Preface

Objective

This handbook aims at providing a broad survey of the field of graph drawing. It cov-
ers topological and geometric foundations, algorithms, software systems, and visualization

applications in business, education, science, and engineering.
The intended readership of this handbook includes:

e Practitioners and researchers in traditional and emerging disciplines of the phys-
ical, life, and social sciences interested in understanding and using graph drawing
methods and graph visualization systems in their field.

e Information technology practitioners and software developers aiming to incorpo-
rate graph drawing solutions into their products.

e Researchers and students in graph drawing and information visualization seeking
an up-to-date survey of the field.

e Researchers and students in related fields of mathematics and computer science
(including graph theory, computational geometry, information visualization, soft-
ware engineering, user interfaces, social networks, and data management) inter-
ested in using graph-drawing techniques in support of their research.

Organization

The chapters of this handbook are organized into four parts, as follows.

Topological and Geometric Foundations of Graph Drawing The first part
(Chapters 1-4) deals with fundamental topological and geometric concepts and
techniques used in graph drawing: planarity testing and embedding, crossings
and planarization, symmetric drawings, and proximity drawings.

Graph Drawing Algorithms The second part (Chapters 5-14) presents an exten-
sive collection of algorithms for constructing drawings of graphs. Some methods
are designed to draw special classes of graphs (e.g., trees, planar graphs, or
directed acyclic graphs) while other methods work for general graphs. Topics
covered in this part include tree drawing algorithms, planar straight-line drawing
algorithms, planar orthogonal and polyline drawing algorithms, spine and radial
drawings, circular drawing algorithms, rectangular drawing algorithms, simul-
taneous embeddings, force-directed methods, hierarchical drawing algorithms,
three-dimensional drawing algoritms, and labeling algorithms.

Graph Drawing Systems The third part begins by introducing the GraphML lan-
guage for representing graphs and their drawings (Chapter 16). Next, it overviews
three software systems for constructing drawings of graphs: OGDF, GDToolkit,
and PIGALE (Chapters 17-19).

Applications of Graph Drawing The fourth part (Chapters 20-26) gives examples
of the use of graph drawing methods for the visualization of networks in vari-
ous important application domains: biological networks, computer security, data
analytics, education, computer networks, and social networks.

Each chapter is intended to be self-contained and has its own bibliography.

vii

viii PREFACE

Acknowledgments

I would like to thank all the authors of the chapters in this handbook and all the reviewers
who have provided expert feedback on the initial drafts and revised versions of the chapters.

This handbook is a collective effort of the graph drawing research community, which has
developed around the annual Symposium on Graph Drawing. I am grateful to the people
who have founded with me this conference and have continued providing leadership for
it: Franz Brandenburg, Giuseppe Di Battista, Peter Eades, Hubert de Fraysseix, Takao
Nishizeki, Pierre Rosenstiehl, and Ioannis Tollis.

A huge thanks goes to Sunil Nair for proposing this handbook project and supporting its
development. I truly appreciate his constant encouragement and patience. Help received
from the entire CRC Press production team, and especially from Andre Barnett, Kari
Budyk, Rachel Holt, Jim McGovern, and Shashi Kumar, is gratefully acknowledged. I
would like to thank also my executive assistant Angel Murakami for her expert proofreading
of the chapters.

I am indebted to Carlo Batini for introducing me to the problem of drawing graphs and
inspiring me to pursue an academic path. A special thanks also goes to Franco Preparata,
whose guidance and support, first as PhD advisor and then as colleague, have shaped by
career.

Finally, warm thanks go to Isabel Cruz, Giuseppe Di Battista, Michael Goodrich, and
Toannis Tollis for their encouragement and support throughout this project.

Roberto Tamassia

About the Editor

Roberto Tamassia is the Plastech Professor of Computer Science and the Chair of the De-
partment of Computer Science at Brown University. He is also the Director of Brown’s
Center for Geometric Computing. His research interests include analysis, design, and im-
plementation of algorithms, applied cryptography, cloud computing, computational geom-
etry data security, and graph drawing. He has published six textbooks and more than
250 research articles and books in the above areas and has given more than 70 invited
lectures worldwide. He is a Fellow of the American Association for the Advancement of
Science (AAAS), the Association for Computing Machinery (ACM), and the Institute of
Electrical and Electronics Engineers (IEEE). He is the recipient of a Technical Achieve-
ment Award from the IEEE Computer Society for pioneering the field of graph drawing.
He is listed among the 360 most cited computer science authors by Thomson Scientific,
Institute for Scientific Information (IST). He serves regularly on program committees of in-
ternational conferences. His research has been funded by ARO, DARPA, NATO, NSF, and
several industrial sponsors. He co-founded the Journal of Graph Algorithms and Applica-
tions (JGAA) and the Symposium on Graph Drawing. He serves as Co-Editor-in-Chief of
JGAA. He received the PhD degree in electrical and computer engineering from the Uni-
versity of Illinois at Urbana-Champaign and the “Laurea” in Electrical Engineering from
the “Sapienza” University of Rome.

ix

10

Contents

Planarity Testing and Embedding 1

Maurizio Patrignani, Roma Tre University

Crossings and Planarization 43

Christoph Buchheim, TU Dortmund

Markus Chimani, Friedrich-Schiller-Universitit Jena
Carsten Gutwenger, TU Dortmund

Michael Jinger, University of Cologne

Petra Mutzel, TU Dortmund

Symmetric Graph Drawing 87

Peter FEades, University of Sydney
Seok-Hee Hong, University of Sydney

Proximity Drawings o i 115
Giuseppe Liotta, University of Perugia

Tree Drawing Algorithms 155

Adrian Rusu, Rowan University

Planar Straight-Line Drawing Algorithms 193

Luca Vismara

Planar Orthogonal and Polyline Drawing Algorithms ... 223

Christian A. Duncan, Quinnipiac University
Michael T. Goodrich, University of California, Irvine

Spine and Radial Drawings 247

Emilio Di Giacomo, University of Perugia
Walter Didimo, University of Perugia
Giuseppe Liotta, University of Perugia

Circular Drawing Algorithms 285

Janet M. Siz, Lone Star Interaction Design
Toannis G. Tollis, University of Crete and Technology Hellas-FORTH

Rectangular Drawing Algorithms 317

Takao Nishizeki, Kwansei Gakuin University, Japan
Md. Saidur Rahman, BUET, Bangladesh

xi

xii CONTENTS

11 Simultaneous Embedding of Planar Graphs 349

Thomas Blasius, Karlsruhe Institute of Technology
Stephen G. Kobourov, University of Arizona
Ignaz Rutter, Karlsruhe Institute of Technology

12 Force-Directed Drawing Algorithms 383
Stephen G. Kobourov, University of Arizona

13 Hierarchical Drawing Algorithms 409

Patrick Healy, University of Limerick
Nikola S. Nikolov, University of Limerick

14 Three-Dimensional Drawings 455

Vida Dujmovi¢, Carleton University
Sue Whitesides, University of Victoria

15 Labeling Algorithms i 489

Konstantinos G. Kakoulis, T.E.I. of West Macedonia, Greece
Toannis G. Tollis, University of Crete, Greece

16 Graph Markup Language (GraphML) 517

Ulrik Brandes, University of Konstanz
Markus Eiglsperger
Jurgen Lerner, University of Konstanz

Christian Pich, Swiss Re

17 The Open Graph Drawing Framework (OGDF) 543

Markus Chimani, Friedrich-Schiller-Universitit Jena
Carsten Gutwenger, TU Dortmund

Michael Jinger, University of Cologne

Gunnar W. Klau, Centrum Wiskunde & Informatica
Karsten Klein, TU Dortmund

Petra Mutzel, TU Dortmund

18 GDToolKit ... 571

Giuseppe Di Battista, University “Roma Tre”
Walter Didimo, University of Perugia

19 PIGALE ... 599

Hubert de Fraysseiz, CNRS UMR 8557. Paris
Patrice Ossona de Mendez, CNRS UMR 8557. Paris

20 Biological Networksc.oiiiiiiiiiiiii i, 621

Christian Bachmaier, University of Passau
Ulrik Brandes, University of Konstanz
Falk Schreiber, TPK Gatersleben and University of Halle-Wittenberg

CONTENTS

21

22

23

24

25

26

Computer Securitycooiiiiiiiiiiiiiiii 653

Olga Ohrimenko, Brown University

Charalampos Papamanthou, University of California, Berkeley
Bernardo Palazzi, Brown University and Italian National Institute of

Statistics

Graph Drawing for Data Analytics 681
Stephen G. Eick, VisTracks and U. Illinois at Chicago

Graph Drawing and Cartography 697
Alexander Wolff, University of Wiirzburg

Graph Drawing in Education 737
Stina Bridgeman, Hobart and William Smith Colleges

Computer Networks 763

Giuseppe Di Battista, Roma Tre University
Massimo Rimondini, Roma Tre University

Social Networks 805

Ulrik Brandes, University of Konstanz
Linton C. Freeman, University of California, Irvine
Dorothea Wagner, Karlsruhe Institute of Technology

xiii

Planarity Testing and Embedding

1.1 Introduction.............. ..o, 1

1.2 Properties and Characterizations of Planar Graphs... 2
Basic Definitions ® Properties ® Characterizations

1.3 Planarity Problems ... 7

Constrained Planarity ¢ Deletion and Partition Problems ®
Upward Planarity ® Outerplanarity

1.4 History of Planarity Algorithms.......................... 10
1.5 Common Algorithmic Techniques and Tools 10
1.6 Cycle-Based Algorithms....................oooooiii 11

Adding Segments: The AUSLANDER-PARTER Algorithm ¢
Adding Paths: The HOPCROFT-TARJAN Algorithm * Adding
Edges: The DE FRAYSSEIX-OSSONA DE MENDEZ-ROSENSTIEHL
Algorithm

1.7 Vertex Addition Algorithmsoo.. 17
The LEMPEL-EVEN-CEDERBAUM Algorithm * The SHIH-HSU
Algorithm ® The BOYER-MYRvOLD Algorithm

1.8 Frontiers in Planarity 31
Simultaneous Planarity ¢ Clustered Planarity *
Maurizio Patrignanj Decomposition-Based Planarity
Roma Tre University Referenceso 34

1.1 Introduction

Testing the planarity of a graph and possibly drawing it without intersections is one of the
most fascinating and intriguing algorithmic problems of the graph drawing and graph theory
areas. Although the problem per se can be easily stated, and a complete characterization
of planar graphs has been known since 1930, the first linear-time solution to this problem
was found only in the 1970s.

Planar graphs play an important role both in the graph theory and in the graph drawing
areas. In fact, planar graphs have several interesting properties: for example, they are
sparse and 4-colorable, they allow a number of operations to be performed more efficiently
than for general graphs, and their inner structure can be described more succinctly and
elegantly (see Section 1.2.2). From the information visualization perspective, instead, as
edge crossings turn out to be the main reason for reducing readability, planar drawings of
graphs are considered clear and comprehensible.

In this chapter, we review a number of different algorithms from the literature for ef-
ficiently testing planarity and computing planar embeddings. Our main thesis is that all
known linear-time planarity algorithms fall into two categories: cycle based algorithms and
vertex addition algorithms. The first family of algorithms is based on the simple obser-

1

2 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

vation that in a planar drawing of a graph any cycle necessarily partitions the graph into
the inside and outside portion, and this partition can be suitably used to split the em-
bedding problem. Vertex addition algorithms are based on the incremental construction of
the final planar drawing starting from planar drawings of smaller graphs. The fact that
some algorithms were based on the same paradigm was already envisaged by several re-
searchers [Tho99, HT08]. However, the evidence that all known algorithms boil down to
two simple approaches is a relatively new concept.

The chapter is organized as follows: Section 1.2 introduces basic definitions, properties,
and characterizations for planar graphs; Section 1.3 formally defines the planarity testing
and embedding problems; Section 1.4 follows a historic perspective to introduce the main
algorithms and a conventional classification for them. Some algorithmic techniques are
common to more than one algorithm and sometimes to all of them. These are collected
in Section 1.5. Finally, Sections 1.6 and 1.7 are devoted to the two approaches to the
planarity testing problem, namely, the “cycle based” and the “vertex addition” approaches,
respectively.

Algorithms for constructing planar drawings of graphs are discussed in Chapters 6 (straight-
line drawings), 7 (orthogonal and polyline drawings), and 10 (rectangular drawings). Meth-
ods for reducing crossings in nonplanar drawings of graphs are discussed in Chapter 2.

1.2 Properties and Characterizations of Planar Graphs

1.2.1 Basic Definitions

A graph G(V, E) is an ordered pair consisting of a finite set V' of wertices and a finite set
E of edges, that is, pairs (u,v) of vertices. If each edge is an unordered (ordered) pair of
vertices, then the graph is undirected (directed). An edge (u,v) is a self-loop if w =v. A
graph G(V, E) is simple if E is not a multiple set and it does not contain self-loops. For the
purposes of this chapter, we can restrict us to simple graphs.

The sets of edges and vertices of G can be also denoted E(G) and V(G), respectively. If
edge (u,v) € E, vertices u and v are said to be adjacent and (u,v) is said to be incident
to u and v. Two edges are adjacent if they have a vertex in common.

A (rooted) tree T is a connected acyclic graph with one distinguished vertex, called the
root r. A spanning tree of a graph G is a tree T such that V(T) = V(G) and E(T) C E(G).

Given two graphs G1(V1, F1) and Ga(Va, Es), their union G; U G2 is the graph G(V; U
Va, E1 U Es). Analogously, their intersection G1 N Gg is the graph G(Vi NVa, By N Es). A
graph Gs is a subgraph of Gy if G UGy = G.

Given a graph G(V, E) and a subset V' of V, the subgraph induced by V' is the graph
G'(V',E"), where E’ is the set of edges of F that have both endvertices in V’. Given a
graph G(V, E) and a subset E’ of E, the subgraph induced by E’ is the graph G'(V', E'),
where V’ is the set of vertices incident to E’. A subdivision of an edge (u,v) consists of the
insertion of a new node w and the replacement of (u,v) with edges (u,w) and (w,v). A
graph Gs is a subdivision of G if it can be obtained from G; through a sequence of edge
subdivisions.

A drawing T of a graph G maps each vertex v to a distinct point I'(v) of the plane and
each edge (u,v) to a simple open Jordan curve I'(u,v) with endpoints I'(u) and T'(v). A
drawing is planar if no two distinct edges intersect except, possibly, at common endpoints.
A graph is planar if it admits a planar drawing. A planar drawing partitions the plane
into connected regions called faces. The unbounded face is usually called external face
or outer face. If all the vertices are incident to the outer face, the planar drawing is called
outerplanar and the graph admitting it is an outerplanar graph. Given a planar drawing,

1.2. PROPERTIES AND CHARACTERIZATIONS OF PLANAR GRAPHS 3

the (clockwise) circular order of the edges incident to each vertex is fixed. Two planar
drawings are equivalent if they determine the same circular orderings of the edges incident
to each vertex (sometimes called rotation scheme). A (planar) embedding is an equivalence
class of planar drawings and is described by the clockwise circular order of the edges incident
to each vertex. A graph together with one of its planar embedding is sometimes referred to
as a plane graph.

A path is a sequence of distinct vertices vy, vs, ..., v, with k > 2, together with the edges
(v1,v2), ..., (vk—1,vk). The length of the path is the number of its edges.

A cycle is a sequence of distinct vertices vy, vo, ..., vk, with & > 2, together with the
edges (v1,v2), ..., (Vk—1,Vk), (Vk,v1). The length of a cycle is the number of its vertices or
the number of its edges.

An undirected graph G is connected if, for each pair of nodes u and v, G contains a path
from w to v. A graph G with at least k + 1 vertices is k-connected if removing any k — 1
vertices leaves G connected. Equivalently, by Menger’s theorem, a graph is k-connected
if there are k independent paths between each pair of vertices [Men27]. 3-connected, 2-
connected, and 1-connected graphs are also called triconnected, biconnected, and simply
connected graphs, respectively. It is usual in the planarity literature to relax the definition
of biconnected graph so to include bridges, i.e., graphs composed by a single edge between
two vertices. A separating k-set is a set of k vertices whose removal disconnects the graph.
Separating 1- and 2-sets are called cutvertices and separation pairs, respectively. Hence, a
connected graph is biconnected if it has no cutvertices and it is triconnected if it has no
separation pairs.

If a graph G is not connected, its maximal connected subgraphs are called the connected
components of G. If G is connected, its maximal biconnected subgraphs (including bridges)
are called the biconnected components, or blocks of G. Note that a cutvertex belongs to
several blocks and that a biconnected graph has only one block. The graph whose vertices
are the blocks and the cutvertices of G and whose edges link cutvertices to the blocks they
belong to is a tree and is called the block-cutvertex tree (or BC-tree) of G (see Figure 1.1
for an example).

Given a biconnected graph G, its triconnected components are obtained by a complex
splitting and merging process. The first linear-time algorithm to compute them was intro-
duced in [HT73], while an implementation of it is described in [GMO01]. The computation
has two phases: first, G is recursively split into its split components; second, some split
components are merged together to obtain triconnected components. The split operation
is performed with respect to a pair of vertices {v1,v2} of the biconnected (multi)graph G.
Suppose the edges of G are divided into the equivalence classes E1, Es, ..., Ej such that two
edges are in the same class if both lie in a common path not containing a vertex in {vy,vo}
except, possibly, as an end point. If there are at least two such classes, then {vy, vy} is a
split pair. Let Gp be the graph induced by F; and Ga be the graph induced by E/E;. A
split operation consists of replacing G with G} and G, where G} and GY are obtained from
G and G2 by adding the same wvirtual edge (v1,v2). The two copies of the virtual edge
added to G and G4 are called twin virtual edges. Figure 1.2(b) shows the result of a split
operation performed on the graph of Figure 1.2(a) with respect to split pair {2,4}. The
split components of a graph G are obtained by recursively splitting G until no split pair can
be found in the obtained graphs. Figure 1.2(c) shows the split components of the graph of
Figure 1.2(a). Split components are not unique and, hence, are not suitable for describing
the structure of G.

Two split components sharing the same twin virtual edges (v1,v2) can be merged by
identifying the two copies of v; and vy and by removing the twin virtual edges. Split
components consisting of cycles are called series split components, while split components

4 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

Figure 1.1 A connected graph (a) and its BC-tree (b). Different line styles are used for
edges of different blocks.

that have only two vertices are called parallel split components. By recursively merging
together series split components that share twin virtual edges we obtain series triconnected
components, while by recursively merging together parallel split components that share twin
virtual edges we obtain parallel triconnected components. Split components that are not
affected by the merging operations described above are called rigid triconnected components.
Figure 1.3(a) shows the triconnected components of the graph of Figure 1.2(a).

Triconnected components are unique and are used to describe the inner structure of a
graph. In fact, a graph G can be succinctly described by its SPQR-tree T, which provides
a high-level view of the unique decomposition of the graph into its triconnected compo-
nents [DT96a, DT96b, GMO01]. Namely, each triconnected component corresponds to a
node of 7. The triconnected component corresponding to a node p of T is called the
skeleton of p. As there are parallel, series, and rigid triconnected components, their corre-
sponding tree nodes are called P-, S-, and R-nodes, respectively. Triconnected components
sharing a virtual edge are adjacent in 7. Usually, a fourth type of node, called Q-node,
is used to represent an edge (u,v) of G. Q-nodes are the leaves of 7 and they don’t have
skeletons. Tree T is unrooted, but for some applications, it could be thought as rooted at
an arbitrary Q-node. See Figure 1.3 for an example of SPQR-tree.

The connectivity properties of a graph have a strict relationship with its embedding
properties. Triconnected planar graphs (and triconnected planar components) have a single

1.2. PROPERTIES AND CHARACTERIZATIONS OF PLANAR GRAPHS 5

Figure 1.2 (a) A biconnected graph. (b) A split operation performed with respect to
split pair {2,4}. (c¢) The split components of the graph. Virtual edges are drawn dashed.
Twin virtual edges are joined with dotted lines.

@
Py 9
O— \RI —O \'s,

Figure 1.3 (a) The triconnected components of the same graph of Figure 1.2. (b) The
corresponding SPQR-tree. Q-nodes are represented by empty circles.

embedding up to a flip (that is, up to a reversal of all their incidence lists) [Whi32]. The
same holds for biconnected outerplanar graphs and their unique outerplanar embedding
(adding a star on the outer face yields a triconnected plane graph).

A non-connected graph is planar if and only if all its connected components are planar.
Thus, in the following, without loss of generality, we only consider the planarity of connected
graphs. Also, a planar embedding of a graph implies a planar embedding for each one of
its blocks, while, starting from a planar embedding of the blocks, a planar embedding for
the whole graph can be found [Whi32]. Thus, since the blocks can be identified in linear
time [Tar72], a common strategy, both to test planarity and to compute a planar embedding,
is to divide the graph into its blocks and to tackle each block separately.

Finally, a graph is planar if and only if its triconnected components are planar [Mac37b].
More precisely, as parallel and series triconnected components are always planar, a graph is
planar if and only if all its rigid triconnected components are planar. However, since dividing
a graph into its triconnected components is a linear but rather laborious process [HT73,
GMO1], usually planarity algorithms do not assume that the input graph is triconnected.

Also, from a planar embedding of the triconnected components of a graph, a planar
embedding of the whole graph can be obtained. This property can be exploited to explore

6 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

the planar embeddings of a given graph when searching for some embedding with a specific
property (see, for example, [MW99, MW00, BDBD00, GMWO01, ADF*10]).

Given a plane (multi)graph G, its plane dual (or simply its dual) is the multigraph G*
such that G* has one vertex for each face of G and two vertices of G* are linked by one edge
e* if the corresponding faces in G share one edge e. Observe that the planar embedding of
G induces a planar embedding of its dual and that the dual of the dual of G is G itself.
Also, different embeddings of a planar graph G correspond to different dual graphs. Finally,
a cycle in G corresponds to a minimal cut in G* (anytime this property holds G and G*
are called abstract dual).

A graph G(V, E) is k colorable if its vertices can be partitioned into k sets V1, Va, ..., Vi
in such a way that no edge is incident to two vertices of the same set. A graph G(V, E)
is complete if each vertex in V' is adjacent to each other.

A graph G(V, E) is bipartite if it is 2-colorable. A bipartite graph G(V1, Vs, E) is complete
if each vertex in V; is adjacent to all vertices in V5.

1.2.2 Properties

Planar graphs have a variety of properties whose exploitation allows us to efficiently perform
a number of operations on them.

Perhaps the most renown property is the one stated by Euler’s Theorem, which shows
that planar graphs are sparse. Namely, given a plane graph with n vertices, m edges and f
faces, we have n — m + f = 2. A simple corollary is that for a maximal planar graph with
at least three vertices, where each face is a triangle (2m = 3f), we have m = 3n — 6, and,
therefore, for any planar graph we have m < 3n — 6. This number reduces to m = 2n — 3
for maximal outerplanar graphs with at least three vertices (and m < 2n — 3 for general
outerplanar graphs). Also, if n > 3 and the graph has no cycle of length 3, then m < 2n—4.
Finally, if the graph is a tree, then m =n — 1.

These considerations allow us to replace m with n in any asymptotic calculation involving
planar graphs, while for general graphs only m € O(n?) can be assumed. From a more
practical perspective, they allow us to decide the non-planarity of denser graphs without
reading all the edges (which would yield a quadratic algorithm).

The Four Color Theorem [AH77, AHK77, RSST97] asserts that any planar graph is
4-colorable and settles a conjecture that was for more than a century the most famous
unsolved problem in graph theory and perhaps in all of mathematics [Har69]. To stress
how important this property is, it suffices to observe that, apart from being considered
an important property of planar graphs, it has also been mentioned as the most notable
property of the number 4.

While 3-colorability is NP-hard even on maximum degree four planar graphs [GJS76],
every triangle-free planar graph is 3-colorable [Gr659] and such a 3-coloring can be found
in linear-time [DKT09].

Determining whether the graph contains a k-clique, i.e., a set of k pairwise adjacent
vertices, is polynomial for planar graphs, as no clique can have more than four vertices.
This problem is polynomial even in the weighted case, where each vertex is associated with
a weight and the sum of the weights of the pairwise adjacent vertices is requested to be at
least k. Observe that both these problems are NP-complete on non-planar graphs.

Graph isomorphism is linear for planar graphs [HW74], while it is of unknown complexity
for general graphs [GJ79].

The planar separator theorem [LT79] states that every planar graph G = (V, F) admits a
partition of its n vertices into three sets, A, B, and C, such that the size of C is O(y/n), the
size of A and B is at most %n, and there is no edge with one endpoint in A and the other

1.3. PLANARITY PROBLEMS 7

endpoint in B. Such a partition can be found in linear time and is the starting point of a
hierarchical decomposition of the graph that may lead to efficient approaches to compute
properties of the graph.

1.2.3 Characterizations

The first complete characterization of planar graphs is due to Kuratowski [Kur30] and states
that a graph is planar if and only if it contains no subgraph that is a subdivision of K5 or
K3 3, where K is the complete graph of order 5 and K3 3 is the complete bipartite graph
with 3 vertices in each of the sets of the partition. An equivalent later result, recasted in
terms of graph minors, is Wagner’s theorem that states that a graph G is planar if and
only if it has no K5 or K33 as minor, that is, K5 or K33 cannot be obtained from G by
contracting some edges, deleting some edges, and deleting some isolated vertices [Wag37a,
HT65]. Observe that the two characterizations are different since a graph may admit Ky
as minor without having a subgraph that is a subdivision of K5 (consider, for example, a
graph of maximum degree 3).

Similarly, it can be proved that a graph is outerplanar if and only if it contains no
subgraph that is a subdivision of K4 or Ky 3. Trivially, a graph is a tree if it does not
contain a subdivision (or a minor) of Kj.

If the graph is triconnected, a less renown but much simpler characterization can be
formulated. Namely, a triconnected graph distinct from K5 is planar if and only if it
contains no subgraph that is a subdivision of K3 3 [Wag37b, Hal43, Kel93, Lie01].

Given a graph G with no isolated vertices, the associated height-two wvertez-edge poset
<@g has VU F as elements, and v <g e if and only if v € V, e € E, and v is an endpoint
of edge e. The smallest number of total orders the intersection of which yields the poset
is called the dimension of the poset. Graph G is planar if and only if its corresponding
vertex-edge poset has dimension at most three [Sch89]. Unfortunately, checking if a poset
has dimension at most ¢ is proved to be NP-complete for ¢ > 3 and for ¢ > 4 if the poset
has height two [Yan82].

