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Preface

This book is a result of the authors’ research and teaching in the field of finite
element nonlinear analysis over many years.

In the research related to this book, our objective has been to develop
robust, accurate and efficient computational procedures to calculate stresses
from given strains (strain-driven problems) within incremental (finite ele-
ment) inelastic analyses. To this aim, M. Koji¢ worked at ADINA R&D,
Inc., intermittently, for a few years about 18 years ago. During that time
we published together four valuable papers (Bathe et. al. 1984, Koji¢ and
Bathe 1987a, 1987b, 1987c). In these papers we introduced the “effective-
stress-function” method for the implicit integration of thermo-elasto-plastic
and creep material models. We found that the function of the effective stress
(a single parameter which governs the inelastic deformations in the time step)
is monotonic, and that the zero provides the solution for the stresses, creep
and plastic strains at the end of the time step. The simple algorithm was
surprisingly robust, accurate and efficient, and suitable for general applica-
tions. Based on the exciting research we had conducted, we formally agreed
at that time to write a book together on the inelastic analysis of solids and
structures.

Since 1992, M. Koji¢ no longer contributed at ADINA R&D, but we
both continued to work independently on the development of inelastic anal-
ysis procedures. M. Koji¢ published a series of papers in which he called a
generalization of the effective-stress-function method the “governing param-
eter method”. Independently, K.J. Bathe continued his research on inelastic
analysis procedures and used the effective-stress-function method and gener-
alizations thereof, and ADINA R&D continued to develop material models
in ADINA. Of course, some of these material models are the subject of this
book.

In teaching, our objective has been to present in a unified manner the
physical and theoretical background of inelastic material models and com-
putational methods, and to illustrate the behavior of the models in typical
engineering conditions.

With the above objectives we started about five years ago to work on this
text. We prepared this book to give the fundamentals of inelastic material
models based on experimental observations and principles of mechanics, to
describe computational algorithms for stress calculation (stress integration
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within a time step), and to present solved examples. We give the theoretical
background to an extent necessary to describe the commonly employed ma-
terial models in metal isotropic and orthotropic plasticity, thermoplasticity
and viscoplasticity, and the plasticity of geological materials. The compu-
tational algorithms are developed in a unified manner with some detailed
derivations of the algorithmic relations. The solved examples are designed
to give insight into the material behavior in various engineering conditions
(general three-dimensional deformations, plane strain, axisymmetric, plane
stress, shell, beam, pipe conditions), and to demonstrate the application of
the computational algorithms.

In the book we do not focus on some of the current research areas in
computational inelasticity, as, for example, non-local models, gradient plas-
ticity theory, damage models, fracture and the dynamics of inelasticity. But
the presented computational methods can, of course, be used for the develop-
ment of algorithms in these and other areas. Also, we do not give a detailed
review of computational methods in inelasticity nor a broad presentation of
these methods, but rather only focus on our experiences in the field.

We wrote this book for self-study by engineers and students, and for use
in graduate courses on computational inelasticity, with emphasis in certain
areas. For example, Chapters 1 to 5 can be used in a course devoted to
inelastic deformations of metals. In case large strains are also considered,
Chapter 7 should also be used. For subjects with emphasis on geological
materials, Chapters 1 to 4 and 6 are applicable. Also, certain sections of the
book can be used in courses on general plasticity to simply illustrate how
inelastic response is computed in practice.

Preparing this text required of us a large effort, and we are grateful to a
number of institutions and individuals.

Milo§ Koji¢ is thankful to the Department, of Mechanical Engineering of
the University of Kragujevac, the Center for Scientific Research of the Ser-
bian Academy of Science and Art and the University of Kragujevac, and the
Automobile Institute Zastava, for the support of his research and for the
many granted leaves of absence. He is also grateful to Professors Radovan
Slavkovié¢, Miroslav Zivkovié¢, Nenad Grujovié, Branislav Popovi¢ and Ivo
Vlastelica, and Dusan Begovié, all of the University of Kragujevac and the
PAK-software research and development group, and Srdjan Divac of Harvard
University for their collaboration in research and comments on this book. And
he thanks, for an extraordinary effort in preparing the figures for this book,
Dr. Ivo Vlastelica and Vladimir Djordjevié, and for technical support in typ-
ing the manuscript Milo§ Babovi¢, Vladimir Dimitrijevié¢, Snezana Vulovié,
Dr. Nebojsa Zdravkovié¢, Dr. Nenad Filipovi¢, and Aleksandar and Nikola
Kojicé.

Klaus-Jiirgen Bathe is thankful to the Department of Mechanical Engi-
neering, M.I.T, for the excellent environment made available for his teaching
and scholarly writing. This book required a large amount of his time, with
much strenuous effort. However, the book has now reached a level, where
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he would like to see it published. K.J. Bathe is grateful to his many stu-
dents and colleagues who have worked with him over many years. Regarding
this book, he is particularly thankful to his student Phill-Seung Lee, to Pro-
fessor Francisco J. Montans, University Castilla La-Mancha, Spain, and to
Professor Jay Wang, Louisiana Tech University, Ruston, Louisiana, for their
comments, and to Dr. Song Wang of ADINA R&D, Inc. for his help in the
example solutions. He would like to acknowledge as well that — to improve
his teaching and research efforts — his involvement in ADINA R&D has been
very valuable.

Finally, we would like to thank our families for their continuous support
and understanding regarding our scientific endeavors.

M. Koji¢ and K. J. Bathe
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1. Introduction

In this chapter we focus on the role of the integration of inelastic constitutive
relations in general nonlinear finite element analysis and present the basic
objectives of the book. In order to motivate the subject of the book we also
briefly refer to some example solutions of complex inelastic analyses.

1.1 The Objectives of this Book

Finite element inelastic analysis is now abundantly performed in various
branches of engineering design and scientific research. A number of com-
mercial computer programs are in widespread use and many smaller research
computer programs are employed for the inelastic analysis of solids and struc-
tures.

The reason that inelastic analysis has gained such importance is that it is
nowadays possible to analyze realistically very complex structures for their
nonlinear response and the benefits of performing a nonlinear analysis can
be large. In particular, a nonlinear analysis very frequently makes it possible
to achieve a safer and more economical design. Also, a nonlinear analysis is
frequently needed to understand the behavior of a structure that has been in
use and service but unfortunately failed due to unusual loading conditions.
In general, a nonlinear analysis may be of great value and indeed necessary
to more accurately model nature (Bathe 1996; Bathe 2001a)

A general nonlinear structural analysis can include the effects of large
displacements, large strains and nonlinear material conditions. When the
material is responding nonlinearly, an inelastic response involving plasticity,
creep, thermal effects, and so on, is usually most difficult to analyze. In this
case, the inelastic conditions have to be calculated in an incremental solution
and state-of-the-art computing resources and computational procedures may
be required.

An effective inelastic analysis procedure provides general applicability and
efficiency in modeling inelastic phenomena. General applicability is reached
by using material models that can represent the inelastic behavior in general
loading conditions and that are based on well-established principles of me-
chanics. Efficiency is reached by using stable and highly accurate algorithms
to solve the nonlinear equations associated with the material models.
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While the basic mechanics relations of inelastic analysis were largely for-
mulated many years ago, the widespread use of inelastic analysis has spurred
much further research in the field. This research has resulted in the develop-
ment of new material models, to increase the general applicability of inelastic
analysis, and in the development of increasingly more efficient finite element
solution schemes. In today’s practice of inelastic finite element analysis us-
ing commercial computer programs, extensive libraries of material models are
available. These libraries can be used to model the inelastic response of many
materials, such as metals, concrete, soil and rock structures, and synthetic
materials. Also, a program user is able to code an own material model and
use this model in a general finite element analysis.

With this background, the objectives of this book can be summarized as
follows:

e To present, to a certain extent, the fundamentals of inelasticity, from basic
experimental data and mechanical principles to the formulation of material
models. These models are used to describe the inelastic material behavior.

e To derive in a consistent manner robust implicit numerical algorithms for
the effective integration of inelastic constitutive relations within a time
(load) step for strain-driven problems. These algorithms are applied to a
number of commonly used material models.

e To illustrate the computed inelastic material response through examples
which elucidate the material behavior in typical engineering conditions.

Hence, the objective of this book is to present basic inelastic material
models and efficient computational methods for these models. The presen-
tation helps the reader to model engineering problems for inelastic analysis,
to understand typical inelastic solution schemes, and to possibly program an
own material model.

1.2 Some Remarks on Explicit and Implicit Solutions of
Nonlinear Response

There are in essence two approaches to solve nonlinear problems and also the
inelastic material response - the explicit and the implicit approaches. Explicit
solution algorithms can be very effective to solve high velocity phenomena,
such as wave propagation problems. Implicit solution algorithms are effective
for the analysis of static problems and structural dynamics problems.

Consider a general nonlinear problem in solids and structures. Since an
incremental solution is required, we use time “t” to denote the generic time of
load application. In static analysis, when a time-independent inelastic analy-
sis is performed, “t” denotes only the load level, but when a time-dependent
material response is considered (such as in creep analysis) “4” denotes the
actual physical time of solution (see Bathe 1996).
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In an explicit solution scheme, the following finite element equations are
solved for each time step ¢

MU+ 'C'U+ 'F = 'R (1.1)

where 'F are the nodal point forces corresponding to the internal element
stresses at time ¢ and R are the externally-applied nodal point forces that
include all forces externally applied to the structure, such as tractions and
gravity loads, ‘M and !C are the mass and damping matrices, respectively,
and 'U and 'U are the nodal point velocity and acceleration vectors. Note
that the left superscript denotes the time considered with all quantities being
time-dependent. The number of equations considered in (1.1) is equal to
the number of structural degrees of freedom, and in practice thousands of
degrees of freedom are used. We consider in (1.1) the dynamic equilibrium
equations of the finite element system, and indeed when using an explicit
solution scheme it is necessary to include inertia and/or damping forces in
the analysis.

Let the time step be denoted by At, and assume that the solution of (1.1)
has just been obtained (for the state at time ¢, of course). Then the displace-
ments, velocities, accelerations, strains, stresses and all material variables
have been established for time ¢, and the task of the solution scheme is to
calculate these variables for time ¢ + At. In the explicit approach, the iner-
tia and damping effects in (1.1) provide the means to establish the required
solution. Namely, the accelerations and velocities in (1.1) are discretized in
time using all known displacements at times t, ¢ — At,... and the unknown
displacements at time t+ At, and hence the displacements *+4*U can directly
be calculated. This solution scheme does not involve any iteration but sim-
ply a forward time integration. For stability of the integration, the time step
has to be small enough, and this allows that the stresses and internal state
variables are also simply forward-integrated (without iteration) based on the
given material law. The solution schemes used for this stress integration need
to be effective but since the time step is small, various adequate methods can
be used, if necessary with sub-cycling per time step.

Considering, on the other hand, the implicit solution of the response, the
solution procedures are more involved and effective solution schemes are much
more difficult to establish. In such an approach, the finite element equilibrium
equations at time ¢ + At are used to calculate all variables corresponding to
time ¢+ At, that is, the displacements, velocities,..., stresses and so on. While
the solution algorithms to be used are considerably more complex, effective
solution schemes are also significantly more powerful for many applications.
In particular, they are directly applicable to static analysis.

Assuming that the solution of the response, in a static analysis, has been
obtained at time ¢, we then consider the solution of
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t+AtF — t+AtR (12)

The linearization of this equation gives in the Newton-Raphson iterative so-
lution, see Chapter 2,

t+ At (i-1) Ay (D) = tHAtR _ t+Atp(i—1) (1.3)

with ¢ the iteration counter,
t+AtU(i) — t+AtU(i—1) + AU(l) (14)

and
t+AtK(0) — tK, t+AtF(0) — tF, t+AtU(0) — tU (15)

and the iteration is continued until convergence is achieved, measured on ap-
propriate convergence tolerances. Of course, in a dynamic analysis, simply the
inertia and damping forces corresponding to time ¢+ At would be included in
the governing equations and equilibrium iterations (see Bathe 1996). Hence
the use of implicit integration is directly applicable to static and dynamic
analyses. In these solutions, the time step size used is only governed by ac-
curacy considerations and the requirement that convergence in the iterations
needs to be achieved. In practice, relatively large load steps can be used in
many static analyses and in dynamic analysis, frequently much larger time
steps than in explicit time integration can be employed.

However, in order to be able to use large load and time steps it is cru-
cial that the algorithms employed in the calculations of the stresses and the
tangent constitutive relations be effective. Namely, we must have in (1.3):

e Firstly, that the stresses used in the evaluation of *T4*F(i—1) be evalu-
ated accurately with an efficient algorithm from the given displacements
t+AtU(i71)’ and

e Secondly, that the tangent constitutive relations used in the tangent stiff-
ness matrix TAtK (1D be evaluated in an efficient way consistent with
the stress integration scheme.

The accuracy of the overall finite element solution is of course directly gov-
erned by the accuracy of the stress calculations in each solution step. And the
optimum convergence in the Newton-Raphson scheme is only obtained when
the evaluation of the tangent constitutive relations in the stiffness matrix
is consistent with the stress integration scheme used. From a mathematical
point of view, this observation is obvious since the tangent matrix is sup-
posed to represent the derivative of the right hand side vector in (1.3) as it
is actually calculated (Bathe 1996). We discuss these statements in detail in
the book.
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Since the first inelastic finite element analyses have been performed, much
research has been expended to reach efficient stress integration schemes and
associated evaluations of the tangent constitutive relations. We focus in this
book on the presentation of implicit stress integration algorithms and in
particular on the “governing parameter method” (Kojic 1996a) described in
detail in Section 4.2. This method represents a generalization of “the effective-
stress-function method” , introduced by Kojic and Bathe and first published
in 1984 (Bathe, Chaudhary, Dvorkin, and Kojic 1984). The essence of the
effective-stress-function method is to use in a simple way a single governing
parameter, the ”effective stress”, to evaluate the stresses in quite general in-
elastic analysis conditions, but naturally, also other variables can be employed
as governing parameters (see Bathe 1996; Kojic 2002a) and the governing pa-
rameter method was developed with this premise. The algorithms presented
in this book are of course closely related to other inelastic analysis procedures
(see Sections 4.2 and 4.3).

The governing parameter algorithm presented in the book is attractive
as a solution method because it is computationally efficient, it has good
convergence and accuracy characteristics and can be used with large load
and time steps in static and dynamic analyses (in implicit and of course
also in explicit overall solutions). The method is general and can be used for
complex yield criteria, see, e.g., Sections 4.2 and 6.4. We present the method
for the inelastic analysis of metals and geological materials but the procedure
can also directly be developed and used for other materials.

1.3 The Topic of this Book in an Overall Context

As already mentioned, the efficient stress integration and the evaluation of the
consistent tangent constitutive relations are two most important ingredients
of any inelastic solution method. However, it should be realized that for
a complete, efficient finite element analysis, also the finite elements and the
methods for solving the algebraic finite element equations need to be effective.

Considering the two- and three-dimensional analysis of solids, the con-
ditions of incompressibility arising in inelastic analyses require that specific
elements be used. Here the isoparametric displacement/pressure interpolated
(u/p) elements are effective because the inf-sup condition for incompressible
analysis is satisfied (see Bathe 1996, 2001b). Considering shell analyses, also
specific elements need to be used to circumvent spurious shear and mem-
brane strain conditions, and the MITC shell elements are effective (Bathe
1996; Bathe et al. 2000b; Hiller and Bathe 2003).

For the solution of the algebraic equations, sparse solver techniques have
been developed recently that are much more efficient than the traditional
solvers (Bathe 1996). These solver techniques together with efficient elements
and inelastic stress calculation methods now make it possible to solve on PCs
very large finite element models for their nonlinear response (Bathe 1999,
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2001a; Bathe et al. 2000a). We mention briefly three analyses in the following,
as illustrations of today’s achievements in solving complex structural inelastic
response.

Figure 1.1 shows the finite element shell model of a motor car. This model
was solved using an implicit solution scheme in a crush analysis for its large
deformation inelastic response, involving contact and failure due to crack-
ing. A comparison of the solution results with experimental data is given in
the figure (Bathe 1998). In addition to crush analyses, which solve for the
behavior of motor cars when slowly crushed, the car industries also perform
abundantly crash simulations, which solve for the behavior when the cars
crash against a rigid wall.

Figure 1.2 shows the East span of the San Francisco-Oakland Bay Bridge
and a slab failure of the bridge during the 1989 earthquake in the region.
After this event, the State of California decided to reanalyze the major toll
bridges in order to evaluate their anticipated behavior in future earthquakes.
A large number of inelastic static and dynamic analyses were performed of
the toll bridges using various simple to very sophisticated models (Ingham
2001). The figure shows a global model using beam elements of a part of the
Bay Bridge subjected to an anticipated earthquake. Based on these studies,
the State of California is designing a new East span for the Bay Bridge.

Figure 1.3 gives some analysis results obtained in a metal forming prob-
lem. Such simulations are performed abundantly in various industries. This
simulation involves the analysis of the sheet metal forming process during
stamping and during spring-back. Large deformations, elasto-plastic response
with complex contact conditions need to be solved. In this case, the solution
of the complete rather slow (static) process including spring-back was carried
out using implicit integration (Kawka and Bathe 2001). The implicit solu-
tion is able to model the slow physical process much more accurately than
an explicit solution, for which a pseudo-dynamic analysis needs to be carried
out.

The above examples give snap-shots of some inelastic analyses. These
simulations, as mentioned already above, require an overall effective finite
element solution scheme implemented in a computer program, with various
efficient solution ingredients. However, this book only focuses on inelastic ma-
terial models and associated computational procedures. Since the mechanics
of the inelastic material deformations and the algorithms discussed here are
embedded in a complete finite element solution scheme, we make extensive
reference to Bathe (1996), where the topic of inelastic analysis is only briefly
discussed, see Bathe (1996, Section 6.4). We use the same notation as in Bathe
(1996) in order to facilitate the reading of the present book for those who are
familiar with this reference (see also Chapelle and Bathe 2003; Bucalem and
Bathe 200x).

There are many important details in an efficient finite element stress in-
tegration scheme — the design and implementation of an effective algorithm
goes much beyond the writing of general equations of mechanics. We en-
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Fig. 1.1. Crush analysis of a motor car. a Photo of a typical test in the
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TOTAL APPLIED LOAD [N]
104
N
1

), = FINITE ELEMENT SOLUTION

! == ROOF CRUSH TEST DATA

=10
RIGID PLATE DISPLACEMENT [mm]

Cc

Fig. 1.1 (continued). c Finite element model (implicit) solution results
and test data

deavor to give some details here, but in doing so, the book does not cover all
topics of inelastic analysis. Indeed, the discussion given here largely focuses
on the use of the classical elasto-plastic and creep material models only. We
explain, to some extent, the phenomenological basis of these material mod-
els and then present the algorithms to solve for the stresses as strain-driven
problems within a finite element solution, obtained with a given mesh.

Therefore, the book does not deal with advanced research topics regarding
material models of inelasticity, such as non-local models, gradient plasticity
theory, damage models, fracture, the thermo-dynamic foundations of inelas-
ticity, the micro-mechanical foundations of plasticity, molecular dynamics of
inelasticity, and so on. The book also does not deal with the discretization
errors that arise in finite element analysis and adaptive mesh procedures to
reduce these errors (for references on these advanced research topics, see for
example Bathe 2001a, 2003). However, the computational procedures dis-
cussed are of course also valuable for many material models not considered
explicitly in this book and for implementations of models in the advanced
research topics not covered.



1.3 The Topic of this Book in an Overall Context 9

Fig. 1.2. Analysis of San Francisco Bay Bridge. a Photo of East span of Bay
Bridge; b Photo of slab that failed during earthquake
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2. An Introduction to the
Incremental-Iterative Solution of Nonlinear
Structural Problems

This chapter gives an introduction to nonlinear structural analysis. The ma-
terial selected gives some basic solution procedures and provides the funda-
mental relations of incremental nonlinear analysis.

We first review in Section 2.1 some commonly used solution procedures
for one nonlinear equation and then present the Newton-Raphson method
for a set of nonlinear equations. In Section 2.2 we introduce how we solve
nonlinear structural problems through a simple example, and then show how
the Newton-Raphson method is used for general finite element systems.

Section 2.3 is devoted to the linearization of the principle of virtual
work equation for general nonlinear deformations of a material body and
the derivation of the incremental-iterative equations. The finite element dis-
cretization of a solid continuum using the updated Lagrangian (UL) formu-
lation is considered. The element matrices for the three-dimensional isopara-
metric solid finite element are derived.

The presentation given here introduces the reader to the overall solution
process of nonlinear structural analysis, such that the context and details
of the inelastic solution algorithms presented in the next chapters can be
understood. More details of nonlinear finite element analysis using the same
notation are given in Bathe (1996).

2.1 Some Solution Procedures for Nonlinear Equations

In this section we briefly present some solution procedures for one nonlinear
equation and for a set of nonlinear equations.

2.1.1 Some Solution Procedures for One Nonlinear Equation

Bisection Method. A simple and robust solution procedure is the bisection
method, or method of halving the interval. The procedure consists of the
following steps.

Suppose that a nonlinear equation

f(z) =0 (2.1.1)
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has only one solution in the interval [a,b] and that f(z) is a continuous
function in this interval. Assume that f(b) = f, > 0 and f(a) = f, <0, as
schematically shown in Fig. 2.1.1. We start the procedure by calculating the
trial solution zg as

1
o

If f(zo) = fo > 0 we use the new interval [a, 2o] and calculate

a+b) (2.1.2)

g =

x1 = ;(a+x0) (2.1.3)

as shown in the figure. If fy were negative we would have used the interval
[zo,b] as the new interval containing the zero of f(z), and 1 = 0.5(z¢ + b).
Denoting by x;r and z; the values of z with positive and negative function
values of f(z), respectively, and the i-th interval by [z; 2] we can write
the relation

af —a7 = _(zf | —27 ) (2.1.4)

The bisection procedure stops when the size of the interval is less than a
given tolerance €, i.e., when

|z — 27 |<e (2.1.5)

(3 (3

The error estimate is then

N 1
| zi =27 |< 9i+1 (b~a) (2.1.6)

where z* is the solution of f(z) = 0.

f(x)
X =(@+x,)/2 f,
a \ fo
. f; L/ x* b X
a
x0=(a+b)/2

Fig. 2.1.1. Bisection procedure to solve the equation f(z) =0
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The bisection procedure is simple and robust, but the rate of conver-
gence is low. The convergence rate can be increased by employing a secant
approximation for a new trial value within the current interval.

Method of Successive Substitutions. The method of successive sub-
stitutions to solve the equation f(x) = 0 is based upon the transformation of
this equation into an equivalent relation

z = g(x) (2.1.7)

Then for f(z*) =0 we have
z* =g (z%) (2.1.8)

Let us consider the conditions of convergence for the iterative scheme
g Zg(ﬂfi_l) 1= 1,2,... (219)

to the solution z*.

Assume that the function g(x) is continuous and has a continuous (hence
finite) first derivative ¢’(x) in the neighborhood of z*. Then, using (2.1.9)
and the condition (2.1.8) we can write the relation

xr;, 1 —x*

T — T* = g(xi—l) —g(ﬂ?*) — <g(wz—1) _g(x*)> (wi—l _ 27*) (2110)

The coefficient multiplying (z;—1 — z*) represents for g(z) the slope of the
secant between points z;—1 and z*. Under the assumptions for the curve g(z),
there is at least one point within the interval [z;_,2*] where the tangent to
the curve g(z) is parallel to the secant (by the mean-value theorem). Hence
we can write

zi—x* =g [z* +t(xim — )] (z4m1 — %) (2.1.11)

where 0 < ¢ < 1. Suppose that there is a constant ¢ such that
|g'(z) |[<e<1 (2.1.12)
in the interval of iteration; then it follows from (2.1.11) that

|z —2* |[<c|lai1—2* |<c|zio—a"|<...<c |z, —2*

(2.1.13)
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Therefore, the iterations (2.1.9) converge to the solution z* provided the
condition (2.1.12) is satisfied.
Figure 2.1.2 shows schematically examples of convergence and divergence.

Ny
Y1 1g®isc<t /
g®)>0 P
4
X X, X, Xo X
a
y o
N A
/”
NS 3
g'(x)>1
X X, Xy X, X
b [

Fig. 2.1.2. Method of successive substitutions for solutions of f(z) = x —
g(z). a, b Convergence; ¢ Divergence

Newton-Raphson Method. A very widely used method is the Newton-
Raphson procedure (also referred to simply as the Newton method). This
method is based on the calculation of tangents to the curve y = f(z). Let
f(z) be a function such that f(z*) = 0. Assume that f(z) has the following
properties in a neighborhood of x*: (i) f'(x) exists and f'(z) # 0; (i4) f"(x)
exists and is continuous; (i7) f"'(x) exists.

Figure 2.1.3 shows schematically a function with features (7) to (ii7). The
following iterative relation follows from the figure:
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f(x)

(2.1.14)

This relation is of the type (2.1.9), hence the trial values x; will converge
to the solution z* if the condition (2.1.12) is satisfied. Denoting by g(z) the
relation

I C)
g(z) = ) (2.1.15)

we obtain, from this analysis, that the condition for convergence is

| f(2) " (=) |

D= o

<1 (2.1.16)

If this condition is satisfied for the interval of iteration around the root
x*, the convergence of iterations (2.1.14) is assured for the initial value of
x lying within that interval. Note that ¢’ (*) = 0, hence (2.1.16) is always
satisfied for x very close to x* for the case considered.

The Newton iteration has a quadratic rate of convergence. We prove this
statement by expressing the error ; — x* as

z; — 2" =g(zi1) — g(z¥) (2.1.17)

Expanding g(x;_1) as a Taylor series in terms of (z;_; —z*), with the second
order term as the remainder, we obtain
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1
g(@io1) = g(@") +¢'(@) (i —7) + 9" [ + Hwics = 27)] (wia —27)?
(2.1.18)
where 0 < ¢t < 1. But ¢’ (*) = 0 and hence

1
x;—at = 2g” [* + t(zic1 — )] (Tie1 — 27)? (2.1.19)

Based on the assumptions for the function f(z) and the expression (2.1.16)
for ¢'(z), we have that | g (z) | is finite in the neighborhood of z*. Therefore,
the error is proportional to the square of the previous iteration error, i.e., the
convergence rate of the Newton iteration (2.1.14) is quadratic.

Clearly, the above brief review of solution strategies shows that in selecting
the solution method for a nonlinear equation we have to take into account
the characteristics of the equation to be solved, the expense of each iteration
and the number of iterations anticipated for the solution.

2.1.2 Newton Method for a System of Nonlinear Equations

Consider now the system of nonlinear equations

f1 (U],Ug,...,un) =0

f2 (U],Ug,...,un) =0

fn (U],UQ,...,Un) = 0 (21203,)

which we rewrite in matrix form as
f(u)=0 (2.1.20b)

Assume that the solution of this system is u* and that an approximate solu-
tion is u(*=1). Then we can write a Taylor series expansion at u = u(i=1),

f(u*) —0=f(1 + K(z'fl)(u* . u(z‘fl)) n

second-order terms in Hu* —ulY H (2.1.21)
2

where f(i-1) ig f evaluated at u=1, and

(i-1) — of

K du |u(i—1)

(2.1.22)
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is the matrix of the first derivatives 8f;/0u; evaluated at u = u*="). The
equation (2.1.21) corresponds to the i-th iteration in solving (2.1.20). Ne-
glecting the last term in (2.1.21) as a small quantity of second order, we
set

£ L KO-D () — u(-D) = ¢ (2.1.23)

and the i-th approximation u(® is
. . . -1 .
u® = =) [K6=0] 7 g (2.1.24)

This relation represents the Newton-Raphson (or Newton) iteration for the
solution of the nonlinear system of equations (2.1.20).

The above iteration scheme leads to the solution u = u* and the conver-
gence is quadratic under the following conditions.

a) The matrix K("~1) exists and is nonsingular in the neighborhood of the
solution u*.
b) The stiffness matrix satisfies the Lipschitz continuity condition

HK(H) _K®

<L H“(H) —u®

(2.1.25)
L>0

Note that these conditions are weaker than those given in Section 2.1.1, but
the quadratic convergence can still be proven to hold, see Eterovic and Bathe
(1991a).

Solution examples using the Newton-Raphson method are given in Bathe
and Cimento (1980); Bathe (1999), (2001a) and a further discussion of the
characteristics of the Newton-Raphson and other iterative methods is given
in Bathe (1996).

2.2 Nonlinear Structural Problems and
Incremental-Iterative Equilibrium Equations

In this section we introduce the approach for solution of nonlinear struc-
tural problems through a one degree of freedom simple example, and then
generalize the basic considerations.
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2.2.1 A Simple Example to Exemplify Nonlinear Analysis

Consider the simple structure (Bathe 1996) shown in Fig. 2.2.1. We suppose
that the platform BD is rigid, while the bars deform due to the action of the
pressure p = p(t). At time ¢ the pressure is equal to p. The joints B and D
can move into the y-direction only and the current equilibrium configuration
is determined by the displacement ¢U. The equilibrium equation is (see Fig.
2.2.1b)

1
"Fysin'f= ) 'R=_"'pLb (2.2.1)

where b is the platform thickness (the dimension normal to the z,y plane).
The axial force tF, in a bar is given by
tF, = kU, (2.2.2)

where tU, is the axial displacement, and k = EA/L is the axial bar stiffness;
E is Young’s modulus, A is the bar cross-sectional area, and L is the initial

. 335
PLb 7N
k 2L 201 / \\
[0 /
0.67 1
-0.67 \\ I
2,01
3.35
00 03 06 09 12 15

tuiL
C

Fig. 2.2.1. Simply supported structure loaded by pressure p(t). a Geometry
and loading data; b Forces and displacements for the current configuration;
c Load-displacement relation
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length of the bar (that is, we have in Fig. 2.2.1b °L = L). Using the geometry
shown in the figure, we have

U, = L— (L2 — 2Lsin B, ‘U + 'U2)"/*

Lsi - tU
sin 14 = s;“fOtUa (2.2.3)
Substituting (2.2.2) into (2.2.1) and using (2.2.3) we obtain
'R—'F=0 (2.2.4)
where
—1/2
U w\? , U
tF =2kL 1—2Ls1n[30+<L> -1 <s1nBO—L>

(2.2.5)

Note that ‘F = F('U) is the internal structural force due to the stresses
within the structure and varies nonlinearly with the displacement *U, while
the axial stiffness of the bars is constant (k = EA/L). We refer to such
problems as geometrically nonlinear structural problems. Figure 2.2.1¢ shows
the load-displacement curve for 3, = 30°. We see that the load first increases
and then decreases to !p = 0 when {8 = 0; then ’p becomes negative,
reaches the extreme value, and again !p = 0 for {L = L. Finally, the pressure
increases causing extension of the bars.

The assumption that the axial stiffness of the bar is constant (k = EA/L)
for all displacements considered is hardly valid in practice. In the case of small
displacement U, we can use the constant axial bar stiffnesses and the force-
displacement relation becomes linear

'F =K' = (2ksin® 8,) 'U (2.2.6)
where K is the structural stiffness. The expression (2.2.6) is obtained using
tU, = tUsinB, in (2.2.1), or by linearization of (2.2.5) around ‘U = 0.

Another type of nonlinearity is due to nonlinear material behavior. If the
constitutive relation is nonlinear we have

dlo ="'Cd'e (2.2.7)

where doand d?e are the stress and strain increments, and *C is the consti-
tutive matrix which depends on the stresses and strains. As an example, we
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use here an elastic-plastic material with the stress-strain curve for uniaxial
loading shown in Fig. 2.2.2a. The stress-strain relations are

c=Fe for o0 < oy,
0=0y(l—Er/E)+Ere for o > oy, (2.2.8)

where E7 is the tangent modulus, and o, is the initial yield stress. Assuming
small displacements U, the strain e in the problem of Fig. 2.2.1 is

te = SIHLBO tU (2.2.9)

Substituting ‘e into (2.2.8) and calculating the axial force as 'F, = Ato, we

express the equilibrium equation (2.2.4) as

(2ELA sin” B,)'U="'R  for 'R<R, (2.2.10)
(QEZA sin? 8,)'U = 'R—F, for'R> R, (2.2.11)

where
R, =2A0y,sinfy (2.2.12)

is the force which corresponds to the start of plastic deformation, and

Fy=(1— Er/E) R, (2.2.13)
G ‘RIEA B,=30°  E;/E=0.1
C c
- B 0.00325
5 . R,/EA=0.00251- — — |
Sy |- 1 / | |
/
/ |
/
- : :
! ’/ o Il D Il
o D e 0.005 0.0135 0.02 UL
a b

Fig. 2.2.2. Elastic-plastic deformation of the bar structure of Fig. 2.2.1.
a Elastic-plastic bilinear stress-strain relation; b Load-displacement relation
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Figure 2.2.2b shows the load-displacement dependence for 8, = 30°, Ep/E =
0.1 and Ry/EA = 0.0025. We have an elastic deformation corresponding
to the line OB, an elastic-plastic response along the line BC, and elastic
unloading along the line CD (parallel to OB).

The described problem is called a materially-nonlinear-only (MNO)
problem (Bathe 1996). The most general case is when the problem is ma-
terially and geometrically nonlinear.

2.2.2 Multiple-Degree-of-Freedom System

Let us now consider a general nonlinear structural analysis of a complex
multi-degree of freedom (finite element) system. We assume that the system
has the displacement vector 'U of order n. In the case of finite element
analysis the system is described by n nodal point displacements. According
to the principle of virtual work (see Section 2.3) we have at time ¢

S'UT('"F-'R)=0 (2.2.14)

where §tU is the variation of the structural displacement vector, and 'F and
'R are, respectively, the structural internal and external forces which are
work conjugate to the displacement vector *U. Therefore, using the fact that
d!U is arbitrary, we obtain the equilibrium equation

'F = 'R (2.2.15)

This is the fundamental set of equations for any nonlinear static and dynamic
analysis. The equations are nonlinear since, in general, the internal nodal force
vector 'F and/or the external force vector ‘R are nonlinear functions of the
nodal displacements {U.

This system of nonlinear equations cannot in general directly be solved for
the displacements *U and we therefore proceed to solve the system response
incrementally. Assume that we have calculated the soluton at time ¢. Then
we introduce the time (load) step At and express the load vector in the form

HAR = 'R + AR (2.2.16)
where 'R and *t4*R correspond to the start and end of the time step,
and AR is the load increment, which we assume to be independent of the

deformations. Also we write the displacement vector in the incremental form,

Aty = tU 4+ AU (2.2.17)
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where the superscripts ¢ and ¢ + At are used as in (2.2.16). Since we assume
that the displacements at the start of the time step are known, our goal
is to calculate the displacement increments AU such that the equilibrium
equation at the end of the time step

B i ;] (2.2.18)

is satisfied. For this purpose we linearize the left hand side by writing the
Taylor series expansion for t+4tF around 'U (see (2.1.21)), to obtain

AR & TR 4 AUW (2.2.19)

otu

where AUW is the first approximation of the true displacement increment
AU. We introduce the tangent structural stiffness matrix

OtF
tre —
K = 9tU (2.2.20a)
with components
OtF.
t _ 1
K;; = 9tU, (2.2.20b)

This stiffness matrix, as indicated, is evaluated at the displacements *U.
Substituting (2.2.19) into (2.2.18) we obtain

IKAUW = tHAtR _ tp (2.2.21)
Following the iterative procedure of Section 2.1.2 we obtain the equilibrium

equation for the i-th iteration as

t+ AL (i-1) Ag(D) = tHAtR _ tHAtR(i-1) (2.2.22)

and then the displacements are
tratgl) = tratgl-b 4 Ayt (2.2.23)

The equilibrium iterations continue until the equilibrium equation (2.2.18) is
satisfied within a specified tolerance.

The iterative procedure described above represents the Newton-Raphson
iterative scheme, summarized in Table 2.2.1. We have indicated three criteria
to stop the iteration. Constants er,ep and e are force, displacement and
energy tolerances, as measures of the solution accuracy (see Bathe 1996).
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Table 2.2.1. Newton-Raphson iterative scheme (see Bathe 1996)

1. Initialization for the current time step At

1 =20
tHHALR(0) _ tp tHALR(0) _ g tHALg(0) — tg
b) )

2. Iteration i
i=1t+1
t+AtK(i71)AU(i) R_tJrAtF(ifl)
AL () Z AL -1 A

_ t+ At

3. Check for convergence

a) Force criterion
tHALR _tHALRG)

S cp ||t+AtR_tF||
b) Displacement criterion
|AU(i) <ep Ht+AtU(i)

c) Energy criterion
AU(i)T(t+AtR_t+AtF(i)) S 6EAU(1)T(t+AtR_tF)

4. If convergence criteria are not satisfied, go to step 2;
otherwise,

5. Start iterations for next time step; go to step 1

The stiffness matrix *+4*K(—1) represents the tangent stiffness matrix.
The procedure used in (2.2.22) and (2.2.23) is called the full Newton-Raphson
iteration and provides a high convergence rate (see Section 2.1 and Fig. 2.2.3).
However, the calculation of ‘+4*K(~1 for each iteration may require a sig-
nificant computational effort and modifications of the above procedure may
be more effective (e.g., Bathe 1996). For example, the iterations may be per-
formed with the stiffness matrix "K recalculated only at certain times. Then
the iterative scheme for this so-called modified Newton-Raphson iteration is
represented by the equation

TKAUW = AR _ tHAtpi-1) (2.2.24)

The modified Newton-Raphson iteration requires a smaller number of factor-
izations, but the convergence rate may be low and the solution may diverge
when the full Newton-Raphson method would converge.

There are other important procedures to speed up the convergence and
to be able to obtain solutions when the Newton-Raphson method fails (such
as line searching, arc length methods); for more details see Bathe (1996).
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Iteration i 1 2 3 4 5
wAtR At ) Full Newton 5.00x103 7.68x10 3.70 x10™° 1.05x10”7 8.57 x10™13
2KL Modified Newton 5.00x103 7.68 x104 2.53 x10** 9.11x107 3.38 x10°°
wapg tapm A0 Full Newton  1.84x10* 6.26x10° 1.61x10°® 1.31x107° 8,68 x10%*
2kL L Modified Newton 1.84x10* 4.34x106 4.71 x10-7 6.11x10® 840 x10°°
a
At 24.60
R .........../ .\.
2kL ]
23.4
D
F 7\ — '
2kL Modified Newton 0 Modified
222 ™~ /; \‘ 8 Newton
3 xact solution = Full
[10°] %\ ol Newlon
0 /) Full Newton <1'§ Exact
: solution
Y
19.8 4
SR
2kL
18.6
9.35 10.45 11.55 12.65 13.75 14.85
Y 1102
X [107]

b

Fig. 2.2.3. Iterative solution of a simple structural problem (Fig. 2.2.1).
a Out-of-balance force and out-of-balance energy; b Full Newton and modi-
fied Newton iterative solutions

2.3 A Linearized Form of the Principle of Virtual Work.
Updated Lagrangian Formulation and Finite Element
Equilibrium Equations

In the previous section we briefly considered the linearization and solution
of the general nonlinear system of (finite element) equilibrium equations
(2.2.18). In this section we derive the linearized governing finite element equa-
tions used in Table 2.2.1 from the principle of virtual work. This derivation
gives explicit forms of the finite element stiffness matrix and internal force
vector, with the constitutive relations and the stresses whose determination
is the subject of all subsequent chapters. We present expressions for the finite
element stiffness matrix and nodal force vector for the case of 3-D solid finite
elements.

Various forms of incremental equations can be used for large displacement
and large strain analysis. We present here the updated Lagrangian (UL)
formulation based on incremental 2nd Piola-Kirchhoff stresses and Green-
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Lagrange strains. This presentation shows the essence of the approach used
in large deformation analysis and is therefore valuable. However, when we
discuss the inelastic large deformation analysis in Chapter 7, we imply the
use of the updated Lagrangian-Hencky formulation for which the finite el-
ement matrices are more complex. On the other hand, in Chapters 3 to 6,
small deformation conditions are assumed in the inelastic solutions (that is,
the strains are the infinitesimal engineering strains) and in this situation, all
inelastic nonlinear formulations reduce to the materially-nonlinear-only anal-
ysis (see (2.3.25) to (2.3.27) below, and Bathe 1996). Vice versa, the concepts
and algorithms presented in Chapters 3 to 6 are of course also applicable in
large deformation analyses.

2.3.1 General Considerations

We consider large displacements, i.e., geometrically nonlinear problems, and
include nonlinear constitutive relations. The presented linearization employs
the Green-Lagrange strain and 2nd Piola-Kirchhoff stress as the work conju-
gate strain and stress measures. We use here the last updated configuration
as the reference configuration, and consequently we employ the updated La-
grangian (UL) formulation. In an analogous way the basic relations of the
total Lagrangian (TL) formulation, with the initial configuration °B as the
reference configuration, can be derived (see Bathe 1996).

Consider the general motion of a material body shown in Fig. 2.3.1. Our
objective is to form the incremental equations of motion and determine the

t+Atx=Ox+\u+Au

] taty =ty + Au
X

Xq

Fig. 2.3.1. Motion of material body with respect to the stationary coordinate
system x1, a2, T3
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configurations corresponding to the load levels At, 2At, 3At, .... We assume
that the configuration of the body (system) !B at the start of the time step
is known, and we seek to determine the configuration **43. The principle
of virtual work corresponding to the configuration 4¢3 has the form (see
Washizu 1975; Bathe 1996)

A Wiy = AW ons (2.3.1)

where 4t§W;,,; and *+At§W,,; represent, respectively, the virtual work cor-
responding to the internal forces (stresses) and the external loads — of course,
for the assumed virtual displacements. The external loads are known and the
virtual work {T4§W,,, can be expressed in terms of the displacement vari-
ations (see (2.2.14)). The internal virtual work is (we imply summation over
1,j=1,2,3, see Appendix A2 (A2.7))

t+At(5Wint = / t+AtTij 1) t+At€ij dtJrAtV (232)

t+AtV

where the § 4+ ate;; are virtual infinitesimal strains referred to the configura-
tion at time t+ At , and the t+4tr; are the true (Cauchy) stresses at the end
of the time step. Since the configuration **4?j is unknown, we use the known
configuration !B for reference of stresses and incremental strains (during the
equilibrium iterations using the full Newton-Raphson method we use the last
calculated configuration for the i-th iteration, that is **4¢B(i=1)). Consider
the Green-Lagrange strain t+Atte with respect to the reference configuration
B (see Bathe 1996)

t+A§€ij = Aye (2.3.3)

The increments A ;€;; can be expressed as

Aveij = Aveij + Ay (2.3.4)
where
_ 1 8(Aul) 6(AU])
Atezj - 9 < atﬂf] + atl’i (235)
and
19(A (A
Ay = (Aug) O Au) (2.3.6)

2 6t.1'i 6t$j

are the linear and nonlinear increments of the Green-Lagrange strain. We
next express the internal virtual work (2.3.2) as
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t+At(5Wint - / t+A§Sij (5t+A€€ij dtV (237)

ty
where the 2nd Piola-Kirchhoff stress "74!S;; (a description of this stress
measure is given in Bathe 1996) can be decomposed as
LS = trij + A4Sy (2.3.8)
Next, we express 6 "T4%¢;; as

5" Nei; = 0(Aey) +6(Amy;) (2.3.9)

and linearize the expression for the internal virtual work (2.3.7) as

t+At(5Wint = /6(Ateij)AtSij dtV-i—/J(Ateij) tTijdtV
ty ty

(2.3.10)
+ [ 8amy) tryary
%
where we have neglected the term,

/6(Atnij) A4S d'V ~ 0 (2.3.11)

ty

The next approximation lies in the calculation of A .S;;,

A tSi]- ~ t OistA t€rs (2312)

where 'Cjj,s is the stress-strain (constitutive) tensor. We use the upper left
index t to emphasize that the tangent constitutive tensor corresponds to the
stresses and strains at time ¢ (instead of the lower left index, i.e., +Cijrs,
which would follow from ;Cjjrs = 0 (A+S;)/0 (Aters) and could be equally
used, see Bathe 1996).

We next substitute (2.3.12) into (2.3.10) and employ (2.3.1). Performing
the same steps within the equilibrium iterations, the equation corresponding
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to the i-th equilibrium iteration with the configuration **4¢B(i=1) as reference
has the following form

(5(At+Ate(z 1)) t+AtC(z 1) At—i—A e(z) dt+AtV(z 1)

mnrs
t4+ ALYy (i-1)
* / 6(A t+Atn$1?n) t+AtT%;Ll) dt+AtV(i71)
t+ ALY (i—1)
— t+At6Wezt _ / 5(A t+At€(z 1))t+At (i— 1)dt+AtV i—1)

t+ Aty (i—1)
(2.3.13)

Obviously, we use the current reference configuration to calculate the strains
and the volume integrals, and t+AtC,(,3ms is the constitutive tensor corre-
sponding to the iteration.

The iterations (2.3.13) continue until convergence tolerances are satisfied
(see Table 2.2.1). Since the evaluation of the right hand side involves the
calculation of the stresses t+4tr£,i;1), the accuracy of the converged solution
depends on the accuracy of the stresses calculated by the integration of the
constitutive relations within the time step. The optimal convergence rate
in the iterations is achieved provided the system stiffness matrix obtained
from the volume integrals on the left hand side is properly evaluated, where
the accurate evaluation of the tangent constitutive relation t+AtC’(’ms is
important (see Sections 4.4.3 and 4.5; Example 4.5.6, in particular).

2.3.2 Isoparametric Continuum Finite Elements

The relation (2.3.13) is used to formulate the incremental finite element equi-
librium equations. Considering isoparametric displacement-based continuum
finite elements we have that the interpolation for displacements within a finite
element (details are given in Bathe 1996) is given as

fu=H'U (2.3.14a)

where ‘u are the displacements at a material point, U are the element nodal
point displacements, and H is the interpolation matrix. The component form
of this equation is

N
=> m'Uuf i=1,2,3 (2.3.14b)

[3
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where fu; and tU} are the components of the displacement vector at a ma-
terial particle and the k-th node, h; are the interpolation functions, and N
is the number of nodes of the element. From the displacement interpolation
we obtain

A= !BLAU (2.3.15)

where !By, represents the linear strain-displacement matriz, and A& is the
strain increment vector (see (2.3.31) and (A1.3)). The terms of the matrix
!B, contain the corresponding derivatives of the interpolation functions with
respect to the coordinates z;, and AU is the vector of the nodal displacement
increments. Also

8(A8) = !B oU (2.3.16)
Using (2.3.6) we have
_1[0(Aux) 0O 1[0(Aux) 0O
8(Am;;) = 2| ot o'a ] (Auk)} t, { Dtz; Ot 0 (Aug)| (2.3.17)

With use of (2.3.17) we write the product d(A ¢7;;) '7; in the matrix form
§(Amy;) i =6UT By 'F BN AU (2.3.18)

where !By contains the same derivatives of the interpolation functions as
!Br,and 'T is a 9x9 matrix containing the stress components ‘7;; (see Bathe
1996). Note that the matrix ‘7 differs from the symmetric 3 x 3 matrix 7 used
to represent the stress tensor, see (2.3.41) and (A1.60). The matrix {Bx, is
called the nonlinear strain-displacement matriz.

The external virtual work can be expressed as

AW, = OUT HHAR, (2.3.19)

where we assume deformation independent loading. Substituting (2.3.16),
(2.3.18) and (2.3.19) into (2.3.13), and using that 6U is arbitrary, we obtain,
due to the linearization, the equilibrium equation of the form (2.2.21)

(IKp + Kyz) AUY = HAR IR (2.3.20)

where
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Ky = / ‘BItC B d'V (2.3.21)
ty
‘Knp = / B, 7By d'V (2.3.22)
ty
tF:/gB{tT dtv (2.3.23)
ty

are the element linear stiffness matriz, geometrically nonlinear stiffness ma-
triz, and the nodal force vector, respectively. Here t7 is the stress vector de-
fined according to (A1.1). Note that, referring to the notation in (2.3.13), we
have used in (2.3.21) to (2.3.23) {C = *AtC© and tr,,, = 440 The
vector AUM is the first approximation of the true displacement increment
AU. The incremental-iterative equilibrium equation (2.2.22) is now

i—1 i—1 ; o
(iiﬁiK(L’ ) 4 iiﬁi Kg\er )) AU = tHHAtR _ t+Atp(i-1)

(2.3.24)

The stiffness matrices and the nodal force vector are calculated using the ap-
propriate matrices iiﬁiB(g_l), iiﬁiBS@l), AR gpg +ALC-D) and
the stress vector t+Aatr(i-1),

Note that in case of nonlinear problems with small displacements (MNO

analysis) the above UL formulation reduces to

t+AtK(Li—1)AU(z‘) _ tHAtR _ t+Atp(i-1) (2.3.25)
with
ErAT (=) / BY +AlC(i-) B g1 (2.3.26)
%
tHALp(i-1) _ /B%’t+Ato.(i—1) dv (2.3.27)
v

In these expressions we have neglected the volume change and the geometric
stiffness matrix. The stresses T4t (i=1) now correspond to the initial areas.

The above equilibrium equations (2.3.20), (2.3.24) and (2.3.25) correspond
to one finite element. The equilibrium equations for an assemblage of finite
elements have the same form, but of course with the system stiffness matrices
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and nodal point force vectors obtained by the appropriate summations over
all finite elements (see Bathe 1996 for details).

Three-Dimensional Solid Element. Let us present the explicit form
of the above element matrices for the three-dimensional solid finite element.
A detailed description of finite elements is given in Bathe (1996). This el-
ement represents an isoparametric finite element, since the same interpola-
tion functions are used to interpolate the geometry (coordinates of material
points) and the displacements. The position vector {x (with the coordinates

bz, txo, txg) is expressed as

'x=H'X (2.3.28)
where !X contains the coordinates of all nodal points of the element, ‘z¥
T — [tmi tm% tm% tm% tm% tm% L tm{\f tmév tmé\f] (2.3.29)

Here N is the number of element nodes. The matrix H can be written in the
form

H = [hI;s hols ... hyIs) (2.3.30)

where hy, ..., hy are the interpolation functions, and I is the (3 x 3) identity
matrix. Figure 2.3.2 shows an 8-node element (N = 8) with the corresponding
interpolation functions.

We next define the linear strain increment vector (see also (A1.3)) of the
Green-Lagrange strain,

AtéT = [A t€11 A t€292 At€33 A t712 A t723 A t731] (2331)

The vector of nodal displacement increments and the linear strain-displacement
matrix in (2.3.15) are

Interpolation functions

h,= %(1+r) (1+s) (1+1)

hy= & (1-1) (1+5) (1+1)

hs; (1+r) (1-s) (1-t)

Q=

Node 8 5(1,1,-1)

Fig. 2.3.2. Three-dimensional solid element (8 nodes)
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AUT = (AU} AUy AUS ... AU AUY AU (2.3.32)
and
By = [!B] iB} ... IBY] (2.3.33)
with
thi 1 0 0
0 ¢hie 0
‘BY = 0 0 this (2.3.34)

thi2  thi 0
0  this thie
thes 0 thia

The derivatives 8hk/8tmj are denoted by :hy ;. These derivatives can be
expressed as

oh Ohy,

b bt Tk (2.3.35)

atﬂfi J 8rj
where r1, 9 and r3 stand for the natural coordinates r, s and ¢ shown in Fig.
2.3.2, and the tJi;I are the components of the inverse Jacobian matrix. The
components of the Jacobian of the transformation xj (71,72, 73) follow from
the interpolation (2.3.28),

Ohy,
tr ¢k
Jz'j = 8” iEj (2.3.36)
The matrix {Byy in (2.3.18) is
B 0 b
‘Byr = 0 Bvy, 0 (2.3.37)
[ 0 0 %BNLJ
where
_ thin 0 0 tho; thn
iBNL: th172 0 0 thz’Q thN72 (2338)
this 0 0 thogs thn3
and
_ 0
d=|o0 (2.3.39)
0

The stress vector  and the stress matrix 7 in (2.3.23) and (2.3.22) are

=1t 't 'res ‘i 'rag 'Tar | (2.3.40)
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and
t¥, 0 0
t =10 tr. 0 (2.3.41)
0 0 tr,
where

t t t
T11 T12 T13

t~ t t t

T3 = T21 T922 723 (2342)
t
T31 T32 T33

and 0 is the 3x3 zero-matrix

The evaluation of the element matrices and vectors (see, e.g., (2.3.21) to
(2.3.23)) requires the integration over the finite element volume. The inte-
gration can be performed in analytical form only in some very special cases,
hence numerical integration is necessary.

In the numerical integration, each term of the matrices and vectors given
above is integrated numerically. Let F(r,s,t) be a generic term of a stiffness
matrix or force vector (with F'(r) and F(r,s) for one- and two-dimensional
elements). Then the integration is obtained as

+1+1+1

///F(r,s,t)drdsdt%Zaiij(ri,sj,tk) (2.3.43)

—1-1-1 i,5,k

where the summation is performed over all selected integration points and
the a;j;, are integration weights. The location of the integration points, the
corresponding weights and the number of integration points to be used are
determined by accuracy considerations, so that the “approximately equal”
sign in (2.3.43) is indeed justified; that is, the difference between the left-hand
and right-hand sides of (2.3.43) is sufficiently small. The details of numerical
integration schemes used in practice are described in Bathe (1996).



3. Fundamental Notions of Metal Plasticity

In this chapter we present fundamentals of the theory of plasticity with the
view towards the development of a general numerical procedure for the stress
calculation introduced and used in the subsequent chapters. After a brief in-
troduction, we give in Section 3.2 the basic notions of plasticity and define
the von Mises material model. Then, in Section 3.3 we present some com-
monly used orthotropic metal plasticity models. In each section we illustrate
the theoretical concepts presented by means of various examples.

3.1 Introduction

The development and application of theories of plasticity to engineering prob-
lems started with the pioneering works of Tresca (1864); St. Venant (1870);
Levy (1870); followed by seminal contributions of von Mises (1913); Prandtl
(1924) and Reuss (1930). A detailed presentation of the history of strength
of materials is presented in Timoshenko (1953). Today, the use of plasticity
in the engineering disciplines is well established. In general, the theories of
plasticity can be divided into two categories: micromechanical theories and
macromechanical theories. The micromechanical theories analyze the plastic
deformations on the microscopic level and seek to explain the conditions in
crystals and grains of metals leading to plastic flow, e.g., Rice (1971, 1975);
Asaro (1983); Aifantis (1987).

On the other hand, the macromechanical theories (also called the math-
ematical theories) of plasticity describe plastic deformations phenomenolog-
ically, on the macroscopic level, and establish relations among the macro-
scopic mechanical quantities (such as stresses, strains, etc.). These relations
are based on general principles of mechanics and on experimental observa-
tions. The fundamentals of macromechanical theories of plasticity are given
in many books, such as those of Hill (1950); Prager (1959); Prager and Hodge
(1968); Mendelson (1968); Zyczkowski (1981); Chen and Saleeb (1982); Chen
and Han (1988); Lubliner (1990); Ulm and Coussy (2003). A unification of
the macromechanical theories of inelastic material behavior, named disturbed
state concept, is presented in Desai (2001).

Many practical problems accounting for the plastic deformations of ma-
terials have been successfully solved. Some early solution methods are based
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on variational theorems developed mainly in the fifth decade of the previ-
ous century, largely due to Drucker, Prager and Hill (see References). These
variational solutions provide upper and lower-bound theorems for the ulti-
mate load capacity of structures. The load carrying capacity of specimen can
also be calculated using the method of characteristics, see for example Hill
(1950); Prager (1955,1956). With these classical methods, it is hard or even
impossible to obtain an elastic-plastic solution which gives the total history
of deformation, from the elastic to the ultimate load state.

In today’s engineering environment, it is imperative that detailed analysis
of geometrically very complicated structures be carried out. These analyses
must trace out the complete response history from elastic to plastic condi-
tions, including the progression of elasto-plasticity and large deformations,
until possible collapse of the structure.

The aim of this chapter is to review fundamental notions of metal plastic-
ity in order to establish the basis for introducing robust numerical procedures.
We consider the solution of problems of elasto-plasticity modeled using clas-
sical macromechanical theories of plasticity, and assume that finite element
solutions are sought.

The computational algorithms to be presented in the subsequent chapters
correspond to the so-called strain-driven methods. Namely, we shall employ
an incremental solution process (outlined in the previous chapter) in which we
consider that the total strains at a material point are known at a certain time
(load) step; and that the stresses corresponding to the given strains need to be
calculated. This procedure is generally used in displacement-based or mixed
finite element discretizations (see Chapter 2). Throughout the presentations
below we follow the notation used in Bathe (1996).

3.2 Isotropic Plasticity

The classical macromechanical theories of plasticity are based on the notions
of a yield surface or yield function giving the yield condition, a hardening
rule (governing the change of the yield surface during deformations) and on
the stress-plastic strain relations of the material.

These notions are used to formulate a material model for the calculation
of the material response during plastic deformations. In the following pre-
sentation of these fundamental notions, we adopt two approaches (Sections
3.2.1 to 3.2.4).

o We start from experimental observations and give the mathematical rela-
tions to model these observations; or

e We establish mathematical relations based on a mechanical principle, and
present experimental results that confirm these relations.

The fundamental relations are then employed for the definition of the
von Mises material model in Section 3.2.5, in a form generally accepted for
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describing isotropic metal plasticity. Some relations presented in Section 3.2.5
have a general character and they are also used in the definition of other
material models.

Finally, in Section 3.2.6 we briefly present the principle of maximum plas-
tic dissipation which is of general importance for a complete presentation and
understanding of the theory of plasticity.

We start with uniaxial experimental data that serve as a basis for the
development of the mathematical relations to represent one-, two- and three-
dimensional behavior.

3.2.1 Uniaxial Elastic-Plastic Deformation

Basic Experiments. Let us consider experimental results obtained in a
uniaxial tension/compression test of a metal. According to Smith and Side-
bottom (1965), if an annealed high-carbon steel specimen is subjected to
tension and then compression, followed by reverse loading, the stress-strain
dependence is as shown in Fig. 3.2.1 (see also McClintock and Argon 1966).
The figure also shows that the same stress-strain behavior is measured if the
specimen is first subjected to compression and then tension. Similar results
are obtained for other metals.

Based on these experimental data we define the material models for the
elastic-plastic deformation of a metal in uniaxial loading.

Uniaxial Elastic-Plastic Models. A typical stress-strain model dia-
gram for the continuous uniaxial loading in tension or compression is shown
in Fig. 3.2.2a. This diagram approximates the data obtained by direct record-
ing during a physical experiment. Based on this diagram we introduce some
important notions of plasticity.

In experimental investigations the uniaxial stress-strain curve is drawn as
the relationship between the true stress (Cauchy stress, force per unit current
area) and the true strain (logarithmic strain In(¢/4y), where £ and ¢y are the
current and initial lengths of the material specimen length considered). The
strain at fracture (fracture point F' on the diagram) can be 50% and larger.
In this chapter and those to follow, except in Chapter 7, we assume small
strain conditions, namely that the strains are smaller than four percent!. In
this case we can use in the development of the material model the stress o
defined as the force per unit original area (also called the Kirchhoff stress),
and the infinitesimal engineering strain, e. The o — e diagram is shown in
Fig. 3.2.2b.

The uniaxial stress-strain curve in Fig. 3.2.2b represents the fundamental
curve in small strain and large displacement/small strain deformation con-
ditions. The Cauchy stress-logarithmic strain curve in Fig. 3.2.2a represents
the fundamental curve in large strain analyses (see Chapter 7).

! In some numerical examples given in Chapters 4 to 6 the strain values are larger
than 4 percent but only to exemplify differences in values reached. In practice,
all such analyses should be carried out using large strain theory.
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Fig. 3.2.1. Tension and compression stress-strain diagrams for annealed
high-carbon steel for initial and reverse loading, according to Smith and Side-
bottom (1965)

The point on the diagrams important for elastic-plastic solutions is the
elastic limit, or yield point (point A in Fig. 3.2.2). Point B shown in the
figure lies between the point A and the fracture point F. If the stress is
below the yield stress the material returns to its undeformed configuration
upon unloading. The part O A of the diagram represents the elastic domain of
the material. In the case of loading above the yield stress, a permanent plastic
strain el remains after unloading. Hence, the total strain e corresponding to
the stress o is

e=¢el +ef (3.2.1)
where

B =7 (3.2.2)
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Fig. 3.2.2. Stress-strain dependence for uniaxial loading of metal (model of
test results). a Cauchy stress-logarithmic strain diagram up to the fracture
point F'; b Stress-strain dependence for small strains; ¢ Yield curve for small
strains

Here E is Young’s modulus which relates the elastic strain e” and the stress
o. The plastic deformation starts at the stress corresponding to onset of
yielding, that is at the yield stress o 4. The part of the curve between points
A and B characterizes the material behavior in the plastic domain. Figure
3.2.2b also shows the tangent to the curve between points A and B, defined
as the tangent modulus Er, which we assume to be > 0.

From the uniaxial model stress-strain curve we can determine the funda-
mental dependence
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o=o(e) (3.2.3a)

shown in Fig. 3.2.2¢c. This dependence can also be written in the form
fy (0,€") =0 (3.2.3b)

which represents the yield condition in uniaxial loading. The relation (3.2.3a)
shown in Fig. 3.2.2c is called the yield curve of the material.

Figure 3.2.2¢ shows that the stress o is increasing with the plastic defor-
mation e”. This material characteristic is known as strain-hardening and is an
important ingredient in the description of the material behavior in the plastic
regime. The instantaneous hardening at a given point on the yield curve is
described by the plastic modulus Ep at the plastic strain level reached,

do

Ep = deP

(3.2.4)

which can be expressed in terms of the instantaneous tangent modulus Ep
and Young’s modulus E, as

Ep = (3.2.5)

This relation follows from the definition of the tangent modulus Ep = do/de,
and from (3.2.1), (3.2.2) and (3.2.4)

do = Erde = Ep (de” + de®)

do do
do = Er <E +EP>

Solving for Ep we obtain (3.2.5). We note that a special case of the stress-
strain relation is the bilinear relation, with slope E in the elastic domain and
E7p = const. in the plastic domain.

For some ductile materials, hardening can be neglected (that is, ¢ =
o4, Ep = 0for any e”) as shown by the dashed line in Fig. 3.2.2c. Then the
material is considered to be a perfectly plastic material.

The yield curve shown in Fig. 3.2.2c represents the basic behavior of the
material. While obtained from a one-dimensional experiment, we shall see
that the curve is used as a fundamental material relation to describe complex
two- and three-dimensional elasto-plastic deformations.
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Analytical expressions are often used for the yield curve in metal plasticity.
We cite here the commonly used Ramberg-Osgood formula

o orp [ o\
= 2.
e=p +a B <0R> (3.2.6)

where o is a reference stress (usually the yield stress oy, = 04 is used, see
Fig. 3.2.2), and « and mpg are material constants obtained from experimental
data. We will use the Ramberg-Osgood description of the yield curve in the
form

0 =0y +Cy (eP)n (3.2.7)

or

' =4, (0 — va)l/n (3.2.8)
where A, = Cy /" The values Cy and n are material constants, which are
non-negative. Note that in the case of perfect plasticity we should use o = gy,
in (3.2.7), while (3.2.8) is not applicable.

Uniform loading in tension or compression was considered in the above
model. Let us next consider that the material is first plastically deformed in
tension and then compressed. For some materials the “new yield stress” in
compression after unloading is (in magnitude) the stress at which unloading
occurred. However, in general, the “new yield stress” is smaller than the yield
stress reached in tension. The same behavior is observed when the material is
first compressed and then subjected to tension, in which case the subsequent
yield stress in tension is smaller than the yield stress reached in compression.
This phenomenon is known as the Bauschinger effect and can be explained
by changes in the metal microstructure caused by plastic deformation. This
effect is important to be included in the solution of problems with cyclic
loading.

For practical applications some simplified models have been developed
to account for the Bauschinger effect. The two commonly used models are
1sotropic hardening and kinematic hardening models, see Fig. 3.2.3. In the
isotropic hardening assumption, the Bauschinger effect is ignored and the
same yield curve is used in tension and compression during the cyclic loading
(curve OABFF| F in Fig. 3.2.3). In the kinematic hardening assumption the
change of stress to start of yielding in the reverse loading is equal to twice
the initial yield stress; for example, the yield stress at point C, o¢ is

oc =0 —204

and the stress-strain path is OABCC1C5. Models that represent behav-
ior between these two models are called mized hardening models (path
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c

FZ/

Fig. 3.2.3. Idealized uniaxial stress-strain curve for cyclic loading

OABDD; D,). We note that for all these simplified models the hardening
curves have the same shape when the loading is reversed, but they start from
different yield stresses.

Note that the kinematic and mixed hardening models are introducing an
anisotropy into the assumed behavior of the material.

The influence of the rate of straining on the yield properties of the metal
can be significant and must typically be taken into account in practical appli-
cations when the strain rate is above a certain value, characteristic for the ma-
terial considered. Figure 3.2.4 shows schematically several yield curves for a
mild steel which correspond to different strain rates, Mendelson (1968). It was
found experimentally, for example, that for the aluminum alloy AA7108.50
at 340°C the yield stress increases from 65 MPa at the strain rate of 0.1s7!
to 160 MPa at the strain rate of 2000s~! (Djapic-Oosterkamp et al. 2000).
In this book we will not explicitly include strain rate effects in the numerical
algorithms, but the solution procedures can be extended to account for these
effects. Namely, in the solution of problems we can determine the strain rate
in the current time step and therefore identify which stress-strain curve is to
be used to determine the plastic deformations.

3.2.2 Yield Condition for General Three-Dimensional
Deformations

In the previous section we considered uniaxial loading and found, according
to experimental data, that there exists an initial yield point A with the yield
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Fig. 3.2.4. Schematic uniaxial stress-strain dependence of a mild steel for
different strain rates

stress of the virgin material o,,, at which plastic deformation starts. Here
we extend the notion of initial yielding to multiaxial stress conditions for an
initially isotropic material, when all stress components o;; may be different
from zero. We want to establish a condition for initial yielding in the form

fy(oi) =0 (3.2.9)

where f, is called the yield function. The equation (3.2.9) is called the yield
condition. Hence, as long as this yield condition is not reached, we will have

elastic strains only and the elastic constitutive relations in Appendix 1, see
(A1.5), are applicable.

General Considerations. In order to determine an appropriate form
of the yield function, we use that the material reaches initial yield in an
isotropic manner; that is, the material behaves in the same way into any
material direction. Since the stress components change with the coordinate
system used, in order to satisfy this isotropy condition, the yield function
can only be a function of the stress invariants, I, I» and I3 (which are
independent of the coordinate system used), i.e., we need to have

Jfy(i, I, 13) =0 (3.2.10)

where
L =0y
I, = 011092 + 022033 + 033011 — (012021 + 023032 + 013031)

I; = deto (3.2.11)

We use here the usual indicial notation and summation convention (see Ap-
pendix A2, (A2.7)). This yield function is applicable to any initially isotropic



46 3. Fundamental Notions of Metal Plasticity

material. However, we need to specify the details of the function to reflect
the experimental observations.

Considering metals, it is seen experimentally that frequently the influence
on yielding of the first invariant I;, or the mean stress

om= .1 (3.2.12)

as well as the third invariant I3, can be neglected. Therefore, we can reduce
the yield function to depend only on I, or equivalently only on the second
invariant of the deviatoric stresses, Jop, defined as

1
J2D = 9 SijSij (3213)

where the deviatoric stresses are
Sij =0ij — améij (3214)

with 0;; the Kronecker delta symbol (§;; = 1 for i = j, d;; = 0 for i # j). We
write (3.2.10) as

fy (Jap) =0 (3.2.15)

This form of the yield condition is generally used to model metal plasticity,
and is based on the seminal contributions of von Mises (1913). In order to
introduce a specific function f,(Jop) we proceed as follows.

Hypothesis on Distortion Energy. A fundamental approach to deter-
mine the yield function (3.2.15) is based on the hypothesis that the metal
reaches its elastic limit and begins to deform plastically when for any stress
state the distortion elastic strain energy reaches a certain critical value W,
Mendelson (1968). The distortion elastic strain energy in the case of a general
stress/strain state can be expressed in terms of the deviatoric stresses as (see
(A.1.18))

1

1
WIE = 9 S,Je;]E =

1z Si3Sii (3.2.16)

In the uniaxial loading condition considered earlier (tension or compression)
the deviatoric stresses are at the start of yielding
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2 1
511 - 3va 522 = 533 = _3va (3217)

and hence in the uniaxial case, at the start of yielding,

L,

We = ¢q

(3.2.18)
We assume that at the start of yielding, the distortion elastic strain energy has

the same value for all loading conditions. Therefore, it follows from (3.2.16)
and (3.2.18) that we must have

1 1
fy(SzJ) = QSijSij - 3030 =0 (3.2.19)
or, in terms of the second invariant J,p,
L,
fy(e]QD) = JQD - 3va =0 (3.2.20)

This yield condition satisfies the isotropy condition and is based upon
the principle of equivalence of distortion energy (i.e., (3.2.16) and (3.2.18)
correspond to the same distortion energy). The form (3.2.19) of f, is known
in the literature as the von Mises yield function, and materials “obeying” this
yield condition are called von Mises materials. The von Mises yield condition
(3.2.19) is the most commonly used yield condition for metals (von Mises
1913). 2

Experimental Verification. We quote here some experimental results
which confirm that the von Mises yield condition is adequate for metals.
Figure 3.2.5 shows experimental results obtained by Taylor and Quinney
(1931) for three metals, subjected to tension and shear. Experiments were
performed on thin-walled tubes under axial loading and torsion. It can be seen
that the von Mises yield condition (the “von Mises law”) closely represents
the experimental results.

Other yield conditions for metals have been proposed as well, and notably
the one due to Tresca. Here the hypothesis is that the yielding in the material
is governed by the maximum shear stress on any plane. The practical use of
this criterion is more difficult than the application of the von Mises criterion
because the von Mises criterion corresponds to a simple functional form con-
tinuous in the stress variables. In general, solutions obtained using these two
criteria are not far apart (for practical purposes), as we see, for example, in
Fig. 3.2.5. We refer to the Tresca criterion here only because experimental

2 Here we should also mention the earlier publication of Huber regarding failure
of a material (Huber 1904).
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Fig. 3.2.5. Experimental results according to Taylor an Quinney (1931) from
combined tension and torsion tests; o = tension stress, T = shear stress, oy,
= yield stress in tension

results are often interpreted using both criteria. We illustrate the application
of the von Mises yield criterion in examples in Section 3.2.7.

The next important step in the formulation of the theory of plasticity is
to establish the stress-plastic strain relations for general loading conditions.

3.2.3 Three-Dimensional Stress-Plastic Strain Relations

The stress-plastic strain relations that we present here rely on experimental
observations. We start with an analysis of a simple uniaxial experiment and
then consider general multiaxial loading of the material.

Let a specimen of metal be subjected to a uniaxial loading condition in
small strains, as schematically shown in Fig. 3.2.6. If the stress o exceeds
the yield stress oy, (earlier also called ¢4), the material deforms plastically.
To determine the permanent deformations we release the stress and measure
the displacement Ap, shown in Fig. 3.2.6b. Measurements show that there
are lateral permanent contractive strains, practically equal to one-half of
the plastic strain ef measured in the longitudinal direction. Hence we can
assume that

ey, =€t = —;efx (3.2.21)
It follows that we can assume in a model that

ey =er, +e, +eb =0 (3.2.22)
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Fig. 3.2.6. Plastic deformations due to uniaxial loading of a metal. a Uniaxial
loading; b Deformations after stress release

where el‘j is the volumetric plastic strain. Hence the plastic deformation is
isochoric or volume preserving. This conclusion is also reached when studying
experimental results which show that yielding is not affected by the mean
stress, and that the yield function has the form (3.2.15) or (3.2.20).

The deviatoric stress components that have caused these permanent plas-
tic strains — still considering the case of uniaxial loading — are

2
Sex = 30
1
Syy =5..= _25.77.77 (3223)

By inspection of (3.2.21) and (3.2.23) we find that the following relations
can therefore be assumed:

= W= o) (3.2.24)

where ) is a positive scalar. Hence, there exists a proportionality between the
plastic strain components and the corresponding deviatoric stress components
causing these strains.

This proportionality between the plastic strains and the corresponding
stresses is also observed in a pure-shear experiment, schematically shown in
Fig. 3.2.7, and in more complex experiments, e.g., Pugh and Robinson (1978)
(see Fig. 3.2.17).

In summary, based on measurements in simple tests of metals, we can
postulate the stress-plastic strain relations as

el = \S;; (3.2.25)

¥
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Fig. 3.2.7. Plastic deformation of metal in shear

These relations correspond to the so-called deformation theory of plasticity,
Mendelson (1968).

However, in general, plastic deformations depend on the loading history.
This means that the values of plastic strains ef; for the current deviatoric
stresses S;; at a material point, depend on the manner how the stresses
changed prior to reaching the current values. The dependence of plastic
strains on the history of loading is illustrated in the simple example shown
in Fig. 3.2.8. We suppose that the uniaxial elastic-plastic material model is
defined by a bilinear stress-strain curve with isotropic hardening, and subject
the material to two loading regimes:

Loading histories
1) OABCDE and
2) OAB'CE'

Fig. 3.2.8. Two loading histories for uniaxial loading: 1) Tension o g, com-
pression o p, tension og; 2) Compression o p, tension op, unloading to og;
a Diagram o — e; b Diagram o — e”’
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1) Tension to stress o = o, then reverse loading up to compressive

stress 0 = —op (with op > o), and reloading up to the tension
stress 0 = og; and
2) Compression to stress 0 = —op, then reverse loading up to the

tension stress ¢ = op, and unloading to stress og.

