<n (5.51)
—zi; — Zx,u + Z yis + Z ¥k <o for ?Sfff—l\g ; é};\, je{n s}(5'52)
k€S i>k€ES 1<k€E€S
zi; >0 for j € {r,s},1 << n, (5.53)
vk >0 for1<i<k<n (554)

Remark 5.9 The inequalities (5.43), (5.44), (5.50) and (5.51) are a linear
combination of (5.41), (5.42), (5.48) and (5.49) and a nonnegative linear com-
bination of (5.46), (5.47), (5.53) and (5.54) and thus redundant.

Proof. (i) For some 1 < g < n, summing (5 47) forl<j<f<nandj#

g,€ # h where ¢ < h < n, we obtain — Z] =1 y,] Z]h gl+1 yrg Z?=h+l yrg; >
0. Adding this inequality to (5.42) for g, we obtain that —z,y — 2,4 + y:g <0.
Hence, (5.43) for all 1 < j < £ < n are redundant. By a similar argument, it
follows that (5.50) for all 1 < ¢ < k < n are redundant.

(ii) For some fixed 1 < g < h < n, the linear combination of (5.41) and (5 42)
for 1 < j < n given by Z;' 1 Zrj '*‘27 1255 — (— :crg — Zgg + Y - 1yre +
D t=gi1 Yig) = (=Trn — zon + PDHT D B ha1 Yok) + Z{g nyi=1(—Trj —
zoj + YA U + St 1 Y55) = 2&rg + Ton + Tog + Toh — Yy + Z{g hpi=1
Z'{‘g h}¢e—1+1 yr]) = 2. Dividing by two, we get T,y + T4 + Tsg + T — yrg
+ Z{g h}#ji=1 Z?g,h}#___j_‘_l yif = 1. Adding an appropriate nonnegative linear
combination of (5.47) as done in (i), we obtain z,y + z;4 + Tsg + Tsh — y,g <1.

Hence, (5.44) for all 1 < j < £ < n are redundant. By a similar argument, it
follows that (5.51) for all 1 < i < k < n are redundant. ]

Considering all equations and inequalities resulting from our conjecture on the
locally ideal linearization of the variables giving rise to quadratic terms in the
objective function of the SQP, except the inequalities shown to be redundant
in Remark (5.9) and inequalities (5.45) and (5.52), we formulate the SQP as
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the LP problem given by:
mind > cjzii+ Y. Y. ¢k i (xy)€SQP. ., (OSQP,)
ijEN i<keN jLeN

where SQP, is the polytope defined by the convex hull of solutions (x,y) €
R +n*(n=1)*/4 {6 the following equations and inequalities in zero-one variables:

Y ozj=1 forieN (5.55)
Jj=1
Y zij=1 forjeN (5.56)
i=1

i—1 n
—wii -zt Y Y+ Y Y =0 forieNj<teN  (557)
k=1 k=141

Jj-1 n
—.’cij—xkj+2yfl]+ Z yff:O fori<keN,jeEN (5.58)
=1

e=j+1
z;; >0 fori,jeN (5.59)
yif >0 fori<keN,j<feN (5.60)
z;; € {0,1} fori,j € N. (5.61)

We show now that a formulation of the SQP has been obtained. Inequali-
ties (5.45) and (5.52) are not needed for a formulation. The study as to their
possible facet-defining properties is left for future work.

Proposition 5.29 OSQP, is a formulation of the Symmetric Quadratic As-
signment Problem with 2n + n*(n — 1) equations where n > 3.

Proof. By a similar argument as in Remark (5.8), (x,y) € DSQP, satis-
fies (5.55),...,(5.61); hence, DSQP, C SQP,. Let (x,y) € SQP,. We
show that y,’»‘f = zijxre + Tiexgj forall 1 < i<k <n1<j< < n
Suppose that there exist 1 < p < r < mand 1 < d < s < n such that
Ypa # TpdLrs + TpsTra. If Tpg = zps = 0 then from (5.57) we conclude us-
ing (5.61) that y;3 = 0; likewise, we conclude y73 = 0 when 2,4 = 2,4 = 0.
Next, assume zpq = Zrs = 1. Since, 2,4 = 1 implies z,; = zpqa = 0 for
1<d#g<nl<p#h<nandz, =1 implies z,; = zp, = 0 for
1 <s#g<n1<r#h<n But, then by a similar argument as above,
wehavey;gzy;fj forl < g<d< h<nh#s, y;Q:y;f = 0 for
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1§g<s<hgn,g;éd,y"g’;:yg;:0f0r1$g<p<h§n,h¢rand
y;fi:yf;i’ =0for1 <g<p< h<s,g#p Hence, by (5.57) fori=p,j=d
and £ = s and by (5.58) i = p,k = rand j = d, Ypa = 0. So necessarily (xpq and
zrs = 0) or (zps and 2,4 = 0); WROG assume zp4 = 1 and z,, = 0. But, then
there exists 1 < g # s < n such that z,.4 = 1, which implies, following a similar
argument as above, that y;fi =1ifd< g and y;g = 1 otherwise. Using (5.58),
we obtain y;Z =0 for 1 < h # g < n andin particular, Ypa = 0, a contradiction
to the assumption that y;l’i # TpaZrs + TpsTrq. Thus yf“f = Z;jTke + TieTk; and
every zero-one point of SQP, is in DSQP,. The rest follows by counting. O

In Chapter 7.3 we address the issue of the minimality of our formulation.



QUADRATIC SCHEDULING PROBLEMS

As noted in Chapter 4.2, the operations scheduling problem (OSP) with ma-
chine independent quadratic interaction costs is identical with the graph par-
titioning problem (GPP). We compare in this chapter these alternative formu-
lations for the OSP in this special case. By comparing the two formulations
we do not mean an empirical comparison, but rather an analytical comparison
such as the one carried out by Padberg and Sung [1991] for four different for-
mulations of the traveling salesman problem. This guarantees that our results
have validity for any numerical calculations based on the formulations that we
propose in Chapters 4.2 and 4.3. In the second half of this chapter we derive
some results on the facial structure of the OSP.

6.1 Alternative Formulations of the OSP

Though the OSP permits more general cost functions, in the special case where
the quadratic interaction costs are machine independent, we have the option
of working with either the OSP formulation or the GPP formulation. The
OSP formulation is in a larger space of variables while the GPP formulation
1s in a smaller space of variables. We are interested in comparing the quality
of the two linear programming relaxations analytically. Given two different
formulations A and B of the same problem in the same space of variables
and associated polyhedra X4 and Xp respectively, formulation A is superior
to formulation B if X4 C Xg. However, since the alternative formulations of
the OSP with machine independent interaction cost that we have presented
are stated in terms of different sets of variables, we have to map the linear
description of the polyhedron in the higher dimensional space of the OSP onto

133
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the lower dimensional space of the GPP in order to analytically compare the
two formulations. Let A and C be alternative formulations of a problem where
the formulation C' models the problem in a higher dimensional space while
the formulation A models the problem in a lower dimensional space. Likewise,
let X4 and Z¢ be the respective polyhedra associated with the formulations
A and C. Let T be an affine transformation that maps the polyhedron Z¢
onto the space of variables where the polyhedron X4 resides. If T(Z¢) D Xa
then formulation A is evidently better than formulation C since no additional
polyhedral information is provided for by the formulation C. On the other
hand, formulation C is better than formulation A if T(Z¢) C Xa.

It is well-known that every affine transformation from R” to R™ with m < n
maps a polyhedron Z C R™ onto another polyhedron ¥ C R™. Let x = f 4 Lz
be an affine transformation of full rank from R™ into R™, i.e., f € R™ and L
is an m x n matrix having full row rank. Since rank(L) = m, we can partition
the matrix L into two parts L; and Lo such that L; is an m x m nonsingular
matrix corresponding to the first m columns of L. Given a linear description
of some polyhedron Z C R" we are interested in finding a linear description of
its image under the affine transformation and so we next state a theorem from
Padberg and Sung [1991], see also Chapter 7.3 of Padberg [1995], which lets us
do that.

Theorem 6.1 Let Z = {z € R" : Az = b,Dz < d,z > 0}, where A is a
p x n matriz and D is a ¢ x n matriz. Set X = {x € R™ : 3 z € Z such that
x=f+ Lz} andt =p+q+m. Then X = X¢, where Xc and C are given by

Xe={xeR™:
aA, + 8D, —'y)Ll_l(x —f) < ab+fd for all (a,8,7) € C} , (6.1)

C={(a,B,7) eR":
a(As — AL 'Ly) + (D — D1L7'Ly) + 4L7 'Lz > 0, B,v > 0} .(6.2)

The set C defined in (6.2) is a convex polyhedral cone. Since every (a,3,7) € C
can be written as the sum of a linear combination of the elements of a basis
of the lineality space L¢ of the cone C and a non-negative combination of the
conical generators of C, we can replace the requirement “for all (o, 8,%) € C” in
the linear description of the polyhedron X by the requirement “for all (a, 3,7)
in a minimal generator system of C”. Polyhedral cones have finite generator
systems. Thus we get a finite system of inequalities for X'. Furthermore, if the
linear programs over Z and X are comparable in the sense that ¢ = dL, then
min{cz :z € Z} = min{dx:x € X} —df.
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As noted in Chapter 4.3, the OSP with machine independent quadratic inter-
action cost can also be formulated as a GPP. For ease of reference we restate
these alternative formulations of the OSP. Letting N = {1,...,n} we formulate
the GPP in Chapter 4.2 as the linear program

m n m—-1 m
min {ZZcij:vij + Z Z qirzik - (x,2) €GPP y,  (OGPP)
i=1 k=:1+1

i=1j=1

where GPPT" is the polytope defined by the convex hull of solutions (x,z) €
Rmnrtm(m=1)/2 t5 the following system of equations and inequalities in zero-one
variables:

n

ini =1 for1<i<m (6.3)

Jj=1
Tij + xkj — zik <1 forl1<i<k<m1<j<n (6.4)
dwii =Y mj+tze<l forl<i<k<mO0#SCN (6.5)

JES j€ES

z;; >0 forl<i<m,1<j<n (6.6)
zik >0 for1<i<k<m (6.7)
z;; € {0,1} forl<i<m,1<j<n. (6.8)

As shown in Chapter 4.2, the linear programming relaxation (6.3),...,(6.7) of
G P P[™ is solvable in polynomial time despite the exponentiality of its constraint
set. In Chapter 4.3 we formulate the OSP as the linear program

m n m—-1 m n
min {chzjl‘zj +y0> Zqz'kjyikj D (x,y) € QSP:;”} , (OQSPT)
i=1j=1 i=1 k=i41j=1

where QSP]" is the polytope defined by the convex hull of solutions (x,y) €
R™Mm+1)/2 6 the following system of equations and inequalities in zero-one
variables:

Z:c,-jzl for1<i<m (6.9)
ji=1

n

:c,-j+:ckj—y,-kj+2y,-u§1 forl1<i<k<m, 1<j<n(6.10)
j#e=1

—Zij + Yir; <0 forl<i<k<m, 1<j<n(6.11)

—Zrj + Yik; <0 forl1<i<k<m, 1<j<n(6.12)

Yik; >0 forl<i<k<m, 1<j<n(6.13)

z;; € {0,1} forl<i<m, 1<j<n. (6.14)
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To carry out the comparison we define two polytopes Ps and Pr as follows:

Ps = {(x,y) € R™(m+1/2 . (x,y) satisfies (6.9),...,(6.13)},
Pr = {(x,2) € Rmn+m(m=1)/2 . 3 (x,y) € Ps such that (x,z) = L(x,y)},

where the linear transformation matrix L is defined below, see (6.15). Ps is the
linear relaxation of the polytope QSP.* obtained by dropping the integrality
requirements (6.14) and Pr its linear transformation. Likewise we define the
linear relaxation of the graph partitioning polytope, obtained by dropping the
integrality requirements (6.8), as follows:

P = {(x,2) € R™+m(m=D/2 (x z) satisfies (6.3),...,(6.7)}.