Edges traversing a bipartition of the vertices of G are called a cocycle. Observe that
while a cycle is a collection of edges that covers each vertex an even (possibly zero) number
of times, a cocycle is a collection of edges that intersects each cycle in an even number
of edges. A bicycle is a collection of edges that is both a cycle and a cocycle. Planarity
can be characterized in terms of the properties of the vector spaces of cycles [Mac37a],
cocycles [APBL95, LS10], and bicycles [APBL95].

A further planarity characterization is expressed via Colin de Verdiére’s graph invariant
1(G), which in turn is based on the maximum multiplicity of the second eigenvalue of
certain Schrodinger operators defined by the graph [Col90, Col91], and states that a graph
G is planar if and only if u(G) < 3.

Alternative characterizations can be found in the literature based on the existence of
an abstract dual graph [Whi32], on the edge poset dimension [dO96], on the relationship
among theta-graph minors [AS98], on the orientability of circuits [LH77, Che81], on the
arrangements of pseudo-lines [TT97], or on DFS traversals of the graph [dR82, dR85, SH93,
SH99, BM99, BM04].

1.3 Planarity Problems

The main planarity problem is the decision problem of recognizing planar graphs, that is, of
deciding the planarity of the input graph. Both with the purpose of exhibiting a planarity

8 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

certificate and of producing a planar embedding for information-visualization applications,
planarity testing algorithms are usually coupled with planar embedding procedures, that
sometimes, depending on the algorithmic approach, required a considerable research effort
to be devised.

On the opposite, if the graph is not planar, the search for a non-planarity certificate is
called Kuratowski subgraph isolation [CMS08], and the research concentrated on planariza-
tion algorithms that allow us to produce a planar graph where some degree-four vertices
have been added to replace crossings [Lie01]. Since crossing number minimization is NP-
complete [GJ79] planarization algorithms use heuristics to introduce a reduced number of
dummy vertices.

Dynamic algorithms have also been devised for efficiently determining planarity and com-
puting a planar embedding of graphs where edges and vertices are added or deleted one at
a time [DT89, DT96b, GIS99, DBTVO1].

Efficient algorithms for planarity testing in parallel have been investigated in [KR88,
RR&9, RR94].

1.3.1 Constrained Planarity

The problem of determining the planarity of a graph and of computing a possible embed-
ding of it can be combined with additional constraints on the desired drawing that result
in restrictions on the set of admissible planar embeddings [Tam98, GKMO08]. Typical con-
straints ask for some vertices to be on the same face (usually the outer face), some vertex
to have a specified circular ordering of its incident edges, some path to be drawn along a
straight line, etc. In the easier cases, such constraints can be enforced by replacing sets
of nodes and edges of the input graph with suitable gadgets, by launching an ordinary
planarity algorithm, and by transferring the results back on the original graph. More com-
plex cases require to efficiently explore the possible embeddings of the graph by considering
their inner structures described by their BC-trees and SPQR-trees. In [GKMO08], embed-
ding constraints that restrict the admissible order of incident edges around a vertex are
considered.

A very restrictive constraint is when the input graph G is partially embedded, i.e., when a
subgraph H of G is provided with an embedding H. In this case, the problem of determining
a planar embedding of the whole graph that extends the embedding H, if one exists, is
linear [ADFT10]. Also, if the answer is negative, an obstruction taken from a collection of
minimal non-planar instances can be produced in polynomial time [JKR11].

A constrained planarization is implied anytime an embedding that minimizes some qual-
ity measure is desired. As pointed out in [BM90, PT00, Piz05], the quality of a planar
embedding can be measured in terms of the maximum distance of its vertices from the
external face. Such a distance can be given in terms of different incidence relationships
between vertices and faces. For example, if two faces are considered adjacent when they
share a vertex, then the maximum distance to the external face is called radius [RS84]. If
two vertices are adjacent when they are endpoints of an edge, then the maximum distance
to the external face is called width [DLT84]. If two vertices are adjacent when they are
on the same face and the external face is adjacent to all its vertices, then the maximum
distance to the external face is called outerplanarity [Bak94]. If two faces are adjacent when
they share an edge, then the maximum distance to the external face is called depth [BM8S].
In [PT00, GMO04], algorithms are proposed to minimize the maximum distance of the bicon-
nected components of the graph from the external face, where two biconnected components
are adjacent if they share a cutvertex. This measure, which is also called “depth,” is a
rougher indicator of the quality of the embedding but can be computed in linear time.

1.3. PLANARITY PROBLEMS 9

In [BM90], Bienstock and Monma present an algorithm to compute the planar embed-
ding of an n-vertex planar graph with minimum maximum distance to the external face in
O(n®logn) time, which is improved to O(n?) time in [ADP11]. The considered distance
is the depth. However, it is possible to compute the radius, the width, and the outerpla-
narity of a graph by modifying and simplifying the algorithm for the minimum depth, since
such distance measures are intrinsically simpler to compute than the depth [BM90]. The
complexity bounds for computing such simpler distance measures is improved in [Kam07],
where an algorithm that computes the outerplanarity of an n-vertex planar graph in O(n?)
time is described. Simple variations of this algorithm can lead to compute the radius in
O(n?) time and the width in O(n?) time [KamO07].

1.3.2 Deletion and Partition Problems

Deleting the minimum number of edges in order to obtain a planar graph is called mazimum
planar subgraph and proved to be NP-hard in [GJ79]. Analogously, deleting the minimum
number of vertices in order to obtain a planar graph is called mazimum induced planar
subgraph and proved to be NP-hard in [Yan78§].

The problem of partitioning the edges of a graph G = (V, E) into k sets Ey,..., Fy in
such a way that each graph G; = (V, E;), with ¢ = 1,2,... k is planar is called graph
thickness and is shown to be NP-hard for k£ = 2 in [Man83|.

1.3.3 Upward Planarity

If the input graph G is directed, adding the requirement that the drawing of G is upward,
that is, that each edge is a curve of increasing y-coordinates, transforms the planarity
problem into the upward planarity one, which was shown to be NP-complete in [GT01].

However, upward planarity testing turns out to be polynomial for several families of
directed graphs:

1. If the digraph G is outerplanar. This problem was shown to be O(n?) in [Pap95].

2. If the digraph G is triconnected [BD91, BDLM94].

3. If the digraph G has a fixed embedding. An O(n?)-time algorithm was introduced
in [BDLM94], and the problem is linear in the case of embedded outerplanar
graphs ([Pap95]).

4. If the digraph @G is single-source. The O(n?)-time algorithm described in [HL96]
was improved to linear in [BDMT98].

1.3.4 Outerplanarity

Determining whether a graph is outerplanar and producing an outerplanar drawing of it is a
problem that can be solved independently or by using a planarity algorithm as a subroutine.
In fact, a graph G = (V| E) is outerplanar if and only if the graph G'(V’, E’) is planar,
where V! = V U {v} and E’ is obtained from E by adding an edge (v;,v) for each vertex
v; € V.

Deleting the minimum number of vertices from a graph in order to make it outerplanar
is NP-complete [Yan78].

10 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

1.4 History of Planarity Algorithms

Directly applying Kuratowski’s characterization of planar graphs based on subdivisions
would yield an exponential-time algorithm while Wagner’s characterization based on minors
would give a factorial-time algorithm. The first polynomial-time algorithms for planarity are
due to Auslander and Parter [AP61], Goldstein [Gol63], and, independently, Bader [Bad64].

In 1974, Hopcroft and Tarjan [HT74] proposed the first linear-time planarity testing
algorithm. This algorithm, also called “path-addition algorithm,” starts from a cycle and
adds to it one path at a time. However, the algorithm is so complex and difficult to
implement that several other contributions followed their breakthrough. For example, about
20 years after [HT74], Mehlhorn and Mutzel [MM96] contributed a paper to clarify how to
construct the embedding of a graph that is found to be planar by the original Hopcroft and
Tarjan algorithm.

A different approach has its starting point in the algorithm presented by Lempel, Even,
and Cederbaum [LECG67]. This algorithm, also called “vertex addition algorithm,” is based
on considering the vertices one-by-one, following an st-numbering; it has been shown to be
implementable in linear time by Booth and Lueker [BL76], while a linear-time algorithm
for computing the needed st-numbering was provided in [ET76]. Also in this case, a further
contribution by Chiba, Nishizeki, Abe, and Ozawa [CNAO85] has been needed for showing
how to construct an embedding of a graph that is found planar.

A further interesting algorithm [dOR06, dF08a, Bra09] is based on a characterization
given by de Fraysseix and Rosenstiehl [dR82, dR85] in turn based on intuitions of Liu and
Wu [Wu74, Ros80, Liu88, Liu89, Xu89]. For a long time, the algorithm has not been fully
described in the literature but had a very efficient implementation in the Pigale software
library [dO02].

However, although the planarity problem has been carefully studied in the above cited
literature, the story of the planarity testing algorithms enumerates several more recent
contributions. The motivations behind such relatively new papers are twofold. On one
side, even if the known algorithms are combinatorially elegant, they are quite difficult to
understand and to implement. On the other side, the researchers are interested in deepening
the relationships between planarity and Depth First Search (DFS). Such relationships are
clearly strong but, probably, up to now, not completely understood.

Two recent DFS-based planarity testing algorithms, whose similarities were stressed
in [Tho99], are those presented by Shih and Hsu [SH93, SH99, Hsu03] and by Boyer and
Myrvold [BM99, BM04].

The Shih-Hsu algorithm replaces biconnected portions of the graph with single nodes,
called C-nodes, whose embedding is fixed.

The Boyer and Myrvold algorithm represents embedded biconnected portions of the graph
with a data structure that allows the embeddings to be “flipped” in constant time.

1.5 Common Algorithmic Techniques and Tools

In this section, we introduce some definitions and common techniques used by the planarity
testing algorithms. The most important technique, common to almost all the algorithms,
is Depth First Search, or DFS. DFS is a method for visiting all the vertices of a graph G. It
starts from an arbitrarily chosen vertex of G and continues moving from the current vertex
to an adjacent one, as long as unexplored neighbors are found. When the current vertex
has no unexplored neighbors, the traversal backtracks to the first vertex with an unexplored
adjacent vertex.

1.6. CYCLE-BASED ALGORITHMS 11

Figure 1.4 A DFS traversal of a graph. Thick lines represent the tree edges, while the
back edges are drawn with dashed lines. Each vertex is identified with its DFS index.

The edges by which DFS discovers new vertices of G form a spanning tree T' of G, called
Palm Tree, or DFS Tree. The root of T is the vertex at which the traversal started. The
edges of T are called tree edges, while the remaining edges of G are called back edges (or
co-tree edges).

After performing a DFS traversal, each vertex v of G can be associated with a DF'S index,
DFS(v), that is, the order in which v was reached during the DFS visit. The root of T
has index one. For a tree edge (u,v), we have that DFS(u) < DFS(v). On the contrary,
a back edge is oriented from the end vertex with higher DFS index to the end vertex with
lower DF'S index. An example DFS is shown in Figure 1.4.

For each vertex v of G, we can also define two sets of edges, called B;,(v) and Byt (v).
These sets contain, respectively, the back edges entering and exiting v. Note that each back
edge in By, (v) connects v to a descendant in the DFS tree, while each back edge in By (v)
connects v to an ancestor. Given a tree edge e = (u,v), its returning edges are those back
edges that from a descendant of v (included v itself) go to an ancestor of u different from u
itself. At last, the lowpoint of a vertex v, denoted by lowpt(v), is the lowest DFS index of
an ancestor of v reachable through a back edge from a descendant of v. Analogously, the
highpoint of a vertex v, denoted by highpt(v), is the highest DFS index of an ancestor of v
reachable through a back edge from a descendant of v.

1.6 Cycle-Based Algorithms

The shared foundation of all algorithms in this section is an intuitive observation formalized
in the Jordan curve theorem: every simple closed curve divides the plane into two connected
regions, and hence there is no way to connect two points in both regions without crossing
that curve.

Acyclic (undirected) graphs are forests and therefore planar. If a graph does contain a
cycle, that cycle yields a simple closed curve in any planar drawing of it. Consequently,
each of the remaining connected parts of the graph needs to be drawn entirely in one of the
two connected regions bounded by the cycle. Deciding whether this is possible, and which
region to choose, is the essence of planarity testing and embedding, respectively.

It will take three major steps to arrive at simple linear-time algorithms based on this
observation. The first step consists in formalizing the approach in a recursive algorithm,
the second step yields a linear-time realization of the algorithm, and the third step simplifies
the second while adding a corresponding combinatorial characterization.

12 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

a)

Figure 1.6 The four segments of graph G of Figure 1.5 separated by cycle C.

1.6.1 Adding Segments: The AUSLANDER-PARTER Algorithm

Algorithms based on the above cycle criterion were first proposed in [AP61] (see also [Gol63,
Bad64, DETT99)).

To introduce the approach formally, consider a simple cycle C' in a biconnected graph G.
Recall that a graph is planar if and only if its biconnected components are, and that every
edge of a biconnected graph is contained in at least one cycle. Each such cycle C yields a
collection of connected, edge-induced subgraphs S;, i = 1,...,k as follows. Either S; is an
edge that connects two vertices of C' that are not consecutive (i.e., a chord), or S; is induced
by the edges of a connected component of G\ C together with the edges connecting that
component to C. Each S; is called a segment and, because of biconnectivity, contains at
least two vertices of C', referred to as the attachments of S;. Note that vertices of C' may
be attachments of any number of segments. Figure 1.5 shows a biconnected graph G and a
cycle C. The segments separated by C' are depicted in Figure 1.6

A cycle C of G is said to be separating if it has at least two segments, while it is called
non-separating otherwise. Of course, if G is a cycle, then C has no segments and is non-
separating. In order to recur on subgraphs, the AUSLANDER-PARTER algorithm needs to
pick a separating cycle.

LEMMA 1.1 [DETT99] Let G be a biconnected graph, let C' be a non-separating cycle
of G, and let S be its only segment. If S is not a path, then G has a separating cycle C’
consisting of a subpath of C' plus a path v of S between two attachments.

Proof: Let u and v be two attachments of S that are consecutive in the circular ordering
of C, let a be a subpath of C between u and v that does not contain any other attachment
of S to C, and let 8 be the subpath of C' between u and v different from « (see Figure 1.7
for an example). Since S is connected, there is a path v in S between u and v. Let C’
be the cycle obtained from C by replacing o with . We have that « is a segment of G
with respect to C’. If S is not a path, let e be an edge of S not in . There is a segment

1.6. CYCLE-BASED ALGORITHMS 13

Figure 1.7 (a) A non-separating cycle C' whose single segment S is not a path. Replacing
subpath « with subpath v as described in the proof of Lemma 1.1 yields a separating
cycle C”.

(a)

Figure 1.8 (a) The interlacement graph for the segments induced on graph G by the
cycle C of Figure 1.5. (b) A possible bi-coloring of the interlacement graph. (c) The
corresponding embedding choices for the segments of GG, where segments colored black are
placed inside C'.

of ¢ distinct from « containing e. Therefore, if S is not a path, then C’ has at least two
segments and is thus a separating cycle of G. m|

We have already argued that segments must be drawn entirely in one of the two regions
created by the drawing of C. Two segments are said to be compatible, if they can be
drawn in the same region of C, and conflicting otherwise. The following lemma shows that
compatibility has a simple characterization.

LEMMA 1.2 Two segments are compatible, if and only if their attachments do not in-
terleave.

The interlacement graph of the segments of G with respect to C'is the graph whose vertices
are the segments of G and whose edges are the pairs of interlacing segments. Figure 1.8(a)
shows the interlacement graph for graph G and cycle C of Figure 1.5. If there are more
than two pairwise incompatible segments, the graph is not planar, because there are only
two regions in which they can be drawn. If G is planar, then the interlacement graph is
bipartite and two-colorable, each color corresponding to one side of C' (see Figures 1.8(b)
and 1.8(c)). We can recursively check the planarity of all subgraphs obtained from the
union of a segment S; and C.

14 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

The AUSLANDER-PARTER algorithm is based on the following intuitive recursive charac-
terization of planarity for biconnected graphs.

Theorem 1.1 [DETT99] A biconnected graph G with a cycle C' is planar if and only if
the following two conditions hold:

o The interlacement graph of the segments of G with respect to C' is bipartite.

o For each segment S of G with respect to C, the graph obtained by adding S to C
s planar.

Proof: 1If the graph is planar, it is easy to see that the two conditions hold by considering
a planar drawing of it. If the two conditions hold, the proof is by construction and is based
on the fact that compatible segments do not interleave (Lemma 1.2) and, hence, can be
planarly arranged on the same side of C. |

The algorithm has three cases:

Trivial case. Graph G is a single cycle C. This case can only occur at the beginning
of the computation and terminates it.

Base case. Cycle C' separates a single segment, which is a path. This terminates the
current branch of the computation (there will be no recursion).

Recursive case. A separating cycle C' can be found in G. If the interlacement graph
is not bipartite, the algorithm terminates with a non-planarity. Otherwise, re-
cursion is needed on the subgraphs composed by C' and each segment.

Here it is not necessary to describe this algorithm in more detail, because, in fact, the
subsequent ones are instantiations of this rather generic approach.

It can be shown that the number of recursions is O(n) and that the interlacement graph
has size O(n?), yielding an O(n?®) time algorithm. Also, it is worth mentioning that for
a graph that turns out to be planar, the embedding is constructed bottom-up, where pla-
nar embeddings may have to be flipped, depending on which region they are placed in.
There is an interesting alternative approach presented by Demoucron, Malgrange, and Per-
tuiset [DMP64]. Instead of recursively testing segments for planarity, they start from a fixed
embedding of one cycle, and incrementally add only a path connecting two attachments of
a segment into a face of the current embedding. This approach requires a careful selection
of (facial) cycles and paths and yields a quadratic-time algorithm but is the only algorithm
known to us that does not require alterations of preliminary embeddings.

1.6.2 Adding Paths: The HorPcROFT-TARJAN Algorithm

The relative inefficiency of recursively testing augmented segments for planarity is caused
by a lack of control over the instances obtained when selecting a cycle.

By exploiting the special structure of DF'S trees, Hopcroft and Tarjan [HT74] (see also [Deo76,
RND77, Eve79, Wil80]) were able to serialize the combination of trivially planar segments
(namely, paths) in a bottom-up fashion.

Let us start from a spine cycle, i.e., a fundamental cycle consisting of a path of tree
edges that start at the root of the DFS tree together with a single back edge returning
to the root. Call the subgraph consisting of only the spine cycle Gy. Next, segments are
added recursively, one path at a time, which is why the algorithm is often referred to as the
path-addition approach.

To explain the order in which paths are selected, consider the subgraph G; consisting of
the spine cycle and the first ¢ paths, and an edge e that is incident to but not contained in G;.

1.6. CYCLE-BASED ALGORITHMS 15

Define the segment S(e) of e to be the inclusion-maximal connected subgraph containing
e, in which no vertex of G; has degree larger than one. Moreover, define the vertex with
the lowest DFS number in S(e) to be the lowpoint of the segment. Since G is biconnected,
S(e) contains at least two vertices of G, which we call attachments as well. By the order
in which paths are inserted, the lowpoint of S(e) will always be an attachment.

Now assume that the DFS tree was re-built to determine lowpoints and biconnected
components. When exploring the tree once again, but this time by traversing edges with
lower lowpoints first, we are effectively performing a recursive traversal of segments in
which segments with lower lowpoints are traversed first. This order is crucially important
for our ability to test efficiently whether segments are conflicting, because it ensures that the
attachments of a segment are visited in order of non-decreasing lowpoints. We can therefore
place lowpoints on a stack and remove them from the top of the stack during backtracking,
thus maintaining in the stack all attachments in the order in which they appear in the lower
part of the segment-defining cycle not yet backtracked over. Recall that two segments are
compatible if their attachments do not interleave.

Again, we do not go into further details, because the approach is further simplified below.
We just note that the algorithm can actually be implemented to run in linear time, but
that this is quite difficult and that it took many years until this test was complemented by
an embedding phase [MMO96] (which runs in linear time).

Part of the difficulty is in the absence of a characterization of planarity that is closely
tied to the workings of the algorithm.

1.6.3 Adding Edges: The DE FRAYSSEIX-OSSONA DE MENDEZ-ROSENSTIEHL Al-
gorithm

While we have argued that the test of Hopcroft and Tarjan implements that of Auslander
and Parter by recursively building up segments one path at a time, it turns out that the
original approach can be further simplified by interpreting it on an even more detailed level,
adding one edge at a time.

This does not only simplify the algorithm, it also yields a characterization of planarity that
provides a less procedural proof of correctness and a straightforward embedding. Therefore,
following the approach of [Bra09], we first recall the characterization and then revisit the
algorithm.

Consider a connected undirected graph which needs not to be biconnected, and let G =
(V,T ¥ B) be the directed graph obtained from a DFS, where T is the set of tree edges
and B the set of back edges. We say that G is a DFS-orientation of the original graph.
Note that this is not a procedural definition, since such an orientation is characterized by
consisting of a rooted spanning tree such that each non-tree edge defines a directed cycle.
As each back edge returns to an ancestor of its source, it implicitly defines a cycle, which
is called fundamental cycle. A back edge (u,v) is a return edge for each tree edge of its
fundamental cycle, with the exception of the first tree edge exiting v.

DEFINITION 1.1 [dORO06] Let G = (V,T & B) be a DFS-oriented graph. A partition
B = LWR of its back edges into two classes, referred to as left and right, is called left-right
partition, or LR partition for short, if for every vertex v with incoming tree edge e and
outgoing edges e, es

e all return edges of e; ending strictly higher than lowpt(es) belong to one class
and

16 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

e all return edges of es ending strictly higher than lowpt(e;) belong to the other
class.

Intuitively, the partition of the back edges into classes L and R corresponds to orienting
the fundamental cycles in such a way that those closed by back edges in L are counterclock-
wise while those closed by back edges in R are clockwise.

Theorem 1.2 A graph is planar if and only if it admits an LR partition.

Necessity of the condition of Theorem 1.2 is straightforward: given a DFS tree and a
planar embedding of the graph it suffices to assign each back edge to the classes L or
R, depending on whether the fundamental cycle it closes is counterclockwise or clockwise,
respectively. Sufficiency is shown by constructing a planar embedding from a given LR
partition. First, observe that in an LR partition it can be assumed that all return edges
from a tree edge e that return to lowpt(e) are on the same side. Such a LR partition is
called aligned. If a partition is not aligned, an equivalent aligned partition can be found.

In order to obtain a planar embedding, the LR partition is extended to cover also outgoing
tree edges and, for each vertex v, a linear nesting order is defined on its exiting tree edges.
This order contains both right and left outgoing edges of v mixed together: restricted to
the right outgoing tree edges it gives their clockwise order around v and restricted to the
left outgoing tree edges it gives their counterclockwise order around v. The final embedding
for each vertex v is obtained by suitably interleaving outgoing tree edges with back edges
entering v.

The extension of the LR partition to tree edges is straightforward. If a tree edge has
some return edges (i.e., its source is neither the root nor a cut vertex), it is assigned to the
same side as one of its return edges ending at the highest return point. Otherwise, the side
is arbitrary.

To determine the linear nesting order for tree edges outgoing v, suppose first that all back
edges belong to R and consider a fork consisting of tree edge e = (u,v) and outgoing tree
edges e; and es exiting v. If both e; and e; have some return edges, v is a branching point
of at least two overlapping fundamental cycles sharing e. Since both cycles are clockwise
(all edges belong to R), they must be properly nested in order to avoid edge crossings. As
the root of the DFS tree is assumed to be on the outer face, we have to put ey clockwise
after e; (i.e., inside the cycle defined by it) if and only if the lowpoint of e; is strictly lower
than that of e;. The same holds if both have the same lowpoint but only es is chordal, i.e.,
has another return point above it. On the contrary, if both L. and R are not empty, it can
happen that both e; and ey are chordal. In this case the tie is broken arbitrarily, because
in any planar embedding these two edges must be on different sides.

Let ¢ = (v,w) be a tree edge. We denote by L(e) (R(e), respectively) the sequence
of incoming back edges entering v from descendants of w ordered in such a way that if
b1 = (z1,v) and by = (x2,v) are two such back edges, and if (z,z), (x,y1), and (x, y2) is the
fork of the two cycles closed by by and b, then b; comes before by in L(e) (R(e), respectively)
if and only if (x,y;) comes before (x,y2) ((z,y1) comes after (x,ys), respectively) in the
adjacency list of x.

DEFINITION 1.2 Given an LR partition and a vertex v, let el .. .,elL be the left

outgoing tree edges of v, and ef, ..., el its right outgoing tree edges. If v is not the root,

let u be its parent. The clockwise left-right ordering, or LR ordering for short, of the edges
around v is defined as follows:
(u,v), L(e}) e’ Ref), ..., L(ef), ef , R(er), L(ef), e, R(eT'), .., L(efY), e, R(er?),

r/)rEro r

1.7. VERTEX ADDITION ALGORITHMS 17
where (u,v) is absent if v is the root.

The following lemma shows the sufficiency of the left-right planarity criterion of Theo-
rem 1.2 (the proof by contradiction can be found in [Bra09]).

LEMMA 1.3 Given an LR partition, its LR ordering yields a planar embedding.

Hence, the search for a planar embedding of the input graph boils down to the search
for an LR partition of its back edges. Fortunately, from the definition of LR partition
directly come two constraints that have to be satisfied by back edges in L and R classes.
Let by = (u1,v1) and by = (u2,v2) be two back edges with overlapping fundamental cycles
and let (u,v), (v, w1), (v,w3) be their fork.

1. by and by belong to different classes if lowpt(ws) < v1 and lowpt(wy) < vs.

2. by and by belong to the same class if there is an edge ¢ = (x,y), with = €
C(by) N C(bg) and y & C(by) N C(bz) such that lowpt(y) < min{vy,v2}.

Of course, if a pair of back edges is subject to both the constraints above, no LR partition
can exist and hence the graph is non-planar. By exploiting the constraints a quadratic pla-
narity test and embedding algorithm can be found immediately. Namely, build a constraint
graph, analogous to the interlacement graph of the AUSLANDER-PARTER algorithm, where
each back edge is a vertex and each constraint is an edge, labeled “—1” if the two back
edges have to belong to different classes and labeled “+1” if they have to belong to the
same class. After contracting “+1” edges, test if the constraint graph is bipartite.

In order to transform this quadratic-time algorithm into a linear one, the constraint
graph cannot be explicitly built and the tentative assignment of back edges to the L and
R classes may be changed several times during the computation, which is structured as
a further traversal of the DFS tree. Details of the linear-time algorithm can be found
in [dOR06, dF08a, Bra09].

