
Jonas Gomes Luiz Velho Mario Costa Sousa. .

Design and Implementation

of 3d Graphics Systems

d
e

sig
n

 a
n

d
 im

p
l

e
m

e
n

t
a

t
io

n

o
f 3

d
 g

r
a

p
h

ic
s sy

st
e

m
s

G
o

m
es V

elh
o

 So
u

sa

Design and Implementation of 3D Graphics Systems covers the computational aspects of geomet-
ric modeling and rendering 3D scenes. Special emphasis is given to the architectural aspects of
interactive graphics, geometric modeling, rendering techniques, the graphics pipeline, and the
architecture of 3D graphics systems. The text describes basic 3D computer graphics algorithms
and their implementation in the C language. The material is complemented by library routines
for constructing graphics systems, which are available for download from the book’s website.
This book, along with its companion Computer Graphics: Theory and Practice, gives readers a full
understanding of the principles and practices of implementing 3D graphics systems.

Features
• Presents practical aspects of 3D computer graphics at an introductory level
• Focuses on fundamental algorithms and the implementation problems associated with them
• Explores the relationship between the various components of a graphics system
• Describes geometric modeling and image synthesis
• Enables readers to practice with the techniques
• Provides routine libraries, examples, and other supplemental materials on the book’s website

K16528

Computer Graphics

K16528_final.indd 1 7/9/2012 9:22:51 AM

Design and Implementation
of 3D Graphics Systems

This page intentionally left blankThis page intentionally left blank

Design and Implementation
of 3D Graphics Systems

Jonas Gomes
Luiz Velho

Mario Costa Sousa

Cover image courtesy of Storm Thorgerson, The Liquid Dark Side of the Moon © Photo and design by StormStudios 2010. All rights reserved.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20120629

International Standard Book Number-13: 978-1-4665-7123-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but
the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to
trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained.
If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical,
or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without
written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright
Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a
variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to
infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To my family
—J.G.

To my father, Luiz Carlos
—L.V.

To my family
—M.C.S.

This page intentionally left blankThis page intentionally left blank

Contents

About the Cover xi

Preface xv

1 Introduction 1
1.1 Computer Graphics . 1
1.2 Scope and Applications . 2
1.3 Methodology . 2
1.4 System Architecture . 3
1.5 Implementation and Extensions . 3
1.6 Implementation Paradigm . 4
1.7 Graphic Standards . 4
1.8 Advanced Applications and Future Studies 4
1.9 Content . 5
1.10 Supplemental Material . 6

2 Objects and Graphics Devices 7
2.1 Graphics Objects . 7
2.2 Graphic Devices and Representation 10
2.3 Classification of Graphics Devices . 12
2.4 Graphics Workstations . 13
2.5 The GP Graphics Package . 15
2.6 Comments and References . 24

3 Interaction and Graphical Interfaces 27
3.1 Creating Interactive Programs . 27
3.2 Interaction Fundamentals . 28
3.3 Interaction Mechanisms . 29
3.4 Interface Objects . 32
3.5 Toolkits . 39

vii

viii Contents

3.6 Polygon Line Editor . 45
3.7 Review . 52
3.8 Comments and References . 52

4 Geometry 55
4.1 Geometry for Computer Graphics . 55
4.2 Euclidean Space . 56
4.3 Transformations in Euclidean Space 60
4.4 Projective Space . 62
4.5 Projective Transformations in RP3 . 64
4.6 Transformations of Geometric Objects 70
4.7 Comments and References . 75

5 Color 77
5.1 Color Foundations . 77
5.2 Device Color Systems . 81
5.3 Color Specification Systems . 83
5.4 Discretizing the Color Solid . 87
5.5 Comments and References . 89

6 Digital Image 91
6.1 Foundations . 91
6.2 Format of the Image Representation 93
6.3 Image Coding . 96
6.4 Comments and References . 98

7 Description of 3D Scenes 101
7.1 3D Scenes . 101
7.2 Language Concepts . 103
7.3 An Extension Language . 106
7.4 Sublanguages and Applications . 118
7.5 Comments and References . 121

8 3D Geometric Models 123
8.1 Foundations of Modeling . 123
8.2 Geometric Primitives . 127
8.3 Approximation of Surfaces and Polygonal Meshes 140
8.4 Polygonal Surfaces . 141
8.5 Comments and References . 149

Contents ix

9 Modeling Techniques 153
9.1 Foundations of Modeling Systems . 153
9.2 Constructive Models . 155
9.3 Generative Modeling . 162
9.4 Comments and References . 166

10 Hierarchies and Articulated Objects 169
10.1 Geometric Links . 169
10.2 Hierarchies and Transformations . 172
10.3 Groups of Objects . 177
10.4 Animation . 184
10.5 Comments and References . 188

11 Viewing and Camera Transformations 191
11.1 The Viewing Process . 191
11.2 Viewing Transformations . 198
11.3 Viewing Specification . 206
11.4 Comments and References . 209

12 Surface Clipping for Viewing 211
12.1 Foundations of the Clipping Operation 211
12.2 Clipping Trivial Cases . 212
12.3 Two-Step Clipping . 214
12.4 Sequential Clipping . 218
12.5 Comments of References . 222

13 Rasterization 225
13.1 Foundations of Rasterization . 225
13.2 Incremental Methods . 226
13.3 Rasterization by Subdivision . 231
13.4 Comments and References . 233

14 Visible Surface Calculation 237
14.1 Foundations . 237
14.2 Z-Buffer . 240
14.3 Ray Tracing . 241
14.4 The Painter’s Algorithm . 244
14.5 Other Visibility Methods . 246
14.6 Comments and References . 248

x Contents

15 Local Illumination Models 251
15.1 Foundations . 251
15.2 Light Sources . 255
15.3 Local Illumination . 259
15.4 Materials . 261
15.5 Specification in the Language . 262
15.6 Comments and References . 264

16 Global Illumination 267
16.1 Illumination Model . 267
16.2 Ray Tracing Method . 272
16.3 The Radiosity Method . 278
16.4 Comments and References . 286

17 Mapping Techniques 289
17.1 Foundations . 289
17.2 Texture Function . 291
17.3 Texture Mapping . 294
17.4 Bump Mapping . 296
17.5 Reflection Mapping . 298
17.6 Light Sources Mapping . 299
17.7 Comments and References . 301

18 Shading 303
18.1 Shading Function Sampling and Reconstruction 303
18.2 Sampling Methods . 303
18.3 Basic Reconstruction Methods . 304
18.4 Reconstruction of Texture Attributes 307
18.5 Imaging . 311
18.6 Comments and References . 312

19 3D Graphics Systems 313
19.1 System A . 313
19.2 System B . 317
19.3 System C . 320
19.4 Projects . 324

Bibliography 329

Index 333

About the Cover

“The Liquid Dark Side of the Moon”
Simplicity itself, a jet black 12′′×12′′ square with a line drawing of a luminous white prism
at its center. A thin beam of white light penetrates the left side of the prism at an angle
and exits on the right, split into a fanned spectrum of glowing color.

My name is Dan Abbott and I work as part of a compact but busy design collective
StormStudios, based in London, England. You may or may not be familiar with our work,
but chances are you’ve stumbled across the image I describe above as the 1973 cover graphic
to Pink Floyd’s gazillion-selling “The Dark Side of the Moon” album. Of course the same
graphic elements were already well rooted in the collective conscious well before 1973,
thanks to the work of our old friend Isaac Newton, and reproduced in a thousand and one
school science textbooks.

That the prism landed on the cover of Pink Floyd’s seventh album was due to the
efforts of my esteemed colleague and tormentor Storm Thorgerson, who at that time co-
helmed influential sleeve design company Hipgnosis with Aubrey ‘Po’ Powell. Hitherto,
Storm and Po’s designs for Pink Floyd had been exclusively photographic in nature, but the
band requested something graphic by way of a change. Hipgnosis rustled up seven exciting
new designs and much to their surprise the band voted unanimously for the one with the
prism. Storm claims he tried to talk them out of it, but their minds were all made up. Thus
ends the fable of “How the Prism Got Its Album” and magically leapt from textbook to
record racks worldwide.

Two decades later in 1993 history started to repeat itself—traditional practice in the
rock ‘n’ roll universe. The Dark Side of the Moon was re-released in shiny, all new digitally
remastered, twentieth anniversary CD form. So Storm decided to “remaster” the cover too,
replacing the 1973 drawing with a photo of real light being refracted through a real-life
glass prism. What could be more honest than that? Funnily enough, few fans seemed to
notice the switcheroo, which I think might tell you something about the power of the basic
setup of the image.

Ten years later still and it was suggested that the design be tweaked once again for
the thirtieth anniversary re-release on SACD (which we were reliably informed was the

xi

xii About the Cover

absolutely definitive audio format of the future). Thirtieth anniversaries are very significant
for all triangular life forms, so how could we refuse? So we built a four-foot square stained
glass window to the exact proportions of the original design, and photographed it. “Hmm,
maybe this idea’s got legs after all” we thought. In the following years we created several
further homages to the original design: a prism made of words for a book cover, a prism
painted a-la Claude Monet, a Lichtenstein-esque pop art number, and rather curiously, a
prism created entirely with fruit for a calendar (this probably came about after someone
joked about calendars being made from “dates”).

To execute the above-mentioned “Fruity Side of the Moon,” we built a large wooden
tray with each line of the design being a walled-off section, keeping all the dates, raisins,
cranberries, apricots, oranges, and baby lemons in their right and proper positions. It was
then photographed from above. I can’t remember if we ate the contents afterwards, but
shoots are hungry work so it’s very likely. Later, one of us (might’ve been Pete, might’ve
been Storm) inspected the empty tray and had the bright idea that colored paint or ink
poured into the various sections might make yet another cool photo. The tray was quickly
modified with any leaky corners made watertight, and the relevant hue of paint was poured
into each section. The effect was smooth, glossy, and rather pleasing to the eye.

Then, the unplanned started to occur. The separate areas of paint began slowly but
surely to bleed into each other. But rather than becoming a hideous mess the experiment
began to take on a whole new dimension, and we experienced something of a eureka mo-
ment. We started helping the migrating paint go its own sweet way. A swish here, a couple
of drips there, and soon the previously rather rigid composition began to unravel into a
wild psychedelic jungle. Areas of leaking paint expanded into impressive swirling whorls
and delicate curlicues of color, stark and vibrant against their black backdrop. Fine and
feathery veins of pigment unfurled like close-ups of a peacock’s plumage or like NASA
photos of the gigantic swirls in Jupiter’s atmosphere. Blobs and bubbles emerged organ-
ically bringing to mind Pink Floyd’s early liquid light shows. Detail was crisp and went
on and on, a feast for the eyes and seriously entertaining for us. All the time, our intrepid
photographer Rupert was poised a few feet above, dangling with his camera from a gantry,
snapping frame after frame. Our magic tray had done most of our work for us, and we
christened the process “controlled random.” All that remained was for us to select a couple
of shots for use—a nigh-on-impossible task given the multitude of beautiful frames we’d
captured.

And so we come to the most recent stop on our prismatic journey. A few months ago
we received an email from Mario Costa Sousa. He had spied “Liquid DSoM” (as we came
to call it) on our website and politely enquired as to whether he and his fellow authors
might use it as the cover for their new computer graphics textbook. Our first response
was a friendly “yes” followed by fairly patronizing words to the effect of, “But Mario dear,
do you realize that we created this for real, that it’s not computer generated in any way?”
Mario, clearly a man with his head screwed on the right way round, calmly explained that
it was just what was needed.

First off, the basic image of the prism diffracting a beam of light is central to light and
color theory and a truly crucial element in computer graphics. Second, the controlled ran-

About the Cover xiii

domness of the paint as it flows in specific, distinct directions reflects algorithmic model-
ing techniques often used in computer graphics, particularly in procedural image synthesis.
Third, they enjoyed the idea of featuring a hand-created real life image on the front of a
computer graphics textbook, implying that a technical reader might gain valuable insights
into the theory and practice of computer graphics by observing real-world phenomena.
And fourth, I suspect the authors may also be Pink Floyd fans, but we’ll leave that for
another day.

How appropriate then, that our design, an image that some might say was cribbed from
a school textbook, should wind up through a variety of fairly exotic twists and turns, back
on the cover of a textbook. Nothing random about that, eh?

— Dan Abbott, StormStudios
London, December 2011

This page intentionally left blankThis page intentionally left blank

Preface

This book grew out of a course, Design and Implementation of 3D Graphics Systems,
taught by the authors at the Institute of Pure and Applied Mathematics (IMPA), Rio de
Janeiro, beginning in 1997. The course is part of the joint graduate program with the
Catholic University of Rio de Janeiro (PUC-Rio) in computer graphics. These materials
have also been used in recent years in a course for senior undergraduates and first year
graduate students in the Department of Computer Science at the University of Calgary.
Many students of mathematics, engineering, and computer science have attended these
courses at IMPA, PUC-Rio, and the University of Calgary.

This book covers computational aspects of geometric modeling and rendering three-
dimensional scenes. Special emphasis is given to the architectural aspects of 3D graphics
systems. The text contains a description of basic 3D computer graphics algorithms, all
implemented in the C language. This didactic material is complemented by library routines
for constructing graphics systems. The routine libraries, examples, and other supplemental
materials can be downloaded from the book’s website:

http://www.crcpress.com/product/isbn/9781568815800

This book is the companion volume to Computer Graphics: Theory and Practice [Gomes
et al. 12], which focuses on the conceptual aspects of computer graphics, the fundamental
mathematical theories and models, as well as an abstraction paradigm for computational
applied mathematics used to encapsulate problems in different areas of computer graphics.

Acknowledgments
Various colleagues collaborated on the initial volume from 1998 that gave origin to this
book. Paulo Roma Cavalcanti gave us a great incentive for materializing this project. Paulo
not only taught the course and created a set of initial notes, but also provided the very early
preliminary reviews. Luiz Henrique de Figueiredo did a detailed and thorough review of
some of the chapters and produced some of the illustrations that appear in the text, all

xv

xvi Preface

properly credited. Many thanks to Margareth Prevot (IMPA, VisGraf Lab) who collab-
orated in the production of various images used in the text. We also thank everyone who
allowed us to use figures from their works, all properly acknowledged in this book.

Various other colleagues read the preliminary versions of various chapters, saved us
from some pitfalls, and gave us valuable suggestions. Among them, we can highlight An-
tonio Elias Fabris, Romildo José da Silva, Cı́cero Cavalcanti, Moacyr A. Silva, Fernando
W. da Silva, Marcos V. Rayol Sobreiro, Silvio Levy, and Emilio Vital Brazil. We thank
all sincerely. We also thank Jamie McInnis, Sarah Chow, and Patricia Rebolo Medici for
their reviews and suggestions and for carefully editing and proofreading the book.

We sincerely thank Alice Peters for her dedication to this book project. We are honored
to have the foreword in this book by Eugene Fiume and thank him for his inspiring words.

We are very grateful to Storm Thorgerson and Dan Abbott from StormStudios for
giving us permission to use their original art photography “The Liquid Dark Side of the
Moon” as our book cover. Many thanks to everyone else from StormStudios who helped
to produce this art piece: Peter Curzon, Rupert Truman, Lee Baker, Laura Truman, Jerry
Sweet, Charlotte Barnes, and Nick Baker. We would like to thank Dan Abbott very much
for also describing “How the Prism Got Its Cover” as part of this book. Many thanks
to Kara Ebrahim for working in the final cover layout design and production and to Dan
Abbott for his valuable design suggestions.

The project of writing this book has been facilitated by the fruitful teaching and re-
search environments of the computer graphics laboratory at IMPA (Visgraf Lab), and both
the Department of Computer Science and the Interactive Reservoir Modeling and Visu-
alization Group (IllustraRes/iRMV)/Computer Graphics Research Lab at the University
of Calgary. Our sincere thanks go to all their members for their constant support. Finally,
we sincerely appreciate the support from NSERC/Alberta Innovates Technology Futures
(AITF)/Foundation CMG Industrial Research Chair program in Scalable Reservoir Vi-
sualization.

— Jonas Gomes, Luiz Velho, and Mario Costa Sousa
Rio de Janeiro and Calgary, December 2011

1 Introduction

This book covers practical aspects of computer graphics at an introductory level. The
material presented focuses primarily on the fundamental algorithms of the area, the im-
plementation problems associated with them, and the relationship between the various
components of a graphics system.

1.1 Computer Graphics
Computer graphics is the study of computational processes involving geometric models and
digital images. The relations between data and processes in computer graphics are illus-
trated in Figure 1.1.

From a computational point of view, we have two distinct types of data: models and
images. The processes that can be applied to these data either modify a single tyep of data
or convert the data from one type into another: Creating or modifying models is done by
geometric modeling; manipulating images is called image processing. Image synthesis, used in
the field of computer vision, is the transformation of geometric models into digital images.

Model

Image

Geometric Modeling

Image Processing

Computer Vision Image Synthesis

Figure 1.1. Data and processes in computer graphics.

1

2 1. Introduction

The inverse transformation, from digital images to geometric models, is image analysis,
used in the field of computer graphics, or visualization.

In this book, we will focus on geometric modeling and image synthesis. We will touch
lightly on image processing, which is necessary in almost every type of image manipulation.
This book will cover codification and quantization of images, but other important image
processing techniques such as sampling, reconstruction, and deformations, which are used
in texture mapping, are outside the scope of this book. Computer vision is also outside the
scope of this book.

1.2 Scope and Applications
More specifically, we will study 3D computer graphics, treating the problem of modeling
and images synthesis of 3D scenes. This may be the most complex and important part of
computer graphics, and has many practical applications, including

� Scientific visualization. In this area, computer graphics is used for visualizing simu-
lations and complex structures found in various scientific disciplines such as mathe-
matics, medicine, and biology.

� CAD / CAM. In this area, computer graphics is used as a planning and design tool
in engineering, architecture, and design applications.

� Entertainment. In this area, computer graphics is used for the creation of special
effects and interactive programs in movies and television, as well as applications in
thematic parks and games.

There are also applications of geometric modeling and image syntheses in 2D com-
puter graphics and graphical interfaces. Both are quite important and have a significant
intersection with 3D computer graphics; for example, 2D computer graphics is closely re-
lated to the graphics devices used for both visualization of images and construction of 2D
elements, such as planar curves, used in the modeling of 3D objects. Despite the impor-
tance of these applications, due to their particularities they should be studied separately
and so will not be covered in this book.

Human-computer interaction is part of any computational system, and in a graphics
system, interface issues are very important. In this book, we will restrict discussion of
graphical interfaces to a minimum and assume the reader has some familiarity with the
existing interaction resources of a generic windows system.

1.3 Methodology
We have adopted a minimalist methodology in this book, meaning that the presented
material will be restricted to the minimum necessary for understanding the basic com-

1.4. System Architecture 3

puter graphics processes. Our goals with this method are to demystify the complexity of a
graphics system and reveal the essential processes in computer graphics.

Overall, the material presented covers all the basic techniques of a 3D graphics sys-
tem. For each problem, we will discuss the possible solution strategies, including their
advantages and disadvantages. All will be presented in an algorithmic form. Finally, we
will show the implementation of the most appropriate techniques for the construction of a
simple graphics system.

1.4 System Architecture
In terms of systems, the processes we identified above appear in three basic modules of a
graphics system, implementing the functions of modeling, image synthesis, and imaging.

The modeling module creates a geometric representation from the specifications of
objects in a scene. The image synthesis module transforms this geometric description
of the scene into a “virtual image” called a coloring (or shading) function. The imaging
module creates a digital image from the shading function.

By combining the processes described above, we obtain the basic structure of a graphics
system. This is illustrated in Figure 1.2. In this book, we will study how these modules are
implemented.

Colorization Function

Model Specification

Scene Description

Modeling

Visibility / Illumination

Digital Image

Imaging

Figure 1.2. Structure of a graphics system.

1.5 Implementation and Extensions
We will develop three complete graphics systems, corresponding to the main architecture
alternatives of a graphics system.

4 1. Introduction

As we said, these systems were created for teaching purposes, and therefore their code
is developed to be simple and clear, without much concern for efficiency or complete-
ness. Despite this, they have all the essential functionality of a real graphics system and
can be used as the embryo of a complete system. To do so, one would need to increase
their efficiency, which would require some local changes to the algorithms implemented
in the book, and their functionality, which would require introducing new, complementary
algorithms.

We will try to guide this extension work by indicating existing options and suggesting
what should be done in the implementation exercises of each chapter.

1.6 Implementation Paradigm
In this book we follow the implementation paradigm used in the UNIX-like GNU system
development environment. Besides the C language, we will use the programs make for sys-
tem compiling and yacc for generating interpreters, among other tools. This environment
can be reproduced in the Windows system using the public domain utilities developed by
GNU.

Communication between programs will be made using the C standard input and output
mechanisms (stdin and stdout). This will allow to explore the UNIX pipeline resources that
are quite appropriate for the architecture of our systems.

1.7 Graphic Standards
Given that this book is intended as an introduction, we do not use any programming re-
source besides the GNU development environment. This means we will not adopt specific
libraries or graphics standards for the development of the systems studied in the book. We
recognize the importance of graphics standards, but they are best used for the developing
sophisticated programs in professional applications. But our choice to not use external
programming resources in this book makes the material self-contained and independent.

The methods and algorithms we will study constitute the basis for the majority of
important graphic standards, such as OpenGL, the VRML language, and Renderman.
Therefore, their study will allow a better understanding and mastery of these standards. At
the end of each chapter, we will explicitly describe how the studied algorithms fit in with
the existing standards.

1.8 Advanced Applications and Future Studies
As previously stated, this book approaches 3D computing graphics in an elementary way.
We explore the basic principles of this discipline with the goal of establishing a solid basis
for advanced studies.

1.9. Content 5

3D Graphics

Interactive
3D Systems

Photorealism

IlluminationVirtual Worlds

Figure 1.3. Advanced applications.

Starting from this basic kernel, future research can be developed in several directions.
To position the reader, we contextualize those specializations, placing them in relation to
the object of our study.

Computer graphics establishes the foundations of at least four main areas for more ad-
vanced studies: interactive graphic systems; graphics databases; photorealism; and physical
illumination simulation. The relation between these areas and 3D computer graphics is
shown in Figure 1.3.

In the area of interactive graphic systems, the OpenGL and Inventor standards are very
important. In the area of multimedia and distributed graphics applications, we have the
VRML language. In the photorealism area, we have the Renderman standard. In the area
of physical illumination simulation we have radiance.

1.9 Content
The structure of the book reflects the structure of a graphics system. The book is organized
in the following way:

� Part 1. Foundations

– graphics devices

– geometry

– color

– digital images

� Part 2. Modeling

– description of scenes

– geometric representation

6 1. Introduction

– construction of forms

– composed objects and hierarchies

� Part 3. Viewing

– camera

– clipping

– rasterization

– visibility

� Part 4. Illumination

– light and material

– shading (colorization)

– illumination models

– mappings

Image synthesis, which involves visualization and illumination, is organized in two
parts for didactic reasons. We therefore have four main parts naturally corresponding to
the processes in computer graphics. In each part, we have individual chapters treating the
various components of these processes.

As previously stated, our goal is to discuss computer graphics from a practical point of
view. Therefore, this book uses three approaches in parallel:

� analysis of the computational problem, presented in text form;

� basic algorithms, presented in pseudocode form;

� system implementation, presented in the C language;

What is more, each chapter includes a section with comments on references and imple-
mentation exercises.

1.10 Supplemental Material
Support material, which complements the book, is available at the http://www.visgraf.impa.
br/cgtp. On this website the reader will find the source code with the implementation of
all the algorithms presented in the book.

2 Objects and
Graphics Devices

In this chapter we give a general conceptualization for graphics objects and show how they
relate to graphics devices. From these concepts, we will present the 2D graphics library
that will be used in the implementation of interactive programs discussed in this book.

2.1 Graphics Objects
To study computer graphics processes, ideally we would have an inclusive conceptualization
that would allow us to understand the area as a whole. This conceptualization should be
based on a mathematical model including the relevant objects in the area, such as geometric
models and images.

The concept of a graphics object will be the starting point for constructing our analysis.
From there we can define computer graphics as the area where graphics objects are studied.
The processes in computer graphics include operations with graphics objects of a certain
type, as well as conversions between different types of graphics objects.

A graphics object, O = (S, f), consists of a subset S ⊂ Rm, and a function f : S →
Rn; S is called the geometric support of O and determines the geometry and topology of
the graphics object. Function f specifies the properties of O at each point p ∈ S and is
called the attribute function of the object (see Figure 2.1).

The dimension of object O is given by the dimension of its geometric support S.
The several attributes of O correspond to 1D subspaces in the Euclidean space Rn. For

Figure 2.1. Generic graphics object.

7

8 2. Objects and Graphics Devices

more information on graphics objects, see [Gomes et al. 96]. This definition is sufficiently
general to include all of the relevant objects for computer graphics, such as points, curves,
surfaces, solids, images, and volumes.

A family of graphics objects of great importance is constituted by the “planar graphics
objects,” for which m = 2; that is, the geometric support is contained on the Euclidean
plane R2. Its relevance is due to the fact that the class of objects can be mapped directly
into the usual graphics devices. These objects have dimension Dim(S) ≤ 2 and correspond
to points, curves, and planar regions (we exclude the set of fractals).

Two important examples of planar graphics objects are curves and polygonal regions.
In general, these objects are used to represent, in an approximate way, curves and arbitrary
regions on the plane. Another important example of graphics objects is a digital image.
For more details on these graphics objects, see [Gomes and Velho 98].

2.1.1 Description of Graphics Objects

Two general forms exist to mathematically describe the geometric support of a graphics
object: the parametric and the implicit forms.

In the parametric description, the set of points p ∈ S is directly specified by function
g : Rk → Rm, where k = Dim(S)

S = {(x1, . . . , xm) | (x1, . . . , xm) = g(u1, . . . , uk)}

In the implicit description, the points of S are indirectly determined by function h :
Rm → Rm−k

S = h−1(c) = {(x1, . . . , xm) | h(x1, . . . , xm) = c}

Example 2.1 (Circle). To compare these two descriptions, we will use as example the unit
circle (see Figure 2.2).

� Parametric description: (x, y) = (sin(u), cos(u)), where u ∈ [0, 2π].

� Implicit description: h−1(1), with h(x, y) = x2 + y2 = 1. �

2π

Figure 2.2. Parametric and implicit descriptions of a circle.

2.1. Graphics Objects 9

Notice the above descriptions constitute a continuous mathematical model of the ge-
ometry of a graphics object. Therefore, we have to obtain a finite representation of these
models to work with them in the computer, which is a discrete machine.

2.1.2 Discretization and Reconstruction of Graphics Objects

The passage from a continuous to a discrete object is called discretization, or representation
of the object. The inverse process, of recovering the continuous model from its discrete
representation, is called reconstruction. Reconstruction can be exact or approximate, de-
pending on the process as a whole.

For this end a simple form, widely used in practice, consists of discretization by point
sampling and reconstruction by linear interpolation, as represented in Figure 2.3.

Consider a continuous function f : R→ R. Representation by uniform point sampling
is given by the sequence of samples (yi)i∈Z, where yi = f(xi) corresponds to the value of
f at the sampled points xi = x + i∆x. The reconstruction is obtained from the samples
(yi) by linear interpolation f(x) = tyi+(1−t)yi+1, where t = x mod ∆x e i = bx/∆xc.
Notice in this case the representation provides only an approximate reconstruction; that is,
f ≈ f (see Figure 2.3).

Example 2.2 (Representation of Implicit and Parametric Objects). To construct a discrete
representation of a circle starting from its parametric description, we discretize the param-
eter u ∈ [0, 2π], making ui = i/2π, i = 0, . . . , N − 1, and evaluate (xi, yi) = g(ui),
obtaining the coordinates of these N points on the circle. The circle representation is
therefore given by this list of points (see Figure 2.4).

To construct a discrete representation of a unit disk starting from its implicit descrip-
tion, we discretize the environment space R2 and evaluate the implicit function f(xi, yj)
from a given regular grid N ×M . The representation will be given by the matrix A of
dimensions N ×M . If f(xi, yj) < 1, we then make aij = 1, otherwise aij = 0. This
representation corresponds to a discretization of the characteristic function of the disk (see
Figure 2.4). �

x1 x2 x3 x4 x0
x5 ∆

Figure 2.3. Sampling and reconstruction.

10 2. Objects and Graphics Devices

(a) (b)

Figure 2.4. Formats of (a) vector and (b) raster (matrix) data.

2.2 Graphic Devices and Representation

A graphics device has a representation space in which we should map the object to be ma-
nipulated by the device. To visualize a graphics object O = (U, f), we need to obtain a
representation of the object so that the discretized object can be mapped in the representa-
tion space of the device. Once mapped in this space, the device performs the reconstruction
of the object, allowing its visualization.

2.2.1 Vector Devices

In vector devices, the representation space consists of points and straight line segments.
More precisely, the representation space is a subset of the plane where we can assign coordi-
nates to points; besides, given two points A and B, the device performs the reconstruction
of the segment AB. These devices can be used to visualize polygonal curves and surfaces
or polyhedral regions. In this case, we draw only the polygon edges of the representation,
as shown in Figure 2.5(a).

(a) (b)

Figure 2.5. Visualization on a (a) vector and (b) raster (matrix) device.

2.2. Graphic Devices and Representation 11

(a) (b)

Figure 2.6. (a) Vector and (b) raster (matrix) representations.

2.2.2 Raster (Matrix) Devices

The representation space of these devices allows us to visualize a m × n matrix in which
each point has a color attribute. Therefore, to visualize a graphics object in these devices we
need to obtain a matrix representation of the object. For more details on raster representa-
tion of planar graphics objects, see [Gomes and Velho 98]. Raster devices are appropriate
for visualizing digital images (see Figure 2.5(b)).

Example 2.3 (Rendering a Circle). We should have the appropriate representation to vi-
sualize (render) a graphics object in either a vector or raster device. For example, the
visualization of a circle can be performed by representing the circle by a polygonal curve
(see Figure 2.6(a)). To visualize the circle in a raster device, it must be rasterized (i.e.,
scan converted) to obtain its matrix representation (see Figure 2.6(b)). Notice the polygo-
nal approximation of a circle can be displayed in a raster device; for this, the straight line
segments constituting the sides of the polygon must be rasterized. �

Some graphics objects are difficult, or even impossible, to appropriately visualize in
vector devices. The visualization of a polygonal region can be obtained by placing hatch
marks in the reconstruction, while in a raster device its visualization is immediate. The
visualization of a digital image is very difficult in vector devices. Consequently, we gener-
ally use the vector format to represent geometric models and the raster (matrix) format to
represent digital images.

Even so, both geometric models and digital images can be represented in any of these
two formats. In fact, the concept of a graphics object allows a unified treatment of these
two elements. On the one hand, we can consider an image as a Monk’s surface and use
differential geometry techniques in its processing. On the other hand, we can consider the
coordinates (x, y, z) in the parametric space (u, v) of a surface as values of an image and
in this way use image processing techniques for modeling purposes (see Figure 2.7).

12 2. Objects and Graphics Devices

(a) (b)

Figure 2.7. (a) An image as a model and (b) a model as an image.

2.3 Classification of Graphics Devices
User-computer interaction with graphics objects takes place through graphics devices.

2.3.1 Conceptualization

To classify graphics devices, we approach them from a paradigm of four universes: the
physical world, mathematical models, their representations, and implementations. Thus
graphics devices can be analyzed according to their use, functionality, graphics format, and
implementation structure (see Figure 2.8).

Usage mode. The usage mode relates to the application for which the graphics device is in-
tended. According to this criterion, graphics devices can be interactive and noninteractive.

Functional characteristics. The functional characteristic relates to the role of the device in
the computational model. According to this criterion, graphics devices can be for input,
processing, and output.

Data format. Devices can be classified as vector and raster (matrix), according to the geo-
metric nature of their representation space.

Usage

Function

Format

Structure

Application

Device Model

Data Types

Technology

Figure 2.8. Abstraction levels of graphics devices.

2.4. Graphics Workstations 13

Implementation structure. The implementation structure is determined by the technology
used to construct the graphics device, as well as the usage, functionality, and format modes
of the device. An example of different implementation structures for a device with the
same function can be given by the calligraphic and matrix display devices: both are nonin-
teractive graphics output devices, but the former adopts the vector format while the latter
adopts the raster format.

2.3.2 Classification

Using the conceptualization above, we can classify graphics devices according to their func-
tionality, and for each type, according to the graphics data format. In this way, we have
graphics devices for input, processing, and output, in the vector and raster (matrix) formats.

Examples of vector input devices include mouse, Trackball and Joystick, operating with
relative coordinates; and tablet, touch screen, and data glove, operating with absolute co-
ordinates. Notice that all of them are 2D, except the date glove, which has six degrees
of freedom. Examples of raster input devices include frame grabber, scanners, and range
devices.

Examples of vector graphics processing devices are the graphics pipelines, such as the
geometry subsystem of SGI. Examples of raster graphics processing devices are the parallel
machines from Pixar and the Pixel Machine.

Examples of vector graphics output devices are plotter and vector displays. Examples
raster graphics output devices are laser or inkjet printers, and CRT or LCD monitors.
Vector graphics output devices were very common in the ’60s and ’70s. Raster devices
became more prevalent in the ’80s. Today, a good combination consists of using input
vector graphics devices (mouse and tablet for instance) and raster output devices (CRT or
LCD monitors and laser printers or inkjet).

2.4 Graphics Workstations

Above we saw examples of individual graphics devices. In practice, graphics devices are
used in conjunction. For interactive applications, we combine input, processing, and output
graphics devices into a complete graphics system.

Interactive graphics workstations are the most common class of graphics system. In
fact, most current computers can be considered a graphics system.

In this book, we will assume that graphics implementation is aimed at a standard
graphics system, formed by a raster output device, a vector input device, and a general
purpose processor (see Figure 2.9). Vector graphics input descriptions are converted to
raster descriptions by the windowing system of the graphics workstation.

14 2. Objects and Graphics Devices

Figure 2.9. Interactive graphics workstation.

2.4.1 Windowing System

A modern interactive graphics workstation is controlled by a graphics subsystem known
as a windowing system. This subsystem is usually incorporated into the operational sys-
tem of the machine and controls the graphics input, processing, and output functions.
Windowing systems are based in the paradigm of the “desktop”; in other words, they im-
plement the view of a work table with multiple documents. In this type of system, each
window corresponds to a separate computational process. Examples of windowing systems
are X-Windows for UNIX platforms, MS-Windows for PC platform, and the Desktop
for Macintosh platforms.

2.4.2 Viewing Transformations

To visualize a planar graphics object, we define a window in the coordinate system of the
object (world coordinate system, WC). This window should be mapped into a viewport in
the display space of the device. To increase the degree of device independence, a system
of normalized coordinates is used (normalized device coordinates, NDC). This system is
defined in the rectangle [0, 1]× [0, 1] (see Figure 2.10).

In this case, the viewport is defined in normalized coordinates, and it is in this viewport
that we map the window defined in the object space. The transformation that maps the
points of the window into points of the viewport in normalized coordinates is called a
2D viewing transformation. If the window is defined by the coordinates (xmin, ymin) and

(x
min
, y

min
)

(x
max

, y
max

)

(u
min
, v

min
)

(u
max

, v
max

)

WC NDC Device

Figure 2.10. Viewing transformations.

2.5. The GP Graphics Package 15

(xmax, ymax) and the viewport is defined by (umin, vmin) and (umax, vmax), the viewing
transformation is given by

u =
umax − umin

xmax − xmin
(x− xmin) + umin, (2.1)

v =
vmax − vmin

ymax − ymin
(y − ymin) + vmin. (2.2)

For the final stage of the viewing process, the viewport (in normalized coordinates) is
mapped into the graphics device.

The transformations between the window (in space coordinates), the viewport (in nor-
malized coordinates), and the graphics device are obtained by a simple change of scaling
in the coordinates, which alters the window dimensions (see [Gomes and Velho 98]).

2.5 The GP Graphics Package
A key problem related to the implementation of interactive graphics programs is portability.
Ideally, graphics programs would indiscriminately work in any platform. At least, it would
be desirable that the same code could be used for graphics devices of each basic type.

The solution to this problem the concept of device independence, which involves creating
a programming layer to isolate implementation differences from the several devices. This
layer is the graphics package. As in our conceptual schema of the four universes, this allows
a common representation for different implementations.

2.5.1 GP Characteristics

In this book, we will adopt the GP (graphics package), originally developed by Luiz Hen-
rique Figueiredo. The current version of GP was updated to work with OpenGL and
SDL.

GP uses a representation space that allows only vector specifications. Starting from the
vector specifications, GP performs the appropriate conversion to reconstruct the graphics
object in the device being used. Because of this, we say that GP uses a vector metaphor to
manipulate the graphics objects in both the input and output.

In general, GP assumes the existence of a graphics workstation composed of a 2D raster
output device and a vector input device (besides the keyboard). The graphics subsystem of
the workstation should be based on the windows paradigm.

The following characteristics of GP make it ideal for use in this book:

� Minimality. GP implements an API (application programmer interface) that is min-
imal but enough for simple graphics programs.

� Portability. GP is a device-independent package based on the paradigm of windows.

16 2. Objects and Graphics Devices

� Separability. The architecture of GP isolates the implementation details of the
graphics API.

� Availability. The package supports most existing platforms.

To create these characteristics, the architecture of GP was divided in two separate
layers: gp and dv.

The gp layer is responsible for 2D viewing transformations. The routines at this level
are device independent and they have the purpose of mapping application coordinates into
device coordinates.

The dv layer is responsible for controlling graphics devices. The routines of this layer
are called by the routines of the gp layer. Routines at this level perform the conversion
from vector description to a raster (matrix) representation of the device (rasterization). In
other words, this layer implements the vector metaphor in the which GP is based. The dv
layer should be implemented for each platform supported by GP. Implementation of this
layer will not be discussed in this book.

The current implementation of the dv layer uses OpenGL for 2D vector graphics out-
put and SDL for window creation and event handling. This is because OpenGL and SDL
are two mature standards that are platform independent and fit well with the API model of
GP. OpenGL uses the same 2D viewing paradigm of GP and is supported in hardware in
most modern workstations. SDL (simple direct media layer) is a cross-platform multime-
dia library designed to provide low-level access to keyboard, mouse, and 3D hardware via
OpenGL. It is very popular in the game community and has an event model very similar
to GP.

2.5.2 Attributing Color in GP

Color is an important attribute of any graphics object. In GP, the attributes of graphics
objects consist basically of the color of the vector primitives.

The color attribution process adopted in GP is based on the concept of a color map.
This allows an indirect definition of colors in the GP representation space. A color map is
the discretization of a curve in the color space. This discretization is represented by a table
associating a numerical index i ∈ {0, . . . 255} to the color values of the device c = (r, g, b),
with r, g, b ∈ [0, 1]. This table is called look up table (LUT) (see Figure 2.11).

LUTFrame Buffer

Figure 2.11. Color map.

2.5. The GP Graphics Package 17

This model is implemented in the majority of raster display devices. In these devices,
the matrix representation is stored in the graphics board (frame-buffer), and the color of
each representation cell (pixel) is obtained by performing an addressing in the LUT.

The routine gprgb allows us to associate a color to an index of the color map. The
color is specified by the intensity values of the R, G, and B components. This routine
returns the value 1 if the attribution can be performed, and 0 otherwise. In case the color
index has the value −1, the color attribute is set for immediate usage. To support a full
color device, it is convenient to use the immediate mode of gprgb that is implemented in
the display with 24 bit RGB values.

int gprgb(int c, Real r, Real g, Real b);

#define gprgb dvrgb

Color attribution in gp is performed through the current color. This color is set in
the immediate mode of gprgb or selected through the routine gpcolor. The parameter
of this routine is an integer, indicating the table input containing the target color. This
routine returns the index of the previous current color. When the specified index is not
valid, it returns a negative number indicating the size of the color map.

int gpcolor(int c);

#define gpcolor dvcolor

2.5.3 Data Structure and Objects in GP

Given that GP is based on the windows model, the fundamental graphics object in GP
is a box. This object consists of a rectangle on the plane whose sides are parallel to the
coordinate axes. The geometry of this rectangle is given by the coordinates of its main
diagonal (xmin, ymin), (xmax, ymax). Besides, we associate to this object a scaling
attribute defined by the linear transformation T (x, y) = (x · xu, y · yu). These scaling
attributes are used to allow a change on the aspect ratio of the box, without requiring us to
redefine the entire box.

The basic data structure of this object is the structure Box, given by

17 〈Box data structure 17〉≡
typedef struct {

Real xmin, xmax;

Real ymin, ymax;

Real xu, yu;

} Box;

Defines:
Box, used in chunk 18a.

The box has therefore the dimensions xu (xmax - xmin) and yu (ymax - ymin).
Notice that xu and yu are separate scale factors for each of the directions.

18 2. Objects and Graphics Devices

The internal state of GP is stored in the following data structure:
18a 〈internal state 18a〉≡

static struct {

Box w, v, d;

real ax ,bx, ay, by;

} gp = {

{0.0, 1.0, 0.0, 1.0, 1.0, 1.0},

{0.0, 1.0, 0.0, 1.0, 1.0, 1.0},

{0.0, 1.0, 0.0, 1.0, 1.0, 1.0},

1.0, 0.0, 1.0, 0.0,

};

Defines:
gp, used in chunks 18–21.

Uses Box 17 and real 46 46.

This structure consists of three boxes, w, v, and d, representing, respectively, the win-
dow in the 2D space of the scene to be visualized, the viewport in normalized coordinates,
and the window of the graphics device.

The coefficients ax, bx, ay, and by will be used as scale factors to implement the 2D
viewing transformations. Notice the initial state corresponds to the standard configuration,
where all of the boxes are unitary (and consequently, the viewing mapping is the identity
function).

A window in GP has a color attribute called background color. However, this color is not
stored in the Box data structure. The background color is given by the color at the index
i = 0 of the look up table. This color is attributed using one of the routines gppallete
or gprgb (as previously seen).

The API of GP. The API of GP can be divided into four classes of routines according to
function: control; viewing; drawing and text; and graphics input and interaction. We will
next study in detail the routines of each of these classes.

2.5.4 Control Routines

We can deduce from GP’s internal state that it supports only one window. The control
routines in GP are for manipulating this window on the screen of the graphics worksta-
tion. The routine gpopen initializes GP and opens a window with its name passed as a
parameter.

18b 〈initialization 18b〉≡
real gpopen(char* name, int width, int height)

{

real aspect;

gp.d=*dvopen(name, width, height);

calculate_aspect();

gpwindow(0.0,1.0,0.0,1.0);

gpviewport(0.0,1.0,0.0,1.0);

2.5. The GP Graphics Package 19

gprgb(0,1.,1.,1.);

gprgb(1,0.,0.,0.);

gpcolor(1);

return (gp.d.xu/gp.d.yu);

}

Uses calculate aspect 19, dvopen, gp 18a, gpcolor, gprgb, and real 46 46.

This routine calls the dv layer to initialize the device. In this call, the box parameters
of device d, structure gp are defined. The routine also creates a standardized window and
viewport [0, 1] × [0, 1] by calling the routines gpwindow and gpviewport, respectively.
These two routines will be studied next in the section on viewing routines. The routine
calculate_aspect calculates the box scaling parameters of the device, so we can map a
square window of maximum dimensions in the device:

19 〈window aspect 19〉≡
static void calculate_aspect (void)

{

if (gp.d.xu > gp.d.yu) {

gp.d.xu /= gp.d.yu;

gp.d.yu = 1.0;

} else {

gp.d.yu /= gp.d.xu;

gp.d.xu = 1.0;

}

}

Defines:
calculate aspect, used in chunk 18b.

Uses gp 18a.

Notice the routine gpopen initializes the background color of the window as being
white. The routine also attributes black to the index 1 of the color map, and the call to the
routine gpcolor(1) attributes this color to the current color of the package.

The routine gpclose shuts down GP, eventually waiting for a certain time in case the
parameter wait is positive, or for an action from the user in case wait is negative. This
routine is implemented in the layer dv, which is why it is defined as a macro.

void gpclose(int wait);

#define gpclose dvclose

The routine gpclear clears the window by painting the background color. The pa-
rameter wait follows the convention described above.

void gpclear(int wait);

#define gpclear dvclear

The routine gpflush immediately executes all the pending operations for any graphics
output. The routine gpwait pauses according to the parameter value t: t > 0 waits for t
milliseconds; t < 0 waits for the user’s input.

20 2. Objects and Graphics Devices

void gpflush(void);

#define gpflush dvflush

void gpwait(int t);

#define gpwait dvwait

2.5.5 Viewing Routines

The routines gpwindow and gpviewport are used to specify the 2D viewing transforma-
tion, as we saw in the previous section.

20a 〈window 20a〉≡
real gpwindow(real xmin, real xmax, real ymin, real ymax)

{

gp.w.xmin=xmin;

gp.w.xmax=xmax;

gp.w.ymin=ymin;

gp.w.ymax=ymax;

gpmake();

dvwindow(xmin, xmax, ymin, ymax);

return (xmax-xmin)/(ymax-ymin);

}

Uses gp 18a, gpmake 20c, and real 46 46.

20b 〈viewport 20b〉≡
real gpviewport(real xmin, real xmax, real ymin, real ymax)

{

gp.v.xmin=xmin;

gp.v.xmax=xmax;

gp.v.ymin=ymin;

gp.v.ymax=ymax;

gpmake();

dvviewport(xmin, xmax, ymin, ymax);

return (xmax-xmin)/(ymax-ymin);

}

Uses gp 18a, gpmake 20c, and real 46 46.

To calculate the viewing transformation coefficients between the window (in the space
of the scene) and the viewport (in normalized coordinates), the routines gpwindow and
gpviewport call the routine gpmake.

20c 〈transformation 20c〉≡
void gpmake(void)

{

real Ax=(gp.d.xmax-gp.d.xmin);

real Ay=(gp.d.ymax-gp.d.ymin);

gp.ax = (gp.v.xmax-gp.v.xmin)/(gp.w.xmax-gp.w.xmin); /* map wc to ndc */

gp.ay = (gp.v.ymax-gp.v.ymin)/(gp.w.ymax-gp.w.ymin);

2.5. The GP Graphics Package 21

gp.bx = gp.v.xmin-gp.ax*gp.w.xmin;

gp.by = gp.v.ymin-gp.ay*gp.w.ymin;

gp.ax = Ax*gp.ax; /* map ndc to dc */

gp.ay = Ay*gp.ay;

gp.bx = Ax*gp.bx+gp.d.xmin;

gp.by = Ay*gp.by+gp.d.ymin;

}

Defines:
gpmake, used in chunk 20.

Uses gp 18a and real 46 46.

The viewing transformations are effectively realized by the routines gpview and
gpunview, which map points from the application space to the graphics device space and
vice versa.

21a 〈view 21a〉≡
void gpview(real* x, real* y)

{

x=gp.ax(*x)+gp.bx;

y=gp.ay(*y)+gp.by;

}

Defines:
gpview, used in chunk 24.

Uses gp 18a and real 46 46.

21b 〈unview 21b〉≡
void gpunview(real* x, real* y)

{

*x=(*x-gp.bx)/gp.ax;

*y=(*y-gp.by)/gp.ay;

}

Defines:
gpunview, used in chunks 23 and 24.

Uses gp 18a and real 46 46.

2.5.6 Drawing Routines

The drawing routines in GP specify the objects displayed in the device. In GP, polygonal
curves (open or closed) and polygonal regions are called polygonal primitives. These prim-
itives can be drawn using a combination of the routines gpbegin, gppoint, and gpend.
The primitive is defined by the sequence of coordinates given by calls to gppoint, delim-
ited by gpbegin and gpend. Notice this schema is similar to the one in OpenGL.

void gpbegin(int c);

#define gpbegin dvbegin

void gpend(void);

#define gpend dvend

22 2. Objects and Graphics Devices

int gppoint(Real x, Real y)

{

gpview(&x,&y);

return dvpoint(x,y);

}

The type of primitive polygonal is specified by the parameter c of the routine gpbegin.

� l open polygonal curve

� p closed polygonal curve

� f filled polygon

An example of using this schema is in the implementation of routine gptri, which
draws a triangular region given by

22 〈triangle example 22〉≡
void draw_triangle(real x1, real y1, real x2, real y2, real x3, real y3)

{

gpbegin(’f’);

gppoint(x1,y1);

gppoint(x2,y2);

gppoint(x3,y3);

gpend();

}

Defines:
draw triangle, never used.

Uses gpbegin, gpend, gppoint, and real 46 46.

Text routines. A text is a sequence of alphanumerical characters. The most common at-
tributes of a text are the color of the characters, the family type of the fonts (Helvetica,
Times, etc.), and the variations of the font in each family (bold, italic, etc.). GP uses a
fixed-size vector font.

The routine gptext draws a sequence of characters s at the position (x, y)

void gptext(Real x, Real y, char* s, char* mode)

#define gptext dvtext

2.5.7 Routines for Graphics Input and Interaction

In general, several input devices exist in a workstation. The most common devices are
the keyboard and the mouse. The keyboard is used for alphanumerical data entry, and
the mouse is used as a locator; that is, a device allowing the user to specify positions on
the screen. The mouse also has buttons allowing the user to define different states of the
device.

2.5. The GP Graphics Package 23

The user’s actions with the devices are captured by the system in a process called pool-
ing: the devices are continuously verified by the system, and a queue is created, where
each queue input contains the identification of the device and the data related to the user
interaction with the device. This queue is called the event queue of the system.

The gp, in general, supports the mouse and keyboard as input devices. In this way, it
allows access to a queue of events where we have actions from the keyboard, buttons, and
relative mouse position (locator). There are also other events allowing to verify the state of
the device (e.g., an event to inform there was a change in the size of a window).

The access to events queue is performed by a single data input routine gpevent, al-
lowing the user to interact with the system. This routine is used to retrieve the first event
from the event queue associated to the window in GP. The parameter wait determines the
behavior of the routine.

� wait!=0 waits until the next event.

� wait == 0 returns if the queue is empty.

23 〈event 23〉≡
char* gpevent(int wait, real* x, real* y)

{

int ix,iy;

char* r=dvevent(wait,&ix,&iy);

*x=ix; *y=iy;

gpunview(x,y);

return r;

}

Defines:
gpevent, never used.

Uses dvevent, gpunview 21b, and real 46 46.

The routine returns events according to the code below:
bi+ button i is pressed
bi- button i is released
kt+ key t is pressed
ii+ cursor not moving with button i pressed
mi+ cursor moving with button i pressed
q+ window closed by the windowing manager
r+ request for redrawing
s+ window has new size (x, y)

Button events. In a standard hardware configuration used by GP, the button devices cor-
respond to the mouse buttons. The sequence of data of this event begins with the character
b, followed by a digit, 1, 2, or 3, identifying the button, and finally the + sign to indicate
that the button was pressed or - to indicate it was released. In short, the sequence of button
events has the format bi+ or bi -.

24 2. Objects and Graphics Devices

Locator events. The mouse, besides being a button device, is also the standard locator
used in a workstation. Mouse motion events begin with the character m. In this case, the
position of the mouse is stored in the parameter (x, y) of the routine gpevent. Note that
simultaneous mouse motion events using buttons are also preceded by the character m. For
example, the mouse motion with the button i pressed is indicated by the sequence mi+.

Keyboard events. When the keyboard key k is pressed, it returns the string “kt+”, indicat-
ing the event, where t is the ASCII code of the key.

2.6 Comments and References
The reader can find more information on planar graphics objects and representation in
[Gomes and Velho 98]. Further information on graphics devices can be found in [Gomes
and Velho 95].

The external API of GP is composed of the following routines:

24 〈API 24〉≡
real gpopen (char* name);

void gpclose (int wait);

void gpclear (int wait);

void gpflush (void);

void gpwait (int t);

real gpwindow (real xmin, real xmax, real ymin, real ymax);

real gpviewport (real xmin, real xmax, real ymin, real ymax);

void gpview (real* x, real* y);

void gpunview (real* x, real* y);

int gppalette (int c, char* name);

int gprgb (int c, real r, real g, real b);

int gpcolor (int c);

int gpfont (char* name);

void gpbegin (int c);

int gppoint (real x, real y);

void gpend (void);

void gptext (real x, real y, char* s, char* mode);

char* gpevent (int wait, real* x, real* y);

Defines:
gpevent, never used.

Uses gpbegin, gpclear, gpclose, gpcolor, gpend, gpflush, gppoint, gprgb, gptext,
gpunview 21b, gpview 21a, gpwait, and real 46 46.

2.6. Comments and References 25

2.6.1 Programming Layer

The GP graphic library implements the lowest layer of an interactive graphics program. It
is restricted to the 2D component and corresponds to the 2D functionality of the OpenGL
library.

Exercises
1. Compile and install the GP library.

2. Using the GP library, write an interactive program to model polygonal curves. The
program should write the curve as a list of points.

3. Using the GP library, write a program to read files with polygonal curves and to draw
them.

4. Design and implement a toolkit interface consisting of the following 2D widgets:
button, valuator, choice, text area, and canvas.

5. Using the toolkit of the previous exercise, write a program showing a menu composed
of several buttons. When a button is pressed, the program should print the text on
the button.

6. Using the toolkit of the previous interface, write a program showing a valuator. When
the valuator is modified, the program should print the corresponding value.

7. Combine the programs of the previous exercises to implement a complete editor for
polygonal curves. It should contain a menu for the different functions (to read a file,
to write a file, to clean the screen, etc.), valuators for window scaling and translations,
and editing functions associated to the mouse buttons (to insert a vertex, to move a
vertex, to delete a vertex).

8. Modify the editor for polygonal curves to also work with Bézier curves. Use a sub-
division algorithm for the visualization by curve refinement. Figure 2.12 shows the
example of a curve editor.

Figure 2.12. Curve editor.

This page intentionally left blankThis page intentionally left blank

3 Interaction and
Graphical Interfaces

This chapter is devoted to the development of interactive programs and the design of user
interfaces. It builds on the the infrastructure of the gp 2D graphics package introduced in
the previous chapter. This chapter covers event treatment, interface actions with callbacks,
interaction objects with multiple views, interface managers, toolkits, and widget design,
and concludes with an example of an actual graphics interactive program: a polygonal line
editor.

3.1 Creating Interactive Programs

Using the simplicity of the function gpevent, it is possible to develop graphical interfaces
that possess great complexity and a high degree of interactivity. The interaction will be
event driven, which makes the implementation easier.

In developing a good interface, we need to take into account two main elements. The
first is graphical input/output. We need to decide how the user is going to specify the
various graphical objects of the program and their behavior. For example, one can create a
line segment in a drawing program by simply marking two distinct points on the screen.
Or one could use a rubber banding technique, which involves first defining the initial
point of the line segment as an anchor, and subsequently dragging the cursor to the line
endpoint, as an elastic string. Note that both techniques can be used to produce the same
result: creating a line segment. But the rubber band method gives more control and visual
feedback to the user.

The other element to take into consideration is the interface design. We must create
a global architecture of interactive objects that reflects the internal state of the program
and allows the user to interact with its parameters. This is done through widgets and an
interface manager. Continuing with the previous example, the whole interface could be
made of a set of buttons for creating, deleting, and modifying line segments. They would
be associated with various interactive methods, such as rubber-banding and others.

27

28 3. Interaction and Graphical Interfaces

Locator

Button

Keys

Mouse

Keyboard

gpevent

Figure 3.1. Logical input devices.

3.2 Interaction Fundamentals
Graphics interaction is basically a process by which the user manipulates objects though
various logical commands. Usually this process involves the combination of graphics out-
put devices, such as a graphics display, and graphics input devices, such as a mouse. At the
core of the interaction we have a feedback loop such that user actions are depicted on the
screen, reflecting changes of state caused by these actions.

3.2.1 Graphical Feedback

Graphical feedback essentially couples input and output, such that the graphics objects
involved behave like real and active entities to the user. An event, which is caused by an
input action of the user, such as moving the mouse, should trigger a corresponding reaction
in terms of graphics output. For example, when the mouse moves, the image of the cursor
on the screen changes accordingly. In that way, the user knows that the system understood
the gesture and also can see the current state of the parameters (in this case the mouse
location relative to the screen).

3.2.2 Logical Input Elements

We have already seen in the previous chapter the main abstractions for device-independent
graphics output, and the basic mechanisms for events.

The next step is to develop the concept of logical input elements, which provide graphics
input functions. Logical input elements include locators, buttons, and keys. As can be
seen in Figure 3.1, these logical input elements are usually associated with the mouse and
keyboard. They interface with the gp graphics package through the function gpevent.

The locator provides input for 2D coordinates relative to the window coordinate sys-
tem. The buttons provide binary state values (i.e., pressed or released), while the key are
associated with the ASCII character set.

3.2.3 Overview

The process of interface design entails the coupling of graphical input and output through
some feedback implementation model and the construction of an architecture for an inter-
face manager that coordinates interaction objects.

3.3. Interaction Mechanisms 29

Feedback implementation models. The most common feedback implementation models
are pooling, direct event handling, callbacks, and boxed callbacks. In the next sections, we
study these models in more detail.

Interface manager architectures. The architecture for interface design consists of a pack-
age that includes several elements for the construction of interactive programs. The main
components of an interface package are

� Toolkit. Contains a set of prepackaged widgets (i.e., interface objects) for the various
common interaction tasks, such as selecting an option from a menu or entering a text
string. Section 3.5 presents the architecture and implementation of a simple toolkit.

� Interface builder. Allows the user to graphically create the interface layout.

� Runtime manager. Implements the feedback model during program execution.

3.3 Interaction Mechanisms
In order to discuss and compare interaction mechanisms, we are going to show the pseu-
docode of simple programs exemplifying their usage and implementation.

3.3.1 Noninteractive

The simplest graphics program is noninteractive. Its structure consists of an initialization
to create a window and a sequence of drawing commands to display something on the
screen.

main()

{

gpopen();

gpwindow();

gpviewport();

// set gpattributes

// execute drawing primitives

.

.

gpclose();

}

3.3.2 Event Driven

The basic event-driven interactive program uses the function gpevent to explicitly handle
all graphics input and to perform the associated output action.

30 3. Interaction and Graphical Interfaces

main()

{

gpopen();

gpwindow();

gpviewport();

draw_initial_state();

while (!quit) {

e = gpevent();

parse_exec_event(e) ;

}

gpclose();

}

Notice that the major implementation burden fall on the function parse exec event,
which is responsible for explicitly handling all interaction.

parse_exec_event(e)

{

switch (e) {

case k: // key pressed

.

.

case m: // mouse movement

.

.

}

}

As the program gets more complex and the interface more involved, this model be-
comes very difficult to extend and maintain. The reason is that each input event must be
handled explicitly, taking into account the affected objects and the state of the program.
For example, when a key is pressed, it may have different meanings depending on where
the mouse is located or which object is selected.

3.3.3 Callback Model

The callback model comes to the rescue of the difficulty presented by direct handling of
input events. It uses events but associates particular events to specific graphical objects or
interface conditions.

For example, a particular function can be associated with the action of pressing the left
mouse button. Under this model, that function is called whenever the mouse button is
pressed; thus, it is referred as callback function.

main()

{

gpopen();

3.3. Interaction Mechanisms 31

gpwindow();

gpregister("b1+", f1, d1);

gpregister("b2+", f2, d2);

.

.

gpmain_loop ()

gpclose()

}

So, in the initialization phase, the user defines all callback actions through the func-
tion gpregister. Subsequently, the interaction loop is implemented by the function
gpmain loop, which handles the events automatically by calling the desired actions at the
appropriate times. In this way, the behavior of the interaction can be changed by simply
replacing the implementation of callbacks.

3.3.4 Callback with Multiple Views

The callback model can be greatly improved by establishing a link between events and
graphical objects. Note that in the general callback model, the event association is global,
i.e., the same callback is activated for a particular class of event, such as a mouse button
press.

The callback with multiple views model associates a local event to an action. For
example, a different callback is activated depending on where the mouse button is pressed.

This model is implemented with the help of multiple views. The screen is tiled with
different areas and they different local actions.

For example, the function

mvreg(1,"b1+",displ1,id1);

specifies that the callback displ1(id1) will be activated if mouse button 1 is pressed in
the screen area v1. The function

mvreg(2,"b1+",displ2,id2);

specifies a similar action displ2 for screen area v2.
Of course, in this model it is possible to maintain global events. This is done by a

special identifier (−1) for the whole screen.

mvreg(-1,"=q",exit,0); // call exit(0) if key ‘k’ is pressed in any area

The callback with multiple views is the model we are going to adopt to build our toolkit
infrastructure. Under this model the structure of an interactive program is as follows:

main()

{

gpopen()

mvopen()

32 3. Interaction and Graphical Interfaces

interface_setup()

mvmain_loop ()

gpclose(0)

}

The configuration of the interface is done by the function interface setup, which
defines each view area and the corresponding callbacks, as well as the initial state of the
interface.

interface_setup()

{

mvviewport(1, x, x, y, y)

.

mvregister (1, , x, 0)

.

draw_initial_state()

}

In the next section we will describe the implementation of the for the multiple view
callback model.

3.4 Interface Objects
Graphical interface objects can be created using the multiple view callback model discussed
in the previous section. The multiple viewport framework allows interface objects to be
associated with areas of the screen, while the callback framework makes these objects active
by an event-driven graphical feedback.

The mvcb package provides an integrated implementation of these frameworks.

3.4.1 Multiple Viewports

The multiple viewport framework essentially provides a tiled screen manager on top of gp.
This is done by implementing the abstraction of multiple views. Each view behaves exactly
like the gp package, but is confined to a particular screen area.