To compare the GPP formulation with the standard OSP formulation we have
to calculate the linear description of the polytope Pr. The linear transformation
that maps Ps into Pr consists of the identity for the x-variables, while the z-
variables are obtained from the y-variables via the transformation

Zik = Z Yikj for all 1 <i< k < m. (615)
JEN

From (6.9),...(6.13) it follows that 0 < 2z < 1for1 < i < k£ < m and
moreover, zero-one points are mapped into zero-one points under this transfor-
mation. Letting

i — T | — . . ) . NT
x! = (xl]vvxmj) ) yJ - (yIQJa'"1ylmjyy23j»-'-ay2m]a~"7ym—l,m])

forl < j<nandz = (212,...,zlm,zm,...,zzm,...,zm_l,m)T, the linear
transformation is

n
x) =x7 for 1 < j<n, z:Zyj.
i=1

To apply Theorem 6.1 we write the matrix L corresponding to this transfor-
mation in partitioned form as (L, L2) where

I, ... O O o ... O
L, = : U : L L= ¢ Lo ,

o ... I O o ... O

o ... O I, I, ... L

s =m(m —1)/2 and I; for any k > 1 is the k x k identity matrix. The matrix
L, is nonsingular and of the required size. Thus Theorem 6.1 applies. Denote
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AL O o -I, I, I, I
0 AL o I -1, I, I,
O O AL I, I, L -1,
-K O o I oo o
0 K O o I, O o
D1= . . . D2= . .
o O -K O o o I,
-H O o I, (O JN¢) o
O -H O o I, O o
o O -H O o 0 I,

Figure 6.1 The partitioning of the inequalities (6.10),...,(6.12)

by A the node-edge incidence matrix of the complete undirected graph having
m nodes and by ej the column vector having k£ components equal to one. We
let

en—1 O 0 0 H,
0 em—-2 ... 0 0 H2
0 0 ... 1.0 Hn,-

where F is of size m x mn and H; = (0...0 IL,,_;) is of size (m — i) x m for
1 <i<m-—1. Note that in this notation AZ = K+ H. Let & = (&%, ..., d%)
denote the vectors with components ¢} = —1,d; = 1 for 1 < £ # j < n where
1 < j < n. We write the constraint set of OSP in matrix/vector form as
follows, where the constraints (6.9),...,(6.12) are listed in the order implied
by the above and the indexing of the variables of the problem.

Fx =en,
Ang+2?___1dﬂyl§l forl1<j<n
—Kx' +y/ <0 for1<j<n
—Hx/ +y/ <0 forl<j<n
y/ >0 forl<j<n.

To determine the linear description of the cone (6.2) we calculate in the notation
of Theorem 6.1 that A, — AlLl_ng = O and the corresponding calculation of
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D, — DlLl_ng is carried out in the notation given above. In Figure 6.1 we
display the matrices D; and D,. It follows that in the case of mapping (6.15)
the associated cone (6.2) is given by

(a7ﬂ7776-’w) €R¢: .
C={ 28" -8 -4 +~7 -8 + & +w"t! >0for2<j<n, },
B>0v>0,6>0,w>0

where ¢ = m+3ns+mn+s and s = m(m—1)/2. Moreover, a € R™, @7 ~7 &
E]R’for1<]<n w € R™for1 < j < n, w”'HEIR’and,B
BL,...8"), vy = (..., § = (6',...,6"),w = (w!,...,w" w"t).
The lineality space of the cone C is generated by

(i) a=zduifor1<i<mpB=9=6=0,w=0,

where u’ € R™ is the i-th unit vector. Intersecting C' with the orthogonal com-
plement of its lineality space we obtain a pointed cone. Using the intersection
property of cones; see e.g. Proposition 1 of Padberg and Sung [1991], we find
that

(i) a=0,B=~7=6=0,w""' =0,w/ =u*for1<k<mand1<j<n,
are extreme rays of the corresponding cone. Moreover, we can simplify the
cone C of our linear transformation and using the substitution B] = 28 for
1 < j < n we are left with the task of finding the extreme rays of the pointed
cone

(5 v,6,w"t) e RV :
C'= ﬁ ,3—'7 +4 -6+ 8 4wt >0for2<j<n, 3,
B>0~>06>0wt >0

where 9 = 3ns 4+ s and s = m(m — 1)/2. From the definition of an extreme
ray of a pointed cone and the symmetry of the constraint set of C’ it follows
that (8,7, 6,w" 1) is an extreme ray of C', if and only if (B,6,~,w"*!) is an
extreme ray of C’. Moreover, for every extreme ray (,3 ~,9, w"'“) of C' we
have 365 = 0 for all 1 < u < s and 2 <j<n (To see this, suppose v, > 0
and &) > 0 for some u and j. Set e.g. i =i + 61, 6’ = 0 and leave all other
components unchanged. Then the rank of the correspondmg equation system
is increased by 1, which contradicts the assumption that (B,~,6,w"*!) is an
extreme ray of C’.) From the symmetry of the constraint set it follows that

. ~1
the corresponding statements are correct for the vectors 8~ and wnt! as well.
Consequently, we can simplify the cone C' further and it suffices to determine
the extreme rays of the pointed cone

C" = {(B,v) ER": B —B -4 +4>0for2<j<n,B>0~>0}

where p = 2ns and s = m(m — 1)/2.
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Clalm 6.1 The extreme rays of C" are given by

(aI)B vt B =vlfor; €T C{2...,n},B =0 forkgT k>2~=0,
(02) B =0 = v for some 5 € {1...m), B = =0 for 1 k£ <n
(a3) B=0, 5 =v' for 1 <j<n,

(¢4) B=0, 47 =vt for some j€{2,...,n},¥¥ =0 for L <k # j < n,
where 1 < € <'s, v € R® is the £-th unit vector and s = m(m — 1)/2.

Proof. Every vector (3,~) € R” defined by (al),...,(a4) belongs to C" and
satisfies exactly 2ns — 1 linearly independent rows of the constraint set of C"”
at equality, i.e. it defines an extreme ray of C*. It remains to show that every
(B,4) € C" is a nonnegative combination of the extreme rays (al),...,(a4)

of C”. Listing the extreme rays in the order implied by (al),...,(a4) this is
equivalent to showing that for (3,4) € C” the equation system

ATl =Bt =y YN = B W =
JET
for 2 < j < n has a nonnegative solution, where AT € R* for T C {2,...,n}

and g/ € R*® for 1 < j < 2n. Eliminating the p-variables from this system the
assertion is equivalent to showing that the system of inequalities

ZA<ﬂ ZAT<E ﬂ] "‘/+‘1]f01‘2<]<n, ZATS‘YI—BI,
T

JET

has a nonnegative solution for (3,~4) € C”. Suppose not. Then by Farkas’
lemma

X:uk—u"+1 >0for T C{2,...,n},
k€T
R T ; ~1
wB +Y (B - B - ) +utt(y - B) <0
i=2

has a solution u* > 0 where u* € R* and 1 < k < n+ 1. Note that the
summations include 7" = @ and that 1n this case k ¢ T i 1s to be read as k =
1,...,n. Since (B,~) € C", wehave,B >0, 71>0and,3 BJ -y+~y-’>0
for 2<j< ke For T = {2,...,n} we get u’ —u"*! > 0, thus (u' —u""’l)ﬁ +

z._2u1(ﬂ By +‘77)+u"+1 !> 0forallu! >0,...,u”*! > 0 which
is a contradiction. 0

Now we are ready to derive the extreme rays of the cone C’ and to complete
the minimal generator system of the cone C of the linear transformation that
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we are analyzing. From the remarks preceding the claim we get precisely the

following additional generators for the conical part of C. In this listing we

assume that the vectors a,3,7,6 and w that are not shown must all equal
zero. Moreover, we state each class of generators pairwise as suggested by the
symmetry of the constraints of C’ and let 1 < £ < s be arbitrary.

(iii) B =vt B =viforjeT C{2,...,n}, B = 0 otherwise and 3’ = v*
for je T C {2,...,n}, B* = 0 otherwise, w/ =0 for 1 < j <n, w"t! =
vt

(iv) B = vt 4yl =2vl B =~4* =0for2<k <nand~v' =vi~+* =0 for
2<k<nw =0forl <j<n, wt! =vf

(v) Bl =vt 6 =ovt, BF = 6" =0for2 <k <nand§ =vl6 =0for
2<k<n, w =0forl1 <j<n, w't!=vt

(vi) B = vt 4 = 2vt for some j € {2,...,n}, BF =~F =0for1 <k #
j < n and B = vt & = 2v* for some j € {2,...,1’L},ﬁ'c = & = 0 for
1<k#<j<n,

(vii) ~i=viforl1<j<nand & =vifor1<j<n,

(viii) 47 = v* for some j € {2,...,n},¥* =0for1 <k #j<nand 8 = vt for
some j € {2,...,n},8F =0for 1 <k#j<n

We apply Theorem 6.1 again and calculate the linear description of the image

Pr of the OSP polytope @SP™ under the transformation (6.15). In the calcu-

lation of (6.1) we use the fact that the index £ with 1 < £ <'s corresponds to

some index pair 7,k with 1 <i < k <m.

The generators (i) give the equations (6.3) and the generators (ii) the inequal-
ities (6.6).

For T = () the generators (iii) give s = m(m — 1)/2 inequalities (6.4) for j =1
and the s inequalities (6.7). For T' = {j} we get z;1 + zx1 + zij + zk; < 2
for some j > 2, which are redundant by (6.3), and the remaining s(n — 1)
inequalities (6.4) for 2 < j < n. For 2 < |T| < n —1 we get the inequalities

zitze+ Y (o) H(TI=Dzie < [THL Y (zij+er)+(T|=2)z < |T).
jeT jeT

The generators (iv) give s inequalities —zi; + 2¢1 + zix < 1 and inequalities
—z;; <0, which we have already. Using (6.3) the first inequalities are equiva-
lent to (6.5) for S = N — {1}.

The generators (v) give all inequalities (6.5) for S = {1} and —z¢; < 0. The
generators (vi) give all remaining inequalities (6.5) for S = N—{j} and S = {j}
where 2 < j < n and the generators (vii) and (viii) give redundant inequalities.
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The inequalities (6.5) for S = {j} and S = N — {j} imply that z; < 1.
Consequently, using (6.3) we find that the inequalities that were obtained from
the generators (iii) for 2 < |T| < n — 1 are redundant.

Summarizing the preceding material we have proven the following proposition.

Proposition 6.1 Let Pr be the image of the linear relazation Ps of the poly-
tope QSP* under the linear transformation (6.15). Then

PT:{ (x,z) € R™™*¢: (x,2) satisfies (6.3),(6.4), (6.6),(6.7) and (6.5) }

for S={j} and S= N — {j} where j € N

and Pr D Pg, where Pg 1is the linear relazation of the polytope GPP* and
s=m(m—1)/2.

Denote by ¢ € R™" the row vector of the ¢;; and by q* € R™* the row vector
of the g¢;x; of the objective function of the OSP in the appropriate indexing.
Machine independence of the quadratic interaction cost means that g;z; = gix
foralll <i<k<mandl<j<n Letq€R*be the vector of the ¢;; in
the usual indexing. The assumption of the machine independence then implies
that
(¢,q") = (c,q)L,

where L is the matrix of the linear transformation (6.15). Thus the linear
programs over Ps and Pr are comparable. Writing x = (x!,...,x") and y =
(y!,...,y") it follows that

min{cx + q*y : (x,y) € Ps} min{cx + qz : (x,2) € Pr}

< min{cx+qz: (x,z) € Pg}

since P C Pr. This is true no matter what (machine independent) objec-
tive function coefficients are used. It means that in the case of machine in-
dependent interaction cost the lower bound obtained from the linear relax-
ation (6.9),...,(6.13) of the OSP is in all cases worse than the lower bound
obtained from the LP relaxation (6.3),...,(6.7) of the GPP.

On one hand this shows that additional information — such as the machine
independence of the interaction cost — should be utilized at the modeling stage,
especially in this case where many superfluous variables can be avoided. More
precisely, the explicit consideration of the additional variables “hurts,” rather
than “helps” the linear programming relaxation of the problem. On the other
hand, the preceding shows that the detailed analysis of the graph partition-
ing problem via the locally ideal linearization of Chapter 4.2 yields a better
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result than what can be obtained from the OSP formulation of Chapter 4.3
via the linear transformation (6.15). It is interesting to note that the weaker
formulation of the OSP with machine independent interaction cost obtained
via (6.15) agrees fully with the formulation of the graph partitioning problem
due to Chopra and Rao [1989a, 1993]; see also Chapter 4.2 on this point.