1.7 Vertex Addition Algorithms

Given a planar drawing T of a graph G(V, E), we could delete one vertex at a time from T’
to obtain a sequence of smaller planar drawings ending with a single isolated vertex. The
intuition that this process could be suitably reversed yields the so-called “vertex addition”
algorithms.

We classify in this family the LEMPEL- EVEN-CEDERBAUM, the SHIH-HSU, and the BOYER-
MYRVOLD algorithms, although we know that some authors proposed a different classifica-
tion for their approach. The similarities between the SHIH-HSU and the BOYER-MYRVOLD
algorithms were already pointed out in [Tho99], while a common view encompassing all the
three algorithms was envisaged by Haeupler and Tarjan in [HT08].

Vertex addition algorithms start from an initial graph G; composed by one isolated
vertex v1. At each step ¢ = 2,...n, a new vertex v; is added to the graph and the subgraph
G;(V;, E;), induced by the current vertices V; = {v1,...,v;} C V, is considered. Two kinds
of operations are performed: first, G; is checked for planarity; second, some data structures
are updated in order to allow analogous checks to be efficiently performed at step ¢ + 1.

A key feature, common to this family of algorithms, is that the order in which the vertices
are added is not arbitrary. Let G;(V;, E;) be the subgraph of G induced by the vertices
Vi =V —V; that have still to be added to the graph. All the algorithms based on vertex

18 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

Figure 1.9 Properties of Lemma 1.4. (a) The embedding I" where the connected subgraph
Gy is highlighted. (b) The embedding I', of G,. By Property («), vg, v7, and vg fall into
f*. By Property (8), f1 and fs are also faces of I'. By Property (v), the cutvertex vy is
on f*.

addition require that G; is connected for s = 1, ..., n, that is, the vertex addition order is
a leaf-to-root order for some spanning tree of G. LEMPEL-EVEN-CEDERBAUM’s algorithm,
for example, requires that the vertices are added in the order given by an st-numbering;
in the SHIH-HSU and in the BOYER-MYRVOLD algorithms, the order is that of a reverse
DFS traversal of the graph. The importance of this requirement is stated by the following
lemma.

LEMMA 1.4 Let G(V, E) be a planar, connected graph and let {V,, V;} be a bipartition
of the vertices in V' such that the graph Gy(V;, Ep) induced by Vj, is connected. Consider
any planar embedding I' of G and denote by I', the planar embedding I' restricted to G,.
The following properties hold:

(a) Vertices of Vj, are on the same face f* of T',.
(B) Each face f of Ty, with f #£ f*, is also a face of T.
() If G is biconnected, cutvertices of G, are also incident to face f* of T',.

Proof: Property («) trivially descends from the fact that G is connected and I' is a
planar embedding of G. Property (8) is also trivial. Suppose for a contradiction that
f # f* is a face of ', but not a face of I'. Observe that f is a cycle of I and, since it
is not a face of T', it contains at least one edge e = (u,v) of I' that is not an edge of T',.
If both v and v belong to V,, we have a contradiction as e belongs to the graph induced
by V, but it is not in I',. Otherwise, if one among u and v is not in V,, we have again a
contradiction since Property («) ensures that f = f*. This proves Property (8). Suppose
that G is biconnected. If v is a cutvertex of GG, then there is a face f of I', that is incident
at least two times on v. Since v is not a cutvertex of I, face f is a face of ', but is not a
face of I', and Property (/) ensures that f* is the only face of I', that has this property. O

An example that shows the three properties of Lemma 1.4 is depicted in Figure 1.9.
Property (a) was also proved in [Eve79, Lemma 8.10] for the special case of connected
subgraphs induced by an st-numbering.

Let v be a function ¢ : V' — {1,...,n} that assigns a different index to each vertex
of G. We say that v is a proper numbering of G if for each i we have that the subgraph
G;(V;, E;) induced by V; = {v | ¥(v) > i} is connected. In order to simplify the notation

1.7. VERTEX ADDITION ALGORITHMS 19

in the remaining part of this chapter, we denote by v; the vertex for which ¢(v;) = i.
Vertex addition algorithms require that vertices are considered in the order imposed by a
proper numbering, hence exploiting at each step the properties of Lemma 1.4. Namely,
Property («) guarantees that vertices and edges can be added to a single face f* of I';,
which can be assumed to be the outer face. Property (5) implies that once a vertex or edge
is closed inside an internal face of I'; it does not need to be considered again (this is a key
point to ensure linearity). Finally, Property (v) justifies the usual assumption, common to
most vertex addition algorithms, that G is biconnected.

Properties () and (8) lead to the following lemma.

LEMMA 1.5 Let ¢ be any proper numbering of a planar, connected graph G. Denote by
G; the subgraph of G induced by vertices in V; = {v | ¥(v) < i}. There exists a sequence
of planar embeddings I'; of G;, with ¢ = 1,...,n, such that, for i = 1,...,n — 1, all internal
faces of I'; are also internal faces of I';41.

Proof: Let I',, be a planar drawing of G with v,, on the external face and let I';, with

i =1,...,n — 1, be the embedding of G, obtained from I';, by removing the vertices v;,
with j = ¢+ 1,...,n. Vertex v, is on the external face of I',, by definition. Since G; is
connected, vertex v; is also on the external face of I'; for any i =n —1,n —2,...,1. Also,

Vo ={v1,...,v;-1} and V, = {v;} is a bipartition of the vertices of G; of which I'; is a planar
embedding and Gy(V4,0) is trivially connected. Lemma 1.4 applies and by Property ()
we have that all the faces of I';_; with the exception of f* are also faces of I';. Since the
external face of I';_1 is not a face of I';, any other internal face f of I';_; is also a face of
I';. Finally, as the external face of I'; contains v;, which does not belong to G;_1, face f is
an internal face of T';. O

Provided that G is planar, Lemma 1.5 can be exploited for devising an incremental
planarity algorithm that, starting from I'y, i.e., the trivial embedding of the isolated vertex
v1, computes I';, with i = 2,...,n, by adding at each step a vertex v; on the outer face of
I';_1, until an embedding I'), of the whole graph is produced. Also, Lemma 1.4 provides
an indication of what are the properties that these I'; should have. Namely, call outer
vertices of G; the cutvertices of GG; and the vertices of G; adjacent to v;y1, vita, ..., Upn.
Properties (a) and () of Lemma 1.4 state that if G is biconnected, which can be assumed,
each I'; necessarily has its outer vertices on the outer face.

Still, computing the sequence of T';, with ¢ = 1,...,n, is not an easy task. First, G; may
be not connected. Second, it is easy to see that not any embedding of G; with its outer
vertices on the external face is equivalent to any other. In fact, given a planar graph G,
there may exist a planar embedding I'; of G; that has the outer vertices of G; on the external
face but is not obtainable from some planar embedding of G by vertex deletion (Figure 1.10
provides an example).

Hence, although we know that, starting from any proper numbering ¥ of G, the planarity
of G implies the existence of a sequence of planar embeddings I'; satisfying the conditions of
Lemma 1.5, we do not know how to find such a sequence, and choosing a wrong embedding
I'; along the way would lead to a failure of the whole process even if G is planar. The
following lemma comes in help.

LEMMA 1.6 In any planar embedding of a biconnected graph G where vertices v, vo, .. ., Vg
share the same face, they appear in the same circular order up to a reversal.

20 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

Figure 1.10 A planar graph G with subgraph Gg highlighted. (a) and (b) show two
planar embeddings of Gg, both with the outer vertices of Gg on the external face. The
embedding in (a) is compatible with a planar drawing of G while the embedding in (b) is
not.

<

Figure 1.11 (a), (b) Two planar embeddings of a biconnected graph where vertices
v1,v9,v3, and vy (highlighted in the figure) share the same face. Vertex v is added as
in the proof of Lemma 1.6.

Proof: The statement is trivial for k = 2, 3, since any circular sequence of 2 or 3 labels is
equal to any other up to a reversal. Consider two planar embeddings IV and I'” of G such
that vertices vy, va, ..., vk, with k > 4, share the face f' in I and f” in T (see Figure 1.11(a)
and 1.11(b) for an example). The proof is based on the trivial observation that a dummy
vertex v can be inserted into both f’ and f” and planarly connected to vy, vs,...,vs. Since
G is biconnected, the cycle face f’ is simple (see Figure 1.11(a)). Hence, the subgraph
composed by the edges and vertices of f' and v is a wheel (dashed lines in Figs. 1.11(a),
1.11(b), and 1.11(c)) and admits a unique planar embedding up to a reversal. It follows
that the circular order of the edges around v is the same in I'V and in I up to a reversal.
O

Lemma 1.6 applied to each block of G; is stated in [Eve79, Lemma 8.12] for the special case
of subgraphs induced by st-numberings. When iteratively computing a planar embedding
for G, the practical use of Lemma 1.6 is that, although in general no definitive choice can
be made on the embedding of G;, something can be said about the embedding of its blocks.
Namely, apart from a possible flip, an embedding for them can be computed that is always
compatible with a planar embedding of the whole graph, provided it exists. Surprisingly,
this is the only thing that can be safely computed for the embedding of G;. All the more
o, this little amount of information suffices for computing analogous embeddings for the
blocks of G411, and, since G,, = G is biconnected, at the last step a planar embedding I';, of

1.7. VERTEX ADDITION ALGORITHMS 21

the whole graph is obtained. Finally, the following lemma shows that if the process stops,
the graph is not planar.

LEMMA 1.7 Let G be a graph and let ¥ be any proper numbering of G. Denote by G;,
with ¢ = 1,...,n the subgraph of G induced by vertices in V; = {v | ¢(v) < i} and by
B}, B?,..., Bl the b; blocks of G;. For agiven k, 1 <k <n—1,let (B}), 1 <j < b, be
arbitrary embeddings of Bi with the outer vertices of G, on their outer faces. If the blocks
of G41 cannot be embedded such that the outer vertices of G are on the outer face and
I'(Bj), 1 < j < by, are preserved up to a flip, then G is not planar.

Proof: Suppose for a contradiction that G is planar and that there is no planar embedding
for all its blocks Bi+17 1 < j < by, such that the outer vertices of G411 are on the outer

face and the blocks of Gy are embedded, up to a flip, as in F(Bi), 1 < j < bg. Since G
is planar, by Lemma 1.5, there is a pair of planar drawings I'; of Gy and 'y, of Giy1,
both with their outer vertices on the outer face. By Lemma 1.6 the outer vertices of each
block of G}, appear in the same order, up to a reversal, both in I'(Bj), 1 < j < b, and in
[';,1- Hence, all embeddings F(Bi) can be inserted into I'y | | yielding a planar embedding
for the blocks BéH, 1 < j < b, such that the outer vertices of Gy1 are on the outer face:
a contradiction. a

Lemma 1.7 proves the soundness of the vertex addition approach. In fact, it shows that
iteratively building a planar embedding of the input graph G is not only a sufficient condition
for the planarity of G, which is obvious, but also a necessary condition, as G is not planar
if one step of the iterative process cannot be accomplished. Usually, in the vertex addition
literature, the non-planarity of the input graph in case of failure of the proposed algorithms
is proved by a complex case analysis, spread all over the description of the algorithm steps,
aimed at identifying a subgraph isomorphic to K5 or K3 3 for each possible cause of failure.
Instead, Lemma 1.7 provides a direct proof of the correctness of the approach that avoids
the use of Kuratowski’s theorem, as claimed in [HT08].

Observe that, since the internal faces of the blocks are preserved in the final embedding
of G, at each iterative step of the vertex addition algorithms the embedded blocks may be
flipped and composed together, but they are never inserted one into the other. Hence, all
vertex addition algorithms make use of suitable data structures to describe the subgraph
G; that has been explored so far and in particular the embedding of its blocks. These
data structures allow for permuting the blocks around the cutvertices and for flipping the
blocks in constant time. In the LEMPEL-EVEN-CEDERBAUM algorithm, the data structure
is Booth and Lueker’s PQ-tree. The SHIH-HSU algorithm uses PC-trees. The BOYER-
MYRvVOLD algorithm uses the bicomp data structure. The purpose of these data structures
is analogous: they allow us to flip a portion of the graph (a block) in constant time; they
allow us to permute (or to leave undecided) the order of the blocks around a cutvertex until
the blocks are merged together.

1.7.1 The LEMPEL-EVEN-CEDERBAUM Algorithm

The LEMPEL-EVEN-CEDERBAUM algorithm was the first one to exploit the vertex addition
paradigm [LEC67] (see also [Eve79, BFNd04]). It is no surprise, therefore, that in order
to ease the computation several simplifying assumptions are made. First, but this is usual,
the input graph is assumed to be biconnected. Second, the description of the algorithm
in [LEC67] only checks the planarity of the input graph, without actually computing a planar

22 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

embedding if it exists. This gap was closed by Chiba, Nishizeki, Abe, and Ozawa [CNAO85]
some decades later. Third, a proper numbering of the vertices of G is required that also
ensures that G;, the graph induced by V;, is connected. Namely, given any edge (s,t) of
a biconnected graph G(V, E) with n vertices an st-numbering of G is a function ¢ : V —
{1,...,n} that assigns to each vertex a different index, such that: (i) ¥(s) = 1; (ii) ¥(¢) = n;
and (iii) any vertex except s and t is adjacent both to a lower-numbered and to a higher-
numbered vertex. This strong constraint, which implies that both the st-numbering and its
reversal are proper numberings, fostered the search for a linear-time algorithm to actually
compute an st-numbering of a biconnected graph. Such an algorithm was not known when
the approach was introduced (the time complexity of the algorithm used in [LEC67] is
O(nm) [ET76]), and was finally found in [ET76].

Working of the algorithm

A bush is a single-source connected planar directed graph that admits a planar embedding,
called a bush form, where all vertices of degree one are on the outer face.

Let G be a biconnected graph, let) be an st-numbering of GG, and let GG; be the graph
induced by vertices {v1,...,v;}. Graph G can be assumed to be directed, where each edge
is oriented from the vertex with the lower value to the vertex with higher value of ¥ (see
Figure 1.12(a) for an example). Denote by B; the graph G; augmented with the edges of G
incident to the outer vertices of G;. These edges are called virtual edges, while the leaves that
they introduce in B; are virtual vertices. Virtual vertices are labeled with the same indexes
they have in GG, and multiple instances of the same vertex are kept separate in B;. Since
G, is determined by an st-numbering, B; is connected. Observe that a planar embedding
of B; with the virtual vertices on the outer face corresponds to a planar embedding of G;
with the outer vertices on the outer face. Hence, if G is planar, by Lemma 1.5 B; is a bush.
See Figure 1.12 for an example of a graph G; and the corresponding bush B;. A bush form
I'p, is usually represented by drawing all the virtual vertices on the same horizontal line
(dashed line of Figure 1.12(b)).

(Vao [(V6°Vs5)+(VsoVy)] oVg)

Figure 1.12 (a) A directed planar graph. Labels correspond to an st-numbering of the
vertices. The highlighted area is the subgraph G3 induced by {v;,ve,v3}. Observe that,
due to the st-numbering, both G3 and G — G3 are connected. (b) The bush form Bs.

Bush form I'p, contains a planar embedding of all biconnected components of G;, and
Lemma 1.7 ensures that such embeddings can be kept fixed up to a flip when searching for
a planar drawing of G.

1.7. VERTEX ADDITION ALGORITHMS 23

The strategy of the algorithm is that of focusing on the virtual vertices of B; and of
encoding the linear order that they have in I'g, into a suitable algebraic expression £(I's,)
that implicitly represents all their permutations compatible with a planar embedding of B;
with virtual vertices on the outer face.

The definition of €(I'g,) can be inductively provided as follows. Let v be the source of I'z.
If T' is a trivial bush form consisting of a single directed edge (v, u) then ¢(I'g) = u. Other-
wise, if v is a cutvertex splitting I'g into bush forms by, b, ..., bk, let (b1),e(b2),...,c(bg)
be the corresponding expressions for by, b, ..., b;. The algebraic expression associated with
Ipise(Tg) = (e(by) oe(bs) o...0e(bg)). Observe that any permutation of by, ba, ..., by is
compatible with a planar embedding of B. Finally, if v is not a cut vertex of 'z, consider
the biconnected component b of I'z including v and let wuy, us, ..., ur be the cut vertices of
B belonging to b. Observe that each subgraph of I' routed at u;, with i = 1,...,k, is a
bush form b;. Let e(b1),e(b2),...,e(bx) be the corresponding expressions for by, ba, ..., bg.
The algebraic expression associated with I'p is e(I'g) = [e(b1) + €(b2) + ... + (bg)]. Ob-
serve that flipping the biconnected component b corresponds to flipping the expression
[€(bk) + E(bk_l) + ...+ €(b1)]

Figure 1.13 illustrates an example of permutations and flipping in a bush form.

([(V6°Vs)+(VsoVy)] oVyoVs) (Vg o[(V4°V5)+(Vs50Vg)] oVs)

OO

Figure 1.13 (a) A permutation of the bush form of Figure 1.12(b). (b) A flip of the bush
form of Figure 1.12(Db).

Given a bush form I's,, the reduction operation changes the embedding of B;, by per-
muting bush forms attached to cut vertices and by flipping biconnected components, and
produces a bush form F’Bi where all virtual vertices labeled v;11 are consecutively disposed.
If this is not possible, then there is no way of adding vertex v;4+1 to the embedding while
keeping all outer vertices of G;_1 on the outer face, and by Lemma 1.7 the graph is not
planar. If this is possible, then a substitution operation is performed on I'g,, obtaining a
drawing I's,,,. Namely, the virtual vertices labeled v;;; are merged together, and for each
edge (viy1,v;) exiting v;11 a new virtual vertex v; is introduced and connected to v;1.

In the original description of the LEMPEL-EVEN-CEDERBAUM algorithm, these opera-
tions are not actually performed. Instead, it is shown that the reduction operation on
I'g, corresponds to an equivalent transformation on ¢(I'p,) that produces an algebraic ex-
pression E(F/Bi) where all the variables v;11 are consecutive. Analogously, the substitution
operation corresponds to the removal of the sequence of variables v;4+1 which are replaced
by (vj, 0 vj, 0...0vj,), where v;,,...,v,, are the vertices directly attached to v;11.

24 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

Data structures

The problem of efficiently identifying the flips and the permutations needed to reduce I'g,
(or, equivalently, needed to normalize £(I's,)) is solved in [BL76], where the PQ-tree data
structure is introduced. Intuitively, a PQ-tree is a data structure corresponding to the
syntax tree of the expression €(I's,). Namely, a PQ-tree is a rooted, directed, ordered tree
with three types of nodes: P-nodes, Q-nodes, and leaves. For each o operation (ej0€q0. . .0€g)
in €, the corresponding PQ-tree has a P-node with children PQ(e;),..., PQ(ex). Also, for
each + operation (€1 o €g 0...0¢) in g, the corresponding PQ-tree has a Q-node with
children PQ(eq),. .., PQ(ex). The children of a P-node can be arbitrarily permuted, while
the order of the children of a Q-node can be reversed. In [BL76], it is shown how a bottom-
up computation starting from all leaves labeled v;41 is sufficient to compute a sequence of
permutations and flips that consecutively disposes all v;41 leaves. Only the smallest subtree
that contains the v;41 leaves is traversed.

1.7.2 The Suia-Hsu Algorithm

The SHIH-HSU algorithm either constructs a planar embedding of the input graph G or fails
and outputs the information that G is not planar [SH93, SH99] (see also [Hsu01, Boy05]).
The proper numbering 1) of the vertices of G used by the SHIH-HSU algorithm is obtained
by a DFS traversal of G. Namely, vertices are considered in reverse DFS order, where
the root r of the DFS tree has ¢(r) = n. Therefore, differently from the LEMPEL-EVEN-
CEDERBAUM algorithm, although the graph G;(V;, E;) induced by V; = {v | ¥(v) > i}
is always connected, the graph G;(V;, E;) induced by vertices in V; = {v | ¥(v) < i} is
not guaranteed to be connected. At step 1, graph G; has vertex v; only. At a generic
step 4, with ¢ = 2,...,n, an embedding I'g, is obtained from the embedding of I'¢,_, by
adding vertex v; together with all edges connecting it to vertices with lower values of 1.
The strategy used by the SHIH-HSU algorithm is that of characterizing those configurations
that determine a non-planarity, and by giving a recipe to build I'g, otherwise.

As @; is not necessarily connected, at each step i a planar embedding of each connected
component of G; is encoded into a data structure called PC-tree. A PC-tree T is a rooted,
ordered tree with two types of nodes: P-nodes and C-nodes. While the neighbors of a
P-node can be arbitrarily permuted, C-nodes come with a cyclic ordering of their adjacency
list, which can only be reversed. Intuitively, P-nodes represent regular nodes of an em-
bedded partial graph, while C-nodes represent biconnected components. Consider a planar
embedding of a connected component C' of graph G; such that the outer vertices of C are on
its outer face. The PC-tree T associated with C' can be easily obtained from C by replacing
each biconnected component of C' with a C-node connected to the outer vertices of it in the
same circular order as they appear on the border of the biconnected component. In order
to simplify the tree, each C-node representing a trivial biconnected component composed of
a single edge connecting two cutvertices v; and vy, is replaced with a single edge attached to
the two P-nodes corresponding to v; and vy. Let 7 be the root of the connected component
C, i.e., the vertex of C with higher value of 1. Observe that r is an outer vertex of C' and
always corresponds to a P-node of its PC-tree.

The PC-trees associated with G; represent all the planar embeddings of G; such that each
connected component of G; has its outer vertices on the outer face. In particular, if G; is
connected, the correspondence between its single PC-tree 7 and the PQ-tree of G; used by
the LEMPEL-EVEN-CEDERBAUM algorithm is apparent, since the former is obtained from
the latter by removing leaves and replacing Q-nodes with C-nodes.

1.7. VERTEX ADDITION ALGORITHMS 25

Working of the algorithm

At step 1, graph G only has one isolated vertex labeled v; and its PQ-tree is a single
P-node associated with vertex vy.

At a generic step 4, graph G;_1 has been already processed and its PC-trees have been
computed. When the new vertex v; is added, all tree edges and back edges connecting v;
to G;—1 are considered. Suppose that only a tree edge (v;,u) exits from v;. In this case,
only the PC-tree corresponding to the connected component of G;_1 needs to be updated.
Otherwise, if v; has more than one child w1, uo, ..., ux, then v; is a cutvertex of G;; a new P-
node is introduced for it and suitably attached to the PC-trees of the connected components
C4,Cs,...,Cf of G;_1 containing uy, us, . . . , ug, respectively, producing a single PC-tree for
the new connected component of G;. Consider a child u of v;. The PC-tree T corresponding
to the connected component containing u can be attached to v; in a way that is independent
of the PC-trees corresponding to the other children of v;. Hence, for simplicity of description,
we will assume that v; has a single child .

Let C be the connected component of G;_; containing u. If no back edge from C attaches
to v;, then the P-node introduced for v; is attached to the P-node representing r in 7;, and
step i concludes. Otherwise, suppose some vertex of C' has some back edge to v;. Since
the input graph is biconnected, nodes of 7;_; either have highpt = i or have lowpt > i, or
both. Call relevant node each node w of T;_; such that highpt(w) =i and lowpt(w) > i.
It is easy to see that the parent of w either is 7 or is a relevant node in its turn. Hence,
relevant nodes form a subtree of the PC-tree rooted at r. By leveraging the relevant nodes
subtree, it is possible to efficiently check the planarity of G; and to compute the PC-tree
updated with the P-node for u.

Namely, call terminal nodes the leaves of the subtree of the PC-tree composed by relevant
nodes. We have the following lemma.

LEMMA 1.8 If 7 has more than two terminal nodes, then G; (and hence G) is not
planar.

Therefore, if G is planar, 7;_; has one or two terminal nodes and the relevant nodes
subtree of T;_; is either a path or a Y-shaped tree, respectively (see Figure 1.14).
Also, observe that an edge exiting a relevant node may be of five different types:

(i) a tree edge to another relevant node;
(ii) a back edge to v;;
(iii) a tree edge to a subtree whose back edges are all type-(ii) edges; or
(iv) a back edge to a node v; with j > i;
(v) a tree edge to a subtree whose back edges are all type-(iv) edges.

Subtrees attached to edges of type (iii) are called i-subtrees, while subtrees attached to
edges of type (v) are called #*-subtrees. In Figure 1.14, i-subtrees are represented with black
triangles and i*-subtrees with white triangles.

The SHIH-HSU algorithm either identifies a non-planarity or finds a planar arrangement
of the back edges to v; and the i-subtrees to produce a new C-node that represents the block
determined by the additions of the back edges to v;. The algorithm considers four main
cases, depending on whether some relevant node is a C-node, and depending on whether
T:—1 has one or two terminal nodes.

The easiest case is when 7;_1 has exactly one terminal and all the relevant nodes are
P-nodes. In fact, in this case all i-subtrees and back edges to i can always be embedded

26 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

(a) (b)

Figure 1.14 (a) Relevant nodes of 7;_1 have one terminal. (b) Relevant nodes of 7,_4
have two terminals.

Do oo

Figure 1.15 (a) The example of Figure 1.14(a) after contraction. The double border
identifies C-nodes. (b) The example of Figure 1.14(b) after contraction.

on one side of 7;_1, and the embedded part can be replaced with a C-node, as shown in
Figure 1.15(a).

The case when 7;_; has exactly one terminal and some relevant node is a C-node, is
analogous, with the difference that the constraints enforced by C-nodes (whose adjacency
list can only be flipped) have to be taken into account and may cause a non-planarity
whenever, no matter how they are flipped, they force one i-subtree (or back edge to v;) to
be outside the new block or one i*-subtree (or back edge to v;, with j > 4) to be inside it.

The most difficult case is when 7;_; has two terminal nodes v and u”. Let m be their
common ancestor, P be the unique path in 7;_; from «’ to v, and P’ be the path from r
to m. If all relevant nodes are P-nodes, then we have the following planarity criterion:

LEMMA 1.9 Graph G; is planar if and only if any node internal to P’ has edges of type

(i), (ii), or (iii).

In fact, it is easy to see that if the conditions of Lemma 1.9 are satisfied a new block can
be planarly embedded, its border being composed by path P and two paths from the two
terminal nodes to v; and containing all i-subtrees and back edges to v;. Such a block is
replaced by a C-node as shown in Figure 1.15(b). Again, if some relevant node is a C-node,

1.7. VERTEX ADDITION ALGORITHMS 27

its constraints on the embedding need to be taken into account and yield a more intricate,
although not difficult, case.