The internal state of mv consists of a set of views, each defined by a window and view-
port. There is also the notion of a current view, to which all the gp commands apply.

32 〈mv internal state 32〉≡
static int nv; /* number of views */

static Box* w; /* windows */

static Box* v; /* viewports */

static int current; /* current view */

Defines:
current, used in chunks 33–35.
nv, used in chunks 33, 35b, and 36a.
v, used in chunks 33, 35–39, 41c, and 44.
w, used in chunks 33–35 and 42–44.

3.4. Interface Objects 33

The main control functions of gp are replicated in the mv package to encapsulate the
corresponding functionality.

33a 〈 mv open 33a〉≡
int mvopen(int n)

{

if (n<=0) return 0;

v=(Box*) emalloc(n*sizeof(Box)); if (v==0) return 0;

w=(Box*) emalloc(n*sizeof(Box)); if (w==0) return 0;

nv=n;

current=0;

for (n=0; n<nv; n++) {

w[n].xu = w[n].yu = 1.0;

mvwindow(n,0.0,1.0,0.0,1.0);

mvviewport(n,0.0,1.0,0.0,1.0);

}

return 1;

}

Defines:
mvopen, used in chunk 40b.

Uses current 32, mvviewport 33d, mvwindow 33c, nv 32, v 32, and w 32.

33b 〈mv close 33b〉≡
void mvclose(void)

{

efree(w);

efree(v);

}

Defines:
mvclose, used in chunk 41a.

Uses v 32 and w 32.

33c 〈mv window 33c〉≡
void mvwindow(int n, real xmin, real xmax, real ymin, real ymax)

{

if (n<0|| n>=nv) return;

w[n].xmin=xmin;

w[n].xmax=xmax;

w[n].ymin=ymin;

w[n].ymax=ymax;

}

Defines:
mvwindow, used in chunks 33a and 42a.

Uses nv 32, real 46 46, and w 32.

33d 〈mv viewport 33d〉≡
void mvviewport(int n, real xmin, real xmax, real ymin, real ymax)

{

34 3. Interaction and Graphical Interfaces

if (n<0|| n>=nv) return;

v[n].xmin=xmin;

v[n].xmax=xmax;

v[n].ymin=ymin;

v[n].ymax=ymax;

}

Defines:
mvviewport, used in chunks 33a, 34c, and 42a.

Uses nv 32, real 46 46, and v 32.

34a 〈mv clear 34a〉≡
void mvclear(int c)

{

int old=gpcolor(c);

int n=current;

gpbox(w[n].xmin,w[n].xmax,w[n].ymin,w[n].ymax);

gpcolor(old);

}

Defines:
mvclear, never used.

Uses current 32 and w 32.

The auxiliary function mvframe draws an outline around the view, making it easier to
see its area on the screen.

34b 〈mv frame 34b〉≡
void mvframe(void)

{

int n = current;

gpline(w[n].xmin,w[n].ymin,w[n].xmax,w[n].ymin);

gpline(w[n].xmax,w[n].ymin,w[n].xmax,w[n].ymax);

gpline(w[n].xmax,w[n].ymax,w[n].xmin,w[n].ymax);

gpline(w[n].xmin,w[n].ymax,w[n].xmin,w[n].ymin);

}

Defines:
mvframe, used in chunk 43b.

Uses current 32 and w 32.

The function mvdiv divides a rectangular area of the screen into a tiling of nx by ny

views.

34c 〈mv divide 34c〉≡
void mvdiv(int nx, int ny, real xvmin, real xvmax, real yvmin, real yvmax)

{

int i,n;

real dx=(xvmax-xvmin)/nx;

real dy=(yvmax-yvmin)/ny;

for (n=0,i=0; i<ny; i++)

{

3.4. Interface Objects 35

int j;

real ymax=yvmax-i*dy;

real ymin=ymax-dy;

for (j=0; j<nx; j++,n++) {

real xmin=xvmin+j*dx;

real xmax=xmin+dx;

mvviewport(n,xmin,xmax,ymin,ymax);

}

}

}

Defines:
mvdiv, used in chunk 35a.

Uses mvviewport 33d and real 46 46.

The function mvmake applies mvdiv to the whole screen area.

35a 〈mv make 35a〉≡
void mvmake(int nx, int ny)

{

real x,y;

if (nx>ny) {

x=1.0;

y=((real)ny)/nx;

} else {

x=((real)nx)/ny;

y=1.0;

}

mvdiv(nx,ny,0.0,x,0.0,y);

gpviewport(0.0,x,0.0,y);

}

Defines:
mvmake, never used.

Uses mvdiv 34c and real 46 46.

The function mvact makes the specified view active, i.e., it becomes the current view.

35b 〈mv activate 35b〉≡
int mvact(int n)

{

int old=current;

if (n<0|| n>=nv) return old;

gpwindow(w[n].xmin,w[n].xmax,w[n].ymin,w[n].ymax);

gpviewport(v[n].xmin,v[n].xmax,v[n].ymin,v[n].ymax);

current=n;

return old;

}

Defines:
mvact, used in chunks 36a and 43b.

Uses current 32, nv 32, v 32, and w 32.

36 3. Interaction and Graphical Interfaces

3.4.2 Callback with Views

The callback model is implemented for multiple views by creating a mechanism that asso-
ciates events with views. For this purpose the function mvevent is defined.

36a 〈mv event 36a〉≡
char* mvevent(int wait, real* x, real* y, int* view)

{

int n; real gx,gy, tx,ty;

char* r=gpevent(wait,&gx,&gy);

if (r==NULL) return r;

gpview(&gx,&gy); tx=gx; ty=gy;

gpwindow(0.0,1.0,0.0,1.0);

gpviewport(0.0,1.0,0.0,1.0);

gpunview(&gx,&gy);

*view=-1;

for (n=0; n<nv; n++) {

if (gx>=v[n].xmin && gx<=v[n].xmax && gy>=v[n].ymin && gy<=v[n].ymax) {

int old=mvact(n);

gpunview(&tx,&ty);

*x=tx;

*y=ty;

*view=n;

mvact(old);

break;

}

}

return r;

}

Defines:
mvevent, used in chunk 38a.

Uses mvact 35b, nv 32, real 46 46, and v 32.

The callback abstraction is implemented through a list of events patterns that are
matched to views.

36b 〈mv callbacks state 36b〉≡
typedef struct event Event;

struct event {

int v;

char* s;

MvCallback* f;

void* d;

Event* next;

};

static Event* firstevent=NULL;

static int gp_wait=1;

3.4. Interface Objects 37

Defines:
firstevent, used in chunk 37.
gp wait, used in chunks 37b and 38a.

Uses next 37a 46 and v 32.

For convenience we define the following macros:

37a 〈mvcb macros 37a〉≡
#define new(t) ((t*) emalloc(sizeof(t)))

#define streq(x,y) (strcmp(x,y)==0)

#define V(_) ((_)->v)

#define S(_) ((_)->s)

#define F(_) ((_)->f)

#define D(_) ((_)->d)

#define next(_) ((_)->next)

#define foreachevent(e) for (e=firstevent; e!=NULL; e=next(e))

static Event* findevent (int v, char* s);

static Event* matchevent (int v, char* s);

static int match (char *s, char *pat);

Defines:
D, used in chunks 37b and 38a.
F, used in chunks 37b and 38a.
findevent, used in chunk 37b.
foreachevent, used in chunks 38b and 39a.
matchevent, used in chunk 38a.
new, used in chunks 37b and 47.
next, used in chunks 36b, 37b, and 47.
S, used in chunks 37–39.
streq, used in chunk 38b.
V, used in chunks 37–39.

Uses firstevent 36b, match 39b, and v 32.

The function mvregister associates a callback action to a particular event and view.

37b 〈mv register function 37b〉≡
MvCallback* mvregister(int v, char* s, MvCallback* f, void* d)

{

MvCallback* old;

Event* e=findevent(v,s);

if (e==NULL) {

static Event* lastevent=NULL;

e=new(Event); /* watch out for NULL! */

V(e)=v;

S(e)=s;

F(e)=NULL;

next(e)=NULL;

if (firstevent==NULL) firstevent=e; else next(lastevent)=e;

lastevent=e;

}

38 3. Interaction and Graphical Interfaces

old=F(e);

F(e)=f;

D(e)=d;

if (s[0]==’i’ && f!=NULL) gp_wait=0;

return old;

}

Defines:
mvregister, used in chunks 40b and 43a.

Uses D 37a, F 37a, findevent 37a 38b, firstevent 36b, gp wait 36b, new 37a 46, next 37a 46,
S 37a, V 37a, and v 32.

The mvmainloop is the function that actually implements the runtime callback model
matching events to views.

38a 〈mv mainloop 38a〉≡
void mvmainloop(void)

{

for (;;) {

real x,y;

int v;

char* s=mvevent(gp_wait,&x,&y,&v);

Event*e=matchevent(v,s);

if (e!=NULL && F(e)(D(e),v,x,y,s))

break;

}

}

Defines:
mvmainloop, used in chunk 41b.

Uses D 37a, F 37a, gp wait 36b, matchevent 37a 39a, mvevent 36a, real 46 46, and v 32.

The functions findevent and matchevent are used to query the list of event patterns
when an event is processed.

38b 〈find event 38b〉≡
static Event* findevent(int v, char* s)

{

Event* e;

foreachevent(e) {

if (V(e)!=v) continue;

if (s==NULL && S(e)==NULL) break;

if (s==NULL|| S(e)==NULL) continue;

if (streq(S(e),s)) break;

}

return e;

}

Defines:
findevent, used in chunk 37b.

Uses foreachevent 37a, S 37a, streq 37a, V 37a, and v 32.

3.5. Toolkits 39

39a 〈match event 39a〉≡
static Event* matchevent(int v, char* s)

{

Event* e;

foreachevent(e) {

if (V(e)<0|| V(e)==v)

if (match(S(e),s)) break;

}

return e;

}

Defines:
matchevent, used in chunk 38a.

Uses foreachevent 37a, match 39b, S 37a, V 37a, and v 32.

The actual pattern matching of strings is done by the auxiliary function match.

39b 〈match string 39b〉≡
static int match(char *s, char *pat)

{

if (s==NULL) return pat==NULL;

if (pat==NULL) return s==NULL;

for (; *s!=0; s++, pat++) {

if (*s!=*pat) return 0;

}

return 1;

}

Defines:
match, used in chunks 37a and 39a.

3.5 Toolkits

The tk toolkit package builds on top of the mvcb package to create interface objects (i.e.,
widgets). Rectangular areas of the screen are associated with such objects, and the tk

library implements the proper feedback for each type of widget. This is done by registering
specific callbacks for each active widget.

For example, a pushbutton widget will have as a state a binary value (on / off), and it
will be materialized as a box on the screen with text over a black or white background,
depending on the current value. Every time the user clicks on the button, it changes state
and the callback function informs the user program that the value has changed. Notice
that the graphical feedback is handled automatically by the widget.

In summary, the toolkit creates a layer of abstraction that implements basic interface
objects to be used by the application program.

40 3. Interaction and Graphical Interfaces

Button

(a) (b)

Choice 1

Choice 2

Choice 0

(c)

Text Input .. |

(d)

Figure 3.2. Essential widgets: (a) button, (b) slider, (c) selection, and (d) text area.

3.5.1 Basic Elements

The central issue in the design of an interface toolkit is the definition of the set of widgets
to be implemented and the mechanisms for creating new widgets.

Here we are going to suggest a minimum set of widgets that implement the essential
functionality of a general user interface. The minimum toolkit is composed of the follow-
ing widgets: button, slider, selection, text area, and graphics canvas. A simple graphical
depiction of each widget is shown in Figure 3.2.

3.5.2 The TK Package

The widget API consists of functions for creating and destroying widget instances, map-
ping and unmapping them on the screen. These functions are

w = create_widget (pos, par, fun)

destroy_widget (w)

map_widget (w)

unmap_widget (w)

The internal state of the package has a vector of widget pointers, the size of the vector,
and the last available entry in the vector.

40a 〈tk local state 40a〉≡
Widget **wa = NULL;

int wn = 0;

int wi = 0;

Defines:
wa, used in chunks 40–42.
wi, used in chunks 40–42.
wn, used in chunks 40–42.

Uses Widget 44c.

The basic functionality of the runtime interface manager is implemented through the
functions tk open, which initializes the interface; tk close which terminates the inter-
face, and tk mainloop, which handles the interaction loop.

40b 〈tk initialization 40b〉≡
void tk_open(int n)

{

3.5. Toolkits 41

int i;

mvopen(n);

wa = NEWARRAY(n, Widget *);

for (i=0; i<n; i++)

wa[i] = NULL;

wn = n;

wi = 0;

mvregister(-1,"r",tk_redraw,NULL);

gpflush();

}

Defines:
tk open, never used.

Uses mvopen 33a, mvregister 37b, tk redraw 41c, wa 40a, wi 40a, Widget 44c, and wn 40a.

41a 〈tk close 41a〉≡
void tk_close()

{

efree(wa);

wa = NULL; wn = wi = 0;

mvclose();

}

Defines:
tk close, never used.

Uses mvclose 33b, wa 40a, wi 40a, and wn 40a.

41b 〈tk main loop 41b〉≡
void tk_mainloop()

{

mvmainloop();

}

Defines:
tk mainloop, never used.

Uses mvmainloop 38a.

The function tk redraw is used to display all the current active widgets on screen.

41c 〈tk redraw 41c〉≡
int tk_redraw(void* p, int v, real x, real y, char* e)

{

int i;

fprintf(stderr, "redraw\n"); fflush(stderr);

for (i=0; i<wi; i++) {

switch (wa[i]->type) {

case TK_BUTTON:

button_draw(wa[i], 1); break;

default:

error("tk"); break;

}

42 3. Interaction and Graphical Interfaces

}

gpflush();

return 0;

}

Defines:
tk redraw, used in chunk 40b.

Uses button draw 43b, real 46 46, redraw 47, TK BUTTON, v 32, wa 40a, and wi 40a.

A new widget is instantiated by calling the function tk widget and specifying its type
and parameters.

42a 〈tk widget 42a〉≡
Widget* tk_widget(int type, real x, real y, int (*f)(), void *d)

{

Widget *w = widget_new(type, x, y, 0.2, f);

if (wi >= wn)

error("tk");

w->id = wi++;

wa[w->id] = w;

mvwindow(w->id, 0, 1, 0, 1);

mvviewport(w->id, w->xo, w->xo + w->xs, w->yo, w->yo + w->ys);

switch (type) {

case TK_BUTTON:

button_make(w, d); break;

default:

error("tk"); break;

}

return w;

}

Defines:
tk widget, never used.

Uses button make 43a, mvviewport 33d, mvwindow 33c, real 46 46, TK BUTTON, w 32, wa 40a,
wi 40a, Widget 44c, widget new 42b, and wn 40a.

The internal function widget new creates a generic widget object that should subse-
quently be bound to a specific widget class.

42b 〈new widget 42b〉≡
Widget* widget_new(int type, real x, real y, real s, int (*f)())

{

Widget *w = NEWSTRUCT(Widget);

w->id = -1;

w->type = type;

w->xo = x; w->yo = y;

w->xs = w->ys = s;

w->f = f;

w->d = NULL;

return w;

}

3.5. Toolkits 43

Defines:
widget new, used in chunk 42a.

Uses real 46 46, w 32, and Widget 44c.

A new widget class is defined in the tk framework by specifying functions for creation
and drawing, as well as the interaction mechanism, which is handled through callbacks
under the mvcb package.

As an example of creation of a new widget class, we show how to define a button
widget. This is done through the functions button make and button draw.

43a 〈make button 43a〉≡
void button_make(Widget *w, char *s)

{

mvregister(w->id,"b1+",button_pressed,w);

mvregister(w->id,"b1-",button_released,w);

w->d = s;

button_draw(w, 1);

}

Defines:
button make, used in chunk 42a.

Uses button draw 43b, button pressed 44a, button released 44b, mvregister 37b, w 32,
and Widget 44c.

43b 〈draw button 43b〉≡
void button_draw(Widget *w, int posneg)

{

char *label = w->d;

int fg, bg;

if (posneg) {

fg = 1; bg = 0;

} else {

fg = 0; bg = 1;

}

mvact(w->id);

gpcolor(fg);

gpbox(0., 1., 0., 1.);

gpcolor(bg);

gptext(.2, .2, label, NULL);

mvframe();

gpflush();

}

Defines:
button draw, used in chunks 41c, 43, and 44.

Uses mvact 35b, mvframe 34b, w 32, and Widget 44c.

The button behavior is defined through the callbacks button pressed and button released

which handle respectively the events button press and release.

44 3. Interaction and Graphical Interfaces

44a 〈press action 44a〉≡
int button_pressed(void* p, int v, real x, real y, char* e)

{

button_draw(p, 0);

return 0;

}

Defines:
button pressed, used in chunk 43a.

Uses button draw 43b, real 46 46, and v 32.

44b 〈release action 44b〉≡
int button_released(void* p, int v, real x, real y, char* e)

{

Widget *w = p;

button_draw(w, 1);

return w->f();

}

Defines:
button released, used in chunk 43a.

Uses button draw 43b, real 46 46, v 32, w 32, and Widget 44c.

A widget object is defined by a data structure that contains its ID, type, position, and
size on screen, as well as local data and an application callback function.

44c 〈widget data structure 44c〉≡
typedef struct Widget {

int id;

int type;

real xo, yo;

real xs, ys;

void* d;

int (*f)();

} Widget;

Defines:
Widget, used in chunks 40 and 42–44.

Uses real 46 46.

3.5.3 Example

As an example of a graphics interactive program that uses the tk toolkit to generate its
interface, we show below a simple application that creates two buttons on screen: one for
printing a value and the another for quitting the program. Figure 3.3 shows the interface
layout of the program.

int main(int argc, char* argv[])

{

Widget *w0;

gpopen("tk test", 512, 512);

3.6. Polygon Line Editor 45

Figure 3.3. Example of interactive program using TK.

tk_open(10);

tk_widget(TK_BUTTON, .2, .5, but1, "Button 1");

tk_widget(TK_BUTTON, .6, .5, but2, "Button 2");

tk_mainloop();

tk_close();

gpclose(0);

}

int but1()

{

fprintf(stderr, "Button 1 pressed\n"); fflush(stderr);

return 0;

}

int but2()

{

fprintf(stderr, "Button 2 pressed - quitting\n"); fflush(stderr);

return 1; // exits the main loop when 1 is returned.

}

3.6 Polygon Line Editor
As an example of the use of a graphics canvas, we show in this section the implementation
of a polygon line editor application. Note that the program implements a rubber banding
method for line input, as discussed in the introduction of this chapter. The screen of the
program is depicted in Figure 3.4.

46 3. Interaction and Graphical Interfaces

Figure 3.4. Polygon line editor.

46 〈ple state 46〉≡

#define TOL tol

typedef struct point Point;

struct point {

real x,y;

Point* next;

Point* prev;

};

void redraw (int clear);

void delpoints (void);

void showpolygon (void);

void showspline (void);

void showpoints (void);

void addpoint (real x, real y);

void movepoint (real x, real y);

void delpoint (real x, real y);

void startmove (real x, real y);

void endmove (real x, real y);

void showchange (Point* p, int c);

void showpoint (Point* p);

void showside (Point* p, Point *q);

Point* findpoint (real x, real y);

3.6. Polygon Line Editor 47

Callback

do_polygon,

do_quit,

do_redraw,

do_addpoint,

do_startmove,

do_endmove,

do_delpoint,

do_movepoint;

#define X(p) ((p)->x)

#define Y(p) ((p)->y)

#define new(t) ((t*)emalloc(sizeof(t)))

#define next(p) ((p)->next)

#define prev(p) ((p)->prev)

static Point* firstpoint=NULL;

static Point* lastpoint=NULL;

static Point* moving=NULL;

static int showingpolygon=1;

static int showingpoints=1;

static real xmin = 0, xmax = 1, ymin = 0, ymax = 1;

static real aspect = 1, tol = 0.1;

Defines:
findpoint, never used.
firstpoint, used in chunk 47.
lastpoint, used in chunk 47.
moving, used in chunk 47.
new, used in chunks 37b and 47.
next, used in chunks 36b, 37b, and 47.
prev, used in chunk 47.
real, used in chunks 18, 20–24, 33–36, 38a, 41, 42, 44, and 47.
showingpoints, used in chunk 47.
showingpolygon, used in chunk 47.
TOL, used in chunk 47.
X, used in chunk 47.
Y, used in chunk 47.

Uses addpoint 47, delpoint 47, delpoints 47, do addpoint 47, do delpoint 47,
do endmove 47, do movepoint 47, do polygon 47, do quit 47, do redraw 47,
do startmove 47, endmove 47, movepoint 47, redraw 47, showchange 47, showpoint 47,
showpoints 47, showpolygon 47, showside 47, and startmove 47.

47 〈ple functions 47〉≡
int main(int argc, char* argv[])

{

gpopen("polygonal line editor", 512 * aspect, 512);

gpwindow(xmin,xmax, ymin,ymax);

gpmark(0,"B"); /* filled box mark */

48 3. Interaction and Graphical Interfaces

gpregister("kp",do_polygon,0);

gpregister("kq",do_quit,0);

gpregister("kr",do_redraw,0);

gpregister("k\f",do_redraw,0);

gpregister("b1+",do_addpoint,0);

gpregister("kd",do_delpoint,0);

gpregister("b3+",do_startmove,0);

gpregister("b3-",do_endmove,0);

gpregister("m3+",do_movepoint,0);

gpmainloop();

gpclose(0);

}

void redraw(int clear)

{

if (clear)

gpclear(0);

if (showingpolygon)

showpolygon();

showpoints();

gpflush();

}

void delpoints(void)

{

firstpoint=lastpoint=NULL; /* lazy! */

}

void addpoint(real x, real y)

{

Point* p=new(Point);

X(p)=x;

Y(p)=y;

next(p)=NULL;

if (showingpoints) showpoint(p);

if (firstpoint==NULL) {

prev(p)=NULL;

firstpoint=p;

} else {

prev(p)=lastpoint; next(lastpoint)=p;

if (showingpolygon) showside(lastpoint,p);

}

lastpoint=p;

}

3.6. Polygon Line Editor 49

void delpoint(real x, real y)

{

Point* p=findpoint(x,y);

if (p!=NULL) {

if (prev(p)==NULL) firstpoint=next(p); else next(prev(p))=next(p);

if (next(p)==NULL) lastpoint=prev(p); else prev(next(p))=prev(p);

redraw(1);

}

}

void startmove(real x, real y)

{

moving=findpoint(x,y);

if (moving!=NULL) {

x=X(moving); y=Y(moving);

gpcolor(0); gpplot(x,y); gpcolor(1);

gpmark(0,"b"); gpplot(x,y);

}

}

void movepoint(real x, real y)

{

if (moving!=NULL) {

showchange(moving,0);

X(moving)=x; Y(moving)=y;

showchange(moving,1);

}

else startmove(x,y);

}

void endmove(real x, real y)

{

if (moving!=NULL) {

gpmark(0,"B");

redraw(0);

moving=NULL;

}

}

Point* findpoint(real x, real y)

{

Point* p=firstpoint;

for (p=firstpoint; p!=NULL; p=next(p)) {

if ((fabs(X(p)-x)+fabs(Y(p)-y))<TOL) break;

}

50 3. Interaction and Graphical Interfaces

return p;

}

void showpoints(void)

{

Point* p;

for (p=firstpoint; p!=NULL; p=next(p))

showpoint(p);

gpflush();

}

void showpolygon(void)

{

Point* p;

for (p=firstpoint; p!=NULL; p=next(p))

showside(p,next(p));

gpflush();

}

void showpoint(Point* p)

{

gpplot(X(p),Y(p));

}

void showside(Point* p, Point *q)

{

if (p!=NULL && q!=NULL) gpline(X(p),Y(p),X(q),Y(q));

}

void showchange(Point* p, int c)

{

gpcolor(c);

showpoint(p);

if (showingpolygon) {

showside(prev(p),p);

showside(p,next(p));

}

gpflush();

}

int do_clear(char* e, real x, real y, void* p)

{

delpoints();

redraw(1);

return 0;

}

3.6. Polygon Line Editor 51

int do_polygon(char* e, real x, real y, void* p)

{

showingpolygon=!showingpolygon;

redraw(1);

return 0;

}

int do_quit(char* e, real x, real y, void* p)

{

return 1;

}

int do_redraw(char* e, real x, real y, void* p)

{

redraw(1);

return 0;

}

int do_addpoint(char* e, real x, real y, void* p)

{

addpoint(x,y);

gpflush();

return 0;

}

int do_startmove(char* e, real x, real y, void* p)

{

startmove(x,y);

gpflush();

return 0;

}

int do_endmove(char* e, real x, real y, void* p)

{

endmove(x,y);

gpflush();

return 0;

}

int do_delpoint(char* e, real x, real y, void* p)

{

delpoint(x,y);

gpflush();

return 0;

}

52 3. Interaction and Graphical Interfaces

int do_movepoint(char* e, real x, real y, void* p)

{

movepoint(x,y);

gpflush();

return 0;

}

Defines:
addpoint, used in chunk 46.
delpoint, used in chunk 46.
delpoints, used in chunk 46.
do addpoint, used in chunk 46.
do clear, never used.
do delpoint, used in chunk 46.
do endmove, used in chunk 46.
do movepoint, used in chunk 46.
do polygon, used in chunk 46.
do quit, used in chunk 46.
do redraw, used in chunk 46.
do startmove, used in chunk 46.
endmove, used in chunk 46.
findpoint, never used.
main, used in chunks 313, 317, and 318c.
movepoint, used in chunk 46.
redraw, used in chunks 41c and 46.
showchange, used in chunk 46.
showpoint, used in chunk 46.
showpoints, used in chunk 46.
showpolygon, used in chunk 46.
showside, used in chunk 46.
startmove, used in chunk 46.

Uses firstpoint 46, lastpoint 46, moving 46, new 37a 46, next 37a 46, prev 46, real 46 46,
showingpoints 46, showingpolygon 46, TOL 46, X 46, and Y 46.

3.7 Review
In this chapter we presented an architecture for interface design that has four layers, as
show in Figure 3.5. The first layer is the graphics interactive program; the second layer
is the interface toolkit, implemented by the tk package and the mvcb library. The third
layer is the graphical input and output, implemented by the gp package. The fourth layer is
the window system, which is platform-dependent, for example, X11 in the Linux platform,
Vista in the Microsoft Windows platform, and Aqua/Cocoa for the MacOS X platform.

3.8 Comments and References
In this chapter we presented the implementation of a library for interface design in com-
puter graphics. Some of the popular toolkit libraries are QT, GTK, FLTK, and GLUI.

3.8. Comments and References 53

Graphics Interactive Program

Interface Toolkit

Logical I/O Elements

Window System

TK

MVCB

GP

X11

Figure 3.5. Implementation layers.

3.8.1 Summary

The external API of the MVCB library is composed of the following routines:

int mvopen (int n);

void mvclose (void);

void mvwindow(int n, real xmin, real xmax, real ymin, real ymax);

void mvviewport(int n, real xmin, real xmax, real ymin, real ymax);

int mvact (int n);

void mvclear (int c);

void mvframe (void);

void mvmake (int nx, int ny);

void mvdiv (int nx, int ny, real xmin, real xmax, real ymin, real ymax);

char* mvevent (int wait, real* x, real* y, int* view);

void mvmainloop(void);

MvCallback* mvregister(int v, char* s, MvCallback* f, void* d);

Exercises
1. Incorporate map and unmap operations in the TK library.

2. Extend the TK library to include a slider widget.

3. Extend the TK library to include a choice widget.

4. Extend the TK library to include a text widget.

This page intentionally left blankThis page intentionally left blank

4 Geometry

In this chapter we study the geometry for computer graphics. Our objective is to develop
computational tools that make possible the solution of several graphics problems.

4.1 Geometry for Computer Graphics
The first question we should ask is, What will be the most appropriate geometry for com-
puting graphics? To answer this question, we have to take into account the types of prob-
lems to be resolved, as well as computational aspects.

4.1.1 Uses and Functionality

Geometry appears in different ways in the various computer graphics processes.
In modeling, geometry is used for representing the form of modeled objects; in opera-

tions with models; and in the calculation of most of their properties. The natural space for
modeling 3D objects is the R3.

In viewing, geometry is used in the description of the virtual camera; in the simulation
of illumination; and for the generation of images. These problems involve geometric op-
tics, projections, and transformations between coordinate systems. In this way, the viewing
process includes the space of the 3D scene, as well as the 2D space of the image.

We still have animation, which involves transformations of several scene parameters
over time.

4.1.2 Computational Aspects

In terms of computation, we have different applications for the geometric elements and
the geometric operations. Geometric elements should have a simple and natural descrip-
tion, partly because it is important to be able to easily construct more complex elements
from basic ones. Geometric operations should constitute an unified schema for the ma-
nipulation of geometric elements. It is important that these operations have an efficient
implementation. Ideally, we would like the primitive geometric elements, and their basic

55

56 4. Geometry

operations, to be implemented as extensions of the data types and operators of the adopted
programming language.

4.1.3 Summary of the Adopted Solution

Considering the applications mentioned above, we can give two appropriate formulations
for computer graphics: the Euclidean and projective geometries.

Euclidean geometry is the natural option for describing ambient space, be it 3D or 2D.
However, in Euclidean geometry, transformations do not have a unified representation;
besides, it is difficult to work with the projection concept in this geometry.

Projective geometry solves these limitations of Euclidean geometry. Euclidean space
is contained in projective space; therefore, its natural structure can be used. Projective
transformations make it possible to have a unified representation of every Euclidean trans-
formations and still include the projections.

In this book we will adopt both Euclidean and projective geometries to solve graphics
problems. We will explore compatibility between those two geometries to use the most
appropriate formulation to each problem. More specifically, the geometric elements will be
represented in Euclidean space. Basic operations and transformations with these elements
will be, respectively, Euclidean and projective ones. To make such a schema possible,
whenever necessary we will convert between Euclidean and projective representations.

4.2 Euclidean Space
We now examine the properties of Euclidean space, including its elements and basic oper-
ations.

4.2.1 Definitions

The Euclidean space Rn is a vector space of dimension n, with an inner product and
an intrinsic coordinate system. These properties allow linear algebra tools to work with
Euclidean space.

Here, we are mainly interested in the R2 and the R3, the Euclidean spaces of dimension
2 and 3, respectively.

4.2.2 Elements and Operations

The basic element of Euclidean space R3 is a vector v = (x, y, z), represented by its
coordinates in relation to the canonical basis.

We then define the type Vector3 and the constructor v3 make:

56 〈vector3 56〉≡
typedef struct Vector3 {

Real x,y,z;

} Vector3;

4.2. Euclidean Space 57

Figure 4.1. Absolute and relative interpretations of a vector.

Defines:
Vector3, used in chunks 57–59, 64, and 71–73.

57a 〈v3 constructor 57a〉≡
Vector3 v3_make(Real x, Real y, Real z)

{

Vector3 v;

v.x = x; v.y = y; v.z = z;

return v;

}

Defines:
v3 make, used in chunks 64b and 71.

Uses Vector3 56.

The origin of Euclidean space is the null vector (0, 0, 0).

57b 〈origin 57b〉≡
Vector3 v3_zero = { 0.0, 0.0, 0.0 };

Defines:
v3 zero, never used.

Uses Vector3 56.

Notice, in Euclidean space, a vector represents a point in relation to the origin. To
represent a vector relative to an arbitrary point, we perform a change of coordinate systems
(see Figure 4.1).

The basic operations in R3 are the vector operations of addition between vectors and
multiplication of a vector by a scalar:

57c 〈v3 add 57c〉≡
Vector3 v3_add(Vector3 a, Vector3 b)

{

a.x += b.x; a.y += b.y; a.z += b.z;

return a;

}

Defines:
v3 add, used in chunk 72c.

Uses Vector3 56.

58 4. Geometry

58a 〈v3 scale 58a〉≡
Vector3 v3_scale(Real t, Vector3 v)

{

v.x *= t; v.y *= t; v.z *= t;

return v;

}

Defines:
v3 scale, used in chunks 59a and 72c.

Uses Vector3 56.

Notice that with these two basic operations, we can define other operations, such as
subtraction between vectors.

#define v3_sub(a,b) v3_add(a, v3_scale(-1.0, v))

4.2.3 Metric Properties

The inner product defines a metric in R3 that allows to calculate several important prop-
erties. The inner product operation between two vectors is implemented by the routine
v3 dot.

58b 〈v3 dot 58b〉≡
Real v3_dot(Vector3 u, Vector3 v)

{

return (u.x * v.x + u.y * v.y + u.z * v.z);

}

Defines:
v3 dot, used in chunk 58c.

Uses Vector3 56.

Starting from the inner product, we can calculate the length (or norm) of a vector, as
well as the distance between two points.

58c 〈v3 norm alt 58c〉≡
Real v3_norm(Vector3 v)

{

return sqrt(v3_dot(v, v));

}

Defines:
v3 norm, used in chunk 59a.

Uses v3 dot 58b and Vector3 56.

#define v3_dist(a, b) v3_norm(v3_sub(a, b))

The cosine of the angle between two vectors is given by the quotient between the inner
product and the product between the norms of the vectors.

4.2. Euclidean Space 59

double v3_angle(Vector3 u, Vector3 v)

{

if (REL_EQ(0.0, v3_norm(u) * v3_norm(v)))

error("(v3_angle) null vector");

else

return acos(v3_dot(u, v)/(v3_norm(u) * v3_norm(v)));

}

It follows that two vectors are orthogonal when the inner product between them is
equal to zero; consequently, they form an angle of 90 degrees between themselves.

A non-null vector, divided by its norm, has unit length. Normalized vectors are useful
for representing directions in space.

59a 〈v3 unit 59a〉≡
Vector3 v3_unit(Vector3 u)

{

Real length = v3_norm(u);

if(fabs(length) < EPS)

error("(g3_unit) zero norm\n");

else

return v3_scale(1.0/length, u);

}

Defines:
v3 unit, never used.

Uses v3 norm 58c, v3 scale 58a, and Vector3 56.

4.2.4 Coordinates and Bases

Euclidean space has a natural coordinate system, given by the canonical basis {e1, e2, e3}.
59b 〈canonical basis 59b〉≡

Vector3 v3_e1 = { 1.0, 0.0, 0.0 };

Vector3 v3_e2 = { 0.0, 1.0, 0.0 };

Vector3 v3_e3 = { 0.0, 0.0, 1.0 };

Defines:
v3 e1, never used.
v3 e2, never used.
v3 e3, never used.

Uses Vector3 56.

Other coordinate systems in R3 can be constructed by taking bases formed by three
linearly independent vectors. Orthonormal bases, formed by unit vectors orthogonal among
themselves, are particularly important.

The cross product is a very useful operation, particularly for the construction of bases
in R3.

59c 〈v3 cross 59c〉≡
Vector3 v3_cross(Vector3 u, Vector3 v)

60 4. Geometry

Figure 4.2. Cross product.

{

Vector3 uxv;

uxv.x = u.y * v.z - v.y * u.z;

uxv.y = - u.x * v.z + v.x * u.z;

uxv.z = u.x * v.y - u.y * v.x;

return uxv;

}

Defines:
v3 cross, never used.

Uses Vector3 56.

This operation produces a vector normal to the plane defined by two vectors whose
magnitude is given by the area of the parallelogram formed by these vectors (see Fig-
ure 4.2).

4.3 Transformations in Euclidean Space
We will now investigate several classes of transformations in Euclidean space.

4.3.1 Linear Transformations

A linear transformation in R3 is an operator T : R3 → R3 with the following properties:

T (u+ v) = T (u) + T (v),

T (λv) = λT (v),

where u, v ∈ R3 and λ ∈ R.
This class of transformations has several desirable properties: they preserve linear struc-

tures, mapping subspaces into subspaces. Some important examples of linear transforma-
tions are scaling, rotation, reflection, and shear.

A relevant aspect, from the computational point of view, is that we can represent a
linear transformation in R3 by a matrix M , 3 × 3. This means we can use matrices to
implement transformations. To apply a linear transformation to a vector is equivalent to
multiplying the associated matrix by this vector.

4.3. Transformations in Euclidean Space 61

4.3.2 Isometries

Another important class of transformations is isometries. They have the property of pre-
serving the metric; in other words, ||Tv|| = ||v||.

Isometries in Euclidean space are rotations, reflections, and translations. Notice that,
except for translations, isometries are a particular case of linear transformations. Unfortu-
nately, representation by matrices does not include translations.

4.3.3 Affine Transformations

We saw above that both linear transformations and isometries are useful for computer
graphics. This fact lead us to look for a broader class, the affine transformations, which
includes both linear transformations and translations in space. Affine transformations also
preserve ratios and proportions.

An affine transformation has the form A(x) = M(x) + v, where M is a matrix and v
a vector. Notice that, given that A is not linear (unless v = 0), we cannot represent A by a
matrix.

We reached the conclusion that affine transformations have the desired properties for
geometric modeling operations in computer graphics. This class of transformations in-
corporates natural geometry concepts from the physical world, such as congruency and
similarity.

It does have some disadvantages. Affine transformations do not admit an unified rep-
resentation by matrices. A second disadvantage is that affine transformations do not allow
us to implement certain fundamental viewing operations. It is enough simply to notice
that the photograph of a 3D scene does not preserve parallel straight lines (see Figure 4.3).
Therefore, this operation cannot be realized by affine transformations, which keep invari-
ant relations of parallelism.

(a) (b)

Figure 4.3. Highway seem from (a) above and (b) ahead.

62 4. Geometry

Figure 4.4. Projective space of dimension 2.

4.4 Projective Space
We want to work in Euclidean space and we want to use affine transformations. Further-
more, we would like to have an unified representation for these operations, and we also
need to incorporate viewing transformations to them. We can reach these two objectives
with projective geometry.

4.4.1 Projective Space Model

The real projective space of dimension n, RPn, is the set of every straight line in Rn+1

passing through the origin and excluding it. A projective point p ∈ RPn is an equivalence
class p = (λx1, λx2, . . . , λxn+1), with λ 6= 0. In other words, p = (x1, x2, . . . , xn+1)
≡ λp.

Notice we can associate the projective space of dimension n with Euclidean space of
dimension n + 1. More specifically, RPn := Rn+1 − {(0, 0, . . . , 0)}. In Figure 4.4, we
show a schema of the RP2, the projective space of dimension 2, indicating a projective
point (the dashed straight line) and omitting the origin.

The projective space RPn can be decomposed in two sets: the affine space π ≡ Rn
plunged within RPn, which is the set of projective points with xn+1 = 1, and the set of
projective points having xn+1 = 0.

Notice that, from the equivalence relation, we can associate n-tuples in the plunged
affine subspace (points in Rn) to the projective points (straight line in Rn+1) for which
xn+1 6= 0. This way, we have a natural partition

RPn = {(x1, . . . , xn, xn+1), xn+1 6= 0} ∪ {(x1, . . . , xn, 0)}.

4.4.2 Normalized and Homogeneous Coordinates

Decomposition of the projective space allows us to identify the specific set of an element
p = λp = (λx1, λx2, λxn+1) of RPn, based on the value of its coordinate xn+1. We then
have:

4.4. Projective Space 63

Figure 4.5. Decomposition of the projective plane.

� Affine points: p ∈ π, in the form pa = (x1, . . . , xn, 1) with xn+1 6= 0, and λ =
1

xn+1
.

� Ideal points: p 6∈ π, in the form pi = (x1, . . . , xn, 0) with xn+1 = 0, and λ = 1.

Figure 4.5 shows the decomposition of the projective space of dimension 2, RP2, in
the plunged affine plane (z = 1) and the ideal plane (z = 0).

We can exploit the above decomposition in order to work with normalized coordinates.
In fact, we can take a Euclidean point as being a projective point with xn+1 = 1. Despite
that, in the general case, we have to work with the homogeneous coordinates calls, in the
form p = (x1, . . . , xn, xn+), without making any distinction between affine and ideal
points.

4.4.3 Homogeneous Representation

A point in projective space RP3 will be represented in homogeneous coordinates by the
data structure Vector4, for which we have the constructor v4 make.

63a 〈vector4 63a〉≡
typedef struct Vector4 {

double x,y,z,w;

} Vector4;

Defines:
Vector4, used in chunks 63, 64, 66, and 71.

63b 〈v4 constructor 63b〉≡
Vector4 v4_make(Real x, Real y, Real z, Real w)

{

Vector4 v;

v.x = x; v.y = y; v.z = z, v.w = w;

return v;

64 4. Geometry

}

Defines:
v4 make, used in chunks 64a, 66b, and 71b.

Uses Vector4 63a.

We also define routines for the conversion between affine and projective points, making
normalization necessary. Notice it is not possible to convert an ideal point into an affine
one.

64a 〈v4v3 conv 64a〉≡
Vector4 v4_v3conv(Vector3 v)

{

return v4_make(v.x, v.y, v.z, 1.0);

}

Defines:
v4 v3conv, used in chunk 71a.

Uses v4 make 63b, Vector3 56, and Vector4 63a.

64b 〈v3v4 conv 64b〉≡
Vector3 v3_v4conv(Vector4 v)

{

if (REL_EQ(v.w, 0.)) v.w = 1;

return v3_make(v.x/v.w, v.y/v.w, v.z/v.w);

}

Defines:
v3 v4conv, never used.

Uses v3 make 57a, Vector3 56, and Vector4 63a.

4.5 Projective Transformations in RP3

A projective transformation T in RP3 is a linear operator in R4

T : R4 → R4.

In this way, T is given by a matrix M , 4 × 4. The projective transformation can be
calculated as T (p) = Mp.

Notice that T (p) = λT (p), for λ 6= 0. This is a fundamental difference between
projective and Euclidean transformations. For a better understanding of a projective trans-
formation, we will analyze the anatomy of the associated matrix. We can identify four
different blocks:

M =

(
A T
P S

)
;

� A: linear block (3× 3),

� T : translation block (3× 1),

4.5. Projective Transformations in RP3 65

w

x

w

x

Figure 4.6. Translation in projective space.

� P : perspective block (1× 3),

� S: scaling block (1× 1).

Blocks A and T correspond to affine transformations in R3, thus leaving the plunged Eu-
clidean space, π, invariant. Block P maps affine points into ideal ones and, consequently,
does not leave π invariant. Block S is redundant, because if s 6= 0, then we can always
assume that s = 1, once T (p) ≡ λT (p).

Finally, we have reached our objectives with projective transformations. In fact, we
have incorporated translations, T (p) = (x + cw, y + fw, z + gw,w), now starting to
have a matrix representation. Note that translation works as a shear perpendicular to the
direction w (see Figure 4.6).

Besides, projective transformations allow us to implement the perspective projection
for viewing: T (p) = (x, y, z, gx + hy + iz). Note that this transformation turns affine
points into ideal points and vice versa. As a result, an ideal point p 6∈ π, is mapped into
an affine point p′ ∈ π, also called the vanishing point. Parallel straight lines, after the
transformation, intersect one another at p′ (see Figure 4.7).

We will represent projective transformations by 4× 4 matrices. For this, we define the
type Matrix4.

Figure 4.7. Perspective transformation.

66 4. Geometry

66a 〈matrix4 66a〉≡
typedef struct Matrix4 {

Vector4 r1, r2, r3, r4;

} Matrix4;

Defines:
Matrix4, used in chunks 66, 67, and 69–72.

Uses Vector4 63a.

The application of a projective transformation to a vector v is done by multiplying the
associated matrix M by v. This calculation consists of taking the inner product between v
and each line of M . The auxiliary routine v4 dot was created for this end.

66b 〈v4m4 mult 66b〉≡
Vector4 v4_m4mult(Vector4 w, Matrix4 m)

{

return v4_make(v4_dot(w, m.r1)

, v4_dot(w, m.r2)

, v4_dot(w, m.r3)

, v4_dot(w, m.r4));

}

Defines:
v4 m4mult, never used.

Uses Matrix4 66a, v4 dot 66c, v4 make 63b, and Vector4 63a.

66c 〈v4 dot 66c〉≡
Real v4_dot(u,v)

Vector4 u, v;

{

return (u.x * v.x + u.y * v.y + u.z * v.z + u.w * v.w);

}

Defines:
v4 dot, used in chunks 66b, 69, and 71.

Uses Vector4 63a.

We will now see the implementation of the basic transformations. The first transfor-
mation is the identity, m4 ident:

66d 〈m4 ident 66d〉≡
Matrix4 m4_ident()

{

Matrix4 m = {{1.0, 0.0, 0.0, 0.0},

{0.0, 1.0, 0.0, 0.0},

{0.0, 0.0, 1.0, 0.0},

{0.0, 0.0, 0.0, 1.0}};

return m;

}

Defines:
m4 ident, used in chunk 67.

Uses Matrix4 66a.

4.5. Projective Transformations in RP3 67

The translation transformation is given by

Mt =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


and is implemented by the routine m4 translate:

67a 〈m4 translate 67a〉≡
Matrix4 m4_translate(Real tx, Real ty, Real tz)

{

Matrix4 m = m4_ident();

m.r1.w = tx;

m.r2.w = ty;

m.r3.w = tz;

return m;

}

Defines:
m4 translate, never used.

Uses m4 ident 66d and Matrix4 66a.

The scaling transformation along the principal directions

Ms =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1


is implemented by the routine m4 scale:

67b 〈m4 scale 67b〉≡
Matrix4 m4_scale(Real sx, Real sy, Real sz)

{

Matrix4 m = m4_ident();

m.r1.x= sx;

m.r2.y= sy;

m.r3.z= sz;

return(m);

}

Defines:
m4 scale, never used.

Uses m4 ident 66d and Matrix4 66a.

The routine m4 rotate implements rotations in R3 by Euler angles, along the main
axes:

67c 〈m4 rotate 67c〉≡
Matrix4 m4_rotate(char axis, Real angle)

68 4. Geometry

{

Matrix4 m = m4_ident();

Real cost = (Real) cos(angle);

Real sint = (Real) sin(angle);

switch (axis) {

case ’x’ :

m.r2.y= cost; m.r2.z= -sint;

m.r3.y= sint; m.r3.z= cost;

break;

case ’y’ :

m.r1.x= cost; m.r1.z= sint;

m.r3.x= -sint; m.r3.z= cost;

break;

case ’z’ :

m.r1.x= cost; m.r1.y= -sint;

m.r2.x= sint; m.r2.y= cost;

break;

default :

error("(m4_rotate) invalid axis\n");

}

return m;

}

Defines:
m4 rotate, never used.

Uses m4 ident 66d and Matrix4 66a.

So far, we have seen the basic transformations in Euclidean space. We could also im-
plement other useful transformations, such as reflections and shear. Besides the Euclidean
transformations, the perspective transformation, given by the matrix below, will be neces-
sary in the viewing processes (we will return to this subject in Chapter 11):

Mp =


1 0 0 0
0 1 0 0
0 0 1 0
m n p 1

 .

4.5.1 Composition of Transformations

A natural isomorphism exists between the algebra of matrices and the algebra of projec-
tive transformations. In this way, the composition of transformations is equivalent to the
concatenation of matrices:

p′ = Tn(· · ·T2(T1(p))),

p′ = Mn . . .M2M1p,

p′ = Mp.

4.5. Projective Transformations in RP3 69

In fact, we can use a single matrix to represent the transformation resulting from an arbi-
trary sequence of transformations. This is the great advantage of the unified representation
by matrices.

Notice that the concatenation of matrices is a noncommutative operation. This reflects
the fact that the result of a sequence of transformations depends on the order in which the
individual transformations are applied:

M1M2 · · ·Mn 6= Mn · · ·M2M1.

The inverse of a sequence of transformations is given by the concatenation of the inverse
of the matrices concatenated in the inverse order:

(M1M2 · · ·Mn)−1 = M−1
n · · ·M−1

2 M−1
1 .

The routine m4_m4prod implements the matrix product, which is the basic operation
for the composition of transformations.

69 〈m4m4 prod 69〉≡
Matrix4 m4_m4prod(Matrix4 a, Matrix4 b)

{

Matrix4 m, c = m4_transpose(b);

m.r1.x = v4_dot(a.r1, c.r1);

m.r1.y = v4_dot(a.r1, c.r2);

m.r1.z = v4_dot(a.r1, c.r3);

m.r1.w = v4_dot(a.r1, c.r4);

m.r2.x = v4_dot(a.r2, c.r1);

m.r2.y = v4_dot(a.r2, c.r2);

m.r2.z = v4_dot(a.r2, c.r3);

m.r2.w = v4_dot(a.r2, c.r4);

m.r3.x = v4_dot(a.r3, c.r1);

m.r3.y = v4_dot(a.r3, c.r2);

m.r3.z = v4_dot(a.r3, c.r3);

m.r3.w = v4_dot(a.r3, c.r4);

m.r4.x = v4_dot(a.r4, c.r1);

m.r4.y = v4_dot(a.r4, c.r2);

m.r4.z = v4_dot(a.r4, c.r3);

m.r4.w = v4_dot(a.r4, c.r4);

return m;

}

Defines:
m4 m4prod, never used.

Uses Matrix4 66a and v4 dot 66c.

70 4. Geometry

For better clarity and simplicity, the routine m4_m4prod uses the transpose of one of
the input matrices. Notice this is not the most efficient way to implement the product
between matrices.

The routine m4_transpose implements the calculation of the transpose of a matrix,
which is a useful operation for general calculations with matrices.

70 〈m4 transpose 70〉≡
Matrix4 m4_transpose(Matrix4 m)

{

Matrix4 mt;

mt.r1.x= m.r1.x;

mt.r1.y= m.r2.x;

mt.r1.z= m.r3.x;

mt.r1.w= m.r4.x;

mt.r2.x= m.r1.y;

mt.r2.y= m.r2.y;

mt.r2.z= m.r3.y;

mt.r2.w= m.r4.y;

mt.r3.x= m.r1.z;

mt.r3.y= m.r2.z;

mt.r3.z= m.r3.z;

mt.r3.w= m.r4.z;

mt.r4.x= m.r1.w;

mt.r4.y= m.r2.w;

mt.r4.z= m.r3.w;

mt.r4.w= m.r4.w;

return mt ;

}

Uses Matrix4 66a.

4.6 Transformations of Geometric Objects
In this section we will discuss how to apply a transformation to the several elements used
in the representation of graphics objects.

4.6.1 Revision on Transformations

The basic element to be transformed is a vector p = (x, y, z) ∈ π ≡ R3, belonging to
the plunged affine space π ∈ RP3. Therefore, we will use the normalized representation
p = (x, y, z, 1).

To apply a transformation given by the projective matrix M to a homogeneous vector
p, we perform the operation p′ = Mp. Notice that after the transformation, if we want

4.6. Transformations of Geometric Objects 71

to maintain the normalized representation of the vectors, we have to perform the so-called
homogeneous division of the coordinates by the component w. This operation indeed
corresponds to a projection of the homogeneous vector in the plunged affine space:

p′ =
1

w′
(x′, y′, z′, w′),

p′′ = (x′′, y′′, z′′, 1).

4.6.2 Transforming Points and Directions

The routine v4_m4mult multiplies a homogeneous vector by a projective matrix. This
routine should be used for generic projective transformations.

The routine v3_m4mult multiplies a Euclidean vector by a projective matrix. This
routine can be used for the case of affine transformations.

71a 〈v3m4 mult 71a〉≡
Vector3 v3_m4mult(Vector3 v, Matrix4 m)

{

Vector4 w = v4_v3conv(v);

return v3_make(v4_dot(w, m.r1), v4_dot(w, m.r2), v4_dot(w, m.r3));

}

Defines:
v3 m4mult, used in chunk 72b.

Uses Matrix4 66a, v3 make 57a, v4 dot 66c, v4 v3conv 64a, Vector3 56, and Vector4 63a.

The routine v3_m3mult multiplies a vector by the linear block of the projective matrix.
This routine is useful to transform directional vectors not affected by translations.

71b 〈v3m3 mult 71b〉≡
Vector3 v3_m3mult(Vector3 v, Matrix4 m)

{

Vector4 w = v4_make(v.x, v.y, v.z, 0.0);

return v3_make(v4_dot(w, m.r1), v4_dot(w, m.r2), v4_dot(w, m.r3));

}

Defines:
v3 m3mult, used in chunk 72b.

Uses Matrix4 66a, v3 make 57a, v4 dot 66c, v4 make 63b, Vector3 56, and Vector4 63a.

4.6.3 Transforming Rays

Many viewing operations involve the simulation of optic processes. The elementary geo-
metric object in these simulations is the ray, r, defined by its origin o and direction d (see
Figure 4.8).

Figure 4.8. Vector representing a ray.

72 4. Geometry

We created the type Ray and the constructor ray_make.

typedef struct Ray {

Vector3 o, d;

} Ray;

72a 〈ray constructor 72a〉≡
Ray ray_make(Vector3 o, Vector3 d)

{

Ray r;

r.o = o; r.d = d;

return r;

}

Defines:
ray make, never used.

Uses Ray and Vector3 56.

To basic operations with a ray r are: to apply an affine transformation r and calculate a
point along the ray corresponding to the parameter t, such that pt = o+ td.

72b 〈ray transform 72b〉≡
Ray ray_transform(Ray r, Matrix4 m)

{

r.o = v3_m4mult(r.o, m);

r.d = v3_m3mult(r.d, m);

return r;

}

Defines:
ray transform, never used.

Uses Matrix4 66a, Ray, v3 m3mult 71b, and v3 m4mult 71a.

72c 〈ray point 72c〉≡
Vector3 ray_point(Ray r, Real t)

{

return v3_add(r.o, v3_scale(t, r.d));

}

Defines:
ray point, never used.

Uses Ray, v3 add 57c, v3 scale 58a, and Vector3 56.

In several viewing problems, it will also be necessary to calculate the intersection be-
tween a ray and a surface. To this end, we will use the data structure Inode, containing the
necessary information, such as the parameter t, corresponding to the intersection point;
the vector n, normal to the surface at this point; etc. This structure can be used as an
element of a linked list containing all the intersections along a ray.

72d 〈inode 72d〉≡
typedef struct Inode {

struct Inode *next;

4.6. Transformations of Geometric Objects 73

double t;

Vector3 n;

int enter;

struct Material *m;

} Inode;

Defines:
Inode, used in chunk 73.

Uses Vector3 56.

We defined the constructor inode_alloc, as well as the destructor inode_free, since
this type of information is quite volatile.

73a 〈inode constructor 73a〉≡
Inode *inode_alloc(Real t, Vector3 n, int enter)

{

Inode *i = NEWSTRUCT(Inode);

i->t = t;

i->n = n;

i->enter = enter;

i->next = (Inode *)0;

return i;

}

Defines:
inode alloc, never used.

Uses Inode 72d and Vector3 56.

73b 〈inode destructor 73b〉≡
void inode_free(Inode *l)

{

Inode *i;

while (l) {

i = l; l = l->next; free(i);

}

}

Defines:
inode free, never used.

Uses Inode 72d.

4.6.4 Transformation on the Tangent Plane

Transformation on the tangent plane to a surface at a point has different characteristics
from transformations over points and vectors.

We can represent a plane n, by a row vector n = (a, b, c, d), corresponding to the
coefficients of the implicit equation of the plane. Therefore, every point p ∈ n, satisfies
the equation

{p = (x, y, z, 1) | ax+ by + cz + d = 0},

which can be formulated in a concise way using the inner product, 〈n, p〉 = 0.

74 4. Geometry

If we apply a transformation given by the matrix M to the plane n, the condition of a
point p belonging to n corresponds, after the transformation by M , (nM−1)(Mp) = 0;
that is, the transformed point Mp is on the transformed plane nM−1.

In this case we see that, to transform tangent planes using as a column vector, we should
use the transpose of the inverse matrix:

n′ = (M−1)Tn.

Notice that for orthogonal matrices, (M−1)T = M . This is the only case in which we can
transform tangent planes as vectors.

4.6.5 Dual Interpretation of Transformations

Transformations can be understood either as a transformation of vectors or as a change
between coordinate systems.

The first interpretation consists of considering a transformation as a mapping between
points in a same- coordinate system. In this way, point p is mapped in T (p). This in-
terpretation helps us understand the parametric description of graphics objects, where the
geometry is specified by a function p = g(u, v) defining the points of the object. To trans-
form parametric objects, we directly apply the transformation matrix to these points, i.e.,
p′ = T (g(u, v) (see Figure 4.9).

The second interpretation consists of considering a transformation as a change of co-
ordinate system. In this way, a vector v, in the canonical basis {e1, e2, e3}, is mapped
in the vector corresponding to the transformed basis v′ = xT (e1) + yT (e2) + zT (e3).
This interpretation helps us understand the implicit description of graphics objects, where
the geometry is specified by a function h(v) = 0 of the environment space, v ∈ R3.
To transform implicit objects, we apply the inverse of the transformation to the points of
the transformed space, and these will be evaluated in the original environment space, i.e.,
h(T−1(v)) = 0 (see Figure 4.10).

T

Figure 4.9. Direct transformation: mapping
points.

T -1

Figure 4.10. Inverse transformation: change of
coordinate systems.

4.7. Comments and References 75

4.7 Comments and References
In this chapter we presented the implementation of a library for basic geometric operations
in computer graphics.

One of the first references about viewing transformations is the article “The Geometry
Engine” by Jim Clark, founder of Silicon Graphics [Clark 82]. In this work he describes a
graphics processor implementing geometric transformations.

4.7.1 Summary

The external API of the GEOM library is composed of the following routines:

Vector3 v3_make(Real x, Real y, Real z);

Vector3 v3_scale(Real t, Vector3 v);

Vector3 v3_add(Vector3 a, Vector3 b);

Vector3 v3_sub(Vector3 a, Vector3 b);

Vector3 v3_cross(Vector3 u, Vector3 v);

Vector3 v3_unit(Vector3 u);

Real v3_dot(Vector3 u, Vector3 v);

Real v3_norm(Vector3 v);

Vector4 v4_make(Real x, Real y, Real z, Real w);

Vector3 v3_v4conv(Vector4 w);

Vector4 v4_v3conv(Vector3 v);

Vector3 v3_m4mult(Vector3 v, Matrix4 m);

Vector3 v3_m3mult(Vector3 v, Matrix4 m);

Vector4 v4_m4mult(Vector4 w, Matrix4 m);

Matrix4 m4_ident();

Matrix4 m4_translate(Real tx, Real ty, Real tz);

Matrix4 m4_scale(Real sx, Real sy, Real sz);

Matrix4 m4_rotate(char axis, Real angle);

Matrix4 m4_transpose(Matrix4 m);

Matrix4 m4_m4prod(Matrix4 a, Matrix4 b);

Ray ray_make(Vector3 o, Vector3 d);

Ray ray_transform(Ray r, Matrix4 m);

Vector3 ray_point(Ray r, Real t);

Inode *inode_alloc(Real t, Vector3 n, int enter);

void inode_free(Inode *l);

4.7.2 Programming Layer

The GEOM library implements the basic geometric operations for 3D computer graphics.
The data structures Vector3 and Matrix4 are essential and constitute the data types most

76 4. Geometry

used in graphics programs. The geometric transformations are implemented directly in
hardware on the graphics boards (in particular, on the boards supporting the OpenGl and
DirectX standards).

Exercises
1. Using the GEOM library, implement the program vexpr to calculate vector expres-

sions. The operands are 3D vector in the format x y, z. The set of operators should
include, at least, vector addition, multiplication of a vector by a scalar, inner product,
cross product, and equality test between vectors.

The program should read one of the operands from stdin and the others from the
command line. The operations should be specified by name and passed as parameters
in the command line (e.g., add, mult). The result should be sent to stdout. For
example,

echo 1 3 0.4 | vexpr add 2 1 0.1

3 4 0.5

2. Using the GP and GEOM libraries, implement an interactive program to transform
and plot polygonal lines. The following transformations should be implemented:
translation, rotation, and scaling.

3. Extend the GEOM library to include the functions below:

(a) Linear interpolation between two vectors.

(b) Normal projection of a vector u on a vector v.

(c) Tangential projection of a vector u on a vector v.

(d) Add the components of a vector.

(e) Calculate the perpendicular unit vector to a given vector.

(f) Calculate the normal vector to a plane determined by three points.

(g) Calculate the matrix of an orthogonal transformation mapping a given unit vec-
tor u into a given unit vector v.

(h) Place the elements of a 4 × 4 matrix in the Matrix4 data structure (using the
C language).

(i) Calculate the rotation matrix along an arbitrary axis.

(j) Calculate the inverse of a 4× 4 matrix.

5 Color

Color is one of the most important elements in computer graphics. It is the basic stimulus
used by our visual system for perceiving the physical world. Consequently, color infor-
mation is the main attribute of an image. Besides, the simulation of illumination involves
calculations with color. In this chapter, we will study color and its applications in computer
graphics.

5.1 Color Foundations

We will use the paradigm of the four universes to study color in computer graphics. In
this way, starting from color in the physical world, we will define mathematical models of
color, establish a representation for color, and give structures for its implementation in the
computer.

Color is the sensation provoked by an electromagnetic radiation through the human
visual system. Therefore, color is a psychophysics phenomenon. This fact has great rel-
evance, leading us to consider both perceptual and physical aspects in the study of the
color.

5.1.1 Color Wavelength Model

From a physical point of view, color is produced by an electromagnetic radiation whose
wavelength λ is in the visible band of the spectrum, from 400 to 800 nanometers approxi-
mately (see Figures 5.1 and 5.2).

Figure 5.1. Colors in the visible spectrum. (See Plate I.)

77

78 5. Color

Figure 5.2. Bands of the electromagnetic spectrum.