While in the case of the OSP the outcome of the linear transformation tech-
nique - the mapping of a polyhedron from a higher-dimensional space into a
lower dimensional space — is negative in the sense that a weaker formulation
is obtained, this is, of course, not always the case. To give a concrete exam-
ple consider the case of the general model of Chapter 4.6 which generalizes
all preceding formulations of Chapter 4. In Remark (5.5) we show that by
eliminating certain variables the general model is reduced to the seemingly less
general VLSI circuit layout design problem (CLDP). More precisely, we show
that by eliminating the variables yf]j forl <i<k<mandl1 <j<n
and appropriately modifying the objective function of the general model the
formulation (5.6), ..., (5.10) of the CLDP is obtained.

The same result can be obtained by projecting out the corresponding ns y-
variables from the linear formulation (5.15),...,(5.18) of the general model
where s = m(m — 1)/2. Indexing the variables of the general model to be
retained in the order of the variables of the CLDP, see Chapter 4.5, and the
variables yff to be projected out as the last variables, we thus have a linear

transformation (x,z) = L(x,y) where
L= (Imn+t O)’
t = n(n — 1)s and the zero matrix is of size (mn +t) x ns. Denote

Pem = {(x,y) € RmMntn’s - (x y) satisfies (5.15), . ..,(5.18)},
Prv = {(x,2) € R™*': J(x,y) € Pgum such that (x,2z) = L(x,y)},
Pcr = {(x,2z) € R™*! . (x,z) satisfies (5.6),...,(5.9)}.

Pgu is the linear relaxation of the polytope QG P of the general model, Py
its image under the projection L and Pcy the linear relaxation of the polytope
QDP of the circuit layout design problem CLDP. We apply Theorem 6.1 with
L partitioned into Ly = Ly,,4: and Ly = O. Denote the system of equations
(5.15), (5.16) and (5.17) by A(x,y)T = b, partition A = (A;, A2) according
to (Li,L2) and let » = (n — 1)s. We calculate

o o
- I, O

A - ALT'L = | S g
8

I. O
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Since the matrix D of Theorem 6.1 is void, we get the cone
C={(a,8,7,6,w)eR?:B+6>0,7v>0,w >0},

where ¢ = m+2r+s+mn+t witht =n(n—1)sanda € R™, B, § € R", v €
R?*, w € R™**!, The lineality space of C is generated by

(bl) a=zuifor1<i<m, B=6§=0,7v=0, w=0,

(b2) a=0, B==4v, §=Fvifor1<i<r =0, w=0,

where u* € R™, v¢ € R" are unit vectors and r = (n—1)s. From the intersection
property of cones we find the following generators of C

(b3) «a=0,8=6=0, y=rifor1 <i<s,w=0,

(b4) «a=0,8=6=0,~v=0, w=tiforl <i<mn+t,

where r' € R?, t' € R™"*! are unit vectors, s = m(m—1)/2 and t = n(n—1)s.
Moreover, the cone C simplifies and after intersecting it with the orthogonal

complement of the lineality space, we are left with determining the extreme
rays of the pointed cone

C'={(B,6)eR”: B+6>0, B—6=0},

which are easily determined. This gives the remaining generators of C

(b5) a=0,8=6=viforl<i<r =0, w=0.

From the derivation it follows that (b1),...,(b5) is a minimal generator system
of the polyhedral cone C of the mapping from the space of variables of the
general model to the one of CLDP. It remains to calculate the linear description
of the image Pryr of Paym by (6.1).

The generators (bl) of C give the equations (5.6) and the generators (b2) the
equations (5.7) when we replace the yfj by the zfj of our linear transformation.
The generators (b3) give the inequalities (5.8) for j = n. The generators (b4)
give the inequalities (5.9) and the redundant inequalities z;; > 0 for 1 < ¢ <
m,1 < j < n. The generators (b5) yield

n n
-z + Z yff—xkj+ Z yfj§0f0r1§i<k§m,1§j§n—l,

j#e=1 j#t=1
where we have simply written yfj‘ rather than zf‘f as required by our transforma-

tion. Using (5.7) to eliminate the second half of this inequality we thus find all
remaining inequalities (5.8) multiplied by a factor of two, which is immaterial
because the right-hand equals zero.

It follows that the projection Prps of the polytope Pgas obtained by the linear
transformation technique is exactly the polytope Pcr. To get comparability of
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the linear programs over Pgar and Prag, respectively, the objective function of
the general model has to be changed so as to produce zero coefficients for the
variables that are projected out. Thus — except for the slightly more general
objective function of the general model — the CLDP and the general model
are the same. Of course, you should have inferred this without the analysis
that we just went through: the general model has equations only except for
the nonnegativities (5.18) which we have preserved in the elimination process
of Remark (5.5). Variable elimination corresponds in this case exactly to pro-
jection and so the result was predictable. The linear (or affine) transformation
technique confirmed in this case the obvious. The technique is, however, much
more widely applicable and as we have seen before, the results are not always
predictable. Indeed, a much more frequent use of this technique is desirable to
the end of analytically comparing formulations proposed by different authors for
the same problem. Historically, such comparisons were carried out empirically
by testing different formulations on numerical data. Besides wasting computer
time and journal paper — not to speak of refereeing time — this approach can
and should be replaced by the more profound analysis of the type done here;
see also Padberg and Sung [1991].

6.2 Quadratic Scheduling Polytopes

From among the scheduling problems described in Chapter 1, we will study
the facial strucure of the OSP only, because it permits the most general cost
function. For special cases of the OSP a substantial body of literature already
exists; see Grotschel and Wakabayashi [1989, 1990] for the clique partitioning
problem and Chopra and Rao [1989a, 1993] for the graph partitioning prob-
lem. We denote the convex hull of solutions to the OSP by QSP;* as before
and refer to it as the quadratic scheduling polytope. Let u;; € R™" vy €
R™MM=1/2 i vip; € Rmn+mn(m=1)/2 he a5 defined in Chapter 4.3 and define
21(§) = (Cjer Wij + Yoicker Vikj) for 1 < j < n where I C M = {1,...,m}.
We set N = {1,...,n} and assume m > n > 3.

Proposition 6.2 The dimension of QSP is dim(QSP]*) = mn(m +1)/2 —
m.

Proof. Since the m equations (6.9) are linearly independent, dim(QSP7*) <
mn(m + 1)/2 — m. We establish dim(QSP]*) > mn(m + 1)/2 — m by showing
that every equation ax + By = v that is satisfied by all (x,y) € QSP" is a
linear combination of (6.9).
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(i) Since (zpm\{s}(r) + use) € QSP for every s € M and r # £ € N, g =
asy = wg for all r # £ € N where w, are constants for s € M.

(ii) Since (zis(£)+zM\{,~_,)(lc)), (wie +uyr +ZM\{,-,,}(IC)) € QSP fork £ £ #
r, k,£,r € N, comparing these solutions with the ones used in (i), we get
Bise =0 fori<sand Bs;y =0 for s<iand £ € N.

Hence ax + By =y becomes ) s renWsTsk = ) epwWs = 7, Which is a
linear combination of the equations (6.9) and the proposition follows. a

Proposition 6.3 The inequalities ypgr > 0 define facets of QSP* forallp,g €
M andr € N.

Proof. Let F = {(x,y) € QSP]" : ypgr = 0}. Since (zar\(p g} (k) + 2pg(7)) €
QSP™ for k € N\ {r} but not in F, F is a proper face of QSP]*. Suppose
there exists a valid inequality ax + By < v for QSP such that every (x,y) €
F satisfies ax + By = 7. To prove the proposition we need to show that
(a,B,7) = (O, wses, T™Vpgr, Y, w,) where e, € R™" is a vector with one in
its (s,£) components for all £ € N and zero elsewhere, 7 € R! and w, € R! are
constants for all s € M.

(i) Since (zpr\(s}(k)+use) € F for s € M, £ € N and every k € N\ {¢} with
k#rorifk=rthen s=porg, as = ase =w, forall k,/ € N.

(ll) Since (z,'j(f) + zM\{i,j}(k)); (llir + uj¢ + ZM\{,',j}(k)) € F for k # l e
N\{r}, comparing these solutions with the ones used in (i), we get 3;;z = 0
foralli<jeMandr#£€N.

(iil) Since (zi;(r)+ 2\ {5,j}(£)), (Wir+ujk+2p1\(4,j)(€)) € F given at least one
ofi<je M\{p,g}, k#¢€ N\{r}, comparing these solutions with the
ones used in (ii), we get G;;r = 0 where at least one of i < j € M \ {p, g}.

Hence ax + By < v becomes ) cpr D ren WsZsk + Bpgripgr <7 = ) ,ws OF
equivalently, Bpgrypgr < 0 for p,g € M and r € N. Since F is a proper face of
QSP and ypgr > 0 valid for QSP*, Bpgr < 0 and hence By < 0. Taking
T = fBpgr the proposition follows. m]

Proposition 6.4 Inequalities —Zp, +ypgr < 0 define facets of QSP" forp,g €
M andr€N.

Proof. Let F' = {(x,y) € QSP* : —zp, + ypgr = 0}. Since (zpr\(p)(r) +
upr) € QSPP for k € N\ {r} but not in F, F is a proper face of QSP}".
Suppose there exists a valid inequality ax+ By < v for QSP." such that every
(x,y) € F satisfies ax + By = 7. To prove the proposition we need to show
that (a,8,7) = (O, ws€s + Ty, —TVpgr, D, w,) Where e, € R™" is a vector
with one in its (s, ) components for all £ € N and zero elsewhere, 7 € R! and
ws € R! are constants for all s € M.
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(1) Since (zpr\{p}(r)+upe) € F forall £ € N\{r}, apr = ape for k,£€ N\{r}.

(i1) Since (zar\{p,g} (k) + Zpg(7)), (2Mm\{p,g} (k) + Upe +uyr) € F for k # £ €
N\ A{r}, apr = apt — Bpgr for £ € N\ {r}.

(iii) Since (zp\fi}(k) + wir), (zpr\(i3(k) +wie) € F for k # £ € N\ {r} and
i€ M\ {p}, cir =iy fork#2€ N\ {r}and i€ M\ {p}.

(iv) (2m\ip.g} (K) + 2pg(0)), (2p\(p,g} (k) + Upe + ugr), (Zar\(g,i)(K) + ugr +
W), (Zm\{p.g,r} (k) + Zpgi(7)), (ZM\{p,g,i}(K) + Zpg(r) + wi¢) € F for k #
2¢e N\ {r}. Thus except for B4 all other 8’s are equal to zero.

Hence ax+By < v becomes 3~ cpr > ren WsZsk = Bpgr(Tpr — Ypgr) < doseMWs
or equivalently, —fpgr (Zpr — Ypgr) < 0. Since F' is a proper face of QSP;" and
—&pr + Ypgr < 0 valid for QSP?, Bpgr > 0. Taking m = —fpyr, the proposition
follows. 0

Proposition 6.5 The inequalities £pr +Tgr — Ypgr +Zh€N\{r} Ypgh < 1 define
facets of QSPT for allp,g e M andr € N.

Proof. Let F' = {(x,y) € QSP* : Tpr + Tgr — Ypgr + Lnenyir) Yooh = 1}

Since (za\ {p,g} (7) + Upk +uge € QSPY for (i,7) € Sy and k # £ € N\ {r} but

not in F, F' is a proper face of QSP. Suppose there exists a valid inequality

ax + By < v for QSP™ such that every (x,y) € F satisfies ax + By =v. To

prove the proposition we need to show that (a,3,7) = (3_,wses + 7(Wpr +

Uy, ), —m(Vpgr — ZhEN\{r} Vpgh), 2, ws + T) where e, € R™" is a vector with

one in its (s,£) components for all £ € N and zero elsewhere, 7 € R' and

ws € R! are constants for s € M.

(i) Since (zar\(p,g} (k) + 2pg(7)), (Zar\ip,g) (k) + upe +uyr) € F for k # £ €
N\ {r}, apr = ape — Bpgr for £ € N\ {r} and likewise, agr = age — Bpgr
for e N\ {r}.

(ii) Since (zar\{i}(k) +wir), (Zar\(iy(k) +uie) € F forie M\{p, g}, k# L€
N \ {T}, Gr = Q¢ for ¢ € M\{p,g}, 14 € N\{T’}

(iii) Since (zar\(s,j}(r) + 2ij(k)), (Zan\{ij3(r) + Wi + k) € F for i < j €
M\{p,g}, k¢£€ N\{T‘},,Bijk:()fOl‘i(je M\{p,g}, ,CGN\{T‘}

(iv) Since (zan\ {pg} (k) +2pg(£)), (Zar\{pg) (k) +2pg(r)) € F for k # £ € N\{r},
Bpge = —PBpgr for £ € N\ {r}.

