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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technol-
ogy transfer in control engineering. The rapid development of control technology
has an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies, . . . , new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended ex-
position of such new work in all aspects of industrial control for wider and rapid
dissemination.

The abundance of low-level single-input, single-output loops in many industrial
sectors, particularly the process industries (refining, chemicals, utilities, etc.), that
can be controlled by simple controllers has guaranteed the enduring popularity of
the proportional-integral-derivative (PID) control algorithm, and its software and
hardware incarnations. Over the years, the academic control community has pro-
duced new developments for this type of controller, and it is possible to claim that an
academic and industrial PID controller and implementation paradigm now exists. If
milestones for this paradigm have to be identified, then three of them are (arguably):

• Ziegler and Nichols tuning rules (1942)
• Åström and Hägglund’s relay-based tuning experiment (1985)
• Harris’s performance assessment concepts (1989)

Each of the milestone achievements has been very influential, and each in turn
has initiated at least a decade or more of academic investigation and industrial
follow-up. Since 1992, the Advances in Industrial Control monograph series has
been fortunate to publish interesting volumes in the PID control paradigm that con-
tinue the academic and industrial investigation into the theory and practice of PID
control.

Integral processes with dead time form a group of process models that are widely
found in industry, and it is not surprising that the PID control methodologies for
model identification, controller design, stability determination, and implementation
can be specialised for this process form. Antonio Visioli and Qing-Chang Zhong
have published widely on PID control, and in this Advances in Industrial Control
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x Series Editors’ Foreword

volume they focus successfully on the PID control specialisations that can be devel-
oped for integral processes with dead time.

The monograph first reports on what can be achieved in the framework of single-
loop PID control. Thus, Part I includes model identification, a review of PID tun-
ing rules, and interestingly, performance assessment and retuning for PID control
with this special form of process model. Part II of the monograph considers some
more advanced topics (such as feedforward control) in the framework of the two-
degrees-of-freedom control structure. The use of the Smith predictor principle and
its developmental variants occupies two chapters in this part of the monograph. On
implementation, the text fields Chapter 5 on the “Plug & Play” idea, and Chap-
ter 12 on some practical issues. The monograph will be of interest to a broad control
readership, both industrial and academic, and forms a valuable new addition to the
Advances in Industrial Control series.

Readers wishing to learn more about PID control may be interested to know that
the series has published the following monographs in this field:

• Autotuning of PID Controllers: Relay Feedback Approach by Cheng-Ching Yu
(ISBN 978-3-540-76250-8, 1999)

• Advances in PID Control by Tan Kok K., Wang Quing-Guo and Hang Chang C.
with Tore J. Hägglund (ISBN 978-1-85233-138-2, 1999)

• Structure and Synthesis of PID Controllers by Aniruddha Datta, Ming-Tzu Ho
and Shankar P. Bhattacharyya (ISBN 978-1-85233-614-1, 1999)

• Practical PID Control by Antonio Visioli (ISBN 978-1-84628-585-1, 2006)

In the related field of process performance assessment, the series has published
the following monographs:

• Performance Assessment of Control Loops: Theory and Applications by Biao
Huang and Sirish L. Shah (ISBN 978-1-85233-639-4, 1999)

• Process Control Performance Assessment: From Theory to Implementation by
Andrzej Ordys, Damien Uduehi and Michael A. Johnson (Eds.) (ISBN 978-1-
84628-623-0, 2007)

And for dead-time processes, the related series Advanced Textbooks in Control
and Signal Processing has published:

• Control of Dead-time Processes by Julio E. Normey-Rico and Eduardo F. Cama-
cho (ISBN 978-1-84628-828-9, 2007)

All of these texts are repeatedly referenced in books and journal and conference
papers, and the Editors believe they form a significant collection of books for PID
control systems research and practice. Consequently, it is a pleasure to add Control
of Integral Processes with Dead Time by Antonio Visioli and Qing-Chang Zhong to
this growing PID control library within the Advances in Industrial Control mono-
graph series.

M.J. Grimble
M.A. Johnson

Industrial Control Centre
Glasgow
Scotland, UK



Preface

Integral processes with dead time are frequently encountered in engineering. Typical
examples include tanks, where the level is controlled by manipulating the difference
between the input and output flow rates, batch distillation columns, data communi-
cation networks, and supply chain management processes. Because they are not
asymptotically stable (namely, they are not self-regulating), their control requires
special attention, and for this reason, many control techniques have been proposed
for this purpose. In particular, different approaches have been exploited to design
PID controllers, which are by far the most widely adopted controllers in industry.
However, it is recognised that in the presence of a large time delay in the process
and of tight control requirements, a single degree-of-freedom PID controller may
not suffice to obtain the desired performance. Indeed, in the last fifteen years, start-
ing with the paper by Åström, Hang, and Lim in 1994, the research in the control
of integral processes with dead time has become very active, mainly motivated by
the fact that the well-known Smith predictor fails to provide a null steady-state error
in the presence of a constant load disturbance. In this context, many two-degree-
of-freedom schemes have been proposed, and their analysis and design have been
discussed in a wide literature.

This book presents some of these techniques by fully characterising them from
both academic and industrial points of view and highlighting the peculiarities of
each of them. The control schemes and the procedures for the selection of the pa-
rameters are outlined clearly, and illustrative examples are presented in order to
evaluate the rationale of each method and the performance achievable.

The book is divided into two parts: PID Control Schemes (Chapters 2 to 5) and
Two-degree-of-freedom Control Schemes (Chapters 6 to 12). In the first part, the
tuning of a PID controller and the determination of its stabilising region are ad-
dressed, in addition to a technique for the performance assessment (and retuning)
of a PID controller and for the Plug&Control strategy. In the second part, different
methodologies for the design of two-degree-of-freedom control schemes are pre-
sented, in particular those based on the Smith predictor concept. The achievable
performance is quantitatively analysed, and some practical issues are dealt with.

The book can serve as a reference for postgraduate students and academic re-
searchers. It will also help industrial practitioners solve their control problems by

xi



xii Preface

selecting the most suitable technique and by achieving the best cost/benefit ratio.
Readers are assumed to know the fundamentals of linear control systems, which are
typically acquired in a basic course in automatic control at the university level.

The authors would like to acknowledge all the people who have contributed to
this book in one way or another, in particular, A. Piazzi, M. Veronesi, F. Padula,
M. Beschi, L. Mirkin, H.X. Li, B. Wang, D. Rees, just to name a few. Special thanks
go to the series Editors M. Grimble and M. Johnson, the Editor O. Jackson and the
Editorial Assistant C. Cross for their help during the preparation of the manuscript.
Partial support of the research of A. Visioli has been provided by the Italian Ministry
for Universities and Research. A. Visioli thanks his beloved wife Silvia and his chil-
dren Alessandra, Laura, and Andrea for their love and support during the time spent
in writing the book. Q.-C. Zhong thanks his wife Shuhong for her endurance, love,
support, and sacrifice for his research over the years and their daughters Lilly and
Lisa for brightening his life. He would also like to thank the Royal Academy of En-
gineering and the Leverhulme Trust for the award of a Senior Research Fellowship
(2009–2010).

Antonio Visioli
Qing-Chang Zhong

University of Brescia, Italy
Loughborough University, UK
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Chapter 1
Introduction

Many industrial processes have the dynamics of an integrator plus dead time (IPDT)
and are called integral processes with dead time. The most well-known examples are
tanks, where the level is controlled by using the difference between the input and
output flow rates as a manipulated variable, batch distillation columns, data com-
munication networks, supply chain management processes, etc. These processes are
not asymptotically stable (namely, they are not self-regulating), and therefore their
control requires special attention. For this reason, many techniques have been pro-
posed in the literature. In this chapter, some examples of integral processes with
dead time are described, and then an overview of the book is given.

1.1 Examples of Integral Processes with Dead Time

1.1.1 Tanks with an Outlet

The most typical example of IPDT process is a storage (or surge) tank with an
outlet pump [84], which is often extremely important for the successful operation
of chemical plants, because it is through the proper control of flows and levels that
the desired production rates and inventories are achieved [67]. Such a tank is shown
in Figure 1.1, where h is the level of the liquid, Qi is the input flow rate, and Qo
is the output flow rate set by the pump. Hence, it is independent of the liquid level
(note that if the output flow is not actuated, then Qo(t) = α

√
2gh(t), where g is the

gravitational acceleration constant, and α is the cross-sectional area of the output
orifice). A model of the process can be derived easily by considering the balance
equation based on an instantaneous rate-of-change, namely, by considering that the
rate-of-change of the total mass of liquid inside the tank is equal to the mass flow
rate of the liquid into the tank minus the mass flow rate of the liquid out of the tank.
Thus, by assuming that a perfect mixing in the tank is achieved, i.e., that the density
(mass/volume) of liquid in the tank does not depend on the position, then

dV (t)ρ

dt
= Qi(t)ρi − Qo(t)ρ, (1.1)
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Fig. 1.1 A liquid-level control system

where V is the volume of the liquid in the tank, ρ is the density of the liquid in the
tank, and ρi is the density of the inlet stream. Assuming that ρi = ρ and that the
cross-sectional area A of the tank is uniform, then

A
dh(t)

dt
= Qo(t) − Qi(t). (1.2)

If the difference Qo(t)−Qi(t) between the output and input flow rates is consid-
ered as the process input variable and the level h is the output variable, the process
exhibits clearly an integral dynamic, that is, the solution of the differential equation
(1.2) is given by

h(t) = h(0) + 1

A

∫ t

0

[
Qo(v) − Qi(v)

]
dv. (1.3)

If, for example, the initial level is 2 metres, the cross-sectional area is 4 square me-
tres, the inlet flow rate is 5 litres/second, and the outlet flow rate is 4 litres/seconds,
then

h(t) = 2 + 1

4
t. (1.4)

This means that a sudden change of the inlet flow rate while the outlet flow rate
remains constant (or, similarly, a sudden change in the outlet flow rate while the inlet
flow rate remains constant) results in a continuous increase or decrease in the liquid
level. It is worth stressing that, in this context, Qo can be selected as the manipulated
input and Qi is a disturbance input or vice versa. In any case, the open-loop process
step response does not converge to a steady-state value, namely, the process is not
self-regulating. In general, the transfer function of this kind of processes, which are
also known as pure capacity processes, can be written as

P(s) = K

s
. (1.5)

In general, the presence of a (possibly apparent) dead time L can occur because
of the length of the pipes between the valves and the tank, and/or because of the
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Fig. 1.2 A production process in supply chains

dynamics of the sensor and of the actuator. Thus, the transfer function of an IPDT
process becomes

P(s) = K

s
e−Ls. (1.6)

1.1.2 Supply Chain Management Processes

The supply chain [19, 109, 148] of a modern enterprise consists of suppliers, fac-
tories, warehouses, distribution centres, and retailers, which may reside at different
locations in the world. In a supply chain, raw materials are processed, and products
are made, which are then delivered to the customer at the right place at the right time
in the right quantity. IPDT models can be employed effectively to describe supply
chain management (SCM) processes [19, 21, 109, 144, 148].

For a factory, the production process can be depicted as shown in Figure 1.2,
where a delay L is involved. The difference of the product completed and the cus-
tomer demand d is stored in a buffer to generate the net stock S. The customer de-
mand d is considered as an exogenous disturbance signal, and its effects on the stock
level S must be dealt with properly by manipulating the production order rate u.

This model can also be used to describe the dynamics of warehouses or retailers,
where the delay L is the transportation delay involved.

1.1.3 Communication Networks

Communication networks [124] have been among the fastest-growing areas in en-
gineering in the last two decades. In most data communication networks, user data
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Fig. 1.3 A single-node connection in networks

is decomposed into a string of packets, including additional information added to
ensure its safe arrival at the correct destination. The packets can be rather long or
of variable length, e.g. as in the Internet, and small and of fixed length, e.g. as in
Asynchronous Transfer Mode (ATM) networks. The data packets are stored in a
buffer or queue at the source node and then sent to the buffer or queue at the next
node when resources become available. This is repeated in the network until the
packets arrive at the destination. Figure 1.3(a) depicts the process when packets are
sent from Node i − 1 to Node i. A propagation delay Li is involved in the commu-
nication link. The mathematical model of such a single-node connection is shown in
Figure 1.3(b), where the buffer is modelled as an integrator. Because of the delays
involved, communication networks need to be well controlled to maintain network
stability and quality-of-service (QoS); see for example [27, 44, 68, 105].

1.1.4 Other Examples

Other examples of IPDT processes include the high-pressure steam flowing to a
steam turbine generator in a power plant [37], the heating of well-insulated batch
systems, the batch preparation of solutions by addition of chemicals to solvent, and
batch distillation processes where the mixture is added into the reboiler drum and a
certain distillate composition is made to track a given trajectory by manipulating the
internal reflux ratio [75]. The totally heat-integrated distillation columns [40] also
exhibit a dynamics with an integrator.
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1.2 Overview of the Book

The book is organised into two parts. In the first part, (one-degree-of-freedom)
Proportional-Integral-Derivative (PID) based control schemes are addressed, and,
in the second part, two-degree-of-freedom control schemes are addressed.

In Chapter 2, the use of PID controllers for integrating processes with dead time
is introduced. In particular, the PID control techniques specialised for this kind
of processes are analysed. After having introduced PID controllers, identification
methods suitable to be applied in an industrial context are presented. Both open-
loop and (relay-feedback-based) closed-loop techniques are considered. Then, tun-
ing methodologies are explained. Without aiming at presenting all the methods pro-
posed in the literature, different approaches are highlighted, with the purpose of
showing how the problem can be tackled from different point of views. After hav-
ing presented empirical tuning rules, analytical approaches are discussed, in par-
ticular those based on the Internal Model Control. Then, frequency-domain design
techniques are explained. Eventually, techniques based on optimisation criteria are
presented, focusing on the optimisation of integral and H∞ criteria.

In Chapter 3, a procedure for the determination of the complete set of stabilising
parameters of the PI controller for IPDT processes is presented together with the
achievable stability margins. The stability regions under the PID control are also are
addressed.

Chapter 4 deals with the performance assessment problem. In particular, a
methodology for the assessment of the performance of a PID controller for IPDT
processes is described, and a method for the retuning of the controller, if the perfor-
mance is not satisfactory, is also explained.

In Chapter 5, the recently developed Plug&Control strategy is applied to integral
processes with dead time. It will be shown that it represents a useful tool for the fast
tuning of the controller at the start-up of the process.

In Chapter 6, after having presented the standard two-degree-of-freedom control
scheme and a method for designing a two-state time-optimal feedforward controller,
a method for the design of a noncausal feedforward action, based on input–output
inversion, is applied to a PID-based feedback control scheme, and its implementa-
tion in an industrial context is addressed.

In Chapter 7, the design of a PID–PD controller is described. Typically, a PD
controller is employed in an inner loop in the feedback path, while a PI controller is
employed in the feedforward path. Similar approaches, namely, PID–PD and PID–I
are also addressed.

In Chapter 8, Smith-predictor-based control schemes are presented. In the last
few years, there have been many papers addressing the design of a modified Smith
predictor in order to achieve high performance for an integral process with large
dead time, in particular by ensuring zero steady-state error when a constant load
disturbance occurs. This chapter describes some of these approaches by presenting
the devised schemes, the tuning of the parameters, and the anti-windup strategies.

In Chapter 9, a control scheme which combines the advantages of the Smith
predictor and the PID controller is presented. The controller is inherently a PID-type
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controller in which the integral action is implemented using a delay unit rather than
a pure integrator. The setpoint response and the disturbance response are decoupled
from each other and can be designed separately. The robustness of the scheme is
also analysed.

In Chapter 10, a disturbance observer-based control scheme is explained. The
controller can be designed to reject ramp disturbances and step disturbances, even
arbitrary disturbances. The case to achieve deadbeat responses for step disturbances
is also discussed in detail.

In Chapter 11, the performance achievable by the disturbance-observer-based
control scheme is analysed quantitatively. In particular, four specifications—
(normalised) maximal dynamic error, maximal decay rate, (normalised) control
action bound, and approximate recovery time—are given to characterise the step-
disturbance response.

Finally, in Chapter 12, some practical issues concerned with the controller im-
plementation are discussed.
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Chapter 2
PID Control

The use of Proportional-Integral-Derivative (PID) controllers for integrating pro-
cesses with dead time is discussed in this chapter. Since PID controllers are the
most adopted controllers in industry and there are many different design methods,
only those techniques specialised for IPDT processes are discussed in this chap-
ter. After having introduced PID controllers, identification methods suitable to be
applied in an industrial context are presented. Both open-loop and (relay-feedback-
based) closed-loop techniques are considered. Then, tuning methods are explained.
Without aiming at presenting all the tuning methods proposed in the literature, dif-
ferent approaches are highlighted with the purpose of showing how the problem can
be tackled from different points of view. After having presented empirical tuning
rules, analytical design techniques are explained, in particular those based on the
Internal Model Control. Then, frequency domain approaches are discussed. Subse-
quently, techniques based on optimisation criteria are presented, in particular those
based on the optimisation of integral criteria and on H∞ loop shaping. Note that the
classification done hereafter is subjective because, actually, there might be overlap
between the different methods considered (for example, the Internal Model Control
strategy is analytical, but, at the same time, it minimises integral criteria).

2.1 PID Controllers

2.1.1 Basic Principles

PID controllers are the most adopted controllers in industrial settings owing to their
relative ease of use and the satisfactory performance they are capable to provide
for the great majority of processes. Indeed, the cost/benefit ratio they can achieve is
difficult for other kinds of controllers to compete with. Because of their widespread
use, many techniques have been proposed for their design, namely, for the tuning of
the parameters and for the implementation of additional functionalities that improve
their performance; see for example [6, 83, 132].

A. Visioli, Q.-C. Zhong, Control of Integral Processes with Dead Time,
Advances in Industrial Control,
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Fig. 2.1 Standard unity-feedback control scheme

A PID controller consists of the sum of three control actions, namely, a control
action proportional to the control error, a control action proportional to the inte-
gral of the control error, and a control action proportional to the first derivative of
the control error. Indeed, the proportional action implements the typical operation
of increasing the control variable when the control error is large (with appropriate
sign). The integral action is related to the past values of the control error and al-
lows the reduction to zero of the steady-state error when a step reference signal is
applied or a constant load disturbance d occurs. The derivative action is based on
the predicted future values of the control error and has therefore a great potential
in improving the control performance as it can anticipate an incorrect trend of the
control error and counteract for it.

In its basic form, the control action can be expressed as

u(t) = Kp

(
e(t) + 1

Ti

∫ t

0
e(v) dv + Td

d

dt
e(t)

)
, (2.1)

where e(t) = r(t)− y(t) is the control error (see Figure 2.1), Kp is the proportional
gain, Ti is the integral time constant, and Td is the derivative time constant. The
corresponding transfer function is

C(s) = U(s)

E(s)
= Kp

(
1 + 1

Tis
+ Tds

)
. (2.2)

Actually, the transfer function (2.2) is not proper. In order to make it proper, a filter
is usually added to the derivative term (note that this also reduces the detrimental
effect of the high-frequency measurement noise), so that

C(s) = U(s)

E(s)
= Kp

(
1 + 1

Tis
+ Tds

1 + Td

N
s

)
, (2.3)

where the value of N generally assumes a value between 1 and 33, although in the
majority of the practical cases, its setting falls between 8 and 16 (usually 10) [1].
Alternatively, the whole control action can be filtered, yielding the following transfer
function:

C(s) = Kp

(
1 + 1

Tis
+ Tds

)
1

Tf s + 1
, (2.4)

where the time constant Tf has to be selected so that the first-order filter does not
influence the dynamics of the PID controller significantly and the high-frequency
noise is filtered appropriately at the same time.
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It is worth noting at this point that there are other possible configurations for a
PID controller. In fact, in addition to Expression (2.2), which is called the ideal form
(or non-interacting form), the three control actions can also be implemented in the
so-called series or interacting form, namely (the filter is omitted for simplicity),

C(s) = K ′
p

(
T ′

i s + 1

T ′
i s

)
(T ′

ds + 1), (2.5)

or, alternatively, in parallel form as

C(s) = Kp + Ki

s
+ Kds. (2.6)

Translation formulae can be employed to determine the values of the parameters
of an equivalent PID controller in a given form starting from the parameters of the
PID controller in another form. However, it has to be stressed that the ideal form
is more general than the series form because the controller can be designed with
complex conjugate zeros.

2.1.2 Improvements

Modifications of the basic control law (2.1) are usually implemented to cope with
practical issues. For example, the derivative action is often applied to the process
output y instead of to the control error, so that an impulse in the control signal is
avoided when a step signal is applied to the set-point. In this case, the derivative
action ud(t) is expressed as

ud(t) = −Kp

Td

d

dt
y(t). (2.7)

Thus, a general formula for the derivative action can be written as

ud(t) = Kp

Td

(
γ

d

dt
r(t) − d

dt
y(t)

)
, (2.8)

where γ = 1 if the derivative action is applied to the control error and γ = 0 if the
derivative action is applied to the process output.

Further, a set-point weight can be applied also to the proportional action in order
to reduce the overshoot in the set-point step response (this is done at the expense of
an increase of the rise time), so that the proportional action up(t) is expressed as

up(t) = Kp

(
βr(t) − y(t)

)
, (2.9)

where the value of β is selected in the interval [0,1]. The use of a set-point weight
is particularly useful when specifications on both set-point following and load dis-
turbance rejection tasks have to be addressed at the same time. Indeed, a fast load
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Fig. 2.2 Two-degree-of-freedom PID control scheme

Fig. 2.3 Equivalent two-degree-of-freedom PID control scheme

disturbance rejection is achieved with a controller that provides a large bandwidth,
which, in turn, gives an oscillatory set-point step response. By using a set-point
weight, the control scheme represented in Figure 2.2 is actually implemented with

C(s) = Kp

(
1 + 1

Tis
+ Tds

)
(2.10)

and

Csp(s) = Kp

(
β + 1

Tis
+ γ Tds

)
. (2.11)

It appears that the load disturbance rejection does not depend on the weight β

and therefore can be addressed separately from the set-point following task. Thus,
the PID parameters can be selected to achieve a high load disturbance rejection
performance, and then the set-point following performance can be recovered by
suitably selecting the value of the parameter β . An equivalent control scheme is
shown in Figure 2.3, where

F(s) = 1 + βTis + γ TiTds2

1 + Tis + TiTds2
. (2.12)

Here it is more apparent that the set-point weight is able to smooth the (step) set-
point signal in order to damp the response to a set-point change.

If these modifications of the basic control law are considered, the general so-
called ISA form (or beta–gamma) PID control law can be derived:

u(t) = Kp

(
βr(t) − y(t) + 1

Ti

∫ t

0
e(τ ) dτ + Td

(
d(γ r(t) − yf (t))

dt

))
,

Td

N

dyf (t)

dt
= y(t) − yf (t),

(2.13)

where β ∈ [0,1] and γ ∈ {0,1}.
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Fig. 2.4 The back-calculation anti-windup scheme

Finally, the integrator windup phenomenon has to be avoided. When a set-point
change is applied, the control variable might reach and remain at the actuator satu-
ration limit during the transient response. In this case the system operates as in the
open-loop case because the actuator is at its maximum (or minimum) limit, regard-
less of the process output value. The control error decreases more slowly than in the
ideal case (where there is no saturation limits), and therefore the integral term be-
comes large (it winds up). Thus, even when the value of the process variable attains
that of the reference signal, the controller still saturates due to the integral term, and
this generally leads to large overshoots and long settling time. In order to avoid this,
an anti-windup strategy should be implemented. This can be done according to the
so-called conditional integration technique, where the integral action is frozen when
the actuator saturates and, at the same time, the control error and the control variable
have the same sign, or according to the so-called back-calculation approach shown
in Figure 2.4, where the integral action is reduced by a term proportional to the sat-
uration level of the actuator. The parameter Tt , called the tracking time constant,
determines the amount of reduction of the integral term.

2.2 Identification

System identification is a topic that has been and is extensively investigated, and
many solutions have been proposed in the literature that can be applied in gen-
eral to industrial processes. In the following sections, methodologies that have been
specifically devised for the estimation of the parameters of a integral process are
presented, by considering open-loop and closed-loop techniques that can be easily
applied in practical cases. Simple continuous-time models are considered because
these are commonly employed for the tuning of PID controllers.

2.2.1 Open-loop Identification

Open-loop identification techniques are based on the evaluation of the response of
the process to particular signals. They have to be applied starting from an equilib-
rium point of the system.
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Fig. 2.5 Identification based on the impulse response

2.2.1.1 Using an Impulsive Input

In general, the most employed open-loop identification methods used for industrial
system are based on the evaluation of a step response. However, in the case of inte-
gral processes, which are not asymptotically stable, the step response would tend to
infinity, and this may not be acceptable in practice. An alternative sensible procedure
is to apply an impulse to the system. Consider the IPDT system

P(s) = K

s
e−Ls (2.14)

at a steady state (denote the output value as y0) and apply an impulse of ampli-
tude Δu and duration Δt as the input signal. This is shown in Figure 2.5 together
with the corresponding output. The dead time L can be estimated by considering
the time interval between the step transition and the time instant when the process
output leaves its previous value, namely, y > y0 (without loss of generality, it has
been assumed that Δu > 0 and K > 0). It should be noted that in practice the mea-
surement noise needs to be taken into consideration. A simple sensible solution is
to define a noise band NB [8] (whose amplitude should be equal to the amplitude of
the measurement noise) and to rewrite the condition as y > y0 + NB. The value of
K can then be derived, by considering that the value of the process output variation
Δy is equal to the area of the impulse input multiplied by K , as

K = Δy

ΔuΔt
. (2.15)

The estimation of the parameter K is based just on the steady-state value of the
process output, and therefore it is easy to cope with measurement noise. Obviously,
the estimation will be perfect when the process dynamics are represented perfectly
by expression (2.14). This is not the case if the true process dynamics are different.
For example, consider the process

P(s) = 1

s(s + 1)
e−0.5s . (2.16)

If the open-loop impulse response (plotted as a solid line in Figure 2.6) is evaluated,
the following IPDT model is obtained (note that the noise-free case is considered
for the sake of simplicity):

P(s) = 1

s
e−0.5s , (2.17)



2.2 Identification 15

Fig. 2.6 Application of the identification method based on the impulse response. Dotted line:
impulse input. Solid line: process response. Dashed line: response of the identified model

which gives the impulse response plotted as a dashed line in Figure 2.6. It turns out
that the identification procedure has not captured the dynamics represented by the
pole in s = −1, and the two responses are therefore somewhat different.

2.2.1.2 Using a Square Wave Input

The gain K can be identified via applying a square wave u(t) with period P and
amplitude Δu centred around a nominal value u∗ [75]. Since the input function u

is discontinuous at the time instants td = P/2,P ,3P/2, . . . , the output response is
continuous but not differentiable at these time instants. The gain K can be therefore
computed as

K = ẏ(t+d ) − ẏ(t−d )

Δu
, (2.18)

where ẏ(t+d ) and ẏ(t−d ) are respectively the time derivatives of the process output
from the right and the left. The situation is shown in Figure 2.7, where the process
P(s) = 0.1/s is taken as an example (the dead time is omitted as it does not affect
the identification of K). The main advantage of the method is that, by evaluating the
gain at each discontinuity time instant, a time-varying gain can be estimated, and this
fact can be exploited in the design of the controller (see [75] for an example related
to a batch distillation column). However, it has to be taken into account that the
differentiation procedure is very sensitive to the measurement noise and therefore
data should be appropriately filtered before applying it.
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Fig. 2.7 Application of the identification method based on a square wave input

Fig. 2.8 Relay-feedback control scheme

2.2.2 Closed-loop Identification

Closed-loop identification techniques are usually based on the use of a relay feed-
back controller or, alternatively, on the evaluation of the response to a set-point
change. Different methods in these contexts are presented hereafter.

2.2.2.1 Based on the Relay Feedback Methods

The closed-loop identification techniques employed for industrial processes are typ-
ically based on a relay-feedback experiment [151] (see Figure 2.8). The rationale of
the use of the relay-feedback controller is to evaluate the obtained process output
oscillation in order to obtain a nonparametric model of the process [3], namely its
ultimate gain Ku and the ultimate frequency ωu, in analogy with the original idea of
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the ultimate sensitivity experiment of Ziegler and Nichols [166], where the control
system is led to the stability limit. Then, starting from these parameters, a transfer
function of the process can be determined, if necessary.

Standard Relay-feedback Method The original relay-feedback experiment pro-
posed in [3] involves the use of a standard symmetrical relay in order to generate a
persistent oscillatory response of the process output. Denoting by h the amplitude of
the relay and by A the amplitude of the output oscillations, the value of the ultimate
gain can be calculated, by applying the describing function theory, as

Ku = 4h

πA
, (2.19)

while the value of the ultimate period Pu = 2π/ωu is simply the period of the ob-
tained output oscillation. It appears that only the amplitude h of the relay has to be
selected by the user. This should be done in order to provide an output oscillation
of sufficient amplitude to be well distinguished from the measurement noise, but at
the same time it should not be too high so that the process is perturbed as less as
possible (and the normal production is not interrupted). Indeed, it is worth stressing
that the estimation of the output oscillation is sensitive to the measurement noise
and therefore some filtering techniques have to be applied [140]. In addition to the
advantage of having just one parameter to be selected by the user and of being per-
formed in closed-loop, so that the process is kept close to the set-point value, the
main valuable feature of this identification technique is that the identification exper-
iment can start also if the process is not at an equilibrium point. Further, possible
load disturbances that might occur during the experiment can be detected easily by
the change to asymmetric pulses in the control variable.

In any case, because of the adoption of the describing function theory, the ob-
tained values of the ultimate gain and ultimate period are approximated. As an ex-
ample, if the process

P(s) = 1

s
e−0.2s (2.20)

is considered, the result obtained by employing a relay-feedback controller is shown
in Figure 2.9 (note that a set-point step equal to one has been applied at time t = 0).
By noting that h = 1 and A = 0.205, the parameters obtained by applying the iden-
tification procedure are (see (2.19)) Ku = 6.21 and Pu = 0.82, while the true ones
are Ku = 7.85 and Pu = 0.80. Actually, the slight difference is usually acceptable if
the parameters are employed for the tuning of a PID controller.

The transfer function (2.14) can be determined from the estimated values of the
ultimate gain and ultimate period by using the following expressions [26]:

L = 0.25Pu, (2.21)

K = 4A

hPu

. (2.22)

When these are applied to the previous example, then L = 0.2 and K = 1, which
are equal to the true values.
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Fig. 2.9 Example of a relay-feedback identification experiment. Dashed line: control variable.
Solid line: process variable

Fig. 2.10 Biased relay with hysteresis

Biased Relay with Hysteresis A biased relay with hysteresis (see Figure 2.10)
can also be employed effectively for the estimation of a process transfer function
(2.14) [59]. In fact, under an asymmetrical biased relay feedback test (see Fig-
ure 2.11), the output response of an IPDT system converges to a limit cycle de-
scribed as

y+(t) = K(h + h0)t + K(h − h0)t0, t ∈ [
0,P +]

,

y−(t) = K(h − h0)(t + t0) + K(h + h0)P
+, t ∈ [0,P −], (2.23)

where y+(t) denotes the monotonically ascending part for t ∈ [0,P −], correspond-
ing to t ∈ [P +,Pu] in the limit cycle, while y−(t) denotes the monotonically de-
scending part for t ∈ [P +,Pu], and Pu = P + + P − is the oscillation period. Based
on these analytical expressions, the process parameters can be determined by eval-
uating an experiment with a biased relay with hysteresis feedback controller. In
particular, the process dead time L can be determined as the time interval to attain
the positive peak A+ of the process output response from a relay switch point in a
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Fig. 2.11 Experiment with a biased relay with a hysteresis feedback controller

negative half period P − of the relay, and the process gain K can be determined as

K = A+ − A−

(h + h0)P + . (2.24)

The use of a biased relay is particularly useful if the system to be estimated is
a second-order integral process plus dead time (SOIPDT) described by the transfer
function

P(s) = K

s(T s + 1)
e−Ls. (2.25)

In this case, the analytical expression of the limit cycle can be written as

y+(t) = K(h + h0)(t − T ) + K(h − h0)t0 + 2Kh0T Ee−t/T , t ∈ [
0,P +]

,

y−(t) = K(h − h0)(t + t0 − T ) + K(h + h0)P
+ + 2Kh0T Fe−t/T , t ∈ (0,P −],

(2.26)
where

E = 1 − e−P−/T

1 − e−Pu/T

and

F = 1 − e−P+/T

1 − e−Pu/T
.

Based on these expressions, the times to attain the extreme values of y+(t) and
y−(t), denoted respectively as tP+ and tP− , can be determined as

tP+ = T ln
2h0E

h + h0
(2.27)
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and

tP− = T ln
2h0F

h − h0
. (2.28)

Denote the time interval to reach the minimum of y+(t) from the initial relay switch
point in a positive half period of the relay as t∗

P+ ; then

tP+ = t∗
P+ − L, (2.29)

and

tP− = t∗
P− − L, (2.30)

where t∗
P− is the time interval to reach the maximum of y−(t) from the initial relay

switch point in a negative half period of the relay. By (2.29) and (2.30), we have

tP+ − tP− = t∗
P+ − t∗

P− . (2.31)

Substitute (2.27) and (2.28) into (2.31); then

ln
h0 − h

h0 + h
+ ln

1 − e−P−/T

1 − e−P+/T
= t∗

P+ − t∗
P−

T
. (2.32)

Note that the process response at the oscillation frequency can be formulated as

P(jωu) =
∫ Pu

0 y(t)e−jωut dt∫ Pu

0 u(t)e−jωut dt
= Aue

jϕu . (2.33)

Substitute the process model (2.25) into (2.33); then

K

ωu

√
T 2ω2 + 1

= Au (2.34)

and

−Lωu − π

2
− arctan(T ωu) = ϕu. (2.35)

It can be easily derived that

K = Auωu

√
T 2ω2 + 1 (2.36)

and

L = − 1

ωu

[
ϕu + π

2
+ arctan(T ωu)

]
. (2.37)

In case L/T > 1, y+(t) can decrease monotonically for t ∈ [0,P +], while y−(t)

can increase monotonically for t ∈ [0,P −]. Thus, there exists

t∗
P+ = t∗

P− = L. (2.38)
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Fig. 2.12 Experiment for the estimation of a SOIPDT process

In this case, the process time constant can be derived from (2.37) as

T = 1

ωu

tan

(
−Lωu − π

2
− ϕu

)
, (2.39)

and the process gain can be determined straightforward from (2.36). However, the
value of T cannot be determined from (2.39) if

tan

(
−Lωu − π

2
− ϕu

)
< 0. (2.40)

The algorithm for the identification of the SOIPDT process (2.25) can be sum-
marised as follows [59]:

1. Measure P +, P −, t∗
P+ , and t∗

P− from the limit cycle.
2. Compute P(jωu) from (2.33).
3. Compute the process dead time from (2.38) and check whether (2.40) is satisfied.

If yes, go to step 6.
4. Compute the process time constant T from (2.39) and check whether L/T < 1

is satisfied. If yes, go to step 6.
5. Determine the process gain K from (2.36). If both (2.40) and L/T < 1 are not

satisfied, then terminate.
6. Determine T from (2.32) by applying the Newton–Raphson iteration method.

Set T = t∗
P+ (or T = t∗

P− ) as the initial estimation of T .
7. Determine the process gain K from (2.36).
8. Determine the process dead time L from (2.37).

As an example of this algorithm, the process (2.16) is considered. The result of the
application of the biased relay feedback control scheme is shown in Figure 2.12. The
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following parameters are obtained: t∗
P+ = 0.8, t∗

P− = 1.76, P + = 2.04, P − = 6.14,
Pu = 8.18, (namely, ωu = 0.77), Au = 1.04. By applying the algorithm, the process
parameters are estimated correctly.

An alternative approach for the estimation of the parameters of a SOIPDT pro-
cess has been proposed in [35]. The method is based on the application of the relay
feedback controller to a first-order-plus-dead-time (FOPDT) process described by
the following transfer function:

P(s) = K

T s + 1
e−Ls. (2.41)

In this case, the process parameters can be estimated by applying the following
formulae, which are based again on the describing function analysis:

K = a0

u0
, (2.42)

T = Pu

2π A+−A−
2

√
K2

(
α2 + β2

) −
(

A+ − A−
2

)2

, (2.43)

L = Pu

2π

[
π − tan−1

(
2πT

Pu

)
+ tan−1

(
α

β

)]
, (2.44)

where

α = −4h0ε

π A+−A−
2

, (2.45)

β = h

π A+−A−
2

(√(
A+ − A−

2

)2

− (a0 − ε)2 +
√(

A+ − A−
2

)2

− (a0 + ε)2

)
,

(2.46)

and a0 and u0 are the values of the DC components of the oscillations at the process
output and input. In case the process is described by a SOIPDT transfer function,
in principle it is sufficient to differentiate the output of the relay and then apply the
preceding formulae (2.42)–(2.44). Obviously, differentiating the relay output gives
impulses at the zero crossings that are not acceptable in practical cases because of
the actuator constraints. In order to cope with this problem, the ideal impulses can
be substituted by pulses with finite amplitude and short pulse width. Actually, this
introduces an approximation that might significantly affect the estimation result.

It is worth stressing that, when a relay feedback controller is employed, some fil-
tering techniques should be applied because the estimation of the output oscillation
is sensitive to the measurement noise. Furthermore, the use of an asymmetrical relay
represents a sort of disturbance to the process since it causes the operating point to
drift.

2.2.2.2 Based on the Closed-loop Step Responses

A closed-loop identification method which is an alternative to the use of a relay
feedback controller consists of evaluating the set-point step response of the IPDT
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process (2.14) with simple proportional controller C(s) = Kp [115]. In this case,
the closed-loop transfer function is (see Figure 2.1)

Y(s)

R(s)
= K ′e−Ls

s + K ′e−Ls
, (2.47)

where

K ′ = KpK. (2.48)

By using a first-order Padè approximation, namely e−Ls ∼= (1−0.5Ls)/(1+0.5Ls),
Expression (2.47) can be rewritten as

Y(s)

R(s)
= K ′(1 + 0.5Ls)e−Ls

0.5 L
K ′ s2 + ( 1

K ′ − 0.5L)s + 1
(2.49)

or, equivalently,

Y(s)

R(s)
= K ′(1 + 0.5Ls)e−Ls

τ 2
e s2 + 2τeζ s + 1

(2.50)

with

τe =
√

L

2K ′ (2.51)

and

ζ =
√

K ′
2L

(
1

K ′ − L

2

)
. (2.52)

The effective time constant τe and the damping coefficient ζ of the closed-loop
system can be estimated by considering the closed-loop response parameters yM1,
ym1, yM2, y∞ (namely, the first peak value, the first minimum value, the second peak
value, and the steady-state value) and Δt as shown in Figure 2.13. In particular, the
following formulae can be employed [26]:

ζ = − ln yM2−y∞
yM1−y∞√

4π2 + (
ln yM2−y∞

yM1−y∞
)2

, (2.53)

or, alternatively,

ζ = − ln y∞−ym1
yM1−y∞√

π2 + (
ln y∞−ym1

yM1−y∞
)2

, (2.54)

and

τe = Δt

π

√
1 − ζ 2. (2.55)
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Fig. 2.13 Experiment for the estimation of a SOIPDT process

The values of L and K ′ (and consequently of K) can be eventually determined,
by solving Equations (2.51) and (2.52), as

L = 2.828Δt

π

√
0.5 + ζ 2 −

√
ζ 2

(
1 + ζ 2

)√
1 − ζ 2, (2.56)

K = 1.414π

Δt
√

1 − ζ 2

√
0.5 + ζ 2 −

√
ζ 2

(
1 + ζ 2

)
. (2.57)

It is worth noting that the value of the proportional gain of the controller has to
be sufficiently high to provide an oscillatory set-point step response.

As an illustrative example of application of the identification procedure, consider
process (2.20). If a proportional feedback controller Kp = 5 is employed, the re-
sulting set-point step response is shown in Figure 2.13 with yM1 = 1.5, ym1 = 0.76,
yM2 = 1.11, and y∞ = 1. By applying either (2.53) or (2.54) we have ζ = 0.23, and,
as a consequence, from (2.56), (2.57), and (2.48) the resulting values of the process
parameters are K = 1.09 and L = 0.23. The slight discrepancy between the true and
estimated values is due to the Padè approximation.

2.3 Tuning Methods

A large number of tuning methods have been proposed in literature over the last
seventy years. They are based on different approaches and aim at solving different
control problems. In fact, as it has already been mentioned in Section 2.1, there are
different (possibly conflicting) control tasks that have to be addressed in practical
cases. In particular, set-point following and/or load disturbance rejection are usu-
ally of main concern. In general, a good load disturbance rejection performance is
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achieved with a high-gain controller, which gives an oscillatory set-point step re-
sponse on the other side. If both specifications have to be considered, the problem
can be solved by employing a set-point weight. It is worth stressing at this point
that, although the use of a set-point weight yields a two-degree-of-freedom control
system, its use is addressed in this part of the book because the two controllers (C
and F ) in Figure 2.3 are actually strongly correlated. In Part II of the book, in a
context different from PID controllers, the two controllers are designed separately
in a two-degree-of-freedom scheme.

In addition to the performance in the set-point following and/or load disturbance
rejection tasks, the performance in the filtering of measurement noise, the robustness
of the control scheme and the control effort have to be considered as well in the
selection of the PID parameters. For this reason, it is difficult to make the best choice
among the many tuning rules that are available.

In the following subsections, instead of providing a comprehensive review of all
the tuning rules that are available for integral processes (see [83] for this purpose),
different approaches with the aim of showing the peculiarities of integral processes
are highlighted.

2.3.1 Empirical Formulae

Empirical formulae for the tuning of the PID controllers have been devised soon
after PID controllers appeared in the industry at the beginning of the last century.
The most well-known formulae are those devised by Ziegler and Nichols in the
1940s [166]. There are two kinds of formulae that are based respectively on the
parametric model (2.14) and on the nonparametric model given by the ultimate gain
Ku and the ultimate frequency ωu. They are shown in Tables 2.1 and 2.2, respec-
tively. It is worth noting that the Ziegler–Nichols tuning rules aim at providing a
good load disturbance rejection performance (in particular, a quarter decay ratio in
the load disturbance step response), and this implies that the damping ratio of the
closed-loop system is in general too low to achieve a satisfactory set-point following
performance (namely, the step response is too oscillatory with a big overshoot). As
already mentioned, this issue can be addressed by employing a set-point weight for
the proportional action. As an example, consider the process

P(s) = 0.0506

s
e−6s . (2.58)

By applying the PID controller tuning rule shown in Table 2.1, the parameters are
Kp = 3.95, Ti = 12, and Td = 3. The resulting set-point and load disturbance re-
jection step response is shown in Figure 2.14 as a solid line. If a set-point weight
β = 0.4 is employed, the result obtained is the one shown with a dashed line. If Ta-
ble 2.2 is used to determine the PID parameters (note that Ku = 5.19 and Pu = 24),
the parameters are Kp = 3.11, Ti = 12, and Td = 3. The corresponding results (ob-
tained again with and without the set-point weight) are plotted in Figure 2.15. As
it can be easily expected by evaluating the controller parameters, the method based
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Table 2.1 Ziegler–Nichols tuning rules based on a parametric
model

Controller Kp Ti Td

P 1
KL

– –

PI 0.9
KL

3L –

PID 1.2
KL

2L L
2

Table 2.2 Ziegler–Nichols tuning rules based on a non-
parametric model

Controller Kp Ti Td

P 0.5Ku – –

PI 0.4Ku 0.8Pu –

PID 0.6Ku 0.5Pu 0.125Pu

Fig. 2.14 Results obtained with the Ziegler–Nichols tuning rules based on a parametric model of
the process. Solid line: PID controller with no set-point weight. Dashed line: PID controller with
set-point weight

on the nonparametric model of the process provides a less oscillatory response. In
any case, the use of a set-point weight is actually essential in reducing the excessive
overshoot that occurs because of the aggressive tuning conceived to achieve a fast
load disturbance rejection.

2.3.2 Analytical Methods

In contrast to empirical tuning rules, analytical methods are based on the determina-
tion of the controller parameters by exploiting explicitly the expressions that involve
the transfer function of the closed-loop system.
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Fig. 2.15 Results obtained with the Ziegler–Nichols tuning rules based on a nonparametric model
of the process. Solid line: PID controller with no set-point weight. Dashed line: PID controller with
set-point weight

Fig. 2.16 The general Internal Model Control scheme

Fig. 2.17 The equivalent unity-feedback control scheme

2.3.2.1 Internal Model Control

Internal Model Control (IMC) [76] is a well-known control design approach where
the trade-off between nominal performance and robustness is explicitly addressed.
This is obtained by including a model of the process in the controller implemen-
tation, according to the scheme of Figure 2.16, where P̃ denotes the model of the
process P , and the controller Q determines the value of the control variable u. Note
that this scheme is equivalent to the unity-feedback scheme of Figure 2.1 by simply
selecting (see Figure 2.17)
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C(s) = Q(s)

1 − P̃ (s)Q(s)
. (2.59)

The design of the controller is in general performed by considering Q(s) =
Q̃(s)F (s) and by selecting Q̃(s) in order to achieve an optimal performance for
a given input disregarding the model uncertainties (namely, by considering P̃ (s) =
P(s)) and input constraints. Then, F(s) is selected as a low-pass filter of an appro-
priate order in order to achieve robust stability and robust performance. In particular,
Q̃(s) can be determined to minimise the integrated square error (ISE)∫ ∞

0
e2(t) dt. (2.60)

This is obtained by factoring the model P̃ (s) into two parts:

P̃ (s) = P̃+(s)P̃−(s), (2.61)

where P̃+(s) is the all-pass portion of the transfer function (P̃+(0) = 1) including
all the RHP zeros and delays of P̃ (s), having the form

P̃+(s) = e−Ls
∏
i

−αis + 1

αis + 1
, (2.62)

where α−1
i are all the RHP zeros, and L is the dead time.

Alternatively, if it is desired to minimise the integrated absolute error (IAE)∫ ∞

0

∣∣e(t)∣∣dt, (2.63)

P̃+(s) in the factorisation (2.61) should be chosen as

P̃+(s) = e−Ls
∏
i

(−αis + 1). (2.64)

Then, Q̃(s) = ˜
P −1− (s). At this point, F(s) has to be selected in order to have a

proper controller Q(s). With the inclusion of the filter, the transfer function of the
closed-loop system of Figure 2.16 becomes P(s)Q̃(s)F (s) (again, by considering
P̃ (s) = P(s)). Thus, in order to achieve a null steady-state error in the presence of
a step set-point signal, it has to be F(0) = 1. In this context, a natural choice is to
select

F(s) = 1

(λs + 1)n
, (2.65)

where the order n is such that the controller Q(s) is proper. In order to have a null
steady-state error when a ramp signal is applied to the set-point, in addition to the
requirement F(0) = 1, the following expressions needs to be satisfied as well:

d

ds

(
P̃ (s)Q(s)

)∣∣∣∣
s=0

= 0
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Table 2.3 IMC-based PID tuning rules

Approximation KpK Ti Td Tf Comments

e−Ls ∼= 1 − Ls
2(L+λ)

2L2+4λL+λ2 2(L + λ) – Lλ2

2L2+4λL+λ2 ISE optimal

e−Ls ∼= 1 − Ls L+2λ

(L+λ)2 L + 2λ – – IAE optimal

e−Ls ∼= 1− L
2 s

1+ L
2 s

3L+2λ

2L2+4λL+λ2 3L + 2λ
2L(L+λ)
3L+2λ

Lλ2

2L2+4λL+λ2 ISE optimal

e−Ls ∼= 1− L
2 s

1+ L
2 s

2
L+λ

2(L + λ)
L(L+2λ)
2(L+λ)

– IAE optimal

or, equivalently,

d

ds

(
P̃+(s)F (s)

)∣∣∣∣
s=0

= 0.

