

Bluetooth Low Energy: A Technical
Primer

1st Edition

Tony Gaitatzis

BackupBrain Publishing, 2017

ISBN: 978-1-7751280-9-0

backupbrain.co

http://backupbrain.co

Bluetooth Low Energy: A Technical
Primer

by Tony Gaitatzis

Copyright © 2015 All Rights Reserved

All rights reserved. This book or any portion thereof may not be reproduced or
used in any manner whatsoever without the express written permission of the
publisher except for the use of brief quotations in a book review. For
permission requests, write to the publisher, addressed “Bluetooth Technical
Overview Book Reprint Request,” at the address below.

backupbrain@gmail.com

mailto:backupbrain@gmail.com?subject=Bluetooth%20iOS%20Book%20Reprint%20Request

(this page intentionally left blank)

Dedication

To Shade, for that chicken soup

and Andrew, for being a sounding board​

(this page intentionally left blank)

Preface

Thank you for buying this book. I’m excited to have written it and more excited
that you are reading it.

I started with Bluetooth Low Energy in 2011 while making portable brain
imaging technology. Later, while working on a friend’s wearable electronics
startup, I ended up working behind teh scenes on the TV show America’s
Greatest Makers in the Spring of 2016.

Coming from a web programming background, I found the mechanics and
nomenclature of BLE confusing and cryptic. A er immersing myself in it for a
period of time I acclimated to the di erences and began to appreciate the power
behind this low-power technology.

Unlike other wireless technologies, BLE can be powered from a coin cell
battery for months at a time - perfect for a wearable or Internet of Things (IoT)
project! Because of its low power and short data transmissions, it is great for
transmitting bite size information, but not great for streaming data such as
sound or video.

Good luck and enjoy!

CHAPTER 1

Introduction

In this book, you will learn the mechanics behind the Bluetooth Low Energy
protocol, a wireless technology that lets computers, smartphones, and smart
devices communicate within a space about the size of a room.

Through the course of the book you will learn important concepts that relate to:

How Bluetooth Low Energy works,

How data is sent and received

Common paradigms for handling data

Additionally, you will learn how three common product paradigms work:

An iBeacon

An Echo Server

A Remote Controlled Device

This book is an excellent read for anyone who wants to know the terminology,

technology, and concepts behind Bluetooth Low Energy devices but doesn’t
need to program them.

Overview
Bluetooth Low Energy (BLE) is a digital radio protocol. Very simply, it works
by transmitting radio signals from one computer to another.

Bluetooth supports a hub-and-spoke model of connectivity. One device acts as
a hub, or “Central” in Bluetooth terminology. Other devices act as
“Peripherals.”

A Central may hold several simultaneous connections with a number of
peripherals, but a peripheral may only hold one connection at a time (Figure 1-
1). Hence the names Central and Peripheral.

Figure 1-1. Bluetooth network topology

For example, your smartphone acts as a Central. It may connect to a Bluetooth
speaker, lamp, smartwatch, and fitness tracker. Your fitness tracker and
speaker, both Peripherals, can only be connected to one smartphone at a time.

The Central has two modes: scanning and connected. The Peripheral has two
modes: advertising and connected. The Peripheral must be advertising for the
Central to see it.

Advertising
A Peripheral advertises by advertising its device name and other information
on one radio frequency, then on another in a process known as frequency
hopping. In doing so, it reduces radio interference created from reflected
signals or other devices.

Scanning
Similarly, the Central listens for a server’s advertisement first on one radio
frequency, then on another until it discovers an advertisement from a
Peripheral. The process is not unlike that of trying to find a good show to
watch on TV.

The time between radio frequency hops of the scanning Central happens at a
different speed than the frequency hops of the advertising Peripheral. That way
the scan and advertisement will eventually overlap so that the two can connect.

Each device has a unique media access control address (MAC address) that
identifies it on the network. Peripherals advertise this MAC address along
with other information about the Peripheral’s settings.

Connecting
A Central may connect to a Peripheral after the Central has seen the
Peripheral’s advertisement. The connection involves some kind of handshaking
which is handled by the devices at the hardware or firmware level.

While connected, the Peripheral may not connect to any other device.

Disconnecting
A Central may disconnect from a Peripheral at any time. The Peripheral is
aware of the disconnection.

Communication
A Central may send and request data to a Peripheral through something called a
“Characteristic.” Characteristics are provided by the Peripheral for the Central
to access. A Characteristic may have one or more properties, for example

READ or WRITE. Each Characteristic belongs to a Service, which is like a
container for Characteristics. This paradigm is called the Bluetooth Generic
Attribute Profile (GATT).

The GATT paradigm is laid out as follows (Figure 1-2).

Figure 1-2. Example GATT Structure

To transmit or request data from a Characteristic, a Central must first connect
to the Characteristic’s Service.

For example, a heart rate monitor might have the following GATT profile,
allowing a Central to read the beats per minute, name, and battery life of the
server (Figure 1-3).

Figure 1-3. Example GATT structure for a heart monitor

In order to retrieve the battery life of the Characteristic, the Central must be
connected also to the Peripheral’s “Device Info” Service.

Because a Characteristic is provided by a Peripheral, the terminology refers to
what can be done to the Characteristic. A “write” occurs when data is sent to
the Characteristic and a “read” occurs when data is downloaded from the
Characteristic.

To reiterate, a Characteristic is a field that can be written to or read from. A
Service is a container that may hold one or more Characteristics. GATT is the
layout of these Services and Characteristics. Characteristic can be written to
or read from.

Byte Order
Bluetooth orders data in both Big-Endian and Little-Endian depending on the
context.

During advertisement, data is transmitted in Big Endian, with the most
significant bytes of a number at the end (Figure 1-4).

Figure 1-4. Big Endian byte order

Data transfers inside the GATT however are transmitted in Little Endian, with
the least significant byte at the end (Figure 1-5).

Figure 1-5. Little Endian byte order

Permissions
A Characteristic grants certain Permissions of the Central. These permissions
include the ability to read and write data on the Characteristic, and to
subscribe to Notifications.

Descriptors
Descriptors describe the configuration of a Characteristic. The only one that
has been specified so far is the “Notification” flag, which lets a Central
subscribe to Notifications.

UUIDs
A UUID, or Universally Unique IDentifier is a very long identifier that is likely
to be unique, no matter when the UUID was created or who created it.

BLE uses UUIDs to label Services and Characteristics so that Services and
Characteristics can be identified accurately even when switching devices or
when several Characteristics share the same name.

For example, if a Peripheral has two “Temperature” Characteristics - one for
Celsius and the other in Fahrenheit, UUIDs allow for the right data to be
communicated.

UUIDs are usually 128-bit strings and look like this:

ca06ea56-9f42-4fc3-8b75-e31212c97123

But since BLE has very limited data transmission, 16-bit UUIDs are also
supported and can look like this:

0x1815

Each Characteristic and each Service is identified by its own UUID. Certain
UUIDs are reserved for specific purposes.

For example, UUID 0x180F is reserved for Services that contain battery
reporting Characteristics.

Similarly, Characteristics have reserved UUIDs in the Bluetooth Specification.

For example, UUID 0x2A19 is reserved for Characteristics that report battery
levels.

A list of UUIDs reserved for specific Services can be found in Appendix IV:
Reserved GATT Services.

A list of UUIDs reserved for specific Characteristics can be in Appendix V:
Reserved GATT Characteristics.

If you are unsure what UUIDs to use for a project, you are safe to choose an
unassigned service (e.g. 0x180C) for a Service and generic Characteristic
(0x2A56).

Although the possibility of two generated UUIDs being the same are extremely
low, programmers are free to arbitrarily define UUIDs which may already
exist. So long as the UUIDs defining the Services and Characteristics do not
overlap in the a single GATT Profile, there is no issue in using UUIDs that
exist in other contexts.

Bluetooth Hardware
All Bluetooth devices feature at least a processor and an antenna (Figure 1-6).

Figure 1-6. Parts of a Bluetooth device

The antenna transmits and receives radio signals. The processor responds to
changes from the antenna and controls the antenna’s tuning, the advertisement
message, scanning, and data transmission of the BLE device.

Power and Range
BLE has 20x2 Mhz channels, with a maximum 10 mW transmission power, 20
byte packet size, and 1 Mbit/s speed. This means it’s great for short-range or
ad-hoc networks such as those inside a house, around a person’s body, or as
people or devices coming in and out of range.

As with any radio signal, the quality of the signal drops dramatically with
distance, as shown below (Figure 1-7).