Hence ax + By < 7 becomes ) cpr Zker,xsk + Bogr(Tpr + Tgr — Ypgr +

ZheN\{r} Ypgh) < 2emWs + Bpgr oF equivalently, fpgr (Zpr + Tgr — Ypgr +

ZhEN\{r} Ypgh) < Ppgr. Since F is a proper face of QSP;* and zpr + Zgr —

Ypgr + 2 nen\(r} Ypgr < 1 valid for QSPI", Bpgr > 0. Taking m = Bpyr, the

proposition fo iows. m}
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To analyze QS P, we associate to our problem an undirected graph G = (V, E)
with mn vertices and mn(m—1)/2 edges. Every vertex (¢, j) € V corresponds to
a variable z;; and an edge between a pair of nodes (¢, j) and (k, j) to a variable
yirj for 1 <i <k <mand 1< j<n;i.e. thereis an edge between nodes (i, j)
and (k,¢) if and only if i # kand j = £. Forr € N, let V, = {(¢,7) : 1 € M}.
Evidently, {J,cny V» = V. For any valid inequality ax + By < v of QSP;?
we denote by G(a, 8) = (V(a, B), E(a, B)) its minimal support graph where
E(a,B8) = {e € E: B, # 0} and V(a,p) is the subset of vertices of G
spanned by E(a, ). The following lemma states two elementary properties of
the support graph of facet inducing inequalities of QSP".

Lemma 6.1 If ax + By < v defines a facet of QSP]", then

(i) Be #£ 0 for at least one e € E.

(ii) ax + By < v is of the form (6.11),(6.12) or (6.13) if |V(a, B)| < 2.
Proof. (i) Suppose not. Then ax+ By < vy becomes ax < v. Since maz{ax :
(x,y) € QSP'} = Y icpr maz{a;; : j € N}, it follows that v > maz{a;; :
j € N}. Hence ax + By < v is implied by a linear combination of the in-
equalities z;; < 1 for : € M, j € N. These are implied by (6.9),...,(6.13) and
hence, so is ax + By < 7.

(ii) By (i) |V(a,B)| # 1. Assume |V(a,8)| = 2. By (i) |[E(e,8)] > 1 and
ax + By = ai;ij + agjTr; + Bixjyik; with Gix; # 0. Suppose the lemma is not
true. Since m > n > 3 there exist (x,y) € QSPY* with z;; = 2¢; = yix; =0
and thus v > 0. By assumption ax + By < v is different from (6.13) and thus
there exists (x,y) € QSPT* with y;;; = 1 and ax + By = 7. By (6.11) and
(6.12) zi; = xx; = 1 for such (x,y) € QSP and thus aj; + aij + Bix; = 7.
Likewise, since ax + By < v is different from (6.11) and (6.12) we conclude
that a;; = aijx = v and thus B;z; = —y with ¥ > 0. Consequently, ax+8y < v
is a positive multiple of the inequality z;; + zx; — yix; < 1, which is dominated
by (6.10) and thus not a facet of QSP. a

To show that the facet-defining clique and cut inequalities of the Boolean
quadric polytope, see Padberg [1989], extend naturally to the quadratic schedul-
ing polytope QSP* we introduce some notation. For S, C V;, and T, C V — S,

we let
E(S") = {((ivr)’(jv 7')) : (ivr) € S, (j,?') € S?}s
(S" :T") = {((i,"'),(j,'f')) : (7:,7”) E Sr, (j,r) e Tr}a
x(ST) = E(i,f‘)ESr Tir, y(E(Sf‘)) = ZeEE(S,-) Ye-

Lemma 6.2 For S, C V, and integer o the clique inequality
ax(S;) — y(E(Sr)) < a(a+1)/2 (6.16)
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is valid for QSP]*, where r € N 1s arbitrary.

Proof. For any zero-one point (x,y) € QSP* let p = |S,N{({,r) € V; : zir =
1}|. We calculate ax(S,) —y(E(S;)) —a(a+1)/2 =ap—p(p—-1)/2 — a(a+
1)/2 = —(a — p)(@ + 1 — p)/2 < 0 for all integer o and p. Since all extreme
points of the polytope QSP]" are zero-one, it follows that (6.16) is valid for
QSP, no matter what r € N. m]

For |S;| = 2 and o = 1 the clique inequality (6.16) is dominated by (6.10).

Proposition 6.6 The clique inequality (6.16) with o = 1 defines a facet of
QSP™ for anyr € N and S, C V; with |S,| > 3.

Proof. Let F = {(x,y) € QSP™ : x(S,) — y(E(S,)) = 1}. Since (zpm(k)) €
QSP™ for k € N\{r} but not in F, F is a proper face of QSP;". Suppose there
exists a valid inequality ax + By < v for QSP™ such that every (x,y) € F
satisfies ax + By = 7. To prove the theorem we need to show that (a,3,7) =

(>, wses+m Z(p,r)GS, Up,, — Z(p,g,r)eE(S,.)VP!I"’ Y ,ws+m) where e, € R™"

a vector with one in its (s, ) components for » € N and zero elsewhere, 7 € R!

and w, € R! are constants for s € M.

(i) Since (zpg(r)+2um\{p,g}(k)), (Wpr+uge+2ar\(p,q}(k)) € F for (p,7),(g,7)
Se, k# L€ N\{r}, agr + Bpgr = ayge for (p,7), (g9,7) € Sy, and k £ £
N\ {r}.

(i) Since (zpi(r) + z2m\{p,i}(k)), (Upr + Wie + 2\ (p,i}(k)) € F for (p,7) €
Srv (i,T‘) g 51’7 k ;é 14 € M\{T‘}, air+ﬁpir = ¢ for (p,T') € Sf‘v (i,T) ¢ Sr,
and k #¢€ N\ {r}.

(iii) Since (zpij (T)+2m\{p,i,j}(k)), (Zpj(r)+Wie+2pm\(p,i;}(k)) € F for (p,7) €
S, (i,7), (4,r) € Sr, k# L€ M\ {r}, aur + Bpir + Bijr = @i and hence
Bijr = 0 for (p,r) € Sy, (i,7), (j,r) € Sr,and k# £ € N\ {r}.

(iv) Since (2pgi(r) + 2m\{p,g,i}(K)), (Zpg(r) + Wie + Zm\(pq,i}(K)) € F for
(P, T), (g77') € Sy, (i77') ¢ Sr, k ?é le M\{T}, (e 773 +,3pir +,Bgir = a;¢ and
hence By = 0 for (p,7), (9,7) € Sy, (4,7) € Sr,and k #£€ N\ {r}.

(v) Since (zgi (€) +pr +2a1\(p,g,i} (k)), (Zpg(r) +Wie +2m\{p,g,i}(k)) for (p,7),
(g,7) € Sr, (i,7) & Sr, k£ £ € M\{r}, age+Bgie = agr + Bpgr and hence
Bgie = 0 for (p,7) (9,7) €Sy, (i,7) € Sr,and k £ £ € N\ {r}.

(vi) Since (2i;(£) + gy + Zp\{g,ij}(k)), (2gi(r) + e+ 2pm\{g:,5}(k)) € F for
(¢,7) € Sr, (i,7), (4,r) € Sr, k # L€ M\ {r}, cie + Bije = ir + PBgir and
hence Bij¢ = 0 for (g,7) € Sy, (i,7), (4,7) € Sr,and k£ LE N \ {r}.

Hence ax + By < v becomes 3 cpr 2o pen WsZsk + Bpgr (X(Sr) — y(E(Sr)) <

ws + Bpgr or equivalently, Bygr (x(S;) — y(E(Sr))) < Bpgr. Since F is a proper

face of QSP and x(S,) — y(E(S;)) < 1 valid for QSP]*, Bpgr > 0. Taking

T = Bpgr, the theorem follows. (m}

€
€
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Lemma 6.3 For S, C V, with |S;| > 1 and T, C V, — S, with T, > 2 the cut
inequality
—x(Sr) = y(E(S) +y(Sr : T7) = y(E(T})) <0 (6.17)

s valid for QSP*, where r € N is arbitrary.

Proof. For any zero-one point (x,y) € QSPT let p = |S, N {(i,r) € V; :
ziy = 1} and v = |T, N {(i,7) € V; : iy = 1}|. We calculate —x(S,) —
Y(E(S) +y(Sr : Tr) —y(E(T}) = —p—p(p = 1)/2+ pv —v(v - 1)/2 =
—(v —p)(v —p—1)/2 < 0 for all integer p and v. Validity of (6.17) for the
polytope QSP follows like in the proof of Lemma 6.2. 0

Proposition 6.7 The cut inequality (6.17) defines a facet of QSP]* for any
re€Nand S, CV,, T, CV, =S, with|S,|>1 and |T;| > 2.

Proof. Let F = {(x,y) € QSP : —x(S;) — y(E(Sr)) + y(S- : T;) —
Y(E(T;)) = 0}. Since (zp\ (s} (k)+uir) € QSP] fork € N\{r} butnotin F, F
is a proper face of QS P*. Suppose there exists a valid inequality ax+ By < v
for QS P! satisfied at equality by all (x,y) € F. To prove the theorem we need
to show that (a,8,7) = (-, wses + "Z(p,r)es, Ty, "‘”(Z(p,r),(j,r)es, Vpir +
Z(p,r)ESr(g,r)ET.- Vpgr — Z(g,r),(i,r)eT, Vgir), 9.,ws) where e, € R™" a vector
with one in its (s, £) components for all £ € N and zero elsewhere, 7 € R! and
ws € R are constants for s € M.

(1) Since (2pg(7) + Zar\{p,g}(k)), (Upe + Uygr + Zpr\{p,g1(k)) € F for (p,7) €
Sr, (9,7) €Ty, k#£L€ N\ {r}, apr + Ppgr = ap¢ for (p,7) €Sy, (9,7) €
T.,and k£ ¢€ N\ {r}.

(i) Since (uge + zar\(g}(k)), (ugr + zpr\{4)(k)) € F for (9,7) €T, k £ L €
N\ A{r}, agr = age for (9,7) € Ty, and k # £,€ N \ {r}.

(iii) Since (zpgi(T)+2am\{p,9,i} (k)), (Zpi(r)+uge+2Zpr\(p,g,i}(k)) € F for (p,7) €
Sr, (9,7), (1,7) €Ty, k# L€ N\{r}, agr + Bpgr + Bgir = ag¢ and hence
,Bpgr = _,Bgir for (p,r) € Sy, (g)r)a (1, r) €T, and k #0€EN \ {T‘}

(IV) Since (ngij(r) + zM\{p,g,i,j}(k))a (Zg,'j(T‘) + up[ + zM\{p,g,i,j}(k)) € F fOI‘
(p,?”), (]; r) € Sr, (g,r), (i,r) €T, andk £ € N\{T‘}, apr'*'ﬂpgr—*'ﬂpir—*'
Bpjr = ape and hence Bp;, = —fpir for (p,r), (j,7) € Sr, (9,7), (4,7) € T},
and k #£€ N\ {r}.

(v) Since (zpgn(r) + 2am\(p,g,n}(k)), (2gn(r) + Upe + Zrr\(p,g,n}(k)) € F for
(p,’l“) € S, (g,r) €T, (h,’l") g (Sf‘ UT") and k # ¢eN \ {r}v ,Bphr =0
for (p,r) €Sy, (h,7) & (S, UT,)and k#¢€ N\ {r}.

(vi) Since (une + zar\(n}(k)), (Wnr +2zar\(n}(k)) € F for (h,r) & (S, UT;) and
k#€e N\ {r}, anr = ape for (h,7) € (S, UT;),and k # €€ N\ {r}.
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(vii) Since (zan(r) + zm\{4,p}(k)), (War + Une + Zar\(a,n}(k)) € F for (d,7),
(h,7) € (SyUT;) and k # £ € N\{r}, Banr = O0for (d,r), (h,7) &€ (S;UT}),
and k #¢€ N\ {r}.

(viii) Since (zgn(r) + zam\{g,n}(k)), (Wgr + Une + zar\{g,n}(k)) € F for (g9,7) €
T, (h,r) € (S, UT;)and k # £ € N\{r}, Bgnr = 0for (g,7) € T}, (h,7) &
(S, UT,),and k #£ € N\ {r}.

(ix) Since (za () + zap\{a,5}(k)), (War + uge + z2a\(a,5}(k)) € F for (d,r) &
Sr, (fy,r) €V, and k #£€ N\ {r}, Bage =0 for (d,7) € S, (f,r) €V},
and k #£e€ N\ {r}.