Data Structures

A tricky point of the SHIH-HSU algorithm is when a newly identified block has to be replaced
with a C-node. To understand why this operation is critical, consider that, in order to have
a linear-time algorithm, each node of the PC-tree should have a pointer to the parent node.
Such a pointer is used, for example, when, starting from the current vertex v;, its incoming
back edges are considered and i-subtrees are traversed moving from child to parent. This
operation is needed to identify the relevant node subtree and its terminals. Observe that
i*-subtrees cannot be traversed without losing linearity. Also, even identifying them by
browsing the adjacency list of a relevant node would have the same result. If the block was
naively replaced by a C-node structure as shown in Figure 1.15 the pointers to the parent
of a possibly linear number of children would have to be updated.

Perhaps the easiest way to address this problem is that of encoding the neighborhood of C-
nodes with a strategy analogous to that used in [BM99, BM04], which allows us to efficiently
traverse the boundary of a block in parallel and flip it when needed [Hsu01, Hsu03, BENd04].
A second approach, inspired by the analogous operation on Q-nodes of PQ-trees [LECG67],
is that of borrowing the parent pointer from sibling to sibling. The two approaches turn
out to be similar, since browsing siblings of a C-node in search for the parent pointer is
equivalent to traversing the corresponding block border [Hsu01, Hsu03].

1.7.3 The BoYER-MYRvOLD Algorithm

The BOYER-MYRVOLD algorithm [BM99, BM04] (see also [Tho99, BCPD04, HT08]) has
several features in common with the SHIH-HSU algorithm, so much so that the two have
been sometimes identified [Tho99, HT08]. The proper numbering 1 of the vertices of G used
by the BOYER-MYRVOLD algorithm is again a reverse DFS order. The general strategy is
that of explicitly maintaining a “flexible” planar embedding of each connected component
of G; with the outer vertices on the outer face. This embedding is “flexible” in the sense
that each block can be flipped in constant time, whatever its size, while the permutation of
the blocks around cutvertices is left undecided. In order to achieve this, each block of G;
is maintained separately from the others in a special structure, and the cutvertex that has
higher value of 1 in one block B, called the root of B, has a pointer to the corresponding
cutvertex in the parent block.

Working of the algorithm

The algorithm described in [BM99] was simplified in [BM04]. First, we describe the primitive
version in [BM99], which, in our opinion, is more intuitive. Second, we sketch the differences
with [BM04].

The computation starts with an initial set of blocks corresponding to the tree edges of the
DFS tree of G (see Figure 1.16). Hence, it could be argued that this is not a vertex addition
algorithm, since all vertices are in place from the first iteration. Actually, a vertex v; with
index higher than the current iteration ¢ is ignored until iteration j is reached. Vertices are
considered in reverse DFS order, starting from v; and ending with the root v,, of the DFS
tree (see Figure 1.16(a)). If vertex v; has no incoming back edges, no operation is needed
at iteration i.

So, for example, running the algorithm on the example of Figure 1.16(b) would not
perform any operation at steps 1,2,...,8, as vertices vy,vs,...,vs don’t have incoming

28 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

LAY
s
\ &

(b)

Figure 1.16 (a) The same DFS tree of Figure 1.4, where vertices are labeled with their
reverse DFS index. (b) The BOYER-MYRVOLD algorithm starts by creating a block for each
edge of the tree.

Figure 1.17 The BOYER-MYRVOLD algorithm on the DFS tree of Figure 1.16(a). (a)
When vertex vig is considered the back edge (vs,v10) needs to be embedded. (b) The
embedding of back edge (vg, v19) corresponding to the choice of the red path from vg to v1g
along the borders of blocks shown in (a).

back edges. Otherwise, if v; has some incoming back edges, the strategy of the algorithm
is that of deciding how to embed them by exploring the borders of the current blocks of
G;—1. To give an intuitive example Figure 1.17(a) represents Gg. At iteration 10 vertex
v10 is considered by the algorithm and the back edge (vg,v10) needs to be embedded. In
the embedding choice shown in Figure 1.17(b), the red path inside the closed face of the
new block can be identified in Figure 1.17(a) as the red path going from vg to vig along
the borders of the blocks. The approach of the BOYER-MYRVOLD algorithm is that of first
choosing suitable paths for the back edges returning to v; and then using such paths to
close a new block and update the data structures. Hence, each iteration has two phases:
Path searching and Block embedding (in [BM99, BM04] these phases are called Walkup and
Walkdown, respectively, but the tree is drawn upside down with respect to the convention
used here).

1.7. VERTEX ADDITION ALGORITHMS 29

Figure 1.18 Properties of the admissible path to v;. The lower vertex is the currently
processed one while outer vertices of G; are drawn black. The red path is not admissible,
as it traverses an outer vertex of G; (a cut vertex of G; in this example).

Let’s start from the Path searching phase. Suppose that some back edges enter v; from
vertices uq,ug, ..., ur. For each j, with j = 1,...,k, the algorithm searches for a path p;
from u; to v; with the following properties:

1. Vertices and edges of p; are on the boundary of the blocks of G;_;.

2. Each vertex of p; that is the root of a block is followed by the corresponding
cutvertex in the parent block, until v; is reached.

3. Each vertex of p; that is different from the entry point and the root of the current
block is not an outer vertex of G; (see Figure 1.18(a)).

Also, two paths (i.e., two embedding choices) may be incompatible with each other.
Namely, let p; and p,, be two paths to v; and let b be a block b traversed by them. The
following compatibility properties are enforced:

1. If p; and p,, don’t share edges of b, they do not share edges in any other block
(see Figure 1.19(a)).

2. Paths p; and p,, do not share edges of b if they traverse two other distinct

outer blocks, where an outer block is one containing an outer vertex of G; (see
Figure 1.19(b)).

3. If p; and p,, don’t share edges of b and the root r of b is different from v;, then
rp is not an outer vertex of G; (see Figure 1.19(c)).

The above properties guarantee that when the new block is closed, no outer vertex of G,
falls inside a face of the block.

In order to be linear, the algorithm does not explicitly compute all the paths p;, for
j=1,... k. In fact, if two paths share one edge, the second path can follow the same route
toward v; used by the first one without the need of checking the above properties. Also,
whenever a path enters a block b, it searches both sides of b in parallel, searching for the
root 7, of b. In this way, the shorter admissible path to r, is found by exploring at most
twice the number of its edges. Since the edges used by the paths will be closed inside some
face of the new block, they are never explored again in a subsequent iteration, and the total
number of steps required by the algorithm for the computation of such paths is linear.

30 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

am===="""" .

Figure 1.19 Compatibility properties of the paths to v;. The lower vertex is the currently
processed one while outer vertices of G; are drawn black. (a) Two compatible paths not
sharing edges in any block they traverse. (b) Two admissible paths coming from two distinct
outer blocks. (¢) Two non-admissible paths.

If the Path searching phase does not detect a non-planarity, the Block embedding phase
starts. This is a simpler phase in which, starting from v; and moving along the boundary
of G;_1, the blocks traversed by the paths are merged together and the back edges are
embedded based on their corresponding paths to produce a planar embedding for G;.

The simplified version of the algorithm described in [BMO04] is based on the same two
phases, Path searching and Block embedding. However, the check for the paths’ compat-
ibility, which in the primitive version were demanded to the first phase are moved to the
second phase, which may, therefore, also detect a non-planarity.

Data Structures

The tricky point of the BOYER-MYRVOLD algorithm is when two blocks, traversed by a
path, are merged together. It may happen that a path traverses the child block clockwise
and the parent block counterclockwise, or viceversa. Fortunately, it can be shown that the
properties of the paths guarantee that if one path does so all other paths comply with this
embedding choice. However, in order to merge the two blocks, one of them needs to be
flipped, and reversing the adjacency lists of all the vertices of the block may result in a
linear-time operation that would yield a quadratic planarity algorithm. In order to solve
this problem, the authors introduced a suitable data structure, called bicomp, that allows
us to flip a block in O(1)-time, whatever its size. Such a data structure is based on circular
lists that do not have a predefined orientation.

Namely, suppose that the list items of a circular list instead of having the usual next
and prev pointers have two generic pointers ref1 and ref2 which could be used arbitrarily
to store a reference to the next or previous list item. Suppose, also, that you maintain a
reference to the last element encountered while traversing the list. If you want a reference
to the next element you compare this reference with refl1 and ref2 and choose the one
that is different from it. Hence, the circular list is traversed in the direction that is decided
by the first step. If the circular order of the list has to be reversed, it suffices to begin the
traversal in the opposite way.

1.8. FRONTIERS IN PLANARITY 31

Of course, if the clockwise direction of the adjacency list of each vertex of a block is
independently chosen, this would not necessarily produce a planar embedding. However, it
is not difficult to devise some convention to transfer the orientation of the adjacency list
of one vertex to the adjacency lists of the neighboring vertices. For example, it may be
prescribed that if in the adjacency list of vertex v; the list item of vertex v; uses refl as
next and ref?2 as prev, the same choice is made for the list item of v; in the adjacency list
of vj (in [BM99, BM04] a less intuitive, but more practical, convention is adopted).

Hence, when two blocks are merged and their common cutvertex is identified, the two
adjacency lists of the cutvertex can be suitably joined in such a way to implicitly reverse
all the adjacency lists of one of the two blocks.

1.8 Frontiers in Planarity

1.8.1 Simultaneous Planarity

A recent variant of the planarity problem asks for the simultaneous embedding of two
graphs on the same set of vertices V. Namely, a simultaneous embedding of G1 = (V, E1)
and Gy = (V, E2) consists of two planar drawings I'; and T's of G; and G3, respectively,
such that any vertex v € V is mapped to the same point in each of the two drawings.
When I'; and I's are required to be straight-line drawings, this problem is called geometric
stmultaneous embedding. When edges common to E; and E5 are required to be represented
by the same Jordan curve in I'y and I's this problem is called simultaneous embedding with
fized edges (or SEFE, for short). The above definition can be easily generalized to k graphs
G, =(V,E;), withi=1,2,... k.

Geometric simultaneous embedding turns out to have limited usability, since testing
whether two planar graphs admit such an embedding is NP-hard [EBGJT07] and since a geo-
metric simultaneous embedding does not always exist for two outerplanar graphs [BCDT07],
for two trees [GKV09], and even for a tree and a path [AGKN12].

Conversely, for several classes of graphs the computation of a simultaneous embedding
with fixed edges, if any, can be performed in polynomial time [EK05, DL07, Fra06, FGJT08,
JS09, ADF*10, HJL10, ADF*11], although the general problem is of unknown complex-
ity. Refer to Chapter 11, “Simultanecous Embedding of Planar Graphs,” for an in-depth
exploration of this research area.

1.8.2 Clustered Planarity

The user’s need of drawing some set of vertices near one to the other naturally leads to the
requirement of drawing them inside the same simple closed region of the plane. This target
is pursued by clustered planarity where the containment relationship among regions and
vertices is described by an arbitrary hierarchy. More formally, a clustered graph C(G,T)
is a graph G and a rooted tree T" whose leaves are the vertices of G. A c¢-planar drawing
of C(G,T) is such that G is planarly drawn and each internal node v of T' is drawn as a
simple closed region R(v) such that:

e R(v) contains the drawing of the graph G(v) induced by the vertices that are
leaves of the subtree rooted at v;
e R(v) contains a region R(u) if and only if p is a descendant of v in T

e any two regions R(v1) and R(v2) do not intersect if v; is not an ancestor or a
descendant of vs; and

e an edge e does not cross the boundary of a region R(r) more than once.

32 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

Restrictions on the c-planarity testing problem studied in the literature include: (i) as-
suming that each cluster induces a small number of connected components [FCE95b,
FCE95a, Dah98, GJL*02, GLS05, CW06, CDF*08, JJKLO§|; (ii) considering only flat
hierarchies, where all clusters different from the root of T' are children of the root [CDPP04,
DFO08b]; (iii) focusing on particular families of underlying graphs [CDPP04, CDPPO5,
JKK™08]; and (iv) fixing the embedding of the underlying graph [DF08b, JKKT08].

Although the general problem is of unknown complexity, it has been shown to be
polynomial-time solvable in the following cases:

e If the subgraph G(v) induced by each cluster v is connected the clustered graph
is called c-connected. The algorithm proposed in [FCE95b, FCE95a] is quadratic.
Linear-time algorithms are described in [Dah98, CDFT08]. The case when
each cluster induces at most two connected components has been investigated
in [JJKLOS].

e The results [BKM98, Bie98] on “partitioned drawings” of graphs can be inter-
preted as linear-time c-planarity tests for non-connected flat clustered graphs
with exactly two clusters. The same result (flat clustered planarity for non-
connected graphs with exactly two clusters) is shown in [HN0O9] where the prob-
lem is modeled as a two-page book embedding.

e Gutwenger et al. presented a polynomial-time algorithm for c-planarity testing
for almost connected clustered graphs [GJLT02], i.e., graphs for which all nodes
corresponding to the non-connected clusters lie on the same path in T starting
at the root of T, or graphs in which for each non-connected cluster its parent
cluster and all its siblings in T" are connected.

e Cortese et al. studied the class of non-connected clustered graphs such that the
underlying graph is a cycle and the clusters at the same level of T also form a
cycle, where two clusters are considered adjacent if they are incident to the same
edge [CDPP04, CDPP05]. The c-planarity testing and embedding problem is
linear for this class of graphs.

e Goodrich et al. introduced a polynomial-time algorithm for producing planar
drawings of extrovert clustered graphs [GLS05], i.e., graphs for which all clusters
are connected or extrovert. A cluster p with parent v is extrovert if and only if v
is connected and each connected component of has a vertex with an edge that
is incident to a cluster which is external to v.

e Jelinkova et al. presented a polynomial-time algorithm for testing the c-planarity
of “k-rib-Eulerian” graphs [JKKT08]. A graph is k-rib-Fulerian if it is Eulerian
and it can be obtained from a 3-connected planar graph with k vertices, for some
constant k, by replacing some edges with one or more paths in parallel.

1.8.3 Decomposition-Based Planarity

Since a graph is planar if and only if its triconnected components are planar, it is somehow
surprising that all known linear-time planarity algorithms require at most the biconnectivity
of the input graph. It could be asked whether the triconnectivity of the graph could be
leveraged in order to obtain planarity algorithms that are easier to understand and to
implement. A triconnected graph has several helpful properties with this respect: if it is
planar, it admits a single planar embedding up to a flip (in contrast, a biconnected graph
admits an exponential number of embeddings); if it is not planar and it is different from
Ks, it contains a subdivision of K3 3.

1.8. FRONTIERS IN PLANARITY 33

An intriguing research line in this direction is that of exploiting construction sequences:
it is well known that a triconnected graph can be reduced by means of sequences of
planarity-preserving transformations to graphs as simple as a wheel [Tut6l] or as a
K, [Tut66, BG69]. Such transformations, if reversed, yield construction sequences that
could be possibly exploited to find a planar embedding of the input graph starting from a
planar embedding of the reduced graph. The polynomial-time planarity algorithm described
in [BSW70] uses the reduction sequences described in [Tut61]. The reduction sequences
described in [Tut66, BG69] have been used to give a short proof of Kuratowski’s theo-
rem [Kel81, Tho81], while their application to planarity algorithms has been only recently
investigated in [Sch12].

34 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

References

[ADF*10] P. Angelini, G. Di Battista, F. Frati, V. Jelinek, J. Kratochvil, M. Pa-
trignani, and I. Rutter. Testing planarity of partially embedded graphs.
In M. Charikar, editor, Symposium on Discrete Algorithms (SODA ’10),
pages 202-221, 2010.

[ADF*11] P. Angelini, G. Di Battista, F. Frati, M. Patrignani, and I. Rutter. Test-
ing the simultaneous embeddability of two graphs whose intersection is a
biconnected graph or a tree. In Workshop on Combinatorial Algorithms
(IWOCA ’10), volume 6460 of LNCS, pages 212-225, 2011.

[ADP11] P. Angelini, G. Di Battista, and M. Patrignani. Finding a minimum-depth
embedding of a planar graph in o(n?) time. Algorithmica, 60(4):890-937,
2011.

[AGKN12] P. Angelini, M. Geyer, M. Kaufmann, and D. Neuwirth. On a tree and
a path with no geometric simultaneous embedding. Journal of Graph
Algorithms and Applications, 16(1):37-83, 2012. Special Issue on Selected
Papers from GD ’10.

[AHTT] K. Appel and W. Haken. Every planar map is four colourable, part I:
discharging. Illinois J. Math., 21:429-490, 1977.

[AHK77] K. Appel, W. Haken, and J. Koch. Every planar map is four colourable,
part II: Reducibility. Illinois Journal of Mathematics, 21:491-567, 1977.

[AP61] L. Auslander and S. V. Parter. On imbedding graphs in the sphere. Journal
of Mathematics and Mechanics, 10(3):517-523, 1961.

[APBL95] D. Archdeacon, C. Paul Bonnington, and C. H. C. Little. An algebraic
characterization of planar graphs. Journal of Graph Theory, 19(2):237—
250, 1995.

[AS9S] D. Archdeacon and J. Srén. Characterizing planarity using theta graphs.
Journal of Graph Theory, 27(1):17-20, 1998.

[Bad64] W. Bader. Das topologische Problem der gedruckten Schaltung und seine
Losung. FElectrical Engineering (Archiv fir Elektrotechnik), 49(1):2-12,
1964.

[Bak94] B. S. Baker. Approximation algorithms for NP-complete problems on
planar graphs. J. ACM, 41:153-180, 1994.

[BCD*07] P. BraB, E. Cenek, C. A. Duncan, A. Efrat, C. Erten, D. Ismailescu, S. G.
Kobourov, A. Lubiw, and J. S. B. Mitchell. On simultaneous planar graph
embeddings. Computational Geometry, 36(2):117-130, 2007.

[BCPDO4] J. M. Boyer, P. F. Cortese, M. Patrignani, and G. Di Battista. Stop
minding your P’s and Q’s: Implementing a fast and simple DFS-based
planarity testing and embedding algorithm. In Giuseppe Liotta, editor,
Graph Drawing (Proc. GD ’03), volume 2912 of LNCS, pages 25-36, 2004.

[BD91] P. Bertolazzi and G. Di Battista. On upward drawing testing of tricon-
nected digraphs. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages
272-280, 1991.

[BDBDO00] P. Bertolazzi, G. Di Battista, and W. Didimo. Computing orthogonal
drawings with the minimum number of bends. IEEFE Transaction on Com-
puters, 49:826-840, August 2000.

REFERENCES

[BDLM94]

[BDMT9S]

[BFNA04]

[BG69)]

[Bie9g)]

[BKMOYS]

[BL76]

[BMsS]

[BM90)]

[BM99]

[BMo4]

[Boy05]
[Bra09)
[BSW70]

[CDF+08]

[CDPPO4]

P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 6(12):476-497, 1994.

P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal
upward planarity testing of single-source digraphs. SIAM J. Comput.,
27(1):132-169, 1998.

J. Boyer, C. Fernandes, A. Noma, and J. de Pina. Lempel, Even, and
Cederbaum planarity method. In Celso Ribeiro and Simone Martins, edi-
tors, Ezperimental and Efficient Algorithms, volume 3059 of LNCS, pages
129-144. Springer, 2004.

D. W. Barnette and B. Griinbaum. On Steinitz’s theorem concerning
convex 3-polytopes and on some properties of 3-connected graphs. In
Many Facets of Graph Theory, pages 27-40, 1969.

T. C. Biedl. Drawing planar partitions III: Two constrained embedding
problems. Technical Report RRR 13-98, RUTCOR Rutgen University,
1998.

T. C. Biedl, M. Kaufmann, and P. Mutzel. Drawing planar partitions
II: HH-Drawings. In J. Hromkovic and O. Sykora, editors, Workshop on
Graph-Theoretic Concepts in Computer Science (WG ’98), volume 1517,
pages 124-136. Springer, 1998.

K. Booth and G. Lueker. Testing for the consecutive ones property interval
graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst.
Sci., 13:335-379, 1976.

D. Bienstock and C. L. Monma. On the complexity of covering vertices
by faces in a planar graph. SIAM Journal on Computing, 17:53-76, 1988.
D. Bienstock and C. L. Monma. On the complexity of embedding planar
graphs to minimize certain distance measures. Algorithmica, 5(1):93-109,
1990.

J. Boyer and W. Myrvold. Stop minding your P’s and Q’s: A simpli-
fied O(n) planar embedding algorithm. In 10th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, volume 1027 of LNCS, pages 140-146.
Springer-Verlag, 1999.

J. Boyer and W. Myrvold. On the cutting edge: Simplified O(n) planarity
by edge addition. Journal of Graph Algorithms and Applications, 8(3):241—
273, 2004.

J. Boyer. Additional PC-tree planarity conditions. In J. Pach, editor,
Graph Drawing, volume 3383 of LNCS, pages 82—-88. Springer, 2005.

U. Brandes. The left-right planarity test. Manuscript submitted for pub-
lication, 2009.

J. Bruno, K. Steiglitz, and L. Weinberg. A new planarity test based on 3-
connectivity. IEEE Transactions on Circuit Theory, 17(2):197-206, 1970.

P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, and M. Pizzonia.
C-planarity of c-connected clustered graphs. Journal of Graph Algorithms
and Applications, 12(2):225-262, Nov 2008.

P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering

cycles into cycles of clusters. In Jédnos Pach, editor, Proc. Graph Drawing
2004 (GD ’04), volume 3383 of LNCS, pages 100-110. Springer, 2004.

36 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

[CDPP05] P.F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia. Clustering
cycles into cycles of clusters. Journal of Graph Algorithms and Applica-
tions, Special Issue on the 2004 Symposium on Graph Drawing, GD 04,
9(3):391-413, 2005.

[Che81] C. C. Chen. On a characterization of planar graphs. Bulletin of the
Australian Mathematical Society, 24:289-294, 1981.

[CMS08] M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of mul-
tiple Kuratowski subdivisions. In Seok-Hee Hong, Takao Nishizeki, and
Wu Quan, editors, Graph Drawing (GD 2007), volume 4875 of LNCS,
pages 159-170. Springer, 2008.

[CNAOS85] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for
embedding planar graphs using PQ-trees. J. Comput. Syst. Sci., 30(1):54—

76, 1985.
[Col90] Y. Colin de Verdiere. Sur un nouvel invariant des graphes et un critere de
planarité. Journal of Combinatorial Theory, Series B, 50(1):11-21, 1990.
[Col91] Y. Colin de Verdiere. On a new graph invariant and a criterion for pla-

narity. In Neil Robertson and Paul D. Seymour, editors, Graph Structure
Theory, volume 147 of Contemporary Mathematics, pages 137-148. Amer-
ican Mathematical Society, 1991.

[CWO06] S. Cornelsen and D. Wagner. Completely connected clustered graphs.
Journal of Discrete Algorithms, 4(2):313-323, 2006.

[Dah9s] E. Dahlhaus. Linear time algorithm to recognize clustered planar graphs
and its parallelization. In Claudio L. Lucchesi and Arnaldo V. Moura, ed-
itors, Proc. Latin American Theoretical INformatics (LATIN ’98), volume
1380 of LNCS, pages 239-248. Springer, 1998.

[DBTVO01] G. DiBattista, R. Tamassia, and L. Vismara. Incremental convex planarity
testing. Information Computation, 169:94-126, August 2001.

[Deo76] N. Deo. Note on Hopcroft and Tarjan planarity algorithm. Journal of the
Association for Computing Machinery, 23:74-75, 1976.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and 1. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[dF08a] H. de Fraysseix. Trémaux trees and planarity. Electronic Notes in Discrete
Mathematics, 31:169-180, 2008.

[DFO08Db] G. Di Battista and F. Frati. Efficient c-planarity testing for embedded flat
clustered graphs with small faces. In Seok-Hee Hong, Takao Nishizeki, and
Wu Quan, editors, Proc. Graph Drawing 2007 (GD ’07), volume 4875 of
LNCS, pages 291-302. Springer, 2008.

[DKT09] Z. Dvorak, K. Kawarabayashi, and R. Thomas. Three-coloring triangle-
free planar graphs in linear time. In Claire Mathieu, editor, SODA, pages
1176-1182. STAM, 2009.

[DLO7] E. Di Giacomo and G. Liotta. Simultaneous embedding of outerplanar
graphs, paths, and cycles. Int. J. Computational Geometry and Applica-
tions, 17(2):139-160, 2007.

[DLT84] D. Dolev, F. T. Leighton, and H. Trickey. Planar embedding of planar
graphs. In Franco P. Preparata, editor, VLSI Theory, volume 2 of Adv.
Comput. Res., pages 147-161. JATI Press, Greenwich, Conn., 1984.

REFERENCES

[DMP64]

[d096]

[d002]

[dOR06]

[dR82]
[dR85]
[DT8Y]
[DT96a]
[DT96b)]

[EBGJ*+07]

[EKO05)]

[ET76]
[Eve79]

[FCE95a]

[FCE95D)

[FGJ*08]

[Fra06]

G. Demoucron, Y. Malgrange, and R. Pertuiset. Graphes planaires: Re-
connaissance et construction des représentations planaires topologiques.
Revue Fran cais de Recherche Opérationelle, 8:33-47, 1964.

H. de Fraysseix and P. Ossona de Mendez. Planarity and edge poset
dimension. European Journal of Combinatorics, 17(8):731-740, 1996.

H. de Fraysseix and P. Ossona de Mendez. P.I.G.A.L.E — Public Imple-
mentation of a Graph Algorithm Library and Editor, 2002. SourceForge
project page http://pigale.sourceforge.net/ (GPL License).

H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Trémaux trees
and planarity. International Journal of Foundations of Computer Science,
17(5):1017-1029, 2006.

H. de Fraysseix and P. Rosenstiehl. A depth-first characterization of pla-
narity. Annals of Discrete Mathematics, 13:75-80, 1982.

H. de Fraysseix and P. Rosenstiehl. A characterization of planar graphs
by Trémaux orders. Combinatorica, 5(2):127-135, 1985.

G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc.
30th Annu. IEEE Sympos. Found. Comput. Sci., pages 436-441, 1989.

G. Di Battista and R. Tamassia. On-line maintenance of triconnected
components with SPQR-trees. Algorithmica, 15:302-318, 1996.

G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J.
Comput., 25:956-997, 1996.

A. Estrella-Balderrama, E. Gassner, M. Jiinger, M. Percan, M. Schaefer,
and M. Schulz. Simultaneous geometric graph embeddings. In S. H. Hong,
T. Nishizeki, and W. Quan, editors, Graph Drawing (GD ’07), volume
4875 of LNCS, pages 280-290, 2007.

C. Erten and S. G. Kobourov. Simultaneous embedding of planar graphs
with few bends. Journal of Graph Algorithms and Applications, 9(3):347—
364, 2005.