Here op and op are taken to be positive values.
Obviously, the stress state ¢ = og corresponds to different values of
plastic strain e for the two loading conditions:

1
(e”), = g, (208 =D = 0y) (3.2.26)
and
(€M)2 = - ! (0D — oyw) (3.2.27)
Ep

for loading histories 1) and 2), respectively.

This observation about the dependence of the plastic strains on the load-
ing history leads to a modification and generalization of the relations (3.2.25).
Since, in general, the plastic strains evolve incrementally, as demonstrated in
Fig. 3.2.8, we need to seek incremental plastic strain computations by a re-
lationship which in the special case considered earlier reduces to (3.2.25).
However, the relationship must also give the plastic strains when more gen-
eral stress conditions, including cyclic loading, are considered

Suppose that at a given stress state in the material a small change of load-
ing causes plastic flow. Then we will have increments of plastic strains deZ
during the change in stresses. The assumption in accordance with the propor-
tionality relations (3.2.25) is that during a change of loading, each nonzero
deviatoric stress component S;; causes an increment def; of the corresponding
plastic strain component. This assumption leads to the relation

def; = d\ Si; (3.2.28a)
or
de’ =d\S (3.2.28b)

Therefore, the increments of the plastic strains deZ are proportional to the

current total deviatoric stresses S;;. It is experimentally found that the rela-
tions (3.2.28) are valid in general, whereas the relations (3.2.25) are only valid
when the stresses increase proportionally. The theory of plasticity based on
the relations (3.2.28) is called the incremental theory or flow theory of plas-
ticity.

In the case of proportional loading we have that the stresses o;; at a given
time (load level) can be expressed as
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oij =koj (3.2.29)

where k is a variable increasing in time, and the 05- are reference stresses

corresponding to an initial elastic state. The following relations can then be

written
Sij _ Sh
Spe SE = T(ij) (ks)

S

for all 4,4, k, s

and, with use of (3.2.28),
def; = r(ij)(ks)defs no sum on ¢, j, k, s
where 7(;j)(rs) are constants. Integrating the last equation we have
P P
€ij = T(ij)(ks) Cks

Then, using ;) (ks) = Sij/Sks We obtain

P P

e:. e .o ) 9
Vo= ks for all i, j, k, s; no sum on i, j,k,s

Sij Sks

But this relation can only be satisfied if the relation (3.2.25) holds.

Let us consider further the relations (3.2.25) and (3.2.28). Namely, we
might intuitively say, starting from the relations (3.2.25), that the increments
of plastic strains should be proportional to the increments in the stresses.
However, it was found exzperimentally that the relations (3.2.28) are valid
for many materials (in particular metals). For example, consider the tension-
torsion elasto-plastic conditions of a thin-walled tube with some material
hardening used in the experimental verification of the von Mises yield con-
dition (Fig. 3.2.5). Assume that we have a certain stress state defined by
the normal stress ¢ and shear stress 7 . If we keep the stresses constant,
there will be no plastic flow. However, if, for example, we increase the torsion
shear stress 7 and keep the normal stress o constant, plastic low would con-
tinue and we would find that, in addition to the increment of shear plastic
strain dy®’, the normal components del,, deyPy and del, are different from
zero as well, although the increments of normal stresses are equal to zero:
dogy = doyy = do,, =0 (also dSzy = dSy, = dS.. = 0). In fact, the incre-
ments del,, del and del are proportional to Sz, Syy and S... Of course,
in this experiment we would have del, = del’ = del, = 0 if the tube were
free of tension (o = 0).

Finally, we add an observation concerning the relations (3.2.28), impor-
tant for their use: when using these relations we first test for a change of
stresses causing plastic flow, and under the condition that plastic flow occurs,



3.2 Isotropic Plasticity 53

the relations (3.2.28) are applicable. Detailed considerations of the conditions
for yielding and plastic flow to take place are presented in Sections 3.2.4 and
3.2.6.

The relations (3.2.28) were first proposed by Prandtl (1924) for plane
strain deformations and then generalized to three-dimensional conditions by
Reuss (1930). They are known as the Prandtl-Reuss equations. The original
form of these equations is given by

def,  def, del,
Si Sa2 S31 ( )

that is, by (3.2.28).

Historically, the first stress-strain relations in plasticity were introduced
by St. Venant (1870), who proposed that the principal directions of total
strain increments coincide with the principal directions of the stresses. The
general relations of the form (3.2.28), but with increments of total strain de;;
rather than dezl-;, were proposed by Levy (1870) and, independently, by von
Mises (1913); they are known as the Levy-von Mises equations.

Finally, we quote the results of an experimental verification of the Prandtl-
Reuss equations for a more general loading condition. Taylor and Quinney
(1931) subjected thin-walled tubes to combined tension and torsion non-
proportional loading conditions and calculated from measurements the Lode’s
variables:

_ 253 — 833 —Su _ 2093 — 033 — 011
s Saz — S 033 — 011

and (3.2.31)

[ = 2dek, — dek, — def)
e~ P P
des; — dej;

If the Prandtl-Reuss relations are valid, then p, = u,. In Fig. 3.2.9 we show
experimental results for three metals. We see some deviation from the straight
line given by u, = p,., but this deviation is acceptable for analyses in engi-
neering practice.

Based upon the above discussion we can now proceed to define the hard-
ening behavior in the model for metal plasticity under general loading condi-
tions. The description of the hardening is necessary for modeling the material
behavior in general plastic deformations.

3.2.4 Hardening in 3—D

In order to define the hardening of a metal in the process of plastic flow,
after the initial yield condition has been reached, we use the hypothesis of
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Fig. 3.2.9. Experimental results according to Taylor and Quinney(1931)
from combined tension and torsion tests of thin-walled tubes

equivalence of plastic work, then present the consequences that follow and
give some experimental results which confirm these consequences. We assume
in this section that the same yield curve is used throughout any loading, and
assume first isotropic hardening and then consider perfectly plastic material
behavior as a special case of hardening.

Hypothesis of Equivalence of Plastic Work. This hypothesis states
that the incremental plastic work dePen performed during plastic deforma-

tions in general loading conditions is equal to the plastic work dW[, . . per-
formed in uniaxial loading conditions, i.e.,

awt =awl .  =adw?t (3.2.32)

gen niax

Using the Prandtl-Reuss equations (3.2.28) we have for the general loading
conditions

dW?P = Si;del; = dX S;;Si; (3.2.33)

Note that this work dW ¥ corresponds to permanent distortions of the mate-
rial and is irreversible. On the other hand, for the uniaxial case we have

2
dw?t = 2 A o (3.2.34)

where we have used (3.2.23) and the condition that the material is continu-
ously yielding. Therefore, in uniaxial loading conditions we have continuously
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during the loading process that o = o, (see (3.2.3a) and Fig. 3.2.2). Hence,
it follows from (3.2.33) and (3.2.34) that

2
This equation can also be written in the form (3.2.19), i.e.,
1 1,
fy = 251'1‘51'1' - 30'y =0 (3.2.36)

The consequences of the hypothesis of equivalence of plastic work can
therefore be stated as follows: Considering any state of plastic flow in general
loading conditions, we can identify a yield stress o, on the uniaxial yield curve
corresponding to the given stress state. We see that, in essence, during plastic
deformation the von Mises yield criterion (3.2.36) is continuously satisfied, in
which o, changes according to the uniaxial yield curve.

The hypothesis of equivalence of plastic work is in agreement with the
hypothesis on the distortion energy used in Section 3.2.2. Namely, considering
the distortion energy W' as a measure of the material resistance to change
of shape, and supposing that the hypothesis is also valid during plastic flow,
we can write the following equation

2

1
d(ai) + 5

Sijdeg- + Sijdell-; = 6C

dAo? (3.2.37)
where the left hand side represents d/W' in general loading conditions, and
the right hand side corresponds to the uniaxial loading case. The first terms
on both sides correspond to the elastic deformation (already employed in
Section 3.2.2), hence we obtain (3.2.35). In writing (3.2.37) we have used the
condition that the increments of total strain de;; are the sum of the elastic
strains deg- and plastic strains def;, in accordance with (3.2.1) for uniaxial
loading conditions,

dei; = def; + dej; (3.2.38)

Also, we used that the elastic volumetric strains do not affect the distortion
energy.

A geometric interpretation of the von Mises yield condition is given in
Fig. 3.2.10. The yield curve o, (e?) is shown in Fig. 3.2.10a, with two points
M; and M> on the curve and yield stresses 'o, and ?c,. The yield surface
fy =0, defined by (3.2.36), is represented in the principal stress space o1, 02,
o3 by the cylinder with the “hydrostatic” axis oy = 02 = o3 and the radius
R = \/2/3 oy, as shown in Fig. 3.2.10b. In the deviatoric plane, with the
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Fig. 3.2.10. Von Mises yield condition. a Uniaxial yield curve; b Yield sur-
face in the stress space; ¢ Yield surfaces in the deviatoric plane with Sy, S5
and S3 being the principal values

normal ng to the plane and axes Si, S», S3 (principal deviatoric stresses),
the yield surface is represented by a circle of radius R. Two yield surfaces
'f, = 0 and %f, = 0 are shown in Fig. 3.2.10c. Note that all stress points
lying in the deviatoric plane on the yield surface with the radius R correspond
to one point with o, = \/ 3/2 R on the yield curve. For example, all stress
points in the deviatoric plane lying on the circle ! f, = 0 are mapped to point
M, on the yield curve. Hence, the change in the deviatoric stresses (2S—'S)
in the deviatoric plane corresponds to the arc M; M, on the yield curve.

Another form of the von Mises yield condition is also used in the literature.
Namely, if an equivalent stress quantity, called the effective stress or the von
Mises stress, g is defined,

_ 3 3
;= \/ - S1iSij = \/ - Il (3.2.39)
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then the yield condition (3.2.36) reduces to
G—0,=0 (3.2.40)

In (3.2.39) ||S|| represents the intensity (or Euclidean norm, see Appendix
A2, (A2.31)) of S, defined as

ISI| = /S Sij (3.2.41)

In the above presentation we have reached the conclusion that the yield
condition has the form (3.2.36), or (3.2.40), but we have not yet introduced
a law for the change in the yield surface. To obtain that law or rule, we first
impose the condition — based upon experimental observations of the material
behavior and theoretical considerations — that for the materials considered
here the plastic work W¥ must be positive

dw?® >0 (3.2.42)

The principle of maximum plastic dissipation introduced in Section 3.2.6 and
Drucker’s definition of a stable material (Drucker 1951) are based upon this
fact. All results that we reach regarding the hardening behavior of a material
rely on the condition (3.2.42).

The next step in the development of a hardening rule is to introduce the
increment of effective plastic strain de” which corresponds to the effective
stress & such that the increment of work diWW 7 is given by

dwt = ade? (3.2.43)

Using (3.2.42) it follows that the increment of effective plastic strain must
be positive. Since the plastic work dW ', expressed by (3.2.43) for general
loading conditions, is equal to dIWWF for the uniaxial loading case given by
(3.2.34), we obtain

_ 3de”

d\
2 0y

(3.2.44)

where we have used that during yielding o, =0 .

Finally, we express in (3.2.33) S;; in terms of def; using the Prandtl-Reuss
equations (3.2.28). Substituting (3.2.28) into (3.2.33) and using (3.2.43), we
obtain
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1
i def;def; = ode” (3.2.45)

Hence, with (3.2.44) we obtain the expression

B 2
det = \/3d65d65 (3.2.46)

for the increment of effective plastic strain in terms of the increments of
plastic strain components. We note that in the case of uniaxial loading we
have

de® = |de” | (3.2.47)

while in two-dimensional pure shear
de” = |dy"| /V3 (3.2.48)

where dy” is the increment in the plastic engineering shear strain.
The yield conditions (3.2.40) and (3.2.3) show that the yield curve in
simple tension represents at the same time the general yield curve

oy =0y, (&") (3.2.49)

where

éP:/déP (3.2.50)

is the accumulated effective plastic strain.
From the above presentation we conclude the following:

1) The hardening of the von Mises material is defined by the yield curve
oy (€7). The yield condition (3.2.36) can be written in the form

oy (e¥)y =0 (3.2.51)

and then (3.2.40) becomes

-0y (") =0 (3.2.52)
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2) The proportionality factor d\ in the Prandtl-Reuss equations (3.2.28) is
defined by (3.2.44). The factor can be calculated from the yield curve.

Since an increase in the yield stress is given as a function of the effective
plastic strain, the term strain-hardening is often used in the literature. These
results are based on two fundamental principles of plasticity:

e the equivalence of the plastic work diWW ¥ for the one- and multi-dimensional
stress conditions, and
e the physical fact that the plastic work must be positive; that is dIW ' > 0.

The model regarding the hardening behavior is illustrated in Fig. 3.2.11.
This figure shows that in the case of uniaxial tension-compression loading
(Fig. 3.2.11a), the plastic strain ef first increases and then decreases, while
the effective plastic strain e”’ and yield stress o, continuously increase during
the plastic flow (Fig. 3.2.11c). In the case of general loading conditions, see
Fig. 3.2.11b, the yield surface increases in size during plastic flow. Two suc-
cessive stress states in the case of uniaxial tension-compression loading, and
in the case of general loading, are represented by the same points M; and M>
on the yield curve o, (e’). Since, due to hardening, each new yield surface is
larger in size than the previous one, it follows that the current yield surface
bounds the elastic domain which increases during plastic flow. Namely, if
during yielding we reach the yield stress 'o,, and next reach stresses such

that
Oy
EP
Oy 1
de<0
eF’
~ =5dg”
16:-16
WP de? &P
12SI>1's|
5= 32 1Sl
M,
M,
a b c

Fig. 3.2.11. Mapping of stress states on the yield curve for material with

hardening. a Uniaxial tension-compression loading; b General loading condi-
tions; ¢ Yield curve o, (ef)
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< loy, (3.2.53)

plastic flow will not continue and we have the case of elastic unloading. The
stress point corresponding to this case is inside the yield surface ! f, = 0; the
point in the o, (e") diagram lies on the line '&¥’ = const. and below the yield
curve. The case of a subsequent loading back to & = o, represents elastic
loading; and a further stress change but with ¢ = 'o, defines the so-called
neutral loading, also with no plastic flow. The yield surface during neutral
loading does not change, the stress point in Fig. 3.2.11b stays on the surface
! f, = 0, with at most a change of position on the surface, while the point on
the yield curve is fixed.

Note that any stress state outside the yield surface or above the yield
curve is not possible.

So far we considered that the material is hardening, with Ep > 0. We
now finally consider the model of a perfectly plastic material behavior, already
mentioned in Section 3.2.1 (Fig. 3.2.2). This case is important in practical
applications because strain-hardening may be neglected for some materials.
We show in Fig. 3.2.12 two successive stress states in the case of a general
loading condition, which correspond to the points M; and M, on the yield
curve. We have that

dW? =o,,de"” >0 (3.2.54)

and
G—0yy =0 (3.2.55)

corresponding to a yield surface of constant size. All stress states during
yielding of the material are represented by only one yield surface, and the
elastic domain does not change due to plastic flow. In the case of plastic
flow under general loading conditions, we have that, as yielding progresses, a

Gy
M1 M2
Gy, o—0
L -dwrP
- eP
de®
a b

Fig. 3.2.12. Mapping of stress states on the yield curve for perfect plasticity.
a Deviatoric plane; b Yield curve o, = gy,
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stress point M moves but always stays on the yield surface, its image point
moves along the yield line o, = 0y,, and the effective plastic strain can only
increase.

Let us also consider different states of deformation in a uniaxial load-
ing condition and represent these states using: (i) the deviatoric plane, (ii)
the uniaxial stress-plastic strain dependence o(ef’), and (iii) the yield curve
oy (eF). First, we increase the uniaxial stress o until initial yielding is reached.
The stress point moves along line OA in the deviatoric plane (Fig. 3.2.13a)
and its mapping moves along the axis OA in Figs. 3.2.13b,c. If the uniaxial
straining continues, the uniaxial plastic strain e” and the effective plastic
strain e’ increase along the lines AB, while the stress point in the deviatoric
plane stays at the point A. Suppose that we next change the loading direc-
tion. The stress point moves along the line BC until the yield surface at point
C is reached. During this elastic deformation (elastic unloading) the plastic
strain ef” and effective plastic strain " do not change. Finally, if we continue
straining in the same direction, plastic flow continues; and the stress point
remains at the same position C' in the deviatoric plane, with a decrease of

(e}
AB Oy A . B
deP
Og o
C,M,,M,,D D C
(r—O—O‘—O
M, M,
a b
Oy
A B,C MM, D
G yy =2 O——0——0—0
L dwF
0° —
de® "

Fig. 3.2.13. Representation of stress states in the case of uniaxial loading
and perfect plasticity. a Deviatoric plane; b Uniaxial stress-plastic strain
dependence o (e?); ¢ Yield curve o, = gy,
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ef and an increase of e”. The points that correspond to plastic deformation
during the reverse straining are shown in the figure. Note that during the
reverse plastic flow the plastic work is also positive.

In the literature on plasticity the term “work-hardening” is used. A mea-
sure of the hardening is given by the plastic work W, geometrically rep-
resented by the area below the yield curve o, (ef’) (Fig. 3.2.11c), since the
relation W¥[o,(&")] is defined by the yield curve. In the case of perfect plas-
ticity, we have oy = 0y, = const., i.e., there is no hardening, and the plastic
work is simply an overall measure of plastic deformation at a material point;
of course, the effective plastic strain is such a measure as well.

Experimental Verification. Many experimental investigations have
been carried out in the past to verify the hypothesis (3.2.52). We quote some
test results in Figs. 3.2.14 to 3.2.16. Figure 3.2.14 shows results of tests of
copper tubes subjected to axial loading and internal pressure. In each test
the loads are increased proportionally with a constant ratio between the prin-
cipal stresses o1 and 5. The results are shown for various ratios, between
0 and 1, and are indicated by different symbols. The results shown in Fig.
3.2.15 are obtained by successive tension and shear of the material. The most
severe test of the relation (3.2.52) corresponds to conditions when the loading
changes sign during the test. Experimental results of such tests are shown in
Fig. 3.2.16.

1 psi=6.895 kPa o,,0,- Principal stresses
40 5
Effective °q X o,
stress o Im S
_ o DA !
o 30 v o 0 Uniaxial tension o;
[10° psi] %
o o 1/4
& a 38
20 7y
_i§ v 1/2
10 —.' L] 3/4
F ° 1
0

0.1 0.2 0.3

Effective plastic strain &°

Fig. 3.2.14. Test results of copper tubes subjected to axial loading and
internal pressure, according to Davis (1943)

The experimental results show that the hypothesis expressed in (3.2.52)
can be used to model the material behavior in general loading conditions. The
hypothesis represents physical reality closer for simpler loading conditions
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Fig. 3.2.15. Results according to Sautter, Kochendorfer and Dehlinger
(1953) obtained for variable loading of material
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Fig. 3.2.16. Test results involving reversals of torsion of thin-walled copper
tubes, according to Meyer, J. A. (1957), unpublished research at M.I.T.; cited
in Crandall et al. (1972)

(like proportional loading), and gives a larger deviation from test results for
complex deformation histories.

3.2.5 The von Mises Material Model with Mixed Hardening

In the previous sections we considered the basic ingredients in mathematically
modeling plastic deformations. We introduced a uniaxial material model and
then presented a generalization of this model to a three-dimensional model.
This generalization is one of the key steps in the theory of plasticity. Although
the 3-D model introduced is in agreement with experimental observations, for
some metals it does not describe accurately enough the material response in
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the case of complex loading conditions, such as in cyclic loading when the
Bauschinger effect may be pronounced.

We are now in the position to summarize a rather general model of elasto-
plastic material behavior. We shall consider an initially isotropic material.

A rather general model of the von Mises type in isotropic metal plasticity
is the von Mises material model with the mixed hardening assumption. This
model is defined first, and then the models with kinematic and isotropic
hardening, and perfect plasticity assumptions are considered as special cases.

Experimentally Determined Yield Surfaces. Experimental data ob-
tained for steel, reported in Pugh and Robinson (1978), is shown in Fig.
3.2.17. Initial and subsequent yield surfaces were determined for the material
subjected to various proportional loading conditions. It can be seen from the
figure that the yield surface changes size, position and shape. The change in
position is due to the Bauschinger effect.

Formulation of the von Mises Model (Mixed Hardening). In Sec-
tion 3.2.2 we introduced the von Mises yield condition. The yield surface
changes its size according to (3.2.51). As we stated above, this description
does not take into account the Bauschinger effect introduced in Section 3.2.1.
To generalize the uniaxial yield curves given in Fig. 3.2.3, we introduce the
yield condition in the form (Drucker 1951; Prager 1956, 1959; Hodge 1957;
Johnson and Mellor 1983)

fy = ;(Si'—aij)(si'_aij)_ =0 (3.2.56)

where a;; are the components of the back stress o that define the position of
the yield surface, and 6 is the yield stress, as shown in Fig. 3.2.18. Note that
the change of the yield surface size and position in the stress space are taken
into account in a simplified form, while any change of shape is neglected. The
yield condition (3.2.56) can also be written as

=0 (3.2.57)

where
Sij =S5 — (3.2.58)
are the components of the radius of the yield surface®. From (3.2.57) a relation

analogous to (3.2.40) is obtained

3 We will refer to g, with components S’,-]-, simply as the stress radius. Note that
the S;; are also “deviatoric stresses”, so that Si; = 0 (sum over 7).
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Fig. 3.2.17. Yield characteristics of annealed 2 1/4 Cr-1 Mo steel in tension-
shear stress space at room temperature, according to Pugh and Robinson
(1978). a Measured initial yield surface compared with idealized von Mises
representation; b Yield surfaces during radial loadings
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Q>
I
Q>
<

(3.2.59)
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Fig. 3.2.18. Von Mises mixed hardening model represented in the deviatoric
plane and by the yield curve &, (M el ) In the case of kinematic hardening
(M = 0), the yield curve 6, (M &) is not used, see (3.2.81)

34 . 3
5= \/ 851 = \/ 181 (3.2.60)

is the so-called reduced effective stress, and ||S]| is the intensity or norm of §
(see (3.2.41)).

According to the assumption of mixed hardening, mentioned already in
Section 3.2.1, the plastic strain increments can be divided into isotropic and
kinematic parts, de*’ and de*F | i.e.,

de” = de'” 4 de"” (3.2.61)

The simplest way to relate de*” and de* is to select a constant M with
0<M<1 (3.2.62)

where
de't = M de” (3.2.63)

and
def? = (1 — M) de” (3.2.64)
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The constant M is called the mized hardening parameter and is a material
characteristic. It represents a measure of the Bauschinger effect, measured
in uniaxial stress deformations. Note that M = 1 and M = 0 correspond
to isotropic and kinematic hardening, respectively. It follows from this defi-
nition that the increment of plastic work dWW ¥ is divided into isotropic and
kinematic parts, dWW*F and dW*P. These plastic work parts occur in the
same ratio as do the strains de’”’ and de*”. With the assumption of mixed
hardening, only the isotropic hardening part de*’’ of the increment de” of
the effective plastic strain,

de't = M de® (3.2.65)

affects the size of the yield surface. Therefore, the yield stress ¢, used in
(3.2.56) or (3.2.57) is a function of &',

6y =6y (Me") (3.2.66)

as indicated in Fig. 3.2.18.

The next step in defining the material model is to specify the stress-plastic
strain relations. For this purpose we note that the Prandtl-Reuss equations
(3.2.28) are now

def; = d\ S;; (3.2.67a)
or
det’ = d)\gfi’ (3.2.67b)
since
aaf ' =3 (3.2.68)
L)

To differentiate f, with respect to o;; we used the definition (3.2.14) of the
deviatoric stresses, from which a matrix form of derivatives 0S/do can be
obtained,

HEE 2

where I3 is the (3 x 3) identity matrix, and
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o2 -1
A=, -1 2 -1 (3.2.70)
-1 -1 2

Equation (3.2.67) represents the flow rule, or the normality principle in
plasticity, considered as one of the most fundamental relations in the flow
theory of plasticity. Considering (3.2.67) it also follows that the yield function
fylo, 6,(eP)] is a plastic potential. In general, a function different from
fy, namely g(o;;), may be used as the plastic potential. We refer to the
relation (3.2.67) as the associated flow rule because f, is used. In case another
function g(o;;) # fy(oi;) is used in (3.2.67) we refer to the relation as the
nonassociated flow rule. The relation (3.2.67) can be written in rate form as

e = (3.2.71)

oo

where éF is the plastic strain rate tensor, and Ais a positive scalar.

The normality principle and the fact that the plastic work must be positive
have important implications on the shape of the yield surface, in particular,
the yield surface must be convex (see Section 3.2.6).

Since we have

~

de” =d\S (3.2.72)

the increment of plastic strain de®, or the strain rate é”, is in the direction
of the stress S. This stress defines a unit normal to the yield surface, as
geometrically shown in Fig. 3.2.18. We will use the relation (3.2.72) in the
computational algorithms for stress integration.

In order to complete the formulation of the model, we need a hardening
law for the back stress a. We use Prager’s hardening rule in a simple form

da = Cde"r = (1 - M)C de” (3.2.73)

where C' is the kinematic hardening modulus. Hence, we assume that the
displacement of the yield surface is in the direction of the normal to the yield
surface, as shown geometrically in Fig. 3.2.18. The modulus C is determined
from the yield curve by considering uniaxial loading of the material and mixed
hardening conditions. We have in uniaxial tensile conditions that the yield
condition (3.2.57) reduces to

Opx — Qlpz — 3 Gy =0 (3.2.74)
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where we have used the relations (3.2.23). Hence, incrementally,

2 Aoy — d Oy — 2 dé, =0 (3.2.75)
3 3
We next impose the condition that the stress o, follows the yield curve
for any value of M. Also, the yield stress ¢, must change according to the
hardening law (3.2.66). Therefore, with use of the relation (3.2.21) from which
del = def, where e’ is the uniaxial plastic strain, as well as (3.2.73), we

have
do,, = Epde®
dé, = M Epde® (3.2.76)
da, =(1—-M)Cde"
where
oo
Ep = Y
P~ 9eP| ,
€ (3.2.77)
E _ aUy
e de” MeP

are the plastic moduli (the slopes on the yield curve o, (ef’) recorded experi-
mentally) corresponding, respectively, to the plastic strains e”’ and Mef. Of
course, in general analyses we use the slopes on the yield stress — effective
plastic strain yield curve o, (€F). Substituting (3.2.76) into (3.2.75) we obtain

the equation
2 ~
C= 3(Ep —MEp)/(1 - M) (3.2.78)

Note that in the case of a bilinear stress-strain relation (Ep is constant) and
in the case of kinematic hardening, we have

C = zEp (3.2.79)

If the yield curve is represented by the Ramberg-Osgood formula (3.2.7), we
have

C = an’y(l — M™) ()" /(1 - M) (3.2.80)

This approach corresponds to the “splitting of plastic strain” method
described in Bathe and Montans (2004). Alternatively, also the “splitting of
plastic modulus” method can be used (see Bathe and Montans 2004).

In summary, the main relations that describe the von Mises material
model with mixed hardening are:
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e The yield condition is defined by (3.2.57).

e The stress-plastic strain relations are based on the associated flow rule and
are given by (3.2.72).

e The hardening is defined according to the mixed hardening assumption,
with the mixed hardening parameter M used for splitting the total incre-
ment of plastic strain de into the isotropic and kinematic parts, de*f and
dert (see (3.2.61) to (3.2.64)). The size of the yield surface depends on the
isotropic part of the effective plastic strain Me* according to (3.2.66).

e The displacement of the yield surface is governed by Prager’s hardening
rule (3.2.73).

e The hardening characteristics are defined by the yield curve measured in
uniaxial stress conditions of the material.

As mentioned already, the von Mises model using the kinematic or
isotropic hardening assumptions and the model assuming no hardening to
take place (perfect plasticity) are special cases of the above mixed hardening
model.

In order to model kinematic hardening conditions we use the hardening
parameter M = 0. Then we assume that the yield surface has a constant size,
ie.,

Gy =y (3.2.81)

and the yield curve ETy(MéP) in Fig. 3.2.18 is not applicable. During plastic
flow the yield surface changes its position in the stress space, and hence
plastic work is only performed in displacing the yield surface. The stress-
plastic strain relations have the form (3.2.72), and the displacement of the
yield surface is governed by Prager’s rule (3.2.73). Therefore, the yield curve
oy (ef) recorded experimentally in a uniaxial tension test (see Figs. 3.2.1,
3.2.2 and 3.2.10) is only used to evaluate the modulus C(e¥) according to
(3.2.79). The von Mises model with kinematic hardening is adequate for a
metal with a pronounced Bauschinger effect.

In case the Bauschinger effect can be neglected we assume the isotropic
hardening material behavior. Then we use the hardening parameter M =1,
the yield condition has the form (3.2.51), and the stress-plastic strain relations
are given by (3.2.28). Figure 3.2.11 gives a graphical representation of the
yield surface change and the yield curve for this model.

Perfect plasticity conditions correspond to a material with no hardening
during plastic flow. Then we take M = 1 and prescribe a constant yield stress
Gy = 0yv as in (3.2.81), and the yield condition reduces to (3.2.55). Figures
3.2.12 and 3.2.13 show stress states and the yield curves for general and
uniaxial loading conditions for a perfectly plastic material. The stress-plastic
strain relations have the form (3.2.28).

Finally, we show a graphical representation of the material response using
the above defined mixed hardening model, in case the material is subjected to
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uniaxial tension and compression loading. Figures 3.2.19a and 3.2.19b show
respectively the o(e?’) and &(e!’) relations (see also Fig. 3.2.3). In drawing
the dependence () we have taken into account that def = |delD |, see
(3.2.47). It can be seen that in the loading regime AB the material response
is the same for all values of M, while it becomes dependent on M when the

loading changes the sign.

5 All M : Yield curve o, (eP) 5
0<Ms< 1 )
B — E P
I Iy
/ 1 >
%y TA ép/ %v
20,
O | MeP 0
0, eP
203 -
C
D
M =0 0<M <1 Mixed hardening
.- M=1 Isotropic hardening
0<M<1 M=0 Kinematic hardening
M=1
a b

Fig. 3.2.19. Material response calculated using mixed hardening material
model, in the case of uniaxial tension and compression. a Stress — plastic
strain relation; b Effective stress — effective plastic strain relation

3.2.6 Principle of Maximum Plastic Dissipation

In this section we introduce the principle of maximum plastic dissipation
and give some generalizations in plasticity that follow from this principle
(Lubliner 1984, 1990; Eterovic and Bathe 1990, 1991b; Simo and Hughes
1998). The yield condition (3.2.56) of the von Mises model can be written in
the form

fy(o,e", ) =0 (3.2.82)

The effective plastic strain €7 and the back stress o represent the internal
(hardening) variables of the material model. The yield condition (3.2.82) can
also be written as
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fy(o,8) =0 (3.2.83)

where 3 are the internal variables. The internal variables are represented by
an array, whose terms may be scalars (such as the effective plastic strain to
measure hardening) and components of tensors (such as the back stress). We
note that in the case of perfect plasticity the yield surface does not change
(see (3.2.55)) while the material deforms plastically, hence 8 = 0, and the
yield condition (3.2.83) reduces to

fylo) =0 (3.2.84)

We now consider isothermal elastic-plastic deformations of a stable ma-
terial (a material with hardening behavior, Drucker 1951). To introduce the
principle of mazimum plastic dissipation we define the plastic dissipation as

D =c-6"+3-8 (3.2.85)

where ,3* is the rate of the hardening variables work conjugate to 3. Then
the principle of maximum plastic dissipation states that among all admissible
states (o, 3) the actual state corresponds to the stresses and internal variables
for which D attains its maximum. It follows from this principle that —

1) The yield surface is convex.
2) The stress-plastic strain relations have the associated character (3.2.71),

ie.,
&P =) 6813 (3.2.86)
3) The hardening law is associated,
B =4 g];’ (3.2.87)
and then
B=-iCF ‘Z];;’ (3.2.88)

where CF is the tensor of plastic moduli.
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4) The loading/unloading Kuhn-Tucker conditions are satisfied,

fy <0 (3.2.89)
A>0 (3.2.90)
Afy=0 (3.2.91)

Figure 3.2.20a shows a convex yield surface and illustrates geometri-
cally the associated flow rule for two stress states ‘o and *4tg. The as-
sociated flow rule, or the normality principle, also follows from the mi-
crostructural rearrangements that develop during plastic flow, and the rela-
tion (3.2.86) can be derived from micromechanical considerations, Hill (1950);
Rice (1971,1975); Aifantis (1987). Of course, for a hardening material, CF
is a positive definite tensor.

fy=0 !

a b

Fig. 3.2.20. Geometric interpretation of the associated plasticity. a Single
yield surface, hardening plasticity; b Multi-surface yield condition

The relation (3.2.89) expresses the condition that the stress point must
be inside or on the yield surface. In the case of loading with plastic flow
or in the case of neutral loading (in both cases, the stress point moves in
the stress space, but remains on the current yield surface) the equality sign
holds. The case f, < 0 corresponds to elastic unloading (or elastic conditions).
Regarding (3.2.90) the condition A > 0 corresponds to plastic flow, while for
neutral loading or elastic unloading/elastic conditions we have A = 0. The
relation (3.2.91) is the complementarity condition and enforces the conditions
that when f, < 0, we must have A = 0 and when fy = 0 we can have A>0
or A=0.
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The principle is also valid for the perfectly plastic material, and all con-
sequences, except (3.2.87) and (3.2.88), are applicable. The principle is in ac-
cordance with Drucker’s postulate (Drucker 1951) of a stable material, from
which the same consequences as those listed above (and the uniqueness of the
solution) may be deduced, see, e.g., Mandel (1964); Hill (1968); Mendelson
(1968); Chen and Han (1988).

Finally we present a generalization of the flow rule due to Koiter (1953).
It is experimentally established that the elastic region for some materials is
bounded by several continuous yield surfaces, say N, that mutually intersect,
see Section 6.2.1. The intersecting points belong to the yield surfaces f,1 =
0, fy2 =0, ... and fyn = 0, and represent singular points. It is assumed
that there is a contribution of each yield surface to the plastic strain rate at
the common singular point, and é% is expressed as

. . Ofyi
P _
e = Ek Ak ay (3.2.92)

where A, is the proportionality factor corresponding to the yield surface fyu
= 0. Figure 3.2.20b shows a geometric representation of this relation for two
yield surfaces.

The above general relations will be specialized to various material models
and will be used in the procedures for numerical stress integration.

3.2.7 Examples

Example 3.2.1. Compression of Metal Piece. A piece of metal is com-
pressed in a rigid die, as schematically shown in Fig. E.3.2-1a.

a) Assuming that the material is free to expand in the z-direction, find the
pressure po at the start of plastic deformation. The yield stress is oy,
and Poisson’s ratio is v.

b) Let all lateral displacements be restrained and establish how the axial
strain e,, depends on the applied pressure p including when there is
plastic flow.

The material is of von Mises type with mixed hardening and is governed by
a bilinear uniaxial stress-strain relation.

a) Plane Stress Deformation. In this case we have that the normal stress
0. and normal strain ey, are equal to zero. For the elastic deformation we
have (see (A1.5) and (A1.24) in Appendix A1)

Oyy = VO = —VUP (a)

The mean stress is
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Fig. E.3.2-1. Compression of metal in a rigid die. a Schematic representa-
tion; b Dependence of pressure p on axial strain e,
1
Um:_3(1+y)p (b)

and the deviatoric stresses are
1 1
Syy = 3(1 —2)p S, = —3(2 —V)p Spe=-Syy—S::=—0m (¢

The effective stress (3.2.39) is

1/2
5= |5 (555,450 =0-ver) (@)

Yielding starts when & = o, (see (3.2.20)), therefore it follows from (d) that
the pressure at start of yielding is

p(]:va/\/l—V-f—Uz (e)

It is interesting to determine po for two extreme values of v : (i) v = 0;
and (i7) v = 0.5. When v = 0 we have

Do = Oyv
while for » = 0.5 (incompressible material),

Do = 2va/\/?’

b) Restrained Compression. The physical conditions in the lateral direc-
tions = and y are the same. Hence, we have
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— — E _ E P _ P
€xx =€yy =0 €, =€y, €p =€y

Oga = Oyy (f)

E _E P _P ; ; ;
2z €yys Ezgs €y, ave the elastic and plastic strain components at any

where e vz €yy
stage of deformation. Using the incompressibility condition of the plastic
deformations we have

1
5z = eg];y = - 2esz (g)

From the elastic constitutive law (A1.6), with the elastic compliance matrix
given in (A1.8), and with use of (f) and (g), we obtain
el =0 (h)

This equation can be written in terms of the deviatoric stresses and the mean
stress. The relations between the deviatoric stresses follow from (f),

1 .
S;c;c = Syy = _2 Szz (1)

while the mean stress can be expressed as (see (A1.12))

= 0
7m = 31— 2w) )
Therefore (h) transforms into
1+v 1 1,
- v - = k
2R S.. + 3622 2ezz 0 ( )

We next employ the yield condition (3.2.57), and the hardening law
(3.2.73) for the back stress ae. We have the following relations:

S..=8..4a.. Aa..=CAel (1)
Since the hardening law is linear (see Fig. E.3.2-1), with a constant plastic
modulus Ep, from (3.2.73) and (3.2.79) follows C = 2/3(1 — M)Ep. The

relations (g) are satisfied at any stage of deformation, with the proportional
loading conditions (3.2.29), and Ep = const., therefore we have

a., = Cel (m)
From (1), (m) and (k) we obtain

1+v . 1 14v 4 p 1
- 2E Szz_(2+ 2E C)ezz
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Also, we have

Szz = Syy = - SZZ (O)

and
e’ = —el (p)

where we have taken into account that el is negative. Using that S.. is
negative, it follows from the yield condition (3.2.57) that

A 2 2
Szz = - v
Oyv + 3

2 v0 S MEpel, @

Finally, we substitute (q) into (n) and solve for ef,
P 1 (1+V)va/E+ezz
€. = (r)
3(1+v)Ep/(3E)+1/2

Summarizing the above relations we have that for a given e,, we de-
termine el from (r) and then calculate S., from (k), o, from (j), and
0., = —p=2_S., + om. The components of the stress radius and back stress,
and other components of the plastic strain and stress follow from the above
given relations. It should be noted that in this example el , and hence S..

do not depend on the mixed hardening parameter M. The relation between

el and e.. is linear, and then S, is linear with respect to e... Hence e,

zz
depends linearly on 0., = —p. The linear relation p(e..) is shown in Fig.
E.3.2-1b for the material constants given in the figure. For e,, = —0.05, the

values of stresses and plastic strains are

Ope = Oyy = —8081.3 0., = —p= —8837.3
er, =e,, = —0.5el, el = -0.03006

and yielding starts at

el =0, 04y = 0yy = —562.5, 0., = —p=—13125
= —4.875x 1073.

®

€

w
w

Note that in the case a non-bilinear material is considered, we have a
nonlinear dependence of the stresses on the strain e,,, and the equations
must be solved incrementally. Also note that all stresses are given in MPa.

Example 3.2.2. Torsion a Thin-Walled Tube. The thin-walled tube
shown in Fig. E.3.2-2a is subjected to the torsional end moment M; The
material is a von Mises metal. The geometric and material data are given in
the same figure.
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d=2R
S
Yo 49 Neerx "
! M, @ 3
L ‘ Lengths in m
Moduli and stresses in MPa

E=2x10° =5
v=03 . g=2R=1
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G,,=100
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[MNm]
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0.4534 |
0.1831/
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-0.5028]
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Fig. E.3.2-2. Torsion of thin-walled tube. a Geometric and material data;
b Torsional moment - end rotation dependence

a) Determine the end rotation as a function of the torsional moment if the
moment increases to the value 2M; = 0.7 MNm and then decreases.

b) Determine the axial force necessary to cause yielding if the moment is
released at the values 2M; = 0.7 and *M; = —0.7 MNm, see Fig. E.3.2-2.

We first give some general relations. The only non-zero stress due to
torsion is the shear stress o, related to the torsional moment M; as (con-
sidering that J/R is small, hence using the linear term J/R only)

M,

Toy = 2w R25 (2)

The relation between the shear strain v and the angle of rotation ¢ is (Fig.
E.3.2-2a)

o= ng (b)

Since the torsional moment is constant along the length, it follows that the
stress state of the material is uniform.
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a) Using the yield condition (3.2.56) we obtain the torsional moment at
the start of yielding,

LM, = 27rR267; =0.4534 MNm (c)

A further increase of the torsional moment causes plastic deformations of the
material, with the elastic strain given in (A1.19),

Oz

while the plastic strain can be obtained from the yield condition as follows.
The yield condition (3.2.56) can be expressed as

0
Opy — Quy — \/2 =0 (e)

from which

s,
V3 0 ®

We further use the relation (3.2.66) with the bilinear stress-stain relation,
and the constitutive relation (3.2.73) (with (3.2.79)), to obtain

dozy — dagy —

2
doyy = 3Epdefy (8)
Hence, the plastic strain el is
efy =1.5(04y — 70)/EP (h)

where 79 = 0,,/v/3. With use of the elastic constitutive relation (d), the
expression for ef , and the relations (a) and (b), we obtain
L[ 1 3 M, 370 .
o= 1t o ) s~ (i)
R |'G  Ep’'2mR?>§ Ep
This expression is applicable to the elastic-plastic deformations and an in-
creasing torsional moment. In the case of elastic deformations, M; < 1M;,
the terms with Ep in the denominator should be left out. The graph 0-1-2
in Fig. E.3.2-2b corresponds to the relation (i).
Some of the quantities at the point 2 on the graph are

Yeay = 2.389 x 1072 Zel =2.331x 1077 % =0.1911
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When the moment changes sign at point 2, yielding starts when the stress
304y reaches the value (see (3.2.56) and Fig. 3.2.18)

300y = —(26,/V3 — 2au,) = —64.01 (k)
and the moment is 3M; = —0.5028. The shear strain and the rotation are
ery = 0.5%0,,/G + el, =2.289x 107> % =0.1831 0))

The line 2-3 represents the elastic unloading. For the reverse elastic-plastic
deformation, the relation (i) changes into

L1, 3, M 3%y  op

*=prllat B orr2s ~ Ep =y (m)

and is represented by the line 3-4 in Fig. E.3.2-2b. The values corresponding
to the moment M, are

tel, =4.662x 107° ‘a,, = 2511 *p =3.266x 10"
‘eP =4.845x 1072 *6, =0y, + MEp*e" =158.72 (n)

b) If the torsional moment is released at point 2, yielding under the ax-
ial force will start when the yield condition (3.2.56) is satisfied. From that
condition we obtain the stress 20,, and the force 2F,

2000 = \/2&§ —-32%a3, =1308 *F =2n0R 0., =2.055 MN (o)

The stress and the axial force at start of yielding at point 4 (with the moment
released), are

Y0pa = \/4&3 —34%a2, =1586 'F =2m0R ‘0,, = 2.492 MN

Example 3.2.3. Pipe Structure. Two straight pipes are connected by
a hinge at point B, and fixed to the wall by hinges at points A and C (Fig.
E.3.2-3a). The structure is loaded by the internal pressure p.

Determine the dependence of the displacement of point B on the internal
pressure p.

As it is common in the analysis of pipes, we consider that each pipe has
closed ends. Therefore, the internal pressure produces the axial force

F, :Aintp:ﬂ-(R_(s)Zp (a)
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Lengths in mm Moduli and stresses in MPa
5‘7
E =2x10°
r\‘ B V=03 3
U E,=2x10
6,,=200
D M=1
OB:Rstruct=2000 Gy
D=100 -
8§=2 ol T
E
X e

U =0.876
Us [mm] Py =9.62
: B, =11.85
RE
Ug 1> N
Po p[MPa]
-1
1244 -

Fig. E.3.2-3. Pipe structure subjected to internal pressure loading. a Ge-
ometry and material data; b Kinematics of deformation, forces and stresses;
c Displacement of point B as a function of internal pressure
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where A;,; is the area of the internal cross-section, and R = D/2 is the pipe
external radius.

In order to find the displacement Up as a function of pressure p, we
express Up in terms of the axial strain e,

_ 2Rg¢pyer sin(m/8)
Up = COSB €aa (b)

This relation follows from the kinematics of deformation shown in Fig. E.3.2-
3b.

We next employ the fact that the pipe wall is subjected to the axial stress
0aq and hoop stress o... Since the two pipe sections are free to expand, the
axial stress o, is due to the axial force F,, as shown for a cross-section s — s
in the figure. Then o, is

Oaa = kap (c)
where
_ Aw (R-0> 1R _R-6 1R 3 &
Fa=" 0 = oms “ols Vr_gsp®als Tater) @

where the last expression is the approximation neglecting quadratic terms of
(6/R); A= 2mR,,0 is the cross-section of the pipe wall, and R,,, = R—J/2 is
the mean radius. The hoop stress .. is the static equivalent to the internal
pressure,

Occ =kep (e)
where
R
ke="_-1 f
; (0
From (c) and (e) follows that we have a case of proportional loading (see
(3.2.29)).

We next relate the stresses and strains. The deviatoric stresses Sqq, Spe
and S.. are :

Saa = k;p Spp = k;,p See = kép (g)
where
, 1 1 )
= 2k, — ko) =~ — (1 — h
K= @k~ k) % (1= %) (0
Y A N A 1 R _ 0 .
ky=—k,— k. =~ 12(65 7+ R) (i)
;L 1 _ - 1 R e 0 .
kc - 3(2kc ka) ~ 12(65 5 R) (.])

Using (3.2.44) and de” = (1/Ep)da, we obtain
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_P T
d\ — 3df 3 k:d_p 3 dp ()
2 o 2Epk‘p 2Ep p
where
- 3,, ) ,
k= \/ (K2 + k2 + k2) 1

2
and Ep = EEp/(E — Er) (see (3.2.5)) is the plastic modulus. Further,

p
3k’ 3k
P _ _ a _ a _
hu= [ Swir=1p" [av=10 o= m)
Po

3K 3K/

_ _ P _ _
ebb - 2EP (p pO) eCC 2EP (p po) (m)

where pg corresponds to the start of yielding,
Do = O'yu/];? (Il)

Note that el < 0 since k], < 0. Also, the ratios between the plastic strains

are
16 16
P P PP
eaa/eccz_gR ebb/eccm_(l_ 3R) (O)

The plastic strain ef, is positive while the others are negative. Also, el is
small compared to the other plastic strains (the ratio is of order d/R).

We next employ the elastic constitutive relations (A1.6), and the above
expressions for the plastic strains to obtain

€aa = ;(ka —vke)p+ ez};a (p)

The first term represents the elastic strain eZ, which can be expressed as

g D R 1 0
~ -1 —v—
em p (=G —r= ) (@)
and we have that
1
el >0 for 1/<2—4i% (r)

Using (p) and (m) we can find the pressure jp for which the axial strain is
equal to zero,

_ 3k'E
~ 2Ep(k, — vk.) + 3k.E

Po Po (s)

Therefore, the strain e,, increases linearly with the pressure in the elastic
region, then decreases and reaches zero at the pressure value pg. A further
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pressure increase leads to negative values of the axial strain linearly increasing
in magnitude.

The expressions for ey, and e.. are analogous to (p). With e,, determined
by (p), we can calculate the displacement Up from (b).

Finally, we substitute the geometric and material data given in Fig. E.3.2-
3a in the above expressions. The values of py, stresses, strains and displace-
ment Up corresponding to po, are :

po = 9.622 04, =113.11 0. =23092 MPa
€an = 2.191 x 107*  e.. = 9.850 x 10™* e, = —5.160 x 10~
Up =0.876 mm (t)

The pressure py calculated from (s) and stresses and strains are:

Po = 11.848 04, = 139.27 0., = 284.35
€aa = 0.0 e, =2.118 x 1072 ey = —1.992 x 102
el =-2698 x 107" ef =1.997 x 1072 e, = -1.970 x 1072

Ug =0.0 (u)
Finally, the values corresponding to pressure p = 15 are:

Oaa = 176.33 0. = 360.00
€aa = —3.103 x 107 e, =5.031 x 1072 ¢y, = —4.840 x 1072
el =-6.520x 107* el =4.825 x107? ef, = —4.759 x 1072

Up = —1.241 (v)

A graphical representation of the displacement Up in terms of pressure p
is given in Fig. E.3.2-3c.

3.3 Orthotropic Plasticity

So far we assumed that the material is initially isotropic and that during plas-
tic flow some anisotropic response may be developed due to the Bauschinger
effect. This anisotropic plasticity behavior is modeled by the von Mises mate-
rial model with mixed hardening assumptions. However, we have in engineer-
ing practice metals which already prior to and at the onset of yielding, and
then also thereafter, show anisotropic elastic and plastic response, a behavior
which can be due to the technological process in the material production.
For example, such anisotropy is usually found in metal sheets. This section is
devoted to some basic material models used in anisotropic metal plasticity.
We first introduce Hill’s orthotropic model (Hill 1950), an often used ma-
terial model to describe orthotropic metal plasticity. We write the expressions
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of Hill’s yield condition and the stress-plastic strain relations in a form suit-
able for the stress integration algorithm of Section 4.6. Then we present some
orthotropic-plasticity models commonly employed in sheet metal plasticity.
Finally, we illustrate the application of Hill’s orthotropic model in simple
examples.

3.3.1 Hill’s Orthotropic Material Model

We assume that the material possesses three orthogonal (principal, or mate-
rial) axes and that these axes remain orthogonal during the course of plas-
tic deformations. To simplify the presentation, we use the principal axes of
anisotropy as the coordinate axes.

The yield condition due to Hill (1950) is

1
fy = 5 [ Floyy — 0:.)2 4+ G0 — 0pe)? + H(0py — O'yy)2 (3.3.1a)

+ 2(Lo}, + Io,. + Ko3,)— 1] =0

where F. G, H,L,I and K are material constants, related to the assumption
that the yield stresses in the three principal directions are different. The
material constants can be determined by uniaxial loading in the z,y, and z
directions and by pure shear loading in the principal planes. If X, Y and Z
are the yield stresses in the material directions, and Y,,Y,. and Y., are the
yield stresses in pure shear in the (z,y), (y,2), and (z,z) planes, then the
following relations can be obtained from (3.3.1a),

1/1 1 1
F = _
2 <Y2+Z2 X2>

col(1,1 1
T2 2 x2 vy

1/1 1 1
H = - 3.2
2<X2+Y2 Z2> (3:32)
1 1 1
2Y2, 2Y2, 2Y2

In the case of isotropy, the condition (3.3.1a) reduces to the von Mises yield
criterion (3.2.36). We note that the mean stress does not enter the yield
condition (3.3.1a) and therefore has no effect on yielding, as in the case of
isotropic plasticity. Hence, instead of the stresses 0,4, 0yy, 0., We may use
the deviatoric stresses Syu, Syy, S:z.

The Hill yield condition can be written using matrix notation as



86 3. Fundamental Notions of Metal Plasticity

fy = ;(O'TNO' -1)=0 (3.3.1b)

where the stress vector o is defined in (A1.1), and the matrix N contains
coefficients multiplying the stress components.

In case the yield stresses X, Y, Z differ significantly, some of the coeffi-
cients F, G, H in (3.3.1a) may be negative, and we must ask whether the
yield surface is still convex. Generally, the yield surface (3.3.1b) is convex
if the (3 x 3) coefficient submatrix of the (6 x 6) matrix N corresponding
to the normal stresses o,4,04, and o, is positive semidefinite, Barlat et al.
(1991). Other specific conditions that the coefficients F, G, H must satisfy
are discussed in Hill (1990).

We transform the yield condition (3.3.1) into a form analogous to (3.2.36)
by using the stress deviator S and multiplying (3.3.1) by 1/303. Then we
obtain (Kojic 1992)

=0 (3.3.3)

where N is a matrix of the shape coefficients, and o, is the yield stress, still
to be defined. We use here matrix notation as in (3.3.1b) for simpler writing
(see Appendix A2), with

ST: [Sl = S:c:ca Sy = Syya 53 = Szz: Sy = Szy: SS = Syz: SG = Szz]
(3.34)
and S’ is equal to S but contains twice the shear terms. The dimensionless

shape coefficients IV;; can be related to the coefficients F, G ,..., K by using
the deviatoric stress components S;. Hence

N1 + N, —N; —N,
Ny + N3 —N3
_ Ny + N3
N = Na, (3.3.5)
symmetric Ny
NZI
where
2 2 2 ., 2 9
N1 = 3H0'y, N2 = 3G0'y, N3 = 3F0'y, 5 sz = 3K0'y (336)
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The yield condition (3.3.3) (as well as (3.3.1)) corresponds to the initial yield-
ing. A schematic representation of the yield surface (3.3.3) shows an elliptical
form due to the shape coefficients V;;, with the center of the ellipse at the
stress origin. We illustrate the application of the above relations in Example
3.3.1.

A form of the yield stress o, which takes into account the yield stresses
X, Y ..., Y, is

1771 1/2
o, = {2 {3 (X2+Y?+2%)+ Y, +Y,. + ij] } (3.3.7)

In the case of isotropic conditions 7, = o,/v/3, where 7, and o, are the
yield stresses in simple shear and tension, and

X =Y =27=+3Y,, =V3Y,, =V3Y., =0, (3.3.8)
Also,
1 1 1 1
N,=Ny,=N3;=_N,,= _N,.=_N., = 3.
1= N =Ny = Noy = Nyo = 5 (3.3.9)

and of course the yield condition (3.3.3) reduces to (3.2.36).

If we assume that the flow rule (3.2.71) is still valid, we can derive the
stress-plastic strain relations. From (3.2.71), (3.3.3) and (3.2.69), and with
(3.3.5), we obtain

de?’ = dANS (3.3.10)

Note that the vector de” contains tensorial components, in accordance with
(3.2.67).
If we define the equivalent stress &, as

3 1/2
Ga = <2STNS’> (3.3.11)
the yield condition (3.3.3) gives the equation

Go—0y=0 (3.3.12)

In analogy with the assumption of the equivalence of plastic work (3.2.32)
for an isotropic material, we now introduce the equivalent plastic strain &2’
using
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2
dWF = 5;;def; = ANSTNS' = Jd 52 = G,de’ (3.3.13)
where we have used (3.3.10), (3.3.11) and the scalar product definition
(A.2.29). From this equation

_ 3del

d\
2 5,

(3.3.14)

which corresponds to the expression (3.2.44) for an isotropic material. Hence,
using (3.3.10) we obtain

S = dlANfldeP (3.3.15)

Substituting S into (3.3.13) and using (3.3.14), we find that the increment of
equivalent plastic strain det is

2 T 1/2
= | (de”)" N~'de” (3.3.16)

where dé? is equal to de”’ but with twice the shear strain terms (i.e., with
engineering shear strains, see also (A1.3)).

Since the plastic volumetric strains are zero, one of the normal plastic
strains can be expressed in terms of the other two. Hence in the calculation
of de¥’ we use a (5 x 5) matrix N which can be inverted, because the original
(6 x 6) matrix is singular. For an isotropic material, the equivalent stress &,
and increment of equivalent plastic strain de’ reduce to the expressions for
o and de” given by (3.2.39) and (3.2.46), respectively.

In this model, the yield condition (3.3.1), or (3.3.3), is used to determine
the initial yielding. The stress-plastic strain relations (3.3.10) are used as-
suming a perfectly plastic material behavior, with the shape coefficients IV;;
and the yield stress o, considered constant during plastic flow. Hence during
plastic flow we have &, = const. while €7’ is increasing. The model can be
employed for the elastic-plastic analysis of sheet metals, as we will see in the
next section. The hardening of the material, observed experimentally, can be
included, with some simplifications: for example, the shape coeflicients may
be considered constant, and the change of the yield stress o, may be taken
from the uniaxial yield curve for the rolling direction. A mixed hardening
model was proposed in Kojic et al. (1996b).
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3.3.2 Orthotropic Models for Sheet Metals

Many structural components, such as used in vehicle or airplane bodies, are
produced from sheets of metals. A metal sheet is obtained by cold or hot
rolling of an isotropic bulk material with the result that the material in the
sheet is orthotropic. The material axes correspond to the rolling direction,
the in-plane orthogonal direction, and the direction normal to the sheet.
The mechanical behavior of sheet metals is quite complex, and significant
experimental and theoretical research has been directed to understand and
analyze sheet metal response during elastic-plastic deformations.

In order to introduce the specific properties of sheet metals, we first
present some typical experimental data. Then we describe some material
models.

Experimental Observations. Important material characteristics of
sheet metals, subjected to plastic deformations, are the yield stresses and
yield curves in specific directions. The yield stresses og, 045 and ogo are
usually used as material characteristics corresponding to, respectively, the
direction of rolling, the 45-degree direction, and the direction orthogonal to
rolling. In addition, important material characteristics are also the plastic
strain ratios (or strain rate ratios) defined as follows

ro = (022 = 00, Oyy = 0y =0)
T45 = eP (a—jj = 045, Ogy = Ozg = 0) (3317)

T9o = oP (Uyy =090; Ogg = Ogy = 0)

where z is the axis in the rolling direction, y is the in-plane axis orthogonal
to x, and z is the axis normal to the sheet; Z,§ are in-plane axes rotated
45 degrees with respect to the z,y axes. These r-ratios are referred to as
the Lankford coefficients. They are evaluated in experiments invoking mod-
erate or large plastic strains (see, e.g., Lege et al. 1989, Barlat et al. 1991,
Makinouchi et al. 1993). Since the elastic strains are small, these values are
practically equal to the total strain ratios, and the plastic strain ratios are
also called the strain ratios. Note that these coefficients give in each case the
ratio of strain in the direction orthogonal to pulling to the thickness strain
of the sheet. In practical applications the coefficients are used as material
data for a yield function employed, and are considered constant during the
material deformations. Hence the strain rate ratios are also considered equal
to the strain ratios (Makinouchi et al. 1993, Lee et al. 1996).

Table 3.3.1 lists experimental data for several materials. The data for the
steels are taken from Lee et al. (1996), and for the aluminum alloy are from
Makinouchi et al. (1993). Figure 3.3.1 shows the uniaxial stress-strain curves
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Table 3.3.1. Experimental data for sheet metals. Initial yield stresses
and the strain ratios

Material oo 045 090 0 45 T90
N/mrn2
Draw quality
. 152 159 163 1.85 1.52 2.37
mild steel
High strength 364 380 402 072 121 1.03
steel
Aluminum alloy 137 134.5 135 0.71 0.58 0.70

for these materials beyond the initial yield. Note that the strains in the
uniaxial tests are large with the final values corresponding to rupture of the
material (see also Fig. 3.2.2).

Table 3.3.1 and Fig. 3.3.1 show that the differences in the yield stresses
in the selected directions (of the same material) are of the order of several

Stress in MPa
I =
o 400 §
o =
= o \
[ 3 ]
'-_? 300 1 = l
Angle with respect to
rolling direction [deg.] !
200 1 . 405 !
—_ 90 ]
{
100 ; " " " " " t t t t l:
0 0.1 0.2 03 0.05 0.15 0.25
True strain True strain
a b
g 9007 — 04590
Q i
@
$ 300t
'_
100 +
1 1 1 1 1 1
0 0.1 0.2 0.3
True strain
(o3

Fig. 3.3.1. Uniaxial stress-strain curves for sheet metals. a Draw quality
mild steel; b High strength steel; ¢ Aluminum alloy
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percent (10% for the high strength steel) while the differences in the r-ratios
are significantly larger. Also, Hill (1993) cites that for a brass, the yield
stresses are g¢9 = 126 MPa, 099 = 125 MPa, while ro = 1.51 and r99 = 0.37.
The given experimental data illustrate the so-called “anomalous behavior”
of sheet metal. A number of orthotropic-plastic material models have been
proposed to represent these behaviors of which we describe three used in
engineering practice.

The Basic Hill Model. The first step to obtain this model is to reduce
Hill’s yield condition (3.3.1) to plane stress conditions. Then the coefficients
in the yield condition are expressed by use of the yield stresses and strain
ratios specific for sheet metal.

In the case of plane stress in the z,y plane, we have 0., =0y, = 0., =0
and the yield condition (3.3.1) becomes

2fy, = Go?, + Fo’ + H (045 — 0yy)° +2Lo2%, —1=0 (3.3.18)
or
2fy =905, + fo, +h(0we —0yy)* + 2005, —05 =0 (3.3.19)
where
g=Go3, f=Fo2 h=Ho}, (= Lo} (3.3.20)

are dimensionless orthotropy material coefficients.
Let us consider two ways to determine the material constants g, ..., ¢:

a) according to the yield stress ratios og/045, 00/090 and the strain ratio
To;
b) according to the strain ratios ro, r45 and rgq-

In each case we assume, arguably, that we can use the given r-ratios with the
given initial yield stresses, see also our comment after the computed results
have been presented.

In approach a) we first assume uniaxial loading to the stress og. It follows
from (3.3.19) that

g+h=1 (3.3.21)
If the material is subjected to the uniaxial loading ogg, we obtain
oo\ 2
f+h= < 0 > (3.3.22)
090
The stresses corresponding to uniaxial loading by the stress o45 are

1
Ooz = Oyy = Oay = , 045 (3.3.23)
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and we obtain

2
f+g+20=4 <54°5> (3.3.24)

In the system of equations (3.3.21), (3.3.22) and (3.3.24) we have four
unknowns. An additional equation can be obtained by using one of the re-
lations (3.3.17). If the definition of r¢ is employed, we obtain with the flow
rule (3.2.67) and the yield condition (3.3.19):

éfz:}\(g+h)go

el;y =—\hoy (3.3.25)
éfz = _ezpz - egl;jy = _).‘ga—()

where the last equation follows from the incompressibility condition. Hence
the Lankford coefficient rq is

P
_Cy _ N
ro = &P g (3.3.26)
The solutions for g, h, f and £ are
1 To
= h =
g ]. + To 1 —+ To
o T
F=("0) 0 (3.3.27)

J90 1 + ro
E—l 4<0’0>2 (0’0)2 1—7“0
2 045 090 1+mrg
With these material constants we satisfy the yield condition under uniax-
ial loading in the material x and y directions, and in the 45 degree direction
with respect to rolling. Also, we have the proper strain ratio ro. However,
the other strain ratios may deviate from experimental values. To illustrate
this deviation we calculate ry5 and rgg for the materials in Table 3.3.1. The
results are shown in Table 3.3.2. It is seen that the differences between the

calculated and experimental data are significant.

In the calculation of the material constants g, ..., £ using the approach
b), we employ (3.3.21) and (3.3.26), and the expressions for ry5 and rgg are

A
45_f+g 2

roo = (3.3.28)
90 f .

Then, the solutions for g and h are as given in (3.3.27), while the coeflicients
f and / are



3.3 Orthotropic Plasticity 93

Table 3.3.2. Calculated and experimental values of Lankford
coefficients r45 and rgq

Material Calculated values by using Experimental data
material constants (3.3.27)
T45 T90 Ta5 T90
Draw quality 2.20 2.94 1.52 2.37
mild steel
High strength 0.87 1.04 1.21 1.03
steel
Aluminum 0.73 0.68 0.58 0.70
alloy
To
f =
(]. + ’I“()) T90
1+2r ro+ T
0=t 5) (1o + 750 (3.3.29)

2 (1 + To) T'90

With the constants g and h given by (3.3.27), and f and ¢ given by
(3.3.29), we satisfy the yield condition in uniaxial loading . On the other
hand, the calculated yield stresses in the other directions may differ from the
experimental values. We give these differences in Table 3.3.3 for the three
materials considered. The maximum deviation from the experimental data is
smaller than in Table 3.3.2.

Table 3.3.3. Calculated and experimental values of yield stresses o45
and J90 [N/mm2]

Calculated values by using

Material material constants g, h from EXer:tI;ental
(3.3.27), and f, ¢ from (3.3.29)
045 J90 045 J90
Draw quality
mild steel 171.3 158.2 159.0 163.0
High strength
steel 348.4 400.7 380.0 402.0
Aluminum
alloy 142.0 136.4 134.5 135.0

In industrial applications it is important to accurately predict the strains.
Therefore, the determination of the orthotropic material coefficients g, ...,¢
using the experimental values of the strain ratios is frequently preferable.
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The yield stresses used above correspond to the initial yielding. However,
the yield stresses change during plastic deformations (Fig. 3.3.1). A simplifi-
cation for the description of hardening is adopted in practical applications,
see, e.g., Makinouchi et al. (1993); Lee et al. (1996). Frequently, the yield
curve in the rolling direction is taken as the representative hardening curve
of the material for general loading conditions, and the Lankford coefficients
are considered to be constant during plastic flow.

Let us note that the form (3.3.3) of Hill’s yield condition can be used
since it follows from (3.3.6) and (3.3.20) that

2 2 2
N3 = Nyy= 1 3.3.30
397 3 3f7 Ty 3 ( )

Ny = gh, Ny =
We will use the form (3.3.3) of Hill’s yield condition in the presentation of
the numerical procedure for stress integration (Section 4.6.1).

Finally, we mention that the above described Hill’s model for sheet metals
is used in practice because the material constants can be easily determined
(Li and Cescotto 1996). Comparing the predictions of the yield stresses and
strain ratios obtained by Hill’s model with experimental results, Fig. 3.3.2
shows that for the alloy considered, the deviation from the experimental
results is approximately the same in character and size as obtained using
another orthotropic model (Barlat’s six-component model).

Hill’s Sheet Metal Models. In order to achieve a better fit to exper-
imental results, Hill proposed modified forms of the basic model described
above. In Hill (1990) the proposed yield condition is

m/2
fy = lowa +oyy|™ + (op/T)™ ‘(Uzz - Uyy)2 + 4‘733;

. 21 .
+|o2, +o2, + 2aiy|m/ [—2a (02, —03,) +b(00e — 099)2]

— (20’[,)m =0
(3.3.31)

where a, b and m are material constants; and o, and 7 are the in-plane equi-
biaxial yield stress and shear yield stress, respectively. The conditions that
the coefficients a and b must satisfy in order to ensure convexity for m > 1
are discussed in Hill (1990).

Another yield condition for sheet metals is proposed in Hill (1993). It is of
cubic order with respect to the stress components 0., and oy,, and is given
by the following expression:
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(('Sy)1 Yield stress in the tension direction

G, Yield stress in the rolling direction
1.1F
© — Barlat's six-component model, m=8
= — = Hill's model (1948)
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2 1.04
g 6,=327 MPa
?
o
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Fig. 3.3.2. Dependence of the material characteristics on the uniaxial loading
direction for 2024-T3 alloy sheet. a The yield stress ratio (o)1 /00; b Normal
strain rate ratio r; ¢ Shear strain rate ratio I'. Directions: (1) - tension
direction, (2) - the in-plane direction orthogonal to (1), (3) - the direction
normal to the sheet

2
f Ore  COzaOyy | Oyy +<p+ ¢ plosa| +q |‘7yy|> Taalyy _ 1 _
Y= 9 2 =
0o 00090 J90 Op 00090

(3.3.32)

where ¢, p and ¢ are material parameters defined in terms of the yield stresses
00, 090 and oy, and in terms of the strain ratios rg and rgg. The procedure
to determine ¢, p and ¢ in terms of og, 099, 0p, To and rgg is based on the
definitions of oy, ...., 90 and the yield condition (3.3.32), as for the basic Hill
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model. The resulting expressions are:

1+ 1 1
c=0g0 -
0990 | 2 2 2

o %90 Oy

112 — 2
p= { o (0 0920) _ T900p , c ] (3.3.33)
a (1+7’0)00 (1+T90)0'90 ago
1 {27490 (op — 00) 2rgoy, c ]
1= a (].-l—’l“g(])UgO (1-{-7’0)0% 090
where
1 1 1
a= + -

go 090 Oy

The yield condition (3.3.32) is not suitable for general applications because
it does not contain shear terms.

Barlat’s Models. We cite here two Barlat orthotropic models that have
been used in modeling sheet metal plastic deformations (Chung and Shah
1992; Nakamachi 1993). The siz-component model, Barlat et al. (1991), is
applicable to general 3-D deformations and also to plane stress (shell) condi-
tions. The yield condition is

fy = |51 — 52|m + |SQ — S3|m + |S3 — Sl|m — 20;71 =0 (3334)

where Sy, S, and S3 are the principal values of a symmetric stress matrix S,
with the terms:

~ 1
zr = 3 [C (Uzz - Uyy) -b (Uzz - U;c;c)]
~ 1
w3 la(oyy —0:2) — c(0az — Tyy)]
Szz = ; [b (Uzz - Uzz) —a (Uyy - Uzz)] (3335)

S’yz = nyZa Szz = 90zx, S’wy = hazy

and o, is the yield stress corresponding to the uniaxial stress in the rolling
direction (taken at 0.2% plastic strain, Barlat et al. 1991). The exponent m
and the material orthotropy coefficients a, b, ¢, f, g and h are determined
by comparing the results obtained using the yield condition (3.3.34) and ex-
perimental results. Uniaxial loading of the material in several directions with
respect to the rolling direction is considered. When the orthotropy coeffi-
cients are unity, the material is isotropic, and if m = 1, the yield condition
reduces to the Tresca criterion, while m = 2 gives the von Mises yield condi-
tion. As the severity of the crystallographic texture increases, the exponent
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m should be increased for better prediction of the material behavior. Table
3.3.4 gives values of material constants for 2024-T3 and 2008-T4 aluminum
alloy sheets, while Figs. 3.3.2 and 3.3.3 show the variations of the yield stress
ratio (0,)1/00 and the strain rate ratio €5, /e, in terms of the loading di-
rection for 2024-T3 and 2008-T4 materials (Barlat et al. 1991). Here (o)1
is the yield stress in the loading direction (direction (1)), and é£, and éf}
are the plastic strain rates in the in-plane direction orthogonal to (1) and
in the direction normal to the sheet. We note that the calculated strain rate
ratios correspond to the yield stresses at 0.2% plastic strain, while the exper-
imental ratios were determined in the range of the total strain (in the pulling
direction) from 0.01 to around 0.20 (Lege et al. 1989, Barlat et al. 1991).

Table 3.3.4. Material constants for 2024-T3 and 2008-T4 aluminum
alloy sheets (Barlat’s six component model)

Material m @ b ¢ f g h
2024-T3 8 1.378 1.044 0.955 1.000 1.000 1.210
2008-T4 11 1.222 1.013 0.985 1.000 1.000 1.000

The hardening law of the material is taken to be defined by the uniaxial
yield curve for the rolling direction. Figure 3.3.4 shows the yield surfaces for
a 2008-T4 alloy sheet for various stress ratios o,,/0¢. It can be seen that the
yield surfaces in the chosen plane are convex.

Another Barlat’s model, known as the ¢ri-component model, was proposed
in Barlat and Lian (1989). The yield condition is based on experimental
investigations of sheet metals in plane stress conditions, and has the following
form

fy = a|K1 +Kz|m +G|K1 —K2|m + (2 —a) |2K2|m — 20_;71 =0

(3.3.36)
where
Ky = Oz + hoyy
2
L 9 1/2
K, = l(”; ‘7“’> —f—p2oiy] (3.3.37)

and a, m, h and p are material coefficients. As for the six-component model,
if a = h = p =1, the model corresponds to isotropic conditions. The yield
stress o, is usually taken as the yield stress o in the rolling direction. The
exponent m has the same character as for the six-component model, while
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((Yy)1 Yield stress in the tension direction

(¢

o Yield stress in the rolling direction

= m=11 (6-comp. model)
—= m=8 (3-comp. model)

1.0 £
A Experiment

G,=157 MPa

Yield stress ratio (c7y)1/($0

09 [ N
N
S .
0.8 ] ] ] ] ] ] ] ] ]
0 30 60 90
Angle between tension axis and rolling direction  [deg.]
o 1.0 T .
© r=S22 = m=11 (6-comp. model)
= Z e% ——= m=8 (3-comp. model)
08 T A Experiment
06 T
04 T
1 1 1 1 1 1 1 1 1
02 T T T T T T T T T
0 30 60 90

Angle between tension axis and rolling direction [deg.]

Fig. 3.3.3. Dependence of yield stress ratio (o,)1/0¢ and of strain rate ratio
r on uniaxial loading direction, for 2008-T4 alloy sheet. Directions: (1) -
tension direction, (2) - the in-plane direction orthogonal to (1), (3) - the
normal direction to the sheet

the orthotropy coefficients a, h and p can be determined from the yield
stresses or from the strain ratios. If yield stresses are employed, the orthotropy
coefficients are as follows
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S s=9v

[
6, =157 Mpa

DE
—4
0.4 /2

N
=)
:

N

o
=)

Normalized stress
in the transverse direction

-0.51

03 ;
0.2
00 — |
-1.0 + + +
-1.0 -0.5 0.0 0.5 1.0 1.5

Normalized stress in the rolling direction

Fig. 3.3.4. Yield surfaces for 2008-T4 alloy sheet, in 0,,/00, 0yy/00 plane,
for various shear stress ratios S = 04, /0 (Barlat’s six-component model)

_ 2(0y/T2)" —2(1+0y/090)™
14 (0y/0900)™ = (1+0y/090)™

_ Ty 2 Hm
p= 71 \ 2a + 2™c

where ¢ = 2 — a; and 7; is the yield stress in pure shear, while 75 is the
yield stress under shear in the loading condition oyy = —04, = T2, 04y = 0.
When the strain ratios are used, the orthotropy coefficients ¢ and h can be
expressed in terms of the strain ratios ro and rgg

ToT9o 1/2
a=2-2
[(1 +7o) (1 + 7‘90)}

h= [TU (1+ 7‘90)} 1z
(1 + To) T90

(3.3.38)

(3.3.39)

but the coefficient p is not expressed analytically. With a and h calculated, p
can be determined from a relation of strain ratios corresponding to an angle
with respect to the rolling direction (e.g., 45°). Values of material coeflicients
for a 2008-T4 alloy sheet are given in Table 3.3.5.