Figure 1-7. Distance versus Bluetooth Signal Strength

This signal quality is correlated the Received Signal Strength Indicator (RSSI).

If the RSSI is known when the Peripheral and Central are 1 meter apart (A), as
well as the RSSI at the current distance (R) and the radio propagation constant

(n). The distance betweeen the Central and the Peripheral in meters (d) can be
approximated with this equation:

d≈10A-R10n

The radio propagation constant depends on the environment, but it is typically
somewhere between 2.7 in a poor environment and 4.3 in an ideal
environment.

Take for example a device with an RSSI of 75 at one meter, a current RSSI
reading 35, with a propagation constant of 3.5:

d≈1075-3510×3.5

d≈104035

d≈14

Therefore the distance between the Peripheral and Central is approximately 14
meters.

Data Length and Speed
It is worth noting that Bluetooth Low Energy has a maximum data packet size
of 20 bytes, with a 1 Mbit/s speed. This is slow when compared to protocols
such as WiFi or 4G, with speeds of 300 Mbit/s and 10 Mbit/s respectively.

Power Consumption
Bluetooth Low Energy also consumes dramatically less power - 2 milliwatts
compared to WiFi’s 80 milliwatts or 4G/LTE’s 1000 milliwats. The result is
that a Bluetooth Low Energy device can run on a coin cell battery for months
or even years, but a WiFi or 4G/LTE device will die after a few minutes on the
same battery.

CHAPTER 2

Scanning and Advertising

The first step to any Bluetooth Low Energy interaction is for the Peripheral to
make the Central aware of its existence, through a process called Advertising.

Advertising reports the server name and other information one channel at a
time until there are no more channels and the server repeats the process again
at the first channel.

During the Advertising process, a Peripheral Advertises while a Central scans.
A Peripheral may start or stop advertising at any time.

Bluetooth devices discover each other when they are tuned to the same radio
frequency, also known as a Channel. There are three channels dedicated to
device discovery in Bluetooth Low Energy: (Table 2-1):

Table 2-1. Bluetooth Low Energy Discovery Radio Channels

Channel Radio Frequency

37 2402 Mhz
39 2426 Mhz
39 2480 Mhz

The peripheral will advertise its name and other data over one channel and
then another. This is called Frequency Hopping (Figure 2-1).

Figure 2-1. Advertise and scan processes

Similarly, the Central listens for advertisements first on one channel and then
another. The Central hops frequencies faster than the Peripheral, so that the two
are guaranteed to be on the same channel eventually.

A Peripheral may advertise from 100ms to 100 seconds depending on its
configuration, changing channels every 0.625ms (Figure 2-2).

Figure 2-2. Scan finds Advertiser

A Central’s Scanning settings vary wildly, for example scanning every 10ms
for 100ms, or scanning for 1 second for 10 seconds. A shorter scan period
with a greater consumes less energy, but is slower to find nearby Peripherals.

Typically when a Central discovers advertising Peripheral, the Central
requests a Scan Response from the Peripheral. In some cases, the Scan
Response contains useful data. For example, iBeacons use Scan Response data
to inform Centrals of each iBeacon’s location without the Central needing to
connect and download more data.

Example
An example of this is an app on iPhone that scans for nearby Bluetooth Low

Energy Peripherals (Figure 2-3).

​
Figure 2-3. iPhone asks for permission to turn on Bluetooth radio and
scans for nearby Bluetooth Low Energy Peripherals

CHAPTER 3

Connecting and Disconnecting

Once a Central has discovered a Peripheral, the central can attempt to connect.
This must be done before data can be passed between the Central and
Peripheral. A Central may hold several simultaneous connections with a
number of peripherals, but a Peripheral may only hold one connection at a
time. Hence the names Central and Peripheral (Figure 3-1).

Figure 3-1. Bluetooth network topology

Bluetooth supports data 37 data channels ranging from 2404 MHz to 2478
MHz.

Once the connection is established, the Central and Peripheral negotiate which
of these channels to begin communicating over. As part of this, a unique Media
Access Control (MAC) address of the Central is sent to the Peripheral.

A MAC address is a 48-bit address given to every network device. It is

typically represented in a hexadecimal format, similar to this:

08:00:27:0E:25:B8

Because the Peripheral can only hold one connection at a time, it must
disconnect from the Central before a new connection can be made.

The connection and disconnection process works like this (Figure 3-2).

Figure 3-2. Connection and disconnection process

Examples
An iPhone can connect to a nearby Advertising Peripheral and display
information about it (Figure 3-3).

​
Figure 3-3. iPhone connects to a nearby Bluetooth Peripheral

The Peripheral in this example can can respond to a connection or
disconnection by a Central. If the Peripheral were connected to some kind of

debugging console, it may report each time a Central has connected or
disconnected (Figure 3-4).

Central connected: 45:b5:7d:96:01:2f

Central disconnected

Figure35-4. Peripheral reporting via debugging console that a Central has
connected, then disconnected.​

CHAPTER 4

Services and Characteristics

Before data can be transmitted back and forth between a Central and
Peripheral, the Peripheral must host a GATT Profile. That is, the Peripheral
must have Services and Characteristics.

Identifying Services and
Characteristics
Each Service and Characteristic is identified by a Universally Unique
Identifier (UUID). The UUID follows the pattern 0000XXXX-0000-1000-
8000-00805f9b34fb, so that a 32-bit UUID 00002a56-0000-1000-8000-
00805f9b34fb can be represented as 0x2a56.

Some UUIDs are reserved for specific use. For instance any Characteristic
with the 16-bit UUID 0x2a35 (or the 32-bit UUID 00002a35-0000-1000-8000-
00805f9b34fb) is implied to be a blood pressure reading.

For a list of reserved Service UUIDs, see Appendix IV: Reserved GATT
Services.

For a list of reserved Characteristic UUIDs, see Appendix V: Reserved GATT
Characteristics.

Generic Attribute Profile
Services and Characteristics describe a tree of data access points on the
peripheral. The tree of Services and Characteristics is known as the Generic
Attribute (GATT) Profile. It may be useful to think of the GATT as being
similar to a folder and file tree (Figure 4-1).

 Service/​
 Characterstic​
 Characterstic​
 Characterstic​

 Service/​
 Characterstic​
 Characterstic​
 Characterstic

Figure 4-1. GATT Profile filesystem metaphor

Characteristics act as channels that can be communicated on, and Services act
as containers for Characteristics. A top level Service is called a Primary
service, and a Service that is within another Service is called a Secondary
Service.

Permissions
Characteristics can be configured with the following attributes, which define

what the Characteristic is capable of doing (Table 4-1):

Table 4-1. Characteristic Permissions

Descriptor Description

Read Central can read this Characteristic, Peripheral can set
the value.

Write

Central can write to this Characteristic, Peripheral will
be notified when the Characteristic value changes and
Central will be notified when the write operation has
occurred.

Notify Central will be notified when Peripheral changes the
value.

Because the GATT Profile is hosted on the Peripheral, the terms used to
describe a Characteristic’s permissions are relative to how the Peripheral
accesses that Characteristic. Therefore, when a Central uploads data to the
Peripheral, the Peripheral can “read” from the Characteristic. The Peripheral
“writes” new data to the Characteristic, and can “notify” the Central that the
data is altered.

Example

An Android app acting as a Central shows the GATT Profile of a connected
Peripheral (Figure 4-2)

​
Figure 4-2. Android app shows GATT Profile of a connected Peripheral​

CHAPTER 5

Reading Data from a Peripheral

The real value of Bluetooth Low Energy is the ability to transmit data
wirelessly.

Bluetooth Peripherals are passive, so they don’t push data to a connected
Central. Instead, Centrals make a request to read data from a Characteristic.
This can only happen if the Characteristic enables the Read Attribute.

This is called “reading a value from a Characteristic.”

Therefore, if a Peripheral changes the value of a Characteristic, then later a
Central downloads data from the Peripheral, the process looks like this (Figure
5-1):

Figure 5-1. The process of a Central reading data from a Peripheral

A Central can read a Characteristic repeatedly, regardless if Characteristic’s
value has changed.

Examples
An iPhone app shows the Readable Permission of a Characteristic (Figure 5-
2) and the data read from that Characteristic (Figure 5-3).

Figure 5-2. Readable

Characteristic available on
connected Peripheral​

Figure 5-3. Data read from
the Charactersitic of a
connected Peripheral

The Peripheral in this example can change the value of one of its hosted
Characteristics periodically. If the Peripheral were connected to some kind of
debugging console, it may report each time the Central has written data, similar
to this (Figure 5-4).