The perception of color is established by the combination of electromagnetic radiation
in several wavelengths received by the visual system. This way, a color is characterized by
its spectral distribution function, which associates an energy value to each wavelength λ (see
Figure 5.3).

The characterization of color by its spectral distribution leads us to conclude that a
function is the appropriate mathematical model to describe color. More specifically, a given
color is an element of the space of spectral distributions D = {f : [λ0, λ1] ∈ R+ → R+},
where [λ0, λ1] is the interval defining the visible band of the spectrum. Notice the space
of spectral distributions is a function space and therefore has infinite dimension.

5.1.2 Physical Color Systems

In the physical world, color is processed by physical color systems. These systems are
divided into color-receiving and color-emitting systems. Examples include a camera (a
receiving system) and a monitor (an emitting system).

A color-receiving system consists of a set of sensors, {si}, i = 1, . . . , n, that performs
sampling in n degrees of the visible spectrum. The response of each sensor is given by
ci =

∫
c(λ)si(λ)dλ. In this way, a color-receiving system associates, to each spectral

distribution, a vector of samples (i.e., c(λ) = (c1, . . . cn)).

Figure 5.3. Spectral distribution function.

5.1. Color Foundations 79

A color-emitting system consists of a set of emitters, {ei}, i = 1, . . . , n, producing elec-
tromagnetic energy with a certain spectral distribution, ei = di(λ). The color produced by
the system is given by the linear combination of the distribution functions of each emitter
(i.e., c(λ) =

∑
cidi(λ)).

Notice that physical color systems have finite dimension, and they indicate a natural
way of discretizing the spectral model of color. The receiving systems perform sampling,
and the emitter systems perform reconstruction. In this way, we transform a spectral distri-
bution function into samples and vice versa. The spectral distribution functions associated
with receivers and emitters are called primary colors of the system. The vector of samples
(c1, . . . cn) provide the color representation in this system.

5.1.3 Psychophysics Study of Color

We have seen that physical color systems require into a discretization of the continuous
model of spectral distribution. We therefore have a space of finite dimension associated
with the entire physical color system.

To understand the perceptual aspects of color, we should study the human visual sys-
tem. The human eye can be considered a physical color-receiving system. It has three
types of sensors responding to low (red), medium (green), and high (blue) wavelength
bands. Color experiments conducted with human observers show the color space of the
visual system has an underlying linear structure. This verification is expressed by Grass-
man’s law, based on empirical results in which color matches obey the rules of linearity and
additivity [Malacara-Hernandez 02]. It was discovered by Hermann Günther Grassmann
(1809–1877), a German polymath.

An immediate consequence of a perceptual approach to color is that we can use a vector
space of dimension 3 as a mathematical model of the visual system. More specifically, we
take the Euclidean space R3, where the vectors of the basis {e1, e2, e3} are associated with
the primary colors of the system.

Analogously, we define color spaces for other physical color systems. This task has been
accomplished by the CIE (Commission Internationale d’Eclairage), which defined several
standard color systems. Among them, we have the CIE-RGB and CIE-XYZ systems.

These facts lead us to conclude we can use the tools of the Euclidean geometry to work
with color spaces. We represent a color by a 3D vector whose coordinates correspond to
the components of the primary colors of the system. We will mainly use the RGB system,
based on the primary colors red, green, and blue.

79 〈color 79〉≡
typedef Vector3 Color;

#define RED(c) (c.x)

#define GRN(c) (c.y)

#define BLU(c) (c.z)

Defines:
BLU, used in chunks 83b and 88a.
Color, used in chunks 83b and 86–88.

80 5. Color

GRN, used in chunks 83b and 88a.
RED, used in chunks 83b and 88a.

We define a color constructor, c_make, the operations color addition, c_add, color
multiplication by scalar, c_scale, and color product, c_mult. These operations have
a physical interpretation: sum corresponds to merging colors; scaling corresponds to in-
creasing the color luminance; and the product between two color vectors is equivalent to
filtering.

On the other hand, except for the product of colors, these operations are natural to a
vector space.

#define c_make(r,g,b) v3_make(r,g,b)

#define c_add(a, b) v3_add(a,b)

#define c_scale(a, b) v3_scale(a, b)

#define c_mult(a, b) v3_mult(a, b)

The product between two colors is given by

80a 〈v3 mult 80a〉≡
Vector3 v3_mult(Vector3 a, Vector3 b)

{

Vector3 c;

c.x = a.x * b.x; c.y = a.y * b.y; c.z = a.z * b.z;

return c;

}

Defines:
v3 mult, never used.

5.1.4 Computing with Color

The routines defined in the previous subsection implement the basic operations with color.
In addition to these basic operations, we will use the operation of matrix multiplication

by a vector v3_m4mult to accomplish basis changes. This type of transformation corre-
sponds to the conversion between physical systems of different colors whose color space is
linear, of dimension 3.

80b 〈col convert 80b〉≡
Vector3 col_convert(Vector3 c, Matrix m)

{

return v3_m4mult(c, m);

}

Defines:
col convert, never used.

Notice that to calculate the matrix mAB that performs the conversion between two
physical systems A and B, we have to use the spectral distribution functions associated
with the primary colors of the two systems.

5.2. Device Color Systems 81

Shading Computation

Reconstruction

StorageExhibition

Discretization

RGB XYZ

Figure 5.4. Computing with color.

In computer graphics, most color problems can be solved by working directly with
trichromatic color spaces. However, certain problems demand more complicated calcu-
lations, which can involve nonlinear transformations or even the reconstruction of the
spectral distribution function with subsequent resampling.

The first case includes the conversion between color spaces with different dimen-
sions or nonlinear structures. The second case happens in the simulation of wavelength-
dependent illumination phenomena. Figure 5.4 illustrates the various computational pro-
cesses with color.

5.2 Device Color Systems
In a physical color system, the color representation coordinates are generally positive and
limited. This is because both sensors and emitters have a physical limitation in terms of
the amount of electromagnetic energy with which they can operate. Thus, it is convenient
to associate a color solid to the physical system of a device. This solid defines the set of
valid colors for the device.

5.2.1 Process of Color Formation

Another important aspect of physical color systems is the process of color formation they
use. This process of color formation is related to the way the spectral distribution func-
tions of the primary colors are combined. This process can be additive or subtractive. In
the additive process, the combination is performed by overlapping (sum) the spectral dis-
tributions. In the subtractive process, the combination is performed from the white color
by filtering (multiplication) the spectral distributions.

An example of additive system is the mRGB system of monitors and video projectors.
The mRGB system uses s mixing of the primary colors red, blue, and green. Normalizing

82 5. Color

Figure 5.5. RGB color solid. (See Plate II.) Figure 5.6. CMYK color cube.

the color coordinates within the interval [0, 1] turns the mRGB color solid in the unit cube
(see Figure 5.5). The origin corresponds to black because it is an additive system.

#define C_WHITE c_make(1,1,1)

#define C_BLACK c_make(0,0,0)

An example of a system in which the process of color formation is subtractive can be
seen in the CMY system of color printers and of the photography process. In the CMY
system, cyan, magenta and yellow ink filter white. The color solid of the CMY system is
also a unit cube. In this system, the origin corresponds to white.

5.2.2 RGB–CMY Conversion

The conversion between the RGB and CMY systems is quite simple, and it consists of a
basis change. A scaling by �1 in each one of the principal directions performs the change
between the additive and subtractive process. The origin of the system is mapped by a
translation along the diagonal of the cube (1, 1, 1) (see Figure 5.6).

The matrix rgb_cmy_m implements this transformation.

82a 〈rgb cmy matrix 82a〉≡
Matrix4 rgb_cmy_m = {{-1.0, 0.0, 0.0, 1.0},

{ 0.0, -1.0, 0.0, 1.0},

{ 0.0, 0.0, -1.0, 1.0},

{ 0.0, 0.0, 0.0, 0.0}

};

Defines:
rgb cmy m, used in chunks 82b and 83a.

The conversion is performed by the routines rgb_to_cmy and cmy_to_rgb, which
use the same matrix.

82b 〈rgb to cmy 82b〉≡
Vector3 rgb_to_cmy(Vector3 c)

{

5.3. Color Specification Systems 83

return v3_m4mult(c, rgb_cmy_m);

}

Defines:
rgb to cmy, never used.

Uses rgb cmy m 82a.

83a 〈cmy to rgb 83a〉≡
Vector3 cmy_to_rgb(Vector3 c)

{

return v3_m4mult(c, rgb_cmy_m);

}

Defines:
cmy to rgb, never used.

Uses rgb cmy m 82a.

5.3 Color Specification Systems
Color specification systems are intended to allow the intuitive identification of different
colors. Exploring perceptual characteristics is key to achieving this goal. The question in
place is, What are the significant parameters for color identification by a human being? By
first answering this question, we can then define proper color spaces for color specification.

5.3.1 Luminance: Chrominance Decomposition

Intuitively, we know that a certain color can be more or less luminous. This fact cor-
responds to the variation on the amount of energy associated with a spectral distribution.
Given a spectral distribution function c(λ) and a real number t > 0, the product c′ = tc(λ)
corresponds to another spectral distribution having non-null energy only for the wave-
lengths λ in which c(λ) is also non-null. If t > 1, c′ then has larger energy; otherwise,
if 0 < t < 1, c′ has smaller energy. From a perceptual point of view, the scaling of func-
tion c(λ) alters a psychophysical measurement denominated luminance, or brightness of
the color.

The luminance of a color is given by the operator L(c) =
∑
lici, where li depends

on the primaries of the color system. In the mRGB system of the monitor, lr = 0.299,
lg = 0.587, and lb = 0.114.

83b 〈rgb to y 83b〉≡
Real c_rgb_to_y(Color c)

{

return 0.299 * RED(c) + 0.587 * GRN(c) + 0.114 * BLU(c)

}

Defines:
c rgb to y, never used.

Uses BLU 79, Color 79, GRN 79, and RED 79.

84 5. Color

C

C

C

c

l

Figure 5.7. Decomposition of a color vector c in its components of luminance cl and chrominance cc.

We can divide color information into two components: luminance and chrominance.
The former, as we saw above, is related to the brightness of the color, while the latter to
the chroma, that is, the color independent of intensity variation.

In a color space of dimension 3, a color c ∈ R3 is represented by its coordinates c =
(c1, c2, c3). As we saw above, for t > 0, the vector tc = (tc1, tc2, tc3) represents the same
chroma information with variable brightness. We can then conclude that the chroma space
is a projective chroma.

To simplify the chroma representation, we would like to determine a subset of R3 in
which each point corresponds to a distinct chroma information. An appropriate choice is
the plane given by the equation c1 + c2 + c3 = 1, in which every color, produced by a
combination of the primary colors of the space, has a representative. This plane is called
the Maxwell plane.

The coordinates of the radial projection of a color on the Maxwell plane are called
chromaticity coordinates. Calculation of these coordinates is immediate. Given that two
colors with same chrome and different brightness have only one representative c′ on the
Maxwell plane, their coordinates satisfy c′1 + c′2 + c′3 = 1. In this way, we can find t for an
arbitrary color, such that tc = c′. Therefore,

t(c1 + c2 + c3) = c′1 + c′2 + c′3 = 1,

and so,

t =
1

c1 + c2 + c3
,

and
c′i =

ci
c1 + c2 + c3

.

The decomposition of a color into its luminance and chrominance components has
great importance from a perceptual point of view. This means we can represent a color
vector c as the sum of two vectors c = cl + cc, where cl describes the luminance of the
color and cc describes the chroma information (see Figure 5.7). This decomposition will
be explored in the next subsection to elaborate a space for color specification.

5.3. Color Specification Systems 85

White

Black

Red

Cyan

Green

Yellow

Blue

Magenta

Figure 5.8. HSV color solid.

5.3.2 HSV Systems for Color Selection

The luminance/chrominance decomposition allows the introduction of intuitive coordi-
nates for color selection. The process consists of first choosing the color chrominance and
then determining the color luminance.

Chrominance is chosen through a point in a representative chroma space of the system.
As the chroma set is 2D, we can establish a system of polar coordinates on the plane. In
this system, the origin corresponds to white. As we distance ourselves from the origin, we
have more saturated, or pure, colors. Radially about the origin we have the various color
shades.

The HSV system (hue, or shade; saturation; and value, related to luminance) is based
on these intuitive parameters, from a perceptual point of view. The HSV space can be
naturally associated with a straight pyramid of hexagonal basis with a vertex at the origin.
In this color solid, the value varies between 0 and 1, from the apex to the basis of the
pyramid. On the planes orthogonal to the pyramid axis, we describe shade and saturation
using polar coordinates (see Figure 5.8).

RGB-HSV conversion. To perform the conversion between the RGB and HSV systems,
we have to map between the color solids of the two systems. This task is simplified by the
existence of a natural correspondence between the vertices of the RGB cube and the HSV
pyramid.

We define the coordinate value v and a color c = (r, g, b) as v(c) = max(r, g, b). In
this way, for each value v, we have a cubeCv parallel to the unit RGB cube (see Figure 5.9).
The apex of the inverted pyramid corresponds to black (0, 0, 0), and the center of its basis
corresponds to white (1, 1, 1). We therefore obtain a correspondence between the axis of
the HSV pyramid and the diagonal of the RGB cube.

By making the orthogonal projection of a cube Cv on a plane πv perpendicular to
the diagonal and passing through the point (v, v, v), we obtain a hexagon in which each
vertex corresponds to either one of the primary RGB colors or to the complementary CMY
colors. That is, the remaining vertices of the RGB cube are mapped into the vertices of
the hexagonal basis of the HSV pyramid (see Figure 5.10).

86 5. Color

Figure 5.9. Cube parallel to unit RGB cube. Figure 5.10. Hexagon.

The routine rgb_to_hsv converts between the systems RGB and HSV. The calcula-
tion of the color value trivially proceeds from the definition v = max(r, g, b).

The saturation calculation consists of determining the fraction between the orthogonal
projection cc of the vector c = (r, g, b) on the plane πv, and the boundary. It is easy to see
that, by normalizing s ∈ [0, 1]

s =
v −min(r, g, b)

v
.

The hue calculation consists of determining the angle between the projected vector c
and the vector R. Notice that, depending on which is the smallest component of c, its
projection cc will be located in a pair of triangular sectors of the hexagon. More precisely,
let x = min(r, g, b): if x = r then cc ∈ {(R, Y,W) ∪ (Y,G,W)}, if x = g then
cc ∈ {(R,M,W) ∪ (M,B,W)}, and if x = b then cc ∈ {(G,C,W) ∪ (C,B,W)}. In
these sectors, the relative coordinate to one of the CMY vertices is given by

h =
a− b
v − x

,

where a and b are, respectively, the corresponding components to the initial and final ver-
tices of the pair of sectors.

86 〈rgb to hsv 86〉≡
Color rgb_to_hsv(Real r, Real g, Real b)

{

Real v, x, f;

int i;

x = MIN(r, MIN(g, b));

v = MAX(r, MAX(g, b));

5.4. Discretizing the Color Solid 87

if (v == x)

return v3_make(UNDEFINED, 0, v);

f = (r == x) ? g - b : ((g == x) ? b - r : r - g);

i = (r == x) ? 3 : ((g == x) ? 5 : 1);

return c_make(i - f /(v - x), (v - x)/v, v);

}

Defines:
rgb to hsv, never used.

Uses c make and Color 79.

The routine hsv_to_rgb converts from HSV to RGB.

87 〈hsv to rgb 87〉≡
Color hsv_to_rgb(Real h, Real s, Real v)

{

Real m, n, f;

int i;

if(h == UNDEFINED)

return c_make(v, v, v);

i = floor(h);

f = h - i;

if(EVEN(i))

f = 1 - f;

m = v * (1 - s);

n = v * (1 - s * f);

switch (i) {

case 6:

case 0: return c_make(v, n, m);

case 1: return c_make(n, v, m);

case 2: return c_make(m, v, n);

case 3: return c_make(m, n, v);

case 4: return c_make(n, m, v);

case 5: return c_make(v, m, n);

}

}

Defines:
hsv to rgb, never used.

Uses c make and Color 79.

5.4 Discretizing the Color Solid
Color in graphics devices is represented by integer numbers. This means that, in practice,
graphics devices work with a discretized color space. In general, color information in the

88 5. Color

devices is given by a vector whose components are integer numbers with a precision of n
bits.

Notice that the color space discretization described above corresponds to a uniform
partition of the color solid of the device. In the next chapter we will discuss the problem
of color discretization in the context of digital images and will explore methods to create
nonuniform partitions of the color solid.

Some graphics devices use a single integer number of m bits to represent the color
information. In this case, it is necessary to have a method to wrap and unwrap the color
components in this representation. We therefore define routines to calculate the integer
color value starting from the RGB coordinates and vice versa.

88a 〈rgb to index 88a〉≡
int rgb_to_index(Color c, int nr, int ng, int nb)

{

unsigned int r = CLAMP(RED(c), 0, 255);

unsigned int g = CLAMP(GRN(c), 0, 255);

unsigned int b = CLAMP(BLU(c), 0, 255);

r = (r >> (8 - nr)) & MASK_BITS(nr);

g = (g >> (8 - ng)) & MASK_BITS(ng);

b = (b >> (8 - nb)) & MASK_BITS(nb);

return ((r << (ng + nb))| (g << nb)| b);

}

Defines:
rgb to index, never used.

Uses BLU 79, Color 79, GRN 79, MASK BITS 88b, and RED 79.

88b 〈index to rgb 88b〉≡
Color index_to_rgb(int k, int nr, int ng, int nb)

{

unsigned int r, g, b;

r = ((k >> (ng + nb)) & MASK_BITS(nr)) << (8 - nr);

g = ((k >> (nb)) & MASK_BITS(ng)) << (8 - ng);

b = ((k) & MASK_BITS(nb)) << (8 - nb);

return c_make(r, g, b);

}

#define MASK_BITS(n) ((01 << (n))-1)

Defines:
index to rgb, never used.
MASK BITS, used in chunk 88a.

Uses c make and Color 79.

5.5. Comments and References 89

Figure 5.11. Color selection and conversion. (See Plate III.)

5.5 Comments and References
In this chapter we studied the representation of color and the implementation of a library
to manipulate it. Figure 5.11 shows two examples of interfaces for color selection and
conversion.

Color is one of the most important attributes present in many graphics objects. In a
graphics system, the library routines are used for conversion between different color repre-
sentations and also for the color specification by the user.

The original article describing the HSV system is authored by Alvy Ray Smith
[Smith 81]. A more recent article by the same author is “HWB: A More Intuitive Hue-
Based Color Model” [Smith and Lyons 96].

5.5.1 Links

There are two important international organizations for color standardization: CIE and
ICC. More information on them can be found in:

� CIE. Commission Internationale d’Eclairage (International Commission on Illumi-
nation). http://www.hike.te.chiba-u.ac.jp/ikeda/CIE/home.html

� ICC. The International Color Consortium. http://www.color.org/

Charles Poyton’s webpage has interesting material on color: Charles A. Poynton’s Colour
FAQ, http://www.inforamp.net/∼poynton/notes/colour\ and\ gamma/ColorFAQ.html

5.5.2 Review

The API of the color library consists of the following routines:

Vector3 rgb_to_cmy(Vector3 c);

Vector3 cmy_to_rgb(Vector3 c);

Vector3 rgb_to_yiq(Vector3 c);

90 5. Color

Vector3 yiq_to_rgb(Vector3 c);

Vector3 rgb_to_hsv(Real r, Real g, Real b)

Vector3 hsv_to_rgb(Real h, Real s, Real v)

Exercises
1. Write a program to construct a color table with 256 colors. The program should

implement at least two discretization methods for the RGB color solid.

2. Using the GP library, write a program to display the color tables produced in the
previous exercise. Compare the two solutions.

3. Design and implement a widget for color selection.

4. Write a function that, given an arbitrary RGB color and a color map, finds the color
in the map best representing it.

5. Write a program to convert colors between the RGB and HSV systems.

6 Digital Image

Images, as the end result of the viewing process, have fundamental importance in computer
graphics. They are an indispensable part of interactive systems and therefore also play a role
in the modeling process. In this chapter we will study the digital image, its representation,
and operations with images.

6.1 Foundations

To develop a conceptualization for the study of images, we will once again use the paradigm
of the four universes. We analyze the characteristics of images in the physical universe;
define a mathematical model for images; establish a representation schema for images; and
develop a data format for coding images (see Figure 6.1).

Image

Continuous Model

Matrix Representation

Coded Image

Figure 6.1. Abstract levels for images.

91

92 6. Digital Image

Sampling Quantization

f

f~

Figure 6.2. Discretization of images.

6.1.1 Continuous and Discrete Models of Images

An image consists of a 2D support where for each point we associate color information. In
this way, we can use as a mathematical model of image the function f : U ⊂ R2 → C.
The set U is the image support and the set of values of f is called the image gamut. In this
model the domain of the image function is usually a rectangle U = [a, b] × [c, d], and the
counterdomain is a trichromatic space C = R3, as for example, the RGB space.

To represent an image on the computer, we have to discretize both the domain and the
counterdomain of the image function. Sampling is discretization of the geometric support;
quantization is discretization of the color space, or the process of reducing the color gamut
(see Figure 6.2).

6.1.2 Image Quantization

Quantization is the transformation q : Rn → Mk, where Mk = {c1, c2, . . . ck} is a
finite subset of Rn. The set Mk is called a color map of the quantization (or code book)
transformation. When k = 2l, we say that q is a quantization of l bits. Given the discrete
representation of images, it is common to have a quantization among finite color subsets
of the type q : Rj → Mk. If j = 2n and k = 2m, we have a quantization from n to m
bits.

Consider a quantization transformation q : Rn → Mk. The elements ci of Mk are
called quantization levels. At each quantization level, ci ∈ Mk corresponds to one subset
of colors Ci ⊂ Rn, which are the colors mapped to the color ci by the transformation q;
that is,

Ci = q−1(ci) = {c ∈ C ; q(c) = ci}.

6.2. Format of the Image Representation 93

The family of sets Ci constitutes a partition of the color space. Each of the sets Ci of this
partition is called a quantization cell. Notice that the quantization function q assumes a
constant equal to ci in each cell Ci.

Note that the quantization function q is entirely determined by the quantization cells
Ci and by the quantization levels ci. By using geometric arguments we can obtain ci start-
ing from Ci and vice versa. In this way, some quantization methods perform calculations
first at the ci level and later at the cells Ci, while others use the opposite strategy.

If q is given by the quantization cells Ci, the levels ci correspond to the centroid of the
cells. If q is given by the quantization levels of ci, the geometry of the cells Ci corresponds
to the Voronoi diagram associated with the levels ci; in other words, each cell Ci is formed
by the set of points in the color space closer to the level ci than to any of the other levels.

6.1.3 Matrix Representation

Sampling of the image support is usually based on a uniform grid F∆ = {(ui, vj) ∈ R2},
where ui = a + i∆u and vj = c + j∆v with ∆u = (b − a)/m, ∆v = (d − c)/n, and
i = 0, . . .m, j = 0, . . . n. The points (ui, vj) are called sample points.

We can represent a discrete image by a 2D matrix. In the matrix representation, we
associate to the image function f(u, v) a matrix Am×n = {aij}, where i = 1,m and
j = 1, n.

The elements aij = f(ui, vj) of the discrete image are called pixels (from “picture
elements”). In a monochrome image, ai,j = x is a scalar, while in a trichromatic image,
ai,j = (r, g, b) is a vector. What is more, ai,j = k can be an index of the corresponding
color ck = (r, g, b) in a color map.

The spatial resolution of an image is given by the number of samples, or by the number
m of lines and n of columns of the matrix A. The color resolution of an image is given by
the number of color levels, or by the number of bits of aij .

6.2 Format of the Image Representation
Starting from the above conceptualization, we establish a format for image representation.

6.2.1 Data Structure

We adopt matrix representation as the image format. To implement this format, we need
two types of information:

� Header. Specifies representation data, such as spatial resolution and quantization
type.

� Pixel matrix. The elements of the image matrix. The pixel is an RGB color vector.

94 6. Digital Image

We define the data structure Image, composed of a header with spatial and color resolution,
and a pointer to the pixel matrix.

94a 〈image structure 94a〉≡
typedef struct Image {

int w, h;

unsigned int maxval;

Bcolor *c;

} Image;

Defines:
Image, used in chunks 94–97.

Uses Bcolor 94b.

The elements of an image are defined by integer numbers of 8 bits, unsigned. The
pixel is a 3D vector Bcolor, where each component is a Byte.

94b 〈image elements 94b〉≡
typedef unsigned char Byte;

typedef struct Bcolor {

Byte z, y, x;

} Bcolor;

Defines:
Bcolor, used in chunk 94.
Byte, never used.

We also define the interval of valid values for a Byte by the macros PIX_MIN and
PIX_MAX.

94c 〈pixel values 94c〉≡
#define PIX_MIN 0

#define PIX_MAX 255

Defines:
PIX MAX, used in chunk 95c.
PIX MIN, used in chunk 95c.

The routine img_init is the constructor for the structure Image. Its parameters are
the spatial resolution and the image type.

94d 〈img init 94d〉≡
Image *img_init(int type, int w, int h)

{

Image *i = NEWSTRUCT(Image);

i->w = w; i->h = h;

i->maxval = 255;

i->c = NEWTARRAY(w*h, Bcolor);

img_clear(i, C_BLACK);

return i;

}

6.2. Format of the Image Representation 95

Defines:
img init, used in chunk 97.

Uses Bcolor 94b, Image 94a, and img clear.

The routine img_free is the destructor for the structure Image.

95a 〈img free 95a〉≡
void img_free(Image *i)

{

efree(i->c); efree(i);

}

Defines:
img free, never used.

Uses Image 94a.

6.2.2 Access to the Image Matrix

We chose to store the image elements in a contiguous memory area. In this way, addressing
the (u, v) elements of the image matrix is done by the macros PIXRED, PIXGRN, and
PIXBLU.

95b 〈image array access 95b〉≡
#define PIXRED(I,U,V) I->c[U + (((I->h - 1) - (V)) * I->w)].x

#define PIXGRN(I,U,V) I->c[U + (((I->h - 1) - (V)) * I->w)].y

#define PIXBLU(I,U,V) I->c[U + (((I->h - 1) - (V)) * I->w)].z

Defines:
PIXBLU, used in chunks 95c and 96a.
PIXGRN, used in chunks 95c and 96a.
PIXRED, used in chunks 95c and 96a.

The routines img_putc and img_getc enable access to the image matrix by color.

95c 〈img putc 95c〉≡
void img_putc(Image *i, int u, int v, Color c)

{

if (u >= 0 && u < i->w && v >= 0 && v < i->h) {

PIXRED(i,u,v) = CLAMP(RED(c), PIX_MIN, PIX_MAX);

PIXGRN(i,u,v) = CLAMP(GRN(c), PIX_MIN, PIX_MAX);

PIXBLU(i,u,v) = CLAMP(BLU(c), PIX_MIN, PIX_MAX);

}

}

Defines:
img putc, used in chunk 97.

Uses Image 94a, PIX MAX 94c, PIX MIN 94c, PIXBLU 95b, PIXGRN 95b, and PIXRED 95b.

96 6. Digital Image

96a 〈img getc 96a〉≡
Color img_getc(Image *i, int u, int v)

{

if (u >= 0 && u < i->w && v >= 0 && v < i->h)

return c_make(PIXRED(i,u,v),PIXGRN(i,u,v),PIXBLU(i,u,v));

else

return C_BLACK;

}

Defines:
img getc, used in chunk 96b.

Uses Image 94a, PIXBLU 95b, PIXGRN 95b, and PIXRED 95b.

6.3 Image Coding
We chose PPM format (portable pixel map) for external image representation. This format
is supported by most Unix systems and in Windows by several commercial and public
domain programs.

6.3.1 PPM Format

PPM format is quite simple, supporting the type of images we used in the matrix represen-
tation defined in this chapter. A PPM file, which by convention has the extension “.ppm,”
consists of a header and the pixel matrix. The header includes the usual information about
the matrix representation, such as spatial resolution. The first 2 bytes of the file correspond
to the integer PPM_MAGIC, which allows us to identify whether a file is in PPM format.

#define PPM_MAGIC P6

6.3.2 Direct Coding

As we saw above, a PPM file consists of a header and a pixel matrix. The direct coding of an
image matrix is given by the list of the matrix elements sorted by lines. The routines to read
and write PPM images use the open source library libnetpbm (http://netpbm.sourceforge.
net).

The routine img_write writes a PPM file with the image data.

96b 〈img write 96b〉≡
void img_write(Image *i, char *fname, int cflag)

{

FILE *fp;

int row, col;

pixval maxval;

pixel **pixels;

fp = (strcmp("stdout", fname) == 0)? stdout : fopen(fname, "wb");

6.3. Image Coding 97

pixels = ppm_allocarray(i->w, i->h);

for (row = 0; row < i->h; ++row) {

for (col = 0; col < i->w; ++col) {

Color c = img_getc(i, col, i->h - row - 1);

pixel p = pixels[row][col];

(pixels[row][col]).r = RED(c);

(pixels[row][col]).g = GRN(c);

(pixels[row][col]).b = BLU(c);

}

}

ppm_writeppm(fp, pixels, i->w, i->h, i->maxval, TRUE);

pnm_freearray(pixels, i->h);

if (strcmp("stdout", fname) != 0)

fclose(fp);

}

Defines:
img write, never used.

Uses Image 94a and img getc 96a.

The routine img_read reads a PPM file to the Image structure.

97 〈img read 97〉≡
Image *img_read(char *fname)

{

FILE *fp, *fp2;

int row, col, cols, rows;

pixval maxval;

pixel **pixels;

Image *i;

fp = (strcmp("stdin", fname) == 0)? stdin : fopen(fname, "rb");

pixels = ppm_readppm(fp, &cols, &rows, &maxval);

i = img_init(0, cols, rows);

i->maxval = maxval;

for (row = 0; row < rows; ++row) {

for (col = 0; col < cols; ++col) {

pixel const p = pixels[row][col];

img_putc(i, col, rows-row-1, c_make(PPM_GETR(p), PPM_GETG(p),

PPM_GETB(p)));

}

}

pnm_freearray(pixels, rows);

fclose(fp);

return i;

}

Defines:
img read, never used.

Uses Image 94a, img init 94d, and img putc 95c.

98 6. Digital Image

Figure 6.3. Program for visualizing images. (See Plate IV.)

6.4 Comments and References
In this chapter we discussed representation of images and presented a library for the manip-
ulation of images. Figure 6.3 shows an example of a program for visualizing images. Two
references on image processing for computer graphics are [Gomes and Velho 95, Gomes
and Velho 97].

6.4.1 Revision

The API of the images library consists of the following routines:

Image *img_init(int type, int w, int h);

void img_clear(Image *i, Color c);

Image *img_read(char *fname);

void img_write(Image *i, char *fname, int cflag);

void img_putc(Image *i, int u, int v, Color c);

Color img_getc(Image *i, int u, int v);

void img_free(Image *i);

6.4.2 Image Format

The most important image formats are

� TIFF,

� GIF,

6.4. Comments and References 99

� JPEG,

� PhotoCD.

Some public domain packets for images are

� Utah Raster Toolkit,

� PBM,

� LibTIFF,

� IRIS Tools.

The most popular public domain programs for viewing images are GIMP, ImageMagic,
and XV.

Exercises
1. Write a program to generate images with the following patterns:

(a) squared,

(b) ramps of grey tones,

(c) interpolation of four colors at the corners of the image,

(d) white noise.

2.

(a) Use a public domain program (GIMP, for instance) to visualize the images of
the previous exercise.

(b) Write a program to visualize images using the GP library.

(c) Compare the results of (a) and (b) and discuss the limitations of your program.

3. Write a program to perform gamma correction on an image. Using your program, try
to empirically determine the gamma factor of your monitor.

4. Write a dithering program. Using the gray tone patterns created in Exercise 6.1, test
the program with quantization for 6, 4, 2, and 1 bits.

5. Write a quantization program. Using the patterns created in Exercise 6.1, test the
program with quantization for 6, 4, 2, and 1 bits.

6. Write a program to compress images using the RLE method. Test the program with
the images generated in Exercise 6.1. Verify the compression factors for each image
and explain the results.

100 6. Digital Image

7. Write a program to combine the methods of color quantization and dithering.

8. Write a program to convert a colored image into an a gray tone image.

7 Description of
3D Scenes

Along with digital images, 3D scenes are one of the fundamental elements of computer
graphics. The viewing process, which ends with the production of a digital image, starts
from the description of a 3D scene. The modeling process creates the representation of a
scene starting from the user’s guidelines. In this chapter, we study the representation of,
and computational methods to create, 3D scenes.

7.1 3D Scenes
A 3D scene describes a virtual world in computer graphics applications. The main purpose
of this representation is to capture the aspects relevant for both modeling and visualization
of the objects in the virtual world.

The scene description establishes the interface between the processes of modeling and
visualization (see Figure 7.1). Besides, this representation is used for both the storage and
transmission of the scene, for instance in a CAD system or in a distributed virtual reality
system.

Modeling

Visualization

Description
3D Scene

Figure 7.1. Interface between modeling and visualization.

101

102 7. Description of 3D Scenes

7.1.1 Elements of a 3D Scene

Description of a 3D scene consists of the specification of its elements and how they are
structured, including configuration information. The components of a 3D scene are the
objects inhabiting the virtual world. These objects can be organized into three categories:

� Object models. Describes the geometry and visual properties.

� Light sources. Describes the illumination.

� Virtual camera. Describes the observer.

The structure of the objects in a 3D scene corresponds to groups of objects with re-
lations, such as geometric links, among themselves. These groups can be structured in a
hierarchical way. The configuration of a 3D scene is determined by several other parame-
ters specifying the way in which the description can be manipulated (e.g., the name of the
scene, data on the image of the scene, etc.).

Note that description of a 3D scene involves several types of information, as well as
many diverse parameters. This diversity is one of the fundamental characteristics that
should be taken into account in the representation of a 3D scene.

7.1.2 Representation of 3D Scenes

Just as we defined a format for digital images (see Chapter 6), we could do the same for
3D scenes. But defining this would not be adequate: 3D scenes contain many types of
information, which may or may not be present in a certain scene. Consequently, setting a
fixed data format would be very complex and, therefore, inefficient.

Another proposal that certainly would provide total flexibility, would be to adopt a
procedural representation, based in a generic programming language, such as C or Lisp.
This solution is also unsatisfactory since it would require the use of constructions lacking
a semantic contextualization of 3D scenes.

The ideal alternative for representing 3D scenes lies between these two extremes and
offers the best compromise between specificity and generality allowing a representation
that is flexible and simultaneously has great expression power. It consists of adopting a
scene description language.

7.1.3 Scene Description Language

A language for describing 3D scenes should meet the following requirements:

� Intuitive notation,

� Uniform syntax,

� Extensible semantics,

� Simple implementation.

7.2. Language Concepts 103

Besides, this language should incorporate concepts from existing area standards; of
particular importance are Open Inventor SDL (scene description language) and VRML
(Virtual Reality Modeling Language). Based on these two standards, we will develop a
3D scene description language that meets the requirements listed above. This language
allows us to describe the elements of a scene through simple and effective constructions.
We will give a concrete example to clarify this statement:

Example 7.1. Simple 3D Scene

scene {

camera = view { from = {0, 0, -2.5}, fov = 90},

light = ambi_light { intensity = 0.2 },

light = dist_light { direction = {0, 1, -1} },

object = group{

material = plastic { kd = 0.8, ks = 0.0 },

transform = { translate {v = {0, .0, 0}}},

children = {

primobj{ shape = sphere{radius = .1 }},

primobj{ shape = cylinder { center = {2, 2, 2}}}}},

}
�

This example describes a 3D scene composed of a virtual camera, two light sources,
and a group with two primitive objects. Notice this information is encoded in a clear and
precise way, still presenting a regular structure.

In the following sections, we will study the computational concepts related to program-
ming languages. From these concepts, we will specify the implementation of the 3D scene
description language and demonstrate its use.

7.2 Language Concepts
A language is a systematic schema for describing information. The syntax of the language
determines its formal structure and the semantics of the language is related to its content.
An expression consists of a set of symbols structured according to the syntactic rules, whose
content is defined by the semantic definition. In a programming language, the content is a
computational process.

7.2.1 Expression Languages

Several types of programming languages exist. We will concentrate on the expression lan-
guages. An expression language is based on two fundamental abstractions: operators and
operands.

In this type of language, a program is formed by a sequential set of expressions. The
syntax consists of the rules to build expressions and the semantics of the evaluation of

104 7. Description of 3D Scenes

those expressions. Notice that, as evaluation implies a computational process, the content
effectively takes place through the execution of that process.

Expression languages are intimately related to functional computing. In fact, we can
associate operators with functions and operands with parameters. In an expression lan-
guage, every expression has a value. Expressions can be either primitive or composed. A
primitive expression has its value defined directly (in other words, a given constant for a
basic type of the language). A composed expression has its value defined by the result of the
recursive evaluation of the set (that is, the application of the function and its parameters).

We use the substitution model to implement the evaluation of an expression. The basic
procedure has the following structure:

if simple expression

returns value

if composed expression

finds values of the operands

returns the value of the applied operator to the operands

7.2.2 Syntax and Semantics in Expressions

In a expression language, the goal of the syntactic rules is to identify operators and operands
to form expressions. Notice we can have different syntaxes for the same semantic content.
For example, consider the binary expressions made up of an operator and two operands.
We therefore have three possibilities for structuring binary expressions, determined by the
position of the operator relative to the operands. They correspond to the prefix, postfix,
and infix operators.

Example 7.2. Sum Operation

� Prefix notation. (+ a b)

� Postfix notation. (a b +)

� Infix notation. (a + b)
�

The syntactic analysis should produce a representation of expressions independent of
the notation used. This representation is given by a expression tree. The internal nodes of
the tree contain operators, while the leaves of the tree contain basic types. The hierarchical
structure is formed by the clustering of subexpressions. We will give an example.

Example 7.3. The tree of the expression

((a+ b) ∗ (c− (d+ e)))

is shown in Figure 7.2. This expression uses the infix notation. Notice that the same tree
would be used to represent that expression given in a postfix or prefix notation. �

7.2. Language Concepts 105

*

+ -

a b c +

d e

Figure 7.2. Expression tree.

Expressions identified by the syntactic analyzer are sent to the expression evaluator
implementing the substitution model presented in Section 7.2.1. In this way, the exe-
cution consists of sequentially evaluating the expression trees forming the program. The
pseudocode below shows the structure of an interpreter for expression languages:

While (more expressions)

Read expression

Evaluate expression

7.2.3 Compilation and Interpretation of Programs

A program is normally encoded through alphanumeric characters composing the text, or
source code, of the program. This text should be analyzed so higher-level language structures
can be extracted from it. Those structures should be then processed, therefore executing
the meaning of the program.

The source code analysis phase is called compilation. In this phase, an analysis of the
lexical and syntactic structures takes place. The processing phase is called execution. In this
phase, computing by the attribution of semantic content to the computational structures
takes place.

In certain computational systems, the analysis and execution phases are accomplished
by a single program called interpreter. A compiler (or interpreter) is composed of the fol-
lowing modules implementing the various phases of analysis and execution of the program
code:

� Lexical analyzer (or scanner);

� Syntactic analyzer (or parser);

� Expression evaluator (or evaluator).

Beyond these three modules, we also have modules for managing symbols (symbol man-
ager) and for error handling (error handler).

106 7. Description of 3D Scenes

Source Code

Tokens

Expression

Error
Handling

Symbol
Table

Syntax Analyzer

Lexical Analyzer

Interpreter

Figure 7.3. Anatomy of an interpreter.

In the lexical analysis, sequences of characters are grouped to form the basic language
types: numbers, names, etc. The syntactic analyzer has as input the source code and as out-
put the identifiers (or tokens) of the basic types. Names are stored in a table by the symbol
manager. In expression languages, the syntax determines the way the composed expres-
sions are constructed, starting from the basic types. The syntactic analyzer has identifiers
as input and expression trees as output.

As we said in the previous section, the semantics is given by the language operators.
The expression evaluator runs the program, applying operators to its operands. Figure 7.3
shows the anatomy of a program interpreter, its modules and the interrelations among
them.

7.2.4 Tools for Developing Languages

The development environment of UNIX programs has several tools to facilitate imple-
mentation of languages. These tools were improved by Open Software Foundation and
are part of the GNU programming packet. The tools below are programs to generate
programs implementing the modules of an interpreter (or compiler). These modules are
specified by the lexical, syntactic, and semantic rules of the designed language.

� lex. Scanner generator (lexical analysis)

� yacc. Parser generator (syntactic analysis)

� CPP / M4. Macro translator (preprocessing)

7.3 An Extension Language
Instead of directly implementing a 3D scene description language, we are going to develop
a “metalanguage” that will allow incremental and flexible specification of our language.

7.3. An Extension Language 107

We will use a type of metalanguage called extension language, which has closed and uni-
form syntax and open and minimum semantics. The advantages of this schema is that the
extension language incorporates the entire computational environment necessary for syn-
tactic analysis; at the same time it also allows for specification of the application semantics,
such as the description of scenes.

The extension language provides the computational support for “sublanguages” (or em-
bedded languages). These sublanguages extend the semantics of the language kernel through
primitives provided by the application, as well as functions defined by the user.

In this section, we will develop all of the modules comprising the interpreter of our
extension language.

7.3.1 Syntactic Analyzer

We will use UNIX tools to develop the extension language. In particular, we will use the
yacc program to generate the syntactic analyzer. The yacc has as input a specification
of the syntactic rules for the construction of the expression trees of the language. The
expression tree is constituted by terminal symbols and nonterminal symbols.

Terminal symbols (or tokens) are basic language types corresponding to the tree leaves.
Our language has the following basic types: numbers, strings, names, and classes. Strings
are character strings between quotation marks, and classes are identifiers for operators.

107a 〈tokens 107a〉≡
%token <dval> NUMBER

%token <sval> STRING NAME

%token <fval> CLASS

Nonterminal symbols (or types) are syntactic structures of the language, also called
“productions,” corresponding to the internal tree nodes. Our language has the following
productions: value, pv, pvlist, expression, and input.

107b 〈types 107b〉≡
%type <nval> node input

%type <pval> pvlist pv

%type <vval> val

The structure below represents a node of the expression tree, being either internal or
external. For this reason, the data structure consists of the union of all of the basic and
derived types.

107c 〈parser data structure 107c〉≡
%union {

char ival;

double dval;

char *sval;

Pval *pval;

Val vval;

Node *nval;

108 7. Description of 3D Scenes

Val (*fval)();

}

Uses Node 115b, Pval 113b, and Val 114a.

We specify the grammar of our language by the syntactic rules below:

108 〈grammar rules 108〉≡
%%

input: /* empty */ { $$ = root = NULL;}

| input node ’;’ { $$ = root = $2;}

| input error ’;’ { yyerrok; $$ = root = NULL;}

;

node: CLASS ’{’ pvlist ’}’ { $$ = t_node($1, $3); }

| ’{’ pvlist ’}’ { $$ = t_node(t_pvl, $2); }

;

pvlist: /* empty */ { $$ = (Pval *)0;}

| pvlist ’,’ { $$ = $1;}

| pvlist pv { $$ = pv_append($1, $2);}

;

pv: NAME ’=’ val { $$ = pv_make($1, $3);}

| val { $$ = pv_make(NULL, $1);}

;

val: NUMBER { $$ = pv_value(V_NUM, $1, NULL, NULL);}

| ’-’ NUMBER { $$ = pv_value(V_NUM, - $2, NULL, NULL);}

| STRING { $$ = pv_value(V_STR, 0., $1, NULL);}

| node { $$ = pv_value(V_NOD, 0., NULL, $1);}

;

%%

Uses pv append 115a, pv make 114b, pv value 114c, Pval 113b, root, t node 115c,
t pvl 117a, V NOD 113c, V NUM 113c, and V STR 113c.

Those rules define an extremely simple and powerful grammar. It allows constructions
of the type:

class { name = value, name = value }

This construction is quite appropriate for describing n-ary expressions. The operator
is of the type class. The operands are pairs name and value, which allows us to name
them.

As value can also be an expression, we can group subexpressions to form expressions.
Furthermore, we can omit both class and name from the basic construction, resulting
in the variants { name = value, name = value }, class { value, value }, and
{ value, value }. Note that, as value can be a number, this last construction can
represent n-dimensional vectors.

An important observation concerns the error management problem. In the first syn-
tactic rule, we have a production of the form input error;. This means that, when a

7.3. An Extension Language 109

syntax error is detected, the partial data will be discarded and the routine yyerror will be
called. This routine simply informs us that an error happened at a line of the input file.

109a 〈yyerror 109a〉≡
int yyerror()

{

extern int lineno;

fprintf(stderr, "lang: syntax error in , near line %d\n",lineno);

}

Defines:
yyerror, never used.

Uses lineno 109c.

7.3.2 Lexical Analyzer

The lexical analyzer is responsible for processing the source code, grouping the input char-
acters to form symbols (or tokens).

We could use the program lex to generate the lexical analyzer. However, we prefer to
implement it directly to have more control over the processing.

The program is relatively simple and works as a finite state machine. Based on the
current character, the algorithm determines whether it continues in the current state, or
changes the state. Each state corresponds to a type of symbol. The states are indicated by
the names of the macros in the yylex routine.

109b 〈yylex 109b〉≡
yylex()

{

Symbol *s;

SCAN_WHITE_SPACE

SCAN_NUMBER

SCAN_STRING

SCAN_NAME_CLASS

SCAN_MARK

}

Uses SCAN MARK 111b, SCAN NAME CLASS 111a, SCAN NUMBER 110b, SCAN STRING 110c,
SCAN WHITE SPACE 110a, Symbol 112b, and yylex.

The information internal to the lexical analyzer is stored in the variable fin, which is
a pointer to the input file and in lineno and c, which indicate, respectively, the current
line and character of the source code. These variables are accessible to other routines of the
lexical analyzer.

109c 〈internal state 109c〉≡
static FILE *fin = stdin;

static int c;

int lineno = 0;

110 7. Description of 3D Scenes

Defines:
c, used in chunks 110, 111, and 117a.
fin, used in chunks 110–12.
lineno, used in chunks 109a and 111b.

The macro SCAN_WHITE_SPACE has the purpose of detecting the “white spaces” of the
code, which are separators formed by whites and tabulations. It also detects the condition
EOF, indicating the end of the file.

110a 〈scan white space 110a〉≡
#define SCAN_WHITE_SPACE

while ((c = getc(fin)) == ’ ’|| c == ’\t’)

;

if (c == EOF) return 0;

Defines:
SCAN WHITE SPACE, used in chunk 109b.

Uses c 109c and fin 109c.

The macro SCAN_NUMBER constructs numbers formed by a sequence of floating point
numerical digits.

110b 〈scan number 110b〉≡
#define SCAN_NUMBER

if (c == ’.’|| isdigit(c)) { double d;

ungetc(c, fin);

fscanf(fin, "%lf", &d);

yylval.dval = d;

return NUMBER;

}

Defines:
SCAN NUMBER, used in chunk 109b.

Uses c 109c and fin 109c.

The macro SCAN_STRING assembles character strings delimited by quotation marks.

110c 〈scan string 110c〉≡
#define SCAN_STRING

if (c == ’"’) { char sbuf[320], *p;

for (p = sbuf; (c = getc(fin)) != ’"’; *p++ = c) {

if (c == ’\\’)

c = ((c = getc(fin)) == ’\n’)? ’ ’ : c;

if (c == ’\n’|| c == EOF) {

fprintf(stderr,"missing quote, sbuf\n"); break;

}

if (p >= sbuf + sizeof(sbuf) - 1) {

fprintf(stderr,"sbuffer overflow\n"); break;

}

}

*p = ’\0’;

yylval.sval = malloc(strlen(sbuf) + 1);

7.3. An Extension Language 111

strcpy(yylval.sval, sbuf);

return STRING;

}

Defines:
SCAN STRING, used in chunk 109b.

Uses c 109c and fin 109c.

The macro SCAN_NAME_CLASS identifies a name with the aid of the symbol manager,
which we will describe further on.

111a 〈scan name class 111a〉≡
#define SCAN_NAME_CLASS

if (isalpha(c)) { char sbuf[1024], *p = sbuf; int t;

do {

if (p >= sbuf + sizeof(sbuf) - 1) {

*p = ’\0’;

fprintf(stderr,"name too long %s (%x:%x)\n", sbuf, p, sbuf);

}

*p++ = c;

} while ((c = getc(fin)) != EOF && (isalnum(c)|| c == ’_’));

ungetc(c, fin);

*p = ’\0’;

if ((s = sym_lookup(sbuf)) == (Symbol *)0)

s = sym_install(sbuf, NAME, NULL);

if (s->token == CLASS)

yylval.fval = s->func;

else

yylval.sval = s->name;

return s->token;

}

Defines:
SCAN NAME CLASS, used in chunk 109b.

Uses c 109c, fin 109c, sym install 112c, sym lookup 113a, and Symbol 112b.

The macro SCAN_MARK detects alphanumeric and special characters, such as end of line
(\n).

111b 〈scan mark 111b〉≡
#define SCAN_MARK

switch (c) {

case ’\\’: if ((c = getc(fin)) != ’\n’)

return c;

else

return yylex();

case ’\n’: lineno++; return yylex();

default: return c;

}

}

112 7. Description of 3D Scenes

Defines:
SCAN MARK, used in chunk 109b.

Uses c 109c, fin 109c, lineno 109c, and yylex.

The routine yyfile is used to specify the input file of the lexical analyzer.

112a 〈yyfile 112a〉≡
void yyfile(FILE *fd)

{

fin = fd;

}

Defines:
yyfile, never used.

Uses fin 109c.

7.3.3 Symbol Manager

The symbol manager maintains the name table of the program. The data structure Symbol
is used to represent the elements of the table. A symbol can be a name or the identifier of
an operator. In this last case, the table contains a pointer to the function implementing the
operator.

112b 〈symbol table 112b〉≡
typedef struct Symbol {

char *name;

int token;

Val (*func)();

struct Symbol *next;

} Symbol;

Defines:
Symbol, used in chunks 109b and 111–13.

Uses Val 114a.

The symbol table is a single linked list stored in the internal variable symlist. The
routine sym_install installs a symbol in the table.

112c 〈symbol install 112c〉≡
static Symbol *symlist = (Symbol *)0;

Symbol *sym_install(char *s, int t, Val (*func)())

{

Symbol *sp = (Symbol *) malloc(sizeof(Symbol));

sp->name = malloc(strlen(s) + 1);

strcpy(sp->name, s);

sp->token = t;

sp->func = func;

sp->next = symlist;

return symlist = sp;

7.3. An Extension Language 113

}

Defines:
sym install, used in chunks 111a and 118c.
symlist, used in chunk 113a.

Uses Symbol 112b and Val 114a.

The routine sym_lookup verifies if a name corresponds to an existing symbol in the
table. If the symbol exists, then it returns its pointer; otherwise it returns a null pointer.

113a 〈symbol lookup 113a〉≡
Symbol *sym_lookup(char *s)

{

Symbol *sp;

for (sp = symlist; sp != (Symbol *)0; sp = sp->next) {

if (strcmp(sp->name, s) == 0)

return sp;

}

return (Symbol *)0;

}

Defines:
sym lookup, used in chunks 111a and 118c.

Uses Symbol 112b and symlist 112c.

7.3.4 Parameters and Values

The operands of a language expression are given by a list of parameters. A parameter
consists of the pair name and value. The structure Pval is used to represent this pair.
Notice it is the element of a single linked list.

113b 〈parameter value structure 113b〉≡
typedef struct Pval {

struct Pval *next;

char *name;

struct Val val;

} Pval;

Defines:
Pval, used in chunks 107c, 108, and 114–18.

Uses Val 114a.

The values correspond to the various basic and derived types of the language. As we
previously saw, they are numbers, strings, expressions, and lists of parameters. We also
define the type V_PRV used by the sublanguage.

113c 〈value types 113c〉≡
#define V_NUM 1

#define V_STR 2

#define V_NOD 3

#define V_PVL 4

#define V_PRV 5

114 7. Description of 3D Scenes

Defines:
V NOD, used in chunks 108, 114c, and 116.
V NUM, used in chunks 108, 114c, and 117–19.
V PRV, never used.
V PVL, used in chunks 117a and 118a.
V STR, used in chunks 108 and 114c.

The structure Val represents a value. It is the union of the above types.

114a 〈value structure 114a〉≡
typedef struct Val {

int type;

union { double d;

char *s;

Node *n;

void *v;

} u;

} Val;

Defines:
Val, used in chunks 107c and 112–19.

Uses Node 115b.

The routine pv_make constructs a parameter given by name and value.

114b 〈pv make 114b〉≡
Pval *pv_make(char *name, Val v)

{

Pval *pv = (Pval *)malloc(sizeof(Pval));

pv->name = name;

pv->val = v;

pv->next = (Pval *)0;

return pv;

}

Defines:
pv make, used in chunks 108 and 116b.

Uses Pval 113b and Val 114a.

The routine pv_value returns a value of a certain type.

114c 〈pv value 114c〉≡
Val pv_value(int type, double num, char *str, Node *nl)

{

Val v;

switch (v.type = type) {

case V_STR: v.u.s = str; break;

case V_NUM: v.u.d = num; break;

case V_NOD: v.u.n = nl; break;

}

return v;

}

7.3. An Extension Language 115

Defines:
pv value, used in chunks 108 and 119.

Uses Node 115b, V NOD 113c, V NUM 113c, V STR 113c, and Val 114a.

The routine pv_append appends a parameter at the end of a list of parameters. It is
used for the construction of the operands list of an expression.

115a 〈pv append 115a〉≡
Pval *pv_append(Pval *pvlist, Pval *pv)

{

Pval *p = pvlist;

if (p == NULL)

return pv;

while (p->next != NULL)

p = p->next;

p->next = pv;

return pvlist;

}

Defines:
pv append, used in chunks 108 and 116b.

Uses Pval 113b.

7.3.5 Nodes and Expressions

An expression corresponds to a tree where the internal nodes are operators of the language.
The structure Node represents a tree node and consists of (1) a pointer to the function
implementing the operator and (2) a list of parameters defining its operands.

115b 〈node structure 115b〉≡
typedef struct Node {

struct Val (*func)();

struct Pval *plist;

} Node;

Defines:
Node, used in chunks 107c, 114–16, and 119d.

Uses Pval 113b and Val 114a.

The routine t_node constructs a node of the expression tree.

115c 〈node construtor 115c〉≡
Node *t_node(Val (*fun)(), Pval *p)

{

Node *n = (Node *) emalloc(sizeof(Node));

n->func = fun;

n->plist = p;

return n;

}

Defines:
t node, used in chunk 108.

Uses Node 115b, Pval 113b, and Val 114a.

116 7. Description of 3D Scenes

To evaluate an expression, we should apply the substitution model. This process es-
sentially consists of traversing the expression tree in depth. To make the language yet
more versatile, we implement the expression evaluation by traversing the tree in width and
depth. In this way, we visit each tree node, and we execute the function implementing the
operator twice. The first corresponds to preprocessing (action T_PREP), and the second
corresponds to the execution itself (action T_EXEC).

#define T_PREP 0

#define T_EXEC 1

What is more, we implement two types of expression evaluation: destructive and non-
destructive. The routine t_eval performs the destructive expression evaluation. It replaces
subexpressions by their value in the recursive evaluation process.

116a 〈eval 116a〉≡
Val t_eval(Node *n)

{

Pval *p;

(*n->func)(T_PREP, n->plist);

for (p = n->plist; p != NULL; p = p->next)

if (p->val.type == V_NOD)

p->val = t_eval(p->val.u.n);

return (*n->func)(T_EXEC, n->plist);

}

Defines:
t eval, used in chunk 119b.

Uses Node 115b, Pval 113b, T EXEC, T PREP, V NOD 113c, and Val 114a.

The routine t_nd_eval makes the nondestructive evaluation of expressions. It pre-
serves the trees of subexpressions, creating lists separate from operands already appraised
that are last for the operators.

116b 〈non destructive eval 116b〉≡
Val t_nd_eval(Node *n)

{

Pval *p, *qlist = NULL;

(*n->func)(T_PREP, n->plist);

for (p = n->plist; p != NULL; p = p->next)

qlist = pv_append(qlist, pv_make(p->name,

(p->val.type == V_NOD)? t_nd_eval(p->val.u.n) : p->val));

return (*n->func)(T_EXEC, qlist);

}

Defines:
t nd eval, used in chunk 119c.

Uses Node 115b, pv append 115a, pv make 114b, Pval 113b, T EXEC, T PREP, V NOD 113c,
and Val 114a.

7.3. An Extension Language 117

The routine t_pvl is the function implementing the operator “list,” which corresponds
to the syntactic construction { pv, pv, . . . }. Notice this is the only semantics ef-
fectively implemented in the kernel of the extension language.

117a 〈pvl 117a〉≡
Val t_pvl(int c, Pval *pvl)

{

Val v;

v.type = V_PVL; v.u.v = pvl;

return v;

}

Defines:
t pvl, used in chunk 108.

Uses c 109c, Pval 113b, V PVL 113c, and Val 114a.

7.3.6 Auxiliary Functions

We define several auxiliary routines to work with parameter lists. The routine pvl_to_

array converts a list of numerical values to an array.

117b 〈pvl to array 117b〉≡
void pvl_to_array(Pval *pvl, double *a, int n)

{

int k = 0;

Pval *p = pvl;

while (p != NULL && k < n) {

a[k++] = (p->val.type == V_NUM) ? p->val.u.d : 0;

p = p->next;

}

}

Defines:
pvl to array, used in chunk 117c.

Uses Pval 113b and V NUM 113c.

The routine pvl_to_v3 converts a list with three numbers to a 3D vector.

117c 〈pvl to v3 117c〉≡
Vector3 pvl_to_v3(Pval *pvl)

{

double a[3] = {0, 0, 0};

pvl_to_array(pvl, a, 3);

return v3_make(a[0], a[1], a[2]);

}

Defines:
pvl to v3, used in chunk 118a.

Uses Pval 113b and pvl to array 117b.

118 7. Description of 3D Scenes

The routine pvl_get_v3 extracts a parameter from the list indicated by pname, which
has a vector as value. If this parameter does not exist, the routine returns the default value
defval.

118a 〈pvl get v3 118a〉≡
Vector3 pvl_get_v3(Pval *pvl, char *pname, Vector3 defval)

{

Pval *p;

for (p = pvl; p != (Pval *)0; p = p->next)

if (strcmp(p->name, pname) == 0 && p->val.type == V_PVL)

return pvl_to_v3(p->val.u.v);

return defval;

}

Defines:
pvl get v3, never used.

Uses Pval 113b, pvl to v3 117c, and V PVL 113c.

The routine pvl_get_num extracts a parameter of scalar value from the list.

118b 〈pvl get num 118b〉≡
Real pvl_get_num(Pval *pvl, char *pname, Real defval)

{

Pval *p;

for (p = pvl; p != (Pval *)0; p = p->next)

if (strcmp(p->name, pname) == 0 && p->val.type == V_NUM)

return p->val.u.d;

return defval;

}

Defines:
pvl get num, never used.

Uses Pval 113b and V NUM 113c.

7.4 Sublanguages and Applications
In this section, we show how to use resources from the extension language to define
application-oriented sublanguages.

7.4.1 Interface with the Extension Language

To specify a sublanguage, we define the operators implementing the desired semantics.
The routine lang_defun is used to define a new operator. It installs, in the symbol table,
the name of the operator and the function implementing it.

118c 〈lang defun 118c〉≡
void lang_defun(char *name, Val (*func)())

{

if (sym_lookup(name))

7.4. Sublanguages and Applications 119

fprintf(stderr,"lang: symbol %s already defined\n", name);

else

sym_install(name, CLASS, func);

}

Defines:
lang defun, never used.

Uses sym install 112c, sym lookup 113a, and Val 114a.

We call the lexical and syntactic analyzers to perform an analysis of the source code
and to produce an expression tree.

The routine lang_parse executes the syntactic analyzer generated by yacc, which in
turn calls the lexical analyzer.

119a 〈lang parse 119a〉≡
int lang_parse()

{

return yyparse();

}

Defines:
lang parse, never used.

To run the program we evaluate the expression tree, whose root is stored in the internal
variable root. The routine lang_eval runs the program evaluating its tree in a destructive
way.

119b 〈lang eval 119b〉≡
Val lang_eval()

{

return (root != NULL)? t_eval(root) : pv_value(V_NUM, 0, NULL, NULL);

}

Defines:
lang eval, never used.

Uses pv value 114c, root, t eval 116a, V NUM 113c, and Val 114a.

The routine lang_nd_eval runs the program evaluating its tree in a nondestructive
way.

119c 〈lang nd eval 119c〉≡
Val lang_nd_eval(void)

{

return (root != NULL)? t_nd_eval(root) : pv_value(V_NUM, 0, NULL, NULL);

}

Defines:
lang nd eval, never used.

Uses pv value 114c, root, t nd eval 116b, V NUM 113c, and Val 114a.

The routine lang_ptree returns the expression tree.

119d 〈lang parse tree 119d〉≡
Node *lang_ptree(void)

{

120 7. Description of 3D Scenes

return root;

}

Defines:
lang ptree, never used.

Uses Node 115b and root.

7.4.2 Implementing the Semantics

To implement the language semantics, we define operators through functions executing
the actions T_PREP and T_EXEC.

These functions follow the structure below:

Val f(int call, Pval *pl)

{

Val v;

if (call == T_EXEC) {

/* execute and return value */

} else if (call == T_PREP) {

/* preprocess and return null */

}

return v;

}

7.4.3 Generating the Interpreter

We create a main program to generate the language interpreter, which includes the kernel
of the extension language and the sublanguage.