(x) Since (2pgi; () + Za\{p,g,i,j}(k)), (2pij (€) + Ugr + Zar\(pg,i,}(k)) € F for
(p,7), (4,7) € Sr, (g,7), (i,7) € T, and k # £ € N\ {r}, Bpje = 0 for
(p,7), (4,r)ESr and k£ £ € N\ {r}.

Hence ax + By <y becomes Y . 1r D ren WsZsk + Bpgr (—%(Sr) — y(E(Sr)) +

y(S, : T;) — y(E(Ty))) < ws + Bpgr or equivalently, B (x(Sr) — y(E(Sr))) <

Bpgr. Since F is a proper face of QSP* and —x(S;) — y(E(Sy)) + y(S: :

T,) — y(E(Ty)) < 0 valid for QSPT*, Bpgr > 0. Taking 7 = By4r, the theorem

follows. m]

The facets that we have described in this section are — with the exception
of inequalities (6.10) — “local” facets of the polytope QSP;", because they
correspond to configurations in a single connected component of the graph G
associated with the OSP. While their number is important, see Padberg [1989]
for a count of the clique and cut inequalities of the Boolean quadric polytope,
different types of facets that like (6.10) tie the n components of the graph
G together exist and can be expected to play a substantial role in numerical
computations for this class of scheduling problems.
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QUADRATIC ASSIGNMENT POLYTOPES

In this chapter we present various results and partial results on the facial struc-
ture of the quadratic assignment polytope QAP, and its symmetric relative,
the polytope SQP,. We address primarily the questions of finding the affine
hull and the dimension of the respective polytopes, but give also some valid
inequalities for QAP,. Some of these problems are left open and suggested in
the form of conjectures for future work on this difficult, but interesting class of
combinatorial optimization problems.

7.1 The Affine Hull and Dimension of QAP,

In Chapter 5.3 we have formulated the quadratic assignment problem with
2n+n(n—1)(2n—1) equations in n?+n?(n—1)?/2 nonnegative variables of which
n? are required to be zero or one, see (5.26),...,(5.32) and Proposition 5.22.
Our formulation is related to, but shorter than the formulation of the QAP
studied recently by Resende et al. [1994] which has 2n + 2n?(n — 1) equations.
Their formulation is obtained from (5.26), .. .,(5.32) by replacing 1 < k < i <
n—11n (5.29) by 1 <k < i < n. As we shall see in this section, their system
of equations is highly redundant and even our formulation can be shortened
somewhat by studying the rank of the system of equations. More precisely,
3n(n — 1) + 2 equations of the formulation due to Resende et al. [1994] can
be dropped this way. The resulting smaller system of equations is an ideal,
i.e. minimal and complete, linear description of the affine hull of the quadratic
assignment polytope QAP, for all n > 3. The case n = 2 is trivial.

Whenever one deals with a huge system of equations and seeks to find a min-
imal, linearly independent subsystem of it, there are typically many choices

151
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to take. The art of research consists in this case of finding a suitable sub-
system that is tractable. We propose the following subset of equations in
nonnegative/zero-one variables which we shall show to do the job.

n

Zl‘,’]:l for1<i<nm (7.1)
s=1
dzy=1 for1<j<n-—1 (7.2)

1=1

k—1 n
_ ke i o for1<j#£€<n,1<k<n-1
W+Zyu+2v~-° and1<f<j<nk=n (7.3)
=1

i=k+1
i1 N fori1<j<n,1<:1<n-3,
v ke ke _ 1<k<n-1
I”+Zy”+ Yy =0 and1<j<n—-1,i=n-—2, (7-4)
e=1 e=j+1 F—n—1
J—1 n .
k k for1<j<n-1,1<:1<n-3,
—z DU+ Y Wl =0 i<k<n-—1 (7:5)
=1 =341 -
yef>0 for1<i<k<mn1<j#€<n  (7.6)
zi; € {0,1} for1<t,j5 <m, (7.7)

Counting the equations, we get 2n—1 from (7.1) and (7.2), n(n—1)*+n(n—1)/2
from (7.3), n(n — 1)2/2 — n(n—1)/2 — 1 from (7.4) and n(n — 1)?/2 —n(n—1)
from (7.5). Thus the total number of equations equals 2n(n—1)?>—(n—1)(n—2)
and the number of variables appearing in (7.1),...,(7.5) is n? + n*(n — 1)2/2.

Proposition 7.1 The rank of (7.1), ..., (7.5) equals 2n(n—1)?—(n—1)(n—2)
for alln > 3.
Proof. For n = 3 we compute the rank of (7.1),...,(7.5) to be 22, for n = 4 we

compute the rank to be 66 and thus the proposition is correct for 3 < n < 4.
Assume that n > 5. We partition (7.1),...,(7.5) into ten blocks (B1), ...,
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(B10) as follows.

(B1)

(B2)

(B3)

(B4)

(B5)

(BS6)

(B7)

(B8)

(B9)

(B10)

Checking (7.1) and (7.2) we find that these equations are listed exactly once

in (B1), There are precisely n(n — 1)?2 + n(n — 1)/2 distinct

—Tke+ Zk_l

n—3 n 2n
—ZTn— 2n+Z

_It_]

Z]-l y:; 2,0

—Tkn + Z; 1 y'J + Z-—k-ﬂ Yin =0

—Iyy +Z

-1

=1

Z;l=1 Tn; =1
ke n
+ Z;—k.n Y =0
Z:l n 1 yn 2,n =0
j=1 12,,_2] =1
—ZIne+ Z nl =0
n—2, __
+ Zz=1+1 yt’J =0
n
Zi:l Tin-1 =1
Z::l zn—l,] =1
ycl + Zl—]+l =0

—Tket Z;_l y'J + Zt.—k-{-l ykl =0

—ZTne+ Z nl =0
-1 k n k
—Tk; + Zi:l vid + Zl:j-ﬂ v¢ =0
Zlﬂﬂ:l
k
—Tket Z.‘: Y4 +Z. k41 ykt 0
—zin+ Y g, Y =
:=1 zi; =1
-1 k n k
—Zk; + ;=1 inJ + Zz:;-{.] y-‘zJ =0

, (B10).

7 e =1

—x'"+zl 1 ykl =0
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for1<{<j<nm,
1<k<n-1
fori1<j<n-1

for1<£<n-1
for1<j;<n-1,
1<i1<n-3

for1<j<n-1,
1<k<n-1,
k#n—2

for1<j<n-1,
1<i<k<n-3
and 1<j3<n-1,
1<i<n-2
k=n-1
for1<j;j<f€<n-1,
n—2<k<n-1
for1<fé<j<n-1
for2<j;<n-1,
1<i1<n-3,
n—2<k<n-1
for1<j<n-2
for1<j<é<n-1,
1<k<n-3
forl1 <:<n-3,
n—2<k<n-1
fortr=1and :=n-3
for1<j;<n-1,
1<i1<k<n-3

and j=1,1<:1<n-3,

n—2<k<n-1
for2<i<n-—4
forl1<i<k<n-3.

equations (7.3), n(n — 1)2/2 — n(n — 1)/2 — 1 distinct equations (7.4) and

n(n — 1)2/2 — n(n — 1) distinct equations in (7.5) in (B1),
total number of equations (B1), ...,
and thus (B1),

, (B10) is a partitioning of (7.1),...,

, (B10). The
(B10) equals 2n(n — 1)2 — (n — 1)(n — 2)
(7.5) into ten disjoint
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blocks. Likewise, we partition the n? +n?(n—1)?/2 variables of (7.1),...,(7.5)
into eleven classes.

(C1) :c,m,ykefor1<€<j<n,1§k§n—l

(C2) y,” 2nforl<]<n—1

(C3) Zn_gn, Yoy, for1<f<n—1,
Yij 2nforl<]<n—11<z<n—3

(C4) zpn-1, yknfor1<]<n—11<k<n—lk;6n—

(C5) - ln,y” forl1<j<n-11<i<k<n-3,
y;;l"for1<j<n—11<ign—2

(C6) yn” “for1<];é€<n—l

(C7) y,fforn—2<z<n—11<£<]<n—1
]for1<z<n—3,n—2§k§n—1,1§€<j§n—1

(C8) z,]forn—2§z§n—l,2§j§n—2, rpj for 1< j<n—2,
ypifor2<f<n-11<k<n-3,
ypfor2<j<t<n-1,n-2<i<n,1<k<n-3,
yeffor2<f<n-1,1<i<n-3,n—-2<k<n-1

(C9) zyjforl<j<n-—1 z,_3n,
y forl<j#6<n—-1,1<i<k<n-3,
yilfor2<f<n,1<i<n-3,n—-2<k<n-1

(C10) =z for2<i<n—-4,1<j<n-1,
ylfor1<f<n-11<i<k<n-3

(C11) zipforl1<i<n—4, z,_3jforl<j<n-1,
Ti1, Tin-1forn—2<i<n—-1.

There are precisely n? variables z;; in (C1), ..., (C11) and none is repeated.
There are precisely n?(n — 1)2/2 variables y{‘f in (C1), ..., (C10) and none
is repeated. Consequently, we have a partitioning of all variables occurring
in (7.1),...,(7.5) into eleven disjoint classes. From a case-by-case analysis it
follows that the variables in class (Ci) occur in block (Bt), but not in the
blocks (Bk) for k > i, where 1 < i < 10. Starting with (C1) and repeating
with (C2), etc. we can thus eliminate all variables in (Ci) for 1 < 7 < 10

and reduce the system (B1), ..., (B10) to zero rows. Hence the equations
(7.1),...,(7.5) contain — modulo row and column permutations — an upper
triangular matrix of size (2n(n — 1)2 — (n — 1)(n — 2))? having all entries equal
to one on the main diagonal. u]

To give an outline of a proof that (7.1),...,(7.5) is an ideal description of the
affine hull of QAP, for n > 3, we introduce some notation. Let

y _(yn+18’”.7y:;}-1£"“’yrlzr—l|-1£7“ ’ynzll)eRn(n 1)
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where 1 < £ < n. It is understood that the components y7,;/ "¢, . .. ’yzjl.l for

1 < £ < n are missing from y¢ because the corresponding variables do not exist
in (7.1),...,(7.5). For 1 < j < n we form the following vectors

2,n+1 n,n+l 3n+1 n,n+1 n,n+1 -1)/2
Zj:(ylj yoe Y ) Yo yo Yy 7-~wyn_1,j)€]Rn(n )/a
i — (4,2) nj 37 nj nj n(n—1)/2
z’ - (Unt1 - > Yind 1 Y2t - Yonglr - "yn—lén+1) € Rr(n=1/2)
x"Hl = (xl,n+1) s Tandly Tndlly -0y xn+1,n) e R,

all of which, including y*¢ for 1 < £ < n, are subvectors of (x,y) € QAP ;.

Proposition 7.2 (i) The dimension of QAP, equals 1+(n—1)?+n(n—1)(n—
2)(n — 3)/2 for alln > 3.

(i) The inequalities (7.6) define distinct facets of QAP, for alln > 4.
Sketch of proof. (i) By Proposition (7.1) we have that dimQAP, < n? +
n?(n—1)?/2—-2n(n—-1)24+(n—1)(n—2) = 1+(n—=1)2+n(n—1)(n—2)(n—3)/2
for all n > 3. To prove that dimQAP, > 14+ (n—1)?2+n(n—1)(n—2)(n—3)/2
we use induction on n > 3. For n = 3 the 6 x 6 matrix

1 00 000
1 00 100
010 000
010110
0 01 00O
0 01 011

is a submatrix of the list of the n! = 6 zero-one points in QAP3 corresponding
to the variables z11, 212, 213,223, z31,y?3. This matrix is nonsingular, thus
dimQAP; = 5 and hence part (i) follows for n = 3. Suppose (i) is true for
some n > 3. For n + 1 we partition the list of all (n + 1)! zero-one points
in QAP,4+1 into two classes according to Tp4i1n41 = 1 and zpy1n41 = 0,
respectively. Since every (Xx,y) € QAP,, say, can be completed to (x,y) €
QAP, 41 by setting ,41 041 = 1, the n? variables y?j+l’"+1 with1<i,j<n
according to x and the remaining variables equal to zero, it follows from the
inductive hypothesis that the rank of the list of zero-one points in QAP,
with ,41 041 = lis at least 1+ (n—1)2+n(n—1)(n—2)(n —3)/2. Moreover,
in the above notation y! = 0, zf =z, =0 for 1 < ¢ < n and x"t! = 0 for all
(x,y¥) € QAPp41 with Znt1,n+1 = 1. To prove the assertion it thus suffices to
show that the rank of the submatrix of the list of all zero-one points in Q AP, 4+
with Zn41,n41 = 0 corresponding to the variables y*,z, and z° for 1 < £ < nis
at least 2n — 1 4 2n(n — 1)(n — 2). This follows because the two variable sets
are disjoint, thus the ranks are additive and we get 1+ (n—1)2+n(n—1)(n —
2Y(n—=3)/2+2n—1+2n(n—1)(n=2)=14+n%+(n+ )n(n - 1)(n —2)/2
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as required by the induction. The proof then constructively provides a list
of 2n — 1 + 2n(n — 1)(n — 2) points (x,y) € QAP,41 with Z,41 041 = 1
satisfying y?2 = 0O except for one point on the list such that the resulting
(2n — 1+ 2n(n — 1)(n — 2)) x (2n + 2n?(n — 1)) matrix is of full rank. The
details of the proof are too lengthy to be reproduced here; see Rijal [1995].