Table 3.3.5. Material constants for Barlat’s tri-component model

Material m a h p
2008-T4

alloy sheet 8 1.240 1.150 1.020
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Figure 3.3.3 shows the prediction of a yield stress and a strain rate ratio
for various directions of uniaxial loading, using the tri-component model.
The orthotropy coefficients are determined by use of the strain rate ratios,
so that good agreement between the calculated and experimental values of
the strain rate ratios is obtained. The shape of the yield surface obtained by
using the tri-component model is similar to that shown in Fig. 3.3.4 for the
six-component model.

Of course, the tri-component model is simpler than the six-component
model and it contains less material constants. Therefore if the response of the
sheet metal is predicted to a sufficient accuracy, the tri-component model is
more suitable for applications.

3.3.3 Examples

Example 3.3.1. Bending of Orthotropic Plate. An orthotropic plate is
bent by a uniformly distributed force F', Fig. E.3.3-1. Determine the force
which causes:

a) plastic deformations at the top and bottom surfaces;
b) yielding at the mid-plane, assuming a parabolic shear stress distribution.

Use Hill’s orthotropic model, with the yield condition (3.3.3) and the shape
coefficients (3.3.6). The material axes are a, b,y, and the yield stresses are:

X =50MPa Y =7=kX ky, =09
Yab = 30 MPa Yay = Yby = k?abYab kab =0.8

a) The maximum stress o, is

Oxx =

and with the given data

(ny)max

h e F=p¢

L L=500 mm

/Z ¢=100 mm
h=5 mm
0=30°

Fig. E.3.3-1. Bending of orthotropic plate. Geometric and loading data, and
stress distribution
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Ope = 1.2F (a)

where I,, is the cross-sectional moment of inertia for bending about the z
axis. By applying the transformation (A1.49) we obtain the stresses 44, s
and o, in the material directions

Oag = COS> 04y Opp =SIN® QA 04y Ogp = — SINQCOS A T4y (b)
The yield condition (3.3.3) is
> 2 .
N;i;j SiSj +2Napoy, — 3%y = 0 sum on 4,5 =1,2,3 (c)
no sum on a,b

where 4, j correspond to the a,b and y - directions, and according to (3.3.7)
the yield condition is

1/2

oy = |y (428 X7+ (1422, VA jV2=16018 (@)

The coefficients N;; can be expressed in terms of N1, N, and N3 (see (3.3.5))
defined by (3.3.6). In this example the coefficients N1, No, N3 and N, are :

N =N, = ; (0,/X)* = 0.2824
1
Ny =, (2/k2 = 1) (0,/X)* = 0.4148 (e)

Nap = ; (0y/Yap)® = 0.7843
Then, from (b) to (e) we obtain
Oz = 50.689 MPa
and from (a) the force F' causing yielding is
F=42241 N
b) The stress state in the midplane is pure shear, with the stress

3 F
Oay = (Oay)max = 9 b= 0.003F ()

Comparing this relation with (a), it is obvious that the yielding due to bend-
ing will be reached under a much smaller force F. However, let us proceed
with the analysis below merely for demonstration purposes.
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The stresses 04, and oy, are
Oqy = COSQ Oy Oby = —SINQ Oy
The yield condition (3.3.3) is now
2 -2 2 2 _
3(Nay cos” a + Npysin®a) oy, —o, =0

The coefficients N4, and N, are

Nay = Npy (Uy/Yab)2

1
- 3k2,
and then it follows from (h)

Ooy = kapYap = 24.0 MPa
From (j) and (f) we obtain F' as

F = kqyYa/0.003 = 8 x 10° N

(k)

Example 3.3.2. In-Plane Straining of Orthotropic Plate. The
quadrilateral orthotropic plate shown in Fig. E.3.3-2 is strained in-plane so

that the uniform displacements of the free edges are

U, =08 mm U, =-0.4 mm

Dimensions in mm

Uy

20
b o=45°

R ——

(T

X

Fig. E.3.3-2. In-plane elastic-plastic deformation of orthotropic plate. Initial

configuration and deformed configuration after the load release
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The angle between the material axis a and the z-axis is a = 45°. Assuming
a perfectly plastic material behavior and Hill’s model, with the plasticity
material constants as in Example 3.3.1, and the elastic shear modulus

Gap = 10> MPa

determine the plate deformation after the loading has been released.
The in-plane strains corresponding to the given displacements are

eor = Up /40 = 0.02 ey, = U, /20 = —0.02 ~,, =0 (a)

By using the transformation of the strain components given in (A1.50) we
obtain the in-plane strains for the material axes as

€aa =€ =0 7y, = —0.04 (b)

Therefore we have pure shear of the material in the material coordinate sys-
tem. Assuming elastic deformations, we obtain from the elastic constitutive
law (A1.19) that (all stresses below are in MPa)

ol = GapVap = —4 x 10° (c)
and the equivalent stress defined in (3.3.11) is
oY = (3Nuw)'/? |05 | = 6.136 x 10° > o, (d)

where we have used the values for N, and o, from (e) and (d) of Example
3.3.1. Hence the material is in fact deformed plastically and we proceed to
plasticity calculations.

The stresses in the material must be such that the yield condition (3.3.3)
is satisfied during the plastic flow. The only non-zero stress is o4, and we
obtain from (3.3.3) and the data of Example 3.3.1 that

Oap = —Yap = =30 (e)
The elastic strain corresponding to this stress is
vE =0 /Gap = -3 x 1074 (f)
and the plastic strain is
Vab = Yab — Yap = —0.0397 (8)
After the load is released the plastic strains remain in the material, in

this case 7apb. The plastic strains corresponding to the x,y coordinate system
are
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er, = —ey, =0.01985 L =0

T

and the residual displacements of the plate edges are

Ul = —2U, = 0.794 mm



4. A General Procedure for Stress Integration
and Applications in Metal Plasticity

We emphasized in Chapter 2 that a central point in any inelastic finite ele-
ment analysis is the calculation of the stresses in an effective manner. The
stress calculation predicts the material response described by the material
model. In this chapter we present effective numerical procedures for the stress
calculation in metal plasticity.

We first discuss in Section 4.1 the role of stress calculation in a finite
element incremental-iterative analysis. Then, in Section 4.2 we establish a
general approach for the implicit stress computation within the time (load)
step, and apply the approach to a class of time independent plasticity mod-
els. We call this approach the governing parameter method because the stress
integration problem is reduced to solving one nonlinear equation for a govern-
ing parameter. The governing parameter method is applicable to models for
which the mean stress does not affect the inelastic behavior (isochoric inelas-
tic deformation), as in metal plasticity, viscoplasticity and/or creep models,
as well as to models with volumetric inelastic deformation, as in geological
plasticity models. In this and in the subsequent chapters the algorithm will
be presented for a number of commonly used material models.

In Section 4.3 we give a brief review of stress integration algorithms as
they relate to the governing parameter method. A detailed derivation of the
relations used in the governing parameter method for the stress integration
of the von Mises model is presented in Section 4.4, and Section 4.5 contains
a number of solved examples. Finally, in Section 4.6 we derive the computa-
tional procedure for Hill’s othotropic model and give example solutions.

4.1 Introduction

In any structural analysis we need to address how to represent and model
the deformations and the material behavior. For the representation of the
deformations an adequate displacement field must be assumed, and the cor-
responding kinematic quantities, such as the strains, strain rates, deforma-
tion gradient, etc. need be calculated. This was briefly discussed in Chapter
2, while a deeper presentation, using the same notation, is given in Bathe
(1996).
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The material behavior is described by material mathematical models and
we consider here phenomenological models based on experimental observa-
tions. In order to use a material model in an engineering analysis, it is nec-
essary to have numerical procedures that provide an accurate calculation of
the model response, according to the selected model parameters and the load-
ing conditions. In this book we present numerical algorithms for the stress
integration for strain-driven problem formulations; these problems arise in
the displacement-based and mixed finite element formulations. We consider
inelastic material deformations, and our task is to calculate the stresses and
inelastic strains at the end of the time (load) step, with a known stress/strain
state at the start of the time step and for given strain increments. By this
calculation (stress integration) we trace the history of the material deforma-
tion at a material point, and in the whole structure, under given incremental
loading conditions.

The typical calculations performed in an incremental (finite element) anal-
ysis, with nonlinear material behavior, are summarized in Table 4.1.1 (see
also Bathe 1996). We consider materially-nonlinear-only (MNO) problems
(see Chapter 2).

The variables appearing in the table are the total and inelastic strains e
and e’V the stresses o, the internal variables of the material model 3, the
linear strain-displacement transformation matrix By, (see Section 2.3), the
integration weight due to numerical integration W, the numerical integra-
tion point associated volume AV, and the vector of external loads R. As in
Chapter 2, the left superscripts “t” and “t + At” denote the start and end of
time step At, and the right superscript denotes the iteration number. Note
that for the iteration counter ¢ = 1, the quantities with the upper right index
equal to zero have the values corresponding to the start of the time step, e.g.,
tHAL(0) — tg t+ALF(0) — tg

Referring to the table, we see that the stress integration and calculation
of the tangent constitutive relations represent key steps in an inelastic incre-
mental analysis. These calculations must be performed in a robust, accurate,
and efficient manner. We define an algorithm as robust if it provides solu-
tions for stresses under any reasonable boundary and loading conditions, and
for relatively large strain (or load) increments. It is very important in gen-
eral engineering analysis that the algorithm does not have limitations in its
range of applicability, and that it does not contain any numerical instabil-
ity. Of course, the algorithm should in addition yield accurate and efficient
solutions. As will be seen, our primary goal is to meet these requirements.

The solution of nonlinear structural problems is obtained by incrementing
the loads (or strains) in each time step At. Of course, in general, there is some
numerical error in the stress calculation as a consequence of the numerical
approximations used in the stress evaluation. The algorithm should provide
reasonable accuracy for relatively large increments in strains, and the error
should rapidly diminish as the strain increments are decreased. In Section
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Table 4.1.1. Equilibrium iterations showing the evaluation of the
stiffness matrix and force vector by looping over the integration points
(materially-nonlinear-only (MNQO) problems)

A. Initial conditions
t+AtU(0) —ty: t+AtR. =0

B. Equilibrium iteration loop for the complete finite element
assemblage

izi41 t+ AR (i-1) _ g t+AtK(Li—1) -0

C. Loop over all integration points of all finite elements

For each integration point (**4'&¢~1) is the strain vector (A1.3)):
tHALg(i-1) _ g, t+Atgyli-1)
e Stress integration
known: ‘o, te, telN, tg, t+Atgli=1)
evaluate: (+Atgli=1) t+AtGING—1) t+Atg(i—1)
e Constitutive matrix

HALQ(i-1) Pi+atg(i-1)
ot+Ata(i—1)

e Accumulate nodal force effects
HALR(I=1) o tHARGi=1) 4 g AL (=) Ay
e Accumulate stiffness matrix effects
i—1 i1
t+AtK2 ) e t+AtK(L )4
BI t+atgli-UB, WAV
END OF LOOP C

Calculate increment of displacements and total current
displacements

t+AtK(Li71) AU®) = t+AtR _ t+Atp(i-1)
t+ALgG) — A=) L A O

Convergence check: If convergence criteria are satisfied
perform next equilibrium iteration
END OF LOOP B

D. Increment time (load) step (go to A)
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4.4.4 we give some details regarding the accuracy of the computational algo-
rithms.

The numerical procedures for stress integration should be efficient, be-
cause these calculations are repeated at every integration point employed
within the body or structure. Today’s demands in engineering analysis are
such that in finite element analysis millions of integration stations for stress
calculation are used, and the largest part of the computational time in an
inelastic analysis can correspond to the stress integration.

4.2 The Governing Parameter Method

In this section we introduce a general concept of implicit stress integration,
which we call the “governing parameter method”. The procedure is a gen-
eralization of the radial return method introduced for plasticity calculations
by Wilkins (1964). The essence of the governing parameter method lies in
that the calculation of the unknown stresses and internal material variables is
reduced to the solution of a single parameter. This concept was already used
in the effective-stress-function algorithm for thermo-elasto-plastic and creep
solutions, Bathe et al. (1984); Kojic and Bathe (1987a,b); Bathe (1996). How-
ever, it can be appropriate to use another variable than the effective stress
(such as the effective plastic strain, mean plastic strain, or cap position for
a cap plasticity material model) and therefore we generalize the effective-
stress-function method to the governing parameter method (Kojic 1996a).
The procedure is applicable to all material models discussed in this book.

4.2.1 Formulation of the Governing Parameter Method

We start with the assumption that at a material point the stress/strain state
at time “t” is known. An incremental analysis of the body deformation is per-
formed, with time (load) step At, and we suppose that the total mechanical
strains at the end of the load step are known. Therefore, the known quantities
at a material point are assumed to be:

tg, te, telV, 3, t+alg (4.2.1a)

)
or in indicial notation
t t t IN t t+ At
Tij, “€ijs €5 Bijs €ij (4.2.1b)

where o, e and fe!” are the stresses, total mechanical strains and inelastic
strains at time ¢; '3 are internal variables at time ¢ used to describe the
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history of inelastic deformation, and **4te are the total mechanical strains
at the end of the load step!. The number of internal variables depends on
the material model and on the type of inelastic deformation; for example, for
a general 3-D elastic-plastic deformation of an initially isotropic metal with
mixed hardening (described in Section 3.2.5), the internal variables are the
accumulated effective plastic strain and the components of the position of
the yield surface tensor. We do not include here thermal effects for ease of
explanation, but these effects are included in Chapter 5.

The task of the stress integration is to determine the stresses ‘T4te,
inelastic strains {*4%e!/N and internal variables tt4¢3 at time ¢ + At; 2 that
is, at the end of the time step. Hence, the unknowns are

t+Ato_’ t+AteIN’ t+At,3 (422)

We employ an implicit integration procedure corresponding to the Eu-
ler backward method. The basic steps in our concept of the implicit stress
integration are as follows:

1) Express all unknown variables in terms of one parameter p. We assume
that this step is possible for the material model considered.

2) Form a function of p whose zero provides the solution for the governing
parameter, that is t+4%p.

3) Calculate the unknown variables using t+4¢

p-
The computational steps are summarized in Table 4.2.1.

In addition to the stress calculation, it is necessary (see Table 4.1.1) to de-
termine the tangent constitutive relation **4C at the end of the time step,
consistent with the stress integration algorithm. We call t+4*C the consistent,
tangent constitutive matrix, for which

t+ At _0 t+At‘7ij
Cijrs = 9 t+Ate (4.2.3)

With these tensor components we can construct the tangent stress-strain
matrix {*4*C in Table 4.1.1. Using that the stress ‘¥4!g is then only a
function of tT4%e and '*4!p, with the governing parameter also a function

! Note that we use here tensor components. We shall also sometimes refer to these
quantitites simply as tensors although we shall mean their components; e.g.,
we shall sometimes refer to ‘e as the strain tensor when we strictly mean its
components in a chosen basis.

2 Here we do not use, for simplicity, the iteration counter of Table 4.1.1, but really
imply that the state ¢t + At corresponds to the state at iteration 7.
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Table 4.2.1. Computational steps in an implicit algorithm for stress
integration — the governing parameter method

Known quantities :
t_ ot t IN tg t+At
a” e7 € ) ﬂ’ e

Unknown quantities :

t+AtO’, t+AteIN,

t+Atﬁ

Step 1. Express all unknowns in terms of one unknown
parameter p and known quantities

Hilg (g, te, teIN, tg, tHAle p)
AL IN (b e, , p) (a)
A (P, e, , D)

Step 2. Form a function f(p) and solve the governing
equation

flp) =0 (b)

Step 3. Substitute the solution ‘*4!p of the governing
equation in (b) to determine the unknowns in (a)

of the total strains, we derive the components in (4.2.3) using the chain rule
for calculation of the derivatives as follows

0 t+At0ij 0 t+AtUij o t+Atp

t+ At
C + 0 t+Atp 0 t+Aters

ijrs —
9 t+Ate7’5 p=const

(4.2.4)

where, obviously, the first term on the right hand side assumes differentiations
under the condition p = const.

The derivatives of the governing parameter p with respect to the
strains are obtained by recognizing that the governing equation f(p) = 0
must be satisfied throughout the material response. Therefore df = 0 and
hence

t+ At
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t+At< of dops  Of OelN N of 65m+af> 9 t+aty,
do,s Op  OelN 0Op 9B, Op dp) 0 ttate;;

8t+Atf

=0
ot+ate,;

p=const

_|_

(4.2.5)
From this equation we determine the derivatives d +4{p/g t+4te,;;.

We may note that the governing parameter function f is frequently equal
to the yield function (see, e.g., von Mises plasticity), but can also be another
function (e.g., (5.4.11), Examples 4.5.11 and 6.2.1). We exemplify the solution
approach using simple uniaxial loading conditions in Example 4.5.1.

4.2.2 Time Independent Plasticity Models

Let us consider the class of time independent plasticity models for which the
yield criterion can be expressed in terms of the deviatoric stresses (t4tS,
the mean stress ‘T4%o,,, and internal variables 4¢3 and assume that the
associated flow rule (3.2.71) is used.

We recall that, according to the a-method, the integral of any function
f(t) in an interval At can be approximated as

t+ At

/ f)dt=[(1—a) 'f+a T4 f] At (4.2.6)

where
0<a<l1 (4.2.7)

is the integration parameter. The values a = 0 and a = 1 correspond to the
Euler forward and Euler backward integration methods, respectively, while
a = 0.5 gives the trapezoidal rule.

In integrating the relations (3.2.71), using the Euler backward method
we have the following approximation for the increment of the plastic strains
AeP in the time step

t+ At

Ofy : otratf

P _ y _ Y

Ae' = / <8 /\>dt_A/\3t+At (4.2.8)
t

where AM is a positive scalar corresponding to the time step At. This is
one of the major approximations in the algorithm. In Section 4.4.4 we will
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discuss consequences of this approximation with respect to the accuracy of
incremental solutions.

For the class of material models considered here, the yield condition at
the end of the time step can be written in the form

t+Atfy( t+Ato_’t+At /8) t—i—Atfy( t—i—AtS’t—i-At G'm,t+At :8) =0 (429)

and it follows from (4.2.8) that

t+ At
Acr = o 00y 0y 0y, 0f,
3 8511 8522 8533 8am
AN Ao, ofy _ 0fy _ 0fy
3 8511 6522 8533 60’m
AN At Hf of of of
P _ _ y Y Y Y
A633 a 3 ( 8511 6522 + 28533 + 60’m>

at—i—Atf ] )
3t+AtSZ;, i ]

Aef2 = +2

(4.2.10)

Aef; = AN

We note that in these expressions we used that the normal deviatoric stress
components depend on all three normal stress components (see (3.2.69));
while the deviatoric shear stress components are equal to the actual shear
stresses. In the development of the numerical procedures we will abundantly
employ the expressions (4.2.10).

Figure 4.2.1 shows schematically two configurations of a generic body B,
at the start and the end of the time increment At, and the corresponding yield
surfaces in the stress space at a material point M. Since time-independent
plasticity is considered, the time step At represents actually a load step
with the strain increment Ae. The material point M moves from point M
to point tAM, with the displacement vector Au, while the stress point
(image of point M) moves in the stress space from P to *+4fP, with the
stress increment Ao. Now we use the so-called return mapping approach and
formulate the computational procedure according to the governing parameter
method.

The first step in the return mapping concept is to calculate the trial
elastic state. We assume that only elastic deformations occurred in the time
step and calculate the stresses *+4'a ¥ according to the elastic stress-strain
relationship. Hence we have (see (A1.5))

t+At G E _ OB ( t+Aty teh) (4.2.11)
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Fig. 4.2.1. Plastic deformation of body B during time increment At. a Phys-
ical space; b Stress space

where CP is the elasticity matriz; tT4'& is the strain vector and 'éF is

the plastic strain wvector, both containing the engineering shear terms (see
(A1.3)). Of course, thermal and creep effects can be included, as shown in
Chapter 5. Also, a nonlinear elastic constitutive law may be used to find
t+AtgE corresponding to the strain increment Ae. For simplicity of expla-
nation, we use here C¥ to be a constant matrix. Then we evaluate the yield
function 4! £

t—i—Atny _ t+Atfy ( t—i—Ato_E’ tIB) (4212)

and check for yielding in the time step. If
tratgE ¢ tp, (4.2.13)

the complete deformation in the time step is elastic and **4taF is the solu-
tion. If

Pratgl s tf, (4.2.14)

plastic deformation took place, and we proceed to the plasticity calculations
as follows.
The stress *+4tg, with plastic flow in the time step, is
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Halg = HaAlgt _ CcP AeP (4.2.15)

and must satisfy the yield condition (4.2.9), where A&F is the plastic strain
increment vector (see (A1.3)). Therefore we have to correct the elastic so-
lution 4t ¥ which corresponds to point **4*P¥ in Fig. 4.2.2 in order to
satisfy (4.2.9); that is, we are seeking the stress point ‘t4*P on the yield sur-
face where t+4¢f, = 0. This procedure is generally called “return mapping”
or “elastic predictor - plastic corrector” method. It has been shown that this
method has certain advantages, especially regarding its accuracy character-
istics, with respect to other algorithms that start from a stress point on the
yield surface tf, = 0 and seek point +4¢P. To calculate Ae” we employ
(4.2.8), while for the hardening law we have in accordance with (3.2.88) (also
with the one-index notation)

dB = —d\xCrt g’;;f (4.2.16)

Using the Euler backward method, we have the increment of internal variables
AR in the time step,

t+ At
p0 2y

AB=-AXC 9 t+atg

(4.2.17)

where, for simplicity, we have assumed C¥ to be constant in the time step.
Note that in case of perfect plasticity, there are no internal variables, and the

~
N t+aAt

E

Fig. 4.2.2. A general scheme of return mapping in plasticity (stress space)
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return mapping represents the closest point projection of the stress predictor
HAtGE to the yield surface 4t f, = 0.

In the governing parameter method we proceed as follows. First, the in-
crements of plastic strain Aef; can be written as

Ael = | Ae”|| Tt4iny; (4.2.18)

where (see (A2.31))
| 2e”| = (aef; aeh)? (4.2.19)

and “+4n is the unit normal to the yield surface t+4tf, =0,

hAt o t+Atfy/8 t+At _ t-‘,—Atfy’(7 (4'2'20)
[0 4L, [0 A || || A |

As in equations (4.2.11) to (4.2.17), we shall continue to use the notation

f,» = 0f,/0c for simpler writing, and the one index vector notation (as

ny =Mni1,....,Ne = Na1, see (Al.1)). Comparing (4.2.8) and (4.2.18), it follows

that

o 3]

= (4.2.21)
[ |

This relation is quite general and applicable to all plasticity models consid-
ered in this book. In case of non-associated plasticity, the relations (4.2.18),
(4.2.20) and (4.2.21) have a similar form, with a plastic potential function
instead of 4t f,.

Selecting || Ae”|| as the governing parameter in Table 4.2.1, we find that

Hralg = Haigh || Ael| CF 4l (4.2.22)

HAtg = 13— || Ae”| CF F4ing (4.2.23)

where
|| t+Atfyu3|| CP (4224)

ol

P _
|| t+Atfy
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t+4th is equal to n but contains double the shear terms because the

engineering shear strains are used in the elastic constitutive law (see (A1.5));
and t+Atn5 _ t+Atfy,,8/ ” t+Atfy7ﬁ||7 with t+Atfy7ﬁ = 8t+Atfy/8t+Atﬁ.

The mathematical formalism (4.2.23), with the unit normal *4tng, is
applicable to a subset of internal variables. For example, in the case of a
von Mises material with mixed hardening behavior, the internal variables are
the back stress o and the isotropic part of the effective plastic strain Mer .
Then, from (3.2.57) we have that t+4tf, , = —t+4f and with C¥ =
(1-M)C (see (3.2.73)), equation (4.2.23) gives Prager’s hardening rule. Also,
we have dtHALf [QtHAL(MEP) = —2/3M tHAlg, tHAL . AL, — 1
and from (4.2.17), (4.2.21), (3.2.59), (3.2.60), (4.2.19) and (3.2.46), we have
CP =1/ Ep; hence, (4.2.23) gives +4%el” = tel’ +/2/3| Ae .

Now substituting **4to and +4!3 from (4.2.22) and (4.2.23) into the
yield function (4.2.9), we can form a function f(||Ae?||)

t+ At

f(||AeP||) _ t+Atfy ( t+At0_E _ ||AeP|| CE t+Atﬁ’

R 4.2.25
tg _ ||AeP CPH'Atnﬁ) ( )

t+ At A

n and t+4t

where ng correspond to |[Ae?’||. The derivative of this func-

tion is

po DU guag g gy
d(||ae”l))  0ttAto d(||AePl)  0AB O ([|Ae”)

_ (” t+Atfy7U” AT (B ALy ” t+Atfyﬁ” t+Atn£ ol t+Atnﬁ) <0
(4.2.26)

where we have used matrix notation. Here C¥ is the usual elasticity matrix
C¥ but with twice the shear stiffness because of the definition of *+4*i. The
derivative f’ is less than zero because CF and CF are positive definite matri-
ces. Hence, the governing function f(||Ae”||) is a monotonically decreasing
function, as for one case schematically shown in Fig. 4.2.3a. This property
of the function f(||Ae’||) is very important for the practical implementation
of a robust computational procedure. Namely, starting with ||Aef’|| = 0 we
have f = t+Atff > 0; then taking a large value ||Ae”||minus to obtain f < 0
(point Pinus in Fig. 4.2.3a), we can proceed by bisection or a secant method
to calculate ||Ae”|| for which (within a tolerance) f = 0.

The computational steps are as follows. Select a value ||Aef||() and cal-
culate the stresses “+4%(1) and internal variables 1+4¢3(1) ysing (+4tn(©) =
t+AtpE and t*“n? = t+Atng. Then calculate the function f) with

t+4ig(1) and 4180 and normals T4tn() and t+Atng). Select a new
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.
Il Ae Il minus
lae” T~ el

P
a minus

Elastic region
at time t

Fig. 4.2.3. Return mapping according to the governing parameter method. a
Dependence of the governing function on increment of plastic strain ||Ae”||;
note that the curvature of the function f could be the other way without
affecting the monotonic decrease of the function. b Schematic representation
of search for the final stress point ‘+4¢P

value ||Ae”||» and determine 472 and +413()  with normals t+4in®)

and t+Atng), and so on. In general, for the k-th trial value || Ae?’||(*) we have
tHAL (k) _ t+AL (k1) _ (||Aep||“°) _ ||AeP||(k—1)) CE t+At4(k-1)
(4.2.27)

t+AtIB(k) _ t+AtI3(lc—1) -~ (”AeP”(k) _ ||AeP||(k_1)) CP(k—1) HAtnEak_l)

(4.2.28)
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with TAtg(0) = t+AtGE t+At50) — i3 || AeP||(0) = 0. The iteration
continues until (4.2.9) is satisfied and the difference in two successive trials
is small, i.e., until

‘ t+Atf@(/k)‘ < e

[2e?|® = ae” |7V < ea (4.2.29)

where €¢ and €4 are selected numerical tolerances. When the convergence cri-
teria are satisfied, we have fulfilled the requirements of the stress integration,
which are to satisfy —

The elastic constitutive relations (4.2.15)

The flow rule in implicit form (4.2.8)

The hardening law in implicit form (4.2.17)

The yield condition (4.2.9) at the end of the time step

The above computational steps are summarized in Table 4.2.2, and depicted
in Fig. 4.2.3.

Note that if the normals **4tn® and *+4tn® are unchanged during
the iterations — as it is the case for von Mises plasticity and radial loading
conditions (see Section 4.4.4) — all trial stress points lie on the straight line
defined by **4'n” and the computational procedure reduces to the radial
return method.

To obtain insight into the stability of the method, assume that in addition
to the (exact) elastically predicted stress solution **4fa ¥ we also consider
a perturbed elastic stress state “741&¥ (due to computational error). Then

||t+At~_ t+Ato.|| < H t+At B _ t+AtUEH (4.2.30)

where %5 is the perturbed elastic-plastic stress solution. Figure 4.2.4 gives

a graphical representation of the condition (4.2.30) which shows that in plas-
ticity calculations the stress perturbation decreases, indicating stability of
the algorithm. Obviously, this result relies on the assumption that the yield
surface is convex (see the principle of maximum plastic dissipation, Section
3.2.6).

Now we proceed to the determination of the consistent elastic-plastic tan-
gent matrix. Using (4.2.4), (4.2.5), (4.2.22), and (4.2.23) we obtain

ol ae|)]"

t+At(~EP _ t+At(E _ '
Cc" = C Ao t+Atg

(4.2.31)
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Table 4.2.2. Computational procedure for stress integration using
the governing parameter method

1. Known quantities: ‘o, ‘e, te¥, 83, T4t
2. Calculate elastic predictor (k = 0)
t+At B _ oF ( t+aty _ téP)
If tFAtFE < ( solution is elastic, tT4tg = T4t6F: EXIT

If t+AtFE 5 0 plastic flow occurs in time step At ; hence proceed
with the plasticity calculations

t+Atn(0) — t+Atf£0/” t+Atny:‘0_” t+AtnE30) — t+Atf£ﬁ/” t+Atny:5||
t+At (0) _ t+At0_E, t+At,3(0) — tﬂ7 ||AeP||(0) =0, t+AtP(0) — toP

3. Iterations on ||Aep|| (k=k+1)

Select ||AeP||(k)

t+At P(k) _ t+AtgP(k—1) + (”AeP”(k) _ ”AeP”(k—l)) t+At ) (k—1)
Calculate stresses and internal variables

t+AL (k) _ t+AE g (k=1) _ (HAeP”(k‘) _ ”Aep”(kfl)) CFE t+Atg,(k=1)
t+Atﬂ(k) _ t+Atﬂ(k—1) . (”Aep”(k) _ ||AeP||(k*1)) GP k-1 t+Atnék—l)
Check for convergence

2B <en 1 ae | - a0 | <

If convergence is reached go to step 4; otherwise calculate

t+Atf§,ﬁ2, t+Atf;{Cﬁ); t+Atn(k), t+Atn(5k), CPk) go to start of step 3

4. Consistent tangent elastic-plastic matrix

T
t+AtQEP _ t+AtQE _ Ag! |:a((‘l|tf§fé”):|

where Ao’ = 9(Aa)/9(||Ae”||) = -4’ with Ao = t+Atgl — t+4t5 By
differentiation of (4.2.9) with respect to !T4'& and solving for
d(]|AeP|]) /ot 4te, we obtain

o([ae"]) _ 1
gty =g cP g (4.2.32)
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HAtG E
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Fig. 4.2.4. Illustration of stability of the return mapping algorithm

where

t+ At
a, = A Ag! T AL (4.2.33)

and LG = 924 3/0(|| AeP ).

The application of the expressions (4.2.31) to (4.2.33) to simple uniaxial
stress conditions is given in Example 4.5.1.

The computational scheme is, in general, most effective when the above
expressions are evaluated analytically. This can be achieved for many com-
monly used material models, as presented in this book. However, as an al-
ternative and if the analytical expressions are too complex (see, e.g., Section
6.4), a numerical evaluation is possible, in which we determine the derivatives
of any variable ¢ with respect to ||Ae®’|| as
¢(k) _ ¢(k*1)

U

~

14eP[[* — [ AeP|| e
where k is a selected iteration during the solution of the nonlinear equa-
tion (4.2.9). Note that all matrices and vectors in the expressions (4.2.31) to
(4.2.33) have already been evaluated during the stress integration procedure
and can now be used in the calculation of the elastic-plastic tangent matrix.

In some plasticity material models the hardening depends on both the

mean plastic strain e? and the equivalent deviatoric plastic strain &', whose
increments are
A P _ 1 A P A P A P
€m = 4 (AQeiy + Aeyy + Aess)
_IP P A 1P\1/2
Ae'" = (Aejf Ael) (4.2.35)
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Then
|4e?|| = [3(Aek)? + (ae)2] (4.2.36)
and the following relations are valid:
0 (Aep) _ [|Ae”]|
a(laefl) — 3Aef,
5P P

a(llael)) Q&P

These expressions are useful in the calculation of derivatives with respect to
|Ae”].

4.3 A Brief Review of Stress Integration Procedures

The objective of this section is to present a brief historical review of pro-
cedures for stress integration, with a view towards the governing parameter
method. More details are given for the return mapping type of algorithms,
because they have been favored in modern finite element analysis proce-
dures, and because the governing parameter method, which is developed in
this book, is of that type. Research in this field has been intensive so that
modeling of material behavior, even with very complex properties, has be-
come possible in nonlinear engineering analysis. The references are grouped
according to the type of method, rather than chronologically (see also Kojic
2002a).

An iterative scheme with some ingredients of the governing parameter
method for solving elastic-plastic problems, called the method of successive
elastic solutions, was proposed by Ilyushin (1943). Much later, this method
was formulated by Mendelson (1968) for von Mises plasticity, in a form suit-
able for computer applications. The method consists of the following: for a
load step, the increments of plastic strains Aef; are assumed, giving the field
of the plastic strains ef;; then, with these plastic strains, the solution for the
total strains e;; and stresses o;; is obtained by solving an elastic boundary-
value problem (based on partial differential equations for the stresses, using
the elastic constitutive relations and boundary conditions). In parallel, the
effective plastic strain increment Ae’ is obtained from (3.2.46), the corre-
sponding yield stress o, is determined with use of the yield curve, and then
AN is calculated from (3.2.44). Employing the elastic solution for the stresses
and the calculated value for A\, new trial increments of plastic strains Aef;
are determined from (3.2.28), see the block diagram in Fig. 4.3.1. The cal-
culation cycles are repeated until convergence is reached. This approach was
implemented by Mendelson (1968) for isotropic hardening to solve some sim-
ple problems within the finite difference technique.
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k) [ P - o, |kt ref

(k+1)

Fig. 4.3.1. Block diagram for stress integration using the method of succes-
sive elastic solutions, according to Mendelson (1968)

Another group of procedures relies on the formulation of a tangent ma-
terial elastic-plastic matrix. Namely, if a yield function of the form (4.2.9) is
differentiated at the start of the time step, the following equation is obtained
(one-index notation, engineering shear strains):

d'fy = 't ,do —d\'f] ;CV ', 3 =0 (4.3.1)
where (4.2.16) has been used. The increment of stress do, with the use of
(3.2.67), is

do = C¥(de — d\'f, ) (4.3.2)
where dé is the strain increment vector (see (A1.3)), and tfyvg is equal to
'f, » but contains twice the shear terms. Substituting do into (4.3.1), the
increment AX in the load step, corresponding to the strain increment A&, is
obtained as
th CE

y,o

P, T
tfyjjUCE tfy,ff + tfy,ﬁ cr tfy,ﬁ’

Aé (4.3.3)

Then, the stress increment is
Ao = 'CPP A (4.3.4)

where the elastic-plastic stress-strain matrix is
1 .
tfcPP=cP - b " (4.3.5)
¢

Here ‘¢ is the denominator in (4.3.3), and the vectors 'b and b are

tb=cCc¥,,, 'b=CPt,, (4.3.6)
Obviously, the symmetric matrix *C#¥ is evaluated at the known stress/strain
state at the start of the time step. We refer to this matrix as the tangent
material matrix.
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The above simple forward integration is particularly inefficient when per-
fectly plastic material conditions are considered. For this case, the tangent
stiffness-radial return method and the secant stiffness method have been pro-
posed. In the tangent stiffness-radial return method, introduced by Marcal
(1965), we first determine the deviatoric stresses Sp corresponding to the
stress point B on the yield surface (Fig. 4.3.2),

Fig. 4.3.2. Graphical representation of the tangent stiffness-radial return
method (perfect plasticity)

Sp = 'S+ 2Gk Ae’ (4.3.7)

where Ae' is the deviatoric strain increment tensor in the time step, G is the
shear modulus, and & gives the fraction of Ae’ that corresponds to the elastic
deformation in the load step. The fraction k, 0 < k£ < 1, can be determined
by substituting Sg into the yield condition ( 3.2.36 ). Then, the stress t*4tS
at the end of the load step is obtained as

t+AtS =3 t+AtSE — QG(]l%Z_ k) (SB . Ae') SB:| (438)

2
is the radius of the yield surface; 0 < s < 1 is the coefficient determined by
substituting *4*S into the yield condition (3.2.36); and Sp - Ae' is a scalar
product (see (A2.29) in Appendix A2). Figure 4.3.2 gives a geometric inter-
pretation of the expression (4.3.8). The vector in the brackets corresponds
to the stress point C, and that vector is scaled by the factor s to obtain the
stress point P on the yield surface. The described computational procedure
corresponds to the perfect plasticity assumption, but it can be extended to
hardening models (Shreyer et al. 1979).

The secant stiffness method was introduced by Rice and Tracey (1973) for
a perfectly plastic material. In this method the stress point B is first deter-
mined as in the tangent stiffness-radial return method. Then, the deviatoric

where t+4tSF is the elastic solution (point PP in Fig. 4.3.2), R = \/3 oy
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stresses S¢, shown in Fig. 4.3.3, are calculated as
1
Sc=, (S5 + trargh) (4.3.9)
Finally, the deviatoric stress TS is

t+AtS — t+AtSE _ 2G(I]-'z2_ k) (SC i Ael) Sc (4310)

where the fraction k has the same meaning as in (4.3.8). It can be shown by
a simple geometric argument that the stress point P lies on the yield surface.

Fig. 4.3.3. Graphical representation of the secant stiffness method (perfect
plasticity)

The above described explicit stress calculation schemes and variations
thereof were abundantly used in the past, because they were deemed suffi-
ciently effective for the applications considered, e.g., in Bathe et al. (1973),
(1974), (1975), (1976); Krieg and Key (1976); Hinton and Owen (1980); Sny-
der and Bathe (1981) (for thermoplasticity and creep); Desai and Siriwardane
(1984); Chen and Baladi (1985); Chen and Han (1988); Chen and Mizuno
(1990). However, as the interest in nonlinear finite element analysis increased
and increasingly more complex nonlinear finite element analyses were pur-
sued, two shortcomings of these ezplicit stress calculation procedures became
apparent. Firstly, the accuracy of these methods is relatively low (Krieg RD
and Krieg DB 1977; Shreyer et al. 1979). Some improvements are achieved by
subincrementing the total strain increment Ae and applying the stress cal-
culation for each subincrement (Bathe et al. 1973,1974; Bushnell 1977). This
is particularly important when material hardening is included. Secondly, the
use of the matrix {CF" given in (4.3.5) does not result in quadratic conver-
gence as obtained with the algorithmic consistent tangent matrix {*4tCEPof
the form (4.2.31).
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The development of implicit schemes for stress integration started in 1964
by Wilkins (1964). An algorithm was proposed for the perfectly plastic von
Mises material model. The procedure consists of two steps: 1) calculation
of the elastic solution for the time step (elastic predictor), and 2) the radial
return to the yield surface (plastic corrector). This approach was implemented
for various material models and generalized by a number of authors, forming
a class of return mapping procedures. We next cite some of the references
that provide information about various aspects of these algorithms. Also,
we give some details for typical representative approaches of this group of
procedures.

Ortiz et al. (1983) developed a return mapping algorithm for perfect and
hardening viscoplasticity and plasticity. As in the algorithm published by
Wilkins (1964), for a von Mises material the return mapping goes along the
unit normal n¥ to the yield surface, corresponding to the elastic predictor
t+AtGE Then, the solution for perfectly plastic and linear hardening mate-
rials can be obtained in closed form. The procedure was generalized by Simo
and Taylor (1985a, 1986) for von Mises nonlinear isotropic and kinematic
hardening models, and for general 3-D and plane stress problems. A scalar
equation, representing the yield condition t+O‘Atfy =0 (0< a<l) was
solved for AM, after which the other variables were calculated. The consis-
tent tangent elastic-plastic matrix was derived.

An analysis of the stability and accuracy of Euler type time integration
schemes when applied in this stress solution was presented by Ortiz and
Popov (1985). It was shown that the algorithms are unconditionally sta-
ble when the Euler method integration parameter o > 1/2, with first-order
accuracy when o > 1/2 and second order accuracy for @ = 1/2. These con-
clusions correspond to the general stability and accuracy characteristics of
the a-method, see Collatz (1966); Bathe (1996).

Another approach of return mapping procedure is due to Simo and Ortiz
(1985b). This algorithm is presented in Table 4.3.1 (see Simo and Hughes
1998). The essence of the procedure is that residuals corresponding to the
nonlinear elasto-plastic flow and hardening rules (4.2.8) and (4.2.17) (see
also (3.2.87) and (3.2.88)) are formed as

AR, = tef 4 AN T4,  — tHALF (4.3.11)

HARYE = 18" 4+ A\ ITAlf, 5 THAIg (4.3.12)

These residuals are calculated and the yield condition is linearized at the
current k-th trial state. A linearized system of equations is solved for the
increments  A(AX)®) | AeP®) and AB*¥). As can be seen from Table 4.3.1



126 4. A General Procedure for Stress Integration

Table 4.3.1. Return mapping algorithm based on successive
linearizations (Simo and Hughes 1998)

1. Initial quantities: k = 0, 172teP(0) = tePf +4tg+(0) — tg= AN =
t+AtB(0) — t:B

(one-index notation, tensorial shear components)

2. Calculate stresses ‘t4'¢(*) internal variables +2¢g**)

and check for convergence
(CP™) is the elastic matrix with twice the shear terms)

t+At (k) _ GE(k) (tJrAte . t+AteP(k))

k
t+Atfy( ) t+Atfy(t+Ato_(k), t+Atﬂ(k))

t+Atg (k) teP _ t+AtoP(k)
t+Atp (k) :{ At } :{ ¢ o t+ AL e () }+
3 B - B
L+ At (k)
£,.0 }

(k) ,
AA { t+Atfy,B

3. Calculate consistent tangent matrix {T4¢tCEP®)

((CE)—l + A)\tJrAtfy,ag) AAt+Atfy,aB (k)
)

(t+AtCEP(k))71 — [ A o
AN, 5y ((CF)7H 4+ ANTFAYE, 55

4. Compute increment of A\
T
t+AthSk') _ [Hmf;ﬁ; t+Atf?5{€g:| tHALQEP (k) t+ALR (k)

t+Atp }(k)

A(AN®) = ;
|:t+Atfy({°O)_ t+Atf;2:| t+AtQEP(k) { t+Ath ’

5. Obtain increments of plastic strains and internal variables
AeP 1P (CE)fl 0 (k)
* = Py—1 X
{ AB } [ 0 (CY) ]
(k)
trargrr {R+A(A>\){ o }]
LN
6. Update variables

t+AteP(k'.+l) — t+Atep(k)+AeP(k)7 t+AtB*(kt+l) — t+AtIB*(k)+AB*(k'.)

AXEFD — AN A(A/\)(k)
t+Atﬂ(k+1) — t+Atﬂ(k‘) _ CP(k‘)Aﬂ*(k)

k=k+1 gotostep 2

the computation of increments A(AXN)®) | AeP®) and AB**) requires iter-
ations on a system of equations of order (6 + number of internal variables)



4.4 Stress Integration for the von Mises Material Model 127

with a significant amount of numerical operations, and with possible con-
vergence difficulties. In order to increase the computational efficiency of the
algorithm, Simo and Ortiz (1985b) also proposed the so-called cutting plane
procedure. In this method a linearization of the yield condition gives a relation
for A(AXN) D)

t+Atf(k+1) _ t+Atf(k)_
Yy Yy

(k+1) [t+At (T B T ~P (k) (4.3.13)
A(AN) [ (nyC f,o + £ 5C fyﬂ)] -0

This method is in some cases quite analogous to the governing parameter
method (see also the text at the end of Section 4.2.1).

A summary of the return mapping algorithms based on successive lin-
earizations, with implementations in plasticity and viscoplasticity, is given
by Simo and Hughes (1998) (see also Crisfield 1991).

Independent of these developments, Kojic and Bathe formulated the
“effective-stress-function” algorithm (Bathe et al. 1984; Kojic and Bathe
1987a,b) and showed that implicit stress integration of the a-type (4.2.6)
for metal thermoplasticity and creep can be reduced to finding the zero of
the effective-stress-function. The algorithm was applied to various physical
conditions (three-dimensional, two-dimensional plane stress, shell, beam and
pipe conditions), for von Mises general isotropic and kinematic hardening
and common creep laws. However, clearly, the effective stress is not an effi-
cient measure to use (and may not even be appropriate) for certain material
models. For more generality and applications with various material models,
the algorithm was extended to the governing parameter method (GPM), see
Kojic (1996a), the references therein, and the references in the subsequent
sections.

As shown in Table 4.2.1, in the governing parameter method the stress
integration reduces to solving one nonlinear equation with respect to the
governing parameter p. Of course, a number of authors calculated the stresses
for various inelastic material models through solving one nonlinear equation,
see, e.g., Bathe et al. (1984); Simo and Taylor (1985a); Anand (1985); Kojic
and Bathe (1987a,b); Lush et al. (1989); Weber and Anand (1990a); Borja
and Lee (1990); Borja (1991), and references therein, and the procedures used
in these references are closely related to the governing parameter method.

The governing parameter method can of course also simply be considered
to be a specific approach to solve the system of nonlinear equations obtained
in the implicit stress integration. As presented in Sections 4.1 and 4.2, the
governing relations of the stress integration in a time (load) step form a
set of nonlinear equations. Some of these equations represent tensorial type
relations for the stresses and strains. Other equations express constraints
that must be satisfied, as a yield condition or creep law. The unknowns in
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the system are the components of tensors (stresses, inelastic strains, internal
variables) and scalars, such as the effective plastic strain and the effective
stress. According to the governing parameter method, we select one scalar as
the governing (main) parameter p in the system and iterate with appropriate
linearizations, such as those given by (4.2.27) and (4.2.28), to solve for the
parameter. The iteration continues until the governing equation f(p) = 0
is satisfied within a selected numerical tolerance. The governing parameter
may be one of the scalars in the system, or another scalar to which the other
variables are related. For example, we select ||Ae”’|| for a general plasticity
model (Section 4.2) because the measure of plastic flow in a time step is
defined by the plastic work which is directly related to || Ae”||.

If, on the other hand, as pursued in other approaches, the complete gov-
erning system of equations is linearized with no distinction among the vari-
ables, then p is just one of these variables. The solution leads to an iterative
scheme for the system of equations, which may not be as effective. Let us
consider the following thoughts.

First, consider that we change the sequence of calculations in Fig. 4.3.1,
such that the iteration scheme becomes: select Ae¥, find & from the yield
curve, calculate AX from (4.2.21), then the stresses o;; and the increments
Aef;; iterate until the yield condition f, = 0 is satisfied. The driving term
Aef can be appropriately chosen during the iterations, leading to a sim-
ple and stable iterative scheme, which in fact corresponds to the governing
parameter method (see Fig. 4.2.3).

Second, consider that we select A\ (or better ||Aef|| related to AX by
(4.2.21)) in the successive linearization procedure in Table 4.3.1, and then
instead of A(AXN)@ | we use AX? as the driving term. The other variables
follow, naturally, according to Table 4.2.2. By application of the governing
parameter method, the cutting plane iterative scheme (4.3.13), for which the
rate of convergence and the return mapping path depend on the gradients
t+Atf, . and *Af, 5, can be replaced by the simple and robust iterations of
Table 4.2.2.

We illustrate the use of the governing parameter method in the text to
follow.

4.4 Stress Integration for the von Mises Material Model

In this section we present the governing parameter method for metal plastic-
ity. We give in detail the stress calculation procedure and the derivation of
the consistent tangent constitutive matrix. General three-dimensional elastic-
plastic deformations and the case of shell analysis conditions are considered
for the case of mixed hardening (Kojic 1993, Bathe and Montans 2004).
These two conditions directly give also the numerical procedures used for
plane strain, axisymmetric and plane stress problems. Many of the details
given here are also used in the discussion of subsequent material models.
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4.4.1 General Three-Dimensional Conditions, Plane Strain and
Axisymmetry

We consider a material point at which the stress-strain state at the start of
the time step is known, see Fig. 4.4.1. The inelastic strains are the plastic
strains e?’, and the internal variables which define the position and size of
the yield surface are the back stress a and the intensity of the yield surface

radius ‘

S H . Therefore, in accordance with (4.2.1) we consider that the known
quantities are

tg, te, tel’, ta, L5y, tatg (4.4.1)

where the yield stress ‘6, defines the size of the yield surface,

3 ~
t A _ tS
Ty \/2 H

as shown in Fig. 4.4.1. The unknown quantities corresponding to the end of
the time (load) step are (see (4.2.2)):

(4.4.2)

tgiP tatgip &P=Mme"

Fig. 4.4.1. Stress states at time ¢ and time ¢ + At (mixed hardening)
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t+Ato_ t+AteP; t+Ata , t+At5_y (443)

3

We use the notation !4, and +4%5, to point out that the yield curve is

defined as 6,(¢""), where & is the isotropic part of the effective plastic
strain (see (3.2.66) and Fig. 3.2.18).
Let us start with the elastic constitutive relation (see (A1.5)),

tHalg = CF tHAtgE (4.4.4)

where CP is the elastic constitutive matrix, and T4&¥ is the elastic strain
vector (see (A1.3)) given by

t+AtéE — t+Até_ t+AtéP (445)

Here *+4tg and 418" are the total strain and plastic strain vectors. Since
the plastic deformation is of the deviatoric type (see definition of the von
Mises yield condition in Section 3.2.5), we first consider the calculation of
the mean stress (Al.14),

Aty = K tHAteE (4.4.6)

where K is the bulk modulus and *4%eE is the volumetric elastic strain

HHALE  thAty | | tFAt, | AL (4.4.7)
Note that
t+Atez‘j _ tJrAtef1 + t+Ate§2 + t+Ate3Pg =0 (4.4.8)
t+ At

It follows that, for given strains e, the mean stress at the end of the
step does not depend on the plastic strains. This result is very important for
the development of a stress integration procedure. The result suggests that
in isotropic plasticity we only need to seek a numerical solution for the devi-
atoric stresses ft4!S, since the mean stress t4%g,, is already determined
by (4.4.6). The decoupling of the calculation of the mean stress from the
calculation of the deviatoric stresses is always effective when the elastic or
inelastic mean stress-strain and deviatoric stress-strain relations are defined
without coupling terms.
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The deviatoric stress is related to the deviatoric strain tensor by (see
(A1.19))

t+Atg _ 9 t+Atg!E _ 9 ( t+At g t+AteP) (4.4.9)
where t+4%e’ is the deviatoric strain tensor with components
ALl AL AL
1 . .
thatyr = ) t+At%j i#j (4.4.10)
and t+At7ij are the engineering shear strains. Also, ‘t4%e” is the plastic

strain tensor (shear terms equal to half of the engineering plastic strains).
Equation (4.4.9) can be written as

thatg — t+AtgE _ 9gAel (4.4.11)
where
HHALGE — 2@ At (4.4.12)

is the elastic solution, with no plastic deformation in the current step; hence

t+AL I tHAtgl £ P (4.4.13)

In writing (4.4.11) we have used the relation
trAteP = teP 1 AP (4.4.14)
where Ae? is the increment of plastic strain tensor.

We next check whether plastic flow took place in the current time step.
The elastic stress radius {T4tS¥ is

tHAIGE _ t+AIQE _ t, (4.4.15)

which corresponds to the vector from O to Dg in Fig. 4.4.1. If the stress
point Dy is inside or on the yield surface ‘f, = 0, i.e., if

A 2
H t+AtsEH < \/3 ‘%, (4.4.16)
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then there was no plastic deformation and tT4tSF is the solution for the
time step.

In the case of plastic flow in the time step, we continue as follows. The
yield condition (3.2.56) at the end of the time step gives

1

1
t+ALp _ i+ At t+At t+At t+ At t+ALA2
fo=.( S — a) - ( S — a)—3 o,=0

(4.4.17)

To calculate the increment of plastic strain Ae” we employ the flow rule at
the end of the step, i.e., we adopt the Euler backward integration scheme
with the integration parameter & = 1 in (4.2.6). From (4.2.10) and (4.4.17)
we obtain

Ael = AN 1HALS (4.4.18)

where we have used the condition df,/00,, = 0 and (3.2.58). The quantities
of the last two equations are shown in Fig. 4.4.1. It is important to note that
the increment of plastic strain Ae” is in the direction of the stress radius
t+At§ at the end of the time step.

Substituting Ae” from (4.4.18) into (4.4.11) we obtain

tratg — tHAtgE _ oG AN tHAS (4.4.19)

Next we employ the constitutive relations (3.2.73) for the back stress,

Aa = CAe” (4.4.20)

where

C=(1-M)C= g(Ep — MEp) (4.4.21)

Here we have used (3.2.78), with Ep and Ep as weighted plastic mod-
uli for the time step At. The plastic moduli have the values between !Ep
and t4'Ep corresponding to the accumulated effective plastic strains tel
and T4teP: and between ‘Ep and *t4*Ep corresponding to M ‘" and
M t+4teP  Using the geometric relations shown in Fig. 4.4.1 and using

(4.4.20) we obtain

trAtg — ty 4 (1 + AN é) tratg (4.4.22)
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Next we solve for *T4t§ using (4.4.19) and (4.4.22)

R t+AtQE
tratg — (4.4.23)

1+(2G+0)AA

where 'T4SF is the elastic solution, see (4.4.15).

Taking the scalar product on both sides of (4.4.18) (see (A2.29) in Ap-
pendix A2), we obtain

3 Aef
AN = o t+At (4.4.24)
where (see (3.2.46))
2 V2o

Ae” = <3AeP : Aep> = (3)1/2 | Ae”| (4.4.25)

is the increment of the effective plastic strain, and

3 A A\ /2

t+Als (2 t+AtS .t+4ts> (4.4.26)

defines the size of the yield surface. Note that (4.4.24) is a special case of
the general expression (4.2.21) for AX. From the definition of the reduced
effective stress (3.2.60), the yield condition (4.4.17), and (4.4.26), we find
that

tHalg _ Al =0 (4.4.27)

is a form of the yield condition. On the other hand, hardening is defined by
the yield curve (3.2.66), hence

A, =6, [M (e’ + Ae”)] (4.4.28)

Using equations (4.4.18) to (4.4.21), (4.4.23), (4.4.24) and (4.4.28), we find
that the unknowns t+t4tef  t+4t§ and *+4%q are functions of one param-
eter only, that is Ae”’. Namely, for a given Aef, we find 6, from the yield
curve, AX from (4.4.24), then determine C from (4.4.21), Ac from (4.4.20),
t+ALS from (4.4.23), AeP from (4.4.18), and *T4!S either from (4.4.19) or
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(4.4.22). Therefore, we have, in the sense of Table 4.2.1, Ae”" as the governing
parameter.

Finally, according to step 2 of Table 4.2.1, we need the governing equation
(b). We obtain this equation by taking the scalar product on both sides of
(4.4.23), and using (4.4.27) and (4.4.28). The governing equation is

t+At&E
f(Aer) = . -1=0 (4.4.29)
g, 4 8 (26 + C) AeP

where T415E denotes the value of 6 for AeP = 0. This equation is like the

yield condition (4.4.27). In deriving this equation we have assumed 6, > 0
since the yield stress cannot be equal to zero.

The application of the above general relations to the uniaxial stress con-
ditions is given in Example 4.5.1.

The problem of stress integration is reduced to the solution of the non-
linear equation (4.4.29) with respect to the governing parameter Ae”’as pre-
sented in Section 4.2. Since Aef and +4¢5, are related through the yield
curve (4.4.28), the stress 4G may also be taken as the governing param-
eter, see Kojic and Bathe (1987a,b), and Bathe (1996), where the function
f(AeP) is defined as the “effective-stress-function” f( t+4%5). Note that for
the case of perfect plasticity conditions in the time step we have

t+At st
Oy =

Oy
EFf =0, (=0 (4.4.30)
and
t+At 2 E  t o
AeP = o (4.4.31)

3G

Figure 4.4.2 shows a schematic representation of the solution for Ae” in the
case of perfect plasticity.

In the general case, the solution of (4.4.29) can be found numerically by,
for example, a Newton-Raphson iteration or a bisection procedure. Consid-
ering the characteristics of the governing parameter function, as we did for
the general case in (4.2.25), we find that the first derivative f’ of the function
(4.4.29) is
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trAt t
Oy=0y |- - =-==-=-==

A’

‘5P tatgP P

Fig. 4.4.2. Increment of the effective plastic strain in time step for perfect
plasticity

f’ B df _ t+At6.E
- gP) A 2
AT s, 13 (26 + ) 2er]
) (4.4.32)
3 A t+ At OEp 9Ep =P
x| (26+0) + M B + () — M)Az

where we have used (4.4.21) for dC/de®. If the weighted plastic modulus is
taken as Ep = (1 — a)'Ep + a2t Ep, where 0 < o < 1 is the parameter,
then dEp/0e” = a O'HA'Ep/def and OEp/0e” = a 0'TA'Ep/de”. In
the case of isotropic hardening (M = 1), the derivative f' is negative for any
Ae?. The value (Ae?)q can be determined for which the derivative f’ is zero
in the case of mixed hardening,

E M t+AtE _E
(A&l = 3G+ Ep + M( = Ep) (4.4.33)

OEp|9eP — MOEp/deP

where (0Ep/0e — MOEp/0ef) < 0. For Aef > (Aef)y, the derivative
f' becomes positive. The value (Ae”) is much larger than 1, which means
that f’ is negative for the physically meaningful range. Since Ep > 0 the
governing function f(Aef’) is a monotonic function, as schematically shown
in Fig. 4.4.3. This conclusion is in accordance with the observations made
regarding (4.2.26), derived earlier for general plastic deformations (see also
Fig. 4.2.3).

Table 4.4.1 summarizes the computational steps for the stress calculation.
We note that the computational procedure is a special case of the procedure
given in Table 4.2.2 for plasticity in general.

The above described procedure is directly applicable to the case of
isotropic hardening. Then, using M = 1 we have
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f(A&P)

(#8518, 1)

\ ABP

Fig. 4.4.3. Monotonic character of the governing function for mixed hard-
ening plasticity of isotropic metal

(4.4.34)

M=1

If Ep = 0 we use the analytical solution (4.4.31) which also follows from
the above relations.

In the case of kinematic hardening, we use M = 0 and also that 6 = gy,
(see Fig. 4.4.1). The solution for Ae” follows from (4.4.29), and therefore we
have

Aty = g
B (4.4.35)
Aef = (t+At&E - Jyv)/(?)G + Ep)

Important characteristics of the above algorithm are that the solution
can be obtained for relatively large increments of strain (i.e., for relatively
large increments of the effective plastic strain Aef’), and since the governing
function f(AeF) is monotonic, the solution can be calculated very efficiently
(by, e.g., Newton iteration).

With respect to the accuracy of the solution, the elastic constitutive re-
lations and the yield condition are satisfied exactly at the end of the step.
The stress point D in the deviatoric space (Fig. 4.4.1) is on the yield sur-
face with the size determined by the value ‘*4t5, (point D' lies on the yield
curve). The approximation of the solution corresponds to the use of the Euler
backward method in calculating the increment of plastic strain (4.4.18), and

to the use of (4.4.20) which contains the weighted moduli Ep and Ep. The
accuracy also depends on the degree of nonradiality of the loading within the
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Table 4.4.1. Computational steps for stress integration, mixed
hardening plasticity of isotropic metal

Equation
1. Determine elastic solution
t+AtSE = 2G t+AteH (4 4 12)
HHAIGE = tralgh _ g (4.4.15)
2. Check for yielding
” t“tSEH < \/i ‘G, (4.4.16)
If deformation is elastic, go to step 5.
3. Plastic deformation in step At
Find the zero of the governing function
f(aef)y =0 (4.4.29)
4. Determine plasticity-dependent variables:
- value A\ (4.4.24)
- stress radius ‘T4!S (4.4.23)
- deviatoric stress *t4¢S (4.4.19)
- increment of plastic strain Ae” (4.4.18)
- plastic strain ‘T4te” = tef + Ae” (4.4.14)
- increment of back stress Aa = C Ae” (4.4.20)
- back stress *'a = ta + Aa
- effective plastic strain T4t = te¥ + Aef
5. Determine stresses
tHaty, = K 4%, (4.4.6)
and
t+AtO’,‘j = t+AtS¢j =+ t+At0m61‘j (3.2.14)

time step, i.e., on the difference between the normals ‘n and **4fn in Fig.

4.4.1. In the case of radial loading within a time (load) interval ¢; — ¢ (the
normal n to the yield surface does not change in this time interval) with
isotropic hardening and any yield curve, or if Ep is constant within the
interval in any mixed hardening, the solution at time t- is the same for any
number of steps used in the interval ¢; —t> (see Kojic and Bathe 1987a). We
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give some additional details about the accuracy of the solution in Section
4.4.4

Finally, let us note that the described computational procedure for three-
dimensional elastic-plastic analysis is directly applicable to two classes of
two-dimensional problems (in the z,y plane): plane strain and axisymmetric
problems. Namely, we can use all relations for three-dimensional deforma-
tions, with the following shear stresses and strains equal to zero (see Ap-
pendix Al, Fig. A1.1):

Sgz=Sy. =0
€rz = €yz = 0 (4436)
f = ef. =0
The condition
e..=0 (4.4.37)

for plane strain does not simplify the calculation of the stresses because the
deviatoric components are used in the plasticity calculations, and e’ P

e
zz)
and S,, are in general different from zero.

zZz

4.4.2 Shell Conditions and Plane Stress

Many engineering structures need to be analyzed assuming a shell math-
ematical model, Bathe (1996); Chapelle and Bathe (1998), (2000), (2003).
Considering a material point (numerical integration point) within the shell
model, we now need to proceed with the stress calculation as in the previ-
ous section but using the assumption that the stress “normal” to the shell
midsuface is zero. For simplicity of explanation, let us assume that we are
still using the orthonormal set of axes (z,y, z), with the z and y axes in the
midsurface and z normal to the shell midsurface, see Fig. 4.4.4. Then, be-
sides the fundamental conditions used for general 3-D deformations, also the
condition

(4.4.38)

Q
Il
o

must be satisfied.
The strain components calculated from the displacements at the end of a
time step are

tJrAtez t+Ate t+At6z t+Ate

Yz t+Atezz (4439)

T

yy» Y

The total strain *+4%e. . can be calculated after the stresses and plastic strains

have been determined. The elastic strain t*4%eZ, is
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Stresses in a membrane Sresses at a point of a shell

Oy x ny

Fig. 4.4.4. Coordinate system and stresses for a membrane and shell, z-axis
is normal to the membrane/shell midsurface

t+At B _ _ v (t+AtE+ t+At B

zz - 1—v T yy)

(4.4.40)

which is used to evaluate the constitutive elastic matrix CZ for the shell
t+ At

conditions (A1.25). Hence the mean stress om is
Gy = O (A%l + T3] (4.4.41)
where
Cm = 3(112 ) (4.4.42)

Now we can express the deviatoric stress components in the form

t+AtSzz — CIE t+At E + CIE t+ At fy
t+ At _ 1E t+At E IE t+At E
Syy = Coy W+ Oy €yy
t+AtSzz — t+AtS _ t+AtSyy (4443)

t+AtS'ij = 2G t+ At g i ;é]

The 2 x 2 elastic matrix C4” with components CjF, 4,j = 1,2, is (we use

here the overbar to distinguish from general 3-D conditions, see (4.4.4) and
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(4.4.9))

E 2-v  —(1-2v)

~E
C2_3(1—,/2) —-1-2v) 2-v

(4.4.44)

The simpler form for the deviatoric stresses (4.4.9) is not applicable here
(except for the shear components) and we use the elastic constitutive relations
(4.4.43).

The stress-plastic strain relations (4.4.18) remain unchanged, as well as
the constitutive relation (4.4.20) for the back stress. Therefore, the equation
(4.4.22) is applicable here. The first two equations (4.4.43) can be written as

t+ At _ t+AtgFE ~E t+At & ~IE t+ At &
Sew = "TASE, — AN (CF A5, + CF 415,

A At oF SIE t4+ At S SIE AL G (4.4.45)
Sy, =1 tsyy —AA (Cél Sy + o T tSyy)
where
t+Atsz _ Cfﬁz ( AL, t65z) + Cf{g‘ ( t+Ateyy . teiy)
t+AtsyEy — C«é? ( t-i—Ate;“C _ tefz) + C«ég ( t+Ateyy _ teg];y)
(4.4.46)

are the elastic solutions for the deviatoric stresses. In writing (4.4.45) we fol-
lowed the procedure of derivation of (4.4.19) and used (4.4.14). From (4.4.45)
and (4.4.22) the solutions for the components '*4!S,, and T4tS,, of the

stress radius 'T4!S are

G, = (TASE + AND., ) /Dy

" o (4.4.47)
ratg,, = ((FASE + AND,,) /Dy
where
Do = (Gif +C) "21SE, - OfF 1215,
Dy = —Cif 1HA48E + (CF +C) gk (4.4.48)

Dy =1+ 2A\ (C*{‘iJ + C*) + (AN)? [(C‘{’f + 0)2 - (C‘{?)Q]
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and *AtSE and +HASE are the elastic solutions for the deviatoric stresses
in the stress radius according to (4.4.15). In (4.4.48) we have used the sym-
metry of the matrix C'¥ and that C45 = C}¥. The third normal component
t+4t G of the stress radius follows from the deviatoric character of T4tS,
ie.,

BRALG o _ trAtg o tfAtg (4.4.49)

The solutions for the shear components +4tS;; are given in (4.4.23).

The components of the stress radius are expressed in terms of one param-
eter AX. This parameter can be related to Ae”’ by (4.4.24), and, as in the
case of three-dimensional deformations, we use the yield curve (4.4.28) and
the yield condition (4.4.17) to form the governing equation for Aef

1 . L 1 A
f(Qef = 0 tHAtg . tHAtg _ 3 Hratg? =0 (4.4.50)

Once Aé has been found by solving (4.4.50), we have the solution for *+4t§,
we can determine Ae from (4.4.18), Ac from (4.4.20), ‘+4!S from (4.4.22),
the mean stress *+4fo,, from (4.4.41), and the strain through the thickness
as

t+ At _ t+At_F t+At P
€zz = ezz + ezz

(4.4.51)

where T4l is given in (4.4.40).
The above procedure is given in Kojic and Bathe (1987b) including ther-
mal effects and creep.
Note that a special case of this procedure is the plane stress (membrane)
case, in which we have that not only the normal stress o, is zero, but also

the transverse shear stresses o, and o, are zero.

4.4.3 Elastic-Plastic Matrix

In this section we present the derivation of the consistent tangent constitutive
relations (consistent with the stress integration procedure) corresponding to
the end of the time step. The derivation presented below is a special case
of the general considerations given in Section 4.2 (see (4.2.4) and (4.2.31)).
We use the one-index (vector) notation for stresses and strains (see (A1.1) to
(A1.6) in Appendix Al), e.g.,
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[S]T [ Sl = Szz: SQ = Syya S3 = Szz: S4 = Szy: SS = Syz: SG = Szz]

1T
8] = e1=€uus €2 =€y, €3 =22, €4 ="V, €5 =Yy, €6 = Yoy

(4.4.52)

Note that the total strain vector [&] is defined with the engineering shear
strain components, as it is common in engineering practice. For other strains,
as tHAte! tHAte! t+ALeP e yse the tensorial components (e.g., (T4t =

t+4tel ). The elastic-plastic tangent matrix T4*CFF is
o t+At0_,
t+At ~EP _ i
CEF =0 vm (4.4.53)
J

Figure 4.4.5 gives a graphical representation of a component "+4/CEP.
i
t+AL
[oF 4\/
. t+AL
ts watep _ 00
GI C” B t+AL, I
0 €
tej t+Atej ej
Fig. 4.4.5. Graphical representation of the component *+4tCEP

The stresses T4, deviatoric stresses 't4'S; and the mean stress
t+Ats  can be related as follows

t+At0’i — t+AtSi + t+Ato_m Z: 1’2,3

4.4.54
t+AtUi _ t+AtS’i i = 47 5’ 6 ( )

We consider the consistent elastic-plastic matrix F4'/CEP for gen-
eral three-dimensional deformations. According to (4.4.6), (4.4.7), (4.4.19),
(4.4.12), (4.4.23), (4.4.24) and (4.4.28), we have
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t+AtO_ m t+ At

m= C em no sum on m
t+AtSi — t+AtSi ( t+Ate”,AéP) (4455)

where ¢,,, = 3K. Hence we have

1 1=1,2,3
t+AtYEP __ t4+ At ) &5
Cit = Cij+ ., cm =123
(4.4.56)
t+ALEP _ t+ At 1=1,2,3; j=4,5,6
Gt =770 i=456 j=12.6
where
o t+At5,
t+At 1 [
Cly= 5 o, (4.4.57)
It is convenient to express the derivatives “+4¢C}; as
t+At tratm O tatey
— !
Cly = F2Ch G st (4.4.58)
J
where
_ H ttAatg.
tAtCr = ' (4.4.59)

i g t+Aten
J

and summation on k (k = 1,2,...,6) is implied. According to (4.4.13) and
(4.4.52), the derivatives 0 t+4te! /9t+Ate; can be expressed in the matrix
form

o t+ALgy ] _ [ A 0 ] (4.4.60)

H t+Ata 0 ;I3

where A is the matrix defined in (3.2.70), and I is the (3 x 3) identity matrix.
The matrix t+AtCEP given in terms of the constant ¢, and the derivatives
t+Atlej is presented in Table 4.4.2. Hence, our next task is to derive the

expressions for +4tC! .
In accordance with (4.2.4), from (4.4.19) we obtain

t+AtCTlfj = t+AtSi,j = t+AtSfj -2G H'AtSiA)\J —2G A\ t+At§i,j

(4.4.61)
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= ¢ ¢ | (mprepmon § | (0000 || (-0 e0p)
Pl =08 ¢ oo § | (R Ton || (%o %o §
el ol | mol | (mpuowon & | (Soo-toa) | (erpao i £
el ot ¢ |0 o0 SR07) § | (Mox SE0-H0-7007) | (o 0 P0- H07)
§l i §|orTo oS00 | (04 o o %00) | (Mor - o) §
w 59 mr m (o4 hg- o Ehog) m (o £r0- M- 2hog) m (Mo 19- 2y~ Hog) m

Table 4.4.2. Elastic-plastic constitutive matrix (metal plasticity)

144

All Cj; are evaluated at end of time step
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where the notation (-) ; = 9(-) /0 ALl is used for simpler writing. The
derivatives T4LSE follow from (4.4.12),

HALSE = 2G 6y (4.4.62)

The governing parameter is Ae!” and, following (4.2.4), we express A\ ; and
+ALS, 5 in terms of Ae’} by employing (4.4.24) and (4.4.23),

AN = tp A€ (4.4.63)
t+At5v‘ A H_At&y t+AtSE M H_AtEP t+At5'»AéP
VA t+Ata-E 2, t—‘,—Ata-y ¢ \J
1 t+AL G, t+ AL AE
_ c At E S; g (4.4.64)
where
3 M t+AtE'P p
KP = 9 t+Ata'y (]. — H'Ata'y e ) (4465)
and
vrag, 90 (4.4.66)

oer gP— M t+AtgP

In deriving (4.4.64) we have used the expression for *T4%S; which follows
from (4.4.23), (4.4.26) and (4.4.27), and the definition of ‘+4%6% in (4.4.29),

t+ At 5
~ o IS
HaLS; = v trargk (4.4.67)
t+AtgE

We have also used that

o [ t+At& (M t+AtéP):| R
At o _ A _
At = yaép Aefl =M " EpAe’]  (4.4.68)

From the definition of *+4¢5¥ analogous to (4.4.2), and using (4.4.62), we
obtain

3G 4
t+At 2 E t+ At
6= vt S (4.4.69)

where t*“é’; = 1+AtS; for the normal terms (j = 1,2,3), and t*“S‘; =

2 1418, for the shear terms (j = 4,5, 6).

We now evaluate the expression (4.2.5). Hence, we differentiate the gov-

erning equation (4.4.29) with respect to *4%¢” to determine Ae”:
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3 (aAJ;P) Agi+ tfﬁtey =0 (4.4.70)
and then
de 7]; D tiitg t+AtSJI' (4.4.71)
where

b t+AtEP 9 t+AtEP

N — t+ AL f
D=M Ept+al g age =M gorarp

3 N
) Ae” + ,(2G+C) (44.72)
In this expression for D we have used Ep = (1 — a) 'Ep + a t4*Ep and

Ep = (1—a)tEp +a t*AtEp, for the weighted plastic moduli in €' (see
(4.4.21)), with the parameter 0 < o < 1.

Finally, we substitute ‘*4/SE; from (4.4.62), AX; from (4.4.63), and

+ALG, o from (4.4.64), into (4.4.61), and use (4.4.71) to obtain the coeffi-
cients t+AtC” ;j in compact form

HhatCr; = 0oy — D HHALG, tHALG! (4.4.73)
where
_ t+At 5
C'™ =2G(1 - 2G t+AtA§A)\) (4.4.74)
and

2 t+ AL f
p- 5 lzl) <eP+AAM EP) - (4.4.75)

t+Ata-y t+Ata.y t+At5E

Note that the matrices ‘T4{C’ and T2'CFF are symmetric and that
t+AtCEP g in general a full matrix. The matrix *t4*CFP is applicable
to general three-dimensional deformations, and also to plane strain and ax-
isymmetric conditions by deleting the corresponding rows and columns. The
matrix can be used for shell or plane stress analyses as well, by enforcing the
applicable zero stress conditions using static condensation (see Bathe 1996).