That program can be divided into three parts:

1. definition of the operators of the sublanguage,

2. compilation of the source code,

3. execution of the program.

The program below shows an example of the structure of the interpreter:

main(int argc, char **argv)

{

lang_define("f", f);

...

if (lang_parse() == 0)

lang_eval();

exit(0);

}

7.5. Comments and References 121

7.5 Comments and References
In this chapter we discussed concepts related to languages and procedural descriptions. We
presented an extension language to specify the data of a 3D scene. Finally, we developed a
library with the computational support for implementing this language.

The concepts discussed in this chapter can be seen in more detail in the excellent book
by Aho and Ullman [Aho and Ullman 79].

7.5.1 Revision

The API of the language library consists of the following routines:

Pval *pv_make(char *name, Val v);

Pval *pv_append(Pval *pvlist, Pval *pv);

Val pv_value(int type, double num, char *str, Node *nl);

Node *t_node(Val (*fun)(), Pval *p);

Val t_eval(Node *n);

Val t_pvl(int c, Pval *pl);

Node *yyptree();

void lang_define(char *name, Val (*func)());

int lang_parse();

Val lang_eval();

void pvl_to_array(Pval *pvl, double *a, int n);

Vector3 pvl_to_v3(Pval *pvl);

Real pvl_get_num(Pval *pvl, char *pname, Real defval);

Vector3 pvl_get_v3(Pval *pvl, char *pname, Vector3 defval);

7.5.2 Extensions

The expression language we developed in this chapter is quite powerful and contains prac-
tically all the ingredients of a programming language. The only important resource of a
programming language that is not present in our language is the possibility of creating
new functions using the language itself. The functions of the language are defined in C as
primitive operators. This engine allows efficient implementation.

However, the extension language could be enhanced with constructions for defining
macros and functions. The former would allow the definition of macros. In this case we
could use the preprocessor CPP of the C language. In this way, we would have the com-
mand defines in the language. CPP allows the definition of macros with the following
form:

#define M(P1, P2, PN) macro code

122 7. Description of 3D Scenes

The preprocessor identifies all the occurrences of the defined macros and performs the
macro expansion, replacing the macro call by its text with the corresponding parameters.
For instance, the macro call M (the, b, c) is replaced by the macro code, with a, b,

c in the place of P1, P2, P3.
Another advantage of using CPP is that it allows the inclusion of multiple files through

the command include.
The construction for defining functions demands a significant change in the language.

It could be done with the construction defun, which associates an expression to the name
of a function (operator) of the language.

7.5.3 Related Information

Examples of important extension languages include Lisp, TCL, and Moon. Other scene
description languages (besides VRML and OpenInventor) in which the syntax of our lan-
guage is based, are Geomview (formats OOGL, OFF), Renderman, PovRay, and Radi-
ance.

Exercises
1. Use the LANG library to create a language for a calculator. The following operations

must be implemented: sum, subtraction, multiplication, and division.

2. Extend the calculator of the previous exercise to allow variables with values to be
passed in the command line. Use the format arg { var = num } , where var is
the variable name and num is the default value that will be used in case the variable
does not appear in the command line.

8 3D Geometric Models

A 3D scene is formed by set of 3D objects. From this point of view, the form of the objects
is one of the most important aspects in computer graphics processes and applications. In
this chapter, we will study models and representations of 3D objects.

8.1 Foundations of Modeling
Once again we will use the paradigm of the four universes. In the physical universe we have
3D objects whose form we want to characterize. In the mathematical universe we define
models for the geometry of those objects. In the representation universe we create the
schema and parameters associated with those geometric models. In the implementation
universe we establish data structures and procedures to support those representations in
the computer (see Figure 8.1).

8.1.1 Models and Geometric Descriptions

The geometric support of an object consists of a set of points in the ambient space, S =
{p ⊂ R3 : p ∈ O}. Certain constraints are necessary to best characterize the geometry of
this set of points.

Shapes

Models

Representations

Data
 Structures

Figure 8.1. Four abstraction levels in geometric modeling.

123

124 8. 3D Geometric Models

Figure 8.2. Mappings preserving the topological properties of a given space.

Manifolds. We will assume the form of the objects we will work with consists of a homoge-
neous set of points that can be modeled as manifolds of dimension 1 (curves), 2 (surfaces),
and 3 (solids), embedded in the 3D Euclidean space. This means that, locally, our set of
n-dimensional points is homeomorphic to an open ball in Rn. In Figure 8.2, we illustrate
this concept for a surface.

Parametric and implicit descriptions. Once we have chosen the mathematical model for
the object geometry, we need to specify it concretely. In other words, we need mathematical
tools to describe n-dimensional manifolds. The functional description fits our purposes.
We will use functions to specify the set of points of the objects. There are two types of
geometric functional description: parametric and implicit.

In the parametric description, the set of points p ∈ S, is defined directly by a function
p = f(u) defined in a parametric space with dimensionm of the object, i.e., u ∈ U ⊂ Rm.
Figure 8.3 illustrates this concept for the case of a parametric curve.

In the implicit description, the geometry is indirectly defined as the set of points p ∈
R3 satisfying the equation g(p) = c. In this way, we say that S = g−1(c) is the inverse
image of g. Figure 8.4 illustrates these concepts for the case of an implicit curve.

Notice that the parametric and implicit descriptions are complementary. The paramet-
ric description allows the enumeration of points in S, while the implicit description makes
it possible to perform the classification of points in the ambient space in relation to S.

Another important observation is that, besides primitive functions (parametric and
implicit), we can make our modeling system more powerful by also including operations
with those functions in a way to generate composition of functions.

f(t)

Figure 8.3. Parametric curve.

c

g (c)-1

Figure 8.4. Implicit curve.

8.1. Foundations of Modeling 125

8.1.2 Representation Schema

Based on the functional geometry model presented in the previous subsection, we can
develop a schema to represent the form of the objects. The most common representation
schema are the following:

� primitive families,

� constructive schema,

� decomposition schema.

Representation by primitives. In the representation schema by primitives, we define a
family of functions to describe a class of objects. In addition, we can include geometric
transformations (see Chapter 4). The implementation of a modeling system by primitives
means we are using the definition of a library for shapes, support functions, and transfor-
mations.

Example 8.1 (Family of Spheres). A primitive-based system of this type could be used in
modeling marbles. Let us see how such a system is framed in the paradigm of the four
universes:

� Object. spherical shapes.

� Model. functional description.

– parametric form: (x, y, z) = r(cosu cos v, sinu cos v, sin v)

– implicit form: x2 + y2 + z2 = r2

� Representation. parameters of the description: name and radius, (id, r).

� Data structure. associative list: idk 7→ rk, for k = 1, . . .M . �

Constructive representation. In the constructive representation schema, we use geometric
primitive and operations of point set combination. In this way we can construct more
complex composed objects from simpler primitive objects. The combination operators
define an algebra.

To implement a constructive modeling system, we have to define the primitives as well
as the combination operators. The representation of an object in the system is given by an
algebraic expression.

Example 8.2 (CSG System–Constructive Solid Geometry). The CSG system is based on
boolean operations of union, intersection and difference between sets of points. A CSG

126 8. 3D Geometric Models

system based on spheres, according to the paradigm of the four universes, would have:

� Object. Combination of spherical shapes.

� Model. Primitive: spheres; operators: ∪,∩, /.

� Representation. CSG boolean expression.

� Data structure. Binary tree of the expression. �

Representation by decomposition. In the representation schema by decomposition, we
adopt a strategy opposite to that of the constructive schema. Instead of using simple shapes
to construct more complex ones, we decompose complex shapes into simpler parts that can
be described using either the parametric or implicit forms. Therefore, in this schema, we
need to define operations for assembling the pieces. In general, we have a stratification of
the topological elements of the model (vertices, edges, faces, shells). Assembly is given by
a graph describing the incidence relations between those elements (see Figure 8.5).

The implementation of a modeling system by decomposition means we have defined a
class of patches to be used, as well as the type of assembling between them.

Example 8.3 (Polyhedra). Faceted objects can be decomposed into polygonal patches. The
representation is a mesh of polygons. Let us see how such a system is framed in the
paradigm of the four universes:

� Objects. Faceted shapes.

� Model. Linear piecewise decomposition of the geometry.

� Representation. Surface given as a polygonal mesh.

� Data structure. List of vertices and faces. �

Figure 8.5. Graph with incidence relations for assembling topological elements of a model.

8.2. Geometric Primitives 127

8.2 Geometric Primitives
For one of the bases of our geometric modeling system, we will use families of primitives.
We will make only two demands in relation to the classes of valid objects. They should
have a dual functional description: parametric and implicit. And they should support a
pre-established set of functions. In this way, to include a new family of primitives in the
system, it is necessary to implement such functionality.

The basic primitives include: sphere, cone, cylinder, quadrics and superquadrics, torus,
box, and height surface.

Representation of those objects consists of the set of parameters specific to each family
of models. For instance, center and radius for the sphere. The operations with those
objects consist of geometric transformations, such as rigid motions in space.

We will also associate to each primitive object a bounding box, aligned with the main
directions. This information is given by the structure Box3d, indicating the inferior-left
and superior-right vertices of the box.

127a 〈box3d struct 127a〉≡
typedef struct Box3d {

Vector3 ll, ur;

} Box3d;

Defines:
Box3d, used in chunks 127–29 and 135a.

8.2.1 Definition of Primitive Objects

The implementation of primitive models will follow the object-oriented approach. In this
way, the representation of a primitive in the system uses the data structure Prim made
up of support functions; bounding box; direct and inverse transformation matrices; and
parameters of the object.

127b 〈prim struct 127b〉≡
typedef struct Prim {

struct PrimFuncs *f;

Box3d b;

Matrix4 td, ti;

void *d;

} Prim;

Defines:
Prim, used in chunks 128–40.

Uses Box3d 127a and PrimFuncs 128a.

Support functions of the primitive implement the interface between the object and
the modeling system. These functions correspond to the set of operations that can be
accomplished with primitive models. In this way, object orientation makes the specific im-
plementation of each primitive family independent from the rest of the modeling system.

128 8. 3D Geometric Models

The structure PrimFuncs contains pointers to each of the functions of the primitive
family.

128a 〈prim funcs 128a〉≡
typedef struct PrimFuncs {

Prim *(*instance)();

void (*destroy)();

Box3d (*bbox)();

int (*classify)();

Vector3 (*point)();

Vector3 (*normal)();

Vector3 (*gradient)();

Inode *(*intersect)();

Prim *(*transform)();

Poly *(*uv_decomp)();

Vector3 (*texc)();

Vector3 (*du)();

Vector3 (*dv)();

Matrix4 (*local)();

int (*id)();

void (*write)();

void (*draw)();

} PrimFuncs;

Defines:
PrimFuncs, used in chunks 127b, 128b, and 133.

Uses Box3d 127a, Poly 142a, and Prim 127b.

8.2.2 Generic Interface

Object-oriented programming requires a generic interface for all members of a class. This
interface consists of generic functions for encapsulating the specific support functions to
each primitive family. The implementation of these functions is trivial: they simply call
the function corresponding to the primitive passed as parameter.

Next, we give a description of each of these generic functions, specifying the operation
each one accomplishes. The routines prim_instance and prim_destroy are, respec-
tively, the constructor and destructor of primitive objects. Notice the constructor creates
an instance of the primitive, with default parameters, starting from the support functions
of the family.

128b 〈prim instance 128b〉≡
Prim *prim_instance(PrimFuncs *f)

{

return f->instance(f);

}

Defines:
prim instance, never used.

Uses Prim 127b and PrimFuncs 128a.

8.2. Geometric Primitives 129

129a 〈prim destroy 129a〉≡
void prim_destroy(Prim *p)

{

(*p->f->destroy)(p);

}

Defines:
prim destroy, never used.

Uses Prim 127b.

The routine prim_bbox returns the bounding box of the primitive.

129b 〈prim bbox 129b〉≡
Box3d prim_bbox(Prim *p)

{

return (*p->f->bbox)(p);

}

Defines:
prim bbox, never used.

Uses Box3d 127a and Prim 127b.

The routine prim_classify classifies the point q in relation to the primitive. It uses
the implicit description to determine whether the point is in the interior, exterior, or on
the boundary of the object.

129c 〈prim classify 129c〉≡
int prim_classify(Prim *p, Vector3 q)

{

return (*p->f->classify)(p, q);

}

Defines:
prim classify, never used.

Uses Prim 127b.

The routine returns the classification according to the codes below:

#define PRIM_IN 1

#define PRIM_OUT -1

#define PRIM_ON 0

The routine prim_point uses the parametric description to perform an enumeration
of the points of the primitive.

129d 〈prim point 129d〉≡
Vector3 prim_point(Prim *p, Real u, Real v)

{

return (*p->f->point)(p, u, v);

}

Defines:
prim point, never used.

Uses Prim 127b.

130 8. 3D Geometric Models

The routine prim_normal calculates the normal vector to the surface of the primitive
corresponding to the parameter (u, v).

130a 〈prim normal 130a〉≡
Vector3 prim_normal(Prim *p, Real u, Real v)

{

return (*p->f->normal)(p, u, v);

}

Defines:
prim normal, never used.

Uses Prim 127b.

The routine prim_gradient returns the gradient of the implicit function of the prim-
itive at point q.

130b 〈prim gradient 130b〉≡
Vector3 prim_gradient(Prim *p, Vector3 q)

{

return (*p->f->gradient)(p, q);

}

Defines:
prim gradient, never used.

Uses Prim 127b.

The routine prim_intersect calculates the intersection between a ray and the prim-
itive by using its implicit description.

130c 〈prim intersect 130c〉≡
Inode *prim_intersect(Prim *p, Ray r)

{

return (*p->f->intersect)(p, r);

}

Defines:
prim intersect, never used.

Uses Prim 127b.

The routine prim_transform applies a geometric transformation to the primitive.
Notice that matrix md specifies the direct transformation and matrix mi specifies the inverse
one.

130d 〈prim transform 130d〉≡
Prim *prim_transform(Prim *p, Matrix4 md, Matrix4 mi)

{

return (*p->f->transform)(p, md, mi);

}

Defines:
prim transform, never used.

Uses Prim 127b.

8.2. Geometric Primitives 131

The routine prim_uv_decomp produces a polygonal approximation of the primitive,
starting from the uniform decomposition of its parametric domain. It returns a list of
polygons (see Section 8.3 for more details).

131a 〈prim uvdecomp 131a〉≡
Poly *prim_uv_decomp(Prim *p, Real level)

{

return (*p->f->uv_decomp)(p,level);

}

Defines:
prim uv decomp, never used.

Uses Poly 142a and Prim 127b.

The routine prim_texc calculates the texture coordinates of the primitive, normalized
in the interval [0, 1], corresponding to the parametric coordinates given by (u, v).

131b 〈prim texc 131b〉≡
Vector3 prim_texc(Prim *p, Real u, Real v)

{

return (*p->f->texc)(p, u, v);

}

Defines:
prim texc, never used.

Uses Prim 127b.

The routines prim_du and prim_dv calculate the partial derivatives of the parameter-
ization function in relation to u and v, respectively.

131c 〈prim du 131c〉≡
Vector3 prim_du(Prim *p, Real u, Real v)

{

return (*p->f->du)(p, u, v);

}

Defines:
prim du, never used.

Uses Prim 127b.

131d 〈prim dv 131d〉≡
Vector3 prim_dv(Prim *p, Real u, Real v)

{

return (*p->f->dv)(p, u, v);

}

Defines:
prim dv, never used.

Uses Prim 127b.

132 8. 3D Geometric Models

The routine prim_local returns the transformation matrix performing the change of
coordinates from the global to the local system of the primitive.

132a 〈prim local 132a〉≡
Matrix4 prim_local(Prim *p)

{

return (*p->f->local)(p);

}

Defines:
prim local, never used.

Uses Prim 127b.

The routine prim_id returns the identifier of the family the primitive belongs to.

132b 〈prim id 132b〉≡
int prim_id(Prim *p)

{

return p->type;

}

Defines:
prim id, never used.

Uses Prim 127b.

The routine prim_write writes the representation of the primitive to the file given by
fp using the 3D scene language description.

132c 〈prim write 132c〉≡
void prim_write(Prim *p, FILE *fp)

{

(*p->f->write)(p, fp);

}

Defines:
prim write, never used.

Uses Prim 127b.

Beyond these functions, each family of primitives has a function to create the primitive
starting from its representation in the 3D scene language description.

8.2.3 Example of a Primitive

We will now show how to define a primitive object in the modeling system and give an
example using a sphere primitive. We will take as basis the unit sphere S2 centered at the
origin. From this canonical model, we will use translation and scaling transformations to
obtain instances of the sphere with both arbitrary center and radius. The advantage of this
strategy is that the calculations can be performed in a simpler and more efficient way in
the local coordinate system of the primitive.

8.2. Geometric Primitives 133

The data structure Sphere encapsulates the center and radius parameters of the sphere
primitive.

133a 〈sphere struct 133a〉≡
typedef struct Sphere {

Vector3 c;

double r;

} Sphere;

Defines:
Sphere, used in chunks 133c, 134b, and 140b.

The table sphere_func defines the functionality of the sphere primitive. Its elements
are pointers to functions implementing each of the basic operations of the primitive. We
will see those functions next.

133b 〈sphere funcs 133b〉≡
PrimFuncs sphere_funcs = {

sphere_instance,

sphere_destroy,

sphere_bbox,

sphere_classify,

sphere_point,

sphere_normal,

sphere_gradient,

sphere_intersect,

sphere_transform,

sphere_uv_decomp,

sphere_texc,

sphere_du,

sphere_dv,

sphere_local,

sphere_id,

sphere_write,

sphere_draw,

};

Defines:
sphere funcs, used in chunk 140a.

Uses PrimFuncs 128a, sphere bbox 135a, sphere classify 135b, sphere destroy 134a,
sphere draw, sphere du 139b, sphere dv 139c, sphere gradient 136c, sphere id 139e,
sphere instance 133c, sphere intersect 137, sphere local 139d, sphere normal 136b,
sphere point 136a, sphere texc 139a, sphere transform 138a, sphere uv decomp 138b,
and sphere write 140b.

The routine sphere_instance is the constructor of the sphere primitive. It allocates
the data structures and returns a canonical sphere with center c = (0, 0, 0) and radius
r = 1.

133c 〈sphere instance 133c〉≡
Prim *sphere_instance(PrimFuncs *f)

134 8. 3D Geometric Models

{

Vector3 ll = {-1,-1,-1}, ur = {1,1,1};

Prim *p = NEWSTRUCT(Prim);

Sphere *s = NEWSTRUCT(Sphere);

p->f = f;

p->b.ll = ll; p->b.ur = ur;

p->ti = p->td = m4_ident();

s->c = v3_make(0,0,0); s->r = 1;

p->d = s;

return p;

}

Defines:
sphere instance, used in chunks 133b and 140a.

Uses Prim 127b, PrimFuncs 128a, and Sphere 133a.

The routine sphere_destroy is the destructor of instances of the sphere primitive. It
frees the memory allocated by sphere_instance.

134a 〈sphere destroy 134a〉≡
void sphere_destroy(Prim *p)

{

free(p->d);

free(p);

}

Defines:
sphere destroy, used in chunk 133b.

Uses Prim 127b.

The routine sphere_set modifies the parameters of an already existing sphere. Notice
this routine uses translation and scaling transformations to calculate the change of coordi-
nates to the local system of the primitive. The routine also updates the bounding box of
the primitive.

134b 〈sphere set 134b〉≡
Prim *sphere_set(Prim *p, Vector3 c, double r)

{

Sphere *s = p->d;

s->c = c; s->r = r;

p->td = m4_m4prod(m4_translate(c.x.y.z),m4_scale(r,r,r));

p->ti = m4_m4prod(m4_scale(1/r,1/r,1/r), m4_translate(-c.x,-c.y,-c.z));

p->b = sphere_bbox(p);

return p;

}

Defines:
sphere set, used in chunk 140a.

Uses Prim 127b, Sphere 133a, and sphere bbox 135a.

8.2. Geometric Primitives 135

The routine sphere_bbox generates a bounding box for the sphere primitive. First, it
changes the vertices of the cube containing the canonical sphere to the global coordinate
system. A bounding box for that cube is then calculated. Observe that, in the case of
arbitrary transformations, the box is not the smallest possible one.

135a 〈sphere bbox 135a〉≡
Box3d sphere_bbox(Prim *p)

{

Box3d b;

Vector3 v;

double x, y, z;

for (x = -1; x <= 1; x +=2) {

for (y = -1; y <= 1; y +=2) {

for (z = -1; z <= 1; z +=2) {

v = v3_m4mult(v3_make(x, y, z), p->td);

if (x == -1 && y == -1 && z == -1) {

b.ll = b.ur = v;

} else {

if (v.x < b.ll.x) b.ll.x = v.x;

if (v.y < b.ll.y) b.ll.y = v.y;

if (v.z < b.ll.z) b.ll.z = v.z;

if (v.x > b.ur.x) b.ur.x = v.x;

if (v.y > b.ur.y) b.ur.y = v.y;

if (v.z > b.ur.z) b.ur.z = v.z;

}

}

}

}

return b;

}

Defines:
sphere bbox, used in chunks 133b and 134b.

Uses Box3d 127a and Prim 127b.

The routine sphere_classify performs the point-set classification. First, it trans-
forms the point q to the local coordinate system of the sphere. It then uses the implicit
equation x2 + y2 + z2 − 1 = 0 to determine whether the point q = (x, y, z) is in the
interior, exterior, or on the surface of the sphere.

135b 〈sphere classify 135b〉≡
int sphere_classify(Prim *p, Vector3 q)

{

Vector3 w = v3_m4mult(q, p->ti);

Real d = v3_sqrnorm(w);

return (d < 1)? PRIM_IN : ((d > 1)? PRIM_OUT : PRIM_ON);

}

136 8. 3D Geometric Models

Defines:
sphere classify, used in chunk 133b.

Uses Prim 127b, PRIM IN, PRIM ON, and PRIM OUT.

The routine sphere_point returns the point at the sphere corresponding to the para-
metric coordinates (u, v). The chosen parameterization uses spherical coordinates with
u ∈ [0, 2π] and v ∈ [−π/2, π/2]. Notice this parameterization is singular at the poles
of the sphere, i.e., v = ±π/2. Also, note that the calculation is performed in the lo-
cal coordinate system and the result is subsequently transformed to the global coordinate
system.

136a 〈sphere point 136a〉≡
Vector3 sphere_point(Prim *p, Real u, Real v)

{

Vector3 w;

w.x = cos(u)*cos(v);

w.y = sin(u)*cos(v);

w.z = sin(v);

return v3_m4mult(w, p->td);

}

Defines:
sphere point, used in chunk 133b.

Uses Prim 127b.

The routine sphere_normal calculates the vector normal to the sphere at the point
w = f(u, v). This vector is in the local system and must be transformed to the global
system (see Chapter 4).

136b 〈sphere normal 136b〉≡
Vector3 sphere_normal(Prim *p, Real u, Real v)

{

Vector3 w;

w.x = cos(u)*cos(v);

w.y = sin(u)*cos(v);

w.z = sin(v);

return v3_m4mult(w, m4_transpose(p->ti));

}

Defines:
sphere normal, used in chunk 133b.

Uses Prim 127b.

The routine sphere_gradient returns the gradient at the point q of the implicit
function f(x, , z) = x2 + y2 + z2 − 1 associated with the sphere ∇f = (fx ,

f
y ,

f
z) =

(2x, 2y, 2z). Before the calculation, the point q = (x, y, z) is transformed to the local
coordinate system of the sphere.

136c 〈sphere gradient 136c〉≡
Vector3 sphere_gradient(Prim *p, Vector3 q)

{

8.2. Geometric Primitives 137

Vector3 w = v3_scale(2.0, v3_m3mult(q, p->ti));

return v3_m3mult(w, m4_transpose(p->ti));

}

Defines:
sphere gradient, used in chunks 133b and 137.

Uses Prim 127b.

The routine sphere_intersect calculates the intersection between a ray s and a
sphere. First, the ray is transformed to the local coordinate system. The intersection is
then calculated by replacing the parametric equation of the ray r(t) = o+td in the implicit
equation of the sphere x2 + y2 + z2 − 1 = 0, thus obtaining the quadratic equation in t,

at2 + 2bt+ c− 1 = 0, (8.1)

where a = d2
x + d2

y + d2
z , b = oxdx + oydy + ozdz , and c = o2

x + o2
y + o2

z .
The intersection points between the ray and sphere are obtained by finding the roots

of the equation, i.e., the parameters t0 and t1 of r(t) satisfying (8.1).
137 〈sphere intersect 137〉≡

Inode *sphere_intersect(Prim *p, Ray rs)

{

double a, b, c, disc, t0, t1;

Inode *in, *out;

Ray r = ray_transform(rs, p->ti);

a = SQR(r.d.x) + SQR(r.d.y) + SQR(r.d.z);

b = 2.0 * (r.d.x * r.o.x + r.d.y * r.o.y + r.d.z * r.o.z);

c = SQR(r.o.x) + SQR(r.o.y) + SQR(r.o.z) - 1;

if ((disc = SQR(b) - 4 * a * c) <= 0)

return (Inode *)0;

t0 = (-b + sqrt(disc)) / (2 * a);

t1 = (-b - sqrt(disc)) / (2 * a);

if (t1 < RAY_EPS)

return (Inode *)0;

if (t0 < RAY_EPS) {

Vector3 n1 = v3_unit(sphere_gradient(p, ray_point(rs, t1)));

return inode_alloc(t1, n1, FALSE);

} else {

Vector3 n0 = v3_unit(sphere_gradient(p, ray_point(rs, t0)));

Vector3 n1 = v3_unit(sphere_gradient(p, ray_point(rs, t1)));

i0 = inode_alloc(t0, n0, TRUE);

i1 = inode_alloc(t1, n1, FALSE);

i0->next = i1;

return i0;

}

}

Defines:
sphere intersect, used in chunk 133b.

Uses Prim 127b and sphere gradient 136c.

138 8. 3D Geometric Models

The routine sphere_transform applies a geometric transformation to the sphere.
Notice that both direct and inverse transformation matrices should be provided.

138a 〈sphere transform 138a〉≡
Prim *sphere_transform(Prim *p, Matrix4 md, Matrix4 mi)

{

p->td = m4_m4prod(md, p->td);

p->ti = m4_m4prod(p->ti, mi);

return p;

}

Defines:
sphere transform, used in chunk 133b.

Uses Prim 127b.

The routine sphere_uv_decomp generates a polygonal approximation of the sphere
by making a regular decomposition of its parametric domain.

138b 〈sphere uv decomp 138b〉≡
Poly *sphere_uv_decomp(Prim *p)

{

Real u, v, nu = 20, nv = 10;

Real iu = ULEN/nu, iv = VLEN/nv;

Poly *l = NULL;

for (u = UMIN; u < UMAX; u += iu) {

for (v = VMIN; v < VMAX; v += iv) {

l = poly_insert(l,

poly3_make(v3_make(u,v,1),v3_make(u,v+iv,1),v3_make(u+iu,v,1)));

l = poly_insert(l,

poly3_make(v3_make(u+iu,v+iv,1),v3_make(u+iu,v,1),

v3_make(u,v+iv,1)));

}

}

return l;

}

Defines:
sphere uv decomp, used in chunk 133b.

Uses Poly 142a, poly3 make 144b, poly insert 143d, Prim 127b, ULEN, UMAX, UMIN, VLEN,
VMAX, and VMIN.

#define UMIN (0)

#define UMAX (PITIMES2)

#define ULEN (UMAX - UMIN)

#define VEPS (0.01)

#define VMIN ((-PI/2.0) + VEPS)

#define VMAX ((PI/2.0) - VEPS)

#define VLEN (VMAX - VMIN)

8.2. Geometric Primitives 139

The routine sphere_texc returns the texture coordinates of the sphere, normalized
in the interval [0, 1].

139a 〈sphere texc 139a〉≡
Vector3 sphere_texc(Prim *p, Real u, Real v)

{

return v3_make((u - UMIN)/ULEN, (v - VMIN)/VLEN, 0);

}

Defines:
sphere texc, used in chunk 133b.

Uses Prim 127b, ULEN, UMIN, VLEN, and VMIN.

The routines sphere_du and sphere_dv return the partial derivatives of the parame-
terization function of the sphere.

139b 〈sphere du 139b〉≡
Vector3 sphere_du(Prim *p, Real u, Real v)

{

return v3_make(- sin(u) * cos(v), cos(u) * cos(v), 0);

}

Defines:
sphere du, used in chunk 133b.

Uses Prim 127b.

139c 〈sphere dv 139c〉≡
Vector3 sphere_dv(Prim *p, Real u, Real v)

{

return v3_make(- cos(u) * sin(v), - sin(u) * sin(v), cos(v));

}

Defines:
sphere dv, used in chunk 133b.

Uses Prim 127b.

The routine sphere_local returns the transformation matrix to the local coordinate
system of the sphere.

139d 〈sphere local 139d〉≡
Matrix4 sphere_local(Prim *p)

{

return p->ti;

}

Defines:
sphere local, used in chunk 133b.

Uses Prim 127b.

The routine sphere_id returns the class identifier of the sphere primitive.

139e 〈sphere id 139e〉≡
int sphere_id(Prim *p)

{

return SPHERE;

140 8. 3D Geometric Models

}

Defines:
sphere id, used in chunk 133b.

Uses Prim 127b and SPHERE.

The representation of a sphere in the 3D scene description language language has the
following syntax:

primobj = sphere { center = {1,2,3}, radius = 4}

The routine sphere_parse performs interpretation of the sphere primitive.

140a 〈sphere parse 140a〉≡
Val sphere_parse(int pass, Pval *pl)

{

Val v;

if (pass == T_POST) {

Vector3 c = pvl_get_v3(pl, "center", v3_make(0,0,0));

double r = pvl_get_num(pl, "radius", 1);

v.type = PRIM;

sphere_set(v.u.v = sphere_instance(&sphere_funcs), c, r);

}

return v;

}

Defines:
sphere parse, never used.

Uses sphere funcs 133b, sphere instance 133c, and sphere set 134b.

The routine sphere_write writes the representation of the sphere to a file.

140b 〈sphere write 140b〉≡
void sphere_write(Prim *p, FILE *fp)

{

Sphere *s = p->d;

fprintf(fp, "sphere { \n");

fprintf(fp, "\t\t center = {%g, %g, %g},\n",s->c.x,s->c.y,s->c.z);

fprintf(fp, "\t\t radius = %g \n}\n",s->r);

}

Defines:
sphere write, used in chunk 133b.

Uses Prim 127b and Sphere 133a.

8.3 Approximation of Surfaces and Polygonal Meshes
In this section we will discuss the problem of approximating surfaces. This problem
has a strong relation with the representation schema by decomposition presented in Sec-
tion 8.1.2. Although decomposition schema are also used to represent surfaces in an exact

8.4. Polygonal Surfaces 141

way, usually the approximation of surfaces is based on decomposition. Several methods for
approximating surfaces exist. Most use polynomial patches of degree n. An important case
are representations based on splines.

8.3.1 Approximation Methods

Surface approximation methods start from an initial description, which can be given in
parametric or implicit form, or even by a dense point-sampling obtained by sensors or
simulation.

Starting from the initial description, the approximation methods calculate a decompo-
sition of the surface in which each patch approximates a piece of the surface.

Approximation methods apply two basic operations: sampling and structuring. Sam-
pling consists of obtaining points on the surface to produce the patches. Structuring in-
volves the stitching of patches to form a mesh. Depending on the sampling pattern, we
have two methods: uniform and adaptive. Depending on the structuring, we have the
following types of meshes: generic, rectangular, and simplicial.

8.3.2 Piecewise Linear Approximation

Piecewise linear approximation is the most common schema for approximating surface rep-
resentations. The fact that approximation is piecewise makes this method produce a model
by decomposition. This method has the following advantages: simplicity of algorithms
and representations, computational support of software and hardware, and compatibility
among systems.

The representation used for piecewise linear approximation of surfaces is a polygon
mesh. Polygonal meshes represent topology by the incidence relations among the various
topological elements of the mesh, including vertices, edges, faces, and shells. The geometry
is given by the position of the vertices. The surface as a whole is reconstructed by linear
interpolation of the vertices through the topological structures.

The data structures for meshes can be classified according to the types of topologi-
cal relations explicitly represented. The structures most commonly used are direct list of
polygons, vertex and face lists, and edge-based graphs.

8.4 Polygonal Surfaces
In our modeling system we will adopt polygonal meshes as a decomposition scheme. This
representation allows an exact description of polyhedra and an approximate description of
generic surfaces. The data structure chosen is the simplest possible: the mesh is given
by a list of polygons, where each polygon consists of an array with the coordinates of
its vertices. Besides position, other useful information associated with the vertices (not
represented in this structure) include: normal vector to the surface, texture coordinates,

142 8. 3D Geometric Models

color, and material. In the next chapters, we will provide a different solution to represent
this information.

8.4.1 Polygons of n Sides

The basic data structure of a polygonal mesh represents a polygon of n sides and, at the
same time, is the element of single linked list constituting the mesh.

142a 〈poly struct 142a〉≡
typedef struct Poly {

struct Poly *next;

int n;

Vector3 *v;

} Poly;

Defines:
Poly, used in chunks 128a, 131a, 138b, and 142–49.

The routine poly_alloc is the constructor of polygons.

142b 〈poly alloc 142b〉≡
Poly *poly_alloc(int n)

{

Poly *p = NEWSTRUCT(Poly);

p->n = n;

p->v = NEWARRAY(n, Vector3);

p->next = NULL;

return p;

}

Defines:
poly alloc, used in chunks 144b, 145b, and 149b.

Uses Poly 142a.

The routines poly_transform and poly_homoxform apply affine and projective trans-
formations, respectively, to the vertices of a polygon.

142c 〈poly transform 142c〉≡
Poly *poly_transform(Poly *p, Matrix4 m)

{

int i;

for (i = 0; i < p->n; i++)

p->v[i] = v3_m4mult(p->v[i], m);

return p;

}

Defines:
poly transform, never used.

Uses Poly 142a.

8.4. Polygonal Surfaces 143

143a 〈poly homoxform 143a〉≡
Poly *poly_homoxform(Poly *p, Matrix4 m)

{

int i;

for (i = 0; i < p->n; i++)

p->v[i] = v3_v4conv(v4_m4mult(v4_v3conv(p->v[i]), m));

return p;

}

Defines:
poly homoxform, never used.

Uses Poly 142a.

The routine poly_normal calculates the normal vector to a polygon.

143b 〈poly normal 143b〉≡
Vector3 poly_normal(Poly *p)

{

return v3_unit(v3_cross(v3_sub(p->v[1], p->v[0]), v3_sub(p->v[2], p->v[0])));

}

Defines:
poly normal, used in chunk 146b.

Uses Poly 142a.

The routine poly_centr calculates the centroid of a polygon.

143c 〈poly centr 143c〉≡
Vector3 poly_centr(Poly *p)

{

int i; Vector3 c = v3_make(0,0,0);

for (i = 0; i < p->n; i++)

c = v3_add(c, p->v[i]);

return v3_scale((Real)(p->n), c);

}

Defines:
poly centr, never used.

Uses Poly 142a.

The routine poly_insert adds a polygon to a list of polygons.

143d 〈poly insert 143d〉≡
Poly *poly_insert(Poly *pl, Poly *p)

{

p->next = pl;

return p;

}

Defines:
poly insert, used in chunks 138b, 148b, and 149b.

Uses Poly 142a.

144 8. 3D Geometric Models

The routine poly_copy copies the content of the vertices of a polygon to another
polygon.

144a 〈poly copy 144a〉≡
int poly_copy(Poly *s, Poly *d)

{

int i;

for (i = 0; i < s->n; i++)

d->v[i] = s->v[i];

return (d->n = s->n);

}

Defines:
poly copy, never used.

Uses Poly 142a.

8.4.2 Triangles

Triangles are a particular case of n-sided polygons, where n = 3. We will use the structure
Poly to represent triangles and dedicated routines to work with them.

The routine poly3_make is the constructor of triangles.

144b 〈poly3 make 144b〉≡
Poly *poly3_make(Vector3 v0, Vector3 v1, Vector3 v2)

{

Poly *p = poly_alloc(3);

p->v[0] = v0; p->v[1] = v1; p->v[2] = v2;

return p;

}

Defines:
poly3 make, used in chunk 138b.

Uses Poly 142a and poly alloc 142b.

We will use a list of lists to represent a triangle in the 3D scene description language.
In this way, a triangle is given by the list of their three vertices (given by the (x, y, z)
coordinates). The description has the following format:

{ { NUM, NUM, NUM}, { NUM, NUM, NUM}, { NUM, NUM, NUM} }

The routine poly3_read reads a triangle from a file specified by fp.

144c 〈poly3 read 144c〉≡
int poly3_read(Poly *p, FILE* fp)

{

char *fmt = "{%lf, %lf, %lf},";

int i, n;

fscanf(fp,"{");

for (i = 0; i < 3; i++) {

8.4. Polygonal Surfaces 145

if ((n=fscanf(fp, fmt,&(p->v[i].x),&(p->v[i].y),&(p->v[i].z))) == EOF)

return EOF;

else if (n != 3)

fprintf(stderr,"Error reading polyfile");

fscanf(fp,"}\n");

}

return (p->n = 3);

}

Defines:
poly3 read, never used.

Uses Poly 142a.

The routine poly3_write writes a triangle to a file.

145a 〈poly3 write 145a〉≡
void poly3_write(Poly *p, FILE* fp)

{

if ((v3_norm(v3_sub(p->v[0], p->v[1])) < EPS)

||(v3_norm(v3_sub(p->v[1], p->v[2])) < EPS)

||(v3_norm(v3_sub(p->v[2], p->v[0])) < EPS))

fprintf(stderr, "(poly3_write) WARNING: degenerate polygon\n");

fprintf(fp, "{{%g, %g, %g}, ", p->v[0].x, p->v[0].y, p->v[0].z);

fprintf(fp, " {%g, %g, %g}, ", p->v[1].x, p->v[1].y, p->v[1].z);

fprintf(fp, " {%g, %g, %g}}\n", p->v[2].x, p->v[2].y, p->v[2].z);

}

Defines:
poly3 write, used in chunk 148a.

Uses Poly 142a.

The routine poly3_parse performs the parsing of a triangle from its expression in the
scene description language.

145b 〈poly3 parse 145b〉≡
Poly *poly3_parse(Pval *plist)

{

Pval *pl;

int k;

for (pl = plist, k = 0; pl !=NULL; pl = pl->next, k++)

;

if (k != 3) {

fprintf(stderr, "(poly3): wrong number of vertices %d\n", k);

return NULL;

} else {

Poly *t = poly_alloc(3);

for (pl = plist, k = 0; pl !=NULL; pl = pl->next, k++)

if (pl->val.type == V_PVL)

t->v[k] = pvl_to_v3(pl->val.u.v);

else

146 8. 3D Geometric Models

fprintf(stderr, "(poly3): error in vertex\n");

return t;

}

}

Defines:
poly3 parse, used in chunk 148b.

Uses Poly 142a and poly alloc 142b.

The routine poly3_area calculates the area of a triangle.

146a 〈poly3 area 146a〉≡
Real poly3_area(Poly *p)

{

return v3_norm(v3_cross(v3_sub(p->v[1],p->v[0]), v3_sub(p->v[2],p->v[0])))/2;

}

Defines:
poly3 area, never used.

Uses Poly 142a.

The routine poly3_plane calculates the equation of the support plane of a triangle.

146b 〈poly3 plane 146b〉≡
Vector4 poly3_plane(Poly *p)

{

Vector3 n = poly_normal(p);

Real d = v3_dot(n, p->v[0]);

return v4_make(n.x, n.y, n.z, d);

}

Defines:
poly3 plane, used in chunk 147a.

Uses Poly 142a and poly normal 143b.

The routine plane_ray_inter computes the intersection point between a ray and a
plane.

146c 〈poly intersect 146c〉≡
Real plane_ray_inter(Vector4 h, Ray r)

{

Vector3 n = {h.x, h.y, h.z};

Real denom = v3_dot(n, r.d);

if (REL_EQ(denom, 0))

return MINUS_INFTY;

else

return (h.w + v3_dot(n, r.o)) / denom;

}

Defines:
plane ray inter, used in chunk 147a.

8.4. Polygonal Surfaces 147

The routine poly3_ray_inter computes the intersection between a ray and a trian-
gle. It uses the previous routines in the calculation.

147a 〈poly3 ray inter 147a〉≡
Real poly3_ray_inter(Poly *p, Ray r)

{

Vector4 h; Vector3 q0, q1, q2;

Real t, d, a, b;

t = plane_ray_inter((h = poly3_plane(p)), r);

if (t < 0)

return MINUS_INFTY;

q0 = v3_sub(ray_point(r, t), p->v[0]);

q1 = v3_sub(p->v[1], p->v[0]);

q2 = v3_sub(p->v[2], p->v[0]);

switch (max3_index(fabs(h.x), fabs(h.y), fabs(h.z))) {

case 1:

PROJ_BASE(a, b, q0.y, q0.z, q1.y, q1.z, q2.y, q2.z); break;

case 2:

PROJ_BASE(a, b, q0.x, q0.z, q1.x, q1.z, q2.x, q2.z); break;

case 3:

PROJ_BASE(a, b, q0.x, q0.y, q1.x, q1.y, q2.x, q2.y); break;

}

if ((a >= 0 && b >= 0 && (a+b) <= 1))

return t;

else

return MINUS_INFTY;

}

Defines:
poly3 ray inter, never used.

Uses plane ray inter 146c, Poly 142a, poly3 plane 146b, and PROJ BASE 147b.

The macro PROJ_BASE projects a vector on a plane formed by two vectors on this
plane.

147b 〈proj base 147b〉≡
#define PROJ_BASE(A, B, Q0_S, Q0_T, Q1_S, Q1_T, Q2_S, Q2_T) \

{ Real d = (Q1_S * Q2_T - Q2_S * Q1_T); \

A = (Q0_S * Q2_T - Q2_S * Q0_T) / d; \

B = (Q1_S * Q0_T - Q0_S * Q1_T) / d; \

}

Defines:
PROJ BASE, used in chunk 147a.

148 8. 3D Geometric Models

8.4.3 Lists of Triangles

The representation of a triangle mesh in the 3D scene description language follows the
format below:

polyprim = trilist {

{{3,2,3}, {4,5,6}, {7,8,9}},

{{5,2,3}, {4,9,6}, {7,2,9}}

{{1,4,3}, {3,5,6}, {7,3,9}}

{{7,2,3}, {4,2,6}, {1,8,9}}

{{6,2,3}, {4,1,6}, {3,8,9}}

{{8,2,3}, {4,2,6}, {3,8,9}}

{{1,5,3}, {4,5,3}, {1,7,9}}

}

The routine trilist_write writes a triangle mesh to a file.

148a 〈trilist write 148a〉≡
void trilist_write(Poly *tlist, FILE* fp)

{

Poly *p = tlist;

fprintf(fp, "trilist {\n");

while (p != NULL) {

poly3_write(p, fp);

if ((p = p->next) != NULL)

fprintf(fp, ",\n");

}

fprintf(fp, "}\n");

}

Defines:
trilist write, never used.

Uses Poly 142a and poly3 write 145a.

The routine trilist_parse interprets the expression corresponding to a triangle
mesh in the 3D scene description language.

148b 〈trilist parse 148b〉≡
Val trilist_parse(int pass, Pval *plist)

{

Val v;

if (pass == T_POST) {

Pval *pl;

Poly *tl = NULL;

for (pl = plist; pl != NULL; pl = pl->next) {

if (pl->val.type == V_PVL)

tl = poly_insert(tl, poly3_parse(pl->val.u.v));

8.5. Comments and References 149

else

fprintf(stderr, "(trilist): syntax error\n");

}

v.type = POLYLIST;

v.u.v = tl;

}

return v;

}

Defines:
trilist parse, never used.

Uses Poly 142a, poly3 parse 145b, and poly insert 143d.

Other auxiliary routines for triangle meshes include the routine plist_lenght that
calculates the number of elements of a triangle list and the routine plist_alloc that
allocates memory for a polygon list.

149a 〈plist lenght 149a〉≡
int plist_lenght(Poly *p)

{

int n = 0;

while (p != NULL) {

n++; p = p->next;

}

return n;

}

Defines:
plist lenght, never used.

Uses Poly 142a.

149b 〈plist alloc 149b〉≡
Poly *plist_alloc(int n, int m)

{

Poly *l = NULL;

while (n--)

l = poly_insert(l, poly_alloc(m));

return l;

}

Defines:
plist alloc, never used.

Uses Poly 142a, poly alloc 142b, and poly insert 143d.

8.5 Comments and References
In this chapter, we discussed the representation of 3D geometric shapes and presented
libraries for the construction of primitives and polygonal meshes. Figure 8.6 shows an

150 8. 3D Geometric Models

Figure 8.6. Orthogonal projection of geometric
primitives.

Figure 8.7. Orthogonal projection of polygonal
meshes.

example of a program that draws the orthogonal projection of geometric primitives. Fig-
ure 8.7 shows an example of a program that draws the orthogonal projection of polygonal
meshes.

8.5.1 Revision

The API of the library of primitive includes the following routines:

Prim *prim_instance(int class);

Box3d prim_bbox(Prim *p);

int prim_classify(Prim *p, Vector3 q);

Vector3 prim_gradient(Prim *p, Vector3 q);

Vector3 prim_point(Prim *p, Real u, Real v);

Vector3 prim_normal(Prim *p, Real u, Real v);

Inode *prim_intersect(Prim *p, Ray r);

Prim *prim_transform(Prim *p, Matrix4 md, Matrix4 mi);

Poly *prim_uv_decomp(Prim *p, Real level);

Vector3 prim_texc(Prim *p, Real u, Real v);

Vector3 prim_du(Prim *p, Real u, Real v);

Vector3 prim_dv(Prim *p, Real u, Real v);

Matrix4 prim_local(Prim *p);

int prim_id(Prim *p);

void prim_write(Prim *p, FILE *fp);

The API of the library of polygonal meshes includes the following routines:

Poly *poly_alloc(int n);

Poly *poly_transform(Poly *p, Matrix4 m);

8.5. Comments and References 151

Vector3 poly_normal(Poly *p);

Poly *poly_insert(Poly *pl, Poly *p);

Inode *poly_intersect(Poly *p, Vector4 plane, Ray r);

void trilist_write(Poly *tlist, FILE* fp);

Val trilist_parse(int pass, Pval *plist);

Exercises
1. Write a program to scan and write the primitive SPHERE using the scene description

language.

2. Implement a new geometric primitive. For instance, a cone.

3. Write a program to draw the orthogonal projection of a primitive.

4. Write a program to test if a point is contained in the interior of a solid primitive.

5. Write a program to calculate the approximate volume of a solid primitive. Hint: use
ray tracing.

6. Write a program to scan and write a polygonal mesh.

7. Write a program to draw the orthogonal projection of a polygonal mesh.

8. Implement a description of polygonal meshes using a vertex and polygon list struc-
ture.

9. Write a program to create, edit, and transform geometric primitives.

10. Write a program to create, edit, and transform polygonal meshes.

This page intentionally left blankThis page intentionally left blank

9 Modeling Techniques

In the previous chapter we presented mathematical models to describe the geometry of 3D
objects, as well as representation schema to implement them on the computer. Another
important problem in geometric modeling is how to specify the form of the objects once
a representation schema is chosen. In this chapter we will study modeling techniques that
aim to allow intuitive manipulation of a model’s degrees of freedom.

9.1 Foundations of Modeling Systems

We will use the paradigm of the four universes to conceptualize modeling systems. In this
sense, the modeling process begins in the physical universe through the user interface. The
user’s actions correspond to methods and geometric operations defined in the mathematical
universe. Those operations are translated into procedures and modeling techniques in
the representation universe. Finally, those techniques are mapped into modeling system
architectures in the implementation universe (see Figure 9.1). We will now discuss each of
those levels.

User Interface

Operations

Modeling
Techniques

Architecture

Figure 9.1. Abstraction levels of a modeling system.

153

154 9. Modeling Techniques

9.1.1 User Interface

The user interface in a modeling system is related to the means made available by the
system for specifying model parameters. Two basic interface modes exist: textual (nonin-
teractive) and graphic (interactive).

In an noninteractive textual mode, the user specifies the model through commands to
the system. This type of interface is, in general, based on a language that defines the format
of the commands (syntax), as well as its functionality (semantic). An object is specified by
an expression in that modeling language.

In an interactive graphics mode, the user specifies the model through a graphical inter-
face, usually implemented in an interactive graphics workstation with a windowing system.
The system makes available mechanisms for viewing and controlling the parameters of the
model. An object is modeled by direct manipulation of such controls.

We can also have hybrid systems combining these two basic interface modes, such as
interactive textual systems and graphics systems based on procedural representations.

9.1.2 Operations with Models

In a modeling system, geometric models are based on one of the representation schema
presented in the previous chapter. There are representations by primitive families, con-
structive schema, and by decomposition schema.

A set of operations is associated with each of those representations, allowing us to gen-
erate the model; this set is also an integral part of the description of the model. Using these
operations, we can build objects in the modeling system and modify the form of existing
objects. Other operations are for analyzing object properties and creating simulations.

Modeling operations can be separated in two classes: geometric and combination op-
erations. The geometric operations include the affine transformations and general defor-
mations. The combination operations include operations with a set of points and also
blending operations.

9.1.3 Modeling Techniques

We saw above that a geometric model can be realized as the result of a sequence of mod-
eling operations. A modeling technique consists of representing, through a computational
procedure, the necessary modeling operations to construct a certain type of geometry. The
components of the model are the geometric elements and the operations with those ele-
ments. The modeling techniques define the composition rules used to apply operations to
geometric elements. The result is a description of the object by a valid expression according
to a representation schema.

Notice we can work with several models of the same object, providing either an exact
or approximate representation of the object geometry.

9.2. Constructive Models 155

Edit

Alg 1

Alg 2

Alg 3

Repr A

Repr B

Repr C

Figure 9.2. Modeling systems with multiple representations.

9.1.4 System Architecture

The architecture of a modeling system is largely determined by the choice of representation
schema and the associated modeling techniques.

We have two architecture options for modeling systems: systems based on a single rep-
resentation or systems based on multiple representations. In the second case, depending on
the possibilities of conversion between representations, we can have a main representation
and secondary representations (see Figure 9.2).

9.2 Constructive Models
In this section, we will present techniques for the creation of CSG (constructive solid
geometry) models.

Constructive models are based on geometric primitives and on the operations with a
set of points. To define those operations, we use logic operators and the point membership
classification function, inside(C, p), which determines whether point p ∈ R3 is at the
interior, exterior, or boundary of solid C.

� Union: A ∪B = inside(A)|| inside(B)

� Intersection: A ∩B = inside(A)&& inside(B)

� Complement: A = inside(A)

� Difference: A\B = A ∩B = inside(A)&& inside(B)

Notice we can use tables to implement the CSG operations. In fact, as the difference
operation is given in terms of the intersection operation, we only have to define tables for
the union and intersection operations (see Tables 9.1 and 9.2).

∪ in on out

in in in in
on in ? on
out in on out

Table 9.1. Union operation.

∩ in on out

in in on out
on on ? out
out out out out

Table 9.2. Intersection operation.

156 9. Modeling Techniques

U

U

-

(a) (b)

Figure 9.3. (a) CSG tree. (b) CSG object.

An important case is when point classification at the boundary of the solid is not well
determined. To solve this problem, we would have to define regularized CSG operations
[Requicha 80].

The model of a CSG object is a combination of geometric primitives using the Boolean
point membership operations defined above. External representation of the object is given
by a CSG expression, while internal representation of the object is given by the tree of the
expression.

Notice we have defined only the semantics of the CSG operators. To implement this
representation, we still have to define their syntax.

Example 9.1 (CSG Object). Expression of the CSG object using infix syntax:

(A ∪ (B − (C ∩D)).

We show the CSG tree of the object in Figure 9.3(a) and the resulting geometry in Fig-
ure 9.3(b). �

A final observation is that we can see CSG modeling as both a representation schema
and a modeling technique. In other words, CSG modeling is at the same time a construc-
tive representation and a language-based modeling technique.

We will now present the CSG representation and the CSG modeling techniques in our
system.

9.2.1 CSG Structures

The internal representation of a CSG model is a binary tree where the leaves are primitive
objects and the intermediate nodes are CSG operators. The structure CsgNode represents
a node of the CSG tree.

9.2. Constructive Models 157

157a 〈csg node 157a〉≡
typedef struct CsgNode { /* CSG Tree Node */

int type; /* CSG_PRIM or CSG_COMP */

union {

struct CsgComp c; /* Composite */

struct Prim *p; /* Primitive */

} u;

} CsgNode;

Defines:
CsgNode, used in chunks 157–60.

Uses CSG COMP, CSG PRIM, and CsgComp 157b.

The nodes can be of the types primitive object (CSG_PRIM) or composition operation
(CSG_COMP).

#define CSG_PRIM 0

#define CSG_COMP 1

Primitive objects are represented by the structure Prim, defined in Chapter 8. The
CSG composition operations are represented by the structure CsgComp, which consists of
the code of the operation and the operands given by CSG subtrees.

157b 〈csg comp 157b〉≡
typedef struct CsgComp{ /* CSG Composite */

char op; /* Boolean Operation + - * */

struct CsgNode *lft, *rgt; /* Pointer to Children */

} CsgComp;

Defines:
CsgComp, used in chunk 157a.

Uses CsgNode 157a.

To produce CSG trees we will use routines for the construction of the two different
types of tree node. The routine csg_prim encapsulates a primitive object as a leaf of the
CSG tree.

157c 〈csg prim 157c〉≡
CsgNode *csg_prim(Prim *p)

{

CsgNode *n = (CsgNode *) NEWSTRUCT(CsgNode);

n->type = CSG_PRIM;

n->u.p = p;

return n;

}

Defines:
csg prim, used in chunks 159–61.

Uses CSG PRIM and CsgNode 157a.

158 9. Modeling Techniques

The routine csg_link constructs a composed CSG object formed by a CSG operator
applied to two CSG subtrees.

158a 〈csg link 158a〉≡
CsgNode *csg_link(int op, CsgNode *lft, CsgNode *rgt)

{

CsgNode *n = NEWSTRUCT(CsgNode);

n->type = CSG_COMP;

n->u.c.op = op;

n->u.c.lft = lft;

n->u.c.rgt = rgt;

return n;

}

Defines:
csg link, used in chunks 159c and 162.

Uses CSG COMP and CsgNode 157a.

9.2.2 A Simple CSG Expression Language

We will adopt a simple syntax for the representation of CSG expressions. The elements of
the language are primitive objects and CSG and grouping operators. The primitive objects
have the following format: c {p1 p2...}, where c is a letter identifying the class of the
primitive and p2 are numeric values of the primitive parameters. The CSG operators are
indicated by the characters | for union, & for intersection, and / for difference. Grouping
of expressions is done with parentheses.

Example 9.2 (CSG Expression). The code below is the representation of a CSG expres-
sion corresponding to the intersection between a sphere of radius 2 and the union of two
spheres, with radius 4 and center (1,1,1) and with radius 3 and center (2,2,2), respectively.

(s{0 0 0 2} & (s{1 1 1 4}| s{2 2 2 3})) �

The interpreter of this simple CSG expression language will be implemented using the
tools lex and yacc.

The lexical analyzer is generated by lex, starting from the specification below.

158b 〈csg lex 158b〉≡
D [0-9]

S [-]

%%

[\t\n] ;

{S}?{D}*"."{D}+ |

{S}?{D}+"."{D}* |

{S}?{D}+ { yylval.dval = atof(yytext); return NUM;}

{ return yytext[0]; }

9.2. Constructive Models 159

This description defines two categories of symbols: numeric digits (D) and negative
signs (S). The patterns of the following symbols correspond, respectively, to white space,
numbers, and individual characters.

The syntactic analyzer is generated by yacc, starting from the specification below.
The terminal symbols of the grammar are numbers (NUM) and letters. The nonterminal
symbols are the productions prim_obj, csg_obj, and bop.

159a 〈csg union 159a〉≡
%union {

char cval;

double dval;

CsgNode *nval;

}

Uses CsgNode 157a.

159b 〈csg classes 159b〉≡
%token <dval> NUM

%type <cval> bop

%type <nval> prim_obj csg_obj

The grammar consists of the syntactic production rules of the language.

159c 〈csg grammar 159c〉≡
csg_obj: ’(’ csg_obj bop csg_obj ’)’ {$$ = root = csg_link($3, $2, $4);}

| prim_obj

;

bop: ’|’ {$$ = ’+’;}

| ’&’ {$$ = ’*’;}

| ’\\’ {$$ = ’-’;}

;

prim_obj: ’s’ ’{’ NUM NUM NUM NUM ’}’ {$$ = csg_prim(sphere_set(

sphere_instance(&sphere_funcs),

v3_make($3, $4, $5), $6));}

;

Uses csg link 158a and csg prim 157c.

Notice we defined a single primitive class: the sphere. Other primitives can be added
to the production by prim_obj.

The routine csg_parse interprets an expression in this CSG language, calling the
routine generated by yacc, yyparse.

159d 〈csg parse 159d〉≡
CsgNode *csg_parse()

{

if (yyparse() == 0)

return root;

else

return NULL;

160 9. Modeling Techniques

}

Defines:
csg parse, never used.

Uses CsgNode 157a.

9.2.3 CSG Representation in the 3D Scene Description Language

The boolean expression language chosen for CSG objects is an appropriate representation
for a modeling program. It is simple and yet captures the relevant aspects of this class
of objects. However, this representation is not compatible with our 3D scene description
language. For this reason, we have to develop an engine to translate the description of an
object from one language to another. This translation will be done starting from the CSG
expression tree.

Representation of a CSG object in the scene description language obeys the syn-
tax of pre-fixed expressions and uses the following operators: csg_prim, csg_union,
csg_inter, and csg_diff. For example:

csg_union { csg_prim{ sphere { center = {0, 0, 0}}},

csg_prim{ sphere { center = {1, 1, -1}}}

}

The routine csg_write writes a CSG object to a file given by its binary tree. It
recursively visits the tree in depth. When it reaches a leaf of the tree, the routine writes
its corresponding primitive using the routine prim_write, defined in Chapter 8. In each
internal node of the tree, the routine writes the name of the corresponding CSG operator,
using the routine csg_opname, and performs a recursion for each of the subtrees. Notice
that this processing type, which traverses the CSG tree in depth, is the basis of most
calculations with CSG objects.

160 〈csg write 160〉≡
void csg_write(CsgNode *t, FILE *fd)

{

switch(t->type) {

case CSG_PRIM: {

fprintf(fd, "csg_prim{ "); prim_write(t->u.p, fd); fprintf(fd, " }\n");

break;}

case CSG_COMP:

fprintf(fd, "%s {\n", csg_opname(t->u.c.op));

csg_write(t->u.c.lft, fd); fprintf(fd, ",\n");

csg_write(t->u.c.rgt, fd); fprintf(fd, "\n }");

break;

}

}

Defines:
csg write, never used.

Uses CSG COMP, csg opname 161a, CSG PRIM, csg prim 157c, and CsgNode 157a.

9.2. Constructive Models 161

The routine csg_opname returns a string with the name of the CSG operators in the
3D scene description language.

161a 〈csg opename 161a〉≡
char *csg_opname(char c)

{

switch (c) {

case ’+’: return "csg_union";

case ’*’: return "csg_inter";

case ’-’: return "csg_diff";

default: return "";

}

}

Defines:
csg opname, used in chunk 160.

9.2.4 Interpretation of CSG Objects in the 3D Scene
Description Language

Besides writing CSG objects in the 3D scene description language, we also need to inter-
pret CSG expressions in that language. For this, it is enough to implement the functions
related to the CSG operators in the language; the rest will be done by the interpreter
lang_parse.

The routine csg_prim_parse interprets a CSG primitive by encapsulating the object
as a leaf in the CSG tree.

161b 〈csg prim parse 161b〉≡
Val csg_prim_parse(int pass, Pval *p)

{

Val v;

switch (pass) {

case T_EXEC: {

v.type = CSG_NODE;

if (p != NULL && p->val.type == PRIM)

v.u.v = csg_prim(p->val.u.v);

else

fprintf(stderr,"(csg_op): syntax error\n");

break; }

default:

}

return v;

}

Defines:
csg prim parse, never used.

Uses csg prim 157c.

162 9. Modeling Techniques

The CSG operators in the 3D scene description language are interpreted by the rou-
tines csg_union_parse, csg_inter_parse, and csg_diff_parse. All of them have
the same structure except for the code of the CSG operation. Therefore, we will show only
the routine csg_union_parse.

162 〈csg union parse 162〉≡
Val csg_union_parse(int pass, Pval *p)

{

Val v;

switch (pass) {

case T_EXEC: {

if ((p != NULL && p->val.type == CSG_NODE)

&& (p->next != NULL && p->next->val.type == CSG_NODE)) {

v.type = CSG_NODE;

v.u.v = csg_link(’+’, p->val.u.v, p->next->val.u.v);

} else {

fprintf(stderr,"(csg_op): syntax error\n");

}

break; }

default:

}

return v;

}

Defines:
csg union parse, never used.

Uses csg link 158a.

Notice that all of the above routines use the constructor functions of the CSG structure
defined in Section 9.2.

9.3 Generative Modeling
Generative modeling is a powerful technique for defining complex shapes using transfor-
mation groups and geometric elements.

A generative model, G = (γ, δ), has a parametric functional description given by

S(u, v) = δ(γ(u), v).