(ii) By the construction of part (i) the (n!) x (n? + n%(n — 1)2/2) list of all n!
points (x,y) € QAP, for all n > 4 contains a nonsingular submatrix of size
((n — 1)? 4 n(n — 1)(n — 2)(n — 3)/2)? such that e.g. ypZ = 0. Thus y7 > 0
defines a facet of QAP, for all n > 4. Consequently, by permuting all indices
1<i<nandl<j<n as required, the assertion follows for all n > 4. ]

Remark 7.1 For n = 3, the system of equations (7.1),...,(7.5) and inequal-
ities (7.6) is a complete description of QAPs3; i.e., the integrality require-
ment (7.7) can be dropped from QAPs. However, this system of equations

and inequalities is not minimal because the system of equations (7.1),...,(7.5)
implies that yff = yf}" =y for1<jtr<3andj#L#r and j#r. Using

this relationship, it follows that an ideal linear description of QAPs is given
by QAPs = {(x,y) € R? : (x,y) satisfies (7.1),...,(7.5) and yff >0 forl<
j # €< 3}. There are 22 equations (7.1),...,(7.5) and 6 inequalities (7.6) in
an ideal description of QAPs. For n > 4 many more inequalities are needed to
describe the polytope QAP, completely.

It follows from Proposition 7.2 that the 3n(n—1)+2 additional equations used
e.g. by Resende et al. [1994] are linear combinations of the equations (7.1), ...,
(7.5) and thus redundant for the linear program that they wish to solve. For
n = 30 this means that 2,612 equations of their formulation can be dropped
without affecting the outcome, which is a substantial saving given the number
of 49,648 equations (7.1),...,(7.5) in this case.

The assignment polytope AP, of the linear assignment problem, see Chapter 2.3,
is the set of nonnegative solutions to (7.1) and (7.2). Its dimension equals
(n—1)2 for all n > 3 and we have n? variables. Thus from Proposition 7.2(i) we
see that the n?(n—1)?/2 y-variables of the QAP result in a “dimensional gain”
of only 1+n(n—1)(n—2)(n—3)/2. Interpreting this observation geometrically
for large n this means that the polytope QAP, becomes “flatter and flatter”
relative to the space of variables in which it is embedded. This fact may explain
asymptotic results on the QAP, such as those reported in Burkard [1990], where
it is shown that the relative difference between a worst and an optimal solution
to QAPs becomes arbitrarily small with a probability tending rapidly to 1 as
the problem size tends to infinity.
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7.2 Some Valid Inequalities for QAP,

Like we did in Chapter 5.2 we can adapt the clique and the cut inequalities of
the Boolean quadric polytope, see Padberg [1989], to the quadratic assignment
polytope QAP,. To do so we associate to our problem an undirected graph
G = (V, E) with n? vertices and n%(n — 1)?/2 edges. Every vertex (i,j) € V
corresponds to a variable z;; and vice versa, an edge ((, 5), (k,£)) € E between
a pair of nodes (7, j) € V and (k,¢) € V to a variable yff and wvice versa, where
1<i<k<nandl<j#¢<n. By construction an edge between nodes (i, )
and (k,£) of G exists if and only if ¢ # k and j # £. A clique in a graph is
any maximal subset of nodes of the graph such that every pair of nodes in the
subset is connected by an edge of the graph. Mazimality means that no node
outside of the clique is connected to all nodes in the clique by the edges of the
graph. For S C V let

E(S) = {((4,7),(k,£)) € E: (i,5) € S, (k,£) € S}.

If (S, E(S)) is a clique in G, then it follows from the construction of G that
x € R™” defined by z;; = 1 for all (¢, j) € S, z;; = 0 otherwise is an assignment,
i.e. x satisfies (7.1), (7.2) and (7.3). On the other hand, every assignment

x € R" gives rise to a clique in G and thus G has precisely n! cliques all of
which have exactly n nodes and n(n — 1)/2 edges. For SCV and TCV - S
we denote

(S:T)={((i,4), (k,0)) EE: (i,j) €S, (k,) €T}, x(S)= > =ij,

(1,7)es

YES) = Y, W oyvs:D= Y Y u

((3.5),(k,0)EE(S) (i,5)€S (k.L)ET

Lemma 7.1 (i) For any S C V and integer a the clique inequality
ax(S) —y(E(S)) < a(a+1)/2 (7.8)

is satisfied by all (x,y) € QAP,. (i) For any S C V with |S| > 1 and
T CV — S with |T| > 2 the cut inequality

—x(S) —y(E(S)) +y(5:T) - y(E(T)) <0 (7.9)
is satisfied by all (x,y) € QAP,.
Proof. (i) For any zero-one point (x,y) € QAP, let p = |SN{(¢,j) € V :

zij = 1}|. Since x satisfies (7.1), (7.2) and (7.7) and yff = zi;zi, we calculate
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ax(S) ~ y(B(S)) - ala+1)/2 = ap—p(s—1)/2— a(a+1)/2 = ~(a— p)(a+
1 —p)/2 < 0 for all integer p and integer . Consequently, all extreme points
of QAP, satisfy (7.8) and thus (7.8) is valid for QAP,.

(ii) For any zero-one point (x,y) € QAP, weset p = |SN{(i,j) € V : z;; = 1}
and v = [TN{(:,j) € V : z;; = 1}|. Since x satisfies (7.1), (7.2) and (7.7)
we calculate as before —x(S) —y(E(S)) +y(S:T)—y(E(T)) = —p — p(p —
/24+uw—viv—1)/2=—w—p)(v—p—1)/2 <0 for all integer p and v.
Validity of (7.9) for QAP, follows like in the first part. O

It is clear that not all clique and cut inequalities define facets of QAP,. A
complete study of when these inequalities define facets of the polytope is left
for future work. For the cut inequalities we have derived conditions under
which (7.9) does not define a facet of QAP,. Let N = {1,...,n}. For T C V
and 1 <7 < n we define

T,={jeN:(4,j)€T}, T'={jeN:(jieT})

Proposition 7.3 The cut inequality (7.9) does not define a facet of QAP, if

any of the following conditions holds:

(i) S = {(i,5)} and T C {(k,?) : ((3,7),(k,€)) € E,1 < £ < n} for some
1<k<norTC{k?9:(i7),(k2) € E,1 <k < n} for some
1<f¢<n wherel <t j7<n.

(i) |T| = 2.

(i11) S = {(3,7)} and there exists T" C T such that T" = {(k,£) : ((¢,4), (k, £)
E,1<¢<n} forsomel<i#k<norT ={(k,¥£: ((471) (k£
E,1<k<n} forsomel<j#£€<n wherel <i,j<n.

(iv) |1S|=1and T; =Ty foralll <i# k<nand T/ =T forall1 < j#£<
n such that T, #0 £ Ty and TV # 0 # T* and [T, UT?| > n.

(v) There exist S' C S, T" C T and S'UT' C SUT such that E(T") U (5" :
T-THYU(T =T :T)=0or E(S)U(S=5":5)U(S-5":T")=0 or
(" T-THu(S-5:T)=0.

Proof. (i) If i = k or j = £, then the cut inequality is of one of the forms

—Zz,-jso, —Z%‘jSO,

iEN' JEN'

) €
) €

where N’ C N. These inequalities can be obtained as a non-negative linear
combination of —z;; < 0 and —zp; < 0 for 1 < p,g < n which are implied
by (7.1),...,(7.6). Hence, the cut inequalities satisfying the stated are not
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facet defining for @QAP,. Now assume 7 # k and j # £. Then the cut inequality
is of one of the following three forms

1 i . y
—Zij + Zz 1 Yk + P =it1 yff <0, —Z; + EJ 1 y;cjz + Z?=j+1 Ype <0,
—Zi; + Ziz 1 yz] + Zz—;+1 yz] <0,

or can be obtained as a non-negative linear combination of one of these inequal-
ities with one or more of —yf? <0for1<i<p<nand1<j#g<n. Since
the inequalities given above are implied by (7.1),...,(7.6), it follows that cut
inequalities satisfying the stated conditions do not define facets of QAP,.

(i1) If T satisfies conditions (1), then there is nothing to be proved. So assume
that T does not satisfy conditions (i) and WROG assume T = {(p, 9), (7, s)}
and 1 <i<p<r<n Letl1<j#g<n1<j#s<n. Then the cut
inequality is of one of the following forms

—Zi; + yz] - ypg 0 —Zij + yfg + yl_’[ - ypg > <0.

These inequalities are dominated by the cut inequality —z;; +y‘fj +y +yi; —
Ypy < 0. Hence they do not define facets of QAP,. A similar argument shows
that if 1 < j=g <norl<j=s<n,then the cut inequality does not define
a facet.

(iii) WROG assume i = j = 1,T" = {(2,2),(2,3),...(2,n)}, and denote R’ C
{3,4,...,n}and S; = {5 : (¢,5) € T}. Then the cut inequality is given by

—I11+Zyu+z Z i) iz Z ngl_ Z Z Z yff

i€R' 1£j€S; j=2 kER' j#LES) i<kER'jES; j#LESK
ke
DI 53 DD DI I DI I DI
i€ER' 1#£j€S; j=2k€eR’ j#LESk i<kER'jES; j#LESk
n
ij ke
< E E Y — E , E E Ya;j
1ER' 1£j€S; J=2k€ER’' j#LESk
_ ij ke
= E: z :yu_ z: E: (xkl"yzl)
i€ER' jES; kER' j#£LESK
ke
<- E E Y1

kER' 1#j€Sk

That is, the cut inequality satisfying conditions (iii) is dominated by a non-
negative linear combination of a subset of —y7? < 0for 1 < p < rand1 <
g # s < n. Hence, it does not define facet of QAP,. By a similar argument, if
i=7=1T"={2,2),(3,2),...(n,2)}, then the cut inequality does not define
a facet of QAP,
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(iv) WROG we assume i = j = 1,T={(5,j) € V: 2<i<r,2<j<s}and
r+s > n — 2 to sketch the outline of the proof; see Rijal [1995] for detail. The
cut inequality satisfies

roos r=1 r s s
—211+Zzyff—z Z Z Z y:‘f

k=2 £=2 1=2 k=t41 3=2 3F#£=2
r n n
=((n-9)n-s=1)=(r=2)(r=3)/2+(F+s—n-2)Y_ D zi,— Y za1)
=2 j=s+1 t=r41
n n n n—1 n n n
k ke
-2 Xow- ) 2w
k=r+41 =341 €#j3=5+1 t=r41 k=141 €=5+1 £#)=5s+1
r n
S((a-9)n-s=1)=(r=2)(r=3)/24(r+s-n=-2)Y_ > =z
t=2 j=s+1
n n n n—1 n n n
k ke
P DIEDIRTED D VD DD D1
k=r+1 £=2s+1£€#3=3+1 t=r+1 k=t+1 £=s41L¢#)=3s+1

<((r=8)(n—s—1)=(r—=2)(r—3))/2+(r+s—n—-2)(n—23)

n n n n-—1 n n n
PO TED DD VD IED IR
k=r+1f=s+41£#5=5s+1 t=r+1 k=t+1 =3s+1 £#£)j=3+1
=—(n—s—r+2)(n—s—r+3)/2

n n n n—1 n n n
- > ey W

k=r41 €=s+1£7#3=8+1 t=r+1 k=t+1 £=s41L#)=3+1
n n n n—1 n n n
k) ke
2D ID D IR ED D NS v
k=r+1 €=s+1 €#3=3+1 t=r4+1 k=i41 €=c+1LFj=3s+1

That is, the cut inequality satisfying conditions (iv) is dominated by a non-
negative linear combination of a subset of —y;7 <Ofor1 <p<rand1<y #
s < n. Hence, it does not define a facet of QAP,.