S. Even and R. E. Tarjan. Computing an st-numbering. Theoret. Comput.
Sci., 2:339-344, 1976.

S. Even. Graph Algorithms. Computer Science Press, Potomac, Maryland,
1979.

Q. W. Feng, R. F. Cohen, and P. Eades. How to draw a planar clustered
graph. In Ding-Zhu Du and Ming Li, editors, Proc. Computing and Com-
binatorics (COCOON ’95), volume 959 of LNCS, pages 21-30. Springer,
1995.

Q. W. Feng, R. F. Cohen, and P. Eades. Planarity for clustered graphs.
In Proc. European Symposium on Algorithms (ESA ’95), volume 979 of
LNCS, pages 213—-226. Springer, 1995.

J. J. Fowler, C. Gutwenger, M. Jiinger, P. Mutzel, and M. Schulz. An
SPQR-tree approach to decide special cases of simultaneous embedding
with fixed edges. In I. G. Tollis and M. Patrignani, editors, Graph Drawing
(GD ’08), volume 5417 of LNCS, pages 157-168, 2008.

F. Frati. Embedding graphs simultaneously with fixed edges. In M. Kauf-
mann and D. Wagner, editors, Graph Drawing (GD ’06), volume 4372 of
LNCS, pages 108-113, 2006.

37

38 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

[GIS99] Z. Galil, G. F. Italiano, and N. Sarnak. Fully dynamic planarity testing
with applications. Journal of the Association for Computing Machinery,
46:28-91, January 1999.

[GJT9] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

[GJLT02] C. Gutwenger, M. Jinger, S. Leipert, P. Mutzel, M. Percan, and
R. Weiskircher. Advances in C-planarity testing of clustered graphs. In
Stephen G. Kobourov and Michael T. Goodrich, editors, Proc. Graph
Drawing 2002 (GD ’02), volume 2528 of LNCS, pages 220-235. Springer,
2002.

[GJST76] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-
complete graph problems. Theoretical Computer Science, 1(3):237-267,
1976.

[GKMO08] C. Gutwenger, K. Klein, and P. Mutzel. Planarity testing and optimal
edge insertion with embedding constraints. Journal of Graph Algorithms
and Applications, 12(1):73-95, 2008.

[GKV09] M. Geyer, M. Kaufmann, and I. Vrt’o. Two trees which are self-intersecting
when drawn simultaneously. Discrete Mathematics, 307(4):1909-1916,
2009.

[GLSO05] M. T. Goodrich, G. S. Lueker, and J. Z. Sun. C-planarity of extrovert
clustered graphs. In P. Healy and N. S. Nikolov, editors, Proc. Graph
Drawing 2005 (GD ’05), volume 3843 of LNCS, pages 211-222. Springer,
2005.

[GMO1] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-
trees. In Joe Marks, editor, Graph Drawing (GD 2000), volume 1984 of
LNCS, pages 77-90. Springer, 2001.

[GMO04] C. Gutwenger and P. Mutzel. Graph embedding with minimum depth
and maximum external face. In Giuseppe Liotta, editor, Graph Drawing,
volume 2912 of LNCS, pages 259-272. Springer, 2004.

[GMWO01] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a
planar graph. In Proceedings of the Twelfth Annual ACM-SIAM Sympo-
sium on Discrete algorithms, SODA ’01, pages 246-255, Philadelphia, PA,
USA, 2001. Society for Industrial and Applied Mathematics.

[Gol63] A. J. Goldstein. An efficient and constructive algorithm for testing whether
a graph can be embedded in the plane. In John R. Edmonds, Jr., editor,
Graphs and Combinatorics Conference, Technical Report, page 2 unn. pp.
Princeton University, 1963.

[Gro59] H. Grotzsch. Ein dreifarbensatz fii dreikreisfreie netze auf der kugel. Wiss.
7. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 8, 1959.

[GTO01] A. Garg and R. Tamassia. On the computational complexity of upward
and rectilinear planarity testing. SIAM J. Comput., 31(2):601-625, 2001.

[Hal43] D. W. Hall. A note on primitive skew curves. Bulletin of the American

Mathematical Society, 49(2):935-936, 1943.
[Har69) F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1969.

[HJL10] B. Haeupler, K. R. Jampani, and A. Lubiw. Testing simultaneous pla-
narity when the common graph is 2-connected. In Proceedings of the 21st

REFERENCES

[HLI6]

[HNO9]

[Hsu01]

[Hsu03]

[HT65]
[HT73]
[HT74]
[HTOS]
[HW74]

[JIKLOS]

[TKK*08]

[JKR11]

[7509]

[Kam07)

[Kel81]

[Kel93]

Symposium on Algorithms and Computation (ISAAC’10), volume 6507 of
LNCS, pages 410-421. Springer Heidelberg/Berlin, 2010.

M. D. Hutton and A. Lubiw. Upward planar drawing of single-source
acyclic digraphs. STAM J. Comput., 25(2):291-311, 1996.

S. H. Hong and H. Nagamochi. Two-page book embedding and clustered
graph planarity. Technical Report 2009-004, Department of Applied Math-
ematics & Physics, Kyoto University, 2009.

W. L. Hsu. PC-trees vs. PQ-trees. In Proceedings of the Tth Annual
International Conference on Computing and Combinatorics, COCOON
01, pages 207-217, London, UK, 2001. Springer-Verlag.

W. L. Hsu. An efficient implementation fo the PC-Tree algorithm of Shih
and Hsu’s planarity test. Technical Report TR-IIS-03-015, Inst. of Inf.
Science, Academia Sinica, 2003.

F. Haray and W. T. Tutte. A dual form of Kuratowski’s theorem. Canad.
Math. Bull., 8:17-20, 1965.

J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-
nents. STAM J. Comput., 2(3):135-158, 1973.

J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM,
21(4):549-568, 1974.

B. Haeupler and R. E. Tarjan. Planarity algorithms via PQ-trees (extended
abstract). FElectronic Notes in Discrete Mathematics, 31:143-149, 2008.
J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism
of planar graphs (preliminary report). In Proceedings of the Sizth Annual
ACM Symposium on Theory of Computing, STOC 74, pages 172-184,
New York, NY, USA, 1974. ACM.

V. Jelinek, E. Jelinkova, J. Kratochvil, and B. Lidicky. Clustered planarity:
Embedded clustered graphs with two-component clusters. In GD 08,
volume 5417 of LNCS, pages 121-132, 2008.

E. Jelinkova, J. Kéra, J. Kratochvil, M. Pergel, O. Suchy, and T. Vyskocil.
Clustered planarity: Small clusters in Eulerian graphs. In Seok-Hee Hong,
Takao Nishizeki, and Wu Quan, editors, Proc. Graph Drawing 2007 (GD
’07), volume 4875 of LNCS, pages 303-314. Springer, 2008.

V. Jelinek, J. Kratochvil, and I. Rutter. A Kuratowski-type theorem for
planarity of partially embedded graphs. In Proceedings of the 27th Annual
ACM symposium on Computational Geometry, SOCG ’11, pages 107-116,
New York, NY, USA, 2011. ACM.

M. Jiinger and M. Schulz. Intersection graphs in simultaneous embed-
ding with fixed edges. Journal of Graph Algorithms and Applications,
13(2):205-218, 2009.

F. Kammer. Determining the smallest &k such that ¢ is k -outerplanar. In
L. Arge, M. Hoffmann, and E. Welzl, editors, ESA 07, volume 4698 of
LNCS, pages 359-370, 2007.

A. K. Kelmans. A new planarity criterion for 3-connected graphs. Journal
of Graph Theory, 5:259-267, 1981.

A. K. Kelmans. Graph planarity and related topics. In Neil Robertson
and Paul Seymour, editors, Graph Structure Theory, Proceedings of the

40

[KR88]
[Kur30]

[LEC67]

[LHT77]
[Lie01]
[Liuss]
[Liug9)]
[LS10]
[LT79]
[Mac37al
[Mac37b]
[Mang3]
[Men27]
[MMO96]

[MW99]

[MWO0]

[Pap95]

[Piz05]

CHAPTER 1. PLANARITY TESTING AND EMBEDDING

AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors,
1991, volume 147 of Contemporary Mathematics, pages 635-667, 1993.

P. N. Klein and J. H. Reif. An efficient parallel algorithm for planarity. J.
Comput. Syst. Sci., 37(2):190-246, 1988.

K. Kuratowski. Sur le probleme des courbes gauches en topologie. Fund.
Math., 15:271-283, 1930.

A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing
of graphs. In Theory of Graphs: Internat. Symposium (Rome 1966), pages
215-232, New York, 1967. Gordon and Breach.

C. H. C. Little and D. A. Holton. A new characterization of planar graphs.
Bulletin of the American Mathematical Society, 83(1):137-138, 1977.

A. Liebers. Planarizing graphs — a survey and annotated bibliography.
Journal of Graph Algorithms and Applications, 5(1):1-74, 2001.

Y. Liu. A new approach to the linearity of testing planarity of graphs. Acta
Mathematicae Applicatae Sinica (English Series), 4(3):257-265, 1988.

Y. Liu. Boolean approach to planar embeddings of a graph. Acta Mathe-
matica Sinica (New Series), 5(1):64-79, 1989.

C. H. C. Little and G. Sanjith. Another characterisation of planar graphs.
The Electronic Journal of Combinatorics, 17(15), 2010.

R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.
SIAM J. Appl. Math., 36:177-189, 1979.

S. MacLane. A combinatorial condition for planar graphs. Fundamenta
Mathematicae, 28:22-32, 1937.

S. MacLane. A structural characterization of planar combinatorial graphs.
Duke Mathematical Journal, 3:466-472, 1937.

A. Mansfield. Determining the thickness of graphs is NP-hard. Proc. Math.
Cambridge Philos. Soc., 93:9-23, 1983.

Karl Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96-115,
1927.

K. Mehlhorn and P. Mutzel. On the embedding phase of the Hopcroft and
Tarjan planarity testing algorithm. Algorithmica, 16:233-242, 1996.

P. Mutzel and R. Weiskircher. Optimizing over all combinatorial embed-
dings of a planar graph. In Proceedings of the 7th International IPCO Con-
ference on Integer Programming and Combinatorial Optimization, pages
361-376, London, UK, 1999. Springer-Verlag.

P. Mutzel and R. Weiskircher. Computing optimal embeddings for planar
graphs. In Proceedings of the 6th Annual International Conference on
Computing and Combinatorics, COCOON ’00, pages 95-104, London, UK,
2000. Springer-Verlag.

A. Papakostas. Upward planarity testing of outerplanar dags. In R. Tamas-
sia and I. G. Tollis, editors, Graph Drawing (Proc. GD ’94), volume 894
of Lecture Notes Comput. Sci., pages 298-306. Springer-Verlag, 1995.

M. Pizzonia. Minimum depth graph embeddings and quality of the draw-
ings: An experimental analysis. In P. Healy and N. S. Nikolov, editors,
Graph Drawing 05, volume 3843 of LNCS, pages 397408, 2005.

REFERENCES

[PTO00]
[RND77]
[Ros80]

[RRS9]

[RR94]
[RS84]
[RSSTY7]

[Sch89]
[Sch12]

[SHO3]
[SHY9]
[Tam9s]
[Tar72]
[Tho81]

[Tho99]

[TT97]

[Tut61]

[Tut66]
[Wag37a]

[Wag37b]
[Whi32]

[Wil80]

M. Pizzonia and R. Tamassia. Minimum depth graph embedding. In
M. Paterson, editor, ESA 00, volume 1879 of LNCS, pages 356—-367, 2000.
E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms:
Theory and Practice. Prentice Hall, Englewood Cliffs, NJ, 1977.

P. Rosenstiehl. Preuve algébrique du critere de planarité du Wu-Liu. An-
nals of Discrete Mathematics, 9:67-78, 1980.

V. Ramachandran and J. H. Reif. An optimal parallel algorithm for graph
planarity. In Proc. 30th Annu. IEEE Sympos. Found. Comput. Sci., pages
282-293, 1989.

V. Ramachandran and J. Reif. Planarity testing in parallel. Journal of
Computer and System Sciences, 49:517-561, December 1994.

N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width.
Journal on Combinatorial Theory, Series B, 36(1):49-64, 1984.

N. Robertson, D. P. Sanders, P. D. Seymour, and R. Thomas. The four
color theorem. J. Combin. Theory Ser. B, 70:2—4, 1997.

W. Schnyder. Planar graphs and poset dimension. Order, 5:323-343, 1989.

J. M. Schmidt. A planarity test via construction sequences. CoRR,
abs/1202.5003, 2012.

W. K. Shih and W. L. Hsu. A simple test for planar graphs. In Int.
Workshop on Discrete Math. and Algorithms, pages 110-122, 1993.

W. K. Shih and W. L. Hsu. A new planarity test. Theor. Comp. Sci., 223,
1999.

R. Tamassia. Constraints in graph drawing algorithms. Constraints, 3:87—
120, April 1998.

R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput., 1(2):146-160, 1972.

C. Thomassen. Kuratowski’s theorem. Journal of Graph Theory, 5(3):225—
241, 1981.

R. Thomas. Graph planarity and related topics. In Jan Kratochvil, editor,
Graph Drawing (Proc. GD ’99), volume 1731 of LNCS, pages 137-144.
Springer-Verlag, 1999.

Hisao Tamaki and Takeshi Tokuyama. A characterization of planar graphs
by pseudo-line arrangements. In Proc. 8th Annu. Internat. Sympos. Algo-
rithms Comput., volume 1350 of Lecture Notes Comput. Sci., pages 123—
132. Springer-Verlag, 1997.

W. T. Tutte. A theory of 3-connected graphs. Indag. Math., 23:441-455,
1961.

W. T. Tutte. Connectivity in Graphs. University of Toronto Press, 1966.
K. Wagner. Uber eine Eigenschaft der ebenen Komplexe. Mathematische
Annalen, 114:570-590, 1937.

K. Wagner. Uber eine Erweiterung eines Satzes von Kuratowski. Deutsche
Mathematik, 2:280-285, 1937.

H. Whitney. Non-separable and planar graphs. Transactions of the Amer-
ican Mathematical Society, 34:339-362, 1932.

S. G. Williamson. Embedding graphs in the plane — algorithmic aspects.
Annals of Discrete Mathematics, 6:349-384, 1980.

42 CHAPTER 1. PLANARITY TESTING AND EMBEDDING

[WuT4] W. Wu. Planar embedding of linear graphs. Kexue Tongbao, 2:226-282,
1974. (In Chinese).

[Xu89] W. Xu. Improved algorithm for planarity testing based on Wu-Liu’s cri-
terion. Annals of the New York Academy of Science, 576:641-652, 1989.

[YanT78] M. Yannakakis. Node-and edge-deletion NP-complete problems. In Pro-
ceedings of the Tenth Annual ACM Symposium on Theory of Computing,
STOC 78, pages 253264, New York, NY, USA, 1978. ACM.

[Yan82) M. Yannakakis. The complexity of the partial order dimension problem.
SIAM J. Algebraic Discrete Methods, 3(3):351-358, 1982.

Crossings and Planarization

Christoph Buchheim 2.1 Introduction.................ccooiiiiiiiiii 43

TU Dortmund 2.2 Crossing Numbers............coooiiiiiiiiii . 45
. . Known Bounds

lll/Ialrk}uZ }Cgllrgam‘ o 2.3 Complexity of Crossing Minimization 50

Jm[(m ochiller-Universitat NP-hardness * Fixed Parameter Tractability

o 2.4 Exact Crossing Minimization............................. 55

Subdivision-Based Formulation * Ordering-Based Formula-
tion * Branch-and-Cut-and-Prize
2.5 The Planarization Method 63
Overview * Planar Subgraphs ® Edge Insertion * Experimen-
tal Results * Beyond Edge Insertion

Carsten Gutwenger
TU Dortmund

Michael Jiinger

University of Cologne

2.6 Approximation Algorithms 76
Petra Mutzel Acknowledgment ... 79
TU Dortmund References ... 80

2.1 Introduction

In many respects, crossing minimization is an exceptional problem in the wide range of
optimization problems arising in automatic graph drawing. First of all, it is one of the most
basic and natural problems among these, and, at the same time, very easy to formulate:
given a graph, draw it in the plane with a minimum number of crossings between its
edges. In fact, this problem is much older than automatic graph drawing. Crossing number
problems were first examined by Turdn when he worked in a brick factory during the
Second World War. This work motivated him to search for crossing minimal drawings of
the complete bipartite graph K, ,,, without success. Later, Zarankiewicz gave a rule for
creating a drawing of K, ,, with [2|[™51]|%]| %5+] crossings, but his proof of optimality
was shown to be incorrect. Still today, this is an open question. The same is true for the
crossing number of K,,.

Besides its theoretical relevance as a topological problem, crossing minimization has many
practical applications. In automatic graph drawing, it is well known that the readability
of a two-dimensional graph layout strongly depends on the number of edge crossings. This
was verified by empirical studies of Purchase [Pur97]. In fact, the main information given
by an abstract graph is whether two vertices are connected by an edge. This information
should be easily recognizable. In particular, it should be easily possible to trace the edges
in the drawing. This task is complicated by the presence of crossing edges, as they distract
the concentration of the human viewer. See Figure 2.1 for a comparison.

Another important application for the crossing minimization problem is VLSI (very large
scale integration) design. In this context, the problem was first discussed in depth. The

43

44 CHAPTER 2. CROSSINGS AND PLANARIZATION

Figure 2.1 Different drawings of the same abstract graph with different numbers of edge
crossings (51, 12, and 4, respectively). Most aesthetic criteria like few edge bends, uniform
edge lengths, or a small drawing area favor the first two drawings. However, with respect
to the number of edge crossings the last drawing is preferable.

aim of VLSI design is to arrange transistors on two-dimensional chips. Certain transistors
need to be connected by wires, which have to be routed on the chip. Every crossing of two
wires causes additional costs for realizing the chip, so that a small number of such crossings
is desired to reduce these costs as far as possible.

An outstanding property of the crossing minimization problem is its hardness. It was
shown by Garey and Johnson [GJ83] that this problem is NP-hard; see Section 2.3. However,
several optimization problems arising in the area of automatic graph drawing are NP-
hard and have nevertheless been solved in practice. In contrast, crossing minimization is
extremely hard also practically. So far, exact approaches can only solve relatively sparse,
medium sized instances within a reasonable running time; see Section 2.4. This is drastically
shown by the fact that even the crossing numbers of the complete graphs K, are unknown
for n > 13.

Given the NP-hardness of the general problem, many restricted versions of crossing min-
imization have been considered, in the hope of finding polynomial time algorithms in these
cases. However, in most cases, the problem remains NP-hard. Examples are bipartite
drawings or linear embeddings; see Section 2.3. In practice, however, some of the resulting
problems become easier as the degrees of freedom are reduced.

Besides considering special cases, it is natural to ask for approximation algorithms. How-
ever, up to now, only for graphs with bounded degree it was possible to find algorithms
yielding provably near-optimal solutions; see Section 2.6. On the other hand, no negative
results about approximability are known.

Currently used approaches to the general crossing minimization problem are of heuristic
nature. The state-of-the-art approach for general crossing minimization is the planarization
method, which is described in detail in Section 2.5. The main idea is to split up the problem
into two steps: in the first step, a planar subgraph is computed. The aim in this step is to
find a subgraph with as many edges as possible. In the second step, all edges not contained
in this subgraph are reinserted into the drawing. Whenever an edge is inserted, the produced
crossings are replaced by dummy vertices, so that the result is a planar graph again. Having
added all edges in this way, a planar drawing algorithm can be used to compute a layout
of the graph; see Chapters 6 and 7. After this, the dummy vertices are removed. For
both steps of the planarization approach, a variety of possible algorithmic realizations has
been discussed; see Section 2.5. This approach is also particularly interesting with respect
to approximation algorithms, as it can be shown that certain insertion algorithms in fact
approximate the crossing number in case of special graph classes; again see Section 2.6.

2.2. CROSSING NUMBERS 45

The second step of the planarization approach can also be realized in many different
ways; see Section 2.5.3. Usually, it is again solved heuristically; edges are reinserted one
after another, each with a minimal number of new edge crossings. It was shown recently
that one can add a single edge optimally over all possible embeddings of the planar graph
constructed so far.

After 60 years of research in different areas of mathematics and computer science, the
crossing minimization problem is still far from being fully explored, both theoretically and
practically. On the theoretical side, the most interesting open problems in our opinion are
the crossing numbers of the complete graphs, including Turdn’s brick factory problem, as
well as the approximability of crossing minimization. Practically, one can hope for new and
better heuristic methods or faster exact approaches. At this point, we can only report on
the status quo. We hope that parts of this chapter will become obsolete sooner or later.

2.2 Crossing Numbers

A drawing of a graph G = (V, E) in the plane is a mapping of each vertex v € V to a distinct
point and each edge e = (v,w) € E to a curve connecting the incident vertices v and w
without passing through any other vertex. A common point of two edges in a drawing that
is not an incident vertex is called a crossing. The crossing number cr(G) is defined to be
the minimum number of crossings in any drawing of G.

In their paper “Which Crossing Number Is It, Anyway?”, Pach and Téth define two
further possibilities on how to count the number of crossings in a graph (see [PT00]).

DEFINITION 2.1 Let G = (V, E) be a simple graph.

1. The pairwise crossing number of G, denoted with per(G), is the minimum number
of pairs of edges (e1,e2) € E X E| e1 # ey such that e; and es determine at least
one crossing, over all drawings of G.

2. The odd-crossing number of G, denoted with ocr(G), is the minimum number of
pairs of edges (e1,e2) € E'x E, e1 # eq such that e; and ez cross an odd number
of times, over all drawings of G.

It is clear that ocr(G) < per(G) < cr(G), and we know that cr(G) cannot be arbitrarily
large if ocr(G) is bounded. More precisely we have that cr(G) < 2(ocr(G))2. Only after
some years, an example was conceived by Pelsmajer et al. [PSSOG]7 showing that there in
fact exist graphs with ocr(G) # cr(G). Yet, it is still unknown whether per(G) = cr(G).

Another well-studied variant of the crossing minimization problem is the rectilinear cross-
ing number crq(G), which is defined to be the minimum number of crossings in any drawing
of a graph G where all edges are drawn as straight lines. Bienstock and Dean proved in
[BD93] that for graphs with crossing number at most three, the rectilinear crossing number
and the usual crossing number coincide. They could further show that there are graphs Gy,
such that crq(Gy) is arbitrarily large, even if cr(Gy) is only four.

As a generalization of the rectilinear crossing number, Bienstock introduced in [Bie91]
the concept of the t-polygonal crossing number.

DEFINITION 2.2 Let G = (V, E) be a graph. A ¢-polygonal drawing of G, for ¢t > 1, is
a good drawing where every edge is drawn as a t-polygonal line, i.e., a polygonal line with

46 CHAPTER 2. CROSSINGS AND PLANARIZATION

at most t segments. The t-polygonal crossing number cri(G) is defined as the minimum
number of crossings in any t-polygonal drawing of G.

A good drawing is a drawing that satisfies the following conditions:

1. no edge crosses itself
2. adjacent edges do not cross one another
3. non-adjacent edges cross each other at most once

Bienstock also showed that there cannot be a polynomial time algorithm for producing
optimal ¢-polygonal drawings of G unless P = NP and that there is no fixed ¢ such that
cr(G) = cr(G) for any graph G.

An even more restricted version of the crossing number problem is the linear crossing
number: We call a drawing of a graph a linear drawing if all vertices lie on a straight line
and edges are drawn as semicircles above and below this line. It is easy to see that the
crossing number resulting from this drawing style is an upper bound for cr(G). Surprisingly,
there is a further connection to the general crossing number problem, as was shown by
Nicholson [Nic68]. He proved that any drawing in the plane with a minimum number of
crossings can be converted into a linear drawing with an equivalent crossing structure such
that all vertices are placed on a horizontal line and edges are drawn as a series of semicircles
while successive semicircles lie on different sides of the horizontal line.

It is interesting to see that the complexity of the linear crossing number problem stays
the same, even if we fix the ordering of the vertices of V' (this is the so-called fized linear
crossing minimization problem). Masuda et al. proved in [MNKF90] that even this variant
is NP-complete.

2.2.1 Known Bounds

No matter which definition or variant of the crossing number problem is used, its solution
seems to be a difficult task. Even though crossing numbers have been investigated exten-
sively in the past, useful theoretical results are rather limited. One of the first major results
has been claimed in 1953 by Zarankiewicz (and, independently, by Urbanik) as a solution to
Turdn’s brick factory problem, which in fact asks for the crossing number of the complete
bipartite graph K, ;.

mm-1 gJ Ln ; 1j (conjecture) (2.1)

Over ten years later, an error in the induction argument of Zarankiewicz’s proof was
unveiled, which is still unremedied. Hence, the correctness of equation (2.1) is still un-
known. The conjecture is derived from the following drawing rule for complete bipartite
graphs K, ,, = (AU B, E): place the vertices in vertex set A at coordinates (i(—1)%,0)
for all i = 1,...,m and the vertices of vertex set B at coordinates (0,j(—1)7) for all
j=1,...,n. All edges are drawn as straight lines. Figure 2.2 shows a sample drawing
of K¢ with 36 crossings. Even though the correctness of equation (2.1) could never be
verified, the provided drawing rule gives us an upper bound Z(m, n) for cr(K,, ,,). Recently,
de Klerk et al. [KMPT06, KPS07] devised a method for computing asymptotic lower bounds
for cr(Ky,,n) based on semidefinite programming. They show that

K
fim EWEmn) o g gsgy ™

2.2. CROSSING NUMBERS 47

Figure 2.2 A drawing of K¢ ¢ with 36 crossings using Zarankiewicz’s rule.

&l

Figure 2.3 A drawing of Kg with a minimum number of 18 crossings.

As for complete bipartite graphs, there is also a conjecture for the number of crossings
of the complete graph K, with n vertices.

() = LI IS0 (conjecture) (2.2)

Constructions of corresponding drawings [GJJ68] show that also this conjecture yields an
upper bound Z(n) on cr(K,). For complete graphs on up to ten vertices, its correctness
has been verified by Guy [Guy72]. Pan and Richter [PR07] have extended this verification
to K11 and K15. We show a sample drawing of Kg with a minimum number of 18 crossings
in Figure 2.3. For K,,, the best-known asymptotic lower bound is again due to de Klerk et
al. [KMP06]:

lim cr(Kn)

n—oo Z(n)

> 0.83.