The constituent elements of a generative model are the generator γ and the transformation
group δ.

The generator is usually a geometric object of dimension 1; that is, a parametric curve
defined in the environment space

γ(u) : R→ R3.

9.3. Generative Modeling 163

The transformation group defines a one-parameter family of transformations of the am-
bient space:

δ(p, v) : R3 × R→ R3.

The shape of a generative object is the parametric surface S(u, v) generated by the
continuous transformation δ(·, v) of the generator γ(u). Notice that in this model the pa-
rameter space of S has a natural decomposition: the parameter u is relative to the generator,
while v parameterizes the action of the transformation group.

A general and yet powerful transformation group is the affine transformation group of
Euclidean space. This group is given by

h(p, v) = Mv(p) + Tv,

where p = (x, y, z) is a point of Euclidean space, Mv(p) : R3 → R3 is a linear trans-
formation and Tv ∈ R3 is a 3D vector. Notice that both Mv and Tv depend on the
parameter v.

9.3.1 Polygonal Approximation of Generative Models

Besides directly using the parametric description of a generative model, we can work with
an approximate representation of its geometry. We choose a representation by decomposi-
tion corresponding to a piecewise linear approximation of the surface.

To generate the polygonal mesh that approximates the surface S(u, v), given by a gen-
erative model (γ, δ), we discretize its parameter space U = {(u, v) : u ∈ [a, b], v ∈ [c, d]}.

The decomposition of U will be based on a regular sampling, and it corresponds to a
grid of N ×M points. Starting from the grid, we construct a simplicial mesh using the
Coxeter-Freudenthal decomposition (see Figure 9.4).

Notice that in the horizontal direction we have a sampling of points along the curve
g(u) that was transformed by the function h(·, v) by a constant value of v.

g(u)

h(g(u), v)

v

u

M

N

Figure 9.4. Mesh structure.

164 9. Modeling Techniques

The routine gener_affine generates a polygonal mesh with resolution N ×M that
approximates the generative model given by g and h.

164a 〈gener affine 164a〉≡
Poly *gener_affine(int n, Vector3 *g, int m, Matrix4 *h)

{

int u, v;

Poly *tl = NULL;

Vector3 *a = NEWARRAY(n, Vector3);

Vector3 *b = NEWARRAY(n, Vector3);

for (v = 0; v < m; v++) {

for (u = 0; u < n; u++) {

b[u] = v3_m4mult(g[u], h[v]);

if (u == 0|| v == 0)

continue;

tl = poly_insert(tl, poly3_make(a[u-1], a[u], b[u-1]));

tl = poly_insert(tl, poly3_make(a[u], b[u], b[u-1]));

}

SWAP(a, b, Vector3 *);

}

free(a); free(b);

return tl;

}

Defines:
gener affine, used in chunk 166a.

The routine affine_group calculates an array of matrices corresponding to a dis-
cretization of the transformation group given by the specification in t, which contains the
code of the transformation, and p, which contains the value of the transformation param-
eter.

164b 〈affine group 164b〉≡
Matrix4 *affine_group(int l, int m, char *t, Real **p)

{

int v;

Matrix4 *h = NEWARRAY(m, Matrix4);

for (v = 0; v < m; v++)

h[v] = m4_compxform(l, t, p, v);

return h;

}

Defines:
affine group, used in chunk 166a.

Uses m4 compxform 164c.

The routine m4_compxform calculates a transformation matrix made up of the con-
catenation of basic transformations.

164c 〈compxform 164c〉≡
Matrix4 m4_compxform(int k, char *t, Real **h, int j)

9.3. Generative Modeling 165

{

int i;

Matrix4 m = m4_ident();

for (i = 0; i < k; i++) {

switch (t[i]) {

case G_TX: m = m4_m4prod(m4_translate(h[i][j], 0, 0), m); break;

case G_TY: m = m4_m4prod(m4_translate(0, h[i][j], 0), m); break;

case G_TZ: m = m4_m4prod(m4_translate(0, 0, h[i][j]), m); break;

case G_RX: m = m4_m4prod(m4_rotate(’x’, h[i][j]), m); break;

case G_RY: m = m4_m4prod(m4_rotate(’y’, h[i][j]), m); break;

case G_RZ: m = m4_m4prod(m4_rotate(’z’, h[i][j]), m); break;

case G_SX: m = m4_m4prod(m4_scale(h[i][j], 1, 1), m); break;

case G_SY: m = m4_m4prod(m4_scale(1, h[i][j], 1), m); break;

case G_SZ: m = m4_m4prod(m4_scale(1, 1, h[i][j]), m); break;

default:

}

}

return m;

}

Defines:
m4 compxform, used in chunk 164b.

Uses G RX, G RY, G RZ, G SX, G SY, G SZ, G TX, G TY, and G TZ.

9.3.2 Types of Generative Models

We can have several types of generative models. The most common ones are based on a
single transformation group and on the combined action of two transformation groups:

� Generative models with a transformation:

– Extrusion: translation

– Revolution: rotation

� Generative models with two transformations:

– Taper: translation, scale

– Bend: translation, rotation

– Twist: translation, rotation

Notice the generative models are not unique. For instance, we can generate a cylinder
in two ways:

1. circle + extrusion

2. line + rotation

166 9. Modeling Techniques

9.3.3 Surfaces of Revolution

We will demonstrate the implementation of generative models by giving a concrete exam-
ple. Consider the family of surfaces of revolution. These surfaces are generated by the
rotation of a planar curve around an axis contained in that plane.

The routine rotsurf generates the polygonal approximation of a surface of revolution
by the rotation of 360 degrees of the curve g.

166a 〈rotsurf 166a〉≡
Poly *rotsurf(int n, Vector3 *g, int m)

{

Matrix4 *h; Real *p[1]; Poly *s;

char t[1] = {G_RY};

p[0] = linear(0, PITIMES2, m);

s = gener_affine(n, g, m, h = affine_group(1, m, t, p));

efree(h);

return s;

}

Defines:
rotsurf, never used.

Uses affine group 164b, G RY, gener affine 164a, and linear 166b.

The routine linear is an auxiliary routine that calculates a linear interpolation between
the values v0 and v1.

166b 〈linear 166b〉≡
Real *linear(Real v0, Real v1, int n)

{

int i;

Real *x = NEWTARRAY(n, Real);

Real incr = (v1 - v0) / (n -1);

for (i = 0; i < n; i++)

x[i] = v0 + (incr * i);

return x;

}

Defines:
linear, used in chunk 166a.

9.4 Comments and References
In this chapter we described the main modeling techniques and developed libraries for the
implementation of those techniques.

9.4.1 Revision

The API of the CSG modeling library is made up of the following routines.

9.4. Comments and References 167

CsgNode *csg_parse();

CsgNode *csg_prim(Prim *p);

CsgNode *csg_link(int op, CsgNode *lft, CsgNode *rgt);

char *csg_opname(char c);

void csg_write(CsgNode *t, FILE *fd);

Val csg_union_parse(int c, Pval *p);

Val csg_inter_parse(int c, Pval *p);

Val csg_diff_parse(int c, Pval *p);

Val csg_prim_parse(int c, Pval *p);

The API of the Generative modeling libraries is made up of the routines below.

Poly *rotsurf(int n, Vector3 *g, int m);

Poly *gener_affine(int n, Vector3 *g, int m, Matrix4 *h);

Matrix4 m4_compxform(int k, char *t, Real **h, int j);

Matrix4 *affine_group(int l, int m, char *t, Real **p);

Real *linear(Real v0, Real v1, int n);

Exercises
1. Using the CSG library, write a program to create constructive solid models. The

program should accept definitions of geometric primitives in the format (D = def),
where D is a capital letter and def is the definition of the primitive. For example,

A = s {1, 1, 1, 4};

B = s {3, 2, 1, 10};

(A| (B & A))

2. Implement the operation csg_classify to perform the point membership classifi-
cation in relation to a CSG model.

3. Using the library GENER, write a program to create a rotation surface. The program
should read a 2D curve and have as parameters the rotation axis, the total rotation
angle, and the mesh discretization.

4. Implement, in the CSG representation, the operation of geometric transformation.
For this, define the CSG Node of the type CSG_TRANSFORM.

5. Using the GP and CSG libraries, write an interactive program to create CSG objects.
The program should support primitives, groups, transformations (translation, rota-
tion, and scale), and point membership operations (union, difference, complement,
intersection).

168 9. Modeling Techniques

6. Write a program to calculate the approximate volume of a CSG model.

7. Using the GP and GENER libraries, write an interactive program to create rotation
surfaces. The program must support the input and editing of curves and the drawing
of the surface.

8. Implement the generative model based on extrusion.

9. Write two programs to create a cylinder: (1) using the model of rotation surfaces and
(2) using the model of extrusion surfaces.

10. Implement the generative models TAPER, TWIST, and BEND, and write a program to
create surfaces based on those models.

10 Hierarchies and
Articulated Objects

In a 3D scene, sets of objects generally maintain some physical relation that implies a
geometric linkage between them. This relation can be functional, as in the case of the
chairs of an auditorium that are organized in numbered rows; or it can be a structural, as
in the case of a door that it fastened by a hinge. In this chapter we will study the use of
geometric linkages for structuring sets of elements.

10.1 Geometric Links
A geometric transformation establishes an spatial link between two sets of objects. In a
3D scene, we have a coordinate system common to every object called a global (or scene)
coordinate system. In Chapter 8 we saw that primitive objects have a canonical coordinate
system called the local coordinate system of the primitive.

We can think of a transformation as a change between coordinate systems. In this
sense, transformations can be associated to a set of objects to define specific coordinate
systems. We will use transformations to define geometric links common to a set of objects.
Objects that share this link are subject to the same transformation.

Depending on the type of link, we have different forms of structuring. The most
common are

� Groups of objects. The transformations are used to position objects in space in
relation to each other. A particular case is that of composed objects, constituted by the
union of subobjects with fixed transformations between them.

� Articulated structures. Formed by rigid bodies (parts) linked by geometric links
(joints). Transformations act in two ways: fixed transformation operate between
the coordinate systems of articulations; variable transformation correspond to the
degrees of freedom of the articulation.

Later in this chapter we will study these two types of structures in detail.

169

170 10. Hierarchies and Articulated Objects

T1

T2

P1 T4

P3 P4

P2

T3

Figure 10.1. Object hierarchy.

10.1.1 Hierarchies

Some sets of objects are naturally constituted by subsets of objects. We therefore have a
hierarchical structuring of those objects. This structure can be represented by a tree, with
the leaves corresponding to individual objects Pk and the internal nodes corresponding
to subsets of objects Ci. Geometric link relations generally reflect spatial properties of
such structuring, and for this reason they are part of this hierarchical representation. We
associate, to each subset Ci, a transformation Ti (see Figure 10.1).

In this case, the transformations Ti are recursively applied according to the tree struc-
ture. In other words, transformations affect the elements of the set and spread to their
descendants. The result is that a transformation TPk

corresponds to each individual object
Pk, given by the composition of transformations to which the object is subordinated.

In many computer graphics applications, such as viewing methods, it is convenient to
work with a nonhierarchical representation of the scene objects. For this, it is necessary to
convert the tree structure into a list. This conversion is called flattening.

The nonhierarchical representation is a list of pairs (Pk, TPk
) of the objects and their

transformations. To create this representation, we calculate their composed transforma-
tions TPk

that concatenate the transformation matrices associated with each level of the
hierarchy. This procedure can be established by an in-depth traversal of the tree.

For instance, the tree in Figure 10.1 corresponds to the following list:

((P1, TP1
), (P2, TP2

), (P3, TP3
), (P4, TP4

)),

where the composed transformations are given by

TP1(P1) = T1(T2(P1)),

TP2(P2) = T1(T2(T4(P3))),

TP3(P3) = T1(T2(T4(P4))),

TP4(P4) = T1(T3(P1)).

10.1. Geometric Links 171

Global

Local

T

Figure 10.2. Transformation between the global coordinate system (of the scene) and the local coor-
dinate system (of the object).

10.1.2 Transforming the Geometry

The use of transformations associated with objects requires a mapping between the global
coordinate system of the 3D scene and the local coordinate system of the object Pk, which
is given by the transformation Tk (see Figure 10.2).

In Chapter 4 we saw that, for objects described parametrically, we use the transfor-
mation T directly, while for objects described in implicitly, we use the inverse T−1 of the
transformation.

10.1.3 Affine Invariance

We will choose the class of affine transformations to implement the geometric links in
the clusterings and hierarchies. The main reason for this choice is that, besides including
practically all the important transformations, this class allows the efficient use of transfor-
mations in the modeling and viewing processes.

In this context, it’s desirable for the class of geometric transformations to have affine
invariance. This property guarantees that, given a discretization DO of a graphic object O
and a transformation T , the result of applying T to the elements of DO is the same as that
of reconstructing O and later applying T . This property is indicated by the commutative
diagrams below, where R is reconstruction operator:

DO

T - T (DO)

R(DO)

R

? T - T (R(DO))

R

?

The importance of this property can be better understood by a concrete example.

Example 10.1 (Straight line). Consider a segment of straight line p0p1 given by its para-
metric representation g : [0, 1] → R3, where g(u) = up0 + (1 − u)p1, with p0, p1 ∈ R3.
In this case, the reconstruction operator is R(p0, p1) ≡ g.

172 10. Hierarchies and Articulated Objects

Figure 10.3. Affine invariance and transformation.

If T is a affine transformation, then

T (R(p0, p1)(u)) = R(T (p0), T (p1))(u),

or
T (g(u)) = uT (p0) + (1− u)T (p1).

The great advantage of having this property is that to transform the straight line seg-
ment, it is enough to apply T to the ends p0 and p1 (see Figure 10.3). �

The result of the above example is valid for the majority of geometric descriptions of
graphic objects.

� Straight line and polygons

– Vertices

� Curves and parametric surfaces1

– Control points

� Implicit surfaces

– Geometric elements

10.2 Hierarchies and Transformations
In this section we will present the implementation for calculating transformations asso-
ciated with objects of a hierarchical structure. The operation consists essentially of an
in-depth visit to the tree nodes representing the hierarchy. Composition of the transfor-
mations is performed at each internal node along the descent path, from the tree root to-
ward its leaves. In each leaf, the composed transformation is applied to the corresponding
object. This procedure can be implemented in a recursive mode. Notice that is necessary
to keep the intermediate results of the composed transformations at each node of the tree.

An appropriate data structure for implementing this operation is the stack structure,
which allows us to efficiently store the partial data of this calculation. The transformations

1Remember that NURBS (nonuniform rational B-splines) also have projective invariance.

10.2. Hierarchies and Transformations 173

are represented by a 4 × 4 matrix. A current transformation matrix, or CTM, corresponds
to the top of the stack at each step of the process. To implement the stack engine, we will
define the operations of push and pop, allowing access to the data structure. We will also
define operations with the current transformation (CTM).

10.2.1 Stack Operations

The structure Stack4 represents a stack. It contains the maximum (size) and arrays with
the direct and inverse (mbot and ibot) transformations. The pointers mtop and itop

point to the top of the stack.

173a 〈stack 4 173a〉≡
typedef struct Stack4 {

int size;

Matrix4

*mbot, *mtop,

*ibot, *itop;

} Stack4;

Defines:
Stack4, used in chunks 173–76.

The routine s4_initstack is the stack constructor.

173b 〈init stack 173b〉≡
Stack4 *s4_initstack(int size)

{

int i;

Matrix4 *m;

Stack4 *s = (Stack4 *) emalloc(sizeof (Stack4));

s->size = size;

s->mbot = (Matrix4 *) emalloc(size * sizeof(Matrix4));

s->ibot = (Matrix4 *) emalloc(size * sizeof(Matrix4));

for (m = s->mbot, i = 0; i < s->size; i++)

*m++ = m4_ident();

for (m = s->ibot, i = 0; i < s->size; i++)

*m++ = m4_ident();

s->mtop = s->mbot;

s->itop = s->ibot;

return s;

}

Defines:
s4 initstack, used in chunk 179a.

Uses Stack4 173a.

174 10. Hierarchies and Articulated Objects

The routine s4_push pushes the current transformation onto the stack.

174a 〈push 174a〉≡
void s4_push(Stack4 *s)

{

Matrix4 *m;

if ((s->mtop - s->mbot) >= (s->size - 1))

error("(s4_push): stack overflow");

m = s->mtop;

s->mtop++;

*s->mtop = *m;

m = s->itop;

s->itop++;

*s->itop = *m;

}

Defines:
s4 push, used in chunk 179a.

Uses Stack4 173a.

The routine s4_pop pops the current transformation off the stack.

174b 〈pop 174b〉≡
void s4_pop(Stack4 *s)

{

if (s->mtop <= s->mbot)

error("(s4_pop()) stack underflow\n");

s->mtop--;

s->itop--;

}

Defines:
s4 pop, used in chunk 179a.

Uses Stack4 173a.

10.2.2 Transformations

We will construct affine transformations that compose the basic transformations of trans-
lation, rotation, and scaling.

The routine s4_translate concatenates the translation matrix with the top of the
stack.

174c 〈stranslate 174c〉≡
void s4_translate(Stack4 *s, Vector3 t)

{

*s->mtop = m4_m4prod(*s->mtop, m4_translate(t.x, t.y, t.z));

*s->itop = m4_m4prod(m4_translate(-t.x,-t.y,-t.z), *s->itop);

}

Defines:
s4 translate, used in chunk 179b.

Uses Stack4 173a.

10.2. Hierarchies and Transformations 175

The routine s4_scale concatenaties the scaling matrix with the top of the stack.

175a 〈sscale 175a〉≡
void s4_scale(Stack4 *s, Vector3 v)

{

*s->mtop = m4_m4prod(*s->mtop, m4_scale(v.x, v.y, v.z));

if (REL_EQ(v.x, 0.0)|| REL_EQ(v.y,0.0)|| REL_EQ(v.z,0.0))

fprintf(stderr,"(s4_scale()) unable to invert scale matrix\n");

else

*s->itop = m4_m4prod(m4_scale(1./v.x,1./v.y,1./v.z), *s->itop);

}

Defines:
s4 scale, used in chunk 180a.

Uses Stack4 173a.

The routine s4_rotate concatenates the rotation matrix with the top of the stack.

175b 〈srotate 175b〉≡
void s4_rotate(Stack4 *s, char axis, Real angle)

{

*s->mtop = m4_m4prod(*s->mtop, m4_rotate(axis,angle));

*s->itop = m4_m4prod(m4_rotate(axis,-angle), *s->itop);

}

Defines:
s4 rotate, used in chunk 180b.

Uses Stack4 173a.

The routines s4_v3xform and s4_n3xform apply the current transformation to geo-
metric elements. The routine s4_v3xform transforms a vector.

175c 〈v3xform 175c〉≡
Vector3 s4_v3xform(Stack4 *s, Vector3 v)

{

return v3_m4mult(v, *s->mtop);

}

Defines:
s4 v3xform, never used.

Uses Stack4 173a.

The routine s4_v3xform transforms the normal direction of a tangent plane.

175d 〈n3xform 175d〉≡
Vector3 s4_n3xform(Stack4 *s, Vector3 nv)

{

return v3_m4mult(nv, m4_transpose(*s->itop));

}

Defines:
s4 n3xform, never used.

Uses Stack4 173a.

176 10. Hierarchies and Articulated Objects

The routines s4_getmat and s4_getimat return, respectively, the direct and inverse
current transformations.

176a 〈getmat 176a〉≡
Matrix4 s4_getmat(Stack4 *s)

{

return *s->mtop;

}

Defines:
s4 getmat, used in chunk 181a.

Uses Stack4 173a.

176b 〈getimat 176b〉≡
Matrix4 s4_getimat(Stack4 *s)

{

return *s->itop;

}

Defines:
s4 getimat, used in chunk 181a.

Uses Stack4 173a.

The routine s4_loadmat allows us to modify the current transformation matrix.

176c 〈loadmat 176c〉≡
void s4_loadmat(Stack4 *s, Matrix4 *md, Matrix4 *im)

{

*s->mtop = *md;

*s->itop = (im == (Matrix4 *)0)? m4_inverse(*md) : *im;

}

Defines:
s4 loadmat, never used.

Uses m4 inverse and Stack4 173a.

The routine s4_concmat allows us to concatenate a matrix with the current transfor-
mation.

176d 〈concmat 176d〉≡
void s4_concmat(Stack4 *s, Matrix4 *md, Matrix4 *im)

{

*s->mtop = m4_m4prod(*md, *s->mtop);

if (im == (Matrix4 *)0)

*s->itop = m4_m4prod(*s->itop, m4_inverse(*md));

else

*s->itop = m4_m4prod(*s->itop, *im);

}

Defines:
s4 concmat, never used.

Uses m4 inverse and Stack4 173a.

10.3. Groups of Objects 177

10.3 Groups of Objects
In this section we will show the implementation of a 3D scene description language for hi-
erarchical groups of objects. This description will serve for both composed and articulated
objects.

10.3.1 Hierarchy Description

The format adopted for object hierarchies is based on the group construction containing
transformations (translate, rotate, and scale) and subgroups of objects (children).

177a 〈group scn 177a〉≡
group{

transform = { translate {v = {0, .0, 0}}, rotate {z = 0 }},

children = group {

transform = { translate {v = {.1, 0, 0}}},

children = primobj{ shape = sphere{radius = .1 }}

},

transform = { translate {v = {.2, 0, 0}}, rotate {z = 0 }},

children = group {

transform = { translate {v = {.2, 0, 0}}},

children = primobj{ shape = sphere{radius = .1}}

}

};

10.3.2 Objects

In the previous chapters on modeling we discussed several representation schema for geo-
metric objects. Before defining groups of objects, we must more precisely define the notion
of an object in our system: an object will be represented by the structure Object consisting
of its geometric support (shape) and its attributes, such as material type.

177b 〈object struct 177b〉≡
typedef struct Object {

struct Object *next;

struct Material *mat;

int type; /* shape */

union {

struct Poly *pols;

struct Prim *prim;

struct CsgNode *tcsg;

} u;

} Object;

Defines:
Object, used in chunks 178, 181, 182, and 187a.

178 10. Hierarchies and Articulated Objects

Notice this structure has the purpose of encapsulating, in a single computational entity,
the different geometric representation schema applied to the system. In this way, the form
of the object can use representation by primitives, by decomposition schema (polygonal
meshes), and constructive schema (CSG).

#define V_CSG_NODE 901

#define V_PRIM 902

#define V_POLYLIST 903

Note that the structure Object was designed as an element of a single linked list of
objects. This fact will be used to represent sets of objects.

The routine obj_new is the object constructor. It allocates the structure and initializes
the fields corresponding to the geometry of the object. The macro SET_MAT_DEFAULT will
be defined later.

178a 〈obj new 178a〉≡
Object *obj_new(int type, void *v)

{

Object *o = NEWSTRUCT(Object);

o->next = NULL;

SET_MAT_DEFAULT(o);

switch (o->type = type) {

case V_CSG_NODE: o->u.tcsg = v; break;

case V_PRIM: o->u.prim = v; break;

case V_POLYLIST: o->u.pols = v; break;

default: error("(newobj) wrong type");

}

return o;

}

Defines:
obj new, never used.

Uses Object 177b and SET MAT DEFAULT.

The routine obj_free is the object destructor.
178b 〈obj free 178b〉≡

void obj_free(Object *o)

{

switch (o->type) {

case V_PRIM: prim_destroy(o->u.prim); break;

case V_CSG_NODE: csg_destroy(o->u.tcsg); break;

case V_POLYLIST: plist_free(o->u.pols); break;

}

efree(o->mat->tinfo); efree(o->mat);

efree(o);

}

Defines:
obj free, used in chunk 182c.

Uses Object 177b.

10.3. Groups of Objects 179

10.3.3 Groups and Lists of Objects

We will adopt two description types for objects with links. Externally, we will adopt the
hierarchical description specified in Section 10.3.1. Internally, we will adopt the equivalent
nonhierarchical description by list of objects.

Conversion between the external and internal representations will be performed by the
operators of the 3D scene description language, described next. Routines for processing
the hierarchy are based in the stack engine. They use the static structure Stack4.

static Stack4 *stk = NULL;

The routine group_parse performs an in-depth visit to the hierarchy tree. This rou-
tine implements the semantics of the operator group of the 3D scene description language.
It pushes the current transformation onto the descent direction toward the leaves of the tree
and pops the transformation up along the ascent direction toward the root of the tree. At
each node, it executes the object transformation at that level of the hierarchy, calling the
routine transform_objects, and it creates a list containing the objects of that subtree
using the routine collect_objects. We will present these two routines next.

179a 〈group parse 179a〉≡
Val group_parse(int pass, Pval *pl)

{

Val v = {V_NULL, 0};

switch (pass) {

case T_PREP:

if (stk == NULL) stk = s4_initstack(MAX_STK_DEPTH);

s4_push(stk);

break;

case T_EXEC:

transform_objects(pl);

s4_pop(stk);

v.u.v = collect_objects(pl); v.type = V_GROUP;

break;

}

return v;

}

Defines:
group parse, never used.

Uses collect objects 181c, MAX STK DEPTH, s4 initstack 173b, s4 pop 174b, s4 push 174a,
stk, and transform objects 181a.

The routines translate_parse, scale_parse, and rotate_parse implement the
semantics of the transformation operators of the language. They perform the concatena-
tion of the specified transformations with the current transformation matrix.

179b 〈translate parse 179b〉≡
Val translate_parse(int pass, Pval *p)

{

180 10. Hierarchies and Articulated Objects

Val v = {V_NULL, 0};

if (pass == T_EXEC) {

if (p->val.type == V_PVL)

s4_translate(stk, pvl_to_v3(p->val.u.v));

else

error("(translate) wrong argument");

}

return v;

}

Defines:
translate parse, never used.

Uses s4 translate 174c and stk.

180a 〈scale parse 180a〉≡
Val scale_parse(int pass, Pval *p)

{

Val v = {V_NULL, 0};

if (pass == T_EXEC) {

if (p->val.type == V_PVL)

s4_scale(stk, pvl_to_v3(p->val.u.v));

else

error("(scale) wrong argument");

}

return v;

}

Defines:
scale parse, never used.

Uses s4 scale 175a and stk.

180b 〈rotate parse 180b〉≡
Val rotate_parse(int pass, Pval *p)

{

Val v = {V_NULL, 0};

if (pass == T_EXEC) {

if (strcmp(p->name, "x") == 0 && p->val.type == V_NUM)

s4_rotate(stk, ’x’, p->val.u.d);

else if (strcmp(p->name, "y") == 0 && p->val.type == V_NUM)

s4_rotate(stk, ’y’, p->val.u.d);

else if (strcmp(p->name, "z") == 0 && p->val.type == V_NUM)

s4_rotate(stk, ’z’, p->val.u.d);

else

error("(rotate) wrong argument");

}

return v;

}

Defines:
rotate parse, never used.

Uses s4 rotate 175b and stk.

10.3. Groups of Objects 181

10.3.4 Object Transformation

The routine transform_objects traverses the list of objects subordinate to a group and
applies the current transformation to each of them.

181a 〈transform objects 181a〉≡
static void transform_objects(Pval *pl)

{

Pval *p;

for (p = pl; p != NULL; p = p->next)

if (p->val.type == V_OBJECT)

obj_transform(p->val.u.v, s4_getmat(stk), s4_getimat(stk));

}

Defines:
transform objects, used in chunk 179a.

Uses obj transform 181b, s4 getimat 176b, s4 getmat 176a, and stk.

The routine obj_transform transforms an object based on its type.

181b 〈obj xform 181b〉≡
void obj_transform(Object *o, Matrix4 m, Matrix4 mi)

{

switch (o->type) {

case V_PRIM: prim_transform(o->u.prim, m, mi); break;

case V_CSG_NODE: csg_transform(o->u.tcsg, m, mi); break;

case V_POLYLIST: plist_transform(o->u.pols, m); break;

}

}

Defines:
obj transform, used in chunk 181a.

Uses Object 177b.

10.3.5 Collecting Objects in a List

The routine group_parse receives as an argument a list that can contain individual objects
and lists of objects. The objects are primitives defined within the scope of the group. The
lists of objects are subgroups of this group of objects.

The routine collect_objects creates a collection with all the subordinate objects to
a group. In other words, it places in a single list the elements of the subtree of a specific
node in the hierarchy.

181c 〈collect objects 181c〉≡
static Object *collect_objects(Pval *pl)

{

Pval *p; Object *olist = NULL;

for (p = pl; p != NULL; p = p->next) {

if (p->val.type == V_OBJECT)

olist = obj_insert(olist, p->val.u.v);

182 10. Hierarchies and Articulated Objects

else if (p->val.type == V_GROUP)

olist = obj_list_insert(olist, p->val.u.v);

}

return olist;

}

Defines:
collect objects, used in chunk 179a.

Uses obj insert 182a, obj list insert 182b, and Object 177b.

The routine obj_insert inserts an object in the list.

182a 〈obj insert 182a〉≡
Object *obj_insert(Object *olist, Object *o)

{

o->next = olist;

return o;

}

Defines:
obj insert, used in chunks 181c and 182b.

Uses Object 177b.

The routine obj_list_insert inserts a list of objects in the list.

182b 〈obj list insert 182b〉≡
Object *obj_list_insert(Object *olist, Object *l)

{

Object *t, *o = l;

while (o != NULL) {

t = o; o = o->next;

olist = obj_insert(olist, t);

}

return olist;

}

Defines:
obj list insert, used in chunk 181c.

Uses obj insert 182a and Object 177b.

The routine obj_list_free frees the memory allocated for a list of objects.

182c 〈obj list free 182c〉≡
void obj_list_free(Object *ol)

{

Object *t, *o = ol;

while (o != NULL) {

t = o; o = o->next;

obj_free(t);

}

}

Defines:
obj list free, used in chunk 188b.

Uses obj free 178b and Object 177b.

10.3. Groups of Objects 183

10.3.6 Parameterized Links

Articulated structures are composed of variable geometric links, defined by a dependency
graph. The elements of this graph are

� Links. Mapping between coordinate systems,

� Joints. Variable transformations (degrees of freedom),

� Objects. Local geometry.

Example 10.2 (Articulated Arm).
183a 〈arm 183a〉≡

group {

transform = { translate {v = {0, 0, 0}},

rotate {z = arg{ r1 = 0 }}},

children = group { children = primobj{ shape = cylinder { height = 1 }}},

transform = { translate {v = {1, 0, 0}},

rotate {z = motor{ arg{ r2 = 0 }}}},

children = group { children = primobj{ shape = cylinder { height = 1 }}},

}

�

The transformation values associated with the degrees of freedom of the articulated
structure can be obtained in several ways. One, the implementation of which we will
describe next, is through the use of variables defined in the command line of the interpreter
of the 3D scene description language.

The routine arg_init initializes the local structures with the list of arguments from
the program’s command line.

static int m_argc;

static char **m_argv;

183b 〈arg init 183b〉≡
void arg_init(int ac, char **av)

{

m_argc = ac; m_argv = av;

}

Defines:
arg init, never used.

Uses m argc and m argv.

The routine arg_parse implements the operator arg of the 3D scene description
language.

183c 〈arg parse 183c〉≡
Val arg_parse(int pass, Pval *p)

{

184 10. Hierarchies and Articulated Objects

Val v = {V_NULL, 0};

switch (pass) {

case T_EXEC:

if (p != NULL && p->val.type == V_NUM)

v.u.d = arg_get_dval(p->name, p->val.u.d);

else

fprintf(stderr, "error: arg parse %lx\n",p);

v.type = V_NUM;

break;

}

return v;

}

Defines:
arg parse, never used.

Uses arg get dval 184.

The routine arg_get_dval seeks in the list of arguments a pair of the type -name

value. If the pair is found, it returns the value; otherwise it returns defval.

184 〈arg get dval 184〉≡
double arg_get_dval(char *s, Real defval)

{

int i;

for (i = 1; i < m_argc; i++)

if (m_argv[i][0] == ’-’ && strcmp(m_argv[i]+1, s) == 0 && i+1 < m_argc)

return atof(m_argv[i+1]);

return defval;

}

Defines:
arg get dval, used in chunk 183c.

Uses m argc and m argv.

Notice that these routines can be used in several contexts.

10.4 Animation
In this section we will develop a computational schema to support procedural constructions
of animations in general, and in particular of articulated objects.

10.4.1 Animation Clock

To implement procedural animation, we have to define routines to control the clock. The
current time of the animation is represented by the variable time. The Boolean variable
stop indicates whether the clock has stopped or not.

static Real time = 0;

static Boolean stop = FALSE;

10.4. Animation 185

The routine time_reset restarts the clock.

185a 〈time reset 185a〉≡
void time_reset(Real t)

{

time = t;

stop = FALSE;

}

Defines:
time reset, used in chunk 187b.

Uses stop and time.

The routine time_done indicates whether the animation time has finished.

185b 〈time done 185b〉≡
Boolean time_done(Real tlimit)

{

return (time > tlimit|| stop == TRUE);

}

Defines:
time done, used in chunk 187b.

Uses stop and time.

The routine time_incr advances the clock.

185c 〈time incr 185c〉≡
Real time_incr(Real tincr)

{

if (!stop)

time += tincr;

return time;

}

Defines:
time incr, used in chunk 187b.

Uses stop and time.

The routine time_get returns the current time.

185d 〈time get 185d〉≡
Real time_get()

{

return time;

}

Defines:
time get, used in chunk 186.

Uses time.

The routine time_end stops the clock, terminating the animation.

185e 〈time end 185e〉≡
Real time_end()

{

186 10. Hierarchies and Articulated Objects

stop = TRUE;

return time;

}

Defines:
time end, never used.

Uses stop and time.

10.4.2 Constructions for Procedural Animation

We will give the example of a procedural construction for animation.

Example 10.3 (engine). This animation operator implements an engine with constant speed.
Its syntax is engine {IN A}. �

An engine could be used to create a variable transformation in time:

transform = { rotate { z = motor{.2 }}}

The routine motor_parse implements the operator engine. It calculates the value at
the current time.

186 〈motor parse 186〉≡
Val motor_parse(int pass, Pval *p)

{

Val v = {V_NULL, 0};

switch (pass) {

case T_EXEC:

if (p != NULL && p->val.type == V_NUM)

v.u.d = time_get() * p->val.u.d;

else

fprintf(stderr, "error: motor parse\n");

v.type = V_NUM;

pvl_free(p);

break;

}

return v;

}

Defines:
motor parse, never used.

Uses time get 185d.

10.4.3 Execution of the Animation

Using the procedural animation constructions, we have a way to determine the values of
several parameters that vary along time associated with objects in a 3D scene.

10.4. Animation 187

We will define a new data structure, Scene, containing the list of all scene objects.
Later we will include other elements in this structure.

187a 〈scene structure 187a〉≡
typedef struct Scene {

struct Object *objs;

} Scene;

Defines:
Scene, used in chunks 187 and 188.

Uses Object 177b and objs.

To visualize the animation, we have to produce a sequence of images of the scene at
different moments of time.

The program below implements the generation of a sequence of frames of an anima-
tion.

187b 〈anim 187b〉≡
int main(int argc, char **argv)

{

Scene *s;

init_scene();

time_reset(0);

s = scene_eval(scene_read());

while (!time_done(timeoff)) {

render_frame(s, get_time());

scene_free(s);

s = scene_eval();

time_incr(1);

}

}

Defines:
main, used in chunks 313, 317, and 318c.

Uses Scene 187a, scene eval 188a, scene free 188b, scene read 187c, time done 185b,
time incr 185c, and time reset 185a.

The routine scene_read reads the file with the 3D scene description and the anima-
tion constructions.

187c 〈scene read 187c〉≡
Scene *scene_read(void)

{

if (lang_parse() == 0)

return lang_ptree();

else

error("(scene read)");

}

Defines:
scene read, used in chunk 187b.

Uses Scene 187a.

188 10. Hierarchies and Articulated Objects

The routine scene_eval interprets the description of the 3D scene and the animation
constructions for the current time t. Notice the routine uses the nondestructive evaluation
(lang_nd_eval) of the scene description.

188a 〈scene eval 188a〉≡
Scene *scene_eval(void)

{

Scene *s;

Val v = lang_nd_eval();

if (v.type != V_SCENE)

error("(scene eval)");

else

s = v.u.v;

return s;

}

Defines:
scene eval, used in chunk 187b.

Uses Scene 187a.

The routine scene_free frees the memory allocated for the 3D scene at time t.

188b 〈scene free 188b〉≡
void scene_free(Scene *s)

{

if (s->objs)

obj_list_free(s->objs);

efree(s);

}

Defines:
scene free, used in chunk 187b.

Uses obj list free 182c, objs, and Scene 187a.

10.5 Comments and References
In this chapter we discussed hierarchies and their use in animation. We developed a library
for hierarchies and another for procedural animation.

The API of the library of hierarchies consists of the following routines:

Stack4 *s4_initstack(int size);

void s4_push(Stack4 *s);

void s4_pop(Stack4 *s);

void s4_translate(Stack4 *s, Vector3 t);

void s4_scale(Stack4 *s, Vector3 v);

void s4_rotate(Stack4 *s, char axis, Real angle);

Vector3 s4_v3xform(Stack4 *s, Vector3 v);

10.5. Comments and References 189

Vector3 s4_n3xform(Stack4 *s, Vector3 nv);

Matrix4 s4_getmat(Stack4 *s);

Matrix4 s4_getimat(Stack4 *s);

void s4_loadmat(Stack4 *s, Matrix4 *md, Matrix4 *im);

void s4_concmat(Stack4 *s, Matrix4 *md, Matrix4 *im);

The routines implementing hierarchies in the scene description language are the fol-
lowing:

Val group_parse(int pass, Pval *pl);

Val translate_parse(int pass, Pval *p);

Val scale_parse(int pass, Pval *p);

Val rotate_parse(int pass, Pval *p);

The API of the animation library consists of the following routines:

void time_reset(Real t);

Boolean time_done(Real tlimit);

Real time_incr(Real tincr);

Real time_get();

Real time_end();

Val motor_parse(int pass, Pval *p);

void arg_init(int ac, char **av);

double arg_get_dval(char *s, Real defval);

Val arg_parse(int pass, Pval *p);

Exercises
1. Write an interactive program to associate transformations to a primitive object.

2. Write a program to interpret and to visualize a hierarchical object, composed of prim-
itives and described in the SDL language. Use the command “arg” to pass parameters
in the command line of the program.

3. Modify the programs of Exercises 10.1 and 10.2 to work with CSG objects.

4. Modify the programs of Exercises 10.1 and 10.2 to work with polygonal meshes.

5. Write a program to show an analog clock in a window.

6. Write a program to interactively create an articulated sequence.

7. Write a program to scan an articulate sequence and animate it.

8. Write the description, in the SDL language, of an articulated humanoid, and use the
program from Exercise 10.7 to visualize it.

This page intentionally left blankThis page intentionally left blank

11 Viewing and Camera
Transformations

Viewing a 3D scene requires converting the 3D data from world space to 2D information
in the image. Camera transformations are one of the main components of this process. In
earlier chapters we discussed the use of transformations for modeling 3D objects. In this
chapter, we will study viewing transformations.

11.1 The Viewing Process
The viewing process consists of a sequence of operations that map 3D objects of the scene
into their 2D projections on the image.

11.1.1 Viewing Operations and Reference Spaces

The viewing operations are the following:

� Camera mapping,

� Culling and clipping,

� Perspective transformation,

� Visibility calculation,

� Rasterization.

Each one of these operations has different characteristics. For this reason, they can be
performed in a simpler and more efficient way if a proper coordinate system is selected.
The viewing process (or viewing pipeline) corresponds to a sequence of transformations
and operations through which the objects of a scene are successively mapped to reference
spaces where each of the viewing operations is performed (see Figure 11.1). The reference

191

192 11. Viewing and Camera Transformations

Object

Modeling

Camera

Perspective

Device

Image

Figure 11.1. Sequence of viewing transformations.

spaces for the viewing operations are as follows:

� Object (or model) space,

� World (or scene) space,

� Camera space,

� Visibility space,

� Image space.

Object space. The object space uses the local coordinate system of the object. This space
has the following characteristics: the origin corresponds to the center of mass of the object,
and one of the main directions is aligned with the largest axis of the object. The dimen-
sions are normalized. Modeling operations and geometric calculations with the object are
performed in this space.

World space. The world space uses the global coordinate system of the application. It
serves as a common frame for every object of the scene. Their dimensions are defined in
application-dependent units. Illumination operations are performed in this space.

Camera space. The camera space uses the coordinate system of the observer, in which
the viewing direction corresponds to the z-axis, and the plane of the image is parallel to
the xy-plane. The viewing volume is mapped in the normalized pyramid. The clipping
operation is performed in this space.

Visibility space. The visibility space uses a coordinate system resulting from the projective
transformation, in which the center of projection is mapped onto an ideal point. In this
way, the view volume becomes a parallelepiped. The calculation of the visible surfaces is
performed in this space.

Image space. The image space uses the coordinate system of the graphics device. It has
discrete coordinates. In this space, the rasterization is performed.

11.1. The Viewing Process 193

11.1.2 Virtual Camera and Viewing Parameters

The viewing specification is performed based on the model of a virtual camera. This
model defines the necessary parameters to generate an image of the 3D scene. The viewing
parameters include:

� Center of projection,

� Viewing direction,

� Vertical view up vector,

� View plane of the projection,

� Front and back planes,

� Center and dimensions of the image,

� Projection type.

The data structure View represents a view. It contains all the viewing parameters, as
well as their corresponding transformations.

193 〈view structure 193〉≡
typedef struct View {

Vector3 center; /* center of projection */

Vector3 normal; /* view plane normal vector */

Vector3 up; /* view up vector */

Real dist; /* view plane distance from viewpoint*/

Real front; /* front plane dist. from viewpoint */

Real back; /* back plane dist. from viewpoint */

UVpoint c; /* relative to view plane center */

UVpoint s; /* window u,v half sizes */

Box3d sc; /* current, in pix space */

int type; /* projection type */

Matrix4 V, Vinv; /* view xform and inverse */

Matrix4 C, Cinv; /* clip space xform and inverse */

Matrix4 P, Pinv; /* perspective xforms and inverse */

Matrix4 S, Sinv; /* device xform and inverse */

} View;

Defines:
View, used in chunks 194c, 195a, and 206–9.

Uses perspective 207b, UVpoint 194a, and view.

194 11. Viewing and Camera Transformations

The projection type can be either perspective (conical) or orthographic (parallel).

#define PERSPECTIVE 1

#define ORTHOGRAPHIC 2

The structure UVpoint represents a vector on the image plane.

194a 〈uv point 194a〉≡
typedef struct UVpoint {

Real u,v;

} UVpoint;

Defines:
UVpoint, used in chunk 193.

Some useful relations are given by the macros below:

194b 〈view relations 194b〉≡
zmin = view.front / view.back

AspectRatio = view.s.u / view.s.v

fieldofView = 2 * arctan(view.s.u / view.dist) n

PixelAspect = aspect * ((sc_upper.y - sc_lower.y +1) / (sc_upper.x -

sc_lower.x +1))

Uses view.

11.1.3 Specifying the Viewing Parameters

Access to the structure View will be done through a set of routines allowing us to specify
the viewing parameters. These routines verify the consistency of the data, guaranteeing
that the structure represents a valid view. The routines access a pointer to a view stored in
the internal variable view.

static View *view;

The routine setview initializes the variable view.

194c 〈setview 194c〉≡
void setview(View *v)

{

view = v;

}

Defines:
setview, used in chunks 206–8.

Uses View 193 and view.

11.1. The Viewing Process 195

The routine getview returns the current view.

195a 〈getview 195a〉≡
View *getview(void)

{

return view;

}

Defines:
getview, used in chunk 206a.

Uses View 193 and view.

The routine setviewpoint defines the viewing point.

195b 〈setviewpoint 195b〉≡
void setviewpoint(Real x, Real y, Real z)

{

view->center.x = x;

view->center.y = y;

view->center.z = z;

}

Defines:
setviewpoint, used in chunks 197c, 206b, 207a, and 209.

Uses view.

The routine setviewnormal defines the viewing direction. Notice it normalizes this
vector.

195c 〈setviewnormal 195c〉≡
void setviewnormal(Real x, Real y, Real z)

{

double d = sqrt(SQR(x)+SQR(y)+SQR(z));

if (d < ROUNDOFF)

error("invalid view plane normal");

view->normal.x = x / d;

view->normal.y = y / d;

view->normal.z = z / d;

}

Defines:
setviewnormal, used in chunks 197c, 206b, 207a, and 209.

Uses ROUNDOFF and view.

The routine setviewup defines the view up vector.

195d 〈setviewup 195d〉≡
void setviewup(Real x, Real y, Real z)

{

if (fabs(x) + fabs(y) + fabs(z) < ROUNDOFF)

error("no view up direction");

view->up.x = x;

view->up.y = y;

196 11. Viewing and Camera Transformations

view->up.z = z;

}

Defines:
setviewup, used in chunks 197c, 206b, and 207a.

Uses ROUNDOFF and view.

The routine setviewdistance defines the projection plane, given by the distance
starting from the center of projection along the viewing direction.

196a 〈setviewdistance 196a〉≡
void setviewdistance(Real d)

{

if (fabs(d) < ROUNDOFF)

error("invalid view distance");

view->dist = d;

}

Defines:
setviewdistance, used in chunks 197c, 207, and 208a.

Uses ROUNDOFF and view.

The routine setviewdepth defines the near and far planes of the clipping volume.

196b 〈setviewdepth 196b〉≡
void setviewdepth(Real front, Real back)

{

if (fabs(back - front) < ROUNDOFF|| fabs(back) < ROUNDOFF)

error("invalid viewdepth");

view->front = front;

view->back = back;

}

Defines:
setviewdepth, used in chunks 197c, 207, and 208a.

Uses ROUNDOFF and view.

The routine setwindow defines the viewing window in the projection plane, given by
its center and dimensions.

196c 〈setwindow 196c〉≡
void setwindow(Real cu, Real cv, Real su, Real sv)

{

if (fabs(su) < ROUNDOFF|| fabs(sv) < ROUNDOFF)

error("invalid window size");

view->c.u = cu; view->c.v = cv;

view->s.u = su; view->s.v = sv;

}

Defines:
setwindow, used in chunks 197c, 207, and 208a.

Uses ROUNDOFF and view.

11.1. The Viewing Process 197

The routine setprojection defines the projection type.

197a 〈setprojection 197a〉≡
void setprojection(int type)

{

if (type != PERSPECTIVE && type != ORTHOGRAPHIC)

error("invalid projection type");

view->type = type;

}

Defines:
setprojection, used in chunks 197c, 207, and 208a.

Uses ORTHOGRAPHIC, PERSPECTIVE, and view.

The routine setviewport defines the support region of the image in the device.

197b 〈setviewport 197b〉≡
void setviewport(Real l, Real b, Real r, Real t, Real n, Real f)

{

if(fabs(r-l) < ROUNDOFF|| fabs(t-b) < ROUNDOFF)

error("invalid viewport");

view->sc_min.x = l; view->sc_max.x = r;

view->sc_min.y = b; view->sc_max.y = t;

view->sc_min.z = n; view->sc_max.z = f;

}

Defines:
setviewport, used in chunks 197c and 208b.

Uses ROUNDOFF, view, and viewport 208b.

The routine setviewdefaults defines the default viewing parameters.

197c 〈setviewdefaults 197c〉≡
void setviewdefaults(void)

{

setviewpoint(0.0,-5.0,0.0);

setviewnormal(0.0,1.0,0.0);

setviewup(0.0,0.0,1.0);

setviewdistance(1.0);

setviewdepth(1.0,100000.0);

setwindow(0.0,0.0,0.41421356,0.31066017);

setprojection(PERSPECTIVE);

setviewport(0.,0.,320.,240.,-32768.,32767.);

}

Defines:
setviewdefaults, used in chunk 206a.

Uses PERSPECTIVE, setprojection 197a, setviewdepth 196b, setviewdistance 196a,
setviewnormal 195c, setviewpoint 195b, setviewport 197b, setviewup 195d,
and setwindow 196c.

198 11. Viewing and Camera Transformations

11.2 Viewing Transformations
In this section we will describe the viewing transformations. We will show how to calculate
the corresponding matrices starting from the definition of the reference spaces.

11.2.1 Camera Transformation

The camera transformation maps the coordinate system of the 3D scene into the coordi-
nate system of the camera. First, a translation takes the center of projection to the origin:

A =

(
I −V
0 1

)
.

Then a rotation aligns the reference system of the camera {u, v, n} with the canonical
basis of the space {e1, e2, e3}, formed by the vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and
e3 = (0, 0, 1).

To calculate the vectors of the reference system, we use the viewing direction n and the
view up vector U . We project the vector U on the camera plane, which is orthogonal to n,

v =
U − (U · n)n

|U − (U · n)n|
,

and we normalize it. Next, we obtain a unit vector u, perpendicular to n and v, using the
cross product u = n×v. Notice the camera system’s orientation is opposite the orientation
of the scene system {e1, e2, e3}. This is reflected in the order we used to compute the cross
product.

The orthonormal matrix below is a rotation matrix that maps the frame {e1, e2, e3}
into the frame {u, v, n}:

B =


uT 0

vT 0

nT 0

0 1

 .

The camera transformation is given by the matrix V = BA, resulting from the con-
catenation of the matrices above:

V =


ux ux ux −u.Vp
vy vy vy −v.Vp
nz nz nz −n.Vp
0 0 0 1

 .

The routine makeviewV calculates the matrix V using the viewing parameters.

198 〈make view v 198〉≡
void makeviewV(void)

{

11.2. Viewing Transformations 199

Vector3 n,u,v,t;

n = view->normal;

v = v3_sub(view->up, v3_scale(v3_dot(view->up, n), n));

if (v3_norm(v) < ROUNDOFF)

error("view up parallel to view normal");

v = v3_unit(v);

u = v3_cross(n, v);

t.x = v3_dot(view->center, u);

t.y = v3_dot(view->center, v);

t.z = v3_dot(view->center, n);

view->V = m4_ident();

view->V.r1.x = u.x; view->V.r2.x = v.x; view->V.r3.x = n.x;

view->V.r1.y = u.y; view->V.r2.y = v.y; view->V.r3.y = n.y;

view->V.r1.z = u.z; view->V.r2.z = v.z; view->V.r3.z = n.z;

view->V.r1.w = -t.x; view->V.r2.w = -t.y; view->V.r3.w = -t.z;

makeviewVi();

}

Defines:
makeviewV, used in chunks 206, 207a, and 209.

Uses makeviewVi 199, ROUNDOFF, and view.

The routine makeviewVi calculates the inverse of the camera transformation.

199 〈make view vi 199〉≡
void makeviewVi(void)

{

Vector3 n,u,v,t;

view->Vinv = m4_ident();

n = view->normal;

v = v3_sub(view->up, v3_scale(v3_dot(view->up, n), n));

if (v3_norm(v) < ROUNDOFF)

error("view up parallel to view normal");

v = v3_unit(v);

u = v3_cross(n, v);

t = view->center;

view->Vinv = m4_ident();

view->Vinv.r1.x = u.x; view->Vinv.r2.x = u.y; view->Vinv.r3.x = u.z;

view->Vinv.r1.y = v.x; view->Vinv.r2.y = v.y; view->Vinv.r3.y = v.z;

view->Vinv.r1.z = n.x; view->Vinv.r2.z = n.y; view->Vinv.r3.z = n.z;

view->Vinv.r1.w = t.x; view->Vinv.r2.w = t.y; view->Vinv.r3.w = t.z;

}

Defines:
makeviewVi, used in chunk 198.

Uses ROUNDOFF and view.

200 11. Viewing and Camera Transformations

11.2.2 Clipping Transformation

The clipping transformation maps the coordinate system of the camera into a normalized
system, where the viewing volume is a rectangular pyramid with the apex at the origin and
basis on the plane z = 1.

First we do a shearing to align the center of the image with axis z. Notice this is
necessary because the image window cannot be centralized:

D =


1 0 −cu/d 0

0 1 −cv/d 0

0 0 1 0

0 0 0 1

 .

Then we perform a scaling such that the basis of the viewing pyramid is mapped into
the unit square on the plane z = 1:

R =


d/(suf) 0 0 0

0 d/(svf) 0 0

0 0 1/f 0

0 0 0 1

 .

The clipping transformation is given by the matrix C = RD, resulting from the con-
catenation of the matrices above:

C =


d/(suf) 0 −cu/(suf) 0

0 d/(svf) −cv/(svf) 0

0 0 1/f 0

0 0 0 1

 .

The routine makeviewC computes the matrix C.

200 〈make view c 200〉≡
void makeviewC(void)

{

view->C = m4_ident();

view->C.r1.x = view->dist / (view->s.u * view->back);

view->C.r2.y = view->dist / (view->s.v * view->back);

view->C.r3.z = 1 / view->back;

view->C.r1.z = - view->c.u / (view->s.u * view->back);

view->C.r2.z = - view->c.v / (view->s.v * view->back);

makeviewCi();

}

Defines:
makeviewC, used in chunks 206–8.

Uses makeviewCi 201 and view.

11.2. Viewing Transformations 201

The routine makeviewCi computes the inverse of the matrix C.

201 〈make view ci 201〉≡
void makeviewCi(void)

{

view->Cinv = m4_ident();

view->Cinv.r1.x = (view->s.u * view->back) / view->dist;

view->Cinv.r2.y = (view->s.v * view->back) / view->dist;

view->Cinv.r3.z = view->back;

view->Cinv.r1.z = (view->c.u * view->back) / view->dist;

view->Cinv.r2.z = (view->c.v * view->back) / view->dist;

}

Defines:
makeviewCi, used in chunk 200.

Uses view.

11.2.3 Perspective Transformation

The perspective transformation maps the normalized viewing pyramid given by the planes

x = ±z, y = ±z, z = zmin, z = 1

in the parallelepiped

−1 ≤ x ≤ 1, −1 ≤ y ≤ 1, 0 ≤ z ≤ 1,

where zmin = n/f . This change of coordinates consists of a projective transformation,
which takes the center of projection at the ideal point corresponding to the straight pro-
jection line. First, a translation is performed, taking zmin to the origin of the projective
space RP3:

E =


1 0 0 0
0 1 0 0
0 0 1 −zmin

0 0 0 1

 .

Then a scaling is performed to map the interval along the direction z [zmin, 1] in [0, 1]:

F =


1 0 0 0
0 1 0 0
0 0 1/(1− zmin) 0
0 0 0 1

 .

Finally, the projective transformation is applied:

G =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 (1− zmin)/zmin 1

 .

202 11. Viewing and Camera Transformations

The perspective transformation is given by the matrix P = GFE:

P =


1 0 0 0
0 1 0 0
0 0 1/(1− zmin) −zmin/(1− zmin)
0 0 1 0

 .

Remember that after applying the projective transformation, it is necessary to perform
the homogeneous division by w.

The routine makeviewP computes the matrix P .

202a 〈make view p 202a〉≡
void makeviewP(void)

{

view->P = m4_ident();

view->P.r3.z = view->back / (view->back - view->front);

view->P.r3.w = -view->front / (view->back - view->front);

view->P.r4.z = 1;

view->P.r4.w = 0;

makeviewPi();

}

Defines:
makeviewP, used in chunks 206 and 207.

Uses makeviewPi 202b and view.

The routine makeviewPi computes the inverse of the matrix P .

202b 〈make view pi 202b〉≡
void makeviewPi(void)

{

view->Pinv = m4_ident();

view->Pinv.r3.z = 0;

view->Pinv.r4.z = - (view->back - view->front) / view->front;

view->Pinv.r4.w = view->back / view->front;

view->Pinv.r3.w = 1;

view->Pinv.r4.w = 0;

}

Defines:
makeviewPi, used in chunk 202a.

Uses view.

Calculation of the transformation corresponding to the orthogonal projection is anal-
ogous to the perspective projection, except that it does not involve a projective transfor-
mation. We will not show the details of this calculation. The matrix O of the orthogonal
projection is

O =


1/su 0 0 −cu/su

0 1/sv 0 −cv/sv
0 0 1/(f − n) −n/(f − n)
0 0 1 0

 .

11.2. Viewing Transformations 203

The routine makeviewO computes the matrix O.

203a 〈make view o 203a〉≡
void makeviewO(void)

{

view->C = m4_ident();

view->C.r1.x = 1 / view->s.u;

view->C.r2.y = 1 / view->s.v;

view->C.r3.z = 1 / (view->back - view->front);

view->C.r1.w = - view->c.u / view->s.u;

view->C.r2.w = - view->c.v / view->s.v;

view->C.r3.w = - view->front / (view->back - view->front);

view->P = m4_ident();

makeviewOi();

}

Defines:
makeviewO, used in chunk 208a.

Uses makeviewOi 203b and view.

The routine makeviewOi computes the inverse of the matrix O.

203b 〈make view oi 203b〉≡
void makeviewOi(void)

{

view->Cinv = m4_ident();

view->Cinv.r1.x = view->s.u;

view->Cinv.r2.y = view->s.v;

view->Cinv.r3.z = (view->back - view->front);

view->Cinv.r1.w = view->c.u;

view->Cinv.r2.w = view->c.v;

view->Cinv.r3.w = view->front;

view->Pinv = m4_ident();

}

Defines:
makeviewOi, used in chunk 203a.

Uses view.

11.2.4 Device Transformation

The device transformation maps the normalized visibility volume onto the support volume
of the image on the graphics hardware. Notice that we are including the depth information,
given it is supported by many devices (i.e., Z-buffer).

First, a translation is performed so the vertex (−1,−1, 0) can be mapped at the origin.
A scaling of 1/2 is applied at x and y. This produces the normalized device coordinates

204 11. Viewing and Camera Transformations

(NDC) volume:

K =


0.5 0 0 0.5
0 0.5 0 0.5
0 0 1 0
0 0 0 1

 .

Then the NDC volume is mapped to the scale of the device:

L =


∆X 0 0 Xmin

0 ∆Y 0 Ymin

0 0 ∆Z Zmin

0 0 0 1

 ,

where ∆i = (imax − imin) are the dimensions of the 3D frame of the image.
Finally, a rounding to the closest integer coordinate is performed, using the matrix

below and the function floor:

M =


1 0 0 0.5
0 1 0 0.5
0 0 1 0.5
0 0 0 1

 floor(x, y, z).

The device transformation is given by the matrix S = KLM :

S =


∆x/2 0 0 (∇x + 1)/2

0 ∆y/2 0 (∇y + 1)/2
0 0 ∆z Zmin + 0.5
0 0 0 1

 ,

where ∆i = (imax − imin) and ∇i = (imax + imin).
The routine makeviewS calculates the matrix S.

204 〈make view s 204〉≡
void makeviewS(void)

{

view->S = m4_ident();

view->S.r1.x = (view->sc.ur.x - view->sc.ll.x) / 2;

view->S.r2.y = (view->sc.ur.y - view->sc.ll.y) / 2;

view->S.r3.z = view->sc.ur.z - view->sc.ll.z;

view->S.r1.w = (view->sc.ur.x + view->sc.ll.x +1) / 2;

view->S.r2.w = (view->sc.ur.y + view->sc.ll.y +1) / 2;

view->S.r3.w = view->sc.ll.z + 0.5;

makeviewSi();

}

Defines:
makeviewS, used in chunks 206a and 208b.

Uses makeviewSi 205 and view.

11.2. Viewing Transformations 205

The routine makeviewSi calculates the inverse of the matrix S.

205 〈make view si 205〉≡
void makeviewSi(void)

{

view->Sinv = m4_ident();

view->Sinv.r1.x = 2 / (view->sc.ur.x - view->sc.ll.x);

view->Sinv.r2.y = 2 / (view->sc.ur.y - view->sc.ll.y);

view->Sinv.r3.z = 1 / (view->sc.ur.z - view->sc.ll.z);

view->Sinv.r1.w = - (view->sc.ur.x + view->sc.ll.x +1) /

(view->sc.ur.x - view->sc.ll.x);

view->Sinv.r2.w = - (view->sc.ur.y + view->sc.ll.y +1) /

(view->sc.ur.y - view->sc.ll.y);

view->Sinv.r3.w = - (view->sc.ll.z + 0.5) /

(view->sc.ur.z - view->sc.ll.z);

}

Defines:
makeviewSi, used in chunk 204.

Uses view.

11.2.5 Transformation Sequence

The viewing transformations presented in this section are applied in sequence to the objects
of the 3D scene. This application depends on the geometric description of the objects.

If objects are described in the parametric form, the direct transformations are used in
the order below.

3D Scene → V → C → P → S → Image

If objects are described in the implicit form, the inverse transformations are used in the
order below.

Image → S−1 → P−1 → C−1 → V −1 → 3D Scene

These two sequences of transformations configure two different strategies for organiz-
ing the operations in a viewing system. The first, defined by transformations in the direct
order, corresponds to the scene-centered methods (see Figure 11.2). The second, defined
by transformations in the inverse order, corresponds to the image-centered methods (see
Figure 11.3).

egamIenecS C P SV

Model
Clipping Visibility

Rasterization

Illumination

Figure 11.2. Object-centered viewing.

SceneImage CS V

Model
Clipping

VisibilityRasterization

Illumination

-1 -1 -1P-1

Figure 11.3. Image-centered viewing.

206 11. Viewing and Camera Transformations

11.3 Viewing Specification

The viewing specification is performed by higher-level routines that define groups of pa-
rameters related to each of the viewing transformations.

11.3.1 Initialization

The routine initview initializes the viewing parameters and calculates the transformation
matrices.

206a 〈initview 206a〉≡
View* initview(void)

{

setview(NEWSTRUCT(View));

setviewdefaults();

makeviewV();

makeviewC();

makeviewP();

makeviewS();

return getview();

}

Defines:
initview, used in chunk 209.