The application of the above general procedure to the uniaxial stress
conditions is given in Example 4.5.1.
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4.4.4 Accuracy Considerations

In this section we briefly consider some aspects of the solution accuracy of
the stress integration procedure for the von Mises material model. Similar
considerations are applicable to the stress integration using other material
models. The approximations adopted in the governing parameter method
for stress integration of the von Mises material model pertain to the stress-
plastic strain relations (4.4.18) and the constitutive relation for the back
stress (4.4.20) (see (3.2.73) and (3.2.78)),

t+At
Aef = / Sdx ~ AX 1HALS (4.4.76)
t
and
t+At 9
Aa = (1 - M) / Cdet ~ 3(Ep — MEp)Ae” (4.4.77)

t

where Ep and Ep are weighted values of the plastic moduli Ep and Ep. We
now want to discuss the influence of these approximations on the solution for
the stresses and plastic strains at the end of the time step, for a given strain
increment Ae.

According to (4.4.23), the problem of the stress integration reduces to
finding the stress point D on ‘ODp (see Fig. 4.4.6a), such that (4.4.29) is
satisfied. The key variables are the normals n and *+4*n to the yield surface,
defined as

-y HtSH (4.4.78)
Ay HAGE Ht+AthH (4.4.79)
where
1§ =2G (e - te¥) - 'a (4.4.80)
and

HASE = oG (e + Ae' — 'ef) - '« (4.4.81)
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4
trat (1)

2G Ae'

1
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® o
p™(D
siP(1)
AéiP
t+AtéiP éiP
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téiP t+AtéiP éiP

Fig. 4.4.6. Stress integration in case of nonradial and radial loading condi-
tions. a One-step solution corresponding to strain increment Ae’, nonradial
loading; b Radial loading, solution shown in deviatoric plane and on the yield
curve; ¢ Solution using three subincrements for the same strain increment as
ina
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Depending on the directions of the normals *+4tn and ‘n, we can have two

distinct deformation regimes in a time step: radial loading, when *4fn = *n,
and non-radial loading, when *T4%n and *n are different. The importance of
the unit normal follows from (4.4.76), which, with use of (4.4.18) and (4.4.24)
o (4.4.26), can be written as

P
AeP =3 / de S:\/3 /ndép (4.4.82)
2 o 2
t t

Hence, the increment of plastic strain Ae” is determined through the mag-
nitude ||Ae”|| = v/1.54e” and through the change of the normal n in the
time step At.

Consider first radial loading, Fig. 4.4.6b. Then we have n = 'n =
and from (4.4.82)

t+At

Ael’ = \/ A&t tn (4.4.83)

Also, we have that the stress radius T4¢S, the back stress t4ta, and the
deviatoric stress '74S, can be written as

t+Atg :\/2 tHAt sty AL, 2 tHAtgt  t+Atg 2 t+Atzt
3 ’ 3 ’ 3

(4.4.84)
where t4%q is the effective back stress in the sense of (3.2.41). Since the
normal n is given, the accuracy of the solution for the stress, plastic strain
and back stress components depends on the accuracy of the solution for the
effective values in (4.4.83) and (4.4.84). In order to obtain insight into the
accuracy of the solution for the effective values, we write (4.4.29) in the form

Al 4 3GAE + (Ep — MEp)Ae® = tH4tP (4.4.85)

where we have used (4.4.21). A graphical representation of the solution with
respect to Aetr’ (hence for Ae”), for a given increment of deviatoric strain
|Ae'||, i.e., for a given 2167 and given yield curve 6, (&), is shown in Fig.
4.4.6b. Consider the following cases:
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e One-step solution. Assume that the weighted plastic moduli Ep = *Ep
7 tHALGE g
trats .

and Ep = 'Ep are employed. Then we have that the value
obtained by adding two terms linear in Ae**’ to the yield stress
graphically, the point Dg) is reached by adding D™ A™ and A(I)Dg) to
the yield stress t"'At&él) corresponding to ‘&'’ + AgiP(1),

e Multistep solution (use of subincrements). Here the total increment AcP
is divided into parts and the calcul;{tion is repeated for each step, with
the weighted plastic moduli Ep and Ep changing from step to step. Hence
we have the term (Ep — M Ep)Aé” nonlinear with respect to Ae'r’, and
the final solution for A&** depends on the number of subincrements used.
In the graphical representation, we have that the final point Dg (with the
corresponding point D on the yield curve), which gives the solution Ae'” | is
obtained as the intersection of the curve D Dp and the line 6, = 45"

It is obvious therefore that in case of a nonlinear yield curve the solution
depends in general on the number of subincrements used (due to the nonlin-

ear term (Ep — M Ep)Ae? with respect to Ae*Y’ in (4.4.85)), and therefore
the solution accuracy increases with the increase of number of steps (subin-
crements). However, when the yield curve is linear in the considered range,
all terms on the left-hand side of (4.4.85) are linear with respect to Ae‘”’
and, for a given increment AP , the one-step solution is giving the exact

value. In isotropic hardening (M = 1), we have Ep — MEp = 0 and the
one-step solution is also exact for any nonlinear yield curve. The analysis of
solution accuracy in the case of radial loading, which includes reverse loading
conditions, is given in Example 4.5.7.

Consider next the case of nonradial loading. Then the normal n changes
direction during the step. Hence in evaluating the integral (4.4.82), we have
the error in the effective values, as discussed above, and the error due to
change of the normal n. Both errors decrease when the step size is decreased,
or if subincrementation is employed. If subincrements are used, then the
algorithm of Table 4.2.2 is applied in each subincrement.

Figure 4.4.6c shows schematically the solution stages using three subincre-
ments of the total deviatoric strain increment Ae’. The final normal t+4tn(3)
and the stress point D®) in the stress space and on the yield curve are dif-
ferent from the one-step solution normal *+4*n(1) and the stress point D).
Of course, the solution error increases with the degree of nonradiality and
magnitude of the strain increment ||Ae’|| (in mixed hardening behavior). In
general, the error can only be quantified provided specific conditions are con-
sidered. We illustrate these conclusions in Examples 4.5.9 and 4.5.10, where
we show, although nonexhaustively, that good accuracy is reached in solu-
tions of nonradial loading conditions.
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4.5 Examples

The objective of this section is to present some examples of plasticity so-
lutions. The examples are sufficiently simple that valuable insight into the
solution approach and details is gained. Also, some examples show the cal-
culated material response in typical engineering conditions.

Example 4.5.1. Uniaxial Loading. Write the governing equations and
derive the expression for the tangent constitutive relation in the case of uni-
axial loading. Assume a von Mises material with mixed hardening.

The uniaxial stress at the end of the time step is

t+AtU — t+AtUE _ EAeP (a)
where

t+At0_E — B ( t+Ate _ teP) (b)
Here *+4%¢ is the total strain at the end of the time step, ‘ef is the plastic

strain at the start of the time step, and Ae” is the increment of the plastic
strain, all in the loading direction. With use of (4.4.20) and (4.4.21), the yield
condition (4.4.17) can be written in the form

t+Atf — 3t+Atfy — (t+At5v)2 _ (t+At6y)2 =0 (C)

where

e ;’ ta — (Ep — MEp)Ae® (d)

Here '« is the back stress component in the loading direction.

Using the increment Aef as the governing parameter, we find that the
governing equation (b) of Table 4.2.1 is now (c) (see also (4.4.29)), since all
terms in (c) can be expressed in terms of Ae”’. We then proceed to determine
the unknowns Ae”, "+4fg and 4%« as follows. For a trial value Ae” we
calculate 4o from (a), 1745, from (4.4.28), and determine Ep and Ep
from the yield curve (see (4.4.21) and (3.2.77)). Then, we evaluate ‘t4tS
from (d) and iterate on Ae until (c) is satisfied. The increment Aa follows
from (4.4.20).

The tangent constitutive relation is (see (4.4.53))

t+ At
t+At EP _ 0 o

T fttAte (e)

From (a) we obtain

d(Aeh)

At ~nEP
t+ tC =F—F at+At€ (f)
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We now proceed to calculate 8 (Aef)/dtT4te by using (4.2.5). Let us first
summarize the terms in (4.2.5) that correspond to this example. We have
that:

a) The governing parameter p is Ae’.

b) The governing function is 174! f = 3t+At £ given in (c).

c) There is only one equation in (4.2.5), corresponding to the strain

d) By inspection of (c), with (a), (b) and (d), we see that the governing
function T4t f depends on t*4%g, Aef” and *+4%e. Hence we do not have the
terms corresponding to T4%e!/N and **4!3 in (4.2.5) (the internal variable
t+4ty has already been included in (d), and the inelastic strain *+4%eP or
rather Aef’ is taken as the governing parameter). Note that (c) can also be
written as

t+Ate‘

2
t+Atf _ 3t+Atfy _ <t+AtU _ 2t+Ata> _ (t+At&y)2 -0

In this case we have that the governing function is tTAtf(t+Aaty t+4tg
Ael’, t+4te) and we would have the nonzero derivatives:

o t+Atf o t+Atf o t+Atf o t+Atf

6t+At0-11 T PttAty? 3t+At5n T HttAty

grtaty  gt+ais grtatf grtatf
= and =

8p B(Aep) at+At611 - ottAte

But for this example, it is more direct to use t+ALf(tHAtg AP t+Ate) a5
given in (¢). Then the nonzero terms in (4.2.5) are:

b t+Atf o t+AtU b t+Atf
Jt+Atg §(AeP)’ 9 (AeP)

o t+Atf

and At

(2)

o=const (AeFP)=const

Further we derive the corresponding expressions for the terms in (g).
According to (a) to (d) we first have

8t+Atf 6t+AtO. 6t+Atf 8t+AtS~' 6t+Ata.

_ _oft+atg
gitaig 9 (AeP) — gtratg 9ttty 9(AeP) 2( S) E  (h)

next,
o t+Atf 5 _ ~
= 21 ASS _Ep+ MEp—
a (Aep) o=const { r " r
O Ep 0 Ep

_ P\ _ ot+Ats t+ AL f :
9 (AeP) 9 (AeP) Ae } 2 Gy M Ep (i)
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and finally,
6t+Atf B 6t+Atf 8t+AtS' 6t+Ato. B 2(t+AtS’)E
t+ At - t+ At a t+ At t+ At -
0 € | AeP=const 0 S 9 o9 € AeP =const ()
J

Here, i+t Ep is the plastic modulus given in (4.4.66). .
Substituting (h) to (j) into (4.2.5), and taking into account that ‘t4tS =
t+4tg,, which follows from (c), we obtain the solution for 9 (Aef’)/0t+4te
as
9(AeP) B
Htt+Ate Dp (k)

where

0 Ep 0 Ep

8 (AeP) ~ 9 (AeP) A’ ()

Dp =E+EP+M(t+AtEP—EP) +

We now substitute 8 (Ae’)/01T4%e into (f) and obtain **4*CFF. For a bi-

linear stress-strain relation we have 8 Ep /0 (Ae?) = 8 Ep /8 (Aef’) = 0, and
from (k) and (1) follows

d(Ae?) E

gt+ate E+ Ep (m)
With use of (3.2.5) we obtain from (f)
t+At0EP — ET (n)

Note that the same result for stress will be obtained when the general
algorithm given in Table 4.2.2 is applied, with the governing parameter

R 3\ /2 . 3\ /2 .
p=laer) = (5) 2= (3) " laer ©

Here we have used the relation (3.2.46). Regarding the calculation of {+4tCEP
we can evaluate the expression (4.2.31) as follows. First, instead of (a) we have
now

tHaty — tHAtGE 2)"* E ”AeP” (p)
3
and then
8(t+Ato.) <2> 1/2
Ao’ = — = E (a)
a(||Ae”]) 3

Using ||AeP || as the internal variable, we have
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B=1 (r)
Also,
t+At§m’ =1 (S)
and with 8 as defined in (o)
. 2\ /2 gt+atg 9\ 1/2 R
tHALE t+Ats _af t+AL o t
S:ﬁ <3> a(Aep)a Oy,3 <3> P ( )

With the above expressions entering (4.2.32) and (4.2.33) we obtain the
derivative (|| AeP||) /0 t+4te and the coefficient a,, and then +4'CFF from

(4.2.31). For a bilinear stress-strain relation we obtain the expression (m) for
t+ At CEP.

Example 4.5.2. Elastic-Plastic Deformation of Beam and Pipe.
Derive the expressions for the stress integration assuming von Mises plasticity
with mixed hardening in the case of beam and pipe deformations.

Beam. In the case of beam deformations the stresses different from zero
are (see Appendix Al, Fig. A1.2b and (A1.27))

2

2
Spe = =25y, = —25.. = 3

3 Eefm (a’)

Ozx =

The normal deviatoric stress T4tS,, and the two nonzero shear stresses
t+atg,, and t+4tS, . denoted by t+4¢S;, i = 1,2,3, can be expressed in the
form (4.4.11),

! -
tHatg, = tHAlGE _ 0P Al no sum on % (b)

where

t+AtSZE — C;E (t—i—Atei _ telP) (c)

The elastic coefficients C;F are the diagonal terms of the matrix (see (A1.28))

)
Cc't= 2G (d)
2G

The derivation of the relations for the stress integration is as for the
general three-dimensional deformations. Therefore, the solution for the stress
radius 48 is analogous to (4.4.23),

t+At GE
(2

tHALG
1+ (C;,-E + é) AN

i=1,2,3 (e)



4.5 Examples 155

where A\ is given by (4.4.24). With use of (a) we have now the governing
equation (4.4.50) as

3 A N N 1
f(AéP) — . t+At512 + t+At53 + t+At5§ _ 3 t+At&§ =0 (f)

Hence, we assume Ael , use the yield curve (4.4.28), calculate A\ from
(4.4.24), determine *+4tS; from (e), and iterate until (f) is satisfied. The
other computational details follow from Table 4.4.1.

Pipe. In the case of pipe deformations, the non-zero stresses are as shown
in Fig. E.4.5-2. We consider a pipe loaded by an internal pressure p so that
the hoop stress o.. can be determined as the static equivalent,

4]
Occ = 5 p (g)

where a; and § are the internal radius of the cross-section and the wall thick-
ness, respectively. We have plane stress conditions, with oy, = 0, two shear
stresses o4 and 0,4, and the known normal stress o... A detailed analysis of
pipe deformations is given in, e.g., Bathe et al. (1983).

We employ the elastic constitutive relation for the axial stress ' 4tg,,,

E
t+At t+At t+At P t+At E
+ Oaga = 2(+ €aa — * eaa+’/+ ecc) (h)
1-v
and for the elastic strain T4l
t+at B _ LA t+At .
€cc = E( Occ —V Uaa) (1)
Substituting (i) into (h) we obtain
t+At t+At t+At P t+At .
T o0 = B(TMeqn — Te,) v o, )

Fig. E.4.5-2. Nonzero stresses at a material point in the pipe wall



156 4. A General Procedure for Stress Integration

The deviatoric stresses 17415, 17415, and tT4tS,, can be expressed as

t+ At t+At oF 'E P t+At t+At t+At

talg = Hatgl ol Ael TAlG,, = —ttatg _ tratg

t+ At t+At oF 'E P

+ SCC = + Scc + Cac Aeaa (k)
where

, 1—-2v
t-‘,—AtSaEa =C E (t+Ateaa _ tep ) _ t+AtU

aa aa 3 cc
/ 9 _
t+AtScEc _ _Caf (t—i—Ateaa _ teaPa) + 3 v t+AtUCC (l)
and
/ 2 ' 1
ct="F CcF="F
aa 3 ac 3 (m)

We next use the flow rule (4.4.18) and the relation (4.4.22) to express
t+atg . and 1T4S,.. Following the procedure given by (4.4.19) to (4.4.23),

we obtain the solutions for the normal components of the stress radius
t+AtSm“ t+AtSCC and tJrAtS'bb7 as

t+At5« _ t+AtSaEa t+AtS« _ t+AtScEc + A)‘Ca? t+AtSaa
aa — ~ cc — A
1+ AX (C;§+C) 1+ AXC
t+AtSbb [ t—‘,—AtS’aa _ t+AtScc (Il)
t+ At

The shear components o and 1A% are given by (e) for the beam.

With the components of the stress radius +4tS, expressed by (e) and
(n), we can follow the above computational steps for the beam. The yield
condition (4.4.50) must be satisfied at the end of the time step.

The calculation of the consistent tangent elastic-plastic matriz
for the beam or pipe conditions can be performed in two ways: 1) by appropri-
ate differentiations with respect to the strains **4¢e; of the above governing
relations; or, 2) by implementation of the expressions given in Section 4.4.3
for the general three-dimensional deformation, with the corresponding static
condensation. Note that in using approach 2), we first have to determine
t+AtQE according to (4.4.12) and then apply the procedure of Section 4.4.3.

t+AtcEP

Example 4.5.3. Bending of a Beam. Consider a beam subjected to
bending in the z,y plane. Assume that the distributions of the normal strain
e, and the shear strain Yy OVEr the beam cross-section are

€zz = key Vey = ke (a)

where k. and k. are constants. The geometric data of the cross-section, the
material data and the strain distributions corresponding to the constants
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ke =1.7453 x 10~* [1/mm]  k,=—-1x10"° (b)

are given in Fig. E.4.5-3a.
Determine the stress distribution over the cross-section, and the bending
moment and the transversal force corresponding to the calculated stresses.

The elastic solution for the effective stress at the top or bottom points is

Frmax = \/(fffx)2 +3(0f,)? = 3493.1 MPa (c)

max
Since 6Z,. > 0,, = 200, we have elastic-plastic deformations within the
cross-section. Using AX = 0 and +4!5, = o, = 200 in (f) of Example 4.5.2,
we obtain the equation

E? 1
3 kz y(Q) + G27iy - 30-51) =0 (d)

from which we obtain the solution for the elastic-plastic boundary
Yo = £4.2732 mm (e)

In writing (d) we have employed (c) and (d) of Example 4.5.2, and also
tel = tefy =0;0,.=0,e,,=0.

For | y |>| yo | we have elastic-plastic deformations. Since the material
behavior in compression is the same as in tension, and the strain distribution
is as shown in Fig. E.4.5-3b, we consider only the part y > 0 of the cross-
section. The computational procedure of Example 4.5.2 is implemented and
the solution is obtained using one step, with 20 values of the coordinate y:
the first is y = yo, the second is y = 10.0, and then the increment Ay = 5 is
used up to the value y = 100. The governing equation (f) of Example 4.5.2
is solved by a bisection procedure (see Section 2.1.1).

We give the numerical results for the top point (y = h/2 =100):

6 =21317 0, =216.34 0, = —4.17

Spr = 142.03 S, = —4.10
e, =1.6372x 107> ~f =-9.4584 x 107"

Figure E.4.5-3c shows the stress distributions and the distributions of
plastic strains for the beam cross section. Note that the normal stress o,
increases slightly in the plastic region because the hardening of the material
is small. The shear stress is much smaller in the plastic than in the elastic
region; this is due to the fact that the material is almost perfectly plastic
(see, e.g., Prager 1959; Prager and Hodge 1968).

The bending moment and transversal force at the cross-section, calculated
from the solution for stresses, are
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Material data

Stresses in MPa

y o - E=2x10°
a=20 mm T v=0.3
+t |h h=200mm  Ow[of E;+=1000
| Gyy =200
| M=0.8
a
a e
Strain distribution
€max=1.7453x107  14,=-0.001
b
Stress distributions
GOxx 100. 200. Oxy -100.
100 T } Ho1634 } t t
~ 60—
< B —
T 202.97
20 +
T 189.18 -76.92

T 14916
1 -4.1663

Plastic strain distributions

e [% 1. 2 T 1% -0.1

1 T T
100 | 1.6372 -0.094584
60 -

g —/
)

Fig. E.4.5-3. Geometric and material data and solution results for elastic-
plastic deformation of a beam cross-section
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h/2
M, =— / Yo ze dy = —2.0968 x 10° Nmm/mm
—h/2
h/2
Fr = / Oy dy = —3835.99 N/mm
—h/2

The moment M, and the transversal force Fp correspond to a unit beam
thickness.

Example 4.5.4. Restrained Pipe. A pipe, shown in Fig. E.4.5-4a,
restrained at both ends, is subjected to internal pressure. Determine the
stresses, strains and the support reactions R4 and Rp using a one-step and
then multi-step solutions.

We first define the physical conditions relevant for this problem. They
are:

e total strain in axial direction is equal to zero,
€aa =0 (a)
e hoop stress is determined as the static equivalent of the internal pressure,

Oce = Uﬁlg) = (;lp (b)

e stress through the pipe thickness and all shear stresses are equal to zero,
ie.,

oy =0, o =0 i#]j (c)

We employ the basic equations derived in Example 4.5.2 (see also Example
3.2.3). The expressions for {+4%S;; are given by equation (n) of that example.
Applying the above condition (a) we obtain (see (1) of Example 4.5.2)

t+AtSvaE(‘L _ 1 _32V HALG ot ;EteP
. 2—v 1
t+AtScEc = 3 t+AtUcc - tacc + 3Et6aPa (d)

The support reactions R4 and Rp, with the directions shown in Fig.
E.4.5-4a, are

Ra=Rp=-mdDp04+malp (e)

where D,,, =D —6 =98, a; = D/2—§ =48.
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/)
8=2 mm
L7 BN N AL
=y ¥ ¥ ¥ ¥ = X

Er=2x10° MPa
5 M=0.5 Gyv
E=2x10°MPa g3

Ep

EE
Ep= —g -~ =2.0202x10° MPa

e —
eIP

See s Yield curve
f,=0 for p=20

0.053385 &"

Saa
b
_ 4 -
Ra=Rs (RA)p=p0—2.630x10 N py=9.3757 N/mm?
1o’Ny |
20 + :
I
1 I
I
I
10 + I
I
I
T I
Elastic deformation ! Elastic-plastic deformation
I
T T T T é T T T lplol N T T T L T T T 120 p
51 R,=-2.283x10° N

Fig. E.4.5-4. Restrained pipe under internal pressure. a Dimensions and
material data; b Stress states corresponding to p = pg = 9.3757 and to
p = 20 MPa; ¢ Support reactions in terms of internal pressure
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Following the computational procedure of Example 4.5.2, we first solve
this example with one step and p = 20. Besides the relations derived in
Example 4.5.2, we employ the expression (4.4.24) for A\,

3 ',
A=, (1 - Hm&) (f)

In the one-step solution we use ‘6, = o,, = 200. The solution results are

T = 23817 6 =307.85 N/mm’

el = 47083 x 107* e}, = -9.2229 x 1072 e, =9.2700 x 1072
epy = —9.3306 x 1072 e, = 9.4742 x 1072 (2)
ga = —0.31710 oy = —62.107 e = 62.424 N/mm’
Ry=Rp=-18871 N

Figure E.4.5-4b shows the initial and the yield surface after deformation,
with the stress points P’ and P" on the yield surface and on the yield curve.

We next determine the solution using 12 steps: the first step corresponds
to start of yielding under pressure pg = 9.3757, then p = 10., and an addi-
tional 10 steps with increments of pressure Ap = 1 are used. The pressure pg
is obtained by calculating the hoop stress (o.c)o at the start of yielding and
using (b). The point P} in the deviatoric plane has coordinates

wa = —30.002 Sy, = Spp = —97.508

Sea =S
S.e = S, = 127.51 (h)

The loading path PjP’ is shown by a dashed line in Fig. E.4.5-4b. We give
the results for the last step for several quantities in order to compare them
with the one-step solution:

Oaa = 238.81 Ry = Rp = —2283.3 @)
el = —4.7405 x 107*  ef, = —9.2220 x 1072 ek, =9.2700 x 1072

As can be seen, the 1-step solution and the 12-step solution do not differ
significantly (the loading is close to radial conditions, see Section 4.4.4).

Figure E.4.5-4c shows the dependence of the reaction R4 (with R = R4)
on the internal pressure p. During the elastic deformation we have that (see
(j) of Example 4.5.2)

Qg .
Uaa:VUcc:V(s p (.])

and then, using (e), we obtain

RE = RE = ra; (a; — vD,,) p = 2804.8 p (k)
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showing the linear dependence of the reactions on the pressure. When the
deformation is elastic-plastic, the reaction is

Ri=RE+n6Dy,Eel, (1)
Since the plastic strain e£’, is negative due to plastic flow in the hoop direction
(el > 0) and free contraction in the b-direction, we obtain from (1) that R4
decreases during plastic deformation.

Finally, we note that this pipe problem can be solved using only one plane
stress finite element restrained in one direction and subjected to extension in
the other direction by the hoop stress calculated from (b).

Example 4.5.5. Straight Pipe With Free End. A straight capped
pipe is loaded by the axial force F' and the internal pressure p. The pipe di-
mensions and the material data are given in Fig. E.4.5-5a. Assuming that the
internal pressure is constant and the force F' varies with time (see the figure),
determine the pipe deformation using two steps. The von Mises material has
the mixed hardening characteristic with the parameter M = 0.2.

In this example we know the loading from which the stresses can be
calculated, hence the task is to determine the strains from the known stresses.
Let us start by computing the quantities which are constant in further

calculations. The pressure static equivalents cT,(f;) and ag’c’) are

4 = 49.4444 (a)

2
o®) = Y 5 =207337 B = 5

aa_Dmé-

where a; = D/2 — ¢ = 145.542 is the pipe internal radius. The hoop pressure
static equivalent U&Ic)) is given by (g) of Example 4.5.2, while the axial pressure

static equivalent follows from the equation
FP) =na?p=nDpé0)

where Fé”) is the axial force due to pressure, and D,, = D — 4. All stresses
are in (MPa) and lengths in (mm).
Consider the first step. The stresses and deviatoric stresses at the end of
the first step are
Y0ga = "F/A+0®) =33230x 10> ‘oo = o) =42.4444

LS00 = 2/3' 000 — 1/30® = 2.0739 x 10°
LSy, = —0.5( 1S40 + 0P)) = —1.2491 x 102 (b)
18, = —0.5(1Spq — o) = —8.2470 x 10

where A = D,,wd. The shear stresses are equal to zero. Since the effective

stress 17, calculated from (3.2.39) and (b), is greater than o,,, the material
deforms plastically in the load step.
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Fig. E.4.5-5. Straight pipe under internal pressure and axial loading. a
Geometric and material data, and loading conditions; b Stress states for
steps 1 and 2; ¢ Axial force versus axial displacement of the pipe end
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In order to determine the plastic strains we use (4.4.22) and obtain the
relations
A LS,

15, = . (c)
1+ ANC

where i = 1,2, 3 corresponds to the a, b, c axes. Substituting ' S; into the yield
condition (4.4.27), and using the bilinear stress-strain relation given in Fig.
E.4.5-5a, we obtain

_ 3 Oy
Ar = 2MEp (1 Lo ) (d)
16 =M'a+ (1 - M)oy, = 3.0265 x 102 (e)

From (c) to (e) follows

AN =6.532x 1077
1800 = 2.0037 x 10% 'Sy, = —1.2069 x 10> 'S.. = -79.681  (f)

The increments of plastic strains can now by obtained from (4.4.18),

tef = Ael, = AN'S,, = 1.3088 x 1072
lel) = Aely = AN'Sy, = —7.8834 x 10~? (8)
el = Ael = AN'S,. = —5.2048 x 1073

We calculate the elastic strains from Hooke’s law and obtain the total strains
as, for example,

1
tean = o ('0aa —vOee) + LeP —1.4610 x 1072 (h)

As a check, we can use (n) and (1) of Example 4.5.2 to calculate ' S,q,

N 2F teg — (1 —2v) 0

'S0 = =2. 102 i
Sa0 = g 9 ANE + (1 M) EBp) 20087 * 10 @)

which is the same as in (f) (note that the relation of type (i) has not been
used in (c) to (e)). The yield surface translation follows from (4.4.20) and

(8),
laga = 7.0138 Lagy = —4.2246 Yoee = —2.7892 )

Finally, we calculate the displacement of the free end,
U = L*e,, = 7.3050 x 10* (k)

We proceed to the calculations for step 2 for which 'e” and 'o are used
as the initial conditions. Analogous to (c), we obtain the following relations
from (4.4.22):
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2QFE 2 1
=

A = N 1
1+AXNC 14 AXC ®

and analogous to (d) and (e) we have

3 15
AN = 1—
2M Ep ( 2&)
26 = M %Y + (1 - M) '6 = 3.0702 x 10 (m)

The calculations now follow the procedure shown for step 1, and some of the
results are

N

28,0 = —2.0345 x 102 28y, = 9.2328 x 10* 28, = 1.2113 x 10?
2eP = 1eP 4 AN2S,, = —8.5533 x 1073 (n)
2eaa = (20'(1(1 - Vacc) /E + 2€aPa = —-9.9989 x 103

The displacement of the free end is
U =L 2e40 = —4.9945 x 10 (0)

From the yield curve and the result (m) we obtain

o ) ) 1 .
2l = 1giP 4 Agtt = . (6 — 0yy) = 0.6990 x 1073
P

and then (see (3.2.65) and (3.2.64))

1 .
2gl = Y 2gtP = 3.4951 x 1072 2eP* = (1 — M)2eP = 2.7961 x 1072

2gP S \/?, 2oP . 2P

because the loading is not proportional.

Figure E.4.5-5b shows the results in the deviatoric plane and on the yield
curve.

Finally, in order to calculate how the end displacement U varies as a
function of the force F', we need to determine the displacements 'U¥ and
2U¥ corresponding to the elastic limits within the loading regime. From (b)
and the yield condition (3.2.56) we obtain

Note that

9 yv 3 cc
LFE = (of — o)) A =1.9144 x 10° (p)

aa aa

4 1
15E = \/ 02, — .02, = 1.9849 x 10?
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and using (h),
IUE =L 'l =7.2911 (q)

For the second step we use (b) and write the yield condition (3.2.57) as

A 1 N 1 N 2
(ASE + 18..)% + (—QAS;EE + 1Su)% + (—QASf; + 18.)?% = 3 152 (r)
where
ASE = 258 _ 15,
is the increment of S,, from 'S,, to the elastic limit 2SE . Equation (r)

reduces to
ASE (ASE +218,,) =0

The solution ASE = 0 corresponds to a further increase of the load, while
ASE = _213,,

corresponds to the reverse loading. Using this result and the values in (b)
and (f), we obtain

268 — 15, —2'8,, = —1.9336 x 10°
and then

?FP = —1.8587 x 10°
UP =L (%el, + el,) = 5.8737 x 10 (s)
Figure E.4.5-5¢ shows F' as a function of U, which includes the results
(p), (q) and (s), as well as U and 2U for the load steps 1 and 2. A more
precise solution can be obtained by increasing the number of steps within the
loading regime, since the loading is not radial (see Section 4.4.4).
Note that the support reaction due to internal pressure is equal to zero
(see (e) of Example 4.5.4). The reaction only balances the axial force F.

Example 4.5.6. Torsion of Tube. A thin-walled tube is subjected to
the torsional moment M, = 8 x 10° Nmm. The dimensions of the tube and
the von Mises material characteristics are given in Fig. E.4.5-6a. Determine
the stresses, strains and the rotation of the tube using two incremental steps,
with M, = 3 x 10° for the first step, and the full Newton iteration procedure.

a) General Remarks. The equilibrium equation to be solved for iteration
“” is (see (2.2.22))

t+AtK:(Cz;1)A6.g(vi) — trAtyr t+AtMéi71) (a)
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Fig. E.4.5-6. Torsion of tube. a Geometric and material data; b Moment -
rotation relationship during equilibrium iterations

where t+AtK;Z;1) is the stiffness of the tube, Aﬁg) is the increment of ro-
tation, tt4*M, is the given externally applied moment, and t+At (=D g
the moment due to the stress t*“a_r(fy_l). The stiffness t+AtK£l;1)can be
expressed as follows

] dt+AtM§i—1) d1+At J(Ei—l) i
HARGY = i1y = Co T =0 ATV (b)
dt+atgli—1) dt+Ategcly )

where
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Tord
Co="" ™ = 3.696 x 10° mm? (c)
t+4t 1) is the coefficient in the constitutive matrix +4tC’ defined in

(4.4.59), and 7y, = (d — 9)/2. According to (4.4.73) and (4.4.74) we have

t+At&

(i—-1)
B N e el
g
(d)

The coefficient D is defined by (4.4.75), with t+4¢Ep corresponding to either
'Ep or ?Ep shown in Fig. E.4.5-6a. With the yield curve shown in the figure,
we have that the coefficient D in (4.4.72) is

D=M"AEp +3G+(1-M) "4 Ep (e)

where we have used a = 1 in expressing the weighted modulus Ep.
We give some of the relations for the stress calculation that follow from
Section 4.4.1 :

t+AtS,Z/ —=92G (t+Atexy _ teP ) t+AthEy — t+AthEy t

zy — Qgy

HAGE = V3 |TASEI dep, = ANTTATS,, (f)
The computational steps are summarized in Table E.4.5-6a.

Table E.4.5-6a. Computational steps for elastic-plastic deformation
of tube

1. Initial conditions for load step

t_P 0 t t4+At t+At (0 t t+ At 0 t
ezyya(zy): Ozy, + Mz; + 953): 017 + Ka(xc): Keye

1=0

2. Iteration loop
i=i+1
AR D) AGUD) — AL N gngy AL (D)

t+At9§ji) — t+At9;i—l) +A9§f)

At () — 0.5 (ry, /L) tTA0

- Stress calculation using (f) and solving (4.4.29)

- Convergence check. If the convergence criteria are
satisfied, go to step 3

t+At Ka(:lz)

- Determine and go to beginning of iteration loop

3. Final calculations

t+At_P t+At
€ry, Qgy
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b) Solution for the First Step. With initial conditions: Oefy =0, %ayy =
0, %04y =0, °Cly = 2G = 7.692 x 10, we obtain

LK = 2.843 x 10° (g)

and the solution of (a) gives

A =1.055 x 1073 (h)

Then the strain 4%l is
1 1) _ 4 :
Lell) = 2LA0< ) =1.293 x 10~ (i)

With use of (f), we find from (4.4.29) that AeX = 6.204 x 10~°, and then

(1) = 5.810. Note that (4.4.29) is linear with respect to Aef" because Ep =
const for each segment of the yield curve. We obtain from (d)

Lot = 6.743 x 102 (G)

and then
KD = 2.492 x 10° (k)

Comparing 0C"44 and 1K£g) with Cyy () and 1K£z), we see that the decrease
of C'44 and K 2 is of the order 102.
With LY and 1M = 25,67 Lol = 1.753 x 105, we obtain from (a)

A0 =5.003 x 1072 (1)
and then

192 = A9 + A6 = 5.109 x 102

Tm 14(2) _ 3
& =7 0 =6.258 x 10~ (m)

The stress and the moment are 1o = 9.943, 131? = 3.000x 10°. Therefore,
the solution has been obtained in two iterations. Note that many (in our run
346) iterations are required if the modified Newton method is employed with
K;(c?c). Some of the variables calculated during the equilibrium iterations are
given in Table E.4.5-6b.

c) Solution for the Second Step. We follow the steps given in Table E.4.5-
6a, using the solution from the first step, and the plastic modulus 2Ep in the
equilibrium iterations.
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As in the case of step 1, the solution is obtained within two iterations.
The calculated values are given in Table E.4.5-6b.

Table E.4.5-6b. Results for time step 1 (* M, = 3E05) and
step 2 (M, = 8E05)

St e p 1 S t e p 2

Iteration Iteration

1 2 1 2
€xy 1.293E-4 6.258E-3 3.083E-2 T7.093E-2
efy 5.373E-5 6.129E-3 3.061E-2 7.060E-2
Qay 1.462E-2 1.668E00 3.851E00 7.417E00
Oy 5.810E00 9.943E00 3.851E00 7.417E00
Cis 6.743E02 6.743E02 2.223E02 2.223E02
M, 1.753E05 3.000E05 5.310E05 8.000E05

AM, /M, 4.157E-1 149E-15 3.362E-1 1.04E-16

Example 4.5.7. Two Step Proportional Loading. Assume that a
material is subjected to a proportional loading, in accordance with (3.2.29).
Considering a von Mises material with mixed hardening, determine the ef-
fective plastic strain and the plastic strains. Use two steps with the loading
reversed in step 2.

a) Derive the equation for the solution at the end of step 1 for the increment
of the effective plastic strain Ael,,, using the governing equations of Sec-
tion 4.4.1, and for Ael’ ., by imposing the condition that the effective
stress at the end of step 1 lies on the yield curve. The deviation of the
effective stress corresponding to Aef — from the effective stress corre-
sponding to Ael . represents the error in the effective stress. Calculate
the error in the effective stress assuming the Ramberg-Osgood yield curve
(3.2.7). Also derive the equation for the solution of the effective plastic
strain at the end of step 2.

b) Use the derived expressions in a) for the analysis of the plate subjected
to the in-plane stresses shown in Fig. E.4.5-7e.

a) Figure E.4.5-7a shows the loading function f(t) for the two steps. The
loading of the material is proportional (see (3.2.29)); therefore we can write

'S=f(t)'S (a)
where 1S is the stress deviator at time ¢,. This relation is graphically repre-

sented in Fig. E.4.5-7Tb. Substituting (a) into the yield condition (3.2.57), we
find the value of the function f(tg) = fo at the start of yielding
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a4
N4
—_

a b
-8 M=0.5 Cy/(3G)=0-005 cyV/(SG)=0.002
n=0.3
Error in 0.2
effective stress 0.6
0.9
0.01
0 0.02 0.04 0.06 0.08 0.1
Increment of effective strain  Ae
c
-30 M=0.01
Error in

effective stress

[%]

0 0.2 0.4 0.6 0.8 1.

d Exponent n

Fig. E.4.5-7. Two step proportional loading. a Time function; b Initial and
yield surfaces for steps 1 and 2; ¢ Error in the effective stress in terms of the
effective strain increment Aé, for several values of the exponent n; d Error
in the effective stress in terms of the exponent n, for several values of the
mixed hardening parameter M and Ae = const. = 0.05
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fo="" (b)

where o, is the initial yield stress defined in (3.2.7), and ' is the effective
stress (3.2.39). It follows from (a) that the components of the unit normal

vector ‘n, defined as
tS 3 'S
b _
"= =V ©

do not change in the time interval 0 <t < 1.
The relation (4.4.22), with use of (c), can be written in the form (see
(4.4.84))

t+At5_ t+Atn _ td tna + (1 + A)\é) t+At&y t+Atﬁ (d)

where ‘@ is the effective value of the back stress according to (3.2.39),
and 'n, = 'a/|tal, *Ah = t+ALS/H+AL|S||. With use of (c), (4.4.18),
(4.4.20), (4.4.21) and (4.4.24), but not using weighted values, we find that
the following scalar equation holds

t+At5_ — tg + t+At5_y + (t+AtEP _ Mt+AtE1P)AéP (e)
From the constitutive relation (4.4.11) we obtain
t+At6 — 3G(t+AtéH _ Aép) (f)

where ttAtg! — t+Aig _ teP Here t+Atg — (2/3 t+ALGI tJrAteH)l/Z7 see
(3.2.46) and (4.4.13). If a one step proportional loading is assumed, then the
stress point moves from the initial position Py to the position P; along the
unit normal n in the deviatoric plane, as shown in Fig. E.4.5-7b. The yield
surface changes from °f, =0 to ' f, = 0.

Consider now the reverse loading conditions. The loading is in the negative
n-direction, as shown in Fig. E.4.5-7b, and instead of (e) we have now

t+Ata, = _tg + t+Ata,y + (t+AtEP _ MtJrAtEP)AéP (g)

If a one step reverse loading is assumed, the stress point moves from the
position P; to the position P> along the negative unit normal —n, as shown
in Fig. E.4.5-7b. The yield surface changes from *f, =0 to ?f, = 0. In case
the stress integration in the interval 1-2 is performed using more than one
step (see (e) in Example 5.4.3), (g) is applicable as long as the back stress
tar is in the positive n-direction.

We next analyze the accuracy of the solution for the effective stress, as
specified above, in the loading regime 0 — 1 assuming that the yield curve is
given by the Ramberg-Osgood formula (3.2.7). The increment of the effective
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plastic strain Ae” is obtained from (e), which, with use of (3.2.7), (f), and
(3.2.77), becomes

frum = A& — At + 3C’Cy¥ [’I’l + (1 - n)M”] (Aép)n =0 (h)

Here we have used the condition (%), —0yy/(3G) = 0, where (85) init is the
elastic effective strain corresponding to the elastic limit. The basic condition
for this equation is that the reduced effective stress 'é lies on the yield curve
o, (MeF). On the other hand, using the condition that the effective stress o
lies on the yield curve o, (ef), we obtain the equation

Cy

fanal = Ae— Aép + 3G

(Ae")"| =0 (i)

The effective stresses that correspond to the solutions Aé%,,, and A&l . of

(h) and (i) are 'Gnum and 6 4pnar, and the deviation of 17, from the yield
curve can be expressed as

(E’I“T'O’I“)a— — 15—"“”” 15—0«"”[ _ Aéapnal - Aéﬁum (J)

18 anat oy/(3G) + Ae — AeP
where we have normalized the error with respect to the effective stress '&gna-

A graphical representation of the dependence of the error in the effective
stress on the effective strain increment Aé is shown in Fig. E.4.5-7c, for the
mixed hardening parameter M = 0.5 and for several values of the exponent
n. It can be seen that the error is in general increasing as the effective strain
increment Ae increases. Figure E.4.5-7d shows the dependence of the error
on the exponent n for the effective strain increment Ae = 0.05 and for several
values of the mixed hardening parameter M. The graphs show that the error is
equal to zero for M = 1 (isotropic hardening) and always for n = 1 (bilinear
stress-strain relation), for any increment of the effective strain. It can be
seen that the error increases as the hardening parameter approaches zero
(kinematic hardening behavior). We have used a rather large value of Ae,
not usually employed in practical applications, to emphasize the deviation
of the effective stress from the yield curve when a large strain increment is
used in a load step. If the strain increment is taken as Aé = 0.0002, a value
normally used in an engineering analysis, the error (for M=0.01, n=0.22,
corresponding to the maximum error shown in Fig. E.4.5-7d) is 0.36%. Also,
as pointed out already, we did not use weighted values for the material plastic
moduli, which would reduce the error.

The above error analysis is of interest for practical applications, because
it shows the dependence of the error in the effective stress, in the case of
radial loading and the Ramberg-Osgood yield curve, on the increment of
strain (the measure used here is the effective strain) in the time step and on
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the material parameters of the model. The loading regime assumed in this
analysis is typically arising in engineering practice.

b) We next use the results of the above analysis for the analysis of the in-
plane loading of the plate shown in Fig. E.4.5-7e. The plate is modeled by a
four-node finite element, with a linear displacement field within the element.
According to the given boundary conditions, the displacements u, and u, as
functions of coordinates x and y are

Uy :ezz$+7zyy

Uy = €yy Y (k)

The components of the strain tensor e;; can be expressed as (see (4.4.4) to
(4.4.9))

eij = Sij/(2G) + (0 /cm)dij + €] 1)

The loading of the material is proportional, with the components of the
normal n in the first step given by (c),

Nge = 0.5 nyy=—-075 n., =025 ngy =0.25 (m)

Note that the following relation is satisfied :

Go Ty, 0l 2ng, =1 (n)

n
The increment Aé! represents the solution of (e), which for the Ramberg-
Osgood yield curve (3.2.7) is

1 ] (1/n) ©)

_P 0 — Oyy
A = [cy[n + (1 - m)Mn]

Y

and the components le”

are

3 ., _
165 = \/2 Aef Nij (p)

The values of plastic strains and displacements for isotropic, kinematic, and
mixed (M = 0.5) hardening are given in Table E.4.5-7.

The loading in the second step is the reverse radial loading, hence we
solve numerically (g) with respect to Ael’, and calculate the plastic strains
265 for the second step as

. 3 .
2@5 = 165 — \/2 Aefnij (q)
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Fig. E.4.5-7 (continued). e Boundary conditions, loading and material
data for plate element; f Yield surfaces and representative points in the de-
viatoric plane and in the coordinate system &, &*
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The total strains and displacements are calculated using (k) and (1). Some of
the calculated values are given in Table E.4.5-7.

Table E.4.5-7. Results for isotropic, kinematic and mixed

hardening
stepl/step2 Isotropic hardening
» P P 1.048E-2 —1.572E-2 1.048E-2
Cxz Cyyr Vay 1.048E-2 —1.572E-2 1.048E-2

4.633E-2 2.357TE-2 —3.575E-2

Uz27 Uz47 Uy3 = Uy4
3.753E-2 1.837E-2 —2.7T15E-2

Kinematic hardening

8726E-2 —1.309E-1  8.726E-2

€rrrChyr Vo
v Vay —4800E-1  T7.200E-1 —4.800E-1
3.534E-1  1.771E-1 —2.661E-1

Uw27 Uw4, Uy3 = Uy4
—1.924E00 —9.626E-1 1.444E00

Mixed hardening

» P P 1.534E-2  —2.302E-2 1.534E-2
Caz) Cyys Vay 6.208E-3 —9.312E-3  6.208E-3
6.577E-2 3.329E-2 —5.033E-2

Uz27 Uz47 Uy3 = Uy4
2.043E-2 9.816E-3 —1.432E-2

Figure E.4.5-7f shows the yield surfaces and the corresponding points
in the deviatoric plane and in the &, " coordinate system, for isotropic and
kinematic hardening. The yield surfaces and the representative points for
mixed hardening lie between those for isotropic and kinematic hardening.
Note that the points ' B’, 2B" corresponding to kinematic hardening do not
lie on the yield curve because the yield condition of the form &,(&"’) is not
used. This yield condition is used only in isotropic hardening when the points
LA" and 2A" are on the yield curve. Plastic flow occurs during the reverse
loading in kinematic or mixed hardening, while in isotropic hardening the
stress point moves from * A’ to ?A’ within the yield surface ! f, = 0 and the
deformation is elastic.

Note that very large values of plastic strains are used in this example
merely to emphasize the influence of the model characteristics on the pre-
dicted material response (but a small strain analysis was of course performed).

Example 4.5.8. Plane Strain Plastic Deformation. A material ele-
ment shown in Fig. E.4.5-8a is loaded by compressive forces R, and R,. The
material is in plane strain conditions (strain e., = 0) and it is of the von
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Fig. E.4.5-8. Plane strain element under compression. a Boundary and load-
ing conditions; b Stress states in the deviatoric plane and on the yield curve

Mises type with mixed hardening (parameter M = 0.4). The yield curve is

defined by the Ramberg-Osgood formula (3.2.7), as given in the figure.
Assuming a uniform stress/strain state in the element and the load change

as given in the figure, determine the displacements using a two-step solution.

We start with the principle of virtual work and form the incremental-
iterative equation (see (2.3.13) and Bathe 1996),
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/ (Beus) (FFAUCEP ¢y 1+ HHACEP G ) 44 4

A
/ (Oeyy) (TACE ego + TTA1CE e, ) dA =
A

2( t+AtU )t+AtR _ (6t+AtU )t+AtRy (a)

/6em ) 0 e dA — /5eyy O'yydA
A

Here we have neglected nonlinear strain terms, considering that the displace-
ments are small. Also, we have taken into account that the only non-zero
strains are e,, and ey,. Under the assumption that the strains are uniform
within the element, we have the relations

€z = Us/a eyy = Uy/b (b)
The components of the elastic-plastic matrix *+4¢CEP #+AIQEP tvAlCEP —

t*“Cﬁp , are constant over the element. With these conditions we obtain two

equilibrium equations
t+AtK(i71)AU(i) t+AtK(i71)AU(i) — 2t+AtR _ t+AtF(i71)
T T T
t-‘,—AtK(i—l)AU('i) t+AtK(1 I)AU( ) t+AtR _ t+AtF(i—1) (C)
zy x y

where

t+AtK£z;1) = b/a t+AthzP(z>1) t+AtK?5§;1) =a/b t+AtC?JJEyP(z‘71)

t+AtK;£Z—1) — t+AthEyP(i—1) (d)
t+ At i—1) __ t+ At i—1 t+ At i—1) __ t+ At 1
- — g 8t (i) FG-1 Z g et

With use of the Ramberg-Osgood formula (3.2.7), the governing equation
(4.4.29) becomes

f(Ae") = oy, +C, M" ("e" + A&")"
+ z(QG +C) Ae” — AP =0 (e)
where (see (4.4.21) and (3.2.80))
C =2/3nC,(1 - M™)(1e’ + Ael)r! ()
To solve (e) we employ the Newton iteration, hence

A_P k) _AéP(Ic 1) Ic 1)/fllc 1) (g)
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where

f1(A") =nM"C, (te¥ + A&”)("1) +

z(QG + ) +n(n—1)C,(1 = M™ (teP + AeP)=2) ()

The coefficients of the elastic-plastic matrix in (d) can be determined
according to (4.4.56). The derivatives of the stress radius follow from (4.4.64),
and the derivatives of Ae® with respect to the strains **4%e; can be obtained
by differentiation of (e) or by use of (4.4.70). In this procedure we can use
the derivatives given by (h), and also

o t+At5.

6t+AtéP =n Cy M’n (t+AtéP)n—1 (l)

Table E.4.5-8 gives values of the relative unbalanced force and the rela-
tive unbalanced energy during equilibrium iterations of the system (c). The
convergence is quadratic due to the tangent character of the elastic-plastic
matrix C¥¥. The solution of (e) was obtained with a maximum of five trials.
The quantities in the table are calculated as follows

AF(Z) — t+AtR_ t+AtF(i)
AED = AR AU + AFSD AU

Frep = 2\/(1Rm)2 + ('Ry)? = 0.412 x 10*

Table E.4.5-8. Unbalanced force and unbalanced energy during

iterations
Step 1 Step 2
: AE® AF® AE® AF®
Iteration AE©) H Fros AE©) H Fros

1 1.37E-2 1.12E-4 3.38E00 2.46 E-2
2 1.72E-3 1.29E-5 7.40E00 6.87E-2
3 2.96E-5 2.39E-7 2.46 E00 1.80E-2
4 8.61FE-9 7.2E-11 7.01E-2 5.09E-4
5 7.2E-16 6.1E-18 3.51FE-5 2.55E-7
6 8.2E-12 6.0E-14

AE® = 598F01
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Figure E.4.5-8b gives a graphical representation of the solution. It can be
seen from the positions of the stress points N{ and N, that the loading is
very nonradial (see Section 4.4.4). The points N{" and N} , corresponding to
the stress points N| and NJ, are exactly on the yield curve.

Example 4.5.9. Radial, Nonradial and Reverse Radial Loading.
Consider the stress conditions given in Fig. E.4.5-9a. The stresses 04, 0yy,
0. and o4, change linearly to the given values in the three loading (time)
intervals, providing radial, non-radial and reverse radial loading regimes. The
von Mises material has the mixed hardening characteristic (with the param-

Loading regime

Stresses [MPa] (1) Radial (2) Nonradial (3) Reverse radial
[ 100.00 40.00 -100.00
Gyy 60.00 -30.00 -12.08
Gy -100.00 -130.00 102.80
Oy 60.00 100.00 -125.30
a

P

8,=200+4008&'
M= 04
E=10°MPa
v=03

—i —iP 3_il —iP
1e|P 2e|P 36|P 8

Fig. E.4.5-9. Radial, nonradial and reverse radial loading regimes at a ma-
terial point. a Stresses at end of loading regimes; b Yield surfaces and yield
curve



4.5 Examples 181

eter M = 0.4). The yield curve is defined by the Ramberg-Osgood formula
(3.2.7), with the constants given in Fig. E.4.5-9.

Employ various number of time steps in the three regimes to calculate the
strains and compare the results.

We write the governing equations for this problem assuming a nonlinear
yield curve, and give the numerical solutions using the bilinear stress-strain
relation with the material constants given in Fig. E.4.5-9. The stresses are
given, and from (4.4.22) and (4.4.24) we obtain

2 R 3 A A
\/3 t+At0_+\/2 CAeP_”tJrAtS_ ta||:0 (a)

and, further, with use of (3.2.7), (4.4.21), and (3.2.80)

f(Aer) =y, + C, M™(tel + AeP)"+
nCy(1 — M™)(teP + AeP)yn=t AeP — \/z |tHAtS —tal|=0 (b)

This equation is nonlinear with respect to Ae” when the exponent n # 1,
but it is linear for n = 1. With A&” determined, we calculate {4¢G from the
yield curve t+4t5 (M t+ALeP) | AX from (4.4.24), the stress radius *+4¢S from

(4.4.22),
HrALG_ (t-‘rAtS —ta)/(1+ C’A)x) (c)

and the increments of plastic strain Ae® from (4.4.18). With the known
plastic strains 4%e” we obtain the total strains (see (4.4.4) and (4.4.5)),
ie.,

t+Até — (CE)fl t+Ato_ + t+AtéP (d)

The stresses are linearly increased and the stress point moves along the
normal 'n, from point O to point A4 in Fig. E.4.5-9b. We use one step and ten
steps (the first step in the ten step loading corresponds to start of yielding),
and obtain that the plastic and total strains are the same. The results are
given in Table E.4.5-9. If the yield curve were nonlinear, the solution would
depend on the number of time steps (see Example 4.5.7).

The stress path in the second regime is orthogonal to the normal 'n,
and we calculate plastic strains using one and ten steps. Since the loading is
nonradial (at the beginning the nonradiality is at a maximum), the results
depend on the number of load steps. Note that the results do not differ
significantly, especially for the effective quantities 6 and e’.

In the third regime we have the reverse radial loading conditions, with
the stress path along the normal 2n calculated from the ten-step solution in
the second regime. The stress is increased linearly between the stress points
B and D. We have used the results of the ten-step solution in the second
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Table E.4.5-9. Results in the three loading regimes

Loading regime

Radial Nonradial Nonradial ~ Reverse radial

1 and 10 steps 1 step 10 steps 1 and 10 steps
€rz 1.637E-2 3.920E-2 4.017E-2 —7.253E-2
Eyy 8.226 E-3 1.021E-2 1.300E-2 1.042E-3
€rx —2.436E-2 —4.989FE-2  —5.365E-2 7.146 E-2
Yay 2.444E-2 8.388E-2 7.916 E-2 —2.083E-1
Qzz 2.440E00 6.131E00 6.286 £00 1.140E01
Qyy 1.220E00 1.638 E00 2.085E00 1.874E-1
Qay 1.830E00 6.502E00 6.125E00 —1.640E01
o) 2.043E02 2.113E02 2.114E02 2.452E02
e’ 2.678E-2 7.078 E-2 7.106 E-2 2.824E-1

regime as the initial conditions for the third loading regime. As stated in
Table E.4.5-9, the same results are obtained when using one or ten steps.
The first stress increment in the ten-step solution corresponds to the start of
yielding in this regime, while in the other nine steps they are equal. Again,
if the yield curve were nonlinear, the solution would depend on the number
of time steps used, as discussed in Example 4.5.7.

The above results demonstrate the solution accuracy that is obtained.
Note that the large strain values are merely used to better indicate the solu-
tion differences that can be expected; we of course always used the materially-
nonlinear-only (M NO) formulation.

Example 4.5.10. Nonradial Loading of Perfectly Plastic Mate-
rial. Compare the numerical solutions obtained using various number of
steps with the analytical solution, for a plane strain deformation and per-
fect plasticity. The initial stress state on the yield surface is defined by
Sz = —Syy, Szz = 0 (stress point 1 in Fig. E.4.5-10a), and the deviatoric
strain rate is tangential to the yield surface at the stress point 1. The total
strain increments from the state 1 are Ae,, = Aey, = 0.01. The material
data are given in the figure.

The analytical solution is (see Krieg RD and Krieg DB 1977)
HHatg = a, ('S + 8,48.) (a)

where
2C,

- 1+ C2+(1—C2) costp, (b)

Qq
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E=10°MPa v=0
G, =100 MPa E;=0

Vs
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S, - analytical solution
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Fig. E.4.5-10. Accuracy analysis in case of perfect plasticity plane strain
deformation; a Material data; b Accuracy of solutions

and

Cq = exp(—||AS.||/R)
[1-Ci+(1—Ca)? cosyp.] R
Ba = 20, ]| AS. || (c)

Here R is the radius of the yield surface, and AS, is the increment of devia-
toric stress calculated as (see (4.4.9))

AS, = 2G Ae’ (d)

where Ae’ is the increment of deviatoric strain tensor. The value cos, is
defined as
1S.AS,

cos, = e
RIIAS.| ”
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where 'S is the deviatoric stress at the start of yielding.
The numerical solution is obtained according to Table 4.4.1, using

'S0 = = 1Syy = va/\/35 'S..=0 ()

and
e, = —"'e,, =ap Sy = 0.57735 x 1077 (8)

T

where ag = 0.5/G. Since &’ is tangential to the yield surface at stress point
1, we have

cosyp, =0 (h)

From the conditions (f) and (h) we obtain

Aegy = Aey,y Aey, = Aey, = Aegy (i)

The analytical solution, and the numerical results for 1, 20, 50 and 100
steps, are given in Table E.4.5-10 (see Kojic and Bathe 1987a). Figure E.4.5-
10b shows the error in the deviatoric stress 2S direction, and in the effective
plastic strain 2e” with respect to the hundred-step solution. It can be seen
that the solution accuracy increases with the number of steps used. Also, the
error is not very large when only one step is used. Note that the nonradiality
is at its maximum at the start of the plastic deformation, and that the error
decreases as the loading approaches the radial loading condition.

Table E.4.5-10. Analytical and numerical results for plane strain
perfect plasticity

Analytical Numerical solutions - number of steps

solution 1 20 50
Sex 3.334E01 3.891E01 3.336 E01 3.334E01
Syy 3.333E01 2.742E01 3.330E01 3.332E01
el - 3.522E-3 3.577E-3 3.577TE-3
el - —6.003E-3 —6.000E-3 —6.000E-3
e’ - 6.033E-3 6.166E-3 6.186E-3

Example 4.5.11. Gurson Material Model. Derive the relations for
implicit stress integration in the case of the Gurson material model for metals.

In this example we a) describe briefly the Gurson model, b) implement
the governing parameter method of Section 4.2 to develop the implicit stress
integration algorithm for general 3-D and shell (plane stress) conditions, and
c¢) show the numerical results in a simple example.
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a) Model description. It has been observed in experiments that void nu-
cleation and void growth occur in the case of large local plastic flow of metals
(usual in ductile fracture processes). Then the hydrostatic stress independent
plasticity material models are no longer adequate to describe the behavior of
the metals.

The basic plasticity model for a porous metal was proposed by Gurson
(1977). The yield condition of this model was modified by Tvergaard (1981),
(1987) into the following form

1 1 * 3q20m * 2
fy:2S-S+3[2fqlcosh<20y>—1—q§fz]a§:0 (a)

where o, is the yield stress, S and oy, are the stress deviator and mean
stress, f* is a function of porosity (volume fraction) f ; and ¢, ¢2 and g3 are
material constants. The function f* is given as

Y for < f.
F=l oKk (f—f) for f> 1 (b)

where f. is a critical porosity when the onset of rapid volume coalescence
begins, and
1/ql - fc
Ky = (c)
! ff - fc
Here f; is the value of f at the material failure.

The increment of porosity Af in the time step At can be decomposed
into the parts corresponding to the void growth, nucleation and coalescence
(Brunet and Sabourin 1996), and can in general be expressed in terms of
the volumetric plastic strain increment Ae! and the effective plastic strain
increment Ae’’,

Af =(1—f) Ael + A AeP (d)

where A may be constant, or dependent on the effective plastic strain and
porosity.

It is assumed that the flow rule (3.2.71) is applicable (Gurson 1977),
as well as the equivalence of plastic work (3.2.32) which now has the form
(Worswick and Pick 1991)

o6’ =(1-f)o,8" (e)

b) Stress Integration Procedure. We first derive the basic relations for a
general three-dimensional deformation, and then for the shell (plane stress)
conditions.

The constitutive relations (4.4.6) and (4.4.11) have now the following form

thaty = HAGE _ o Aeb no sum on m (f)
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and
t+AtS :tJrAtSE _ 2G’Ae'P (g)
where Ael’ and Ae't are the increments of the mean and deviatoric plastic
strains. The elastic mean stress {T4%¢ 2 is
t+At0’ﬁ =cnm (t+Atem _ t€Z) (h)
and the elastic deviatoric stress t4*S¥ is given in (4.4.12). The increments

Ael’ and Ae'f follow from (4.2.10) and (a),

AN ,
Aepy =0 A, (i)
and
Ae'f = ANTTALS ()
where

8t+Atf

t+At
t+AthI/ _ t+AtO.y t+Atf* sinh <3IJ2 Om ) (1)

Y= qi192
ottty 2t+Ath

Substituting (j) into (g) we solve for {+4¢S as

t+AtQE
t+AtQ S

S 1+2GAN ®
From the evolution equation (d) for porosity, using ¥4 f for f, we obtain
Af =1[31—f) Ael, + AAE”] / (1+34el) (m)

With use of (i) and (j) we obtain (e) corresponding to the end of the time
step in the form

t+Atfe — A}\tJrAtS 't+AtS+3t+At0m ACZ _ (1 _ t+Atf) t+AthAéP =0

(n)

Finally, the yield condition (a) at the end of time step,
t+Atfy (t-i—AtS’t-i-Ata_m’ t+Ath7 t+Atf) —0 (o)

must be satisfied.

The computational steps are in accordance with Table 4.2.1. The govern-
ing parameter is Ael and the plasticity calculations are as follows: for an
assumed Ae® we determine 4%, from (f) and then iterate on Ae” (by
calculating +4to, (tef’ + Ael’) from the yield curve, Af from (m), T4t f*
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from (b), 4! f! from (k), AX from (i), and “+4¢S from (1)) until (n) is sat-
isfied within a selected numerical tolerance. The iterations on Aef, continue
until (o) is satisfied.

The consistent tangent elastic-plastic matrix can be obtained by imple-
menting the approach described in Sections 4.2 and 4.4.3. The computational
details of the above stress integration procedure and the elastic-plastic matrix
calculation are given in Kojic et al. (2002b).

Consider next the above procedure when applied to the shell (plane stress)
conditions (Kojic et al. 2004). Following the concept of Section 4.4.2, we
obtain from the fundamental condition (4.4.38) that the normal components
of the stress deviator are

HASe = (mel, +p2ey,) | (07— p3)
t+AtSyy = (p2e:clz +p1€Zy) / (P% - P%) (p)
t+AtSzz - _ H'Atam - _ t+AtSm _ t+AtSyy
where
P =cAN+ag p2 = ¢, AN
e = (t+Atem _ tefx) —e, (t+Ateyy _ tezl/jy) (Q)
en, = —Cy (t+At€m - tefz) +a (t+Ateyy - tefy)
with
1-v
CV:3(]_—]/) ci=1—c¢

and ap = 1/(2G) . The relations for the shear stress components are given
in (1).

The computational steps are similar to those for the general 3-D defor-
mations given above. The governing parameter is Aef . We initialize Ael
and Aef and then iterate on Aef . With a selected Ael we calculate Af
from (m) and find Ae” numerically by satisfying equation (n). We employ
the governing relations (p) for the shell conditions within the numerical so-
lution of (m). The iterations on AeZ continue until the yield condition (o) is
satisfied.

The computational algorithm can be extended to large strain deforma-
tions and we will give one large strain numerical example in Chapter 7 (Ex-
ample 7.3.5).

c) Numerical Ezample. We consider a block of material in tension as
shown schematically in Fig. E.4.5-11a. The material data are given in the
figure.

The dependence of the stress on the strain is calculated for several values
of the initial porosity °f. It can be seen that the stiffness of the material
decreases with an increase of the initial porosity, and when the initial porosity
is small the response of the material is as for the von Mises material.
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Fig. E.4.5-11. Uniaxial loading of material modeled using the Gurson model.
Plane strain conditions. a Finite element model and material data; b Stress-
strain dependence for several values of initial porosity °f and the von Mises
model

4.6 Orthotropic Material Model - Stress Integration

In this section we present the stress integration procedure for Hill’s or-
thotropic model of Section 3.3.1. The procedure represents a generalization
of the algorithm for an initially isotropic metal, described in Section 4.4. The
basic relations that we derive here reduce — as the orthotropic model itself —
to the isotropic relations of the perfectly plastic von Mises material as a spe-
cial case. We consider general three-dimensional elastic-plastic deformations
and the shell (plane stress) conditions.

The stress integration for the sheet metal models of Section 3.3.2 can be
performed by applying the relations derived in Section 4.2.

4.6.1 Stress Integration

The elastic constitutive relations for the mean stress T4%g,, and the de-

viatoric stresses '*4tS corresponding to the end of the time step are (see
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Appendix A1)

3

Aty = Z OnrE t+at B (4.6.1)
i—1

t+Alg _ /F t+AtgF (4.6.2)

where 48P is the elastic strain vector defined according to (4.4.52), and

CE and C'F are elastic constants and the elastic deviatoric matrix, re-
spectively. The coefficients C?¥ can be obtained from the definition of the
mean stress (3.2.12) and the elastic constitutive relations for the orthotropic
material as

1 3
Cif =, Cf (4.6.3)
Jj=1

where the Cg are the entries in the elasticity matrix C¥(A1.41). According
to the definition of the deviatoric stress (3.2.14), we obtain the coeflicients
Cl¥ as

J

Cif = AuCf;  i,5,k=1,2,3 (4.6.4)

and

CiY =CF by

i

= 3,3,6 no sum on i (4.6.5)

where the matrix A is given in (3.2.70). Summation on the dummy index k
is implied in (4.6.4).

In the case of shell conditions we employ the constitutive matrix C¥
whose terms C'g are given in (A1.44), and instead of (4.6.1) and (4.6.2), we
have

t+At0_m — CHE t+AtelE + C;?}E t+At62E (466)
and

t+AtS — CIE t+AtéE (467)

where

_ 1, _
CnP = 1 (Ch +CF)
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_ 1 - _
OmE = 3 (Co +Ch) (4.6.8)

The matrix C'Fof order (5 x 5) contains a (2 x 2) nonzero submatrix for the
normal components, with

~ 1, 4 - ~ 1, _
Cif = 4 (205 —CE) ¢l =, (205 - CF)

5 1, -5 A - 1, —p =~
O = 3 (20E - Ch) Oy = 3 (2% - Ch) (4.6.9)

The part of C'F corresponding to the shear stresses is the same as for the

three-dimensional deformations, given in (4.6.5). Also, regarding the shear

stresses and strains, we note that in plane stress deformations (membrane

conditions) we have only the in-plane shear stress and strain components.
For the elastic-plastic response, in analogy with (4.4.11), we have

t+AtS — CIE (t+AtéH _ Aép) — t+AtsE _ CIEAéP (4610)

where
t+AtéIl — t—‘,—Até_ téP (4611)

and {tA1SF = C'F t+Atg! ig the elastic solution for the deviatoric stresses.
Note that we use here the strain vectors with the engineering shear strains,
while for the von Mises models we used tensorial shear strains in order to
have the simple relation (4.4.9). By employing (4.2.8) and (3.3.10), we express
Aeé” in the form

Ael = AAN t+4tg (4.6.12)

where N is the matrix of material constants defined in (3.3.5) but with twice
the coeflicients corresponding to shear.

We are searching for {+4¢S on the yield surface f, = 0. Figure 4.6.1 shows
schematically the return mapping procedure in the deviatoric stress space.
Note that the stress path from the elastic stress point Dg to the yield surface
is not in the normal direction to the yield surface. Using (4.6.10) and (4.6.12)
the solution for t+41S is

HAlg — (I + ANC'PN)~! t+AtgE (4.6.13)

where I is the (6 x 6) identity matrix.
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Fig. 4.6.1. Stress states at time ¢t and at time ¢ + At in the deviatoric plane
with the return mapping path; orthotropic plasticity

Considering the above relations (4.6.10) to (4.6.13) we have that all un-
knowns are functions of one parameter, AX. Hence, according to the governing
parameter method described in Table 4.2.1, we can establish the governing
equation, here the yield condition f, = 0, in the form (3.3.3)

1

f, = ) trAtgT I tHAtg! T 2 _ (4.6.14)

1
37V

and solve for AX. Table 4.6.1 summarizes the computational steps for the
stress calculation.

Table 4.6.1. Computational steps for stress integration,
orthotropic plasticity

1. Assume A\
2. Calculate "*4S from (4.6.13)

3. Check for |f,| < ¢ according to (4.6.14)
If the condition is not satisfied, go to Step 1,

with a new trial value A\

4. Calculate final quantities for time step

t+AteP , t+Ato,

We note that, unlike for the isotropic material, the mean stress *+4tg,,

depends on the plastic strains (the elastic strains in (4.6.1) can be evalu-
ated after the plastic strains have been determined using (4.6.12)). The final
stresses 1T 4%g;; are
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t+At0'ij = t+AtSij + t+AtUm (Sij (4615)

It is computationally more efficient to solve explicitly for *4%S instead
of inverting a matrix as indicated in (4.6.13). Hence we transform (4.6.13)
into the form (4.4.47),

t+AtS;c;c — ( t+AtS:cEx + A)\Dzz) /D)\

t+At5yy — (t+AtS£J +A)\Dyy) /D)\

t+Atg _ _ t+AtgE _ t+AtgE (4.6.16)
2z ax vy

i=4,56

no sum on 4

t+AtS,’ = t+AtSiE / (1 + 2G; AN N“)

where
t+At oF t+At oF
Dyy = Cyy 2187, + Coy 1745,

_ t+ Al oE t+At gE
Dyy =Cyy Sye + Cra Syy

Dy =1+ AX(Cop + Cyy) + (AN)? (CouCyy — CayCya)  (4.6.17)

and
sz = Cﬁc? (Nkl - Nk3)

Cay = _Cijlf (Nk2 — Ni3)

Cye = —Csy (Ni1 — Nia)

Cyy = Cs (N2 — Nia) (4.6.18)
k=1,2

with summation on k. To establish these relations we have taken into account
the deviatoric character of *+4tS,

The expressions (4.6.13) or (4.6.16) are also applicable to shell analysis
conditions, but using (4.6.9) and C¥ = 0, i = 1,2,3. They can also be
reduced to the pipe or beam conditions, see Examples 4.6.1 to 4.6.4. For plane
strain or axisymmetric deformations, the appropriate strain components must
be set to zero.

The above computational procedure reduces of course to the procedure
given for isotropic conditions. Then the matrices N and C'¥ (see (3.3.8),
(3.3.9)) to be used in (4.6.13) are
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o A 0
N = { 0 L ] (4.6.19)
and
C'F=2GN (4.6.20)

where A is the matrix defined in (3.2.70). Of course, the computational pro-
cedure of Section 4.4.1 is then numerically more efficient.

The above derived computational procedure assumes a perfectly plastic
orthotropic material. This procedure can be extended to orthotropic materials
with hardening (Kojic et al. 1996b). If, for example, the hardening is defined
by the uniaxial yield curve in one of the principal material directions (for
example the rolling direction for sheet metals, see Section 3.3.2), then an
approximate expression for (3.3.14) is

3 Ae”

AN =
2 t+Ath

(4.6.21)

This expression corresponds to the von Mises material with isotropic harden-
ing. Here Ae” is the increment of the effective plastic strain, and +4tg, is
the yield stress on the uniaxial yield curve o, = ay(ép ). The governing pa-
rameter for stress integration becomes Ae?’. Hence in step 1 of Table 4.6.1 we
would assume AP, then obtain **4!g, from the yield curve, and calculate
AN\ from (4.6.21). The other steps in the table remain the same (of course,
iterations are performed on Aef).

4.6.2 Elastic-Plastic Matrix

The general approach for the derivation of the consistent elastic-plastic tan-
gent matrix is the same as for the isotropic material model in Section 4.4.3.
Here we give a few details specific for the orthotropic model.

First, the derivatives of the deviatoric stresses 9 t+4tS;/9 t+4te; =
tralg; j = TALC) follow directly from (4.6.16) and can be written in com-
pact form

HACL = Py + Qi AN (4.6.22)

where P;; and @); are the coeflicients expressed in terms of known variables
at the end of the step. As in the case of isotropic plasticity, in accordance
with (4.2.5) and (4.4.70), we obtain AM ; by differentiation of (4.6.14),

AN = —W;/f) (4.6.23)
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where
W; = Ny 418! Py (4.6.24)

and f) = 0"™ALf, /O(AN). Substituting AX j, the coefficients “+4/C}; are
obtained.

Second, by differentiation of (4.6.1) and with use of (4.6.12), we obtain
the derivatives of the mean stress {*4%g,, ; as

J=123

t+ At mE m m
Om.; = CT — AANP™ + Q" .
msd Ji i T no sum on j

(4.6.25)

1
t+Atam,j - Qm .7 = 47576

where P/" and Q7" are the known coefficients.

Details of the above derivations are given in Kojic et al. (1996b). We note
that the matrix **4tCFP reduces to the one of an isotropic material if the
constants N;; have the isotropic material values (3.3.9).

4.6.3 Examples

Example 4.6.1. Orthotropic Composite Beam. Derive the basic rela-
tions for stress integration for the orthotropic composite beam shown in Fig.
E.4.6-1. The beam is composed of layers with material axes inclined symmet-
rically with respect to the longitudinal axis, see also Kojic et al. (1995b).

We consider that at a given material point the strains e;,,v,, and v,, are

known from the displacements of the cross-section center and the rotations
of the cross-section. The non-zero stresses are o,.,,0.s and o,;. The layers

Layer 2

, AN

Layer 1

Fig. E.4.6-1. Composite beam
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are parallel to the s-r plane, and we use z,y, z as the material axes, with the
first axis  inclined at an angle «, the second one inclined at (—a), the third
one again inclined at «, and so on, as shown in the figure.