The crossing number of a graph G with n vertices cannot exceed the crossing number
of the complete graph K,,, hence Z(n) also marks an upper bound for general graphs.
Unfortunately, it is the only known upper bound. A simple lower bound can be obtained
from Euler’s formula. Since any planar simple connected graph G = (V, E) cannot have
more than 3|V| — 6 edges, clearly cr(G) > |E| — 3|[V| + 6. If, in addition, G contains no
triangle, then cr(G) > |E| — 2|V| + 4.

48 CHAPTER 2. CROSSINGS AND PLANARIZATION

In 1983, Leighton used induction on the number of vertices to show the following theorem;
see [Lei83].

Theorem 2.1 Let G = (V, E) be a simple graph. If |[E| > 4]V|, we have

1 |EP

6> —— 2
@) 2 155 VP2

(2.3)

Ajtai et al. obtained the same result independently with a smaller constant of % in
[ACNS82]. One of the best-known results has been derived by Pach and Téth [PT97]. For
any simple graph G = (V, E), cr(G) satisfies

G)> —— —5 —09|V]. 2.4
CI‘()— 33.75 “7‘2 | ‘ ()

Apart from bounds with respect to the number of vertices and edges, several approaches to
obtain tight lower bounds based on different graph properties can be found in the literature.

A simple example is the skewness sk(G) of a graph G. Tt is defined as the minimum
number of edges that must be removed from G in order to obtain a planar subgraph.
Clearly, the crossing number of a graph cannot be smaller than its skewness. Hence, we
have that

cr(G) > sk(G) . (2.5)

Cimikowski showed in [Cim92] that there is a family of graphs with skewness one, but
an arbitrarily high crossing number. An example is shown in Figure 2.4. Computing the
skewness is equivalent to the maximum planar subgraph problem, which was shown to be
NP-hard by Liu and Geldmacher in [LG77] in general. For certain classes of graphs, i.e.,
complete and complete bipartite graphs, the skewness is known. We can derive it for
K, from Euler’s formula and the observation that every maximal planar graph is also a
maximum planar subgraph of K,. Hence, the skewness for complete graphs K, is given by

nin—1)

sk(K,) = 5

—3n+6, (2.6)

and we can use similar arguments to derive the skewness for complete bipartite graphs as

sk(Kppn) =mn—2(m+n)+4. (2.7)

Figure 2.4 Construction of graphs with skewness one and arbitrarily high crossing num-
ber.

2.2. CROSSING NUMBERS 49

Another bound can be obtained from the bisection width bw(G). For any disjoint partition
of the vertex set V into sets V1 and Vs, we denote the edges (v1,v2) with v; € V4 and ve € V3
by E(V1, V). The bisection width bw(G) is defined as follows:

bw(G)= min _ {|E(Vi,Va)|}.
Vi, Va|> 1%L

More intuitively, the bisection width is the minimum number of edges that must be removed
from G in order to partition the graph into two separate components with nearly equal size.
The first known bound for the crossing number based on the bisection width goes back to
Leighton. He proved the following theorem [Lei84].

Theorem 2.2 For any graph G = (V, E) of bounded degree, we have
cr(G) + |V] = Q(bw(G)?) .

Pach, Shahrokhi, and Szegedy [PSS96] use the bisection width to show the following,
more general, result, which can be used to derive a lower bound for cr(G).

Theorem 2.3 Let G = (V,E) be a simple graph with |V| > 2 vertices, and let k > 1 be
an integer. If G has a drawing with at most k crossings, then

|E| < 3|V|(101og, [V])*+2.

A very similar parameter is the cutwidth cw(G). Let ¢ : V. — {1,2,...,|V]|} be an
injection. We define cw(G) as follows:

cw(G) = m(gnmiaxH(u,U) EE:du) <i<ov)}.

As a graphical interpretation, consider an injection of the vertices to the horizontal line and
draw edges on one side of this line using semicircles. For each injection, we can “cut” the
horizontal line between a pair of consecutive vertices such that the number of edges between
each of the segments is maximized. The minimum value over all possible injections is the
cutwidth. So far, the following relations are known (see [DV02], [PSS96], [SV94]; here §(v)
denotes the set of neighbors of vertex v):

(G) + 1 ; B0 = b (G) (2.8)
cr(G) + 1716 S 1) > oW (G) (2.9)
veV

Unfortunately, the computation of both parameters bw(G) and cw(G) is NP-hard.

Both the bisection width and the cutwidth can be seen as a measure for the “non-
planarity” of a graph. This applies also to the thickness ©(G), which is defined as the
minimum number of planar graphs whose union forms G. The only families of graphs
whose thickness is known are complete graphs, complete bipartite graphs, and hypercubes.
Mansfield proved in [Man83] that the determination of ©(G) is NP-hard in general. There
is a simple connection between thickness and crossing number:

O(G) <cr(G)+1

So far, all those bounds are only of limited use. Either their quality is poor or their
computation often exceeds practical limits. The investigation of tighter bounds could help
to improve practical applications and lead to more insight into the crossing minimization
problem.

50 CHAPTER 2. CROSSINGS AND PLANARIZATION

2.3 Complexity of Crossing Minimization

Crossing minimization is not only one of the most important problems arising in automatic
graph drawing, it is also one of the hardest. This is true both in practice and in theory:
until recently, not a single exact algorithm being able to solve instances of nontrivial size
had been devised. In fact, even for a graph as small and regular as K13, the minimal number
of crossings is still unknown. For a discussion of exact crossing minimization approaches,
see Section 2.4.

2.3.1 NP-hardness

On the theoretical side, it is a well-known fact that the general crossing minimization
problem is NP-hard. More precisely, consider the following crossing number problem:

Given a graph G and a nonnegative integer K, decide whether there is a drawing
of G with at most K edge crossings.

In 1983, Garey and Johnson proved that this problem is NP-complete [GJ83]. In the
following, we reproduce their proof. It is based on a transformation of the NP-complete
optimal linear arrangement problem:

Given a graph G = (V, E') and a nonnegative integer K, decide whether there is
a one-to-one function f:V — {1,...,[V|} with }°, g |f(v) = f(w)] < K.

The corresponding optimization problem is thus to order the vertices of G such that the
total length of edges is minimal, where the length of an edge is defined as the distance of
the two adjacent vertices in this ordering.

As an intermediate step in the proof, Garey and Johnson show the NP-completeness of
the bipartite version of the crossing number problem for multigraphs, the bipartite crossing
number problem:

Given a bipartite multigraph G = (V1, Vs, E) and a nonnegative integer K,
decide whether there is a drawing of G inside the unit square such that all
vertices of V] lie on the northern boundary, all vertices of V5 lie on the southern
boundary, and the number of edge crossings is at most K.

In the following, we will call such drawings bipartite drawings for short. It is interesting
that, contrary to widespread belief, the NP-completeness of the bipartite crossing number
problem for simple graphs was long open—it was shown only very recently [Sch12].

Theorem 2.4 The crossing number problem is NP-complete.

It is easy to see that this problem is in NP: for every edge of G, one can guess all crossings
involving this edge, and their order along the edge. To answer the question whether such
a guessed crossing configuration is feasible, one can place dummy vertices on all chosen
crossings and test the resulting graph for planarity. Clearly, the result is positive if and
only if the given crossing configuration can be realized by some drawing of G.

The proof of completeness consists of several reduction steps and is split up into three
separate lemmas in the following.

LEMMA 2.1 The optimal linear arrangement problem can be reduced to the bipartite
crossing number problem in polynomial time.

2.3. COMPLEXITY OF CROSSING MINIMIZATION 51

Proof: The rough idea of the reduction is as follows: every vertex is doubled and the
linear ordering is modeled on two parallel layers (the northern and southern boundary of
the unit square) at the same time, with edges leading from one layer to the other. By a
large number of artificial edges connecting corresponding pairs of vertices, the ordering is
forced to be the same on both layers. The distance between two adjacent vertices in the
linear ordering problem is then essentially proportional to the number of artificial edges
crossed.

More formally, the transformation is defined as follows: Let an instance for the optimal
linear arrangement problem be given, consisting of a graph G and an integer K, and as-
sume V = {vy,...,v,}. We then construct an instance G’ = (V1,Va, E; U Es) and K’ of
the bipartite crossing number problem as follows:

Vi = {w]i=1,...,n}

Vo = {w;|i=1,...,n}

B, = {|E)? copies of (uj,w;)|i=1,...,n}
Ey = {(ui,wy) | (vi,v;) € E with i < j}
K' = |EP(K—|E)+|EP -1

This construction is obviously polynomial. We have to show that the graph G admits a
linear ordering with total edge length at most K if and only if the bipartite multigraph G’
admits a bipartite drawing with at most K’ crossings.

If a linear ordering f of G with total edge length at most K exists, we construct a
bipartite drawing as follows. We place vertex u; on position (f(v;)/(n + 1),1) and vertex
w; on position (f(v;)/(n+ 1),0). Furthermore, we draw all edges as straight lines; bundles
of parallel edges are drawn as nearly straight lines without mutual crossings; see Figure 2.5
for an example.

AN =

Figure 2.5 Reducing the optimal linear arrangement problem to the bipartite crossing
number problem. Bold grey lines represent bundles of |E|? edges each.

In the constructed drawing, no artificial edge from F; will cross any other edge. More-
over, an edge (u;,w;) € Eo crosses exactly |f(v;) — f(v;)] — 1 bundles of |E|? edges each.

52 CHAPTER 2. CROSSINGS AND PLANARIZATION

Consequently, the total number of such crossings is

> ER(Ifw) = fel =1) = 1BP Y (1f@) - fw)| - 1) < |BRA(K - |B]).

(uq,w;)EEs (v,w)eEE

The remaining crossings in the constructed drawing can only occur between pairs of edges
in Es, so that their total number is at most |E|?> — 1. Summing up, the total number of
edge crossings in our drawing is at most |E|*>(K — |E|) + |E|? =1 = K'.

For showing the other direction, assume that a bipartite drawing of G’ with at most K’
crossings is given. Then define f(v;) as the position of vertex u; in the order of vertices on
the northern boundary of the unit square. We claim that the linear ordering f leads to a
total edge length of at most K. To see this, first observe that the order of vertices on both
boundaries must be the same, as otherwise two bundles of |E|? edges each would cross each
other, leading to |E|* > K’ crossings. Because of that, for each edge (v;,v;) with i < j, the
distance |f(v;) — f(v;)| is at most one more than the number of crossings of (u;,w;) with
any edge bundle, so that

> Ifw) = f(w)| < |B|+ K'/|E = |E|+ (K —|E))+1-1/|E <K +1.
(v,w)eRE

As the left-hand side of this inequality is integer, it is at most K. O

LEMMA 2.2 The bipartite crossing number problem can be reduced to the general
crossing number problem for multigraphs in polynomial time.

Proof: Let G = (V4,V2,E) and K be an instance of the bipartite crossing number
problem. We construct a multigraph G’ as follows: we add two vertices u and w to G.
Moreover, we connect v with all vertices of V3 by K +1 edges each. Analogously, we connect
w with all vertices of V5 by K + 1 edges each. Finally, we add K + 1 edges connecting u
and w. Now we claim that G has a bipartite drawing with at most K crossings if and only
if G’ has a general drawing with at most K crossings.

The basic idea of this construction is that w.l.o.g. no bundle of K +1 edges will be crossed
by any other edge, and that by this the crossing minimal bipartite drawings of G correspond
to the crossing minimal general drawings of G’. In particular, it is clear that a bipartite
drawing of G with at most K crossings yields a drawing of G’ with at most K crossings by
placing the vertices u and w outside the unit square; see Figure 2.6.

For showing the other direction, a drawing of G’ with at most K crossings has to be
converted into a bipartite drawing of G with at most K crossings. For this, a sequence of
so-called normalization steps is applied in order to transform the original drawing of G’ into
one of the type of Figure 2.6 without increasing the number of edge crossings; deleting the
vertices u and w then yields the desired drawing of G. This part of the proof was the most
technical one in the original presentation; we give a simplified version here.

In the first normalization step, multiple crossings between one pair of edges and crossings
between edges incident to a common vertex are removed in the obvious way. In particular,
every bundle of K + 1 edges connecting the same pair of vertices now defines a sequence
of K regions in the drawing.

In a second step, one can obtain a drawing such that none of these bundle regions contains
any vertex of G’ or is crossed by any edge of G’. Indeed, for a fixed v € V, consider the
edge e connecting u and v that in the current drawing has the minimum number of crossings

2.3. COMPLEXITY OF CROSSING MINIMIZATION 93

-=-1

_———

Figure 2.6 Reducing the bipartite crossing number problem to the general crossing num-
ber problem for multigraphs. Bold grey lines represent bundles of K + 1 edges each.

with other edges. Then one can reroute all edges (u,v), i.e., all edges parallel to e, along
the same route as e. This yields a new drawing of G’ with at most as many edge crossings
as before. Repeating this for every v € V; and analogously for w and every v € Vs, we get
a drawing without vertices in the bundle regions. Now it follows that no edge can cross
any of these regions. The reason is that such an edge would have to cross all K + 1 edges
of a bundle, as no vertices are contained in the bundle regions and multiple crossings were
eliminated in the first normalization step.

Clearly, the drawing resulting from these two normalization steps is topologically equiv-
alent to one of the type displayed in Figure 2.6. m|

LEMMA 2.3 The crossing number problem for multigraphs can be reduced to the cross-
ing number problem for simple graphs.

Proof: For the given multigraph, place an artificial vertex in the middle of every edge.
The result is a simple graph with the same crossing number as the original multigraph. O

In the above scheme, we observe that the graph for which deciding on the crossing number
is NP-hard requires two distinct vertices u and v of very high degree. One may think that
they are central to the construction. Yet, using a different reduction strategy from optimal
linear arrangement, Hlinény showed in [HIi06]:

Theorem 2.5 The crossing number problem remains NP-complete even when restricted
to cubic graphs, i.e., graphs where every verter has degree 3.

Theorem 2.4 shows that the crossing number problem is NP-complete. In particular, the
crossing minimization problem is NP-hard, i.e., the problem of constructing a drawing of

54 CHAPTER 2. CROSSINGS AND PLANARIZATION

a given graph with a minimal number of edge crossings. Nevertheless, one might hope for
polynomial time algorithms at least for special classes of graphs, or for situations where the
class of allowed drawings is restricted.

However, no interesting special class of graphs is known for which crossing minimization
can be done in polynomial time. Exceptions are the classes of graphs for which a constant
bound ¢ on the number of crossings is given a priori, see Section 2.3.2, but this is a purely
theoretical result in that this bound is not at hand in general and the running time increases
heavily with the constant c.

The results also remain mostly negative if we restrict the set of feasible drawings by
additional conditions. For instance, the problem is still NP-hard (even for simple graphs)
if we require that

o the drawing is bipartite and the vertex order on one of the layers is fixed [EW94].

e all vertices have the same vertical coordinate and edges are drawn as semicircles.
This is the so-called linear crossing minimization problem [MKNF86]. This prob-
lem remains NP-hard even if the horizontal order of vertices is fixed [MNKF90].

e the vertices lie on the unit circle and edges are drawn as straight lines. This is
the circular crossing minimization problem [MKNF87].

However, we would like to point out that practically the problem might become consider-
ably easier with the degrees of freedom for the drawing decreasing. To give an example, the
bipartite crossing minimization problem with one layer fixed is NP-hard but can be solved
quickly in practice [JM97]. By now, also reasonably sized general multi-layer crossing mini-
mization instances can be tackled effectively with integer linear and semidefinite programs;
see [CHIM11] for an overview.

2.3.2 Fixed Parameter Tractability

In the last section, we reproduced a proof by Garey and Johnson showing that it is NP-hard
to decide whether a given graph G can be drawn with at most K edge crossings. We can also
consider the situation where K is not given as part of the input but as a fixed parameter.
It is then easy to see that one can decide in polynomial time whether a drawing of G with
at most K crossings exists: broadly speaking, one could check all possible configurations
of the up to K crossings, replace the chosen crossings by dummy vertices, and check the
resulting graph for planarity. We can answer the original question affirmatively if and only
if we find any planar graph in this way.

Even if the above algorithm runs in polynomial time for fixed K, the obvious drawback is
the strong increase in running time for increasing K: if implemented in the straightforward
way, the runtime is O(|V| - |E|?/X). For a long time, it was an open question whether the
problem is fized-parameter tractable, i.e., whether the problem can be solved in O(f(K) -
|V|¢) running time for some function f(K) that is independent from the instance and some
constant ¢ that is independent from K. This question was answered by Grohe in 2001
with ¢ = 2 [Gro01]. However, the running time of Grohe’s algorithm is O(22"" |V|?),
where p is a polynomial, and hence grows strongly with K. Thus, the relevance of this
algorithm is rather theoretical than practical. Kawarabayashi and Reed [KR07] improved
on this result by giving a linear algorithm, i.e., ¢ = 1; yet f(K) remains too large for any
practical application.

2.4. EXACT CROSSING MINIMIZATION 95

2.4 Exact Crossing Minimization

Exact methods to solve the crossing minimization problem constitute the youngest research
field we are discussing in this chapter. The development showcases various algorithm engi-
neering aspects of algorithm development, as its iterative improvements were always based
on the analysis of the bottlenecks of the earlier approaches. The first approach [BEJT05]
already lay the setting used in the subsequent developments: it relies on mathematical pro-
gramming in combination with branch-and-cut. Yet, its applicability was limited to very
small graphs. By introducing column generation schemes into the branch-and-cut frame-
work, its central ILP model, which we will describe in detail below, was later brought into
the realm of applicability [CGM09, BCET08] to some real-world graphs. The currently best
exact approach replaces a key concept (the so-called simple crossing number) of the first
formulation by integrating multiple linear-ordering problems instead [CMBO08]. This leads
to a mathematically more complex model but offers the advantage of fewer variables on the
one hand, and the possibility for even stronger column generation strategies, on the other
hand. Together with other developments like strong upper bounds (cf. Section 2.5), pre-
processing strategies like the non-planar core reduction [CG09], and efficient extraction of
multiple Kuratowski subdivisions (see below) at once [CMS08], we are now in the position
to compute the exact crossing number of sparse graphs with up to 100 vertices. Figure 2.4
gives an overview of the algorithmic progress over the last years, comparing the various
algorithms on the way to the currently most successful one. For a more detailed description
of all exact algorithms discussed in the following, see [Chi08].

A linear program (LP) is an optimization problem consisting of continuous variables,
a linear objective function, and linear constraints. The “father” of linear programming,
George B. Dantzig, proposed the following standard model:

maximize ¢!

subject to Ax < b
x>0

where ¢ € R", A € R™*" and b € R™. The linear function ¢’z : R* — R is called
the objective function and the inequalities in the system Ax < b are called constraints. A
vector Z that satisfies the system of inequalities Az < b is called a feasible solution of the
LP. Moreover, & is called an optimal solution if ¢T& > ¢ 2’ for all feasible solutions z’.

Linear programs proved to provide a powerful tool for various optimization problems in
the past and extensive research led to efficient algorithms able to solve them in polynomial
time, e.g., the simplex [Chv83], the ellipsoid [GLS88], and the interior point method [RT97].
However, additional constraints that require some or all of the variables to be integer, render
the problem NP-complete in general [GJ79).

Anyway, (mized) integer linear programs are widely used to solve NP-hard combinato-
rial optimization problems in conjunction with polyhedral combinatorics, which aims at
describing combinatorial optimization problems as linear programs and solving these with
special-purpose methods. A key feature therefore is the possibility to alternatively describe
the convex hull of the feasible points and extreme rays of a problem by a system of linear
inequalities. For an introduction into this field, the interested reader is referred to [Pul89].

Before introducing the ideas of the ILP formulation presented in this section, we have to
mention Kuratowski’s theorem, which is one of the most important results in the field of
planarity testing providing a full characterization of planar graphs based on the complete
graph K5 and the complete bipartite graph K3 3.

56 CHAPTER 2. CROSSINGS AND PLANARIZATION

100% - 400
90% - - 360
80% - - 320
70% - - 280
wn
2 8
5 60% 240 £
4 -
3 50% 200
2 1 5
40% - 160 g
] =
30% - 120
20% # instances -o=0C — | 1 g0
1| =~SC+ —+-SC [
10% | =SA =S+ =40
1 |7« S+(5min) -+ S (5min) [
% +—-t—F————————+———+——+ — + Lo
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

nodes

Figure 2.7 Success ratio (i.e., percentage of instances solved to provable optimality) in de-
pendency to the graphs’ size (number of vertices). Benchmark set: Rome library [DGLT97],
see also Section 2.5. Different lines give different development steps of the algorithms; each
instance was given 30 minutes of computation time unless specified otherwise. S is the
first implementation of [BEJ*05], S+ a more efficient reimplementation of the same al-
gorithm. SA and SC denote the subdivision-based algorithms as considered in [CGM09],
with algebraic pricing and the combinatorial column generation scheme, respectively. Fi-
nally, SC+ and OC denote the latest implementations of the subdivision-based and the
ordering-based ILPs, respectively, with combinatorial column generation and all further
described improvements, as presented in [CMBOS].

2.4. EXACT CROSSING MINIMIZATION o7

Theorem 2.6 A finite graph is planar if and only if it contains no subgraph that is a
subdivision of K5 or K3 3.

We can obtain a subdivision S of a graph G by repeatedly replacing edges e by a path
of length two. As a consequence of Theorem 2.6, at least two edges belonging to each
Kuratowski subdivision have to cross. Based on this observation, we can try to address
the crossing minimization problem using mathematical programming in the following way:
we introduce a zero-one decision variable x. ; for each pair of edges (e, f) € E x E that
encode the crossings in an associated drawing: edges e and f cross each other if and only
if z. s = 1. For each subdivision of K5 or K33, we can add constraints that force at least
one of the involved variables to one.

Mutzel and Jiinger [MJO01] pointed out the problems with this formulation. To our knowl-
edge, there is no known polynomial time separation algorithm to identify the constraints of
this type that are violated by a given fractional solution. Moreover, those constraints are
not strong enough since it is not guaranteed that there is a realizing drawing if at least one
of the involved crossing variables is one in every Kuratowski subdivision. Another severe
problem of this formulation is the NP-hardness of the realizability problem [Kra91]:

Given a vector x € {0, 1}(5), does there exist a drawing consistent with x?

In order to efficiently answer this question, we also need to know the order of the edge
crossings for a particular edge e. This additional information can be exploited by the intro-
duction of a dummy vertex for each crossing and the application of a linear-time planarity
testing algorithm to test the existence of a realizing drawing in polynomial time. Despite
all these drawbacks, it is interesting that under certain conditions the above-described con-
straints, as well as similar ones, in fact constitute facets of the polytope defined by the
convex hull of the feasible solutions [Chill].

2.4.1 Subdivision-Based Formulation

One way to work around the realizability problem is the reduction to simple drawings. We
call a drawing simple if each edge crosses at most one other edge. As for planar graphs, we
can find a bound for the maximum number of edges of graphs that admit a simple drawing.
More precisely, Pach and Téth show the following theorem [PT97]:

Theorem 2.7 Let G = (V, E) be a simple graph drawn in the plane so that every edge is
crossed by at most k others. If 0 < k < 4, then we have

|[E| < (E+3)(|V][-2). (2.10)

They could further prove that this bound cannot be improved for 0 < k < 2 and that for
any k > 1 the following inequality holds:

|E| < V16.875k|V| ~ 4.108VE|V| . (2.11)

Furthermore, Bodlaender and Grigoriev prove in [BG04] that it is NP-complete to determine
whether there is a simple drawing for a given graph G. If there is such a drawing, we denote
the minimum number of crossings among all simple drawings of G by crs(G).

It is easy to see that cr(G) < crs(G). We cannot state equality because there are graphs
G such that crs(G) > cr(G). Consider the sample graph in Figure 2.8. The left drawing
shows an optimal drawing with two crossings while the right drawing shows an optimal
drawing among all simple drawings with three crossings.

58 CHAPTER 2. CROSSINGS AND PLANARIZATION

Figure 2.8 An optimal drawing of a graph with two crossings (left) and an optimal simple
drawing of the same graph with three crossings (right). Both drawings were produced with
the exact algorithm presented in this section.

O O
dl dZ dIZ dll

Figure 2.9 Edges are replaced with a path of length ¢ by inserting £ — 1 dummy vertices.

Given an integer ¢ and a graph G = (V, E) such that ¢ > |E|, we can create a graph
G* = (V*,E*) by replacing every edge e € E with a path of length ¢. Figure 2.9 shows
an example that illustrates this transformation. The graph G* contains a total number of
|V| + (¢ — 1)|E| vertices and ¢|E| edges.

It is easy to show that G can be drawn with n crossings if and only if there is a simple
drawing of G* with n crossings. Therefore, it is “sufficient” to solve the crossing min-
imization problem restricted to simple drawings in order to solve the “general” crossing
minimization problem. Since the transformation obviously can be done in polynomial time,
the NP-completeness of the corresponding decision problem for simple drawings follows im-
mediately from the proof by Garey and Johnson; see Section 2.3. Since an edge e = (u,v)
never crosses itself or an adjacent edge in an optimal drawing it is sufficient to replace e
with a path of length |E| — |d(u)| — |d(v)] — 1.

Let G = (V, E) be a graph and let D C FE x E be a set of unordered pairs of edges. We
call D realizable if there is a drawing of G such that there is a crossing between edges e and
f if and only if (e, f) € D. Furthermore, D is called simple if for every e € F there is at
most one f € F such that (e, f) € D.

2.4. EXACT CROSSING MINIMIZATION 99

For every graph G and every simple D, Gp denotes the graph that is obtained by in-
troducing a dummy vertex d. ; for each pair of edges (e, f) € D: in other words, d s is
the unique vertex when identifying the two vertices arising from subdividing both e and f.
Note that Gp is only well defined if D is simple. For both edges e; and es resulting from
splitting e, we set é; = é3 = e, analogously for f. Given a subgraph H = (V', E’) C Gp,
we denote with H C E the subset of original edges of G involved in the subgraph H of G p,
ie., H={é|e e E'} C E. In the following, H will usually be a Kuratowski subdivision.
We call the path corresponding to a single edge of the underlying K5 or K33 a Kuratowsk:
path. By H2 c A2 we will then denote the edge pairs (e, f) where e and f belong to
different, nonadjacent Kuratowski paths. Hence, these are the only edge pairs that may
actually form a crossing meaningful to the Kuratowski subdivision H.

COROLLARY 2.1 Let D be simple. Then D is realizable if and only if Gp is planar.

Using a linear-time planarity testing algorithm, we can test in time O(|]V| + |D|) whether
D is realizable, and compute a realizing drawing if so.

DEFINITION 2.3 For a set of pairs of edges D C F x E, we define

D { 1 if(e,f) €D

Te.f =1 0 otherwise.