Uses getview 195a, makeviewC 200, makeviewP 202a, makeviewS 204, makeviewV 198,
setview 194c, setviewdefaults 197c, and View 193.

11.3.2 Camera

The routines lookat and camera define the parameters of the camera transformation.

206b 〈lookat 206b〉≡
void lookat(View *v, Real vx, Real vy, Real vz,

Real px, Real py, Real pz, Real ux, Real uy, Real uz)

{

setview(v);

setviewpoint(vx, vy, vz);

setviewnormal(px - vx ,py - vy, pz - vz);

setviewup(ux, uy, uz);

makeviewV();

}

Defines:
lookat, used in chunk 209.

Uses makeviewV 198, setview 194c, setviewnormal 195c, setviewpoint 195b,
setviewup 195d, and View 193.

11.3. Viewing Specification 207

207a 〈camera 207a〉≡
void camera(View *v, Real rx, Real ry, Real rz, Real nx, Real ny, Real nz

, Real ux, Real uy, Real uz, Real deye)

{

setview(v);

setviewup(ux,uy,uz);

setviewnormal(nx,ny,nz);

setviewpoint(rx - (v->normal.x*deye),

ry - (v->normal.y*deye),

rz - (v->normal.z*deye));

makeviewV();

}

Defines:
camera, never used.

Uses makeviewV 198, setview 194c, setviewnormal 195c, setviewpoint 195b,
setviewup 195d, and View 193.

11.3.3 Perspective

The routines perspective and frustum define the parameters related to the clipping
and perspective projection transformations.

207b 〈perspective 207b〉≡
void perspective(View *v, Real fov, Real ar, Real near, Real far)

{

setview(v);

setprojection(PERSPECTIVE);

setviewdistance(near);

setviewdepth(near,far);

if (ar < ROUNDOFF)

error("illegal aspect ratio");

setwindow(0, 0, tan(fov/2) * near, (tan(fov/2) * near)/ar);

makeviewC();

makeviewP();

}

Defines:
perspective, used in chunks 193 and 209.

Uses makeviewC 200, makeviewP 202a, PERSPECTIVE, ROUNDOFF, setprojection 197a,
setview 194c, setviewdepth 196b, setviewdistance 196a, setwindow 196c,
and View 193.

207c 〈frusntrum 207c〉≡
void frustum(View *v, Real l, Real b, Real r, Real t, Real near, Real far)

{

setview(v);

setprojection(PERSPECTIVE);

setviewdistance(near);

208 11. Viewing and Camera Transformations

setviewdepth(near,far);

setwindow((l+r)/2, (b+t)/2, (r-l)/2, (t-b)/2);

makeviewC();

makeviewP();

}

Defines:
frustum, never used.

Uses makeviewC 200, makeviewP 202a, PERSPECTIVE, setprojection 197a, setview 194c,
setviewdepth 196b, setviewdistance 196a, setwindow 196c, and View 193.

The routine orthographic defines the parameters related to the clipping and ortho-
graphic projection transformations.

208a 〈orthographic 208a〉≡
void orthographic(View *v, Real l, Real b, Real r, Real t, Real near,

Real far)

{

setview(v);

setprojection(ORTHOGRAPHIC);

setviewdistance(near);

setviewdepth(near,far);

setwindow((l+r)/2, (b+t)/2, (r-l)/2, (t-b)/2);

makeviewC();

makeviewO();

}

Defines:
orthographic, never used.

Uses makeviewC 200, makeviewO 203a, ORTHOGRAPHIC, setprojection 197a, setview 194c,
setviewdepth 196b, setviewdistance 196a, setwindow 196c, and View 193.

11.3.4 Device

The routine viewport defines the parameters related to the device transformation.

208b 〈viewport 208b〉≡
void viewport(View *v, Real l, Real b, Real w, Real h)

{

setview(v);

setviewport(l,b,l+w,b+h,-32767.,32767.);

makeviewS();

}

Defines:
viewport, used in chunks 197b and 209.

Uses makeviewS 204, setview 194c, setviewport 197b, and View 193.

11.4. Comments and References 209

11.3.5 Specifying a View in the 3D Scene Description Language

The routine view_parse implements the command for specifying a view in the 3D scene
description language.

209 〈parse view 209〉≡
Val view_parse(int pass, Pval *pl)

{

Val v;

if (pass == T_EXEC) {

View *view = initview();

Vector3 ref = pvl_get_v3(pl, "from", v3_make(0,-5,0));

Vector3 at = pvl_get_v3(pl, "at", v3_make(0,0,0));

Vector3 up = pvl_get_v3(pl, p", v3_make(0,0,1));

double fov = pvl_get_num(pl, "fov", 90);

double w = pvl_get_num(pl, "imgw", 320);

double h = pvl_get_num(pl, "imgh", 240);

lookat(view, ref.x, ref.y, ref.z, at.x, at.y, at.z, up.x, up.y, up.z);

setviewpoint(ref.x, ref.y, ref.z);

setviewnormal(at.x - ref.x ,at.y - ref.y, at.z - ref.z);

makeviewV();

perspective(view, fov * DTOR, w/h, 1.0, 100000.0);

viewport(view, 0.,0., w, h);

v.type = CAMERA;

v.u.v = view;

}

return v;

}

Defines:
view parse, never used.

Uses initview 206a, lookat 206b, makeviewV 198, perspective 207b, setviewnormal 195c,
setviewpoint 195b, View 193, view, and viewport 208b.

11.4 Comments and References
In this chapter we presented the viewing transformation and its specification through a
virtual camera.

The API of the library VIEW includes the following routines:

View* initview(void);

void lookat(View *v,Real vx, Real vy, Real vz, Real px, Real py, Real pz,

Real ux, Real uy, Real uz);

void camera(View *v, Real rx, Real ry, Real rz,

Real nx, Real ny, Real nz, Real ux, Real uy, Real uz, Real deye);

void perspective(View *v, Real fov, Real ar, Real near, Real far);

void orthographic(View *v, Real l, Real b, Real r, Real t, Real near,

Real far);

210 11. Viewing and Camera Transformations

void frustum(View *v, Real l, Real b, Real r, Real t, Real near, Real far);

void viewport(View *v, Real l, Real b, Real w, Real h);

void setview(View *v);

View *getview(void);

void setviewpoint(Real x, Real y, Real z);

void setviewnormal(Real x, Real y, Real z);

void setviewup(Real x, Real y, Real z);

void setviewdistance(Real d);

void setviewdepth(Real front, Real back);

void setwindow(Real cu, Real cv, Real su, Real sv);

void setprojection(int type);

void setviewport(Real l, Real b, Real r, Real t, Real n, Real f);

void setviewdefaults(void);

void makeviewV(void);

void makeviewC(void);

void makeviewO(void);

void makeviewP(void);

void makeviewS(void);

void makeviewVi(void);

void makeviewCi(void);

void makeviewOi(void);

void makeviewPi(void);

void makeviewSi(void);

Exercise
1. Write a program using the VIEW library to draw a wireframe image of a 3D scene.

Input to the program should be in the scene description language, specifying the
virtual camera and one or more objects.

12 Surface Clipping
for Viewing

The clipping operation is one of the basic geometric tools in computer graphics. It plays
an important role in solving geometric modeling and viewing problems. In this chapter we
will study the surface clipping operation in the viewing process.

12.1 Foundations of the Clipping Operation
We call the operation that determines the set of points of a graphic object contained in a
region of the environment space clipping.

12.1.1 Space Splitting

Given a closed and connected surface M ⊂ Rn of dimension n − 1, M divides the space
into two regions A and B, in which M is the common boundary. The clipping operation of
a subset S of Rn consists of determining the subsets S ∩ A and S ∩ B. The surface M is
called the clipping surface.

Notice that separability is a fundamental property of surface M for the clipping oper-
ation, which determines a partition of the environment space in two regions.

In general, the clipping operation involves the solution of three different problems:

� Intersection. Determining the points of S that are at the boundary given by M .

� Classification. Classifying points of S contained in regions A and B.

� Structuring. Building a representation of the sets S ∩A and S ∩B using the results
of the above stages.

The clipping calculation depends on the dimension of the subset S, as well as of its
geometric representation. In R3, S can be a point, a curve, a surface, or a solid. The repre-
sentation of S can be given by a primitive, by a constructive schema, or by decomposition.

Another factor that influences the complexity of the clipping operation is the geometry
of the clipping surface M . More specifically, if M is convex, the problem is considerably
simplified.

211

212 12. Surface Clipping for Viewing

12.1.2 Clipping and Viewing

In the viewing process, the clipping operation has the purpose of determining which ob-
jects are inside the virtual camera’s field of view. Those objects will be processed and others
will be discarded. Clipping in the viewing process is necessary for two reasons. First, clip-
ping prevents points in the opposite viewing direction being improperly projected on the
image plane. Second, clipping increases efficiency by keeping objects that will not appear
in the image from being processed.

As we saw in the previous chapter, the clipping viewing volume is called the viewing
frustum, which corresponds to a truncated pyramid. The normalized clipping volume is
carefully chosen in a way to make the solution of the problem simpler. In this way, the
viewing frustum is given by the intersection of the semispaces

−x ≤ z ≤ x, −y ≤ z ≤ z, zmin ≤ z ≤ 1. (12.1)

This choice greatly simplifies the calculation of intersections. What is more, since the
viewing frustum is convex, the classification operation is reduced to determining the posi-
tion of points in relation to the six semispaces in Equation (12.1).

Another important observation is that the clipping problem can be trivially solved
when the subset S is totally contained in region A or B. This case can be solely deter-
mined through point classification, and it does not require the intersection calculation or
structuring.

The computational strategies described above are used together in the clipping algo-
rithms. First, the problem is reduced to a canonical situation with the use of a proper
coordinate system. Second, trivial cases with immediate solution are checked. Finally, the
more complex cases are resolved.

12.2 Clipping Trivial Cases
The trivial cases in clipping happen when the subset S is entirely contained in one of the
delimited regions by the clipping surface M . There are two cases: S is outside the viewing
volume and should be eliminated from processing and S is inside of the viewing volume
and can be projected on the virtual screen.

12.2.1 Trivial Reject

To detect whether a polygon is completely contained in the region external to the clipping
volume, a classification of the polygon vertices is performed in relation to the semispaces
determined by the support planes of the viewing frustum faces. These planes divide the
space into 27 regions. A 6-bit code is attributed to each vertex, indicating the region in
which it is located. The code indicates the relation between the region and each one of the
semispaces (1 means the region is not in the same semispace of the clipping pyramid).

12.2. Clipping Trivial Cases 213

The routine clipcode calculates the vertex code.

213a 〈clipcode 213a〉≡
int clipcode(Real h, Vector3 v)

{

int c = 0;

if (v.y > v.z) c|= 01;

if (v.y < -v.z) c|= 02;

if (v.x > v.z) c|= 04;

if (v.x < -v.z) c|= 010;

if (v.z > 1) c|= 020;

if (v.z < h) c|= 040;

return(c);

}

Defines:
clipcode, used in chunk 213.

The routine cull_poly3 determines if a triangle is in the region external to the clip-
ping region. It applies the classification to each of the vertices. If all are contained in a
semispace external to the viewing frustum, the triangle can then be rejected.

213b 〈cull poly3 213b〉≡
int cull_poly3(Real h, Poly *p)

{

int i, c[3];

for (i = 0; i < p->n; i++)

c[i] = clipcode(h, p->v[i]);

return (c[0] & c[1] & c[2]);

}

Defines:
cull poly3, used in chunk 215.

Uses clipcode 213a.

12.2.2 Trivial Accept

The routine inside_frustum determines if a point is inside the viewing frustum. It
can be used to perform the trivial accept test of convex objects, such as triangles or the
bounding box of complex objects.

213c 〈inside frustum 213c〉≡
int inside_frustum(Real h, Vector3 v)

{

return (clipcode(h, v) == 0);

}

Defines:
inside frustum, never used.

Uses clipcode 213a.

214 12. Surface Clipping for Viewing

Figure 12.1. Camera and object with normals.

12.2.3 Faces with Opposite Orientation

In a solid object, the boundary faces with an orientation opposite to the the viewing direc-
tion are not visible and can be removed.

In surfaces with a boundary, the faces with opposite orientation can be visible, but this
fact is generally taken into account in the illumination calculation.

The routine is_backfacing determines whether the orientation of a polygon is op-
posite the viewing direction. The calculation is performed from the inner product between
the normal to the polygon and the viewing direction. (See Figure 12.1.)

214 〈is backfacing 214〉≡
int is_backfacing(Poly *p, Vector3 v)

{

Vector3 n = poly_normal(p);

return (v3_dot(n, v) < 0)? TRUE : FALSE;

}

Defines:
is backfacing, never used.

12.3 Two-Step Clipping
A simple method of implementing polygon clipping consists of decomposing the operation
into two steps: in the first step a 3D clipping is performed, and in the second step a 2D
clipping takes place. The problem is organized in the following way:

� 3D part. Clip the polygons in relation to the front face of the viewing pyramid. This
operation has to be performed in the 3D space before the projective transformation,
in order to avoid projecting vertices located behind the camera onto the image plane.

� 2D part. Clip the polygons already projected in relation to the rectangle of the
image. This operation can be performed analytically before the rasterization, or in
an approximate way during the rasterization.

12.3. Two-Step Clipping 215

Therefore, the far plane clipping algorithm consists of the following steps:

1. Analysis of trivial cases,

2. 3D clipping by the front plane,

3. 2D clipping by the image rectangle.

The routine hither_clip implements steps (1) and (2), and step (3) is performed by
the routine render.

215 〈hither clip 215〉≡
int hither_clip(Real h, Poly *p, void (*render)(), void (*plfree)())

{

if (cull_poly3(h, p)) {

plfree(p); return FALSE;

} else {

return hclip(h, p, render, plfree);

}

}

Defines:
hither clip, never used.

Uses cull poly3 213b and hclip 216a.

Step (1) (analysis of the trivial cases) is optional. This pre-processing has the purpose of
increasing the efficiency of the algorithm and is implemented by the routine cull_poly3.
In this way, polygons totally contained in the exterior of the clipping volume are eliminated.

12.3.1 3D Clipping by Subdivision

The method we describe next has several important characteristics. The routine hclip

implements a recursive algorithm that performs an analytical clipping by a binary subdivi-
sion of triangles. The algorithm performs the clipping of a list of triangles, where the first
triangle of the list contains geometric and attribute information.

The general structure of the algorithm is as follows: First, the triangle vertices are
classified in relation to the front plane. This is determined by the number of vertices, n on
the positive side of the front plane. Three cases exist:

� n = 0. the entire triangle is on the negative side of the plane and can be trivially
rejected,

� n = 3. the entire triangle is on the positive side of the plane and it can be visualized
(trivially accepted),

� n = 1 or n = 2. the triangle intersects the plane and clipping must be performed.

216 12. Surface Clipping for Viewing

The routine classify_vert calculates n.

216a 〈hclip 216a〉≡
int hclip(Real h, Poly *p, void (*render)(), void (*plfree)())

{

Poly *pa, *pb, *a, *b;

int n, i0, i1, i2;

double t;

switch (classify_vert(p, h)) {

case 0: plfree(p); return FALSE;

case 3: render(p); return TRUE;

case 2: case 1:

if (EDGE_CROSS_Z(p, 0, 1, h)) {

i0 = 0; i1 = 1; i2 = 2;

} else if (EDGE_CROSS_Z(p, 1, 2, h)) {

i0 = 1; i1 = 2; i2 = 0;

} else if (EDGE_CROSS_Z(p, 2, 0, h)) {

i0 = 2; i1 = 0; i2 = 1;

}

}

t = (p->v[i1].z - h) / (p->v[i1].z - p->v[i0].z);

a = pa = plist_alloc(n = plist_lenght(p), 3);

b = pb = plist_alloc(n, 3);

while (p != NULL) {

poly_split(p, i0, i1, i2, t, pa, pb);

p = p->next; pa = pa->next; pb = pb->next;

}

return hclip(h, a, render, plfree)| hclip(h, b, render, plfree);

}

Defines:
hclip, used in chunk 215.

Uses classify vert 218, EDGE CROSS Z 216b, and poly split 217.

In the last case, the triangle is subdivided in two, and each of the resulting triangles is
recursively submitted to the algorithm.

To perform the subdivision, one of the edges intersecting the front plane is chosen.
The edge is subdivided at the intersection point with the plane, as shown in Figure 12.2.

The macro EDGE_CROSS_Z determines whether the edge (v0, v1) crosses the plane
z = h.

216b 〈edge cross z 216b〉≡
#define EDGE_CROSS_Z(P, V0, V1, H) \

((REL_GT((P)->v[V0].z, H) && REL_LT((P)->v[V1].z, H)) \

|| (REL_LT((P)->v[V0].z, H) && REL_GT((P)->v[V1].z, H)))

Defines:
EDGE CROSS Z, used in chunk 216a.

12.3. Two-Step Clipping 217

T1

T2 T2−1
T2−2

Figure 12.2. Subdivision in relation to the plane.

The routine poly_split subdivides the triangle.

217 〈poly split 217〉≡
void poly_split(Poly *p, int i0, int i1, int i2, Real t, Poly *pa,

Poly *pb)

{

Vector3 vm = v3_add(p->v[i1], v3_scale(t, v3_sub(p->v[i0], p->v[i1])));

pa->v[0] = p->v[i1]; pa->v[1] = p->v[i2];

pa->v[2] = pb->v[0] = vm;

pb->v[1] = p->v[i2]; pb->v[2] = p->v[i0];

}

Defines:
poly split, used in chunk 216a.

Notice that, in the last case, when the two triangles resulting from the subdivision are
processed by the algorithm recursion, one will be rejected and the other will be subdivided
one last time (see Figure 12.3).

Finally, the polygons accepted in the second case move on to the last part of the method
and are clipped out in 2D in relation to the image rectangle.

Figure 12.3. Result of the recursive subdivision in relation to the plane.

218 12. Surface Clipping for Viewing

The routine classify_vert, calculates the number of vertices on the positive side of
the plane z = h.

218 〈classify vert 218〉≡
static int classify_vert(Poly *p, Real h)

{

int i, k = 0;

for (i = 0; i < 3; i++)

if (REL_GT(p->v[i].z, h)) k++;

for (i = 0; i < 3; i++)

if (k > 0 && REL_EQ(p->v[i].z, h)) k++;

return k;

}

Defines:
classify vert, used in chunk 216a.

An important observation about this algorithm is that special care must be taken during
the vertex classification in relation to the plane z = h. The recursive algorithm results in
vertices that are not in a generic position. This happens because the subdivision of an edge
produces vertices exactly located on the clipping plane. In the algorithm recursion, vertex
classification should take into account this possibility. This is done both in the routine
classify_vert and in the macro EDGE_CROSS_Z. In this way, we avoid inconsistencies
between the geometry and topology of the model.

12.4 Sequential Clipping
The clipping by subdivision algorithm described in the previous section simplifies the
structuring problem by making a bisection of triangles. In this section we present an algo-
rithm for general polygons with n sides. This clipping will be performed entirely in 3D in
relation to the viewing frustum.

The strategy used in this algorithm consists of clipping the polygon sequentially, in
relation to each of the semispaces determined by the faces of the viewing frustum. In each
stage, the part of the polygon on the positive side of the current clipping plane is calculated
and passed on to the next stage. Because the clipping volume is convex, at the end of the
process, the resulting polygon is the intersection of the original polygon with the clipping
volume.

This algorithm, with small modifications, can be used for clipping any convex volume.

12.4.1 The Sutherland-Hodgman Algorithm

This clipping algorithm uses the code below to identify the planes of the viewing frustum.

#define LFT 0

#define RGT 1

#define TOP 2

12.4. Sequential Clipping 219

#define BOT 3

#define BAK 4

#define FRT 5

The routine poly_clip performs the Sutherland-Hodgman clipping algorithm
[Sutherland and Hodgman 74] to a list of polygons, where the first polygon of the list
contains the geometry information (i.e., vertex positions) and the other polygons contain
attribute values (i.e., color, texture coordinates, normals, etc.). The strategy is first to com-
pute distances to clipping planes based on the geometry information and subsequently to
use this information to perform the clipping, both to the geometry and the attributes.
The distance information is stored in the internal array dd. In this way, poly_clip first
calls the routine pclip_store to compute the sequence of clip operations and then calls
the routine clip_copy to transfer the operations to the output polygon. In the case that
the polygon list has other attribute polygons, the clipping is also applied to the tail of the
polygon list by the routine pclip_apply and clip_copy.

219 〈poly clip 219〉≡
int poly_clip(Real h, Poly *p, void (*dispose)(), int chain)

{

double dd[MAXD];

Poly *a;

int n;

if (p->n > MAXV)

error("(poly clip) too many vertices");

n = clip_copy(pclip_store, p, h, dispose, dd);

if (!chain)

return n;

for (a = p->next; a != NULL; a = a->next)

n = clip_copy(pclip_apply, a, h, dispose, dd);

return n;

}

Defines:
poly clip, never used.

Uses clip copy 222b, MAXD 222a, MAXV 222a, pclip apply 221c, and pclip store 220a.

The routine pclip_store performs the clipping of a polygon by one clipping plane.
It processes the edges of the input polygon performing the classification, intersection, and
structuring. The current edge is given by k0 and k1, which are the indices of their initial
and final vertices, respectively.

The vertices are classified based on their signed distance to the clipping plane, which
is stored in the array dd. If the edge crosses the plane, its intersection point with the plane
is calculated and inserted in the vertex list of the output polygon. If the final vertex of the
edge is on the positive side of the plane, it is also inserted in the vertex list of the output

220 12. Surface Clipping for Viewing

polygon. Notice the first vertex of the input polygon will be processed last, because to close
the cycle, the last edge corresponds to (vn−1, v0).

Also notice the routine pclip performs the sequencing of the clipping, increasing the
code of the clipping plane and swapping the input buffer with the output one.

220a 〈pclip store 220a〉≡
int pclip_store(int plane, Poly *s, Poly *d, Real h, double *dd)

{

int i, k0, k1;

double d0, d1;

for (d->n = k1 = i = 0; i <= s->n ; i++, k1 = (i == s->n)? 0 : i) {

d1 = plane_point_dist(plane, s->v[k1], h);

DA(dd, i, plane) = d1;

if (i != 0) {

if (PLANE_CROSS(d0, d1))

d->v[d->n++] = v3_add(s->v[k1], v3_scale(d1/(d1-d0),

v3_sub(s->v[k0], s->v[k1])));

if (ON_POSITIVE_SIDE(d1))

d->v[d->n++] = s->v[k1];

}

d0 = d1;

k0 = k1;

}

return (plane++ == FRT)? d->n : pclip_store(plane, d, s, h, dd);

}

Defines:
pclip store, used in chunk 219.

Uses DA 222a, FRT, ON POSITIVE SIDE, PLANE CROSS 221a, and plane point dist 220b.

The routine plane_point_dist calculates the signed distance of a vertex to the plane.

220b 〈plane point dist 220b〉≡
Real plane_point_dist(int plane, Vector3 v, Real h)

{

switch (plane) {

case LFT: return v.z + v.x;

case RGT: return v.z - v.x;

case TOP: return v.z + v.y;

case BOT: return v.z - v.y;

case BAK: return 1 - v.z;

case FRT: return -h + v.z;

}

}

Defines:
plane point dist, used in chunk 220a.

Uses BAK, BOT, FRT, LFT, RGT, and TOP.

12.4. Sequential Clipping 221

The macro PLANE_CROSS detects whether an edge crossed the clipping plane. This
calculation is based on the signed distances of the edge vertices to the plane.

221a 〈plane cross 221a〉≡
#define PLANE_CROSS(D0, D1) ((D0) * (D1) < 0)

Defines:
PLANE CROSS, used in chunks 220a and 221c.

The macro ON_POS_SIDE detects whether a vertex is on the positive side of the clipping
plane, starting from its signed distance.

221b 〈on postive side 221b〉≡
#define ON_POS_SIDE(D1) ((D1) >= 0)

Defines:
ON POS SIDE, never used.

The routine pclip_apply uses the distances to clipping planes computed by the rou-
tine pclip_store that are in the array dd to apply the actual clipping to attribute poly-
gons.

In this way, the geometric clipping computation can be repeated to polygons with
attribute values in subsequent steps without the need of explicit geometric information.

221c 〈pclip apply 221c〉≡
int pclip_apply(int plane, Poly *s, Poly *d, Real h, double *dd)

{

int i, k0, k1;

double d0, d1;

for (d->n = k1 = i = 0; i <= s->n ; i++, k1 = (i == s->n)? 0 : i) {

d1 = DA(dd, i, plane);

if (i != 0) {

if (PLANE_CROSS(d0, d1))

d->v[d->n++] = v3_add(s->v[k1], v3_scale(d1/(d1-d0),

v3_sub(s->v[k0], s->v[k1])));

if (ON_POSITIVE_SIDE(d1))

d->v[d->n++] = s->v[k1];

}

d0 = d1;

k0 = k1;

}

return (plane++ == FRT)? d->n : pclip_apply(plane, d, s, h, dd);

}

Defines:
pclip apply, used in chunk 219.

Uses DA 222a, FRT, ON POSITIVE SIDE, and PLANE CROSS 221a.

The macros DA, MAXV and MAXD control access to the plane distances array dd.

222 12. Surface Clipping for Viewing

222a 〈da 222a〉≡
#define MAXV 16

#define MAXD ((MAXV+1)*(FRT+1))

#define DA(dd, i, p) dd[(p*MAXV)+i]

Defines:
DA, used in chunks 220a and 221c.
MAXD, used in chunk 219.
MAXV, used in chunks 219 and 222b.

Uses FRT.

The routine clip_copy is responsible for the memory management of the algorithm.
It allocates two internal buffers which will be alternately used as input and output at each
stage of the clipping process. This routine also determines if it is necessary to allocate new
memory for a clipped polygon and copies the result of the operation to the appropriate
data structure.

222b 〈clip copy 222b〉≡
int clip_copy(int (*clip_do)(), Poly *p, Real h, void (*dispose)(),

double *dd)

{

Vector3 vs[MAXV], vd[MAXV];

Poly s = {NULL, 0, vs}, d = {NULL, 0, vd};

poly_copy(p, &s);

if (clip_do(0, &s, &d, h, dd) > p->n) {

if (dispose != NULL)

dispose(p->v);

p->v = NEWARRAY(s.n, Vector3);

}

poly_copy(&s, p);

return s.n;

}

Defines:
clip copy, used in chunk 219.

Uses MAXV 222a.

12.5 Comments of References

In this chapter we discussed the problem of clipping surfaces for viewing and we presented
algorithms to solve this problem. Figure 12.4 shows an example of the programs that
perform the clipping and draws the orthogonal projections.

12.5. Comments of References 223

Figure 12.4. Clipping against the viewing pyramid (viewing frustum).

The API of the CLIP library consists of the following routines:

int is_backfacing(Poly *p);

int clip(Poly *s);

int clip_sub(Poly *p, void (*render)());

Exercises
1. Write a program to perform the clipping of a triangle against the front plane (far

plane) using the subdivision algorithm. The result should be visualized using projec-
tions orthogonal to the z-axis.

2. Write a program to perform the clipping of a quadrilateral against the viewing pyra-
mid (viewing frustum), using the Sutherland-Hodgman algorithm. The result should
be visualized using projections orthogonal to the z-axis.

3. Modify the programs of the previous algorithms to also draw the projection planes.

This page intentionally left blankThis page intentionally left blank

13 Rasterization

The result of the viewing process is an image. In the case of viewing 3D scenes, objects
in the field of view of the camera are projected on the plane of the image and discretized
into elements of the image (or “pixels”). In this chapter, we will study the rasterization
operation that performs this transformation.

13.1 Foundations of Rasterization
Consider a graphics object O = (S, f), with geometric support S ⊂ Rn and attribute
function f : S → Rk, and a grid ∆ of Rn with resolution ∆1× . . .×∆n. The rasterization
consists of determining the representation matrix of O induced by ∆.

The most common case is 2D rasterization, where n = 2 and S is a 2D subset of
the plane. In this case, the representation matrix corresponds to a digital image (see Fig-
ure 13.1).

The rasterization process involves enumeration of the cells (Ci) of the grid ∆ associ-
ated with the support S and also sampling of the attribute function f in each cell Ci.

The essence of the rasterization operation consists of determining whether a cell Ci of
the grid ∆ is part of the sequence of cells of the representation matrix of O. This decision
can be made based on the intersection between the cell and the set S. Notice that this
process is closely related to that of the clipping operation discussed in Chapter 12.

Figure 13.1. 2D rasterization.

225

226 13. Rasterization

In the context of viewing 3D scenes, objects are projected on the plane of the image
and later rasterized. Depending on the dimension of S, the geometric support of S can be
either a curve or a region of the plane.

The attribute function provides the color of the visual representation of the object on
the image. For this reason it is called a shading (or coloring) function. The shading function
results from the illumination simulation of the 3D scene. The illumination calculation, as
well as the sampling of the shading function, will be discussed in other chapters.

The relation between the rasterization and the 3D viewing process is subtle due to
the visibility problem. Ideally, we would rasterize only the surfaces visible to the virtual
camera. In practice, three possibilities exist:

1. Rasterize after the visibility calculation,

2. Rasterize before the visibility calculation,

3. Calculate rasterization and visibility simultaneously.

We will treat the visibility problem in Chapter 14 and approach each of the above strate-
gies. In this chapter we will discuss the rasterization algorithms without worrying about
visibility.

13.1.1 Classification of Rasterization Methods

Rasterization essentially corresponds to a discretization of the geometric support of the
graphics object O according to the grid ∆. We can classify the rasterization methods based
on two criteria: the discretization strategy and the type of geometric description.

The discretization strategy is related to how to perform the rasterization. It can be
incremental or by subdivision. Incremental rasterization uses an iterative process for dis-
cretizing the geometry, while rasterization by subdivision uses a recursive process. The
incremental methods are generally more efficient. The methods by subdivision have the
advantage of being adaptive.

The type of geometric description can be intrinsic or extrinsic, depending on which
space the rasterization is based on. Intrinsic rasterization is based on the discretization of
the graphics object, while the extrinsic rasterization is based on the discretization of the
space. The intrinsic methods operate in the parameter space of the object. The extrinsic
methods operate directly in the world space.

In the next sections we will discuss the rasterization methods using the above classifi-
cation. We will see incremental methods, intrinsic and extrinsic, for polygonal regions; we
will also see methods by subdivision, intrinsic and extrinsic, for straight line segments.

13.2 Incremental Methods
In this section we will present incremental methods for the rasterization of regions on
the plane. The incremental rasterization algorithms are structured starting from two basic
operations: initialization and traversal. The initialization determines an initial cell and

13.2. Incremental Methods 227

calculates the incremental data. The traversal moves from the current cell to the next cell
until all the cells are enumerated.

13.2.1 Intrinsic Incremental Rasterization

We will concentrate here on the case of triangle rasterization. This is the most important
case for image synthesis. What is more, arbitrary polygonal regions can be triangular, and
therefore they can be reduced to this case.

The routine scan_poly rasterizes a convex polygon. It decomposes the polygon into
triangles, which are then rasterized by the routine scan_spoly3. The triangulation is per-
formed by linking the first vertex of the polygon to the other vertices to form the triangles
(v0, vk−1, vk), k = 2, . . . n− 1.

227a 〈scan poly 227a〉≡
void scan_poly(Poly *p, Paint *pfun, void *pdata)

{

int k;

for (k = 2; k < p->n; k++)

scan_spoly3(p, k, pfun, pdata);

}

Defines:
scan poly, never used.

Uses scan spoly3 227b.

The triangle rasterization method exploits the fact that the intersection of a convex
polygonal region with a horizonal band of the grid is determined by a pair of edges (el, er).
For each j, we have a sequence of cells Ci,j , with xl ≤ i ≤ xr, where (xl, j) ∈ el and
(xr, j) ∈ er. The interval [xl, xr], called span, can be incrementally calculated starting
from the parametric description of the triangle edges.

The routine scan_spoly3 implements the rasterization of a triangle. The algorithm
is made up of incremental processes nested in two levels: global (of the polygon) and local
(of the edges).

At the global level, the initialization consists of determining the initial pair of edges.
The traversal consists of enumerating the cells of each span, traversing the cycle of polygon
edges. At the local level, the initialization consists of calculating the initial position and
the increment value for an edge. The traversal consists of updating the current position
along the edge.

227b 〈scan poly tri 227b〉≡
void scan_spoly3(Poly *p, int n, Paint *pfun, void *pdata)

{

Edge *lft, *rgt, *seg, l, r, s;

int lv, rv, tv = first_vertex(p->v, n);

rgt = edge(p->v[tv], p->v[rv = NEXT(tv,n)], ’y’, &r);

lft = edge(p->v[tv], p->v[lv = PREV(tv,n)], ’y’, &l);

228 13. Rasterization

while (lft && rgt) {

seg = edge(lft->p, rgt->p, ’x’, &s);

do

pfun(seg->p, n, lv, lft->t, rv, rgt->t, seg->t, pdata);

while (seg = increment(seg));

if (!(rgt = increment(rgt))) { tv = rv;

rgt = increment(edge(p->v[tv], p->v[rv = NEXT(rv,n)], ’y’, &r));

}

if (!(lft = increment(lft))) { tv = lv;

lft = increment(edge(p->v[tv], p->v[lv = PREV(lv,n)], ’y’, &l));

}

}

}

Defines:
scan spoly3, used in chunk 227a.

Uses Edge 228b, edge 229a, first vertex 228a, increment 229b, NEXT, and PREV.

The routine first_vertex calculates the vertex of lowest ordering, allowing us to
determine the initial pair of edges of the rasterization.

228a 〈first vertex 228a〉≡
static int first_vertex(Vector3 v[], int n)

{

if (v[0].y < v[n-1].y)

return ((v[0].y < v[n].y)? 0: n);

else

return ((v[n-1].y < v[n].y)? n-1: n);

}

Defines:
first vertex, used in chunk 227b.

The macros PREV and NEXT are used to traverse the cycle of edges in the negative and
positive orientations, respectively.

#define PREV(K,N) ((K == N)? 0 : ((K == 0)? N - 1 : N))

#define NEXT(K,N) ((K == 0)? N : ((K == N)? N - 1 : 0))

The data structure Edge describes an edge. It contains the current position p, the
increment of position i, the current parametric coordinate t, and the parametric increment
d, besides the number of incremental steps n.

228b 〈edge structure 228b〉≡
typedef struct Edge {

int n;

Vector3 p, i;

double t, d;

} Edge;

Defines:
Edge, used in chunks 227b and 229.

13.2. Incremental Methods 229

The routine edge creates an edge (p0, p1) with increments along the x- or y-direction.
Notice the increment in y performs a vertical scan, which traverses the boundary of the
polygonal region. On the other hand, the increment in x performs a horizontal scan,
which enumerates the cells of a span.

229a 〈edge 229a〉≡
static Edge *edge(Vector3 p0, Vector3 p1, char c, Edge *e)

{

SNAP_XY(p0); SNAP_XY(p1);

switch (c) {

case ’x’: e->n = ABS(p1.x - p0.x); break;

case ’y’: e->n = p1.y - p0.y; break;

}

e->t = 0;

e->p = p0;

e->d = (e->n < 1) ? 0.0 : 1.0 / e->n;

e->i = v3_scale(e->d, v3_sub(p1, p0));

return e;

}

Defines:
edge, used in chunk 227b.

Uses Edge 228b and SNAP XY.

The macro SNAP_XY restricts the coordinates (x, y) to the points of the integer grid
Z× Z.

#define SNAP_XY(V) {V.x = rint(V.x), V.y = rint(V.y);}

The routine increment updates the current position and parameter of the edge. It
also tests the halting condition.

229b 〈increment 229b〉≡
static Edge *increment(Edge *e)

{

e->p = v3_add(e->p, e->i);

e->t += e->d;

return (e->n-- > 0) ? e : (Edge *)0;

}

Defines:
increment, used in chunk 227b.

Uses Edge 228b.

Each cell Ci,j , enumerated by the algorithm, is passed to the painting routine pfun,
responsible for processing the corresponding pixel. The variable pdata stores the data
used in this processing. In general, we have attributes of the graphics object that can be
associated with the vertices of the polygon. The routine pfun calculates the values of the
attributes in the cell by using bilinear interpolation.

230 13. Rasterization

The routine seg_bilerp implements the bilinear interpolation.
230a 〈seg bilerp 230a〉≡

Vector3 seg_bilerp(Poly *p, int n, Real t, int lv, Real lt, int rv,

Real rt)

{

return v3_bilerp(t, lt, p->v[NEXT(lv,n)], p->v[lv],

rt, p->v[PREV(rv,n)], p->v[rv]);

}

Defines:
seg bilerp, never used.

Uses NEXT and PREV.

13.2.2 Extrinsic Incremental Rasterization

The extrinsic incremental rasterization scans the cells of the integer grid on the image
plane. The scan process is usually performed by lines and columns of the image matrix; in
other words, the cells Ci,j are visited by varying i = 1, . . . , n, for j = 0, . . . ,m. A cell
Ci,j is part of the representation of a graphics object O = (S, f) if (Ci,j ∩S) 6= ∅. When
S is a region of the plane, this determination can be performed in an approximate way by
testing whether the center of the cell is contained in S.

The routine scan_prim performs the extrinsic rasterization of an implicit primitive. It
performs the scan by line of the corresponding cells of the bounding box of the primitive.
For each cell, the intersection between the surface and a ray, with origin in (u, v, 0) and
direction (0, 0, 1), is calculated. If the intersection exists, the cell will then be processed by
the routine paint.

230b 〈scan prim 230b〉≡
void scan_prim(Prim *p, void (*paint)())

{

Real u, v; Inode *l; Box3d bb = prim_bbox(p);

for (v = bb.ll.y; v < bb.ur.y; v++)

for (u = bb.ll.x; u < bb.ur.x; u++)

if (l = prim_intersect(p, ray_make(v3_make(u,v,0), v3_make(0,0,1))))

paint(u,v);

}

Defines:
scan prim, never used.

Notice that, as the implicit primitive is defined in the 3D space, the intersection with
parallel rays corresponds to an orthogonal projection incorporated into the rasterization.

The process of rasterizing a 3D scene made up of several primitive objects requires,
due to the visibility problem, the simultaneous rasterization of every object. In this case,
the scan of the image cells is performed and, for each cell, the intersection between the
corresponding ray and the objects of the 3D scene is calculated. If more than one object
intersects the ray, it is necessary to determine which object is visible. This problem will be
discussed in Chapter 14.

13.3. Rasterization by Subdivision 231

13.3 Rasterization by Subdivision
In this section we will discuss rasterization methods by subdivision for straight line seg-
ments. The rasterization algorithms by subdivision are made up of two basic operations:
estimate and decomposition. The process begins with an initial configuration. At each
level of recursion, an estimate is performed to determine whether a cell can be enumer-
ated or whether a new decomposition is necessary. In the second case, a subdivision is
performed and the algorithm is recursively applied to each part.

13.3.1 Intrinsic Subdivision

Rasterization by intrinsic subdivision of straight line segments is based on a test of the
segment length. If its result is smaller than the diameter of the cell, the segment will be
processed by the routine paint; otherwise, the segment will be subdivided at the middle
point, thus establishing the recursion.

The routine subdiv_line implements the rasterization of a straight line segment.

231a 〈subdiv line 231a〉≡
void subdiv_line(Vector3 p, Vector3 q, void (*paint)())

{

Box3d bb = bound(p, q);

if ((bb.ur.x - bb.ll.x) <= 1 && (bb.ur.y - bb.ll.y) <= 1) {

paint(bb.ll.x, bb.ll.y);

} else {

Vector3 m = v3_scale(0.5, v3_add(p,q));

subdiv_line(p, m, paint);

subdiv_line(m, q, paint);

}

}

Defines:
subdiv line, never used.

Uses bound 231b.

The routine bound calculates the bounding box of a straight line segment.

231b 〈bound 231b〉≡
static Box3d bound(Vector3 p, Vector3 q)

{

Box3d bb;

bb.ll.x = MIN(p.x, q.x); bb.ll.y = MIN(p.y, q.y); bb.ll.z = MIN(p.z, q.z);

bb.ur.x = MAX(p.x, q.x); bb.ur.y = MAX(p.y, q.y); bb.ur.z = MAX(p.z, q.z);

return bb;

}

Defines:
bound, used in chunk 231a.

232 13. Rasterization

This type of algorithm can be extended to perform the rasterization of polynomial
patches, such as B-spline and Bézier surfaces. In those cases, there exist simple subdivision
methods. The two greatest advantages are efficiency and adaptation.

13.3.2 Extrinsic Subdivision

Rasterization by extrinsic subdivision divides a rectangle contained on the image plane
until it corresponds to a grid cell, or until it does not intersect the rasterized object.

The routine subdiv_boxline implements the rasterization for straight line segments.
232a 〈subdiv boxline 232a〉≡

void subdiv_boxline(Box3d bb, Vector3 p, Vector3 q, void (*paint)())

{

if (disjoint(p, q, bb))

return;

if ((bb.ur.x - bb.ll.x) <= 1 && (bb.ur.y - bb.ll.y) <= 1) {

paint(bb.ll.x, bb.ll.y);

} else {

subdiv_boxline(b_split(bb, 1), p, q, paint);

subdiv_boxline(b_split(bb, 2), p, q, paint);

subdiv_boxline(b_split(bb, 3), p, q, paint);

subdiv_boxline(b_split(bb, 4), p, q, paint);

}

}

Defines:
subdiv boxline, never used.

Uses b split 233b and disjoint 232b.

The routine disjoint calculates whether the segment pq has no intersection with
the rectangle bb. First, it tests whether the segment is totally contained in the negative
semiplanes determined by the edges of the rectangle. Then it tests if the rectangle is totally
located in one of the semiplanes determined by the segment.

232b 〈disjoint 232b〉≡
static int disjoint(Vector3 p, Vector3 q, Box3d bb)

{

if (((p.x < bb.ll.x) && (q.x < bb.ll.x))|| ((p.y < bb.ll.y) &&

(q.y < bb.ll.y)))

return TRUE;

if (((p.x > bb.ur.x) && (q.x > bb.ur.x))|| ((p.y > bb.ur.y) &&

(q.y > bb.ur.y)))

return TRUE;

return same_side(p, q, bb);

}

Defines:
disjoint, used in chunk 232a.

Uses same side 233a.

13.4. Comments and References 233

The routine same_side calculates if the box bb is completely located on the same side
of the straight line pq.

233a 〈same side 233a〉≡
static int same_side(Vector3 p, Vector3 q, Box3d bb)

{

Vector3 l = v3_cross(v3_make(p.x,p.y,1),v3_make(q.x,q.y,1));

Real d0 = v3_dot(l,v3_make(bb.ll.x, bb.ll.y, 1));

Real d1 = v3_dot(l,v3_make(bb.ll.x, bb.ur.y, 1));

Real d2 = v3_dot(l,v3_make(bb.ur.x, bb.ur.y, 1));

Real d3 = v3_dot(l,v3_make(bb.ur.x, bb.ll.y, 1));

return ((d0 < 0 && d1 < 0 && d2 < 0 && d3 < 0)

|| (d0 > 0 && d1 > 0 && d2 > 0 && d3 > 0));

}

Defines:
same side, used in chunk 232b.

The routine b_split performs a quaternary subdivision of the rectangle b.

233b 〈bsplit 233b〉≡
static Box3d b_split(Box3d b, int quadrant)

{

switch (quadrant) {

case 1: b.ll= v3_scale(0.5, v3_add(b.ll,b.ur)); break;

case 2: b.ll.x = (b.ll.x + b.ur.x) * 0.5; b.ur.y

= (b.ll.y + b.ur.y) * 0.5; break;

case 3: b.ur= v3_scale(0.5, v3_add(b.ll,b.ur)); break;

case 4: b.ll.y = (b.ll.y + b.ur.y) * 0.5; b.ur.x

= (b.ll.x + b.ur.x) * 0.5; break;

}

return b;

}

Defines:
b split, used in chunk 232a.

Algorithms of this type can be used for both the rasterization and visibility calculations
of scenes made up of models with heterogeneous description. In this case, all the scene
objects are tested in relation to v rectangles. This strategy is the same used in the classic
Warnock viewing algorithm [Warnock 69b].

13.4 Comments and References
In this chapter we presented the rasterization algorithms for straight line segments, poly-
gons, and implicit primitives. Figure 13.2 shows an example of the programs performing
the rasterization of polygons using the intrinsic incremental method.

234 13. Rasterization

Figure 13.2. Polygon rasterization.

The API of the RASTER library is made up of the following routines:

void scan_obj(Poly *p, void (*paint)(), void *rc);

Vector3 seg_bilerp(Poly *p, Real t, int lv, Real lt, int rv, Real rt);

void scan_space(Prim *p, void (*paint)());

void rsubdiv_obj(Vector3 p, Vector3 q, void (*paint)());

void rsubdiv_space(Box3d bb, Vector3 p, Vector3 q, void (*paint)());

Exercises
1. Write a program to rasterize a straight line segment using intrinsic subdivision.

2. Write a program to rasterize a straight line segment using extrinsic subdivision.

3. Write a program to rasterize a polygon using intrinsic incremental rasterization.

4. Write a program to rasterize a sphere using extrinsic incremental rasterization.

5. Transform the programs of the previous exercises into interactive programs where the
user can specify the objects being rasterized.

6. Use the programs of straight line rasterization to draw the objects of a 3D scene in
wireframe.

7. Write a program to draw the silhouette of an implicit primitive. Hint: use a variation
of the method of extrinsic incremental rasterization.

13.4. Comments and References 235

8. Extend the program of the previous exercise for CSG objects.

9. Include color attributes in the objects for rasterization.

10. Develop a rasterization method for triangles using intrinsic subdivision.

This page intentionally left blankThis page intentionally left blank

14 Visible Surface
Calculation

The surfaces of a 3D scene are projected on the plane of the image for the viewing process.
As this projection is not bijective, it is necessary to solve the conflicts that happen when
several surfaces are mapped to the same pixel. For this problem, we use the visibility
concept. In this chapter, we will study the problem of calculating the visible surfaces of a
3D scene.

14.1 Foundations
The visibility problem consists essentially of determining the closest surfaces within the
visual field of the camera, which, consequently, will be visible. This can be seen as a
sorting problem. Notice that we are interested in a partial order, that is, up to the first
opaque surface along a viewing ray.

The visible surface calculation is strongly related to all other operations of the viewing
process. This central role is justified, as the visibility algorithms need to structure the
viewing operations to reach their solution. Within the context of this structuring, we can
mention the following relations:

� The viewing transformations must be performed in a way to take the objects to the
most appropriate coordinate system for each of the computations in the pipeline.

� The rasterization can be combined in several ways with the visibility algorithm being
used.

� Once the visible surfaces are determined, the illumination calculation should be ex-
ecuted, producing the color of the image elements.

14.1.1 Scene Properties and Coherence

The various existing scene properties constitute one of the starting points for elaborating
visibility algorithms. In this sense, the structure of the scene should be analyzed to explore
the internal coherence and discussed in relation to a complexity measure.

237

238 14. Visible Surface Calculation

To evaluate a 3D scene quantitatively, we can use several criteria. Among them, we
have the number, complexity, and homogeneity (relative size) of the objects; the distribu-
tion of groups of objects in the scene; the interference among objects; and the complexity
in scene depth.

The coherence is associated with intrinsic aspects of the scene objects, or the relations
among them, that determine the degree of variation of the image. The types of coherence
most explored in visibility algorithms are based on the:

� Object,

� Faces and edges,

� Image,

� Scene depth,

� Temporal variation.

Note that in scenes with a high degree of complexity, the use of spatial coherence tends
to decrease its importance as an efficiency factor of the algorithms. With the increase in
complexity, the usual situation is inverted: instead of having an object occupying several
pixels, we begin to have several objects contained in a single pixel.

14.1.2 Representation and Coordinate Systems

An important point being considered in the visibility calculation is related to the geometry
of the objects. Visibility algorithms can be either general or specific, accepting either
homogeneous or heterogeneous geometric descriptions of the scene objects.

The types of geometric descriptions most used in visibility algorithms include:

� Polygonal meshes.

� Bicubic parametric surfaces (spline, Bézier, etc.).

� Algebraic implicit surfaces (quadrics, superquadrics, etc.).

� Implicit constructive solid geometry models (CSG).

� Procedural models (fractals, etc.).

Another issue related to the geometry is the internal representation adopted by the
viewing system. The generality makes the algorithm more complex, with impact also in
its performance. To simplify this problem, some viewing systems combine several specific

14.1. Foundations 239

procedures to perform some of the operations individually; in addition, they produce a
common representation that can be combined in a subsequent integration stage. An ex-
treme case of this strategy consists of converting, from the start, the geometry of all the
objects to a common type (e.g., to a polygonal approximation). The other extreme case
consists of combining, at the last instant, the images of groups of objects (e.g., using image
composition).

Visibility algorithms can be divided into those operating in world space and those
operating in image space. The first category works directly with the object representation.
They calculate the exact solution, giving an orderly list of the faces projected on the plane
of the virtual screen. In this case, the visibility is the first operation being performed. This
type of algorithm generally uses a parametric description.

The algorithms working in the image space solve for a certain resolution level (that is
not necessarily the same as that of the image). In this case, the algorithm tries to solve the
problem for each pixel, analyzing the relative depths along the viewing ray. In this case,
visibility is usually postponed until the last moment. This type of algorithm generally uses
an implicit description.

14.1.3 Classification

Visibility algorithms can also be classified according to the ordering method used to deter-
mine the visible surfaces from the camera’s point of view.

The ordering structure of the visibility algorithms is closely related to the rasterization
operation, which determines the region of the image corresponding to the scene objects.
Objects occupying disjunct areas of the image are independent in terms of visibility. The
rasterization can be seen as a ordering process in which we make a spatial enumeration of
the pixels occupied by each object.

Essentially, the rasterization process results in ordering along directions x and y (hor-
izontal and vertical), while the visibility process results in ordering along z (depth), in the
camera coordinate system.

The computational structures of the visibility algorithms use the following ordering
sequences: (YXZ), (XY)Z, and Z(XY), where the parentheses indicate the combined or-
dering operation. These three ordering structures correspond to three types of algorithms
that solve visibility along with rasterization, visibility after rasterization, and visibility be-
fore rasterization.

Algorithms of the type (YXZ) and (XY)Z calculate visibility in image precision, reduc-
ing the ordering problem to a neighborhood of the image elements (pixels). Algorithms
of type (YXZ) solve visibility while processing the scene objects. As examples we have the
Z-buffer and Scanline algorithms. Algorithms of type (XY)Z completely solve the visibility
for each pixel. As an example we have the ray tracing and recursive subdivision algorithms.
Algorithms of type Z(XY) precisely calculate the visibility, processing the ordering in Z
globally, to the level of objects or the object faces. As an example we have the Z-sort, space
partition and recursive clipping algorithms.

240 14. Visible Surface Calculation

14.2 Z-Buffer
The Z-buffer algorithm stores, for each pixel, the distance up to the closest surface in
that point of the image, which is the actual visible surface. This algorithm essentially
corresponds to an ordering by cells (bucket sort).

The internal data structure zbuf stores the depth information for each pixel.

static Real *zbuf = NULL;

static int zb_h = 0, zb_w = 0;

Access to the structure is made by the macro ZBUF.

#define ZBUF(U,V) zbuf[U + V * zb_w]

The routine zbuf_init allocates a Z-buffer with resolution (w × h).

240a 〈zbuff init 240a〉≡
void zbuf_init(int w, int h)

{

zbuf = (Real *) erealloc(zbuf, w * h * sizeof(Real));

zb_w = w; zb_h = h;

zbuf_clear(MAX_FLOAT);

}

Defines:
zbuf init, never used.

Uses zb h, zbuf, and zbuf clear 240b.

The routine zbuf_clear initializes the Z-buffer with the real value val.

240b 〈zbuff clear 240b〉≡
void zbuf_clear(Real val)

{

int x, y;

for (y = 0; y < zb_h; y++)

for (x = 0; x < zb_w; x++)

ZBUF(x,y) = val;

}

Defines:
zbuf clear, used in chunk 240a.

Uses zb h and ZBUF.

The routine zbuf_store determines the visibility of a point p = (x, y, z). The point
is visible if its z-coordinate is smaller than the distance stored in the Z-buffer for pixel
(x, y).

240c 〈zbuff store 240c〉≡
int zbuf_store(Vector3 p)

{

int x = p.x, y = p.y;

14.3. Ray Tracing 241

if ((x > 0 && y > 0 && x < zb_w && y < zb_h) && p.z < ZBUF(x,y)) {

ZBUF(x,y) = p.z;

return TRUE;

} else {

return FALSE;

}

}

Defines:
zbuf store, never used.

Uses zb h and ZBUF.

The routine zbuf_peek allows access to the Z-buffer and returns the distance stored
at pixel (x, y).

241a 〈zbuff peek 241a〉≡
Real zbuf_peek(Vector3 p)

{

int x = p.x, y = p.y;

return (x > 0 && y > 0 && x < zb_w && y < zb_h)? ZBUF(x,y) : MAX_FLOAT;

}

Defines:
zbuf peek, never used.

Uses zb h and ZBUF.

14.3 Ray Tracing
The ray tracing algorithm calculates the intersection between the viewing ray and all the
objects of the 3D scene, selecting the intersection point with the closest surface. This
process is performed for each pixel of the image, using the ray leaving from the center of
projection of the camera and passing through the pixel.

14.3.1 Intersection with the 3D Scene Objects

The ray tracing method consists of calculating the intersection of the ray with each scene
object. The visible surface corresponds to intersection with smaller positive parameter t
along the ray. This process corresponds to the ordering by selection.

The routine ray_intersect calculates the closest intersection of ray r with the list of
objects olist.

241b 〈ray intersect 241b〉≡
Inode *ray_intersect(Object *olist, Ray r)

{

Object *o; Poly *p;

Inode *l = NULL, *i = NULL;

for (o = olist; o != NULL; o = o->next) {

p = (o->type == V_POLYLIST)? o->u.pols : NULL;

242 14. Visible Surface Calculation

do {

switch (o->type) {

case V_CSG_NODE:

l = csg_intersect(o->u.tcsg, r); break;

case V_PRIM:

l = prim_intersect(o->u.prim, r); break;

case V_POLYLIST:

if (p != NULL) {

l = poly_intersect(p, poly3_plane(p), r);

p = p->next;

} break;

}

if ((l != NULL) && (i == NULL|| l->t < i->t)) {

inode_free(i);

i = l; i->m = o->mat;

inode_free(i->next); i->next = NULL;

}

} while (p != NULL);

}

return i;

}

Defines:
ray intersect, never used.

Uses csg intersect 242.

14.3.2 Intersection with CSG Models

The ray tracing method for CSG models calculates the intersection with each primitive and
it combines the intersections based on the boolean operation. This process corresponds to
an ordering with merging (merge sort).

The routine csg_intersect calculates the intersection of a ray with a CSG solid.

242 〈csg intersect 242〉≡
Inode *csg_intersect(CsgNode *n, Ray r)

{

if (n->type == CSG_COMP)

return csg_ray_combine(n->u.c.op, csg_intersect(n->u.c.lft, r)

, csg_intersect(n->u.c.rgt, r));

else

return prim_intersect(n->u.p, r);

}

Defines:
csg intersect, used in chunk 241b.

Uses csg ray combine 243a.

The routine csg_ray_combine combines, according to the boolean operation op, the
intersections of two elements of a CSG composition given by the lists a and b.

14.3. Ray Tracing 243

The intersection is given by a list of points where the ray crosses the surface that de-
limits the solid. Starting from this list, intervals can be determined along the ray, corre-
sponding to interior and exterior points of the solid. These intervals are combined by the
CSG operation, thus creating a new list.

243a 〈csg ray combine 243a〉≡
Inode *csg_ray_combine(char op, Inode *a, Inode *b)

{

Inode in = {NULL, 0, {0,0,0}, 0, NULL}, *t, *head = *c = ∈

int as = R_OUT, bs = R_OUT, cs = csg_op(op, as, bs);

while (a|| b) {

if ((a && b && a->t < b->t)|| (a && !b))

CSG_MERGE(as, a)

else

CSG_MERGE(bs, b)

}

c->next = (Inode *)0;

return head->next;

}

Defines:
csg ray combine, used in chunk 242.

Uses CSG MERGE 243b and csg op 243c.

The macro CSG_MERGE merges two intervals according to the CSG operation.

243b 〈csg merge 243b〉≡
#define CSG_MERGE(S, A) { int ts = cs;\

S = !S;\

if ((cs = csg_op(op, as, bs)) != ts) {\

if (op == ’-’ && !S) \

A->n = v3_scale(-1., A->n); \

c->next = A; c = A; A = A->next;\

} else {\

t = A; A = A->next; free(t);\

}\

}

Defines:
CSG MERGE, used in chunk 243a.

Uses csg op 243c.

The routine csg_op determines the result of the CSG operation.

243c 〈csg op 243c〉≡
int csg_op(char op, int l, int r)

{

switch (op) {

case ’+’: return l| r;

case ’*’: return l & r;

244 14. Visible Surface Calculation

case ’-’: return l & (!r);

}

}

Defines:
csg op, used in chunk 243.

Extensions of the ray tracing method include stochastic sampling, use of rays to calcu-
late the illumination (ray tracing), and optimizations.

14.4 The Painter’s Algorithm
The painter’s algorithm, also known as Z-sort, is essentially divided into two stages: in the
first stage, the scene components are sorted in relation to the virtual camera; in the second
stage, objects are rasterized in order, from most distant to closest.

Two possible implementations exist for the painter’s algorithm: the approximated Z-
sort method and the complete Z-sort method.

14.4.1 Approximated Z-Sort

In the approximated Z-sort method, polygons are sorted based on a distance value of the
triangle to the observer. This value can be estimated starting from the centroid, or even
from one of the polygon vertices. This method of using only a distance value for each
polygon does not guarantee that the order of the polygons will always be correct from
the point of view of the visible surface calculation. However, the method is simple to
implement, works for most cases, and constitutes the initial stage of the complete Z-sort
method.

The data structure Zdatum stores, in z, the representative value of the polygon of an
object.

244a 〈zdatum 244a〉≡
typedef struct Zdatum {

Real zval;

Poly *l;

IObject *o;

} Zdatum;

Defines:
Zdatum, used in chunk 245.

The routine z_sort uses the ordering insertion method to construct a list of the poly-
gons of the scene according to distances in z.

244b 〈zsort 244b〉≡
List *z_sort(List *p)

{

List *q = new_list();

14.4. The Painter’s Algorithm 245

while (!is_empty(p)) {

Item *i = z_largest(p);

remove_item(p, i);

append_item(q, i);

}

return q;

}

Defines:
z sort, never used.

Uses z largest 245.

The routine z_largest returns the list element p with larger z coordinate.

245 〈zlargest 245〉≡
Item *z_largest(List *p)

{

Item *i, *s;

for (s = i = p->head; i != NULL; i=i->next)

if (((Zdatum *)(i->d))->zval > ((Zdatum *)(s->d))->zval)

s = i;

return s;

}

Defines:
z largest, used in chunk 244b.

Uses Zdatum 244a.

14.4.2 Complete Z-Sort

The complete Z-sort method begins with an orderly list of polygons produced by the
approximated Z-sort. After that, the algorithm traverses this list, verifying whether the
order of the polygons is correct from the point of view of the visible surface calculation. If
two polygons P and Q are not in the correct order, their position in the list is changed.

To determine whether the painting order is correct, the method requires that polygon
Q, to be painted after polygon P , cannot occlude it. This determination is performed by
a series of tests of growing complexity which involve, for instance, testing the bounding
boxes of P and Q, splitting a polygon by the support plane of the other, and intersecting
the projections of P and Q on the screen.

Situations exist in which a sequence of polygons form a cycle in relation to the painting
criterion. In those cases, it is not possible to determine a solid order and thus it is necessary
to break the cycle by subdividing one of the polygons.

The pseudocode of the complete Z-sort algorithm is shown in Algorithm 14.1.

246 14. Visible Surface Calculation

sort l by the centroid in z (approximated Z-sort);
while l 6= ∅ do

select P and Q;
if P does not occlude Q then

continue;
else if Q flagged then

resolve cycle;
else if Q does not occlude P then

swap P with Q;
flag Q;

end if
end while
paint l in order;

Algorithm 14.1. full zsort(l).

14.5 Other Visibility Methods
In this section we will present other visibility algorithms that will not be used in the system.

14.5.1 Space Subdivision

The algorithms of space partitioning classify the scene objects independently from the
parameters of the virtual camera, creating a data structure that, once the camera position
is specified, can be traversed in a way to indicate the correct visibility order of the objects.

The structure most used for this goal is the binary space partition, or BSP-tree. The
method consists of two steps:

1. Preprocessing. Constructs the BSP structure.

2. Visibility. Traverses the structure based on the camera.

Algorithm 14.2 describes the construction routine make_bsp. Algorithm 14.3 describes
the routine bsp_traverse that calculates the visibility using BSP.

if plist == NULL then
return NULL;

end if
root = select(plist);
for all p ∈ plist do

if p on ’+’ side of the root then
add(p, frontlist);

else if p on ’-’ side of the root then
add(p, backlist);

else
split_poly(p, root, fp, bp);
add(fp, frontlist);
add(bp, backlist);

end if
end for
return combine(make_bsp(frontlist),make_bsp(backlist));

Algorithm 14.2. BSP make bsp(plist).

if t == NULL then
return;

end if
if c in front of t.root then

bsp_traverse(c, t->back);
render(t->root);
bsp_traverse(c, t->front);

else
bsp_traverse(c, (t->front);
if backfaces then

render(c, t->root);
end if
bsp_traverse(c, t->back);

end if

Algorithm 14.3. bsp traverse(c, t).