Setting characteristic to: HFVTh

Setting characteristic to: CURWWY6

Setting characteristic to: A6D7SZZFYQ8Sh

Figure 5-4. Peripheral reporting via debugging console that it has changed
the data in one of its Characteristics.​

CHAPTER 6

Write Data to a Peripheral

Data is sent from the Central to a Peripheral when the Central writes a value in
a Characteristic hosted on the Peripheral, presuming that Characteristic has
write permissions.

The process looks like this (Figure 6-1):

Figure 6-1. The process of a Central writing data to a Peripheral

Examples

An iPhone app acting as a Central shows the Readable Permission of a
Characteristic on a connected Peripheral (Figure 6-2) and a text string queued
to be sent to that Characteristic (Figure 6-3).

Figure 6-2. Writable Figure 6-3. Data queued to

Characteristic available on
connected Peripheral​

be written to the
Charactersitic of a connected
Peripheral

The Peripheral in this example can read the newly written data on its
Characteristic. If the Peripheral were connected to some kind of debugging
console, it may report each time the Central has written data, similar to this
(Figure 6-4).

5 bytes sent to characteristic 2A56: hello

5 bytes sent to characteristic 2A56: world

16 bytes sent to characteristic 2A56: Bluetooth works!

Figure 6-4. Peripheral reporting Characteristic Write events to a
debugging console.

CHAPTER 7

Using Notifications

Being able to read from the Central has limited value if the Central does not
know when new data is available.

Notifications solve this problem. A Characteristic can issue a notification
when it’s value has changed. A Central that subscribes to these notifications
will know when the Characteristic’s value has changed, but not what that new
value is. The Central can then read the latest data from the Characteristic.

The whole process looks something like this (Figure 7-1).

Figure 7-1. The process of a Peripheral notifying a connected Central of
changes to a Characteristic

In order to support notifications, a Characteristics must have the Client
Characteristic Configuration (0x2902) Descriptor, which must be writeable.
Centrals can subscribe to notifications by setting the Descriptor value:

Table 7-1. Client Characteristic Configuration Descriptor values

Value Description

0x0100 Enable notifications

0x0000 Disable notifications

Examples
An iPhone app acting as a Central shows the Notify Permission of a
Characteristic on a connected Peripheral (Figure 7-2) and the data read from
that Characteristic after Subscribing (Figure 7-3).

Figure 7-2. Writable Characteristic
available on connected Peripheral​

Figure 7-3. Data queued to be
written to the Charactersitic of a
connected Peripheral

The Peripheral in this example may set the Notifiable, Readable Characteristic
to some random text string every few seconds. If the Peripheral were
connected to some kind of debugging console, it may report something like this
(Figure 7-4).

Setting characteristic to: SV0H0AT

Setting characteristic to: JLG3HBV

Setting characteristic to: H4XLYUB

Figure 7-4. Peripheral reporting that it has altered the content of one of
its Characteristics.

CHAPTER 8

Streaming Data

The maximum packet size you can send over Bluetooth Low Energy is 20
bytes. More data can be sent by dividing a message into packets of 20 bytes or
smaller, and sending them one at a time

These packets can be sent at a certain speed.

Bluetooth Low Energy transmits at 1 Mb/s. Between the data transmission time
and the time it may take for a Peripheral to process incoming data, there is a
time delay between when one packet is sent and when the next one is ready to
be sent.

To send several packets of data, a queue/notification system must be employed,
which alerts the Central when the Peripheral is ready to receive the next
packet.

There are many ways to do this. One way is to set up a Characteristic with
read, write, and notify permissions, and to flag the Characteristic as “ready”
after a write has been processed by the Peripheral. This sends a notification to
the Central, which sends the next packet. That way, only one Characteristic is
required for a single data transmission.

This process can be visualized like this (Figure 8-1).

Figure 8-1. The process of using notifications to handle flow control on a
multi-packed data transfer

The maximum packet size you can send over Bluetooth Low Energy is 20
bytes. More data can be sent by dividing a message into packets of 20 bytes or
smaller, and sending them one at a time

These packets can be sent at a certain speed.

Bluetooth Low Energy transmits at 1 Mb/s. Between the data transmission time
and the time it may take for a Peripheral to process incoming data, there is a
time delay between when one packet is sent and when the next one is ready to
be sent.

To send several packets of data, a queue/notification system must be employed,
which alerts the Central when the Peripheral is ready to receive the next
packet.

There are many ways to do this. One way is to set up a Characteristic with
read, write, and notify permissions, and to flag the Characteristic as “ready”
after a write has been processed by the Peripheral. This sends a notification to
the Central, which sends the next packet. That way, only one Characteristic is
required for a single data transmission.

Examples
An Android app acting as a Central shows the a Characteristic on a connected
Peripheral with Read, Write, and Notify Permission (Figure 8-2) and the data
read from that Characteristic after Subscribing (Figure 8-3).

Figure 8-2. Read, Write, Figure 8-3. Data queued to

Notify Characteristic
available on connected
Peripheral​

be written to the
Charactersitic of a connected
Peripheral​

The Peripheral in this example may process the inbound text behind the scenes
and how that text is written to a Characteristic in chunks. If the Peripheral were
connected to some kind of debugging console, it may report something like this
(Figure 8-4).

16 bytes sent to characteristic 2A56: this is a super

Ready for more data

16 bytes sent to characteristic 2A56: long message

Ready for more data

Figure 8-4. Peripheral reporting what data a Characteristic has written to
one of its Characteristic.

CHAPTER 9

Example: iBeacons

Beacons can be Beacons can be used for range finding or spacial awareness.
iBeacons are a special type of Beacon that is widely supported by the industry.
It supports certain data that identifies the iBeacons to makes range finding and
spacial awareness easier across platforms.

Due to the nature of how radio signals diminish in intensity with distance,
Bluetooth Peripherals can be used both for range finding and spacial
awareness.

Range Finding
Bluetooth signals can be used to approximate the distance between a
Peripheral and a Central because the radio signal quality drops off in a
predictable way with distance. The diagram below shows how the signal might
drop as distance increases (Figure 9-1).

Figure 9-1. Distance versus Bluetooth Signal Strength

This drop-off rate, known as the Inverse-Square Law, is universal with
electromagnetic radiation.

Due to radio interference and absorption from surrounding items, the radio
signal propagation varies a lot from environment to environment, and even step
to step. This makes it very difficult to know the precise distance between a
Central and an iBeacon.

One or more Centrals can approximate their distance from a single iBeacon
without connecting.

Spacial Awareness

A Central can approximate its position in space using a process called
trilateration. Trilateration works by a computing series of equations when both
the distance from and location of nearby iBeacons are known (Figure 9-2).

Figure 9-2. Example Central and iBeacon positions in a room

This is a pretty math-intensive process, but it’s all based on the Pythagorus
Theorem. By calculating the shape of the triangles made from the relative
positions of all the iBeacons and the Central, one can determine the location of
the Central (Figure 9-3).

Figure 9-3. Distances from iBeacons to Central

iBeacons
The Scan Result allows a Central to read information from a Peripheral
without connecting to it, in much the same way that the advertising name is
read.

Although Android supports iBeacon scanning, it does not support iBeacon
advertising. Therefore it is possible to build an app that discovers iBeacons
but not possible to create an iBeacon in Android

iBeacons are beacons that advertise information about their location and
advertise intensity using the Scan Result feature of Bluetooth Low Energy.

The Scan Result allows a Central to read information from a Peripheral
without connecting to it, in much the same way that the Device name is
advertised.

There are only two tricks to creating an iBeacon client in Android:

 iBeacons are identified by their network (MAC) address instead of by
name, because all iBeacons for the same location service have the same name.

 The distance to the iBeacon is calculated based on the RSSI.​

iBeacons do this by advertising certain data that can referenced when looking
up where the iBeacons are located.

Table 9-1. iBeacon Advertised data

Data Position Length Description

iBeacon Header 0 2 Identifies the Peripheral as an
iBeacon

Manufacturer ID 6 2 A numeric value that represents the
manufacturer

UUID 9 16 All iBeacons in a network have the
same UUID

Major 25 2 A top level numeric identifier

Minor 27 2 A numeric identifier under the Major
number

Transmission
Power 29 1 Tells what the transmission power is

in mDb

This data stored as binary in the Peripheral's advertising data. Unlike other
data in Bluetooth Low Energy, numeric values in this packet are stored in big
endian format (Figure 9-4).