(v) Let Sy C S, Ty C T and S; UT; C SUT; then the cut inequality can be
written as:

x(S)+y(S:T)—y(E(S)) —y(E(T))

=x(51) = x(S = S1)+y(S1:Th) +y(S—51:Th)
+y(S:T—-T)+y(S—=S1:T=T1)-y(E(S5)) — y(E(S - 51))
—y(51:S-81)-y(E(N))-y(E(T-T1)) —y(Th : T - T1)

< 0.

It follows that the inequality can either be obtained as or is dominated by a
nonnegative linear combination of two cut inequalities defined on (i) S1,71 and
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S—Sl,TifE(Tl)U(S1 ZT—Tl)U(Tl :T—Tl) =0; (11) S1,Tiand S: T —-T,
ifE(Sl)U(S—Sl ISl)U(S—S1 ZT1)=0; and (lll) S],Tl and S—Sl,T—Tl
if(S1:T-T1)U(S—S;:T1) =0. Hence it does not define a facet of QAP,.
]

We conjecture that all cut inequalities (7.9) except those shown not to be facet
defining in Proposition 7.3 do indeed define facets of QAP,.

Remark 7.2 Dropping the integrality requirement from (7.1),...,(7.7) forn =
4 results in a polytope which has 148 fractional vertices in addition to the 24
integer vertices of QAPs. For example, the non-zero components of a fractional
verter (x,y) to this system is given by xy; = 4 for 1 < i < 4, z;; = .2 for
1<ifj<dandyli=o =y =2for1 <i<k<4,1<jl<nandi#
j # k. The cut inequality —z11+y% +y31 +y#3 — y33 < 0 cuts off this fractional
vertez. Not only are the facet defining cut inequalities (7.9) sufficient to cut
off all these 148 fractional vertices, but all of these cut inequalities together
with (7.1),...,(7.6) also are a complete description of QAPs. However, this
system of equations and inequalities is not minimal because more than one cut
tnequality correspond to a facet of QAPs. Let T' = {(4,j),(k,£),(p,7)} for
2<i<k<4andr=jifp=korr=~Lifp=1iand S = {(1,5)} for
1<s<3,j#s#f€ands=11ij=4o0rf=4. Then the corresponding cut
inequalities —x(S") +y(S' : T") — y(E(S")) — y(E(T")) < 0 suffice and together
with (7.1),...,(7.6) an ideal description of QAPy is obtained. There are 66
equations (7.1),...,(7.5), 72 inequalities (7.6) and 72 such cut inequalities in an
tdeal description of QAPs. An explicit listing of these cut inequalities is given
wn Table 7.1. For n > 5 many more inequalities (7.9) and many inequalities
different from (7.9) are needed to describe QAP, completely.

7.3 The Affine Hull and Dimension of SQP,

In Chapter 5.4 we have formulated the symmetric quadratic assignment prob-
lem as a mixed integer programming problem with 2n + n?(n — 1) equations in
n? + n%(n — 1)2/4 nonnegative variables of which n? must be zero-one valued,
see Proposition 5.29. Now we address the issue of the minimality of the linear
description of the affine hull of the associated polytope SQP,. It appears that
n? 4+ 1 equations can be dropped from the formulation, which is considerable
even for moderate values of n. Let N = {1,...,n}. To support this statement
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—z11 + ¥31 4+ 45 + yi — v
—z11 + 955 + i +yhi — v
—z11 + 95 + U5 + U5 — v33
-z + yff +yB + 9t - y%%
—z11 +¥31 +yi1 +Uis — uas

—z11 +y5: + i + il — vas
—z11 + 51 +yil +uis — v33
—z11 + 435 + U5 + Y — vas
—z11 + Y55 U5+ Y — Yos
—z11 +¥35 + ¥+ yis — 33
—z11 +y31 +yis + uit — v3e

—zu +y3 Uit oyl - vis
—z11 + yﬁ + yﬁ + yﬁ - y%g
—z11 + Y5+l + Ui — vss
—z11 + 435 + it + vl — v
—z11 + ¥ + ¥+ yh — v
—z11 + Y351 4+ Y + Y — Yoo
—z11 + Y35 +yis + Ui — v
—z12 + 935 + ¥is + U5 — vai
—z12 4+ ¥ + D5 + Y15 — vai
—z12 + Y3 +y5s + yis — ¥
—z12 4y + Y5 + Y1z — Y34
—z12 + Y35 + U3 + U — va
—z12 + Y32 +Yis + Y — U3
—z12 + Y3 +yis + i — v
—z12 + Y3 + 35 + yis — vt
—Ii2 + yfg + yi‘; + yfg - ygé
—z12 + Y35 + yis + yis — ¥33
—z12 + Y35 +yis + yis — vl
—z12 + Y33 +yis + yis — Y21
—z13 + y33 + V35 + ¥is — v
213 + Y3 +yis + yis — U3
—z13 + Y35 + 935 + 35 — v

—z13 4+ ¥i3 + 33 + ¥i3 — vai
22 41 42

—z13 + Y13 + yﬁ + y}’g — Y22

—z13 + i3 +y13 + vis — vai

—z11 + 5 + it + vl
—z11 +y3 4+ yi + yit
—z1 +yh +yit +yi
—z11 + 95 +yi 4+ yit
—z11 + 955 +yi + 5y
—zu 495 v+ oyl
—z11 +y3 + y35 + yit
—z11 + 435 +yi1 + it
—z11 +y31 +y3 + vt
—z11 + 955 + ¥t + it
—z11 +y3 +yi1 + vt
—z11 + 955 + ¥ + v
—z11 + 451 +yis + it
—z1 + 951 + il + it
—z11 + yf? + y?? + yﬁ
—z11 + 51 + it + it
—z11 +y5 + vl + Uit
—z1 + ¥+ Y+ Ui
—z12 + y3 + 3 + vy
—z12 +y35 + yis + ¥is
—z12 4+ ¥5 + ¥ + Ui
—z12 + y52 + ¥is + Y12
—z12 + 435 + Y33 + ¥is
—z12 +¥32 + yis + yis
—z12 + ¥35 + ¥35 + yis
—z12 4+ Y433 + Y35 + ¥i2
—z12 + y55 + yis + Ui5
—z12 4+ ¥35 + yiz + uis
—z12 4+ ¥33 + yis + Ui5
—z12 + Y35 + yis + Yis
—z13 +¥33 + ¥33 + vi3
—z13 +y3s + yis + U3
—z13 + Y33 + Y35 + 15
—z13 + 933 4+ 432 + yi}
—z13 4 433 + yi5 + i3
—z13 +y33 + yis +yi5 —vil

IANIAIANINIANIANIAIAINAINININIAININININININIAININAINININIANININININIAININININIA
S E=-R-R=R-R =R R R E-R=-E-E-R-N-N -l i I I i i R I I B — R R B I — R}

CHAPTER 7
— 953 <0
—y53 <0
— 53 <0
-2 <0
—y3 <0
—y35 <0
— 35 <0
— 933 <0
—y33 <0
—y55 <0
-3 <0
—y33 <0
-3 <0
— 2 <0
-3 <0
—y23 <0
—y33 <0
—y31 <0
—y51 <0
— 23 <0
— 934 <0
—y5 <0
—y31 <0
-3 <0
—y3 <0
—y5: <0
-3 <0
—y33 <0
—y31 <0
—y32 <0
—y3 <0
-y <0
—y33 <0
-3, <0
<0

Table 7.1 All cut inequalities needed for a complete description of QAP
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I,s 0 0 0
0 1 0 1
F=1 o o011
el o 1 1 0

Figure 7.1 The matrix F used in the proof of Proposition 7.3

we study the following subsystem of (5.55),...,(5.61) for n > 3.

n

dozij=1 forieN (7.10)
j=1
n
inj:l forl<j<n-1 (7.11)

j—1 n
—zi -zt Y Ui+ Y, U =0 forjeENi<keN (712

£=j+1
k-1 n
; for1<j<f<n-1
—xkj—x“‘*'zyff"'zy{i:o l<]<n—3k‘€N(713)
i=1 i=k+1
y,J_>_0 fori<keN,j<fleN (7.14)
zi; >0 fori,jEN (7.15)
z;; € {0,1} fori,j € N. (7.16)

Counting the equations we find 2n — 1 from (7.10) and (7.11), n?(n — 1)/2
from (7.12) and n?(n — 3)/2 from (7.13). The total number of equations equals
n%(n — 2) 4+ 2n — 1 and the number of variables appearing in (7.10),...,(7.13)
is n? + n%(n — 1)?/4. Thus by comparison to (5.55),...,(5.61) we have n? + 1
fewer equations.

Proposition 7.4 The rank of (7.10),...,(7.13) is n?(n — 2) + 2n — 1.
Proof. We start by partitioning (7.10), ..., (7.13) into four disjoint classes.

(Bl)  —zij =k + 4o Ui + Xy iy =0 forjeNi<keN

(B2) ZJ yzij=1 forieN

(B3) —zkj — ke + vy U + Y rpp U5 =0 forl<j<f<n—1,
1<j<n-3,keN

(B4) Yicizij=1 for1<i<n—1.
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(B1),...,(B4) is a reordering of (7.10),...,(7.13) and thus all equations are
listed. We partition the variables as follows into four classes.

(Cl) yflnr .- wyf;—nyf,:__; fori<keN

(C2) iy fori €N

(C3) yif fori<keN,1<j<€<n-2,
yi" Tt fori<k€N,1<j<n-3

(C4) z;; forie NJ1<j<n-—1.

All n? + n?(n — 1)?/4 variables of (7.10),...,(7.13) are in (C1),...,(C4) and
none is repeated. It follows that the variables in class (C1) occur only in (B1),
but not in (B2), (B3) and (B4). Likewise, the variables in (C2) occur in (B2),
but not in (B3) and (B4). Finally, the variables (C3) are all in (B3) but not
in (B4). The variables (C1) are present in exactly two rows of (B1) and for every
pair 7,k with 1 < ¢ < k < n the corresponding rows can be arranged so that
the n x n matrix F shown in Figure 7.1 occurs in the columns corresponding
to (C1). F is nonsingular, it is repeated n(n — 1)/2 times and thus the rank
of (B1) is exactly n?(n — 1)/2. Since the variables (C1) do not occur in (B2),
(B3) and (B4) we can drop all rows in (B1) from further consideration. The
variables (C2) form an n x n identity matrix in the rows (B2) which thus has
a rank of n and we can drop (B2). For every pair j,f with1 < j<£f<n-—-2

the variables yff for 1 < i < k < n form the incidence matrix K,, say, of a
k,n—1

complete graph on n nodes in the rows (B3) and so do the variables y;;
for 1 < i< k < nandevery j with1 < j<n-—3 K, hasarank n, it
occurs exactly n(n — 3)/2 times and thus (B3) has a rank of n%(n — 3)/2. Like
before, we can drop all of (B3) from consideration. The remaining rows (B4)
have rank n — 1. By construction, we can add the ranks of (B1),...,(B4) and
thus (7.10),...,(7.13) has full row rank. In Figure 7.2 we give an illustration
of this proof where the asterix * denotes a matrix of 0 or £1 as required by

(B1),...,(B4) and the variables are ordered as suggested by (C1),...,(C4). O

It is not overly difficult to show that all equations of the formulation (5.55), ...,
(5.58) of the symmetric quadratic assignment problem are either members of
the equation system (7.10),...,(7.13) or obtainable as linear combinations of
(7.10), ..., (7.13). Consequently, (7.10),...,(7.16) formulates the SKP cor-
rectly. To prove that (7.10),...,(7.13) defines the affine hull of SQP, for all
n > 3 there are several methods of achieving this result. We can provide a list of
linearly independent zero-one points in SQP, of size n? + n?(n —1)?/4 — either
directly or inductively as done in the outline of the proof of Proposition 7.2.
Alternatively, we can show that every equation that is satisfied by all zero-one
points in SQP, is a linear combination of the equations (7.10),...,(7.13). We
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F O * *

O F * * * * * * *
O O F x * * * * * *
O O O I, * * * * * *
O O O O K, O (0] * * *
O O O O O K, (0] * * *
(0] O O O (0] K, * * *
O O O O O (0] o I,

Figure 7.2 Summary of the construction of the proof of Proposition 7.3

have encountered both proof techniques numerous times in this monograph.
There are also other methods for proving the dimensionality result that are
available in the literature. We leave this task for future work and formulate
the following conjecture instead.