14.5. Other Visibility Methods 247

for p in plist do
if P in r then

classify P;
else

remove P from plist;
end if

end for
if configuration == SIMPLE then

render r;
else

divide r into 4;
recursive_subdivision(plist, quadrant 1);
recursive_subdivision(plist, quadrant 2);
recursive_subdivision(plist, quadrant 3);
recursive_subdivision(plist, quadrant 4);

end if

Algorithm 14.4. recursive subdivision(plist, r).

14.5.2 Recursive Subdivision

The algorithm of recursive subdivision decomposes the image recursively into quadrants
until the scene configuration in that area has a trivial visibility solution, or the area is of
the size of a pixel. This algorithm is also known as a Warnock algorithm [Warnock 69b].
Algorithm 14.4 describes the routine recursive_subdivision.

14.5.3 Recursive Clipping

The recursive clipping algorithm determines a set of visible areas of the objects, which do
not overlap on the image plane. With some modifications, this method can be applied
for shadows and is also used in the beam tracing algorithm. Algorithm 14.5 describes the
routine recursive_clipping.

if list == empty then
return;

end if
sort approximately in Z;
select front poloygon P;
divide list into inside e outside clipping in relation to P;
while inside != empty do

select Q;
if P in front of Q then

remove Q;
else

swap P and Q;
end if

end while
render P;
recursive_clipping(outside);

Algorithm 14.5. recursive clipping(lista).

248 14. Visible Surface Calculation

14.6 Comments and References
The first systematic analysis of the algorithms for calculating the visible surfaces was made
by [Sutherland et al. 74], which proposes a characterization of the visibility issue according
to the ordering criterion.

There are several proposals for solving the visibility problem for scenes with hetero-
geneous geometry. [Crow 82] suggests the visibility calculation for groups of objects that
would be combined in postprocessing by image composition. [Cook et al. 87] proposes
preprocessing to convert all the scene surfaces into micropolygons, allowing an efficient
visibility calculation.

The Z-sort algorithm is described in [Newell et al. 72a] and [Newell et al. 72b].
The space partition algorithm was initially introduced by [Shumacker et al. 69] for

flight simulation applications, and later adapted for more general applications by [Fuchs
et al. 83].

The recursive clipping algorithm was developed by Weiler and Atherton for calculating
visible surfaces [Weiler and Atherton 77] and shadows [Atherton et al. 78]. A variation of
this method was used in the beam tracing algorithm by [Heckbert and Hanrahan 84].

The ray tracing method to solve the visibility problem was firstly applied by [MAGI 68].
A complete description of this method can be found in [Roth 82].

The A-buffer method [Carpenter 84] extends the Z-buffer algorithm, allowing a more
precise calculation of the visible surfaces at subpixel level.

The recursive image subdivision algorithm was introduced by [Warnock 69a]. The visi-
bility algorithm by Scanline was independently developed by [Watkins 70] and [Bouknight
and Kelly 70].

Figure 14.1 shows an example of the program that performs the visible surface calcula-
tion using the painter’s algorithm. Figure 14.2 shows an image with the values of Z of the
same scene.

Figure 14.1. Visible surface calculation using
the painter’s algorithm.

Figure 14.2. Depth values (Z-buffer).

14.6. Comments and References 249

14.6.1 Routines

The API of the library for visible surface calculation consists of the routines below.

void zbuf_init(int w, int h);

void zbuf_clear(Real val);

int zbuf_store(Vector3 p);

Inode *ray_cast(Object *olist, Ray r);

Inode *csg_intersect(CsgNode *n, Ray r);

Inode *csg_ray_combine(char op, Inode *a, Inode *b);

int csg_op(char op, int l, int r);

List *z_sort(List *p);

Item *z_largest(List *p);

Item *new_item(void *d);

List *new_list();

int is_empty(List *q);

void append_item(List *q, Item *i);

void remove_item(List *q, Item* i);

void free_list(List *q);

Exercises
1. Write a program to generate a set of triangles. Use the following parameters as input:

number of triangles, size, orientation, aspect ratio, distribution with respect to the
main (x, y, z) directions, and color. The output should be a list of triangles in the
SDL language.

2. Write a program to generate a set of spheres. The input should be constituted by
parameters similar to those in the previous exercise. The output should be a set of
primitive spheres in the SDL language.

3. Write a program for scanning an SDL primitive and create a polygonal mesh approx-
imating it. The output should be a list of triangles in the SDL language.

4. Write a program to calculate visibility using Z-buffer. The input should be a list of
triangles generated by the previous exercises. The output should be (1) an image with
the visible surfaces and (2) an image with the values of Z.

5. Write a program to calculate visibility using ray tracing. The input should be a set of
primitives generated by the Exercise 14.2. The output should be (1) an image with
the visible surfaces and (2) an image with the values of Z.

250 14. Visible Surface Calculation

6. Write a program to calculate the visibility using the painter’s algorithm. The input
should be a list of triangles generated by the previous exercises. The output should be
(1) an image with the visible surfaces and (2) an image with the values of Z.

7. Compare the results of the two previous exercises for the same set of spheres. First
case: spheres that do not have intersections. Second case: spheres that can have
intersections.

8. Repeat the comparison of the previous exercise for a set of triangles.

15 Local Illumination
Models

The viewing process is complete after color information is attributed to the objects rep-
resented in the image. In the case of 3D scenes, this correspondence can be established
through the illumination calculation. This is a natural choice because it simulates our vi-
sual perception of the physical world. In this chapter, and in the subsequent ones, we will
study the illumination and shading processes required for visualizing 3D scenes.

15.1 Foundations

Illumination and shading can be understood using the paradigm of the four universes. In
the physical universe, illumination is related to the interaction between light and matter.
In the mathematical universe, we describe this phenomenon through illumination models.
In the representation universe, we have methods allowing the simulation of the illumina-
tion models. In the implementation universe, we have computational schema to construct
the shading function (see Figure 15.1).

Light and Material

Illumination Models

Illumination Calculation

Shading Function

Figure 15.1. Abstraction levels for illumination.

251

252 15. Local Illumination Models

15.1.1 Illumination

A 3D scene is composed of objects either emitting or transmitting luminous energy. In the
viewing process we used a virtual camera, which we consider as a device sensitive to light.

The light has a dual nature: it behaves as a beam of particles and as a wave. The
particle model of light assumes that the flow of energy along a ray is quantized by particles
in motion called photons. This model is studied in geometric optics. On the other hand,
the wave model of light describes the luminous energy by the combination of two fields:
one electric and the other magnetic. This model is governed by the Maxwell equations
of electromagnetism. Thus some illumination phenomena are explained by the particle
model while others by the wave model.

In computer graphics, the particle model of light is the most useful because it allows us
to simulate, in a simple way, most of the relevant phenomena for the illumination of 3D
scenes. In this book we will use only this model. We will also consider only the problem
of illuminating surfaces. This means the medium does not participate in the illumination
model, as light propagates only in a vacuum. These choices considerably simplify the
problem.

15.1.2 Light Propagation

Illumination is the study of the propagation of light in the environment space. To under-
stand the concepts involved in the propagation of light, we should distinguish between ra-
diometric quantities and photometric quantities. Radiometric quantities refer to the emission
of radioactive energy and are used in the illumination calculation. Photometric quantities
refer to the perception of radiant energy and are used in the shading function calculation.

Energy propagated in the form of electromagnetic waves is called radiant energy. A
radiation beam is generally constituted by waves of several lengths within the visible spec-
trum. We call the function that associates the corresponding energy to each wavelength of
this radiation spectral distribution.

We call the radiant energy that is emitted, transmitted, or received by a surface in a
time unit radiant flow. Radiant flow is a scalar quantity. To study the propagation of
radiant energy, we distinguish between the flow arriving (called irradiance) and leaving
(called radiant intensity or radiosity) a surface in a certain direction.

Luminous flow is the quantity obtained by calculating the radiant energy as perceived
by a standard observer. The sensibility of the standard receptor is measured by the function
of luminous efficiency.

Radiant energy propagates along straight lines, and when it reaches the interface be-
tween two media, part of the energy is reflected—it returns to the original propagation
medium—while another part is transmitted—it passes through the surface toward the other
medium.

The laws of geometric optics determine the path of a ray reaching a surface. The
reflection law states that the the incident ray, I , and the reflected ray, R, form equal an-
gles θi = θr with the normal N to the surface. The transmission follows Snell’s law:

15.1. Foundations 253

θ θ

(a)

θ

θ

(b)

Figure 15.2. (a) Reflectance; (b) transmission.

nI sin θi = nT sin θt, where nI and nT are the refraction indices of the medium delim-
ited by the surface and θI and θT are, respectively, the angles the incident ray I and the
transmitted ray T form with the normal N to the surface (see Figure 15.2).

15.1.3 Surfaces and Materials

We are most interested in the interaction of light and material at the boundary between
two media. The interaction here depends on both the geometry of the surfaces and the
material of the objects, which determine the radiant energy and its path propagated at each
interaction.

We can classify materials as dielectric, metallic, or composed. Dielectric materials are
generally translucent and work as insulators of electricity. An example of this type of ma-
terial is glass. Metallic materials are generally opaque and work as conductors of electricity.
Copper, gold, and aluminum are examples of this type of material. Composed materials
are formed by opaque pigments in suspension in a transparent substratum. Plastics and
paints are examples of this type of material.

The geometry of a surface can be optically smooth or rough. A smooth surface is
modeled locally by its tangent plane. In the case of smooth surfaces, light is propagated
along the direction of reflection or transmission. A rough surface is approximated by a
model of microfacets oriented in several directions. In the case of rough surfaces, light is
propagated along several directions (see Figure 15.3).

A basic principle governing the propagation of light is the conservation of the energy,
which states that energy arriving at a surface between two media is reflected, transmitted,
or absorbed. In other words, the sum of the reflected, transmitted, and absorbed energies
is the same as the incident energy.

At the boundary between air and a dielectric material, the most of the light is transmit-
ted. At the boundary between air and a metallic material, most of the light is reflected. In
addition, some of the luminous energy is absorbed in the interaction (for instance, trans-
formed into heat). In general, the porportion of reflected and transmitted light depends
on the angle between the incident ray and the normal to the surface.

254 15. Local Illumination Models

smooth rough

dielectric

metallic

Figure 15.3. Light transmission and reflection on smooth and rough surfaces

15.1.4 Local Illumination Models

A local illumination model for surfaces describes the result of the interaction at the inter-
face between two media. The model must be capable of predicting both the propagation
path of radiant energy and the spectral distribution resulting from the incident light. This
allows us to simulate the transport of luminous energy from one point to another on sur-
faces in the ambient space.

The bidirectional reflectance distribution function (BRDF) and the bidirectional trans-
mittance distribution function (BTDF) are used to create a local illumination model. These
functions depend on the direction and radiant energy of an incident luminous ray. They
specify the resulting radiant energy along each direction of the hemisphere at the incidence
point of the ray on the surface. Figure 15.4 illustrates the BRDF and BTDF functions for
a determined incident direction.

The reflectance and transmittance functions can be calculated through radiometric
measurements, but these functions are very complex. Therefore, we approximate them
by simpler functions modeling the behavior of ideal surfaces. The two extreme cases are
optically smooth and rough surfaces.

(a) (b)

Figure 15.4. (a) BRDF and (b) BTDF.

15.2. Light Sources 255

θ

(a)

β

(b)

Figure 15.5. (a) Diffuse and (b) specular reflections.

An ideal optically rough surface is called a Lambertian surface. This type of surface
obeys the Lambert law: the radiant energy in any direction is proportional to the cosine of
the angle between the direction of the incident ray and the normal; that is,

Ed = Ei cos θ.

In this case, we say that the reflection is diffuse, or the reflected energy is constant in all
directions of the illumination hemisphere (see Figure 15.5(a)).

An ideal optically smooth surface is called specular surface. In this case, the light ray
reaching the surface at a point p is reflected along direction R, so the incidence and reflec-
tion angles are the same (see Figure 15.2).

Given that the energy is uniquely reflected in direction R, it represents all the en-
ergy reaching the illumination hemisphere at p. In most materials, the specular reflection
concentrates around the direction of reflection, gradually decreasing for directions away
from it. An empirical illumination model for this type of specular reflection is the Phong
model [Phong 75]. According to this model, the radiant energy reflected in a direction
V is proportional to a power p of the cosine of the angle β between V and the reflection
direction R (see Figure 15.5(b)):

Es = Ei (cosβ)p.

The local models of diffuse and specular illumination are combined to approximate the
bidirectional reflectance function of a surface:

Eo = kdEd + ksEs,

where kd and ks are constants depending on the material.
Other more sophisticated illumination models exist. Among them we can mention

the Blinn [Blinn and Newell 76], Cook-Torrance [Cook and Torrance 81], and Torrance-
Sparrow [Torrance and Sparrow 76] models.

15.2 Light Sources
In this section we will describe the implementation of light sources and mechanisms for
transporting luminous energy. These mechanisms are the basis for implementing the local
illumination equation.

256 15. Local Illumination Models

α

Figure 15.6. Cone of light.

15.2.1 Light Transport

To implement the light transport, we will define a new geometric element: a cone of light
(see Figure 15.6). The structure Cone describes a light cone. It stores the source o, the
direction d, and the cosine of the spread angle α of the cone.

256a 〈cone 256a〉≡
typedef struct Cone {

Vector3 o, d;

Real cosa;

} Cone;

Defines:
Cone, used in chunks 256–61.

The routine cone_make implements the Cone constructor.

256b 〈cone make 256b〉≡
Cone cone_make(Vector3 o, Vector3 d, Real angle)

{

Cone c;

c.o = o; c.d = d; c.cosa = cos(angle);

return c;

}

Defines:
cone make, used in chunks 260b and 261.

Uses Cone 256a.

The routines dir_coupling and point_coupling implement the visibility in rela-
tion to a cone and are used in the geometric calculation of the light transport (see Fig-
ure 15.7).

The routine dir_coupling determines whether a propagation direction is visible for
a cone c.

256c 〈dir coupling 256c〉≡
int dir_coupling(Cone a, Vector3 v)

{

if (v3_dot(a.d, v3_scale(-1, v)) > a.cosa)

return TRUE;

else

15.2. Light Sources 257

(a) (b)

Figure 15.7. Visibility relations: (a) visibility between a cone and a direction; (b) visibility between
two cones.

return FALSE;

}

Defines:
dir coupling, used in chunks 257–59.

Uses Cone 256a.

The routine point_coupling determines whether two cones are mutually visible.

257 〈point coupling 257〉≡
int point_coupling(Cone a, Cone b)

{

Vector3 d = v3_unit(v3_sub(a.o, b.o));

return dir_coupling(a, d) && dir_coupling(b, v3_scale(-1, d));

}

Defines:
point coupling, never used.

Uses Cone 256a and dir coupling 256c.

15.2.2 Light Source Representations

There are several types of light sources. The most common are directional lights, point
lights, and focused lights (spotlights). A directional light represents a light source that
is very distant, such as the sun. Its energy propagates in a single direction and is not
attenuated with distance. A point light represents a local light source, such as a candle or
an incandescent lamp. Its energy propagates from a point in all directions and is attenuated
with distance. A focused light (spotlight) represents a local concentrated light, such as a table
lamp or a theater reflector.

We will use the structure Light to represent a light source. This structure serves as
an element of a single linked list, and it stores the parameters of all types of light sources.
Next, we will describe the common elements to all light sources: type indicates the type of
light source; color specifies the spectral distribution of the light; intensity defines the
intensity of the light; transport points to a function implementing the light transport;
outdir is the direction of light emission calculated for each interaction with a surface; and
outcol is the distribution of energy emitted in the interaction.

258 15. Local Illumination Models

258a 〈light struct 258a〉≡
typedef struct Light {

struct Light *next;

int type;

Color color;

Real ambient;

Real intensity;

Vector3 loc;

Vector3 dir;

Real cutoff;

Real distr;

Real att0, att1, att2;

Vector3 outdir;

Color outcol;

int (*transport)();

void *tinfo;

} Light;

Defines:
Light, used in chunks 258–61, 263a, and 310c.

Uses ambient 260a.

The routine ambientlight implements the transport of an ambient light.

258b 〈ambient light 258b〉≡
int ambientlight(Light *l, Cone recv, RContext *rc)

{

return FALSE;

}

Defines:
ambientlight, never used.

Uses Cone 256a, Light 258a, and RContext 259b.

The routine distantlight implements the transport of a directional light.

258c 〈distant light 258c〉≡
int distantlight(Light *l, Cone recv, RContext *rc)

{

if (dir_coupling(recv, l->dir) == FALSE)

return FALSE;

l->outdir = v3_scale(-1, l->dir);

l->outcol = c_scale(l->intensity, l->color);

return TRUE;

}

Defines:
distantlight, used in chunk 263a.

Uses Cone 256a, dir coupling 256c, Light 258a, and RContext 259b.

The routine pointlight implements the transport of a point light.

15.3. Local Illumination 259

259a 〈point light 259a〉≡
int pointlight(Light *l, Cone recv, RContext *rc)

{

Real d, dist, atten;

Vector3 v = v3_sub(rc->p, l->loc);

dist = v3_norm(v);

l->dir = v3_scale(1/dist, v);

if (dir_coupling(recv, l->dir) == FALSE)

return FALSE;

atten = ((d = l->att0 + l->att1*dist + l->att2*SQR(dist))) > 0)? 1/d : 1;

l->outdir = v3_scale(-1, l->dir);

l->outcol = c_scale(l->intensity * atten, l->color);

return TRUE;

}

Defines:
pointlight, never used.

Uses Cone 256a, dir coupling 256c, Light 258a, and RContext 259b.

15.3 Local Illumination
In this section we will present the implementation of the local illumination models.

15.3.1 Context of Illumination

Calculation of local illumination is performed in relation to a point p of a surface in the
scene. The illumination functions are defined in the illumination hemisphere at that point,
which is the set of rays on the tangent plane of the surface at p (see Figure 15.8).

The structure RContext stores the data used in the local illumination.

259b 〈render context 259b〉≡
typedef struct RContext {

Vector3 v, p, n;

Vector3 du, dv;

VN

P
Dv

Du

Figure 15.8. Geometry of local illumination.

260 15. Local Illumination Models

Vector3 t;

Material *m;

Light *l;

View *c;

Image *img;

} RContext;

Defines:
RContext, used in chunks 258–62, 304–6, and 310.

Uses Light 258a and Material 262a.

15.3.2 Illumination Functions

We will use a simple local illumination model based on the ambient, diffuse, and specular
components. Notice that all calculations are performed on the illumination hemisphere
represented in the routines by the cone receiver, with spread angle α = π/2.

The ambient component, implemented by the routine ambient, computes the con-
stant illumination of the environment.

260a 〈ambient 260a〉≡
Color ambient(RContext *rc)

{

Light *l; Color c = C_BLACK;

for (l = rc->l; l != NULL; l = l->next)

c = c_add(c, c_scale(l->ambient, l->color));

return c;

}

Defines:
ambient, used in chunks 258a and 262b.

Uses Light 258a and RContext 259b.

The diffuse component, implemented by the routine diffuse, follows Lambert’s law.
The contribution of each light source is given by ci < N,Li >, where N is the normal
to the surface and Li and ci are, respectively, the incident direction and the distribution of
energy of the light i (in the routine diffuse, Li and ci are given by l - > outdir and
l - > outcol).

260b 〈diffuse 260b〉≡
Color diffuse(RContext *rc)

{

Light *l; Color c = C_BLACK;

Cone receiver = cone_make(rc->p, rc->n, PI/2);

for (l = rc->l; l != NULL; l = l->next)

if ((*l->transport)(l, receiver, rc))

c = c_add(c, c_scale(v3_dot(l->outdir, rc->n), l->outcol));

return c;

15.4. Materials 261

}

Defines:
diffuse, used in chunk 262b.

Uses Cone 256a, cone make 256b, Light 258a, and RContext 259b.

The specular component, implemented by the routine specular, uses the Blinn model,
which is similar to the Phong model. This model avoids the calculation of the reflection
vector R and, therefore, is more efficient. The calculation is performed as a function
of the vector H = (L + V)/2, the bisector between the vectors L, in the direction of
the light source, and V , in the direction of the observer. The specular term is given by
ci < Hi, N >se , where N is the normal to the surface, and ci, Hi, and se are, respectively,
the distribution of energy, the bisecting vector of the light source i, and the exponent of
specular reflection.

261 〈specular 261〉≡
Color specular(RContext *rc)

{

Light *l; Vector3 h; Color c = C_BLACK;

Cone receiver = cone_make(rc->p, rc->n, PI/2);

for (l = rc->l; l != NULL; l = l->next) {

if ((*l->transport)(l, receiver, rc)) {

h = v3_unit(v3_scale(0.5, v3_add(l->outdir, rc->v)));

c = c_add(c, c_scale(pow(MAX(0, v3_dot(h, rc->n)),rc->m->se),

l->outcol));

}

}

return c;

}

Defines:
specular, used in chunk 262b.

Uses Cone 256a, cone make 256b, Light 258a, and RContext 259b.

15.4 Materials
In this section we will present the implementation of materials in the illumination calcu-
lation.

15.4.1 Describing Materials

The structure Material describes a material. It stores the parameters of the material that
are used in the calculation of the local illumination. The colorsC and S specify the spectral
distribution for the diffuse and specular reflections of the material. The constants ka, kd,
and ks are the coefficients of ambient, diffuse, and specular reflections. The constant se
is the exponent of specular reflection. The constant kt is the transmittance coefficient,

262 15. Local Illumination Models

and ir is the index of refraction of the material. The pointer luminance points to a
routine implementing the behavior of the material. This routine is typically based on a
local illumination model and uses the routines described in the previous section.

262a 〈material struct 262a〉≡
typedef struct Material {

Color c, s;

Real ka, kd, ks, se, kt, ir;

Color (*luminance)();

void *tinfo;

} Material;

Defines:
Material, used in chunks 259b, 263b, 304–6, and 310c.

15.4.2 Types of Materials

As we previously saw, materials are classified as dielectric, metallic, and composed. Here
we will present the implementation of a single material type: plastic, which is a composed
material and, for this reason, uses an illumination model involving the diffuse and specular
components.

The routine plastic implements a plastic material. The illumination equation for
this type of material is

C (ka amb(p) + kd diff(p)) + S(ks spec(p)),

where amb, diff, and spec, are, respectively, the terms of the ambient, diffuse, and specular
illumination, calculated for the illumination context rc at point p.

262b 〈plastic 262b〉≡
Color plastic(RContext *rc)

{

return c_add(c_mult(rc->m->c, c_add(c_scale(rc->m->ka, ambient(rc)),

c_scale(rc->m->kd, diffuse(rc)))),

c_mult(rc->m->s, c_scale(rc->m->ks, specular(rc))));

}

Defines:
plastic, never used.

Uses ambient 260a, diffuse 260b, RContext 259b, and specular 261.

15.5 Specification in the Language
An example specifying a light source of directional type in the SDL language is given by
the routine distlight_parse.

15.5. Specification in the Language 263

263a 〈parse distlight 263a〉≡
Val distlight_parse(int pass, Pval *pl)

{

Val v;

if (pass == T_EXEC) {

Light *l = NEWSTRUCT(Light);

l->type = LIGHT_DISTANT;

l->color = C_WHITE;

l->intensity = pvl_get_num(pl, "intensity", 1);

l->dir = v3_unit(pvl_get_v3(pl, "direction", v3_make(1,1,1)));

l->transport = distantlight;

v.type = LIGHT;

v.u.v = l;

}

return v;

}

Defines:
distlight parse, never used.

Uses distantlight 258c and Light 258a.

An example specifying a material of metallic type in the SDL language is given by the
routine metal_parse.

263b 〈parse metal 263b〉≡
Val metal_parse(int pass, Pval *pl)

{

Val v;

if (pass == T_EXEC) {

Material *m = NEWSTRUCT(Material);

m->c = pvl_get_v3(pl, "d_col", C_WHITE);

m->ka = pvl_get_num(pl, "ka", .1);

m->ks = pvl_get_num(pl, "ks", .9);

m->se = pvl_get_num(pl, "se", 10);

m->luminance = metal;

v.type = MATERIAL;

v.u.v = m;

}

return v;

}

Defines:
metal parse, never used.

Uses Material 262a.

264 15. Local Illumination Models

Figure 15.9. Local illumination model.

15.6 Comments and References

Figure 15.9 shows an example of the interactive programs that performs the illumination
calculation.

The API of the library SHADE consists of the routines below.

Cone cone_make(Vector3 o, Vector3 d, Real angle);

int point_coupling(Cone a, Cone b);

int dir_coupling(Cone a, Vector3 v);

Vector3 faceforward(Vector3 a, Vector3 b);

RContext *rc_set(RContext *rc, Vector3 p, Vector3 n, Vector3 v);

Color ambient(RContext *rc, Light *l, Material *m, Vector3 d);

Color diffuse(RContext *rc, Light *l, Material *m, Vector3 d);

Color specular(RContext *rc, Light *l, Material *m, Vector3 d);

int ambientlight(Light *l, Cone recv, RContext *rc);

int distantlight(Light *l, Cone recv, RContext *rc);

int pointlight(Light *l, Cone recv, RContext *rc);

int spotlight(Light *l, Cone recv, RContext *rc);

Color constant(RContext *rc, Light *l, Material *m);

Color matte(RContext *rc, Light *l, Material *m);

Color metal(RContext *rc, Light *l, Material *m);

Color plastic(RContext *rc, Light *l, Material *m);

15.6. Comments and References 265

Exercises
1. Write a program to calculate the diffuse illumination at a point on a surface for vari-

able positions of a light source.

2. Write a program to calculate the specular illumination at a point on a surface for
variable positions of a light source and of the observer.

3. Combine the two previous exercises in an interactive graphics program, in which the
user can vary the position of the light and of the observer. The program should
visually indicate the result of the illumination calculation.

This page intentionally left blankThis page intentionally left blank

16 Global Illumination

Illumination of a 3D scene is the result of the global interaction between the light sources
and surfaces of the environment. In this chapter we will study the illumination equation
describing such phenomena, as well as computational methods to numerically solve that
equation.

16.1 Illumination Model
The illumination equation describes the propagation of radiant energy in the ambient
space. As we saw in the previous chapter, according to the particle light model, each
photon carries a certain amount of radiant energy. At a certain instant in time, a photon
can be characterized by its position and by the direction of its movement. In this way, the
state of a photon is given by (s, ω), where s ∈ R3 and ω ∈ S2. The space R3 × S2 is
called phase space.

Illumination is the result of photon motion. Therefore, we want to measure the flow of
radiant energy by unit of time, or radiant power. The radiant flow, Φ(s, ω, t), is a function
defined in phase space, such that

Φ(s, ω, t)dAdω

is the number of photons passing through a differential area dA in the neighborhood of
a point s, under a differential solid angle dω in the neighborhood of a direction ω, at an
instant of time t (see Figure 16.1).

Figure 16.1. Geometry of the flow of radiant energy.

267

268 16. Global Illumination

The illumination equation is part of transport theory, which studies the distribution
of abstract particles in space and time. This theory takes two assumptions, which are
appropriate for studying the illumination of surfaces and simplify the illumination problem
considerably.

The first assumption is that the system is in equilibrium. In other words, the conditions
of light propagation in the environment do not change during the simulated time interval.
This condition means that flow is constant at every point in the scene. Consequently, we
have

∂Φ

∂t
= 0.

The second assumption is that the transmission happens in a nonparticipative medium.
We assume the simulation is performed in a vacuum, and therefore the only important
phenomena happen on the surfaces of the scene objects.

16.1.1 Transport

The transport of radiant energy between two points in a vacuum is given by the following
equation:

Φ(r, ω) = Φ(s, ω), (16.1)

where r, s are points mutually visible along the direction ω. Notice the equation is valid for
any pair of points of the ambient space satisfying the visibility condition. We are interested
only in the surface points r, s ∈M = ∪Mi of the scene.

Given a point r, we find the point s ∈ M using the surface visibility function, ν :
R3 × S2 → R, which returns the distance of the closest visible point on a surface of the
scene

ν(r, ω) = inf {α > 0 : (r − αω) ∈M}.

The point s, is then given by s = r − ν(r, ω) ω.
The illumination function at point p on a surface potentially depends on the flow of

radiant energy arriving from every direction. For this reason, we use the concept of an
illumination hemisphere, Θ at point p, that is defined by an imaginary sphere of radius 1
whose center is at p. Figure 16.2 illustrates the geometry of the transport of radiant energy
between visible points of two surfaces.

Figure 16.2. Transport of radiant energy between points on two surfaces.

16.1. Illumination Model 269

Figure 16.3. The illumination hemisphere.

The luminous energy irradiating from point p along direction ω defines a solid angle
in the hemisphere Θo, and, reciprocally, the luminous energy arriving at a point p defines
a solid angle in the illumination hemisphere Θi. In this way the illumination hemisphere
controls every exchange of energy between a surface point p and the environment (see
Figure 16.3).

16.1.2 Boundary Conditions

Equation (16.1) describes the transport conditions of radiant energy in a vacuum. To
formulate the illumination problem completely, we need to specify the boundary condi-
tions. In other words, what happens when luminous rays reach surfaces in the scene? Two
boundary conditions exist:

� Explicit. The flow leaving point s on the surface in direction ω is independent of the
incident flow. This is the case of light sources. The illumination function is given by

Φ(s, ω) = E(s, ω), (16.2)

where E specifies the emissivity function of the surface.

� Implicit. The flow leaving point s on the surface in direction ω depends on the
incident flow in the illumination hemisphere:

Φ(s, ω) =

∫
Θi

k(s, ω′ → ω)Φ(s, ω′)dω′, (16.3)

where ω ∈ Θo and ω′ ∈ Θi, and the function k is the bidirectional reflectance
function of the surface. Notice that due to the law of conservation of energy, the
radiant energy leaving Θo has to be smaller than the incident radiant energy in Θi.

16.1.3 Radiance Equation

We will formulate the illumination equation defining the boundary conditions in the trans-
port equation.

270 16. Global Illumination

At each point r ∈ M , we want to obtain the contribution of radiant energy coming
from every point s ∈M that is visible inside the illumination hemisphere Θi in r.

We partition the transport equation between two points r and s:

Φ(r, ω) = Φ(s→ r, ω) (16.4)

and replace, on the right side of the equality, the two boundary conditions (16.2) and (16.3):

Φ(r, ω) = E(s, ω) +

∫
Θi

k(s, ω′ → ω)Φ(s, ω′)dω′, (16.5)

where r, s ∈ M , ω ∈ Θo, ω′ ∈ Θi, and s is determined by the visibility function ν.
Equation (16.5) is a Fredholm integral equation of the second kind, which has been the subject
of much study [Polyanin and Manzhirov 98].

The transport equation describes the flow of radiant energy in terms of the number
of photons (irradiance). However, we want to obtain the total amount of radiant energy,
or radiance, which is the flow Φ multiplied by the energy E of the transported photons
L = EΦ, where E = h c/λ, is related to the wavelength λ through the Planck constant h
[Barrow 02], and c it is the speed of the light in the vacuum.

Radiance L is the radiant flow on a surface by unit of solid angle and by projected area:

L(r, ω) =
d2Φ(r, ω)

dωdS cos θs
, (16.6)

where θs is the angle between ω and the normal to the surface in dS. The factor cos θs
means that the flow by solid angle is independent of the surface angulation.

The radiance equation is given by

L(r, ω) = LE(r, ω) +

∫
Θi

k(s, ω′ → ω)L(s, ω′) cos θs dω
′. (16.7)

This equation is also known as the rendering equation, or the temporal invariant equation
of monochrome radiance in the vacuum. Its geometry is illustrated in Figure 16.4(a).

A modified version of Equation (16.7) describes the energy irradiated from a point r
along a direction ωo in terms of the incident energy in the illumination hemisphere in r:

L(r, ωo) = LE(r, ωo) +

∫
Θi

k(r, ω → ωo)L(s, ω) cos θr dω, (16.8)

where ωo ∈ Θo, and θr is the angle between the normal to the surface in r and ω ∈ Θi.
The geometry of the equation is illustrated in Figure 16.4(b). This form of the radiance
equation will be used to elaborate several methods for calculating illumination.

16.1. Illumination Model 271

(a) (b)

Figure 16.4. (a) Geometry of Equation (16.7); (b) geometry of Equation (16.8).

16.1.4 Numerical Approximation

The illumination equation should generally be solved in a numerical and approximate way.
We will use operator notation to study the solution of this integral equation.

We define the integral operator K as

(Kf)(x) =

∫
k(x, y)f(y)dy,

where the function k is called the kernel of the operator. We indicate that the operator K
is applied in a function f(x) by (Kf)(x).

Using the notation of operators, the illumination equation is written in the form

L(r, ω) = LE(s, ω) + (KL)(s, ω), (16.9)

or L = LE +KL.
Part of the difficulty in solving Equation (16.9) comes from the fact that the unknown

function L appears on both sides of the equality, inside and outside the integral.
A strategy for an approximate solution to the problem is to use the method of succes-

sive substitution. Notice that function L is defined in a reflexive way and, consequently,
Equation (16.9) provides an expression for L.

The basic idea consists of substituting L by its expression on the right side of the
equality, obtaining

L = LE +K(LE +KL)

= LE +KLE +K2L,

where the exponent indicates the successive application of the operator K to a function f ,
i.e., (K2f)(x) = (K(Kf))(x). Repeating the substitution process n+ 1 times,

L = LE +KLE + . . .+KnLE +Kn+1L

=
n∑
i=0

KiLE +Kn+1L.

272 16. Global Illumination

This recurrence relation provides a way to approximately calculate L. Ignoring the
residual term of order n+ 1, Kn+1L, we have

L ≈ Ln =
n∑
i=0

KiLE .

The substitution method applied to the illumination function calculation has a quite
intuitive physical interpretation. Notice the term LE , which is known, corresponds to the
radiant energy emitted by the light sources. The integral operator K models the propaga-
tion of the reflected light on the surfaces. Therefore, KLE corresponds to the illumination
of the light sources that is reflected directly by the surfaces. Its successive application mod-
els the propagation of the reflected light n times in the scene.

16.1.5 Methods for Calculating Illumination

We have developed a methodology to approximately calculate the illumination function. In
practice, this strategy translates itself in two classes of methods for calculating illumination:

� Local methods. The approximation given by L1 = LE + KLE corresponds to the
direct contribution of the light sources. This class of methods uses only the local
illumination model we studied in Chapter 15.

� Global methods. The approximation given byLn =
∑n
i=0K

iLE corresponds to the
direct contribution of the light sources and indirect contribution from the reflection
of the surfaces. This class of methods uses the global illumination model studied in
this chapter. The two most important implementation forms are the ray tracing and
radiosity methods. In the next sections we will present them in detail.

16.2 Ray Tracing Method
The ray tracing method provides a solution for calculating global illumination by sampling
the path of light rays in the scene. The basic idea consists of following the existing rays
from the scene arriving on the virtual screen. For this reason, the most appropriate name
for this method would be reverse ray tracing.

Ray tracing is appropriate for modeling specular reflection (and transmission) phenom-
ena, which are dependents on the virtual camera. In this method, the illumination integral
is calculated by probabilistic sampling, using Monte Carlo integration. In this section we
will see that, in the case of perfect specular surfaces, the integration is not necessary.

16.2.1 Photon Transport

To solve the illumination equation by the ray tracing method, we calculate the photon
transport in the scene using the geometric optics model. The goal is to follow the path of
those particles carrying radiant energy.

16.2. Ray Tracing Method 273

2

1 3

Figure 16.5. Ray path.

We will concentrate on a particle p. The path of this particle in the scene corresponds
to a series of states {s0, s1, . . . sn}, where we associate to each state, at a stage t of the
simulation, attributes of p, such as its position, direction, and energy.

A particle has an existence interval, or life span. This interval is determined by events
associated with p: its creation in the initial state s0 and its extinction in the final state sn.
The illumination equation describes the transport of radiant energy, which is equivalent to
the propagation of photons (light particles) in the environment. Therefore, in the context
of ray tracing, it is convenient to formulate the problem through an stochastic transport
equation describing the change of state of these particles:

`(t) = g(t) +

∫
k(s→ t)`(s)ds. (16.10)

In this equation, `, g, and k are interpreted as probability distributions. More precisely,
`(si) is the probable number of particles existent in the state si; g(si) is the probable
number of particles created in the state si; and k(si → sj) is the probability a particle will
pass from the state si to the state sj .

We want to calculate the illumination function on the surfaces of the scene. Therefore,
it is convenient to associate the states of the particles with events related to decomposition
of the surfaces M = ∪Mi. We therefore say that a particle is in the state si when its path
arrives at the surface Mi (see Figure 16.5).

We want to estimate `, given g and k in Equation (16.10). To do so we will use Monte
Carlo methods to calculate the value of the integral.

Notice we can follow the history of the particles moving forward or retreating along a
path. In the viewing context, it is convenient to begin with particles on the image plane
and to register the path traced from their creation (when they are emitted by the light
sources) until that point.

Leaving state tn and returning in the history of the particle, we have

`(tn) ≈ g(tn) +

∫
k(s→ tn)`(s)ds.

274 16. Global Illumination

We know g(tn), and we need to estimate the value of the integral∫
kn(s)`(s)ds,

where kn(s) indicates the probability of a particle arriving at state tn coming from a pre-
vious state s.

Using the Monte Carlo method we can estimate `(tn−1), performing a random sam-
pling:

`(tn) ≈ g(tn) +

∫
kn(s)`(s)ds

= g(tn) + `(tn−1)

= g(tn) + g(tn−1) +

∫
k(tn−1 → r)`(r)dr.

Continuing the process we obtain an approximate estimate of the probability distribu-
tion `(tn):

`(tn) ≈ g(tn) + g(tn−1) +

Notice this result is according to the methodology of calculating the illumination equation
developed in the previous section.

The stochastic transport equation has the same structure as the radiance equation:

L(r, ωo) = LE(r, ωo) +

∫
Θ

k(r, ω → ωo)L(s, ω) cos θr dω.

To solve this equation using a probabilistic approach, we use two techniques, allowing
us to efficiently estimate the value of the integral by the Monte Carlo method:

� Stratification. Decomposition of the illumination hemisphere Θ = ∪ Πm in strata

Dm = {ω;ω ∈ Πm}

so that the function L(s, ω) for ω ∈ Πm presents small variation.

� Importance sampling. Sampling of L(s, ω) in each stratum to select more represen-
tative samples. This is done through the importance function:

gm : R3 × S2 → [0, 1].

By incorporating these two techniques into the radiance equation, we obtain

L(r, ωo) = LE(r, ωo) +
M∑
m=1

∫
Dm

k(r, ω → ωo)
L(s, ω) cos θr
gm(r, ω)

gm(r, ω) dω,

16.2. Ray Tracing Method 275

where each stratum Di is given by a set of directions ω ∈ Πi. Notice we divided L by gm,
and later we multiplied the result by gm to avoid introducing distortions into the equation.

We obtain the points of the visible surfaces in each stratum using the visibility function
N(r, ω) = r − ν(r, ω) ω. In this way, we determine the contribution of each stratum Di∫

Di

=

∫
ω∈Πi

k(r, ω → ωo)L(N(r, ω), ω) cos θdω.

In short, the general schema of the ray tracing method for calculating the illumination
consists of the following steps:

1. Choose the strata {Dm}, with Θ = ∪Πm,

2. Determine the visibility N(s, ω) of the strata Dm,

3. Estimate the illumination integral in each stratum Dm.

The stratification and the importance function should be based on local information
about the surface and global information about the scene. A good choice is to divide the
information into two strata:

� Direct illumination. In this case, the stratum is calculated based on knowledge of the
light sources;

� Indirect illumination. In this case the stratum is calculated based on the bidirectional
reflectance function of the surface.

The classic ray tracing algorithm uses two assumptions that simplify the problem: point
light sources and perfect specular surfaces. In this way, the reflectance function corresponds
to a Dirac delta distribution [Strichartz 94], and the stratification is reduced to a discrete
set of directions. The illumination equation is then reduced to

L(r, ω) =
∑
ωl

[
kl(r, ω → ωl)LE(sl, ω

l)
]

+
[
krL(sr, ω

r) + ktL(st, ω
t)
]
, (16.11)

where si = N(r, ωi) = r − ν(r, ωi) ωi for i = l, s, t, given by the rays ωl along the
direction of the light sources, and by the the rays reflected ωr and refracted ωt. Notice
the first part of the equation corresponds to the direct illumination of the light sources,
while the second part corresponds to the specular indirect illumination. The second part is
recursively calculated.

Next we will show the implementation of this algorithm.
The routine ray_shade calculates the illumination using ray tracing.

275 〈ray shade 275〉≡
Color ray_shade(int level, Real w, Ray v, RContext *rc, Object *ol)

{

Inode *i = ray_intersect(ol, v);

if (i != NULL) { Light *l; Real wf;

276 16. Global Illumination

Material *m = i->m;

Vector3 p = ray_point(v, i->t) ;

Cone recv = cone_make(p, i->n, PIOVER2);

Color c = c_mult(m->c, c_scale(m->ka, ambient(rc)));

for (l = rc->l; l != NULL; l = l->next)

if ((*l->transport)(l, recv, rc) && (wf = shadow(l, p, ol))

> RAY_WF_MIN)

c = c_add(c, c_mult(m->c,

c_scale(wf * m->kd * v3_dot(l->outdir,i->n), l->outcol)));

if (level++ < MAX_RAY_LEVEL) {

if ((wf = w * m->ks) > RAY_WF_MIN) {

Ray r = ray_make(p, reflect_dir(v.d, i->n));

c = c_add(c, c_mult(m->s,

c_scale(m->ks, ray_shade(level, wf, r, rc, ol))));

}

if ((wf = w * m->kt) > RAY_WF_MIN) {

Ray t = ray_make(p, refract_dir(v.d, i->n, (i->enter)?

1/m->ir: m->ir));

if (v3_sqrnorm(t.d) > 0) {

c = c_add(c, c_mult(m->s,

c_scale(m->kt, ray_shade(level, wf, t, rc, ol))));

}

}

}

inode_free(i);

return c;

} else {

return BG_COLOR;

}

}

Defines:
ray shade, never used.

Uses BG COLOR, MAX RAY LEVEL, RAY WF MIN, reflect dir 276, refract dir 277a,
and shadow 277b.

The recursive process halts when the ray path has more than MAX_RAY_LEVEL states, or
when the contribution estimate wf of the rest of the path becomes smaller than MAX_WF_MIN.

The routine reflect_dir calculates the direction of the reflected ray.

276 〈reflect dir 276〉≡
Vector3 reflect_dir(Vector3 d, Vector3 n)

{

return v3_add(d, v3_scale(-2 * v3_dot(n, d), n));

}

Defines:
reflect dir, used in chunk 275.

16.2. Ray Tracing Method 277

The routine refract_dir calculates the direction of the transmitted ray, using Snell’s
law.

277a 〈refract dir 277a〉≡
Vector3 refract_dir(Vector3 d, Vector3 n, Real eta)

{

Real c1, c2;

if ((c1 = v3_dot(d, n)) < 0)

c1 = -c1;

else

n = v3_scale(-1.0, n);

if ((c2 = 1 - SQR(eta) * (1 - SQR(c1))) < 0)

return v3_make(0,0,0);

else

return v3_add(v3_scale(eta, d), v3_scale(eta*c1 - sqrt(c2), n));

}

Defines:
refract dir, used in chunk 275.

The routine shadow determines whether the ray along the direction of the light source
is in a shadow region.

277b 〈shadow 277b〉≡
Real shadow(Light *l, Vector3 p, Object *ol)

{

Real t, kt; Inode *i; Vector3 d;

if (l->type != LIGHT_POINT)

return 1.0;

if ((i = ray_intersect(ol, ray_make(p, d))) == NULL)

return 1.0;

t = i->t; kt = i->m->kt; inode_free(i);

if (t > RAY_EPS && t < 1)

return 0.0;

else

return 1.0;

}

Defines:
shadow, used in chunk 275.

Figure 16.6 illustrates the schema used in the ray tracing algorithm.

278 16. Global Illumination

Figure 16.6. Schema of the ray tracing algorithm.

16.3 The Radiosity Method
The radiosity method provides a solution for calculating global illumination based on a dis-
cretization of the surfaces of the scene. The basic idea consists of decomposing the surfaces
in polygonal elements and calculating the exchange of energy among all those elements.
For this reason, the radiosity method is particularly suitable for modeling interactions of
diffuse reflection, which are independent of the virtual camera.

In radiosity, the illumination integral is calculated using finite elements with the Galer-
kin method. We start from Equation (16.8), describing the radiance L(r, ωo) propagated
from a point r along the direction ωo, as a function of the emitted and incident radiant
energies in that point:

L(r, ωo) = LE(r, ωo) +

∫
Θi

k(r, ω → ωo)L(s, ω) cos θr dω. (16.12)

We determine the energy transport arriving at r in direction ω using the visibility
function ν such that s = r + ν(r, s)ω.

When s ∈ dS is on a distant surface, the solid angle dω can be written in the following
way:

dω =
dS cos θs
‖r − s‖2

, (16.13)

where θs is the angle between the normal to dS and the vector (r − s).
To place this expression in the illumination equation, we have to guarantee that the

integration will be performed only for the points on the visible surfaces. So we define the

16.3. The Radiosity Method 279

θ

θ

Figure 16.7. Geometry of point-to-point transport.

visibility function test:

V (r, s) =

{
1 if s = r − ν(r, s− r)(s− r);
0 otherwise. (16.14)

Substituting the expression for the solid angle in the equation and introducing the
visibility function, we can change the integration domain of solid angles in the illumination
hemisphere by areas on the visible surfaces. In this way, we have

L(r, ωo) = LE(r, ωo) +

∫
M

k(r, ω → ωo)L(s, ω)G(r, s) dω, (16.15)

where the function
G(r, s) =

cos θs cos θr
‖r − s‖2

V (r, s) (16.16)

depends only on the geometry (see Figure 16.7).
The discretization method consists of dividing the surfaces by polygonal patches Mi =

∪mk (finite elements) and defining a basis of functions {bj}j∈J that generates an approx-
imation space on the surfaces of the scene. The projection of the solution L(r, ω) in that
space can be written as a linear combination of the functions of the basis

L̂(r, ω) =
∑
j

Ljbj(r, ω). (16.17)

Calculating the projection of the equation in that space of functions, we have

〈L̂, bi〉 = 〈LE , bi〉+

〈∫
M

k(r, ω)G(r, s)L̂, bi

〉
. (16.18)

Substituting the expression of L̂ in the equation, we have〈∑
j

Ljbj , bi

〉
= 〈LE , bi〉+

〈∫
M

k(r, ω)G(r, s)
∑
j

Ljbj , bi

〉
. (16.19)

280 16. Global Illumination

Rearranging the terms in Lj and removing the sum of the internal product,

〈LE , bi〉 =

〈∑
j

Ljbj , bi

〉
−

〈∫
M

k(r, ω)G(r, s)
∑
j

Ljbj , bi

〉
,

〈LE , bi〉 =
∑
j

Lj

[
〈bj , bi〉 −

〈∫
M

k(r, ω)G(r, s)bj , bi

〉]
.

Notice we can write the above expression in matrix form LE = KL.
The classic radiosity method makes the following assumptions to simplify the problem:

1. Surfaces are opaque: there is no propagation by transmission.

2. There is Lambertian reflectance, meaning we have perfectly diffuse surfaces.

3. Radiance and irradiance are constant in each element.

Diffuse reflection implies that the bidirectional reflectance function k(s, ω → ω′) is con-
stant in all directions and, therefore, does not depend on ω. Consequently we can replace
it with a function ρ(s) that is outside the integral:∫

M

k(s, ω → ω′)L(s, ω)G(r, s) dω = ρ(s)

∫
M

L(s, ω)G(r, s) dω. (16.20)

In this way we can also make the following substitution to transform radiance into radios-
ity: Lπ = B.

The fact that we consider a piecewise constant illumination function implies that we
adopt the Haar basis {bi} for the approximating space of the finite elements.

bi(r) =

{
1 r ∈Mi

0 otherwise. (16.21)

As the functions of the Haar basis are disjunct, we have

〈bi, bj〉 = δijAi. (16.22)

Combining the above data, the illumination integral expressed in the Haar basis be-
comes〈∫

M

k(r, ω)G(r, s)bj , bi

〉
=
ρi
π

∫
Mi

∫
Mk

G(i, k) dkdi = ρiAiFi,k, (16.23)

where
Fi,k =

1

Ai

∫
Mi

∫
Mk

cos θi cos θk
π‖i− k‖2

V (i, k)dkdi (16.24)

is the form factor, which represents the percentage of radiant energy leaving element i and
arriving at element j.

16.3. The Radiosity Method 281

Using the fact that

〈LE , bi〉 =

∫
Mi

LE(s)ds = EiAi,

and substituting L 7→ B
π into the equation, we have

EiAi =
∑
k

Bk (δikAi − ρiAiFi,k)

EiAi = BiAi − ρi
∑
k

BiAiFi,k;

or, dividing both members by Ai and rearranging the terms,

Bi = Ei + ρi
∑
k

BiFi,k. (16.25)

This equation is called the classic radiosity equation. In reality, we have a system of n
equations for the radiosities B of n elements of the discretization. In matrix form,

B = E + FB

(I − F)B = E,

or 
1− ρ1F11 . . . −ρ1F1n

−ρ2F21 . . . −ρ2F2n

...
−ρnFn1 . . . 1− ρnFnn




B1

B2

...
Bn

 =


E1

E2

...
En

 ,

as the discretization of the surfaces in finite elements is done by a polygonal mesh, we have
that Fii = 0 and the diagonal of the matrix is equal to 1.

We want to find the numerical solution of the system given by

B = (I − F)−1E.

When the linear system is very large, inverting the matrix becomes impractical. In
this case, the best solution is to use iterative methods based on successive refinements.
In this type of method, given a linear systemMx = y, we generate a series of approximated
solutions xk that converge to the solution x when k →∞.

The approximation error in the stage k is given by

ek = x− xk, (16.26)

and the residue rk caused by the approximation Mxk = y + rk is

rk = y −Mxk. (16.27)

282 16. Global Illumination

We want to minimize the residue rk in each stage k. To express the residue in terms
of the error, we subtract the equality y −Mx = 0 of rk

rk = (y −Mxk)− (y −Mx)

= M(x− xk)

= Mek.

The basic idea of the iterative methods is to refine the approximation xk, producing a
better approximation xk+1. We will describe the Southwell method here, which consists
of seeking a transformation that makes the residue rk+1

i of one of the elements xk+1
i in

the next stage equal to zero. In this way, we select the element xi with the residue of larger
magnitude and we calculate xk+1

i , satisfying

rk+1
i = 0,

yi +
∑
j

Mijx
k+1
j = 0.

As only the component i of the vector x is altered, we have xk+1
j = xkj for j 6= i. The new

value of xk+1
i then is

xk+1
i =

1

Mii

yi −∑
i6=j

Mijx
k
j


= xki +

rki
Mii

= xki + ∆xki .

The new residue can be calculated

rk+1 = y −Mxk+1

= y −M(xk + ∆xk)

= y −Mxk −M∆xk

= rk −M∆xk.

However, the vector ∆xk = xk+1 − xk has all the components equal to zero, except
for ∆xki . Then

rk+1
j = rkj −

Kji

Kii
rki . (16.28)

16.3. The Radiosity Method 283

Notice that to update the vector of residues, we only used a column of the matrix. This
is indicated below: 

x
x
x
x

 =


x
x
x
x

+


·
x
·
·



· x · ·
· x · ·
· x · ·
· x · ·

 .

The algorithm of progressive radiosity uses a variant of the Southwell method that
results in good approximations to the solution with few iterations.

In the context of the illumination problem, we can interpret the residue Rki as being
the radiant energy of the element Mi in the stage k that still was not spread in the scene.

With this physical interpretation, we can see that the Southwell method consists of
updating the nondistributed radiant energy of an element Mi by all the the other elements
Mj with j 6= i. On the other hand, these elements will spread the energy received at a
subsequent stage.

In this case, M = (I − F). We know that Mii = 1 and that Mij = −ρjFij . We
therefore have the following rule for updating the vector of residues:

Rk+1
j = Rkj + (ρjFij)R

k
i ,

and Rk+1
i = 0. In progressive radiosity, we also update the vector of radiosities of the

elements Bj , for j 6= i:
Bk+1
j = Bkj + (ρjFij)R

k
i .

The routine radiosity_prog implements the progressive radiosity algorithm.

283 〈radiosity prog 283〉≡
Color *radiosity_prog(int n, Poly **p, Color *e, Color *rho)

{

int src, rcv, iter = 0;

Real ff, mts, *a = NEWTARRAY(n, Real);

Color d, *dm = NEWTARRAY(n, Color);

Color ma, *m = NEWTARRAY(n, Color);

initialize(n, m, dm, a, p, e);

while (iter-- < max_iter) {

src = select_shooter(n, dm, a);

if (converged(src, dm))

break;

for (rcv = 0; rcv < n; rcv++) {

if (rcv == src|| (ff = formfactor(src, rcv, n, p, a)) < REL_EPS)

continue;

d = c_scale(ff, c_mult(rho[rcv], dm[src]));

m[rcv] = c_add(m[rcv], d);

284 16. Global Illumination

dm[rcv] = c_add(dm[rcv], d);

}

dm[src] = c_make(0,0,0);

}

ma = ambient_rad(n, dm, a);

for (rcv = 0; rcv < n; rcv++)

m[rcv] = c_add(m[rcv], ma);

efree(a), efree(dm);

return m;

}

Defines:
radiosity prog, never used.

Uses ambient rad 286, converged 285c, formfactor 285a, initialize 284a, max iter,
and select shooter 284b.

The routine initialize performs the attribution of the initial values.

284a 〈init radiosity 284a〉≡
static void initialize(int n, Color *m, Color *dm, Real * a, Poly **p,

Color *e)

{

int i;

for (i = 0; i < n; i++) {

a[i] = poly3_area(p[i]);

m[i] = dm[i] = e[i];

}

}

Defines:
initialize, used in chunk 283.

The routine select_shooter chooses the element with larger nondistributed radios-
ity.

284b 〈select shooter 284b〉≡
static int select_shooter(int n, Color *dm, Real *a)

{

Real m, mmax; int i, imax;

for (i = 0; i < n; i++) {

m = c_sqrnorm(c_scale(a[i], dm[i]));

if (i == 0|| m > mmax) {

mmax = m; imax = i;

}

}

return imax;

}

Defines:
select shooter, used in chunk 283.

16.3. The Radiosity Method 285

The routine formfactor calculates the form factor Fij .
285a 〈form factor 285a〉≡

static Real formfactor(int i, int j, int n, Poly **p, Real *a)

{

Real r2, ci, cj; Vector3 vi, vj, vji, d;

vi = poly_centr(p[i]);

vj = poly_centr(p[j]);

vji = v3_sub(vi, vj);

if ((r2 = v3_sqrnorm(vji)) < REL_EPS)

return 0;

d = v3_scale(1.0/sqrt(r2), vji);

if ((cj = v3_dot(poly_normal(p[j]), d)) < REL_EPS)

return 0;

if ((ci = -v3_dot(poly_normal(p[i]), d)) < REL_EPS)

return 0;

if (vis_flag && visible(n, p, vj, vji) < REL_EPS)

return 0;

return a[i] * ((cj * ci) / (PI * r2 + a[i]));

}

Defines:
formfactor, used in chunk 283.

Uses vis flag and visible 285b.

The routine visible determines the visibility between two elements i, j.
285b 〈visible 285b〉≡

static Real visible(int n, Poly **p, Vector3 v, Vector3 d)

{

Ray r = ray_make(v, d);

while (n--) {

Real t = poly3_ray_inter(p[n], poly3_plane(p[n]), r);

if (t > REL_EPS && t < 1)

return 0.0;

}

return 1.0;

}

Defines:
visible, used in chunk 285a.

The routine converged tests the convergence of the solution.
285c 〈converged 285c〉≡

static int converged(int i, Color *dm)

{

return (c_sqrnorm(dm[i]) < dm_eps);

}

Defines:
converged, used in chunk 283.

Uses dm eps.

286 16. Global Illumination

Figure 16.8. Progressive radiosity.

The routine ambient_rad calculates the ambient radiosity.

286 〈ambient rad 286〉≡
static Color ambient_rad(int n, Color *dm, Real *a)

{

int i; Real aa = 0;

Color ma = c_make(0,0,0);

for (i = 0; i < n; i++) {

ma = c_add(ma, c_scale(a[i], dm[i]));

aa += a[i];

}

return c_scale(1.0/aa, ma);

}

Defines:
ambient rad, used in chunk 283.

Figure 16.8 shows the processing schema of the progressive radiosity algorithm.

16.4 Comments and References
Figure 16.9 shows a scene calculated using ray tracing. Figure 16.10 shows the display
screen of the program calculating illumination using radiosity.

The API of the GLOBAL library is made up of the routines below:

Color ray_shade(int level, Ray v, Inode *i, RContext *rc);

Ray ray_reflect(Ray r, Inode *i);

Ray ray_refract(Ray r, Inode *i);

16.4. Comments and References 287

Figure 16.9. Ray tracing. (See Plate V.) Figure 16.10. Radiosity. (See Plate VI.)

Inode *ray_intersect(Ray r, RContext *rc);

Color *progress_rad(int n, Poly **p, Color *e, Color *rho, Real eps);

void initialize(int n, Color *m, Color *dm, Real * a, Poly **p, Color *e);

int converged(int n, Color *dm, Real *a, Real eps);

int select_shooter(int n, Color *dm, Real *a);

Real formfactor(int i, int j, int n, Poly **p, Real *a);

Real visible(int n, Poly **p, Vector3 v, Vector3 d);

Color ambient_rad(int n, Color *dm, Real *a);

Exercises
1. Create a simple scene composed of two spheres and a light source. Write a program

to calculate the illumination using ray tracing.

2. Create a simple scene consisting of a closed box. Associate a light source to a region of
one of the box’s walls. Write a program to calculate the illumination using radiosity.

This page intentionally left blankThis page intentionally left blank

17 Mapping Techniques

In this chapter we will study mapping techniques, which specify the attribute functions of
graphics objects.

17.1 Foundations
Mappings are a powerful technique for specifying attribute functions. In this section, we
will see that all existng mapping techniques are part of a single mathematical model. That
model can be used to study several texture applications in the viewing process.

17.1.1 The Concept of Mapping

A texture is an application t : U ⊂ Rm → Rk, of a subset U of the Euclidean space Rm,
to the Euclidean space Rk. The name “texture” comes from the particular case in which
m = 2, k = 3, and the Euclidean space Rk is identified with a color space. In this case, t
represents a digital image.

Given a function g : V → U ⊂ Rm, of a subset V ⊂ Rn of the object space, we call
texture mapping the composition of applications

τ = g ◦ t : V → Rk

that associates, to each point (x, y, z) of the object space, an element t(g(x, y, z)) of the
vector space Rk.

This schema is represented in the diagram below.

V

U

g

? t - Rk

g ◦
t
-

289

290 17. Mapping Techniques

Texture mapping involves the following spaces:

� Object space. V ⊂ Rn.

� Texture space. U ⊂ Rm.

� Attribute space. Rk.

These spaces are related to the

� Texture function. t : U ⊂ Rm → Rk,

� Mapping function. g : V ⊂ Rn → U .

The texture function establishes the association between the geometric texture domain and
its attribute values. The mapping function establishes the correspondence between points
of the object and points of the texture domain.

17.1.2 Types of Mapping

The texture function depends on the dimension m of the texture space Rm and on the
nature of the attribute space Rk. According to the dimension of the texture domain, we
have three types of texture mapping:

� 1D mapping. When m = 1; in this case t is a color map,

� 2D mapping. When m = 2; in this case t is a digital image,

� 3D mapping. When m = 3; in this case t is called a solid texture.

The mapping function depends on the geometric description of the support V of the
graphics object and on the dimension of the texture space. There are two basic ways to
define the mapping function: the first is based on a parameterization associated with the
object, and the second is based on some type of projection.

The parameterization provides a natural solution when the texture space has dimen-
sion 2 and V is a parametric surface. In this case, we have the surface equation f : R2 → V ,
which is invertible, and whose inverse f−1 can be taken as being the mapping function g.

Projection is the recommended solution when the texture space has dimension 2, and
V is an implicit surface. In this case, we are looking for a projection that would naturally
adapt to the shape of the object. The spherical and cylindrical projections are mostly used
for this purpose.

When the texture space has dimension 3, we can use as mapping function a constraint
of the R3 to the points of U ⊂ R3. This solution serves equally well for surfaces defined
in parametric and implicit ways.

17.2. Texture Function 291

17.1.3 Mapping Applications

Applications of texture mapping are closely related to the nature of the attributes. The
most important applications are

� Appearance. This is a property of the surface of the object. For instance, color,
reflectance, etc.

� Geometry. This is used to model the geometry of the object. For instance, specifying
the roughness on the surface.

� Illumination. This represents data from the illumination calculation. In this case, the
mapping works as a cache engine for the viewing algorithms. Examples of such use
include mapping reflections and shadows.

In the next sections we will discuss the implementation of these mapping applications.

17.2 Texture Function
In this section we will present the implementation of 2D texture functions. We will de-
scribe a generic representation and two types of definition: by samples and procedural.