Figure 9-4. iBeacon Advertising Packet

An example implementation is a museum that has iBeacons at each exhibit in
the museum. All iBeacons in the exhibit share the same UUID. The museum
uses Major numbers to identify floors and Minor numbers to identify rooms of
the exhibit.

The museum's smartphone app has an internal data set relating Major and
Minor values to the floors and rooms of the exhibit. It scans for all iBeacons
with a specific UUID. The nearby iBeacons are discovered and read. The
discovered iBeacons' Major and Minor numbers are looked up to learn that the
user is in a specific room on a specific floor in the museum. Relevant content
is accessed from the museum's API and loaded in the smartphone app.

Example
An Android app acting as a Central locates its position relative to 3 or more
nearby iBeacons in a room (Figure 9-5).

​
Figure 9-5. Android App locates its own position relative to 3 or more
nearby iBeacons in a room.

CHAPTER 10

Example: Echo Client and Server

An Echo Server is the “Hello World” of network programming. It has the
minimum features required to transmit, store, and respond to data on a network
- the core features required for any network application.

And yet it must support all the features you’ve learned so far in this book -
advertising, reads, writes, notifications, segmented data transfer, and
encryption. It’s a sophisticated program!

The Echo Server works like this:

In this example, the Peripheral acts as a server, the “Echo Server” and the
Central acts as a client (Figure 10-1).

Figure 10-1. How an Echo Server works

Examples
A smartphone can act as a Central in this example. An iPhone app acting as a
Central that shows a message queued to send to an Echo Server (Figure 9-2),
and that message echoed back after being sent (Figure 9-3).

​

Figure 9-2. Message queued to be
sent to a Bluetooth Low Energy
Echo Server​

Figure 9-3. Message echoed back
from the Bluetooth Echo Server​

The Peripheral in this example may process the inbound text behind the scenes
and echo it back. If the Peripheral were connected to some kind of debugging
console, it may report something like this (Figure 10-4).
Starting EchoServer

Incoming message found: hello

Sending message: hello

Figure 10-4. Echo Server debugging console output

CHAPTER 11

Example: Remote Control LED

So far, this book has worked a lot with text data rather than binary data,
because it’s easy to text without using specialized tools such as oscilloscopes
or logic analyzers.

Most real-world projects transmit binary instead of text. Binary is much more
efficient in transmitting information.

Because binary data it is the language of computers, it is easier to work with
than text. There is no need to worry about character sets, null characters, or
cut-off words.

This project will show how to remotely control an LED on a Peripheral using
software on a Central.

The LED Remote works like this (Figure 11-1).

Figure 10-1. How a Remote Control LED works

In all the other examples, text was being sent between Central and Peripheral.

In order for the Central and Peripheral to understand each other, they need
shared language between them. In this case, a data packet format.

Sending Commands to Peripheral

When the Central sends a message, it should be able to specify if it is sending a
command or an error. We can do this in two bytes, like this (Figure 11-2).

Figure 11-2. Packet structure for commands

The Peripheral reads the footer byte of the incoming message to determine the
type of message, i.e., an error or a command. For example, define the message
types as:

Table 11-1. Footer Values

Name Value Description

bleResponseError 0 The Central is sending an error

bleResponseConfirmation 1 The Central is sending a confirmation

bleResponseCommand 2 The Central is sending a command

The Peripheral reads the first byte to determine the type of error or command.
For example, define the commands as:

Table 11-2. Command Values

Name Value Description

bleCommandLedOff 1 Turn off the Peripheral’s LED

bleCommandLedOn 2 Turn on the Peripheral’s LED

The Peripheral then responds to the Central with a status message regarding the
success or failure to execute the command. This can also be expressed as two
bytes (Figure 11-3).

Figure 11-3. Packet structure for responses

If the Peripheral sends a confirmation that the LED state has changed, then the
Central inspects the first byte of the message to determine what the current
state of the Peripheral’s LED is:

Table 11-2. Confirmation Values

Name Value Description

ledStateOff 1 The Peripheral’s LED is off

ledStateOn 2 The Peripheral’s LED is on

In this way, a common language is established between the Central and the
Peripheral.

Gatt Profile
The Bluetooth Low Energy specification provides a special Service, the
Automation IO Service (0x1815), specifically for remote control devices such
as this.

It is a best practice to use each Characteristic for a single purpose. For this
reason, Characteristic 0x2a56 will be used for sending commands to the
Peripheral and Characteristic 0x2a57 will be used for responses from the
Peripheral:

Table 11-4. Characteristic Usages

UUID Use

0x2a56 Send commands from Central to Peripheral

0x2a57 Send responses from Peripheral to Central

Example
An iPhone app acting as a Central connected to a remote controllable LED
with the LED in the off state (Figure 11-4) and in the on state (Figure 11-5).

Figure 11-2. Remote LED in Figure 11-3. Remote LED in

“off” state​

“on” state​

On the Peripheral side, one example is to have an Arduino prototyping board
turn its onboard LED on when it receives the command to do so from a
connected Central (Figure 11-4).

Figure 11-4 a prototyping board shining the onboard LED in response to a
programmed Bluetooth command to turn it on​

Appendix I: Bluetooth Properties
For reference, the following are properties of the Bluetooth Low Energy
network and hardware.

Range 100 m (330 ft)
Data Rate 1M bit/s

Application Throughput 0.27 Mbit/s

Security
128-bit AES with Counter Mode CBC-MAC and

application layer user defined (BEWARE: this
encryption has vulnerabilities)

Robustness
Adaptive Frequency Hopping, Lazy

Acknowledgement, 24-bit CRC, 32-bit Message
Integrity Check

Range 100 m (330 ft)
Data Rate 1M bit/s

Application Throughput 0.27 Mbit/s
128-bit AES with Counter Mode CBC-MAC and

Security application layer user defined (BEWARE: this
encryption has vulnerabilities)

Peak Current
Consumption < 15 mA

Byte-Order in Broadcast Big Endian (most significant bit at end)
Range 100 m (330 ft)

Data Rate 1M bit/s
Application Throughput 0.27 Mbit/s

Security
128-bit AES with Counter Mode CBC-MAC and

application layer user defined (BEWARE: this
encryption has vulnerabilities)

Appendix II: UUID Format
Bluetooth Low Energy has tight space requirements. Therefore it is preferred
to transmit 16-bit UUIDs instead of 32-bit UUIDs. UUIDs can be converted
between 16-bit and 32-bit with the standard Bluetooth Low Energy UUID
format:

Table II-1. 16-bit to 32-bit UUID Conversion Standard

UUID Format uuid16 Resulting uuid32

00000000-0000-1000-8000-
00805f9b34fb 0x2A56 00002A56

00805f9b34fb

Appendix III: Minimal
Recommended GATT
As a best practice, it is good to host a standard set of Services and
Characteristics in a Peripheral's GATT Profile. These Characteristics allow
connected Centrals to get the make and model number of the device, and the
battery level if the Peripheral is battery-powered:

Table III-1. Minimal GATT Profile

GATT Type Name Data Type

Service Device Information Service

Characteristic Device Name char array

Characteristic Model Number char array

Characteristic Serial Number char array

Service Battery Level

Characteristic Battery Level integer

Appendix IV: Reserved GATT
Services
Services act as a container for Characteristics or other Services, providing a
tree-like structure for organizing Bluetooth I/O.

These Services UUIDs have been reserved for special contexts, such
as Device Information (0x180A) Which may contain Characteristics that
communicate information about the Peripheral's name, version number, or
settings.

Note: All Bluetooth Peripherals should have a Battery Service
(0x180F) Service containing a Battery Level (0x2A19) Characteristic.