In order to determine the stresses from the given strains, we assume that
the elastic constitutive relations for the beam coordinate system r, s, t are

t+At E FE t+At + FE t+ At FE t+ At
Orp

Ors + Ort
t+ At E E t At E t+ At E t At
* Yrs = F + Opr + F + Ors + F + Ort (a)
t+At_FE E t+ At E t+ At E t+ At
Yrt = Fo1 orr + Fgq ors + Fgg Ort

where the Fg are the components of the elastic compliance matriz corre-
sponding to the beam coordinate system. To calculate Fg from the compli-
ance matrix F¥ = (CP)~!, given in (A1.38), we define for each layer the
transformation matrix T,

T Yy z
r c —s 0
T=s | s ¢ 0 (b)
t 0 0 1

where we use ¢ = cosa, s = sina for layer 1, and obtain (see (A1.53) and
(A1.62))

FY =T FF (797 (c)
where the matrix T€ is given in (A1.56). For layer 2 we proceed in the same
manner but now use (—a). From (b) and (c) we obtain the nonzero terms
FE,F = Ff}, F[] and Ff;. With the elastic constants F}7 we write (a) in
the form

FE t—‘,—At Trp +FE t-‘,—At Ops = t+At II Ae

E t+At E t+At _ t+At_n P
F14+ Urr+F44+ Ors = * ers_QAers (d)

E t+At _ t+At N P
Fg Ort = €ry — 24e;,

where
t+At o _ t+ At t P t+At - _ t+At t. P
Crp = Crr — €pp Crs = Yrs = Trs
t+At 1 _ t+At t.P
Crt = Vet = Vrt (e)

The next step is to express the increments Ael | Ael’ and Aef, in terms
of the stresses t4%g,,., 4%,  and *4g,,. We first write these strain in-
crements as (see (A1.52))
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Aek =T Aek = 2 Ael, + serfy - QScAefy
1

Ael = 2TAkaé,I: = sc(Ael — Aeiy) +(c® - 82)A€5y ()

P
Aert

1
2T§kAé,I: = —sAeZI;Z + cAel

where Aef’ are the components in the material coordinate system of the
plastic strain increment tensor Aef. Then we transform the beam deviatoric
stresses 1T4tS; to *+4S; corresponding to the material coordinate system,

t+AtSvi — TI:z t+AtSk (g)
and obtain 415, ... tTAtS _in terms of the stresses tt4%g,.,. .., +3%q ..
We further use the stress-plastic strain relations (4.6.12) and the expressions

(g) for the deviatoric stresses, to obtain after some calculations

Aef = AX(N,, %, + N, H4%0,,)
Ael = AXN(N,,. T80, + Ny 'T%,,)  Ael, = AXN,, 4%, (h)

where
5 1 o 02 1 2 2
Ny = Npo(c? — 3) + Nyy(s* — 3)—+—2S *Nyy
N,s = 2sc [sz - Nyy - (62 - SQ)NE?J]
. 1
N, = sc |[(2Ny + 2Ny — N3)(c* — 3)
» 1 2 2 :
+ (22N 4 No = 2N3)(s% = ) = (¢ = 5°)Nay @
Ngs = 25%c*(4Ny + No + N3) + (* — 5*)? Ny
NTt = C2ny+S2Nyz
and

sz = CQ(Nl =+ 2N2) — 82(N1 — Ng)
Nyy:_c2(Nl_N2)+32(N1+2N3) (J)

Finally, substituting (h) into (d) we solve, with some calculations, for the
stresses

1
D, !
+ AX (2N, T4l — N, Al )]

t+ At _ E t+At _n E t+At _n
Orr Fy err — F14

!
” e”'S
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1
t+ At _ E t+At _n E t+At _n
Ors = D)\ [_F14 Crr + Fll €rs
t+At 1 t+At 1
+ A)‘(_ZNST‘ * €rp Ny * err)] (k)
t+ At el!
t+ At _ rt
Ort

FE +2AXNN,,
where
Dy = (FE + AXN,,)(FE, + 2AAN,,) — (FE + 2AAN,,)(FE + AAN,,)

In the expressions (k) we have the stresses in terms of the unknown A\.
Therefore we can employ the computational steps in Table 4.6.1 to determine
AM. Or, we can use the approximation (4.6.21) and take into account the
material hardening.

The elastic-plastic matrix t+4tCFP

can be determined in two ways:

e by calculation of “*4*CEP in the material axes, as in Section 4.6.2 with
the static condensation; or

e by differentiation of the relations (k) with respect to
AL,
i

The second approach is more efficient.

t+ At t+ At
tate,,, Vrs and

Example 4.6.2. Composite Pipe. Derive the basic relations for the
stress integration for the composite pipe shown in Fig. E.4.6-2 when the pipe
is subjected to internal pressure (see also Kojic et al. 1995a). The pipe wall
is composed of layers of orthotropic material.

1 N

v !

[—

}?L ¢ Layer 1
a

Layer 2

Fig. E.4.6-2. Multilayered pipe made of orthotropic material

As in the case of the analysis of the beam (Example 4.6.1), we employ the
compliance matrix to appropriately take into account the stress conditions
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in the pipe wall. These conditions are that the stress o, is known from the
pipe internal pressure (see Example 4.5.2) and o4, = 0, op. = 0. Also, the
strain 7,. = 0. Using these conditions we can write the following constitutive
relations:

t+At t,P P E t+At E t+At
tale  —tel —Ael, = F" 30, + FE g +

Et At Et At
F + b+F + ac

t+ At t P P E t At E t+At
+ Yac = Yac ™ 2Aeac = F * Oaa + F * Occ +
FE t+Ata,ab + FE t—',—Ato_ac (a)

t. P P E t+ At E t+ At
Yab = Yab — 2Aeab = F14 + Oaa + F + Occ t
E t+ At E t+ At
Ff e, + Flg 4

t+ At
ac

The elastic constants F) ];3 can be expressed by the transformation of the com-

pliance matrix FF = (CF)~! (see (A1.38) and (A1.62)), which corresponds
to the material coordinate system x,y, z. Therefore, we specify the transfor-
mation matrix T for each layer as

T Yy =z

a { c -5 O-I
T= b 0 0 1 (b)
c [—s —c OJ

where we use ¢ = cosa, s = sin« for layer 1. For layer 2 we proceed in the
same manner but now use the angle (—a). We employ the transformation (c)
of Example 4.6.1 and obtain Fg For example,

FE ='FE + s'FE + s*CFE + FE)  FE=FE=FE=0

_ _ _ 1_
FB% = 2sc C2F2E2 — S2F£ — (- 52)(F£ + ZFE)] (c)
FG% = 4s2c2(F_'£ +F£ 2F£) +(?—s )QF_LE1

With these elastic constants we rewrite the constitutive relations (a) in the
form

FEtALG 4 RE AL, tHAtgr AP
E t+At Et+At,  _ t+At P
Fl 3% 00 + Fyg T30, = 4% —2Ae], (d)
FE - t+Ate ~ 24l

where

t+At 1 __ t+ At t_ P E t+At
€aa €aa — €gq — F

t+At . __ t+ At Et+At
€ac = Yac — F

t+At 1 _ t+At
€ab = Yab — ’Yab

Tec ()
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are the known strains.

As in Example 4.6.1, we express the increments of plastic strains in (d)
in terms of increments of plastic strains Aéf in the material axes (see (f) of
Example 4.6.1), and also the deviatoric stresses {+4¢S,, ..., t+4S, _in terms
of the stresses 4%g 4, ..., 740 ... With use of the stress-plastic strain re-
lations (4.6.12) we obtain

Aeapa = A\ (Nll t+AtUaa + Nlﬁ t+Ataac + N13 t+AtUCC)
Aeapc = A) (Nﬁl t+At0aa + NGG t+At0ac + N63 t+At0—cc) (f)
Ael = AN (52 Ny, + N.,) 4%,

where NN;; are expressed in terms of the material coefficients N, ..., N, and
cosa and sin a.
We finally substitute expressions (f) into (d) and solve for the stresses,

t+At0'aa = [(t+At€’a’a — A)\N13 t+At0'cc) (F6E6 + QA)\NGB)
— (Al — 2ANNg3 "t ) (F + ANN6)] /Dy
Hratg = [(TFAt! _ 9ANNgs e, ) (FE + AN

— (el — ANN3 A ,) (F + 2AMNG1 )] / Dy
t+Ate//b
a

t+ At (g)
FE +2AX(s2N,, + 2N,)

Oab

where
Dy = (FE + AXN1 ) (FE + AXNgs) — (FE + 2AXMNe1) (FE + AANy6)

The computational procedure for the calculation of A\, deviatoric stresses,
increments of plastic strains, and stresses, is the same as in Example 4.6.1.
Also, the tangent elastic-plastic matrix can be obtained by the appropri-
ate differentiations of the above expressions for stresses with respect to the
strains. The calculated matrix **4¢CFP is symmetric (see Kojic et al. 1995a).

Example 4.6.3. Plate Loaded by in-Plane Loads. A plate, modeled
by a 4-node finite element, is strained as shown in Fig. E.4.6-3. The material
is first strained to the elastic limit in the direction 1-2, then fully strained
further to point 2, and then subjected to shear along the paths 2-3 and 3-4.
The material data are as follows (Hill’s orthotropic material, Section 3.3.1):

E; =2E05 Ey = E; =1E05
vzg = 0.3 vgz = 0.2 vsz = 0.15
Gzy = 6E04 Gz = 4.17TE04 Gz = 6E04
X =200 Y=2=40
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(Aey)) ,=0.005 (Avx),=0.05
(Any)1.2= 0.05 (Any)3_4= -0.1

Fig. E.4.6-3. Plastic deformation of an orthotropic plate subjected to pre-
scribed straining

where the moduli and yield stresses are in MPa. The material axes &,y are
at an angle o = 30° with respect to the z,y coordinate system, as shown in
the figure.

The stress calculation is performed according to Table 4.6.1. The final
solutions obtained by using one step in the path 1-2, and ten steps in each
of the paths 2-3 and 3-4 are:

Ope = —104.4 oyy = —70.90 Oy = —95.79
el =3.580F-4 el =5.237E-3 el = —5.595E-3
V5, = 1.322E-3



5. Creep and Viscoplasticity

In this chapter we consider time-dependent inelastic deformations of isotropic
metals and include thermal effects. We consider creep, thermoplastic and vis-
coplastic models. After the introduction in Section 5.1, we give the funda-
mental characteristics of creep and thermoplastic models in Section 5.2 and
of a viscoplastic model in Section 5.3.

In Sections 5.4 and 5.5 we develop computational procedures for stress
integration for the material models described in Sections 5.2 and 5.3. The
computational algorithms are implicit and represent applications of the gov-
erning parameter method of Section 4.2. General 3-D deformation conditions
are considered, as well as the special conditions of shell, beam and pipe defor-
mations. A number of solved examples show the computed material response
in typical engineering conditions.

5.1 Introduction

In Chapters 3 and 4 we considered plastic deformations of metals; that is
time-independent inelastic deformations. The main assumption was that the
deformation occurs instantaneously with the application of the load. The load
(strain) level was the measure of the external action on the material, and time
was a fictitious parameter. However, it is known from experiments that after
the initial plastic deformations of a material, the plastic flow can continue
with the development of time-dependent inelastic strains. These effects are
to some degree present in many materials, but they may or may not be
significant, depending on the physical conditions under which the material is
loaded.

It is considered that there are generally two types of time-dependent
(mathematical model) inelastic deformations, creep and wviscoplastic defor-
mations. These two types of inelastic deformations are governed by different
constitutive laws. However, some materials, for example metals at elevated
temperatures, exhibit creep and viscoplastic phenomena simultaneously. It is
not possible to experimentally distinguish between these two types of inelastic
deformations, and their separation has been an analytical convenience.

Both creep and viscoplastic deformations are important in the cases of
long-term material loading and are pronounced at elevated temperatures.
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Many structural parts are exposed to high temperatures and loading over long
time intervals (e.g., elements of power plants, gas turbines, pressure vessels,
etc.). It is necessary to formulate material models to adequately describe the
material characteristics in these conditions, and to have numerical procedures
to predict the material response.

There is, however, a fundamental difference in the character between creep
and viscoplastic flows. Namely, under constant stresses (above a level that
depends on the material and temperature), creep deformations progress while
viscoplastic deformations diminish with time. The creep models assume that
the creep deformations increase with time leading to a possible material rup-
ture. On the other hand, the viscoplastic models are based on an overstress
assumption, according to which the stress point in the stress space is out-
side the yield surface and moves toward the yield surface with time. The
viscoplastic flow continues until the stress point reaches the yield surface. A
stress relaxation occurs in both types of deformations and has the same char-
acter. Note that a viscoplastic constitutive law may be reduced to a creep
law, if the yield stress is taken to be zero (see Section 5.3.2).

We will describe these two types of inelastic deformations in the next two
sections. The constitutive descriptions are macroscopic, phenomenological in
character, as for the description of the time independent plastic deformations
in Chapter 3.

The methods of analysis that include thermo-elastic-plastic and creep de-
formations were first of an analytical type and were applicable to simple
deformation and loading conditions, Finnie and Heller (1959); Penny and
Marriott (1971); Odquist (1974); Kraus (1980). The traditional creep models
have been further modified by introducing anisotropic creep behavior, based
on the potential theory of creep, Brown (1970); Rees (1983). Later, with the
progress of numerical methods, especially the finite element method, numer-
ical procedures have been developed that can be used to realistically predict
the response of very complex structures (Bathe 1999, 2001a). Included in
these response predictions are also phenomena related to damage, fatigue
due to cyclic loading, and fracture, which, however, we do not consider in
this book.

5.2 Creep and Thermoplastic Material Models

In this section we first describe some basic temperature effects on material
behavior, and then introduce commonly used material models for creep and
thermoplastic deformations of metals (e.g., Penny and Marriott 1971; Kraus
1980).

Figure 5.2.1 shows schematically the influence of temperature on a uniax-
ial stress-strain relation. It can be seen that Young’s modulus and the yield
stress of the material decrease with the temperature increase. A detailed de-
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Temperature increasing

Stress 0,
(e} 62
03
03>6,>0,
E(65)
1
Strain e

Fig. 5.2.1. Effect of temperature on uniaxial stress-strain curve

scription of the uniaxial stress-strain relation is given in Section 3.2.1 (see
Figs. 3.2.1 and 3.2.2).

Creep can be thought of as a time-dependent inelastic deformation of
material grains resulting from the relative sliding at the grain boundaries
(e.g., McClintock and Argon 1966), where permanent strains which progress
with time are developed. These inelastic strains are known as creep strains. At
room temperature creep strains of metals are generally very small, but they
increase with the temperature. A typical displacement-time curve is shown
in Fig. 5.2.2 for uniaxial loading of the material at an elevated temperature.
At the instant of the load application, an initial elongation ug is developed.
This instantaneous deformation can be elastic or elastic-plastic, depending
on the load level (see Section 3.2). The deformation progresses with time and
can lead to material rupture (at time tg).

F=const.

u

tr Time't

Fig. 5.2.2. Elongation of a bar during time due to creep

5.2.1 Uniaxial Creep

Consider the uniaxial load conditions on a specimen resulting in the typical
creep curve, corresponding to a constant stress and constant temperature,
shown in Fig. 5.2.3. The strain starts with the initial, instantaneous strain
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Streain o=const.
0=const.

Primary| Secondary Tertiary
€o stage stage stage

tg Time t

Fig. 5.2.3. Schematics of a creep curve

eo (which can be elastic or elastic-plastic) and increases with time. There are
in general three stages of creep: the primary, secondary and tertiary creep
stages, as indicated in the figure. In the primary stage the creep strain rate is
first high and then decreases to an approximately constant value, leading to
the so-called stationary creep rate during the secondary creep stage. In the
tertiary stage the creep strain rate increases again and the strain progresses
until the material rupture is reached at time tg. The length of each stage
on the creep curve depends on the material. Some materials hardly exhibit
secondary creep, whereas other materials, for example, have a very small
tertiary stage.

The creep curves are strongly dependent on the stress level and the tem-
perature, as schematically shown in Fig. 5.2.4. We see that at a given tem-
perature, the creep strain increases with stress, and for a given stress, the

G4 > G4 >0,> 0, 05 >0 4> ..> 04
G 05
e 4 e 0,
03
02
G = const.
X 0
€o c increasing €o 0 increasing
Time t Time t

a b

Fig. 5.2.4. Schematics of creep curves for various stress and temperature
levels. a Effect of stress level on creep curve; b Effect of temperature on
creep curve
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creep increases with temperature. Note that there is a stress level at a given
temperature below which the creep is negligible (stress o in the figure). Also,
for a given stress there is a temperature below which the creep strain is very
small (temperature 6, in the figure).

Consider next the material behavior when a load is maintained for a
certain period of time, causing creep, and then removed. Figure 5.2.5 shows
schematically the material response under these conditions. At the moment
when the load is released, the strain drops instantaneously for the elastic
strain e, and then an additional decrease eg is developed over a certain
period of time. This additional strain decrease is called creep recovery, with
e$, representing the creep recovery strain. We see that the final permanent
strain ep is

er = te—elf —€f (5.2.1)

where le is the strain at time ¢; prior to the stress release.

o = const.

\
\
\
\
\
\
\
t, Time t

Fig. 5.2.5. Creep recovery

Another important phenomenon related to material behavior in creep is
the so-called creep relazation. Namely, if the material is loaded over a period
of time, with the total strain held constant, the stress will decrease with time.
For example, if we extend a bar by an elongation U, as shown in Fig. 5.2.6,
and keep U constant, the stress will decrease with time as shown in the figure.
The relaxation curves are drawn for several stress levels. As can be seen, there
is a threshold for the stress below which the relaxation is negligible.

We considered so far uniaxial creep in tension. It is generally assumed
that creep curves in uniaxial compression are identical to those in uniaxial
tension. However, if the material is subjected to cyclic loading, the material
response is more complex.

Let us consider first the uniaxial creep behavior under variable loading.
The main task of the mathematical theory of creep is to establish the relations
that describe creep under arbitrary variable loading conditions. The most
common and generally accepted approach results into the so-called equation-
of-state method. This approach is based on the assumption that the creep
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Lo U

Time t

Fig. 5.2.6. Relaxation curves for different stress levels

response of a material at a certain time ¢ depends solely on the magnitude of
the variables at that time. Another approach is based on the material mem-
ory: the material response at a given time depends on the current parameters
and also on the history of deformation (e.g., Malvern 1969). We will further
use the equation-of-state approach because experimental data are available
for this description of creep and the approach is generally accepted for engi-
neering applications.

The creep curve according to the equation-of-state approach is in general

written in the form
n

e’ =" ¢,(0) gi(t) hi(6) (5.2.2)

i=1

where e is the creep strain; and ¢,, g; and h; are functions of stress, o, time,
t, and temperature, 6, respectively. We use a simple form of (5.2.2),

e = f1(0) f2(t) £5(6) (5.2.3)

with fi, fo and f3 representing the functions of stress, time and temperature.
The relation (5.2.3) defines the so-called creep law. Analogous to plasticity
(Section 3.2), where the basic material behavior was given by the yield curve
o = o(ef) (see (3.2.3)), we have now that the main characteristic of the
material response is the creep law. We list here three creep laws, known as
the power creep law, exponential creep law, and the eight-parameter creep
law (the expressions in (5.2.4), (5.2.5) and (5.2.6), respectively):

e’ = apo™t™ (5.2.4)

e“=fl—e ")+ gt (5.2.5)
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with
o\™
f = age*? T = as ( ) g = aze®®?
as
and
eC = ago™ (%2 + agt® + azts) e~ 7/ (9F+273.16) (5.2.6)
Here ag, ay, ... ,a; are the material constants, stress, time and temperature

independent, and 6 is the temperature in °C.
In order to apply the creep law to variable loading and variable temper-

ature conditions, we need to determine the creep strain rate ¢© at a given
time. From (5.2.3) we obtain

o 0e¢ :

= = fi(0) () f50) (527)

where fo = dfy/dt is the time derivative of the function fo(t). In deriving
(5.2.7) we have neglected the derivatives of the stress and temperature with
respect to time, which strictly holds only in constant stress and tempera-
ture conditions. Generally, creep effects are important when the stresses and
temperature are held at certain levels over a relatively long time period and
then change relatively rapidly, like schematically shown in Fig. 5.2.7. Under
these conditions the relation (5.2.7) can be considered adequate. The expres-
sion (5.2.7) represents one of the fundamental relations used to model creep
effects.

Let us apply the relations (5.2.3) and (5.2.7) to a simple example. A ma-
terial is loaded uniaxially by a constant stress over certain time periods, as

e 3 G=03

(o —
P ’__2 6=0,

Fig. 5.2.7. Creep strain history according to time hardening
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shown in Fig. 5.2.7. To the constant stresses o1, o2, 03 correspond different
creep curves, represented schematically in the figure. There are basically two
approaches to determine the creep strain in this case: the time hardening ap-
proach and the strain hardening approach. To demonstrate these approaches,
we apply both to this example.

In the time hardening assumption we proceed as follows. In the time
period 0 to t; we follow the creep curve corresponding to the stress ;. Then,
at time t; we consider that creep continues according to the creep curve 3
— but using the curve from time ¢ = t; onward (hence the segment A3 B3 is
translated to AB), and so on.

In the strain hardening approach, on the other hand, we use the creep
law to express time in terms of the creep strain e®. This results in the creep
strain rate ¢¢ given by

eY =e“(eY,0,0) (5.2.8)

Hence, we have that the creep strain rate is a function of the current values
of stress, temperature and creep strain (instead of time). For the creep law
of the form (5.2.3) we have

éc = fl (U) ¢(eC’ g, 0) f3(0) (529)
where
. 1 ec
o= 15 o) (3:2:10)

Here f, ' stands for the inverse of the function f,. For example, if creep is
defined by the power creep law (5.2.4), then

¢¢ = (12(1(1]/a2(7‘11/‘12 (e©)(1=1/az) (5.2.11)

For a complex creep law, it may of course not be possible to obtain the
explicit form (5.2.8) or (5.2.9) for the creep strain rate. Then the dependence
of the creep strain rate on the creep strain must be calculated numerically
(see (5.4.15) in Section 5.4.1).

Let us illustrate the application of the strain hardening approach for the
example in Fig. 5.2.7. As shown in Fig. 5.2.8, we follow the creep curve 1 to
point A corresponding to time t1, at which time the creep strain reaches the
value 'e“. Then we use the creep curve 3, from the point As onwards, where
Ajs is defined by the creep strain 'e®. This use of the creep curve 3 results
in translating the segment A3 B3 to become the segment AB, and so on.

Although both approaches are based on the same fundamental relations
(5.2.3) and (5.2.7), the strain hardening approach has been favored because
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eC ’43

-~
Part of curve;’j “ Partof curve 2 Strain hardening
solution

Fig. 5.2.8. Creep strain history according to strain hardening

the results obtained are closer to experimental results (Kraus 1980). The
strain hardening approach, in particular, models cyclic loading conditions
more accurately. Of course, in general, time hardening and strain hardening
solutions are not identical.

Let us consider next uniaxial creep in cyclic loading using the strain hard-
ening approach. It is generally assumed that the creep curves in compression
are the reflected creep curves in tension, as shown in Fig. 5.2.9. The modeling
we discuss corresponds to the so-called modified hardening rules, developed
at the Oak Ridge National Laboratory (Pugh et al. 1972, 1974; Pugh 1975;
Pugh and Robinson 1978).

For the discussion we use the cyclic loading shown in Fig. 5.2.9a: tension
by stress oy, then compression by stress os, and finally tension by stress
o3 (Kraus 1980). In the first load period the creep occurs according to the
creep curve OA in Fig. 5.2.9¢, which is the part OA; of the creep curve
1 in Fig. 5.2.9b. From time ¢; onwards, creep continues according to the
curve AB which represents the segment OBs of the creep curve o = —os.
Hence, the hardening which we would have at strain e{ (that is at time ;)
on the creep curve 2 if the stress oo were tensile is not used, and the creep
in compression starts from point O on the curve ¢ = —oy. Next, at time ¢,
when the stress becomes again positive, ¢ = o3, the creep strain progresses
with time as follows. Since the accumulated positive creep strain at time
ty is equal to (ef — ef), where e§ is the magnitude of the negative creep
strain generated along the segment OB- of the reflected creep curve 2, creep
continues following the creep curve 3 but from the point Bz defined by the
creep strain (ef — e§'). The creep curve BC represents the segment B3C3 of
the curve 3. If e were greater in magnitude than e{’, the point Bs would
have been at the origin O (the hardening in tension would have been lost).

To make the O.R.N.L. rule simple for applications, it is effective to in-
troduce the so-called modified creep strain et as a measure for the strain
hardening. The creep strain rate obtains the form
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Fig. 5.2.9. Creep response in cyclic uniaxial loading. a Stress history; b
Uniaxial creep curves; ¢ Creep response according to O.R.N.L. hardening
rule

¢ =e% et 0,0) (5.2.12)

If the material is subjected to tension in a time interval ¢, —t,1, the modified
creep strain is defined as

el =e — et (5.2.13)

where et is the “origin” in tension. The origin et represents the minimum
creep strain reached in compression up to the start of the time interval, i.e.,

et = mine® 0<t<t,
et <0 (5.2.14)

Of course, if there was no loading in compression, the origin e™ is equal to
zero. The creep strain e at the start of the interval, i.e., at time t = ¢,
represents the accumulated creep strain in tension corrected for compression
(as is the creep strain e{’ — e§ in Fig. 5.2.9). Analogously, if the material is
subjected to compression in a time interval t,, — t,,+1, the modified creep

strain is defined as
el =e — e (5.2.15)
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where the origin e~ represents the maximum creep strain reached in tension
up to the start of the interval ¢,,

e~ = maxe® 0<t<ty
e >0 (5.2.16)

It follows from the definitions (5.2.13) and (5.2.15) that the modified creep
strain el represents the “distance” from the corresponding origin, as given
by the accumulated creep strain in tension or compression, respectively.

The use of the O.R.N.L. hardening rule is summarized in Table 5.2.1 and
illustrated in Fig. 5.2.10. The material is subjected to uniaxial cyclic loading
(Fig. 5.2.10a). The creep strain changes according to the creep curve in time
periods of tension, while in compression it follows the reflected creep curve,
as shown in Fig. 5.2.10b. It can be seen from Fig. 5.2.10c that, for the loading
in tension the origin et = 0 corresponds to the load periods 1 and 3, while
for periods 5 and 7 the origin is et = eE. Hence, the segment BC' on the
creep curve B'C = OC in period 3 starts from the point B; on the creep
curve corresponding to period 5 creep starts from the origin, and so on. In
the case of the compressive stress the origin for the curve AB is e, while
for the periods 4 and 6 the origin is reset to e. The creep strain in periods
2 and 4 starts from the origin O of the reflected creep curve, while in the
period 6 it starts from point £ on the creep curve E'F = OF. If the stresses
in the load periods have different magnitudes, the creep strain change in a
time period follows the creep curve (or reflected curve) corresponding to the
stress in that period (see Fig. 5.2.9).

Table 5.2.1. Computational steps according to the O.R.N.L.
hardening rule for uniaxial cyclic loading

1. Set origins

et =0
e” =0
2. Stress positive
efl =@ —et
tnt1

e = [ ¢t o, t)dt
tn
If "1 > e7, reset e” to "Tle”
3. Stress negative
el =¥ — ¢~
tn 41
e’ = [ ¢t o,t)dt
tn

If "1eC < e, reset et to "Tle?

4. Next step of creep strain calculation
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Creep curve

Fig. 5.2.10. Creep response according to O.R.N.L. hardening rule in case of
uniaxial cyclic loading. a Stress change with time; b Creep curve and reflected
creep curve; ¢ Creep strain as function of time
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5.2.2 Multiaxial Creep Model

In this section we describe a creep material model applicable to general, three-
dimensional loading of an isotropic metal. The relations given here represent
a generalization of the uniaxial creep conditions for which the two fundamen-
tal relations are the creep law (5.2.3), e = €“(0,t,6), and the creep strain
rate (5.2.7), ¢ = 9e”/0t. The generalization is based on experimental ob-
servations.

Several important facts or requirements have to be considered in formu-
lating the basic relations for creep (Kraus 1980):

1) The creep deformation is incompressible.

2) The mean stress has no effect on the creep strains.

3) The principal directions of the creep strain rate and stress coincide.

4) The general relations must reduce to the uniaxial relations for uniaxial
loading conditions.

These requirements are analogous to those in plasticity (Section 3.2)
where the uniaxial plasticity relations are generalized to the three-dimensional
stress conditions.

We start with the creep constitutive relations of the form

e =198 (5.2.17a)

or, using the components,
e = v Sij (5.2.17b)

Here é© is the creep strain rate tensor (with the shear components equal to
half of the engineering strains), S is the deviatoric stress tensor (A1.17); and
~ is a proportionality factor. The creep constitutive relations (5.2.17) satisfy
the requirements 1 to 3 listed above. We next consider the determination of
the proportionality factor -.

In analogy with the theory of plasticity (relation (3.2.46)), we introduce

the effective creep strain rate € as

1/2
&= <§ eC . é0> (5.2.18)

where, in uniaxial creep,
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. . L,
égy = €m ==, €N (5.2.19)
ei=0  i#]

and ¢§ is the uniaxial creep strain rate in the z;- direction. Then, taking
the scalar product (see (A2.29)) on both sides in (5.2.17) we obtain

€ = .95 (5.2.20)

where G is the effective stress (see (3.2.39))

o= (g S -8)!/? (5.2.21)
and
3¢
e
=5 (5.2.22)

The creep variable v is determined from the uniaxial creep curve. Using
(5.2.8) we obtain

v=17(e% 5,0) (5.2.23)

where we have substituted the effective creep strain é€¢ and the effective stress
& for the uniaxial creep strain e and uniaxial stress ¢. For example, for the
power creep law we obtain from (5.2.22) and (5.2.11)

= 2a2a3/“2 glor/az=1) (gC)(1=1/02) (5.2.24)

Finally, we give the basic ideas for the generalization of the O.R.N.L.
hardening rule to multiaxial conditions. We define the two “origins” e’ and
e~ as schematically shown in Fig. 5.2.11, and the modified creep strains &
and &7 as

[eH
+
|
Q
+

= e — e

“=e"—e” (5.2.25)

o
Il

where e® is the creep strain tensor.
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O

Fig. 5.2.11. Schematic representation of origins for creep according to
O.R.N.L. hardening rule

Then, we introduce the distances é™ and e~ from the origins as

9 1/2
& = <3 & - é> (5.2.26)

- [3 (e —e)-(eF - e)} . (5.2.27)

From Fig. 5.2.11 we see that €, €~ and ¢ are proportional to the distances
OTA, O~ A and O~ O™, respectively.
The creep strain rate is given by (5.2.17), but now

v=~(e", 7,0) (5.2.28)

where & is the modified effective creep strain. We have that & is either et
or &~ depending on the loading conditions at the considered time ¢. Basically,
depending on the scalar product between S, and et and e, the conclusion
on whether the load changes character can be drawn (see Snyder and Bathe
1980 for details).

It can be seen from the above discussion that the general 3-D relations re-
duce to the uniaxial relations for uniaxial loading conditions (the requirement
4).

A generalization of the isotropic creep model (the O.R.N.L. hardening rule
is not assumed) to orthotropic material behavior is based on the potential
theory of creep (Brown 1970; Rees 1983).
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5.2.3 Thermoplasticity and Creep

Considering a thermoelastic material model the elastic coefficients depend on
temperature, and the thermal strains are proportional to the temperature.
Hence, we have (see (A1.29) and (A1.31))

E = E(0)
v=uv(h) (5.2.29)
a = a(f)

and the thermal strains are modeled using

e = (b — brer) 63 (5.2.30)

where el is the thermal strain; E, v and « are Young’s modulus, Poisson’s

ratio and the coefficient of thermal expansion, respectively; 6 is the current
temperature, and 6,y is the reference temperature.

If the stress and temperature levels are high, plastic deformations also re-
sult, where it was found experimentally that the size and position of the yield
surface depend on temperature. A temperature increase leads to a reduction
of the yield stress and hence the yield surface size (see Fig. 5.2.1).

The yield condition (3.2.56) is now

f,(6) = ;(s —a)-(S—a)-— ;&3(0) =0 (5.2.31)

where the yield stress depends on the temperature, 6,(6). Also, the modulus
C in the relation (3.2.73) is temperature dependent, since the plastic modului
Ep and Ep depend on the temperature. Therefore, we have (see (3.2.78))

C) = 2 [Ep(e) ~ MEp®)] /(1 - M) (5.2.32)

When both plastic and creep effects are considered, we add the plastic
and creep strains, e” and €%, to the elastic and thermal strains e? and eT#.
Therefore the total strain tensor e is

e=ef tef 4+ e+ (5.2.33)
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This is a fundamental relation used in modeling thermoelastic-plastic-creep
behavior of materials. The plastic and creep strain rates are defined by
(3.2.71) and (5.2.17) respectively. Note that this formulation can directly
be used to model creep rupture (e.g., Walczak et al. 1983) and phase changes
(e.g., Rammerstorfer et al. 1981).

5.3 Viscoplastic Material Models

As stated briefly in Section 5.1, the viscoplasticity theory is based on the
overstress assumption. This means that viscoplastic flow is assumed to occur
when the stress point lies outside the yield surface. We will use the Perzyna
model and summarize the associated form of the viscoplastic strain-stress
relations. These relations are established primarily for metals but can also
be developed for other materials and in particular geomaterials with quite
complex behavior (Cristescu and Goida 1994).

In the following we first present a simple one-dimensional model and de-
scribe the basic characteristics of viscoplastic flow by simple examples. Then
we generalize this model to three-dimensional deformations in a manner anal-
ogous to the generalizations given in Sections 3.2 and 5.2 for plasticity and
creep.

5.3.1 One-Dimensional Model

Consider the model shown in Fig. 5.3.1 that consists of a spring, dashpot and
a Coulomb friction slider (e.g., Hinton and Owen 1980). Assume that the total
stress carried by the model is o. The stress changes in time enforcing the same
relative displacements (strains) in the dashpot and the slider. The elastic

°l

Dashpot ch Coulomb slider

oy, |W[:J GPQ

o,=0c for o<o,
c,=0, for o>0,

E Elastic spring
(¢}

Fig. 5.3.1. One-dimensional viscoplastic model carrying stress o
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spring has the elastic constant F, the dashpot characteristic is represented
by the viscosity coefficient n,, and the slider is characterized by the yield
stress o,. The stress in the slider, op, is defined as

op=o0 foro <oy

op =0y for o > o, (5.3.1)
and the stress in the dashpot oy is

oq=0 foro <oy

04 =0 —0y foro > oy (5.3.2)

The presence of the dashpot allows the stress to instantaneously exceed the
value o, predicted by plasticity theory. The stress o carried by the system
tends to o, (or vice versa) as time increases and the system approaches
steady state conditions. The viscoplastic flow occurs due to the overstress
04 =0 —0y.

Two strains are present in the model: the elastic strain ef and the vis-
coplastic strain eVF | which in sum give the total strain e, i.e.,

e=el VP (5.3.3)
The wviscoplastic constitutive law is defined as

oqg=mnge"F (5.3.4)

where VP is the viscoplastic strain rate. The yield stress o, is a function of
the viscoplastic strain

oy =0oy,(e"h) (5.3.5a)

and we have the yield condition
fy(o,,e"F)=0 (5.3.5b)

Based on the above fundamental relations, we can derive the following
differential equation for the stress carried by the system in Fig. 5.3.1 during
viscoplastic flow,

=0, +ne— 4o (5.3.6)
E
In order to illustrate the main characteristics of the viscoplastic material
behavior, we consider two special cases of material response:

a) the case of a constant applied stress, and
b) the case of stress relaxation.
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For simplicity we use a bilinear hardening law
oy =0y, + Epe’” (5.3.7)

where 0,, and Ep are the initial yield stress and the plastic modulus, re-
spectively. This relation is a special case of the Ramberg-Osgood expression
(3.2.7). In the case of a constant stress ¢ = 04, with o4 > 0y, the solution
of (5.3.6) is

oA Oa—0
e= g + Ep YU [1 — exp(—vy,Ept)] (5.3.8)

and in the case of perfect plasticity (Ep = 0),

e= UEA +y4(04—0y)t (5.3.9)
where v, = 1/n, is the fluidity parameter. Figures 5.3.2a,b show graphically
these solutions. The viscoplastic flow diminishes in hardening as the yield
stress approaches the stress point (Figs. 5.3.2a,c), see also Example 5.5.2.
In the case of a material with no hardening the viscoplastic flow continues
indefinitely with a constant rate. Note that the initial strain is the elastic
strain e = 04 /E.

o,/E

eVP

[

Fig. 5.3.2. Viscoplastic deformation under constant stress o 4. a Strain as
a function of time for a material with hardening; b Strain as a function of
time in the case of no hardening; ¢ Representation in the o — e¥' ¥ plane

In the case of stress relaxation we suppose that the material is subjected
to a constant strain eg, hence é = 0 in (5.3.6). The solution of (5.3.6) is then

o= (Feg—0o)e " + 0o (5.3.10)
where

Ooo = E+ Ep (Epeo + O'yv) (5311)

and
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T=n4/(E+ Ep) (5.3.12)

is the so-called relazation time. Note that the stress o tends to the value of
0, Where we have in the case of a material with no hardening, 0 = 0y,.
Also, the stress relaxation process is controlled by the ratio between the real
time ¢ and the relaxation time 7. Figure 5.3.3 shows the relaxation curve
(5.3.10) (see also Example 5.5.2).

o c,=Ee,

_ E (EpeO+ Gyv)
E+E,

Fig. 5.3.3. Stress relaxation for one-dimensional viscoplasticity

The above two cases illustrate typical phenomena in viscoplasticity. We
next generalize the above model to arbitrary multiaxial loading conditions.

5.3.2 General Three-Dimensional Viscoplastic Models

We start with a rather general viscoplastic constitutive law

of

e"P=q< Y(fy) > do

(5.3.13)

where V7 is the viscoplastic strain rate tensor, o is the stress, P(fy) is a

function of the yield function f,, f is a function governing the flow rule,
v is (as in (5.3.9)) a fluidity parameter, and < > represents the Macauley
bracket!. We will further consider the associated viscoplasticity, in which
case the constitutive law (5.3.13) is

! The Macauley bracket of a function f is defined as

<f>=f for f>0
<f>=0 for f<0
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Ofy

(5.3.14)

where o* is the conjugate stress, represented by the stress point P* on the
yield surface as the “closest-point projection” of the stress point P. Figure
5.3.4 shows the stress points and also the unit normal n to the yield surface.

Fig. 5.3.4. Definition of the conjugate stress o* and “distance” d

The function in the Macauley bracket depends on the “distance” of the
stress point P from the conjugate stress point P* (see Bathe 1996; Simo and
Hughes 1998). An example of the viscoplastic constitutive law for a von Mises
material with isotropic hardening is (Perzyna 1966)

eV =y <¢(@)>n (5.3.15)

where

3(5) = \/3/2 <" ;*"*>N (5.3.16)

and N is a material constant. Note that (¢ — d*) in (5.3.16) is equal to
\/3/2 d, where d is the “distance” in the deviatoric stress space.

In accordance with (5.3.14) and (5.3.15) the viscoplastic constitutive law
can be written as (see also Kojic 1996a, Bathe 1996)

d
eVl = Lo n 5.3.17

nng (d,o*,B87) ( )
where d is defined in Fig. 5.3.4, and

d

nnp(d,o*,B8%) (5.3.18)

_ of
=7y <P(fy) > Haai
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Here 7 is a viscosity coefficient and iy (d,o*, 3") is a viscosity function which
depends on the “distance”, d, and also on the conjugate stress * and internal
variables 8" of the yield function. We should note that 7 introduced here and
ng in (5.3.4) may have different units. Since n = (o0 — 6*)/d, we obtain

Ve o—o"
nnp(d,o*,B%)

e

(5.3.19)

It follows from this general form of the constitutive law that the viscoplas-
tic flow diminishes as the stress point approaches the yield surface, i.e., we
have the same material behavior as described by the uniaxial viscoplastic
model. The viscosity coefficient and the viscosity function represent mate-
rial characteristics and would be determined by experimental investigations.
Tlustrations of using viscosity coefficients and viscosity functions for metal
viscoplasticity are given in Examples 5.5.2 and 5.5.3.

The material response governed by the viscoplastic law (5.3.19) depends
on the viscosity coefficient, the viscosity function and yield function. We write
the yield condition in a general form (3.2.83), i.e.,

fy(6*.87) =0 (5.3.20)

When the yield condition is independent of the mean stress, for an isotropic
material we can write the yield condition as (see (3.2.15))

fy (J3p,B%) =0 (5.3.21)

where J3p is the second invariant of the conjugate stress o*. Then, the vis-
coplastic constitutive law (5.3.14) can be written as

afy S*

¢ =y <y (Fip. ) > 570 (5.322)
2

where (3.2.13) has been used. Hence the viscoplastic stains have the deviatoric
character. Further, instead of (5.3.19) we have now

VP _ S —8§*
nng(d,S*,B%)

e

(5.3.23)
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where S* is the conjugate deviatoric stress.

On inspecting the above viscoplastic constitutive laws it is noted that the
creep of material, described in Section 5.2, may be considered as a special
case of viscoplasticity. By taking the stress S* = 0 and the viscosity function
nr as the appropriate function of stresses, the viscoplastic constitutive law
(5.3.23) for the case of a von Mises material reduces to the creep constitutive
relation (5.2.17).

5.4 Stress Integration for Creep and Thermoplastic
Models

In this section we develop the numerical procedures for stress integration of
the thermoplasticity and creep models described in Section 5.2. The algo-
rithms represent a generalization of the procedures used for isotropic plastic-
ity. We consider general three-dimensional deformations in Section 5.4.1 and
then shell conditions in Section 5.4.2. We also give some basic expressions
for the derivation of the consistent tangent elastic-plastic-creep constitutive
matrix, see Section 5.4.3, and finally we illustrate the application of the algo-
rithms in a number of solved examples in Section 5.4.4. The basic procedure
presented in this section was, in effect, originally introduced by Kojic and
Bathe as the effective-stress-function algorithm (Bathe et al. 1984; Kojic and
Bathe 1987a,b).

5.4.1 General Three-Dimensional Deformations

Using the stress integration procedure, the fundamental relations to be sat-
isfied for the thermoelastic-plastic-creep model are:

e The thermoelastic constitutive relations at the end of the time step,

e The stress-plastic strain relations based on the normality rule at the end
of the time step,

e The yield condition at the end of the time step, and

e The creep constitutive relations for the time step using the Euler backward
method.

Since the plastic and creep deformations are incompressible, the mean
stress 't4tg  is independent of the plastic and creep strains, and *+4%g,, is
determined by (see (A1.12))

that, = tHate (1Tate, — 1HALTH) no sum on m (5.4.1)

where t+4%¢,, = AtE /(1214 and corresponds to temperature t+444.
The thermal strain t+4%eTH is given by (5.2.30) (see also (A1.31)),
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HRALTH _ t+AL, (i+Alg _ g ) (5.4.2)

As before, we use the superscript ¢t + At on the material constants to indicate
that they correspond to time ¢ + At and temperature *+4%4.

The stress-plastic strain relations have the form (4.4.18). To include the
creep effects we use the Euler backward scheme to express the increment of
creep strain tensor Ae® (see (5.2.17))

AeC = AptHAt, t+Atg (5.4.3)

t+ At t+ At =

where v is evaluated from (5.2.23) for the effective stress o, time
t + At (or pseudo-time, for the strain-hardening assumption, see (5.4.15))
and temperature 4%9. The constitutive relation for the deviatoric stresses
is (see (A1.19), (4.4.18) and (5.2.33))

t+AtS — t+AtsE _ 2t+AtG(A)\ t+At§ + At t+At’}/t+AtS) (544)
where *+4SF is the elastic solution given by (4.4.12), with
t+Ate// — t+Atel _ teP _ teC (5_4‘5)

We next employ the relation (4.4.22) and, with use of the constitutive
relations (5.4.4), we solve for the deviatoric stress +4fS and for the stress
radius *+4%S,

t+AtgA
tHatg — (5.4.6)
1+ay,+ay
and
. t+AtQy
t+AtG _ S R (5.4.7)
L+ay,+ [2t+AtG + (1 4 ay) C| AX
where
a, = 2t+AtGAt t+ At 7y
9 t+At
a) = (5.4.8)

1+ ANC
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and
HALGA _ tHALGE | o e (5.4.9)
ALy — MG _ g gy (5.4.10)
Here T41ST is the elastic solution for 174§, corresponding to AeP = 0 (see
(4.4.15)).

Following the governing parameter method of Section 4.2, we select the
effective stress 'A% as the governing parameter. By taking the Euclidean
norm (see (A2.31)) on both sides of (5.4.6), we obtain

t+AL Aty t+At

- oc=0 5.4.11
hil o) = 1+ay,+ay ( )
where +415 is the effective stress corresponding to t+4¢S*. We solve (5.4.11)

by using one of the numerical procedures of Section 2.1. Therefore we select
a value of "4t and calculate ‘t4*~ from the creep law as described in
Section 5.2.2, then determine a., from (5.4.8) and *+4*S? from (5.4.10). Next,
we calculate the effective stress {45 correspondlng to 4187 /(1 + a),
and check whether ™45 exceeds the yield stress '6,. If +4%, < !5,
there is no plastic deformation, we use A\ = 0, ay = 0, (+At§A = t+AtgE
from (5.4.9), and calculate t+At & corresponding to t+AtSE, then we check
whether (5.4.11) is satisfied, if not we select a new trial value for 45, In
case t+4%G. > !5, then plastic deformatlon occurs for the selected 4G
and we determlne AM from (4.4.24), with use of the yield curve and by solvmg
the nonlinear equation

t+At&
fQ(AéP) - " —1= 0

(1+a,) tHatg, + 3 [2 HAG 4 (1 +a,) C| AP
(5.4.12)

This equation is obtained by taking the Euclidean norm on both sides of
(5.4.7). We have indicated that the function f,(Ae&?’) depends on the param-
eter Ae”’, the increment of effective plastic strain, since t+AtU and C depend
on Ael.

Table 5.4.1 summarizes the computational steps. It can be shown, as
in the case of the function f(Ae”) given in (4.4.29), that both functions
(5.4.11) and (5.4.12) are monotonic, for A\ = const., and for *4t~ =
const., respectively.

Figure 5.4.1 shows graphically the stress integration in time step At. As
can be seen from the figure, we start with the elastic solution corresponding
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Table 5.4.1. Computational steps for stress integration in case of
thermoplastic-creep material model

1. Assume a value of ‘T4!5

Calculate *+4% y from the creep law; then a~ and t+At&7

2. Check for yielding

If t+Ata, t+AtaA — t+At6§',

4 < t&y, no plastic deformation, use
go to step 4

3. Plasticity calculations
Solve fo(Ag”) =0, equation (5.4.12)
Calculate ay and *t4t5,

4. Check if (5.4.11) is satisfied (solution for "*4/5)
If f1(*4%5) < e go to step 5
Repeat calculations, go to step 1

5. Final calculations

Determine:

trAts  from  (5.4.6)
HAS from  (5.4.7)
Ae” from (4.4.18)
Ae® from (5.4.3)
AT from  (5.4.14)

to the stress point Dg in the deviatoric plane and search along the lines ODy
and ‘0D, to find the final point D on the surfaces+4tf; = 0 and 4t f; =
0. This search is governed by the changes of the effective stress ¢ and the
increments of the effective plastic strain Ae” on the creep and yield curves
(points D' and D"). Note that the stress path DgD does not lie on the
vector +A1SE or on t+A1SE hecause of the terms ay ‘e and —a., ' in the
expressions (5.4.9) and (5.4.10). The stress path DD lies on *+4/S¥ in the
case of isotropic hardening, or creep without plastic deformation. In the case
of thermoplasticity with no creep DgD lies on t+4tSE,

The creep strain at the end of the time step, {¥4%e®, is

4160 _ 1,0 4 AeC (5.4.13)

and then the effective creep strain ‘T4t is

t+ALSC _ (2 t+ALeC t+ALCYL/2 (5.4.14)
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Deviatoric plane Creep curves
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Fig. 5.4.1. Graphical representation of the stress integration for thermoplas-
ticity and creep; deviatoric plane, creep and yield curves

In the calculation of “t4'&“ we have used the definition (5.2.18) of the ef-

fective creep strain rate éC. If the O.R.N.L. hardening rule for cyclic loading
is employed, then instead of {*4*e” the modified creep strains (5.2.25) and
the modified effective creep strain must be calculated. Note that the effective
creep strain €¢ can increase or decrease with time, unlike the effective plastic
strain € which can only increase (see (4.4.25)).

The above numerical procedure can be employed for thermoplastic defor-
mations without creep, or when there are creep deformations only, as special
cases. In the case of thermoplasticity we use (5.4.12) with a, = 0 as the gov-
erning equation (which has the form (4.4.29)). Figure 5.4.2 shows graphically
the solution in this case. We are searching for the solution along the yield
curve corresponding to temperature t+4g and along the line defined by the
unit normal 4ty = tHAISE /||HHALGE||

In the case of creep only, we skip step 3 in Table 5.4.1, and use a) = 0 in
(5.4.9) and (5.4.11). Note that in employing the strain hardening approach it
is necessary to determine the pseudo-time 7, for each trial value *+4¢G. The
pseudo-time can be calculated using (5.2.3) and (5.2.7) to obtain
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", (a8°,"M0) =0

Deviatoric plane

té iP t+Até iP giP= Mép
Fig. 5.4.2. Stress states at time ¢ and ¢t + At (thermoplasticity, mixed hard-
ening), deviatoric plane and yield curves

teC 1 fi (A5 fa(tHALR) [Atﬁ(r,,) — fo(rp)| =0 (5.4.15)

and solving for 7,. Instead of 74! and tT4¢6, the weighted values for the
current time step may be employed (Kojic and Bathe 1987a,b). Also, the
modified effective creep strain ‘e’ and the O.R.N.L. hardening rule may be
used. Once 7, has been determined, *+4?+ can be calculated (see (5.2.22))

.C
3 t+At e
t+AL
V=5 trats (5.4.16)
.C
where 4% &~ corresponds to time Tp. In the case of the power creep law,
t+ At i+ At 5

v can be determined analytically. Using & = g in time step At, we

integrate the differential equation

de€ = a(l)/az t+Atza1/az (éC)(lfl/aQ)dt
which follows from (5.2.11). Hence, we have
t+A ;0 _ I:a(l]/azAt t+Atgar/ay | (téo)l/az] 2 (5.4.17)

We then use t+4%e€ in (5.4.16) to obtain
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3 t+AtzC _ tC

e
2 At t+Ats

t+ At

v= (5.4.18)

An extension of the above computational procedure to thermoplasticity
and creep of orthotropic materials is given in Kojic et al. (1995c).

5.4.2 Shell (Plane Stress) Conditions

We follow the approach presented for plastic deformations in Section 4.4.2.
The mean stress has the form (4.4.41), i.e.,

t+AtUm _ t+Athm (t+At€wEm_+_ t+At65'y) (5419)

where the elastic strains are

t+At JE __ t+At t+ At P t+At C t+At TH
Cra = €z — €z — Crz — e
t+At B _ t+At,  t+At P t+At C _ t+At TH
€yy = eyy €yy €yy e (5.4.20)

From (4.4.43), (4.4.18), (5.4.3) and (5.4.20) we obtain the following expres-
sions for the deviatoric stresses 14tS,, and t+4t5,,:

tratg t+AtS£‘v — A) (Cﬁ{]{: tHALG clE t+At§yy)
_At trat i (C’{}IE‘ t+AtSzz + C_'{JZE t+AtSyy)
rralg,, = HAIGE _ AN (O IS, 1 O 13, )

_At trat i (C_’?lg‘ t+AtSzz + Oé? t+AtSyy)

(5.4.21)

where

T T
~IE ([ t+At t,P _ t,C _ t+At TH
+C15 ( Eyy = €yy = €y — e')  (5.4.22)
SIE ( t+At t P _ t,C _ t+At TH
Csi ( €re — € €rp — e )

t+At gE  _ AE (t+At t,P _ t,C _ t+At TH
TASE = O (e — e 5, — Tate )

TT T

AIE [ t4At t P t.C _ t+At TH
+C5 ( Cyy = Cyy = Eyy — e'™)

t+At5E
vy

are the elastic solutions for the deviatoric stresses. From the system of equa-
tions (5.4.21) and the relation (4.4.22) we first solve for the components of

the stress radius 1745, and 45,
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t+ At & A~ t+ALG ~ tAt >
* wa:(all+ S;z_ + Sﬁy)/D

) ) (5.4.23)
t+AtSyy _ (—dr t+AtSy +ayy t+AtSy )/

where
apn =1+ AX [(1 + At t+Atyé) o 4 C‘}
s = AN (1 + Ap At 70) ClE 4 Aty 1B (5.4.24)
D= &%1 a%Q
and

t+AtS\;yz _ t+AtSerz _ (1 + At t+At,y Cvi?) tazz — At t+At,y Cig tayy

t+AtSr;/y — t+Atsﬁ/ — At t+At'}/ C{g tazz _ (1 + At t+At'}/ Cll) Qyy

(5.4.25)

In this derivation we have taken into account the symmetry of the elastic
matrix C4” given by (4.4.44), and also C1¥ = C35. The coefficients Cj¥’ must

be evaluated at the temperature 44, while for the modulus Ca weighted
value with respect to temperature may be used. Note that the solutions for
+4tg,, and "t415, reduce to (4.4.47) when creep is not present. The de-
viatoric stresses +41S,, and **4!S,, can be expressed in terms of t+ALg
and At either from (4.4.22) or (5.4.21). It is simpler to use (4.4.22),
hence

tHALG  _tg 4 (1 —f—AAO) t+At G
rr rxr i A.’l;ﬂ; (5-4‘26)
HALG Ly = tayy + (14 ANC) TS,

The third components +4%S., and 4¢3, . follow from the deviatoric
character of S and S. The determination of the shear components in t+Atg
and '4!S is accomplished in the same manner as for the general three-
dimensional deformation because the thermoelastic constitutive relations are
the same. Finally, instead of (5.4.11) and (5.4.12) we have the following equa-
tions:

fi (At = ; t+Atg . t+Atg ; t+alz2 _ (5.4.27)
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and

1 . .1
fo (AeP) = 0 tratg, At 3 g =0 (5.4.28)

which are a result of the definition (3.2.39) of the effective stress and the
yield condition (5.2.31).

The computational steps are as for the general three-dimensional defor-
mations, Table 5.4.1: assume *4¢F, calculate t+4%y from (5.4.16), then cal-
culate 4187 from (5.4.25) and (5.4.10); iterate on A& by using A4S from
(5.4.23) and (5.4.7) until (5.4.28) is satisfied; determine **4¢S from (4.4.22)
and substitute into (5.4.27); repeat the calculation with a new value of 4tz
until (5.4.27) is satisfied within a selected tolerance. If we compare these
computations with those performed when considering fully three-dimensional
conditions, the number of numerical operations is now larger because we need
to calculate all components of t+4¢S and *+4?S, and cannot simply work with
the scalars in equations (5.4.11) and (5.4.12).

The above solution procedure is applicable to the special cases of thermo-
plasticity without creep, and when there are only creep effects. In the case of
thermoplasticity, we only iterate on A&’ to solve (5.4.28), with t+4ty = 0
in (5.4.23) and (5.4.7), and set ‘e = 0 in the expressions for ‘*4*S¥ (the
calculations reduce to those in Section 4.4.2).

If there is no plastic deformation in the time step, we iterate on tT4t5
to solve (5.4.27) and skip the calculation of **4¢S | Instead of the system of
equations (5.4.21) and (4.4.22), we use AX = 0 in (5.4.21) and find solutions
for t+4tS, . and **4LS,, in the form analogous to (5.4.23). We also use A\ =
0 in (5.4.6) and (5.4.9) to express the shear terms of {*4!S. Using these
components of {+4%S we check whether (5.4.27) is satisfied.

5.4.3 Elastic-Plastic-Creep Constitutive Matrix

The consistent tangent constitutive matrices *+4tCFC and t+AtCFFPC for
the elastic-creep and elastic-plastic-creep material models, respectively, have
the form (4.4.53). We here summarize the basic steps for the calculation of
t+ALCEPC following the general procedure of Section 4.2 and that for plastic-
ity in Section 4.4.3. Since the plastic and creep deformations are isochoric, the
form of the constitutive matrix given in Table 4.4.2 is applicable. Therefore,
we need to determine the derivatives 4107, = #TALS; ; = gitalg; /pi+atel,
As in Section 4.4.3, we consider general three-dimensional deformation.
It follows from (5.4.6) that

1
' [t+AtSi):j — LS, (ay; + axy)] (5.4.29)

t+AtS. —
7 1+ ay+ay

(3
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The derivatives on the right hand side can be obtained from (5.4.8) and
(5.4.9) as

@, = 2HHANG Ap tHALy AL
ax,; = 1 . 2t+AtG€p — a) (@pé + AAC’I):| Aé];
14+ ANC '
t+AtSi):j = 2t+AtG 6ij + tOzi ay,;j (5430)
where {+4ty! = §t+4ty /§t+AtG can be calculated from (5.4.16) and the creep

law, ¢ = 60/8t+At el from the yield curve, as in Section 4.4.3 ; and £p is
the coeflicient defined by (4.4.65). Therefore, the derivatives in (5 4.29) can
be computed if we determine the derivatives t+At* j =0T Alg [t Ale! and
Aefi = 0(Ae”) /o't 4t By differentiation of the equations (5.4.11) and
(5. 4 12) we obtain the system of equations

of _ of of
1 t+ At j+ 1 A + 1 =0

ott+Ats 7, d(AeP) Hitt+Atelr
! (5.4.31)
6f2 t+ At - 4 6f A + 8f2 -0
ott+Ats 7. B(A ) Ht+Ate ;I -

from which *4!5 ; and Aéf; can be calculated. Note that, in accordance
with (4.4.69), we have

oh  _ giratG t+AL gIA
ptrate! T tAtgy (1 4 ay + ay) j
t+ At .
0f _ 377G rratgy (5.4.32)

atJrAte‘/jl (t+At&,y)2

where 415 and t*“ﬁf are equal to F4*S} and +4ST for j = 1,2,3,
and to 2074153 and 2t+AtS;-’ for j =1,2,3.

The other computational details are analogous to those presented in Sec-
tion 4.4.3. Also, it is straightforward to reduce the above derivations to ther-
moplasticity with no creep, or to conditions of creep only.

5.4.4 Examples

Example 5.4.1. Thermoelastic-Plastic and Creep Deformation of a
Beam. Derive the basic relations for the stress integration considering the
thermoelastic-plastic and creep deformations of a beam.

The physical conditions for the beam deformation are described in Exam-
ple 4.5.2. Hence, the constitutive relations for the nonzero shear terms (z,y)
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and (x, z) remain as for the general three-dimensional deformation in Section
5.4.1, and we next analyze the axial normal components of stress, creep and
plastic strain. We start with the first relation of (b) of Example 4.5.2, which
now becomes

t+ At _ t+At QE t+At ~'E P C
S$$ - Szz - Cll (Aezz + Aezz) (a)
where
t+ At gE __ t+ At~ E (t+At t P t C t+At TH
Szz - Cll ( €rz — € — €ip — € ) (b)
and
t+At ~NE _ t+ At
Ciy =2/3 E (c)

Next we express Ael’ and Ael, by using (4.4.18) and (5.4.3), and write (a)
in the form

tratg (t+AtS£‘v — A\ t+AtCﬁ3 t+Atszz) /(1 +b,) ()
where
by = At Ay AT (e)
We further solve (4.4.22) and (d) for *+4%S,, and tHALS as

S, = TSN /(L4 by + b)) (f)

t+At Gy
t+AtSzz — Szz

. (8)
1+b,+ [HNCHE +(1+b,)C| AX

where
t+AtS£\m — t+AtSzEz + b)\ ta:c;c t+AtS«;;yz — t+Atsf;; _ (1 + bfy) ta:c;c (h)

and
by = ANTTALCE /(1 + AXC) (i)

The equation for the calculation of Aeip has the form (5.4.28), where we
use the nonzero shear components ‘+4tS, and 45, from (5.4.7), the

normal component +4*S, . from (g), and
A A 1 N
A A A .
“ tsyy = tSZZ = - ) i tSzz (.])
We employ the expression (4.4.24) to calculate A\ for each trial value of

AeP . Finally, the governing equation f; (:t4t5) = 0 is (5.4.27), with t+AtS“y
and t+4tS, _ given in (5.4.6), 1t4tS,, in (f), and
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1
t+Atsryy — t+AtSzz - _ 0 t+AtSzz (k)

The computational steps are as described in Table 5.4.1. Also, the special
cases: creep only, or thermoplasticity without creep, presented for the shell
conditions in Section 5.4.2, can be implemented (see also Kojic and Bathe
1987b). The comments regarding the constitutive matrix **4*CFFC are as
for t+AtCEP in Example 4.5.2.

Example 5.4.2. Thermoelastic-Plastic and Creep Deformation of
a Pipe. Derive the basic relations for the stress integration considering the
thermoelastic-plastic and creep deformation of a pipe under general loading
and internal pressure.

The physical conditions for the deformation of a pipe with internal pres-
sure are described in detail in Example 4.5.2. Hence, we start with (j) of
Example 4.5.2, which is now

t+ At t+ At t+ At t+At TH t+At P t+At C t+ At t+ At
+ Oga — + E(+ eaa_+ € - eaa_+ eaa)++ V+ C

Oce
(a)
The normal deviatoric stress components are (see (k) of Example 4.5.2)
t+ At _ t+AtgQE t+At~'E P C
Saﬂ - Saa - Caa (Aeaa + Aeaa) (b)
t+At t+At gF t+At ~'E P e}
* SCC = * Scc + * Cac (Aeaa + Aeaa) (C)
t+ At t+ At t+ At
+ Sbb =t Saa — Scc (d)
where
t+AtGE _ t+At B t+AL i 1— 204ty t+ At (e)
aa — aa €aa — 3 Occ e
t+At oF t+At ~'E t+ At 2 — Aty t+ At
— n
Scc - Cac €aa + 3 Occ (f)
and
7 2 ’ 1
t+AtCa1§ — “t+atp t+AtCalc~J — Ct+atp (g)
3 3
t+Ate;Ia — tHAt, AL TH _ teaPa _ teaca (h)

We next use the expressions (4.4.18) and (5.4.3) for Aer and AeS, in (b),

and employ the relation (4.4.22). From (b) and (4.4.22) follow the solutions
for 1415, , and 4S5, as

HALG,, = TFALS2 /(1 + by + by) (i)
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t+AtSv _ t+Atha (J)

L4 by [HFACIE 4 (14 b,)0)] AN

where
t+At52\a — t+AtSaE;z + b)\taaa t+AtS«;ya — t+AtSaE;z _ (1 + b’y)taaa (k)

and
by = AX FFALCIE [ (1 4 ANC) 1)

while b, is defined in (e) of Example 5.4.1. The solutions for **4S.. and
t+ALS are

1 1
trAtg ) tHatg 4 ) tHaty (m)

HALS, = (A8, — tag.) [ (14 AXC) (n)

The expressions for the nonzero shear terms tF4tS,,, 17415 . of the
stress, and fHAtS,, tHALS of the yield surface radius, are given in (5.4.6)
and (5.4.7), respectively.

The computational steps are in principle as described in Table 5.4.1, and
are analogous to those for shell conditions in Section 5.4.2. Also, the cal-
culation of the tangent constitutive matrix *+4¢CFFC is analogous to that
described for plasticity in Example 4.5.2.

The application of the above derived relations to an engineering problem
is given in Example 5.4.7.

Example 5.4.3. Thermoplastic Deformation in Proportional
Cyclic Loading. Assume that a material point of a von Mises material with
mixed hardening characteristics is subjected to thermal loading and to cyclic
proportional mechanical loading.

a) Derive the general relations for the calculation of the increments of the
effective plastic strain and the plastic strains.

b) Use the derived relations to analyze a thin-walled tube subjected to cyclic
tension and torsion.

This example represents a generalization of the two-step loading solution
in Example 4.5.7 to multi-step conditions and thermoplasticity.

a) We consider the general proportional cyclic loading of a material, so
that the deviatoric stress S at any load level can be expressed as (see (a) of
Example 4.5.7)

ts = f(t)°S (a)

where °S is the stress deviator at the start of first yielding. Therefore, the
components of the unit normal vector n are
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ni; =S/ 11°8|| (b)

and remain unchanged during loading. In a cycle we distinguish the positive
and negative loading periods (in the positive and negative n-directions, re-
spectively), as shown in Fig. E.5.4-3a. Using (d) of Example 4.5.7 we obtain

g = g5, ta+ G, 4 (AR — M AR AP (©)
where
s = 1 for the positive loading in the time step
s=—1 for the negative loading in the time step (d)
and
Sq= 1 for tan>0
S5 =—1 for ‘fa-n<0 (e)

The equation (c) is applicable when plastic deformation takes place in the
current time (load) step. In general, this equation is nonlinear when the
yield curve o,(&") is nonlinear. If the Ramberg-Osgood formula (3.2.7) is

employed, we have that the governing equation to be solved for Ae” is

Atn

t+
F(AEP) = tHAtg g5 ta — t+Ata,yv _ t+AtCy [M(téP + Aép)]

_t+Atnt+AtCy(1 _ Mt+Atn)(téP +Aép)‘+A‘n—1AéP

=0 (f)

where we note that the material parameters o,,,Cy and n are temperature-

dependent (and thus given with the superscript ¢t + At). We give the expres-
sions for other variables in the plasticity calculations:

Ae? = S\/;) AeP'n (2)

2 t t
Ao = 5\/3 t+Atnt+AtCy(1 _ Mt—i—Atn)(téP +AéP) -1 AsPp (h)
A = t+Atnt+Atcy(1 . Mt+Atn)(téP + AéP)H'AtnflAéP (i)

where we have used (3.2.46), (3.2.73), and (3.2.80).

b) The thin-walled tube, schematically shown in Fig. E.5.4-3b, is sub-
jected to the cyclic axial force F' and torsional moment My,

F=ft)Fy, M, =f(t) M, &)
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4 Time 20 420 g[°C]

eP 15 M=0
[%]
10
M=0.5
5 —__—— M=1

1 2 3 4  Time

P
Txy
[%]

Fig. E.5.4-3. Thermoplastic deformation in proportional cyclic loading. a
Yield surface and direction of loading n; b Thin-walled tube subjected to
cyclic axial force F' and torsional moment M, and thermal loading: time-
function, temperature change, dependence o,(6); ¢ Solutions for three val-
ues of M for: effective plastic strain &’ (t), plastic strains el (¢), 75, (t), and
the yield surface position @ = s, @(t)
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where f(t) is the time-function shown in the figure, while Fy and My are the
force and moment causing the stresses

09 =79 =100 MPa (k)

The tube is subjected to thermal loading with the temperature change given
in the figure. The material hardening is linear,

0y = 0y +1000e” MPa 1)

and the yield stress o, dependence on temperature is as shown in the figure,
but the hardening is independent of temperature.
The components of the normal n (see (b) and (k)) are:

1 \/2 1 1 \/3 ()
= =N — — = m
Nea = o 3 Nyy = Mzz gMaz  Tay = 5\[ o

where z is the axial axis, while y and z lie in the cross-section, in the wall

circumferential and normal directions. Since the hardening is linear, we solve
(f) for Ae”,

~ t~  t+At
p_ T—ssqta— Oy ¢ P
Ae” = A, — M'e (n)
where
5 =209 = 200 (o)

We have calculated the effective plastic strain e, plastic strains ef, and

7fy, and a = s, @, by employing four steps. The results are given in Table
E.5.4-3 and in Fig. E.5.4-3¢c, for M = 0 (kinematic hardening), M = 0.5,
and M =1 (isotropic hardening). The most severe plastic flow corresponds
to kinematic hardening, and the smallest plastic flow corresponds to isotropic
hardening. Note that the same results are obtained if more than one step per
loading period is employed (see Section 4.4.4 and Example 4.5.7).

Example 5.4.4. Creep Deformation in Proportional Cyclic Load-
ing. Consider a material point of a metal in creep subjected to proportional
cyclic loading, and derive the general relations for the calculation of the creep
strains. Use the derived relations for uniaxial cyclic loading, with creep de-
fined by the exponential creep law.

The derivations presented below are analogous to those in Example 5.4.3.
In general, if the material is subjected to proportional loading (see (3.2.29)),
we have

S = f(t)°S (a)

where %S is a reference deviatoric stress, and f(t) is the time-function. Ac-
cording to (5.2.17) the creep strain rate é°, represented as a six-component
vector, is in the direction of the normal vector n,
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Table E.5.4-3. Solutions for thermoplastic deformation of material in pro-
portional cyclic loading

M=0 M=0.5 M=1
Variable step step step
1 2 3 4 1 2 3 4 1 2 3 4
e [% 1. 4 9 16 L 3 5 7 1. 2 3 4
e’ [%] 05 -1. 1.5 2. 05 -0.5 0.5 -0.5 05 0. 0.5 0.
vo [%] 15 3. 45 -6 15 -15 15 -1.5 1.5 0. 1.5 0.
o [Mpa] 10. -20. 30. -40. 5. -5. 5. -5 0. 0. 0. O
n="5/[°S| (b)

We can use the uniaxial creep law as in Section 5.2.1, with the use of Table
5.2.1. For a loading period ¢,,, t,+1 in which the loading does not change sign,
the increment of creep strain is

n+1eC _ neC — S\/; (n+léC _ néC)n (C)

where ¢ is the effective creep strain, while s = 1 for the loading in the
direction of n, and s = —1 for the reverse loading. The relations shown in
Fig. 5.2.10 are applicable, with the origins et and e~ lying on the n-axis. In
the incremental analysis we have that (5.4.3) becomes

Ae? =5 \/;) Ae“n (d)

where
A6 = Ap A (e)

.C
The effective creep strain rate ‘4% & corresponds to the pseudo-time 7p
calculated from (5.4.15) and to the effective stress 174G . In the case of creep
only, the governing equation (5.4.11) reduces to

f (t+At—) _ t+At6E _ At 0 (f)
T oA th g ALy 7=

where the function t+4%y is defined by (5.2.23). With the solution of (f) we
obtain (see (5.4.6))

2
tratg — ¢ \/3 t+atszn (8)
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We next apply the derived relations to a case of creep in variable loading.
The history of loading and the exponential creep law data are given in Fig.
E.5.4-4 (see Snyder and Bathe 1980). The analytical solution for the creep
strain is determined using the creep law and the origins at ¢ = 0, 100, 200, 300
for the corresponding loading period. Numerical (incremental) solutions are
calculated with the time step At = 10 and At = 100. The A¢ = 10 solution
is already very close to the analytical solution.

1 psi = 6.895 kPa

Creep law  e®=f(1-e™)+gt —— Analytical and numerical
sin psi fa exp(a, o) eC ) resultg, At=10
5 0 ; [10-3] I oo o Numerical results, At=100
[ksi] r=a,(c/az)™
g=azexp(asc) "
15 4
10 4 Time [h]

—

5 100\ 200/ 300\ 400

100 [200 [300 400 Time [h] T
54
104 2t
154 .
a,=3476E-4 a,=2.08E-4 a,=3.991E-5 3
a,=1000. a,=2.094 as=1.02E-11 a,=7.43E-4 ,

Fig. E.5.4-4. Uniaxial creep in variable loading. a Stress history and material
data; b Creep strain as a function of time

Example 5.4.5. Creep of Cantilever. The cantilever shown in Fig.
E.5.4-5 is loaded by a constant bending moment. Determine the stationary
stress distribution for the creep deformation. The material and geometric
data are given in the figure. Use the Newton-Cotes integration formula (see
Bathe 1996) in the calculation of the integrals.

The only nonzero stress is 0,,, hence we employ the constitutive relation
g, = B (e, — L) (a)

Further, using (5.4.3), (5.4.17) and (5.4.18), with a; = 1, we obtain using (a)
F(FAG,,) = FAG 4 B Ata, t+At0,;; CE(HAte,, —teCy=0 (b)
This equation replaces the governing equation f;(**4%5) = 0 given by

(5.4.11). We have assumed that there is no plastic deformation of the mate-
rial.
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— = Elastic stress

y [m] = Analytical solution
o000 Numerical solution At=100
y Y 0.2 o
7
E/( 0.15 (~
X //
0.1 =
z vd
/ M =60 kNm pd }/
S 0.05 .
f=4m h=b=0.4m P
6 P L
E=2x10° kN/m?
e®=a,G%t% a0=10'16, a,=3, a,=1 2 4 6 [l\jIyXPXa]
Fig. E.5.4-5. Creep of cantilever under constant moment
The moment in the beam is
h/2
t
2b /( Ozz + Aoyy) ydy = M, (c)
0

Since the bending moment is constant along the cantilever axis z, the stress
and strain distributions are the same for any cross-section, and the angle of
the cross-section rotation increases linearly with . With the beam assump-
tion for strain we can write

H'Atem _ :ZH_MS@ (d)

where ¢ is the rotation of cross-section at the cantilever end. With use of the
constitutive relation

Aoy = TACEC Ay, = zt"'Ath;cyAga (e)
we obtain from (c) and (d) (see Table 4.1.1)
AR A Q) = 0, — MG (f)
where
/2
oA (1) 2£b / AL GECG=1) 2, (2)
0

is the beam stiffness in bending,

h/2
Méifl) — 9% / y t+AtU&i;1)dy (h)
0
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is the bending moment due to stresses U(ziz_l), and Aga(i) is the increment

corresponding to the iteration “i

The constitutive coefficient **4*CEC can be obtained by differentiation

of (b) with respect to t+4%e,,, as
t+At0£CC — E/t+Atf7U (1)
where
of
A At _ay— .
Lo = priitg,, = 1o AL 0n 0

We also use this derivative in solving (b). Namely, according to the Newton

iteration scheme (2.1.14), the k-th trial H‘Ata;@ is

Al = A — e ey (k)

The computational procedure is summarized in Table E.5.4-5a. All inte-
grals are calculated using siz equal intervals along the y—axis, i.e.,

h/2 6
J= / P(y)dy = ! YOO b(y) ()
0 2 k=0

where C’Igﬁ) are the Newton-Cotes constants, given in, e.g., Bathe (1996).
We have used 10 steps with equal time step At = 100. The stationary
stress state is practically reached after 5 steps. The stress distribution for the
stationary stress state is shown in Fig. E.5.4-5, together with the analytical
solution (Penny and Marriott 1971). The same results are obtained numeri-
cally by using beam or shell finite elements (Kojic and Bathe 1987b). Table
E.5.4-5b gives the numerical values of the stress and strains for the last step.
The number of equilibrium iterations in each step was 4 for an energy
convergence tolerance of 1x1071%. In this iterative procedure we have used
the estimated creep strain increment (Ael,)®st = Att+4tC " and the cor-
responding stress increment Ag¢s! = E (AeS, )¢t for the first iteration, in
order to decrease the number of iterations. We give in Table E.5.4-5¢ the
unbalanced energies in the last step which show the quadratic convergence

rate.