A possible solution is

F(s) = (2λ − P̃ ′+(0))s + 1

(λs + 1)2
. (2.66)

By restricting the analysis to IPDT processes (2.14), it has to be stressed that, in
order to have a null steady-state error with a constant load disturbance, it is nec-
essary for the controller to have a pole at the origin. This corresponds to having a
null steady-state error when a ramp signal is applied to the set-point, and therefore
the filter transfer function (2.66) has to be considered. Then, if the dead time is
approximated as

e−Ls ∼= 1 − Ls (2.67)

and the IMC design procedure is applied, C(s) becomes a PI controller with or
without an output filter, respectively, depending on whether the factorisation (2.62)
or (2.64) is applied. If the dead time is approximated as

e−Ls ∼= 1 − L
2 s

1 + L
2 s

, (2.68)

then C(s) becomes a PI controller with or without an output filter, respectively,
depending on whether the factorisation (2.62) or (2.64) is applied. Thus, the ap-
plication of the IMC design naturally yields the tuning rules shown in Table 2.3
[108], where the only parameter to be selected by the user is λ, which handles the
trade-off between aggressiveness and robustness (and control activity). Indeed, in-
creasing the value of λ implies that the closed-loop time constant increases and the
robustness of the control system to plant/model mismatch increases. Conversely, de-
creasing the value of λ implies that the speed of response increases but the system
is less robust. Different practical recommendations for the choice of λ have been
proposed in the literature. For example, the advice λ > L/4 or λ > L/2 is given in
[108] corresponding to the factorisation form (2.62) or (2.64), while the suggestion
λ = L

√
10 is given in [2]. It is worth stressing that if the PID controller has a form
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Fig. 2.18 Results obtained with the IMC-based tuning rules. Solid line: λ = 6. Dashed line:
λ = 18.97

different from the output filtered ideal one (2.4), simple conversion formulae can be
employed [15].

As an illustrative example, consider again process (2.58). By applying the tun-
ing rule that yields a PID controller with an output filter and by initially selecting
λ = L = 6, the parameters are Kp = 2.35, Ti = 30, Td = 4.8, and Tf = 0.86. The
response to a set-point and load disturbance step signals is shown in Figure 2.18 as a
solid line. Conversely, by selecting λ = L

√
10 = 18.97, it is Kp = 1.25, Ti = 55.95,

Td = 5.36, and Tf = 2.43. The corresponding set-point and load disturbance step
responses are plotted again in Figure 2.18 as a dashed line. As expected, a bigger
value of λ yields a less aggressive and more robust control system, namely, the
overshoot in the set-point step response is reduced, the rise time is increased, and
the control effort is reduced as well. Conversely, a more sluggish load disturbance
response is obtained.

2.3.2.2 Matching the Coefficients of the Closed-loop Transfer Function

If just the set-point following performance is addressed, a simple method to tune
the PID controller is to match the coefficients of the numerator and denominator
polynomial of the closed-loop transfer function [14]. If an IPDT process transfer
function (2.14) is considered and a PID controller (2.2) is employed, the closed-
loop transfer function from the set-point r to the output y is

Y(s)

R(s)
= (K1q + K2 + K3q

2)e−q

q2 + (K1q + K2 + K3q2)e−q
, (2.69)

where

q = Ls, (2.70)
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K1 = KpKL, (2.71)

K2 = K1L

Ti

, (2.72)

K3 = K1
Td

L
. (2.73)

By using the first-order Padè approximation for the exponential term at the denom-
inator, Expression (2.69) becomes

Y(s)

R(s)
= (K1q + K2 + K3q

2)(1 + 0.5q)e−q

(1 + 0.5q)q2 + (K1q + K2 + K3q2)(1 − 0.5q)
. (2.74)

By imposing that this closed-loop transfer function is equal to one, it results

K1 = 1, (2.75)

K2 = 0, (2.76)

K3 = 0.5, (2.77)

that is (see (2.71)–(2.73)),

Kp = 1

KL
, (2.78)

Ti = ∞, (2.79)

Td = 0.5L. (2.80)

Indeed, a PD controller results. This is in accordance with the intuition that a pole at
the origin of the complex plane to ensure a null steady-state error is already present
in the process transfer function. In order to employ the integral action in any case
(for example to cope with possible load disturbances), it is sufficient to impose that
the closed-loop transfer function (2.74) is equal to α > 1 (note that if α = 1, the
same tuning rules as before are obtained). This is reasonable because the steady-
state error will be zero in any case (because of the presence of the integrator) and
because with a PI or PID controller an overshoot occurs in any case in the set-
point step response. Thus, by considering α as a tuning parameter, the following
expressions are obtained:

(1 − α)K1 + 0.5(1 + α)K2 = 0, (2.81)

0.5(1 + α)K1 + (1 − α)K3 = α, (2.82)

(1 + α)K3 = α, (2.83)

which yields

Kp = 1

KL

4α2

(1 + α2)
, (2.84)
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Ti = 0.5L

(
1 + α

α − 1

)
, (2.85)

Td = 0.25L

(
1 + α

α

)
. (2.86)

If a PI controller is considered, by following the same reasoning as before the fol-
lowing rules are obtained:

Kp = 1

KL

2α

1 + α
, (2.87)

Ti = 0.5L

(
1 + α

α − 1

)
. (2.88)

It appears that all the PID parameters depend on the value of α which has to be
selected conveniently. In [14] it is suggested to choose α = 1.25, namely, for the
PID controller:

Kp = 1.2346

KL
, (2.89)

Ti = 4.5L, (2.90)

Td = 0.45L. (2.91)

As an illustrative example of the method, consider the process (2.58). By applying
(2.89)–(2.91) the following parameters are determined: Kp = 4.067, Ti = 27, and
Td = 2.7. The resulting set-point and load disturbance unit step responses are shown
as a solid line in Figure 2.19. They are compared with the results obtained by using
a PI controller with Kp = 3.66 and Ti = 27 (see (2.87)–(2.88)), shown as a dashed
line, and with the results obtained by using a PD controller with Kp = 3.29 and
Td = 3 (see (2.78)–(2.80)), shown as a dotted line. In the cases where the derivative
action has been employed, a first-order filter has been applied, but its time constant
has been selected so that its dynamics are actually negligible (note that the derivative
filter has not been considered explicitly in the derivation of the tuning rules). This
explains the large spikes in the control signal (no saturation of the actuator has been
considered in order to avoid biasing the result). Further, as expected, the use of the
PD controller provides a better set-point step response but exhibits a steady-state
error in the presence of a constant load disturbance. The PID controller performs
better than the PI controller, but a large overshoot appears in all of the cases.

2.3.2.3 Direct-synthesis-based Design

With respect to the method described in Section 2.3.2.2, an increase in the perfor-
mance can be expected if a filtered PID controller (possibly with set-point weight)
is employed. In this context, the method based on direct synthesis proposed in [107]
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Fig. 2.19 Results obtained with the method based on matching the coefficients of the closed-loop
transfer function. Solid line: PID controller. Dashed line: PI controller. Dotted line: PD controller

can be applied. In fact, if the scheme of Figure 2.1 is considered and if an appro-
priate desired closed-loop transfer function is selected, then the controller transfer
function determined analytically has the required structure. Indeed, if the IPDT pro-
cess (2.14) is considered and the desired closed-loop transfer function is selected
as (

Y(s)

R(s)

)
d

= (ηs + 1)e−Ls

(λs + 1)2
, (2.92)

then, the corresponding controller transfer function can be determined as

C(s) = 1

P(s)

(
Y(s)
R(s)

)
d

1 − (
Y(s)
R(s)

)
d

= s

K

(ηs + 1)

[(λs + 1)2 − (ηs + 1)e−Ls] . (2.93)

By applying the first-order Padè approximation e−Ls ∼= (1− L
2 s)/(1+ L

2 s) and by
selecting η = 2λ+L, from (2.93) an output-filtered PID controller (2.4) is obtained,
where

Kp = 2λ + 1.5L

K(λ2 + 2λL + 0.5L2)
, (2.94)

Ti = 2λ + 1.5L, (2.95)

Tf = 0.5λ2L

λ2 + 2λL + 0.5L2
. (2.96)

The same method can be applied also to SOIPDT processes (2.25). In this case,
the desired closed-loop transfer function has to be selected as

(
Y(s)

R(s)

)
d

= (η2s
2 + η1s + 1)e−Ls

(λs + 1)3
, (2.97)
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so that the controller is obtained as

C(s) = 1

P(s)

(
Y(s)
R(s)

)
d

1 − (
Y(s)
R(s)

)
d

= s(T s + 1)

K

(η2s
2 + η1s + 1)

[(λs + 1)3 − (η2s2 + η1s + 1)e−Ls] .
(2.98)

By using again a first-order Padè approximation, the controller transfer function
becomes a PID controller in series with a lead/lag compensator:

C(s) = Kp

(
1 + 1

Tis
+ Tds

)
(as + 1)

(bs + 1)
, (2.99)

where

Kp = η1

K(3λ2 + 1.5λL + 0.5η1L − η2)
, (2.100)

Ti = η1, (2.101)

Td = η2

η1
, (2.102)

Tf = 0.5λ2L

λ2 + 2λL + 0.5L2
, (2.103)

a = 0.5L, (2.104)

b = 0.5λ3L

T (3λ2 + 1.5λL + 0.5Lη1 − η2)
, (2.105)

η1 = 3λ + L, (2.106)

η2 = (0.5L − T )λ3 + (3T 2 − 1.5LT )λ2 + 3LT 2λ + 0.5L2T 2

T (0.5L + T )
. (2.107)

It appears that for both IPDT and SOIPDT processes, there is just one tuning
parameter λ which handles the trade-off between aggressiveness and robustness. In
[107] it is suggested to select λ in the range [0.8L,3L]. Furthermore, it is suggested
to use the set-point weight β in the range of 0.3–0.4 to reduce the overshoot in the
step response.

As an illustrative example, by considering again process (2.58), the following
parameters are determined, by applying (2.94)–(2.96) with λ = L = 6: Kp = 3.29,
Ti = 21, Td = 2.57, Tf = 0.86. The set-point weight has been fixed to 0.3. The re-
sulting set-point and load disturbance unit step responses are shown in Figure 2.20.

2.3.3 Frequency-domain Methods

Tuning methods can also be developed by considering the frequency response of the
system. Some examples are presented in the following subsections.
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Fig. 2.20 Results obtained with the direct-synthesis-based design method

2.3.3.1 Based on the Maximum Peak-resonance Specification

The method proposed in [101] is based on a specification of a maximum peak res-
onance and is derived from the analysis of the Nichols chart of the series of the
controller and of the process. In fact, with an integral process, the open-loop fre-
quency response presents a phase maximum (see Figure 2.21). In this context, the
controller parameters can be selected such that this maximum is located on the right-
most point of the ellipse corresponding to the selected maximum peak resonance.
Thus, the method can handle at the same time the maximum peak overshoot and the
minimum phase and gain margins.

By considering a SOIPDT process (2.25) and a PI controller

C(s) = Kp

(
1 + 1

Tis

)
, (2.108)

specifying that the phase maximum (achieved at the frequency ωmax) of the open-
loop frequency response L(s) = C(s)P (s) is located at the right most point
(Amax, φmax) of the contour corresponding to the desired maximum peak reso-
nance Mr , yields the following system of three equations and three unknowns
(Kp,Ti,ωmax):

∂argL(jω)

∂ω

∣∣∣∣
ω=ωmax

= 0, (2.109)

argL(jωmax) = φmax, (2.110)∣∣L(jωmax)
∣∣ = Amax. (2.111)
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Fig. 2.21 Example of a Nichols chart for an integral process in series with a PI controller

A simple expression of the solution of this system can be obtained by approximating
the arctan(x) as

arctan(x) ∼=
{

π
2 − 1

x
if x > 1,

x if x ≤ 1.
(2.112)

In this way the following expressions are obtained:

Ti = 16(T + L)

(2φmax + π)2
, (2.113)

Kp = TiAmax

K

[
T 2

i ω6
max + ω4

max

T 2
i ω2

max + 1

] 1
2

, (2.114)

ωmax =
[

1

Ti(T + L)

] 1
2

. (2.115)

In order to achieve a good compromise between the set-point following and the
load disturbance rejection performance, it is suggested to select Mr = 5 dB (which
corresponds to Amax = 1.21 and φmax = −2.55 rad). If a PID controller is employed,
it has to be selected with transfer function

C(s) = Kp

(
Tis + 1

Tis

)
Tds + 1

Tf s + 1
, (2.116)

so that, by selecting Td = T (namely, by applying a pole-zero cancellation), the
previous case is obtained, where the time constant of the open-loop system is given
by Tf .
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Fig. 2.22 Results obtained with the direct synthesis-based design method based on maximum
peak-resonance specification

A particular interesting case is that given by IPDT processes, where T = 0. The
tuning rules (2.113)–(2.115) are simplified significantly, and they can be related di-
rectly (possibly in an automatic tuning context) to the ultimate gain Ku and ultimate
frequency Pu of the process as [102]

Kp = 0.34Ku, (2.117)

Ti = 1.04Pu. (2.118)

The same process (2.58) is employed as an illustrative example. By applying
the proposed method, a PI controller with Kp = 1.75 and Ti = 25 (ωmax = 0.082)
is determined. The resulting set-point and load disturbance unit step responses are
plotted in Figure 2.22, while the Nichols chart is shown in Figure 2.21. Obviously,
the overshoot in the set-point step response can be reduced by employing a set-point
weight.

2.3.3.2 Based on the Minimisation of the Maximum Resonance Peak Value

An approach similar to that of Section 2.3.3.1 has been (previously) proposed in
[122]. The approach starts by considering the fact that decreasing the integral time
constant in a PI controller for an IPDT process implies that the stability margin of
the system decreases as well. Thus, there is a minimum value of the integral time
constant below which a reasonable damping cannot be achieved for a given system.
The design method consists therefore in specifying the maximum resonance peak
value and then in determining the smallest integral time constant for which this
value is attained. If an IPDT process with a PI controller is considered, the system
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of equations (2.109)–(2.110) can be solved analytically without approximating the
arctan function with expression (2.112). Thus,

ωmax = 1

Ti

[
Ti − L

L

] 1
2

, (2.119)

and, as a consequence,

argL(jωmax) = −π − L

Ti

(
Ti

L
− 1

) 1
2 + arctan

(
Ti

L
− 1

) 1
2

. (2.120)

In [122] it is suggested to select Mr = 2 dB, which corresponds to φmax =
−2.23 rad. With this value, by solving argL(jωmax) = φmax, it results

Ti

L
= 8.75, (2.121)

from which the value of the integral time constant Ti is determined. The proportional
gain can be selected at this point in order for the resulting resonance peak value to
be at a minimum. By applying this procedure to several numerical cases it has been
found that the value of Kp that provides this result can be expressed as a function
of the dead time and of the gain of the process:

Kp = 0.487

KL
. (2.122)

If process (2.58) is considered, by applying the tuning rules (2.121)–(2.122), we
have Ti = 52.5 and Kp = 1.6. The resulting set-point and load disturbance unit step
responses are plotted in Figure 2.23.

2.3.3.3 Based on the Specification of the Desired Control Signal

An original approach, based on the specification of the desired control signal, has
been proposed in [139]. Basically, for an IPDT process (2.14), the technique consists
in selecting the transfer function between the set-point r and the control variable u

as

Q(s) := U(s)

R(s)
= s

K

(2ξτ + L)s + 1

τ 2s2 + 2ξτs + 1
, (2.123)

where the time constant τ is chosen as

τ = αL. (2.124)

It has to be stressed at this point that if a step signal of amplitude Ar is applied to
the set-point, transfer function (2.123) implies that the desired control signal has an
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Fig. 2.23 Results obtained with the method based on the minimisation of the maximum resonance
peak value

initial change of (2αξ + 1)Ar/(α
2KL) and then decays exponentially to zero fol-

lowing a second-order system response with normalised time constant α and damp-
ing factor ξ . Given a desired damping factor (which is suggested to be either 0.707
or 1), this fact can be obviously exploited for the selection of the design parameter
α in order to address the actuator constraints.

Given Q(s), the desired closed-loop transfer function between the set-point r and
the output y becomes H(s) := Q(s)P (s), and the corresponding desired open-loop
transfer function becomes

W(s) = H(s)

1 − H(s)
= (2αξ + 1)Ls + 1

α2L2s2 + 2αξLs + 1 − [(2αξ + 1)Ls + 1]e−Ls
e−Ls.

(2.125)
By considering now the PID controller transfer function (2.2), which can be rewrit-
ten as

C(s) = c2s
2 + c1s + c0

s
, (2.126)

where

Kp = c1, Ti = c1/c0, Td = c2/c1, (2.127)

the actual open-loop transfer function is given by

C(s)P (s) = c2s
2 + c1s + c0

s

K

s
e−Ls. (2.128)
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With the aim of matching G(s) with the actual open-loop transfer function
(2.128), the following transfer function can be defined (s = jω):

M(jω) = jωH(jω)

P (jω)
. (2.129)

This implies that the frequency domain error between L(jω) and the actual open-
loop transfer function is zero if

M(jω) = c2(jω)2 + c1(jω) + c0. (2.130)

If two straight lines are employed to fit the real part MR(jω) of M(jω) against
ω2 and the imaginary part MI(jω) of M(jω) against ω through two frequencies
ω1 and ω2, then the coefficients c0, c1, and c2 can be determined analytically (note
that, once the parameters α and ξ are selected, Expression (2.129) is known). The
two frequencies can be conveniently selected as ω1 = 2π/Ts and ω2 = 2ω1, where
Ts is the desired closed-loop settling time, chosen as (6α + 1)L [138]. The solution
is

c0 = MR(ω1) − MR(ω2)

3
+ MR(ω1), (2.131)

c1 = MI(ω1)

ω1
, (2.132)

c2 = MR(ω1) − MR(ω2)

3ω2
1

, (2.133)

from which the PID parameters can be easily derived from (2.127). At this point, it
is worth considering the scaled Laplace transform ŝ = sL (which naturally leads to a
scaling in the time domain with a normalised time variable t̂ = t/L) and normalised
frequencies ω̂1 = ω1L and ω̂2 = ˆ2ω1. The corresponding transfer function M(jω̂)

is therefore independent of the process parameters, and therefore the (scaled) PID
parameters depend only on ξ and α. By considering the selected values of ξ = 0.707
and ξ = 1 and by interpolating the results for different values of α, the following
tuning rules can be derived (the PID parameters are then conveniently rescaled):

ξ = 0.707:

Kp = 1

KL

1

0.7138α + 0.3904
, (2.134)

Ti = L(1.4020α + 1.2076), (2.135)

Td = 1

KL

1

1.4167α + 1.6999
; (2.136)

ξ = 1:

Kp = 1

KL

1

0.5080α + 0.6208
, (2.137)
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Fig. 2.24 Results obtained with the method based on the specification of the desired control signal
(tuning rules (2.134)–(2.136)). Solid line: α = 1. Dashed line: α = 2

Ti = L(1.9885α + 1.2235), (2.138)

Td = 1

KL

1

1.0043α + 1.8194
. (2.139)

If a PI controller has to be employed, it is sufficient to substitute Td = 0 in the above
tuning rules.

The same process (2.58) is considered as an illustrative example. By applying the
tuning rules (2.134)–(2.136) with α = 1, the parameters Kp = 2.98, Ti = 15.66, and
Td = 1.93 are obtained, while with α = 2, we obtain Kp = 1.81, Ti = 24.07, and
Td = 1.32. The results related to the set-point and load disturbance step response are
shown in Figure 2.24. Conversely, if the tuning rules (2.137)–(2.139) are considered,
we obtain Kp = 2.92, Ti = 19.27, and Td = 2.12 for α = 1 and Kp = 2.01, Ti =
31.20, and Td = 1.57 for α = 2. The corresponding results are shown in Figure 2.25.
It can be seen that the parameter α can handle effectively the trade-off between
aggressiveness and control effort.

2.3.4 Optimisation-based Methods

Tuning rules can be also obtained by minimising a suitable objective function. Meth-
ods developed in this context are explained hereafter.

2.3.4.1 Minimisation of the Integral Criteria

Significant attention has been paid by researchers in order to find the tuning of a
PID controller that minimises integral performance criteria. This is, in fact, a way to
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Fig. 2.25 Results obtained with the method based on the specification of the desired control signal
(tuning rules (2.137)–(2.139)). Solid line: α = 1. Dashed line: α = 2

consider, at the same time, different control specifications, such as a small overshoot
and a short settling time. In general, time-moment weighted integral performance
indexes are considered. They are defined as

Jn(θ) =
∫ ∞

0
tn

[
e(t; θ)

]2
dt, n = 0,1,2, (2.140)

where θ = [Kp,Ti, Td ] is the vector of (PID) parameters to be selected to min-
imise (2.140), and e(t) is the system error. Note that J0(θ) is denoted as the ISE
(Integrated Square Error) criterion, while J1(θ) and J2(θ) are known respectively
as the ITSE and ISTE criteria. A methodology for the determination of tuning for-
mulae which relate the ideal PID coefficients (see (2.2)) to the process parameters
K and L (see (2.14)) in order to minimise the objective functions (2.140) has been
proposed in [128]. To this purpose, genetic algorithms [74], which are known to
provide a global optimum of a problem in a stochastic framework, have been em-
ployed. Specifically, many simulations have been performed for different values of
the parameter L (obviously, a different value of K results in a simple scaling of
the proportional gain) and for different optimisation problems, i.e., considering step
changes both in the set-point and in the load disturbance and minimising the three
adopted integral criteria (2.140). The optimal PID coefficients found by the genetic
algorithms [74] in the different cases have then been analytically interpolated in or-
der to derive suitable tuning rules. These are reported in Table 2.4 for the optimal
set-point response and in Table 2.5 for the optimal load disturbance rejection. The
symbol ‘–’ which appears in Table 2.4 means that no integral action is required for
that case, which is intuitive since the presence of an integrator in the plant assures
by itself a zero steady-state error for set-point step changes and adding another in-
tegrator in the open-loop transfer function makes the achievement of an acceptable
robustness more difficult. From these results it appears that increasing the value of
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Table 2.4 PID tuning rules for optimal set-point response

ISE ITSE ISTE

Kp
1.03
KL

0.96
KL

0.90
KL

Ti – – –

Td 0.49L 0.45L 0.45L

Table 2.5 PID tuning rules for optimal load disturbance response

ISE ITSE ISTE

Kp
1.37
KL

1.36
KL

1.34
KL

Ti 1.49L 1.66L 1.83L

Td 0.59L 0.53L 0.49L

Fig. 2.26 Results obtained with the method based on the optimisation of integral performance
indexes for set-point following task. Solid line: ISE. Dashed line: ITSE. Dash-dot line: ISTE

n from 0 to 2 in the performance index (2.140) implies that the PID gains have to
be decreased.

As an illustrative example, if the set-point following task for process (2.58) is
considered, by applying the tuning rule of Table 2.5, Kp = 3.39 and Td = 2.94 are
obtained for the ISE performance index, Kp = 3.16 and Td = 2.70 are obtained
for the ITSE performance index, and Kp = 2.96 and Td = 2.94 are obtained for
the ISTE performance index. The results related to both the set-point following and
load disturbance rejection task are shown in Figure 2.26 (unit step signals are ap-
plied in both cases). It appears that, as expected, a steady-state error emerges in the
presence of a constant load disturbance because there is no integral action in the
controller. Conversely, if the load disturbance task is considered, by applying the
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Fig. 2.27 Results obtained with the method based on the optimisation of integral performance
indexes for load disturbance rejection task. Solid line: ISE. Dashed line: ITSE. Dash-dot line:
ISTE

tuning rule of Table 2.5, Kp = 4.51, Ti = 8.94, and Td = 3.54 are obtained for the
ISE performance index, Kp = 4.48, Ti = 9.96, and Td = 3.18 are obtained for the
ITSE performance index, and Kp = 4.41, Ti = 10.98, and Td = 2.94 are obtained
for the ISTE performance index. The results again relating to both the set-point fol-
lowing and load disturbance rejection tasks are shown in Figure 2.27. As expected,
the controller designed for the load disturbance rejection is more aggressive than the
controller designed for the set-point following task.

2.3.4.2 Minimisation of an H∞ Performance Index

A tuning methodology based on the optimisation of an H∞ criterion has been pro-
posed in [154]. By considering the Internal Model Control scheme of Figure 2.16
and the associated standard unity-feedback control scheme of Figure 2.1 where
C(s) = Q(s)/(1 − P(s)Q(s)) (see also Figure 2.17), when perfect modelling is
assumed, the sensitivity transfer function is

S(s) = 1

1 + C(s)P (s)
= 1 − P(s)Q(s), (2.141)

and the complementary sensitivity transfer function is

H(s) = C(s)P (s)

1 + C(s)P (s)
= P(s)Q(s). (2.142)
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The transfer function matrix M(s) from the reference input r and the load distur-
bance input d to y and u is therefore

M(s) =
[
H(s) P (s)S(s)

Q(s) −H(s)

]
. (2.143)

The closed-loop system is internally stable if all the transfer functions in M(s) are
stable, which implies that Q(s) is stable and satisfies the following constraints:

lim
s→0

S(s) = lim
s→0

[
1 − P(s)Q(s)

] = 0, (2.144)

lim
s→0

d

ds
S(s) = lim

s→0

d

ds

[
1 − P(s)Q(s)

] = 0. (2.145)

Then, a SOIPDT process (2.25), where the dead time is approximated by a first-
order Taylor series, is considered:

P(s) = K(1 − Ls)

s(T s + 1)
. (2.146)

The optimal performance criterion to be minimised by the control system is selected
as ∥∥Γ (s)S(s)

∥∥∞, (2.147)

where Γ (s) is a weighting function selected as

Γ (s) = 1

s
, (2.148)

which implies that the closed-loop system input is a step signal.
If Q̃(s) = Q(s) (namely, the filter F(s) is neglected), minimising (2.147) yields

Γ (s)
(
1 − P(s)Q̃(s)

) = L, (2.149)

and therefore the optimal Q̃(s) is determined as

Q̃(s) = s(T s + 1)

K
. (2.150)

It appears that, in order to make Q(s) proper, however, a filter F(s) has to be
employed.

If T = 0 (namely, an IPDT process is considered), it can be verified that a first-
order filter does not satisfy the asymptotic tracking requirement. Thus, the filter is
selected as the second-order transfer function

F(s) = as + 1

(λs + 1)2
, (2.151)
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Fig. 2.28 Results obtained with method based on the minimisation of an H∞ performance index.
Solid line: λ = 6. Dashed line: λ = 12

where, according to (2.145), a = 2λ + L. Thus, by considering Q(s) = Q̃(s)F (s)

and C(s) = Q(s)/(1 − P(s)Q(s)) a PI controller is obtained with

Kp = 2λ + L

K(λ + L)2
, (2.152)

Ti = 2λ + L. (2.153)

By applying the same reasoning, if a SOIPDT model is considered, the filter can
be selected as

F(s) = as + 1

(λs + 1)3
, (2.154)

where a = 3λ+L is determined from (2.145). The resulting controller is an output-
filtered PID controller (2.4) with

Kp = 3λ + L + T

K(3λ2 + 3λL + L2)
, (2.155)

Ti = 3λ + L + T , (2.156)

Td = (3λ + L)T

3λ + L + T
, (2.157)

Tf = λ3

3λ2 + 3λL + L2
. (2.158)

As in IMC, the user-chosen parameter λ can handle the trade-off between ag-
gressiveness and robustness. As an example, if the process (2.58) is considered, the
PI controller with Kp = 2.47 and Ti = 18 is obtained from the tuning rules (2.152)–
(2.153) by selecting λ = L = 6, while for λ = 2L = 12, the parameters Kp = 1.83
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and Ti = 30 are obtained. Results related to the set-point and load disturbance step
response are shown in Figure 2.28.

2.4 Conclusions

In this chapter, the use of PID controllers for the control of integral processes has
been addressed. After an introduction on PID controllers, it has been shown that this
kind of controllers can be employed effectively for both the set-point following and
load disturbance rejection tasks, especially if the control requirements are not too
tight. Both open-loop and closed-loop techniques for the estimation of the process
parameters have been described. Then, starting from the model obtained, different
approaches have been presented for the tuning of the PID parameters with the aim
of showing that the tuning problem can be tackled from different viewpoints, each
with specific features.



Chapter 3
Stability Region

The determination of the set of the stabilising parameters of a PID controller for an
integral process is discussed in this chapter. In particular, the stability region of a PI
controller for an IPDT process is analysed first. In this case, in addition to the stabil-
ity region, the achievable stability margins can also be determined. Then, the case
of a stabilising PID controller is considered for both IPDT and SOIPDT processes.
The set of parameters is determined by applying the Hermite–Biehler theorem to
quasi-polynomials. Note that, instead of presenting all the mathematical details of
the procedures employed (for which the reader can refer, for example, to [18, 111,
112], where processes with a first-order-plus-dead-time model are considered), the
features related to integral processes are highlighted.

3.1 Stability Region Under the PI Control

If a PI controller is applied to an IPDT process, the set of stabilising parameters
can be determined analytically, after a suitable normalisation of the system. The
analysis yields also the achievable stability margins (namely, the gain margin and
phase margin), and this can be effectively exploited in the tuning of the PI controller
[137].

3.1.1 Normalisation of the System

Consider the IPDT process (2.14) controlled, in a unity feedback scheme (see Fig-
ure 2.1), by the PI controller

C(s) = Kp

(
1 + 1

Tis

)
,

where Kp > 0 is the proportional gain, and Ti > 0 is the integral time constant.

A. Visioli, Q.-C. Zhong, Control of Integral Processes with Dead Time,
Advances in Industrial Control,
DOI 10.1007/978-0-85729-070-0_3, © Springer-Verlag London Limited 2011
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The loop transfer function of the system is

W(s) = C(s)P (s) = Kp

(
1 + 1

Tis

)
K

s
e−Ls, (3.1)

which involves four parameters. If the process parameters K and L are normalised
into

K̄p = LKKp and T̄i = Ti

L
, (3.2)

then the loop transfer function is correspondingly normalised as

W̄ (s) = K̄p

(
1 + 1

T̄i s

)
1

s
e−s . (3.3)

This involves only two parameters. As a result, W̄ (s) can be regarded as a system
with the process

P̄ (s) = 1

s
e−s

and the controller

C̄(s) = K̄p

(
1 + 1

T̄is

)
,

where K̄p > 0 and T̄i > 0 are the normalised proportional gain and the normalised
integral time constant, respectively. As a matter of fact, (3.3) can be obtained from
(3.1) by substituting s with 1

L
s. This means that the Nyquist plots of W(s) and

W̄ (s) have the same form but arrive at the same point with different frequencies.
Therefore, the design of C(s) for W(s) can be done via designing C̄(s) for W̄ (s)

and then recovering the parameters of C(s) from (3.2). As can be seen later, this
considerably simplifies the system analysis and design.

3.1.2 Stability Region

Rewrite W̄ (s) as W̄ (jω) = Re(ω) + j Im(ω), where

Re(ω) = − K̄p cosω

T̄iω2
− K̄p sinω

ω
,

Im(ω) = K̄p sinω

T̄iω2
− K̄p cosω

ω
.

As ω → 0, there are

lim
ω→0

Re(ω) = −∞, lim
ω→0

Im(ω) =

⎧⎪⎨
⎪⎩

−∞, T̄i > 1,

0, T̄i = 1,

+∞, 0 < T̄i < 1.
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Fig. 3.1 Nyquist plot of the loop transfer function L̄(s) of the system

The Nyquist plots for these cases are shown in Figure 3.1. In the case of 0 < T̄i <

1 or T̄i = 1, the Nyquist curve starts above the real axis and encircles the point
(−1,0). In the case of T̄i > 1, it is possible for the Nyquist curve not to encircle the
point (−1,0). Therefore, a necessary condition for the closed-loop system stability
is T̄i > 1. This means that the integral time constant of the PI controller C(s) must
be greater than the dead time of the process P(s). Furthermore, a necessary and
sufficient condition for the stability is given below.

Theorem 3.1 The closed-loop feedback system with the open-loop transfer function
given in (3.3) is stable if and only if K̄p and T̄i satisfy

K̄p <
T̄iω

2
p√

T̄ 2
i ω2

p + 1
, (3.4)

where ωp ∈ (0, π
2 ] is the solution of

ωp = arctan(T̄iωp). (3.5)

Proof The closed-loop feedback system is stable if and only if the Nyquist curve
crosses the real axis from the right side of the point (−1,0), i.e., satisfying Re(ω) >

−1 when Im(ω) = 0, which gives

K̄p cosωp

T̄iω2
p

+ K̄p sinωp

ωp

< 1, (3.6)

sinωp

T̄iωp

− cosωp = 0, (3.7)

where ωp is called the phase crossover frequency. Because T̄i > 1, the minimum
solution of ωp in (3.7) lies in the interval (0, π

2 ], where π
2 is obtained as T̄i → +∞

(in this situation, the PI controller degenerates to a P controller). This means that the
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Fig. 3.2 Region of control parameters K̄p and T̄i to stabilise the system

Nyquist curve crosses the real axis for the first time at a frequency not more than π
2 .

Thus, (3.7) can be converted into (3.5). Furthermore, simplifying (3.6) with (3.7)
gives (3.4). �

When the Nyquist curve crosses the point (−1,0), then

K̄p = T̄iω
2
p√

T̄ 2
i ω2

p + 1
.

From this, together with (3.5), the relationship between K̄p and T̄i can be solved
numerically, which is shown in Figure 3.2 as the curve c. Note that as T̄i → +∞,
ωp → π

2 and k̄p → π
2 ; as k̄p → 0, ωp → 0 and T̄i → 1. Obviously, the filled area

in Figure 3.2 corresponds to (3.4), which gives the stability region.

3.1.3 Achievable Stability Margins

The well-known gain margin Am and phase margin φm are defined as

Am = 1

|L̄(jωp)| , (3.8)

φm = arg
[
L̄(jωg)

] + π, (3.9)

where ωp is the phase crossover frequency defined in (3.5) and ωg is the gain
crossover frequency defined by ∣∣L̄(jωg)

∣∣ = 1. (3.10)
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Fig. 3.3 Relationship between stability margins Am and φm and control parameters K̄p and T̄i

Conventionally, Am, which is larger than 1, is converted so that the gain margin has
the unit “dB”. Here it is kept dimensionless to simplify the expression and calcula-
tion. Before the Nyquist curve reaches the real axis for the first time, ω ≤ π

2 , and
Re(ω) is always negative, so φm is in the range of 0 < φm < π

2 .
Substituting (3.3) into (3.8) and (3.9) gives

Am = T̄iω
2
p

K̄p

√
T̄ 2

i ω2
p + 1

, (3.11)

φm = arctan(T̄iωg) − ωg, (3.12)

where ωp is given in (3.5), and ωg , according to (3.10), is

ωg =
√

2

2

√
K̄2

p +
√

K̄4
p + 4K̄2

p/T̄ 2
i . (3.13)

For a specified gain margin Am, the parameters K̄p and T̄i satisfying (3.11) and
(3.5) can be solved numerically. The solutions for typical specifications of Am =
2, 3, 4, 5, 6 are shown in Figure 3.3 and are called gain-margin curves. As K̄p → 0,
T̄i → 1. This is the point (0,1). As T̄i → +∞, K̄p → K̄A

p with

K̄A
p = π

2Am

.

This is the intersection point of the gain-margin curve and the horizontal axis. Sim-
ilarly, for a specified phase margin φm, the parameters K̄p and T̄i satisfying (3.12)
and (3.13) can be solved numerically as well. The solutions for typical specifications
of φm = π

6 , π
4 , π

3 are also shown in Figure 3.3 and are called phase-margin curves.

As T̄i → +∞, K̄p → 0 or K̄p → K̄
φ
p with

K̄φ
p = π

2
− φm.
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Fig. 3.4 Achievable stability margins Am and φm

This is the right-side endpoint of the phase-margin curve. The curve for Am = 1 or
φm = 0 is the curve c shown in Figure 3.2.

So far, the system for a specified gain margin or phase margin has been designed.
When both margins are specified, the parameters of C̄(s) can be obtained from
the intersection point of the relevant gain-margin curve and phase-margin curve in
Figure 3.3. However, no arbitrary Am and φm can be achieved simultaneously. There
is a constraint on the achievable stability margins.

Theorem 3.2 The achievable stability margins Am and φm satisfy the following
constraint:

φm ≤ π

2

(
1 − 1

Am

)
.

Proof For an arbitrary pair (Am,φm), there exists either a unique pair (K̄p, T̄i) or no
pair (K̄p, T̄i) to meet them, depending on whether or not the relevant gain-margin
and phase-margin curves intersect in Figure 3.3. They intersect with each other when
K̄A

p ≤ K̄
φ
p , i.e.,

π

2Am

≤ π

2
− φm,

where the “=” is satisfied as T̄i → +∞. This gives the condition in the theorem. �

The achievable stability margins are shown in the filled area of Figure 3.4 (in-
cluding the curve). As Am approaches +∞, φm approaches π/2.

When the system has been designed for the specified stability margins Am and
φm, the uncertainties of the process parameters are determined too. Assuming that
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Fig. 3.5 Results obtained with the Ziegler–Nichols tuning rules based on a nonparametric model
of the process. Solid line: PID controller with no set-point weight. Dashed line: PID controller with
set-point weight

there exists an uncertainty KΔ in the process gain K (KΔ + K > 0), according to
(3.2) and the definition of the gain margin, the system is robustly stable if

−1 <
KΔ

K
< Am − 1. (3.14)

Similarly, if there exists an uncertainty LΔ in the process dead time L (LΔ +L ≥ 0),
then the system is robustly stable when

−1 ≤ LΔ

L
<

φm

ωg

. (3.15)

3.1.4 An Illustrative Example

Consider the process (2.58). The gain and phase margins are chosen as Am = 3 and
φm = π

4 , as often used in the literature. It can be found that K̄p � 0.5 and 1/T̄i �
0.15 from Figure 3.3 and then Kp = 1.647 and Ti = 40 from (3.2). Simulation
results with a unit step input r(t) and a unit step disturbance, acting at t = 150 s,
are shown in Figure 3.5 as a solid line for the nominal case. From (3.14) and (3.15)
it can be determined that the system is robustly stable for KΔ < 0.1 and LΔ < 0.4.
The response of the system when the process gain has been increased to 0.1 and the
dead time has been increased to 6.2 is shown as a dashed line in Figure 3.5, where
it appears that the stability is preserved.
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3.2 Stability Region Under the PID Control

In case a PID controller is employed, the determination of the set of stabilising pa-
rameters can be performed by exploiting a version of the Hermite–Biehler theorem
applicable to quasi-polynomials. In particular, the admissible range of the propor-
tional gain is computed first. Then, for each value of the proportional gain in that
range, the set of stabilising values of the integral and derivative gain are found. Both
the cases of IPDT and SOIPDT processes are addressed hereafter.

3.2.1 IPDT Processes

When an IPDT process is considered, a simple numerical procedure for the deter-
mination of the set of stabilising parameter can be employed, as it is illustrated in
the following subsection [88].

3.2.1.1 Determination of the Set of Stabilising Parameters

Consider the process (2.14) (where the gain K is assumed to be positive, without
loss of generality) controlled by a PID controller which is conveniently written in
ideal form

C(s) = Kp + Ki

s
+ Kds. (3.16)

The problem of finding the stabilising set of (Kp,Ki,Kd) values for which the
closed-loop system

H(s) = C(s)P (s)

1 + C(s)P (s)
(3.17)

is stable is tackled by considering the characteristic equation of the closed-loop
system (3.17):

δ(s) := s2 + (
KKi + KKps + KKds2)e−Ls = 0, (3.18)

which, by multiplying both sides by eLs , can be rewritten as

f (s) := δ(s)eLs = s2eLs + KKi + KKps + KKds2 = 0. (3.19)

The following theorem [52] will be used hereafter in order to provide a necessary
condition for the stabilising set of parameters.

Theorem 3.3 Consider the quasi-polynomial

Λ(s) =
r∑

l=1

n∑
i=0

λile
Lissn−i , (3.20)

where L1 < L2 < · · · < Lr , Lr + L1 > 0, and the principal term λ0r 	= 0. If Λ(s) is
a stable quasi-polynomial, then the derivative of Λ(s) with respect to s is stable, or,
equivalently, if the derivative of Λ(s) is unstable, then Λ(s) is unstable.
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Necessary conditions for the stabilising PID controller parameters can now be
stated [87].

Theorem 3.4 Necessary conditions for the PID controller (3.16) to stabilise the
IPDT process (2.14) are

Kp > 0, Ki > 0, (1 + KKd) > 0. (3.21)

Proof As eLs has no finite zeros, the system is stable if and only if the zeros of f (s)

are in the open left-half plane. If s = 0, Expression (3.19) reduces to KKi = 0,
and therefore there exists a singular boundary at Ki = 0. The side of the stability
boundary Ki = 0 that has less unstable poles has therefore to be found. For an
arbitrary small value of s, (3.19) can be approximated as

KKps + KKi � 0, (3.22)

i.e., s � −Ki/Kp . This implies that for Kp > 0, the region for Ki > 0 has one less
unstable pole than for Ki > 0 (note that, by applying a similar reasoning, Kp < 0
implies Ki < 0). Then, the first derivative of (3.19) can be computed as

f ′(s) = (
2s + Ls2)eLs + KKp + 2KKds = 0. (3.23)

For s = 0, Expression (3.23) yields Kp = 0, and by applying the same reasoning as
before, it can be deduced that if KKp/(1 + KKd) < 0, then f ′(s) is unstable, and
therefore also f (s) is unstable by Theorem 3.3. The second derivative of (3.19) can
be computed as

f ′′(s) = (
2 + 4Ls + L2s2)eLs + 2KKd = 0. (3.24)

For s = 0, Expression (3.24) yields 1 + KKd = 0. If it is assumed that Kd =
−1/K + ε, where ε is an arbitrarily small positive number, then (3.24) is approxi-
mated as

4Ls + 2 + 2K

(
− 1

K
+ ε

)
= 0, (3.25)

i.e., s � −Kε/(2L) (which is less than zero). This implies that the quasi-polynomial
f ′′(s) has one less right-half plane zero in the region Kd > −1/K , that is, by The-
orem 3.3, a necessary condition for the system to be stable is 1 + KKd > 0. By
taking into account all the considerations done, the inequalities (3.21) are trivially
demonstrated. �

Then, the Hermite–Biehler theorem can be employed in order to determine the
stabilising set of (Kp,Ki,Kd). By substituting s = jω into (3.19) it results

f (ω) = −ω2ejLω + KKi + jKKpω − ω2KKd = 0. (3.26)

By denoting as fr(ω) and fi(ω) the real and imaginary parts of f (ω), respectively,
and by f ′

r (ω) and f ′
i (ω) their first-order derivatives with respect to ω, the following

well-known theorem can be stated [10, 52, 100].
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Theorem 3.5 The quasi-polynomial in (3.26) is stable if and only if

1. fr(ω) and fi(ω) have only real roots, and these roots interlace;
2. f ′

i (ω
∗)fr(ω

∗) − fi(ω
∗)f ′

r (ω
∗) > 0 for some ω∗ ∈ (−∞,∞) (increasing phase

condition).

The following theorem is employed to verify that fr(ω) and fi(ω) have only real
roots [10].

Theorem 3.6 Let p and q denote the highest powers of s and eθs , respectively, in
f (s). Let η be a constant such that the coefficients of terms of highest degree in
fr(ω) and fi(ω) do not vanish at ω = η. Then, a necessary and sufficient condition
under which fr(ω) or fi(ω) have only real roots is that in the strip −2lπ +η ≤ ω ≤
2lπ + η, fr(ω) or fi(ω) has exactly 4lq + p real roots for a sufficiently large l.

Theorem 3.6 can be employed to determine the admissible range of Kp for which
fi(z) has only real roots. By taking l = 1, as p = 2 and q = 1, there have to be six
real roots in the strip −2π + η ≤ ω ≤ 2π + η. By taking z = Lω, it is

fi(z) = KKp

z

L
− z2

L2
sin(z) = 0, (3.27)

for which it is apparent that a solution z0 = 0 occurs. Then, it can be trivially deter-
mined that

f̄i (z) := KKp − z

L
sin(z) = 0, (3.28)

which is an even function. A plot of an example of function f̄i (z) is shown in
Figure 3.6, where it emerges that the roots z1 and z2 locate in the interval [0,π],
and, in general, the roots zk and zk+1, k = 3,5, . . . , are located in the interval
[(k − 1)π, kπ]. In addition, the root zk gets closer to (k − 1)π as k increases. Thus,
by denoting d as the distance between 2π and z3, it is sufficient to take η = d + ε

with an arbitrary small ε in order to have six roots (namely, z−2, . . . , z3) in the strip
[−2lπ + η,2lπ + η]. In general, it is sufficient to take d = z2l+1 − 2πl in order to
have, for any l, 4l + 2 roots in the strip [−2lπ + η,2lπ + η] where η = d + ε.

Note that the coefficient of the term of highest degree in fi(z) (namely, sin(z)),
does not vanish at z = η, because, as mentioned above, the root zk gets closer to
(k − 1)π as k increases, and therefore, for an arbitrarily small ε, it is guaranteed
that z1 is greater than d + ε.

The admissible range of Kp , namely, the admissible maximum value Kpm, can
be found by determining the condition for which z1 and z2 are coincident, because
this is the limit case for which the hypotheses of Theorem 3.6 hold. It is necessary
to find Kpm such that f̄i (z) is tangent to the abscissa axis, namely, f̄i (z) = 0 and
f̄ ′

i (z) = 0. Thus, the following system results:⎧⎪⎪⎨
⎪⎪⎩

KKpm

sin(z)
= z

L
,

−KKpm cos(z)

sin2(z)
= 1

z
,

(3.29)



3.2 Stability Region Under the PID Control 59

Fig. 3.6 Example of function f̄i (z)

which yields

Kpm = 1

K

α

L
sin(α), (3.30)

where α is the solution of the equation

z = − tan(z). (3.31)

Now the interlacing of the roots of fi(z) and fr(z) is addressed (see condition 1 of
Theorem 3.5). Consider

fr(z) = KKi − KKd

z2

L2
− z2

L2
cos(z). (3.32)

Then, fr(z0) > 0 because z0 = 0 and fr(0) > 0 because Ki > 0 (see Theorem 3.4).
Thus, it has to be

fr(z1) < 0, fr (z2) > 0, . . . , (3.33)

and fr(z) can be rewritten as

fr(z) = Kz2

L2

[−Kd + a(z)Ki + b(z)
]
, (3.34)

where

a(z) = L2

z2
, b(z) = − 1

K
cos(z). (3.35)

Thus, condition (3.33) can be rewritten as

(−1)kKd < (−1)ka(zk)Ki + (−1)kb(zk), k = 1,2, . . . . (3.36)

It can be noted now that in the range (kπ, (k + 2)π), fr(z) has one maximum and
one minimum, and in the same range, there are the two roots z2k+1 and z2k+2 of
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Fig. 3.7 Example of functions fi(z) and fr (z)

fi(z). If condition (3.36) is satisfied (namely, fr(z2k+1) < 0 and fr(z2k+2) > 0),
there is at least one root of fr(z) between z2k+1 and z2k+2. This root is unique
because fr(z) changes its sign just once between an extremum and the next one. In
fact, the number of extrema and of roots in the range [kπ, (k + 2)π] is the same (see
Figure 3.7).