Table IV-1. Reserved GATT Services

Specification
Name UUID Specification Type

Alert
Notification

Service
0x1811 org.bluetooth.service.alert_notification

Automation
IO 0x1815 org.bluetooth.service.automation_io

Battery
Service 0x180F org.bluetooth.service.battery_service

Blood
Pressure 0x1810 org.bluetooth.service.blood_pressure

Body
Composition 0x181B org.bluetooth.service.body_composition

Bond
Management 0x181E org.bluetooth.service.bond_management

Continuous
Glucose

Monitoring
0x181F org.bluetooth.service.continuous_glucose_monitoring

Current Time
Service 0x1805 org.bluetooth.service.current_time

Cycling
Power 0x1818 org.bluetooth.service.cycling_power

Cycling Speed
and Cadence 0x1816 org.bluetooth.service.cycling_speed_and_cadence

Device
Information 0x180A org.bluetooth.service.device_information

Environmental
Sensing 0x181A org.bluetooth.service.environmental_sensing

Generic
Access

0x1800 org.bluetooth.service.generic_access

Generic
Attribute 0x1801 org.bluetooth.service.generic_attribute

Glucose 0x1808 org.bluetooth.service.glucose
Health

Thermometer 0x1809 org.bluetooth.service.health_thermometer

Heart Rate 0x180D org.bluetooth.service.heart_rate
HTTP Proxy 0x1823 org.bluetooth.service.http_proxy

Human
Interface
Device

0x1812 org.bluetooth.service.human_interface_device

Immediate
Alert 0x1802 org.bluetooth.service.immediate_alert

Indoor
Positioning 0x1821 org.bluetooth.service.indoor_positioning

Internet
Protocol
Support

0x1820 org.bluetooth.service.internet_protocol_support

Link Loss 0x1803 org.bluetooth.service.link_loss
Location and 0x1819 org.bluetooth.service.location_and_navigation

Navigation
Next DST

Change
Service

0x1807 org.bluetooth.service.next_dst_change

Object
Transfer 0x1825 org.bluetooth.service.object_transfer

Phone Alert
Status Service 0x180E org.bluetooth.service.phone_alert_status

Pulse
Oximeter 0x1822 org.bluetooth.service.pulse_oximeter

Reference
Time Update

Service
0x1806 org.bluetooth.service.reference_time_update

Running
Speed and
Cadence

0x1814 org.bluetooth.service.running_speed_and_cadence

Scan
Parameters 0x1813 org.bluetooth.service.scan_parameters

Transport
Discovery 0x1824 org.bluetooth.service.transport_discovery

Tx Power 0x1804 org.bluetooth.service.tx_power
User Data 0x181C org.bluetooth.service.user_data

Weight Scale 0x181D org.bluetooth.service.weight_scale

Source: Bluetooth SIG: GATT Services​
Retrieved from https://www.bluetooth.com/specifications/gatt/services

https://www.bluetooth.com/specifications/gatt/services

Appendix V: Reserved GATT
Characteristics
Characteristics act a data port that can be read from or written to.

These Characteristic UUIDs have been reserved for specific types of data,
such as Device Name (0x2A00) which may read the Peripheral's current
battery level.

Note: All Bluetooth Peripherals should have a Battery Level
(0x2A19) Characteristic, contained inside a Battery Service
(0x180F) Service.

Table V-1. Reserved GATT Characteristics

Specification
Name UUID

Aerobic Heart
Rate Lower

Limit
0x2A7E org.bluetooth.characteristic.aerobic_heart_rate_lower_limit

Aerobic Heart
Rate Upper 0x2A84 org.bluetooth.characteristic.aerobic_heart_rate_upper_limit

Limit
Aerobic

Threshold 0x2A7F org.bluetooth.characteristic.aerobic_threshold

Age 0x2A80 org.bluetooth.characteristic.age
Aggregate 0x2A5A org.bluetooth.characteristic.aggregate

Alert Category
ID 0x2A43 org.bluetooth.characteristic.alert_category_id

Alert Category
ID Bit Mask 0x2A42 org.bluetooth.characteristic.alert_category_id_bit_mask

Alert Level 0x2A06 org.bluetooth.characteristic.alert_level
Alert

Notification
Control Point

0x2A44 org.bluetooth.characteristic.alert_notification_control_point

Alert Status 0x2A3F org.bluetooth.characteristic.alert_status
Altitude 0x2AB3 org.bluetooth.characteristic.altitude

Anaerobic
Heart Rate

Lower Limit
0x2A81 org.bluetooth.characteristic.anaerobic_heart_rate_lower_limit

Anaerobic
Heart Rate

Upper Limit
0x2A82 org.bluetooth.characteristic.anaerobic_heart_rate_upper_limit

Anaerobic
Threshold

0x2A83 org.bluetooth.characteristic.anaerobic_threshold

Analog 0x2A58 org.bluetooth.characteristic.analog
Apparent

Wind
Direction

0x2A73 org.bluetooth.characteristic.apparent_wind_direction

Apparent
Wind Speed 0x2A72 org.bluetooth.characteristic.apparent_wind_speed

Appearance 0x2A01 org.bluetooth.characteristic.gap.appearance
Barometric

Pressure
Trend

0x2AA3 org.bluetooth.characteristic.barometric_pressure_trend

Battery Level 0x2A19 org.bluetooth.characteristic.battery_level
Blood

Pressure
Feature

0x2A49 org.bluetooth.characteristic.blood_pressure_feature

Blood
Pressure

Measurement
0x2A35 org.bluetooth.characteristic.blood_pressure_measurement

Body
Composition

Feature
0x2A9B org.bluetooth.characteristic.body_composition_feature

Body
Composition
Measurement

0x2A9C org.bluetooth.characteristic.body_composition_measurement

Body Sensor
Location 0x2A38 org.bluetooth.characteristic.body_sensor_location

Bond
Management
Control Point

0x2AA4 org.bluetooth.characteristic.bond_management_control_point

Bond
Management

Feature
0x2AA5 org.bluetooth.characteristic.bond_management_feature

Boot
Keyboard

Input Report
0x2A22 org.bluetooth.characteristic.boot_keyboard_input_report

Boot
Keyboard

Output Report
0x2A32 org.bluetooth.characteristic.boot_keyboard_output_report

Boot Mouse
Input Report 0x2A33 org.bluetooth.characteristic.boot_mouse_input_report

Central
Address

Resolution
0x2AA6 org.bluetooth.characteristic.gap.central_address_resolution_support

CGM Feature 0x2AA8 org.bluetooth.characteristic.cgm_feature

CGM
Measurement 0x2AA7 org.bluetooth.characteristic.cgm_measurement

CGM Session
Run Time 0x2AAB org.bluetooth.characteristic.cgm_session_run_time

CGM Session
Start Time 0x2AAA org.bluetooth.characteristic.cgm_session_start_time

CGM Specific
Ops Control

Point
0x2AAC org.bluetooth.characteristic.cgm_specific_ops_control_point

CGM Status 0x2AA9 org.bluetooth.characteristic.cgm_status
CSC Feature 0x2A5C org.bluetooth.characteristic.csc_feature

CSC
Measurement 0x2A5B org.bluetooth.characteristic.csc_measurement

Current Time 0x2A2B org.bluetooth.characteristic.current_time
Cycling Power
Control Point 0x2A66 org.bluetooth.characteristic.cycling_power_control_point

Cycling Power
Feature 0x2A65 org.bluetooth.characteristic.cycling_power_feature

Cycling Power
Measurement 0x2A63 org.bluetooth.characteristic.cycling_power_measurement

Cycling Power 0x2A64 org.bluetooth.characteristic.cycling_power_vector

Vector
Database
Change

Increment
0x2A99 org.bluetooth.characteristic.database_change_increment

Date of Birth 0x2A85 org.bluetooth.characteristic.date_of_birth
Date of

Threshold
Assessment

0x2A86 org.bluetooth.characteristic.date_of_threshold_assessment

Date Time 0x2A08 org.bluetooth.characteristic.date_time
Day Date

Time 0x2A0A org.bluetooth.characteristic.day_date_time

Day of Week 0x2A09 org.bluetooth.characteristic.day_of_week
Descriptor

Value
Changed

0x2A7D org.bluetooth.characteristic.descriptor_value_changed

Device Name 0x2A00 org.bluetooth.characteristic.gap.device_name
Dew Point 0x2A7B org.bluetooth.characteristic.dew_point

Digital 0x2A56 org.bluetooth.characteristic.digital
DST Offset 0x2A0D org.bluetooth.characteristic.dst_offset
Elevation 0x2A6C org.bluetooth.characteristic.elevation

Email Address 0x2A87 org.bluetooth.characteristic.email_address

Exact Time
256 0x2A0C org.bluetooth.characteristic.exact_time_256

Fat Burn
Heart Rate

Lower Limit
0x2A88 org.bluetooth.characteristic.fat_burn_heart_rate_lower_limit

Fat Burn
Heart Rate

Upper Limit
0x2A89 org.bluetooth.characteristic.fat_burn_heart_rate_upper_limit

Firmware
Revision

String
0x2A26 org.bluetooth.characteristic.firmware_revision_string

First Name 0x2A8A org.bluetooth.characteristic.first_name
Five Zone
Heart Rate

Limits
0x2A8B org.bluetooth.characteristic.five_zone_heart_rate_limits

Floor Number 0x2AB2 org.bluetooth.characteristic.floor_number
Gender 0x2A8C org.bluetooth.characteristic.gender
Glucose
Feature 0x2A51 org.bluetooth.characteristic.glucose_feature