Example 5.4.6. Thermoplastic and Creep Deformation of a
Plate. The plate, shown in Fig. E.5.4-6, is subjected to the given in-plane
loads. The changes of loads with time and the material data are given in the
same figure. Determine the strains using 4 steps of At = 0.5 and one step of
At =100. Consider that the stress/strain state is uniform within the plate.

The incremental equilibrium equations for a unit volume have the follow-
ing form (see Tables 4.1.1 and E.5.4-5a)
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Table E.5.4-5a. Computational steps for creep of cantilever

— 1. Initialize quantities for time step
At t+At(p(()) — l(p 1:0
b b
2. Equilibrium iteration
— i=i+1
— Loop over cross-sectional points
t+Are)(Ci—1) _ Yo 1)
} Y4
Solve f (”A'Gii") )= 0
C(i—1) t+At ~EC(i-1)
Calculate Ae '™, "™'CL
AL (i t+At 4 o (i-1)
K& "My
Increment rotation
t+AL (i-1) i) _ t+Aty c(i-1)
K 7AW = M- "M,
1+At(p(i):t+A/(p(i—l)+ A(p(i)
Convergence reached?
L NO-gotostart of 2
. . . 0
YES — calculate estimated increment of rotation A¢”

AG est __ E t+Ate~X§At

xx

est

t+At - (i-1) (0) _ t+Aty (i 1)
KAQV = M- ""MED — M,

o

HAL

Nextstep ‘¢ = "o+ Ap©®

Table E.5.4-5b Stationary stress state (time = 1000)

Coordinate y Stress o4z Strain ey, Creep strain e$,
(m) (MPa) (%) (%)

0.0 0.0 0.0 0.0

0.03333 2.3021 0.19204 0.07693
0.06667 3.0274 0.38407 0.23270
0.10000 3.4798 0.57611 0.40212
0.13333 3.8316 0.76814 0.57656
0.16667 4.1270 0.96018 0.75382
0.20000 4.3850 1.15224 0.93296

Table E.5.4-5c¢ Unbalanced energies during iterations in the last
step

Iteration 1 2 3 4
AE = (M — M,)Ayp 1.35E-1 6.07E-4 14E-8 7.0E-18
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Plate geometry and loads Material data

Plasticity data
M=0.6

ngt _pan
o,=6,+C, (")

oext Gyv=10
C,=500
n=12

Giit —— i 1 —_— ot

ext
(e Xy

—~— Elasticity constants
A % Y

E=2x10° v=03

Loading data Creep data Temperature data

(e}

oext eC= aoca1taz 0 o =1X10_5 OC-1
30f----mmmmmmmm e

ap,=2x10"° Brer=0
a;=3 50 f-----m -
a,=1.2
Units :

ST 7ﬂ Stresses [MPa]

1 2 3 4 5Step Temperature [°C] T

1
1
1
I
1
1
1
|
1 2 3 4 5 Step

Fig. E.5.4-6. Creep and plastic deformation of a plate; material and loading
data

HALGUT Aell) = tratgent  trAtg U= =1 9.3 (a)

where €1 = ez, €2 = €y, €3 = Y, t+Ata§” and t+Ato§-zfl) are the given
and calculated stresses, with o1 = 044, 02 = 0y, 03 = 04y; and t+AtC](-ifl)
are the components of the constitutive matrix **4*CFPC (see Section 5.4.3).

We follow the computational procedure of Table 5.4.1 and Section 5.4.2.
The system of equations (a) is solved by Gauss elimination, and the solutions
of (5.4.27) for 1+4%G and (5.4.28) for Aé” are obtained by using a bisection
procedure.

The tangent constitutive matrix is obtained by using the relations of Sec-
tion 5.4.3, with static condensation. To improve the convergence rate, we
have employed a stress correction Ag®%t for the initial equilibrium iteration,
with the estimated creep strain increment (Ae®)®* and the thermal strain
increment AeTH

Ao_est — tCEPC [(AéC)est +AeTH] (b)
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where (A&Y)¢%! is the increment of creep strain vector (see (A1.3)) corre-
sponding to the stress ‘o (see Example 5.4.5), and Ae’* is due to the tem-
perature change Af = t+4tg 1§,

Table E.5.4-6a lists some of the calculated results. We also give the consti-
tutive matrix for the first three steps, at the start of the last iteration. Note
that by employing static condensation on the matrices 'C and 2C to satisfy
the condition o,, = 0, we can obtain the coefficient CEC for the uniaxial
solution (see (i) of Example 5.4.5). The matrices are as follows:

[ 2.1464 x 10°  6.6568 x 10* 0.

Ic= 2.1775 x 10° 0.
| symmetric 7.6063 x 10* ]
[ 5.1800 x 10> 4.7010 x 10> 0. i
°C = 9.4073 x 102 0.
| symmetric 2.3551 x 10 |

[ 5.9512 x 102 5.0788 x 102 —5.2315 x 10! ]
1.0164 x 103 7.9743 x 10°

3C —
[ symmetric 2.4800 x 102

Table E.5.4-6a. Results of stress integration for the plate
elastic-plastic-creep deformation

Variable S t e p
1 2 3 4 5
e 3.673107 3.57210° 1.557 10° 4.68210° 1.48510°
e,=e,  -1.836 107 -1.786 10° -7.785 10° -2.341 10° -7.423 10"
Ty 0. 0. -3.999 10° 1.96310° 7.41910°
Eh 0 2.003 10° 4.500 10 6.808 102 6.808 10
ey =ey, 0. -1.001 107 -2.250 10° -3.404 10 -3.404 10°°
Ta 0 0. 9.37310 ® 2.258 10% 2.258 10°

The results presented in Table E.5.4-6b show that large strain increments
may be used (e.g., steps 2 and 5) resulting still in good convergence (improved
also due to the stress estimation terms).

Example 5.4.7. Creep and Plastic Deformations of Restrained
Pipe. A pipe (Fig. E.5.4-7) restrained at both ends, is subjected to internal
pressure. Determine the stresses, strains and the support reactions R4 and
Rp, taking into account the creep and plastic deformations of the material.
The material data and change of pressure with time are given in the figure.
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Table E.5.4-6b. Unbalanced energies during equilibrium iterations

AE= (o_exl_ ol- 1)) Ae (i)

S t e p
Iteration (i) 1 2 3 4 5
1 2732108 3535107 1.49810* 4.04210“ 3.123107"®
2 253010 6.42610" 7.41910° 3.578107
3 228210 4.84310° 3.86510°" 3.735107°
4 261610° 212610 4.414 10"
5 5573102 1.21110'% 5.384107'°
6 24591072
p 8=2 mm Stresses in MPa
// p
Ra T TTT T4 Re
ant S O O O 15
70 100 Time [h]
RA=Rg ° e®=aycd t%
[10%] 4 200 M=1.0 5 =5x10*
N 40 - Er=2000 a,=2
E=2x10" v=0.3 1
| a,=1.5
30
20
10

Fig. E.5.4-7. Creep and plastic deformations of restrained pipe. Change of
support reactions with time

The physical conditions described in Example 4.5.4 are applicable here.
We employ the basic relations of Example 5.4.2 and calculate the support
reactions as in Example 4.5.4.

We have employed 12 steps. The first step (At = 1. x 10~%) is applied to

reach the initial plastic state in the material. We use At = 1. x 10~* at step
9 to take into account the jump in loading at time ¢t = 70, and At = 10 in the
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other 10 steps. Plastic deformation occurs only in steps 1 and 9, while in the
other steps the creep deformation progresses without plastic flow. Instead of
(1) of Example 4.5.4 for the support reaction, we have now

Ry =ma;(a; —vDyp)p+ 76D E (eaPa + eaca) (a)

Figure E.5.4-7 shows the change of the support reactions with time.

Note that this pipe problem can be solved using only one plane stress finite
element restrained to deform in one direction, while subjected to tension by
the given hoop stress (see (b) of Example 4.5.4) in the other direction.

We give some of the results for the last step. They are as follows (stresses
in MPa and forces in N):

Taa = 180.00 Oee = 360.00
e =-53071x 107> €S =2.5059 x 107!

aa

el =-3.0693x107* el =4.8063 x 1072

aa

Ra =Rp = —-2277.0

5.5 Stress Integration for Viscoplastic Models

In this section we first present some general relations used for the develop-
ment of stress integration procedures in viscoplasticity, and then define the
computational steps of the governing parameter method (Kojic 1996a). These
basic equations are then used to formulate the stress integration algorithm
for the viscoplastic model of an initially isotropic metal.

5.5.1 General Considerations

We first recall the basic conditions that are used in developing the computa-
tional procedure for a viscoplastic model. These conditions to satisfy are:

e The elastic constitutive relations for the end of the time step,

e The viscoplastic constitutive law for the time step, discretized in time using
the Euler backward method, and

e The yield condition at the end of the time step for the conjugate stresses.

To fulfill these requirements we start with the elastic constitutive law for
the end of the time step (see also (4.4.4) and (4.4.5))

t+Ato_ — CE(t+Até _ téVP _ AéVP) (551)

where +4t8 t8VF and Ae&VF are the strain vectors (see (A1.3)). For the
tensor Ae'? we use the viscoplastic constitutive law (5.3.19) and employ
the Euler implicit scheme to obtain
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(t+Ato, _ t+Ato,*) (55'2)

Figure 5.5.1 gives a schematic representation of this relation. Note that the
viscoplastic strain in general is not deviatoric; but, when the yield surface
is defined in the deviatoric stress space, as in case of metal plasticity, the
viscoplastic strain has the deviatoric character, see (5.3.22) and (5.3.23).
Since the stress ¥4t and the conjugate stress t+4g* lie on the normal
to the yield surface, the following relation, independent of (5.5.2), can be
written:

At 6t+Atf
VP _
A=k B+t (5.5.3)

where k is a proportionality coefficient (k > 0). We obtain from the last two
equations for AeV¥ the relation suitable for development of the computa-
tional algorithm,

t+At t+At arratf,
o— oc* =k o+ Aty (5.5.4)

Next, we need the constitutive relation for the internal variables 3" in the
yield condition (5.3.20). In general, we have

Aﬁ* — Aﬂ* (tO', to,*, tﬁ*, t+AtO’, t+AtO'*, t+Ate) (555)

Fig. 5.5.1. Schematic representation of implicit integration of viscoplastic
constitutive relations
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Finally, the yield condition at the end of the time step must be satisfied,
ie.,

t+Atfy — fy(tJrAtO'*, t+Atﬂ*) =0 (556)

Note that when the yield condition depends on the deviatoric stresses
rather than the stresses, as given in (5.3.21), we will have in the expres-
sions (5.5.2) to (5.5.6) the deviatoric stresses **4!S instead of the stresses
t+A4t5 and the conjugate deviatoric stresses *+4¢S* instead of the conjugate
stresses 1T 4%g*. Then the increment of the viscoplastic strain Ae"” has the
deviatoric character.

5.5.2 The Governing Parameter Method for Stress Integration in
Viscoplasticity

Following the ideas of the implicit stress integration in Section 4.2 we can
now specify the computational steps for the stress calculation of viscoplastic
material models. Namely, we assume that the unknowns at the end of the
time step

t+ At
t+At0‘,t+At0'*,t+At,3*, + eVP (557)

can be expressed in terms of one variable, the governing parameter p. Then
we form the governing scalar equation

fp)=0 (5.5.8)

and solve for the unknown *4%p. Using this solution we then find the un-

knowns (5.5.7). Also, the consistent tangent viscoplastic matrix *+4tC"V? can
be determined by using the expression (4.2.4).

The computational steps for calculation of the unknowns (5.5.7) are given
in Table 4.2.1.

5.5.3 Isotropic Metal

In this section we apply the general relations given above to an isotropic
viscoplastic model based on the von Mises yield condition. We first consider
general three-dimensional deformations and then shell structural conditions.
Finally, we derive the consistent tangent elastic-viscoplastic matrix for the
three-dimensional conditions from which the viscoplastic matrix for other
conditions can be derived (see Section 4.4.3).
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Three-Dimensional Deformations. The yield condition of an isotropic
metal with mixed hardening is given in (3.2.57), hence at the end of the time
step we have for the conjugate stresses

thaty ; tHALGx | t+AEGx ;H-At&f =0 (5.5.9)

where 47S* ig the radius of the yield surface shown in Fig. 5.5.2, and
t+At&; is the yield stress defined by the yield curve. For the mixed hardening
assumption,

Halge =g, (M TateVr) (5.5.10)

where the increment of the effective viscoplastic strain is defined in accordance
with (3.2.46),

1/2
AeVP = (§Ae"P . AeVP> (5.5.11)

For the back stress a we employ the constitutive relation (4.4.20), therefore
we can write

Aa = C AeVF (5.5.12)

where C is given in (4.4.21).

Fig. 5.5.2. Stresses and yield surfaces in deviatoric plane at the start and
end of time step. Isotropic metal viscoplasticity
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From the yield condition (5.5.9) and the viscoplastic constitutive law
(5.3.22) follows the deviatoric character of viscoplastic strains. Therefore, as
in Sections 4.4.1 and 5.4.1, we determine the mean stress *+4%g,, indepen-
dently of the viscoplastic strains

traty = gtHALe, (5.5.13)

where K is the bulk modulus, and **4%ey is the volumetric strain. The
deviatoric stress t+4S can be expressed as (see (4.4.11))

tratg — HAGE 9@ AeVT (5.5.14)

where
tHAQE _ oq t+ate! (5.5.15)

is the elastic solution, and

t+At 1 ALt VP (5.5.16)

Here t+4%¢’ is the deviatoric strain as in (4.4.13), and G is the shear modulus.

We next employ the viscoplastic constitutive relations (5.3.23) (see also
(5.5.2)) from which

At

AeVP —
nt+AtnF

(t+atg _ trAtge) (5.5.17)

Using the geometric relations shown in Fig. 5.5.2 and using (5.5.12) we obtain
(see also (4.4.22))

tHAlgx — Lo 4+ O AeVP 4 1HALS* (5.5.18)

From (5.5.14) to (5.5.18) we obtain the following equation
wratge 4 (AMayp 4 C) AeVP - THAISE < (5.5.19)

where
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AL = 26 + U A, (5.5.20)
At
t+ALQE _ t+ALQE _ t, (5.5.21)

Here 41§ i5 the elastic solution for the stress radius, represented in the

figure by the stress vector ‘OP¥. By inspecting the terms in (5.5.19) we
conclude that they all are vectors along the normal

HHAtNE _ HHALGE J) tHALGE) (5.5.22)

where ||ITAISE|| = (t+AISE . t+ALGEYL/2 Thig “colinearity” of the vectors
can also be seen in the figure. Hence, the scalar equation

F= Aty ;’ (t+AtaVP n é) NeVP _ \/;’ [ HHALSE || = 0
(5.5.23)
directly follows from (5.5.19). We have here used (3.2.60) and (5.5.11).
From the above derivations we see that the stress integration is reduced to
solving the nonlinear equation (5.5.23). The solution process is geometrically
represented as a search for the stress point along the line {OP¥ in Fig. 5.5.2.
In accordance with Table 4.2.1, the governing parameter is Ae"* and the
computational steps are as given in Table 5.5.1. The computational procedure
is analogous to that given in Table 4.4.1 for isotropic metal plasticity.

Table 5.5.1. Computational steps for stress calculation - isotropic
metal (three-dimensional deformation)

1. Assume Ae"T

2. Determine 'T2!47 from the yield curve (5.5.10)

3. Iterate until (5.5.23) is satisfied within a selected tolerance

Shell (Plane Stress) Deformation. In addition to the conditions
stated at the beginning of Section 5.5.1, the following condition must be
satisfied during the deformation:

0.. =0 (5.5.24)

where z is the axis “normal” to the shell.

In strain-driven problems, the normal +4tnf given by (5.5.22) cannot
be determined because the strain through the shell thickness cannot be cal-
culated from the displacements (see also Sections 4.4.2 and 5.4.2). Therefore
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we employ the relation (5.5.3) which, with the yield condition (5.5.9), leads

to
At

Ui

AeVP = 7 thAtgx (5.5.25)
The constitutive relation (5.5.14) is now (with use of the one-index notation
for stresses and strains, see, e.g., (3.3.4) and (3.3.10))

t+AtS — t+AtsE _ CIEAeVP (5526)

The components in this relation correspond to the normal in-plane stress
and strain components (see (4.4.43)), and to all shear components. Hence,
we have five scalar equations, two for the normal and three for the shear
components. The normal deviatoric stress component corresponding to the
shell normal is given by the third equation in (4.4.43). The elastic deviator
t+AtQF is obtained as

HHAIGE _ QB (t+Atg _ 16V P) (5.5.27)

The nonzero terms in the first two rows of the 5 x 5 matrix C'” are C}7,
i,7 = 1,2, (for the normal stresses and strains) and are given in (4.4.44). The
constitutive relations for the shear terms are as for the three-dimensional
case, i.e., (5.5.14), therefore the nonzero terms in the last three rows are
C!F =2G,i=3,4,5.

With the use of (5.5.17), (5.5.18), (5.5.25) and (5.5.26), we obtain the
stress radius t+4tS* components as

At &x k At QFE k At GE k
t+ tSﬂ:z - (Dgz) t+ tsz _D;y) o tsyy) /D( )

t+AtSv;y _ (_ng];) t+ALGE 4 plk) t+AtSv£/) /D)

rw (5.5.28)
t+ At G*x t+ At Gk t+ At G*
Szz - Szz - Syy
Gk & k .
t+AtSi = t+AtSzE/D£h) 1 =3,4,5
where
At /- A
DM =14 kA%, +k , (C{’f + C)
At -
D) =k ; ik (5.5.29)

b = (b))’ - (0’
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and

At .
DM =1 4 gty g ) (2G + C) (5.5.30)

Here, the z and y axes lie in the shell tangential plane and the z axis for the
shell conditions is applicable (see Appendix A1), while the indices i = 3,4,5
correspond to shear stresses and strains in the z-y, y-z and z-z planes, re-
spectively. Also, t+4*8E is given in (5.5.21), with “+4¢SE defined by (5.5.27).
In addition to the solution (5.5.28) for the stress radius, we also employ the
scalar equation which follows from (5.5.25), (5.5.9), and (5.5.11),

3 AeVFP

k= 2 At t+At&Z

(5.5.31)

The stress radius t74tS* must be determined so that the yield condition
(5.5.9) is satisfied.

Finally, we can summarize the computational steps as given in Table 5.5.2.
Note that the expressions for the shell conditions are applicable to plane stress
conditions by not including the transversal shear terms.

Table 5.5.2. Computational steps for stress calculation - isotropic
metal (shell conditions)

. Assume Ae"?

. Determine ‘7267 from the yield curve (5.5.10)
. Calculate k from (5.5.31)

. Calculate ‘*2!S§* from (5.5.28)

. Iterate on A& until (5.5.9) is satisfied within a selected
tolerance

[SAU NI U R

Elastic-Viscoplastic Matrix. The coefficients +4¢C¥F of the consis-
tent tangent viscoplastic matrix can be written as

1o}
At AV P A A
Aoyt = d+ate, (Mo (my + THAS)) (5.5.32)

where we have used the one-subscript notation of Section 4.4.3. General three-

dimensional deformation is considered only and the tangent moduli for the

shell (plane stress) conditions can be obtained by static condensation.
Using (5.5.13) the nonzero derivatives of the mean stress *+4tg,, are
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at+AttT( i 1
cm = ™= e 0 =1,2,3 (5.5.33)
(¥ 6t+Atej 3

where §;; is the Kronecker-delta symbol, and ¢, = 3K. The derivatives of
the deviatoric stresses can be obtained from (5.5.14) and (5.5.15)

_ 1~
C, B 6t+AtSi B C/(l)A 201(2) \
T ottAte. | T _ 1- (5.5.34)
J CI(3)A 20/(4)

where C'(*), s =1,2,3,4 are the (3 x 3) submatrices of the matrix C',

C' =

prats] [ oW e
git+aten | [ a3 ¢ } (5.5.35)
J
The matrix A is given by (3.2.70) and I3 is the (3 x 3) identity matrix.
Therefore, the determination of t+AtCVP reduces to the calculation of the
derivatives C;;.
From (5.5.14) we obtain

Ci; =2G (6;; — Ael'T) (5.5.36)

4,3

where Ae/F = 8(Ae}' ") /041! . Using (5.5.11) we can write

3
Aef " = \/ , Ae' T At (5.5.37)
and then
3
AerP) = \/2 (t+Atni Aé";P + AeVF t+Atni,j) (5.5.38)

The derivatives of the normal **4¢n; can be obtained from (5.5.22) and the
definition (5.5.15) of ‘+4tSE,

2G

t+At — t+At, t+At

Mij = [++atgE| (6ij — n; fj) (5.5.39)
where t4%h contains twice the shear terms of T4tn. By differentiation of

(5.5.23) with respect to "4’/ we obtain the derivatives Ae"” as
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3
Ae"r = \/ ) Apt Aty Al (5.5.40)

where

Ap = [M tHAtE, 4 ‘;’ (t+Atavp + C) +(1— M)AV AR 4

3 AeVP
> o 1] 126 (5.5.41)
and
3 . nAe’r
t+Ath — 4AP1 GAt t+AtnF7j (5.5‘42)
with t+Atan — at+AtnF/a (AéVP) and t+At77F,j _ at+AtnF /at+Ate;/_
Also,
At 4 A
tHALE 6tt+A t_‘fy tHAtp — o't t_EP (5.5.43)
gitatgVP (M t+AtgVP) 8t+4teVP

Finally, substituting (5.5.39) and (5.5.40) into (5.5.38), and then the re-
sulting expression for Ae} " into (5.5.36), we obtain

- N 3
Clij =2G (BP (Sij — DP t+Atni H‘Atnj + \/2 t+At’ni t+Atbj>

(5.5.44)
where the dimensionless coefficients Bp and Dp are
Bp=1-bp
3
Dp = 2A;1 —bp (5.5.45)
with
3 GAevVP
bp=2 N 5.5.46
=2y e (35.10

Then the coefficients F4'/CYP follow from (5.5.32), with C? given by

(5.5.33) and Cj; by (5.5.34). Note that, with use of (5.5.44) and (3.2.70),

t+AthP

it can be shown that the matrix is symmetric.
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5.5.4 Examples

Example 5.5.1. Viscoplastic Deformation of Isotropic Beam. Derive
the expressions for stress integration and the tangent constitutive matrix for
the viscoplastic deformation of a beam. The axial axis of the beam is z, and
y and z are the axes in the beam cross-section (see Fig. A1.2b in Appendix
A1). The material is assumed to be an isotropic metal with mixed hardening.

The elastic matrix C'F, relating the deviatoric stresses and elastic strains,
is given in (d) of Example 4.5.2. The relations (5.5.2), (5.5.3) and (5.5.1) are
now

At At
AeVP — nt+AtnF (t+AtS _ t+AtS ) —k ; t+AtS (a)
t+AtS — t+AtsE _ CIEAeVP (b)

where all stress and strain tensors contain one normal and two shear compo-
nents. With the use of the relation (5.5.18), we solve from (a) and (b) for the
stress radius components

t+ At Gx  _ t+ AL GQE t+ AL Gx _ t+AtSzE .
S;c;c - S;c;c/(l + bk) Sz ] + a i1=2,3 (C)

where the coefficients by, and a; are
At (2 A
by, = [t+AtnF+ , <3E+c>] k

At .
ap = | A : (2G+c ] k ()

and the indices ¢ = 2,3 correspond to transversal shear (zy) and (zz). The
yield condition (5.5.9) is now

t+ At _ 3 t+ At G2 t+ At G*2 t+ At G2 1 t+ At Ax2
fy—4 S;c;c+ S:cy+ Szz_ 3 Oy =0 (e)

The computational steps are as for the shell conditions (Table 5.5.2),
except that the components t+At,§;‘ are calculated from (c) and the yield
condition is now given in (e).

We next give briefly the calculation of the tangent matrix components by
using the above relations for the stress integration. Following the procedure
of Section 5.5.3, we have now

t+AtCi‘]{P =cF - C{;?Ael‘{f no sum on ¢ (f)
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where Cf] = E, C3; = Cf; = G. The derivatives Ae) [ (the indices j = 1,2,3
correspond to strains t+4%e,,, t+A4t

(a) as

Yy and T4y ) can be determined from

vp _ At

Aem- 0

(FAS ke + kTS ()

and the t+At,§Zj follow from (c),

. 2 R ,
A = <3E51j - t+At5§xbk,j> [(A+br) j=1,2,3

N 1 N
t+AtSi*7j = 14 ar (2G6,J - t+AtS;ak7j) 1= 2,3;j = 1,2,3 (h)

To calculate by ; and ag,; we use the derivatives of the viscosity function
At = 04y, /9 (AeVF) and Ay = 9t Aly [0 Ale; and also
AR, and k; that can be determined from (5.5.43) and (5.5.31). Hence,

the derivatives 57, ; and 4757 - transform into

t+AtS;z,j = b1161; — b2 1TALSE, AeVF — bis A8y, t+At7IF,j J=123
t+ At & t+ At & VP t+ At Gx t+ At
+ SZ] = (111(5@']‘ — a12 + S{Aed — a3 + Sz* + nF,j

i=2,3j=123 (i

where b;; and a;; are the known coefficients. The derivatives Ae%” can be
determined by differentiating (e) with respect to +4fe; and using the ex-
pressions (i). Finally, with Aé";P calculated, all derivatives in (f) to (i) can

be obtained.

Example 5.5.2. Viscoplastic Deformations Under Constant Stress
and in Case of Stress Relaxation (Uniaxial Loading). Consider a uni-
axial stress state like in Fig. 5.3.1.

a) Calculate the total axial strain when the stress is constant at 400 MPa.
b) Calculate the stress when the total axial strain is held constant at 0.05.

In each case compare the numerical results obtained using the general algo-
rithm of Section 5.5.3 with the analytical solutions given in Section 5.3.1.
The material data are given in Fig. E.5.5-2.

We include this simple example merely to illustrate the time stepping
needed for typical one-dimensional solutions considered in Section 5.3.1.

The viscoplastic law for the one-dimensional model is given in (5.3.4)
and for the 3-D model is given in (5.3.23). In order to compare the analyti-
cal solutions based on the viscoplastic constitutive relation (5.3.4) with the
numerical solutions obtained using the algorithm of Section 5.5.3, we write
(5.3.23) for the uniaxial loading as
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Axial stress =400 MPa Material data E = 2E5 MPa
g; = 300+1000 eVP MPa
------ Numerical At=0.1 n,= 1000 sMPa
Analytical; Numerical At=0.01
Axial strain
0.1
0.08 \
Numerical At=1
0.06
0.04
0.02
1 1 1 1 1
0 2 4 6 8 10
Time [s]
a
Axial strain €,0.05 Material data E = 1E5 MPa
5; = 300+1000 P MPa
n,=1E5 sMPa
5000 d
Stress
[Mpa] 4000 F\\ ~ ------ Numerical At=0.1 _= 34653 MPa
Analytical “
3000
Numerical At=1
2000 |+
1000
Gy [rrmmmmmmmmmme e
1 1 1 1 : 1

0 2 4 6 8 10

Time [s]

Fig. E.5.5-2. Viscoplastic deformations under uniaxial loading conditions. a
Increase of axial strain during loading by a constant stress; b Stress decrease
(stress relaxation) while the axial strain is held constant
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wvp_20—0"

3 g (@)

where ¢VF. o and o* are the viscoplastic strain rate, stress and the conjugate

stress on the yield curve, respectively. Comparing (a) and (5.3.4) we obtain
that the following equation must be satisfied

2
mr = 3 Na (b)
and the viscosity function is
_ 214
Nrp = 3 (c)

Since in this problem the coefficient 7, is taken to be constant, the viscosity
function is constant,

Np = const. (d)

satisfying (b), with the numerical values given in Fig. E.5.5-2.
The numerical solutions are obtained using the procedures for the general
3-D deformation and for the shell conditions, with several time steps.

a) The analytical solution is calculated from (5.3.8). Figure E.5.5-2a
shows the increase of the axial strain with time due to viscoplastic flow. It
can be seen that the increase of the axial strain diminishes as the conjugate
stress o* approaches the given stress ¢ = 400.

b) Figure E.5.5-2b shows the relaxation curves obtained using two mag-
nitudes of time steps, while the analytical curve is calculated using (5.3.10).
The stress o decreases with time and approaches the stress o, given in
(5.3.11),

0o = 346.53 MPa (e)

We see that, in each case for the time span of 10 sec, about 100 time steps
are sufficient to obtain an accurate response prediction.

Example 5.5.3. Viscoplastic Flow of Material — Plane Strain
Conditions. Consider the viscoplastic flow of a material under constant
loading and plane strain conditions. The material is subjected to the con-
stant normal and shear stresses shown in Fig. E.5.5-3a. The elastic material
constants and the dependence of the yield stress ¢ on the effective viscoplas-

Yy
VP

tic strain €+, assuming the isotropic hardening behavior, are as follows:

E=2x10° MPa vr=0.3

o) =305.8 4 405.4("")**"  MPa
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Gxy =200 Mpa
oxx=250 MPa
A 2
Uy = 1.793x10
uS=7412 x10 2

Cc_ 2_.D
Uy =-1.718 x10™°=U,

uD = 5619 x1072

\ Magnified 5 times
a
Effective viscoplastic 4r
strain
&P 3+
2 L
1 -
0 40 80 120 160 200
Time [s]
b

Fig. E.5.5-3. Plane strain finite element with viscoplastic material model.
a Final deformed shape; b Increase of the effective viscoplastic strain with
time

We use the viscoplastic law (5.3.15), with the function ¢ given in (5.3.16),
which for the metal reduces to the constitutive relation (5.3.23). The viscosity
function is

2

— — _x\(1—N)
2 @)Y (6o

Nr =
and the viscosity coefficient is = 1/7. The following values are employed in
this example:

n=100s N=1

This is a very simple problem but serves to show a typical viscoplastic
material response. We have used 400 steps of size At = 0.5s.

The final displacements of the element nodes are given in Fig. E.5.5-3a.
Figure E.5.5-3b gives the increase of the effective viscoplastic strain as a
function of time. It can be seen from the figure that the rate of increase of ef-
fective viscoplastic strain diminishes with time as the stress point approaches
the yield surface.
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In this chapter we describe some of the most common plasticity material
models used to represent the behavior of geomaterials and present computa-
tional procedures for stress integration of these models. The computational
algorithms represent an application of the governing parameter method of
Section 4.2.

In Section 6.1 we first define some fundamental notions of soil mechanics
and present a general view of soil behavior under loading. Then we give a
short historical review of soil plasticity. In Sections 6.2, 6.3 and 6.4 we con-
sider the cap model, the Cam-clay model, and a general soil plasticity model,
respectively. For these models we develop the computational procedures for
implicit stress integration and derive expressions for the consistent tangent
elastic-plastic matrices. With suitably solved examples we illustrate the char-
acteristics of the material models and of the computational algorithms.

As it is usual in geomechanics, we use the compressive stresses and strains
as positive. Hence, the normal stresses and strains that in the other chapters
are positive, are all negative in this chapter, and vice versa.

6.1 Introduction to the Mechanical Response of
Geomaterials

The mechanical response of geological materials is complex due to the het-
erogeneous material structure, and due to variation of both the mechanical
properties of these materials and the physical conditions in the real in situ
environment. The complexity of a geological material response is particularly
pronounced when the material undergoes permanent (large) deformations.
The formulation of material models and their applications require laboratory
investigations and in situ measurements.

One of the basic characteristics of the material behavior considered in the
previous chapters was the isochoric character of the inelastic strains. Only
in the case of the Gurson model (Example 4.5.11) did we have volumetric
plastic strain develop during plastic flow. In the cases of isochoric inelastic
deformations considered the mean stress does not affect the inelastic deforma-
tions. This characteristic pertains mainly to metals. On the other hand, the
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elastic-plastic models for geological materials, such as soils, rocks and con-
crete, are more complex, with yield criteria dependent on the mean stress,
and with a permanent (plastic) volumetric strain. Many yield criteria have
been proposed for geological materials and we will present some of them in
the subsequent sections.

In order to describe the main mechanical characteristics of geological ma-
terials we first introduce some basic notions generally used in geomechanics.

6.1.1 Basic Notions in Geomechanics

We begin with the fact that geological materials are porous, composed of
solid material and pores. Pores can be filled with a gas (or a mixture of
gases) and/or a liquid (or a mixture of liquids). If the whole pore volume
is filled by a liquid, the state is called saturated. The geological materials
are inhomogeneous in nature, as schematically shown in Fig. 6.1.1. However,
in large scale considerations, common in engineering practice (and assumed
here), the geological materials are represented as continuous media.

Pores Vo

V| 97 x =1+e
Solid s s

Fig. 6.1.1. Volume element V of a geological material

One of the main characteristics, relevant for the material response under
a mechanical action, is the void ratio e, defined as

e= (6.1.1)

where, as shown in Fig. 6.1.1, V,, and V; are, respectively, the volumes occu-
pied by pores and the solid material within a volume V. Another quantity
of the same character, used as an inherent property of the material, is the
specific volume v,
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“// =1+4e (6.1.2)

S

v

Under a mechanical action, a geological material changes its shape and its
volume. The change in the material shape is either due to the change of shape
of the solid matrix (for rocks), or due to rearrangements of the solid particles
(for soils). On the other hand, the volume change of the porous continuum
can be attributed to the volume change of the solid material and the change of
volume occupied by the pores. It is usually considered in engineering practice
that the solid material by itself is incompressible (the solid material has a
very high bulk modulus K when compared with the bulk modulus K of
the porous continuum), and the volume change is only due to the change
of volume of pores. Then the following relations between the increment of
volumetric strain ey of the continuum and the increments of void ratio e and
specific volume v are applicable

AV d(l+e)Vy  de  dv
dey ==, == T (6.1.3)

where the negative sign is due to the convention that the compressive volu-
metric strain is positive’ . Note that the compressibility of a fluid does not
enter (6.1.3).

A very common condition in nature, and important in engineering prac-
tice, corresponds to the porous material being saturated by a liquid. The
load applied to this two-phase medium is carried by the solid matrix and the
fluid. The stresses in the solid material are called the effective stresses® o
and they are related to the total stresses o;; (forces per unit total area of the
mixture) and the fluid pressure pp as

07j = 0ij — Proij (6.1.4)

This relation expresses the effective stress principle introduced by Terzaghi
(1936). Hence, the total normal stress is equal to the sum of the normal
effective stress and the fluid pressure, while the shear components of the
total and the effective stresses are equal. The principle is considered to be

! We note that these relations, and others to follow, seem to imply a large strain
analysis (see Chapter 7); however, these relations are commonly used in kine-
matic small strain analysis (although the calculated strains can indeed be rather
large) and we shall proceed in the same manner in this chapter.

2 Note that the effective stresses defined here have no relation to the effective stress
used in metal plasticity theory, see ( 3.2.39).
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one of the most fundamental principles in soil mechanics. The principle is
geometrically illustrated in Fig. 6.1.2 by use of the Mohr circles (note that
compressive stresses are positive). We use the pole P of the Mohr circle? to

a
on on=ca+p_  Sign convention for
*
T Effective stress \/ Tn=Tn dn
n

N

G, Oy

~—— Total stress
A

X

Fig. 6.1.2. Mohr circle representation of effective stress principle.
a Physical space; b Stress space

% The pole P of the Mohr circle is obtained as follows. Consider the Mohr circle
in Fig. 6.1.2b representing stress states on all planes containing the z-axis (Fig.
6.1.2a). Assume that we know the normal and shear stresses on a plane, for
example 0., and o,y acting on the y,z plane. The stress state on this plane
is represented by the stress point A, on the circle. We draw a vertical straight
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geometrically illustrate that the relation (6.1.4) is applicable for any plane,
e.g., for the plane AP shown in the figure (because AP and A*P* in Fig.
6.1.2b are parallel and the 7, coordinates of P and P* are the same).

The mechanical characteristics of the soil skeleton can be considered unaf-
fected by the fluid pressure, therefore the constitutive relations, in the elastic
as well as in the plastic domain, correlate the effective stresses and total
strains. Since the subject of this book is the stress integration, we will use
the effective stresses as the stresses in the model descriptions and stress in-
tegrations of Sections 6.2 to 6.4.

The effective stress principle is applicable in the analyses of porous media
with a static or flowing fluid, as well as in the cases of a compressible solid ma-
terial and a compressible fluid. The fluid flow (seepage) is frequently assumed
to be governed by Darcy’s law in which the fluid velocity is proportional to
the fluid pressure gradient. The proportionality coefficient is called the per-
meability coefficient and depends on the properties of the porous medium and
the fluid. However, in each case the numerical procedures for the stress inte-
gration of the elastic-plastic constitutive relations correspond to conditions
of the solid material subjected to the effective stresses (Lewis and Schrefler
1987).

We next introduce the notions of drained and wndrained conditions for
a saturated soil, both important in geotechnical engineering. The drained
conditions at a material point correspond to the case when a change of the
total stress does not produce a change of fluid pressure at that point. These
physical conditions are illustrated in Fig. 6.1.3a. A change in the total normal
stress o, is followed by the simultaneous changes of the effective stress o,
and the volumetric strain. This situation is encountered when there is a slow
change in the load or boundary conditions and the fluid is free to flow during
this time period.

The undrained conditions are illustrated in Fig. 6.1.3b. Under these con-
ditions a change of the total normal stress o,, occurs in a short period of time,
and it is assumed that the fluid does not have time to flow (or change the
flow characteristics) in this short time period. Of course, the fluid may also
be constrained due to an impermeability of the boundaries (in the case of a
stationary fluid). In this short time period the change of o, is accompanied
by an increase of the fluid pressure, while the volume (assuming an incom-
pressible fluid) and the effective stresses remain constant. The load change
is carried by the fluid. If the boundaries are permeable, the fluid pressure

line (which actually corresponds to the y,z plane on which the o, and ogy
act) through the stress point A,, and at the intersection with the Mohr circle
obtain the pole P. The pole has the following property. The intersection of a
straight line through P with the Mohr circle gives the normal and shear stresses
on and 7, on the plane defined by that line (e.g., the point A gives the stresses
corresponding to the plane defined by the direction AP in Fig. 6.1.2b and the
z-axis, see Fig. 6.1.2a), with the sign convention for the shear stress as shown
in the figure. The pole of Mohr’s circle has been used for graphical methods in
plasticity (see, e.g., Prager 1959; De Jong 1959; Kojic and Cheatham 1974a,b).
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Fig. 6.1.3. Change of normal effective stress, fluid pressure and volumet-
ric strain due to a change of normal total stress. a Drained conditions; b
Undrained and consolidation conditions

subsequently decays slowly until the initial fluid pressure is reached again.
This slow time process is known as consolidation of the material and it occurs
within the time interval called the consolidation time. During the consolida-
tion time both the volume of the solid-fluid mixture and the effective stresses
change, as schematically represented in the figure.*

6.1.2 Mechanical Properties of Geological Materials

We consider some mechanical properties of geological materials typical for the
behavior of these materials. The material models considered in the subsequent
sections pertain mainly to soils and therefore we focus on the mechanical
characteristics of soils.

In general, the response of a soil subjected to a given loading/straining
sequence depends on the mechanical properties of the material including the
current state of the material. The current state depends on the history of the

* We may note that clays behave more like in undrained conditions, whereas sands
behave more like in drained conditions, because of the grain sizes in each case.
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material deformation prior to the considered load application. The current
state can be considered as a disturbed state with respect to a defined initial
(reference) state (Desai 2001). For example, if a sample of a soil is subjected to
high hydrostatic compression, the material will become dense, while in light
compression it will be loose (less dense). If then the material is subjected to
loading, the response of the dense and loose samples will be different. We
will specify later (see hydrostatic compression) more precisely the conditions
that define the state of the material.

The mechanical properties are extracted from experimental observations
and serve as a basis for the formulation of material models, such as those
given in the subsequent sections. In order to identify the material properties
we consider particular loading/straining conditions generally accepted and
applied in standard tests in laboratory (or in situ) measurements. A detailed
description of the testing procedures is given in a number of books (see, e.g.,
Desai and Siriwardane 1984; Wood 1990; Atkinson 1993; Das 1997). We will
illustrate the material behavior by showing some typical results obtained in
laboratory investigations.

Uniaxial Straining. A soil is quite often subjected to one-dimensional
straining in in-situ conditions. The material response under such conditions is
measured in the so-called oedometer test, schematically shown in Fig. 6.1.4a.
A cylindrical material sample is subjected to compressive loading o, while the
lateral deformations are suppressed. This test is also used for determining the
consolidation characteristics when the material is filled with a fluid (water).
In this case the top and bottom surfaces of the oedometer apparatus are
permeable, providing the conditions for one-dimensional flow. Figure 6.1.4b
shows a typical dependence of the axial effective stress o} on the specific

*

Ca
[kPa]
800
600
400
200
2.4 2.2 20 U
a b

Fig. 6.1.4. Uniaxial straining (oedometer test). a Material sample; b Axial
stress — specific volume dependence for speswhite kaolin, according to Al-
Tabbaa (1987)
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volume v. The axial stress increase causes a decrease of the specific volume
(and volume) of the material. The curve has a nonlinear character, with a
hysteresis response in the unloading-reloading cycles.

Shearing of the Material. A schematic representation of shearing of a
soil sample is shown in Fig. 6.1.5a. The material is subjected to a constant
normal stress, or effective normal stress o}, with increasing shear deforma-
tions. Testing of the material is performed in a shear test apparatus (Desai
and Siriwardane 1984; Atkinson 1993). Figure 6.1.5b gives typical curves for
soils when subjected to shear. We have two types of material response. One
corresponds to a loose and the other to a dense state of the material. In the
case of a loose state we have that the shear stress continuously increases with
shear strain, until a critical shear stress 7,¢p;t is reached. Then shearing of
the material continues with no change of shear stress, that is, we say that
the material behaves as a perfectly plastic solid. On the other hand, in the
case of a dense state of the material, the shear stress first increases, reaches
a maximum, and then decreases, approaching the same critical stress 7,,cpit-

A very important property of soils is the so-called dilatancy — the prop-
erty that the volume of the material changes in shearing. A simple explana-
tion of dilatancy is that the shearing of material causes rearrangements of
the solid particles in the volume, leading to a volume change. Here we have a
different material behavior for the loose and dense states, as shown in Figs.
6.1.5¢c,d. In the case of the loose state the volume continuously decreases

Tn

Tngrit f----

1422y

Y
a
e
ey a
Loose L
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Ecrit
a Dense
Y
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v
c d

Fig. 6.1.5. Schematic shear of a soil. a Material element under shear; b
Dependence of the shear stress 7, on the shear strain 7; ¢ Volumetric strain
ey — 7 dependence; d Void ratio e — v dependence
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(the volumetric strain increases and the void ratio decreases). The dense ma-
terial first displays a volume decrease and then a volume increase. In both,
the loose and dense states of the material, the wltimate void ratio is eqpi.
The ultimate void ratio and the critical shear stress are reached at a large
shear strain v, of order 10% (Fig. 6.1.5b). Note that the initial values of the
void ratio ®e are different and the signs of the total change (e..;; — “e) are
different for the two states. The change of the volumetric strain is related to
the change of the void ratio by (6.1.3) and the ultimate volumetric strains
are different for the two states.

Hydrostatic Compression. Loading of the material by pressure in all
directions is called hydrostatic compression, or isotropic compression. We first
show some experimental results and then give a schematic representation of
the material response in loading, unloading and reloading conditions.

Figures 6.1.6a,b give experimental results for two types of sand in the
mean effective stress o), — specific volume v plane, and in the volumetric
strain — pressure (mean stress) plane, for loose and dense states. It can be
seen that the responses of the loose and dense materials are significantly
different. The same character of response in hydrostatic compression is dis-
played by clay material, as can be seen from the experimental results given
in Fig. 6.1.6¢c. This figure also shows that the relation v — In o7}, is linear.

Schematic representations of the soil behavior based upon the experimen-
tal observations are given in Figs. 6.1.6d,e. Figure 6.1.6d shows a nonlin-
ear o), — ey relation, with a hysteresis material response under unloading
and reloading conditions. The isotropic compression line (icl) (also called
isotropic virgin compression line or isotropic normal consolidation line) in
Fig. 6.1.6e represents a material characteristic analogous to the yield curve
for metals (see Section 3.2). If the material is unloaded from a point B on
the icl-line, the volume and the specific volume will increase (the material
swells), following the path B — C shown in the figure. Hydrostatic reloading
to the mean stress at the point B will be along the path C' — B. The hys-
teresis is usually neglected so that the unloading-reloading occurs along the
same line. The isotropic compression line and the unloading-reloading lines
are approximately straight in the In o}, — v representation, as shown in Fig.
6.1.6e.

All states represented by points below the isotropic compression line corre-
spond to an overconsolidated material. The overconsolidation ratio I, defined
as

_(on)B
By= 00" (6.1.5)

represents a measure of the overconsolidation. The point C' is a point be-
low the isotropic compression line, and B is the corresponding point on the
isotropic compression line as described above.
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Fig. 6.1.6. Soil behavior in hydrostatic compression. Experimental re-
sults: a Fuji river sand, according to Tatsuoka (1972), cited in Wood (1990);
b Chattahoochee River sand (dry), according to Vesic and Clough (1968); c
Weald clay, according to Roscoe et al. (1958). Schematic representation:
d Dependence mean effective stress o7, — volumetric strain ey; e Dependence
specific volume v — ¢}, and v —In o},
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General 3-D Loading. In order to establish material models for the ma-
terial response in more general loading conditions, it is necessary to perform
a series of adequate experiments. A rather general test for material response
in 3-D loading conditions can be performed in a triaxial test device (Desai
and Siriwardane 1984) which allows application of independent three normal
stresses in three orthogonal directions, on six faces of a cubical specimen of
a material. However, a special case of 3-D test commonly used in practice is
the triaxial compression test which we describe in some detail. In this test a
cylindrical material sample, shown in Fig 6.1.7a, is loaded by the axial stress
0, and the radial stress o, under drained or undrained conditions. As a con-
sequence of the given normal stresses, shear stresses in the radial planes are
generated. A special case of this test is the conventional triazial compression
test, in which case the radial stress is kept constant while the axial stress is
increased.

We next introduce some mechanical quantities specific for the triaxial
compression test, which can be related to stress and strain invariants nec-
essary for general 3-D analyses. These specific quantities are the so-called
“deviatoric” stress ° g,

g=o,—o0, (6.1.6)

and the increment of “triaxial shear strain” deg,
2
dey = 3 (dey — de,) (6.1.7)

The specific work dWW for the material subjected to the triaxial compression
test can be expressed in the form

dW = olde, + 20 de, = o), dey + qde, (6.1.8)

Also, ¢ and de; represent the effective stress ¢ defined in (3.2.39), and
the deviatoric effective strain increment dé (using (3.2.46) for the deviatoric
strain increments)

q=5=/3)p (6.1.9)
de, = de (6.1.10)

where Jop is the second invariant of the deviatoric stresses defined in (3.2.13).

Typical results obtained in the test are shown in Figs. 6.1.7 to 6.1.9. It can
be seen that sands and clays have hardening characteristics: the deviatoric
stress g, the axial stress o} and the mean stress o7}, increase with the strains
(Figs. 6.1.7 b,c; 6.1.8; 6.1.9a,b). The experimental results given in Fig. 6.1.8
show that at a certain stage of loading the material reaches a critical state

> Note that ¢ is not a deviatoric stress as defined in (3.2.14)



274 6. Plasticity of Geological Materials

q
[kPa]
300
200
100
\
EERRRRRERRERRERERRN 002 004 006 e,
a b
4
alo, ?.‘/_b_cJuDense samples
3
Loose samples
19—
2 Woﬂoﬁbo- Initial void ratio
= 075
% o 074
1 e 1.05
o 1.06
0 cr=98.1 kPa
5 Loose samples
Volumetric strain —
e, [%] 15 20 25

Axial strain e, [%]

-5 Dense samples

Cc

Fig. 6.1.7. Behavior of sand in conventional triaxial compression test. a
Material sample ; b Dependence “deviatoric” stress ¢ — axial strain e, for
Hostun sand, according to Kohata et al. (1997) ¢ Dependence of the ratio
g/o, and volumetric strain ey on e, for Chattahoochee River sand, drained
conditions (according to Vesic and Clough 1968)

with the ultimate values g.iz and (ey)rit. Also, the material response is dif-
ferent for the loose and dense states. In the case of a loose state the deviatoric
stress ¢ and the volumetric strain increase continuously during the loading to
point D; while in the case of the dense state the deviatoric stress increases,



6.1 Introduction to the Mechanical Response of Geomaterials 275

q Arit q
[kPa] [kPa]
200 1 100 +

100 1

0 M0 e O 1020 o o
eV
ey [%]

[%5] D 0-'-;\ t t t ea [%]

Ela KNI 20
\ 27 (ey)erit
0 10 20 e (6 N
a b

Fig. 6.1.8. Experimental results of Weald clay under conventional triax-
ial compression, drained and undrained conditions, according to Bishop and
Henkel (1957); a The deviatoric stress ¢ — axial strain e,, and the volumet-
ric strain ey — e, dependence for loose material; b The ¢ — e, and ey — e,
dependence for dense material

reaches a maximum at a point M and then decreases to the critical value
at point IV, and the volumetric strain first increases (volume decrease) to a
point L and then decreases to a critical value at point /N. Sand also has the
same character of the relation ey — e, in loose and dense states, as can be
seen in Fig. 6.1.7c.

Data shown in the o}, — ¢ plane (Fig. 6.1.9¢c) demonstrate that yielding
of the material depends on the preconsolidation pressure o,.. This pressure
increases with the depth of the soil considered in the analysis. The yield
curves drawn from the experimental results clearly indicate the hardening
character in yielding under general loading conditions. It can be seen from
Fig. 6.1.9d that to each yield curve corresponds a curve in the o}, — v plane.

Critical State. It can be concluded from the above description of the
material behavior that there exists a critical state of the material which can
be reached by various loading processes (see Figs. 6.1.5, 6.1.7 and 6.1.8).
If loading continues after the critical state has been reached, the material
behaves as perfectly plastic. The existence of the critical state in soils is con-
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Fig. 6.1.9. Triaxial test results on undisturbed Winnipeg clay according
to Graham et al. (1983). a Axial stress o*— axial strain e, dependence; b
Mean stress o, — volumetric strain ey dependence; ¢ Yield curves in o}, — ¢
plane for various preconsolidation pressures o,.; d Results represented in the
compression plane o, —v (1-D cl is 1-D the compression line obtained in the
uniaxial straining test)

sidered as one of the crucial features of soil behavior (Wood 1990; Atkinson
1993).

The critical states of the material obtained experimentally for various
loading conditions can be represented by the critical state line (csl). Figures
6.1.10a,b show the experimental results for the Weald clay in the o}, — g,
oy, —v and Ilno), — v planes. It can be seen that to a given mean stress
correspond the critical deviatoric stress g¢.r;; and the value of the specific
volume vr;; (and the void ratio e..;), for the critical state. Note that the
critical states lie on the same critical state line for the loose and dense states
of the material.
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Fig. 6.1.10. Critical state of soil. Critical state line of Weald clay according
to experiments by Roscoe et al. (1958): a In effective mean stress o}, — de-
viatoric stress ¢ plane; b In o — specific volume v and in Ino, — v planes.
Schematic: ¢ Loose and dense state regimes in ln o}, — v plane; d Shear of
dense and loose material samples leading to same critical state
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The states of the material above the critical state line correspond to loose
or lightly overconsolidated states, while the points below the csi-line corre-
spond to dense or heavily overconsolidated states, Figs. 6.1.10b,c,d . The ma-
terial response is different for the loose and dense states, as already pointed
out and shown in Figs. 6.1.5; 6.1.6a,b; 6.1.7c; and 6.1.8. To exemplify this
difference we consider two material samples, one in the loose state and the
other in the dense state, and assume that they are subjected to shear under
the same constant mean stress, Fig 6.1.10d. The initial states of the samples
are represented by the points L and K, which may be reached by different
values of hydrostatic compression (to the points L' and K'), and then un-
loading. The volume of the loose material decreases, while the volume of the
dense material increases, until the same specific volume is reached at the
point C' on the critical state line.

Plasticity Constitutive Relations. Figure 6.1.11 shows experimental
data that illustrate the applicability of the associated flow rule (3.2.67b).
The increments of plastic strain Ae? are approximately normal to the yield
surface of the undisturbed Winnipeg clay (Graham et al. 1983). However, it
was found experimentally that for some soils, especially soils of sand-type,
there can be a significant deviation from the normality rule. Then, the nonas-
sociated flow rule should be used, with the potential @) instead of the yield
function f,, and instead of (3.2.67b) we have

9Q
de” = dx 6.1.11
9o (6.1.11)
a4 _
ue 6, - preconsolidation pressure
0.6
Ae”
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+ + + + + + + *‘
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Fig. 6.1.11. Increments of plastic strain Aefobtained by triaxial test on
undisturbed Winnipeg clay, according to Graham et al. (1983)
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Various forms of the function @) have been proposed, see Desai and Siriwar-
dane (1980b); Desai (1989).

6.1.3 Short Historical Review of Soil Plasticity

In Section 3.1 we outlined the history of metal plasticity. We mentioned that a
seminal contribution to metal plasticity was made by Tresca who introduced
the yield criterion for metals in 1864. However, the first yield criterion for
soils was already formulated by Coulomb in 1773. This yield criterion has
been used with the Mohr circle representation and is also called the Mohr-
Coulomb yield criterion.

Important experimental investigations of soil behavior and theoretical
considerations in the first half of the last century provided the basis for the
formulation of soil models and solving engineering problems, e.g., Casagrande
(1936); Rendulic (1936); Terzaghi (1936); Hvorslev (1937) (translated ref.
(1969)).

Significant progress in soil plasticity was made by Drucker and Prager
(Drucker and Prager 1952) who extended the Coulomb yield criterion to use
of a smooth yield surface in three-dimensional soil mechanics problems. The
yield criterion for soils formulated by Drucker and Prager has been used in
the analysis of many soil plasticity problems. However, the application of the
Drucker-Prager model with the constitutive relations based on the normality
rule (3.2.71) leads to a prediction of excessive volume dilatation.

Drucker, Gibson and Henkel (Drucker et al. 1957) introduced the concept
of work-hardening plasticity for soils. They defined yield surfaces consisting of
a portion corresponding to perfectly plastic response, like an ultimate failure
yield surface, and a cap with work-hardening characteristics. The void ratio,
or the plastic volumetric strain, was used as the work-hardening parameter.
Widely used models are the Drucker-Prager cap model (Drucker et al. 1957)
and the generalized cap model (DiMaggio and Sandler 1971; Sandler et al.
1976).

Another approach proposed to model soil response more accurately is
based upon introducing non-associated plasticity models, with a plastic po-
tential different from the yield function (e.g., Davis 1968).

The introduction of work-hardening to soil plasticity led to experimental
investigations and the formulation of other soil plasticity models. Generally
accepted models with work-hardening characteristics are those relying on
the critical state concept, developed at Cambridge University in the U.K. (
Roscoe et al. 1958, 1963a). The Cam-clay and so-called modified Cam-clay
models (Roscoe et al. 1963b; Burland 1965; Roscoe and Burland 1968) are
models of this group.

Other models are the so-called nested models (Mroz 1967; Iwan 1967)
with a set of nested yield surfaces which come into contact during plastic
deformation of the material. Conceptually similar models are the bounding
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surface models (Dafalias and Popov 1975, 1977; Krieg 1975; Mroz et al. 1978,
1979; Dafalias 1979).

A general form of yield condition, expressed as a polynomial of stress
invariants, was examined by Desai and coworkers (Desai 1980a; Desai and
Siriwardane 1984).

Descriptions of various additional geomechanical models, which also in-
clude time effects (viscoplastic or creep behavior) are given in a number of
books, e.g., Christian and Desai (1977); Keedwell (1988); Pietruszczak and
Pande (1989); Wood (1990); Atkinson (1993); Cristescu and Goida (1994);
Terzaghi et al. (1996); Desai (2001). A very important material in geome-
chanics and structural design is concrete for which various material models
have been introduced (e.g., Kotsovos and Pavlovic 1995).

6.2 Cap Models

In this section we first give a description of two cap models; the model based
on the Drucker-Prager line with a plane cap and the so-called generalized cap
model. We develop the numerical algorithms for the stress integrations and
the calculation of the consistent tangent elastic-plastic matrices in Sections
6.2.2 and 6.2.3. Finally, in Section 6.2.4 we give some numerical solutions.

The cap models are applicable to soils (claylike and sands) and to rocks
(e.g., Desai and Siriwardane 1984; Chen and Baladi 1985; Chen and Mizuno
1990).

6.2.1 Description of Cap Models

It was found experimentally that soils with cohesion can undergo plastic de-
formations not only when subjected to shear loading but also when subjected
to hydrostatic compression. In addition, it was observed that in hydrostatic
compression the plastic deformations workharden the material. The experi-
ments show that soils may have a permanent increase in volume or the vol-
umetric strain may be positive (decrease in volume), see Section 6.1.2. The
plasticity models of the Mohr-Coulomb or Drucker-Prager type, proposed for
soils with cohesion (see Section 6.1.3) predict plastic flow of the material un-
der shear, but cannot predict the plastic flow under hydrostatic compression.
Also, the application of these models leads to an excessive plastic volumet-
ric expansion, inconsistent with experimental findings. In order to model the
plastic deformations in hydrostatic loading and in general obtain a better cor-
respondence between the model predictions and experimental observations,
the cap models were introduced.

The yield surfaces of cap models consist of a fixed yield surface and a
cap which changes its size during plastic deformations. We describe two cap
models that will be used in Section 6.2.2; a model with the Drucker-Prager
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fixed surface and a plane cap, and a so-called generalized cap model, with a
general shape of the fixed surface and a spherical cap.

Drucker-Prager Model with Plane Cap. The simplest model with a
hardening cap is shown in Fig. 6.2.1a. It consists of the fixed Drucker-Prager
line defined by

fop=—ali+\/Jap —k=0 (6.2.1)
and the plane cap
fe=L-X=0 (6.2.2)

where a and k are material constants, and I; and .Jop are the first invariant

of stress and the second invariant of the stress deviator (see (3.2.11) and

(3.2.13)). The position of the cap, X, depends on the volumetric plastic strain
P
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Tensi toff tan "«
ension cuto Cap
X K fC= |1 -X=0
P
P 1
ly=-T (0] X Iy
a

Drucker-Prager

P
yielding dec

C . deg
Cap yielding

-T 0] X |

Fig. 6.2.1. Drucker-Prager model with plane cap and tension cutoff. a Yield
surface; b Geometric interpretation of the three yielding regimes
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X =X(eh) (6.2.3)

One possible form of the hardening law (6.2.3) is (DiMaggio and Sandler
1971; Sandler et al. 1976),

e = W[l - exp(—=DX)] (6.2.4)

where W and D are material constants. Since we consider the compressive
stresses to be positive, W and D are positive. Note that the volumetric plastic
strain rate with respect to the hydrostatic compressive stress decreases as
plastic deformation progresses, i.e.,

P
Oey,

0X w

P
= WD exp(-DX) = WD (1 - eV) (6.2.5)
It follows from (6.2.4) and (6.2.5) that W represents the ultimate compressive
volumetric strain

W = (e)max (6.2.6)

while the constant D characterizes the volumetric strain rate with respect to
the compressive hydrostatic stress,

P
_ Oey,

D_aX

J(W —eb) (6.2.7)

The physical meaning of the material constants suggests their experimen-
tal determination. A detailed description of the experimental procedures for
determination of the material constants is given, for example, in Desai and
Siriwardane (1984).

The following form of the hardening law can be obtained from (6.2.4),

X——lln(l—e]‘j)+0X (6.2.8)
~D W -

where ° X represents the initial position of the cap. Figure 6.2.2 gives a graph-
ical representation of the dependence X (e{;). We see that as ef,’ approaches
W, the maximum plastic volumetric strain, the hardening of the material
becomes zero, that is, a perfectly plastic material response is reached.

In order to model the material failure due to tensile stresses, a tension
cutoff condition can be employed. A simple concept is to set the stresses to
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a maximum hydrostatic tension when the first invariant I; reaches a given
value T (Sandler et al. 1976). Then the stress state is defined by

1
Ope =0Oyy =0, =—_T

3

and remains unchanged in subsequent deformations. Figure 6.2.1 shows the
model with the tension cutoff conditions.
As shown in Fig. 6.2.1b, there are three yielding regimes:

a) Drucker-Prager yielding
b) cap yielding, and
c) vertex yielding

The Drucker-Prager yielding corresponds to stress states on the Drucker-
Prager line, like the stress state A shown in Fig. 6.2.1b. The increment of
plastic strain dek follows from the normality rule (3.2.67b) and the yield
condition (6.2.1),

dA\pp

def . = —ad\pp I+
br R VA

S (6.2.10)

where d\pp is the proportionality factor and I is the identity matrix.

The cap yielding corresponds to the stress states on the cap, like the stress
state C' in Fig. 6.2.1b, and plastic deformation leads to a pure volumetric
plastic compression. We obtain the increment of plastic strain deg from the
flow rule (3.2.67b) and the yield condition (6.2.2),

del =d\o 1 (6.2.11)
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Hence, the increment of plastic volumetric strain is
de¥’ = 3d\c (6.2.12)

where d\¢ is the proportionality factor corresponding to the cap yielding.

When the stress state is at the intersection V' of the Drucker-Prager line
and the cap, we have verter yielding. To obtain the increment of plastic
strain de” we employ the relation (3.2.92), with the yield conditions (6.2.1)
and (6.2.2). Therefore, we obtain

de?” = debp + del = d\pp (—aI + ) +d\c1 (6.2.13)

S
2V Jap

Figure 6.2.1b gives a geometric representation of this relation. It can be seen
from (6.2.13) that an increase or decrease of the plastic volumetric strain
may occur, depending on the direction of the stress increment at point V.

The proportionality coefficients dApp and dA¢ depend on the stress states
in the three plasticity regimes. The coefficients can be obtained from the
condition that the stress point remains on the corresponding yield surfaces
(see Section 6.2.2).

Generalized Cap Model. The generalized cap model described below is
based on experimental investigations by DiMaggio and Sandler (1971), and
Sandler et al. (1976). The elastic region in this model is bounded by two
surfaces in the stress space (Fig. 6.2.3):

1) the failure surface f; =0, and
2) the hardening cap fo = 0.

In the plane (I1,+/Jop ) the failure surface is defined as

Failure surface,

Jop fixed curve f, =0

Ellipse fc =0
with hardening

X

Fig. 6.2.3. Generalized cap model



6.2 Cap Models 285

fi=vJp—k+Aexp(=B 1) —al =0 (6.2.14)

where A, By, k and « are material constants. Note that the term (—a ) is
included in the original formulation so that we have the Drucker-Prager line
(6.2.1) when A = 0 (Desai and Siriwardane 1984; Kojic et al. 1995¢).

The cap is defined by an ellipse whose equation is

fo= (L —L)?+R*(J,p—B*) =0 (6.2.15)

where L defines the center of the ellipse, B one semiaxis, and R the ratio
between the semiaxes

R=(X-1)/B (6.2.16)

Here X is the intersection of the cap with the [; axis. It was found exper-
imentally that the ratio R can be related to L as (DiMaggio and Sandler
1971)

R
R= +‘}% [1+ Ry exp(—Ro L)] + R [exp (—Ra(Rs — L)*)]  (6.2.17)
1
where Ry, Ry, ..., R5 are material constants.

The material exhibits work-hardening behavior with a change of the cap
size. The hardening parameter is the volumetric plastic strain e‘};, and the
hardening law is given by

ey, =W [l —exp(~D X) — 8D X exp(—D;1 X — D,X?)]

, (6.2.18)
+ W1 X exp(—DgX)

where W, W1,8,D, Dy, D> and D3 are additional material constants. Note
that the hardening law has the character shown in Fig. 6.2.2, and that the
expression (6.2.4) is a special case of (6.2.18).

6.2.2 Stress Integration Procedure

In this section we develop the computational procedure of implicit stress
integration for the generalized cap model (Kojic et al. 1995¢). The procedure
is applicable to the Drucker-Prager cap model as a special case. We consider
general three-dimensional deformations and use the derivations of Section
4.2,



286 6. Plasticity of Geological Materials

For a time (load) step At we first determine the elastic solutions t+4tS¥
and 4oL for the deviatoric and mean stresses corresponding to given
strains +4%e and the known plastic strain ‘e” (see (A1.19) and (A1.12)),

t+AtQE _ o0y tHAL N (6.2.19)
HALGE _ tHAt no sum on m (6.2.20)

where
tHAt G _ t+ ALt P (6.2.21)
thAtn — thAty _ toP (6.2.22)

Here fe'f is the deviatoric plastic strain tensor and el is the mean plastic
strain.

The bulk modulus K and the shear modulus G may depend on the current
stress/strain state. Then, instead of (6.2.19) and (6.2.20) we have

HAGE — 15 121G Ae (6.2.23)

HAlGE — 4 e, Aepy, (6.2.24)

where Ae’ and Ae,, are the increments of the deviatoric strain and mean
strain in the time step; and ‘G and ‘c,, are the moduli corresponding to the
start of the time step. Note that weighted values may be employed in the
time step, based on *G and tc,, as well as “t4'G and **4%¢,,. In order to
simplify the derivations we adopt ‘G and tc,,, as it is usual in geomechanics
(e.g., Borja and Lee 1990).

It is common for geomaterials to take the bulk modulus and the shear
modulus dependent on the stress/strain state (these dependencies are deter-
mined experimentally), and use these in the incremental “elastic” constitutive
matrix. One approach is to use a variable bulk modulus and a constant Pois-
son ratio. Then the shear modulus is variable and follows from the relations
(A1.13) and (A1.9). Various other approaches are discussed in, e.g., Naylor
and Pande (1981); Desai and Siriwardane (1984); Britto and Gunn (1987);
Chen and Mizuno (1990); Wood (1990).

The next step is to check for yielding in the time (load) step. We sub-
stitute the elastic deviatoric and mean stresses {74tSE and *4%¢E into the
expressions (6.2.14) and (6.2.15), using L, 'R, !B from the previous step
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and obtain At fF and T4t fE. When t41fF < 0 and 741 fE < 0, the
deformation in the current step is elastic. Otherwise, we have elasto-plastic
deformations in the current load step.

Yielding on the Failure Surface. We consider that yielding on the
failure surface fi = 0 occurs when 4t fF > 0 and (3 174t¢E) < L (see
Fig. 6.2.4). Then the increments of the mean and deviatoric plastic strains
Ael’ and Ae't are

Ael = —AX [By Aexp (-B; "F4'1)) + a] (6.2.25)
Ae'f = A2’\ A (6.2.26)

where we have employed the flow rule (4.2.10) and 4t f; given by (6.2.14).
It follows from (6.2.25) that Aef, < 0 (volume ezpansion). This character
of Ael’ can be seen from Fig. 6.2.4 (the projection of Aef on the I axis
is negative). The mean stress 4?0, and deviatoric stresses *4*S can be
obtained using (4.2.15) and the last two equations, as

Aty = HHAlGE e Al no sum on m (6.2.27)

t+AtsE
t+ At S =

- 6.2.28
14+ AXNG t+At ] 2/ (6:2.28)

Vertex yielding

Joap Failure curve f,=0

Cap yielding

Fig. 6.2.4. Notation in stress integration using the generalized cap model
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and hence
AL g2 _ (ragE Y2 Azt (6.2.29)

where T4t JE corresponds to {T4*S¥. Finally, the yield condition (6.2.14)
must be satisfied at the end of the time step,

t+Atf1 — t+AtJ2lé)2 —k+ Aexp(—B1 t+AtII) — t+At11 -0
(6.2.30)

Summarizing the above relations we see that in order to find the un-
known quantities at the end of the time step, we need to solve the nonlinear
equation (6.2.30) with respect to the governing parameter Ael (see Table
4.2.1). Namely, for a given Ael’ we calculate **4%g,, from (6.2.27), AX from
(6.2.25), and t*“J;g from (6.2.29). We repeat this sequence of calculation
until (6.2.30) is satisfied within a selected tolerance. When the solution for
the governing parameter AeP has been obtained, '*4*S and Ae'F follow
from (6.2.28) and (6.2.26). The position **4*X can be obtained from the
hardening law (6.2.18). Table 6.2.1 lists the computational steps for these
calculations.

Table 6.2.1. Computational steps for yielding on the failure surface

1. Assume Ael,

2. Calculate *2t5,, from (6.2.27), AX from (6.2.25),
AL from (6.2.29)

3. Calculate T2 f; according to (6.2.30)

If [“+2¢f)| < e go to step 4; otherwise go to step 1 with a new
trial value of Ael,

4. Final calculations: T4'S from (6.2.28)

Ae'? from (6.2.26)

Note that we determined the mean stress such that the stress point in
the I —+/Jop plane is on the curve f; = 0. Of course, the stress integration
presented above is applicable to the Drucker-Prager model (with yielding on
the Drucker-Prager line (6.2.1)).

Since AeP < 0 we have *t4tX < !X, therefore the plastic flow on
fi = 0 leads to a decrease of the cap size and represents strain softening.
This type of material behavior is illustrated in Example 6.2.2. There are
some materials, such as rocks, for which a cap model with no strain softening
behavior is adequate (Chen and Mizuno 1990). Then, during yielding on the
failure surface the elastic domain in the stress space does not decrease, and
the cap position remains unchanged.
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Cap Yielding. We consider that cap yielding occurs in the time step
when HALfE > 0, (317416 L) > L and HAfE < 0. The elastic stress
point is below or on the failure surface f; = 0 and to the right of the line
I, = 'L (see Fig. 6.2.4). The computational steps are analogous to the above
steps for yielding on the failure surface. From (4.2.10) and (6.2.15) we have

Ael =24\ (3 HA%g,, — tHALL) (6.2.31)

Ae'f = A\ tHALR? tHAtg (6.2.32)

where A)¢ is a positive scalar. From (A1.19), (6.2.23) and (6.2.32) we solve
for tt4tS as

HAlg = HHAIGE ) (14 2AN'G A R?) (6.2.33)

and further, in analogy with the derivation of (6.2.29), we obtain
HRALT L = FALTE (14 2400 G HATR?)? (6.2.34)

Assuming a value for AL, we have **4*L = *L 4+ AL, and then from
(6.2.17) we obtain **4fR. Also, using Fig. 6.2.4 and the expression (6.2.14),
we obtain

HAR — | — Aexp(—B, " AL) 4 atTAL (6.2.35)

where we have substituted I; = '*4*L in (6.2.14). It follows from (6.2.16)
that

thAty _ t+Atp thAtp | AL (6.2.36)

and then the volumetric plastic strain +4fel’ = 3 4%l can be obtained

from (6.2.18). Here the governing parameter is AL and the computational
steps are as given in Table 6.2.2.

The above stress integration procedure for cap yielding is also applicable
to the plane cap case; but the following changes must be used. Firstly, we
have T4t = T4t X and consequently *4tR = 0. It follows from (6.2.32)
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Table 6.2.2. Computational steps for cap yielding

1. Assume a value for AL
2. Calculate t2!B from (6.2.35), "T*‘R from (6.2.17), {T4tX

from (6.2.36), "4l from (6.2.18), ‘**'q,, from (6.2.27),
Al¢ from (6.2.31), and "4 . Jop from (6.2.34)

3. Calculate ™! fo according to (6.2.15)

If |t+Atfo| <e go to step 4; otherwise go to step 1 with a new
trial value AL
4. Final calculations: ‘t4!S from (6.2.33)
Ae'f from (6.2.32)

that Ae'f = 0. Secondly, the increment Ael can be determined from the
condition that the expression in the parentheses of (6.2.31) is equal to zero
and using (6.2.27) and the hardening law (6.2.18). Note that now A\¢ = Ael
(see (6.2.12)).

Vertex Yielding. Yielding occurs at the vertex, that is, at the intersec-
tion between the two yield surfaces, when:

a) 3tFAtGE — t+ALLE _ t[ and tHALFE S 0, or
b) HAUE > UL and HALFE >0

In case a) the elastic stress point is on the line I; = ‘L (within a selected
numerical tolerance), while in case b) the point is on the right from this line
and above the failure line (see Fig. 6.2.4).

The analysis given in Example 6.2.1 shows that case a) reduces to
cap yielding. Then we have t+4{[, = [} = [ AR = tR AeP =
0, At J,p = thhp = tB?, and A)¢ can be determined from (6.2.34),

1
A= <\/ tHALJE tp 1) (6.2.37)

Then '+4%S follows from (6.2.33) and Ae’" can be calculated from (6.2.32).
The yielding corresponds to a perfectly plastic response with the shear plastic
flow (no change of the volumetric plastic strain) at the fixed stress point in
the plane (I1,+/Jap).

Case b) is considered in Example 6.2.1.