Conjecture 7.1 The dimension of SQPP, equals (n —1)2 4+ n%(n —3)2/4 for
alln > 4.

We have, of course, checked the conjecture by way of a computer and found
it to be correct for 3 < n < 11. So unless something unexpected happens in
dimensions corresponding to n = 12 or higher, the conjecture will turn out to
be correct. It is also very likely that the inequalities (7.14) and (7.15) define
“trivial” facets of SQP, for all n > 3. With this ground work completed, one
can then look for more complicated facets of the polytope SQP, which are
surely going to be needed to solve larger-scale symmetric quadratic assignment
problems successfully.

Another approach to SQ P, consists of exploiting the transformation (5.33), i.e.
yff::c,-j:vke—#:ciexkj forl<i<k<n1<j<f€<n.

To do so, you have to calculate the formulation of the symmetric quadratic
assignment problem that results from the one of Chapter 7.1 for the quadratic
assignment problem by way of the linear transformation technique. We have
used this approach in Chapter 6.1 to compare the formulation of the operations
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scheduling problem with machine independent quadratic interaction costs with
the one that results form the graph partitioning problem in this case. Infor-
mation about the quadratic assignment problem can thus be “translated” into
information about the symmetric quadratic assignment problem and there are
many other meaningful ways to accumulate polyhedral knowledge about either
problem. Such knowledge — without any doubt to the writers’ mind — is neces-
sary if you want to try the ezact solution of these problems for any reasonable
size.



SOLVING SMALL QAPs

Psychologically it is, of course, disadvantageous to start the last chapter with
a disclaimer, but this is exactly what we are going to do. The software system
that we are going to describe here is of a preliminary nature and our compu-
tational results should by no means be interpreted as limiting the potential of
branch-and-cut algorithms for the solution of quadratic assignment and related
quadratic zero-one optimization problems. The software system came about
from our desire to write an interesting introductory chapter for this monograph
dealing with the fascinating world of location, scheduling and design problems —
see Chapters 1.3, 1.4 and 1.5. As an afterthought came then the idea to test the
software system on a somewhat larger sample of the problems from QAPLIB.
In spite of our reservations we have included this material in the book because
it seems to fill a gap in the literature on how to solve quadratic assignment
problems. Our efforts in locating suitable references notwithstanding and de-
spite the fact that every author that we have read on quadratic assignment calls
the problem a (mixed) zero-one programming problem, nobody seems to have
taken the pain to solve QAPs via a standard mixed integer programming code
using ordinary branch-and-bound. The development effort that is necessary to
actually write such a software system for QAP is minimal - it took one of the
authors about seven days of intense programming work to “string it all together
and get the job done.”

In terms of computation for the traveling salesman problem — which has known
an explosive growth in the problem size now considered to be amenable to
ezact optimization — the software system that we have written does not even
put us into the vicinity of Crowder and Padberg’s 1980 article, where they
reported the optimization of a 318-city traveling salesman problem. Here we
consider the bare minimum ingredients for our solution approach: the formu-

167



168 CHAPTER 8

lation (1.8),...,(1.12) plus the inequalities (1.11a) and (1.11b). This permits
us to invoke any branch-and-bound solver. Crowder and Padberg [1980], by
contrast, utilized considerably more knowledge about the traveling salesman
polytope in their work. The parallel between Crowder and Padberg [1980] and
the work done here is given by the fact that in both cases a standard branch-
and-bound code is utilized in the final optimization phase. Unfortunately, com-
mercially available branch-and-bound codes — like in 1980 - are still much too
inflexible to permit a sophisticated user to implement a branch-and-cut scheme
easily. Moreover, we just do not have yet enough operational knowledge about
the facial structure of QAPs, let alone suitable algorithms for separation and/or
constraint identification. By consequence, we limited ourself to a very coarse
implementation of cutting plane ideas and left lots of interesting work to be
done for future efforts in this direction.

The software system has essentially four components. The top part — called
QAPMIP - reads in the data and sets up the equations (1.8) and (1.9). The
data input consists of the value n, the cost matrix of the ¢;;’s, the flow matrix
of the t;x’s and the distance matrix d;;. Several flags are read from a file
called QAPSIZ. The flag SOLECH governs the output from the intermediate
linear programs, BOUND is the upper bound of +oco. If the program does not
find the file VAR.in of variables indices for a starting solution it defaults to
calling the second component of the solver, namely some heuristic algorithm
to find a “reasonable” upper bound and an initial variable set to initialize
the calculations. The heuristic is essentially inspired from Elshafei’s [1977]
combination of greedy ideas plus two-exchange and took a couple of hours to
write.

The system then calls a routine QAPLOW to calculate lower bounds ~ including
the Gilmore-Lawler bound - by solving n? + 2 linear programs. The best lower
bound is used subsequently to govern row generation versus column generation.

The subroutine STRTEQ constructs a more complete initial variable set and
an (infeasible) starting basis for the linear programming calculations. Included
into the initial variable set are, in particular, all z;; variables and all minimum-
cost yff variables of the problem.

The subroutine LPSOLV is the interface of our FORTRAN routine with the
CPLEX callable optimization routines of CPLEX, Inc., which is written in
the language C. It goes without saying that any comparable LP solver can be
used in lieu of the CPLEX routines. The initial linear program is solved. In
the next step variables and/or constraints are added and/or dropped from the
problem. This is done in the subroutines DRPVAR, ADDVAR, DRPROW and
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n | nz nv meq mzv mzr zZLp mipl | mipv | mipr | no zZip
chr 12a [ 12 | 11 870 155 397 219 9,552.0 0 9552
chr 12b [ 12 | 11 870 155 393 224 9,742.0 0 9,742
chr12¢c [ 12 ] 11 870 155 381 231 | 10,895.2 137 323 958 2| 11,156
chr 15a | 15 | 14 | 1,695 | 239 577 339 9,329.5 223 722 (1,830 ] 16 9,896
chr 15b | 15 | 14 | 1,695 | 239 592 353 7,751.2 218 | 1,040 | 1,818 2 7,990
chr 15¢ | 15 | 14 | 1,695 | 239 608 325 9,504.0 0 9,504
chr 18a | 18 | 17 | 2,925 | 341 773 470 | 10,699.3 324 | 1,907 | 3,114 4 | 11,098
chr 18b | 18 | 17 [ 2,925 | 341 800 742 1,534.0 0 1,534
chr 20a [ 20 [ 19 [ 4,010 | 419 | 1,048 678 2,170.1 390 | 1,541 | 4,248 4 2,192
chr 20b | 20 | 19 | 4,010 [ 419 | 1,048 689 2,287.0 399 | 1,659 | 4,243 2 2,298
chr 20c | 20 | 19 [ 4,010 [ 419 998 620 | 13,972.6 392 | 2,353 | 4,224 2 | 14,142
chr 22a | 22 | 21 [ 5,335 [ 505 | 1,365 747 6,122.1 484 | 3,802 | 5,614 | 10 6,156
chr 22b [ 22 | 21 | 5,335 | 505 | 1,296 716 6,171.9 484 | 3,475 | 5,608 | 18 6,194
chr 25a | 25 | 24 | 7,825 | 649 | 1,568 | 1,008 3,736.9 624 | 6,420 | 8,178 | 10 3,796

Table 8.1 Computational results for super sparse QAPLIB problems

ADDROW. They are invoked whenever necessary and e.g. variable/constraint
dropping is performed to ensure convergence of the overall computation scheme.
The overall set of variables/constraints is thus partitioned into an active set of
variables/ constraints and an inactive one. The size of the linear program
sent to the CPLEX routines changes from iteration to iteration. Whenever
mathematically correct, the subroutine FIXRCO is invoked which — in the inner
loop - fixes inactive variables to zero based on the linear programming reduced
cost and the upper and lower bounds on the optimal solution value. This whole
procedure is iterated until the linear programming relaxation of (1.8),...,(1.12)
including all inequalities (1.11), (1.11a) and (1.11b) is optimized. A more
complete version of the program should permit to add/drop equations of the
formulation as well, but currently we add/drop only inequalities.

Having optimized the linear program the routine FIXRCO is called again to
fix more variables both of the z;; and the yfj‘ type. The subroutine SETMIP
then sets up the mixed zero-one program to be sent to the branch-and-bound
routine mipoptimize of the CPLEX routines. In this first implementation we
generate all variables that have not yet been fixed plus all inequalities (1.11)
that are missing, because they are required for the formulation of the problem.
The result is a fairly large mixed zero-one programming problem that is subse-
quently subjected to branch-and-bound. We note that the routine mipoptimize
of CPLEX, Inc., has incorporated many aspects of branch-and-cut. These fea-
tures are, however, not used in the solution process because of the particular
nature of our constraint sets. Evidently, from a problem solving point of view
the generation of the entire problem as a mixed zero-one problem is wasteful
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n | nz nv meq mav mzr zLp mipl mipv | mipr no 25p
ser 10 | 10 | 22 1,090 239 660 406 26,384.5 100 852 694 6 26,992
scr 12 | 12 | 28 1,992 359 972 608 29,457.6 144 1,789 | 1,154 28 31,410
ser 15 | 15 | 42 4,635 659 | 2,437 | 1,158 48,714.9 225 4,464 | 2,238 18 51,140
els 19 | 19 | 56 9,937 | 1,101 [ 5,064 | 1,909 [ 16,276,915.9 360 [ 9,086 | 4,373 14 | 17,212,548
scr 20 | 20 | 62 | 12,180 [ 1,279 | 5,369 | 2,274 94,5634.4 400 | 12,024 | 5,087 | > 1,500 110,030

Table 8.2 Computational results for some selected QAPLIB problems

and simply not done in a proper branch-and-cut framework. We have permitted
us to do so nevertheless as we were interested in getting some first results using
the mixed zero-one formulation of QAPs quickly.

In Table 8.1 and 8.2 we summarize our findings on a selected group of test
problems from the test problem file QAPLIB. As most of the problems in the
file are randomly generated we have discarded most of them from consideration
since we do not like Monte Carlo data sets. Whatever their origin, Table 8.1
reports on the super sparse problems from Christofides and Benavent [1989]
which are solvable in polynomial time. They were solved without any problems
by QAPMIP with solution times ranging from about one minute to 16 minutes
of elapsed CPUtime on our computer; see Chapter 1.4. Given their polynomial
time solvability a properly implemented branch-and-cut solver, using additional
facet-defining inequalities that we do not have yet, should solve such problems
without any branching at all. In the tables we use the following notation.

n = number of plants,

nz = number of nonzero t;; with 1 <i< k < mn,

nv = number of variables of the overall problem,

meq = number of equations (1.8) and (1.9),

mzv = maximum number of variables of the linear program sent to LPSOLV,

mzr = maximum number of constraints sent to LPSOLV,

zrp = the linear programming bound produced by QAPMIP,

mipl = number of unfixed zero-one variables sent to MIPSOL,

mipv = number of variables sent to MIPSOL,

mipr = number of constraints sent to MIPSOL,

no = total number of nodes on the search tree produced by MIPSOL,
zrp = optimal objective function of the mixed zero-one problem.

Table 8.2 shows similar results for five of the test problems from QAPLIB [1991].

Despite the preliminary nature of our numerical investigations — one might say
justly that we used lots of “hee-haw and chutzpah” in even trying it this way
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— we conclude that a direct attack on quadratic assignment problems is possi-
ble using the mixed zero-one programming formulation (1.8),...,(1.12) which
exploits the sparsity of real data sets. The size of the linear programs that a
suitably developed branch-and-cut solver needs to solve appear to be reason-
ably small when compared to the overall number of variables and constraints
of the problem. This is a first indication of the numerical success to be had by
a more in-depth development effort using dranch-and-cut for the solution of the
kind of problems discussed in this monograph. The beauty of branch-and-cut
lies in the fact that a common approach to all sorts of different combinatorial
optimization problem is utilized, the differences in the problems necessitating
in-depth mathematical studies of the different polytopes that are, of course,
problem specific; see Chapter 10 of Padberg [1995] for an overview and further
references on branch-and-cut.
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