17.2.1 Representation

A generic 2D texture is represented by the data structure TextureSrc, which includes an
access function and the texture data.

291a 〈texture source 291a〉≡
typedef struct TextureSrc {

Color (*texfunc)();

void *texdata;

} TextureSrc;

Defines:
TextureSrc, used in chunks 291b, 292b, 294b, 297b, and 299.

A texture can be described by an image (type TEX_IMG) or by a function (type
TEX_FUNC). The routine parse_texsource performs the encapsulation of a generic tex-
ture in the scene description language.

291b 〈parse texture source 291b〉≡
TextureSrc *parse_texsource(Pval *pl)

{

Pval *p = pl;

while (p != NULL) {

if (p->name && strcmp(p->name,"tex_src") == 0) {

if (p->val.type == TEX_IMG|| p->val.type == TEX_FUNC)

return (TextureSrc *)(p->val.u.v);

292 17. Mapping Techniques

}

p = p->next;

}

return default_tsrc();

}

Defines:
parse texsource, used in chunks 295b and 301.

Uses default tsrc and TextureSrc 291a.

17.2.2 Definition by Image

When the texture is defined by an image, the field texdata of the structure TextureSrc
is of type Image. The access function is the routine image_texture.

292a 〈image texture 292a〉≡
Color image_texture(Image *i, Vector3 t)

{

Color c00, c01, c10, c11, c;

Real ru, rv, tu, tv; int u, v;

ru = t.x * i->w;

rv = (1 - t.y) * i->h;

u = floor(ru); tu = ru - u;

v = floor(rv); tv = rv - v;

c00 = img_getc(i, u, v);

c01 = img_getc(i, u, v+1);

c10 = img_getc(i, u+1, v);

c11 = img_getc(i, u+1, v+1);

c = v3_bilerp(tu, tv, c00, c01, tv, c10, c11);

return c_scale(1./255.);

}

Defines:
image texture, used in chunk 292b.

The routine imagemap_parse implements a texture map defined by an image stored
in the raster format.

292b 〈parse image map 292b〉≡
Val imagemap_parse(int pass, Pval *pl)

{

Val v;

if (pass == T_EXEC) {

Pval *p = pl;

TextureSrc *i = NEWSTRUCT(TextureSrc);

i->texfunc = texture_default;

while (p != NULL) {

if (p->name && strcmp(p->name,"fname") == 0 && p->val.type == V_STR) {

i->texfunc = image_texture;

i->texdata = img_read(p->val.u.v);

17.2. Texture Function 293

}

p = p->next;

}

v.type = TEX_IMG;

v.u.v = i;

}

return v;

}

Defines:
imagemap parse, never used.

Uses image texture 292a, texture default, and TextureSrc 291a.

The routine imagemap_parse is associated with the following construction of the
scene description language:

tex_src = imagemap { fname = "name.ras"}}

17.2.3 Procedural Definition

When the texture is defined in a procedural way, the access function is a routine to generate
the attribute values using parameters stored in the field texdata.

We will give an example of a procedural texture that consists of a chess pattern. The
routine chequer_texture implements a chess texture defining its parameters in the rou-
tine API.

293a 〈chequer texture 293a〉≡
Color chequer_texture(ChequerInfo *c, Vector3 t)

{

return chequer(c->xfreq, c->yfreq, c->fg, c->bg, t);

}

Defines:
chequer texture, never used.

Uses chequer 293b and ChequerInfo.

The routine chequer calculates the color of chess pattern.

293b 〈chequer 293b〉≡
Color chequer(Real freq, Color a, Color b, Vector3 t)

{

Real sm = mod(t.x * freq, 1);

Real tm = mod(t.y * freq, 1);

return ((sm < .5) ? ((tm < .5)? a : b) : ((tm < .5)? b : a));

}

Defines:
chequer, used in chunk 293a.

Uses mod 294a.

294 17. Mapping Techniques

The routine mod is used as an auxiliary function to generate the chess texture.

294a 〈mod 294a〉≡
Real mod(Real a, Real b)

{

int n = (int)(a/b);

a -= n * b;

if (a < 0)

a += b;

return a;

}

Defines:
mod, used in chunks 293b and 294c.

17.3 Texture Mapping
The texture mapping associates, to each point (x, y, z) of the support V of the object, an
attribute value t(g(x, y, z)) that is used to calculate the illumination function at the given
point. The attribute can be the color of the surface, or some other property of the material
of the object. When the texture space has dimension 2, we the effect is an elastic wrap that
is stretched over the surface of the object.

The structure TmapInfo stores the data for the texture mapping.

294b 〈tmap info 294b〉≡
typedef struct TmapInfo {

TextureSrc *src;

int code;

Color bg;

} TmapInfo;

Defines:
TmapInfo, used in chunks 294c and 295b.

Uses TextureSrc 291a.

The routine texture_map performs the texture mapping. The texture application can
be of type TMAP_TILE or TMAP_CLAMP.

294c 〈texture map 294c〉≡
Color texture_map(void *info, Vector3 t)

{

TmapInfo *i = info;

switch (i->code) {

case TMAP_TILE:

t.x = mod(t.x, 1); t.y = mod(t.y, 1);

break;

case TMAP_CLAMP:

17.3. Texture Mapping 295

if (t.x < 0|| t.x > 1|| t.y < 0|| t.y > 1)

return i->bg;

break;

}

return (*i->src->texfunc)(i->src->texdata, t);

}

Defines:
texture map, used in chunk 295a.

Uses mod 294a, TMAP CLAMP, TMAP TILE, and TmapInfo 294b.

The routine textured_plastic implements a plastic material whose color is given
by a texture.

295a 〈textured plastic 295a〉≡
Color textured_plastic(RContext *rc)

{

Color ct = texture_map(rc->m->tinfo, rc->t);

return c_add(c_mult(ct, c_add(c_scale(rc->m->ka, ambient(rc)),

c_scale(rc->m->kd, diffuse(rc)))),

c_mult(rc->m->s, c_scale(rc->m->ks, specular(rc))));

}

Defines:
textured plastic, used in chunk 295b.

Uses texture map 294c.

The routine textured_parse defines a plastic material textured in the scene descrip-
tion language.

295b 〈parse textured 295b〉≡
Val textured_parse(int pass, Pval *pl)

{

Val v;

if (pass == T_EXEC) {

Material *m = NEWSTRUCT(Material);

TmapInfo *ti = NEWSTRUCT(TmapInfo);

ti->src = parse_texsource(pl);

ti->bg = pvl_get_v3(pl, "bg_col", C_WHITE);

ti->code = parse_code(pl);

m->tinfo = ti; m->luminance = textured_plastic;

v.u.v = m; v.type = MATERIAL;

}

return v;

}

Defines:
textured parse, never used.

Uses parse code 296, parse texsource 291b, textured plastic 295a, and TmapInfo 294b.

296 17. Mapping Techniques

Figure 17.1. Texture mapping.

The routine parse_code interprets the code on the application type for the texture on
the surface.

296 〈parse code 296〉≡
int parse_code(Pval *pl)

{

Pval *p = pl;

while (p != NULL) {

if (p->name && strcmp(p->name,"code") == 0 && p->val.type) {

if (strcmp(p->val.u.v, "tile") == 0)

return TMAP_TILE;

else if (strcmp(p->val.u.v, "clamp") == 0)

return TMAP_CLAMP;

}

p = p->next;

}

return TMAP_CLAMP;

}

Defines:
parse code, used in chunk 295b.

Uses TMAP CLAMP and TMAP TILE.

Figure 17.1 shows an example of texture mapping. In one of the spheres, a procedural
texture has been applied; in the other, an image.

17.4 Bump Mapping
Roughness mapping, also known as bump mapping, performs a perturbation of the surface
normal to simulate irregularities in its geometry.

17.4. Bump Mapping 297

The routine rough_surface implements the material of an irregular surface using
bump mapping.

297a 〈rough surface 297a〉≡
Color rough_surface(RContext *rc)

{

Vector3 d = bump_map(rc->m->tinfo, rc->t, rc->n, rc->du, rc->dv);

rc->n = v3_unit(v3_add(rc->n, d));

return matte(rc);

}

Defines:
rough surface, never used.

Uses bump map 297b.

The routine bump_map calculates a perturbation to be applied to the normal vector.

297b 〈bump map 297b〉≡
Color bump_map(void *info, Vector3 t, Vector3 n, Vector3 ds, Vector3 dt)

{

TextureSrc *src = info;

Real h = 0.0005;

Real fo = texture_c1((*src->texfunc)(src->texdata, t));

Real fu = texture_c1((*src->texfunc)(src->texdata,

v3_add(t,v3_make(h,0,0))));

Real fv = texture_c1((*src->texfunc)(src->texdata,

v3_add(t,v3_make(0,h,0))));

Real du = fderiv(fo, fu, h);

Real dv = fderiv(fo, fv, h);

Vector3 u = v3_scale(du, v3_cross(n, dt));

Vector3 v = v3_scale(-dv, v3_cross(n, ds));

return v3_add(u, v);

}

Defines:
bump map, used in chunk 297a.

Uses fderiv 298a, texture c1 297c, and TextureSrc 291a.

The routine texture_c1 returns the first component of a color vector.

297c 〈texture c1 297c〉≡
Real texture_c1(Color c)

{

return c.x;

}

Defines:
texture c1, used in chunk 297b.

The routine fderiv calculates the derivative by finite differences.

298 17. Mapping Techniques

Figure 17.2. Bump mapping.

298a 〈fderiv 298a〉≡
Real fderiv(Real f0, Real f1, Real h)

{

return (f1 - f0)/h;

}

Defines:
fderiv, used in chunk 297b.

Figure 17.2 shows an example of bump mapping.

17.5 Reflection Mapping
In reflection mapping, the object reflects texture t. The projection p at each point (x, y, z)
of the object is determined by the reflection vector at that point. The value g ◦ t result-
ing from the mapping is then used to modulate the color intensity function. Reflection
mapping depends on the camera position.

Several techniques are used to perform the mapping in the texture space from the
reflection vector. The Blinn and Newell method considers the point where the reflection
vector intersects a sphere containing the environment and uses the parametric equations of
the sphere to define the projection p. A cube can also be used instead of a sphere.

Reflection mapping is an approximation of the ray tracing method; however, it has the
advantage that it simulates diffuse illumination by incorporating reflection mapping in the
texture space.

The routine shiny_surface implements a material that reflects the environment.

298b 〈shiny surface 298b〉≡
Color shiny_surface(RContext *rc)

{

Color ce = environment_map(rc->m->tinfo, reflect_dir(rc->v, rc->n));

17.6. Light Sources Mapping 299

return c_add(c_scale(rc->m->ka, ambient(rc)),

c_scale(rc->m->ks, c_add(ce, specular(rc))));

}

Defines:
shiny surface, never used.

Uses environment map 299a.

The routine environment_map implements reflection mapping using polar coordi-
nates.

299a 〈environment map 299a〉≡
Color environment_map(void *info, Vector3 r)

{

TextureSrc *src = info;

Vector3 t = sph_coord(r);

t.x = (t.x / PITIMES2) + 0.5; t.y = (t.y / PI) + 0.5;

return (*src->texfunc)(src->texdata, t);

}

Defines:
environment map, used in chunk 298b.

Uses sph coord 299b and TextureSrc 291a.

The routine sph_coord performs the conversion from rectangular to polar coordinates.

299b 〈sph coord 299b〉≡
Vector3 sph_coord(Vector3 r)

{

Real len = v3_norm(r);

Real theta = atan2(r.y/len, r.x/len);

Real phi = asin(r.z/len);

return v3_make(theta, phi, len);

}

Defines:
sph coord, used in chunk 299a.

Figure 17.3 shows an example of environment (or reflection) mapping.

17.6 Light Sources Mapping
In this section we will give an example of a light source that simulates a slide projector.

The structure TslideInfo stores the mapping information.

299c 〈tslide info 299c〉≡
typedef struct TslideInfo {

TextureSrc *src;

300 17. Mapping Techniques

Figure 17.3. Environment (or reflection) mapping.

Vector3 u, v;

} TslideInfo;

Defines:
TslideInfo, used in chunks 300 and 301.

Uses TextureSrc 291a.

The routine slide_projector implements the light source.

300 〈slide projector 300〉≡
int slide_projector(Light *l, Cone recv, RContext *rc)

{

Vector3 c, v, t, m;

TslideInfo *ti = l->tinfo;

if (point_coupling(recv, cone_make(l->loc, l->dir, l->cutoff)) == FALSE)

return FALSE;

v = v3_sub(rc->p, l->loc);

m = v3_make(v3_dot(v, ti->u), v3_dot(v, ti->v), v3_dot(v, l->dir));

t = v3_make(m.x / m.z * l->distr, m.y / m.z * l->distr, m.z);

t.x = t.x * 0.5 + 0.5; t.y = t.y * 0.5 + 0.5;

c = (*ti->src->texfunc)(ti->src->texdata, t);

l->outdir = v3_scale(-1, v3_unit(v));

l->outcol = c_scale(l->intensity, c);

return TRUE;

}

Defines:
slide projector, used in chunk 301.

Uses TslideInfo 299c.

The routine slideproj_parse defines the light source in the scene description lan-
guage.

17.7. Comments and References 301

Figure 17.4. Mapping light sources by projection.

301 〈parse slide projector 301〉≡
Val slideproj_parse(int pass, Pval *pl)

{ Val v;

if (pass == T_EXEC) {

Light *l = NEWSTRUCT(Light); TslideInfo *ti = NEWSTRUCT(TslideInfo);

l->type = LIGHT_DISTANT; l->color = C_WHITE; l->ambient = 0.1;

l->intensity = pvl_get_num(pl, "intensity", 1);

l->cutoff = (DTOR * pvl_get_num(pl, "fov", 90))/2.0;

l->distr = 1/tan(l->cutoff);

l->loc = pvl_get_v3(pl, "from", v3_make(0,0,-1));

l->dir = pvl_get_v3(pl, "at", v3_make(0,0,0));

l->dir = v3_unit(v3_sub(l->dir, l->loc));

l->transport = slide_projector; l->tinfo = ti;

ti->src = parse_texsource(pl);

ti->v = v3_unit(v3_cross(l->dir, v3_cross(l->dir, v3_make(0,1,0))));

ti->u = v3_cross(l->dir, ti->v);

v.u.v = l; v.type = LIGHT;

} return v;

}

Defines:
slideproj parse, never used.

Uses parse texsource 291b, slide projector 300, and TslideInfo 299c.

Figure 17.4 shows an example of light source mapping by projection.

17.7 Comments and References
The API of the MAP library is composed of the following routines:

Val textured_parse(int pass, Pval *pl);

Val imagemap_parse(int pass, Pval *pl);

TextureSrc *parse_texsource(Pval *pl);

302 17. Mapping Techniques

Color textured_plastic(RContext *rc);

Color texture_default();

Color image_texture(Image *i, Vector3 t);

Color texture_map(void *info, Vector3 t);

Color bump_map(void *info, Vector3 t, Vector3 n, Vector3 ds, Vector3 dt);

Color environment_map(void *info, Vector3 r);

Color rough_surface(RContext *rc);

Val rough_parse(int pass, Pval *pl);

Color shiny_surface(RContext *rc);

Val shiny_parse(int pass, Pval *pl);

Real mod(Real a, Real b);

Color chequer(Real freq, Color a, Color b, Vector3 t);

int slide_projector(Light *l, Cone recv, RContext *rc);

Val slideproj_parse(int pass, Pval *pl);

18 Shading

In this chapter we will present the implementation of the shading (coloring) function cal-
culation.

18.1 Shading Function Sampling and Reconstruction
The shading function is defined on the image plane. It is given by the projection of the
illumination function on the visible surfaces of the scene. The shading function calculation
is a process of sampling and reconstruction. The sampling consists of evaluating the illumi-
nation function at points on the visible surfaces that correspond to pixels in the image. The
reconstruction consists of the interpolation of known values of the function at some pixels
for other pixels of the image.

First the image is partitioned into regions, allowing us to separate the process: we
perform sampling of the shading function for the pixels at the boundary of the regions,
and we perform interpolation of the function for the pixels in the interior of each region.
The type of partition depends on the geometric description of the scene objects and also
on the rasterization method. Notice that interpolation is accomplished by the rasterization
routine. In the case of objects described in a parametric way by a polygonal mesh, the
image is decomposed into polygonal regions.

18.2 Sampling Methods
Sampling of the shading function can be done by point or area sampling. In this book we
will only discuss point sampling. Area sampling is used with anti-aliasing methods.

18.2.1 Point Shading

The routine point_shade performs the sampling of the shading function at point p.

303

304 18. Shading

304a 〈point shade 304a〉≡
Color point_shade(Vector3 p, Vector3 n, Vector3 v, RContext *rc,

Material *m)

{

return (*m->luminance)(rc_set(rc, v3_unit(v3_sub(v, p)), p, n, m));

}

Defines:
point shade, used in chunks 304b and 306c.

Uses Material 262a, rc set, and RContext 259b.

18.3 Basic Reconstruction Methods
The reconstruction methods most used for shading include

� Bouknight shading. Piecewise constant,

� Gouraud shading. Linear interpolation of the color,

� Phong shading. Linear interpolation of the normal.

18.3.1 Bouknight Shading

The routine flat_shade samples the shading function at the centroid of a polygon. This
calculation is used as the constant color of the polygonal region on the image.

304b 〈flat shade 304b〉≡
Color flat_shade(Poly *p, Vector3 v, RContext *rc, Material *m)

{

Vector3 c = poly_centr(p);

Vector3 n = poly_normal(p);

return point_shade(c, n, v, rc, m);

}

Defines:
flat shade, never used.

Uses Material 262a, point shade 304a, and RContext 259b.

18.3.2 Gouraud Method

The structure GouraudData stores the data for the Gouraud shading method.

304c 〈gouraud data 304c〉≡
typedef struct GouraudData {

Image *img;

Poly *cols;

} GouraudData;

Defines:
GouraudData, used in chunk 305.

18.3. Basic Reconstruction Methods 305

The routine gouraud_set initializes the structure GouraudData.

305a 〈gouraud set 305a〉≡
void *gouraud_set(GouraudData *g, Poly *c, Image *i)

{

g->img = i; g->cols = c;

return (void *)g;

}

Defines:
gouraud set, never used.

Uses GouraudData 304c.

The routine gouraud_shade evaluates the illumination function at each polygon ver-
tex. The color at each vertex is stored in the polygon c. This routine should be used before
rasterization. The data calculated by this routine, which is the polygon c, can be stored
using the routine gouraud_set.

305b 〈gouraud shade 305b〉≡
void gouraud_shade(Poly *c, Poly *p, Poly *n, Vector3 v,

RContext *rc, Material *m)

{

int i;

for (i = 0; i < p->n; i++)

c->v[i]=(*m->luminance)(rc_set(rc,v3_unit(v3_sub(v,p->v[i])),p->v[i],

n->v[i],m));

}

Defines:
gouraud shade, never used.

Uses Material 262a, rc set, and RContext 259b.

The routine gouraud_paint reconstructs the shading function, starting from the col-
ors at the vertices of a polygonal region on the image. This routine uses bilinear interpo-
lation for doing this. Notice that gouraud_paint is called by the rasterization routine at
each pixel of the polygonal region.

305c 〈gouraud paint 305c〉≡
void gouraud_paint(Vector3 p, int lv, Real lt, int rv, Real rt, Real st

, void *data)

{

GouraudData *d = data;

Vector3 c = seg_bilerp(d->cols, st, lv, lt, rv, rt);

img_puti(d->img, p.x, p.y, col_dpymap(c));

}

Defines:
gouraud paint, never used.

Uses col dpymap 312 and GouraudData 304c.

306 18. Shading

18.3.3 Phong Method

The structure PhongData stores the data for the Phong shading method.

306a 〈phong data 306a〉≡
typedef struct PhongData {

Poly *pnts;

Poly *norms;

Vector3 v;

RContext *rc;

} PhongData;

Defines:
PhongData, used in chunk 306.

Uses RContext 259b.

The routine phong_set initializes the structure PhongData.

306b 〈phong set 306b〉≡
void *phong_set(PhongData *d, Poly *p, Poly *n, Vector3 v,

RContext *rc, Material *m)

{

d->pnts = p;

d->norms = n;

d->v = v;

d->rc = rc;

d->rc->m = m;

return (void *)d;

}

Defines:
phong set, never used.

Uses Material 262a, PhongData 306a, and RContext 259b.

The routine phong_shadepaint interpolates the normal at the vertices of a polygon
and evaluates the illumination function.

306c 〈phong shadepaint 306c〉≡
void phong_shadepaint(Vector3 p, int n, int lv, Real lt,

int rv, Real rt, Real st, void * data)

{

PhongData *d = data;

Vector3 pv = seg_bilerp(d->pnts, n, st, lv, lt, rv, rt);

Vector3 pn = v3_unit(seg_bilerp(d->norms, n, st, lv, lt, rv, rt));

Color c = point_shade(pv, pn, d->v, d->rc, d->rc->m);

img_putc(d->rc->img, p.x, p.y, col_dpymap(c));

}

Defines:
phong shadepaint, never used.

Uses col dpymap 312, PhongData 306a, and point shade 304a.

18.4. Reconstruction of Texture Attributes 307

18.4 Reconstruction of Texture Attributes

In the previous sections we presented the Gouraud and Phong methods to reconstruct the
shading function. These methods use linear interpolation to reconstruct, at each pixel, the
values of attributes associated with the vertices of the scene polygons.

Linear interpolation only produces a correct reconstruction for the camera transfor-
mation by orthogonal projection. In the case of the projective camera transformation
(perspective projection), the linear interpolation produces incorrect results. Despite this
problem, linear interpolation is widely used. This is because the error is not significant,
from a perceptual point of view, when the attribute function has little variation, such as in
the color and the normal.

However, for attribute functions with high frequencies, such as the texture, the er-
rors are obvious and it is necessary to use projective reconstruction methods, which are
discussed next.

18.4.1 Interpolation and Projective Transformation

We will begin by reviewing the concepts related to projective transformations. To map a
point p ∈ R3 of a scene surface in its projection s ∈ R2 on the image plane, we use the
projective transformation

s = Mp

or, in matrix form, 
uw
vw
...
w

 =


e1 e2 . . . en
f1 f2 . . . fn
...
g1 g2 . . . gn

 .


x
y
...
1

 ,

where M is the projective transformation matrix, and both p and s are represented in
homogeneous coordinates.

The point p = (x, y, . . . , 1) belongs to the affine hyperplane embedded in the pro-
jective space RP3. To transform the point s = (uw, vw, . . . , w) in the normalized affine
point s = (u, v, . . . , 1), it is necessary to perform the homogeneous division by w. We
then have

u =
e1x+ e2y + . . .+ en
g1x+ g2y + . . .+ gn

,

and similar results for the other coordinates (, v, . . .).
The inverse transformation from the screen plane to the world space is given by

p = M−1s,

308 18. Shading

Figure 18.1. Linear (dotted line) and rational (solid line) interpolation.

or 
x
y
...
1

 =


a1 a2 . . . A
b1 b2 . . . B
...
c1 c2 . . . C

 .


uw
vw
...
w

 ,

where the coordinate x of p can be calculated as

x =
(a1u+ b1v + . . .+ c1)w

(A+B + . . .+ C)w
=
a1u+ b1v + . . .+ c1
A+B + . . .+ C

,

and similarly for the other coordinates.
Notice the attribute values in the world space can be expressed by a reconstruction

function that is parameterized by the screen coordinates s = (u, v, . . . , w). For instance,
x is given by

x(s) =
a1u+ . . .+ c1
A+ . . .+ C

.

In other words, this shows that the correct reconstruction function for the projective cam-
era transformation should use linear rational interpolation.

Figure 18.1 shows the difference between linear and rational interpolation.
We saw that the Gouraud and Phong methods use linear interpolation of the attributes,

and it has the following structure:

1. Evaluate x(s0) and x(sk),

2. Linearly interpolate: x(s) = (1− t)x(s0) + tx(sk).

We know this schema produces wrong results, which are perceptually questionable if x(s)
contains high frequencies.

One way to solve this problem is to interpolate the parameter s and calculate the at-
tribute values for each pixel using inverse mapping:

1. Linearly interpolate: s = s0, . . . sk,

2. Evaluate x(s) = M−1s.

18.4. Reconstruction of Texture Attributes 309

This method, although correct, is inefficient because it requires a matrix multiplication by
a vector at each pixel.

An efficient solution consists of using rational linear interpolation as the reconstruction
function:

1. Calculate xw = x
w and dw = 1

w in s0 and sk,

2. Linearly interpolate both xw(s) and dw(s); then obtain x(s) = xw(s)
dw(s) .

Notice the value of w is already calculated by the direct projective transformation s =
(u . . . w)T = Mp.

To prove the result is correct, observe that the interpolated values

x(s)

w(s)
= a1u+ . . .+ c1 and

1

w(s)
= A+ . . .+ C

are linear expressions.
When the division is performed for each pixel s, we obtain

x(s) =
x(s)/w(s)

1/w(s)
=
a1u+ . . .+ c1
A+ . . .+ C

,

which is what we were looking for.

18.4.2 Rational Linear Interpolation of Texture

To reconstruct by rational linear interpolation we first separate the homogeneous coor-
dinate w associated with each vertex of the scene polygons. Then all the attributes to
be interpolated are divided by w. Finally, those attributes are passed to the rasterization
routine that will perform the interpolation and the final division to each pixel.

The routine poly_wz_hpoly calculates the coordinate w for each polygon vertex and
places the values 1/w in an attribute polygon.

309 〈poly wz hpoly 309〉≡
Poly *poly_wz_hpoly(Poly *q, Hpoly *s)

{

Poly *w; int i;

for (i = 0; i < s->n; i++) {

q->v[i] = v3_make(s->v[i].x, s->v[i].y, s->v[i].z);

if (w = q->v->next) {

Real rw = 1./s->v[i].w;

w->v[i] = v3_make(rw, rw, rw);

}

}

return q;

}

Defines:
poly wz hpoly, never used.

310 18. Shading

The routine texture_wscale multiplies all the texture attributes by 1/w.

310a 〈texture wscale 310a〉≡
Poly *texture_wscale(Poly *w, Poly *p)

{

Poly *l; int i;

for (i = 0; i < w->n; i++)

for (l = p; l != NULL; l = l->next) {

l->v[i] = v3_scale(w->v[i].z, l->v[i]);

}

return w;

}

Defines:
texture wscale, never used.

The data structure TextureData contains the interpolated attributes vpar.

310b 〈texture data 310b〉≡
typedef struct TextureData {

Image *img;

Vector3 eye;

Poly *vpar;

RContext *rc;

} TextureData;

Defines:
TextureData, used in chunks 310c and 311.

Uses RContext 259b.

The routine texture_set initializes the structure TextureData, storing the attributes
and other data.

310c 〈texture set 310c〉≡
void *texture_set(TextureData *d, Poly *param, Vector3 eye,

RContext *rc, Light *l, Material *m, Image *i)

{ int n;

if ((n = plist_lenght(param)) < 1|| n > TEX_MAXPAR)

fprintf(stderr, "Texture: not enough parameters\n");

d->img = i;

d->vpar = param;

d->eye = eye;

d->rc = rc;

d->rc->l = l;

d->rc->m = m;

return (void *)d;

}

Defines:
texture set, never used.

Uses Light 258a, Material 262a, RContext 259b, and TextureData 310b.

18.5. Imaging 311

The routine texture_shadepaint performs the rational linear interpolation and calls
the illumination function, which can use the texture coordinates.

311 〈texture shadepaint 311〉≡
void texture_shadepaint(Vector3 s, int lv, Real lt, int rv, Real rt, Real st,

void *data)

{

Vector3 a[TEX_MAXPAR+1];

Poly *l; Color c; int i;

TextureData *d = data;

a[TEX_W] = seg_bilerp(d->vpar, st, lv, lt, rv, rt);

for (l = d->vpar->next, i = 1; l != NULL; l = l->next, i++)

a[i] = v3_scale(1/a[TEX_W].z, seg_bilerp(l, st, lv, lt, rv, rt));

a[TEX_N] = v3_unit(a[TEX_N]);

a[TEX_E] = v3_unit(v3_sub(d->eye, a[TEX_P]));

c = (*d->rc->m->luminance)(rc_tset(d->rc, a[TEX_E], a[TEX_P], a[TEX_N],

a[TEX_T], a[TEX_U] ,a[TEX_V]));

img_puti(d->img, s.x, s.y, col_dpymap(c));

}

Defines:
texture shadepaint, never used.

Uses col dpymap 312, rc tset, and TextureData 310b.

The following attributes are established in this implementation:

#define TEX_W 0 // 1/w

#define TEX_T 1 // texture coordinates

#define TEX_P 2 // position on surface

#define TEX_N 3 // normal to P

#define TEX_U 4 // partial derivative df/du

#define TEX_V 5 // partial derivative df/dv

#define TEX_E 6 // vector towards observer

18.5 Imaging
Once the shading function is calculated, it is necessary to map the calculated values to the
color space of the image. The color representation used for calculating the illumination is
given by the structure Color. This structure is defined from the structure Vector3 and
incorporates the vector operations. The operation c_mult is implemented separately.

#define Color Vector3

#define c_add(a, b) v3_add(a,b)

#define c_sub(a, b) v3_sub(a,b)

#define c_scale(a, b) v3_scale(a, b)

#define c_sqrnorm(a) v3_sqrnorm(a)

312 18. Shading

Color c_mult(Color a, Color b);

We define macros for the construction of basic colors: white , and black .

#define C_WHITE v3_make(1,1,1)

#define C_BLACK v3_make(0,0,0)

The routine col_dpymap transforms a normalized color, with components varying
between 0 and 1, to a color where the components vary between 0 and 255.

312 〈color dpy map 312〉≡
Pixel col_dpymap(Color c)

{

double gain = 255.0;

#ifdef RGB_IMAGE

return rgb_to_index(c_scale(gain, c));

#else

return rgb_to_y(c_scale(gain, c));

#endif

}

Defines:
col dpymap, used in chunks 305c, 306c, and 311.

18.6 Comments and References
The API of the SHADE library consists of the following routines:

Color point_shade(Vector3 p,Vector3 n,Vector3 v, RContext *rc, Light *l,

Material *m);

Color flat_shade(Poly *p, Vector3 v, RContext *rc, Light *l, Material *m);

Color gouraud_paint(Vector3 p, int lv, Real lt, int rv, Real rt, Real st,

void *data);

void gouraud_shade(Poly *p, Poly *n, Poly *c, Vector3 v, RContext *rc,

Light *l, Material *m);

Color phong_shade(Vector3 p, int lv, Real lt, int rv, Real rt, Real st,

void *data);

Poly *texture_wscale(Poly *w, Poly *p);

Poly *poly_wz_hpoly(Poly *q, Poly *w, Hpoly *s);

void *texture_set(TextureData *d, Poly *param, Vector3 eye,

RContext *rc, Light *l, Material *m, Image *i);

void texture_shadepaint(Vector3 p, int lv, Real lt, int rv, Real rt, Real st,

void *data);

Pixel col_dpymap(Color c);

19 3D Graphics Systems

In this final chapter, we will show how to integrate all the computer graphics algorithms
studied in the book to build 3D graphic systems. Two subsystems make up a 3D graphics
system: modeling and rendering. We now present three 3D system architectures that
combine, in the most natural way, the various techniques of these two areas. The systems
are as follows:

� System A. Generative modeling + rendering with Z-buffer.

� System B. CSG modeling + rendering by ray tracing.

� System C. Modeling with primitives + rendering with the painter’s algorithm.

We next present an implementation of these three systems. In this basic version, the
systems operate in noninteractive mode through the command line. The interactive system
version will be specified as part of the implementation projects at the end of this chapter.

19.1 System A
System A is based on generative modeling and Z-buffer rendering.

19.1.1 Generative Modeling

The modeling subsystem rotsurf generates surfaces of revolution approximated by polyg-
onal meshes. The geometry description is parametric, the representation schema is by
boundary decomposition, and the modeling technique used is generative. The modeler
receives as input a polygonal curve and produces as output a triangle mesh.

The main program reads the input data and calls the routines rotsurf and trilist_

write to construct the revolution surface and to write the polygonal mesh.

313 〈rotsurf 313〉≡
#define MAXPTS 2048

Vector3 g[MAXPTS];

313

314 19. 3D Graphics Systems

main(int argc, char **argv)

{

int nu, nv = NVPTS;

Poly *tl;

if (argc == 2)

nv = atoi(argv[1]);

nu = read_curve();

tl = rotsurf(nu, g, nv);

trilist_write(tl, stdout);

exit(0);

}

Defines:
g, used in chunks 314, 321b, and 322b.
MAXPTS, used in chunk 314.

Uses main 47 187b 315 321b and read curve 314.

The routine read_curve reads the vertices of the polygonal curve, storing them in the
global array g.

314 〈read curve 314〉≡
int read_curve(void)

{

int k = 0;

while (scanf("%lf %lf %lf\n" ,&(g[k].x),&(g[k].y),&(g[k].z)) != EOF)

if (k++ > MAXPTS)

break;

return k;

}

Defines:
read curve, used in chunk 313.

Uses g 313 and MAXPTS 313.

For example, the command rotsurf 12 < ln.pts > cyl.scn, constructs the polyg-
onal mesh of a cylindrical surface with 12 sides.

The input file ln.pts specifies a line on the plane z = 0.

1 1 0

1 -1 0

The output file cyl.out contains the list of surface polygons (notice that a part of the
list was omitted to save space).

trilist {

{{0.186494, -1, 0.0722484}, {0.2, -1, 0}, {1, -1, 0}},

{{0.932472, -1, 0.361242}, {0.186494, -1, 0.0722484}, {1, -1, 0}},

{{0.932472, -1, 0.361242}, {1, -1, 0}, {1, 1, 0}},

{{0.932472, 1, 0.361242}, {0.932472, -1, 0.361242}, {1, 1, 0}},

{{0.932472, 1, 0.361242}, {1, 1, 0}, {0.2, 1, 0}},

19.1. System A 315

{{0.186494, 1, 0.0722484}, {0.932472, 1, 0.361242}, {0.2, 1, 0}},

{{0.147802, -1, 0.134739}, {0.186494, -1, 0.07224}, {0.93247, -1, 0.361}},

{{0.739009, -1, 0.673696}, {0.147802, -1, 0.13473}, {0.93247, -1, 0.361}},

....

{{0.2, 1, 0}, {1, 1, 0}, {0.186494, 1, -0.0722483}}}

}

19.1.2 Rendering with Z-buffer

The renderer zbuff uses incremental ratserization, performing the visibility calculation
using the Z-buffer. The illumination is based on the diffuse Lambert model with faceted
shading.

The global data structures, s, rc, mclip, and mdpy store, respectively, the list of scene
objects, the rendering context, and the two camera transformations:

static Scene *s;

static RContext *rc;

static Matrix4 mclip, mdpy;

The main program reads the scene data, initializes the global structures, and processes
the list of objects. For each polygon facing the camera, the illumination function is calcu-
lated at the centroid of the polygon. Next the polygon is transformed, and clipping and
rasterization are applied with the Z-buffer. At the end of the process, the image produced
is written to the output file.

315 〈zbuff 315〉≡
int main(int argc, char **argv)

{

Object *o; Poly *p; Color c;

init_sdl();

s = scene_read();

init_render();

for (o = s->objs; o != NULL; o = o->next) {

for (p = o->u.pols; p != NULL; p = p->next) {

if (is_backfacing(p, v3_sub(poly_centr(p), s->view->center)))

continue;

c = flat_shade(p, s->view->center, rc, o->mat);

if (poly_clip(VIEW_ZMIN(s->view), poly_transform(p, mclip), 0))

scan_poly(poly_homoxform(p, mdpy), pix_paint, &c);

}

}

img_write(s->img, "stdout", 0);

exit(0);

}

Defines:
main, used in chunks 313, 317, and 318c.

Uses init render 316c 319b 322b, init sdl 316b 319c 322a, and pix paint 316a.

316 19. 3D Graphics Systems

The routine pix_paint paints the image using the Z-buffer.

316a 〈pix paint 316a〉≡
void pix_paint(Vector3 v,int n,int lv,Real lt,int rv,Real rt,Real st,

void *c)

{

if (zbuf_store(v))

img_putc(s->img, v.x, v.y, col_dpymap(*((Color *)(c))));

}

Defines:
pix paint, used in chunk 315.

The routine init_sdl registers the operators of the scene description language.

316b 〈sdl zbuff 316b〉≡
void init_sdl(void)

{

lang_defun("scene", scene_parse);

lang_defun("view", view_parse);

lang_defun("dist_light", distlight_parse);

lang_defun("plastic", plastic_parse);

lang_defun("polyobj", obj_parse);

lang_defun("trilist", trilist_parse);

}

Defines:
init sdl, used in chunks 315, 318c, and 321b.

The routine init_render initializes the transformation matrices, the Z-buffer, and
the rendering context.

316c 〈init zbuff 316c〉≡
void init_render(void)

{

mclip = m4_m4prod(s->view->C, s->view->V);

mdpy = m4_m4prod(s->view->S, s->view->P);

zbuf_init(s->img->w, s->img->h);

rc_sset(rc = NEWSTRUCT(RContext), s->view, s->lights, s->img);

}

Defines:
init render, used in chunks 315, 318c, and 321b.

The command zbuff < cyl.scn > cyl.ras generates an image from the scene
description file below (notice that part of the polygon list was omitted).

316d 〈cyl scn 316d〉≡
scene {

camera = view { from = {0, 0, -2.5}, up = {0, 1, 0}},

light = dist_light {direction = {0, 0, -1} },

object = polyobj { shape = trilist {

19.2. System B 317

Figure 19.1. Rendering of a polygonal model.

{{0.186494, -1, 0.0722484}, {0.2, -1, 0}, {1, -1, 0}}

...

{{0.2, 1, 0}, {1, 1, 0}, {0.186494, 1, -0.0722483}}}

}

};

Figure 19.1 shows the rendering of a surface: image cyl.ras.

19.2 System B
System B is based on CSG modeling and visualization using ray tracing.

19.2.1 CSG Modeling

The modeler csg interprets constructive solid models. The primitives are spheres, the
representation is a CSG expression, and the modeling technique is language-based.

The main program reads a CSG expression and writes the corresponding construction
in the scene description language.

317 〈csg 317〉≡
main(int argc, char **argv)

{

CsgNode *t;

if((t = csg_parse()) == NULL)

exit(-1);

else

csg_write(t, stdout);

exit(0);

}

Uses main 47 187b 315 321b.

318 19. 3D Graphics Systems

For example, the command csg < s.csg > s.scn translates the CSG expression in
s.csg for s.scn. The object in the file s.csg is made up of the difference between two
spheres.

318a 〈spheres csg 318a〉≡
(s{ 0 0 0 1} \ s{ 1 1 -1 1}

The file s.scn contains the corresponding commands in the scene description lan-
guage.

318b 〈sphere scn 318b〉≡
csgobj = csg_diff {

csg_prim{ sphere { center = {0, 0, 0}}},

csg_prim{ sphere { center = {1, 1, -1}}} }

This program serves as a basis for the development of a more complete modeler with
operations for editing CSG objects.

19.2.2 Rendering by Ray Tracing

The renderer rt uses extrinsic rasterization and performs the visibility calculation by ray
tracing. The illumination is based on the Phong specular model model, with shading by
point sampling.

The main program reads the scene data, initializes the global structures, and generates
the image. For each pixel on the image a ray is shot in the scene, and the intersection
between the ray with the CSG objects is calculated. The value of the illumination function
is determined for the intersection with the closest surface. In the end, the image is written
to an output file.

318c 〈rt 318c〉≡
main(int argc, char **argv)

{

Color c; int u, v;

Ray r; Inode *l;

init_sdl();

s = scene_read();

init_render();

for (v = s->view->sc.ll.y; v < s->view->sc.ur.y; v += 1) {

for (u = s->view->sc.ll.x; u < s->view->sc.ur.x; u += 1) {

r = ray_unit(ray_transform(ray_view(u, v), mclip));

if ((l = ray_intersect(s->objs, r)) != NULL)

c = point_shade(ray_point(r, l->t), l->n, s->view->center, rc,

l->m);

else

c = bgcolor;

inode_free(l);

img_putc(s->img, u, v, col_dpymap(c));

}

19.2. System B 319

}

img_write(s->img,"stdout",0);

exit(0);

}

Uses init render 316c 319b 322b, init sdl 316b 319c 322a, main 47 187b 315 321b,
and ray view 319a.

The routine ray_view constructs a ray leaving the virtual camera and passing through
the pixel of coordinates (u, v) on the image plane.

319a 〈ray view 319a〉≡
Ray ray_view(int u, int v)

{

Vector4 w = v4_m4mult(v4_make(u, v, s->view->sc.ur.z, 1), mdpy);

return ray_make(v3_v4conv(v4_m4mult(v4_make(0, 0, 1, 0), mdpy)),

v3_make(w.x, w.y, w.z));

}

Defines:
ray view, used in chunk 318c.

The routine init_render initializes the camera transformations.

319b 〈init rt 319b〉≡
void init_render(void)

{

mclip = m4_m4prod(s->view->Vinv, s->view->Cinv);

mdpy = m4_m4prod(s->view->Pinv, s->view->Sinv);

rc_sset(rc = NEWSTRUCT(RContext), s->view, s->lights, s->img);

}

Defines:
init render, used in chunks 315, 318c, and 321b.

The routine init_sdl registers the operators of the scene description language.

319c 〈sdl rt 319c〉≡
void init_sdl(void)

{

lang_defun("scene", scene_parse);

lang_defun("view", view_parse);

lang_defun("dist_light", distlight_parse);

lang_defun("plastic", plastic_parse);

lang_defun("csgobj", obj_parse);

lang_defun("csg_union", csg_union_parse);

lang_defun("csg_inter", csg_inter_parse);

lang_defun("csg_diff", csg_diff_parse);

lang_defun("csg_prim", csg_prim_parse);

lang_defun("sphere", sphere_parse);

}

Defines:
init sdl, used in chunks 315, 318c, and 321b.

320 19. 3D Graphics Systems

Figure 19.2. Rendering of a CSG scene.

As an example of using the renderer, the command rt < s.scn > s.ras generates
an image of the CSG scene described in the file s.scn below.

320 〈csg2 scn 320〉≡
scene{

camera = view {

from = {0, 0, -4}, at = {0, 0, 0}, up = {0,1,0}, fov = 60},

light = dist_light {direction = {0, 1, -1} },

object = csgobj{

material = plastic { ka = .2, kd = 0.8, ks = 0.0 },

shape = csg_diff {

csg_prim{ sphere { center = {0, 0, 0}}},

csg_prim{ sphere { center = {1, 1, -1}}}

}

}

}

Figure 19.2 shows the rendering of the scene: image s.ras.

19.3 System C
System C is based on modeling by primitives and rendering by the painter’s method.

19.3.1 Modeling by Hierarchy of Primitive

The modeler uses geometric primitives described in two forms—parametric and implicit—
and grouped in a hierarchical way by groups of affine transformations. An example of a
primitive hierarchy, in the scene description language, can be seen next.

19.3. System C 321

321a 〈hier scn 321a〉≡
hier {

transform { translate = { .5, .5, 0}},

group {

transform { zrotate = .4 },

obj = sphere{ },

transform { translate = {.2, 0, 1}},

group {

transform{ scale = {2, 0.4, 1}},

obj = sphere{ radius = .1} } }

};

19.3.2 Rendering by the Painter’s Method

The renderer zsort uses the painter’s method to determine the visible surfaces. The illu-
mination uses the diffuse model with Gouraud interpolation. The global data structures
z and g store, respectively, a sorted list of scene polygons and the data for the Gouraud
interpolation of the current polygon.

static Scene *s;

static Object *o;

static Matrix4 mclip, mdpy;

static RContext *rc;

static List *z = NULL;

static GouraudData *g;

The main program reads the scene data, initializes the structures, and performs polygon
clipping and elimination. The polygons in the field of view of the camera are sorted in Z
and rasterized.

321b 〈zsort 321b〉≡
int main(int argc, char **argv)

{

Poly *l, *p, *c = poly_alloc(3);

Item *i;

init_sdl();

s = scene_read();

init_render();

for (o = s->objs; o != NULL; o = o->next) {

for (l = prim_uv_decomp(o->u.prim, 1.); l != NULL; l = l->next) {

p = poly_transform(prim_polys(o->u.prim, l), mclip);

if (!is_backfacing(p, v3_unit(v3_scale(-1, poly_centr(p)))))

hither_clip(VIEW_ZMIN(s->view), p, z_store, plist_free);

}

}

z = z_sort(z);

322 19. 3D Graphics Systems

for (i = z->head; i != NULL; i = i->next) {

gouraud_shade(c, P(i), N(i), s->view->center, rc, M(i));

p = poly_homoxform(S(i),mdpy);

scan_poly(p, gouraud_paint, gouraud_set(g,s->img));

}

img_write(s->img, "stdout", 0);

exit(0);

}

Defines:
main, used in chunks 313, 317, and 318c.

Uses g 313, init render 316c 319b 322b, init sdl 316b 319c 322a, prim polys 323a,
and z store 322c.

The routine init_sdl registers the operators of the scene description language.

322a 〈sdl zsort 322a〉≡
void init_sdl(void)

{

lang_defun("scene", scene_parse);

lang_defun("view", view_parse);

lang_defun("dist_light", distlight_parse);

lang_defun("plastic", plastic_parse);

lang_defun("primobj", obj_parse);

lang_defun("sphere", sphere_parse);

}

Defines:
init sdl, used in chunks 315, 318c, and 321b.

The routine init_render initializes the global data structures.

322b 〈init zsort 322b〉≡
void init_render(void)

{

mclip = m4_m4prod(s->view->C, s->view->V);

mdpy = m4_m4prod(s->view->S, s->view->P);

z = new_list();

g = NEWSTRUCT(GouraudData);

rc_sset(rc = NEWSTRUCT(RContext), s->view, s->lights, s->img);

}

Defines:
init render, used in chunks 315, 318c, and 321b.

Uses g 313.

The routine z_store stores a polygon in the z list.

322c 〈zstore 322c〉≡
void z_store(Poly *l)

{

Zdatum *d = NEWSTRUCT(Zdatum);

d->zmax = MIN(l->v[0].z, MIN(l->v[1].z, l->v[2].z));

19.3. System C 323

d->l = l; d->o = o;

append_item(z, new_item(d));

}

Defines:
z store, used in chunk 321b.

The macros below are used to access the list of the polygon attributes:

#define S(I) (((Zdatum *)(I->d))->l)

#define P(I) (((Zdatum *)(I->d))->l->next)

#define N(I) (((Zdatum *)(I->d))->l->next->next)

#define M(I) (((Zdatum *)(I->d))->o->mat)

#define SL(L) (l)

#define PL(L) (l->next)

#define NL(L) (l->next->next)

The routine prim_polys creates triangles with the position and the normal of the
surface points of the primitive.

323a 〈prim polys 323a〉≡
Poly *prim_polys(Prim *s, Poly *p)

{

int i; Poly *l = plist_alloc(3, p->n);

for (i = 0; i < p->n; i++) {

PL(l)->v[i] = SL(l)->v[i] = prim_point(s, p->v[i].x, p->v[i].y);

NL(l)->v[i] = prim_normal(s, p->v[i].x, p->v[i].y);

}

return l;

}

Defines:
prim polys, used in chunk 321b.

For example, the command zsort < pr.scn > pr.ras generates an image of the
scene with two spheres, described in the file prim.scn (shown below).

323b 〈prim scn 323b〉≡
scene{

camera = view {

from = {0, 0, -2.5}, at = {0, .5, 0}, up = {0,1,0}, fov = 90},

light = dist_light {direction = {0, 1, -1} },

object = primobj{

material = plastic { ka = .2, kd = 0.8, ks = 0.0 },

shape = sphere { center = {0, 0, 0}}},

object = primobj{

material = plastic { ka = .2, kd = 0.8, ks = 0.0 },

shape = sphere { center = {2, 2, 2}}},

};

Figure 19.3 shows the rendering of the scene: image prim.ras.

324 19. 3D Graphics Systems

Figure 19.3. Rendering spheres by Z-sort.

19.4 Projects

In this section we will specify several projects that integrate the libraries developed through-
out the book. The modeling and rendering programs are based in the architecture of Sys-
tems A, B, and C discussed in the previous section.

19.4.1 Programs for Rendering Images

Develop a program for rendering images using the libraries GP, COLOR, and IMAGE.
The program should accept files in the rasterfile format of the following types:

� Raw gray scale,

� Raw true color (RGB),

� Raw indexed color,

� RLE compressed gray scale,

� RLE compressed indexed color.

The program should still be capable of displaying both the image and the associated
color map.

The following windowing system events should be managed by the program: Window
Exposure Event and Window Resize. The test images, “Mandrill” and “Lenna,” are shown
in Figure 19.4.

19.4. Projects 325

Figure 19.4. Test images ”Mandrill” (left) and ”Lenna” (right). (See Plate VII.)

19.4.2 Modeling System

Develop one of the basic modeling systems and implement at least one of the options from
the lists of possible extensions. The basic systems described in the previous sections are

� Generative modeling,

� CSG modeling,

� Modeling by primitives.

In every system, an engine should be included for the specification of object attributes
(e.g., name, color, material, etc.).

The system should be tested with a nontrivial example. To do so,

1. Construct a reasonably complex object with the modeler,

2. Explain how the object was produced,

3. Discuss the difficulties you found.

Generative modeling.

1. Include rendering of three orthogonal (XYZ) views.

2. Include interactive capabilities. The user should be able to draw a curve on the
screen and generate a revolution surface from this curve.

3. Include the possibility of editing the curve, with the following operations: move
a vertex, and append and eliminate vertices. These changes should appear on the
current surface.

326 19. 3D Graphics Systems

4. Include other types of generative models, besides surfaces of revolution. For in-
stance, extrusion, twist, bend, and taper.

5. Include support for a command language integrated with the interactive options.

GSG modeling.

1. Include rendering of three orthogonal (XYZ) views.

2. Include transformations (“csg transform” operator). The user should be able to
group the primitives and transform them;

3. Include interactive capability. The user should be able to select and move primitives
or groups of primitives.

4. Include the rendering of the CSG tree and the possibility of manipulating its struc-
ture. The user should be able to create and to edit the CSG structure in the interac-
tive graphics mode.

5. Include capability of calculating object properties (e.g., volume, etc.).

6. Include support for a command language integrated with the interactive options.

Primitive-based modeling.

1. Include rendering of three orthogonal (XYZ) views and an auxiliary view.

2. Include editing commands, such as create, delete, rename, undo, select, etc.

3. Include the following primitives: box, cone, cylinder, torus, and superquadrics.
Primitive instances should be identified by a symbolic name and have a transfor-
mation associated with them. The user should be able to modify all the parameters
of an object after it is created.

4. Include groups of objects. Groups should be also identified by a name. The group
hierarchy should be rendered in an auxiliary window.

Modeling of articulated objects.

1. Include the primitive cylinder.

2. Include support for articulated joints (ball-pivot type).

3. Include cinematic sequences.

19.4. Projects 327

19.4.3 Rendering System

Develop one of the basic rendering systems and implement at least one of the options of
the list of extensions. The basic systems described in the previous sections are:

� Rendering by scanline,

� Rendering by ray tracing,

� Rendering by the painter’s method.

The system should be tested with a nontrivial example. Produce images to demonstrate
the particular characteristics of the renderer.

Write a technical report with an analysis of the program operation. The work should
cover the following points: (1) based on the program execution profile (profiling), identify
and explain the bottlenecks of the algorithm; (2) discuss options to accelerate the program.

Rendering by scan-line.

1. Include global illumination using radiosity for preprocessing.

2. Include acceleration for progressive radiosity: adaptive refinement.

3. Include implicit primitives and CSG models.

Rendering by ray tracing.

1. Include global illumination with recursive ray tracing.

2. Include a ray tracing acceleration method.

3. Include polygonal objects.

Rendering by the painter’s method.

1. Include texture mapping.

2. Include illumination mapping.

3. Include 3D procedural textures.

4. Include level-of-detail (LOD) for acceleration.

5. Use reverse polygon painting for better efficiency.

This page intentionally left blankThis page intentionally left blank

Bibliography

[Aho and Ullman 79] A. Aho and J. Ullman. Principles of Compiler Design. Addison-Wesley, 1979.

[Atherton et al. 78] P. Atherton, K. Weiler, and D. Greenberg. “Polygon Shadow Generation.”
Computer Graphics (SIGGRAPH ’78 Proceedings) 12:3 (1978), 275–281.

[Barrow 02] John D. Barrow. The Constants of Nature: From Alpha to Omega—The Numbers that
Encode the Deepest Secrets of the Universe. New York: Pantheon Books, 2002.

[Blinn and Newell 76] James F. Blinn and Martin E. Newell. “Texture and Reflection in Computer
Generated Images.” Communications of the ACM 19:10 (1976), 542–547.

[Bouknight and Kelly 70] W. J. Bouknight and K. C. Kelly. “An Algorithm for Producing Half-
Tone Computer Graphics Presentations with Shadows and Movable Light Sources.” In Proc.
AFIPS JSCC, 36, 36, pp. 1–10. New York: ACM, 1970.

[Carpenter 84] Loren Carpenter. “The A-buffer, an Antialiased Hidden Surface Method.” Com-
puter Graphics (SIGGRAPH ’84 Proceedings) 18:3 (1984), 103–108.

[Clark 82] James H. Clark. “The Geometry Engine: A VLSI Geometry System for Graphics.”
Computer Graphics (SIGGRAPH ’82 Proceedings) 16:3 (1982), 127–133.

[Cook and Torrance 81] R. L. Cook and K. E. Torrance. “A Reflectance Model for Computer
Graphics.” Computer Graphics (SIGGRAPH ’81 Proceedings) 15:3 (1981), 307–316.

[Cook et al. 87] Robert L. Cook, Loren Carpenter, and Edwin Catmull. “The Reyes Image Ren-
dering Architecture.” Computer Graphics (SIGGRAPH ’87 Proceedings), pp. 95–102.

[Crow 82] F. C. Crow. “A More Flexible Image Generation Environment.” Computer Graphics
(SIGGRAPH ’82 Proceedings) 16:3 (1982), 9–18.

[Fuchs et al. 83] H. Fuchs, G. D. Abram, and E. D. Grant. “Near Real-Time Shaded Display of
Rigid Objects.” Computer Graphics (SIGGRAPH ’83 Proceedings) 17:3 (1983), 65–72.

[Gomes and Velho 95] Jonas Gomes and Luiz Velho. Computação Gráfica: Imagem. IMPA-SBM,
1995.

[Gomes and Velho 97] Jonas Gomes and Luiz Velho. Image Processing for Computer Graphics. New
York: Springer-Verlarg, 1997.

[Gomes and Velho 98] Jonas Gomes and Luiz Velho. Computação Gráfica: Volume 1. IMPA-SBM,
1998.

329

330 Bibliography

[Gomes et al. 96] J. Gomes, L. Darsa, B. Costa, and L. Velho. “Graphical Objects.” The Visual
Computer 12 (1996), 269–282.

[Gomes et al. 12] Jonas Gomes, Luiz Velho, and Mario Costa Sousa. Computer Graphics: Theory
and Practice. Boca Raton, FL: CRC Press, 2012.

[Heckbert and Hanrahan 84] Paul S. Heckbert and Pat Hanrahan. “Beam Tracing Polygonal Ob-
jects.” Computer Graphics (SIGGRAPH ’84 Proceedings) 18:3 (1984), 119–127.

[MAGI 68] MAGI. “3-D Simulated Graphics Offered by Service Bureau.” Datamation 14 (1968),
69.

[Malacara-Hernandez 02] D. Malacara-Hernandez. Color Vision and Colorimetry: Theory and Ap-
plications. Bellingham, WA: SPIE Press, 2002.

[Newell et al. 72a] Martin E. Newell, R. G. Newell, and T. L. Sancha. “A New Approach to the
Shaded Picture Problem.” In Proc. ACM Nat. Conf., p. 443, 1972.

[Newell et al. 72b] Martin E. Newell, R. G. Newell, and T. L. Sancha. “A Solution to the Hidden
Surface Problem.” In Proceedings of the ACM annual conference - Volume 1, ACM ’72, pp. 443–
450. New York: ACM, 1972. Available online (http://doi.acm.org/10.1145/800193.569954).

[Phong 75] B. T. Phong. “Illumination for Computer Generated Pictures.” Communications of the
ACM 18:6 (1975), 311–317.

[Polyanin and Manzhirov 98] A. D. Polyanin and A. V. Manzhirov. Handbook of Integral Equations.
Boca Raton, FL: CRC Press, 1998.

[Requicha 80] A. A. G. Requicha. “Representations for Rigid Solids: Theory, Methods, and Sys-
tems.” ACM Computing Surveys 12 (1980), 437–464.

[Roth 82] S. D. Roth. “Ray Casting for Modelling Solids.” Comput. Graphics and Image Process.
(USA) 18 (1982), 109–144.

[Shumacker et al. 69] R. A. Shumacker, R. Brand, M. Gilliland, and W. Sharp. “Study for Apply-
ing Computer-Generated Images to Visual Simulation.” Report AFHRL-TR-69-14, U.S. Air
Force Human Resources Lab., 1969.

[Smith and Lyons 96] Alvy Ray Smith and Eric Ray Lyons. “HWB: A More Intuitive Hue-Based
Color Model.” Journal of Graphics Tools 1:1 (1996), 3–17.

[Smith 81] Alvy Ray Smith. “Color Tutorial Notes.” Technical Report No. 37 37, Lucasfilm, 1981.

[Strichartz 94] R. Strichartz. A Guide to Distribution Theory anFourier Transforms. Boca Raton, FL:
CRC Press, 1994.

[Sutherland and Hodgman 74] Ivan Sutherland and Gary W. Hodgman. “Reentrant Polygon Clip-
ping.” Communications of the ACM 17 (1974), 32–42.

[Sutherland et al. 74] I. E. Sutherland, R. F. Sproull, and R. A. Shumacker. “A Characterization of
Ten Hidden Surface Algorithms.” ACM Computing Surveys 6 (1974), 1–55.

[Torrance and Sparrow 76] K. Torrance and E. Sparrow. “Theory for Off-Specular Reflection from
Roughened Surfaces.” J. Optical Soc. America 57 (1976), 1105–1114.

[Warnock 69a] J. Warnock. “A Hidden-Surface Algorithm for Computer Generated Half-Tone
Pictures.” Technical Report TR 4–15, NTIS AD-733 671, University of Utah, Computer
Science Department, 1969.

Bibliography 331

[Warnock 69b] John Warnock. “A Hidden Surface Algorithm for Computer Generated Halftone
Pictures.” Ph.D. thesis, University of Utah, 1969.

[Watkins 70] G. S. Watkins. “A Real-Time Visible Surface Algorithm.” Report UTEC-CS-70-
101, Dept. Comput. Sci., Univ. Utah, Salt Lake City, UT, 1970.

[Weiler and Atherton 77] K. Weiler and K. Atherton. “Hidden Surface Removal Using Polygon
Area Sorting.” Computer Graphics (SIGGRAPH ’77 Proceedings) 11:2 (1977), 214–222.

This page intentionally left blankThis page intentionally left blank

Plate I. Colors in the visible spectrum. (See page 77.) Plate II. RGB color solid. (See page 82.)

Plate III. Color selection and conversion. (See page 89.)

Plate IV. Program for visualizing images. (See page 98.)

Plate V. Ray tracing. (See page 287.) Plate VI. Radiosity. (See page 287.)

Plate VII. Test images ”Mandrill” (left) and ”Lenna” (right). (See page 325.)

Jonas Gomes Luiz Velho Mario Costa Sousa. .

Design and Implementation

of 3d Graphics Systems

d
e

s
ig

n
 a

n
d

 im
p

l
e

m
e

n
t

a
t

io
n

o

f 3
d

 g
r

a
p

h
ic

s
 s

y
s
t

e
m

s
G

o
m

es V
elh

o
 So

u
sa

Design and Implementation of 3D Graphics Systems covers the computational aspects of geomet-
ric modeling and rendering 3D scenes. Special emphasis is given to the architectural aspects of
interactive graphics, geometric modeling, rendering techniques, the graphics pipeline, and the
architecture of 3D graphics systems. The text describes basic 3D computer graphics algorithms
and their implementation in the C language. The material is complemented by library routines
for constructing graphics systems, which are available for download from the book’s website.
This book, along with its companion Computer Graphics: Theory and Practice, gives readers a full
understanding of the principles and practices of implementing 3D graphics systems.

Features
• Presents practical aspects of 3D computer graphics at an introductory level
• Focuses on fundamental algorithms and the implementation problems associated with them
• Explores the relationship between the various components of a graphics system
• Describes geometric modeling and image synthesis
• Enables readers to practice with the techniques
• Provides routine libraries, examples, and other supplemental materials on the book’s website

K16528

Computer Graphics

K16528_final.indd 1 7/9/2012 9:22:51 AM

	Front Cover
	Dedication
	Contents
	About the Cover
	Preface
	1. Introduction
	2. Objects and Graphics Devices
	3. Interaction and Graphical Interfaces
	4. Geometry
	5. Color
	6. Digital Image
	7. Description of 3D Scenes
	8. 3D Geometric Models
	9. Modeling Techniques
	10. Hierarchies and Articulated Objects
	11. Viewing and Camera Transformations
	12. Surface Clipping for Viewing
	13. Rasterization
	14. Visible Surface Calculation
	15. Local Illumination Models
	16. Global Illumination
	17. Mapping Techniques
	18. Shading
	19. 3D Graphics Systems
	Bibliography