6.2.3 Elastic-Plastic Matrices

We follow the derivation of the tangent moduli using the general concepts of
Section 4.2 (see also Section 4.4.3). Hence, using the one-index notation, we
have
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o t+At5, o t+AtU
t+At ~YEP __ [ m . o
ok _6t+Atej+ puhatg, i=1,2,3; j=1,2,...,6

t+At ~EP at+AtSi . .
CZ] = 8t+Atej Z:4,5,6; ]:1,2,...,6

(6.2.38)

Since we have three regimes of plastic deformations, we have three sets of
expressions for t+AtC£P.

Yielding on the Failure Surface. Using (6.2.28) we have
Hratgh — 4Dy ;) (6.2.39)

where we use the notation ; = 9/9+4%e;, and
Dy =14 AXIG tHAt g 1/ (6.2.40)
It follows from (6.2.23) that

trAtgE = 21G Ay, i,j=1,2,3

6.2.41
HALGE G5, i=4,5,6; j=1,2,...,6 (024

where the matrix A is given by (3.2.70). Note that we use here e; = 2¢,
Jj =4,5,6 (see 4.4.52). By differentiation of Dy and with use of (6.2.29) we
obtain

Dyj=boAXN; —bF (6.2.42)

where

b= G (AL ANG A

bY = ANIGR HHAL L (AR YT e argE (6.2.43)
For the determination of bJE we have used the derivatives

Al gE, =2tqrAtsk (6.2.44)



292 6. Plasticity of Geological Materials

which follow from (6.2.23), and the definition (3.2.13). Using (6.2.25), (6.2.27)
and (6.2.24) it follows that

AN j =dj —doAey, ; (6.2.45)
where
dj = aj/Co
do = (1 + (10)/00 (6246)
with

co = By A exp (—31 H'Atll) + a

ag = 3ANc, ABl2 exp (—Bl t+AtI1)

a; = ag/3 i=123

a; =0 j=4,5,6 (6.2.47)

Finally, by differentiation of (6.2.30) and using the above expressions for the
derivatives with respect to “F4%e; we obtain Aef, ; as

]
P J
Aeb = et (6.2.48)

where
o t+ At .
that g — 5 (Aepf)l ="'G [co — 3¢y Bi(co — a)Aei] /e +3teneo
—1/2
W, = t+Atf1’j —tq [( t+AtJ2ED) / t+AtSjE _ d]-] — co
(6.2.49)
with
aj="'em j=1,2,3
a; =0 j=4,5,6 (6.2.50)

When Aei’j is determined from (6.2.48), we calculate A\ ; from (6.2.45),
and D, ; from (6.2.42). Then, with use of (6.2.41), we determine *+4%S; ; from
(6.2.39) and substitute into (6.2.38).

Then (6.2.27) and (6.2.24) give
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1
t+At _ P\t -
Om,j = —Ae,. ;) ¢y j=1,2,3 nosumonm
! (3 ””) (6.2.51)
t+Atam7J- =—te, Aefm j=4,5,6

Using (6.2.48) the values of *4%g,, ; can be computed and then substituted
into (6.2.38).

Cap Yielding. The derivatives ‘+4%S; ; have the form (6.2.39), but in-
stead of Dy we have D¢ given as

Do =1+2AM1G HAR? (6.2.52)
which follows from (6.2.33). Further,
Dcj =2'G AR Adgj +4ANC G IHAIRITALR (6.2.53)

The governing parameter is now AL, or +4¢L, and we need *4!L ;. The
relations (6.2.18) and (6.2.31) give

Aef) ;= Ael  THAX AL (6.2.54)
Ay =a0 L — g (6.2.55)
where

1 a t+AteP

P — 14
Aemx = 5 5 ity (6.2.56)

) t+AtX

t+AtXI — _ t+AtRI t+AtB + t+AtR t+AtBI +1 (6257)

o t+AtT, -

2400 + (146 AXo fem) Ael)  HHALXT
qo = 2( t+AtIl _ t+AtL)

Ale

4 = tHAC] _ tHAL], aj (6.2.58)
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The derivatives Ael, ., "4 R = 9T R/OTAL and "TAI B =
OttAt B9t ALT, can be obtained from (6.2.18), (6.2.17) and (6.2.35), respec-
tively. We next determine the derivatives *+4¢Jyp ; from (6.2.34) as

t+AtJ2Dj = —qo t+AtL’j + q; (6.2.59)

where

_ 4tG t+AtR t+AtJ2D
do = D¢

_ 2@
q;i =

J D%«

(qO t+AtR_+_ 2AAC t+AtRI)
( t+AtSJE + 2 t+AtR2 t+AtJ2DDC q]) (6-260)

Finally, differentiating (6.2.15) with respect to t+Atej, and employing the
relations 4B ; = tHAIR HHALL R ALR o = HFAIRIFALL ;and also

(6.2.27), (6.2.54) and (6.2.59), we obtain

D
Aty = _ffc (6.2.61)

where

pj = 2 ( t+At11 _ t+AtL) aj + t+AtR2 (Z]
6 - _9 ( t+At11 _ t+AtL) (3tcm Aez,X t+AtXI + 1)
_ t+AtR2 (q—o + 2 t+AtB t+AtBI)
+2 t+AtR (t+AtJ2D _ t+AtB2) t+AtRI (6262)

With the known values ‘+4¢L ; we can calculate all other derivatives in
(6.2.39).

The derivatives **4%g,, ; follow from (6.2.51) where we use Ael . from
(6.2.54) and +4¢L ; from (6.2.61).

With the derivatives t+4tS; ; and 4%, ; determined, we have the
elastic-plastic matrix according to (6.2.38).

Vertex yielding. With the assumption a), we have Aef, =0, Aei’j =0,
and T4%g,, ; follows from (6.2.51). Also, we have ITAtR = tR t+4tR . =0,
and from (6.2.53) we obtain

Do =2'G'R*A)c,; (6.2.63)
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The derivatives A)¢ ; follow from (6.2.37) as

t+At gE
VAVYoR I /

3

(6.2.64)
2tR2tB \/t+Atpr

where (6.2.44) is used. With AMl¢; determined, we calculate D¢ ; from
(6.2.63), and T4LS,; ; from (6.2.39), where instead of Dy and D) ; we employ
the last expressions for D¢ and D¢ ;.

The derivation of ‘F4*CFP for the assumption b) is given in Example
6.2.1.

6.2.4 Examples

Example 6.2.1. Vertex Yielding with Contributions from Both
Yield Surfaces. Derive the expressions for the stress integration of the gen-
eralized cap model for vertex yielding, taking into account the contributions
to plastic flow of the failure surface and the cap.

As stated in Section 6.2.2, the case when (case b))
3Gl > L, AP S 0 (a)
can be considered as vertex yielding, with contributions of both yield surfaces
to plastic flow in the load step. We develop an implicit stress integration
procedure for this case.

The basic relation for the increment of plastic strain Aef” is now (3.2.92).
With use of (6.2.26) and (6.2.32), we obtain

Ae'? = <A;F AL+ Ade R2> ralg = ANTTAIS (b)

where AAp and AX¢ correspond to the failure surface and the cap, while A\
is a positive scalar multiplying *+4*S. Hence

thatg — t+AtgE /(1 421G AN) (c)
Using this equation we obtain
1/2 <
AL = (A ) (L4216 AN) (@

Since at the vertex V' we have "4 J,, = +4'B, the last equation can be
solved with respect to A\,
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t+At 7B \1/2
( t{ii%) —1] /(2'G) (e)

AN =

Also, the expressions (6.2.35) and (6.2.36) are applicable, with the quantities
that define the failure surface and the cap.
In addition we employ the relation

t+AtI1 — t+AtL (f)

to enforce the condition that the stress point at the end of the step lies at
the intersection of the two yield surfaces. The next relation to be satisfied is
the elastic constitutive law (6.2.27), which, with use of (f), gives

Ae‘}; — (t+AtIIE _ t+AtL) /tcm (g)

where t+At[F = gt+AtsE

Note that when 'T4'[F = I we have Aell = 0, with Ae'" the same
as in (6.2.32). Therefore we have the vertex yielding considered as case a) in
Section 6.2.2.

Finally, the hardening law (6.2.18) must be satisfied, which, with use of
(6.2.35), (6.2.36) and (g), reduces to

FIAL) = 0 = tel 4 (HFAt[E _ 1Aty yte 31 [1 - exp (—~DHAIX)
_ BD t+AtXexp (_-D1 t+AtX _ D2 t+AtX2)]
_ Wl tJrAtXZ exp (—D3 t+AtX) (h)

Hence the governing parameter is, as in the case of cap yielding AL and
using (f) AL = A, = 3A0,,. In summary, we can state that all fundamental
relations are satisfied:

e the elastic constitutive relations (6.2.23) and (6.2.24);
e the yield conditions (6.2.14) and (6.2.15) at the end of load step;
e the flow rule of the form (3.2.92).

Note that Ael is calculated from the elastic constitutive law (g) and the
hardening law (h), rather than from the flow rule (3.2.92). As shown in Table
E.6.2-1, after AL = AI is determined, A\ is calculated from (e), +4*S from
(c), and Ae'” from (b). The above stress calculation can also be used when
the vertex yielding occurs at the Drucker-Prager failure line (A = 0 should be
used in (6.2.35)). The procedure can also be employed for the plane cap; then
step 2 in Table E.6.2-1 should be skipped, and *+4*B should be calculated
once, from (6.2.35), after **4¢L is determined.

The consistent tangent elastic-plastic matrix can be determined
in accordance with Section 6.2.3. Following the details given for cap yielding,
the denominator (6.2.52) is now

t+AtcEP
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Table E.6.2-1. Computational steps for vertex yielding (contribution
of both yield surfaces)

a) Iterations on AL
1. Assume A, = AL
2. Calculate ‘+4!R from (6.2.17), ‘T2 B from (6.2.35), and

ALY from (6.2.36)
3. Iterate until f(AL), given by (h), is satisfied

b) Final calculations

Calculate: AX form (e), “™'S from (c), and Ae'* from (b)

De =1+ 2'GAX (i)
and instead of (6.2.53) we have

Dc,;=2'GA); &)
The derivatives AX ; can be written in the form (6.2.55),

ANj=qoL;—q (k)
where

/2
(t+AtJE )1
7 = — 2th+2ADtB2 [
4 = t+AtS]E/ [(t+AtJ2ED)1/2 t+AtB:| 1)

ABj exp (—Bl t+AtL) + a]

Finally, the derivatives 14! ; can be written in the form (6.2.61), i.e.,
HAL =i/ [ (m)

This relation follows from the differentiation of the governing equation (h)
with respect to {¥4%e;. The coefficients p; are

p;=1  j=12,3
pJZO .]:47576 (Il)

while f' is (see (6.2.57))

fl — t;l 4 athftX (t—‘,—AtRI t+AtB + t+AtR t-‘rAtBI + 1) (0)
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where tTAtR! = 9IHALR J9HALL, and tHAtB! = 9+ AtB /9t AL can be cal-
culated from (6.2.17) and (6.2.35), respectively. Note that the derivatives
Aefm- follow from (g) and (m),

Aeb = ; [14+1/ (e, )] p; (p)

Example 6.2.2. Uniaxial Compression. The elastic-plastic material
represented by the generalized cap model, with material constants given in
Fig. E.6.2-2, is compressed in one direction, while the deformation is sup-
pressed in the two other directions (oedometer test).

Determine the dependence of the axial stress o, on the axial strain e,
if the material is loaded to the stress level A shown in the figure and then
unloaded until the zero axial stress is reached.

We implement the computational procedure of Section 6.2.2 for the stress
calculation.

The solution in the loading to the level A is obtained using 20 equal
steps. The plastic flow corresponds to cap yielding. The unloading is solved
using 10 equal steps, the first step corresponds to elastic unloading and then
plastic flow occurs on the failure surface f; = 0. The numerical results and
experimental data according to DiMaggio and Sandler (1971) are shown in
Fig. E.6.2-2. It can be seen that the model prediction of the material response

Stresses in [psi] 1psi=6.89 kPa

1.0 o
Axial stress /
O [KS] . o7
eXX* A
e r z 3 E=100 Ksi
- v=0.25
g €y,=€,,=0 / a=0.05
0.6 k=0.25 ksi
J A=0.15 ksi
4 B,=0.
£ L D=0.67
04 W=0.066
// L=0
/* R=2
0.2 Wa -
)/; o=0=0 Numerical solution ‘
¢ & s Experimental results
BT
(0]

0 0.02 0.04 B 0.06
Axial strain exx

Fig. E.6.2-2. Uniaxial compression of soil (generalized cap model). Loading
and unloading to the zero axial stress
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agrees with the experimental observation, in both loading and unloading
regimes.

Indeed, the model predicts a hysteretic behavior of the material under
cyclic loading, see also Kojic et al. (1995e).

Example 6.2.3. Conventional Triaxial Compression Test. Calcu-
late the material response assuming the cap model and triaxial loading ac-
cording to the conventional triaxial compression test.

The test is modeled using one three-dimensional solid finite element. The
nonzero material constants for the model are as follows (Desai and Siriwar-
dane 1984):

E =4000psi v=0.35
k=56psi A=56psi a=011 By =0.062 (psi) "

D =0.05 (psi) " R=const. =2.0 W =0.18

The material is first compressed by hydrostatic pressure py = 10 psi; then
the axial stress o1 is linearly increased to the value 011 = 27 psi, while the
other two stresses are kept constant. The stress paths OA and AB in Fig.
E.6.2-3a correspond to these two loading regimes. The hardening character
of the material response is shown in Fig. E.6.2-3b. The same character of the
material response is given in Desai and Siriwardane (1984).

Stresses in [psi] 1 psi = 6.89x10° MPa

12
V2o *J Gﬁ‘ ‘ e ‘
e
o ~
7Py 10 / N 516 e
6 4 \ o 12 //,
J/Ne=0] / \ | 8 . %
3 yd / \ g
// \ / o 4
JANNUNT"
o 10 20 30 40 50 60 70 0 0.01 0.02 0.03 0.04
I Axial strain increment (e, - “e,,)
a b

Fig. E.6.2-3. Modeling of a triaxial compression test using one 3-D finite
element. a Loading path and caps corresponding to stress states A and B; b
Dependence of the overstress on axial strain increment
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6.3 Cam-Clay Model

We first define the Cam-clay material model in Section 6.3.1, and then de-
velop the computational procedure for stress integration in Section 6.3.2. In
Section 6.3.3 we derive the expressions for the consistent tangent elastic-
plastic matrix. Finally, in Section 6.3.4 we present numerical examples that
illustrate some characteristics of the material model and the computational
algorithm.

The Cam-clay model is applicable to claylike soils and to sands (see, e.g.,
Desai and Siriwardane 1984; Chen and Mizuno 1990; Wood 1990).

6.3.1 Formulation of the Model

The main characteristics of the soil considered in this section are obtained
experimentally and are shown in Figs. 6.1.6, and 6.1.8 to 6.1.10. It can be seen
that the material can have (i) hardening response, (ii) softening response, and
(iii) a perfectly plastic response. The responses (i) to (iii) correspond to the
lightly overconsolidated (loose), heavily overconsolidated (dense) and critical
states, respectively. The material model formulated in this section gives a
calculated response aimed to agree with the experimental observations.

The model is known as the Cam-clay (Cambridge-clay) model or modified
Cam-clay model, according to Roscoe and Schofield (1963b), and Roscoe and
Burland (1968). We will use the formulation of the modified Cam-clay model
and call it simply the Cam-clay model.

The mathematical form of the yield condition in the (o,,q) plane that
follows the character of the experimental results shown in Fig. 6.1.9c is

fy=0 M0 (po—om) =0 (6.3.1)

where M is a material parameter, and pg is the length of the horizontal
axis of the ellipse, as shown in Fig. 6.3.1a. Only one half of the ellipse is
applicable, since the material behavior is defined for ¢ > 0. The critical state
line, corresponding to the experimental results in Fig. 6.1.10a, has the slope
M and passes through the midpoint V of the ellipse.

We next define the material hardening. The hardening is represented by
the change of the ellipse size, observed experimentally and displayed in Fig.
6.1.9c. As shown in Fig. 6.3.1a, it is assumed that the ellipse changes its
size, but passes through the origin. In accordance with Figs. 6.1.9¢c,d and
6.1.6¢, there is a correspondence (mapping) between the points in the (o, ¢),
(0'm,v) and the (Ino,,,v) planes. The points A’ and B’ (and A” and B"), as
the images of the points A and B, lie on the isotropic compression line (icl)
as shown in Figs. 6.3.1a,b,c, because the change of the stress AB represents
a hydrostatic (isotropic) loading. The segment AB is at the same time the
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Critical state
line (csl)

icl = Isotropic (hydrostatic)
compression line Critical state line

url = Unloading-reloading
line

(Po)initiar liN€

c d

Fig. 6.3.1. Formulation of Cam-clay model. a Yield curves and critical state
line in the mean stress o, - “deviatoric” stress ¢ plane; b,c Isotropic com-
pression and unloading-reloading lines in planes ¢,,— specific volume v and
Ino,, — v; ¢ Yield surface in (o, ¢, v) space

increment dpg of the ellipse axis. The isotropic compression line is taken to
be straight in the (lno,,,v) plane, with the slope A;. The following relation
holds:

dpo

dv=—Xsd(lnpy) = — A
Do

(6.3.2)
This relation defines the hardening law for the model assuming that we load
along the icl line. The material constant for this law is Ay, determined exper-
imentally. Note that the hardening parameter is the specific volume v, or the
void ratio e. The yield surface in the (o,,, ¢, v) space is shown in Fig. 6.3.1d.

As shown in Figs. 6.3.1b,c, the unloading-reloading of the material is
represented by the (url) line, which is also a straight line in the (Inop,,v)
coordinate system. Hence, an “elastic” increment of the specific volume dv?
can be expressed by the slope of the (url) line in the (Ino,,,v) coordinate
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system,
do,,

dv? = —n,d(Ino,) = —n, (6.3.3)

Om

where 7, is the material constant. If we take into account the relation (6.1.3),
we find the following expression for the increment of elastic volumetric strain
dek:

N dom s dom,

dey; = = 34
v vV Om 14+e om (6.3.4)
Therefore, the bulk modulus K (see (Al.14)) is
1
K= ;e o (6.3.5)

which shows that the “elastic” bulk modulus depends on the void ratio e (or
volumetric strain ey ) and on the mean stress ¢,,. Further, using the relation
(6.1.3) and the condition that in hydrostatic loading po = o,,, we obtain from
(6.3.2) and (6.3.3)

ks dpo _ ks dpo

det = dey — def = =
v v V7 v po 1+e po

(6.3.6)

where
ks = As — 1, (6.3.7)

The hardening law (6.3.6) is more convenient for applications than (6.3.2) be-
cause it relates the increment of the ellipse size to the increment of volumetric
plastic strain def.

Let us now consider the material response predicted when using the Cam-
clay model. To compare the character of the response prediction with the
experimental data we use the quantities of the triaxial compression test (see
Section 6.1.2). Assume that we have a material sample for which the yield
surface size is defined by the semiaxis ' py. Consider first the loading specified
by the loading path Ay B in Fig. 6.3.2.a. From the point A, to the point B
at the yield surface the material deformation is elastic, with a linear increase
of the “deviatoric” stress ¢ with the “shear strain” e,, and a linear decrease
of the specific volume v with e;. The loading path BB’ corresponds to plastic
deformation, with an increase of the yield surface size, a nonlinear increase
of the deviatoric stress, and a nonlinear decrease of the specific volume. The
material work hardens until the point B’ on the critical state line (esl) is
reached. The material deformation at point B’ corresponds to the critical
state, described in Section 6.1.2, and the deformation continues with constant
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“deviatoric” stress ¢B; and constant specific volume v5,. This material
response represents the behavior of a lightly overconsolidated (loose) material
(see Fig. 6.1.8a).

Consider next the same material (the same initial yield surface) subjected
to the loading starting from the point Ay along the stress path Ay D shown
in Fig. 6.3.2b. The material deforms elastically until the point D on the yield
surface is reached. Further deformation is elastic-plastic, with a decrease of
the stresses ¢ and o,,,, decrease of the yield surface size (the plastic volumetric
strain decreases), and an increase of the specific volume (see graphs in Fig.
6.3.2b). The critical state is reached at the point D’ and deformation con-

csl=Critical state line

N\
\
\
\
\
\
’Py Om
q - q
B D
B B’
9 crit D’
D
chrit
3 [,
e
A €q Ay a
v v
Dy .D’
A /—%/Ucnt
L eq AH \/ ﬁ eq
5’
B Uerit D
B’
a b

Fig. 6.3.2. Material response predicted using the Cam-clay model in planes:
mean stress o,, — deviatoric stress ¢, shear strain e; — ¢, e,— specific volume
v. a Lightly overconsolidated material response; b Heavily overconsolidated
material response
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0 A, 1p0 ’py Om

c
Aciit v

e e
q
Au \ Uccm ‘
C

C

Fig. 6.3.2 (continued). c Response at the critical state

tinues with the critical “deviatoric” stress ¢, and critical specific volume
D' . Note that the critical values ¢2, and v2,
vglit. The described elastic-plastic deformation corresponds to the behavior
of a heavily overconsolidated (dense) material with the strain softening char-
acter. Note that by comparing Figs. 6.1.8b and 6.3.2b, the Cam-clay model
presented here predicts only approximately the actual physical response.

Assume finally the loading path Ay C' of the same material shown in Fig.
6.3.2c. The material response is elastic until the critical state at the point
C is reached. Then deformation continues with constant deviatoric stress
qS..;, constant specific volume v<..,, with no change of the volumetric plastic
strain and the yield surface size.

The above described material behavior has the same character as found
experimentally (see Fig 6.1.8). A detailed analysis of the material response
prediction using the Cam-clay model is given in Wood (1990).

Finally, we give the expression for the yield condition, based on the triax-
ial compression form (6.3.1), that corresponds to a general stress state (see

(6.1.9)),

. B’
v . are different from ¢, and

3J.
fy =om(om —po) + sz =0 (6.3.8)

where Jyp is the second invariant of the stress deviator (see (3.2.13)). Note
that Jop represents a measure for the shear loading of the material.
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In summary we note that the model is defined by the yield condition
(6.3.8), the hardening law (6.3.6), and with only three material constants,
M, s and n, and the initial conditions. The constants can be fitted to ex-
perimental data as shown in detail by Desai and Siriwardane (1984). The
model can be used to predict the material response under complex loading
conditions of soils in elastic-plastic deformations, resulting in hardening and
softening, critical state and dilatancy. The model is suitable for general ap-
plications and it has been widely used to represent the behavior of claylike
soils and sands.

6.3.2 Stress Integration Procedure

We develop a stress integration procedure for the modified Cam-clay material
model in an analogous manner to that presented in Section 6.2.2 for the cap
model. The governing relations of Sections 6.2.2 and 6.3.1 are followed and
the formulas specific for the Cam-clay model are included (see also Kojic et
al. 1994 and the references therein). A general three-dimensional deformation
is considered, from which the solutions for the two-dimensional plane strain
and axisymmetric problems can be directly obtained (see (4.4.36) in Section
4.4.1).

The material can exhibit hardening, softening or perfectly plastic behavior
during plastic deformation (see Section 6.3.1) and we consider these three
regimes separately. To find which deformation regime corresponds to the
current time (load) step At, we first calculate the elastic deviatoric and mean
stresses, {t41SF and 1+ 4t¢E "according to (6.2.19) and (6.2.20), using t+4te”
and *4te!" from (6.2.21) and (6.2.22). Note that the expressions (6.2.23) and
(6.2.24) are also applicable. The use of constant volumetric and shear moduli
¢m and G would be an approximation since the elastic bulk modulus depends
on the mean stress and volumetric strain. Namely, from (6.3.4)

dlef = 1, dtt;:;” (6.3.9)
and
LK = ;tcm -1 :ste b (6.3.10)
The calculation of the void ratio ‘e follows from (6.1.3),
te = (1+ %)exp(—tey) -1 (6.3.11)

where %e is the initial void ratio.
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Taking Poisson’s ratio as constant (see, e.g., Desai and Siriwardane 1984;
Wood 1990; Atkinson 1993), we obtain the Young and shear moduli £ and
tG as

‘E = 'K tq = 'E 6.3.12

E=31-2v) = o1 +) (6.3.12)
We will further use *E and !G corresponding to the stress/strain state at
the start of the load step, although weighted values that include *4*E and
+AtG may be employed.

Substituting the elastic stresses’*4t¢Z and t*4*SF into (6.3.8), with
po = 'p, we obtain "4 fF In the case T4 fF < 0 the deformation in the
current step At is elastic. In the case +4!fF > 0 plastic deformation took
place, and we decide about the deformation regime as follows:

1
H'Ataﬁ > 'pg hardening

2
1

At E < 5 'po  softening (6.3.13)
1

At — 5 o perfect plasticity - critical state

Figures 6.3.3a,b show schematically these conditions. Note that for the equal-
ity condition (perfect plasticity), a certain numerical tolerance is assumed.
The stress integration procedures for these three conditions are presented
next.

Hardening Regime. In this case the ellipse size increases in the time
step At, as shown in Fig. 6.3.3a. The stress integration according to the
general approach of Section 4.2, consists of the following calculations.

The increments of the mean and deviatoric plastic strains, Aef, and Ae'F,
follow from the flow rule (3.2.67b) and the yield condition t+4¢f, = 0 (see
(6.3.8))

A
Ael = 3)‘ (214G, — HAlp) (6.3.14)
3AN
Ae'P = I tratg (6.3.15)

where A\ is a positive scalar. We solve for *4tS using (6.3.15) and the
elastic constitutive law (4.2.15)

t+AtQE
t+AtQ S

T 14 6ANG/M2 (6:3.16)
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Perfect plasticity

pE
Po oF .
;P Critical stress
3450 | =~ stateline
Hardening
Aty _
f,=0
A
J trat “p Om
1/2"p, o
lpo
a
Perfect plasticity
F’E o
\ 3J5p
=0
—C
A Om

Fig. 6.3.3. Illustration regarding the stress integration with the Cam-clay
model. a Hardening regime; b Softening regime

while *+4%5,, is given by (6.2.27). By scalar multiplication (see (A2.29)) on
the both sides of (6.3.16) we obtain

t+AtJE
Jop = A (6.3.17)
(1+6AXIG/M?)

t+ At
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Integration of the hardening rule (6.3.6) in the time step At gives

Ael
tHat, = tpoexp < t+Atbv> (6.3.18)

where

k
traty, — y 3.1
VT 3(14 t+ate) (6.3.19)
The void ratio T4t

according to (6.3.11)

e can be obtained from the volumetric strain tT4%ey

Al — (14 %) exp(—H4ley) -1 (6.3.20)

Finally, the yield condition (6.3.8) at the end of the time step
HRAtp o AL (RAL AL, g AL T2 2 ) (6.3.21)

must be satisfied. The governing parameter, in the sense of Section 4.2, is Ael
and the governing equation is (6.3.21). Table 6.3.1 summarizes the computa-
tional steps.

Table 6.3.1. Computational steps for stress integration of the Cam-clay
model (hardening regime)

1. Assume Ael

2. Calculate '*4%g,, from (6.2.27) and ""*!p, from (6.3.18),
AN from (6.3.14) and "4 J,p from (6.3.17)

3. Check if |"T2'f,| < ¢ according to (6.3.21).
If YES, go to step 4; otherwise, go to step 1

4. Determine ‘*2S from (6.3.16) and Ae'” from (6.3.15)

Softening Regime. In case the elastic solution is given by a point Py in
Fig. 6.3.3b, the volumetric plastic strain decreases (increment Ae!” represents
the volume expansion) and leads to a decrease in the size of the yield surface.
All the above derived expressions for the hardening regime are applicable.
Since Ael < 0, we have '*4%py < *py as shown in Fig. 6.3.3b.

Perfect Plasticity (Critical State). If the elastic solution **4%¢Z =
po /2, plastic flow occurs according to the perfect plasticity conditions and
corresponds to the critical state material behavior, see Fig. 6.3.2. Therefore,
the stress point must lie on the critical state line with
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t+AL, Ly
™9

1
VA = 23 M tpy (6.3.22)

In a graphical representation, we perform the calculations under the condi-
tion that the stress point moves from PZ (Fig. 6.3.3) along the vertical line
to reach the yield surface ¢f, = 0. Note that the volumetric plastic strain
increment is equal to zero due to the associated flow rule (3.2.67b). This also
follows from (6.3.14) and t+4fp, = tpy = 2 4oL,

In order to determine the increments of the deviatoric plastic strains
(6.3.15), we first calculate AX. Substituting

Do

t+ At t+At _FE
+ p0:2+ o

6.3.23
e ( )

into (6.3.21) and using (6.3.17) we obtain an equation from which the solution
for AM follows

e (oot

MA=6iq | worage

~1 (6.3.24)

With AX determined, we calculate *4!S from (6.3.16) and Ae'” from
(6.3.15). Therefore, we have the shear plastic flow in the time step, with
the change of the deviatoric plastic strains and deviatoric stresses.

6.3.3 Elastic-Plastic Matrices

We follow the derivations of Section 6.2.3. According to the above stress
integration procedure we distinguish yielding on the ellipse (hardening and/
or softening) and on the critical state line (perfect plasticity).

Yielding on the Ellipse. The derivatives t+4tS; ; = 9t+4tS, /gtt+Ate;
in the expressions (6.2.38) can be written in the form (6.2.39), where (see
(6.3.16))

Dy =1+6AX'G/M? (6.3.25)
and

AN (6.3.26)
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The derivatives "F4'SF, are given by (6.2.41). Using (6.3.14), (6.3.18),
(6.2.27) and (6.2.24), the derivatives A\ ; can be written in the form (6.2.45),
with the coefficients

(AN (2 tra,
d]' = — < — A > a;
3 3 te, tHAtYy,

AX AN o t+At
do==1or [1+ 5 (2lem+ T2)) (6.3.27)
where the @; are given in (6.2.50). By {*4fp! we have denoted
t+AL = 6 t+Atp0 = t+Atp0 (6 3 28)
Po 8 (AeP) t+ALE,, e

which follows from (6.3.18) to (6.3.20). Differentiating the governing equation
(6.3.21) with respect to '*4%e;, we obtain the derivatives Aef, ; in the form
(6.2.48), where

L ooirae t+At A, t+Atp0 Pl -
Wj = |:3 (2 Om — p0)+ tcmt+Ath Aem] j
+ 6°G tHatgE _ 0 t+AtJ2ED d; (6.3.29)
M2D? J M2Dy o
and, instead of +4! f] we have T4 f/
thAtpr 9 t+Atfy — _tg, (2 t+AL, t+Atp0) _ AL ALy
Y 0 (Ael) " " " 0

36 ‘G T4 Jyp do
MAD, (6.3.30)
With Aef, ; calculated, we have AX; from (6.2.45), with the coefficients
given in (6.3.27), Dy ; from (6.3.26), and +4tS; ; from (6.2.39). Also, the
derivatives +4¢g,, ; can be calculated from (6.2.51).

Perfect Plasticity. In the case of perfect plasticity (yielding on the
critical state line), we have Ae} . =0 and AX ; follows from (6.3.24):

t t+AtJE
AN = MV3 G t+AtgE _ \/ 2D yyar B
»J 6tG t+At0-£ \/t+AtJE J t+AtO.£ m,j
2D

(6.3.31)
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where (6.2.44) was used. The derivatives +4g . are given in (6.2.51), with
Ael - =0. With AX ; determined, we obtain Dy ; from (6.3.26) and “F4£S,; ;
from (6.2.39). Also we have "T4%g,, ; = T4lgE .

Finally, we may note that in general the *2‘CF¥ matrices are non-
symmetric. In practice they may be symmetrized but then quadratic conver-

gence is, in general, lost.

6.3.4 Examples

Example 6.3.1. Conventional Triaxial Test of Cam-Clay Material.
Calculate the material response represented by the Cam-clay model, sub-
jected to the conventional triaxial test shown in Fig. E.6.3-1a. The material
data are shown in the same figure, with Young’s modulus £ = Ej.

160 [} Failure
i 1
Stress difference | — planes
01792 / — -
120 > < 02705 const.
[kN/m?] /’ =] |~
80 GA
/ M=1.0 O¢ =1.08
40 rs=0.14 Eq = 9900 kN/m?
ng=0.026 v=0.30
0.0 po=100 kN/m?
0.0 1.1 2.2 3.3
Strain[10™"]
a
Error in 4 15
[%] -
Error= ©1)n-(e oo x 100
10 (€1)100
5 \\
\\
20 40 60 80 100

Number of steps N

b

Fig. E.6.3-1. Triaxial compression test of Cam-clay material. a Stress dif-
ference o1-05 versus axial strain; b Error in axial strain e;

We use the computational procedure of Section 6.3.2 for the stress cal-
culation, under the following conditions: two principal stresses are equal



312 6. Plasticity of Geological Materials

(02 = 03 = po = 100 kN/m?) while the axial compressive stress oy is in-
creasing (as published earlier in Kojic et al. 1994). We assume small strain
kinematic conditions.

The problem is solved by using the full-Newton iterative method with line
searching (Bathe 1996). With use of the arc-length method, the stress level
of 01 = 214 shown in Fig. E.6.3-1a is reached in 4 steps with 8 iterations per
step. After the next 8 steps, the stress o3 = 250 is reached at which stage
the material behaves as perfectly plastic. The results shown in Fig. E.6.3-1a
agree with those reported in Desai and Siriwardane (1984). Note that rather
large strains correspond to the critical stress, and for this range of strains a
large strain formulation is appropriate (see Chapter 7).

In order to investigate the robustness and accuracy of the stress integra-
tion algorithm, we have solved this example using equal time (load) steps to
reach the axial stress o1 = 180. Figure E.6.3-1b shows the error in the axial
strain e; with respect to the 100-step solution. Note that the error in ey is
rather large for a small number of time steps, but decreases rapidly with the
number of steps V. The error in e; and in the other strain components is due
to the fact that the normal to the yield surface changes significantly during
the plastic flow.

Example 6.3.2. Triaxial Compression Test of Cam-Clay Mate-
rial. Calculate the strains in the soil specimen shown in Fig. E.6.3-2a, when
the specimen is subjected to axial and radial stresses. The Cam-clay material
model is used to model the soil specimen, with the material properties shown
in Fig. E.6.3-2a.

The sequence of loads, and the solution response, are as follows:

A0: Axial and radial stresses equal 100 kN/m?. At this stress level, the
bulk modulus K computed from (6.3.5) is equal to the bulk modulus as
calculated from the given material properties Ey and v. The strains are zero.

Al: Axial stress is increased to 220. The material yields and hardens, with
the specific volume decreasing and remaining above the CSL.

A2: Axial stress is decreased to 100, with the material unloading elasti-
cally.

A3: Axial and radial stresses are decreased to 50, again the material un-
loads elastically.

A4/A5: Axial stress is increased to yield and yielding continues with de-
creasing axial stress. The specific volume stays below the CSL.

The computed axial and radial strains are shown in the figure. Note that
the strains become rather large, and therefore a large strain formulation may
be more appropriate than the small strain formulation used in this example.
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Fig. E.6.3-2. Triaxial compression test of Cam-clay material. a Soil specimen
and material data; b Stress path and yield surfaces in the mean stress o,,—
deviatoric stress ¢ plane; ¢ Loading path in the Ino,,— specific volume v
plane; d The axial stress 07— axial strain e; dependence; e Dependence of
o1 on radial strain es

6.4 A General Soil Plasticity Model

While the material models considered above are quite powerful in represent-
ing soil and rock material behavior, there are of course also shortcomings,
for example the material model conditions do not depend on the third stress
invariant. However, more general models have been developed, see, for exam-
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ple Desai (1980a), (2001); Sture et al. (1989); Jeremic et al. (1999); Wang et
al. (2001); Borja et al. (2001).

In this section we briefly develop the computational algorithm for a gen-
eral soil plasticity model that relies on the theoretical assumptions and ex-
perimental results of Desai and Siriwardane (Desai 1980a, 1989; Desai and
Siriwardane 1980b, 1984). We present the formulation of the model and the
numerical procedure for stress integration as a direct application of the gen-
eral relations derived in Section 4.2. We consider the associated and nonasso-
ciated flow rules and illustrate the application of the algorithm in a numerical
example.

6.4.1 Formulation of the Model

A general soil model can be described by a yield criterion dependent on
all stress invariants and which also displays work-hardening characteristics.
Models of this type were proposed in the above cited references and we present
one of the models (Desai 1989). The yield condition for this model is

fy=p."lp+F,F,=0 (6.4.1)
where
n 2

sz—a<h> +7<Il> (6.4.2)

Da Pa
F,=(1-Bs)" (6.4.3)

2

Sy = ‘/27 Jsp Ty (6.4.4)

and I, Jop and Jsp are, respectively, the first invariant of stress, and the
second and third invariants of the stress deviator (see (3.2.11) and (3.2.13));
Pe is the standard atmospheric pressure. The coefficients m,n,~ and 8 are
material constants, while « is the hardening function

a=a (e’ el.e") (6.4.5)

where &%, é‘lj and &F are the effective plastic strain, effective volumetric and
deviatoric plastic strains, respectively, defined as

éP:/(deP-deP)l/2

el =el V3 (6.4.6)
éIP — / (deIP i deIP)l/2
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Here de” and de'" are the increments of plastic strain and deviatoric plastic
strain, and 6‘}; is the volumetric plastic strain. Note the difference between
the definitions of the effective plastic strain in (6.4.6) and in (3.2.46). An an-
alytical form of the hardening function includes the ratios ry and rp defined
as

ry =éb el
rp = &b jet (6.4.7)

Figure 6.4.1 shows the yield function in the (I1,+/J2p) plane and in the
plane whose normal in the principal stress space has the components equal
to v/3/3. The hardening function a of the form (6.4.5) shows that the size
of the yield surface depends on the history of the volumetric and deviatoric
plastic deformations. A specific form of « is

a=ay(eF)m (6.4.8)

where a; and 7 are material constants.

The use of the nonassociated flow rule (6.1.11) may be more appropriate
for sand-type soils. The plastic potential ¢) for this model has the form (6.4.1),
with the hardening function ag instead of «,

ag=a+k(ag—a)(l—ry) (6.4.9)
7 7 |
Jop 1W Critical state line
Gy
7
Vs
7
A 4=004 o2 &
I
a b

Fig. 6.4.1. A general yield function for geological material, Desai (1989).
a In I,+/Jop space; b In plane whose normal in the principal stress space
01,092,035 is given by v/3/3,4/3/3,/3/3
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Here ag is the hardening function « corresponding to an initial hydrostatic
compression (see Desai and Siriwardane 1984), and

where k; and ks are material constants.

6.4.2 Stress Integration

We perform the stress integration by implementing the computational steps
of Table 4.2.2. In order to determine the unit normal n, we express the
derivatives (fy » )k, K =1,...,6 using the one-index notation for the stresses
and strains (see Section 4.4.3 and notation in (4.4.52)). Hence, from (4.2.9)
and (4.2.10) we obtain

1 .
(fy70')lc = Ak] gll,j + 3fy,m J)k = 17273
(fym)k = g,’/,k k=4,5,6

(6.4.11)

where the matrix A is defined in (3.2.70), f, ;=0f,/0S;, and fy m=0f,/00 .
The derivatives of the yield function (6.4.1) can be written as

for = P;2J£D71c + FyFgy,

(6.4.12)
fyﬂn = Fst,m
where
JéD,k = Sllc

sk =—Bm (1= s)" s (6.4.13)

I n—1 I

Fb7m:_3an<l> +6 1

Da Da Pa Pa

with Fj , = 0. Here we have used the notation: J;5, ; =0Jop/0Sk; S}, =
Sk, k= 1,2,3; S,’c = QSk, k= 4,5,6; and Fb7m:6Fb/60'm, Fs"kzan/ask,
8,4 =08, /0Sk. The derivatives s, follow from (6.4.4),

V2T [ 3 »
Sy = 9 <J2D1'5JéD,k - 2J3D J2D2'5J5D’k> (6.4.14)

The derivatives J;p, ,=0.J3p/0S}, are
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J?’)D,l = 5253 — S; JéD72 = 5153 — Sg
Jips = S18s — 5% Jipa = 2(S5Ss — S3S4) (6.4.15)
Jips=2(S4S6 — S155)  Jipg = 2(SuSs — S2S6)

With the derivatives (6.4.12) to (6.4.15) calculated, we can determine the
derivatives (6.4.11) and the normal n in (4.2.20) corresponding to the last
known trial state in the iterative solution procedure of Table 4.2.2.

In the case of nonassociated plasticity we need the normal
ng = (0Q/90)/||0Q/da||, since the increment of plastic strain Ae? is

Ae? = || Ae”| nq (6.4.16)

This expression is appropriately used in Table 4.2.2. For the material model
of Section 6.4.1, and with the correction (6.4.9) of the hardening function «,
we have

Q =p;>Jap + FF, (6.4.17)
where

Fy=F,—k(l—ry)(ap —a) <;1>n (6.4.18)

The derivatives of F}, differ from the derivatives of Fj:

F -F _3nk_(1_r )(a _a)<I1>n1
bm — L'bm Da Vv 0 Pa
Rl Il n ’
Fpj=-(0=rv)(a —a) P k2 s, ; (6.4.19)

where we have used the relation (6.4.10). With these and the above expres-
sions for the derivatives f, ; we can determine the derivatives 0Q /0o

6.4.3 Elastic-Plastic Matrix

The general expression for the tangent elastic-plastic matrix in associated
plasticity, consistent with the governing parameter method of Section 4.2, is
given in (4.2.31) and in Table 4.2.2. The internal variable is represented by the
hardening function «, therefore the coefficient a, in (4.2.33) for calculation
of B(|| Ae?||) /0218 is

o t+ At
fo

_ t+AteT !
a, = f, ,A0" — Sa

(6.4.20)
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where we calculate the derivatives of the stress increments Ao and the func-
tion a with respect to ||AelD || while finding the solution of the governing
equation (see details in Section 4.2.2).

A procedure analogous to the above can be followed for the calculation
of t¥AtCFP in the case of nonassociated plasticity.

6.4.4 Example

Example 6.4.1. Conventional Triaxial Test Using the General Soil
Model. Calculate the material response for the conventional triaxial com-
pression test (see Section 6.1.2 and Fig. 6.1.7a) of the general soil plasticity
model described in Section 6.4.1.

We use the material data given in Desai (1989) and shown in Fig. E.6.4-1.
The first regime of plastic deformation corresponds to the volumetric com-
pression, and (6.4.1) reduces to

)?=0 (a)

with « given by (6.4.8) and the effective plastic strain (6.4.6) is

el =V3el (b)

1 psi =6.895x10° N/mm?2

25 E=15061 psi
Ty —— oQ [~ ] p
. N - v=0.291
[psi] g\ _r
m=-0.5
20 N 1.7
\ ,” ¥=0.089
\\ / p=0.442
I/ n=3
15 o7 a,=0.18x107°
o, n=0.85
Pa=14.7 psi
10 k,=0.2637
k,=-0.037
_____ Nonassociated plasticity
5 Associated plasticity
i ° ° o Experimental results
: S ——
-6 -4 -2 0 2 4 6 8
e,=e, [%] e, [%]

Fig. E.6.4-1. Conventional triaxial test using the general soil model
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The hydrostatic pressure for this regime increases to p = 13 psi. Substituting
this value of pressure into (a), with use of (6.4.8) and (b), we calculate the
effective plastic strain °e? for the conventional triaxial test

Ogl =2.1329 x 103 (c)

The pressure p = 13 is used in the test as a constant lateral stress.

The test is modeled as follows. Since the two principal stresses o5 and o3
are constant and equal to 13, we have that the constitutive relation (4.2.15)
reduces to

Al o = BITAL oyttt B Ael, (d)
where
(AL 11 t+At t P
Cra — S (e)

and 445, and T4, are the axial and lateral stresses.

The solution for stresses and strains is obtained using 30 steps with
Aege = 1.6 x 1073, following the procedure of Table 4.2.2. In solving the gov-
erning equation t+4tf, = 0 given by (6.4.1), we have employed the Newton
iteration method, with use of the numerical derivatives of the type (4.2.34).

The calculated results are shown in Fig. E.6.4-1 for the associated and
nonassociated plasticity, with the experimental results reported in Desai
(1989). Here the octahedral shear stress Toet = V/2/3 |40 — Tyyl-



7. Large Strain Elastic-Plastic Analysis

In this chapter we present a numerical procedure for the analysis of large
strain deformations in isotropic plasticity. After short introductory remarks
in Section 7.1, we give in Section 7.2 a review of the basic notions of large
strain kinematics of deformation. Then in Section 7.3, we give in detail the
stress integration procedure in isotropic plasticity based on the multiplica-
tive decomposition of the deformation gradient and the governing parameter
method of Section 4.2. The logarithmic strain is employed and the corre-
sponding formulation is called the updated-Lagrangian-Hencky (ULH) for-
mulation. The computational procedure is implemented for the deformations
of metals and geomaterials.

7.1 Introduction

In the previous chapters we presented the computational algorithms for stress
calculations when considering inelastic deformations assuming small displace-
ments and small strains (within several percent). Hence, the change of geom-
etry was neglected and the inelastic problems are considered to fall into the
category of materially-nonlinear-only problems (Bathe 1982, 1996).

Frequently, however, in engineering practice the strains are small but the
displacements are large. Such problems are called geometrically nonlinear.
They are materially linear if the stress-strain relations are linear, and mate-
rially nonlinear if these relations are nonlinear, as in inelastic analysis. The
corresponding stress and strain measures must reflect these conditions. For
example, the Green-Lagrange strain and the second Piola-Kirchhoff stress
are effective strain and stress measures used in geometrically nonlinear but
small strain analysis (the total Lagrangian formulation is used, Bathe 1982,
1996), see Table 7.1.1.

However, in many types of problems the strains are also large, from several
percent to hundreds of percent (see Fig.1.3 in Chapter 1). Figure 7.1.1 shows
schematically examples representing: (a) small strain and small displacement
conditions, (b) small strain and large displacement conditions, (c) large strain
conditions.
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Table 7.1.1. Stress and strain measures for the three types of
problems in inelastic analysis

Problem type Displacements Strains Stresses
Geometrically Small Infinitesimal Cauchy
linear
Geoni.etrically Large Green- Second
nonlinear — 1
Lagrange  pjola Kirchhoft

small strains

Geometricall
nonlinear— Y Large Logarithmic Cauchy

large strains

- 1, /=== CC —

L L
S/L small d/L large
a b
T == I—'8
L gl A

8/H large

Fig. 7.1.1. Examples of nonlinear problems. a Geometrically linear; b Geo-
metrically nonlinear, small strains; ¢ Geometrically nonlinear, large strains

1 Of course, Cauchy stresses are always the final calculated results
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The development of methods for solving large strain inelastic problems is
not just an extension of the methodology employed in the small strain case.
To solve large strain problems we need additional kinematic quantities to
describe the deformations.

In principle, there are two different formulations used to solve large strain
problems, namely the rate formulations, and the total formulations.

The rate formulations are based on the integration of constitutive rela-
tions involving stress and strain rates. This concept has been widely used in
large-scale elastic-plastic analyses, see, e.g., Lee and Mallett (1982).

The total formulations are based on kinematic quantities defined with
respect to an adopted reference configuration and on incremental solution
procedures. The total formulations have advantages with respect to the rate
formulations (see Bathe et al. 1974, 1975; Kojic and Bathe 1987c; Bathe 1982,
1996).

The solution of large strain engineering problems with plastic deforma-
tions has become feasible due to the efficiency of the finite element method
and the computational speed and capacity of computers. Various procedures
have been proposed for large strain analysis (see Bathe 1996; Simo and
Hughes 1998). We present two techniques within the framework of a total
formulation, based on the multiplicative decomposition of the deformation
gradient and with use of the logarithmic strains.

7.2 Basic Notions in the Kinematics of Large Strain
Deformations

In this section we review quantities that describe the kinematics of large
strain deformations of a continuous medium. A more detailed description of
these quantities is given in Bathe (1996).

Motion. Consider a material body B consisting of material particles con-
tinuously distributed in space, Fig. 7.2.1a. We use a stationary Cartesian
coordinate system (x;,x2,x3) to define the motion of the particles. At the
initial time ¢ = 0, a generic material particle P occupies an infinitely small
volume of space, i.e., a geometric point whose position vector is

9% = %x(0) (7.2.1a)
or, in component form,
O, = %;(0)  i=1,2,3 (7.2.1b)

Thus we may think of having labeled the material particle with its initial
position vector %x. At time ¢ the position vector is
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Neighborhood of point P
At

t
B
k S
ty k =)
u
0 K
B k P Auk
r trAt
L. 'u B
r AU
/ txX
k
s
Oy k 0 t t+Aty kK
X2 X X X X P
r
trAty

X4
b

Fig. 7.2.1. Motion. a General representation of a body motion; b Repre-
sentation of a body motion by finite elements, 2-D view; r, s axes shown for
4-node element

fx = 'x(t) (7.2.2)

and the change of the position of the material particle in time defines the
motion of the particle.
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Consider next the set of all material particles of the body B. The set of
geometric points defined by the position vectors °x of all material particles
represents the 4nitial configuration °B of the body, and the set of geometric
points 'x represents the configuration B at time t. The volumes in the 3-D
space occupied at time 0 and ¢ by the body are °V and !V, respectively. The
vector relation

fx = 'x ("x,1) (7.2.3)

defines the complete motion of the material body B. Therefore the motion of
the body is given by the change of the body configuration during time. This
description of the body motion is called the Lagrangian description of motion.

Note that considering a rigid body, the relative positions of the material
particles do not change during time.

In the finite element discretization we select the nodal points of the finite
elements to represent the motion of the body (see Fig. 7.2.1b). The position
vectors of nodal points are defined as

txk = txk(t) (7.2.4)

We do not write tx*(°x*, ¢) on the right hand side because the number & (the
node number) identifies the material point. Further, using the isoparametric
(natural) coordinates r,s,t to define a material point P within the finite
element (see Section 2.3.2), we have the material point position given by

N
tx = Z hy tx* (7.2.5)
k=1

where hy(r,s,t) 2 are the interpolation functions and N is the number of
nodal points of the finite element. Hence, the motion of the whole body B is
defined by the motion of the finite number of nodal points.

The coordinates used to identify material particles within the body are
called the material coordinates. Therefore the initial coordinates °x;, or the
coordinates r,s,t are the material coordinates. Note that the material co-
ordinates for a particle do not change during the body motion, i.e., for a
particle,

O2; = const. (7.2.6)

2 We use t for time and for the third coordinate in the natural coordinate system
r,s,t. We will point out in the text the meaning of ¢ if there could be any
ambiguity.
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r = const., s = const., t = const. (7.2.7)

We next define the displacement of a material particle P in the time
interval 0 to t as

fu (Ox,t) = 'x ("x,t) — °x (7.2.8)

or, using the finite element representation,

bu = Z i, ('x* — OxF) = by, tu® (7.2.9)

k

where u* are the nodal point displacements, defined as

tub = txk — O0xk (7.2.10)

It is implied that the interpolation (7.2.5) is used for all times, including for
the initial configuration.

Deformation Gradient. The deformation gradient represents the ba-
sic quantity used to describe the kinematics of deformation of a continuous
medium. The deformation gradient at time ¢, with the reference configuration
OB, is defined as 3

dtx
tyx
0X = 50y (7.2.11)
with the components
Otx;
0Xij = 6%; (7.2.12)
If we define the operator ¢V as
0 0
= = in 2.1
()V |:60$n:| 80212” 1 (7 3)

then the deformation gradient can be written as

3 The deformation gradient is by many authors denoted using the letter F. How-
ever, we are using F already to denote the nodal point forces corresponding to
the element stresses, see Chapters 1 and 2, Section 4.1 and Bathe (1996), and
the notation used here is rather natural when °x and ‘x are the material particle
coordinates at times 0 and ¢.
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Otz

X =0V x)= [8% } = ' Xpnim @1, (7.2.14)

where in addition to the matrix notation we also use tensor notation, see
Appendix A2.

If the finite element discretization of the continuum is used, we determine
the deformation gradient at a point P from (7.2.5) as

8ta:z- 8rm

t _ _ tyxT (07—1\T
X = [armaoxj =137 (031 (7.2.15)

where tJ and °J are the Jacobian matrices at time ¢ and time 0 of the
transformation between the Cartesian and natural coordinate systems (see
(2.3.36) and Bathe 1982, 1996). We use here r,,, with m = 1,2, 3, to denote
the natural coordinates as

r=r ro = 8 rg =t (7.2.16)

and then

Ohy,
by t ok
Jim Z or; Tm

(7.2.17)
8 x; Ohy, o
’ mj ’ Z Orm ’ T

We also use

0%« 0%z;
X = = ! 7.2.18
¢ otx 6ta:j ( )
with
8ta:~ 80mk
EX X = ’ =1 7.2.19
0 t 80.'Ek 6t.'1/'j ( )
Here YX is the inverse deformation gradient and clearly
IX = {x! (7.2.20)
The deformation gradient at a material point at time ¢ + At is
o t+Atx o t+Atm‘
HAIX = = ! 7.2.21
0 0%k [ 8033]- ( )
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and, using configuration !B as the reference configuration, we have

t+At t+ A,
Ay 0T Tx 10 (7.2.22)
otx 6ta:j
By employing the chain rule we further have
at+Atm, at+Atx,at.,L.
ALy i g m o _ t+Aty oty 7.2.23
0<%y 801?]' 6t$m 80$j t<*am 0 myg ( )
or, in the matrix form
tratx — tHatx tx (7.2.24)

The quantity t+A§X is called the relative deformation gradient.
The deformation gradient can be expressed in terms of displacements,

6t
EX =1+ 80'; (7.2.25)

where 0 tu/0%x is the displacement gradient. Also, for the inverse deformation
gradient

dtu
IX=1- Btx (7.2.26)
Similarly, from (7.2.23) and the relation
Aty = tx 4+ Au (7.2.27)
where Au is the displacement increment (see Fig. 7.2.1), we have
0(Au)
ALY = X + 50y (7.2.28)
and
0(Au)
HAIX =14 Bix (7.2.29)

If the finite element discretization is employed, the displacement gradient
is calculated using the interpolation (7.2.9). Then, for example, {X defined
in (7.2.25) can be expressed as
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EX =1+ [g;ﬂ 31T (7.2.30)
where N
g::j = ; gfi bk (7.2.31)
Analogously, we have
ALY 4 [aéf:")} (31T (7.2.32)
where
N
aéfzi) - gf; Auk (7.2.33)

Using the deformation gradient we can calculate the volume change of the
material from the relation (see Bathe 1982, 1996)

d'V = (det }X)d°V (7.2.34)

where d*V and d°V are the elementary volumes occupied by the same mate-
rial particles in the configurations {3 and °B, and (det §X) is the determinant
of {X (see (A2.17)).

The deformation gradient has a physical meaning. To describe that mean-
ing, consider the relation

dtiL'i = Bsz do.’Iik (7235&)

which follows from the definition (7.2.12). In matrix form we have that
dis = tXd% (7.2.35b)

Hence, {X relates the differential material vectors d's and d°s (consisting
of the same material particles) in the configuration B and the initial config-
uration B at a material point (point P in Fig. 7.2.1). Similarly, if the body
moves from the configuration ¢B to the configuration ¥4, we can write

ditAts = tHALY gtg (7.2.36)

and “T4IX relates the material vectors in these two configurations.
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Note that in case the material undergoes a rigid body translation plus a
rotation between two configurations, the corresponding deformation gradient
only represents a rotation (see (A2.39)).

Using the deformation gradient we can calculate the stretch of a material
element. Namely, using (7.2.35) it follows that

oA = || 6X n)| (7.2.37)
where ||-]| is the Euclidean vector norm (see (A2.30)), and the stretch §A is
defined as

dis|| d's
EX= I = 7.2.38
0 ld%s]|  dO%s ( )

Here d%s and dts are the lengths of the material element in the two configu-
rations. The unit vector °n defines the direction of a material element in the
initial configuration °B,

d’s dlx
Op = = [ k (7.2.39)

= d% | dOs

It follows that the stretches of the differential material vectors initially in the
directions of the coordinate axes x,y, z are

O P N P N P e

where BX(i), 1 = 1,2,3 are the first, second and third column-vectors in the
matrix §X. The stretch of a material element with the direction of the unit
vector ‘n in the configuration !B can be obtained from (7.2.18) and (7.2.35)
as

or = 112X ™

(7.2.41)

The angle '@ between the two material elements having the initial di-
rections n and %, °n and °A being unit vectors, can be calculated using
(7.2.35) and (7.2.39), as

t9 = cos™! |(£X  n) - (EX°0)/(CAEN) (7.2.42)

The initial angle 0 between the material elements that have directions 'n

and ‘A can be obtained as
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%9 = cos™! [(9X tn) - (OX ') EAEA

331

(7.2.43)

Example 7.2.1 illustrates the calculation of the deformation gradient.

Deformation Tensors. Consider first the squared lengths of the material
vector d's at a material point P (see Fig.7.2.1a) in the two configurations

tB and °B. It follows from (7.2.35) and (7.2.18) that

t t

t\2 _ gt gt
(d s) =d'z;d m’_aoxmaﬂxn

d°z,, d’z,
and

1o} OCL'Z' 0 OLL“Z'

t t
atxm(')tmnd Ty d'x,

(dos)2 =d%;d ; =
or, in matrix (tensor) notation

(ds)? = d%T {CdPs

and
(d°s)? = d'sT YBd's
where
o= X7 ix
and

B = IXT X

(7.2.44a)

(7.2.45a)

(7.2.44b)

(7.2.45b)

(7.2.46a)

(7.2.47a)

are called the right Cauchy-Green deformation tensor and the Finger defor-

mation tensor, respectively. Their components are

Otz,, Otz
ten m m
OCl 80331» 60mj
and
8%, 0%z,

OB" —
ii =
s atl’i atiL'j

We will also use the tensor

(B = X §x7

(7.2.46b)

(7.2.47h)

(7.2.48)

which is called the left Cauchy-Green deformation tensor, where of course



332 7. Large Strain Elastic-Plastic Analysis

B=!B'=(x"1)" {x! (7.2.49)

The stretch given in (7.2.38) and angle between two material elements
defined in (7.2.42) can be obtained using the tensor {C as

tx=(°n” {C °n)" (7.2.50)

and
t9 = cos™! [OnT tC %n/ (3)\ 35\)] (7.2.51)

Also, using the tensor !B we obtain
‘A= (‘n” B tn) (7.2.52)

and (see (7.2.43))
%9 = cos™* [tnT B ‘hix 65\] (7.2.53)

The deformation tensors are symmetric and positive definite. Symmetry
follows from (7.2.46) and (7.2.48). The deformation tensors are positive def-
inite because their eigenvalues are real and positive.*

It is useful for further developments to relate the deformation tensors
corresponding to the configurations °B, B and *4!B. Using (7.2.24) and
(7.2.46) we can write

tHAt (v _ t+ At~ T t+ At~y _ bt~ T t+ Aty T t+ At~ ¢
0C = X X =X + X tX o X
and

HAlc = EXT HHAlC tX (7.2.54)

where
thAtg = thatx T tHaty (7.2.55)

is the relative right Cauchy-Green deformation tensor with the reference con-
figuration 8.

The following important characteristic of the right Cauchy-Green defor-
mation tensor can be obtained from (7.2.54). If the material undergoes only
a rigid body motion from the configuration B to T4, then

* By definition a matrix is positive definite if all eigenvalues are positive.
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Aty = tralg (7.2.56)

where TR is the rotation tensor (see (A2.33)). Substituting into (7.2.54)
we obtain

HAlC = (XT HART AR (X = (X7 {X = [C (7.2.57)

since the rotation tensor HA;:R satisfies the orthogonality condition (A2.41),
tHHAIRTHAlR — 1 (7.2.58)

Hence, the right Cauchy-Green deformation tensor is invariant with respect
to a rigid body motion.
Analogously, from (7.2.48) we obtain

At _ tH Aty tHAtyT _ t+ Aty tw tyT t+AtyT
oB = oX oX = X oX X X
and

t+A6B _ t+A§X BB t+AixT (7259)

Substituting for T4¢X from (7.2.56) into (7.2.59), we find that ‘F4{B #
B, i.e., the left Cauchy-Green deformation tensor is not invariant with re-
spect to a rigid body rotation.

The relations (7.2.54) and (7.2.59) relate the deformation tensors in dif-
ferent configurations, but with respect to the same coordinate system z;. In
Example 7.2.1 we demonstrate that a coordinate transformation changes of
course the components of the tensor but does not have any effect on the
material deformation (see also Bathe 1996).

Polar Decomposition. Let us summarize some basic relations regarding
the polar decomposition theorem. A detailed derivation of the theorem is given
in Bathe (1982, 1996).

Consider the deformation of the material at a point P, Fig. 7.2.2a. Let the
vectors 'p, and tp, (assumed to be of unit length) denote the eigenvectors
of {C and ¢B (or {B). The eigenvalues of the tensors §C and {B are ({;),)2.
The eigenvectors form two orthonormal bases. We call these bases the right
basis and the left basis with the relation (see (A2.40))

'pa=(R'Pa  @=1,2,3 (7.2.60a)

or in component form,
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Fig. 7.2.2. Deformation represented by polar decomposition. a Principal di-
rections of {C and {B; b Polar decomposition /X = {R..U (two-dimensional
problem); ¢ Polar decomposition §X = {V R (two-dimensional problem)
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t—

Playm = 0Bmk "Dy (7.2.60b)

where the index « in parentheses indicates the vector number and not the
component number. The rotation tensor {R. is given by

BR=> 'Po ® 'pa (7.2.61a)

or in component form

0Rmi = Z "Blaym Playk (7.2.61b)

[e%

Figure 7.2.2a shows that a material of an initially spherical shape changes
into an ellipsoid with the principal axes 'p;, pa,’ p3 (see Love 1944 for a
further discussion).

The polar decomposition theorem gives the relation

IX=IRLU (7.2.62)

where

bU=>tXa'Pa® 'Pa (7.2.63)

is the right stretch tensor. Here § )\, are the principal stretches obtained by
the eigenanalysis of {C. Hence, we have that the deformation gradient can
be decomposed into a stretch and a rotation. Physically, this theorem shows
that any material element d“s deforms into d’s by application of the stretch
tU and then the rotation §R.

Hence we can think of applying a sequence of two deformation gradients,
from the initial configuration °B to a fictitious, or conceptual configuration
"B with the deformation gradient

iIX=1!Uu (7.2.64)
and then from 7B to the final configuration !B by the deformation gradient
X = IR (7.2.65)

since
X =1X X (7.2.66)
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Figure 7.2.2b shows this deformation sequence in a two-dimensional de-
formation (in the z,y plane). Two principal vectors lie in the z,y plane while
the third principal vector is normal to the plane of deformation. By apply-
ing the stretch §U the circular material surrounding point P deforms into
the ellipse in the conceptual configuration "5, with the principal directions
tp; and tps. All material vectors containing the point P change lengths and
directions (as the vector P—/)l shown in the figure), except the vectors P
and ﬁ, lying along the principal axes, which change their lengths only. The
shaded square element of the material shown in Fig. 7.2.2b changes its size
but the sides remain orthogonal. The final position of the material in the
configuration *B is obtained by the rigid body rotation for the angle ‘6.

Of course, we can change the sequence of deformations: we first concep-
tually rotate by the rotation §R and then conceptually stretch by the left
stretch tensor §V,

IX = iV IR (7.2.67)

where clearly

'V = {RIUIRT (7.2.68)

Figure 7.2.2c shows this sequence of deformations in the case of a two-
dimensional deformation. The conceptual configuration "B, is obtained by
the rotation '8, and the final configuration *B is reached by the stretch ten-
sor §'V. The stretch tensor §'V produces changes of lengths and directions of
all material elements, except those lying along the principal directions of the
left basis which only change their lengths. Note that the stretch tensor §V
has the same principal values {\, as the right stretch tensor {U, and is given
as

bV=> A "Pa® 'Pa (7.2.69)
(e}

In practical applications we can determine the rotation tensor {R by
calculating first the stretches § A\, and the right principal base vectors ‘p, by
an eigensolution of §C (see Bathe 1996). Then

LU =)0 'pa ® 'pa (7.2.70)
o

and we obtain {R as
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IR=IXtU™! (7.2.71)

If the principal values §)\; are distinct, we have unique sets of vectors
tp1, P2t p3, and 'py, P2’ ps forming the right and the left bases. In case
two principal values are equal, say §A1 = E)a, the vectors {ps and ‘ps are
uniquely defined, and any sets of orthogonal vectors in the plane normal to
tps and ¢p3, form pairs of base vectors {p;,f pa and !p1,! po, respectively.
Finally, in case all principal values are equal, any sets of orthogonal vectors
represent admissible right and left bases, and {R can be taken to be the
identity matrix (see Bathe 1996).

Generalized Strain Measure. According to Hill (1978), a smooth
monotonic function g({\;) of the principal stretches {\; may define a strain
measure. Then the generalized strains in the principal basis {p; are

gEg = Z tg (6)%) tpz‘ ® tpz' (7.2.72a)

i

or, in matrix form

bEy = Rp'g(p4) 'R (7.2.72b)

where ‘g(§{A) is the diagonal matrix

o g (6M)
g (04) = g (bA2) (7.2.73)
t9 (5)a)
and ‘R is the matrix defined as
‘R = ['p1 'p2 'ps] (7.2.74)

The strain }E, defined in (7.2.72) corresponds to the fictitious configuration
"B and the deformation gradient (7.2.64). Since the material vectors with
the principal stretches {); at configuration !B, reached by the stretch and
rotation, have directions of the left basis p;, we also can define the generalized
strain measure as

bEy =" 'g(bNi) 'pi ®'ps (7.2.75a)

i

or, in matrix form
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'E, = 'Rp ‘g (44) 'RE (7.2.75b)
where ‘R is
‘Re = ['P1 P2 'Ps] (7.2.76)
It follows from (7.2.60) that
‘Rp=R'Ry (7.2.77)

and
'E, = 'RIE,IRT (7.2.78)

For a reasonable strain measure we have the conditions that
g(1) =0

8tg ’
<af)/\i>gxi:1 J(1) (7.2.79)

since the material is undeformed for the stretch
f)Ai =1 (7.2.80)

and the generalized strains should reduce to the small strains when consid-
ering infinitesimal deformations.
Hill considered a family of functions

1
g (6A) =, (BN 1) (7.2.81)

which satisfy the conditions (7.2.79). For the cases n = 1 and n = —1 we
obtain from (7.2.72) and (7.2.81) that

1

FEWY = le= 0 (hc-1) (7.2.82)
1

PEY = let = 0 (1-?0C) (7.2.83)

where {e and te? are the Green-Lagrange and Almansi strains. The Almansi
strains are usually used as (Bathe 1982, 1996)
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PECD = tet = (1~ 9B) (7.2.84)

Ifn—>0
tgO(EN) =In b (7.2.85)

and we can define the logarithmic or Hencky strain, as

SEH) =3 "In {A;'pi @ 'p; (7.2.86)
1

LEUD = Zln EXi'pi ® 'y (7.2.87)
i

in the right and the left bases (“with the rigid body rotation removed” and
“not removed”, respectively).

The strain-stretch relations for uniaxial deformation and for the strains
defined in (7.2.82), (7.2.83), (7.2.86), and small strains, are given in Example
7.2.2. Small strains are given by

feij = ; [0%ui /0 ) +0'u; /0 ;] (7.2.88)

Assume that the principal directions do not change during the deforma-
tions, as, for example, in the cases of triaxial, biaxial or uniaxial extensions
or compressions of a specimen. For a principal axis z we have

tfm
i, dt
PEUD =IntA, =In 0. = | 4 (7.2.89)
0[;,;

where %/, and */, are the initial length and the length at time ¢ of a material
element in the z-direction. Hence the logarithmic strain, also referred to as
the true or natural strain, represents the integral of d¢/¢. Note that

die,

t H) _
dOEa(:z) - tgz

(7.2.90)

where dt(, /!, is the infinitesimal strain with respect to the configuration
tB. Therefore we can write for the principal directions fixed in space
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(df)El(iH))pi:const =d(In f))\i) =d%e; nosumoni (7.2.91)

The logarithmic strain measure has been generally used to test materials
in elasto-plastic large strain conditions (see, e.g., Crandall et al. 1972; Maki-
nouchi et al. 1993; Lee et al. 1996), and it is therefore the appropriate strain
measure to use in the finite element analysis of large strain elastic-plastic
response. We shall use this strain measure in the computational algorithms
of Section 7.3.2.

Work Conjugate Stress and Strain Measures. For the analysis of
large deformation problems, we need to use stress measures that correspond
to the above introduced strains. These stress measures are defined using the
stress power P per unit current volume (at time t, for the configuration tB)
given as

tP = t’l'ij tDij (7292)

where '7;; are the Cauchy stress components, and

1 /0t Otv;
tp i j
Dy 9 <8tm]- + 8%») (7.2.93)

are the components of the rate-of-deformation (or velocity strain) tensor D,
with tv; the components of the velocity vector tv,

t
ty = ddtx (7.2.94)

We say that the Cauchy stresses and velocity strains are work conjugate or
energetically conjugate. Following this definition of work conjugacy, we can
determine other stress measures which are work conjugate to given strain
measures.

Consider first the generalized strains defined by (7.2.72). The power per
unit current volume must be

tp_ t (9 ((E,)i; (7.2.95)

tj

where the tngg)

work conjugate to the generalized strain §E,; and (SEg)ij are the components
of the time rates of change of the generalized strain {E,. If we let '7;; be the

are the components of the generalized stress t7(9) which is
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Cauchy stress components in the left basis, then it follows from this relation
that (for details see Bathe 1996)

t(9) _ g P
Tij T Nty T =

t)\? _ t)\?
) o ' (7.2.96)

t,]_ Tii
Y 2[tg (6A1) = tg (6] bAi b 7

i G, bNi # 6)\]- no sum on i,j

These are the general expressions for the stress components trg), for any
function g(\) satisfying the conditions (7.2.79). Note that the stress compo-

nents tTl(-]g) are acting on the planes defined by the right base vectors 'p, °.
The relations between the stress components in the stationary system x; and
the stress components in the left basis follow from the tensorial transforma-

tion (see (A.2.24) and (A2.34))

tr= 'Ry ‘7 'RL (7.2.97)

t t

where 7 lists the stress components '7;; and the matrix ‘Rp is defined by
(7.2.76).
In the case of the logarithmic strain we substitute (7.2.85) into (7.2.96)

and obtain

‘riy = 'y i=j (7.2.98)
tN\2 _ t)2 t)

t (0) _ 0%y 011 0N |t~ . . .

Tl] QBAZBA] n|:6/\]:| Tij Z;'é] no sum on 1,j

7.2.1 Examples

Example 7.2.1. Large Strain Deformation of a Material Element.
The material element shown in Fig. E.7.2-1 is rotated by the angle « in step
1, and then deformed as shown in the Z; direction in step 2. Assume a linear
variation of displacements within the element and use ug = ug.

a) Determine the deformation gradients {X and {X and the line vector
d's originally inclined at angle 3, with respect to the x; axis.

b) Calculate the deformation gradients 2X and X and determine the
stretches of the line vectors da and db originally parallel to the coordinate
axes %z, Oz5. Perform the calculations for a point with the initial coordinates
011!1, OCL'Q.

® (7.2.96) is an unusual equation in that the stress components on the left-hand
and right-hand sides are measured in different bases, as mentioned above.
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Fig. E.7.2-1. Deformation of a material element in two steps
1 = 0

T1CoSQ —

a) Coordinates of a point P at time ¢ = ¢; are (see Fig. E.7.2-1a)
L Y24 sin

Ty = "x1Sina+ 0:1:2 CcoS &
Then, according to (7.2.12) the deformation gradient {X is

(a)

COos &

61:132' 1 1
[6%]} = oX=oR= [ sin

LL’1:1

—sina
cos ]
where jR is the rotation matrix. Writing the inverse relations to (a),
0 zicosa + lzysina Ogg = =1
we obtain

zysina + ‘zy cosa
60$i
_ 0y _ 1T _
[6133' = X= R =
J

COos &

sin «
—sina  cosa
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The same result for {X can be obtained by inverting the matrix in (b). Note
that
O0tx; .
oXiz = 80;1:; =0; §X3:,=0; i=1,2 0 X33 =1 (e)
where z3 is the third axis of the Cartesian coordinate system x1, zs, z3.

The components of a material vector ]@ of length d%s at time t = 0 and
time t = ¢ are

d sy = d"scos B d%sy = d’ssin 3, ()

and
d's; = d%scos(a + B,) d'sy = dssin(a + B,) (g)

The expressions (g) also follow from (7.2.35).

b) We assume the displacement ?# in the rotated coordinate system z1 , Z»

to be
U
Yu(in, 52) = daE (h)

The coordinates of a point in the coordinate system x;, x5 are

2 0 0

1 = (“2; + ¢z, z2) cosa — zysina

2y = (Y21 + %21 ) sina + %zy cosa (i)

where ¢ = ug/(ab). Now we determine the deformation gradient 2X as follows:

2X11 = (14 c¢%z2) cosa 2X 12 = ¢%; cosa — sina

2X51 = (14 c%)sina 2X5y = ¢ sina + cos (4)

We next analyze the change of the material vectors da and db which at
t = 0 have directions of the coordinate axes z; and z,. By using (7.2.35) we
obtain from (j),

d?a; = 2X1pd%, = (14 c%x2) cosad®a
d?ay = 3 Xopd ay, = (1 +c%23)sinad’a (k)

where da is the initial length of the material element. Similarly we have for
the line element db,

d?by = 3X1,d°by, = (c’z, cosa —sina) d’b

d?by = %X% d°by, = (cz; sina + cosa) d’b ()

From (k) we see that the line elements originally parallel to the z; direc-
tion extend, and their stretch is
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d’%a
oA = dog =17 ¢’z (m)

where d?a is the element length at step 2. Note that the line elements along
the line OA do not stretch. The line segment db changes length and also
direction with respect to the material coordinate system Z;, Z,. From (1) we
obtain the stretch

9 d?b 5 0.2
0)\(2) = %% = 1+c¢ Ty (n)
and the angle 2 with respect to the material axis Z, is determined by

FEI

tan () = 0,7t =o' (o)

where d?b; and d2b, are the components of d?b in the Z;,Z» coordinate
system. The line OD remains undeformed, while the stretches and rotations
of the material element db increases with %z, (see Fig. E.7.2-1b).