Glucose
Measurement 0x2A18 org.bluetooth.characteristic.glucose_measurement

Glucose
Measurement

Context

0x2A34 org.bluetooth.characteristic.glucose_measurement_context

Gust Factor 0x2A74 org.bluetooth.characteristic.gust_factor
Hardware
Revision

String
0x2A27 org.bluetooth.characteristic.hardware_revision_string

Heart Rate
Control Point 0x2A39 org.bluetooth.characteristic.heart_rate_control_point

Heart Rate
Max 0x2A8D org.bluetooth.characteristic.heart_rate_max

Heart Rate
Measurement 0x2A37 org.bluetooth.characteristic.heart_rate_measurement

Heat Index 0x2A7A org.bluetooth.characteristic.heat_index
Height 0x2A8E org.bluetooth.characteristic.height

HID Control
Point 0x2A4C org.bluetooth.characteristic.hid_control_point

HID
Information 0x2A4A org.bluetooth.characteristic.hid_information

Hip
Circumference 0x2A8F org.bluetooth.characteristic.hip_circumference

HTTP Control
Point

0x2ABA org.bluetooth.characteristic.http_control_point

HTTP Entity
Body 0x2AB9 org.bluetooth.characteristic.http_entity_body

HTTP Headers 0x2AB7 org.bluetooth.characteristic.http_headers
HTTP Status

Code 0x2AB8 org.bluetooth.characteristic.http_status_code

HTTPS
Security 0x2ABB org.bluetooth.characteristic.https_security

Humidity 0x2A6F org.bluetooth.characteristic.humidity
IEEE 11073-

20601
Regulatory

Certification
Data List

0x2A2A org.bluetooth.characteristic.ieee_11073-
20601_regulatory_certification_data_list

Indoor
Positioning

Configuration
0x2AAD org.bluetooth.characteristic.indoor_positioning_configuration

Intermediate
Cuff Pressure 0x2A36 org.bluetooth.characteristic.intermediate_cuff_pressure

Intermediate
Temperature 0x2A1E org.bluetooth.characteristic.intermediate_temperature

Irradiance 0x2A77 org.bluetooth.characteristic.irradiance
Language 0x2AA2 org.bluetooth.characteristic.language
Last Name 0x2A90 org.bluetooth.characteristic.last_name
Latitude 0x2AAE org.bluetooth.characteristic.latitude

LN Control
Point 0x2A6B org.bluetooth.characteristic.ln_control_point

LN Feature 0x2A6A org.bluetooth.characteristic.ln_feature
Local East
Coordinate 0x2AB1 org.bluetooth.characteristic.local_east_coordinate

Local North
Coordinate 0x2AB0 org.bluetooth.characteristic.local_north_coordinate

Local Time
Information 0x2A0F org.bluetooth.characteristic.local_time_information

Location and
Speed 0x2A67 org.bluetooth.characteristic.location_and_speed

Location
Name 0x2AB5 org.bluetooth.characteristic.location_name

Longitude 0x2AAF org.bluetooth.characteristic.longitude
Magnetic

Declination 0x2A2C org.bluetooth.characteristic.magnetic_declination

Magnetic Flux

Density - 2D 0x2AA0 org.bluetooth.characteristic.magnetic_flux_density_2D

Magnetic Flux
Density - 3D 0x2AA1 org.bluetooth.characteristic.magnetic_flux_density_3D

Manufacturer
Name String 0x2A29 org.bluetooth.characteristic.manufacturer_name_string

Maximum
Recommended

Heart Rate
0x2A91 org.bluetooth.characteristic.maximum_recommended_heart_rate

Measurement
Interval 0x2A21 org.bluetooth.characteristic.measurement_interval

Model
Number String 0x2A24 org.bluetooth.characteristic.model_number_string

Navigation 0x2A68 org.bluetooth.characteristic.navigation
New Alert 0x2A46 org.bluetooth.characteristic.new_alert

Object Action
Control Point 0x2AC5 org.bluetooth.characteristic.object_action_control_point

Object
Changed 0x2AC8 org.bluetooth.characteristic.object_changed

Object First-
Created 0x2AC1 org.bluetooth.characteristic.object_first_created

Object ID 0x2AC3 org.bluetooth.characteristic.object_id

Object Last-
Modified 0x2AC2 org.bluetooth.characteristic.object_last_modified

Object List
Control Point 0x2AC6 org.bluetooth.characteristic.object_list_control_point

Object List
Filter 0x2AC7 org.bluetooth.characteristic.object_list_filter

Object Name 0x2ABE org.bluetooth.characteristic.object_name
Object

Properties 0x2AC4 org.bluetooth.characteristic.object_properties

Object Size 0x2AC0 org.bluetooth.characteristic.object_size
Object Type 0x2ABF org.bluetooth.characteristic.object_type
OTS Feature 0x2ABD org.bluetooth.characteristic.ots_feature
Peripheral
Preferred

Connection
Parameters

0x2A04 org.bluetooth.characteristic.gap.peripheral_preferred_connection_parameters

Peripheral
Privacy Flag 0x2A02 org.bluetooth.characteristic.gap.peripheral_privacy_flag

PLX
Continuous

Measurement
0x2A5F org.bluetooth.characteristic.plx_continuous_measurement

PLX Features 0x2A60 org.bluetooth.characteristic.plx_features
PLX Spot-

Check
Measurement

0x2A5E org.bluetooth.characteristic.plx_spot_check_measurement

PnP ID 0x2A50 org.bluetooth.characteristic.pnp_id
Pollen

Concentration 0x2A75 org.bluetooth.characteristic.pollen_concentration

Position
Quality 0x2A69 org.bluetooth.characteristic.position_quality

Pressure 0x2A6D org.bluetooth.characteristic.pressure
Protocol

Mode 0x2A4E org.bluetooth.characteristic.protocol_mode

Rainfall 0x2A78 org.bluetooth.characteristic.rainfall
Reconnection

Address 0x2A03 org.bluetooth.characteristic.gap.reconnection_address

Record Access
Control Point 0x2A52 org.bluetooth.characteristic.record_access_control_point

Reference
Time

Information
0x2A14 org.bluetooth.characteristic.reference_time_information

Report 0x2A4D org.bluetooth.characteristic.report

Report Map 0x2A4B org.bluetooth.characteristic.report_map
Resolvable

Private
Address Only

0x2AC9 org.bluetooth.characteristic.resolvable_private_address_only

Resting Heart
Rate 0x2A92 org.bluetooth.characteristic.resting_heart_rate

Ringer
Control Point 0x2A40 org.bluetooth.characteristic.ringer_control_point

Ringer Setting 0x2A41 org.bluetooth.characteristic.ringer_setting
RSC Feature 0x2A54 org.bluetooth.characteristic.rsc_feature

RSC
Measurement 0x2A53 org.bluetooth.characteristic.rsc_measurement

SC Control
Point 0x2A55 org.bluetooth.characteristic.sc_control_point

Scan Interval
Window 0x2A4F org.bluetooth.characteristic.scan_interval_window

Scan Refresh 0x2A31 org.bluetooth.characteristic.scan_refresh
Sensor

Location 0x2A5D org.blueooth.characteristic.sensor_location

Serial Number
String 0x2A25 org.bluetooth.characteristic.serial_number_string

Service
Changed

0x2A05 org.bluetooth.characteristic.gatt.service_changed

Software
Revision

String
0x2A28 org.bluetooth.characteristic.software_revision_string

Sport Type for
Aerobic and
Anaerobic
Thresholds

0x2A93 org.bluetooth.characteristic.sport_type_for_aerobic_and_anaerobic_thresholds

Supported
New Alert
Category

0x2A47 org.bluetooth.characteristic.supported_new_alert_category

Supported
Unread Alert

Category
0x2A48 org.bluetooth.characteristic.supported_unread_alert_category

System ID 0x2A23 org.bluetooth.characteristic.system_id
TDS Control

Point 0x2ABC org.bluetooth.characteristic.tds_control_point

Temperature 0x2A6E org.bluetooth.characteristic.temperature
Temperature
Measurement 0x2A1C org.bluetooth.characteristic.temperature_measurement

Temperature 0x2A1D org.bluetooth.characteristic.temperature_type

Type
Three Zone
Heart Rate

Limits
0x2A94 org.bluetooth.characteristic.three_zone_heart_rate_limits

Time
Accuracy 0x2A12 org.bluetooth.characteristic.time_accuracy

Time Source 0x2A13 org.bluetooth.characteristic.time_source
Time Update
Control Point 0x2A16 org.bluetooth.characteristic.time_update_control_point