It is worth noting at this point that the interlacing property and the fact that the
roots of fi(z) are real implies that the roots of fr(z) are also real [111].

Condition 2 of Theorem 3.5 can be easily proved. In fact, from (3.27) and (3.32)
we have

f ′
i (z) = KKp

L
− 1

L2

[
cos(z)z2 + 2 sin(z)z

]
, (3.37)

and it is therefore sufficient to select z = 0 to have

f ′
i (0)fr(0) − fi(0)f ′

r (0) = KKp

L
KKi > 0. (3.38)

Summarising, for each value of Kp in (0,Kpm), the intersection of the set of in-
equalities (3.36) determines the set of (Ki,Kd) values for which the roots of fi(z)

and fr(z) interlace and therefore that stabilise the closed-loop system (3.17). Note
that (3.36) represents, for each value of zk , a half-plane in the Cartesian coordinate
system (Ki,Kd). Indeed, if the set of inequalities (3.36) is substituted with the set
of equalities

(−1)kKd = (−1)ka(zk)Ki + (−1)kb(zk), k = 1,2, . . . , (3.39)

then, (3.39) represents, for each value of zk , a straight line in the Cartesian coordi-
nate system (Ki,Kd).

Thus, for a fixed value of Kp in (0,Kpm), each (odd) root z2k+1 of fi(z) with
k ∈ N determines a straight line with slope a(z2k+1) and y-intercept b(z2k+1). As k

increases, the slope decreases to zero, and the y-intercept tends to −1/K because
(z2k+1 − 2kπ) is a positive succession that converges monotonically to zero and
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Fig. 3.8 Straight lines determined by the odd roots z2k+1

therefore cos(z2k+1) converges to one. Indeed, b(z2k+1) is strictly monotonically
decreasing as k increases because cos(z) is strictly monotonically decreasing in the
range (2kπ, (2k + 1)π) and therefore

cos(z1) < cos(z3) < cos(z5) < · · · , (3.40)

which implies

− 1

K
cos(z1) > − 1

K
cos(z3) > − 1

K
cos(z5) > · · · . (3.41)

Thus, with respect to the (odd) roots z2k+1, the root z1 can only be taken into
account. The situation is exemplified in Figure 3.8.

Regarding the (even) roots z2k of fi(z) with k ∈ N, denote as (x̃k, ỹk) the in-
tersection of the two straight lines (3.39) obtained for z2k and z2k+2. Then, the
following theorem can be stated.

Theorem 3.7 As k → ∞, (x̃k, ỹk) converges to the point (
KK2

p

2 , 1
K

) by monotoni-
cally decreasing.

Proof Because (z2k − (2k − 1)π) is a negative succession that converges monoton-
ically to zero as k increases, it can be determined that

cos(z2) > cos(z4) > cos(z6) > · · · , (3.42)

which implies

− 1

K
cos(z2) < − 1

K
cos(z4) < − 1

K
cos(z6) < · · · . (3.43)

Because

lim
k→+∞

(
z2k − (2k − 1)π

) = 0, (3.44)
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it can be deduced trivially that

lim
k→+∞ cos(z2k) = −1 (3.45)

and therefore

lim
k→+∞b(z2k) = 1

K
. (3.46)

By also taking into account that

lim
k→+∞a(z2k) = 0, (3.47)

it can be determined that for k → +∞, a horizontal straight line Kd = 1/K results.
Hence,

lim
k→+∞ ỹk = 1

K
. (3.48)

Starting from (3.44), the following expression can also be written:

f̄i (z2k) = KKp − 1

θ
z2k

[
ε + o(ε)

]
, (3.49)

where

ε := (2k − 1)π − z2k (3.50)

because ε → 0 as k → +∞ and therefore sin(ε) ∼ ε. Hence, for k → +∞, ε → 0
as (KKpθ)/z2k . When (z2k − (2k − 1)π) → 0, cos(z2k) can be expressed in Taylor
series as

cos(z2k) = −1 + ε2

2
+ o

(
ε2), (3.51)

which, by taking into account (3.50), yields

cos(z2k) = −1 + K2K2
pθ2

2z2
2k

+ o

(
1

z2
2k

)
, (3.52)

and therefore b(z2k) increases as 1
K

(1 − K2K2
pθ2

2z2
2k

) as k → +∞. By considering that

x̃ is given by

x̃k = b(z2k) − b(z2k+2)

a(z2k+2) − a(z2k)
, (3.53)

by taking into account (3.52) it can be written that

lim
k→+∞ x̃ = lim

k→+∞

1
K

(
1 − K2K2

pθ2

2z2
2k

) − 1
K

(
1 − K2K2

pθ2

2z2
2k+2

)
θ2

z2
2k+2

− θ2

z2
2k

= KK2
p

2
. (3.54)

Thus, from (3.48) and (3.54) it can be deduced that, as k → +∞, the intersection of

the straight lines (3.36) with z2k and z2k+2, k ∈ N, converges to the point (
KK2

p

2 , 1
K

).
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Fig. 3.9 Straight lines determined by the even roots z2k

Both the values of the abscissa and ordinate of the intersection between two suc-
cessive straight lines decrease (see Figure 3.9). In fact, the value of d

dz
(− sin(z2k))

increases as k increases. Thus, by taking into account that b(z2k) increases as
1
K

(1 − K2K2
pθ2

2z2
2k

) as k → +∞, it can be deduced that, as k increases, the term b(z2k)

increases faster than 1 − 1/z2
2k , namely, faster than the velocity of variation of the

slope a(z2k) = θ2/z2
2k . �

From the above analysis it can be concluded that, for each Kp in (0,Kpm), the
set of (Ki,Kd) values that stabilise the closed-loop system (3.17) can be determined
by considering the intersections of the straight lines for z1, z2 and the straight line
Kd = −1/K (which corresponds to the straight line for z2k for k → +∞).

3.2.1.2 An Illustrative Example

In order to illustrate the results presented in Section 3.2.1.1, the same IPDT pro-
cess (2.58) has been considered. The stabilising regions of (Ki,Kd) for the dif-
ferent stabilising values of Kp ∈ (0,Kpm) are shown in Figure 3.10. The associ-
ated limits for the controller parameters (i.e., their minimum and maximum limits)
are reported in Table 3.1. The stabilising region of (Ki,Kd) for the particular case
Kp = Kpm/2 = 2.9969 is plotted in Figure 3.14. It can be noted that the upper edge
of the stability area is almost everywhere horizontal. However, in the left side of this
edge, the intersection between the straight line associated with the first zero and the
straight line Kd = 1/K can be seen.

Finally, the set-point and load disturbance step response corresponding to the
controller parameters Kp = 2.9969, Ki = 0.2582, and Kd = 9.6930 which are in
the stability region is shown in Figure 3.15.
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Fig. 3.10 The stabilising regions of (Ki,Kd) for 0 < Kp < Kpm

Table 3.1 The minimum and maximum limits of the controller
parameters

Parameter Minimum value Maximum value

Kp 0 5.9938

Ki 0 2.0558

Kd −19.763 26.719

3.2.2 SOIPDT Processes

A more complex procedure has to be employed if an SOIPDT process is considered,
as it is illustrated hereafter.

3.2.2.1 Determination of the Set of Stabilising Parameters

A procedure for the determination of the stabilising set of PID parameters has been
also proposed for SOIPDT processes with transfer function [87]

P(s) = K

s(T s + 1)
e−Ls. (3.55)
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Fig. 3.11 The stabilising region of (Ki,Kd) for Kp = Kpm/2 = 0.31842

Fig. 3.12 The set-point and load disturbance step response for Kp = 2.9969, Ki = 0.2582, and
Kd = 9.6930

In this case the characteristic equation can be written as

f (s) := δ(s)eLs = s2(T s + 1)eLs + KKi + KKps + KKds2 = 0; (3.56)

its first derivative is

f ′(s) = (
2s + 3Ls2 + Ls2 + T Ls3)eLs + KKp + 2KKds, (3.57)

and its second derivative is

f ′′(s) = [
2 + (4L + 6T )s + (

L2 + 6LT
)
s2 + T L2s3]eLs + 2KKd. (3.58)
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By applying the same considerations done in Section 3.2.1.1, Theorem 3.4 holds
also for SOIPDT processes.

Then, by taking into account that

fi(z) = KKp

z

L
− z2

L3

[
T z cos(z) + L sin(z)

] = 0 (3.59)

and

fr(z) = KKi − KKd

z2

L2
− z2

L2
cos(z) + T z3 sin(z)

L3
, (3.60)

Theorem 3.6 can be proven by selecting η = 0 and by considering that, in addition
to z0 = 0, the roots of fi(z) are the solutions of the equation

f̄i (z) := KKp − T cos(z)
z2

L2
− z

L
sin(z) = 0, (3.61)

which can be rewritten as

KKp − T z

L2
2 cos(z)

sin(z)
= z

L
. (3.62)

By noting that f̄i (z) is an even function, the condition that fi(z) has only real
roots is equivalent to the condition that f̄i (z) has 2l + 1 real roots in the strip 0 <

z ≤ 2πl. By analysing the left-hand side of Equation (3.62), denoted as Γ (z), it can
be derived (see [86] for details) that this condition is met only if the plot of Γ (z)

intersects the line z/L twice in the interval (0,π). This occurs if

KKpL2 − T α2 cos(α)

L sin(α)
< α, (3.63)

where α is the solution of the equation

d

dz
Γ (z) = 1

L
, (3.64)

that is,

tan(α) = 2T α + αL

T α2 − L
. (3.65)

The admissible range of Kp , namely, the admissible maximum value Kpm, is there-
fore determined when the two intersections are coincident, namely, for each value
of Kp in the interval (0,Kpm], Theorem 3.5 has to be addressed. By following the
same approach of Section 3.2.1.1, the real part fr(z) (see (3.60)), which is an even
function, can be written as

fr(z) = Kz2

L2

[−Kd + a(z)Ki + b(z)
]
, (3.66)

where

a(z) = L2

z2
(3.67)
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and

b(z) = − 1

K
cos(z) + T z

KL
sin(z). (3.68)

For z0 = 0, fr(z0) = KKi > 0 because Ki > 0. Thus, the interlacing condition is

fr(z1) < 0, fr (z2) > 0, . . . , (3.69)

which can be rewritten as

(−1)jKd < (−1)j a(zj )Ki + (−1)j b(zj ), (3.70)

where j = 1,2,3, . . . , and zj ’s are the positive real roots of (3.59) arranged in in-
creasing order of magnitude. From (3.67) it appears clearly that a(zj ) > 0 for every
j and a(zj ) > a(zj+1). Further, a(zj ) → 0 as j → +∞. Then, by analysing the
function Γ (z), it can be noted that if Kpm ≤ 4π2T/(KL2), the root z1 is in the inter-
val (0,π/2), and the other (odd) roots z2j+1 are in the interval ((2j − 0.5)π,2jπ),
and they get closer to (2j − 0.5)π as j increases. Thus, it can be deduced that
1 > cos(z1) > cos(z3) > · · · and limj→+∞ cos(z2j+1) = 0. Similarly, the (even)
roots z2j are in the interval ((2j − 1.5)π, (2j − 1)π), and they get closer to
(2j − 1.5)π as j increases. Thus, it can be deduced that −1 < cos(z2) < cos(z4) <

· · · and limj→+∞ cos(z2j ) = 0. For the odd roots, T z2j+1/(Kl) sin(z2j+1) → −∞
as j → +∞ and for the even roots, T z2j /(Kl) sin(z2j ) → +∞ as j → +∞. Fur-
ther, in both cases, the difference between two successive values of the cosine terms
are much smaller than the difference between two successive values of the term
T z/(Kl) sin(z). Thus, b(z2j+1) > b(z2j+3) and b(z2j+1) → −∞ as j → +∞, and
b(z2j ) < b(z2j+2) and b(z2j ) → +∞ as j → +∞. By denoting as Ki(z1, z2j )

the value of the abscissa of the intersection point of the straight lines Kd(z1) and
Kd(z2j ), it can be determined that

Ki(z1, z2j ) = b(z2j ) − b(z1)

a(z1) − a(z2j )
(3.71)

increases as j increases, because the ascending magnitude of the numerator is much
larger than the ascending magnitude of the denominator (note that they are both
positive). Thus, for Kpm ≤ 4π2T/(KL2), the set of inequalities (3.70) can be sim-
plified to

Ki > 0, Kd > a(z1)Ki + b(z1), Kd < a(z2)Ki + b(z2). (3.72)

By following a similar reasoning, for the case 4π2T/(KL2) ≤ Kpm ≤
(2qπ)2T/(KL2) where q = 2,3,4, . . . , it can be determined again that b(z2j+1) >

b(z2j+3) and b(z2j+1) → −∞ as j → +∞ and b(z2j ) < b(z2j+2) and b(z2j ) →
+∞ as j → +∞. Further, it can be determined that Ki(z1, z2j ) < Ki(z1, z2j+2)

for values of j not less than min(q). In this case, the set of inequalities (3.70) can
be rewritten as

Ki > 0, Kd > a(z1)Ki + b(z1), Kd < a(z2j )Ki + b(z2j ), (3.73)

where j = 1, . . . ,min(q).
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Table 3.2 The minimum and maximum limits of the controller
parameters

Parameter Minimum value Maximum value

Kp 0 4.3434

Ki 0 14.0545

Kd −1 4.3058

Condition 2 of Theorem 3.5 can be easily proved by selecting z = 0 for which,
as in (3.38),

f ′
i (0)fr(0) − fi(0)f ′

r (0) = KKp

L
KKi > 0. (3.74)

Summarising these results, the following theorem can be stated [87].

Theorem 3.8 For a given Kp in (0,Kpm), if Kpm ≤ 4π2T/(KL2), the sta-
bilising region in the Ki − Kd plane is a triangle defined by the straight
lines Ki > 0, Kd > a(z1)Ki + b(z1), and Kd < a(z2)Ki + b(z2). If Kpm ∈
(4π2T/(KL2), (2qπ)2T/(KL2)), then the stabilising region in the Ki − Kd plane
is the area defined by the straight lines Ki > 0, Kd > a(z1)Ki + b(z1), and
Kd < a(z2j )Ki + b(z2j ), where j = 1, . . . ,min(q).

It is worth noting that, for the case of SOIPDT processes, the numerical proce-
dure for the determination of the stabilising region is more complex than for IPDT
processes.

3.2.2.2 An Illustrative Example

As a illustrative example, consider the process

P(s) = 1

s(s + 1)
e−0.5s . (3.75)

After having determined the maximum limit of the proportional gain Kpm =
4.3434, the stabilising regions of (Ki,Kd) for the different stabilising values of
Kp ∈ (0,Kpm) have been determined. They are shown in Figure 3.13. The associ-
ated limits for the controller parameters (i.e., their minimum and maximum limits)
are reported in Table 3.1. The stabilising (triangular) region of (Ki,Kd) for the par-
ticular case Kp = Kpm/2 = 2.1717 is plotted in Figure 3.11.

Finally, the set-point and load disturbance step response corresponding to the
controller parameters Kp = 2.1717, Ki = 1.9113, and Kd = 2.4620 which are in
the stability region is shown in Figure 3.12.



3.2 Stability Region Under the PID Control 69

Fig. 3.13 The stabilising regions of (Ki,Kd) for 0 < Kp < Kpm

Fig. 3.14 The stabilising region of (Ki,Kd) for Kp = Kpm/2 = 2.1717
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Fig. 3.15 The set-point and load disturbance step response for Kp = 2.1717, Ki = 1.9113, and
Kd = 2.4620

3.3 Conclusions

In this chapter, the determination of the stabilising region of PI and PID controllers
for IPDT and SOIPDT processes has been addressed. It has been shown that differ-
ent analyses can be performed depending on the considered process and the consid-
ered controller and that in any case the solution can be obtained by simple and com-
putationally efficient numerical procedures. The obtained stabilising regions can be
exploited for the development of techniques for the analysis and design of PID con-
trollers for integral processes.



Chapter 4
Performance Assessment and Controller
Retuning

In this chapter a methodology for the performance assessment and retuning of PID
controllers applied to integral processes is presented. In particular, the deterministic
performance related to both the set-point following and load disturbance rejection
task is addressed. Routine operating data are employed in order to evaluate the re-
sponse obtained with given controller parameters with respect to that achievable
with appropriate tuning rules. If the performance is not satisfactory, then the con-
troller is retuned suitably.

4.1 Introduction

As shown in Chapter 2, there are many PID controller tuning rules that have been
devised for integral processes. However, it is also recognised that in many practical
cases PID controllers are poorly tuned because of the lack of time and of the lack
of skill of the operator. Actually, as in large plants there are hundreds of control
loops, it is almost impossible for operators to monitor each of them manually. For
these reasons, it is important to have automatic tools that are first able to assess the
performance of a control system and, in case it is not satisfactory, to suggest the
way to solve the problem (for example, if a bad controller tuning is detected, then
new appropriate values of controller parameters are determined). In this context, it is
much appreciated that the retuning is accomplished by using routine operating data
(the same that have been employed for the purpose of performance assessment),
without the need of performing special experiments (as in the case of standard auto-
matic tuning methodologies) that would lead to time and energy consumption and,
in general, would affect the process operations.

Many performance assessment methodologies have been proposed in the liter-
ature and successfully applied in industrial settings [45]. In general, although the
proposed techniques can be viewed under the same framework (see [38] and ref-
erences therein), they are generally divided into two categories [104]: stochastic
performance monitoring in which the capability of the control system to cope with
stochastic disturbances is of main concern (works that fall into this class mainly rely
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on the concept of minimum variance control [34]), and deterministic performance
monitoring in which performances related to more traditional design specifications,
such as set-point and load rejection disturbance step response parameters, are taken
into account [25]. When deterministic requirements are considered, it is realised that
an unsatisfactory performance can be caused by different factors [91]. Thus, there
is the need to integrate different techniques, each of them devoted to deal with a
particular situation.

Restricting the analysis to the tuning assessment of PID controllers, an iterative
solution method for the determination of the minimum variance PID controller has
been proposed in [53], where there are no assumptions on the modelling of the
process. Regarding deterministic performance monitoring, the achievable optimal
performance in terms of integrated absolute error for the set-point response has been
investigated in [39]. Its knowledge can be exploited to evaluate the performance of
an employed PI or PID controller. In [118] the set-point following performance of a
PI controller is assessed by taking into account the step response that can be obtained
by selecting the controller parameters by means of the Internal Model Control tuning
rule. A procedure, which requires a special experiment, for the retuning of a PI
controller has been presented in [119].

Regarding load disturbance rejection performance, a methodology to detect slug-
gish control loops has been presented in [31] and further discussed in [55]. This has
also been exploited in [131], where the technique presented assesses the tuning of a
PI controller and then gives guidelines on how to retune it, if necessary. A compre-
hensive description of all these techniques is available in [132].

In the following sections, a methodology for integral processes, based on routine
operation data, which assesses the performance of a PID controller and provides a
new tuning of all the controller parameters is described. It is worth noting that a
similar procedure has also been devised for self-regulating processes [126].

4.2 Problem Formulation

The unity-feedback control system of Figure 4.1 is considered, where the integral
process P is controlled by a PID controller whose transfer function is in series
(interacting) form (2.5), which is reported hereafter for convenience:

C(s) = Kp

(
Tis + 1

Tis

)
(Tds + 1). (4.1)

The series form is chosen for the sake of simplicity, as the tuning rules that will be
employed in the methodology apply directly to this form. However the use of other
forms is straightforward by suitably applying conversion formulae to determine the
values of the parameters [132]. Note also that the use of a first-order filter that makes
the controller transfer function proper has been neglected for the sake of clarity, but
it can be easily selected so that it does not influence the PID controller dynamics
significantly (and it filters the high-frequency noise at the same time).



4.3 Performance Assessment 73

Fig. 4.1 The control scheme considered for the performance assessment and retuning methodol-
ogy

The aim of the presented methodology is to evaluate the closed-loop system re-
sponse when a set-point or a load disturbance step occurs and to assess the tuning
of the PID controller. Then, new PID parameters are determined if the performance
is not satisfactory. For the sake of simplicity, and without loss of generality, the step
signal will be considered to be applied starting from null initial conditions. In order
to apply the methodology, relevant process parameters have to be estimated first.
For this purpose, it is worth considering the model reduction technique known as
the “half rule”, which states that the largest neglected (denominator) time constant
is distributed evenly to the effective dead time and the smallest retained time con-
stant [113]. In practice, the following (possibly high-order) process transfer function
is considered:

P(s) = K

s
∏

j (Tj0s + 1)
e−L0s , (4.2)

where the time constants are ordered according to their magnitude (namely, T10 >

T20 > · · · ). Then, a second-order integrating plus dead time (SOPDT) transfer func-
tion

P̃ (s) = K

s(T s + 1)
e−Ls (4.3)

is obtained by setting

T = T10 + T20

2
, L = L0 + T20

2
+

∑
j≥3

Ti0. (4.4)

It is worth stressing that, by applying (4.4), it can be deduced that

T0 :=
∑
j

Ti0 + L0 = T + L, (4.5)

namely, the sum of the dead time and of the time constants of the process (4.2)
is unaltered in the reduced model. Thus, T0 is a relevant process parameter that is
worth estimating for the purpose of the retuning of the PID controller, as it will be
shown in the following sections.

4.3 Performance Assessment

The assessment of the performance of a control loop is generally performed by first
calculating a performance index based on the available data and then by evaluating
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the current control performance against a selected benchmark, which represents the
desired performance [45]. Usually, minimising the integrated absolute error

IAE =
∫ ∞

0

∣∣e(t)∣∣dt =
∫ ∞

0

∣∣r(t) − y(t)
∣∣dt (4.6)

is meaningful because this yields, in general, a low overshoot and a low settling time
at the same time [110]. However, aiming at obtaining the theoretical minimum inte-
grated absolute error that can be achieved for a single-loop system (with a general
feedback controller) might not be sensible in practical cases because the robustness
issue and the control effort have also to be taken into account.

If only the set-point following task is of concern, the desired performance can be
selected as that obtained by applying the Internal Model Control (IMC) approach
[108] which, if applied to the process (4.3) where the dead time is approximated as
e−Ls = 1 − Ls, yields a PD controller whose parameters are selected according to
the following tuning rule:

Kp = 1

2Kλ
, Td = T , (4.7)

where λ is the selected closed-loop time constant and can be selected as λ = L

according to the well-known SIMC tuning rules [113] which aim at providing a
good robustness to the control system. With this PD controller and with the same
approximation as before for the dead time term, the closed-loop transfer function
results to be

Y(s)

R(s)
= C(s)P̃ (s)

1 + C(s)P̃ (s)
∼= e−Ls

1 + Ls
, (4.8)

for which the integrated absolute error when a step signal of amplitude Ar is applied
to the set-point is

IAEsp =
∫ ∞

0

∣∣e(t)∣∣dt = 2ArL. (4.9)

Thus, a sensible index, named Closed-loop Index CI, to evaluate the controller per-
formance with respect to the set-point following task is

CIsp = 2ArL∫ ∞
0 |e(t)|dt

. (4.10)

In other words, the obtained integrated absolute error is compared with the one that
would be achieved if a PD controller tuned according to the IMC tuning rules (4.7)
with λ = L is applied to the process (4.3).

In principle, the performance obtained by the control system is considered to be
satisfactory if CIsp = 1. From a practical point of view, however, the controller is
considered to be well tuned if CIsp > CIsp with CIsp = 0.6. This last value has been
selected by considering the (S)IMC tuning rule applied to many different processes
[113], but, in any case, another value of CIsp can be selected by the user depending
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on how tight are its control specifications. Actually, selecting an empirical target
value is standard practice in control loop performance assessment (see, for example,
[31]).

If both the set-point following and the load disturbance rejection are of concern
in the control task, the integral action has to be employed in order to achieve a null
steady-state error in the presence of a constant load disturbance, and the desired
performance is selected as the one obtained by applying the SIMC tuning rule [113]:

Kp = 1

2KL
, Ti = 8L, Td = T . (4.11)

In this case, the complementary sensitivity transfer function results to be

Y(s)

R(s)
= C(s)P̃ (s)

1 + C(s)P̃ (s)
∼= (1 + 8Ls)e−Ls

8L2s2 + 7Ls + 1
, (4.12)

whereas, after trivial calculations, the transfer function between the load disturbance
d and the process output y results to be

Y(s)

D(s)
= P̃ (s)

1 + C(s)P̃ (s)
∼= 16L2μs

(8L2s2 + 7Ls + 1)(T s + 1)
e−Ls. (4.13)

By considering the transfer function (4.12), it can be determined that the integrated
absolute error when a step signal of amplitude Ar is applied to the set-point can be
calculated as [127]

IAEsp,load =
∫ ∞

0

∣∣e(t)∣∣dt = 3.45ArL. (4.14)

Thus, in this context the Closed-loop Index CI to evaluate the controller perfor-
mance when a step signal is applied to the set-point can be defined as

CIsp,load = 3.45ArL∫ ∞
0 |e(t)|dt

. (4.15)

Conversely, when a step load disturbance of amplitude Ad occurs, the transfer func-
tion (4.13) between the load disturbance and the process output has to be considered.
It is easy to see that there are no complex poles in the transfer function (4.13), and
therefore there are no oscillations in the step response. Thus, the integrated error can
be calculated instead of the integrated absolute error. It results to be

IEload,sp =
∫ ∞

0
e(t) dt = lim

s→0
s

1

s
E(s)

= lim
s→0

s
1

s

(
− P̃ (s)

1 + C(s)P̃ (s)

)
D(s)

= lim
s→0

s
1

s

(
− P̃ (s)

1 + C(s)P̃ (s)

)
Ad

s
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= − Ti

Kp

Ad, (4.16)

which, by taking into account (4.11), yields

IEload,sp = − 8L

1
2KL

Ad = −16KL2Ad. (4.17)

Hence, by taking into account that

IAEload,sp := −IEload,sp = 16KL2Ad, (4.18)

the Closed-loop Index CI to evaluate the controller performance when a step load
disturbance occurs can be defined as

CIload,sp = 16KL2Ad∫ ∞
0 |e(t)|dt

. (4.19)

Note again that both in (4.15) and (4.19) the current control performance (at the
denominator) is evaluated against the target one (at the numerator). As for the
set-point following performance, from a practical point of view, the controller is
considered to be well tuned if CIsp,load > CIsp,load or if CIload,sp > CIload,sp with
CIsp,load = CIload,sp = 0.6.

Finally, the case where only the load disturbance rejection performance is of con-
cern is considered. In this case, an appropriate tuning rule, which aims at minimising
the integrated absolute error, has been suggested in [110] as

Kp = 0.78

K(T + L)
, Ti = 1.38(T + L), Td = 0.66(T + L). (4.20)

With this tuning rule, it is difficult to evaluate an analytical expression for the in-
tegrated absolute error. However, a numerical procedure can be employed, yielding
the following expression of the integrated absolute error:

IAEload = AdKT 2
[

2.715 + 5.144

(
L

T

)
+ 2.266

(
L

T

)2]
, (4.21)

and, therefore, the corresponding Closed-loop Index CI is defined as

CIload = AdKT 2
[
2.715 + 5.144

(
L
T

) + 2.266
(

L
T

)2]
∫ ∞

0 |e(t)|dt
. (4.22)

Also in this case the controller can be considered to be well tuned if CIload > CIload
with CIload = 0.6.

It is worth stressing that the obtained value of the closed-loop index in the dif-
ferent cases can be also greater than one because the target values of the integrated
absolute error have been chosen greater than the theoretical minimum integrated ab-
solute error that can be achieved [39]. Indeed, the selected tuning rules [110, 113]
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address properly the robustness issue and the control activity issue. Note also that,
in the proposed method, the occurrence of an abrupt (namely, step-like) load dis-
turbance has been assumed. Indeed, this is the most relevant case for the control
system, as the disturbance excites significantly the dynamics of the control system
itself [110]. Thus, the performance assessment technique has to be implemented to-
gether with a procedure for the detection of abrupt load disturbances. Methods for
this purpose have been proposed in [32, 125].

4.4 Estimation of the Process Parameters

For the computation of the Closed-loop Index CI and, as it will be clear in Sec-
tion 4.5, for the retuning of the PID controller (see (4.7), (4.11), and (4.20)), it is
necessary to estimate the values of K , T0 and the value of the apparent dead time
L, as well as the value of the amplitude of the load step disturbance Ad (the value
of Ar is obviously known). For this purpose, the closed-loop response of either a
set-point step or a load disturbance step signal can be evaluated effectively. The two
cases are considered separately hereafter.

4.4.1 Set-point Step Response

In case a step signal of amplitude Ar is applied to the set-point, the apparent dead
time L of the system can be evaluated by considering the time interval from the oc-
currence of a set-point step signal and the time instant when the process output at-
tains the 2% of the new set-point value Ar , namely, when the condition y > 0.02Ar

occurs. Actually, from a practical point of view, in order to cope with the mea-
surement noise, a simple sensible solution is to define a noise band NB [8] (whose
amplitude should be equal to the amplitude of the measurement noise) and to rewrite
the condition as y > NB (see Section 2.2.1.1).

The determination of the sum of the lags and of the dead time of the process can
be performed by evaluating the control system response as well. In particular, the
following variable can be considered:

eu(t) := K

∫ t

0
u(v)dv − y(t). (4.23)

By applying the Laplace transform to (4.23) and by expressing u and y in terms of
r (whose Laplace transform is R(s) = Ar/s), it is

Eu(s) = K
1

s
U(s) − Y(s)

= K
1

s

C(s)

1 + C(s)P (s)
R(s) − C(s)P (s)

1 + C(s)P (s)
R(s)
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= Ar

s2

C(s)(K − sP (s))

1 + C(s)P (s)
. (4.24)

At this point, for the sake of clarity, it is convenient to write the controller and
process transfer functions respectively as

C(s) = Kp

Tis
c̃(s), where c̃(s) := (Tis + 1)(Tds + 1), (4.25)

and

P(s) = Ke−L0s

sq(s)
, where q(s) :=

∏
j

(Tj0s + 1). (4.26)

Then, Expression (4.24) can be rewritten as

Eu(s) = Ar

s

KKpc̃(s)

Tis2q(s) + KKpc̃(s)e−L0s

(
q(s) − e−L0s

)
. (4.27)

By applying the final value theorem to the integral of eu it is eventually obtained
that

lim
t→+∞

∫ t

0
eu(v) dv = lim

s→0
s

1

s
Ar

KKpc̃(s)

Tis2q(s) + KKpc̃(s)e−L0s

q(s) − e−L0s

s

= Ar lim
s→0

{
1 − e−L0s

s
+ q(s) − 1

s

}

= Ar

(
L0 +

∑
j

Tj0

)

= ArT0. (4.28)

Thus, the sum of the lags and of the dead time of the process can be obtained by
evaluating the integral of eu(t) at the steady-state (which does not depend on the
PID parameters) when a step signal is applied to the set-point and by dividing it by
the amplitude Ar of the step.

The process gain K can be determined by twice integrating the control error. In
fact, the Laplace transform of the control error can be expressed as

E(s) = Ar

s

1

1 + C(s)P (s)
= Arsq(s)Ti

Tis2q(s) + KKpc̃(s)e−L0s
, (4.29)

and, therefore, it can be deduced that

lim
t→+∞

∫ t

0

∫ v2

0
e(v1) dv1 dv2 = lim

s→0
s

1

s2

Arsq(s)Ti

Tis2q(s) + KKpc̃(s)e−L0s
= ArTi

μKp

.

(4.30)
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Thus, the gain of the process can be determined easily as

K = Ar

Ti

Kp

∫ ∞
0

∫ t

0 e(v) dv dt
. (4.31)

In case the integral action is not employed, namely C(s) = Kp(Tds + 1), a similar
reasoning can be applied, yielding

E(s) = Ar

s

1

1 + C(s)P (s)
= Arq(s)

sq(s) + KKp(1 + Tds)e−L0s
, (4.32)

and, therefore,

lim
t→+∞

∫ t

0
e(v) dv = lim

s→0
s

1

s

Arq(s)

sq(s) + KKp(1 + Tds)e−L0s
= Ar

KKp

, (4.33)

which yields

K = Ar

Kp

∫ ∞
0 e(t) dt

. (4.34)

It is worth noting that both the value of the gain and of the sum of the lags and of
the dead time of the process are determined by considering the integral of signals
and therefore the effect of the measurement noise is reduced [117].

4.4.2 Load Disturbance Step Response

The determination of the process parameters can also be performed by evaluating the
control system response to a step load disturbance, provided that the instant when
the disturbance occurs can be measured (for the sake of simplicity, it is assumed that
the load disturbance occurs at time t = 0). In this context, the apparent dead time of
the process can be determined by applying a reasoning similar to the set-point step
case (namely, by exploiting the noise band concept).

Then, the amplitude Ad of the step load disturbance can be determined by con-
sidering the final value of the integral of the control error. In fact, the expression of
the Laplace transform of the control error is

E(s) = − P(s)

1 + C(s)P (s)
D(s) = − TisKe−L0

Tis2q(s) + Kpc̃(s)Ke−L0s

Ad

s
, (4.35)

and, therefore,

lim
t→+∞

∫ t

0
e(v) dv = lim

s→0
s

1

s

Ad

s

(
− TisKe−L0

Tisq(s) + Kpc̃(s)Ke−L0s

)
= −AdTi

Kp

.

(4.36)
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Thus, the amplitude of the step disturbance can be determined as

Ad = −Kp

Ti

∫ ∞

0
e(v) dv. (4.37)

Once the amplitude of the step disturbance has been determined, the process gain
K can be determined by first considering the Laplace transform of the process input
i = u + d , that is,

I (s) = U(s) + D(s)

= − C(s)P (s)

1 + C(s)P (s)
D(s) + D(s)

= Tis
2q(s)

Tis2q(s) + Kpc̃(s)Ke−L0s

Ad

s
. (4.38)

Thus, if i(t) is integrated twice, the limit as t → +∞ is determined as

lim
t→+∞

∫ t

0

∫ v2

0
i(v1) dv1 dv2 = lim

s→0
s

1

s2

Tis
2q(s)

Tis2q(s) + Kpc̃(s)Ke−L0s

Ad

s
= TiAd

KKp

.

(4.39)
The process gain K can be therefore found easily, once the value of Ad has been
determined, by using (4.37), as

K = Ad

Ti

Kp

∫ ∞
0

∫ t

0 (u(v) + Ad)dv dt
. (4.40)

Finally, the determination of the sum of the lags and of the dead time of the process
can be performed by initially considering the variable

ei(t) := K

∫ t

0
i(v) dv − y(t). (4.41)

By applying the Laplace transform to (4.41) and by expressing u and y in terms of
d , it can be deduced that

Ei(s) = K
1

s

(
U(s) + D(s)

) − Y(s)

= K
1

s

[
− C(s)P (s)

1 + C(s)P (s)
D(s) + D(s)

]
− P(s)

1 + C(s)P (s)
D(s)

= KTiAd(q(s) − e−L0s)

Tis2q(s) + KpKc̃(s)e−L0s
. (4.42)

By integrating twice ei and by applying the final value theorem, it is (see (4.28))

lim
t→+∞

∫ t

0

∫ v2

0
ei(v1) dv1 dv2 = lim

s→0
s

1

s

KTiAd

Tis2q(s) + KKpc̃(s)e−L0s

q(s) − e−L0s

s
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= TiAd

Kp

T0. (4.43)

Thus, T0 can be obtained as

T0 = Kp

TiAd

∫ ∞

0

∫ t

0
ei(v) dv dt. (4.44)

For the purpose of determining the closed-loop index (4.22), the time constant T

can be calculated as T = T0 − L.

4.5 Retuning of the PID Controller

If the performance provided by the controller results to be unsatisfactory (see Sec-
tion 4.3), the PID controller needs to be retuned according to the required control
task. In particular, if only the set-point following is of concern, the retuning proce-
dure aims at achieving the same performance of the IMC tuning rules (4.7). For this
purpose, once the process parameters have been estimated according to the tech-
nique described in Section 4.4, the PD controller parameters are selected as

Kp = 1

2KL
, Td = T0 − L. (4.45)

When both the set-point following and the load disturbance rejection performance
have to be addressed, the target tuning rule is the SIMC one (see (4.7)), and this can
be achieved by selecting

Kp = 1

2KL
, Ti = 8L, Td = T0 − L. (4.46)

Finally, when only the load disturbance rejection performance is of concern, the
tuning rule (4.20) can be pursued by selecting (note that in this case the apparent
dead time estimation is not required)

Kp = 0.78

KT0
, Ti = 1.38T0, Td = 0.66T0. (4.47)

It is worth noting that, although, in principle, the devised methodology exploits set-
point changes and load disturbances that naturally occur in the process operations, it
can be also obviously employed in an automatic (one shot) tuning context, where the
retuning of the PID parameters is requested explicitly by the operator, who applies
the step input signal on purpose.

4.6 Simulation Results

Some simulation results are presented hereafter in order to evaluate the effectiveness
of the presented method in different contexts.
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Fig. 4.2 Step response in Example 1. Dashed line: PD with the initial tuning Kp = 0.05 and
Td = 1. Solid line: PD with the new tuning Kp = 0.17 and Td = 1.5

4.6.1 Example 1

Consider the process

P(s) = 1

s(s + 1)4
e−0.5s . (4.48)

As a first case, only the performance related to the set-point step response is consid-
ered. If a PD controller is initially tuned with Kp = 0.05 and Td = 1, the closed-loop
unit step response shown in Figure 4.2 as a dashed line is obtained. The resulting
performance index is CIsp = 0.3, and the resulting integrated absolute error and
2% settling time are respectively IAE = 19.96 and Ts2 = 66.62. By applying the
retuning procedure, the process parameters are estimated as L = 2.98, T0 = 4.49,
and K = 1 (see Section 4.4.1), and the new PD parameters are determined from
(4.45) as Kp = 0.17 and Td = 1.5. The corresponding unit step response is shown
in Figure 4.2 as a solid line. The resulting performance index is CIsp = 0.6, and the
resulting integrated absolute error and 2% settling time are respectively IAE = 6.65
and Ts2 = 20.16.

Conversely, if a PI controller is initially employed with Kp = 0.2 and Ti = 10,
the (very oscillatory) step response shown in Figure 4.3 as a dashed line is obtained,
with CIsp = 0.17, IAE = 31.51, and Ts2 = 136.77. By applying the retuning proce-
dure the process parameters are estimated as L = 2.63, T0 = 4.49, and K = 1, and
from (4.45) the parameters of the PD controller are determined as Kp = 0.19 and
Td = 1.87. The corresponding step response is shown in Figure 4.3 as a solid line
with CIsp = 0.63, IAE = 5.89, and Ts2 = 17.11. Note that the slight difference with
the previous case is due to the slight difference of the estimated values of the dead
time.
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Fig. 4.3 Step response in Example 1. Dashed line: PI with the initial tuning Kp = 0.2 and Ti = 10.
Solid line: PD with the new tuning Kp = 0.19 and Td = 1.87

4.6.2 Example 2

Process (4.48) is considered again, but in this case both the set-point following
and the load disturbance rejection performance are of concern. The PID controller
parameters are initially selected as Kp = 0.05, Ti = 50, and Td = 4. By evaluat-
ing the set-point step response, the process parameters are estimated as L = 2.21,
T0 = 4.5, and K = 1 (see Section 4.4.1). Then, the PID controller is retuned ac-
cording to (4.46) as Kp = 0.22, Ti = 17.73, and Td = 2.28. The process variable
in the two cases where a unit step is applied to the set-point signal at t = 0 and a
step load disturbance of amplitude Ad = 0.1 occurs at time t = 250 is shown in Fig-
ure 4.4. Regarding the set-point following task, the performance index changes from
CIsp,load = 0.28 to CIsp,load = 0.66, whereas the integrated absolute error changes
from IAE = 0.28 to IAE = 0.09 and the 2% settling time from Ts2 = 158.1 to
Ts2 = 43.5. Regarding the load disturbance rejection task, the performance index
changes from CIload,sp = 0.06 to CIload,sp = 0.74, whereas the integrated absolute
error changes from IAE = 103.3 to IAE = 8.06 and the 2% settling time from
Ts2 = 216.4 to Ts2 = 50.84.

Conversely, if the load disturbance response is initially evaluated (again with
Kp = 0.05, Ti = 50, and Td = 4), the process parameters are estimated as L = 1.93,
Ad = 0.1, K = 1, and T0 = 4.5, which yields the new values of the parameters
Kp = 0.26, Ti = 15.47, and Td = 2.57. The closed-loop response to a set-point and
a load disturbance step is shown in Figure 4.5 (where the initial case is also shown
again for the sake of comparison). Regarding the load disturbance rejection task,
the new performance index is CIload,sp = 1, the integrated absolute error is IAE =
5.98, and the 2% settling time is Ts2 = 75.3. Regarding the set-point following task,
the new performance index is CIload,sp = 0.70, the new integrated absolute error is
IAE = 8.13, and the 2% settling time is Ts2 = 38.65.
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Fig. 4.4 Step response in Example 2. Dashed line: PID with the initial tuning Kp = 0.05, Ti = 50,
and Td = 4. Solid line: PID with the new tuning Kp = 0.22, Ti = 17.73, and Td = 2.28

Fig. 4.5 Step response in Example 2. Dashed line: PID with the initial tuning Kp = 0.05, Ti = 50,
and Td = 4. Solid line: PID with the new tuning Kp = 0.26, Ti = 15.47, and Td = 2.57

4.6.3 Example 3

Process (4.48) is considered again, but in this case only the load disturbance re-
jection performance is addressed. If initially the PID controller parameters are
Kp = 0.05, Ti = 50, and Td = 4 and the load disturbance step response (Ad = 0.1)
is evaluated, the process parameters are estimated as L = 1.93, Ad = 0.1, K = 1,
and T0 = 4.5 (see Section 4.4.2). Then, the PID controller is retuned according to
(4.47) as Kp = 0.17, Ti = 6.21, and Td = 2.97. The process variable in the two cases
where a step signal of amplitude Ad = 0.1 is added to the control variable signal at
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Fig. 4.6 Load disturbance step response in Example 3. Dashed line: PID with the initial tuning
Kp = 0.05, Ti = 50, and Td = 4. Solid line: PID with the new tuning Kp = 0.17, Ti = 6.21, and
Td = 2.97

Fig. 4.7 Load disturbance step response in Example 3. Dashed line: PID with the initial tuning
Kp = 0.2, Ti = 10, and Td = 0. Solid line: PID with the new tuning Kp = 0.17, Ti = 6.21, and
Td = 2.97

t = 0 is shown in Figure 4.6. The performance index improves from CIload = 0.05
to CIload = 1, whereas the integrated absolute error decreases from IAE = 103.3 to
IAE = 5.15 and the settling time decreases from Ts2 = 216.6 to Ts2 = 35.77.

If the initial settings are changed to Kp = 0.2, Ti = 10, and Td = 0, the result-
ing performance indexes are CIload = 0.36, IAE = 14.51, Ts2 = 118.5, the process
parameters are estimated as L = 1.93, Ad = 0.1, K = 1, and T0 = 4.5, and the PID
gains are modified again as Kp = 0.17, Ti = 6.21, and Td = 2.97. The same perfor-
mance indexes of the previous case are found. The resulting process variables are
plotted in Figure 4.7.
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4.7 Conclusions

In this chapter a methodology for the performance assessment and retuning of PID
controllers has been described. The main feature of this methodology is that the per-
formance of the (pre-existing) controller is evaluated and that the new PID controller
parameters are selected without the need of special experiments, but just consider-
ing (abrupt) set-point changes or load disturbances. Different control specifications
can be addressed.



Part II
Two-degree-of-freedom Control Schemes



Chapter 5
Plug&Control

One of the main reasons for the success of PID controllers in the industrial con-
text is their relative ease of use. Indeed, the fast commissioning of the controller is
essential in many applications, where a tight performance is not required, in order
to reduce the implementation costs. In this context, the availability of the so-called
Plug&Control function (i.e., to automatically make the controller work properly af-
ter simply connecting it in the control architecture, without further intervention from
the operator) is highly desirable.

With respect to the classic automatic tuning procedures, this function has the
advantage that a dedicated identification (possibly time-consuming) experiment is
not required, since the estimation of the process parameters is performed during the
normal start-up of the process. This might allow a significant saving of time, energy,
and material.

A methodology related to this topic is described in this chapter, where only the
case of IPDT processes is addressed (for self-regulating processes, see [93, 129,
132, 133]).

5.1 Methodology

A time-optimal Plug&Control strategy for IPDT processes has been first proposed
in [129]. It is based on the combined use of three-state and PID control to perform
a transition from one set-point value to another, as required by the process start-up
operation, and it is applicable without a priori knowledge of the process model pa-
rameters, with the exception of the sign of the process gain, which will be assumed
to be positive from now on without loss of generality.

Basically, the methodology consists of initially setting the controller output at its
upper limit when the step on the set-point signal is applied. Afterwards, when the
process output leaves its previous value, the dead time L of the process is estimated.
Then, from this instant the process parameters are estimated through a least squares
procedure. Once the process model is estimated, a time-optimal control strategy,
based on the saturation limits of the actuator, can be computed and applied. At the
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same time, the PID controller (which is not adopted in this phase) can be properly
tuned according to a selected tuning rule. If the process parameters are perfectly
estimated, then at the end of the time-optimal control, the process output would be
exactly at its desired steady-state value. However, estimation inaccuracies are not
avoidable in practical cases, mainly due to the presence of measurement noise and
numerical approximations. Therefore, at the end of the time-optimal strategy, when
the process output is actually close to its desired value, the controller is set to the
PID mode. In this way, the desired output value is actually attained, and possible
subsequent load disturbances can be compensated.

5.2 Algorithm

Consider the IPDT process

P(s) = K

s
e−Ls, K > 0, T > 0. (5.1)

Denote u as the process input, and y as the process output. Suppose now that an
output transition from y0 to ysp = y0 + y1 is then required to be performed, starting
from time t0 (assume that the process is at an equilibrium point with u0 := 0 and
y0 := y(t0)). For the sake of simplicity and without loss of generality, hereafter it
will be assumed that y1 > 0.

The following time-optimal Plug&Control (TOPC) strategy can be applied. For
the sake of clarity, the algorithm presented is related to the noise-free case. Modi-
fications to be carried out in order to cope with noise and other practical issues are
discussed in Section 5.3.

TOPC algorithm

1. Set umax and umin as the maximum and minimum values respectively of the
control variable u during the three-state control and calculate u+ = umax − u0
and u− = umin − u0.

2. Set flag = 1.
3. At time t = t0 set u = umax.
4. When y > y0, set t1 = t and L̂ = t1 − t0 (estimated dead time of the process).
5. At time t = t1 start a recursive least squares algorithm [7, page 51].
6. When |K̂(t) − K̂(t − �t)| < ε (K̂ is the estimated gain of the process):

(a) Set t2 = t .
(b) Set K̂ = K̂(t2).
(c) Apply a PI(D) tuning rule based on the model identified.
(d) Calculate

ts1 = t0 + y1

K̂u+ . (5.2)

(e) If ts1 < t2, then set ts1 = t2, flag = 0 and calculate

ts2 = −
u+(ts1 − t0) − u−(ts1 − t0) − y1

K̂

u− . (5.3)
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7. If flag = 1, then set u = umax when t ≤ ts1 and u = 0 when t > ts1, else set
u = umin when t ≤ ts2 and u = 0 when t > ts2.