For an arbitrary material segment ds with initial components

d®s; = cosf,d’s d%sy; =sinf,d’s (p)
using (7.2.35) and (j) we obtain

d?s; = [(1+ ¢%xs) cosacos By + (cz1 cosa — sina) sin By] d’s

d?sy = [(1+ c¢%zs)sinacos By + (c’zisina + cosa)sin By] d’s  (q)

As shown for the material elements da and db, we can calculate the stretch
2\ = d?s/d"s and the direction of the element d?s. It is found that 3\ varies
between %)\(1) and (2))\(2) and that the rotation angle changes between zero
and 2+, depending on the initial direction of the line element ds.

We next calculate the relative deformation gradient 2X. From (7.2.24) we
obtain

X = XX (r)
Substituting (d) and (j) into (r) we obtain
X1 = 14+ ¢(%z2cosa — %z sina) cos
1X11 2 1
1X1
1 X2

2Xoo =14 c("zysina+ "z cosa)sina

c(Pzysina 4+ z; cosa) cosa

c(®zycosa —"°

z1sina)sina (s)

Finally, we calculate the deformation gradient 2X corresponding to the
coordinate system Zp,ZT». Using (h) we obtain



7.2 Basic Notions in the Kinematics of Large Strain Deformations 345

25?1 = 15?1 + Cl.f'l 1.%2 z.f'Q = 1.f'2 (t)
from which follows

= 82.f'1 = 82531
2 1z 2 14 0

X1 = =14c'Z X2 = =cTi1=cx
1411 917, 2 1412 917, 1 1

_ 0%z _ 0%z
2 2 2 2
14321 81.f1 1322 81522 ( )

The coordinate transformation between the coordinate systems x1, x> and
Z1,T2 can be written in the form

Tr; = (1)Rik T (V)

where the }R;;, are given by (b). Then, according to the tensorial transfor-
mation (A2.24) (see also (A2.34)) we have

X = tRIXRT (w)

Substituting 2X from (u) into (w) we obtain 2X given by (s).

Example 7.2.2. Strain-Stretch Dependence. Determine the strain-
stretch dependence for various strain measures, in uniaxial deformation.

According to the definitions (7.2.88), (7.2.82), (7.2.83) and (7.2.86) for the
small strain, Green-Lagrange, Almansi and logarithmic strains, respectively,
we obtain the following expressions for these strains

1 .
t€11 = 6)\—1 6611 = 2(6)\2—1)
1 _ H
26141 = 2(1 - BA 2) (t)E§1) =In (t)>\ (a)

Figure E.7.2-2 gives a graphical representation of these expressions.

It can be seen from the figure that for stretches around A = 1 all strain
measures give approximately the same values. Also, in extension the Green-
Lagrange strain and logarithmic strain increase to infinity, while the Almansi
strain tends to 0.5. In compression, the Green-Lagrange and the Almansi
strains change character, while the logarithmic strain tends to minus infinity.
The small strain values change linearly with the stretch.

Example 7.2.3. Large Strain Shear. Determine the principal direc-
tions, deformation tensors, the spin and the rate-of-deformation tensors for
the material subjected to what is referred to as “simple shear”, as shown in
Fig. E.7.2-3a.

From the geometry in Fig. E.7.2-3a we obtain the deformation gradient
as
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Fig. E.7.2-2. Strain-stretch dependence for various strain measures

Fig. E.7.2-3. Large strain shear of material. a Kinematics of deformation;

b Principal stretches and principal vectors

or in tensor notation

6X2i1®i1+t’7i1®i2+i2®i2

(a)
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Also § X3 = §X3; = ;3 and we further consider only components in the
plane (z;,x2). The right and the left Cauchy-Green deformation tensors are
(see (7.2.46) and (7.2.48))

_ ., )
0C = X" (X = |ty 1442 | ()
and
[ 1 + t~2 t
B=ixpx'=| 7 ] (d)
L Y
The principal stretches, obtained from
det(5C — EXN’T) =0 or det({B — {X’T) =0 (e)
are
EXL =1/5X2 = cot by (f)
where
1
t = o tan L2/ty) ()

is the angle shown in Fig. E.7.2-3b. Solving the eigenvalue problem

5C'pi = (A7 'p: (h)
EB'D; = hA7 D, (i)
we obtain
tp _ t tn _t :
07'—7"/2_ w 0 = ¢ (.])

where '0,. and !0, are the angles between the ‘p; and the z;- axis and between
the p; and the x,-axis, respectively. The first vectors 'p; and !p; of the right
and the left bases start from the initial direction %0, = °, = 7/4 and then
rotate in the opposite directions. For very large stretches, the extended fibers
are close to the xi-direction, while the compressed fibers approach the x»-
direction.

The stretch tensor represented by §A in the principal directions p; and
£ U corresponding to the 1, z» coordinate system, are

0
A= { o ] (k)

‘U — sin 2t cos 2t 0
T | cos2tp  tycos2tih +sin2tey
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We have obtained §U from §A by the tensorial transformation (A2.24). The
rotation tensor §R can be obtained using (7.2.61), where we substitute

tp1 = sin ‘1) i + cos ‘s tpa = —cos iy + sin )iy
tpy = cos tapiy +sin )iy tpy = —sin iy + cos iy (m)

Then we have

—~
2

sin2? cos2?

—cos2t) sin2ty

Also, {R can be obtained from (a) and (1) by employing (7.2.62).
The rate-of-deformation tensor, defined in (7.2.93), is

-1[1)]

The spin tensor W defined as

1 0tv; Olu;
. = i j
¢ 2(6ta:j 6%)
is in this case
PR 0 1
W=, [ -1 0 } ®)

The left deformation tensor §V follows from (7.2.67), (a) and (n), or
(7.2.68), (1) and (n),

tycos2tp +sin2t)  cos2ty ] (@

v —
oV = [ cos 2ty sin 2ty
Also, {V can be obtained using the tensor transformation

'V ="Rg{V'RL with ‘Rp=[p1p,] and V=04

Note that §U given by (1) can be obtained from (7.2.63), (f) and (m).
The rate of change of angles ‘1) and @ follows from the relations (g) and

(j)7

b = —Z sin? 2% th = —2ty = ; sin? 2% (r)
Using these relations we obtain from (n),

—sin 14 cos 1

try _ ]
oR="0 —cos td —sin t0
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The matrix 'Ry, defined in (7.2.74), is

in t — t
R, = [tpl tp2] = [ Sos ti sciistzf ] (t)

Differentiating with respect to time we obtain

cos tp sin t1)

Ry =Y [ —sin fp  cos tp ] (w)

From (t) and (u) we determine the spin tensor {21, of the right basis rotation
(see Bathe 1996)

PRSI Y .

In analogy with (t) to (v), from (7.2.76) and (m) follow the expressions:

t ot . t
¢ | cos*Yp —sin P it t5 | —sintY —cos "
Rp = sin f¢p  cos tp ] Ry ="y { cos iy — sin tap
gt ——o] 0 1] o

From the expressions for {2}, and tf2g we see that the right and the left bases
rotate with the same angular velocity, but in the opposite directions.

7.3 Stress Integration in Isotropic Plasticity Using the
Logarithmic Strains

In this section we first discuss some basic assumptions used in the stress in-
tegration when considering large strain effects in plasticity, and then present
a computational algorithm using the Hencky (logarithmic) strain. The stress
calculation is performed within the so-called updated-Lagrangian-Hencky
(ULH) formulation. The derivation of the algorithm is given in a general
form and for the general 3-D elastic-plastic deformations, representing an
extension of the computational procedures for small strains developed in the
previous chapters. Finally, a number of solutions are given, with some com-
parisons of results to those available in the literature.

7.3.1 Introduction

In the development given below we assume that the elastic deformations are
small and therefore we can use the elastic constitutive law (see (A1.5))
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tr=1Cctler (7.3.1)

where 7 and [e? are the Cauchy stress and elastic strain, while C¥ is the
elastic constitutive matrix (possibly a function of temperature ). In case the
elasticity relationship depends on the stress/strain state (see Sections 6.2.2
and 6.3) an incremental form of (7.3.1) is applicable

A = f(tr, AeP ) (7.3.2)

where 7 and *t4t7 are the Cauchy stresses at the start and the end of the
time step, and Ae® is the elastic strain increment in the time step.

Since the stresses are related to the elastic strains, we somehow have to
establish these strains from the total deformations. One way to proceed is
to use the additive decomposition of total strains. Then, analogous to small
strain conditions (Chapters 4 and 6) we write

te=tel + Le” (7.3.3)

where [e is the total strain and {ef” is the plastic strain. However, this as-
sumption does not have the generality of analysis that can be achieved con-
sidering the micromechanics of elastic-plastic material deformation.

A more general approach to obtain the elastic strains is based on the
multiplicative decomposition of the deformation gradient. The assumption is
that the deformation gradient §X can be written in the form

IX = {xXF IxP (7.3.4)

where { XF and § X are the elastic and plastic deformation gradients. This
assumption was introduced by Lee and Liu (1967), and Lee (1969), and
is based on considerations of micromechanics of plastic flow (Perzyna and
Wojno1968). According to (7.3.4), the state of material deformation corre-
sponding to the deformation gradient §X can conceptually be obtained by
first deforming the material plastically for the deformation gradient §X7,
and then elastically for the deformation gradient §X¥. Figure 7.3.1 shows
schematically the multiplicative decomposition.

The assumption (7.3.4) leads to the introduction of the so-called concep-
tual intermediate local stress-free configuration as represented in the figure.
Namely, since the stresses are proportional to the elastic strains, the state of
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Neighborhood of point P

Initial configuration

Local stress-free
configuration

Fig. 7.3.1. Multiplicative decomposition of deformation gradient

deformation corresponding to the gradient {X* represents the state of zero
stresses. We use the term local stress-free configuration because the stresses
are equal to zero at a material point, or in an infinitesimal volume dV sur-
rounding the point. The stress-free configuration * B¥ of the body corresponds
to the deformation gradient field { X ¥ (z;). This deformation field does not in
general represent a field of compatible deformations, and hence the stress-free
configuration ‘B of a body may physically not be possible (and is hence only
conceptual). In Fig. 7.3.2a we have a bar stressed in the axial direction by
a force which causes the plastic deformation tef, = teconstant throughout
the material. The release of the load produces the stress-free state with a
field of compatible deformations and constant strain fe,, = *ef’. Therefore
the stress-free configuration !B is physically possible. On the other hand,
in Fig. 7.3.2b we have a beam plastically deformed by a moment ! M, assum-
ing that the material is perfectly plastic. The distribution of the total strain
in the cross-section corresponds to beam theory (Crandall et al. 1972). We
see that a field of incompatible deformations corresponds to the conceptual
stress-free state. While the conceptual stress-free configuration is not a com-
patible displacement configuration, the actual solution of the problem using
the decomposition (7.3.4) gives of course the physically correct solution (see
Example 7.3.4 where the assumptions on the kinematics of deformation anal-
ogous to beam theory are employed and the local stress-free configuration
gives an incompatible deformation field). Hence, using the conceptual con-
figuration does not result in a physical contradiction, and indeed as we see
below, results into a general solution approach.
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Fig. 7.3.2. Compatible and incompatible strain fields for the conceptual
stress-free configurations using multiplicative decomposition of {X. a Case
of compatible strains; b Case of incompatible deformations
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7.3.2 Stress Integration in Large Strain Plasticity

We first present the continuum mechanics basis for large strain elastic-plastic
deformations assuming isotropic elastic behavior with use of the right basis
and employing the Cauchy stresses and the logarithmic strains. Hence we use
the “rotated” (with respect to a material) fictitious configuration in which
the elastic rigid body motion of the material is removed (see also (7.2.86)
and (7.2.87)). Then we give the derivation of the governing relations of the
computational procedure for the stress integration in the case of a von Mises
material with mixed hardening behavior. Therefore the material data input
is the Cauchy stress - logarithmic strain (natural or true strain) relation-
ship. The presentation follows Eterovic and Bathe (1990); Gabriel and Bathe
(1995); Bathe (1996); and Montans and Bathe (2003).

The Continuum Mechanics Basis. Let us give some basic assumptions
regarding the material deformation and the basic relations used subsequently.
We start with the relation

t] = det {X = det {XF det {XF (7.3.5)
from which the volumetric logarithmic strain follows
tey =In(det §X) = fel + Leb (7.3.6)

Hence, for the volumetric strain we have the additive decomposition rule.
When the plastic deformations are incompressible we have

det {X¥ =1 (7.3.7)
and then it follows from (7.3.5) that
by ="1J% = det I XF (7.3.8)

Therefore, the volumetric deformation is elastic. We can use the polar de-
composition (7.2.62) for the elastic deformation gradient { X%

Xt = IR¥{U” (7.3.9)

where {U® is the elastic stretch tensor and §R” is the rotation tensor. The
elastic logarithmic strain §EZ, which we assume to correspond to small elastic
deformations, in the right basis follows from (7.2.86) and (7.3.9),
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VEP =In {UP =) I [A] ‘ph @ 'ph (7.3.10)
A

We next define the modified plastic velocity gradient 'LY as
P = EXPOXP (7.3.11)

and will assume later that the modified plastic spin vanishes (for a discussion
of this assumption, see Eterovic and Bathe 1991b),

WP = skw!LF =0 (7.3.12)

Using (7.3.11) we have

_ 1 . .
DF = [gxP?xP + (AXPOXP)T (7.3.13)

where *D” is the modified plastic velocity strain tensor.
Since {EF is associated with “a rotated” conceptual configuration, we
define the stress measure !+ corresponding to that configuration as

7 ="1J((R")" T {RF (7.3.14)
When the elastic strains are small we have
tJ=det X ~ 1 (7.3.15)

Considering a material that in elastic response is isotropic, it can be shown
(Bathe 1996) that the following relation holds

tJtT . tD — t.’—. . tEE + t7_- . tf)P (7316)

where 'D is the velocity strain tensor (7.2.93). This relation shows that the
stress and strain measures are energy conjugate and — furthermore — that
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the usual small strain plasticity relations can be used with these measures in
an incremental step (for more detail see Eterovic and Bathe 1991b).

Note that when the volumetric plastic strains are not equal to zero, as
in the case of geological materials, we use the additive decomposition (7.3.6)
for the volumetric strains. When the plastic deformations are incompressible,
as in the case of metals considered further, the relation (7.3.6) is not used.
Also, the derived relations are applicable to plasticity constitutive relations
of metals with mixed hardening behavior.

Stress Integration Procedure. As in small strain plasticity (Chapters
4 and 6) we adopt the return mapping method of implicit stress integra-
tion. Hence, we first determine the trial elastic stress state. The trial elastic
deformation gradient ‘4! X follows from (7.3.4) as

Halx P — tratx OxP (7.3.17)

where t+A0tX is known from the displacement field, and §X¥ is known from
the history of deformation. We perform the polar decomposition (7.3.9),

HAXE = HAREHYUL (7.3.18)
and obtain the trial elastic strain tensor (7.3.10),

HAEE = In HUE = 3 I HIE, ARl @ AR (7.3.19)
A

We next use the elastic constitutive law corresponding to the trial elastic
stress 'A*FE and elastic logarithmic strain “T4"EP (Anand 1979, 1985), see
(4.4.9) and (4.4.6). The trial elastic mean and deviatoric stresses are (see
(A1.12) and (A1.19))

HAtGE — ¢ TTAEE, (7.3.20)
tHAtQE — 9 tHAIEY (7.3.21)

where "' EE and "T4'E'F are the trial elastic mean and deviatoric strains.
The deviatoric stress **4SE corresponds to the conceptual “rotated” con-
figuration, and the trial elastic stress radius **4!S in this configuration can
be obtained from (7.3.21) and (4.4.15) as
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t+AtSE — t+AtJ71 t+AtSE _ td (7 3 22)

where ‘e is the back stress in the “rotated” configuration. Next we check for
yielding ¢ according to (4.4.16), i.e.,

3 .
Al = \/ o 1482 < oy (7.:3.23)

The case of no yielding is addressed below, after (7.3.35).

In the case of yielding the plasticity calculations are the same as in Sec-
tion 4.4.1 for small strains. Namely, the fundamental constitutive relations
of plasticity (4.4.18) and (4.4.20) have now the form (Eterovic and Bathe
1991b)

AeP = AN1HALS (7.3.24)

and

Ad = ANCHALS (7.3.25)

where the stress radius *4S, corresponds to the “rotated” configuration.
The scalar A\ is given by (4.4.24) where

A&l = At \/ ?, D?F-DP (7.3.26)

and

3 N .
Aty — At \/ [ TS, - A, (7.3.27)

Then the governing equation (4.4.29) is

t+At6.E
f(aet) = o —-1=0 (7.3.28)
tratg, + 2 (26 +C) AP

The stress radius ©+4S. follows from (4.4.23)

6 We here measure yielding using Cauchy stresses (in the rotated configuration). If
the experimental data refers to Kirchhoff stresses, these stresses should be used,
but the difference in solution results is small as long as the elastic strains are
small (assumed in this Section).
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R t+AtQE
Aty = y (7.3.29)

1+ (2G + é) AN
and the Cauchy stress deviator *74!S, can be obtained from (4.4.22),

HAlg = ta 4 (14 AXNC)ITALS, (7.3.30)

In order to determine the stress deviator *4tS corresponding to the Cauchy
stress ‘T4 the transformation to the configuration *4!B (see (7.3.14))
must be performed. Therefore we have

tHAtg o HHAIRE t+Atg (AR BT (7.3.31)

This transformation takes into account the fact that the true (Cauchy)
stresses are acting on the material planes that rotate during the material
deformations. We add the mean stress ‘4%, calculated from (7.3.20) as

tJrAto_m — t+At']71 tJrAta_*Em (7332)
to the deviator *+4%S, to obtain the Cauchy stress

tRALL _ tHAtg ALy (7.3.33)

Of course ¢4t

only.

As shown by Gabriel and Bathe (1995), the accuracy of the solution may
be improved by use of the a-method (0 < a < 1).

Finally, the plastic deformation gradient '*4!X” must be calculated for
use in the next time step. We integrate (7.3.11) (with use of (7.3.12) and
(7.3.24)) and obtain

o, is a diagonal tensor corresponding to the normal stresses

HAIXP = exp(Ael) EXP (7.3.34)

where
t+ At

e — / DPdr = A) tHALS (7.3.35)

t
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with initially JX* = 1.

In the case of no yielding in the time step, we calculate the mean stress
t+Atg,, from (7.3.32), and the deviatoric stress **4¢S from (7.3.31) where we
use the trial elastic deviatoric stress t+4¢SF (see (7.3.21)) instead of t+4¢S,.
Then the stress ‘T 4t7 follows from (7.3.33). Of course, the back stress and
the plastic deformation gradient remain unchanged.

Table 7.3.1 summarizes the computational steps for the stress calcula-
tion. The formulation is of course directly applicable to plane strain and
axisymmetric conditions, and the consistent tangent matrix is obtained by
differentiation, see Chapter 4, and Pantuso and Bathe (1997). Of course, this
formulation can also be extended to include thermal and creep effects (see
Pantuso and Bathe 1997).

Table 7.3.1. Stress integration for large strain plastic deformations
of a von Mises material

1. Trial elastic state
t+ At~y B _ t+ At~y O P
o Xy = 0 X X
t+ At E t+AtTTE t+At\E t+At_E o t+At_E
+OE*:ln+OU*:Zln+O)‘*A+ Pa ® + Pa
A

t+ALQE t+ At E t+At=F t+ At O E
+ S* =2G+0Ei + Tym — Cm +()-E'M'n
2. Elastic deformation

e Calculate mean stress ‘t4fo,,

t+Ato_m — t+ At Jfl t+At6_*E'm
e Calculate stress deviator ‘T4!S

t+At t+ At E t+AtQE (t+ At ENT

talg = tHAIRE tHAIGE (IHAIR F)
e Calculate Cauchy stress ‘t4tr

AL _ tHALg 4 t+ALy
Go to step 5

3. Plastic deformation — stress integration in the “rotated”
configuration
t+AtSE — t+AtJ71 t+AtSE _ td
e Solve the governing equation
f(Ag”)=0
e Calculate the Cauchy stress deviator
e Calculate stress deviator ‘T4¢S
A A
t+AtS — t+ OtR*E t+AtST (t-‘r OtR*E)T

t+AtS
-

4. Cauchy stress and updated plastic deformation gradient

t+At t+AtS + t+At J—l t+At —FE

T = Gim
t+A0tXP = exp(AeP) ExXF

5. End
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Instead of using the right elastic Cauchy-Green deformation tensor (see
(7.2.46))

el = (LxE)TExXF (7.3.36)

we can also use — in a second closely related approach — the left elastic
Cauchy-Green deformation tensor (see (7.2.48))

IBY = {XF(EXE)T (7.3.37)

In this case the elastic strains are measured in the configuration in which
the elastic rotations have not been removed (the “unrotated” configuration).
Then, in the stress integration procedure the history of plastic deformations
is followed by appropriate updating of the tensor {B¥ instead of the updating
of the plastic deformation gradient according to (7.3.34). This approach has
been proposed by Simo (1988), (1993a), and Simo and Meschke (1993b); see
also Peric and Owen (1992); Simo and Hughes (1998); Kojic et al. (1995d);
Kojic et al. (2002b); Kojic (2002c); and Montans and Bathe (200x) for further
developments and a variety of applications.

7.3.3 Examples

Example 7.3.1. Large Strain Isochoric Deformation of Material.
Calculate the stresses in case of two large strain isochoric deformations.
Consider
a) “Simple shear” of the material, according to the straining shown
in Fig. E.7.3-1a;
b) Mixed motion, defined by the stretch tensor (Gabriel and Bathe 1995),
see (7.2.63) and (7.2.71),

U ="RHA'RT (a)
where the rotation matrix is defined as
{ cosp(t) —sinp(t) 0 -|
'R =1 sinp(t) cosp(t) 0 (b)
0 0 1 J

and the stretch matrix is

1=
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Fig. E.7.3-1. Large strain solution for isochoric deformation of von Mises
material. a Kinematics of deformation in the case of “simple shear”, and
yield curve; b Shear stress for case a; ¢ Normal stress 71; for case a; d Mixed
motion, deformation patterns; e Shear stress in the case of the mixed motion;

f Normal stress 71; in the

case of the mixed motion
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The functions ¢(t) and A(t) change linearly with time, from /4 to 0, and
from 1.0 to 2.0, respectively. The material data for the von Mises material is
(in MPa):

Shear modulus G = 76.92 Bulk modulus K =166.67
Yield stress oy, = 0.75 Hardening modulus Ep = 0.00 for case a
Ep =2.00 for case b

The stress calculation is performed using the two approaches described in
Section 7.3.2, i. e., with use of the “rotated” and “unrotated” configurations.

a) We assume a perfectly plastic material in this case, i.e., Ep = 0. For
the stress integration using the left basis (Section 7.3.3) we need the relative
deformation gradient, which now is

1 A
t+ At~ Y
t X= [ 0 1 :| (d)

The results for the stresses are shown in Figs. E.7.3-1b,c. The same re-
sults are obtained with the algorithms using the “rotated” and “unrotated”
configurations. The analytical solution based on the Jaumann rate formula-
tion (Weber et al. 1990b) is also given in the figure. Note that the numerical
results for the shear (dominant) stress are very close to the analytical solu-
tion, even with a small number of steps. Some deviations from the analytical
solution are noticeable for the normal stress, but the deviations diminish with
an increase in the number of steps.

b) In this case we assume isotropic hardening (see Section 3.2) of the
material, with the constant plastic modulus given above. Several deformed
shapes of the material element are shown in Fig. E.7.3-1d, and the results
for the shear and normal stresses are shown in Figs. E.7.3-1e,f.

The numerical solution accuracy of the simple isochoric large strain de-
formations is presented in Gabriel and Bathe (1995).

Example 7.3.2. Plastic Deformation of Thick-Walled Cylinder.
Calculate the stresses and displacements for a thick-walled cylinder when
subjected to radial displacements at the inner surface. The material data are
given in Fig. E.7.3-2.

The solution is obtained using 20 initially equal 9-node axisymmetric finite
elements subjected to prescribed radial displacements at the inner surface of
the cylinder.

Fifteen equal steps are employed, with the full Newton-Raphson iterative
method including line searches. The number of iterations per step is 3. We
give here the unbalanced energies E; for the first step:

Iteration 1 2 3
Energy E; (Nmm) 1.39E07 5.72E02 3.16E-6
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Fig. E.7.3-2. Plastic deformation of the thick-walled cylinder. a Compres-
sive radial stress at the inner surface versus inner radius; b Radial stress
distribution through the wall (measured from the inner surface) for several
values of internal radius
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The initial unbalanced energy is E(g) = 2.74 x 10°.

Figure E.7.3-2a shows the radial compressive stress at the inner surface
as a function of the inner radius. The radial stress distribution through the
wall for several values of inner radius isshown in Fig. E.7.3-2b. Here the
radial coordinate is measured from the cylinder internal surface. Note that
the radial stress is equal to zero at the external surface. The results agree
with those reported in Simo and Hughes (1998).

Example 7.3.3. Compression and Tension of a Plane Strain El-
ement. A von Mises isotropic metal with the material data given in Fig.
E.7.3-3 is subjected to compression and tension under plane strain condi-
tions and free lateral surfaces. Friction at the contact surfaces is neglected.
Calculate dependence of the axial stress on the displacement of the top sur-
face of the specimen.

The solution is obtained using a uniform mesh of plane strain finite ele-
ments and prescribed displacements at the top surface. The compressive (and
tensile) stress 7, varies with displacements as shown in the figure (see also
Eterovic and Bathe 1990).

Note that the stress in compression is larger than in tension because
for the same absolute value of axial displacement, the absolute value of the
logarithmic strain ey, is larger in compression (see Fig. E.7.2-2).

Tension
Compression
3000
Stress Y Compression
Tyy | | 1.5
2500 | 1.0 1.0
N |
2000 - 05
Tension
1500 -
1000 -
o,=750+2000 &  [N/mm?]
E =2x10° [N/mm?]
500
v=0.3
0 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5

Displacement Uy

Fig. E.7.3-3. Compression and tension of a plane strain element
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Example 7.3.4. Plastic bulging of circular plate. A circular plate
connected to a rigid wall at the outer radius, is subjected to a normal pres-
sure increasing with time. The geometric and material data are taken from
Ibrahimbegovic (1994); Kojic (2002c):

R =24mm, §=0.314 mm
E = 6.867 x 10* MPa, v = 0.314, o, =177 (&")°2® MPa

Calculate the deflection of the plate under large strain conditions.

Two finite element models are employed: (a) an axisymmetric solid ele-
ment model, and (b) a shell model (shown in Fig E.7.3-4a). The change of
the shell thickness ¢ in the time step is taken into account using

Aty — 1§ exp(Ae..)

where Ae, . is the increment of the normal strain through the shell thickness.

The solution is obtained using 105 constant increments of pressure, and
the final deformed configuration is shown in Fig E.7.3-4a. The dependences
of the pressure and plate thickness at the central point on the displacement
of the central point are shown in Figs. E.7.3-4b,c. The results obtained using
the two finite element models are practically the same and agree with those
reported in Ibrahimbegovic (1994).

Example 7.3.5. Tension of a Circular Bar (Gurson Material
Model). A standard smooth tensile circular specimen with the dimensions
given in Fig. E.7.3-5a is used to characterize the material behavior and to
identify the critical damage parameters for ductile tearing at room temper-
ature, Brocks (1995). The material is assumed to be given by the Gurson
material model (see Example 4.5.11). The material constants are as follows:

Young’s modulus E = 250 Gpa

Poisson’s ratio v =0.3

The uniaxial yield curve (see (3.2.7) and (3.2.51))

oy, = 468.5 + 445.4 (7036

Material constants of the Gurson model: ¢; = 1.5, ¢o = 1.0, g3 = 1.5.
The initial porosity fo = 0.002; the failure porosity f; = 0.315; the critical
porosity f. = 0.05.

One half of the bar is modeled due to symmetry with the boundary con-
ditions shown in the figure. Two-dimensional 8-node axisymmetric elements
(168 elements) are used and the loading is applied through the prescribed
displacements (Kojic et al. 2002b).

The final end displacement of 3.625 mm (half of the total specimen elonga-
tion) is reached in 29 equal load steps. The force-elongation and force-change
of diameter relations are shown in Figs. E.7.3-5b,c. The experimental results
reported by Brocks (1995) are also shown in the figures.
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Fig. E.7.3-4. Plastic bulging of circular plate. a Final shape and finite el-
ement mesh; b Pressure - central point displacement dependence; ¢ Depen-
dence of plate thickness on displacement at central point
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Fig. E.7.3-5. Tension of a circular bar (Gurson material model). a Geom-
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A Summary of Elastic and Thermoelastic
Constitutive Relations

The elastic and thermoelastic constitutive relations are applicable when the
material deformations are elastic or inelastic. The expressions are written in
the form used in this book. More details are given in, e.g., Timoshenko and
Goodier (1951); Wang (1953); Sokolnikoff (1956); Mendelson (1968); Fung
(1969); Crandall et al. (1972); Jones (1975); Desai and Siriwardane (1984);
Bathe (1982, 1996).

Isotropic Elastic Material. We use the indices 1,2,3 and z,y, 2z for
the Cartesian components. Here we will use constitutive matrices, with two
indices (not constitutive tensors of the fourth-order which correspond to the
second-order stress and strain tensors), hence we write the stress and strain
tensors o and e using the one-index matrix notation? :

ol =01, 02, ..., 0g) (A1.1)

where

01 =011, 02 =022, 03 =033

04 =012, 05 = 023, O = 031 (Al.2a)
or, with use of the indices z,y, z,

01 =0gg, 02 =0yy, 03 = 0z

04 = 0Ogy, 05 = Oyz, 06 =0z (A1.2b)
and
éT = [61, €2, ..., 66] (Alg)
where

€1 = €11, €2 = €23, €3 = €33
€4 = Y12, €5 = V23, €6 = V31 (Al.4a)

or, with use of the indices z,y, z,

! This notation is also referred to as the Voigt notation
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€1 = €gg, €2 = €yy, €3 = €3

€4 = ’Yzyv €5 = ’sza €6 = ’Yzz (A14b)

Note that instead of the tensorial shear components ej2, es3 and ez, the
engineering strains vy, = 2e12, Y23 = 223 and 731 = 2e31 (0T Vuys Vyzs Vaz)
are used in the vector & The engineering shear strain components are used
because in engineering practice the elastic constitutive matrix is formed as-
suming use of the engineering shear strains.

We call & the strain vector. The “overhat” sign is also used for other
strain vectors to indicate that the engineering shear strain components are
used, such as: the elastic strain &7, the plastic strain &, the creep strain &
and the viscoplastic strain &VF.

The elastic constitutive relations for an isotropic material in general three-
dimensional deformations are given as

o =Clel (A1.5)
and
et = (CcH) e (A1.6)

where C¥ is the elastic constitutive matriz, and (C¥)~! is the elastic compli-
ance matriz. The coefficients of these matrices can be expressed in terms of
two independent material constants, e.g., Young’s modulus E and Poisson’s
ratio v :

ck = E(1-v)
1+ v)(1 - 20)
( 1 1fy liu 0 0 0 ]
14 14
T T 0 0 0
lzy 1zy 1 0 0 0
X s (A1.7)
0 0 0 o 0
0 0 0 0 21— ) 0
L 0 0 0 0 0 ;;};_

and
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1/E —v/E —-v/E 0 0 0
-v/E 1/E —v/E 0 0 0
ev-1__ | —V/E —-v/E 1/E 0 0 0
(5™ = 0 0 0 1/G 0 0 (AL8)
0 0 0 0 1/G 0
0 0 0 0 0 1/G
where G is the shear modulus
G =05E/(1+v) (A1.9)
If we introduce the mean stress o, and the mean elastic strain eZ as
om = (01 + 02 +03)/3 (A1.10)
el = (e +eb +¢ef)/3 (A1.11)
then
Om = Cmel no sum on m (A1.12)
where
E
= Al1
mT 1o (AL13)
Also,
om = Keb (A1.14)
where
1
K = 4 Cm (A1.15)

is called the bulk modulus of the material, and e¥ is the elastic volumetric
strain

et =ef + efy +ef =3l (A1.16)

We can relate the deviatoric stresses .S,

Sij = 0ij — Om 04j (A1.17)

to the elastic deviatoric strains e;f ,
\E _ _E _ E L
1E

ez']' —

1 C
275 i#£j (A1.18)

as
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Si; = 2G el (A1.19)

The above elastic constitutive matrix C¥ can be directly used for the
plane strain and axisymmetric conditions shown in Fig. A1.1. For plane strain
deformations we need the relations between the stress components 04,0y

and o0,y and the corresponding strain components. The matrix CF reduces
to

T Yy Ty
v
1 0
1—v
E(1-v) v
CF = A12
1+v)Q-2v) | 1—v 1 1 02 ( 0)
—2v
0 0 2(1 —v)

Note that the normal stress ¢, can be obtained from the relations (assuming
elastic deformation)

ezEz =0=[-v(0w toyy) t0::]/E
and consequently

Oz = V(0gg + Oyy) (A1.21)

In the case of axisymmetric deformations (the radial plane is z,y) we have

T Yy Ty zz
r 14 14
1 1—v 0 1—1/}
14 14
1 0
cr= Fl-v) tov tov (A1.22)
(14 v)(1-2v) 1—-2v '
0 0 0
2(1-v)
14 14
0 1
L1-v 1—-v J

We have interchanged here the third and fourth columns as it is usually done
in applications (e.g., Bathe 1996).
In the case of plane stress conditions (see Fig. Al.1b) we impose the
condition 0., =0 in (Al.5) and obtain
B v

eL=—_ (el +eb) (A1.23)
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2

Radial plane

Fig. A1.1. Two-dimensional problems. a Plane strain deformation; b Plane
stress conditions; ¢ Axially symmetric deformation
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Substituting this expression for eZ, we obtain the constitutive matrix

1 v 0
E
CE = v 1. 0 (A1.24)
1— 2 1—
1o o v
2

This corresponds to static condensation of the e.. “degree of freedom” (see
Bathe 1996).

The static condensation for plane stress analysis is directly applicable to
the shell conditions. Assuming a local orthogonal Cartesian coordinate system
r,s,t, with the axis ¢ in the direction of the shell normal (Fig. Al.2a), and
imposing the condition oy = 0, we obtain

rr ss tt rs st tr
1 v 0 0 0 0 ]
v 1 0 0 0 0
0 0 O 0 0 0
E 1—v
CE:l ) 0 0 O 9 0 0 (A1.25)
—v
1—
000 0 2" 0
1—v
_0 0 0 0 0 9 |

The zero-row and zero-column is a convenience in the applications of this
matrix.

In the case of a curved membrane, the transversal shear terms are equal
to zero,

Yrt = 0 Vst = 0
Oprt = 0 Ost — 0 (A126)

Hence the constitutive matrix (A1.25) reduces to the matrix (A1.24) but
corresponding to the tangential r, s plane.

The beam conditions can be considered to be a special case of the shell
conditions. In the case of the beam shown in Fig. A1.2b we have

Ogs =0y =05 =0 (A127)

We use the additional condition o4 = 0 and the matrix (A1.25) reduces to
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Tangential plane
at point P

Fig. A1.2. Stresses in shell and beam. a Shell stresses; b Beam stresses
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rr rs rt
1 0 0
0 1 0
CP =F 2(1 4 v) X (A1.28)
0 2(1+v)

where (again) we assumed an orthogonal coordinate system.

Isotropic Thermoelastic Material. A temperature change affects the
elastic material constants, and causes thermal strains. Hence

E =E(@9)
v=v(d) (A1.29)

and for a temperature 'f at a time ¢t we have that

tE = E|9:t9
tl/ = V|9:t9 (A130)

are the known values.
In an isotropic material the thermal strains teg;-H are

el = ' ("0 = Orcp) 0y (A1.31)
where ‘a is the coefficient of thermal expansion of the material, and 6,y
is the reference temperature for which the thermal strains are equal to zero.
Note that only normal thermal strains are created by the temperature change,
that is, shear thermal strains do not exist.

The principle of superposition of thermal strains with other strains in the
material is applicable. Therefore, the total strain ‘e at a material point of a
thermoelastic material is

te = tell  telH (A1.32)

Consider next the thermoelastic constitutive relations. Using (A1.6) and
(A1.32) we obtain

&= (tCE)—l to_ + teTH (A133)
and
to = tCF (te - telH) (A1.34)

where *CP corresponds to temperature *f. Note that, since the shear compo-
nents of the thermal strain are equal to zero, it follows that 87H = eTH . All
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previously written elastic constitutive relations are applicable. For example,
(A1.12) and (A1.19) are now

tom = tem (tey, — teTH) (A1.35)
and
S =2'G ey (A1.36)
where the elastic constants are
tE tp
ey = G = Al
=g _on, CT a1 (AL37)

Constitutive Relations for Elastic Orthotropic Materials. For an
orthotropic material with the three principal, mutually orthogonal axes a, b,c,
also called the material azes, the elastic compliance matrix has the following
form, using the convention in Jones (1975),

aa ) cc ab be ca

[ 1/E, —Vba/Ey —Veo/Ee 0 0 0 W
_Vab/Ea I/Eb _Vcb/Ec 0 0 0
(CE)il = _Vac/Ea _Vbc/Eb I/Ec 0 0 0
0 0 0 1/Gap 0 0
0 0 0 0 1/Gp. 0

i 0 0 0 0 0 1/Geq J

(A1.38)

Here E,, E}, and E. are the Young’s moduli for the material axes a, b and c,
and the v;; are the Poisson ratios for these axes. The Poisson ratio vy, for
example, represents the ratio between the elastic strains eZ and eﬁ when
the material is subjected to the uniaxial stress in the b-direction, i.e.,

E
_ €aa

Vpa = — E
€bb

opp=0, other o;;=0

Or, in general

E
it
E
JJ

Vji:_

(A1.39)

ojj=0, other 0i;=0

where the indices i, j stand for a, b, c. The coefficients G, Gy and G, rep-
resent the shear moduli for the a — b, b — ¢ and a — ¢ planes, respectively. The
compliance matrix is symmetric, and therefore the following relations must
be satisfied
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Vab Vba Vpe Veh Vac Vea

Ea Eb Eb Ec Ea Ec ( )
Hence, the compliance matrix (A1.38) contains nine independent material
constants.

By inverting the compliance matrix (A1.38) we obtain the nonzero terms

ch,
1 — vpelep E 1 —vapvp,
Cfi = Ciy =
H EyE.D 33 E,E,D
Vpa + VeaVbe E
Ch = CcEk=aG
12 E,E.D 44 ab
E Vea + VbaVeb E
- = Gy Al41
013 EyE.D 055 Gy ( )
1 —v,ev
CE — acVca CE — Gca
22 EQECD 66
CE _ Vep + VabVea
# E,E.D
where
1- VabVba — VbeVeb — VacVea — 2’/ba’/ac’/cb
D = Al1.42
E,E,E, ( )

is the determinant of the 3 x 3 left-hand side top matrix in (A1.38).

The constitutive matrix and the compliance matrix must be positive def-
inite. From this condition some restrictions on the values of the material
constants can be derived, see, e.g., Jones (1975).

In the case of orthotropic shell deformations we assume that the c-material
axis is in the direction of the normal ¢, as shown in Fig. Al1.3. The stress
through the shell thickness must be zero, and using (A1.38) we obtain

1 Vba Vab 1
OB B Oga — Opp 65) = _Ea Oaa + B, Obp (A143)

Solving for o,, and oy, and with use of (A1.40) we obtain the constitutive
matrix for a shell,

aa bb cc ab bc ca
r Ea VabEb 0 0 0 0 T
1-— VabVba 1- VabVba
Vas B B 0 0 o
CE — 1-— VabVba 1- VabVba (A144)
0 0 0 O 0 0
0 0 0 Gab 0 0
0 0 0 0 Gy O
L 0 0 0 O 0 Geq
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Tangential plane
at point P

Fig. A1.3. Local orthogonal shell axes r,s,t and material axes a,b,c of
orthotropic shell

In practical applications the strains are calculated in the local shell coordinate
system 7, s, t, and the material axes a, b, ¢ differ by the rotation « around the
t-axis, as shown in Fig. A1.3. Therefore, either the transformation of the
strains to the material axes, or the transformation of the constitutive matrix
to the shell local system, is necessary. If the stresses and constitutive matrix
are required in the coordinate system z,y, z, the additional transformations
from the r,s,t to the z,y, z coordinate system are required.

In the case of a membrane, the constitutive matrix has the form (A1.44),
except that the columns and rows corresponding to the transversal shear
actions ac and bc contain the zero terms. Hence, we have a plane stress
deformation in the plane a,b and the constitutive matrix is

aa bb ab
E, Vap By 0
1—vevpe 1—veplia
Cct = Vab Ep Ey 0 (A1.45)
1—vaVhe 1—VapVia
0 0 Gap

The constitutive matrix for the beam conditions can be derived from the
general constitutive matrix C¥ with the coefficients (A1.41). Then the trans-
formation to the beam coordinate system shown in Fig. A1.2 must be per-
formed, followed by the static condensation to satisfy the conditions (A1.27).

Thermoelastic Constitutive Relations for Orthotropic Materials.
The constitutive relations (A1.33) and (A1.34) for the material axes are
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ta _ (tBENTL ot t TH
e= (C ) o+ ‘e ‘material axes (AL.46)

and

t  _ tE (ta t,. TH
o="C (e_ e )|materia1 axes (A1.47)

with (*C¥)~! and ‘Cf; defined by (A1.38) and (A1.41). The material con-
stants are known functions of temperature and the thermal strains are

fertl =t (0= Breg) el = o (9= Breg) 'l =t (10— i)

=0 i#j (A1.48)

where fa,, oy and ta. are the coefficients of linear expansion in the direc-
tions of the material axes.

Note that (A1.46) and (A1.47) are the constitutive relations from which
the constitutive relations for other coordinate systems, or for the special cases
of shell, plane stress, plane strain, axisymmetry and beam deformations can
be derived.

Transformation of the Constitutive Matrix. It is important for prac-
tical applications to know how to transform a given constitutive matrix for a
change of coordinate system. The constitutive matrix transformation follows
from the fact that the stress and strain quantities are tensors, hence their
components change according to the tensorial rules (see (A2.24) in Appendix
A2).

Let z; and T; represent two Cartesian coordinate systems. Then the tensor
transformations of stresses and strains (see, e.g., Wang 1953; Bathe 1996) can
be written as

;i = TS, o (A1.49)

and
e; = iek er (A150)

where T? and T€ are the transformation matrices. Here the repeated indices
k imply summation, k = 1,2, ...,6. Also,

o =T5 o =Tf, ok (A1.51)

and
e; = 7;,9 € = Tlgz €k (A152)

where T? and T¢ correspond to these transformations. We next define the
transformation matrix T as
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I o T3

i‘] 41 m; ni
T = To 62 ma Ny (A153)
i‘g 63 ms3 N3
with components
Tji. = cos(ij, ix) (A1.54)

where i and i; are the unit vectors of the coordinate axes zj, and z;. Then
the matrices T? and T¢ are

T =
é% m% nf 2@1777,1 2m1n1 2711(1
[% m% n% 2€2m2 277?,2712 2712(2
Z% m% n% 2€3m3 2m3n3 277,363

lily mims ning Lima +mily ming +nime nils + fine
U3 moms mnang  fomz + maols maong +noms  nals + fong
6351 ms3mn nznq €3m1 + 77?,3(1 ms3ni + ngmiq n3€1 + €3n1

(A1.55)
T =
E% m% n% Elml ming n1€1
[% m% n% €2m2 mony n2€2
[% m% n% €3m3 msansg 7’L3€3

251(2 2m1m2 2”1712 €1m2 + mlfg mins + nims n1€2 + 51712
252(3 2m2m3 2”2713 €2m3 + 77?,263 mans3 + nams n2€3 + 52713
253(1 2m3m1 2”3711 €3m1 + 77?,3(1 msni + namy n3€1 + €3n1

(A1.56)
Of course, (A1.51) and (A1.52) tell that
T = (T97 (A1.57)
T = (T°)7 (A1.58)
and we have that
(T°)T'Te =14 (A1.59)

where I is the 6 x 6 identity matrix.
The transformation (A1.49) can also be written in the form
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[647] = [Toan] lowa] [Trs]" (A1.60)

according to tensor transformation (A2.24). Also, using the tensor compo-
nents e;; of strain, the same transformation (A1.60) is applicable

(€] = [Tonn) [ed] [Trs]” (A1.61)

Note that the transformation matrix T and the transformation (A1.49) can
be applied to any symmetric second-order tensor, while the transformation
(A1.50) contains the definition of doubled shear terms (Al.4).

From the transformations (A1.49) to (A1.52) and the constitutive rela-
tions (A1.5), follows

Cl =15 Co.Ts, (A1.62a)
or, in matrix form,
CP =17 CF(T)T (A1.62b)
Also,
CF = (T9"TCF T° (A1.63)

where C¥ and CF correspond to two coordinate systems. In the case of an
isotropic elastic material, see the constitutive matrix (A1.7), we have

ct=c¥ (A1.64)

for any coordinate system. This is also true for the matrices (A1.20) and
(A1.22) and any coordinate system obtained by rotation about the z-axis.
Also, for the constitutive matrices (A1.24), (A1.25) and (A1.28) obtained by
the static condensations, the relation (A1.62) holds only for the rotations
about the z-axis, t-axis and r-axis, respectively.

The relations (A1.62) and (A1.63) are also applicable to a general consti-
tutive matrix. For example, in the case of the constitutive relations

do = Cdé (A1.65)
the constitutive matrix C transforms according to (A1.62) and (A1.63),
C=1°C(T)" (A1.66)

and
C=(T9)’CT" (A1.67)
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Notation - Matrices and Tensors

In this Appendix we list some basic relations for matrices and tensors used
in the book only to introduce the notation employed. For the theory and use
of matrices and tensors, see, e.g., Green and Zerna (1960); Malvern (1969);
Bathe (1996); Chapelle and Bathe (2003).

Vectors/Matrices. Let b be a vector of dimension n

b
ba

b= ’ (A2.1)
bn
where by, bs,...,b, are the components of the vector. The transpose of b,
denoted by b, is the 1 x n matrix,
b? = [b1bs.....by] (A2.2)

The vectors in (A.2.1) and in (A.2.2) are called a column vector and a row
vector, respectively. A vector with three components has the geometric mean-
ing shown in Fig. A2.1.

A two-dimensional square matrix B of dimension n is

Byy Bia . . . B,
Bsy By . . . DB,

B |- ) o (A2.3)
Bnl Bn2 ce . Bnn

where B;; are the components of the matrix. The square matrix is symmetric
when

Bij=Bj;  i,j=1,2,...n (A2.4)

The basic matrix operations used are as follows.
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Fig. A2.1. Geometric representation of a vector in 3-D space

The addition (subtraction) of vectors a and b results in vector c,

c=a+b (A2.5a)

or, in component form,
c; =a; +b; 1=1,2,...,n (A2.5b)

The addition of matrices A and B results in the matrix C,

C=A+B (A2.6a)

or, in component form,
Cij = Asj + By i,j=1,2,..,n (A2.6b)

The multiplication of vectors a and b gives the scalar c,

c=a’b=bla=ab, = Z agby (A2.7)
k=1

which is called the scalar product of vectors a and b. We use, as indicated,
the summation convention: repeated indices in an expression imply summa-
tion. We also use

C=ab” (A2.8a)

with components
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Cij = a;b; (A2.8b)
The multiplication of a matriz A by the vector b gives the vector c,
c=Ab (A2.9a)
with components

Ci = Aikbk = ZAzkbk (A2.9b)
k=1

The multiplication of matrices A and B gives the matrix C as

C=AB (A2.10a)
with components
Cij = Aip By (A2.10b)
Note that
cT =BTAT (A2.11a)
or in component form
(CT)ij = Bridjn (A2.11b)

The scalar product of matrices A and B results in the scalar ¢ as
c=A -B= AijBij (A212)

The inverse matriz of a matrix B, denoted as B~!, is the matrix that
satisfies the relation

B 'B=BB '=1I (A2.13)
or in component form
By By = Ij (A2.14)
where
Lij = 6; (A2.15)

are the components of the identity matriz I. Here the §;; is the Kronecker
delta symbol which is defined as

Sij=1 i=j
§ij=0 i#j (A2.16)

The determinant of a 3 x 3 matrix B, denoted as det B, is defined as
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det B = eijkBliBQjB3k (AQI?)

where e;;;, is the permutation symbol, with

eijr = 0 for 1=j,or j=k, ork=1
eijk = 1 for even permutation of 1,2,3 (A2.18)
eijr = —1 for odd permutation of 1,2,3

Tensors. Tensors are represented by components corresponding to the
base wvectors of a coordinate system. We use Cartesian systems only and
tensors are represented by components corresponding to the unit vectors of
the Cartesian system (see Fig. A2.1).

A first order tensor (or vector) b is defined as

b=>byi, k=123 (A2.19)

where the by, are the components, and the i; are the unit vectors of the
Cartesian system. A geometric representation of the the relation (A2.19) and
of the vector components is shown in Fig. A2.1.

A second order tensor B (in this book called tensor) is defined as, using
the tensor product symbol ®,

B = Bpim ®i,  i,m=1,2,3 (A2.20)

Here, a repeated index implies summation. This representation of tensors is
called the tensor (or direct) notation. Comparing (A2.1) with (A2.19), and
(A2.3) with (A2.20), it can be seen that tensor components can be represented
in matrix form.

In a coordinate system with unit vectors i (see Fig. A2.1), the vector b
and tensor B are

b = by (A2.21)

and
B=Bnin®1, (A2.22)

The relations between tensorial components in the two coordinate systems
are given as

by = Trnkbr (A2.23a)

and

Bij = Tik BemTjm (A2.24a)

where T}, gives the cosine of the angle between the unit vectors ir and
im, see (A1.54). The relations (A2.23a) and (A2.24a) represent the tensorial
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transformations of first order and second order tensors. Using matrix notation
we can write the relations (A2.23a) and (A2.24a) as

{b:i} = [Ton] {1} (A2.23b)

and
[Bij) = [Twn] [Bua] [Trs]" (A2.24b)

In analogy with the above mathematical relations for matrices, we give
some basic relations for tensors (Malvern 1969, Chapelle and Bathe 2003).
The scalar (inner) product of two vectors a and b is

c=a- b =aby (A2.25)

giving the scalar ¢ (see (A2.7)). The dot product (multiplication) of tensor
A and vector b gives vector ¢ according to the relation (see (A2.9))

C = cCpin, = Ab = Ampim & ip <brip = Aprbrim (A226)
where we have used the orthogonality condition
ip ik = Opk (A2.27)

The dot product (multiplication) of tensors A and B gives tensor C as (see
(A2.10))

C = Crunim ®in = AB =4, Bipim @ in (A2.28)

where again we have used the orthogonality condition (A2.27). We also use
the notation that the scalar (inner) product between two tensors A and B is
(see (A2.12))

c=A-B :AijBij (A229)
The FEuclidean norm of a vector b is
[Ibl| = (bibi)'/? (A2.30)

and of a tensor B is
IBJl, = (By;By)"/? (A2.31)

The rotation tensor R corresponding to two sets of orthonormal vectors
i, and i,, is defined from the relation

i = Riy, (A2.32a)

or in component form, with respect to the coordinate system z; with the
unit vectors i,
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Gm)k = Rkp 5pm = Rim (A2.32b)

From this relation follows that the components of the rotation tensor in the
coordinate system xj are

Rji, = cos(ij, i) (A2.33)
Comparing this expression with (A1.54) we obtain
Rij = Tji (A2.34a)
hence
R=T" (A2.34b)

where T is the transformation matrix. A geometric interpretation of the
relations (A2.32) and (A2.34) is shown in Fig. A2.2a. Also, if we multiply a
vector b by the rotation tensor, we obtain

b=b,; = Rb (A2.35)

where b is the rotated vector.

To illustrate the difference between the transformation of vector compo-
nents and a vector rotation, we consider the example shown in Fig. A2.2b.
The transformation matrix and the rotation tensor are

cosa sina

T=R'= —sina  cosa (42.36)
The multiplication Tb according to (A2.23) gives
by =bcos(p —a), by =bsin(¢p — ) (A2.37)
while the multiplication Rb gives
by =bcos(p+a), by =bsin(d + ) (A2.38)

where b is the Euclidean norm (modulus) of the vector b, see (A2.30). Obvi-
ously, in (A2.37) the same vector b is simply expressed with its components
in the rotated coordinate system Zi,Zo; while the multiplication Rb leads
to another vector B, which is rotated with respect to the vector b, and the
components are given in the coordinate system 1, z-.

In general, if two sets of orthonormal vectors are defined as p, and pq,
then the rotation tensor is given as

3
R =) Po®Pa (A2.39a)

a=1
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o«
e T =cos(iin) Ry, 00s(iv )
2
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\

i1= Ruii +Ry i
,=RpitRy 0,
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- X,
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————— —_—
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Ryl 14 !

Fig. A2.2. Geometric representation of change of coordinate basis and ro-
tation (2-D). a With the definition of the rotation tensor R; b Rotation of a
vector

or in component form

3
Rij = Z(I_)a)z (Pa); (A2.39b)
a=1
Also, we have that
Pao = Rp, (A2.40a)

or in component form
(Pa)i = Rik(Pa)k (A2.40b)
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The rotation tensor is orthogonal because it satisfies the orthogonality
condition

RR” =1 (A2.41)

Obviously, the transformation matrix T is also an orthogonal matrix.
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List of Main Symbols

In this Appendix we give a list of the most frequently used symbols in the
book. For convenience of reading, these symbols are also defined in the text
when they appear first time.

a) Alphabetic Symbols

¢
?B
tBL

t
BNL

c o
Q

0}
&

ool
- NN RE
Nk 23

N

Q

CDS}('D)(‘D)CDCDCD(‘D(‘D

o
< '®
b

D O O

€m

left Cauchy-Green deformation tensor
linear strain-displacement matrix
nonlinear strain-displacement matrix
material body, configuration
constitutive matrix

elastic

elastic-plastic

viscoplastic

elastic-plastic-creep
plastic modulus tensor in hardening
right Cauchy-Green deformation tensor
strain rate tensor
strain tensor (tensorial shear strain components)

creep

elastic

generalized

logarithmic

inelastic

plastic

thermal

viscoplastic

trial elastic at end of time step
strain vector (engineering shear strain components)

creep

elastic

plastic

viscoplastic

trial elastic at end of time step
void ratio
mean strain
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7%

Ep
Er

f(p)
fc

fop

D

= X

VTS Z2=F

effective plastic strain (von Mises yield condition)
volumetric strain
Young’s modulus of elasticity
plastic modulus
tangent modulus
function, porosity for Gurson material model
function of the governing parameter p
yield function, in general and for metals

for cap yield conditions

for Drucker-Prager yield conditions
force vector
elastic shear modulus
iteration counter in equilibrium iterations
identity matrix
Jacobian matrix
second invariant of stress tensor
proportionality coefficient for viscoplastic models, material
constant for cap plasticity models, trial number in solving
the governing equation
stiffness matrix
mixed hardening parameter (von Mises yield condition),
material parameter (Cam-clay model)
normal to yield surface
number of nodal points of a finite element
shape coefficient matrix (Hill’s material model)
governing parameter
hardening function (axis of ellipse) in Cam-clay model
principal vectors of the right basis

of the left bases
deviatoric stress in triaxial test of soil
plastic potential in nonassociated plasticity
natural coordinate of a finite element
Lankford coefficient (orthotropic sheet metals), angle = 0°

=459
=90°

ratio of semiaxes in Cam-clay model, radius (size) of yield
surface (von Mises yield condition)
rotation tensor
natural coordinate of a finite element
deviatoric stress
radius of yield surface (von Mises yield condidtion)

Al Second Piola-Kirchhoff stress

time (real time) or parameter to denote load or strain level,
natural coordinate of a finite element
transformation matrix
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TD'

sussgas

WE

I
v

E
XE
xP

Rolals

List of Main Symbols

for strains
for stresses
displacement vector, at a material point
at a nodal finite element point
right stretch tensor
specific volume of soil
volume of material
left stretch tensor
internal work per unit volume
elastic
plastic
position vector
position of cap for cap soil plasticity model
deformation gradient
elastic
trial elastic
plastic

b) Greek Symbols

(07

T 3 ol
= L&z ®eR
*

material constant for cap soil plasticity models, hardening
function for a general soil plasticity model, thermal expansion
coefficient
back stress (von Mises yield condition)
internal variables
proportionality coefficient in stress - creep strain relations
Kronecker delta symbol (=1, for ¢ = j; = 0, for i # j)
increment in time step of a quantity (*)
viscosity coefficient
temperature
proportionality coefficient in stress - plastic strain relations
stretch from initial to the current state of deformation
Poisson’s ratio
yield stress

initial
effective stress (in von Mises yield condition)

reduced
equivalent stress (in Hill’s yield condition)
mean stress
engineering stress
elastic stress solution in time step
conjugate stress in viscoplasticity, effective stress in soil
true (Cauchy) stress
generalized stress measure
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Index

additive decomposition, 350, 353
algorithm characteristics

— accuracy, 108, 147, 182

— efficiency, 108

— robustness, 106

— stability, 118

associated flow rule, 68
associated hardening law, 72
associated plasticity, 319
associated viscoplasticity, 220
axial

— force, 78, 162, 236, 237

— strain, 74

— stress, 82, 155, 233, 273, 298
axisymmetric conditions, 370
axisymmetric problem, 138

back stress, 64, 129, 250

Barlat’s models for sheet metals

— six-component model, 96

— tri-component model, 97

base vectors

— left, 333

— right, 333

Bauschinger effect, 43, 67

beam

— bending, 156

— elastic constitutive matrix, 372

— elastic-plastic deformation, 154

— orthotropic, elastic-plastic defor-
mation, 194

— stiffness, 241

— thermoelastic-plastic and creep
deformation, 232

— viscoplastic deformation, 257

bilinear stress-strain relation, 42,
50, 74, 153

bisection method, 13

bulk modulus, 130, 286, 302, 369

Cam-clay

model formulation, 300

— stress integration, 305

triaxial compression test, 312

— yield condition, 304

cantilever, 240

cap model, 280

— generalized, 284

— with plane cap, 281

cap yielding, 289

Cauchy stress, 28, 39, 340, 350

closest point projection, 115

coefficient of thermal expansion,
216, 374

compatible deformations, 351

complementarity condition, 73

compliance matrix, 195, 198, 368,
375

compressibility, 265

configuration of a body (system)

— at end of time step, 28, 112, 329

— at start of time step, 28, 112, 329

— fictitious (conceptual), 335, 337,
354

— initial, 325

— local stress-free, 350

— reference, 28, 323

— rotated, 353, 361

— undeformed, 40

— unrotated, 359, 361

conjugate stress, 248

consolidation, 268

consolidation time, 268

constitutive relations

— creep, 213

— elastic, 130, 189, 368

— elastic orthotropic, 375

— for the back stress, 132

— orthotropic thermoelastic, 377

— plastic, 278

— tangent uniaxial, 151
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— thermoelastic, 374

constitutive tensor (matrix), 29

— beam (elastic), 372

— consistent tangent, 109

— consistent tangent elastic-plastic,
141, 193, 290, 317

— consistent tangent elastic-plastic-
creep, 231, 244

— consistent tangent viscoplastic,
254, 257

— elastic, 113, 350, 368

— elastic (axial symmetry), 370

— elastic (plane strain), 370

— elastic (plane stress), 372

— elastic (shell), 372

— elastic deviatoric, 139, 253

— elastic-plastic, 118, 122

— orthotropic elastic shell, 376

— orthotropic membrane, 377

— tangent, 30

conventional triaxial compression,
273

conventional triaxial test, 311

convergence criterion, 25

— displacement, 25

— energy, 25

— force, 25

convex yield surface, 73, 86, 97,
118

Coulomb friction slider, 217

creep curve, 203

creep deformations, 201

creep law

— eight-parameter, 206

— exponential, 206

— power, 206

creep model

— uniaxial, 204

— multiaxial, 213

creep recovery, 205

creep relaxation, 205

creep stage

— primary, 203

— secondary, 203

— tertiary, 203

critical

— deviatoric stress, 276, 304
— shear stress, 270

— specific volume, 276

— state, 270, 275, 304, 308

— state line, 276

— void ratio, 276

cutting plane procedure, 127

Darcy’s law, 267

dashpot, 217

deformation gradient, 326

— elastic, 350

inverse, 327

— plastic, 350, 357

relative, 328

deformation tensor

— Cauchy-Green left, 331

— Cauchy-Green right, 331

— Finger, 331

deformation theory of plasticity,
50

determinant, 383

deviatoric plane, 56, 165, 250

deviatoric strain, 131, 251, 369

deviatoric stress, 46, 130, 251, 369

dilatancy, 270

displacement vector, 23, 112, 326

distortion strain energy, 46, 55

drained conditions, 267

Drucker-Prager model, 281

effective creep strain, 214

effective creep strain rate, 213

effective deviatoric plastic strain,
315

effective plastic strain, 58, 130, 225,
315

effective stress, 56, 214, 225

effective stress (for geological ma-
terials), 265

effective stress principle, 266

effective viscoplastic strain, 250

effective volumetric plastic strain,
315

effective-stress-function, 134



effective-stress-function algorithm,
108

eigenvalue, 333

eigenvector, 333

elastic limit, 40

elastic predictor, 114

elastic unloading, 61, 73

elliptical cap, 285

equation-of-state method, 206

equilibrium equations, 32, 178, 242

equilibrium iterations, 24, 29, 107,
169, 179

equivalence of plastic work, 54, 185

equivalent plastic strain, 88, 120

equivalent stress, 87

estimated creep strain increment,
242, 244

Euclidean norm, 57, 225, 330, 385

Euler integration method, 111, 132,
224, 247

explicit

— solution algorithm, 3

— stress integration method, 124

failure surface, 287

finite element discretization, 325
flow rule, 68, 132, 185

fluidity parameter, 219

force vector

— external, 3, 23, 28, 106

— internal, 3, 23

— nodal, 32, 107

general soil plasticity model

— conventional triaxial test, 318

— model formulation, 314

— stress integration, 316

geological material, 263

geometrically nonlinear problem,
21, 27, 321

governing parameter, 109, 134, 145,
153, 186, 225, 252, 288, 289, 308

— equation, 110, 134, 141, 155, 191,
236, 252, 288, 308, 356

— function, 109, 116, 137
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— method application in plasticity,
115, 316

— method application in thermo-
plasticity and creep, 225

— method application in viscoplas-
ticity, 249

— method formulation, 108

Gurson material model, 184, 364

hardening

cap, 284

— function, 315

— in viscoplasticity, 219

— isotropic, 43, 67, 135, 176

— kinematic, 43, 67, 136, 176

- law, 97, 114, 285, 301

— mixed, 44, 64, 66, 67, 135, 176,
250

— regime, 308

hardening in creep

— strain, 208

— time, 208

Hill’s basic model for sheet metals,
91

Hill’s orthotropic plasticity model,
85, 188

Hill’s plasticity model for sheet met-
als, 94

hoop stress, 82, 155

identity matrix, 383

impermeability, 267

implicit, 3

— solution algorithm, 3

— stress integration algorithm, 109,
125, 184, 247

incompatible strain field, 352

incompressible, 223, 353

incremental analysis, 106

inelastic deformations, 106, 201

— time-dependent, 201

— time-independent, 201

initial (reference) state, 269

integration parameter, 111, 132

integration point, 106

integration weight, 35, 106
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internal variables, 72, 106, 109, 222,
248

interpolation function, 31

invariant

— of deviatoric stress, 46, 314

— of stress, 46, 314

inverse matrix, 383

isochoric, 49, 231, 263, 359

isoparametric coordinates, 325

isoparametric finite element, 30,
33

isotropic compression, 271

isotropic compression line, 271

isotropy condition, 45

Jacobian matrix, 34, 327

kinematic hardening modulus, 68

Kirchhoff stress, 39

Koiter flow rule, 74

Kronecker delta symbol, 46, 255,
383

Kuhn-Tucker conditions, 73

Lagrangian description of motion,
325

Lankford coefficients, 89

large strain

— plastic deformation, 358

large strains, 321

Levy-von Mises equations, 53

linearization, 4, 21, 29, 127

Lipschitz continuity condition, 19

load step, 23

loading

— cyclic, 44, 209

— history, 50, 51

— hydrostatic, 300

— hydrostatic compression, 271

— inverse, 172

— multiaxial, 44, 48

— non-radial, 149, 181

— proportional, 51, 170

— proportional cyclic, 235, 238

— radial, 149, 181

— reverse radial, 181

— uniaxial, 39, 151

macromechanical theories, 37

material body, 323

material coordinates, 325

material model, 1

material particle, 323

material vector, 329

materially-nonlinear-only (MNO) prob-
lem, 23, 321

matrix, 381

mean stress, 46, 223

mean-value theorem, 15

membrane, 139, 141, 372

micromechanical theories, 37

mixed hardening parameter, 67

mixed motion, 359

modified creep strain, 211

modified effective creep strain, 215

modified plastic spin, 354

modified plastic velocity gradient,
354

modified plastic velocity strain, 354

monotonic function, 135, 337

motion, 324

multiplicative decomposition, 350

neutral loading, 73

Newton-Raphson iterative solution
method, 4, 16, 19, 24, 242

— full, 25

— modified, 25, 169

nodal point displacements, 23, 30,
107, 326

nonassociated flow rule, 68, 278,
315

nonassociated plasticity, 319

nonlinear

finite element analysis, 106

— inelastic analysis, 322

— material behavior, 106

— strain increments, 28

— structural analysis, 1

— structural problems, 19

— inelastic analysis, 1

nonsingular matrix, 19



normal to yield surface, 68, 118,
149, 172, 248, 255, 278, 317

normality principle, 68

numerical integration, 35, 106

O.R.N.L. hardening rule, 209

octahedral shear stress, 319

oedometer test, 269

one-index notation, 141, 254, 316,
367

origin (in creep), 210

orthogonal tensor, 388

orthogonality condition, 333, 388

orthotropic elastic shell deforma-
tion, 376

orthotropic plasticity, 85, 188

orthotropy coefficients, 98

overconsolidated state, 271

— heavily (dense), 278, 304

- lightly (loose), 278, 303

overconsolidation ratio, 271

overstress, 202, 218

perfect plasticity, 43, 70, 134, 219,
308

perfectly plastic material, 42, 60,
88, 182, 193

permeability coefficient, 267

Piola-Kirchhoff stress, 29, 321

pipe

— elastic-plastic deformation, 80,
155

— orthotropic, elastic-plastic defor-
mation, 197

— thermoelastic-plastic and creep
deformation, 234, 245

plane strain conditions, 370

plane strain problem, 138

plane stress conditions, 138, 187,
229, 252, 370

plastic corrector, 114

plastic modulus, 42, 132, 147, 153,
216

plastic potential, 68, 278, 315

plastic work, 54, 62, 67

plate
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elastic-plastic deformation, 174,

199

orthotropic, 100, 102, 200

— plastic bulging, 364

— thermoplastic and creep defor-
mation, 242

Poisson’s ratio, 74, 216, 368

polar decomposition, 333

pore, 264

porosity, 185

position vector, 325

positive definite, 332

Prager’s hardening rule, 68

Prandtl-Reuss equations, 53

principal (material) axes, 375

principal directions, 336

principal stress space, 55

principal stretch, 335

principle of maximum plastic dis-
sipation, 71

principle of superposition, 374

principle of virtual work, 23, 28

proportionality coefficient

— in creep, 213

— in plasticity, 49, 59, 74, 111, 115,
133, 191, 193, 284, 306

— in viscoplasticity, 248

pseudo-time, 227

quadratic rate of convergence, 17,
179, 242

Ramberg-Osgood formula, 43, 170

rate formulations, 323

reduced effective stress, 66, 133

reference temperature, 216, 374

relaxation time, 220

return mapping algorithm, 112, 114,
125, 190, 355

rigid body rotation, 336

rolling direction, 89

rotation tensor, 335, 386

saturated, 264
scalar product, 133, 214, 382, 385
secant stiffness method, 123
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shape coefficients, 86

shear modulus, 251, 286, 369

shearing of material, 270, 345, 359

sheet metals, 89

shell conditions, 138, 187, 189, 229,
252, 372

shell deformation

— elastic-plastic, 138

— elastic-plastic (Gurson model),
187

— elastic-plastic-creep, 229

— viscoplastic, 252

softening regime, 308

specific volume, 264

spin tensor, 349

static condensation, 372

stationary creep, 203

stiffness matrix, 4, 24, 32, 107

— geometrically nonlinear, 32

— linear, 32

strain

— Almansi, 338

— creep, 203, 216, 224

— deviatoric, 131

— deviatoric plastic, 287

— elastic, 40, 138

— elastic logarithmic, 353

— engineering shear components,
131, 142, 368

— generalized, 337

— Green-Lagrange, 28, 338

— inelastic, 106, 109

— infinitesimal, 339

— logarithmic, 39, 339

— mean elastic, 369

— plastic, 40, 129, 216, 350

— tensorial shear components, 368

— thermal, 216, 224, 374

— thermal (orthotropic), 378

— total, 40, 106, 138, 216, 350, 374

— trial elastic, 355

— viscoplastic, 247

— volumetric, 130, 353, 369

strain increments, 28, 33, 112, 148

— linear, 28

— nonlinear, 28

strain rate

— creep, 204, 207, 213

— plastic, 68

— viscoplastic, 218, 220

strain rate effects, 44

strain softening, 288

strain vector, 31, 130

strain vectors, 113, 247, 368

strain-displacement matrix, 31, 106

— linear, 31

— nonlinear, 31

strain-driven problem formulation,
38, 106, 252

strain-hardening, 42

stress

— at end of time step, 106

— at start of time step, 106

— deviatoric, 130, 139, 189, 224

— generalized, 340

— hydrostatic, 185

— mean, 130, 189, 369

— trial elastic, 355

— trial elastic deviatoric, 355

— trial elastic mean, 355

stress integration, 106, 109, 188,
223, 353

— for cap model, 285

— for viscoplastic models, 247

stress integration algorithm

— explicit, 124

— implicit, 109, 125, 184, 355

stress relaxation, 219

stress-plastic strain relations, 49,
87

stretch, 330

stretch tensor

— elastic, 353

— left, 336

— right, 335

successive elastic solution method,
121

successive substitution method, 15

summation convention, 382

superscript left



— end of time step, 4, 106
— start of time step, 4, 106
superscript right

— iteration counter, 106

— trial counter, 117
support reactions, 159, 247

tangent

— constitutive matrix, 109, 141

— modulus, 22, 41

— stiffness matrix, 4

tangent stiffness-radial return method,
123

Taylor series expansion, 24

tension cutoff, 283

tensor, 384

tensor notation, 384

tensor transformation

— of constitutive matrix, 378

— of strain, 378

— of stress, 378

tensorial transformation, 385

thermoelastic material

— isotropic, 374

— orthotropic, 377

thermoplasticity, 216

thin-walled tube, 77, 166, 236

three-dimensional deformation, 128,
185, 223, 250, 368

time at end of time step, 3, 24, 106,
223

time at start of time step, 3, 24,
106

time independent plasticity model,
111

time step, 3, 23, 106, 225

torsional moment, 77, 166, 236

total formulation, 323

total Lagrangian (TL) formulation,
27, 321

transformation matrix, 378, 384

Tresca yield condition, 47

trial elastic deformation gradient,
355

trial elastic state, 112, 355

Index 413

trial elastic stress radius, 355
triaxial test, 273

unbalanced energy, 179, 243, 361

unbalanced force, 179

undrained conditions, 267

uniaxial

— compression, 298

— creep, 203

— creep model, 203

— elastic-plastic model, 39

— loading, 42, 48, 151

— straining, 269

— stress-strain curve, 39, 203

— viscoplastic model, 217

unit vector, 330, 384

updated Lagrangian (UL) formu-
lation, 27

updated-Lagrangian-Hencky (ULH)
formulation, 349

vector, 381

velocity strain, 340, 354

vertex yielding, 284, 290, 295

virtual displacements, 28

virtual work, 28

— external, 28, 31

— internal, 28, 29

viscoplastic deformations, 201

viscoplastic model

— general 3-D, 220

— stress integration, 247

— uniaxial, 217

viscosity

— coefficient, 218, 222

— function, 222

void, 185

void ratio, 264

volumetric plastic strain, 49, 186,
285

von Mises

— material, 47, 129, 358

— material model, 64

— yield condition, 47, 249

work conjugate, 340
work-hardening, 62



414 Index

yield condition, 42, 45, 85, 112,
185, 216, 222, 249, 300, 308, 314

yield curve, 42, 55, 97, 130, 133,
250, 275

yield function, 45, 68, 113

yield point, 40, 44

yield stress, 22, 41, 86, 129, 216,
218, 250

— in principal direction, 85

— initial, 22

yield surface, 56, 97, 112, 129, 315

yield surface radius (stress radius),
64, 129, 224, 250, 257

yield surface size, 129

Young’s modulus, 20, 41, 216, 368
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