Time Update
State 0x2A17 org.bluetooth.characteristic.time_update_state

Time with
DST 0x2A11 org.bluetooth.characteristic.time_with_dst

Time Zone 0x2A0E org.bluetooth.characteristic.time_zone
True Wind
Direction 0x2A71 org.bluetooth.characteristic.true_wind_direction

True Wind
Speed 0x2A70 org.bluetooth.characteristic.true_wind_speed

Two Zone
Heart Rate

Limit
0x2A95 org.bluetooth.characteristic.two_zone_heart_rate_limit

Tx Power
Level

0x2A07 org.bluetooth.characteristic.tx_power_level

Uncertainty 0x2AB4 org.bluetooth.characteristic.uncertainty
Unread Alert

Status 0x2A45 org.bluetooth.characteristic.unread_alert_status

URI 0x2AB6 org.bluetooth.characteristic.uri
User Control

Point 0x2A9F org.bluetooth.characteristic.user_control_point

User Index 0x2A9A org.bluetooth.characteristic.user_index
UV Index 0x2A76 org.bluetooth.characteristic.uv_index
VO2 Max 0x2A96 org.bluetooth.characteristic.vo2_max

Waist
Circumference 0x2A97 org.bluetooth.characteristic.waist_circumference

Weight 0x2A98 org.bluetooth.characteristic.weight
Weight

Measurement 0x2A9D org.bluetooth.characteristic.weight_measurement

Weight Scale
Feature 0x2A9E org.bluetooth.characteristic.weight_scale_feature

Wind Chill 0x2A79 org.bluetooth.characteristic.wind_chill

Source: Bluetooth SIG: GATT Characteristics​

Retrieved from https://www.bluetooth.com/specifications/gatt/characteristics

https://www.bluetooth.com/specifications/gatt/characteristics

Appendix VI: GATT Descriptors
The following GATT Descriptor UUIDs have been reserved for specific uses.

GATT Descriptors describe features within a Characteristic that can be
altered, for instance, the Client Characteristic Configuration (0x2902) which
can be flagged to allow a connected Central to subscribe to notifications on a
Characteristic.

Table VI-1. Reserved GATT Descriptors

Specification
Name UUID Specification Type

Characteristic
Aggregate

Format
0x2905 org.bluetooth.descriptor.gatt.characteristic_aggregate_format

Characteristic
Extended
Properties

0x2900 org.bluetooth.descriptor.gatt.characteristic_extended_properties

Characteristic
Presentation

Format
0x2904 org.bluetooth.descriptor.gatt.characteristic_presentation_format

Characteristic
User

Description
0x2901 org.bluetooth.descriptor.gatt.characteristic_user_description

Client
Characteristic
Configuration

0x2902 org.bluetooth.descriptor.gatt.client_characteristic_configuration

Environmental
Sensing

Configuration
0x290B org.bluetooth.descriptor.es_configuration

Environmental
Sensing

Measurement
0x290C org.bluetooth.descriptor.es_measurement

Environmental
Sensing
Trigger
Setting

0x290D org.bluetooth.descriptor.es_trigger_setting

External
Report

Reference
0x2907 org.bluetooth.descriptor.external_report_reference

Number of
Digitals 0x2909 org.bluetooth.descriptor.number_of_digitals

Report
Reference 0x2908 org.bluetooth.descriptor.report_reference

Server
Characteristic
Configuration

0x2903 org.bluetooth.descriptor.gatt.server_characteristic_configuration

Time Trigger
Setting 0x290E org.bluetooth.descriptor.time_trigger_setting

Valid Range 0x2906 org.bluetooth.descriptor.valid_range
Value Trigger

Setting 0x290A org.bluetooth.descriptor.value_trigger_setting

Source: Bluetooth SIG: GATT Descriptors​
Retrieved from https://www.bluetooth.com/specifications/gatt/descriptors

https://www.bluetooth.com/specifications/gatt/descriptors

Appendix VII: Company Identifiers
The following companies have specific Manufacturer Identifiers, which
identify Bluetooth devices in the Generic Access Profile (GAP). Peripherals
with no specific manufacturer use ID 65535 (0xffff). All other IDs are
reserved, even if not yet assigned.

This is a non-exhaustive list of companies. A full list and updated can be found
on the Bluetooth SIG website.

Table VII-1. Company Identifiers

Decimal Hexadecimal Company

0 0x0000 Ericsson Technology Licensing

1 0x0001 Nokia Mobile Phones

2 0x0002 Intel Corp.

3 0x0003 IBM Corp.

4 0x0004 Toshiba Corp.

5 0x0005 3Com

6 0x0006 Microsoft

7 0x0007 Lucent

8 0x0008 Motorola

13 0x000D Texas Instruments Inc.

19 0x0013 Atmel Corporation

29 0x001D Qualcomm

36 0x0024 Alcatel

37 0x0025 NXP Semiconductors (formerly Philips
Semiconductors)

60 0x003C BlackBerry Limited (formerly Research In
Motion)

76 0x004C Apple, Inc.

86 0x0056 Sony Ericsson Mobile Communications

89 0x0059 Nordic Semiconductor ASA

92 0x005C Belkin International, Inc.

93 0x005D Realtek Semiconductor Corporation

101 0x0065 Hewlett-Packard Company

104 0x0068 General Motors

117 0x0075 Samsung Electronics Co. Ltd.

120 0x0078 Nike, Inc.

135 0x0087 Garmin International, Inc.

138 0x008A Jawbone

184 0x00B8 Qualcomm Innovation Center, Inc. (QuIC)

215 0x00D7 Qualcomm Technologies, Inc.

216 0x00D8 Qualcomm Connected Experiences, Inc.

220 0x00DC Procter & Gamble

224 0x00E0 Google

359 0x0167 Bayer HealthCare

367 0x016F Podo Labs, Inc

369 0x0171 Amazon Fulfillment Service

387 0x0183 Walt Disney

398 0x018E Fitbit, Inc.

425 0x01A9 Canon Inc.

427 0x01AB Facebook, Inc.

474 0x01DA Logitech International SA

558 0x022E Siemens AG

605 0x025D Lexmark International Inc.

637 0x027D HUAWEI Technologies Co., Ltd. ()

720 0x02D0 3M

876 0x036C Zipcar

897 0x0381 Sharp Corporation

921 0x0399 Nikon Corporation

1117 0x045D Boston Scientific Corporation

65535 0xFFFF No Device ID

Source: Bluetooth SIG: Company Identifiers​
Retrieved from​

 https://www.bluetooth.com/specifications/assigned-numbers/company-
identifiers

https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers

Glossary

The following is a list of Bluetooth Low Energy terms and their meanings.

Android - An open-source operating system used for smartphones and tablet
computers

Arduino - An open source computer hardware and software company, project,
and user community that designs and manufactures single-board
microcontrollers and microcontroller kits for building digital devices and
interactive objects that can sense and control objects in the physical world.

Attribute - An unit of a GATT Profile which can be accessed by a Central,
such as a Service or a Characteristic.

Beacon - A Bluetooth Low Energy Peripheral which continually Broadcasts so
that Centrals can discern their location from information gleaned from the
properties of the broadcast.

Bluetooth Low Energy (BLE) - A low power, short range wireless protocol
used on micro electronics.

Broadcast - A feature of Bluetooth Low Energy where a Peripheral outputs a
name and other specific data about a itself

Central - A Bluetooth Low Energy device that can connect to several
Peripherals.

Channel - A finely-tuned radio frequency used for Broadcasting or data

transmission.

Characteristic - A port or data endpoint where data can be read or written.

Descriptor - A feature of a Characteristic that allows for some sort of data
interaction, such as Read, Write, or Notify.

E0 - The encryption algorithm built into Bluetooth Low Energy.

Generic Attribute (GATT) Profile - A list of Services and Characteristics
which are unique to a Peripheral and describe how data is served from the
Peripheral. GATT profiles are hosted by a Peripheral

Intel® Curie™ Module - The Intel® module that powers the Arduino 101 and
contains the Bluetooth chipset.

iBeacon - An Apple compatible Beacon which allows a Central to download
a specific packet of data to inform the Central of its absolute location and other
properties.

Notify - An operation where a Peripheral alerts a Central of a change in data.

nRFx - A series of Bluetooth-enabled programmable microcontrollers
produced by Nordic Semiconductors®.

Peripheral - A Bluetooth Low Energy device that can connect to a single
Central. Peripherals host a Generic Attribute (GATT) profile.