8. When t > L̂ + ts1 (if flag = 1) or when t > L̂ + ts2 (if flag = 0), apply the PI(D)
controller.

It can be seen that the algorithm requires that, when a set-point change is required
at time t = t0, the control variable is set to its maximum level u = umax. Then, when
the process output leaves its initial value y0 at time t = t1, the dead time L of the
process is detected. A standard recursive least-squares algorithm is then applied.
When the estimation of the parameter K converges (i.e., when the difference of
two successive estimations is less than a predefined threshold ε) at time t = t2, a
model of the process is available. This can be exploited to tune the PID controller
and to determine a time-optimal strategy to attain the set-point value. In particular,
the time interval for which the control variable has to be kept at its maximum value
umax in order for the process output to attain the set-point value in the minimum
time, namely, the time instant ts1 when the value of the control variable has to be
switched from umax to the final null steady-state value is determined (Equation (5.2)
can be trivially derived in the context of the optimal control theory [57]).

It may happen that, because of the large dead time of the process or because of the
large time interval required for the identification procedure to converge, it follows
that ts1 < t2, i.e., that the control variable has been set to its maximum value for
a larger time than requested by the time-optimal control (this condition determines
the setting flag = 0). This means that the output, even in the perfect match case
(i.e., even if the process parameters are perfectly estimated) presents an overshoot.
Hence, the control variable must be set immediately at its minimum level and kept
at this value for a determined time interval ts2 − ts1 (the switching time ts2 is also
derived in the context of optimal theory). Then, the control variable is set at the null
steady-state value. At the end of the (three-state) time-optimal control strategy, if the
process model is perfectly estimated, the process output attains its set-point value.

As in practical cases this does not occur because of the unavoidable estimation
inaccuracies, the PID controller is applied to cancel the remaining steady-state error
and to cope with subsequent possible load disturbances.

5.3 Practical Considerations

A few technical problems have to be solved in order to effectively apply the TOPC
algorithm in practical cases. First, as real measurements are always corrupted with
noise, the condition y > y0 at step 4 should be substituted with y > y0 + NB,
where NB is the estimated noise band [8], namely, a threshold value that determines
whether the process variable has started increasing. Specifically, if y < y0 + NB,
then y is considered to be equal to y0. The value of NB can be easily selected by
monitoring that process output for a sufficiently long time when the process is at
steady state.

It has also to be noted that it is not strictly necessary for the control constraints
umin and umax to correspond to the actual physical limits of the actuator. Actually,
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more conservative bounds can be selected for various operating reasons or to pre-
serve the linearity of the model.

Then, the recursive least squares algorithm in step 5 has to be initialised. This
can be easily done by selecting a very rough estimate of the process gain denoted as
K̂0 (see Section 5.4). The value of ε has to be fixed as well. Actually, by fixing it at a
low value the user is confident that the identification phase is ended with satisfactory
accuracy.

Then, a bumpless transfer [5] has to be applied at step 8 at the time of switching
from the three-state to the PID controller.

Finally, it has to be highlighted that the proposed method could be applied in
the context of feedforward control of set-point steps with “full power” plus PID
control [93]. In other words, for sufficiently large set-point steps, a control zone
has to be defined: inside a narrow band around the set-point, a closed-loop PID
control is employed, while outside the control zone, the controller output is set at its
maximum value. Note that with such a strategy, the integral time constant of the PID
controller can be increased without the occurrence of overshoots and yielding at the
same time a faster load disturbance rejection. The identification procedure can be
skipped if the process parameters have already been estimated, or it can be applied
if variations of the process parameters are detected.

5.4 Simulation Results

In order to understand better the TOPC algorithm and to verify its effectiveness, a
few simulation results are presented hereafter. The following process is considered:

P1(s) = 0.1

s
e−s . (5.4)

The initial conditions are fixed to t0 = 0, y0 = 0, and u0 = 0. Then, it is set ysp =
y1 = 1, umax = 1.5, and umin = −1.5. Here, a noise band of NB = 0.01 is set. The
recursive least squares procedure parameters are K̂0 = 0.5 and ε = 10−3. The tuning
formula employed for the PI controller is [110]

Kp = 0.9259

K̂L̂
,

Ti = 4L̂.

(5.5)

The result obtained by applying the TOPC strategy is shown in Figure 5.1.
It is t1 = L̂ = 1.06 and t2 = 2.33 (the estimated process parameter is K̂ = 0.1).

By means of Expression (5.2) the optimal switching time is determined as ts1 =
6.65, where the control variable is set to zero. Then, at time t = ts1 + L̂ = 7.71, the
PI controller is applied (Kp = 8.71 and Ti = 4.24), and its performance in the load
disturbance rejection task is evaluated at time t = 15. It appears that a time optimal
transition is achieved, and, at the same time, the PI controller is tuned satisfactorily.

As another illustrative example, the process

P2(s) = 1

s
e−s (5.6)
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Fig. 5.1 Result of the application of the TOPC strategy with the IPDT process P1(s)

is considered (note that the value of the dead time is significant with respect to the
time constant). The same design parameters of the previous case are employed. The
result obtained is shown in Figure 5.2. It is t1 = L̂ = 1.0 and t2 = 1.13 (the estimated
process parameter is K̂ = 1.012). The optimal switching time is calculated as ts1 =
0.66. Since ts1 < t2, ts1 is fixed equal to t2, and then the optimal switching time ts2

is calculated by means of Expression (5.3). It results ts2 = 1.601. Thus, the control
variable is set to zero for ts2 < t < ts2 + L̂ before applying the PI controller, whose
parameters have been set to Kp = 0.915 and Ti = 4.

It is worth underlying that the resulting overshoot is due to the high value of the
dead time of the process, for which the control variable is set to its maximum value
umax for a long time interval.

From the results presented it appears that the time-optimal Plug&Control strat-
egy is effective in providing a fast commissioning of the control loop when a tight
performance is not required. Indeed, the technique is suitable for those processes
where the dominant dynamics is not of high order and where possibly somewhat
large overshoots are allowed (at least in the start-up phase of the process). It is worth
stressing, however, that by a suitable choice of the design parameters (namely, the
maximum and minimum level of the control variable during the three-state control
phase) the overshoot can be significantly reduced (at the expense of the rise time). In
fact, the design parameters have a clear physical meaning, and technical problems
can be solved in a practical context by exploiting a reasonable knowledge of the
plant.

Finally, it has to be noted that, instead of the recursive least squares algorithm,
a batch least squares algorithm [117] can be applied for the identification purpose
[129]. Although in this case the methodology has the disadvantage that the user has
to select the part of the transient for which data are collected for the estimation of
the parameters, this choice somehow allows the handling of the trade-off between
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Fig. 5.2 Result of the application of the TOPC strategy with the IPDT process P2(s)

estimation accuracy and the resulting overshoot, and for this reason, can be preferred
by an experienced user.

5.5 Conclusions

In this chapter a Plug&Control strategy has been presented. It has been shown that
this approach is very promising because, provided that the methodology is applied
in a suitable context, it is capable of providing a fast and effective design of the
control loop. Obviously, this feature is more relevant in large plants, when there are
many (simple) loops to tune.



Chapter 6
Feedforward Control

The main purpose of using feedback is to compensate for external disturbances and
for model uncertainties. Actually, when a sufficiently accurate model of the inte-
gral process is available (and the process dynamics does not change significantly
during the process operations), control performance can be improved in general
by conveniently employing an additional feedforward (open-loop) control law, thus
employing a two-degree-of-freedom control. After having presented the standard
two-degree-of-freedom control scheme, this chapter focuses on different method-
ologies for the design and the implementation of a feedforward control law, to be
adopted in conjunction with the feedback action provided by a PID controller. It is
shown that the problem can be approached from different points of view. In partic-
ular, regarding the set-point following task, two kinds of approaches are presented:
the design of a causal feedforward action and of a noncausal feedforward action. In
the first case a (nonlinear) two-state control law is described. In the second case, to
be employed when desired process output transitions are known in advance, strate-
gies based on input–output inversion are explained both in the continuous-time and
discrete-time frameworks.

6.1 Standard Two-degree-of-freedom Control Scheme

As already mentioned in Section 2.1.2, it is difficult to obtain a satisfactory perfor-
mance in both the load disturbance rejection and set-point following task. In fact, if
the feedback controller is properly designed for the compensation of modelling un-
certainties and external disturbances, an oscillatory set-point step response occurs in
general. The natural solution for this problem is to employ a two-degree-of-freedom
control scheme, for which the use of a set-point weighted PID controller represents
a particular case. In general, the standard two-degree-of-freedom control scheme is
that shown in Figure 2.3, where C is obviously the feedback controller, and F is
a general feedforward controller which aims at recovering the set-point following
performance. Usually, while C is designed in order to have a high gain at the gain
cross-over frequency, F is designed as a low-pass filter in order to smooth the step
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signal and therefore to reduce the overshoot and the oscillations in the set-point re-
sponse. However, as a drawback, the rise time increases. In the following sections
it will be shown that a different choice of the feedforward action can improve the
performance significantly by reducing the oscillations and the rise time at the same
time and by considering the actuator constraints as well.

6.2 Two-state Time-optimal Feedforward Control

In the framework of causal feedforward control actions, an effective technique is
based on the use of a bang-bang type control, as it is explained hereafter.

6.2.1 Methodology

A significant improvement in the set-point following performances can be obtained
by employing a two-state (nonlinear) feedforward control law, as shown in [130,
135, 136], where a technique inspired by the bang-bang control strategy [57] is de-
vised to achieve a fast response to set-point changes. With the aim of fully exploit-
ing the capabilities of the actuator, namely, in order to take into account the actuator
nonlinearity (without impairing the ease of use of the overall control system), the
following methodology can be employed.

Assume that it is required to design a control scheme based on a PID controller
plus a feedforward term aimed at achieving a transition of the process output y from
the value y0 to the value y1 in a predefined time interval of duration τ . Hereafter,
for the sake of clarity and without loss of generality, it will be assumed that y0 = 0
and y1 > 0.

The devised PID plus feedforward control scheme is shown in Figure 6.1 and
implements the following design technique (note that the feedforward control action
is added to the controller output but the devised scheme can be trivially modified in
order for the feedforward control action to be applied to the closed-loop system as
in Figure 2.3). First, the process is described by a IPDT model, i.e.,

P(s) = K

s
e−Ls. (6.1)

Based on this model, the output uff of the feedforward block FF is defined as fol-
lows:

uff(t) =
{

ūff if t < τ,

0 if t ≥ τ,
(6.2)

where the value of ūff is determined, after trivial calculations, in such a way that the
process output y (which is necessarily zero until time t = L) is y1 at time t = τ +L.



6.2 Two-state Time-optimal Feedforward Control 97

Fig. 6.1 Block diagram of the PID plus nonlinear feedforward action control scheme

It produces the following result:

ūff = y1

Kτ
. (6.3)

In this way, if the process is described perfectly by Model (6.1), an output transition
in the time interval [L,τ + L] occurs. Then, at time t = τ + L, the output settles at
value y1 thanks to the constant null value assumed by uff(t) for t ≥ τ .

Then, a suitable reference signal yf has to be applied to the closed-loop system.
It is desired that yf be equal to the desired process output that would be obtained in
the case where the process is modelled perfectly by Expression (6.1). Thus, the step
reference signal r of amplitude y1 has to pass through the system

F(s) = Kūff

y1s
e−Ls (6.4)

and then saturated at the level y1.
It is worth stressing at this point that this method exploits the fact that a process

output transition is required instead of tracking a general reference signal. In the lat-
ter case this scheme cannot be employed. The presence of many set-point changes
can be instead easily handled by the PID plus nonlinear feedforward control sys-
tem. Indeed, in case a new value of the set-point is selected during a previously
determined transient response, it is sufficient to determine the feedforward action
for the new value and to add it to the one that is currently applied. Analogously, the
reference signal determined for the latest set-point change has to be added to the
one related to the previous one.

The overall control scheme design involves the selection of the transition time τ

and of the PID parameters. The choice of a sensible value of τ can be made by the
user by considering that decreasing the value of τ means that the value of ūff (and
therefore of the overall manipulated variable) increases, and a too low value of τ

might imply that the determined control variable cannot be applied due to the satu-
ration of the actuator. Thus, alternatively, the operator might first select the value of
ūff depending on the desired control effort (defined typically as a percentage of the
maximum limit of the manipulated variable) and determine consequently the value
of τ . In this way the potentiality of the actuator can be fully exploited, and, in the
nominal case, a time-optimal process variable transition (subject to the actuator con-
straints) is achieved. In any case, the design parameter τ has a clear physical mean-
ing, because it handles the trade-off between performance, robustness, and control
activity [54, 76] and can therefore be exploited to satisfy the specific requirements
of a given application.
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An appropriate tuning of the PID controller should take into account the robust-
ness issue, since the feedforward action is based on a simple IPDT model of the
plant and the compensation of the (unavoidable) modelling errors is left to the feed-
back control law. To this respect, it is very useful to consider the analysis made in
[135], where it is shown that the deviations due to the modelling errors between
the desired and the actual output can be treated as the effect of a load disturbance
d = Gduff where

Gd(s) = P(s) − F(s)

P (s)

(
1 + P(s)C(s)

)
. (6.5)

Thus, by considering that the process output results to be the superposition of the
effects of the feedforward action and of the load disturbances (i.e., of true load
disturbances and the “fictitious” one d due to the modelling errors) and by consider-
ing also that in the nominal case the set-point following performance is determined
only by the feedforward action, it is sensible to tune the PID controller by taking
into account its load disturbance rejection performance. In this context, even if a
time-optimal process variable transition is pursued, from a practical point of view
it is worth considering a value of ūff which is lower than the true physical limit
of the actuator so that the PID controller can handle the modelling uncertainties
effectively.

6.2.2 Illustrative Examples

As a first illustrative example, consider the process

P(s) = 1

s
e−0.5s (6.6)

(i.e., K = 1 and L = 0.5), and consider that a process variable from y0 = 0 to y1 =
1 is required. A maximum actuator limit ūff = 2.5 is selected, and therefore the
process variable transition results to be τ = y1/(Kūff) = 0.4. The result obtained
by employing the control scheme of Figure 6.1 is shown in Figure 6.2. Obviously,
as the nominal case in considered, the output of the PID controller is zero (i.e.,
u = uff), and y = yf . It appears that the time-optimal process variable transition is
obtained as expected.

As a second example, in order to address modelling uncertainties, consider the
process

P(s) = 1

s(0.1s + 1)
e−0.5s (6.7)

and the same control task as before with ūff = 2.5. By applying a standard relay-
feedback identification method (see Section 2.2.2.1), the resulting ultimate gain and
ultimate period are Ku = 2.40 and Pu = 2.40, respectively, and therefore the follow-
ing model parameters are obtained (see Expressions (2.21) and (2.22)): K = 0.88
and L = 0.6. A PI controller tuned according to the Ziegler–Nichols rules (see Ta-
ble 2.2) have been selected, namely, Kp = 1.44 and Ti = 1.92. The results obtained
are shown in Figure 6.3.
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Fig. 6.2 Results obtained by applying the two-state time-optimal feedforward control law (nomi-
nal case)

Fig. 6.3 Results obtained by applying the two-state time-optimal feedforward control law in the
presence of modelling uncertainties. Solid line: process variable y (top figure) and control variable
u (bottom figure). Dashed line: reference signal yf (top figure) and feedforward signal uff (bottom
figure)

6.3 Noncausal Feedforward Action: Continuous-time Case

The continuous-time case is first addressed in the context of noncausal feedforward
control actions.
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Fig. 6.4 Control scheme based on input–output inversion

6.3.1 Generalities

In the previous sections, it has been highlighted that the set-point following perfor-
mance of a feedback control system can be significantly improved by the application
of a properly designed (causal) feedforward action. From a different point of view,
when the desired output trajectory is known in advance, a feedforward action de-
termined by means of a stable inversion technique can be applied [167]. Roughly
speaking, the approach consists in selecting a desired output function that meets
the control requirements and then determining, by inverting the system dynamics,
the input function that causes that selected output signal. It is worth noting that the
concept of dynamic input–output inversion [20, 42] has been already proved to be
effective in different areas of the automatic control field, such as motion control [92,
94], flight control [41], and robust control [95, 97].

In the context of PID control, the input–output inversion technique can be ex-
ploited to determine analytically a suitable command signal to be applied to the
closed-loop control system, instead of the typical step signal, in order to achieve a
high performance (i.e., low rise time and low overshoot at the same time) when the
process output is required to assume a new value. Indeed, assume that the process
variable is required to achieve a steady-state value y1 starting from a steady-state
value y0. As already mentioned, if a causal feedforward action is adopted, the con-
trol scheme of Figure 2.3 is based on the causal filtering of a step signal (of am-
plitude y1 − y0) by means of the system described by the transfer function F(s).
The resulting signal is then applied to the closed-loop system. Conversely, if an in-
version approach is exploited, the scheme shown in Figure 6.4 is employed. In this
case a step signal is not employed, but the knowledge in advance of y1 is adopted
by a command signal generator block to calculate a suitable command signal r to
be applied to the closed-loop PID control system.

6.3.2 Modelling

The design methodology based on input–output inversion proposed in [99] is based
on a theoretical framework that might appear to be somewhat complicated. How-
ever, the theoretical development can be made transparent to the user, and therefore
the use of the technique does not impair the ease of use that is an essential re-
quirement in the context of PID control. The fundamental passages are described
hereafter in some detail in order to understand better the underlying concepts of the
overall methodology.
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As a first step of the devised method, the process to be controlled is modelled as
an IPDT transfer function, i.e.,

P(s;K,L) = K

s
e−Ls, (6.8)

but then, in order to have a rational transfer function, the dead-time term is approx-
imated by means of a second-order Padè approximation. In this way, the approxi-
mated process transfer function results to be

P̃ (s;K,T ,L) = K

s

1 − Ls/2 + L2s2/12

1 + Ls/2 + L2s2/12
. (6.9)

6.3.3 PID Controller Design

An output filtered PID controller in ideal form (2.4) is employed as a feedback
controller. For the sake of clarity, its transfer function is recalled here:

C(s;Kp,Ti, Td, Tf ) = Kp

(
1 + 1

T s
+ Tds

)
1

Tf s + 1
. (6.10)

The tuning of the parameters can be done according to any of the many methods
proposed in the literature (see Chapter 2) or even by a trial-and-error procedure.
However, as the purpose of the overall procedure is the attainment of a high per-
formance in the set-point following task, disregarding of the controller gains, it is
sensible to select the PID parameters aiming only at obtaining a good load rejection
performance.

6.3.4 Output Function Design

At this point, a desired output function that defines the transition from a set-point
value y0 to another y1 (to be performed in the time interval [0, τ ]) has to be selected.
Without loss of generality and for the sake of clarity, assume that y0 = 0. A sensible
choice is to adopt a so-called “transition” polynomial [96], i.e., a polynomial func-
tion that satisfies boundary conditions and that is parameterised by the transition
time τ . It is formally defined as

yd(t) = c2k+1t
2k+1 + c2kt

2k + · · · + c1t + c0. (6.11)
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The polynomial coefficients can be uniquely found by solving the following linear
system, in which boundary conditions at the endpoints of interval [0, τ ] are imposed:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yd(0) = 0;yd(τ ) = y1;
y

(1)
d (0) = 0;y(1)

d (τ ) = 0;
...

y
(k)
d (0) = 0;y(k)

d (τ ) = 0.

(6.12)

The results can be expressed in closed-form as follows (t ∈ [0, τ ]):

yd(t; τ) = y1
(2k + 1)!

k!
2k+1∑
i=k+1

(−1)i−k−1

i(i − k − 1)!(2k + 1 − i)!
(

t

τ

)i

. (6.13)

Expression (6.13) represents a monotonic function with neither undershooting nor
overshooting, and its use is therefore very appealing in a practical context.

The order of the polynomial can be selected by imposing the order of continuity
of the command input that results from the input–output inversion procedure [96].
Specifically, since the plant is modelled as an IPDT transfer function (see (6.8)),
its relative degree is equal to one. Taking into account that the relative degree of
the PID controller is zero, the relative degree of the overall closed-loop system is
one. Thus, a third-order polynomial (k = 1) suffices if a continuous command input
function is required, i.e.,

yd(t; τ) = y1

(
− 2

τ 3
t3 + 3

τ 2
t2

)
, t ∈ [0, τ ]. (6.14)

Outside the interval [0, τ ], the function y(t; τ) is equal to 0 for t < 0 and to y1 for
t > τ .

6.3.5 Stable Input–Output Inversion Algorithm

Once the closed-loop system is designed and the desired output function is selected,
the problem of finding the command signal r(t;K,L,Kp,Ti, Td, Tf , τ ) that pro-
vides the desired output function has to be solved. For the sake of clarity of notation,
the dependence of the functions and of the resulting coefficients from the parameters
K , L, Kp , Ti , Td , Tf is omitted in the following analysis. The closed-loop transfer
function be denoted as

H(s) := C(s)P̃ (s)

1 + C(s)P̃ (s)
= K1

b(s)

a(s)
, (6.15)

where b(s) and a(s) are monic polynomials. As H(s) is non-minimum phase (be-
cause of the positive zeros introduced by the Padè approximation, the straightfor-
ward inversion of the dynamics, i.e., the calculation of Yd(s)/H(s), where Yd(s)
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is the Laplace transform of yd(t), would produce an unbounded command input
function, which cannot be obviously adopted in practice. In other words, a stable
dynamic inversion procedure is necessary, that is, a bounded input function has to
be found in order to produce the desired output [98].

The numerator of the transfer function (6.15) can be rewritten as follows:

b(s) = b−(s)b+(s),

where b−(s) and b+(s) denote the polynomials associated to the zeros with negative
real part (i.e., those of the PID controller) and positive real part (i.e., those of the
Padè approximation), respectively. From (6.9) it can be derived that

b+(s) = (
s − z+

R

)2 + z+2

I , (6.16)

where Z+
R = 3/L and Z+

I = √
3/L, correspond to the complex zeros z+

R ± jz+
I ∈

C+. From (6.10) three cases can be distinguished (depending on the selected PID
parameters):

b−(s) = (s − z−
1 )(s − z−

2 ), (6.17)

b−(s) = (s − z−)2, (6.18)

b−(s) = (s − z−
R)2 + z−2

I , (6.19)

corresponding to real distinct zeros (6.17), real coincident zeros (6.18), and complex
zeros (6.19), respectively. Now, consider the inverse system of (6.15) whose transfer
function can be written as:

H(s)−1 = γ0 + γ1s + H0(s),

where γ0 and γ1 are suitable constants, and H0(s), a strictly proper rational function,
represents the zero dynamics. This can be uniquely decomposed according to

H0(s) = H−
0 (s) + H+

0 (s) = c(s)

b−(s)
+ d(s)

b+(s)
,

where c(s) = c1s + c0 and d(s) = d1s + d0 are first-order polynomials with coeffi-
cients depending on K , L, Kp Ti , Td , and Tf . The modes associated to b−(s) and
b+(s) are denoted by m−

i (t), i = 1,2, and by m+
i (t), i = 1,2, respectively. More

specifically, the unstable zero modes are given by

m+
1 (t) = ez+

R t cos z+
I t, m+

2 (t) = ez+
R t sin z+

I t, (6.20)

while the stable zero ones are given according to the cases (6.17), (6.18), and (6.19)
by

m−
1 (t) = ez−

1 t , m−
2 (t) = ez−

2 t , (6.21)
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m−
1 (t) = ez−t , m−

2 (t) = tez−t , (6.22)

m−
1 (t) = ez−

R t cos z−
I t, m−

2 (t) = ez−
R t sin z−

I t. (6.23)

With the Laplace transform operator L, define

η−
0 (t) := L−1[H−

0 (s)
]

and

η+
0 (t) := L−1[H+

0 (s)
]
.

The following propositions and the following theorem represent the solution to the
stable dynamic inversion problem.

Proposition 6.1
∫ t

0
η+

0 (t − v)yd(v; τ) dv = H+
0 (0)yd(t; τ) + 1

τ 3

(
p+

1 (τ )m+
1 (t) + p+

2 (τ )m+
2 (t)

)

+ 1

τ 3
T +

0 (t; τ), (6.24)

where

T +
0 (t, τ ) =

{
s+

0 (t) + s+
1 (t)τ if t ∈ [0, τ ],

q+
1 (τ )m+

1 (t − τ) + q+
2 (τ )m+

2 (t − τ) if t > τ ; (6.25)

p+
i (τ ), q+

i (τ ), i = 1,2, are suitable τ -polynomials; and s+
i (t), i = 0,1, are suitable

t-polynomials.

Proposition 6.2
∫ t

0
η−

0 (t − v)yd(v; τ) dv = H−
0 (0)yd(t; τ) + 1

τ 3

(
p−

1 (τ )m−
1 (t) + p−

2 (τ )m−
2 (t)

)

+ 1

τ 3
T −

0 (t, τ ), (6.26)

where

T −
0 (t, τ ) =

{
s−

0 (t) + s−
1 (t)τ if t ∈ [0, τ ],

q−
1 (τ )m−

1 (t − τ) + q−
2 (τ )m−

2 (t − τ) if t > τ ; (6.27)

p−
i (τ ), q−

i (τ ), i = 1,2, are suitable τ -polynomials; and s−
i (t), i = 0,1, are suitable

t-polynomials.

Theorem 6.1 The function r(t; τ) defined as

r(t; τ) = − 1

τ 3

(
p+

1 (τ )m+
1 (t) + p+

2 (τ )m+
2 (t)
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− q+
1 (τ )m+

1 (t − τ) − q+
2 (τ )m+

2 (t − τ)
)

if t < 0, (6.28)

r(t; τ) = γ1ẏd (t; τ) + γ0yd(t; τ) + H0(0)yd(t; τ)

+ 1

τ 3

(
s+

0 (t) + s−
0 (t) + s+

1 (t)τ + s−
1 (t)τ − q+

1 (τ )m+
1 (t − τ)

− q+
2 (τ )m+

2 (t − τ) + p−
1 (τ )m−

1 (t) + p−
2 (τ )m−

2 (t)
)

if t ∈ [0, τ ],
(6.29)

r(t; τ) = γ0 + H0(0) + 1

τ 3

(
p−

1 (τ )m−
1 (t) + p−

2 (τ )m−
2 (t)

+ q−
1 (τ )m−

1 (t − τ) + q−
2 (τ )m−

2 (t − τ)
)

if t > τ (6.30)

is bounded over (−∞,+∞), and r(t; τ) causes the desired output yd(t; τ).

Proofs of the above propositions and of the above theorem can be found in [98].
Summarising, the determined function r(t;K,L,Kp,Ti, Td, Tf , τ ) exactly solves
the stable inversion problem for FOPDT processes (in which the dead-time term has
been substituted by a Padè approximation) controlled by a PID controller (6.10) and
for a family of output functions, which depend on the free transition time τ . Ac-
tually, from a practical point of view, since the synthesised function (6.28)–(6.30)
is defined over the interval (−∞,+∞), it is necessary to adopt a truncated func-
tion ra(t; τ), resulting therefore in an approximate generation of the desired output
yd(t; τ).

In particular, a preactuation time ts and a postactuation time tf can be selected
so that the truncated (and therefore approximated) input ra(t; τ) is equal to zero for
t < ts and equal to y1/H(0) for t > tf . By taking into account that the preactuation
and postactuation inputs (i.e., the input defined for t < 0 and t > τ , respectively)
converge exponentially to zero as time t → −∞ and to y1 as time t → +∞, an ar-
bitrarily precise approximation can be accomplished [96]. In particular, ts and tp can
be calculated with arbitrary precision by selecting two arbitrary small parameters ε0
and ε1 and by subsequently determining

t0 := max
{
t ′ ∈ R : ∣∣r(t)∣∣ ≤ ε0 ∀t ∈ (−∞, t ′]} (6.31)

and

t1 := min

{
t ′ ∈ R :

∣∣∣∣r(t) − 1

H(0)

∣∣∣∣ ≤ ε1 ∀t ∈ [t ′,∞)

}
. (6.32)

Then, it has to be fixed

ts = min{0, t0}, tf = max{τ, t1}. (6.33)

Alternatively, in order to simplify the computation, the method suggested in [92]
can be adopted. It consists in selecting

ts = − 10

Drhp
, tf = τ + 10

Dlhp
, (6.34)
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where Drhp and Dlhp are the minimum distances of the right and left half-plane
zeros respectively from the imaginary axis of the complex plane. Note that by taking
into account (6.16), where Z+

R = 3/L, it is ts = −10L/3. Hence, the approximate
command signal to be actually used is

ra(t; τ) :=
⎧⎨
⎩

0 for t < ts,

r(t; τ) for ts ≤ t ≤ tf ,

y1/H(0) for t > tf .

It is worth highlighting that the preactuation time depends only on the (apparent)
dead time of the process, as this determines the unstable zeros of the closed-loop
systems by means of the Padè approximation. Conversely, the postactuation time
depends on the tuning of the PID parameters because the stable zeros of the closed-
loop systems are those of the controller.

6.3.6 Discussions

The presented stable input–output inversion procedure can be performed by means
of a symbolic computation, i.e., a closed-form expression of the command input
function r(t;K,L,Kp,Ti, Td, Tf , τ ) results. Indeed, the actual command signal to
be applied for a given plant and a given controller is determined by substituting the
actual value of the parameters into the resulting closed-form expression, and this
actually motivates its strong appeal in the context of PID control. In this framework,
the choice of using a second-order Padè approximation is motivated, from one side,
by keeping the expression of r(t;K,L,Kp,Ti, Td, Tf , τ ) as simple as possible and,
from the other side, by providing an approximation as good as possible, since the
basic rationale of this method is to apply a model-based feedforward control action.

In any case, it is worth noting that the presented inversion procedure is based on
a general one [98], where H(s) can be the rational transfer function of any (stable)
system, provided that there are not purely imaginary zeros. The method can be there-
fore trivially extended to PI, P, and PD control. In addition, the proposed approach
can also be applied to (integral) processes with a high-order transfer function, as it
is based on the inversion of the dynamics of the closed-loop system H(s). However,
in this case, the inversion procedure has to be performed on purpose. Conversely,
if an IPDT model is employed, the determined general closed-form expression of
r(t;K,L,Kp,Ti, Td, Tf , τ ) can be used.

Once the PID controller has been tuned, the only free design parameter is the
transition time τ . Its role is basically the same as the transition time in the causal
nonlinear feedforward method described in Section 6.2. That is, it handles the trade-
off between performance, robustness, and control activity. It can be selected there-
fore by applying an analogous reasoning. However, since a closed-form expression
of the control variable can be easily derived, the transition time can be also de-
termined by solving an optimisation problem where its value has to be minimised
subject to actuator constraints.
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6.3.7 Practical Implementation

The command input in the interval [ts , tf ] is actually composed of three terms (the
first one defined in the time interval [ts ,0], the second one in [0, τ ], and the final
one in [τ, tf ]), and its expression, which depends on the time variable t , can be
difficult to implement with standard industrial hardware/software components. For
a simpler implementation of the method, it is convenient to obtain the command
input as a step response, according to the standard two-degree-of-freedom control
scheme of Figure 2.3. Therein, the signal to be applied to the closed-loop system is
obtained as a step response of a filter F(s). For this purpose, it is necessary first of
all to shift the time axis by substituting t = t̄ − ts and by taking t̄ as the new time
variable. Then, the expression of the filter F(s) can be obtained by applying the
Laplace transform operator to ra(t̄; τ) [11]:

Ra(s; τ) = L
[
ra(t̄; τ)

]
(6.35)

and by imposing that

Ra(s; τ) = 1

s
F (s; τ). (6.36)

Thus, it can be simply obtained that

F(s; τ) = sRa(s; τ). (6.37)

By performing the required (symbolic) computations and by substituting backwards
t̄ = t + ts , the command signal ra(t; τ) is obtained as the step response of the fol-
lowing filters, to be considered in different time intervals:

F(s; τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2,1s
2+β1,1s+β0,1

α2,1s
2+α1,1s+α0,1

for 0 ≤ t < −ts ,

β7,2s
7+···+β0,2

α7,2s
7+···+α3,2s

3 for − ts ≤ t < −ts + τ,

β2,3s
2+β1,3s+β0,3

α2,3s
2+α1,3s+α0,3

for − ts + τ ≤ t < −ts + tf ,

H−1(0) for t ≥ −ts + tf ,

(6.38)

where the polynomial coefficients β2,1, . . . , β0,1, β7,2, . . . , β0,2, β2,3, . . . , β0,3 and
α2,1, . . . , α0,1, α7,2, . . . , α3,2, α2,3, . . . , α0,3 are resulting coefficients, whose analyt-
ical expression is not reported for brevity. In other words, a step signal has to be
applied at t = 0 to the four different filters in (6.38), and then the command input to
be applied to the closed-loop system is obtained by selecting the step responses of
the filters according to the time intervals determined in (6.38). This strategy can be
implemented easily in a Distributed Control System where a selector determines the
required command input to be applied to the PID-based feedback control system by
choosing between three transfer function blocks and a gain block according to the
current time interval after the application of a set-point step signal. Note that there
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is no problem if the filter transfer functions are unstable because they are applied in
a limited control interval.

A possible simplification for the implementation of the noncausal feedforward
control strategy would be the use of a single transfer function instead of the four
ones defined in (6.38). In general, the determined command input function can have
a complex (non-monotonic) shape [99], and it can be difficult to represent it as a
step response of a single transfer function. However, there are cases for which this
can be possible with a good accuracy. In particular, this happens when the command
input function is a smooth function. Conditions for the occurrence of this situation
can be found by considering the following proposition [96].

Proposition 6.3 Given the system (6.15) and the input function (6.28)–(6.30), the
following limit holds:

lim
τ→+∞

∥∥H(0)r(·; τ) − yd(·; τ)
∥∥∞ = 0, (6.39)

where ‖f (·)‖ := supt∈R |f (t)| denotes the L∞ norm of a real signal f (t).

From a practical point of view this means that, when the transition time increases,
the input function tends to be more similar to the desired output function. From
another point of view, increasing the transition time τ yields a more robust system,
namely, the obtained system output tends to be more similar to the desired output
function. From these considerations it can be concluded that when the obtained
system output has virtually no overshoot, then the corresponding system input is
sufficiently smooth to be approximated as a step response of a single filter.

To confirm this fact and to derive a condition for the transition time, processes
with different normalised dead time L/T controlled by PID controllers with the
parameters tuned by different tuning rules have been considered. By considering a
large number of simulation results with different systems and different controllers, it
turns out that an overshoot of less than 5% is obtained in general when the transition
time is selected as τ > 2L. Thus, in this case the command input can be obtained as a
step response of a single filter whose transfer function can be obtained by applying
a standard least squares procedure [117] by taking a step signal as input and the
determined command signal as output (note that there is no noise). In this context, it
is worth determining the preactuation time interval as ts = −L in order to obtain a
filter transfer function with no dead time. Further, many simulations have confirmed
that a fourth-order transfer function is generally sufficient to obtain a satisfactory
result.

6.3.8 Simulation Results

Consider the process

P(s) = 0.0506

s
e−6s (6.40)
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and consider that the process output has to perform a transition from 0 to y1 = 1. The
PID parameters are selected, based on the minimisation of the integrated square er-
ror for set-point responses [128] (which is actually a PD controller with Kp = 3.394
and Td = 2.94). For comparison, the filter time constant is selected as Tf = 0.01.
The classic set-point step response is plotted in Figure 6.5. The noncausal feedfor-
ward action is determined by setting τ = 2L = 12. The resulting value of the pre-
actuation and postactuation times are ts = −20.01 and tf = 41.4. The determined
command function is shown in Figure 6.6, and the corresponding control system
responses are plotted in Figure 6.7. It appears that the process variable is virtually
zero during the preactuation time, as expected, and then the transition occurs in a
time interval of duration τ . In order to obtain the command input as a step response
of a sequence of filters, the expression of F(s) obtained by Laplace transforming
directly ra(t) is

F(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

10−4(0.05847s2−0.13916s)

s2−s+0.33333
for 0 ≤ t < −ts ,

p2(s)
q2(s)

for − ts ≤ t < −ts + τ,

s2+0.29245s+0.002215
0.01994s2+0.01329s+0.002215

for − ts + τ ≤ t < −ts + tf ,

1 for t ≥ −ts + tf ,

(6.41)

where

p2(s) = 0.52232s6 − 0.27729s5 − 0.03015s4 + 0.03446s3

+ 0.01801s2 + 0.00019s − 0.00079 (6.42)

and

q2(s) = s6 − 0.65986s5 − 0.00680s4 + 0.11338s3. (6.43)

The corresponding step response is virtually the same as the one shown in Fig-
ure 6.7. If the least squares procedure is applied in this case, the preactuation time
is ts = −6, and the resulting filter expression is

F(s) = 0.05665s4 − 0.01917s3 + 0.08856s2 + 0.00337s + 0.01318

s4 + 0.55118s3 + 0.30330s2 + 0.08502s + 0.01318
. (6.44)

The corresponding step response is shown in Figure 6.8, and the resulting process
and control variables are plotted in Figure 6.9. It can be seen that in this case the
least squares procedures provides a similar result to the inversion-based technique.

Alternatively, if the tuning rules (2.134)–(2.136) with α = 1 are considered, the
following PID parameters are obtained: Kp = 2.98, Ti = 15.66, and Td = 1.93 (the
filter time constant is selected again as Tf = 0.01). The command signal obtained
by applying the inversion procedure is shown in Figure 6.10 (note that ts = −20.01
and tf = 146), while the corresponding control system response is plotted in Fig-
ure 6.11 (for the set-point step response, see Figure 2.24). If the least squares ap-
proach is employed to approximate the command signal, the results are those shown
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Fig. 6.5 Set-point step response with PD controller

Fig. 6.6 Inversion-based command input with PD controller

in Figures 6.12 and 6.13. Note that a different preactuation time ts = −6 has been
employed in this latter case. It appears that the same considerations done for the PD
controller case also apply to the PID controller case.

Finally, the role of the parameter τ is highlighted. For this purpose, consider
the process (6.7) and the model obtained by applying the standard relay-feedback
method (see Section 6.2.2) with K = 0.88 and L = 0.6. Then, as in Section 6.2.2, a
PI controller tuned according to the Ziegler–Nichols rules (see Table 2.2) is selected,
namely, Kp = 1.44 and Ti = 1.92. The command signals resulting by considering
different values of the transition time τ = 0.6,0.9,1.2,1.5 are shown in Figure 6.14,
while the corresponding process and control variables are shown in Figures 6.15
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Fig. 6.7 Response with the noncausal feedforward approach with the PD controller

Fig. 6.8 Command input determined by means of a least squares procedure (PD controller)

and 6.16, respectively. It is evident that a sound choice of the transition time value
handles the trade-off between aggressiveness and robustness (and control effort)
well.

6.4 Noncausal Feedforward Action: Discrete-time Case

A noncausal feedforward control action can be devised also in the discrete-time
case, as it is illustrated hereafter.
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Fig. 6.9 Response with the use of a set-point filter determined by means of a least squares proce-
dure (PD controller)

Fig. 6.10 Inversion-based command input with PID controller

6.4.1 Methodology

A noncausal feedforward action can be designed also in a different context, namely,
by inverting the dynamics of the closed-loop system after having identified it in the
discrete-time framework by means of a step response [134].

Consider again the scheme shown in Figure 6.4. Actually, the controller C can
be of any type (provided that the closed-loop system is asymptotically stable), but
for the sake of simplicity, it is assumed that it is a PID controller. As for the method
described in Section 6.3, the aim is to find the command function r(t) that produces
a desired system output transition from y0 to y1, starting from time t = 0, but here
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Fig. 6.11 Response with the noncausal feedforward approach with the PID controller

Fig. 6.12 Command input determined by means of a least squares procedure (PID controller)

no a priori knowledge on the process model is assumed. Despite the process and the
controller being defined in the continuous-time domain, sampled data are consid-
ered in the following analysis (actually, nowadays the use of microprocessors is the
common practice in industrial environments). It is assumed that the sampling time
T has been chosen suitably by any standard technique [7].

An identification experiment can be easily performed by applying a step signal
to the input of the closed-loop system. A closed-loop system model can then be
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Fig. 6.13 Response with the use of a set-point filter determined by means of a least squares pro-
cedure (PID controller)

Fig. 6.14 Command signals for different values of the transition time τ

obtained by considering the truncated response (t ∈ {T ,2T , . . . ,NT }):

y(t) = y0 + gt/T r(0) +
t
T

−1∑
i=1

gi

[
r(t − iT ) − r

(
t − (i + 1)T

)]
, (6.45)

where gi := g(iT ), i = 1, . . . ,N , are the sampled output values in response to a
unit-step input (see Figure 6.17), and r(t) is the system input. For the sake of sim-
plicity and without loss of generality, assume that y0 = 0. The number N of param-
eters has to be taken sufficiently high in order to allow for a sufficiently accurate
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Fig. 6.15 Process variables for different values of the transition time τ

Fig. 6.16 Control variables for different values of the transition time τ

description of the system, but not too high to minimise the computational effort of
the control strategy. From a practical point of view, the sampling of the step response
in order to obtain parameters gi should stop when the process output remains close
to its steady-state value for a sufficiently long time.

For the presented methodology, it is convenient to write Expression (6.45) in the
matrix form

Y = GR, (6.46)
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Fig. 6.17 Model coefficients based on step response

where

Y =

⎡
⎢⎢⎢⎢⎢⎣

y(T )

y(2T )

y(3T )
...

y(NT )

⎤
⎥⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎢⎣

g1 0 0 . . . 0
−g1 + g2 g1 0 . . . 0
−g2 + g3 −g1 + g2 g1 . . . 0

...
...

...
. . . 0

−gN−1 + gN −gN−2 + gN−1 −gN−3 + gN−2 . . . g1

⎤
⎥⎥⎥⎥⎥⎦

,

and

R =

⎡
⎢⎢⎢⎢⎢⎣

r(0)

r(T )

r(2T )
...

r((N − 1)T )

⎤
⎥⎥⎥⎥⎥⎦

.

It is worth noting that in many cases it might not be necessary to perform an ad
hoc identification experiment (i.e., to stop the normal process operations) in order
to apply the presented methodology. In fact, as the model is obtained by evaluating a
standard closed-loop step response, data taken from an output transition performed
during routine process operations can be adopted. Obviously, it is important that
the collected data be representative of a true step response (and therefore operations
such as filtering and detrending might be necessary [56]) and if an unmeasured load
disturbance occurs during the transient response, they should not be adopted. In this
context, it can be useful to adopt the methods proposed in [32, 125] to detect load
disturbances.

The desired output function is chosen again as a transition polynomial (6.13).
In contrast with the continuous-time case, here its order can be chosen arbitrarily.
Indeed, the order of the polynomial can be selected in order to handle the trade-off
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between the need to decrease the rise time and the need to decrease the control effort,
taking into account that the rise time decreases and the control effort increases when
the order of the polynomial increases. In general, a good choice in this context is to
select k = 2, i.e., the desired output function is

yd(t; τ) =
{

y1(
6
τ 5 t5 − 15

τ 4 t4 + 10
τ 3 t3) if 0 ≤ t ≤ τ,

y1 if t > τ.
(6.47)

Regarding the choice of the value of the transition time τ , the same considerations
done in the continuous-time case can be applied also in this case.

Once the desired output function has been selected, i.e., the array Yd has been
constructed, then the corresponding closed-loop system input r(t) that causes
yd(t; τ) can be easily determined by simply inverting the system using Expres-
sion (6.46). In order for matrix G to be invertible by a standard numeric algorithm,
it should be well conditioned, for example, there must not be a row (or a column)
where all the elements are very small with respect to the elements of other rows (or
columns). This happens when the process has a true dead time or an apparent dead
time (i.e., when the process is of high order), which causes some of the first sampled
output values gi of the step response to be null or almost null. Thus, denote by k

the number of the first rows of G in which all the elements are less than a selected
threshold ε. Then, matrix Ĝ can be obtained by removing the first k rows and the
last k columns from G. Subsequently, by evaluating yd(t; τ) at the first N − k sam-
pling time intervals, the array Yd = [yd(T ; τ) yd(2T ; τ) · · · yd((N − k)T ; τ)]T can
be easily constructed. The first N − k values of the command reference input are
then determined by applying the following expression:

R̂ = [
r(T ) r(2T ) · · · r

(
(N − k)T

)]T = Ĝ−1Yd. (6.48)

In this way, the input function can be calculated by simply determining the inverse
of a matrix, which can be performed by using different algorithms (see, for example,
[103]).

Note that if the sampling time T and the value of N have been selected appropri-
ately, as well as the value of τ , then the last element of the array R̂ actually corre-
sponds to the steady-state value of the input, and therefore the value of r((N − k)T )

can be applied to the closed-loop system for t > (N − k)T . Note also that, since
the first k rows and the last k columns have been removed from matrix G, the out-
put function obtained is delayed by kT with respect to the desired one. Actually,
the dead time is removed in the model of the closed-loop system transfer function
adopted in the dynamic inversion.

In the presence of measurement noise, as is always the case in practical appli-
cations, the method can be successfully applied, provided that the step response
function employed for the identification of the closed-loop system model (6.45) is
appropriately filtered. Since the required filtering can be performed off-line, a zero-
phase noncausal filter can be applied in order to avoid a phase distortion. Further, the
presence of the noise has to be considered when matrix Ĝ is constructed from G.
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Fig. 6.18 Initial set-point step response employed for the discrete-time inversion approach

Actually, due to the noise measurements, it is sensible to redefine parameter ε as
a noise band NB [8], i.e., a threshold value that determines, as before, whether the
sampled value gi has to be discarded. Specifically, if |gi | < NB, then gi is considered
to be zero in the construction of matrix Ĝ. The value of NB can be easily selected
by monitoring that process output for a sufficiently long time when the process is at
steady-state.

Finally, it is worth stressing that, as in the continuous-time case, the inversion-
based design of the feedforward action is independent of the PID design. It is there-
fore convenient to tune the controller in order to guarantee good load disturbance
performance if this is of concern. In fact, even if this implies that the predicted
closed-loop step response is unsatisfactory, the feedforward action is capable of
providing an output transition with a low rise time and a low overshoot.

6.4.2 An Illustrative Example

As an illustrative example, consider again Process (6.40) with a PID controller tuned
by minimising the ISE performance index for the load disturbance (see Table 2.5):
Kp = 4.51, Ti = 8.94, and Td = 3.54. The closed-loop step response is shown in
Figure 6.18. By using a sampling interval T = 0.02 and a noise band NB = 0.01
and by setting a desired transition time τ = 20, the discrete-time inversion tech-
nique procedure, applied to the closed-loop step response, gives the command input
function shown in Figure 6.19. The resulting control system response is plotted in
Figure 6.20. It appears that the performance has been improved significantly.
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Fig. 6.19 Command input determined by the discrete-time inversion procedure

Fig. 6.20 Response obtained after having applied the discrete-time inversion procedure

6.5 Conclusions

A feedforward controller can be very beneficial in solving the problem of achiev-
ing a satisfactory performance both in the set-point following and in the load dis-
turbance rejection task. Different methodologies for the design of a feedforward
controller have been described in this chapter. In particular, the set-point following
performance have been addressed. Features of the standard approach have been dis-
cussed. It has been shown that when the control task does not involve the tracking
of a reference signal but only the transition of the process variable from a set-point
value to another one is of concern, different alternative methods can be considered.
The use of a nonlinear feedforward action improves the system performance consid-
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erably by taking into account explicitly the actuator constraints. Its implementation
requires indeed a modest extra design effort. The great advantage of the noncausal
approach is that a predefined performance can be actually obtained almost “inde-
pendently” of the tuning of the (PID) controller and of the actual process dynamics.
In fact, very similar responses are obtained with very different values of the PID
parameters (namely, with PID parameters that provide very different set-point step
responses) and with processes of different dynamics. This advantage is paid by the
increased implementation complexity. It can be remarked that each of the consid-
ered methodologies has in any case a tuning parameter that handles the trade-off
between aggressiveness and robustness.