PROPOSITION 2.1 Let D be simple and realizable. For an arbitrary set of pairs of
edges D' C E x E of G = (V, E) and any subdivision H of K5 or K33 in Gps the following
inequality holds:

Cpim Z aly >1- Z (1-zb). (2.12)

(e.f)eHPI\D/ (e.f)EARIND/

Proof: Suppose inequality (2.12) is violated. Since every x£ ¢ €1{0, 1}, the left-hand side
of the inequality must be zero and the right-hand side must be one, which means that

Py =0 for all (e, f) € H?'\ D', and
aly = 1 forall(e,f) e HIND' .

It follows from the definition of 2P that H? n D’ = AR N D, in other words, Gp agrees
to Gps on the subgraph induced by ﬁ, so that H is also a forbidden subgraph in Gp, i.e.,
a subdivision of K5 or K3 3. It follows from Kuratowski’s Theorem that Gp is not planar.
This contradicts the realizability of D by Corollary 2.1. a

Theorem 2.8 Let G=(V,E) be a simple graph. A set of pairs of edges D C E X E s
simple and realizable if and only if the following set of conditions holds:

;z:gfe{%l} Ve feE etf
ZfeExeyfgl VecFE
Cp.u for every simple D' CE x E

and every forbidden subgraph H in Gp:

60 CHAPTER 2. CROSSINGS AND PLANARIZATION

Proof: It is easy to see that the constraints from the second row are satisfied if and only
if D is simple. It remains to show that a simple D is realizable if and only if the conditions
Cpr g from the last row hold. For a realizable D, every Cp/ g is satisfied according to
Proposition 2.1.

We have to show that any set of pairs of edges D that is not realizable violates at least
one of the constraints Cps . It follows from Corollary 2.1 that Gp is not planar if D is
not realizable and we know from Theorem 2.6 that there exists a subdivision H of K5 or
K33 in Gp. Let D' = D and consider the constraint Cp g:

Com: y, xhp>1- > (1-z5) (2.13)

(e,f)eHPI\D (e,f)eHRIND

It follows from the definition of 2 that every x£ 7€ H2 \ D is zero, hence the left-hand
side of inequality (2.13) is also zero. Since H2ND C D we also know that > e.peitinp(1=
;ve%) is zero and the right-hand side of Cp g is one. Thus, Cp g is violated. O

Since we can compute a corresponding drawing for a simple and realizable D in polynomial
time, we can reformulate the crossing minimization problem for simple drawings as

Given a graph G = (V, E), find a simple realizable subset D C E x E of minimum
cardinality.

This leads to the following ILP-Formulation. We use z(F') as an abbreviation for the term
2o, pyer Teof-

minimize z(E X E)
subject to
ZfeExe7f§1 VeeFE

c(HZ\ D) —2(HDnD)>1—-|HZND'| for every simple D' and every
forbidden subgraph H in Gp/

ze,5 €{0,1} Ve feE

Given a simple set of crossings D we can easily check if D is realizable by applying a
planarity testing algorithm to Gp. If the answer is “no” we also get a forbidden subdivision
H of Gp and we can separate an additional constraint Cp g according to the proof of
Theorem 2.8 that excludes D.

2.4.2 Ordering-Based Formulation

The above subdivision-based formulation requires up to Q(|E|*) variables, as every edge
may have to be subdivided into (| E|) segments. The currently best-performing ILP model
avoids this subdivision and instead considers linear ordering problems on each edge. Recall
that the reason for the graph extension was to be able to model the order of the crossings,
in order to obtain a tractable realizability problem. The ordering-based ILP formulation
achieves this by explicitly computing an ordering of the edge crossings.

Consider an arbitrary, fixed orientation of the given graph G, i.e., for each undirected
edge we decide on one of the two possible directions. As in the original (problematic)

2.4. EXACT CROSSING MINIMIZATION 61

approach, we introduce 2(|E|?) many binary variables z. ;, one for each edge pair e, f,
which should be 1 if the two indexed edges cross. The objective function is simply the
sum over all these variables. We then introduce binary variables y. r, € {0,1} for all edge
triples e, f,g. This results in only Q(|E[®) additional variables. A variable y.,f, should be
1 if and only if the edge e is crossed by both edges f and g, and the crossing with f occurs
prior to the crossing with g, w.r.t. the fixed edge orientation. Conceptually, the variables
Ye,..., When properly bound to their corresponding x variables, then form the variables of
a linear-ordering problem with the additional property that some elements need not to be
ordered at all. We can achieve this via

Te,f > Ye,f,g
Te,g > Ye,f,g
L4+ Yefig T Yegf = Tef+ Tey
Ye,f.g t Yerg.f = 1
Ye,f,g T Ye,g.n T Yehf < 2

over the suitable edge indices. The first two constraints guarantee that the z variables
(counting the crossing in the objective function) are set whenever a corresponding y variable
is set. The third constraint ensures that whenever there are two crossings occurring on the
same edge (here: on e), their relative order has to be specified. Then, we have to ensure
in the fourth constraint that this order is unique. The last constraint, known as a 3-cycle
constraint, ensures that the order given by the y variables is in fact a linear, i.e., acyclic,
order.

Using this setup it remains to introduce Kuratowski constraints much like the ones de-
scribed for the subdivision-based formulation. Recall that D’ in the subdivision-based
formulation described a simple set of edge crossings. Similarly, we now consider a (tech-
nically more involved) crossing shadow (X,)) instead. It can be thought of as a minimal
description of a not-necessarily realizable crossing situation. Le., X () lists « variables (y
variables, respectively) that should be set. The “minimality” of this description is achieved
by avoiding to list an z variable if a corresponding y variable in) already induces that it
has to be set. Similarly, we use the transitivity property of a linear ordering, and, e.g., do
not include the variable y. n if ye 1,y and ye 4,n are already in Y. For a concise definition,
we refer the reader to [CMBO08]. Considering all possible crossing shadows (X,)) and all
thereby induced Kuratowski subdivisions H, we can require:

e(HP) 213 (1-a) =) (1-y)

r’'eX y'ey

2.4.3 Branch-and-Cut-and-Prize

For a practical implementation, we can omit variables in some cases. The graph G can be
split up into its blocks first, which can be solved separately. The crossing number of G is
equal to the sum of the crossing numbers of its blocks. Furthermore, it is easy to show
that adjacent edges do not cross in an optimal drawing and no edge crosses itself, i.e., we
can restrict ourselves to good drawings. Furthermore, we may apply more sophisticated
preprocessing strategies like the non-planar core reduction [CG09], which further shrinks
the graph based on its triconnectivity structure. Thereby, it may be necessary to introduce
integer weights w : £ — N on the edges. A crossing between the edges e and f should
then be counted as w(e) - w(f), which is easily achievable in both above ILP formulations
by using these products as the coefficient for the respective = variables.

62 CHAPTER 2. CROSSINGS AND PLANARIZATION

:= {initial problem} {L denotes the list of unsolved problems}
repeat

Choose a subproblem IT € L and set L := L\ {II}

repeat

Let & be an optimal solution for the linear relaxation of II
if 2 is not feasible for II then
Separate violated inequalities and add them to the LP
end if
until no more violated inequalities can be found
if no feasible solution for II could be found then
Split IT into subproblems and add them to L
end if
until L = ()
Print the best found feasible solution

Figure 2.10 An overview of the branch-and-cut approach.

Because of the exponential number of constraints, we cannot create them in advance and
solve the ILP in a single step. A well-suited method for this class of ILPs is the branch-
and-cut approach. The basic structure of a branch-and-cut based algorithm is outlined in
Figure 2.10. The referred linear relaxation of Il can be easily obtained by dropping the
integrality constraints, i.e., variables are allowed to be fractional.

In the case of zero-one integer linear programs, the set of unsolved subproblems L is
organized as a binary tree, called the branch-and-bound tree. Each subproblem corresponds
to a node in the tree and the list of unsolved problems L is represented by its leaves. If we
need to split a problem II into subproblems, we choose a fractional branching variable and
create two new subproblems by setting the branching variable to zero and one, respectively.

Whenever we split a problem into two subproblems by setting the branching variable to
zero and one, respectively, we can compute a local lower bound. This is the best value
for the objective function that can be obtained subject to the assignments of values for the
branching variables up to the root node. If this value is greater than the global upper bound,
we can discard all descendants of the current subproblem since they can never improve the
current feasible solution.

A severe problem of this approach is the separation problem: “Given a class of valid
inequalities and a vector z € R"™, either prove that z satisfies all inequalities in the class,
or find an inequality which is violated by z.” Although we can easily separate violated
inequalities for integral solution vectors according to the proof of Theorem 2.8, the problem
becomes severe within the branch-and-cut framework since we have to deal with fractional
values.

This problem can be solved heuristically by rounding variables to either zero or one,
but one cannot guarantee that there is no violated inequality if the graph realizing the
crossing D or (X,)) is planar. In this case, we have to select a branching variable and
split the current problem into two subproblems by setting the branching variable to 0 and
1, respectively.

The major bottleneck when following this approach then remains the large number of
variables, rendering both approaches useless as such. Yet the concept of column generation
turns out to allow drastic speed-ups of the algorithms. Conceptually, and somewhat similar
to the separation approach, we start with a small subset of the variables. After solving the
LP relaxation, we not only have to solve the separation problem (“is our solution too good

2.5. THE PLANARIZATION METHOD 63

because some constraints are missing?”), but also the pricing problem: “Is our solution too
bad because some variables are missing?” Observe the difference in the obtained bounds
when constraints or variables are missing, which, in general, leads to weaker bounding
strategies than applicable to pure branch-and-cut approaches.

Following the traditional approach based on the Dantzig-Wolfe decomposition [DW60],
we can solve the pricing problem in a purely algebraic way by computing the reduced costs
of the variables not already in the model and adding them based on their sign. It turns out
that this approach, denoted by algebraic pricing, already speeds up the computation, but
we can do much better.

In a combinatorial column generation scheme, we refrain from computing reduced costs,
but try to incorporate our problem-specific knowledge to obtain more efficient strategies. In
particular, our special-purpose generation schemes allow us to overcome the aforementioned
bounding problem, and retain the fact that the LP-relaxation always gives a lower bound
to the problem, even when constraints and variables are missing.

We start with the observation that in most practical applications, most of the edges
will not be crossed at all or are only involved in one crossing. On these edges, we do not
have any ambiguity with the order of crossings, and the realizability problem is easy. The
central idea for the combinatorial column generation scheme for both formulations can be
roughly described as such: we start without any special constructions to avoid crossing-
order ambiguities, i.e., we do not subdivide the edges for the subdivision-based formulation
and do not introduce any y variables for the ordering-based formulation. Recall that the
crossing order only becomes crucial when considering Kuratowski constraints; these are only
generated via separation on a rounded solution. So, we use the branch-and-cut framework
as outlined above. Whenever the separation routine considers a rounded solution where
two or more edges cross the same edge, and their order is hence ambiguous, we introduce
the necessary variables and constraints from the original model which are necessary to
decide this order. Then, the LP relaxation is recomputed. We refrain from discussing
the relatively technical details of which variables or subdivisions are necessary, and refer
to [CGMO09] and [CMBO08] for the two formulations instead. The interesting part is that
adding variables in such a way will never decrease the objective function.

Overall, the currently most efficient approach from the practical point of view is the
ordering-based formulation, together with its combinatorial column generation scheme, the
aforementioned preprocessing strategies and upper bounds obtained via the strong pla-
narization heuristic that we will discuss in the following section. Furthermore, the separa-
tion routine is improved by not looking for single Kuratowski subdivisions in the rounded
solution, but by applying an algorithm that obtains several such subdivisions in one pass
requiring only linear time in input and output size [CMS08, CMS07]. This allows to solve
sparse real-world graphs with up to 100 vertices to provable optimality within reasonable
time bounds on average hardware; cf. Figure 2.4. Yet the subdivision-based formulation
allows extensions to other crossing number concepts where a pair of edges crosses multiple
times, e.g., the simultaneous crossing number [CJS08].

2.5 The Planarization Method

2.5.1 Overview

The most prominent and practically successful method for solving the crossing minimiza-
tion problem heuristically is the planarization approach. This approach was introduced by
Batini, Talamo, and Tamassia in [BTT84] and can be viewed as a general framework that
addresses the problem with a two-step strategy. Each step aims at solving a particular

64 CHAPTER 2. CROSSINGS AND PLANARIZATION

optimization problem for which various solution methods are possible. Let G = (V, E) be
the graph for which we want to find a crossing minimal drawing. Then, the two steps to be
executed are:

1. Compute a planar subgraph P = (V, E,) of G. The objective is to have as many
edges in P as possible.

2. Reinsert the edges not contained in the planar subgraph, i.e., insert the edges in
E\ E, into P. During this edge insertion process, edge crossings that occur when
inserting an edge are replaced by dummy vertices with degree four, so that the
graph remains planar. The objective is to keep the number of dummy vertices
(and thus the number of crossings in the final drawing) as small as possible.

Figure 2.11 shows an example with the different stages of the approach. In this case, the
planar subgraph contains all but one edge (edge (2,5) is missing) and the final drawing of
G has only a single crossing.

The outcome of the planarization procedure is a planar graph G, = (V U Vy, E,) such
that every planar drawing of G, implies a drawing of G with at most |Vy| crossings. Hence,
we also say that G, is a planarized representation of G with (at most) |Vy| crossings. We
can obtain such a drawing of G as follows. First, we compute an embedding of G,. Then,
we have to distinguish two situations for each dummy vertex v € V; (see Figure 2.12). If
the corresponding edges of G, say, e and €', cross each other, then v in fact represents a
crossing between e and ¢’ in the drawing of G. Otherwise, e and €’ just touch and we can
save a crossing.

The two optimization problems we have to solve in the planarization approach are the
mazximum planar subgraph problem (MPSP) and the edge insertion problem (EIP). Both
problems are NP-hard and are usually solved in practice by applying heuristic approaches.
One reason for that is that even an optimal solution of MPSP in the first step and of EIP in
the second step does not yield a crossing minimal solution in general. We show an example

(c) Planarized representation G, of G. (d) Final drawing of G.

Figure 2.11 A sample application of the planarization method.

2.5. THE PLANARIZATION METHOD 65
o

G
1 €

Figure 2.12 (a) The edges e and €’ cross at dummy vertex v; (b) e and e’ just touch at v.

X

21 z8

Figure 2.13 A wall with width 8.

(see [GMWO05]) where the maximum planar subgraph contains all but one edge, but even an
optimal solution of the edge insertion problem results in arbitrary many crossings, whereas
a crossing minimal drawing has only two crossings.

We define a wall graph as follows. A wall with width k consists of the vertices x, y, 21, . - ., 2k,
the edges (2, zi+1) for 1 < i < k, and the edges (z, z;) and (y, z;) for 1 < i < k; see Fig-
ure 2.13 for an example of a wall with width 8. The vertices = and y are called the poles of
the wall. A wall with width greater than 2 is a triconnected planar graph.

For an even number m > 2, the graph G,, is constructed in the following way; compare
Figure 2.14(a). We start with a ring of walls W7y, ..., Wgs with width m + 1, where the poles
of adjacent walls in the ring are identified. We denote the pole vertices with w, ..., ws such
that the poles of Wi are w; and ws, and so forth. For each wall W}, the other two vertices
on the boundary are denoted with u§ and uj; see Figure 2.14(a). Moreover, the edges
e1 = (u§,w3), ea = (u§,ws), ez = (ub,u}), and e, = (u},u}) are added, m/2 vertices are
inserted by splitting edge (uf,ws) and m/2 vertices are inserted by splitting edge (w4, u}),
and every created split vertex is connected with vertex w; by an edge h;, 1 < j < m. We
want to insert edge (v, ve) with vy := u} and vy := u, and we call the graph after addition
of this edge G7,.

By construction, G, is triconnected and planar. In particular, G,, has only two embed-
dings which are mirror images of each other. It is easy to see that an optimal insertion
of edge (v1,v2) crosses m edges, namely, hq,...,h,, since passing through a wall would
require at least m + 1 crossings. On the other hand, there is a drawing of G}, with only 2
crossings as shown in Figure 2.14(b). Here, only the two crossings e; with es and ey with
e4 occur, independent of the choice of m.

In summary, this construction shows that the planarization approach may yield arbi-
trarily bad solutions even if both steps are solved optimally. On the other hand, practical
experience has shown that it leads to excellent results in many applications even if each
step is only solved heuristically. In the sequel, we address the two optimization problems—
finding a planar subgraph and reinserting a set of edges—in detail, and discuss various
solution methods.

66 CHAPTER 2. CROSSINGS AND PLANARIZATION

Figure 2.14 (a) The graph G,,; each shaded region represents a wall with width m + 1.
The dashed edge (u},u}) is the edge to be inserted. (b) A drawing of the graph G/, with
only two crossings.

2.5.2 Planar Subgraphs

In many practical applications, we expect that a graph G = (V, E) can be made planar by
removing only a few edges. Therefore, it is reasonable to use a planar subgraph with as
many edges as possible as a starting point for crossing minimization. A mazimum planar
subgraph of G is a planar subgraph with the maximum number of edges among all planar
subgraphs of G. If, in addition, a weight w, is given for each edge of G, a maximum weight
planar subgraph is a planar subgraph P = (V| E’) of G such that the sum of all edge weights
Y eci We of P is maximum. Hence, a maximum planar subgraph is a special case of the
weighted version with w, = 1 for every edge e € G. In both the weighted and the unweighted
case, the problem of finding such a subgraph is NP-complete as shown in [LG77, GJ79].

Jiinger and Mutzel [JM96] presented a branch-and-cut algorithm for finding a maximum
weight planar subgraph. An overview of the branch-and-cut approach can be found in
Section 2.4.

Let P be the set of all planar edge-induced subgraphs of G. For each planar subgraph
P = (V,F) € Pg, we define its incidence vector x© € R¥ by setting x” = 1 if e € F and
XL = 0if e ¢ F. This yields a 1-1-correspondence of the planar subgraphs with certain
{0, 1}-vectors in R¥. The planar subgraph polytope PLS(G) of G is defined as the convex
hull over all incidence vectors of planar subgraphs of G:

PLS(G) := conv{x” ¢ RF | P Pg} .

Let w € RF be a vector assigning a weight to each edge. The problem of finding a maximum
weight planar subgraph can thus be written as the linear program

max{w 'z | 2 € PLS(G)},

since the vertices of the polytope PLS(G) are exactly the incidence vectors of the planar
subgraphs of G. In order to apply linear programming techniques, PLS(G) has to be
represented as the solution of an inequality system. Because of the NP-hardness of the
problem, we cannot expect to find a full description of PLS(G). Jinger and Mutzel show
several facet-defining inequalities of the polytope, including Kuratowski inequalities, which
are based on the fact that a planar graph contains no subdivision of K5 and K3 3, and Euler
inequalities, which are based on the maximal number of edges in a planar graph given by
Euler’s formula. Further facet-defining inequalities can be found in [JM96].

2.5. THE PLANARIZATION METHOD 67

Require: graph G = (V, E)
Ensure: maximal planar subgraph P of G

P := a spanning tree of G
F:=FE\ E(P)
for all e € F do
if P Ue is planar then
P:=PUe
end if
end for

Figure 2.15 A simple algorithm for computing a maximal planar subgraph.

Using these inequalities, a branch-and-cut algorithm can be derived that adopts the
planarity testing algorithm by Hopcroft and Tarjan [HT74] for cutting plane generation
and as lower-bound heuristic. Computational results show that the algorithm is able to
provide a provably optimal solution quite fast if the number of edges to be deleted is small.
However, the method is quite complicated to understand and to implement. Moreover, if
the number of deleted edges exceeds 10, the algorithm usually needs far too long to be
acceptable for practical computation.

Since finding a maximum planar subgraph is hard, the problem of finding just a maximal
planar subgraph has received much attention. A mazimal planar subgraph of G = (V, E) is
a planar subgraph P = (V, E'\ F) of G such that adding any edge of F' to P destroys the
planarity, i.e., P U e is not planar for every e € F.

A widely used standard heuristic for finding a maximal planar subgraph is to start with
a spanning tree of (G, and to iteratively try to add the remaining edges one by one; see
Figure 2.15. In every step, a planarity testing algorithm is called for the obtained graph.
If the addition of an edge would lead to a nonplanar graph, then the edge is disregarded;
otherwise, the edge is added permanently to the planar graph obtained so far. After |F|
planarity tests, we obtain a maximal planar subgraph P of G. Planarity can be tested
in linear time; see Chapter 1, or [HT74, BL76, BM04]. Hence, the running time of the
procedure is O((1+ |F|)(|V] + |E])).

This incremental approach can be made more efficient by using incremental planarity
testing algorithms. Di Battista and Tamassia [DT96] presented an algorithm that tests in
O(log |V]) time if an edge can be added while preserving planarity, and that performs the
required updates of the data structure when adding an edge in O(log |V'|) amortized time.
The algorithm uses the data structures BC-tree and SPQR-tree equipped with efficient,
dynamic update operations. A BC-tree represents the block-cutvertex tree of a connected
graph G which consists of the interrelation of the blocks (B-nodes) and cutvertices (C-nodes)
of G. It has an edge (¢, B) if ¢ is a cutvertex of G contained in block B. SPQR-trees have
been introduced by Di Battista and Tamassia in [DT89]. They represent the decomposition
of a biconnected graph into its triconnected components, which essentially consists of serial
(expressed by S-nodes), parallel (P-nodes), and simple, triconnected structures (R-nodes).
Additionally, Q-nodes represent the original edges of GG. The specific structures of tree
nodes are given by skeleton graphs that are associated with each node. Using these data
structures, a maximal planar subgraph can be found in O(|E|log|V]) time. SPQR-trees
are also useful in a static environment for the representation of all planar embeddings of
a graph. The static data structure can be built in linear time [HT73, GMO1] using an
algorithm for dividing a graph into its triconnected components.

68 CHAPTER 2. CROSSINGS AND PLANARIZATION

The running time for incremental planarity testing has been improved by La Poutré [La 94]
to O(a(|E|,|V|)) amortized time per query and update operation. This yields an almost
linear time algorithm for the maximal planar subgraph problem that runs in O(|V| + |E| -
a(|E|,|V])) time. Here, a(z,y) denotes the inverse Ackermann function, which means that
a(z,y) is a function that grows extremely slowly. A linear time algorithm for finding a max-
imal planar subgraph is given by Djidjev [Dji95]. This algorithm uses BC- and SPQR-trees
and applies a fast data structure for online planarity testing in triconnected graphs.

Jayakumar et al. [JTS89, JLM98] proposed a method for computing a planar subgraph
that is based on PQ-trees. The PQ-tree data structure has been developed by Booth and
Lueker [BL76] for solving the problem of finding permissible permutations of a set U. The
permissible permutations are those in which certain subsets S C U occur as consecutive
subsequences. Drawbacks of this planar subgraph algorithm are that it cannot guarantee
to find a maximal planar subgraph, and that the theoretical worst-case running time is
O(|V|?). However, in practice it is usually very fast and the quality of the results can
be improved by introducing random events and calling the algorithm several times. The
algorithm starts by computing an st-numbering of G, which determines the order in which
the vertices are processed. A simple but useful randomization is to choose a random edge
(s,t) for each run.

The trivial approach for finding a planar subgraph consists of computing a spanning tree.
If G is a graph with n vertices and ¢ components, then this approach has an approximation
factor of s-=%- > % for MPSP, since a spanning tree of G contains n — ¢ edges, and a
planar graph with ¢ components has at most 3n — 6¢ edges by Euler’s formula. Surpris-
ingly, we cannot guarantee a better approximation factor than that of the spanning tree
approach if we demand that the computed subgraph must be maximal planar; see [DFF85].
Calinescu et al. [CFFK98] present an algorithm with approximation factor 4/9 that runs
in O(m3/2n10g6 n) time, where m is the number of edges of G. For the maximum weight
planar subgraph problem, the simple approach is to compute a maximum weight spanning
tree, which gives an approximation factor of 1/3, and the best algorithm [CFKZ03] achieves
an approximation factor of 1/3 4 1/72.

2.5.3 Edge Insertion

The planar subgraph P computed in the first step of the planarization approach is a good
starting point for finding a planarized representation G\, of G with few crossings. In practice,
we expect that only a small number of edges has to be inserted into P in order to obtain
G,. However, the edge insertion step fixes the crossings in the final drawing, and the choice
of the edge insertion technique may have a significant impact on the quality of the final
solution. Ziegler and Mutzel [MZ99, Zie00] have shown that even a restricted variant of
the edge insertion problem is NP-hard: The constrained crossing minimization problem
(CCMP) asks for the minimum number of crossings required for inserting a set of edges into
a fixed embedding. They also present a branch-and-cut algorithm to solve CCMP. However,
experiments show that it can only solve instances to provable optimality if there are less
than 10 edges to be inserted.

Gutwenger [GM04, Gut10] has conducted an extensive study on crossing minimization
heuristics, including different methods for edge insertion. Figure 2.16 shows the general
framework for edge insertion used in this study. It contains three essential parts leaving
room for enhancement:

Single edge insertion: The edges are inserted into the planarized representation in-
dividually one after the other. The simple approach for inserting a single edge e

2.5. THE PLANARIZATION METHOD

69

Require: planar subgraph P = (V, Ep) of G = (V, E)
Ensure: planarized representation G, of G

Let E\Ep:{el,...,ek}

best :== oo

for ¢ := 1 to nPermutations do
Let o be a randomly chosen permutation of {1,...,k}
Gp:=P

for j:=1to k do
Insert edge ey ;) into Gy
end for

Determine a set R C F of edges for which postprocessing shall be applied

repeat
for alle € R do
Remove edge e from G,
Insert edge e into G,
end for
until number of crossings in G}, has not decreased

current := number of crossings in G,
if current < best then
G, = Gp; best := current
end if
end for

Figure 2.16 Edge insertion with postprocessing and permutation.

is to fix an embedding II of G}, and to insert e into II. However, the choice of II
may have a considerable influence on the number of edges that e has to cross. A
more sophisticated algorithm introduced by Gutwenger et al. [GMWO05] is able
to insert e with the minimum number of crossings among all embeddings of G.

Postprocessing: After all edges have been inserted, a simple postprocessing technique

tries to improve the current solution. It determines a set of edges R which have
one or more crossings and repeatedly tries to find a better insertion path for each
of them by removing an edge from G}, and inserting it again. Variants for the
choice of R include all edges, only the edges ey, ...,e, or some portion of the
edges with the most crossings (see [Gut10] for more details).
An alternative approach combines the edge insertion with the postprocessing.
Instead of performing the remove-reinsert strategy after all edges have been in-
serted, we can perform this strategy after each edge insertion. The idea behind
this variation is to keep the number of crossings low as early as possible. We call
this strategy incremental postprocessing.