Read - An operation where a Central downloads data from a Characteristic.

Scan - The process of a Central searching for Broadcasting Peripherals.

Scan Response - A feature of Bluetooth Low Energy which allows Centrals to
download a small packet of data without connecting.

Service - A container structure used to organize data endpoints. Services are
hosted by a Peripheral.

Universally Unique Identifier (UUID) - A long, randomly generated
alphanumeric sting that is unique regardless of where it’s used. UUIDs are
designed to avoid name collisions that may happen when countless programs
are interacting with each other.

Write - An operation where a Central alters data on a Characteristic.

About the Author

Tony’s infinite curiosity compels him to want to open up and learn about
everything he touches, and his excitement compels him to share what he learns
with others.

He has two true passions: branding and inventing.

His passion for branding led him to start a company that did branding and

marketing in 4 countries for firms such as Apple, Intel, and Sony BMG. He
loves weaving the elements of design, writing, product, and strategy into an
essential truth that defines a company.

His passion for inventing led him to start a company that uses brain imaging to
quantify meditation and to predict seizures, a company acquired $1.5m in
funding and was incubated in San Francisco where he currently resides.

Those same passions have led him on some adventures as well, including
living in a Greek monastery with orthodox monks and to tagging along with a
gypsy in Spain to learn to play flamenco guitar.

About this Book

In this book, you will learn the mechanics behind the Bluetooth Low Energy
protocol, a wireless technology that lets computers, smartphones, and smart
devices communicate within a space about the size of a room.

Through the course of the book you will learn important concepts that relate to:

How Bluetooth Low Energy works,

How data is sent and received

Common paradigms for handling data

Additionally, you will learn how three common product paradigms work:

An iBeacon

An Echo Server

A Remote Controlled Device

Skill Level

This book is an excellent read for anyone who wants to know the terminology,
technology, and concepts behind Bluetooth Low Energy devices but doesn’t
need to program them.

Other Books in this Series

If you are interested in programming Bluetooth Low Energy Devices, please
check out the other books in this series or visit bluetoothlowenergybooks.com:

Bluetooth Low Energy in Android Java

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-1-4

http://bluetoothlowenergybooks.com

Bluetooth Low Energy in Arduino 101

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-2-1

Bluetooth Low Energy in iOS Swift

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-0-7

Bluetooth Low Energy in C++ for nRF Microcontrollers

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-3-8

(this page intentionally left blank)

Advertise

A feature of Bluetooth Low Energy where a Peripheral outputs a name and other specific data
about itself

Attribute

 A unit of a GATT Profile which can be accessed by a Central, such as a Service or a
Characteristic.

Beacon

A Bluetooth Low Energy Peripheral which continually Advertises so that Centrals can discern their
location from information gleaned from the properties of the advertise.

Big-endian

A mechanism for storing numbers in binary, where the most significant value of the number is
stored first, typically represented towards the right of the screen.

Bluetooth Low Energy (BLE)

A low-power, short-range wireless protocol for use with micro electronics.

Central

A Bluetooth Low Energy device that can connect to several Peripherals.

Channel

A finely-tuned radio frequency used for Advertising or data transmission.

Characteristic

A port or data endpoint where data can be read or written.

Descriptor

A feature of a Characteristic that allows for some sort of data interaction, such as Read, Write, or
Notify.

E0

The encryption algorithm built into Bluetooth Low Energy.

Generic Access Profile (GAP)

Identifying information about a Peripheral that identifies the Peripheral by name, service listing,
connectability, or other custom data. This data is accessible after connection and is stored in big-
endian format.

iBeacon

An Apple-compatible Beacon which allows a Central to download a specific packet of data to
inform the Central of its absolute location and other properties.

Little-Endian

A mechanism for storing numbers in binary, where the the least significant values of the number are
store first, typically represtented towards the right of the screen.

Notify

An operation where a Peripheral alerts a Central of a change in data.

Peripheral

A Bluetooth Low Energy device that can connect to a single Central. Peripherals host a Generic
Attribute (GATT) profile.

Read

An operation where a Central downloads data from a Characteristic.

Scan

The process of a Central searching for Advertising Peripherals.

Scan Response

A feature of Bluetooth Low Energy which allows Centrals to download a small packet of data
without connecting.

Service

A container structure used to organize data endpoints. Services are hosted by a Peripheral.

Universally Unique Identifier (UUID)

A long, randomly generated alphanumeric sting that is unique regardless of where it’s used. UUIDs
are designed to avoid name collisions that may happen when countless programs are interacting
with each other.

Write

An operation where a Central alters data on a Characteristic.

Android

An open-source operating system used for smartphones and tablet computers

Arduino

An open source computer hardware and software company, project, and user community that
designs and manufactures single-board microcontrollers and microcontroller kits for building digital
devices and interactive objects that can sense and control objects in the physical world.

Intel® Curie™ Module

The Intel® module that powers the Arduino 101 and contains the Bluetooth chipset.

nRFx

A series of Bluetooth-enabled programmable microcontrollers produced by Nordic
Semiconductors®.

Advertise
A feature of Bluetooth Low Energy where a Peripheral outputs a name
and other specific data about itself

Attribute
 A unit of a GATT Profile which can be accessed by a Central, such as a
Service or a Characteristic.

Beacon
A Bluetooth Low Energy Peripheral which continually Advertises so that
Centrals can discern their location from information gleaned from the
properties of the advertise.

Big-endian
A mechanism for storing numbers in binary, where the most significant
value of the number is stored first, typically represented towards the right
of the screen.

Bluetooth Low Energy (BLE)
A low-power, short-range wireless protocol for use with micro
electronics.

Central
A Bluetooth Low Energy device that can connect to several Peripherals.

Channel
A finely-tuned radio frequency used for Advertising or data transmission.

Characteristic
A port or data endpoint where data can be read or written.

Descriptor
A feature of a Characteristic that allows for some sort of data interaction,
such as Read, Write, or Notify.

E0
The encryption algorithm built into Bluetooth Low Energy.

Generic Access Profile (GAP)
Identifying information about a Peripheral that identifies the Peripheral by
name, service listing, connectability, or other custom data. This data is
accessible after connection and is stored in big-endian format.

iBeacon
An Apple-compatible Beacon which allows a Central to download a
specific packet of data to inform the Central of its absolute location and
other properties.

Little-Endian
A mechanism for storing numbers in binary, where the the least significant
values of the number are store first, typically represtented towards the
right of the screen.

Notify
An operation where a Peripheral alerts a Central of a change in data.

Peripheral
A Bluetooth Low Energy device that can connect to a single Central.
Peripherals host a Generic Attribute (GATT) profile.

Read
An operation where a Central downloads data from a Characteristic.

Scan
The process of a Central searching for Advertising Peripherals.

Scan Response
A feature of Bluetooth Low Energy which allows Centrals to download a
small packet of data without connecting.

Service
A container structure used to organize data endpoints. Services are hosted
by a Peripheral.

Universally Unique Identifier (UUID)
A long, randomly generated alphanumeric sting that is unique regardless
of where it’s used. UUIDs are designed to avoid name collisions that may
happen when countless programs are interacting with each other.

Write
An operation where a Central alters data on a Characteristic.

Android
An open-source operating system used for smartphones and tablet
computers

Arduino
An open source computer hardware and software company, project, and
user community that designs and manufactures single-board
microcontrollers and microcontroller kits for building digital devices and
interactive objects that can sense and control objects in the physical
world.

Intel® Curie™ Module
The Intel® module that powers the Arduino 101 and contains the
Bluetooth chipset.

nRFx
A series of Bluetooth-enabled programmable microcontrollers produced
by Nordic Semiconductors®.

	Bluetooth Low Energy: A Technical Primer
	Bluetooth Low Energy: A Technical Primer
	Untitled
	Dedication
	Untitled
	Preface
	Introduction
	Scanning and Advertising
	Connecting and Disconnecting
	Services and Characteristics
	Reading Data from a Peripheral
	Write Data to a Peripheral
	Using Notifications
	Streaming Data
	Example: iBeacons
	Example: Echo Client and Server
	Example: Remote Control LED
	Appendix I: Bluetooth Properties
	Appendix II: UUID Format
	Appendix III: Minimal Recommended GATT
	Appendix IV: Reserved GATT Services
	Appendix V: Reserved GATT Characteristics
	Appendix VI: GATT Descriptors
	Appendix VII: Company Identifiers
	Glossary
	About the Author
	About this Book
	Other Books in this Series
	Untitled
	Glossary