Finally, it is worth highlighting that, if only the set-point following task is of
concern, a fine tuning of the controller could lead to high performance, and the im-
provement provided by the use of a feedforward control system is not significant.
However, the selection of the correct parameters can be difficult and time consum-
ing. In this context the feedforwarded control action can be used to achieve (in a
relatively easy way) satisfactory performance despite a not very appropriate tuning
of the PID parameters and therefore to reduce the overall design effort. It is impor-
tant to note that, in contrast with the constant set-point weighting approach, the use
of a feedforward action can recover the set-point following performances even in
the case of a sluggish tuning of the PID controller.



Chapter 7
PID–PD Control

An effective and simple way of designing a two-degree-of-freedom control scheme
for an integral process is to employ an inner feedback loop in order mainly to sta-
bilise the system and then an outer feedback loop in order to provide the required
performance. Different methods have been proposed in the literature for the design
and tuning of this control scheme, where the controllers are of P(D) type for the in-
ternal loop and of PI(D) type for the external loop. These methods will be presented
and compared in this chapter.

7.1 The Control Scheme

The two degree-of-freedom control scheme considered in this chapter is the one
shown in Figure 7.1 and consists in an internal loop, where the controller C2 is
mainly employed to stabilise the IPDT process P , and an external loop, where the
controller C1 is mainly devoted to satisfy the required performance. This control
scheme can be easily rearranged in order to be the standard two-degree-of-freedom
control scheme of Figure 2.3. The result is depicted in Figure 7.2, where it appears
that, with reference to Figure 2.3, it is C = C1 + C2 and F = C1/(C1 + C2). Usu-
ally, C2 is selected as a P or PD controller, while C1 is selected as a PI or PID
controller. Methodologies on how to tune the different controller parameters are
described in the following sections.

7.2 PI–PD Structure

In this section, a few methods are considered where the inner loop controller has a
PD structure (the derivative filter is omitted for the sake of simplicity), namely,

C2(s) = Kp2(Td2s + 1), (7.1)

A. Visioli, Q.-C. Zhong, Control of Integral Processes with Dead Time,
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Fig. 7.1 Block diagram of the two-degree-of-freedom control scheme with a PID–PD structure

Fig. 7.2 Equivalent standard two-degree-of-freedom control scheme

and the outer loop controller has a PI structure, namely,

C1(s) = Kp1

(
1 + 1

Ti1s

)
. (7.2)

Methods for the tuning of the parameters are presented hereafter.

7.2.1 A Simple Approach

The simplest approach for the design of a PI–PD control structure is converting an
existing standard one-degree-of-freedom PID controller [50]. In particular, consider
Figure 7.2 and suppose that the feedback controller is of PID type, namely,

C(s) = Kp

(
1 + 1

Tis
+ Tds

)
. (7.3)

By considering that C(s) = C1(s) + C2(s) it can be derived that

C(s) = (Kp2 + Kp1)

(
1 + Kp1

Kp1 + Kp2

1

Ti1s
+ Kp2

Kp1 + Kp2
Td2s

)
. (7.4)

In order to obtain the four PI–PD parameters from the three PID parameters, it
is necessary to supply an additional relation between the parameters. This can be
selected as Kp1 = αKp2, so that, by comparing Expressions (7.3) and (7.4), they
result to be

Kp1 = α

1 + α
Kp, (7.5)

Kp2 = 1

1 + α
Kp, (7.6)
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Fig. 7.3 Results obtained with the simple method based on the conversion of a standard PID
controller

Ti1 = α

1 + α
Ti, (7.7)

Td2 = (1 + α)Td . (7.8)

It appears that the determined parameters heavily depend on the value of α. In [50]
it is suggested, after having considered a large number of simulations, to choose
α = 0.2.

The set-point filter assumes the following form:

F(s) = Kp1(Ti1s + 1)

Kp2Ti1Td2s2 + (Kp1Ti1 + Kp2Ti1)s + Kp1

= bTis + 1 + α

(TiTd + TiTdα)s2 + (αTi + Ti)s + 1 + α
. (7.9)

As an illustrative example, consider the process

P(s) = 0.0506

s
e−6s , (7.10)

and consider the initial tuning obtained by applying the method described in Sec-
tion 2.3.3.3, which yields Kp = 2.98, Ti = 15.66, and Td = 1.93. Thus, the fol-
lowing PI–PD parameters are obtained: Kp1 = 0.497, Ti1 = 2.610, Kp2 = 2.483,
and Td2 = 2.316. The set-point and load disturbance step response is shown in Fig-
ure 7.3. By comparing the result with the one shown in Figure 2.24 it appears that,
as expected, the use of the second degree-of-freedom reduces the overshoot signifi-
cantly.
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7.2.2 Tuning Method Based on the Standard Forms

In [47, 49] it has been proposed to determine the PI–PD controller parameters by
minimising an integral performance criterion. In particular, the ISTE criterion de-
fined as

J =
∫ ∞

0
te(t) dt, (7.11)

where e(t) is the control error, can be considered. In this context, it is possible to
employ the so-called ISTE standard form, namely, a closed-loop transfer function
which, assuming a process transfer function with no zeros (this issue will be dis-
cussed below) and a controller with one zero, can be written as

H̄ (s) = c1s + 1

s3 + d2s2 + d1s + 1
. (7.12)

The transfer function parameters d1 and d2 are selected in order to minimise the
integral criterion (7.11) for different values of c1. In this context, it can be shown
that as c1 increases, the performance index J decreases. However, the improvement
in the step response becomes negligible for values of c1 greater than four.

In order to employ the standard form concept for the tuning of the controller
parameters, it is first necessary to approximate the IPDT process transfer function
as

P(s) = K

s
e−Ls ∼= K

s(1 + Ls)
. (7.13)

Then, the closed-loop transfer function is determined as

H(s) = KKp1(Ti1s + 1)

Ti1Ls3 + (1 + KKp2Td2)Ti1s2 + (Kp1 + Kp2)KTis + KKp1
. (7.14)

By comparing Expressions (7.12) and (7.14) it appears that a normalised standard
form

H̄ (sn) = c1sn + 1

s3
n + d2s2

n + d1sn + 1
(7.15)

can be obtained by fixing

sn = s

α
, (7.16)

α =
(

KKp1

Ti1L

) 1
3

, (7.17)

c1 = αTi1, (7.18)

d2 = 1 + KKp2Td2

Lα
, (7.19)
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Fig. 7.4 Results obtained with the method based on standard forms

d1 = (Kp1 + Kp2)K

Lα2
. (7.20)

It is worth noting that the time scaling by α reduces the value of J by α3. Equa-
tions (7.16)–(7.20) are therefore exploited, starting from appropriate values of Kp1
and Ti1, in order to determine the value of α and the values of the PD controller
parameters Kp2 and Td2.

As an illustrative example, consider again process (7.10). If the values of the
PI parameters are selected as Kp1 = 1.31 and Ti1 = 17.6, from (7.17) the value
α = 0.0856 is determined, and then from (7.18) the value c1 = 1.507 is obtained.
By minimising J for this value of c1, the values d1 = 2.637 and d2 = 2.016 are
determined. Hence, from (7.19) and (7.20) it is easy to obtain Kp2 = 0.983 and
Td2 = 0.695. The set-point and load disturbance step response is shown in Fig-
ure 7.4.

It is worth stressing that the tuning technique can be employed, after an appropri-
ate relay-feedback experiment, in the context of an automatic tuning methodology
[47, 49].

7.3 PID–P Structure

Differently from Section 7.2, here a few methods are considered where the inner
loop controller is just a proportional controller, namely,

C2(s) = Kp2, (7.21)

while the outer loop controller has a PID structure, which, for convenience, is ex-
pressed in parallel form as (the derivative filter is again not considered for the sake
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of simplicity)

C1(s) = Kp1 + Ki1

s
+ Kd1s. (7.22)

It has to be remarked that in this case, the control variable can be written as (see
Figure 7.1)

U(s) =
(

Kp1 + Ki1

s
+ Kd1s

)(
R(s) − Y(s)

) − Kp2Y(s)

= (Kp1 + Kp2)

(
Kp1

Kp1 + Kp2
R(s) − Y(s)

)
+

(
Ki1

s
+ Kd1s

)
E(s), (7.23)

which is the output of a parallel PID controller with set-point weight β , where

Kp = Kp1 + Kp2, (7.24)

Ki = Ki1, (7.25)

Kd = Kd1, (7.26)

and

β = Kp1

Kp1 + Kp2
. (7.27)

Thus, in this case the control scheme is indeed a standard PID controller with set-
point weight. The methods described in this section have been however situated in
this part of the book because in their rationale the two-degree-of-freedom concept
is exploited explicitly.

7.3.1 Tuning Method Based on Sensitivity Specifications

The design methodology proposed in [141] considers the SOIPDT process transfer
function

P(s) = K

s(T s + 1)
e−Ls. (7.28)

By employing a simple proportional controller C2(s) = Kp2 in the inner loop, the
inner closed-loop transfer function is

H2(s) = Ke−Ls

T s2 + s + KKp2e−Ls
. (7.29)

If the dead time term in the denominator is approximated, by using a Taylor series
expansion, as

e−Ls ∼= 1 − Ls + 0.5L2s2, (7.30)
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then Expression (7.29) becomes

H2(s) = Ke−Ls

(T + 0.5KKp2L)s2 + (1 − KKp2L)s + KKp2
. (7.31)

In order for H2(s) to be stable, it has to be

Kp2 <
1

KL
. (7.32)

A suitable choice, which satisfies Expression (7.32) and provides optimum distur-
bance rejection [116], is

Kp2 = 0.2

KL
. (7.33)

With this choice, the inner closed-loop transfer function becomes

H2(s) = e−Ls

T +0.1L
K

s2 + 0.8
K

s + 0.2
KL

. (7.34)

The PID controller is designed in order to mainly address the robustness issue. For
this purpose, the maximum sensitivity is chosen as a robustness measure. It is de-
fined as

Ms = max
0≤ω<∞

∣∣∣∣ 1

1 + C1(jω)H2(jω)

∣∣∣∣, (7.35)

and it represents the inverse of the shortest distance from the Nyquist curve of the
loop transfer function C1(s)H2(s) from the critical point (−1,0). Note that the max-
imum sensitivity is related to the phase margin φm and to the gain margin Am by
the following inequalities:

Am >
Ms

Ms − 1
(7.36)

and

φm > 2 arcsin
1

2Ms

. (7.37)

At this point it is worth rewriting the PID controller transfer function as

C1(s) = k

(
As2 + Bs + C

s

)
, (7.38)

where

A = Kd1

k
, B = Kp1

k
, C = Ki1

k
. (7.39)
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Then, the controller zeros are chosen in order to cancel the poles of the process seen
by the controller, namely, H2(s). This yields

A = T + 0.1L

K
, B = 0.8

K
, C = 0.2

KL
, (7.40)

and the open-loop transfer function becomes

G(s) = C1(s)H2(s) = k

s
e−Ls. (7.41)

In order for G(s) to be tangential to the circle centred in (−1,0) and with radius
1/Ms (i.e., in order for the system to have a maximum sensitivity Ms ), the following
conditions must hold (see Figure 7.5):

G(jω) = −1 + 1

Ms

e−jθ , (7.42)

arg
dG(jω)

dω
= π

2
− θ, (7.43)

that is, by considering (7.41),

k

ω
sin(ωL) = 1 − 1

Ms

cos θ, (7.44)

k

ω
cos(ωL) = 1

Ms

sin θ, (7.45)

ωL + arctan
1

ωL
= π

2
+ θ. (7.46)

The nonlinear system of Equations (7.44)–(7.46) has no analytical solution. How-
ever, an approximate solution for parameter k can be determined numerically as
[141]

k = 1

L

(
1.451 − 1.508

Ms

)
. (7.47)

The PID parameters are therefore given as

Kp1 = 1

KL

(
1.1608 − 1.2064

Ms

)
, (7.48)

Ki1 = 1

KL2

(
0.29 − 0.3016

Ms

)
, (7.49)

Kd1 = T + 0.1L

KL

(
1.450 − 1.508

Ms

)
. (7.50)
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Fig. 7.5 Explanation of the maximum sensitivity concept

Summarising, Expressions (7.33) and (7.48)–(7.50) provide the tuning of the two-
degree-of-freedom controller once the maximum sensitivity parameter has been
specified by the user. Note that if a standard PID controller with set-point weight
is considered, by applying Expressions (7.24)–(7.27) it can be easily deduced that

Kp = 1

KL

(
1.3608 − 1.2064

Ms

)
, (7.51)

Ki = Ki1, (7.52)

Kd = Kd1, (7.53)

and

β = 1.1608Ms − 1.2064

1.3608Ms − 1.2064
. (7.54)

As an illustrative example, consider the process

P(s) = 1

s(s + 1)
e−0.2s . (7.55)

By applying the tuning rule (7.33) Kp2 = 1 results, independently on the selected
value for the maximum sensitivity. Then, if the typical (low) value Ms = 1.4 is
chosen [5], by applying the tuning rules (7.48)–(7.50), it results Kp1 = 1.495, Ki1 =
1.864, and Kd1 = 1.901 (if tuning rules (7.51)–(7.54) are employed, it is Kp =
2.495, Ki1 = 1.864, and Kd1 = 1.901, β = 0.6). The set-point and load disturbance
step response is shown in Figure 7.6.

Alternatively, if the typical (high) value Ms = 2.0 is chosen [5], by applying the
tuning rules (7.48)–(7.50), it results Kp1 = 2.788, Ki1 = 3.480, and Kd1 = 3.550 (if
tuning rules (7.51)–(7.54) are employed, it is Kp = 3.788, Ki1 = 3.480, and Kd1 =
3.550, β = 0.736). The corresponding result is plotted in Figure 7.7. It appears that,
as expected, for a higher value of the maximum sensitivity, the control system is
more aggressive, and therefore a better load disturbance rejection performance is
paid by a higher control effort.
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Fig. 7.6 Results obtained with the method based on sensitivity specifications (Ms = 1.4)

Fig. 7.7 Results obtained with the method based on sensitivity specifications (Ms = 2.0)

7.3.2 Tuning Method Based on Phase and Gain Margins

A possible alternative to the method described in Section 7.3.1 is to specify the re-
quired gain and phase margins instead of the required maximum sensitivity [142,
143]. This means that the same procedure of Section 7.3.1 is followed, but Equa-
tions (7.42) and (7.43) are substituted by four equations that impose that the loop
transfer function (7.41) provides the desired gain margin Am and phase margin φm.
They are

argG(jωp) = −π, (7.56)
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Am

∣∣G(jωp)
∣∣ = 1, (7.57)∣∣G(jωg)
∣∣ = 1, (7.58)

φm = π + argG(jωg), (7.59)

where wg is the gain crossover frequency, and wp is the phase crossover frequency.
By considering Expression (7.41), this set of equations can be rewritten as

ωpL = π

2
, (7.60)

Am = ωp

k
, (7.61)

k = ωg, (7.62)

φm = π

2
− ωgL. (7.63)

From Equations (7.61)–(7.62) it can be deduced that

Amωg = ωp. (7.64)

Multiplying both sides of (7.64) by L and considering (7.60) and (7.63), the relation
between the gain margin and the phase margin can be derived (note that this is the
same result obtained in Section 3.1.3):

φm = π

2

(
1 − 1

Am

)
. (7.65)

Then, by choosing the reasonable values Am = 3 and φm = 60°, from (7.60) and
(7.61) the value of k can be obtained as

k = π

2AmL
= π

6L
. (7.66)

Hence, the PID parameters can be determined as

Kp1 = 2π

15KL
, (7.67)

Ki1 = π

30KL2
, (7.68)

Kd1 = π(T + 0.1L)

6KL
. (7.69)

The equivalent standard single-loop PID controller with set-point weight can be
determined easily by considering Expressions (7.51)–(7.54) as

Kp = 2π + 3

15KL
, (7.70)

Ki = Ki1, (7.71)
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Fig. 7.8 Results obtained with the method based on phase and gain margins specifications

Kd = Kd1, (7.72)

and

β = 2π

2π + 3
. (7.73)

As an illustrative example, consider again process (7.55). By applying the tun-
ing rules (7.33) and (7.67)–(7.69), the following parameters are obtained: Kp2 = 1,
Kp1 = 2.094, Ki1 = 2.618, Kd1 = 2.670 (or, equivalently, Kp = 3.094, Ki =
2.618, Kd = 2.670, β = 0.677). The resulting set-point and load disturbance step
response is shown in Figure 7.8.

7.3.3 Tuning Method Based on a New Robustness Specification

Alternatively to the maximum sensitivity and to the gain and phase margins, a new
robustness measure λ, to be employed in the controller design, has been proposed in
[149]. It is defined as the inverse of the maximum absolute real part of the open-loop
transfer function (see Figure 7.9), namely,

1

λ
= max

0≤ω<∞
∣∣Re

[
G(jω)

]∣∣. (7.74)

This new specification is related to the gain and phase margins by means of the
following inequalities:

Am > λ, (7.75)
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φm > arccos

(
1

λ

)
. (7.76)

Then, if the internal loop is considered with a process model (7.28) and a propor-
tional controller C2(s) = Kp2, the robustness index can be determined as

1

λ
= max

0≤ω<∞

∣∣∣∣Re

[
KKp2e

−jωL

jω(jωT + 1)

]∣∣∣∣
= max

0≤ω<∞

∣∣∣∣ − KKp2
ωT cos(ωL) + sin(ωL)

ω(ω2T 2 + 1)

∣∣∣∣
= lim

ω→0

∣∣∣∣ − KKp2
ωT cos(ωL) + sin(ωL)

ω(ω2T 2 + 1)

∣∣∣∣
= KKp2(T + L). (7.77)

By choosing the reasonable value λ = 2 it is evidently

Kp2 = 0.5

K(T + L)
. (7.78)

With this choice, the inner closed-loop transfer function becomes

T2(s) = e−Ls

T 2+T L+0.25L2

K(T +L)
s2 + T +0.5L

K(T +L)
s + 0.5

K(T +L)

. (7.79)

The same concept can be employed for the tuning of the controller C1. By ex-
ploiting again a pole-zero cancellation as in Sections 7.3.1 and 7.3.2, the parameters
of the PID controller (7.38) are determined as

A = T 2 + T L + 0.25L2

K(T + L)
, (7.80)

B = T + 0.5L

K(T + L)
, (7.81)

C = 0.5

K(T + L)
. (7.82)

This yields the open-loop transfer function (7.41). In order to determine the param-
eter k, the same robustness measure as before can be used. Thus, it is

1

λ
= max

0≤ω<∞

∣∣∣∣Re

[
ke−jωL

jω

]∣∣∣∣
= max

0≤ω<∞

∣∣∣∣−k sin(ωL)

ω

∣∣∣∣
= lim

ω→0

∣∣∣∣−k sin(ωL)

ω

∣∣∣∣
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Fig. 7.9 Explanation of the λ robustness measure

= lim
ω→0

∣∣∣∣−kL cos(ωL)

1

∣∣∣∣
= kL. (7.83)

By choosing again λ = 2 it is evidently k = 0.5/L, and therefore the PID parameters
are determined as (see (7.39) and (7.80)–(7.82))

Kp1 = 0.5(T + 0.5L)

KL(T + L)
, (7.84)

Ki1 = 0.25

KL(T + L)
, (7.85)

Kd1 = 0.5(T 2 + T L + 0.25L2)

KL(T + L)
. (7.86)

Equivalently, the parameters of a standard PID controller with set-point weight are

Kp = 0.5(T + 1.5L)

KL(T + L)
, (7.87)

Ki = 0.25

KL(T + L)
, (7.88)

Kd = 0.5(T 2 + T L + 0.25L2)

KL(T + L)
, (7.89)

β = T + 0.5L

T + 1.5L
. (7.90)

The same process (7.55) is considered as an illustrative example. By apply-
ing the devised tuning rules, the following controller parameters can be deter-
mined: Kp2 = 0.420, Kp1 = 2.292, Ki1 = 1.042, Kd1 = 2.521 (or, equivalently,
Kp = 2.708, Ki = 1.042, Kd = 2.521, β = 0.677). The resulting set-point and load
disturbance step response is shown in Figure 7.10.
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Fig. 7.10 Results obtained with the method based on a new robustness specification for a PID–P
controller

7.4 PID–PD Structure

The last case addressed in this chapter is the use of a PD controller in the inner loop
and a PID controller in the outer loop, namely (for convenience, the derivative filter
is neglected),

C2(s) = Kp2(1 + Td2s), (7.91)

C1(s) = Kp1 + Ki1

s
+ Kd1s. (7.92)

In this case, the control variable can be written as (see Figure 7.1)

U(s) =
(

Kp1 + Ki1

s
+ Kd1s

)(
R(s) − Y(s)

) − Kp2(1 + Td2s)Y (s)

= (Kp1 + Kp2)

(
Kp1

Kp1 + Kp2
R(s) − Y(s)

)
+ Ki1

s
E(s)

+ (Kd1 + Kp2Td2)s

(
Kd1

Kd1 + Kp2Td2
R(s) − Y(s)

)
, (7.93)

which is the output of a parallel PID controller with set-point weight β for the pro-
portional action and a set-point weight γ for the derivative action (see Section 2.1.2),
where

Kp = Kp1 + Kp2, (7.94)

Ki = Ki1, (7.95)

Kd = Kd1 + Kd2, (7.96)
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β = Kp1

Kp1 + Kp2
, (7.97)

and

γ = Kd1

Kd1 + Kp2Td2
. (7.98)

7.4.1 Tuning Method Based on a New Robustness Specification

The method described in Section 7.3.3 can be extended to the case of PID–PD con-
troller [150]. By considering the process model (7.28), the inner loop controller can
be designed by applying a pole-zero cancellation, namely,

Td2 = T . (7.99)

The inner loop transfer function is therefore

H2(s) = C2(s)P (s) = KKp2

s
e−Ls, (7.100)

and the controller gain Kp2 can be determined based on the robustness specification
λ (see Section 7.3.3). Indeed, it is

1

λ
= max

0≤ω<∞

∣∣∣∣Re

[
KKp2e

−jωL

jω

]∣∣∣∣
= max

0≤ω<∞

∣∣∣∣−KKp2 sin(ωL)

ω

∣∣∣∣
= lim

ω→0

∣∣∣∣−KKp2 sin(ωL)

ω

∣∣∣∣
= lim

ω→0

∣∣∣∣−KKp2L cos(ωL)

1

∣∣∣∣
= KKp2L. (7.101)

Hence, by selecting λ = 2, it is

Kp2 = 1

2KL
. (7.102)

With this PD controller, the inner closed-loop transfer function is

H2(s) = Ke−Ls

T s2 + s + 1
2L

(T s + 1)e−Ls
, (7.103)
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which, by approximating the dead time term in the denominator as e−Ls ∼= 1 − Ls,
can be rewritten, after a few trivial passages, as

H2(s) = e−Ls

T
2K

s2 + L+T
2KL

s + 1
2KL

. (7.104)

The parameters of the PID controller (7.38) are determined, by applying again a
pole-zero cancellation as

A = T

2K
, (7.105)

B = L + T

2KL
, (7.106)

C = 1

2KL
, (7.107)

and this yields the open-loop transfer function (7.41). The parameter k can be there-
fore determined as in (7.83) by considering the robustness measure λ, yielding
1
λ

= kL, and therefore, by selecting λ = 2, it is k = 0.5/L. Thus, the PID tuning
rules are

Kp1 = 0.25(T + L)

KL2
, (7.108)

Ki1 = 0.25

KL2
, (7.109)

Kd1 = 0.25T

KL
. (7.110)

Equivalently, the parameters of a standard PID controller with set-point weights (for
both the proportional and derivative action) are

Kp = 0.25(3L + T )

KL2
, (7.111)

Ki = 0.25

KL2
, (7.112)

Kd = 0.75T

KL
, (7.113)

β = T + L

T + 3L
, (7.114)

γ = 1

3
. (7.115)

Note that the set-point weight applied to the derivative action is independent of the
process parameters.
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Fig. 7.11 Results obtained with the method based on a new robustness specification for a PID–PD
controller

As an illustrative example, the same process (7.55) is considered. By applying
the devised tuning rules, the following controller parameters can be determined:
Kp2 = 2.5, Td2 = 1, Kp1 = 7.5, Ki1 = 6.25, Kd1 = 1.25 (or, equivalently, Kp =
10, Ki = 6.25, Kd = 3.75, β = 0.75, γ = 1/3). The resulting set-point and load
disturbance step response is shown in Figure 7.11. By comparing this result with
the one shown in Figure 7.10, it appears that the presence of the derivative action
in the inner loop controller allows the design of a more aggressive controller in the
outer loop and therefore to obtain a better load disturbance performance rejection
without impairing significantly the set-point following performance. However, this
is obtained at the expense of a more significant control effort.

7.4.2 A More Complex Controller

An alternative controller form, similar to the PID-PD structure, has been proposed
in [66]. In this case, while a PD controller (7.91) is employed again for the inner
loop, the controller of the outer loop has the following form (it will be shown here-
after that, actually, this is not a standard PID controller in series form):

C1(s) = Kp1

(
1 + Ki1

s

)
(1 + Td1s). (7.116)

Regarding the controller C2, by selecting again the derivative time constant of the
filter equal to the time constant of the SOIPDT process, i.e., Td2 = T , the open-
loop transfer function (7.100) results. In this case, the proportional gain is selected
by considering that the gain that stabilises the integral process can be derived, by
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applying the Nyquist stability criterion, as

Kp2 =
π
2 − φm

KL
, (7.117)

and therefore, an appropriate tuning is to select φm = 61.3°, that is,

Kp2 = 0.5

KL
. (7.118)

Then, the internal closed-loop transfer function becomes

T2(s) = Ke−Ls

(T s + 1)
(
s + e−Ls

2L

) . (7.119)

In order to perform a pole-zero cancellation, instead of approximating the dead time
term, in [66] it is suggested to select

Td1 = T (7.120)

and

Ki1 = e−Ls

2L
. (7.121)

Note that the presence of the delay in the integral action means that this controller
is indeed different from a standard PID controller. In particular, it can be said that
the integral action exhibits a dead-time compensation.

Finally, the proportional gain is tuned by addressing the robustness issue. Indeed,
by considering that with the previous choice the overall loop transfer function is

W(s) = Kp1K

s
e−Ls, (7.122)

relations (7.56)–(7.59) give the following expression:

Kp2 = φm

(Am − 1)KL
. (7.123)

Although any values can be considered for the desired gain and phase margins, it is
suggested to select Am = 3 and φm = π/3. This yields

Kp2 = 0.5236

KL
. (7.124)

The same process (7.55) is considered as an illustrative example. By applying the
devised tuning rules, the following controller parameters can be determined: Kp2 =
2.5, Td2 = 1, Kp1 = 2.618, Ki1 = 2.5, Td1 = 1. The resulting set-point and load
disturbance step response is plotted in Figure 7.12. It appears that system achieves
very good performance in both the set-point following and the load disturbance
rejection.
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Fig. 7.12 Results obtained with the more complex controller

7.5 Conclusions

In this chapter it has been shown that the control of an IPDT process can be ad-
dressed by considering a two-degree-of-freedom control scheme where an internal
loop with a P(D) controller is employed to mainly stabilise the system and then
an external loop with a PI(D) controller is obtained to achieve the required perfor-
mance. It has been highlighted that the overall control scheme can also be seen as
a standard PID controller with set-point weight for the proportional action and, in
case, for the derivative action. Thus, the implementation of the presented method-
ologies is not particularly difficult, also because the design techniques end up with
tuning rules easy to apply. Finally, it has been shown that the presence of a dead time
term in the integral action of the external controller yields a significant improvement
in the performance (at the expense of an increased complexity of the controller).



Chapter 8
Smith-predictor-based Control

When the dead time of the integral process is significant, traditional control schemes
such as those seen in the previous chapters might not be sufficient to obtain the re-
quired performance. In these cases, a dead time compensator can be considered. The
most well-known control scheme where a dead time compensator is implemented is
the Smith predictor, which, however, in its classical implementation, fails to provide
a null steady-state error in the presence of a constant load disturbance if the process
exhibits an integral dynamics. For this reason, mainly, different modifications of
the classical Smith predictor have been proposed in the literature to overcome this
drawback. These approaches will be reviewed and compared in this chapter.

8.1 Classical Smith Predictor

The presence of a significant dead time in a process prevents the achievement of a
high-performance control system because it is difficult to obtain a high value of the
gain crossover frequency (namely, a fast transient response) and a satisfactory phase
margin (namely, a small overshoot) at the same time. In order to compensate the ef-
fect of the dead time, a dead time compensator can be designed. The Smith predictor
is a one-degree-of-freedom control scheme that can be considered as the classical
solution to be employed as a dead time compensator [114]. The control scheme is
shown in Figure 8.1, where P̃ (s) is the delay-free part of the process. It appears that
the presence of the model of the process is used in order to predict the future values
of the output. In particular, if a perfect model of the process is employed, the feed-
back signal can be trivially expressed as y(t + L) where L is the dead time of the
process. In other words, the dead time is outside of the control loop, as it is shown
in Figure 8.2, which represents, from the point of view of the set-point response,
an equivalent scheme of Figure 8.1. In this way, the controller can be designed, in
principle, as the process were delay free. Obviously, the unavoidable modelling un-
certainties have to be taken into account, and therefore it is not advisable to design
an aggressive controller as it could make the overall control system unstable.

A. Visioli, Q.-C. Zhong, Control of Integral Processes with Dead Time,
Advances in Industrial Control,
DOI 10.1007/978-0-85729-070-0_8, © Springer-Verlag London Limited 2011
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Fig. 8.1 Block diagram of the classical Smith predictor

Fig. 8.2 Equivalent block diagram of the classical Smith predictor

In any case, while the classical Smith predictor is effective for self-regulating
processes, when it is applied to integral processes, it is unable to provide a null
steady-state error in the presence of a constant load disturbance d [16]. In fact,
consider the IPDT process

P(s) = K

s
e−Ls, (8.1)

for which, evidently, P̃ (s) = K/s, and a PI controller

C(s) = Kp

(
1 + 1

Tis

)
. (8.2)

According to the control scheme of Figure 8.1, the process output can be calculated
as

Y(s) = Kp

(
1 + 1

Tis

)
K
s
e−Ls

1 + Kp

(
1 + 1

Tis

)
K
s

R(s)

+ K

s
e−Ls

(
1 − Kp

(
1 + 1

Tis

)
K
s
e−Ls

1 + Kp

(
1 + 1

Tis

)
K
s

)
D(s), (8.3)

and therefore, by considering only the load disturbance response, the expression of
the process output can be rewritten as

Y(s) = K(Tis
2 + KKpTi(1 − e−Ls)s + KKp(1 − e−Ls))e−Ls

s(Tis2 + KKpTis + KKp)
D(s). (8.4)

Hence, when a unit step signal is applied as a load disturbance (i.e., D(s) = 1/s), by
applying the final value theorem and the l’Hôpital’s rule, it can be determined that
the steady-state value of the process output is KL.

As an illustrative example, consider the process

P(s) = 1

s
e−5s (8.5)
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Fig. 8.3 Results obtained by applying the classical Smith predictor

Fig. 8.4 Block diagram of the modified Smith predictor

and a PI controller with Kp = 0.1 and Ti = 27. The response of the classical Smith
predictor of Figure 8.1 when a unit step is applied to the set-point at time t = 0 and a
step of amplitude d = −0.1 is applied as a load disturbance at time t = 150 is shown
in Figure 8.3, where it appears that a steady-state error occurs in the presence of a
constant load disturbance.

In order to overcome this problem, different solutions have been proposed in the
literature. They will be presented in the next sections.

8.2 Modified Smith Predictor

A modification of the original Smith predictor to cope with load disturbances has
been proposed in [145]. It consists of modifying the scheme of Figure 8.1 and is
shown in Figure 8.4 (note that it is still a one-degree-of-freedom controller).

In this case,

P1(s) = K
1 − Ls

s
. (8.6)

If C(s) is a PI controller (see (8.2)), the transfer function between the set-point r

and the process variable y is
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Fig. 8.5 Results obtained by applying the modified Smith predictor (nominal case)

H(s) = Y(s)

R(s)
=

C(s)P (s)
1+C(s)(P1(s)−P(s))

1 + C(s)P (s)
1+C(s)(P1(s)−P(s))

= C(s)P (s)

1 + C(s)P1(s)

= KKp (Tis + 1) e−Ls

Ti(1 − KKpL)s2 + KKp (Ti − L) s + KKp

, (8.7)

while the transfer function between the load disturbance d and the process variable
y is

Hd(s) = Y(s)

D(s)
= P(s)

1 + C(s)P (s)
1+C(s)(P1(s)−P(s))

= K(Ti(1−KKpL)s2 + KKp(Ti −L − Tie
−Ls)s + KKp(1 − e−Ls))e−Ls

s(Ti(1 − KKpL)s2 + KKp(Ti − L)s + KKp)
.

(8.8)

It can be easily determined (by applying the final value theorem) that, with this
modification, the controller is capable to provide a null steady-state error in the
presence of a constant load disturbance. For example, consider again process (8.5)
and a PI controller (as in Section 8.1) with Kp = 0.1 and Ti = 27. The response of
a unit step set-point signal and of a step load disturbance of amplitude d = −0.1 is
plotted in Figure 8.5.

The null steady-state error is achieved also in the presence of modelling uncer-
tainties. For example, when there is a 10% estimation error in the dead time (namely,
the value of the dead time term employed in the controller is L = 5.5), the response
is shown in Figure 8.6. The control scheme is effective, but since it is a one-degree-
of-freedom control scheme, it is difficult to achieve high performance in both the
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Fig. 8.6 Results obtained by applying the modified Smith predictor (perturbed case)

set-point following and load disturbance rejection. An alternative P1(s) proposed in
[9] is

P1(s) = P̃ (s)

(Ls + 1)
. (8.9)

In this case, if C(s) is a PI controller (see (8.2)), the transfer function between the
set-point r and the process variable y is

H(s) = Y(s)

R(s)
=

C(s)P (s)
1+C(s)(P1(s)−P(s))

1 + C(s)P (s)
1+C(s)(P1(s)−P(s))

= KKp

(
s + 1

Ti

)(
s + 1

L

)
e−Ls

s3 + 1
L
s2 + KKp

L
s + KKp

TiL

, (8.10)

while the transfer function between the load disturbance d and the process variable
y is

Hd(s) = Y(s)

D(s)
= P(s)

1 + C(s)P (s)
1+C(s)(P1(s)−P(s))

= K
(
(1 + Ls) s2 + KKp

(
s + 1

Ti

)
(1 − (1 + Ls) e−Ls)

)
e−Ls

s
(
Ls3 + s2 + KKps + KKp

Ti

) .

(8.11)

In case a PID controller is employed, namely,

C(s) = Kp

(
1 + 1

Tis
+ Tds

)
(8.12)
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Fig. 8.7 Results obtained by applying the modified Smith predictor with the alternative choice for
P1(s) (nominal case)

it results in

H(s) = Y(s)

R(s)
= KKps

(
s + 1

L

)(
Tds2 + s + 1

Ti

)
e−Ls

s3 + 1+KKpTd

L
s2 + KKp

L
s + KKp

TiL

(8.13)

and

Hd(s) = Y(s)

D(s)

= K
(
(1 + Ls)s2 + KKp

(
Tds2 + s + 1

Ti

)
(1 − (1 + Ls)e−Ls)

)
e−Ls

s
(
Ls3 + (1 + KKpTd)s2 + KKps + KKp

Ti

) .

(8.14)

Also in this case it can be easily determined that the controller is capable to
provide a null steady-state error in the presence of a constant load disturbance. As
an illustrative example, consider again process (8.5) and a PI controller (as in Sec-
tion 8.1) with Kp = 0.1 and Ti = 27. The response of a unit step set-point signal
and of a step load disturbance of amplitude d = −0.1 is plotted in Figure 8.7. If
there is a 10% estimation error in the dead time (namely, the value of the dead time
term employed in the controller is L = 5.5), then the result obtained is shown in
Figure 8.8.

8.3 Aström–Hang–Lim Modified Smith Predictor

The new Smith predictor devised by Aström, Hang, and Lim [9] has received con-
siderable attention in the last years. Its rationale and the developments that has been
proposed are presented hereafter.
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Fig. 8.8 Results obtained by applying the modified Smith predictor with the alternative choice for
P1(s) (perturbed case)

Fig. 8.9 Block diagram of the Aström–Hang–Lim modified Smith predictor

8.3.1 Methodology

The control scheme is shown in Figure 8.9, where it appears that a key role is played
by the transfer function M(s) whose output represents an estimate of the load dis-
turbance d . The transfer function between the set-point and the process variable
is

H(s) = Y(s)

R(s)
= kKe−Ls

s + kK

1 + M(s)K
s
e−Ls

1 + M(s)K
s
e−Ls

= kKe−Ls

s + kK
, (8.15)

and it is therefore independent of the M(s) block, which can be designed by consid-
ering the load disturbance rejection task only. By noting that the transfer function
between the load disturbance and the process output is

Hd(s) = Y(s)

D(s)
=

K
s
e−Ls

1 + M(s)K
s
e−Ls

, (8.16)
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and by considering Expression (8.11), it can be derived that selecting

M(s) = C(s)

1 + C(s)
1+C(s)(P1(s)−P(s))

= C(s)

1 + C(s)

1+C(s)
( K
s(1+Ls)

− K
s

e−Ls
)
, (8.17)

the same load response of the modified Smith predictor of Figure 8.4 is obtained.
However, the load response can be improved by choosing a different transfer func-
tion for M(s), which depends on three design parameters:

M(s) = K4 + K3
s

1 + KK1 + KK2
s

+ KK3
s2 − K

(
K4
s

+ K3
s2

)
e−Ls

, (8.18)

where, in order to be lims→0 Hd(s) = 0,

K4 = K2 + K3L. (8.19)

With this choice, the transfer function between the load disturbance and the process
output is

Hd(s) = K((1 + KK1) s2 + KK2s + KK3 − K (K4s + K3) e−Ls)e−Ls

s((1 + KK1) s2 + KK2s + KK3)
. (8.20)

It can be easily shown that this choice yields a null steady-state error in the pres-
ence of a constant load disturbance. Further, it can be noted that, if only the load
disturbance is considered, the scheme of Figure 8.9 is equivalent to the scheme of
Figure 8.4 if

P1(s) = P̃ (s)
K1s

2 + K2s + K3

K4s + K3
. (8.21)

The use of three additional design parameters provides to the two-degree-of-
freedom control scheme the capability of improving the performance with respect
to the modified Smith predictor control scheme of Figure 8.4.

As an example, consider again process (8.5) and the following values of the con-
troller parameters: k = 0.5, K1 = 4, K2 = 3, K3 = 0.6. Then, assuming that the dead
time is estimated perfectly (as well as the process gain), it is K4 = K2 + K3L = 6.
The results related to the same control task of Section 8.2 are shown in Figure 8.10.
It appears that, as expected, the use of a two-degree-of-freedom controller achieves
satisfactory performance in both the set-point following and load disturbance rejec-
tion tasks. In order to verify the robustness of the controller to modelling uncer-
tainties, a dead time estimation error of 10% is considered, that is, the estimated
dead time is L = 5.5, and therefore K4 = K2 + K3L = 6.3 (the other controller
parameters are the same as in the nominal case). The related results are shown in
Figure 8.11.

8.3.2 Robust Tuning Method

The control scheme proposed by Aström, Hang, and Lim appears to be effective,
but its tuning can be difficult because there are four parameters involved apart from
k and their physical meaning is not entirely clear.
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Fig. 8.10 Results obtained by applying the Aström–Hang–Lim modified Smith predictor (nominal
case)

Fig. 8.11 Results obtained by applying the Aström–Hang–Lim modified Smith predictor (per-
turbed case)

In order to provide an effective help in this context, a robust tuning method has
been proposed in [30]. In fact, the block M(s) can be realised as shown in Fig-
ure 8.12, where

M0(s) = KK4s + KK3

(1 + KK1) s2 + KK2s + KK3
. (8.22)

This expression can be rewritten as

M0(s) = a3s + 1

a1s2 + a2s + 1
(8.23)
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Fig. 8.12 Equivalent representation of the M(s) block

with

a1 = 1 + KK1

KK3
, a2 = K2

K3
, a3 = K4

K3
. (8.24)

Hence, the transfer function Hd(s) (see (8.20)) can be written as

Hd(s) =
(

1 − M0(s)

P̃ (s)
P (s)

)
P(s). (8.25)

By taking into account Expressions (8.23) and (8.24), in order to obtain a null
steady-state error when a constant load disturbance occurs, condition (8.19) be-
comes

a3 = a2 + L. (8.26)

Then, the damping factor a2/(2
√

a1) for the second-order system (8.23) is chosen
as 1/

√
2 so that a fast disturbance response with acceptable overshoot is achieved.

Thus,

a2 = √
2a1. (8.27)

By considering that the (open-loop) transfer function from d to d̂ is (see Figure 8.12)

W(s) := P(s)M(s) = P(s)

M0(s)

P̃ (s)

1 − M0(s)

P̃ (s)
P (s)

= M0(s)e
−Ls

1 − M0(s)e−Ls
, (8.28)

we have that the related complementary sensitivity transfer function can be deter-
mined as

H0(s) := W(s)

1 + W(s)
= M0(s)e

−Ls. (8.29)

At this point, consider a process model Pm(s) with multiplicative uncertainty,
namely,

P(s) = Pm(s)
(
1 + Δ(s)

)
, (8.30)

where

Pm(s) = Km

s
e−Lms, (8.31)

and assume that the uncertainty is only for the dead time (this is the most critical
case), namely (K = Km),

P(s) = K

s
e−(Lm+ΔL)s = Pm(s)e−ΔLs. (8.32)
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The uncertainty can be therefore seen as a multiplicative uncertainty where

Δ(s) = e−ΔLs − 1. (8.33)

The robust stability criterion for multiplicative uncertainty is given by the fol-
lowing expression [22]: ∥∥Δ(s)H0(s)

∥∥∞ < 1 (8.34)

which, by taking into account (8.29) can be rewritten as

∣∣M0(jω)
∣∣ <

1

|Δ(jω)| ∀ω, (8.35)

that is (see (8.23) and (8.33)),∣∣∣∣ ja3ω + 1

1 − a1ω2 + ja2ω

∣∣∣∣ <
1

|e−jωΔL − 1| ∀ω. (8.36)

Now, consider the delay margin Dm, i.e., the maximum delay error that the sys-
tem can tolerate before becoming unstable. According to the definition of phase
margin, it is

Dm = φm

ωc

π

180
, (8.37)

where ωc is the gain crossover frequency. If ΔL = Dm, then it is∥∥Δ(jωc)H0(jωc)
∥∥ = ∥∥Δ(jωc)M0(jωc)

∥∥ = 1. (8.38)

Hence, by approximating the dead time term with a first-order Taylor series expan-
sion, i.e., e−ΔL ∼= 1 − ΔLs, it can be deduced that

1 + a2
3ω2

c

(1 − a1ω2
c )

2 + a2
2ω2

c

= 1

D2
mω2

c

. (8.39)

Now, consider the phase margin φm = 180/π ∼= 57.3°, which is a sensible value.
In this case, Dm = 1/ωc (see (8.37)), and, by considering also Expression (8.27),
Equation (8.39) becomes

1 + a2
3

D2
m

1 + a2
1

D4
m

= 1, (8.40)

that is,

Dm = a1

a3
. (8.41)

It is sensible to choose a delay margin proportional to the maximum delay uncer-
tainty ΔLmax. By considering Dm = 2ΔLmax, it results

a1 = 2a3ΔLmax. (8.42)
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Thus, by considering (8.26), (8.27), and (8.42), the values of the parameters of
M0(s) can be obtained as

a2 = 2
(
ΔLmax +

√
ΔL2

max + LmΔLmax
)
,

a1 = a2
2

2
,

a3 = a2 + Lm.

(8.43)

In order to tune the parameters of the M(s) transfer function (8.18), it is sufficient
to select

K3 = 1, (8.44)

and then from (8.24) it can be deduced that

K2 = 2
(
ΔLmax +

√
ΔL2

max + LmΔLmax
)
, (8.45)

K1 = 1

2
K2

2 − 1

K
, (8.46)

K4 = K2 + Lm. (8.47)

As an illustrative example, consider the true process

P(s) = 1

s
e−5s (8.48)

and consider the following process model:

Pm(s) = 1

s
e−5.5s , (8.49)

that is, K = Km = 1, L = 5, and Lm = 5.5. Then, by selecting ΔLmax = 0.5, formu-
lae (8.44)–(8.47) give K1 = 8.96, K2 = 4.46, K3 = 1, and K4 = 9.96. In addition,
the gain k = 0.5 has been selected. The set-point and load disturbance step responses
are shown in Figure 8.13, where the effectiveness of the tuning procedure appears.

8.3.3 Simplified Tuning Method

As an alternative to the robust tuning method presented in Section 8.3.2, the simple
approach proposed in [153] can be considered. It consists in representing the M(s)

block as shown in Figure 8.14.
In this case, the disturbance response is given by the transfer function (see (8.20)

and (8.25))

Hd(s) = (
1 − sM0(s)P (s)

)
P(s) = (

1 − M0(s)Ke−Ls
)K

s
e−Ls. (8.50)

In order to obtain a null steady-state error in response to a constant load disturbance,
the condition

lim
s→0

Hd(s) = 0 (8.51)
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Fig. 8.13 Results obtained by applying the robust tuning method to the Aström–Hang–Lim mod-
ified Smith predictor (perturbed case)

Fig. 8.14 Another equivalent representation of the M(s) block

is equivalent to the condition that zero s = 0 in 1 − M0(s)Ke−Ls has a multiplicity
equal to two. This implies that

lim
s→0

(
1 − M0(s)Ke−Ls

) = 0 (8.52)

and

lim
s→0

d

ds

(
1 − M0(s)Ke−Ls

) = 0. (8.53)

Condition (8.52) yields

M0(0) = 1

K
, (8.54)

while condition (8.53) yields

2LM0(0) − L

K
− Ṁ0(0) = 0. (8.55)

Thus, M0(s) should satisfy (8.54) and (8.55) at the same time. A possible solution
is to consider

M0(s) = 1

K

αs + 1

(λs + 1)2
, (8.56)
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Fig. 8.15 Results obtained by applying the simplified tuning method to the Aström–Hang–Lim
modified Smith predictor (nominal case)

where, by considering (8.55), it has to be

α = 2λ + L. (8.57)

Thus,

M0(s) = 1

K

(2λ + L)s + 1

(λs + 1)2
(8.58)

and

Hd(s) = (λs + 1)2 − ((2λ + L)s + 1) e−Ls

(λs + 1)2

K

s
e−Ls. (8.59)

It appears that the disturbance response depends on the design parameter λ which
can be tuned in order to meet the desired specifications. In particular, it has to be
noted that M0(s) is, in fact, a low-pass filter whose bandwidth is a monotonic func-
tion of λ. In any case, it is difficult to address the transfer function (8.59) analyti-
cally, and therefore a rule of thumb, which considers modelling uncertainties, has
been established [153]. It is suggested to select λ in the interval between 0.5L and
1.5L.

As an illustrative example, process (8.5) is considered again. By selecting k = 0.5
for the set-point response and λ = L = 5 for the load disturbance rejection, the
obtained results are shown in Figure 8.15. If the dead time term is estimated as L =
5.5 (and the value of λ = 5.5 is selected accordingly), the obtained results are those
shown in Figure 8.16. Despite the simplicity of the technique, a high performance
is achieved.
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Fig. 8.16 Results obtained by applying the simplified tuning method to the Aström–Hang–Lim
modified Smith predictor (perturbed case)

Fig. 8.17 Anti-windup compensation scheme for the modified Smith predictor

8.3.4 Anti-windup Compensation

In the presence of an actuator saturation, the performance obtained by the modified
Smith predictor can be decreased by the windup phenomenon (see Section 2.1.2).
In order to solve this problem, a very simple anti-windup compensation strategy
has been proposed in [28]. An additional saturation block is placed in the control
scheme, just after the gain k, as shown in Figure 8.17. This saturation block should
describe the actuator constraint acting on the process input (which has also been
inserted in the scheme of Figure 8.17). The added saturation block aims at predicting
(and therefore compensating) the adverse effects of the process input saturation.

As an illustrative example of the effectiveness of this simple technique, the same
nominal case of Section 8.3.3 is considered, where an input saturation limit of 0.2
has been implemented. The set-point unit step response without the anti-windup
compensation in shown in Figure 8.18. Only the set-point response has been con-
sidered because it is the one that is mainly affected by the windup phenomenon. It is
evident that the performance is worsen by the presence of the saturation, as an over-
shoot appears and the settling time is increased. Conversely, by applying the anti-
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Fig. 8.18 Results obtained by considering input saturation

Fig. 8.19 Results obtained by considering input saturation and an anti-windup technique

windup technique (see Figure 8.19), the set-point response is smooth (and without
overshoot) as in the case where the input saturation is not involved (see Figure 8.15).
Similar results are obtained also in the presence of modelling uncertainties.

8.4 Matausek–Micic Modified Smith Predictor

A simple and straightforward modification of the original Smith predictor to cope
with integral processes has been presented in [69]. The basic scheme and a further
improvement are explained in the next subsections.
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Fig. 8.20 Block diagram of the Matausek–Micic modified Smith predictor

8.4.1 Basic Scheme

The modification consists in adding an additional feedback loop from the difference
of the process output and the model output to the control variable, as it is shown in
Figure 8.20, where M(s) is a simple gain, i.e.,

M(s) = K0. (8.60)

Actually, d̂ is evidently an estimate of the load disturbance d . In the nominal
case, the set-point and load disturbance response is given by (note that it is assumed
that the process is described by an IPDT model (8.1))

Y(s) = KrKe−Ls

s + KKr

R(s)

+ K(s + KKr(1 − e−Ls))e−Ls

(s + KKr)(s + K0Ke−Ls)
D(s). (8.61)

It can be noted that

lim
s→0

K(s + KKr(1 − e−Ls))e−Ls

(s + KKr)(s + K0Ke−Ls)
= 0, (8.62)

namely, a null steady-state error is ensured in the presence of a constant load dis-
turbance. Moreover, the scheme has a two-degree-of-freedom structure, because
only the load disturbance compensation performance depends on the design param-
eter K0.

In order to provide rules for the tuning of the controller (i.e., for the determination
of the values of K0 and Kr ), the following considerations can be done. From (8.74) it
is apparent that the stability of the modified Smith predictor control system depends
on the roots of the characteristic equation

(s + KKr)
(
s + K0Ke−Ls

) = 0. (8.63)

While an analysis of the roots of the equation

s + K0Ke−Ls = 0 (8.64)

can be performed by applying a root locus technique, for the purpose of tuning, it
is sufficient to determine the ultimate gain K0u. In this context, Equation (8.64) can
be rewritten as

1 + W(s) = 0, (8.65)
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where, evidently,

W(s) := K0K

s
e−Ls. (8.66)

Then, the ultimate gain K0u can be determined by setting the phase margin φm =
π + arg {W (jωc)} of W(s) to zero, that is, by solving the following system:

π + arg
{
W (jωc)

} = 0, (8.67)∣∣W (jωc)
∣∣ = 1. (8.68)

It yields

K0u = π

2KL
. (8.69)

A sensible value of K0 is therefore given by (see Section 7.4.2)

K0 =
π
2 − φm

KL
, (8.70)

that is,

K0 = 1

2KL
(8.71)

if a phase margin of W(s) equal to φm = 61.3° is selected.
Regarding the choice of the parameter Kr , it is worth rewriting it as

Kr = 1

KTr

(8.72)

because, in this way, it is clear from Expression (8.61) that Tr is the time constant of
the closed-loop set-point step response. Thus, Tr has a clear physical meaning and
can be selected by considering the trade-off between aggressiveness and robustness.
In any case, a rigorous robust tuning procedure has been presented in [43].

As an illustrative example, the same control task of the previous subsections is
considered, namely, a unit step signal is applied to the set-point at time t = 0, and a
load step disturbance of amplitude –0.1 is applied at time t = 150 to process (8.5).
The result obtained by selecting Tr = 2 (i.e., Kr = 0.5) in the nominal case (that is,
K0 = 1/(2KL) = 0.1) is shown in Figure 8.21. If the perturbed case in considered,
that is, the dead time is estimated as L = 5.5 and therefore K0 = 1/(2KL) = 0.909,
the resulting process and control variable are those plotted in Figure 8.22.

It is worth stressing at this point that, in case the value of the dead time is not
very significant (with respect to the dominant time constant of the process), a similar
approach based on the IMC concept can be employed (note that it can be applied to
SOIPDT processes) [46, 48].
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Fig. 8.21 Results obtained by applying the Matausek–Micic modified Smith predictor (nominal
case)

Fig. 8.22 Results obtained by applying the Matausek–Micic modified Smith predictor (perturbed
case)

8.4.2 Improvement

An improvement of the previous scheme has been presented in [70]. It consists in
choosing M(s) in the control scheme of Figure 8.20 as

M(s) = K0 (Tds + 1)

Tf s + 1
, Tf = Td

10
, (8.73)

that is, a (filtered) PD structure is employed instead of a proportional gain. In this
case, the set-point and load disturbance response is given by
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Y(s) = KrKe−Ls

s + KKr

R(s)

+ K(s + KKr(1 − e−Ls))e−Ls

(s + KKr)
(
s + K0K(Tds+1)

Tf s+1 e−Ls
)D(s), (8.74)

and therefore the stability of the modified Smith predictor control system depends
on the roots of the characteristic equation

(s + KKr)

(
s + K0K (Tds + 1)

Tf s + 1
e−Ls

)
= 0. (8.75)

By following the same approach of the previous subsection, the following charac-
teristic equation can be analysed:

1 + W(s) = 0, (8.76)

where

W(s) := K0K (Tds + 1)

s(Tf s + 1)
e−Ls. (8.77)

Then, by choosing the value of the derivative time constant Td to be proportional to
the dead time L, that is,

Td = αL, 0 ≤ α < 1, (8.78)

one can obtain the solution of Equation (8.67) after having neglected the first-order
filter in M(s) (because Tf = Td/10) and after having exploited the following ap-
proximation:

arctan(αLωc) ∼= αLωc. (8.79)

It results to be

ωc =
π
2 − φm

(1 − α)L
, 0 < φm <

π

2
. (8.80)

By assuming that

0 ≤ KK0αL < 1, (8.81)

from (8.68) it can be derived that

ωc = KK0√
1 − (KK0αL)2

, (8.82)

and, finally, by considering (8.80) and (8.82), the gain K0 can be obtained as

K0 =
π
2 − φm

KL

√
(1 − α)2 + (

π
2 − φm

)2
α2

. (8.83)

It appears from (8.78) and (8.83) that the choice of α and φm allows the de-
termination of Td and K0. Note also that the choice α = 0 yields the case of the
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Fig. 8.23 Results obtained by applying the improved Matausek–Micic modified Smith predictor
(nominal case)

previous subsection (see (8.70)). In [70], based on a large number of simulations, it
is suggested to select

α = 0.4, φm = 64°, (8.84)

while the same considerations done in the previous subsection can be applied for
the tuning of Kr (see (8.72)).

As an illustrative example, consider the same control task of the previous subsec-
tion. In the nominal case, the application of the tuning rules (8.84) gives K0 = 0.145
and Td = 2 (Tf = 0.2), while the same value Tr = 2 (i.e., Kr = 0.5) is selected. The
resulting process and control variables are plotted in Figure 8.23. Conversely, if the
dead time is estimated as L = 5.5, the tuning formula (8.84) gives K0 = 0.132 and
Td = 2.2 (Tf = 0.22), and the corresponding results are shown in Figure 8.24.

It is worth stressing that, in order to cope with the possible occurrence of the
windup phenomenon in the presence of actuator saturation, the same method de-
scribed in Section 8.3.4 can be applied also to the scheme of Figure 8.20 [29]. In-
deed, it is sufficient to insert a model of the actuator saturation just after the gain Kr

in order to compensate the windup effect efficiently.
Finally, note that the use of a sliding mode controller instead of the proportional

controller Kr has been proposed in [13].

8.5 Normey-Rico–Camacho Modified Smith Predictor

The two-degree-of-freedom control scheme proposed in [78] has received a signifi-
cant attention in the last few years, as it is shown in the following subsections.
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Fig. 8.24 Results obtained by applying the improved Matausek–Micic modified Smith predictor
(perturbed case)

Fig. 8.25 Block diagram of the Normey-Rico–Camacho modified Smith predictor

8.5.1 Control Scheme

The Normey-Rico and Camacho scheme consists of a simple modification of the
scheme of Figure 8.4 and aims at improving the set-point response. In particular, a
filter F(s) is applied to the set-point as in the typical two-degree-of-freedom control
schemes (see Figure 2.3). The overall control scheme is shown in Figure 8.25.

In this case, the following choices are made (see (8.6) for the choice of P1(s)):

C(s) = Kp

(
1 + 1

Tis

)
, (8.85)

P1(s) = K
1 − Ls

s
. (8.86)

Obviously, the transfer function between the load disturbance and the process output
does not depend on the prefilter F(s), while the transfer function from the set-point
to the process output is (see (8.7))

H(s) = F(s)C(s)P (s)

1 + C(s)P1(s)
. (8.87)
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In the scheme of Figure 8.4, if a high performance is obtained in the load disturbance
rejection task, a significant overshoot results in the set-point step response because
of the zero of the primary controller C(s). Thus, the prefilter F(s) can be employed
effectively to cancel this zero by selecting

F(s) = 1 + αTis

1 + Tis
, α < 1. (8.88)

8.5.2 Robust Tuning

The control scheme of Figure 8.25 requires the tuning of three parameters: Kp ,
Ti , and α. A typical goal of a design procedure is to obtain a critically damped
closed-loop system (in order to avoid overshoots), which is as fast as possible. By
considering the characteristic equation of the closed-loop system (see (8.7))

Ti(1 − KKpL)s2 + KKp (Ti − L) s + KKp = 0, (8.89)

it can be derived that, in order for the closed-loop system to have a double pole in
s = −1/T0, the following relations have to be verified:

Ti = 2T0 + L, (8.90)

Kp = 2T0 + L

K (T0 + L)2
. (8.91)

Then, the value α = 0.4 is suggested after having performed a large number of
simulations.

At this point, the value of T0 has to be selected. For this purpose, a robustness
analysis can be performed. By considering that a nominal process model denoted as
Pm(s) = Kme−Lms/s is related to the real process P(s) as

P(s) = Pm(s) + ΔP(s), (8.92)

the norm-bound uncertainty region |DP | is determined such that the closed-loop
stability is maintained if |ΔP | < |DP |. The characteristic equation of the closed-
loop system in the presence of uncertainty is

1 + C(s)
(
P1(s) + ΔP(s)

)
, (8.93)

and, therefore, by solving for ΔP(s), the norm-bound uncertainty can be determined
as

|DP | = |1 + C(jω)P1(jω)|
|C(jω)| = |K (1 + jωT0)

2 |
|jω(1 + jω (2T0 + L))| , ω > 0. (8.94)

The minimum of the normalised norm-bound uncertainty, denoted as δmin, can be
obtained as

δmin = min
∣∣DP · K−1

∣∣ = ∣∣T 2
0 (2T0 + L)−1

∣∣, (8.95)
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and, therefore,

T0 = δmin

(
1 +

√
1 + L

δmin

)
. (8.96)

Hence, the value of T0 can be selected based on value δmin which has to be
related to the uncertainties of the process. Typically, for processes with dominant
dead time, the robustness issue can be addressed by considering only dead-time
estimation errors [80]. In this case, the normalised uncertainty can be described as

ΔP(s) = P(s) − Pm(s)

K
= 1

s
e−Ls

(
1 − e−ΔLs

)
, (8.97)

where

ΔL = Lm − L. (8.98)

Then, by approximating e−ΔLs as 1 − ΔLs, Equation (8.97) can be rewritten as

ΔP(s) = e−LsΔL. (8.99)

The modulus of the previous expression for s = jω is evidently constant, and its
value is |ΔL|. Based on the above analysis, the system is robustly stable, in princi-
ple, if the value δmin = ΔL is chosen for the selection of T0 by means of Expression
(8.96). However, by taking into account the approximations done and the fact that
a robust performance is pursued, it is suggested to select the value of δmin between
1.5ΔL and 2ΔL if a small overshoot is required.

As a first illustrative example, process (8.5) is considered without uncertainty,
and the value T0 = 2 is selected, for which Ti = 9 and Kp = 0.18 (see (8.90) and
(8.91)). The set-point and load disturbance step responses are shown in Figure 8.26.

As a second example, as in the previous sections, a dead-time estimation error
ΔL = 0.5 is considered (namely, the estimated dead time is Lm = 5.5, whereas the
true dead time is L = 5. Thus, the value of δmin = 2 · 0.5 = 1 is chosen, and the
consequent value of T0 is 3.55 according to Expression (8.96). The resulting values
of Ti and Kp are therefore 12.6 and 0.154, respectively. The resulting set-point and
load disturbance step responses are plotted in Figure 8.27.

8.5.3 Improvement

An improvement of the method described in the previous subsections has been pre-
sented in [80]. While the primary PI controller C(s) is chosen as in (8.85) with Kp

and Ti given by (8.91) and (8.90), respectively, the filter F(s) is selected, differently
from (8.88), as the second-order transfer function

F(s) = (1 + T0s)
2

(1 + Tis) (1 + T1s)
. (8.100)
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Fig. 8.26 Results obtained by applying the Normey-Rico–Camacho modified Smith predictor
(nominal case)

Fig. 8.27 Results obtained by applying the Normey-Rico–Camacho modified Smith predictor
(perturbed case)

In this case, the closed-loop transfer function between the set-point and the pro-
cess output is

H(s) = Y(s)

R(s)
= 1

T1s + 1
e−Ls, (8.101)

while that between the load disturbance and the process output is

Hd(s) = K

s
e−Ls

(
1 − (2T0 + L) s + 1

(T0s + 1)2
e−Ls

)
. (8.102)



166 8 Smith-predictor-based Control

Fig. 8.28 Results obtained by applying the improved Normey-Rico–Camacho modified Smith
predictor (nominal case)

It appears that T1 determines the set-point response, while T0 determines the load
disturbance response, and therefore the two control tasks are fully decoupled. By
taking into account the robustness considerations done in the previous subsections,
the same tuning rule (8.96) can be employed for T0, while for T1, it is suggested to
select

T1 = 0.6T0 + Te, (8.103)

where Te is the equivalent time constant of the non-integral part of the process
(which has been assumed to be zero in the previous analysis).

The results obtained by employing the improved scheme for the nominal case
(where the same control task of the previous subsection has been considered) are
shown in Figure 8.28. Note that, again, T0 = 2 has been chosen, and, as a conse-
quence, Ti = 9, Kp = 0.18, and T1 = 0.6T0 = 1.2. On the contrary, when the dead
time is erroneously estimated as L = 5.5, the design parameters are determined as
T0 = 3.55, Ti = 12.6, Kp = 0.154, and T1 = 0.6T0 = 2.13, and the results obtained
are plotted in Figure 8.29.

8.5.4 An Alternative Approach

The design method proposed by Normey-Rico and Camacho can be derived also
by considering an Internal Model Control approach [76] (see Section 2.3.2.1), as
pointed out in [155]. Indeed, the control scheme of Figure 8.25 is equivalent to the
IMC scheme of Figure 2.16, where

Q(s) = C(s)

1 + C(s)P1(s)
. (8.104)



8.5 Normey-Rico–Camacho Modified Smith Predictor 167

Fig. 8.29 Results obtained by applying the improved Normey-Rico–Camacho modified Smith
predictor (perturbed case)

By applying the IMC design procedure (which yields an H2 optimal controller), it
can be obtained that

C(s) = 1

K

(2λC + L) s + 1

(λC + L)2 s
, (8.105)

where λC is the filter time constant (see (2.65)). It can be easily seen that this con-
troller transfer function is equivalent to the transfer function (8.85) with the tuning
rules (8.90)–(8.91) if λC = T0. Then, by considering that the IMC control system
transfer function (see Figure 2.17) results to be

(2λC + L)s + 1

(λCs + 1)2
e−Ls, (8.106)

the optimal prefilter transfer function (which minimises the H2 norm for λF → 0)
can be determined as

F(s) = (λCs + 1)2

((2λC + L)s + 1) (λF s + 1)
, (8.107)

which is equivalent to the prefilter transfer function (8.100) with again λC = T0 and
λF = T1 (in addition to Ti = 2T0 + L).

Thus, it can be concluded that the design methodology proposed in the previous
subsections is, in fact, optimal. A possible advantage of using an IMC approach to
derive the same result is that it is possible to extend it easily to processes with double
integrators and dead time [155].
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Fig. 8.30 Block diagram of the Normey-Rico–Camacho modified Smith predictor with an-
ti-windup compensation

8.5.5 Anti-windup Strategy

As an anti-windup strategy, the back-calculation technique explained in Sec-
tion 2.1.2 (see Figure 2.4) can be applied straightforwardly to the modified Smith
predictor of Figure 8.25 [152]. Indeed, the primary controller C(s) can be decom-
posed into a proportional and an integral part, and therefore the integral action can
be reduced by a term proportional to the saturation level of the actuator. The cor-
responding control scheme is shown in Figure 8.30, where Tt is the tracking time
constant, which is suggested to be selected (based on a stability analysis) as

Tt =
(

α + 1

2α + 1

)2

, (8.108)

where

α = T0

L
. (8.109)

The effectiveness of the anti-windup compensation technique is shown with the
following example, where the same control task of Section 8.3.4 is considered,
namely, an actuator saturation limit of 0.2 is applied to the process input. By consid-
ering T0 = 2 and T1 = 1.2, as in Figure 8.28, the set-point unit step response without
compensation is that shown in Figure 8.31 (note that the nominal case is consid-
ered). On the contrary, if the back-calculation technique is applied with Tt = 0.605,
the result obtained is that shown in Figure 8.32, where it appears that the overshoot
and the settling time are greatly reduced.

8.5.6 Comparison with Other Schemes

A simple comparison between different control schemes presented in the previous
sections can be made by considering the nominal case [79]. In particular, the scheme
of Figure 8.9 with the simplified tuning procedure of Section 8.3.3, the scheme of
Figure 8.20 with M(s) = K0 (see Section 8.4.1) and that of Figure 8.25, where F(s)

is a second-order system (see Section 8.5.3), are considered hereafter.
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Fig. 8.31 Results obtained by applying the improved Normey-Rico–Camacho modified Smith
predictor with actuator saturation and without anti-windup compensation

Fig. 8.32 Results obtained by applying the improved Normey-Rico–Camacho modified Smith
predictor with actuator saturation and with anti-windup compensation

If the set-point response is considered, it appears that all the methods provide
the same performance, because the closed-loop systems have in all the cases a first-
order-plus-dead-time transfer function with time constant given by 1/(kK) in the
Aström–Hang–Lim controller (see (8.15)), by 1/(KKr) in the Matausek–Micic
controller (see (8.74)), and by T1 in the Normey-Rico–Camacho controller (see
(8.101)).

Conversely, the transfer function between the load disturbance and the process
output is the same in the Aström–Hang–Lim and Normey-Rico–Camacho schemes
(provided that λ = T0, see (8.59) and (8.102)), but it is different in the Matausek–
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Fig. 8.33 Block diagram of the Chien–Peng–Liu modified Smith predictor

Micic scheme (see (8.74)), where the term Kr appears so that a full decoupling
between the set-point response and the load disturbance response is not achieved.
Further, the presence of the dead-time term in the denominator can yield a slow step
disturbance response.

Summarising, the Normey-Rico–Camacho scheme appears to provide the same
(high) performance of the Aström–Hang–Lim scheme by just simply modifying the
scheme of Figure 8.4 by adding an appropriate set-point filter.

8.6 Chien–Peng–Liu Modified Smith Predictor

An approach similar to the method presented in Section 8.5, which is based on the
use of a set-point filter, has been proposed in [16]. It consists of employing the
scheme of Figure 8.4, with P1(s) = K(1 − Ls)/s, and of using a set-point weight β

in the PI controller (see Section 2.1.2). The control scheme can be therefore modi-
fied as shown in Figure 8.33, where

C(s) = Kp

(
1 + 1

Tis

)
(8.110)

and

Csp(s) = Kp

(
β + 1

Tis

)
. (8.111)

Thus, the set-point and load disturbance response is given by

Y(s) = Kp

(
β + 1

Tis

)
K
s
e−Ls

1 + Kp

(
1 + 1

Tis

)
K
s
(−Ls + 1)

R(s)

+ K

s
e−Ls

(
1 − Kp

(
1 + 1

Tis

)
K
s
e−Ls

1 + Kp

(
1 + 1

Tis

)
K
s
(−Ls + 1)

)
D(s). (8.112)

Focusing on the set-point response, Expression (8.112) can be simplified to

Y(s)

R(s)
= KKp(βTis + 1)e−Ls

Ti(1 − KKpL)s2 + KKp(Ti − L)s + KKp

, (8.113)
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which is equal to

H(s) = 1

Trs + 1
e−Ls (8.114)

by taking

Kp = 1

K (L + βTr)
(8.115)

and

Ti = Tr + L

1 − β
. (8.116)

The set-point weight β can then be employed to meet the control requirements in
the load disturbance response. Indeed, by considering (8.112), (8.115), and (8.116),
it can be derived that

Y(s)

D(s)
= K

s
e−Ls

(
1 −

((
Tr+L
1−β

)
s + 1

)
e−Ls

(βTr (Tr+L)
1−β

)
s2 + (Tr+βL

1−β

)
s + 1

)
. (8.117)

If the desired closed-loop response is selected as(
Y(s)

D(s)

)
d

= K

s
e−Ls

(
1 − ((2Tlξ + L)s + 1) e−Ls

T 2
l s2 + 2Tlξs + 1

)
, (8.118)

the time constant Tl and the damping coefficient ξ of the second-order load response
can be obtained from (8.117) by selecting

Tl =
√

βTr (Tr + L)

1 − β
(8.119)

and

ξ = Tr + βL

2 − β

√
1 − β

βTr (Tr + L)
. (8.120)

Thus, the tuning procedure consists in first selecting the closed-loop servo re-
sponse speed by choosing appropriately the time constant Tr and then in choosing
an appropriate value of β in order to obtain satisfactory values for the time con-
stant Tl and the damping coefficient ξ (namely, in order to obtain a satisfactory load
disturbance response).

It is worth stressing that the tuning procedure can be quite complex because of
the nonlinear relations between Tl , ξ , and β . In case uncertainty in the dead time
estimation is considered, a guideline can be obtained by applying a simple analysis
based on the Routh–Hurwitz criterion [16]. The stability region for the parameter β

results to be

1 > β >
ΔL

Tr

, (8.121)

where ΔL is the estimation error, and the usual assumption Tr > ΔL is made.
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Fig. 8.34 Results obtained by applying the Chien–Peng–Liu modified Smith predictor (nominal
case)

Fig. 8.35 Results obtained by applying the Chien–Peng–Liu modified Smith predictor (perturbed
case)

The same process (8.5) is considered as an illustrative example. Then, Tr = 2 is
chosen, and then β is selected equal to 0.5. As a consequence, Kp = 0.17, Ti = 14,
and the expected values of Tl and ξ are 3.74 and 1.31, respectively. The set-point
and load disturbance step responses are shown in Figure 8.34. In case the dead time
is estimated as L = 5.5 (that is, ΔL = 0.5), it results, with the same choice as before
for Tr and β , Kp = 0.15, Ti = 15, and the expected values of Tl and ξ are 3.87 and
1.42, respectively. The corresponding simulation results are plotted in Figure 8.35.
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8.7 Seshagiri Rao–Rao–Chidambaram Modified Smith
Predictor

A generalisation of the Matausek–Micic modified Smith predictor, where the con-
troller Kr is substituted by a PI controller C(s) with set-point weight and M(s) is
a PD controller (see Figure 8.20) has been proposed in [106]. The tuning of the
PI controller can be performed by direct synthesis. In fact, based on the transfer
function between the set-point and the process output (see (8.74))

H(s) = Y(s)

R(s)
= C(s)P̃ (s)e−Ls

1 + C(s)P̃ (s)
, (8.122)

in which the dead time is outside of the feedback loop, a desired closed-loop transfer
function can be specified as (

Y(s)

R(s)

)
d

= ηs + 1

(λs + 1)2
, (8.123)

and therefore the controller transfer function can be determined as

C(s) = 1

P̃ (s)

(
Y(s)
R(s)

)
d

1 − (
Y(s)
R(s)

)
d

= ηs + 1

K(λ2s + (2λ − η))
. (8.124)

By taking η = 2λ, Expression (8.124) can be reduced to a PI controller (8.85) with

Kp = 2

Kλ
, Ti = 2λ. (8.125)

The possibly high overshoot determined by the presence of the zero in the closed-
loop transfer function (8.123) can be avoided by employing a set-point weight,
which is suggested, based on a large number of simulations, to be selected in the
range between 0.4 and 0.6.

The design of

M(s) = K0 (Tds + 1) (8.126)

can be performed based on gain and phase margin criteria. In particular, by consid-
ering that the characteristic equation involving M(s) is

1 + M(s)P (s) = 0, (8.127)

the open-loop transfer function is M(s)P (s), and therefore, by the definitions of
gain and phase margins, it can be written

arg
[
M(jωp)P (jωp)

] = −π, (8.128)∣∣M(jωg)P (jωg)
∣∣ = 1, (8.129)

Am = 1

|M(jωp)P (jωp)| , (8.130)

φm = π + arg
[
M(jωg)P (jωg)

]
, (8.131)

that is,
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Fig. 8.36 Results obtained by applying the Seshagiri Rao–Rao–Chidambaram modified Smith
predictor (nominal case)

arctan(Tdωp) − Lωp = −π

2
, (8.132)

K

ωg

√
K0

(
K0 + Tdω2

g

) = 1, (8.133)

Am = ωp

K

√
K0

(
K0 + Tdω2

p

) , (8.134)

φm = π

2
+ arctan

(
Tdωg

) − Lωg, (8.135)

where ωg and ωc are, evidently, the gain and phase crossover frequencies. Given
desired values for Am and φm, system (8.132)–(8.135) can be solved numerically for
K0 and Td . In order to simplify the procedure, it is worth adopting the approximation

arctan(x) = π

2
− 1

x
. (8.136)

It appears then that the overall tuning procedure is much more complex than that
of Section 8.4. However, this method can be extended to processes with a double
integrator.

The results obtained by applying the proposed controller to process (8.5) are
shown in Figure 8.36, where λ = 2 has been chosen, and therefore (see (8.125)),
the values Kp = 1 and Ti = 4 are obtained (the set-point weight has been fixed to
0.6). Further, as a consequence of the desired values Am = 1.8 and φm = 55°, the
PD parameters are obtained as K0 = 0.152 and Td = 1.493. If the perturbed case
is considered, namely, the estimated dead time is L = 5.5, the parameters obtained
are Kp = 1, Ti = 4, K0 = 0.138, and Td = 1.642 (with the same desired gain and
phase margin), and the corresponding set-point and load disturbance step responses
are plotted in Figure 8.37.
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Fig. 8.37 Results obtained by applying the Seshagiri Rao–Rao–Chidambaram modified Smith
predictor (perturbed case)

Fig. 8.38 Block diagram of the Tian–Gao modified Smith predictor

8.8 Tian–Gao Modified Smith Predictor

The method proposed by Tian and Gao in [120] consists of applying a modified
Smith predictor scheme to a IPDT process that has been prestabilised by applying
a local proportional feedback controller Kp2. The overall control scheme is shown
in Figure 8.38, where C(s) is a PI controller with a delayed integral action (see
Section 7.4.2), and M(s) = K0 (Tds + 1) is a PD controller. The tuning of the pro-
portional controller K0 is performed first, by considering the inner loop transfer
function

H2(s) =
K
s
e−Ls

1 + Kp2K

s
e−Ls

. (8.137)

Then, the same reasoning done in Section 8.4.1, based on the analysis of the char-
acteristic equation, can be applied also in this case, yielding (see Expression (8.71))

Kp2 = 1

2KL
. (8.138)
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Then, C(s) is designed to be the denominator of the transfer function H2(s), that
is,

C(s) = 1 + Kp2K

s
e−Ls. (8.139)

In this way, the effect of Kp2 in the set-point following task is eliminated. With the
previous choices, the process output can be written as

Y(s) = KrKe−Ls

s + KKr

R(s)

+ Kse−Ls

(s + Kp2Ke−Ls)(s + KM(s)e−Ls)
D(s). (8.140)

Thus, the gain Kr can be tuned, by following the same reasoning of Section 8.4.1,
as

Kr = 1

KTr

. (8.141)

The PD parameters K0 and Td can finally be selected by considering, similarly
to Section 8.4.2, the characteristic equation

1 + KK0 (1 + Tds)

s
e−Ls (8.142)

and by considering the corresponding phase margin relations:

KK0

√
1 + T 2

d ω2
c

ωc

= 1, (8.143)

φm = π

2
+ arctan(Tdω) − ωL. (8.144)

Then, by selecting

Td = αL, (8.145)

Equations (8.143) and (8.144) can be solved for K0 and Td after having chosen for
α and φm the suggested values of 0.5 and 60°, respectively.

The results related to the control of process (8.5) in the nominal case are shown
in Figure 8.39. Note that the application of the tuning procedure presented above
yields Kp2 = 1, Kr = 0.5 (Tr has been fixed to 2 as in the other examples of this
chapter), K0 = 0.176, and Td = 2.5. Conversely, if the dead time is estimated as
L = 5.5, the design parameters are modified as Kp2 = 0.09, K0 = 0.160, and Td =
2.75. The corresponding set-point and load disturbance step responses are plotted
in Figure 8.40.

8.9 More Complex Schemes

Other more complex schemes have been proposed in the last years. A few examples
of them are presented hereafter.
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Fig. 8.39 Results obtained by applying the Tian–Gao modified Smith predictor (nominal case)

Fig. 8.40 Results obtained by applying the Tian–Gao modified Smith predictor (perturbed case)

8.9.1 Majhi–Atherton Modified Smith Predictor

In the control scheme proposed in [62–65], which is shown in Figure 8.41, a new
proportional controller Kp2 is added to the control scheme of Figure 8.20 with the
aim of stabilising the integral process, and C(s) is a PI controller (see (8.85)).

The resulting set-point and load disturbance response is given as (by always as-
suming that the process is described by an IPDT model (8.1))

Y(s) = C(s)P (s)

1 + P̃ (s)(C(s) + Kp2)
R(s)
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Fig. 8.41 Block diagram of the Tian–Gao modified Smith predictor

+ P(s)

1 + P̃ (s)(C(s) + Kp2)

1 + P̃ (s)(C(s) + Kp2) − C(s)P (s)

1 + M(s)P (s)
D(s).

(8.146)

The method described in [65] can be used for the design of the three controllers
employed in the control scheme. By first constraining the value of Kp2 as

Kp2 = 1

K
, (8.147)

the tuning of the PI controller C(s) can be performed by first setting

Ti = 1

KKp2
= 1. (8.148)

In this way, the transfer function between the set-point and the process output is

H(s) = Y(s)

R(s)
= 1

1
KKp

s + 1
e−Ls, (8.149)

and therefore the proportional gain Kp can be selected appropriately in order to
obtain the desired closed-loop time constant as in Section 8.4.1.

Finally, the transfer function M(s) is chosen as a simple proportional gain,
M(s) = K0, whose value can be determined by following the same passages of
Section 8.4.1 that yield

K0 =
π
2 − φm

KL
. (8.150)

In [65] it is suggested to select a phase margin φm = 60°, namely,

K0 = π

6KL
= 0.5236

KL
. (8.151)

The usual process (8.5) is considered as a worked example. By selecting a desired
closed-loop time constant equal to 2, the resulting value of the proportional gain is
Kp = 0.5, and by applying the tuning rules (8.147)–(8.148) and (8.151) the resulting
values of the other controller parameters are Kp2 = 1, Ti = 1, and K0 = 0.105. The
set-point unit step response and the response to a load step disturbance of amplitude
–0.1 applied at t = 150 are plotted in Figure 8.42. If the dead time is estimated
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Fig. 8.42 Results obtained by applying the Majhi–Atherton modified Smith predictor (nominal
case)

Fig. 8.43 Results obtained by applying the Majhi–Atherton modified Smith predictor (perturbed
case)

as L = 5.5, the only controller parameter that is modified is K0 = 0.095, and the
corresponding results are in Figure 8.43.

It is worth stressing at this point that the presented design method can be applied
also in an automatic tuning context [64, 65] and that a tuning method based on
standard forms has also been proposed [62, 63].
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Fig. 8.44 Block diagram of the Liu–Cai–Gu–Zhang modified Smith predictor

8.9.2 Liu–Cai–Gu–Zhang Modified Smith Predictor

In the modified Smith predictor of Section 8.9.1 the load disturbance transfer func-
tion is somewhat complicated, and the controllers C(s) and Kp2 appear in both the
set-point and the load disturbance transfer function, and therefore the two control
tasks are coupled from the design point of view. In order to simplify the design
and to decouple the two control tasks, a solution has been proposed in [60], which
consists of using a control scheme where, with respect to that of Figure 8.41, the
feedback signals from the actual process output and the model output to the set-
point are cut off. The new scheme is shown in Figure 8.44.

The proportional gain Kp2 can be tuned by considering the transfer function
between the set-point and the process output (in the nominal case)

H(s) = Y(s)

R(s)
= F(s)P (s)

1 + Kp2P̃ (s)
. (8.152)

The characteristic equation is therefore

s + KKp2 = 0, (8.153)

which implies that the closed-loop system is stable for Kp2 > 0. A simple choice
is therefore to use a unity-feedback between the input and output of the delay-free
part of the process model, that is, to use

Kp2 = 1. (8.154)

The prefilter F(s) can then be designed, as in Section 8.5.4, in order to minimise
the H2 norm of the error signal, that is, in order to solve the following optimisation
problem:

min
∥∥Γ (s)

(
1 − H(s)

)∥∥2
2, (8.155)

where Γ (s) = 1/s (see Section 2.3.4.2). It results in

F(s) = s + KKp2

K (λs + 1)
, (8.156)

which is optimal for λ → 0. In practice, λ is the desired closed-loop time constant.
The disturbance estimator M(s) can be designed by first considering that the load

disturbance transfer function between the load disturbance d and its estimation d̂ is

W(s) = d̂

d
= M(s)P (s)

1 + M(s)P (s)
. (8.157)
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Ideally, this transfer function should be equal to e−Ls , that is, when a load distur-
bance occurs, the controller should produce an inversely equivalent signal to offset it
just after the process dead time L. However, by taking into account the steady-state
requirements, the desired transfer function can be selected as

Wd(s) = as + 1

(λds + 1)2
e−Ls, (8.158)

and, in order to obtain a zero steady-state error, it has to be (the sensitivity function
should have two zeros at s = 0)

lim
s→0

d

ds

[
1 − Wd(s)

] = 0, (8.159)

that is,

a = 2λd + L. (8.160)

From Expression (8.157) the corresponding transfer function M(s) can be deter-
mined as

M(s) = Wd(s)

1 − Wd(s)

1

P(s)
= s(as + 1)

K((λds + 1)2 − (as + 1) e−Ls)
. (8.161)

However, it can be noted that a pole-zero cancellation occurs at s = 0. In order to
avoid this internal instability and in order to obtain a more practical transfer func-
tion, the Maclaurin expansion can be employed to rewrite the estimator transfer
function. Thus, M(s) can be rewritten as

M(s) = M(s)

s
, (8.162)

and, therefore,

M(s) = 1

s

[
M(0) + M

′
(0)s + M

′′
(0)

2! s2 + · · ·
]
. (8.163)

It can be easily noted that, by taking into account the first three terms only, a PID
controller results, namely, M(s) can be written as

M(s) = KpM + KiM

s
+ KdMs, (8.164)

where

KpM = M
′
(0), KiM = M(0), KdM = M

′′
(0)

2
. (8.165)

The tuning of the disturbance estimator depends only on the parameter λd , which
can be conveniently selected based on the desired trade-off between aggressiveness
and robustness.

In the worked example with process (8.5), after having selected λ = 2 and λd = 3
(and Kp2 = 1), the load estimator transfer function results to be (note that a high-
frequency low-pass filter has to be added to make it proper)

M(s) = 0.2576 + 1

51.5s
+ 0.5069s. (8.166)
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Fig. 8.45 Results obtained by applying the Liu–Cai–Gu–Zhang modified Smith predictor (nomi-
nal case)

Fig. 8.46 Results obtained by applying the Liu–Cai–Gu–Zhang modified Smith predictor (per-
turbed case)

The results obtained in the set-point and load disturbance step response are plotted
in Figure 8.45. If the dead time is estimated as L = 5.5, it results

M(s) = 0.2461 + 1

57.1s
+ 0.5439s, (8.167)

and the corresponding set-point and load disturbance step responses are shown in
Figure 8.46.
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Fig. 8.47 Block diagram of the Lu–Yang–Wang–Zheng modified Smith predictor

8.9.3 Lu–Yang–Wang–Zheng Modified Smith Predictor

A double two-degree-of-freedom modified Smith predictor has been proposed in
[61]. The control scheme is shown in Figure 8.47, where it appears that there are four
controllers. In particular, as in Sections 8.9.1 and 8.9.2, the proportional controller
Kp2 is employed to stabilise the delay-free process P̃ (s), and M(s) is employed to
estimate the load disturbance d . Then, the two additional controllers F(s) and C(s)

are used to enhance the performance in the set-point following and load disturbance
rejection task, respectively.

As in the previous sections, the design of the controller is made by consider-
ing that a perfect model of the process (8.1) is available. In this case, the transfer
function between the set-point and the process output is

H(s) = F(s)P̃ (s)

1 + Kp2P̃ (s)
e−Ls. (8.168)

A desired closed-loop transfer function

1

Trs + 1
e−Ls (8.169)

can then be obtained easily by setting

Kp2 = 1

KTr

, F (s) = 1

KTr

, (8.170)

that is, F(s) is a simple proportional controller. With the previous choices, the load
disturbance closed-loop transfer function is

Hd(s) = KTr

(
s + 1

Tr
− KC(s)e−Ls

)
(Trs + 1) (s + KM(s)e−Ls)

e−Ls. (8.171)

By selecting M(s) = K0 as a simple proportional controller, its value can be deter-
mined as in (8.151):

K0 = π

6KL
= 0.5236

KL
. (8.172)

Finally, if C(s) is chosen as a PD controller, namely,

C(s) = Kp (1 + Tds) , (8.173)
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then Expression (8.171) can be rewritten as

Hd(s) = KTr

(
s + 1

Tr
− KKp (1 + Tds) e−Ls

)
(Trs + 1) (s + KK0e−Ls)

e−Ls. (8.174)

By employing the approximation e−Ls ∼= 1 − Ls we have

Hd(s) = KTr

(
KLKpTds2 + (−KKpTd + KKpL + 1)s + ( 1

Tr
− KKp

))
Tr

(
1 − π

6

)
s2 + (

Tr
π
6L

+ 1 − π
6

)
s + π

6L

e−Ls.

(8.175)

In order to have a null steady-state error in the presence of a constant load distur-
bance, the constant term in the numerator has to be zero, so that

Kp = 1

KTr

. (8.176)

The load disturbance unit step response can be therefore expressed as

Yd(s) = 1

s
Hd(s) = KTr

KLKpTds + (−KKpTd + KKpL + 1)

Tr

(
1 − π

6

)
s2 + (

Tr
π
6L

+ 1 − π
6

)
s + π

6L

e−Ls, (8.177)

and in this context, Td can be chosen in order to minimise the integrated square
error, that is [61],

Td = Tr (6 − π) (Tr + L)

Tr (6 − π) + Lπ
. (8.178)

Alternatively, if the first-order Padè approximation e−Ls ∼= (1 − Ls/2)/(1 +
Ls/2), by applying the same passages, the value of Kp is still determined as (8.176),
while the derivative time constant results to be

Td = Tr

(
L
2 + Tr − πL

12

)(
1 + L

Tr

) − π
24

L
2 + Tr − Trπ

12 + πL
24

. (8.179)

If the control system is applied to process (8.5), the proposed method yields
(when Tr = 2, as in the previous cases) Kp2 = F(s) = 0.5 and K0 = 0.105.
Then, C(s) = 0.5 (1 + 1.868s) if Expression (8.178) is employed, and C(s) =
0.5 (1 + 5.728s) if Expression (8.179) is employed. The resulting set-point and load
disturbance step response in the two cases is plotted in Figure 8.48. The performance
achieved is satisfactory in the nominal case, but if the dead time is estimated as
L = 5.5, the control system becomes unstable, which implies that it is very sensible
to modelling uncertainties.

8.10 Conclusions

In this chapter a large number of modified Smith predictor schemes have been pre-
sented. The need of modifying the standard Smith predictor comes from the fact that
the standard Smith predictor is not capable, for an integral process, of providing a
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Fig. 8.48 Results obtained by applying the Lu–Yang–Wang–Zheng modified Smith predictor
(nominal case). Solid line: PD controller given by Expression (8.178). Dashed line: PD controller
given by Expression (8.179)

null steady-state error in the presence of a constant load disturbance. The different
rationale in the design of the modified Smith predictors, as well as their different lev-
els of complexity, have been highlighted. The presented illustrative examples have
shown the effectiveness of the proposed control architectures and that there is no
big difference in the achieved performance.



Chapter 9
Smith-principle-based PID-type Control

It has been shown in the previous chapter that Smith-predictor-based schemes are
very effective for processes with dead-time. On the other hand, PID controllers are
the most widely used controllers in industry [4, 5]. In this chapter, a control scheme
which combines their advantages as proposed in [161] is described. The controller
is inherently a PID-type controller in which the integral action is implemented with
a delay unit rather than a pure integrator while retaining the advantage of the Smith
predictor, i.e., the Smith principle. The set-point response and the disturbance re-
sponse are decoupled from each other and can be designed separately. Another ad-
vantage of this control scheme is that the robustness is easy to analyse and can be
guaranteed explicitly, compromising the robustness with the disturbance response.

9.1 The Control Scheme

The control scheme is shown in Figure 9.1. It consists of a prefilter F(s), a main
controller C(s), and a delay unit cascaded with a low-pass filter Q(s). The pre-
filter F(s) is the first degree-of-freedom, and the low-pass filter Q(s) is the second
degree-of-freedom.

The local positive feedback loop with Q(s)e−Ls has been widely used in a repet-
itive control scheme [33, 147] to control processes without dead time. Repetitive
control is a technique using delay elements to improve some system performance,
in particular, the tracking accuracy and/or the disturbance-rejection of periodic sig-
nals. With the learning ability of delay elements, repetitive control can reject/track
any periodic signals of period L. Hence, to some extent, the control scheme under
consideration is a kind of repetitive control for processes with dead time. The delay
element used here is equal to the dead time that exists in the process rather than the
period of a periodic signal to be tracked or rejected. Obviously, a by-product of this
control scheme is that if the bandwidth of Q(s) is wide enough, it can track/reject
periodic signals with the period equal to the dead time.

A. Visioli, Q.-C. Zhong, Control of Integral Processes with Dead Time,
Advances in Industrial Control,
DOI 10.1007/978-0-85729-070-0_9, © Springer-Verlag London Limited 2011
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Fig. 9.1 A two-degree-of-freedom controller for processes with dead time

The transfer function from the set-point R(s) to the output Y(s) is

Gr(s) = F(s)
C(s) 1

1−Q(s)e−Ls P (s)e−Ls

1 + C(s) 1
1−Q(s)e−Ls P (s)e−Ls

= F(s)
C(s)P (s)e−Ls

1 − Q(s)e−Ls + C(s)P (s)e−Ls
. (9.1)

If the main controller C(s) is designed as

C(s) = Q(s)P −1(s), (9.2)

then, in the nominal case,

Gr(s) = F(s)Q(s)e−Ls. (9.3)

If the prefilter F(s) is designed as

F(s) = 1

λs + 1
Q−1(s) (9.4)

or

F(s) = 1

λ2s2 + 2λζs + 1
Q−1(s), (9.5)

then the desired set-point response is obtained as

Gr(s) = 1

λs + 1
e−Ls or Gr(s) = 1

λ2s2 + 2λζs + 1
e−Ls (λ > 0, ζ > 0),

(9.6)
which is independent of the second degree-of-freedom Q(s). The disturbance re-
sponse of the system is

Gd(s) = P(s)e−Ls

1 + C(s) 1
1−Q(s)e−Ls P (s)e−Ls

= (
1 − Q(s)e−Ls

)
P(s)e−Ls, (9.7)
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Table 9.1 Controllers for different desired responses (α > 0)

Q(s) C(s) F (s) Desired Response

(2α+L)s+1
(αs+1)2

(2α+L)s2+s

K(αs+1)2
(αs+1)2

(λs+1)((2α+L)s+1)
1

λs+1 e−Ls

(αs+1)2

(λ2s2+2λζs+1)((2α+L)s+1)

1
λ2s2+2λζs+1

e−Ls

which is independent of the first degree-of-freedom F(s). Therefore, the set-point
response and the disturbance response are decoupled from each other and can be
designed separately.

In order to obtain zero static error under step set-point/disturbance change, Q(s)

should satisfy

Q(0) = 1 (9.8)

for processes without an integrator and, furthermore,

Q̇(0) = L (9.9)

for processes with an integrator. In order to implement the controller physically,
the relative degree of Q(s) should not be less than that of P(s), and the relative
degree of the delay-free part of the desired response should not be less than that of
Q(s). Hence, in general, Q(s) is a low-pass filter with unity static gain. In order to
guarantee the stability of Q−1(s) and the internal stability of the closed-loop system,
Q(s) should be of minimum phase.

For typical IPDT process P(s) = K
s
e−Ls , the minimum order of Q(s) should be

2 because of the constraint (9.9). Let

Q(s) = βs + 1

(αs + 1)2
. (9.10)

Then, according to (9.9),

β = 2α + L. (9.11)

The corresponding controllers needed to obtain a desired first-order or second-order
response plus dead time (9.6) are given in Table 9.1.

Since there exists pole-zero cancellation at s = 0 between C(s) and the plant,
the structure shown in Figure 9.1 is not internally stable, and a structure which is
internally stable needs to be found to implement the design.

9.2 An Equivalent Structure for Implementation

According to Table 9.1 and Figure 9.1, the feedback controller is

C(s)
1

1 − Q(s)e−Ls
= (2α + L)s2 + s

K(αs + 1)2

1

1 − (2α+L)s+1
(αs+1)2 e−Ls
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= 1

K

(2α + L)s2 + s

(αs + 1)2 − (2α + L)se−Ls − e−Ls

= 1

K

(2α + L)s + 1

α2s − L + (2α + L)(1 − e−Ls) + 1−e−Ls

s

= 1

K

(2α + L)s + 1

α2s − L + ((2α + L)s + 1) 1−e−Ls

s

≈ 1

K

(2α + L)s + 1

α2s + (2α + L)Ls

= (2α + L)s + 1

K(α + L)2s
, (9.12)

where the approximation 1−e−Ls

s
≈ L is used. Hence, the feedback controller is in-

herently a PI controller Kp + Ki

s
with

⎧
⎪⎪⎨

⎪⎪⎩

Kp = 2α + L

K(α + L)2
,

Ki = 1

K(α + L)2
.

(9.13)

The controller retains the advantages of the Smith predictor and the advantages
of the PID controller. A prominent advantage of the tuning formula (9.13) is that
there exists a free parameter α. This free parameter can be used to compromise the
disturbance response with the robustness (as shown later in Section 9.4); it can also
be used to optimise a certain performance index, e.g., the gain or phase margin.

Moreover, according to (9.12), the feedback controller for the IPDT process can
be rewritten as

C(s)
1

1 − Q(s)e−Ls
= 1

K

(2α+L)s+1
α2s−L

1 + (2α+L)s+1
α2s−L

1−e−Ls

s

. (9.14)

This is a negative feedback loop of (2α+L)s+1
α2s−L

through a finite impulse response

(FIR) block 1−e−Ls

s
cascaded by a gain 1

K
, as shown in Figure 9.2. The unstable

pole-zero cancellation is avoided as long as the FIR block 1−e−Ls

s
is implemented

non-dynamically [89, 158–160]; see Section 12.3. This feedback controller itself is
stable if α > 0.63L [72].

9.3 Robustness Analysis

In the nominal case, the loop transfer function of the control system shown in Fig-
ure 9.1 is

W(s) = Q(s)e−Ls

1 − Q(s)e−Ls
. (9.15)
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Fig. 9.2 Equivalent feedback controller for an IPDT process

Fig. 9.3 Design of Q(s)

Hence, the corresponding sensitivity function is

S(s) = 1

1 + W(s)
= 1 − Q(s)e−Ls, (9.16)

and the complementary sensitivity function is

T (s) = 1 − S(s) = Q(s)e−Ls. (9.17)

This means that Q(s) does not only affect the disturbance response (9.7) but also
affects the robust stability and the robust performances. It should be determined by
compromising the disturbance response with the robustness.

Theorem 9.1 Assume that there exists a multiplicative uncertainty Δ(s) ∈ H∞ in
the delay-free part. Then the closed-loop system is robustly stable if ‖Q(s)‖∞ <

1
‖Δ(s)‖∞ .
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Fig. 9.4 System responses

Proof Since

∥∥T (s)Δ(s)
∥∥∞ = ∥∥Q(s)e−LsΔ(s)

∥∥∞
= ∥∥Q(s)Δ(s)

∥∥∞
<

∥∥Q(s)
∥∥∞ · ∥∥Δ(s)

∥∥∞
< 1,
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the closed-loop system is internally stable for all Δ(s) ∈ H∞ according to Theo-
rem 8.5 in [165]. �

If there exists an uncertainty LΔ in the dead time, then

G(s) = P(s)e−(L+LΔ)s

.= P(s)
(
1 + Δ(s)

)
e−Ls (9.18)

with

Δ(s) = e−LΔs − 1. (9.19)

Hence, the following results hold:

Corollary 9.1 Assume that there exists an uncertainty LΔ > −L in the dead-time.
Then the closed-loop system is robustly stable if ‖Q(s)‖∞ < 1

‖e−LΔs−1‖∞
.

Corollary 9.2 Assume that there exist an uncertainty LΔ > −L in the dead-time
and a multiplicative uncertainty Δ(s) ∈ H∞ in the delay-free part. Then the closed-
loop system is robustly stable if ‖Q(s)‖∞ < 1

‖(1+Δ(s))e−LΔs−1‖∞
.

9.4 Simulation Examples

Consider

P(s) = 1

s
e−5s (9.20)

and assume that there exists a dead-time uncertainty 0 ≤ LΔ ≤ 0.5 seconds.
The amplitude responses of the system for Q(s) = (2α+5)s+1

(αs+1)2 with α = 2.1,

α = 4, and α = 8 are shown in Figure 9.3 together with that of the 1
e−LΔs−1

. The
desired set-point response is designed with λ = 2. The responses in the nominal
case are shown in Figure 9.4(a), and the responses when LΔ = 0.5 seconds are
shown in Figure 9.4(b). In all cases, a step disturbance d(t) = 0.1 was applied at
t = 15 seconds. The smaller the α, the better the disturbance response but the worse
the robust performance. The larger the α, the better the robust performance but the
worse the disturbance response.

9.5 Conclusions

A control scheme combining the advantages of a PID controller and a Smith pre-
dictor is presented in this chapter. It is a two-degree-of-freedom structure with the
ability to decouple the set-point response and disturbance response from each other.
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The dead time is eliminated from the characteristic equation of the closed-loop sys-
tem, and only two or three parameters (in addition to model parameters) need to
be tuned; either one or two of them (belonging to the degree-of-freedom F(s)) are
determined by the desired response, and another one (belonging to the degree-of-
freedom Q(s)) is determined by compromising the robustness with the disturbance
response.



Chapter 10
Disturbance Observer-based Control

In this chapter, it is revealed that a disturbance observer-based control scheme is
very effective in controlling integral processes with dead time. The controller can
be designed to reject ramp disturbances, step disturbances, and even arbitrary dis-
turbances. Only two parameters are left to tune when the plant model is available.
One is the time constant of the set-point response, and the other is the time constant
of the disturbance response. The latter is tuned to compromise the disturbance re-
sponse with robustness. This control scheme has a simple, clear, easy-to-design, and
easy-to-implement structure.

10.1 Disturbance Observer

A disturbance observer uses the inverse of the nominal plant model to observe the
disturbance applied to the plant, which is then directly used to cancel the effect of
the disturbance in the control signal. As a result, the closed loop system is forced to
act as the nominal plant. It was originally presented by Ohnishi et al. [85] to handle
disturbances in motion control. Umeno and Hori [123] refined it and applied it to
the robust control of DC servo motors. Endo et al. [24] and Kempf and Kobayashi
[51] applied it to control the high-speed direct-drive positioning table. In these pa-
pers, the dead time in the process was not included. Hong and Nam [36] explicitly
considered the measurement delay in the load torque observer to improve the sta-
bility. The disturbance observer is then extended to IPDT processes in [156, 162,
163]. It is a version of the 2DOF internal model control [76], and it is able to decou-
ple the disturbance response from the set-point response. The robust stability of the
closed-loop system is quite easy to be guaranteed graphically.

A. Visioli, Q.-C. Zhong, Control of Integral Processes with Dead Time,
Advances in Industrial Control,
DOI 10.1007/978-0-85729-070-0_10, © Springer-Verlag London Limited 2011
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Fig. 10.1 Disturbance observer-based control scheme

10.2 Control Structure

Consider the following integral process with dead time:

G(s) = Gp(s)e−Ls = Gp0(s)

s
e−Ls, (10.1)

where L > 0 is a pure dead time, and Gp0(s) is a strictly proper Hurwitz, minimum-
phase transfer function with Gp0(0) �= 0.

The control scheme induced from [36] is shown in Figure 10.1(a), where Lm is
the estimated dead time, and Gm(s) is a low-order approximation of Gp(s). c, d, n,
and y are the command, the disturbance, the measurement noise, and the output, re-
spectively. ̂d is the estimated disturbance. The low-pass filter Q(s) (known as the
Q-filter in disturbance observers) is designed to trade-off the robustness and the
performance to reject the disturbance and the measurement noise. C(s) is designed
according to the delay-free part Gm(s) so that C(s)Gm(s)

1+C(s)Gm(s)
e−Lms meets the de-

sired set-point response. The whole controller consists of two parts: one is the loop
C(s) ∼ Gm(s), and the other is the disturbance observer of the process. The former
serves as a prefilter, and the latter as a feedback loop. The former determines the
set-point response, and the latter determines the disturbance response. This control
scheme falls into the category of a 2DOF internal model control scheme [76]. The
original structure in Figure 10.1(a) is not causal and sometimes not internally sta-
ble. An equivalent structure shown in Figure 10.1(b) is causal and internally stable,
provided that the relative degree of Q(s) is high enough and the low-pass filter F(s)

has a proper relative degree. In the sequel, the controller is designed according to
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Figure 10.1(a) but should be implemented according to Figure 10.1(b), where F(s)

is used to make the controller proper. It is also necessary to non-dynamically imple-
ment the finite-impulse-response block in F(s)

Gm(1−Qe−Lms)
to avoid possible pole-zero

cancellations [89].
Under the nominal conditions, i.e., when Gm(s) = Gp(s) and Lm = L, the trans-

fer functions from the reference command r , the disturbance d , and the measure-
ment noise n to the output y are, respectively,

Gyr(s) = C(s)Gm(s)

1 + C(s)Gm(s)
e−Lms, (10.2)

Gyd(s) = Gm(s)e−Lms
(

1 − Q(s)e−Lms
)

, (10.3)

Gyn(s) = Q(s)e−Lms. (10.4)

Obviously, the Smith principle is satisfied, and the dead time is not included in
the closed-loop characteristic equation. In addition, Gyd(s) → 0 at low frequen-
cies, and Gyn(s) → 0 at high frequencies for a low-pass filter Q(s). The system has
very good performance to reject disturbances and measurement noises. More impor-
tantly, the set-point response is determined by C(s), and the disturbance response is
determined by Q(s). In other words, they are entirely decoupled from each other.

In general, the controller C(s) may be designed as the proportional controller

C(s) = 1

Tc

(10.5)

to obtain the desired set-point response.

10.3 Controller Design to Reject Ramp/Step Disturbances

10.3.1 Design of Q(s)

First of all, in order to guarantee the causality of Q(s)
Gm(s)

in Figure 10.1(a), the relative
degree of Q(s) should be no less than that of Gm(s).

The well-known internal-model principle shows that if a disturbance with some
modes should be rejected, then the model of the disturbance should be included in
the controller. Here, Q(s) can be designed to guarantee the rejection of a known dis-
turbance. Assume that the disturbance polynomial can be represented as dd(s) with
degree nd and that it has md disturbance modes λdk (1 ≤ k ≤ md ) with multiplicity
rdk (

∑md

k=1 rdk = nd ). It is possible [121] to design Q(s) to reject arbitrary distur-
bances, provided that the disturbance modes λdk (1 ≤ k ≤ md ) are also the zeros of
1 − Q(s)e−Lms . In other words, the disturbance polynomial has to be included in
the controller (implicitly but not explicitly).
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In practice, ramp disturbances (dd(s) = s2) are often used to represent slowly
time-varying disturbances. In this case, pole s = 0 in the disturbance response (10.3)
is of three multiplicities. In other words, Q(s) must be tuned to meet the conditions
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⎪
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⎩
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)
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∣

∣

∣

s=0
= 0,
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1 − Q(s)e−Lms
)

∣

∣

∣

∣

s=0
= 0,

(10.6)

or, equivalently,
⎧

⎪

⎨

⎪

⎩

Q(0) = 1,

Q̇(0) = Lm,

Q̈(0) = L2
m.

(10.7)

In other words, any low-pass filter with a high enough relative degree that meets the
above conditions can be used to reject ramp disturbances. The simplest Q(s) that
can meet these conditions is

Q(s) = 1 + μs + βs2

(λs + 1)dr+2
, (10.8)

where

μ = (dr + 2)λ + Lm,

β = L2
m + λ(dr + 2)((dr + 1)λ + 2Lm)

2
,

and dr is the relative degree of the delay-free model Gm(s), and λ is a tuning pa-
rameter to trade-off the disturbance response and robustness. When implemented as
Figure 10.1(b), F(s) may be chosen as 1

(λs+1)dr
to guarantee that F(s)

Gm(s)
and Gm(s)

F (s)

are proper.
For step disturbances, pole s = 0 in the disturbance response (10.3) is of two

multiplicities. In this case, only the first two conditions in (10.7) should be met. The
simplest Q(s) that can meet the conditions is

Q(s) = μs + 1

(λs + 1)dr+1
(10.9)

with

μ = (dr + 1)λ + Lm. (10.10)

When the nominal model is Gm(s) = Km

s
, then dr = 1. This provides the low-pass

filter

Q(s) = (2λ + Lm)s + 1

(λs + 1)2
, (10.11)



10.3 Controller Design to Reject Ramp/Step Disturbances 199

and then F(s) can be chosen as 1
λs+1 without introducing a new parameter. The free

parameter λ can be used to compromise disturbance response and robustness.
The loop transfer function of the nominal system is

W(s) = Q(s)e−Lms

1 − Q(s)e−Lms
, (10.12)

and the complementary transfer function is

T (s) = W(s)

1 + W(s)
= Q(s)e−Lms. (10.13)

Hence, for a multiplicative uncertainty Δ(s) ∈ H∞, the system is robustly stable if
‖Q(s)‖∞ < 1

‖Δ(s)‖∞ , i.e., the magnitude frequency response of Q(s) stays beneath

that of 1
Δ(s)

. This can be easily used to guarantee the robust stability using a graphic
method.

10.3.2 Examples

10.3.2.1 Example 1: To Reject Step Disturbances

Consider the process studied in [69, 78]

Gp(s) = 1

s(s + 1)(0.5s + 1)(0.2s + 1)(0.1s + 1)
, L = 5 seconds.

The controller may be designed according to the exact process, which results in a
high-order controller. However, the controller proposed in [78] (see Section 8.5) has
to be designed according to a reduced model, for example, 1

s
e−6.5s given in [78].

Here, the controller is designed according to the nominal model Gm(s) =
1

s(s+1)(0.5s+1)
and Lm = 5.3 seconds, where the short-time constants are esti-

mated with a dead time equal to their sum [69]. Hence, Q(s) = (4λ+5.3)s+1
(λs+1)4 ,

where λ = 1.3 is chosen to trade-off the disturbance response with robustness.
C(s) is designed as a proportional controller C(s) = 1

5 to obtain almost the same
time constant of the set-point response in [78] with T0 = 5 seconds. The unit-step
responses are shown in Figure 10.2 where a step disturbance d(t) = −0.1 acts at
t = 70 seconds. There exists overshoot in the response of Normey-Rico–Camacho
scheme discussed in Section 8.5 (noted as N–C in the figures), but there is no over-
shoot in the response of the disturbance-observer-based scheme (noted as DO in
the figures). Moreover, the disturbance response of the disturbance-observer-based
scheme is much faster.

When the dead time is L = 5.5 sec, the responses under the same controller are
shown in Figure 10.3. The performance of the disturbance-observer-based scheme
is still much better.
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Fig. 10.2 Responses without dead-time uncertainty: step disturbance

Fig. 10.3 Responses with dead-time uncertainty: step disturbance

10.3.2.2 Example 2: To Reject Ramp Disturbances

Consider the same process as in Example 1. In order to obtain a simpler controller,
the proposed controller is designed according to the reduced model 1

s
e−6.5s as in

the case of N–C scheme. The filter is then designed as Q(s) = 1+μs+βs2

(λs+1)3 with λ =
5 to meet the robust-stability condition for the additional uncertainty. The system
is affected by the ramp disturbance d(t) = 0.003(t − 50) · 1(t − 50) − 0.003(t −
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Fig. 10.4 Responses without dead-time uncertainty: ramp disturbance

Fig. 10.5 Responses with dead-time uncertainty: ramp disturbance

150) · 1(t − 150). The responses are shown in Figure 10.4. The proposed system
has an excellent capability to reject the ramp disturbance, while the scheme in [78]
cannot reject the ramp disturbance. As a matter of fact, it is quite difficult to design
a controller C(s) so that the N–C scheme has such a capability. When the dead
time becomes 5.5 seconds, the responses using the same controller are shown in
Figure 10.5. The response of the proposed control scheme is still much better.
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Fig. 10.6 Design of Q(s)

10.3.2.3 Example 3

Consider the process with

Gm(s) = 1

s
and Lm = 5 sec, (10.14)

where an uncertainty 0 ≤ LΔ ≤ 0.5 seconds exists in the dead time L = Lm + LΔ.
Here, Q(s) = (2λ+5)s+1

(λs+1)2 is selected in the form of (10.11). In order to obtain a
robustly stable closed-loop system, the bandwidth of Q(s) could not be larger than
3 rad/sec, as shown in Figure 10.6, where three possible candidates of Q(s) with
λ = 2.1, λ = 4, and λ = 8 are shown. The robust performance does not degrade
considerably for λ = 8, but the disturbance response is sluggish, as shown in Fig-
ures 10.7 and 10.8.

The controller for the set-point response is designed as a P controller C(s) = 0.5.
The nominal responses of the three cases are shown in Figure 10.7. The system
is disturbed by a step disturbance d0 = −0.1 at t = 50 seconds. The disturbance
response is the best when Q(s) has the broadest bandwidth (λ = 2.1).

When the dead time varies to the worst case (L = 5.5 seconds), the responses
under the same controller are shown in Figure 10.8. There exists a limit cycle when
λ = 2.1, and the best robustness is obtained when λ = 8. Trading-off the disturbance
response and the robustness, the best choice of Q(s) can be made as λ = 4.
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Fig. 10.7 Nominal responses of Example 3

Fig. 10.8 Robust responses of Example 3

10.4 Controller Design to Obtain Deadbeat Disturbance
Responses

10.4.1 Design of Q(s)

It is possible to design Q(s) to obtain deadbeat responses for step disturbances.
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Lemma 10.1 ([77, 146]) Let a(s) and bi(s) (i = 0,1, . . . , q) be polynomials in s,
and bi (s)

a(s)
strictly proper in s. b(s) and φ(s) are given by

b(s) = b0(s) + b1(s)e
−sT1 + · · · + bq(s)e−sTq and φ(s) = b(s)

a(s)
,

where Tq > Tq−1 > · · · > T1 > 0. Let aj (j = 1, . . . , p) denote the zeros of a(s)

with multiplicity rj . Assume that b(s) satisfies

dl

dsl
b(s)

∣

∣

∣

∣

s=aj

= 0 (l = 0,1, . . . , rj − 1; j = 1, . . . , p). (10.15)

Then, φ(t) = L−1 [φ(s)] settles to zero in finite time t = Tq , i.e.,

φ(t) =
{

φ0(t) (0 ≤ t < Tq),

0 (t ≥ Tq).

This means that all the zeros of the denominator are also zeros of the numerator.
Such a φ(s) is called a pseudo-differential polynomial [23, 71] because it is actually
an entire function of s but not in the exact form of a polynomial. b(s) has infinite
zeros because of the multiple delay elements, in addition to the zeros of a(s).

Theorem 10.1 The disturbance observer-based control system for an integral pro-
cess with dead time rejects a step disturbance in finite time t = 2Lm + T2 if the
low-pass filter is chosen as

Q(s) = 1 − q1(1 − e−T1s) − q2(1 − e−T2s)

λs + 1
(10.16)

with
⎧

⎪

⎪

⎨

⎪

⎪

⎩

q1 = − (eT2/λ − 1)(λ + Lm) − T2

T2 − T1 + T1eT2/λ − T2eT1/λ
,

q2 = (eT1/λ − 1)(λ + Lm) − T1

T2 − T1 + T1eT2/λ − T2eT1/λ
,

(10.17)

where T2 > T1 > 0, and λ > 0 is a free parameter.

Proof The denominator polynomial of a step disturbance is D(s) = s. According to
(10.3), the disturbance response is deadbeat if Q(s) is chosen such that the transfer
function

φ(s) = Gm(s)
(

1 − Q(s)e−Lms
)

e−Lms · 1

D(s)
(10.18)

satisfies Lemma 10.1. Q(s) in (10.16) is such a candidate. Substitute (10.16) into
(10.18); then

φ(s) = λs + 1 − e−Lms + q1(1 − e−T1s)e−Lms + q2(1 − e−T2s)e−Lms

s2(λs + 1)
ke−Lms.

(10.19)
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The poles of φ(s) are 0, 0, and − 1
λ

; φ(s) also has a zero at s = 0. Hence, in order
to make φ(s) be a pseudo-differential polynomial, the following equations should
be met according to Lemma 10.1:

{−q1T1 − q2T2 − λ = Lm,

1 − q1
(

1 − eT1/λ
) − q2

(

1 − eT2/λ
) = 0.

(10.20)

For T2 > T1 > 0, the solutions of q1 and q2 can be obtained as (10.17). This com-
pletes the proof. �

For any tuning parameters T2 > T1 > 0 and λ > 0, the static gain of Q(s) given
in (10.16) is always equal to 1. This guarantees the stability of the closed-loop sys-
tem.

The filter Q(s) may be interpreted as a low-pass filter, 1
λs+1 , cascaded with an

input shaper [12, 90, 164], 1 − q1 − q2 + q1e
−T1s + q2e

−T2s . For an arbitrary dis-
turbance polynomial D(s), it is possible to obtain a deadbeat response, provided
that the number of the delay elements is enough so that φ(s) in (10.18) is a pseudo-
differential polynomial.

10.4.2 Implementation of the Controller

In order to make the measurement unit Q(s)
F (s)

, the input filter CGm

(1+CGm)F(s)
, and the

controller F(s)

Gm(1−Qe−Lms)
in Figure 10.1(b) causal, the relative degree of F(s) has to

be 1 for the above design. The simplest F(s) is to choose

F(s) = 1

λs + 1
,

without introducing a new parameter. Then,

CGm

(1 + CGm)F(s)
= λs + 1

T s + 1
,

Q(s)

F (s)
= 1 − q1

(

1 − e−T1s
) − q2

(

1 − e−T2s
)

,

and

F(s)

Gm(1 − Qe−Lms)

= s

K(λs + 1 − e−Lms + q1(1 − e−T1s)e−Lms + q2(1 − e−T2s)e−Lms)

= 1

K
· 1

λ + 1−e−Lms

s
+ q1

1−e−T1s

s
e−Lms + q2

1−e−T2s

s
e−Lms

= 1

K
·

1
λ

1 + 1
λ
Z(s)

,
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Fig. 10.9 The control structure for implementation

where

Z(s)
.= 1 − e−Lms

s
+ q1

1 − e−T1s

s
e−Lms + q2

1 − e−T2s

s
e−Lms

is an FIR block or a pseudo-differential polynomial. Hence, the control system can
be implemented as the structure shown in Figure 10.9, where the FIR block Z(s)

has to be implemented in a non-dynamical way [89], i.e., to implement the signal v

in time-domain as

v(t) =
∫ t

t−Lm

u(t) dt + q1

∫ t−Lm

t−Lm−T1

u(t) dt + q2

∫ t−Lm

t−Lm−T2

u(t) dt.

By doing so, Z(s) does not possess any pole, even at s = 0, and there does not exist
any unstable pole-zero cancellation between the controller and the plant. Hence, the
control scheme implemented in Figure 10.9 is internally stable.

In this control structure, the disturbance response from d to y, considering un-
certainties in the plant, can be represented as

Gyd(s) =
K
s
Gp0(s)e

−Ls

1 + (1 − q1(1 − e−T1s) − q2(1 − e−T2s)) 1
λ+Z(s)

1
s
Gp0(s)e−Ls

= K(λ + Z(s))Gp0(s)e
−Ls

λs + sZ(s) + (1 − q1(1 − e−T1s) − q2(1 − e−T2s))Gp0(s)e−Ls
.

Since Gp0(0) �= 0 and Z(s) does not have a pole, Gyd(s) does not have an unstable
pole at s = 0. In the nominal case, where Gp0(s) = 1 and Lm = L, the disturbance
response is

Gyd(s) = K (λ + Z(s)) e−Ls

λs + 1
. (10.21)

There is only one pole at s = − 1
λ

(since Z(s) does not possess a pole) and the
nominal system is stable. Moreover, this (stable) pole is cancelled by the zero at
s = − 1

λ
since λ+Z(− 1

λ
) = 0, according to (10.20). This confirms that the obtained

disturbance response is indeed deadbeat in the nominal case.
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Fig. 10.10 Magnitude frequency response of Q(s)

10.4.3 Parameter Tuning and Robustness

The complementary transfer function of the nominal system is

T (s) = Q(s)e−Lms.

Hence, for a multiplicative uncertainty Δ(s) ∈ H∞, the system is robustly stable if
‖Q(s)‖∞ < 1

‖Δ(s)‖∞ , i.e., the magnitude frequency response |Q(jω)|, of which a

typical example is shown in Figure 10.10, stays under 1
|Δ(jω)| .

It can be shown that for T2 > T1 > 0 and λ > 0, the (delay) gains satisfy

1 − q1 − q2 > 0, q1 < 0, and q2 > 0. (10.22)

The upper envelope of Q(s) given in (10.16) is

Qu(s) = |1 − q1 − q2| + |q1| + |q2|
λs + 1

= 1 − 2q1

λs + 1
.

Hence, the following theorem holds:

Theorem 10.2 The system described in Theorem 10.1 is robustly stable if

1 − 2q1 <
1

∥

∥
Δ(s)
λs+1

∥

∥∞
for a multiplicative uncertainty Δ(s) ∈ H∞.

The high-frequency asymptote of the upper envelope Qu(s) is

log
∣

∣Qa
u(jω)

∣

∣ = log
1 − 2q1

λ
− logω.



208 10 Disturbance Observer-based Control

Fig. 10.11 The optimal ratio T1/T2 with respect to T2/λ

It intersects with the straight line ω = 1 rad/sec at log 1−2q1
λ

, noted as A in Fig-
ure 10.10. 1 − 2q1 can be interpreted as the cost of the robustness to obtain a dead-
beat disturbance response, and J = 1−2q1

λ
as a robustness indicator. For given T2

and λ, T1 can be chosen to make point A as low as possible, i.e.,

min
T1

J = min
T1

1 − 2q1

λ
,

to obtain the largest possible robust stability region. With consideration of (10.17)
and (10.22), the robustness indicator can be simplified as

J = 1

λ

(

1 + 2(λ + Lm)(eT2/λ − 1) − 2T2

T2 − T1 + T1eT2/λ − T2eT1/λ

)

. (10.23)

Since (λ + Lm)(eT2/λ − 1) − T2 > 0 and T2 − T1 + T1e
T2/λ − T2e

T1/λ > 0 for T2 >

T1 > 0 and λ > 0, J is always larger than 1
λ

. Differentiate J with respect to T1 and
let it be 0; then

−1 + eT2/λ − T2

λ
eT1/λ = 0,

which offers

T1 = λln
eT2/λ − 1

T2/λ
, (10.24)

or

T1

T2
= λ

T2
ln

eT2/λ − 1

T2/λ
.

A graphical representation of this function is shown in Figure 10.11.
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Fig. 10.12 Scaled robustness indicator LmJo

If T2/λ → 0, then T1 → 0.5T2; If T2/λ → ∞, then T1 → T2. Thus, T1 is always
less than T2. The corresponding minimal J is then obtained as

Jo = 1

λ

(

1 + 2
(

1 + Lm

λ

)

(eT2/λ − 1) − 2T2
λ

T2
λ

+ (eT2/λ − 1)
(

ln eT2/λ−1
T2/λ

− 1
)

)

. (10.25)

A scaled Jo by Lm is shown in Figure 10.12 with respect to T2
Lm

and λ
Lm

.
As can be seen, the larger T2 and λ, the better the robustness. The robustness

becomes worse for T2 < Lm or very small λ/Lm. Hence, T2/Lm or λ/Lm cannot be
chosen too small, although a small λ is helpful for the dynamics of the disturbance
response as given in (10.21).

If λ → +∞, then LmJo → 16+8
T2
Lm

(
T2
Lm

)2
. In fact, for λ > Lm, the robustness indicator

Jo varies slightly. This means that λ can no longer be used as a fine tuning parameter
to meet the robustness as in a common disturbance observer-based control scheme
using a rational low-pass filter [58, 163]. A reasonable value of λ is (0.5 ∼ 1)Lm.

If T2 → +∞, then Jo → 1
λ

; the system degenerates into a common system with-
out the property of a deadbeat disturbance response and so the robustness. This
means that T2 has to be used to compromise between the deadbeat time and the
robustness. If a deadbeat disturbance response is desired, the robustness has to be
sacrificed to some extent. If good robustness is desired, then the deadbeat time can-
not be chosen too short. This also indicates that delay T2 takes the place of the
bandwidth of the low-pass filter to compromise the disturbance response with ro-
bustness. This compromise can never be overcome.

For given T2 and λ, Jo is proportional to the dead time Lm as shown in (10.23).
This means that a system having a longer dead time has to pay more for the robust-
ness in order to obtain a deadbeat disturbance response.

In summary, the parameters are determined as follows:
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Fig. 10.13 Dual-locus diagram of the controller

Step 1. Initially choose T2 = (1.5 ∼ 2)Lm; then the recovery time is (3.5 ∼ 4)Lm,
which is much faster than that of the sub-ideal disturbance response (5.5 ∼ 9)Lm (if
the robustness is met);

Step 2. Choose λ = (0.5 ∼ 1)Lm, calculate T1 from (10.24), and then q1 and q2

from (10.17).
Step 3. Evaluate the robustness. If the robust stability condition is not met, then

increase λ and repeat Step 2 to check if the robust stability condition can be slightly
over-met; if the robust stability condition is much over-met, then decrease T2 and
repeat Step 2 till the robust stability condition is slightly over-met. If increasing λ

cannot meet the robust stability condition, then increase T2 and repeat the above
procedures again till the robust stability condition is slightly over-met.

10.4.4 Stability of the Controller

The following analysis shows that the controller itself has no right-half-plane
pole and hence is stable. The characteristic equation of the controller itself, 1 −
Q(s)e−Lms = 0, is equivalent to

λs + 1 = (1 − q1 − q2)e
−Lms + q1e

−(T1+Lm)s + q2e
−(T2+Lm)s .

Denote the left side as L1(s) and the right side as L2(s), of which the loci are shown
in Figure 10.13 for ω = 0 → +∞. Locus L1(jω) is a straight line from (1, j0) to
(1, j∞), and locus L2(jω) lies inside the circle at (0,0) with a radius of 1 − 2q1 =
4.5. L1(jω) intersects with the circle at ω0 =

√
(1−2q1)

2−1
λ

= 1.75 rad/sec. For ω >
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Fig. 10.14 Comparison of disturbance responses

ω0, the two loci do not intersect. For 0 < ω < ω0, there is only one intersection

(noted as A in Figure 10.13), of which the corresponding frequency of L2(jω) is

about ωA = 1.165 rad/sec. For the same frequency, L1(jωA) arrives at point B .

Hence, L1 arrives at the intersection A earlier than L2. According to the dual-locus

diagram [114, 157], no right-half-plane pole exists in the controller, and, hence, the

controller itself is stable.
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10.4.5 An Example

Consider again the process with

Gm(s) = 1

s
, Lm = 5 seconds,

assuming that the worst multiplicative uncertainty is Δ(s) = 1
0.1s+1e−0.5s − 1.

Choose T2 = 2Lm = 10 seconds and λ = 0.5Lm = 2.5 seconds; then T1 = 6.5
seconds, q1 = −1.75, q2 = 0.39. The disturbance response of d(t) = −0.1 in the
nominal case is shown in Figure 10.14(a), and the one in the worst case of uncer-
tainty is shown in Figure 10.14(b). The nominal disturbance response is deadbeat at
t = 2Lm +T2 = 20 seconds, and the response in the worst case uncertainty becomes
worse but still very good. A comparison to the case described in the previous sec-
tion with Q(s) = 9s+1

(2s+1)2 to obtain a recovery time close to t = 20 seconds is made.
The corresponding disturbance responses in the nominal and worst cases are noted
as Normal in Figures 10.14 (a) and (b), respectively. As can be seen, the system
becomes unstable in the worst case of uncertainty. In other words, in order to ob-
tain the same recovery time, the proposed deadbeat control scheme has much better
robustness than the conventional scheme. In order to obtain similar robustness, the
recovery time obtained by the conventional scheme is much longer. The advantage
of the conventional schemes is a relatively smaller dynamic error.

10.5 Conclusions

A disturbance observer-based control scheme, which is a 2DOF internal model con-
trol structure, is revealed to be very effective to control IPDT processes. It has a
simple, clear, easy-to-design, and easy-to-implement structure; it decouples the set-
point response from the disturbance response; it can be designed to reject arbitrary
disturbances. The controller can be designed to reject arbitrary disturbances, and it
is possible to obtain deadbeat disturbance responses for step disturbances.



Chapter 11
Quantitative Analysis

As shown in the previous chapters, several different control schemes for integral
processes with dead time resulted in the same disturbance response. Moreover, it
has already been shown that such a response is sub-ideal [73, 160]. In this chap-
ter, the achievable specifications of this disturbance response and the robust sta-
bility regions of the system are quantitatively analysed. The control parameter is
quantitatively determined with compromise between the disturbance response and
the robustness. Four specifications—(normalised) maximal dynamic error, maximal
decay rate, (normalised) control action bound, and approximate recovery time—
are given to characterise the step-disturbance response. It shows that any attempt
to obtain a (normalised) dynamic error less than Lm is impossible, and a sufficient

condition on the (relative) gain-uncertainty bound is
√

3
2 .

11.1 Introduction

It is very interesting that, although the structures proposed in [78, 153] (see Sec-
tions 8.3.3 and 8.5.3, respectively) are different from the control scheme presented
in [163] (see Chapter 10), the resulted disturbance responses are the same in essence
when the controllers are properly tuned. Further research has shown that such a
response is sub-ideal [72]. Hence, it is quite necessary to quantitatively analyse
the system performance with respect to the control parameter. The relationship be-
tween the control parameter and the achievable specifications and the robust stabil-
ity regions is shown in this chapter, based on the disturbance observer-based control
scheme presented in Chapter 10. The control parameter can be decided by a given
allowable maximal dynamic error, in terms of the Lambert W function [17]. For
a given control parameter, a control action bound is required. The maximal decay
rate, based on which the recovery time is approximately obtained, is given to mea-
sure the responding speed to the disturbance. For a given gain uncertainty, dead-
time uncertainty, or both of them, the corresponding stability region can be derived.
Hence, the control parameter can be analytically determined with compromise be-
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tween robustness and the disturbance response. A sufficient condition on the relative

gain-uncertainty bound is
√

3
2 .

11.2 The Lambert W Function

The Lambert W function is named after a great mathematician, Johann Heinrich
Lambert in the 18th century, and also in memory of the pioneering work on this
function by E.M. Wright. In some literature, it is also called the Ω-function.

It is defined to be the multi-valued inverse of a very simple function x = wew .
However, it is a very interesting function not only in the eyes of a mathematician.
It has been widely used in, for example, the enumeration of trees, the calculation of
water-wave heights, the solution of linear delay equations with constant coefficients,
and so on. The history of this function and applications can be found in [17] and the
references therein.

The function Wk (k ∈ Z) may be defined for x ∈ C\(−∞, 0] as the (unique)
solution of

Wk(x) = ln x + j2kπ − lnWk(x), (11.1)

where ln is the principal branch of the logarithm. Note that (11.1) implies that if
w = Wk(x), then wew = x, which is the basic equation satisfied by all the branches
Wk . For x > 0, W0(x) is the only positive solution of wew = x. Equation (11.1) can
be thought of as a fixed-point equation for the function

Tk,x(w) = lnx + j2kπ − lnw.

For k �= 0 and large |x|, the iterations defined by wn+1 = Tk,x(wn) converge
fast to Wk(x). The approximation formula (4.11) given in [17] can be written as
Wk(x) ≈ Tk,x(Tk,x(1)). Since for large real x, W0(x) is a better initial approxima-
tion of Wk(x) than 1, the approximation

Wk(x) ≈ Tk,x

(
Tk,x

(
W0(x)

)) = lnx + j2kπ − ln
(
lnx + j2kπ − lnW0(x)

)
(11.2)

can be used.
The principle branch W(x) = W0(x) of the Lambert W function is shown in

Figure 11.1(a) for −e−1 ≤ x < 0 and in Figure 11.1(b) for 0 ≤ x ≤ e.

11.3 Achievable Specifications of the Sub-ideal Disturbance
Response

The integral processes with dead time can be described as

G(s) = Gp(s)e−Ls = K

s
e−Ls, (11.3)

where the pure dead time L and the static gain K are both positive.
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Fig. 11.1 The principle branch of the Lambert W function

The disturbance observer-based control scheme is revisited in Figure 11.2(a) for
the readers’ convenience. Lm is the estimated dead time, and Gm(s) is the nominal
delay-free part. C(s) is designed as the proportional controller C(s) = 1

KT
, and

Q(s) is the low-pass filter

Q(s) = (2λ + Lm)s + 1

(λs + 1)2
(11.4)
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Fig. 11.2 Disturbance observer-based control scheme

designed to reject step disturbances without a static error, where λ is a design pa-
rameter to trade-off the disturbance rejection, robustness, and, possibly, the control
action bound. A casual and internally stable, equivalent structure is shown in Fig-
ure 11.2(b).

Under the nominal condition, Gm(s) = Gp(s) = K
s

and Lm = L, the set-point
response and the disturbance response are respectively

Gyr(s) = 1

T s + 1
e−Lms,

Gyd(s) = k

s

(
1 − Q(s)e−Lms

)
e−Lms. (11.5)

It is quite easy to evaluate the achievable specifications of the set-point response.
However, it is not that easy to evaluate the achievable specifications of the distur-
bance response. The disturbance response obtained using (11.4) is sub-ideal [72].
A typical step disturbance response is shown in Figure 11.3. Four specifications—
maximal dynamic error, maximal decay rate, control action bound and approximate
recovery time—will be given to characterise the disturbance response.
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Fig. 11.3 The normalised response of a step disturbance

11.3.1 Maximal Dynamic Error

Theorem 11.1 For process (11.3) controlled as in Figure 11.2, the (normalised)
maximal dynamic error1 em under a step disturbance is not less than Lm, i.e.,
em ≥ Lm.

Proof The normalised response, yd0(t) = yd (t)
d0K

, of a step disturbance d0, disturbing
at t0 = −L without loss of generality is

yd0(t) = L−1
[

1

s2

(
1 − Q(s)e−Lms

)]

= t − L−1
[

1

s2
Q(s)

]
· 1(t − Lm). (11.6)

yd0(t) can be divided into the following three stages as shown in Figure 11.3:

Stage I: the output is not affected due to the effect of the dead time in the process;
Stage II: after dead time L the step disturbance acts, the output responds propor-
tionally to time t , during which the control action is delayed by the dead time;
Stage III: after delay L + Lm, the control action starts to affect the output.

The first two stages are not controllable. At the end of Stage II, the dynamic error
reaches Lm. After that, the dynamic error may increase or decrease. Whatever it
varies, the normalised maximal dynamic error is not less than Lm. This completes
the proof. �

Clearly, it is impossible to obtain a dynamic error that is less than Lm.
Substituting Equation (11.4) into (11.6), the normalised response of a step dis-

turbance can be obtained as

1e without a subscript stands, as usual, for the exponential constant.
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yd0(t) = t − L−1
[
(2λ + Lm)s + 1

s2(λs + 1)2

]
· 1(t − Lm)

=
{

t (0 ≤ t ≤ Lm),

(λ+Lm

λ
t − L2

m

λ
)e− t−Lm

λ (t ≥ Lm).
(11.7)

Theorem 11.2 (Allowable Control Parameter λ) If process (11.3) is controlled as
in Figure 11.2 and the low-pass filter is chosen in the form of Equation (11.4), then
for a given normalised maximal dynamic error em > Lm, the control parameter λ

should satisfy the condition

0 < λ ≤ Lm

−W
(− Lm

eme

) − Lm, (11.8)

where W(·) is the Lambert W function.

Proof As stated in Theorem 11.1, the output can be affected only when t > Lm.
Hence, there is no need to consider the first two stages of the response. The response
in Stage III can be represented as

yd03(t) =
(

λ + Lm

λ
t − L2

m

λ

)
e− t−Lm

λ . (11.9)

yd03(t) reaches the peak value, i.e., the maximal dynamic error em:

em = yd03(tm) = (β + 1)Lme
− β

β+1 (11.10)

(with β
.= λ/Lm) at the moment

tm = λ2 + λLm + L2
m

λ + Lm

= Lm + β2

β + 1
Lm.

Solve β from (11.10); then

β = 1

−W
(− Lm

eme

) − 1 > 0.

Differentiating Equation (11.10) with respect to β or λ shows that the maximal
dynamic error em is an increasing function with respect to λ. The larger the λ, the
larger the em. This completes the proof. �

11.3.2 Maximal Decay Rate

Differentiating Equation (11.9) with respect to t twice and letting it be 0, the maxi-
mal decay rate vmax can be obtained as

vmax = −λ + Lm

λe
e
− λ

λ+Lm (11.11)
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at the moment tvm = λ + Lm + λ2

λ+Lm
. vmax is an increasing function with respect

to λ and can be served as a specification of the recovery time. The larger the |vmax|,
the shorter the recovery time, and the faster the disturbance response. There exists a
minimum value |vmax|min = e−2 as λ → ∞. This is the slowest one.

11.3.3 Control Action Bound

The bound of the control action can be characterised by the theorem below.

Theorem 11.3 If process (11.3) is controlled by the above proposed method and
the low-pass filter is chosen in the form of Equation (11.4), then a (normalised)

control action bound 1 + λ+Lm

λe
e
− λ

λ+Lm is required. In other words, for a given nor-
malised control action bound um, the control parameter should satisfy the following
condition:

λ ≥ W
( 1/e

um−1

)

1 − W
( 1/e

um−1

)Lm. (11.12)

Proof The transfer function from disturbance d to control action u under the nomi-
nal case is

Gud(s) = Q(s)e−Ls.

Assume that a step disturbance d0, disturbing at t0 = −L without loss of generality,
then the normalised control action, u0(t) = u(t)

d0
, for t ≥ 0 is

u0(t) = L−1
[

1

s
Q(s)

]

= 1 +
(

Lmt

λ2
+ t

λ
− 1

)
e− t

λ .

u0(t) reaches the peak value, i.e., the normalised control action bound, um, is

um = 1 + λ + Lm

λe
e
− λ

λ+Lm (11.13)

at the moment tum = λ + λ2

λ+Lm
. For a given normalised control action bound um,

the control parameter λ can be solved as

λ = W
( 1/e

um−1

)

1 − W
( 1/e

um−1

)Lm.

It can be shown that um is a decreasing function with respect to λ. Hence, for a given
control bound um > 0, the control parameter should satisfy condition (11.12). This
completes the proof. �
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For the minimal maximal dynamic error em → Lm, there should be λ → 0 and
um → ∞. Hence, it is impossible to obtain a dynamic error equal to Lm even under
the nominal case because of the infinite control action. This means that only a sub-
ideal disturbance response can be obtained. There exists a low bound for um: um →
1 + e−2 ≈ 1.14 as λ → ∞.

According to Theorems 11.2 and 11.3, the following results are obtained:

Corollary 11.1 For a given normalised maximal dynamic error em > Lm, a control
action bound um = 1 + em

λe
is required, where λ is limited by Theorem 11.2.

Corollary 11.2 For a given normalised maximal dynamic error em > Lm and a nor-
malised control action bound um, the control parameter should meet the following
condition:

W
( 1/e

um−1

)

1 − W
( 1/e

um−1

)Lm ≤ λ ≤ Lm

−W
(− Lm

eme

) − Lm. (11.14)

11.3.4 Approximate Recovery Time

Combining Equations (11.10) and (11.11), the following relation between em and
vmax holds:

em = −λevmax.

This means that if the response decays at the rate vmax, then it decays to 0 after λe

from the peak time tm. Assume that the average decay rate is half of the maximal
decay rate, which is reasonable, then the recovery time tr under the nominal case
can be approximated as the following formula:

tr ≈ L + tm + 2λe

=
(

1 + β + 2βe + 1

β + 1

)
Lm.

Many simulations show that a more accurate and simpler formula for the 5% error
band is

tr ≈ (7β + 2)Lm.

Hence, from the recovery-time point of view, it is better to choose β = 0 ∼ 1, i.e.,
λ = (0 ∼ 1)Lm.

For a given control parameter β = λ/Lm, the achievable specifications of the
step-disturbance response are shown in Figure 11.4.
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Fig. 11.4 Achievable specifications of the disturbance response

11.4 Robust Stability Regions

Three cases of different uncertainties (gain uncertainties, dead-time uncertainties,
and both) will be considered below.

The complementary sensitivity function of the nominal system is

T (s) = Q(s)e−Lms.
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Fig. 11.4 (Continued)

According to the well-known small-gain theorem, the closed-loop system is robustly
stable if ‖Q(s)‖∞ < 1

‖Δ(s)‖∞ for a multiplicative uncertainty Δ(s) ∈ H∞. Since the
steady-state gain of Q(s) is 1, which means there exists an integral effect in the
controller, a multiplicative uncertainty does not affect the steady-state performance
of the system.

11.4.1 With Gain Uncertainties

The magnitude response of Q(s) is

∣∣Q(jω)
∣∣ =

√
1 + (2λ + Lm)2ω2

1 + λ2ω2
,

and the peak value is

∣∣Q(jω)
∣∣
max = (2β + 1)2

2β
√

(β + 1)(3β + 1)
.

Hence, the following theorem holds:

Theorem 11.4 For a gain uncertainty Δ(s) = ΔK
K

, the closed-loop system is ro-

bustly stable if |ΔK|
K

<
2β

√
(β+1)(3β+1)

(2β+1)2 .

As β → ∞, 2β
√

(β+1)(3β+1)

(2β+1)2 →
√

3
2 . This provides the bound

√
3

2 for the gain
uncertainty to guarantee the robust stability. This bound is about 0.63 when β = 1.
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Fig. 11.5 Control parameter vs. uncertainty

The relationship between the control parameter and the allowable gain uncertainty
is shown in Figure 11.5(a).

11.4.2 With Dead-time Uncertainties

Assume there exists a dead-time uncertainty, i.e.,

Gp(s) = K

s
and L = Lm + LΔ (−Lm ≤ LΔ).
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Fig. 11.5 (Continued)

This uncertainty can be converted to a multiplicative uncertainty Δ(s) = e−LΔs − 1.
Hence, the robust stability is guaranteed if the following condition is met:

∣∣Q(jω)
∣∣ =

√
1 + (2λ + Lm)2ω2

1 + λ2ω2

<
1

|e−jLΔω − 1| = 1√
2 − 2 cos(LΔω)

(∀ω > 0),

that is,

2 − 2 cos(LΔω) <
(1 + λ2ω2)2

1 + (2λ + Lm)2ω2
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=
(
1 + (

λ
LΔ

)2
(LΔω)2

)2

1 + ( 2λ+Lm

LΔ

)2
(LΔω)2

=
(
1 + ( β

LΔ/Lm

)2
(LΔω)2

)2

1 + ( 2β+1
LΔ/Lm

)2
(LΔω)2

(∀ω > 0).

There does not exist an analytical solution for β . Denote ωΔ = LΔω, f1(ωΔ) =
2 − 2 cos(ωΔ), and f2(ωΔ) = (1+(

β
LΔ/Lm

)2ω2
Δ)2

1+(
2β+1

LΔ/Lm
)2ω2

Δ

. Since f1(ωΔ) and f2(ωΔ) are all

even functions with respect to ωΔ, only the case with ωΔ ≥ 0 is considered. The
only intersection of f1(ωΔ) and f2(ωΔ) can be obtained when

f1(ωΔ) = f2(ωΔ) and ḟ1(ωΔ) = ḟ2(ωΔ).

This can be solved numerically. The solutions of the lower bound of β to guaran-
tee the robust stability for LΔ

Lm
∈ [−1, 2] are shown in Figure 11.5(b). For a large

dead-time uncertainty LΔ

Lm
> 1, the lower bound of the control parameter is about

1.625LΔ

Lm
+ 0.45.

11.4.3 With Dead-time and Gain Uncertainties

Assume that there exist uncertainties in both dead time L and gain k, i.e.,

Gp(s) = K

s

(
1 + ΔK

K

)
and L = Lm + LΔ (−Lm ≤ LΔ).

Then the corresponding multiplicative uncertainty is

Δ(s) =
(

1 + ΔK

K

)
e−LΔs − 1.

The robust stability is guaranteed if the following condition is met:
√

1 + (2λ + Lm)2ω2

1 + λ2ω2
<

1
√

1 + (
1 + ΔK

K

)2 − 2
(
1 + ΔK

K

)
cos(LΔω)

(∀ω > 0).

This inequality cannot be analytically solved, either. For some given gain uncer-
tainties ΔK

K
, the relationship between the control parameter β and the dead-time

uncertainty can be obtained numerically, as shown in Figure 11.5(c, d). For a pos-
itive gain uncertainty together with a dead-time uncertainty, the stability region is
sharp. The larger the gain uncertainty, the sharper the stability region. For a neg-
ative gain uncertainty together with a dead-time uncertainty, the stability region is
blunt. The larger the (absolute) gain uncertainty, the blunter the stability region.

For a gain uncertainty q ≤ ΔK
K

≤ p (p,q ∈ [−
√

3
2 ,

√
3

2 ]), the stability region is the
intersection of the corresponding stability regions for ΔK

K
= p and ΔK

K
= q . For ex-

ample, the shaded area in Figure 11.5(d) is the stability region for a gain uncertainty
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Fig. 11.6 Rough contour of β vs. uncertainties

−0.7 ≤ ΔK
K

≤ 0.0, while the shaded area in Figure 11.5(c) is the stability region for
a gain uncertainty −0.7 ≤ ΔK

K
≤ 0.7 because the stability region for ΔK

K
= 0.7 is

included by that of ΔK
K

= −0.7. In order to obtain a better view of the relationship,

a rough contour of β with respect to ΔK
K

and LΔ

Lm
is shown in Figure 11.6. This is

very useful for determining β to meet the uncertainties. Figure 11.6 indicates that
the nominal gain should be chosen near the maximal possible gain rather than the
centre of the gain range.

It should be pointed out that the stability regions obtained above are sufficient
conditions but not necessary conditions.

11.5 Stability of the Controller

It is always advantageous to have a stable controller, in addition to a stable closed-
loop control system. The stability of the controller itself is analysed in this section.

The characteristic equation of the controller can be equivalent to

(λs + 1)2

(2λ + L)s + 1
= e−Ls. (11.15)

The stability can be determined using the dual-locus diagram method [114, 157].
The loci of the both sides in (11.15) are shown in Figure 11.7. If the two loci do not
intersect, then the controller is stable; otherwise it is unstable. In other words, if the
locus of (λs+1)2

(2λ+L)s+1 crosses the unit circle at which before e−Ls locus arrives, then

the system is stable; if e−Ls arrives before (λs+1)2

(2λ+L)s+1 , then the controller is unstable.
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Fig. 11.7 The dual-locus diagram of the controller

The locus of (λs+1)2

(2λ+L)s+1 intersects with the unit circle at frequency ωc =√
2β2+4β+1

β2L
(β = λ

L
). The phase angle of (λs+1)2

(2λ+L)s+1 at ωc is

φλ = 2 arctan

√
2β2 + 4β + 1

β
− arctan

(2β + 1)
√

2β2 + 4β + 1

β2
.

If the locus of e−Ls also arrives this point at ωc, then the following equation should
be met:

φλ = 2π − Lωc,

i.e.,

2 arctan

√
2β2 + 4β + 1

β
− arctan

(2β + 1)
√

2β2 + 4β + 1

β2

= 2π −
√

2β2 + 4β + 1

β2
.

This equation has a unique solution at about 0.63. For β > 0.63, the locus of
(λs+1)2

(2λ+L)s+1 crosses the unit circle before e−Ls locus arrives at the same point. Hence,
the controller is stable for β > 0.63.
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11.6 Conclusions

Many different control schemes for integral processes with dead time have resulted
in the same disturbance response, which can be divided into three stages. The first
two stages are not controllable, and the third stage is determined by the control
parameter. As a result, the minimum of the normalised maximal dynamic error is
not less than Lm. Four specifications: the (normalised) maximal dynamic error, the
(normalised) control action bound, the maximal decay rate, and an approximate re-
covery time are used to characterise the disturbance response. For a given (reason-
able) maximal dynamic error, the control parameter is determined in terms of the
Lambert W function. For a chosen control parameter, there exists a requirement of
the control action bound. Moreover, the (sufficient) stability regions for gain uncer-
tainties, dead-time uncertainties, and both of them are shown in figures. A sufficient

condition on the (relative) gain-uncertainty bound is
√

3
2 . The controller itself is

stable, provided that β > 0.63. Hence, these lead to the quantitative design of the
disturbance-observer-based control scheme for integral processes according to the
requirements of the disturbance response, the robustness, and the stability of the
controller itself.



Chapter 12
Practical Issues

Various control schemes for integral processes with dead time are discussed in the
previous chapters. Some practical issues concerned with the controller implementa-
tion will be discussed in this chapter and then verified with experiments carried out
on a laboratory-scale setup.

12.1 The Control Scheme Under Consideration

The integral processes with dead time can be described as

G(s) = Gp(s)e−τs = K

s
e−τs, (12.1)

where the pure dead time τ and the static gain K are both positive. The disturbance-
observer-based control scheme presented in Chapter 10 is taken as an example to fa-
cilitate the discussions in the sequel. Similar issues exist with other control schemes
for integral processes with dead time. The scheme is revisited in Figure 12.1(a) for
the readers’ convenience, where τm is the estimated dead time, and Gm(s) is the
nominal delay-free part. The controller C(s) = 1

KT
is designed to be proportional,

and the low-pass filter

Q(s) = (2λ + τm)s + 1

(λs + 1)2
(12.2)

is designed to reject step disturbances with no static error, where λ is a design param-
eter to compromise the disturbance rejection, robustness and, possibly, the control
action bound [163].

Under the nominal condition, Gm(s) = Gp(s) = K
s

, and τm = τ . The set-point
response and disturbance response are respectively

Gyr(s) = 1

T s + 1
e−τms

and

Gyd(s) = K

s

(
1 − Q(s)e−τms

)
e−τms . (12.3)
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Fig. 12.1 Disturbance observer-based control scheme

The scheme shown in Figure 12.1(a) is not internally stable nor causal. An al-
gebraically equivalent but causal and internally stable structure is shown in Fig-
ure 12.1(b), as proposed in [162]. The implementation of the block

M(s) = Q(s)

Gm(s)(1 − Qe−τms)

needs to be very careful. Otherwise, problems may occur.

12.2 Zero Static Error

The block diagram shown in Figure 12.2(a) for M(s) is implementable because the
block Q(s)

Gm(s)
is causal. However, if the block M(s) is implemented in this way, then

the system is not able to reject step disturbances completely. There is a non-zero
static error because the block

Q(s)

Gm(s)
= (2λ + τm)s2 + s

K(λs + 1)2

contains a differentiator and any constant error e is ignored by the controller. This
causes a non-zero static error. As a matter of fact, since the static gain of Q(s) is
unity, the local positive feedback loop in Figure 12.2(a) contains an integral action.
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Fig. 12.2 Wrong implementation schemes for M(s)

The differential action in the previous block cancels this integral action. This should
be avoided in practical implementation.

12.3 Internal Stability

One special property of the control plant is the instability due to the pole at the ori-
gin. This makes the structure shown in Figure 12.1(a) internally unstable because
of the pole-zero cancellation at s = 0 between the block G−1

m (s), the inverse of the
delay-free model, and the plant Gp(s)e−τs . The internal stability problem can be
solved if a discretised version of the controller is implemented [81, 82]. For an ana-
log controller, the equivalent structure for implementation shown in Figure 12.1(b)
guarantees the internal stability if implemented properly. As discussed in the pre-
vious subsection, the implementation of M(s) shown in Figure 12.2(a) causes non-
zero static errors when the system is subject to step a disturbance. The cancellation
between the differential action in Q(s)

Gm(s)
and the integral action in the local loop

should be removed in implementation. The block M(s) can be algebraically equiv-
alent to

M(s) = Q(s)

Gm(s)(1 − Qe−τms)

= 1

K

(2λ + τm)s + 1

λ2s − τm + ((2λ + τm)s + 1) 1−e−τms

s

= 1

K

(2λ+τm)s+1
λ2s−τm

1 + (2λ+τm)s+1
λ2s−τm

· 1−e−τms

s

.

This can be described as shown in Figure 12.2(b) as a local feedback loop. The
signal ui in Figure 12.2(b), i.e., the state of the integrator, is unbounded, and hence
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Fig. 12.3 Correct implementation scheme of M(s)

the system is not internally stable even when the output of the whole system is stable
because the block 1−e−τms

s
is split into the cascade of an integrator and 1 − e−τms ,

which causes a zero-pole cancellation at s = 0. One way to avoid this is to use the
approach proposed in [158, 160] to approximate 1−e−τms

s
as

1 − e−τms

s
≈ Cε

s + ε
· D(s),

with

Cε =
τm

N
ε

1 − e−ετm/N
,

and

D(s) = (
1 − e− τm

N
(s+ε)

) ·
N−1∑

i=0

e−i
τm
N

s,

where ε > 0 is a small enough number, and N is a natural number. The longer
the delay, the bigger the N is needed. Then, the block M(s) can be implemented as
shown in Figure 12.3. With this implementation, the closed-loop system is internally
stable. Moreover, there is no static error. The only downside is that the performance
will be slightly worse than the designed performance due to the approximation. This
can be improved by choosing a small ε and a big N .

12.4 Experimental Results

12.4.1 The Experimental Setup

The laboratory experimental setup employed to verify the findings in the previous
sections is shown in Figure 12.4. This is a small perspex tower-type tank with a sec-
tion area of A = 40 cm2, of which the water level is regulated by a PC-based con-
troller. The tank is filled with water by means of a pump whose speed is controlled
by a DC voltage, in the range 0–5 V, through a pulse-width-modulation (PWM)
circuit. Then, an outlet at the base allows the water to return to the reservoir. The
measure of the level of the water is given by a capacitive-type probe that provides
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Fig. 12.4 The experimental setup (only one tank has been employed in the experiments)

an output signal between 0 (empty tank) and 5 V (full tank). The process can be
modelled by the following differential equation:

dy(t)

dt
= 1

A

(
qi(t) − qo(t)

)
,

where y is the water level (i.e., the process variable), qi is the input flow rate, and
qo is the output flow rate. The input flow rate qi is linearly dependent on the volt-
age applied to the DC pump. The output flow rate can be calculated by measuring
the level y(t) because qo(t) = α

√
2gy(t), where g is the gravitational acceleration

constant, and α is the cross-sectional area of the output orifice. This is then added
to the control variable u via a local feedback loop to obtain the input flow rate qi ,
i.e., u(t)+q0(t) = qi(t), which is then used to determine the speed of the DC motor
(pump). Hence, the control variable u is

u(t) = qi(t) − qo(t).

In this way an integral process is obtained as

dy(t)

dt
= 1

A
u(t).

Dead time also occurs in the process because of the length of the pipe. The transfer
function of the process, from the control variable u to the voltage corresponding to
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Fig. 12.5 Experimental results with the control scheme of Figure 12.2(a)

the water level, has been estimated as follows by means of a simple open-loop step
response experiment,

G(s) = 0.026

s
e−1.5s .

12.4.2 The Scheme Shown in Figure 12.2(a)

The control parameters are chosen as T = 5 and λ = 8. A set-point change from
1.5 V to 2.3 V has been applied to the control system and, after 100 s, a disturbance
d = −2.5 V has been applied to the control variable. The resulting process variable,
together with the set-point signal, is shown in Figure 12.5. As expected, a non-zero
static error appears.

12.4.3 The Scheme Shown in Figure 12.2(b)

The same experiment as described in the previous subsection has been repeated for
the scheme shown in Figure 12.2(b). The resulting process and control variables
are plotted in Figure 12.6(a). The static error has disappeared, but, as expected, the
system is internally unstable as can be seen from the plot of the variable ui (i.e., the
state of the integrator) shown in Figure 12.6(b). This variable becomes unbounded
eventually.
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Fig. 12.6 Experimental results with the control scheme of Figure 12.2(b)

12.4.4 The Scheme Shown in Figure 12.3

Then, the scheme of Figure 12.3 has been employed for the same control task. The
control parameters are selected as T = 5, λ = 8, ε = 0.01, and N = 1. Results
are shown in Figure 12.7(a). It appears that the control scheme is effective in both
the set-point response and disturbance rejection. In order to evaluate the physical
meaning of the parameter λ, the same experiment as before has been repeated with
different values of λ = 4 and λ = 12. The resulting process and control variables
are plotted in Figures 12.7(b) and 12.7(c), respectively. The control system is more
aggressive when the value of λ is decreased, and it is more sluggish when λ is
increased, as expected.
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Fig. 12.7 Experimental results with the control scheme of Figure 12.3
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Fig. 12.8 Experimental results for a digital controller (λ = 8)

Fig. 12.9 Experimental results with a PI controller

For the sake of comparison, a digital controller has also been implemented.
A transfer function M(z) can be obtained straightforward after having discretised
Q(s), Gm(s), and e−τms by applying the backward difference approach. Then, the
obtained M(z) is

M(z) = 10.5168z15(z − 0.9943)

N(z)

with

N(z) = (z − 1)(z + 0.7582)(z2 − 1.649z + 0.7333)(z2 + 1.394z + 0.5764)

× (z2 − 1.249z + 0.6583)(z2 + 1.047z + 0.5811)(z2 − 0.7115z + 0.6238)
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Fig. 12.10 Experimental results for robustness
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× (z2 + 0.5255z + 0.5896)(z2 − 0.09093z + 0.603),

which was employed in the scheme of Figure 12.1(b) after sampling the control
error e at the rate of 0.1 s (note that the resulting controller is of the 16th order).
Results related to the case of λ = 8 are shown in Figure 12.8. It can be seen that
there is no significant difference between the use of an analog or digital controller.

12.4.5 Comparison with a PI Controller

In order to evaluate better the performance of the disturbance observer-based con-
trol scheme, comparison with a standard PI controller in the unity-feedback control
scheme has been performed. The controller is

CPI(s) = Kp

(
1 + 1

Tis

)
,

where the proportional gain Kp and the integral time constant Ti have been selected
by applying the tuning rule proposed in [15], i.e., Kp = 0.3306

KL
= 8.48, Ti = 10L =

15. The experimental results are shown in Figure 12.9. The disturbance rejection
is very good, but the set-point response has a large overshoot. This clearly shows
the benefit of the two-degree-of-freedom control scheme. It is able to provide good
performance for both the set-point response and disturbance rejection. Obviously,
being of a single degree-of-freedom, the PI controller is able to obtain satisfactory
performance in disturbance rejection at the expense of a significant overshoot in the
set-point response. In general, it is not easy to select the most appropriate tuning
rule to meet the requirement for both.

12.4.6 Robustness with Respect to Changes in the Dead Time

Experiments have also been performed on the same system as before but with an
additional input dead time of 1 s added via software delay. The control scheme of
Figure 12.3 with λ = 8 and λ = 12 is compared with the PI control scheme described
in the previous subsection. The results are shown in Figure 12.10.

12.5 Conclusions

In this chapter, some practical issues in controller implementation for integral pro-
cesses with dead time are discussed and verified with experimental results. It is
shown that with proper implementation, these problems can be eliminated.



References

1. Ang, K.H., Chong, G., Li, Y.: PID control systems analysis, design, and technology. IEEE
Trans. Control Syst. Technol. 13, 559–576 (2005)

2. Arbogast, J.E., Cooper, D.J.: Extension of IMC tuning correlations for non-self regulating
(integrating) processes. ISA Trans. 46, 303–311 (2007)

3. Åström, K.J., Hägglund, T.: Automatic tuning of simple controllers with specification on
phase and amplitude margins. Automatica 20(5), 655–651 (1984)

4. Åström, K.J., Hägglund, T.: Automatic Tuning of PID Controllers. Instrument Society of
America, Research Triangle Park (1988)

5. Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design, and Tuning, 2nd edn. Instru-
ment Society of America, Research Triangle Park (1995)

6. Åström, K.J., Hägglund, T.: Advanced PID Control. Instrument Society of America, Re-
search Triangle Park (2006)

7. Åström, K.J., Wittenmark, B.: Computer-Controlled Systems—Theory and Design. Prentice
Hall, Upper Saddle River (1997)

8. Åström, K.J., Hägglund, T., Hang, C.C., Ho, W.K.: Automatic tuning and adaptation for PID
controllers—a survey. Control Eng. Pract. 1, 699–714 (1993)

9. Åström, K.J., Hang, C.C., Lim, B.C.: A new Smith predictor for controlling a process with
an integrator and long dead-time. IEEE Trans. Autom. Control 39, 343–345 (1994)

10. Bellman, R., Cooke, K.L.: Differential-Difference Equations. Academic Press, London
(1963)

11. Beschi, M., Piazzi, A., Visioli, A.: On the practical implementation of a noncausal feedfor-
ward technique for PID control. In: Proceedings European Control Conference, pp. 1806–
1811, Budapest, HU, 2009

12. Bodson, M.: Adaptive algorithm for the tuning of two input shaping methods. Automatica
34, 771–776 (1998)

13. Camacho, O., De la Cruz, F.: Smith predictor based-sliding mode controller for integrating
processes with elevated deadtime. ISA Trans. 43, 257–270 (2004)

14. Chidambaram, M., Padma Sree, R.: A simple method of tuning PID controllers for
integrator/dead-time processes. Comput. Chem. Eng. 27, 211–215 (2003)

15. Chien, I.L., Fruehauf, P.S.: Consider IMC tuning to improve performance. Chem. Eng. Prog.
86(10), 33–41 (1990)

16. Chien, I.-L., Peng, S.C., Liu, J.H.: Simple control method for integrating processes with long
deadtime. J. Process Control 12, 391–404 (2002)

17. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W
function. Adv. Comput. Math. 5, 329–359 (1996). Available at http://www.apmaths.uwo.ca/
~rcorless/frames/papers.htm, accessed on 3/9/2005

18. Datta, A., Ho, M.-T., Bhattacharyya, S.P.: Structure and Synthesis of PID Controllers.
Springer, London (2000)

A. Visioli, Q.-C. Zhong, Control of Integral Processes with Dead Time,
Advances in Industrial Control,
DOI 10.1007/978-0-85729-070-0, © Springer-Verlag London Limited 2011

241

http://www.apmaths.uwo.ca/~rcorless/frames/papers.htm
http://www.apmaths.uwo.ca/~rcorless/frames/papers.htm
http://dx.doi.org/10.1007/978-0-85729-070-0


242 References

19. Dejonckheere, J., Disney, S.M., Lambrecht, M.R., Towill, D.R.: Measuring and avoiding the
bullwhip effect: A control theoretic approach. Eur. J. Oper. Res. 147(3), 567–590 (2003)

20. Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans.
Autom. Control 41, 930–943 (1996)

21. Disney, S.M., Towill, D.R., Warburton, R.D.H.: On the equivalence of the control theoretic,
differential and difference equation approaches to solving the production and inventory con-
trol system design problem. Int. J. Prod. Econ. 101(1), 194–208 (2006)

22. Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Control Theory. Macmillan, New
York (1992)

23. Dym, H., Georgiou, T., Smith, M.C.: Explicit formulas for optimally robust controllers for
delay systems. IEEE Trans. Autom. Control 40(4), 656–669 (1995)

24. Endo, S., Kobayashi, H., Kempf, C.J., Kobayashi, S., Tomizuka, M., Hori, Y.: Robust digital
tracking controller design for high-speed positioning systems. Control Eng. Pract. 4(4), 527–
536 (1996)

25. Eriksson, P.-G., Isaksson, A.J.: Some aspects of control loop performance monitoring. In:
Proceedings IEEE International Conference on Control Applications, pp. 1029–1034, Glas-
gow, UK, 1994

26. Friman, M., Waller, K.V.: Autotuning of multiloop control systems. Ind. Eng. Chem. Res.
33, 1708–1717 (1994)

27. Gémez-Stern, F., Fornés, J.M., Rubio, F.R.: Dead-time compensation for ABR traffic control
over ATM networks. Control Eng. Pract. 10(5), 481–491 (2002)

28. Guanghui, Z., Huihe, S.: A simple anti-windup compensation for modified Smith predic-
tor. In: Proceedings American Control Conference, pp. 4859–4863, Minneapolis, Minnesota,
2006

29. Guanghui, Z., Huihe, S.: Anti-windup design for the design for the controllers of integrating
processes with long delay. J. Syst. Eng. Electron. 18(2), 297–303 (2007)

30. Guanghui, Z., Feng, Q., Huihe, S.: Robust tuning method for modified Smith predictor.
J. Syst. Eng. Electron. 18(1), 89–94 (2007)

31. Hägglund, T.: Automatic detection of sluggish control loops. Control Eng. Pract. 7, 1505–
1511 (1999)

32. Hägglund, T., Åström, K.J.: Supervision of adaptive control algorithms. Automatica 36(2),
1171–1180 (2000)

33. Hara, S., Yamamoto, Y., Omata, T., Nakano, M.: Repetitive control system: a new type servo
system for periodic exogenous signals. IEEE Trans. Autom. Control 33, 659–668 (1988)

34. Harris, T.J.: Assessment of control loop performance. Can. J. Chem. Eng. 67, 856–861
(1989)

35. Ho, W.K., Feng, E.B., Gan, O.P.: A novel relay auto-tuning technique for processes with
integration. Control Eng. Pract. 4(7), 923–928 (1996)

36. Hong, K., Nam, K.: A load torque compensation scheme under the speed measurement delay.
IEEE Trans. Ind. Electron. 45(2), 283–290 (1998)

37. Howard, R., Cooper, D.J.: Performance assessment of non-self regulating controllers in a
cogeneration power plant. Appl. Energy 86, 2121–2129 (2009)

38. Huang, B., Shah, S.L.: Performance Assessment of Control Loop. Springer, London (1999)
39. Huang, H.-P., Jeng, J.-C.: Monitoring and assessment of control performance for single loop

systems. Ind. Eng. Chem. Res. 41, 1297–1309 (2002)
40. Huang, K., Shan, L., Zhu, Q., Qian, J.: A totally heat-integrated distillation column

(THIDiC)—the effect of feed pre-heating by distillate. Appl. Therm. Eng. 28, 856–864
(2008)

41. Hunt, L.R., Meyer, G.: Stable inversion for nonlinear systems. Automatica 33(8), 1549–1554
(1997)

42. Hunt, L.R., Meyer, G., Su, R.: Noncausal inverses for linear systems. IEEE Trans. Autom.
Control 41, 608–611 (1996)

43. Ingimundarson, A., Hägglund, T.: Robust tuning procedures of dead-time compensating con-
trollers. Control Eng. Pract. 9, 1195–1208 (2001)



References 243

44. Izmailov, R.: Analysis and optimization of feedback control algorithms for data transfers in
high-speed networks. SIAM J. Control Optim. 34(5), 1767–1780 (1996)

45. Jelali, M.: An overview of control performance assessment technology and industrial appli-
cations. Control Eng. Pract. 14, 441–466 (2006)

46. Kaya, I.: Controller design for integrating processes using user-specified gain and phase mar-
gin specifications and two degree-of-freedom IMC structure. In: Proceedings IEEE Interna-
tional Conference on Control Applications, pp. 898–902, Istanbul, Turkey, 2003

47. Kaya, I.: A PI–PD controller design for control of unstable and integrating processes. ISA
Trans. 42, 111–121 (2003)

48. Kaya, I.: Two-degree-of-freedom IMC structure and controller design for integrating pro-
cesses based on gain and phase-margin specifications. IEE Proc., Control Theory Appl.
154(4), 481–487 (2004)

49. Kaya, I., Atherton, D.P.: A PI–PD controller design for integrating processes. In: Proceedings
American Control Conference, pp. 258–262, San Diego, CA, 1999

50. Kaya, I., Tan, N., Atherton, D.P.: A simple procedure for improving performance of PID con-
trollers. In: Proceedings IEEE International Conference on Control Applications, pp. 882–
885, Istanbul, Turkey, 2003

51. Kempf, C.J., Kobayashi, S.: Disturbance observer and feedforward design for a high-speed
direct-drive positioning table. IEEE Trans. Control Syst. Technol. 7(5), 513–526 (1999)

52. Kharitonov, V.L., Niculescu, S.L., Moreno, J.: Static output feedback stabilization: necessary
conditions for multiple delay controllers. IEEE Trans. Autom. Control 50, 82–86 (2005)

53. Ko, B.-S., Edgar, T.F.: PID control performance assessment: the single-loop case. AIChE J.
50, 1211–1218 (2004)

54. Kristiansson, B., Lennartson, B.: Robust and optimal tuning of PI and PID controllers. IEE
Proc., Control Theory Appl. 149(1), 17–25 (2001)

55. Kuehl, P., Horch, A.: Detection of sluggish control loops—experiences and improvements.
Control Eng. Pract. 13, 1019–1025 (2005)

56. Leva, A., Cox, C., Ruano, A.: Hands-on PID autotuning: a guide to better utilisation. Tech-
nical report, IFAC Technical Brief (2001), available at www.ifac-control.org

57. Lewis, F.L.: Optimal control. In: Levine, W.S. (ed.) The Control Handbook, pp. 759–778.
CRC Press, Boca Raton (1996)

58. Li, H.X., Van Den Bosch, P.P.J.: A robust disturbance-based control and its application. Int.
J. Control 58(3), 537–554 (1993)

59. Liu, T., Gao, F.: Identification of integrating and unstable processes from relay feedback.
Comput. Chem. Eng. 32, 3038–3056 (2008)

60. Liu, T., Cai, Y.Z., Gu, D.Y., Zhang, W.D.: New modified Smith predictor scheme for in-
tegrating and unstable processes with time delay. IEE Proc., Control Theory Appl. 152(2),
238–246 (2005)

61. Lu, X., Yang, Y.-S., Wang, Q.-G., Zheng, W.-X.: A double two-degree-of-freedom control
scheme for improved control of unstable delay processes. J. Process Control 15, 605–614
(2005)

62. Majhi, S., Atherton, D.P.: A new Smith predictor and controller for unstable and integrating
processes with time delay. In: Proceedings IEEE International Conference on Decision and
Control, pp. 1341–1345, Tampa, FL, 1998

63. Majhi, S., Atherton, D.P.: Modified Smith predictor and controller for processes with time
delay. IEE Proc., Control Theory Appl. 146(5), 359–366 (1999)

64. Majhi, S., Atherton, D.P.: Automatic tuning of the modified Smith predictor controllers. In:
Proceedings IEEE International Conference on Decision and Control, pp. 1116–1120, Syd-
ney, AUS, 2000

65. Majhi, S., Atherton, D.P.: Obtaining controller parameters for a new Smith predictor using
autotuning. Automatica 36, 1651–1658 (2000)

66. Majhi, S., Mahanta, C.: Tuning of controllers for integrating time delay processes. In: Pro-
ceedings IEEE International Conference on Electrical and Electronic Technology, pp. 317–
320, Singapore, 2001

http://www.ifac-control.org


244 References

67. Marlin, T.E.: Process Control. McGraw-Hill, New York (1995)
68. Mascolo, S.: Congestion control in high-speed communication networks using the Smith

principle. Automatica 35(12), 1921–1935 (1999)
69. Matausek, M.R., Micic, A.D.: A modified Smith predictor for controlling a process with an

integrator and long dead-time. IEEE Trans. Autom. Control 41(8), 1199–1202 (1996)
70. Matausek, M.R., Micic, A.D.: On the modified Smith predictor for controlling a process with

an integrator and long dead-time. IEEE Trans. Autom. Control 44(8), 1603–1606 (1999)
71. Medvedev, A.: Disturbance attenuation in finite-spectrum-assignment. Automatica 33(6),

1163–1168 (1997)
72. Mirkin, L., Zhong, Q.-C.: Coprime parametrization of 2DOF controller to obtain sub-ideal

disturbance response for processes with dead time. In: Proceedings IEEE International Con-
ference on Decision and Control, pp. 2253–2258, Orlando, USA, December 2001

73. Mirkin, L., Zhong, Q.-C.: 2DOF controller parametrization for systems with a single I/O
delay. IEEE Trans. Autom. Control 48(11), 1999–2004 (2003)

74. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)
75. Monroy-Loperena, R., Alvarez-Ramirez, J.: A note on the identification and control of batch

distillation columns. Chem. Eng. Sci. 58, 4729–4737 (2003)
76. Morari, M., Zafiriou, E.: Robust Process Control. Prentice-Hall, Inc., Englewood Cliffs

(1989)
77. Nobuyama, E., Shin, S., Kitamori, T.: Deadbeat control of continuous-time systems: MIMO

case. In: Proceedings IEEE International Conference on Decision and Control, pp. 2110–
2113, Kobe, Japan, 1996

78. Normey-Rico, J.E., Camacho, E.F.: Robust tuning of dead-time compensators for process
with an integrator and long dead-time. IEEE Trans. Autom. Control 44(8), 1597–1603
(1999)

79. Normey-Rico, J.E., Camacho, E.F.: Smith predictor and modifications: a comparative study.
In: Proceedings European Control Conference, Karlsruhe, Germany, 1999

80. Normey-Rico, J.E., Camacho, E.F.: A unified approach to design dead-time compensators for
stable and integrative processes with dead-time. IEEE Trans. Autom. Control 47(2), 299–305
(2002)

81. Normey-Rico, J.E., Camacho, E.F.: Control of Dead-time Processes. Springer, London
(2007)

82. Normey-Rico, J.E., Camacho, E.F.: Unified approach for robust dead time compensator de-
sign. J. Process Control 19(1), 38–47 (2009)

83. O’Dwyer, A.: Handbook of PI and PID Tuning Rules. Imperial College Press, London
(2006)

84. Ogunnaike, B.A., Ray, W.H.: Process Dynamics, Modeling, and Control. Oxford University
Press, New York (1994)

85. Ohishi, K., Nakao, M., Ohnishi, K., Miyachi, K.: Microprocessor-controlled DC motor for
load-insensitive position servo system. IEEE Trans. Ind. Electron. 34, 44–49 (1987)

86. Ou, L., Tang, Y., Gu, D., Zhang, W.: Stability analysis of PID controllers for integral pro-
cesses with time delay. In: Proceedings American Control Conference, pp. 4247–4252, Port-
land, OR, 2005

87. Ou, L., Zhang, W., Gu, D.: Set of stabilising PID controllers for second-order integrating
processes with time delay. IEE Proc., Control Theory Appl. 153(5), 607–614 (2006)

88. Padula, F., Visioli, A.: On the stabilizing PID controllers for integral processes. Technical Re-
port R.T. 2010-01-61, Department of Information Engineering, University of Brescia (2010)

89. Palmor, Z.J.: Time-delay compensation—Smith predictor and its modifications. In: Levine,
S. (ed.) The Control Handbook, pp. 224–237. CRC Press, Boca Raton (1996)

90. Pao, L.Y.: Multi-input shaping design for vibration reduction. Automatica 35(1), 81–89
(1999)

91. Patwardhan, R.S., Shah, S.L.: Issues in performance diagnostics of model-based controllers.
J. Process Control 12, 413–417 (2002)

92. Perez, H., Devasia, S.: Optimal output transitions for linear systems. Automatica 39, 181–192
(2003)



References 245

93. Pfeiffer, B.-M.: Towards ‘plug and control’: self-tuning temperature controller for PLC. Int.
J. Adapt. Control Signal Process. 14, 519–532 (2000)

94. Piazzi, A., Visioli, A.: Minimum-time system-inversion-based motion planning for residual
vibration reduction. IEEE/ASME Trans. Mechatron. 5(1), 12–22 (2000)

95. Piazzi, A., Visioli, A.: Optimal inversion-based control for the set-point regulation of
nonminimum-phase uncertain scalar systems. IEEE Trans. Autom. Control 46, 1654–1659
(2001)

96. Piazzi, A., Visioli, A.: Optimal noncausal set-point regulation of scalar systems. Automatica
37(1), 121–127 (2001)

97. Piazzi, A., Visioli, A.: Robust set-point constrained regulation via dynamic inversion. Int. J.
Robust Nonlinear Control 11, 1–22 (2001)

98. Piazzi, A., Visioli, A.: Using stable input-output inversion for minimum-time feedforward
constrained regulation of scalar systems. Automatica 41(2), 305–313 (2005)

99. Piazzi, A., Visioli, A.: A noncausal approach for PID control. J. Process Control 16, 831–843
(2006)

100. Pontryagin, L.S.: On the zeros of some elementary transcendental functions. Am. Math. Soc.
Transl. 2, 95–110 (1955)

101. Poulin, E., Pomerleau, A.: PID tuning for integrating and unstable processes. IEE Proc.,
Control Theory Appl. 143(5), 429–435 (1996)

102. Poulin, E., Pomerleau, A.: PI settings for integrating processes based on ultimate cycle in-
formation. IEEE Trans. Control Syst. Technol. 7(4), 509–511 (1999)

103. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art
of Scientific Computing. Cambridge University Press, Cambridge (1995)

104. Qin, S.J.: Control performance monitoring—a review and assessment. Comput. Chem. Eng.
23, 173–186 (1998)

105. Quet, P.-F., Atalar, B., Iftar, A., Özbay, H., Kalyanaraman, S., Kang, T.: Rate-based flow
controllers for communication networks in the presence of uncertain time-varying multiple
time-delays. Automatica 38(6), 917–928 (2002)

106. Seshagiri Rao, A., Rao, V.S.R., Chidambaram, M.: Set point weighted modified Smith pre-
dictor for integrating and double integrating processes with time delay. ISA Trans. 46, 59–71
(2007)

107. Seshagiri Rao, A., Rao, V.S.R., Chidambaram, M.: Direct synthesis-based controller design
for integrating processes with time delay. J. Franklin Inst. 346, 38–56 (2009)

108. Rivera, D., Skogestad, S., Morari, M.: Internal model control. 4. PID controller design. Ind.
Eng. Chem. Process Des. Dev. 25(1), 252–265 (1986)

109. Schwartz, J.D., Rivera, D.E.: Control relevant demand modeling for supply chain manage-
ment. In: Proceedings 14th IFAC Symposium of System Identification (SYSID), Newcastle,
AUS, 2006

110. Shinskey, F.G.: Feedback Controllers for the Process Industries. McGraw-Hill, New York
(1994)

111. Silva, G.J., Datta, A., Bhattacharyya, S.P.: New results on the synthesis of PID controllers.
IEEE Trans. Autom. Control 47, 241–252 (2002)

112. Silva, G.J., Datta, A., Bhattacharyya, S.P.: PID Controllers for Time Delay Systems.
Birkhäuser, Boston (2005)

113. Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. J. Process
Control 13, 291–309 (2003)

114. Smith, O.J.M.: Feedback Control Systems. McGraw-Hill, New York (1958)
115. Srividya, R., Chidambaram, M.: On line controllers tuning for integrator plus delay systems.

Process Control Qual. 9, 59–66 (1997)
116. Sung, S.W., Lee, I.: Limitations and countermeasures of PID controllers. Ind. Eng. Chem.

Res. 35, 2596–2610 (1996)
117. Sung, S.W., Lee, I.-B., Lee, B.-K.: On-line process identification and automatic tuning

method for PID controllers. Chem. Eng. Sci. 53, 1847–1859 (1998)
118. Swanda, A.P., Seborg, D.E.: Controller performance assessment based on set-point response

data. In: Proceedings American Control Conference, pp. 3863–3867. San Diego, CA, 1999



246 References

119. Thyagarajan, T., Yu, C.-C.: Improved autotuning using the shape factor from relay feedback.
Ind. Eng. Chem. Res. 42, 4425–4440 (2003)

120. Tian, Y.-C., Gao, F.: Control of integrator processes with dominant time delay. Ind. Eng.
Chem. Res. 38, 2979–2983 (1999)

121. Tsypkin, Y.Z.: Robust internal model control. ASME J. Dyn. Syst., Meas. Control 115(2B),
419–425 (1993)

122. Tyreus, B.D., Luyben, W.L.: Tuning PI controllers for integrator/dead time processes. Ind.
Eng. Chem. Res. 31, 2625–2628 (1992)

123. Umeno, T., Hori, Y.: Robust speed control of dc servomotors using modern two degrees-of-
freedom controller design. IEEE Trans. Ind. Electron. 38(5), 363–368 (1991)

124. Varaiya, P., Walrand, J.: High-performance Communication Networks. Morgan Kaufmann,
San Francisco (1996)

125. Veronesi, M., Visioli, A.: A technique for abrupt load disturbance detection in process con-
trol systems. In: Proceedings 17th IFAC World Congress on Automatic Control, pp. 14900–
14905, Seoul, ROK, 2008

126. Veronesi, M., Visioli, A.: Performance assessment and retuning of PID controllers. Ind. Eng.
Chem. Res. 48, 2616–2623 (2009)

127. Veronesi, M., Visioli, A.: Performance assessment and retuning of PID controllers for inte-
gral processes. J. Process Control 20, 261–269 (2010)

128. Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc.,
Control Theory Appl. 148(2), 180–184 (2001)

129. Visioli, A.: Time-optimal plug&control for integrating and FOPDT processes. J. Process
Control 13, 195–202 (2003)

130. Visioli, A.: A new design for a PID plus feedforward controller. J. Process Control 14, 455–
461 (2004)

131. Visioli, A.: Method for proportional-integral controller tuning assessment. Ind. Eng. Chem.
Res. 45, 2741–2747 (2006)

132. Visioli, A.: Practical PID Control. Springer, London (2006)
133. Visioli, A.: Experimental evaluation of a time-optimal plug&control strategy. ISA Trans. 46,

519–525 (2007)
134. Visioli, A., Piazzi, A.: Improving set-point following performance of industrial controllers

with a fast dynamic inversion algorithm. Ind. Eng. Chem. Res. 42, 1357–1362 (2003)
135. Wallen, A.: Tools for autonomous process control. PhD thesis, Lund Institute of Technology,

Lund (2000)
136. Wallen, A., Åström, K.J.: Pulse-step control. In: Proceedings 15th IFAC World Congress on

Automatic Control, Barcelona, E, 2002
137. Wang, B., Rees, D., Zhong, Q.-C.: Control of integral processes with dead time. Part IV:

various issues about PI controllers. IEE Proc., Control Theory Appl. 153(3), 302–306 (2006)
138. Wang, L., Barnes, T.J.D., Cluett, W.R.: New frequency-domain design method for PID con-

trollers. IEE Proc., Control Theory Appl. 142, 265–271 (1995)
139. Wang, L., Cluett, W.R.: Tuning PID controllers for integrating processes. IEE Proc., Control

Theory Appl. 144(5), 385–392 (1997)
140. Wang, Q.-G., Fung, H.-W., Zhang, Y.: Robust estimation of process frequency response from

relay feedback. ISA Trans. 38, 3–9 (1999)
141. Wang, Y.-G., Cai, W.-J.: PID tuning for integrating processes with sensitivity specification.

In: Proceedings IEEE International Conference on Decision and Control, pp. 4087–4091,
Orlando, FL, 2001

142. Wang, Y.-G., Cai, W.-J.: Advanced proportional-integral-derivative tuning for integrating
and unstable processes with gain and phase margin specifications. Ind. Eng. Chem. Res.
41, 2910–2914 (2002)

143. Wang, Y.-G., Cai, W.-J., Shi, Z.-G.: PID autotuning for integrating processes with spec-
ifications on gain and phase margins. In: Proceedings American Control Conference, pp.
2181–2185, Arlington, VA, 2001

144. Warburton, R.D.H., Disney, S.M., Towill, D.R., Hodgson, J.P.E.: Further insights into “the
stability of supply chains”. Int. J. Prod. Res. 42(3), 639–648 (2004)



References 247

145. Watanabe, K., Ito, M.: A process-model control for linear systems with delay. IEEE Trans.
Autom. Control 26(6), 1261–1269 (1981)

146. Watanabe, K., Nobuyama, E., Kojima, A.: Recent advances in control of time delay
systems—a tutorial review. In: Proceedings IEEE International Conference on Decision and
Control, pp. 2083–2089, Kobe, Japan, 1996

147. Weiss, G., Hafele, M.: Repetitive control of MIMO systems using H∞ design. Automatica
35(7), 1185–1199 (1999)

148. Wu, C.: Intelligent use of delayed information in the supply chain by artificial neural network.
In: Proceedings IEEE International Conference on Systems, Man, and Cybernetics, vol. 2,
pp. 66–70 (1999)

149. Xu, J., Shao, H.: Advanced PID tuning for integrating processes with a new robustness spec-
ification. In: Proceedings American Control Conference, pp. 3961–3966, Denver, Colorado,
2003

150. Xu, J., Shao, H.: A novel method of PID tuning for integrating processes. In: Proceedings
IEEE International Conference on Decision and Control, pp. 139–142, Maui, Hawaii, 2003

151. Yu, C.-C.: Autotuning of PID Controllers: Relay Feedback Approach. Springer, London
(1999)

152. Zhang, M., Jiang, C.: Problem and its solution for actuator saturation of integrating process
with dead time. ISA Trans. 47, 80–84 (2008)

153. Zhang, W., Sun, Y.X.: Modified Smith predictor for controlling integrator/time delay process.
Ind. Eng. Chem. Res. 35, 2769–2772 (1996)

154. Zhang, W., Xu, X., Sun, Y.: Quantitative performance design for integrating processes with
time delay. Automatica 35, 719–723 (1999)

155. Zhang, W., Rieber, J.M., Gu, D.: Optimal dead-time compensator design for stable and inte-
grating processes with time delay. J. Process Control 18, 449–457 (2008)

156. Zhong, Q.-C.: Control of integral processes with dead-time. Part 3: Deadbeat disturbance
response. IEEE Trans. Autom. Control 48(1), 153–159 (2003)

157. Zhong, Q.-C.: Robust stability analysis of simple systems controlled over communication
networks. Automatica 39(7), 1309–1312 (2003)

158. Zhong, Q.-C.: On distributed delay in linear control laws. Part I: Discrete-delay implemen-
tations. IEEE Trans. Autom. Control 49(11), 2074–2080 (2004)

159. Zhong, Q.-C.: On distributed delay in linear control laws. Part II: Rational implementations
inspired from the δ-operator. IEEE Trans. Autom. Control 50(5), 729–734 (2005)

160. Zhong, Q.-C.: Robust Control of Time-delay Systems. Springer, Berlin (2006)
161. Zhong, Q.-C., Li, H.X.: Two-degree-of-freedom PID-type controller incorporating the Smith

principle for processes with dead-time. Ind. Eng. Chem. Res. 41(10), 2448–2454 (2002)
162. Zhong, Q.-C., Mirkin, L.: Control of integral processes with dead-time. Part 2: Quantitative

analysis. IEE Proc., Control Theory Appl. 149(4), 291–296 (2002)
163. Zhong, Q.-C., Normey-Rico, J.E.: Control of integral processes with dead-time. Part 1: Dis-

turbance observer-based 2DOF control scheme. IEE Proc., Control Theory Appl. 149(4),
285–290 (2002)

164. Zhong, Q.-C., Xie, J.Y., Jia, Q.: Time delay filter-based deadbeat control of process with
dead time. Ind. Eng. Chem. Res. 39(6), 2024–2028 (2000)

165. Zhou, K., Doyle, J.C.: Essentials of Robust Control. Prentice-Hall, Upper Saddle River
(1998)

166. Ziegler, J.G., Nichols, N.B.: Optimum setting for automatic controllers. ASME Trans. 759–
768 (1942)

167. Zou, Q., Devasia, S.: Preview-based stable-inversion for output tracking of linear systems.
ASME J. Dyn. Syst. Meas. Control 121, 625–630 (1999)



Index

A
Actuator saturation, 155
Anti-windup, 13, 155, 168
Asymptote, 207

C
Closed-loop Index, 74
Communication networks, 3
Complementary sensitivity function, 191, 221
Control action bound, 220

D
Deadbeat disturbance response, 203
Delay margin, 151
Disturbance response, 216
Disturbance-observer, 195, 229
Dual-locus diagram, 210, 226

F
Feedforward control

non-causal action, 99, 111
time-optimal control, 96

Finite-impulse-response, 197, 204

H
H2 norm, 180

I
Integrated absolute error (IAE), 28, 74
Integrated error, 75
Integrated square error (ISE), 28
Internal model control, 27, 74, 166
Internal stability, 231
Internal-model principle, 197
IPDT, 1

identification, 13
closed-loop, 16

open-loop, 13
normalisation, 49

L
Lambert W function, 213
Loop transfer function, 199

M
Maximal decay rate, 218
Maximal dynamic error, 217
Maximum sensitivity, 127
Multiplicative uncertainty, 150, 191, 207, 224

N
Normalised response, 217
Nyquist plot, 51

P
Performance assessment, 71
PI-PD structure, 121
PID controllers, 9, 10, 25, 190

improvements, 11
interacting form, 11
non-interacting form, 11
parallel form, 11
re-tuning, 81
series form, 11
stability region, 49

under PI control, 49
under PID control, 56

tuning methods, 24
empirical formulae, 25, 26
frequency-domain methods, 34

PID-P structure, 125
PID-PD structure, 135
Plug&Control, 87
Pole-zero cancellation, 197, 206, 231

A. Visioli, Q.-C. Zhong, Control of Integral Processes with Dead Time,
Advances in Industrial Control,
DOI 10.1007/978-0-85729-070-0, © Springer-Verlag London Limited 2011

249

http://dx.doi.org/10.1007/978-0-85729-070-0


250 Index

Practical issues, 89, 229
Pseudo-differential polynomial, 205, 206

Q
Quasi-polynomial, 56

R
Ramp disturbance, 198, 201
Repetitive control, 187
Robustness indicator, 208
Root locus, 157
Routh-Hurwitz criterion, 171

S
Sensitivity function, 191

Set-point response, 216
Set-point weight, 129, 134, 170
Smith predictor, 141, 190

modified, 143
Stability margins, 54, 130
Steam turbine generator, 4
Supply chain management processes, 3

T
Tanks with an outlet, 1
Two degree-of-freedom, 95, 121, 162, 188, 239

Z
Zero static error, 230



Other titles published in this series (continued):

Soft Sensors for Monitoring and Control
of Industrial Processes
Luigi Fortuna, Salvatore Graziani,
Alessandro Rizzo and Maria G. Xibilia

Adaptive Voltage Control in Power Systems
Giuseppe Fusco and Mario Russo

Advanced Control of Industrial Processes
Piotr Tatjewski

Process Control Performance Assessment
Andrzej W. Ordys, Damien Uduehi
and Michael A. Johnson (Eds.)

Modelling and Analysis of Hybrid
Supervisory Systems
Emilia Villani, Paulo E. Miyagi
and Robert Valette

Process Control
Jie Bao and Peter L. Lee

Distributed Embedded Control Systems
Matjaž Colnarič, Domen Verber
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