Permutation: The order in which the edges ey, ..., e are processed also affects the
final number of crossings. Calling the complete edge insertion process several
times with different, randomly chosen permutations of the edge list eq,...,eg
may significantly improve the solution. The parameter nPermutations in the
algorithm determines the number of permutation rounds.

70 CHAPTER 2. CROSSINGS AND PLANARIZATION

Apart from the choice of some parameters like the number of permutation rounds or
the selection of the edges for postprocessing, the challenging part of the algorithm is the
insertion of a single edge. We consider the two variants—insertion with fized and with
variable embedding—in more detail.

Fixed Embedding. Suppose, we want to insert edge e = (v, w) into the planar graph G,,.
Let II be a fixed embedding of G,. We construct the extended dual graph G* of II with
respect to e as follows. The vertices of G* are the faces of II plus two new vertices v* and
w* representing v and w. For each edge ¢’ in G}, we have an edge in G* connecting the two
faces separated by €’ (if ¢’ is a bridge, we have a self-loop in G}). Additionally, we have an
edge (v*, f,) for each face f, adjacent to v, and (w*, f,,) for each face f,, adjacent to w.

We observe that inserting e into II corresponds to finding an (undirected) path from v*
to w* in G*. If such a path has length ¢, then we can insert e with ¢ — 2 crossings, since
the first and the last edge on this path do not produce a crossing. Therefore, in order to
insert e into IT with the minimum number of crossings, we have to find a shortest path
from v* to w* in G*. This is possible in linear time using a simple breadth-first search
traversal starting at v*. Figure 2.17 shows a nontrivial example. Here, we want to connect
the vertices 1 and 2. The dashed vertices and edges belong to the extended dual graph.
The optimal solution highlighted in bold crosses four edges.

Though we can easily find a crossing minimal solution if the embedding of G, is fixed,
the drawback of this method is that fixing an unfavorable embedding may result in an
arbitrarily bad solution. Figure 2.18(a) gives an example of such a family of graphs Gy
with embeddings I'y. The black fat lines in this figure denote bundles of k& + 1 parallel

~

Figure 2.17 Edge insertion with fixed embedding by finding a shortest path in the ex-
tended dual graph.

2.5. THE PLANARIZATION METHOD 71

(a) Fixed embedding T'). (b) Optimal Embedding,.

Figure 2.18 A family of graphs G} and embeddings I, for which the insertion of an edge
e requires k crossings more than the optimal solution.

edges, and the gray fat line a bundle of k parallel edges. Hence, inserting edge e into the
given embedding requires at least k + 1 crossings. On the other hand, it is possible to insert
e with only one crossing by changing the embedding; see Figure 2.18(b). It is easy to see
that this example can also be adapted to the case of simple graphs by splitting all the edges
in each bundle.

Variable Embedding. Surprisingly, there exists also a linear time algorithm for finding
an optimal embedding of G, which allows to insert e with the minimum number of cross-
ings. The algorithm by Gutwenger et al. [GMWO05] uses the data structures BC-tree and
SPQR-tree for the representation of all planar embeddings of a connected graph. These
decomposition trees allow to enumerate all possible embeddings of a connected graph. Ba-
sically, we can

e put any subgraph which is only attached to the rest of the graph at a cutvertex
into any face containing this cutvertex;

e arbitrarily permute parallel structures joined at a separation pair; and

e mirror any subgraph that is only attached to the rest of the graph at a separation
pair.

Let G be a graph and T its SPQR-tree. We denote the skeleton of a node p in 7 with
skeleton(u). Each edge e in a skeleton represents a subgraph of G called the expansion
graph of e. Replacing each edge in a skeleton by its expansion graph yields G again.

In order to find the optimal insertion path for (v,w) in G, it is essentially sufficient to
consider only the R-nodes in the SPQR-trees of the blocks of G. Assume first that G is
already biconnected. Let T be its SPQR-tree and let puq, ..., pux be the shortest path in T
between a node py with v € skeleton(u1) and a node uy with w € skeleton(uy). For each
R-node on this path, we expand its skeleton S in the following way. First, we make sure
that we have a representative for both v and w. If one of these vertices, say, v, is not yet
contained in S, then there is an edge whose expansion graph contains v and we split this
edge introducing a representative for v. Then, we replace every edge that was not split with
its expansion graph and compute an arbitrary embedding II of the resulting graph. For this
fixed embedding, we determine the ordered list of edges we have to cross when inserting
an edge from the representative of v to the representative of w as described above for the
fixed embedding scenario. If we do this for every R-node in pu, ..., ug, and if we join the
resulting edge lists in the order they appear on the path from p; to pg, then we obtain an
optimal edge insertion path for inserting the edge (v,w).

If G is not biconnected, we determine the shortest path By, ci,...,ck_1, Bg in the BC-
tree of G such that v € By and w € By. Then, we find an optimal edge insertion path

72 CHAPTER 2. CROSSINGS AND PLANARIZATION

(a) SPQR-tree. (b) Expanded skeleton Sy
Figure 2.19 Edge insertion with variable embedding.

Figure 2.20 An embedding of the example graph that allows to embed edge (1,2) with
the minimum number of crossings.

for (¢i—1,¢;) in B; for every i = 1,... k, where ¢y := v and ¢ := w. We can simply join
the resulting insertion paths p; to obtain an optimal insertion path pq,...,pg for inserting
(v, w).

The corresponding embedding that allows to insert (v, w) with the minimum number of
crossings is easy to find. We in fact insert the edge (v, w) into the planarized representation
G, by creating dummy vertices for edge crossings. The construction above guarantees that
the resulting graph is planar. Then, we compute an embedding of this planar graph and
remove the inserted edge(s) again.

Figure 2.19 continues our example for the insertion strategy with variable embedding.
In this case, the graph is biconnected and the corresponding SPQR-tree has the structure
depicted in Figure 2.19(a). The relevant path in the SPQR-tree is Ry, P, Re, which con-
tains two R-nodes. The expanded skeleton graphs S; for R; and S5 for R, are shown in
Figure 2.19(b) and (c). We need only a single crossing in S; and no crossing at all in Ss.
Hence, an optimal solution will only cross a single edge, which is edge (3,4) in our solution.
Figure 2.20 shows an embedding that allows to insert (1,2) with only one crossing.

2.5. THE PLANARIZATION METHOD 73

2.5.4 Experimental Results

Recently, Gutwenger [Gut10] presented an extensive experimental study on the planariza-
tion approach for crossing minimization and analyzed the effect of pre- and postprocessing
strategies, edge insertion, and permutations, including the nonplanar core reduction (NpC)
as preprocessing, edge insertion with fixed (F1X) and variable (VAR) embedding, and var-
ious postprocessing strategies (all edges (ALL), only the inserted edges (INS), 2% of the
edges with the most crossings (MoSTx), and incremental postprocessing (INC)). The pla-
nar subgraph was computed using the PQ-tree-based algorithm with 100 random iterations.
Two benchmark sets of graphs have been used in this study:

e The Rome graphs [DGL197] are a collection of more than 11.000 graphs ranging
from 10 to 100 vertices, which have been generated from a core set of 112 graphs
used in real-life software engineering and database applications.

e The Artificial gmphs1 are a collection of nonplanar graphs with known crossing
numbers. It contains 1946 graphs with up to 250 vertices and consists of cross
products of cycles (C,, x Cy,), 5-vertex graphs with paths (G; x P,), 5-vertex
graphs with cycles (G; x Cy,), and generalized Petersen graphs (P(m,2) and
P(m,3)).

Table 2.1 shows a ranking of some selected strategies, sorted by average number of crossings
for graphs with 100 vertices.

rank crossings time [s] EI PRE | POST | PERM
1 26.71 9.387 VAR | Npc INnc 20
2 27.14 4.681 VAR | Npc INncC 10
3 28.49 1.857 VAR | NpC ALL 20
4 28.69 0.727 Fix Inc 20
5 30.43 0.490 VArR | NpcC INC 1
6 30.52 0.221 Fix ALL 20
7 32.66 0.105 VAR | NpcC ALL 1
8 33.33 0.098 Fix NpcC ALL 1
9 33.96 0.067 Fix INnc 1
10 35.09 0.041 Fix ALL 1
11 35.79 0.040 Fix MosT25 1
12 38.38 0.037 Fix MosT10 1
13 41.61 0.036 Fix INs 1
14 45.47 0.034 Fix NONE 1

Table 2.1 The ranking list of crossing minimization heuristics; the table shows average
number of crossings and running times for graphs with 100 vertices.

Figure 2.21 compares the two edge insertion variants and some postprocessing strategies.
It shows that VAR clearly dominates F1X and that postprocessing helps a lot. Although the
INC strategy is rather time consuming, it justifies this by achieving excellent improvements.
Using permutations also gives significant improvements, but not as much as postprocess-

lavailable at http://lsil-www.cs.uni-dortmund.de/people/gutweng/artificial-graphs.zip

74 CHAPTER 2. CROSSINGS AND PLANARIZATION

50
45 | |-o—fix-none
- |—=—fix-most10 R
40 | —o—fix-inc M A}
—o-var-none ﬁ\\[% ¥
35 o o
—+—var-most10 Y
30 -

—{-o-var-inc

N
o

number of crossings
N
(9]

[any
wv

10

number of vertices

Figure 2.21 Average number of crossings for Rome graphs with various postprocessing
strategies.

ing. Figure 2.22 demonstrates the effect of up to 500 permutations on graphs with 100
vertices. Performing only a few permutations achieves already good improvements; further
permutations can still reduce the number of crossings, but the effect becomes smaller and
smaller. The best result obtained for graphs with 100 vertices was 25.51 crossings with 500
permutations (NPC-VAR-INC).

We can judge the quality of the results better if we can compare them with the actual
crossing numbers. Figure 2.23 shows the results for the artificial graphs, grouped by graph
types. We observe that using edge insertion with variable embedding and incremental
postprocessing already comes very close to the exact crossing numbers (OPT), whereas
using fixed embedding without postprocessing achieves very bad results.

2.5.5 Beyond Edge Insertion

The central ingredient of the above discussed heuristic clearly is the efficient optimal edge
insertion procedure that considers all possible embeddings. Starting from there, there are
multiple extensions and generalizations.

Instead of considering only edges, we may also consider a vertex of the graph, together
with all its incident edges. This problem is known as the vertex- or star-insertion problem.
Reusing the ideas of the fixed-embedding edge insertion, we can easily find a BFS-based
algorithm to insert a vertex into a fixed embedding of a planar graph. Yet, when con-
sidering the variable embedding setting, we cannot straightforwardly reuse many of the
edge-insertion algorithm’s methods, since vertex insertion does not offer the same degree of
problem locality within each separate SPQR-skeleton. Chimani et al. [CGMWO09] showed
how to combine the SPQR-tree-based approach with a sophisticated dynamic programming
scheme, to solve the vertex insertion problem in O(6% - |[V|3 - |W|?) time, where 6 gives the

2.5. THE PLANARIZATION METHOD 75

34
] ——npc-fix-all
33 1 —o—npc-var-all [
1 ——npe-fix-inc
32 4 —o—npc-var-inc ||
31
30

number of crossings

0 50 100 150 200 250 300 350 400 450 500
number of permutations

Figure 2.22 The effect of up to 500 permutations for Rome graphs with 100 vertices.

110 + 2
¢ | @fix-none-perm1 S
100 ,, I fix-all-perm1
£ | Ofix-inc-perml
90 77 W fix-inc-perm10
- | Ofix-inc-perm30 3
E a
80 | B@var-all-perm1 =
- | @var-inc-permt (| o eZaNeHNNY
” £ | mvar-inc-perm10
oo 70 .
£ £ | Bvar-inc-perm30 |
a : Hopt e
S 60
o E
“ E
o E
5 50 -
2 E
E E
2 40 -
30
20 -+
10 -
0 E

P(m,2) P(m,3) G_x_C G_x_P C x_C

Figure 2.23 Average number of crossings for graphs with known crossing numbers.

76 CHAPTER 2. CROSSINGS AND PLANARIZATION

thickness (number of edges) of the thickest P-node skeleton and W are the vertices adjacent
to the inserted vertex. For a graph without P-nodes, this time reduces to O(|V | - [W?).

We will revisit both the edge and the vertex insertion problem in the next section when
discussing approximation algorithms. It remains to state that these two graph structures
are currently the only structures for which we know that the insertion problem is efficiently
solvable. It is therefore an open challenge to identify more complicated (planar) subgraphs
that allow efficient insertion algorithms.

Based on the success in the traditional crossing number setting, one may consider the
manor crossing number, or its set-restricted version that arises when considering an electrical
network; see [CGO7]. Such a network consists of several components (logic gates, chips,
resistors,...) that are connected via wires. But such wires are usually not simple edges
with one source and one target vertex, but hyperedges: they connect several components
on the same electric potential, e.g., the output signal of one logic gate may serve as an
input signal for several other gates. Graphs with hyperedges are usually called hypergraphs,
and it is natural to try to adopt the planarization strategy to them. We may represent a
hypergraph via a traditional graph by replacing each hyperedge ¢ (adjacent to the vertices
N) by a star, i.e., we introduce a new hypervertez v, and add edges (v, vy,) for all vertices
v € N. For a final drawing, we are allowed to modify each such star into a tree Ty, with IV
as its leaves. Such a modification is captured by the notion of the minor crossing number
of a graph G: the smallest crossing number achievable by any graph H which has G as its
minor. We may briefly describe the minor operations as removing edges and merging two
adjacent vertices. It is easy to see that the expansion from a star to a tree can be obtained
exactly by the inverse of the last operation. Therefore, the hypergraph crossing number
is equivalent to the so-called W -restricted minor crossing number, where W is the set of
hypervertices. By W -restricted we describe the constraint that the inverse minor operations
may only be applied to the vertices W.

Chimani and Gutwenger [CG07] showed that inserting hyperedges (or, equivalently, in-
serting a vertex in the minor crossing number setting) is NP-hard, already when considering
a fixed embedding of the (hyper)graph into which to insert. On the other hand, they show
how to efficiently and optimally insert edges into a graph w.r.t. the minor crossing number,
over all possible embeddings. This is equivalent to optimally inserting a simple edge into
a hypergraph (note that during the insertion, other hyperedges become expanded to more
general trees). This latter algorithm can then be applied iteratively, to (heuristically) insert
a hyperedge by successive insertions of its star’s edges. This in turn leads to a crossing
number heuristic for electrical networks which generates drawings with astonishingly fewer
crossings than the other known approaches, which are based on Sugiyama’s framework.

The planarization strategy has also shown great potential when applied to the related
issue of upward drawings, i.e., we want to draw a directed graph such that all edges point
upward. Traditionally, this was solved via Sugiyama-style algorithms, but in the last years,
Eiglsperger et al. [EKE03] and Chimani et al. [CGMWO08] introduced algorithms reusing
ideas of the planarization approach to find drawings of real-world graphs with drastically
less crossings.

2.6 Approximation Algorithms

Finally, the last approach to crossing minimization that we will discuss is the search for
approximation algorithms. By the end of the last century, this search has been mostly
fruitless despite many attempts. It is still the case that on the one hand, no approximation
algorithm for crossing minimization of general graphs with any type of guarantee could be

2.6. APPROXIMATION ALGORITHMS 7

found; on the other hand, the theoretical complexity of approximation is unknown. The
only relevant case in which provably near-optimal solutions can be generated is the case of
bounded degrees.

Recall the bisection width bw(G) of G as defined in Section 2.2.1. Bhatt and Leighton [BL84],
later improved by Even et al. [EGS00], used a bisection approach for devising a polynomial-
time algorithm with a quality guarantee for the number of crossings plus the number of
vertices; the quality, however, depends on the quality of the incorporated approximation
algorithm for the bisection width. As shown later [CY94], the latter problem can be approx-
imated within a constant factor in polynomial time. Using this result, Bhatt and Leighton’s
algorithm yields a drawing with O(log® |V |(cr(G) 4 |V])) edge crossings in polynomial time.
In other words, the number of edge crossings plus vertices in the constructed drawing of G
is at most a factor of O(log? |V|) away from the optimum. In fact, for bounded degree
graphs satisfying |E| > 4|V, this yields an O(log? |V|)-approximation algorithm for the
crossing minimization problem, as in this case the number of vertices is at most linear in
the minimal number of crossings.

After laying semidormant for some time, the topic of approximation algorithms for cross-
ing numbers received a lot of attention in recent years. The first decade of this millennium
saw the first constant factor approximation algorithms in this area, although only for special
graph classes, and only when assuming bounded degrees. Let A be the maximum degree
in the following.

The first class of approximation algorithms are insertion based. They use the insertion
algorithms presented in the previous section.

An almost planar or near-planar graph G is a graph that has an edge e such that G’ :=
G—e, the graph obtained from removing e, is planar. In other words, G is a planar graph plus
one additional edge. For such a graph, Hlinény and Salazar [HS06] showed that inserting
e optimally into a planarly embedded G [GMWO05] (considering all possible embeddings,
as described for the planarization heuristic) approximates the crossing number of G. The
provably tight approximation factor of A/2 was established by Cabello and Mohar [CM10]
using a different proof strategy: the lower bound is obtained by analyzing its relation to the
facial distance, i.e., a shortest insertion path with respect to the minor-monotone crossing
number model, unknowingly using an algorithm first outlined in [CGO07]. In this setting,
the inserted edge not only crosses edges but may also cross through vertices, resembling a
crossing solution in a graph that has G’ as its minor.

Shortly after the aforementioned algorithm to optimally insert a vertex with its incident
edges into a planar graph was presented in [CGMWO09], Chimani et al. [CHM12] showed
that this solution in fact approximates the crossing number of apex graphs. Similar to above,
such a graph becomes planar when removing a specific vertex, together with its incident
edges. The proof argues over different flip structures in the graph’s SPQR-tree and thereby
reuses some strategic elements of [HS06], as the stronger bounding techniques of [CM10]
seem not applicable to the apex case. Consequently, the proven approximation guarantee
of factor |W|- A/2 might not be tight (thereby, W are the vertices incident to the inserted
vertex, and A is the maximum degree of the graph into which we insert). In the worst
known example, the obtained crossing number is only |W|- A/4 times the optimal solution.

The second known class of approximation algorithms are topology based. Thereby, we
assume that the given graph is embeddable—i.e., drawable without edge crossings—on
some specific surface, more complex than the traditional plane. This class of graphs is then
a superset of the class of planar graphs. By clever simplification strategies, usually based
on cutting the surface with its embedded graph, the surface is simplified until a planar
drawing is reached. Therein, the cut edges and vertices have to be reconnected cheaply to
obtain a drawing of the original graph. Interestingly, the algorithms themselves, as well as

78 CHAPTER 2. CROSSINGS AND PLANARIZATION

estimating the number of the produced crossings, are relatively simply. The hard part is to
show a matching lower bound in order to deduce the approximation factor.

In 2007, Gitler et al. showed in [GHLS08] that cr(G) is approximable within a factor of
4.5A? when considering projective graphs, i.e., graphs that are embeddable in the projective
plane. One may think of such a projective plane as a large circular area A, on which to draw
the graph without any crossings. Any line leaving A re-enters A exactly at the opposite
position. Consequently, any vertex drawn on the border of A is mirrored on the opposite
side as well. The key idea of the approximation algorithm now is to take such a drawing,
paste A on a regular plane, and connect the “jump points” cheaply outside of A. In order
to prove that this strategy yields an approximation algorithm, one has to show a matching
lower bound. This is established by proving that any nonplanar projective graph contains a
diamond grid of certain size, which in turn induces a lower bound on the crossing number.

Hlinény and Salazar showed in [HS07] that cr(G) is approximable within a factor of
12A? when considering (dense enough) toroidal graphs, i.e., graphs that are embeddable
on the torus. Assume a graph is already drawn on a torus without any crossings (such
an embedding can be found in linear time if it exists [Moh99]). We search for a shortest
two-sided, non-separating loop around the torus (think, e.g., of a circular line “around”
the thinner part of a torus) which only crosses through vertices of the graph, but not
through edges. We then cut along this loop, effectively cutting the crossed vertices in two.
The remaining surface can be thought of as a cylinder; when we cap its ends, it becomes
topologically equivalent to a sphere and hence, for the purpose of drawings, to the plane.
We denote this operation as cut-and-cap. For each pair of cut vertices, we remove the
one with lower degree and route its incident edges to its twin, along the shortest path in
the then-fixed embedding. In order to prove that this strategy yields an approximation
algorithm, one has to show a matching lower bound for the number of crossings. This is
established by proving that any toroidal graph of sufficient density contains a toroidal grid
of certain minimal size as a minor. For toroidal grids of dimension p x ¢ (p > ¢ > 3), it is
known that they require at least (¢ — 2)p/2 crossings.

A torus is an (in fact, topologically, the unique) orientable surface of genus 1. Using the
toroidal case as an inspiration, it is natural to try to generalize it to graphs embedded on any
orientable surfaces of some fixed genus. Note that for every graph there is some g such that
it is embeddable on a genus-g surface. The necessary basic tool of iteratively performing
cut-and-cap operations on the surface’s handles until we reach a sphere has already been
investigated in [BPT06, DV06] in order to obtain upper bounds for the crossing number.
Yet, there was no straightforward way to generalize the lower bound proof to higher genus.
Only recently, Hlinény and Chimani [HC10] showed how to carefully choose the cycles to
cut (both for the upper and the lower bound), such that the largest grid minor is retained
within a factor depending only on the surface’s genus and the graph’s degree. They showed
the following theorem:

Theorem 2.9 Let G be a graph with mazimum degree A and (densely enough) embeddable
on an orientable surface of genus g > 1. There is an O(nlogn) algorithm which generates
a drawing of G in the plane with at most 3-23972. A2 . ¢r(G) crossings. This is a constant
factor approzimation algorithm for bounded degree A and bounded genus g.

These bounds are not known to be tight—in fact, they are likely not to be. Yet, some
kind of density requirement (we refrain from defining the quite technical concise constraint
here) will always be necessary in algorithms only performing surface cuts. Otherwise, the
considered graph could even be a planar graph, awkwardly embedded on a higher genus
surface.

2.6. APPROXIMATION ALGORITHMS 79

Apart from considering restricted graph classes, one may also consider restricted crossing
minimization problems, in order to obtain approximation results. For instance, for bipar-
tite drawings with one layer fixed, Eades and Wormald [EW94] showed that there is a
polynomial-time algorithm that produces drawings with at most three times as many edge
crossings as necessary, for any graph G.

Acknowledgment

Markus Chimani was funded via a junior professorship by the Carl-Zeiss-Foundation.

80 CHAPTER 2. CROSSINGS AND PLANARIZATION

References

[ACNS82] M. Ajtai, V. Chvatal, M.M. Newborn, and E. Szemerédi. Crossing-free
subgraphs. Annals of Discrete Mathematics, 12:9-12, 1982.

[BCE'08] C. Buchheim, M. Chimani, D. Ebner, C. Gutwenger, M. Jiinger, G. W.
Klau, P. Mutzel, and R. Weiskircher. A branch-and-cut approach to the
crossing number problem. Discrete Optimization, Special Issue in Memory
of George B. Dantzig, 5(2):373-388, 2008.

[BD93] D. Bienstock and N. Dean. Bounds for rectilinear crossing numbers. J.
Graph Theory, 17(3):333-348, 1993.

[BEJT05] C. Buchheim, D. Ebner, M. Jiinger, P. Mutzel, and R. Weiskircher. Exact
crossing minimization. In P. Eades and P. Healy, editors, Graph Drawing
(Proc. GD ’05), volume 3843 of Lecture Notes in Computer Science, pages
37-48. Springer-Verlag, 2005.

[BGO4] H. Bodlaender and A. Grigoriev. Algorithms for graphs em-
beddable with few crossings per edge. Research Memoranda
036, Maastricht : METEOR, Maastricht Research School of Eco-
nomics of Technology and Organization, 2004. available at
http://ideas.repec.org/p/dgr/umamet/2004036.html.

[Bie91] D. Bienstock. Some provably hard crossing number problems. Discrete
Comput. Geom., 6(5):443-459, 1991.

[BL76] K. Booth and G. Lueker. Testing for the consecutive ones property interval
graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst.
Sci., 13:335-379, 1976.

[BL84] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph
layout problems. J. Comput. Syst. Sci., 28:300-343, 1984.

[BMO04] J. M. Boyer and W. Myrvold. On the cutting edge: simplified o(n) pla-
narity by edge addition. J. Graph Algorithms Appl., 8(3):241-273, 2004.

[BPT06] K. Boroczky, J. Pach, and G. Téth. Planar crossing numbers of graphs
embeddable in another surface. Internat. J. Found. Comput. Sci., 17:1005—
1015, 2006.

[BTTS84] C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity-
relationship diagrams. Journal of Systems and Software, 4:163-173, 1984.

[CFFK98] G. Calinescu, C. G. Fernandes, U. Finkler, and H. Karloff. A better
approximation algorithm for finding planar subgraphs. Journal of Algo-
rithms, 27(2):269-302, May 1998.

[CFKZ03] G. Calinescu, C. G. Fernandes, H. Karloff, and A. Zelikovsky. A new ap-
proximation algorithm for finding heavy planar subgraphs. Algorithmica,
36(2):179-205, 2003.

[CGOT] M. Chimani and C. Gutwenger. Algorithms for the hypergraph and the
minor crossing number problems. In Proc. ISAAC ’07, volume 4835 of
LNCS, pages 184-195. Springer, 2007.

[CGO9] M. Chimani and C. Gutwenger. Non-planar core reduction of graphs.
Discrete Mathematics, 309(7):1838-1855, 2009.

[CGM09] M. Chimani, C. Gutwenger, and P. Mutzel. Experiments on exact crossing

minimization using column generation. ACM Journal of Experimental
Algorithmics, 14(3):4.1-4.18, 2009.

REFERENCES

[CGMWOS]

[CGMWO09)]

[Chi08]
[Chil1]

[CHIM11]

[CHM12]

[Chv83]
[Cim92]
[CJSO08]
[CM10]

[CMBOS]

[CMS07]

[CMS08]

[CY94]

[DFFS5)

[DGL*97]

[Dji95]

[DT8Y]

M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-free up-
ward crossing minimization. In Proc. WEA 08, volume 5038 of LNCS,
pages 55—68. Springer, 2008.

M. Chimani, C. Gutwenger, P. Mutzel, and C. Wolf. Inserting a vertex
into a planar graph. In Proc. SODA 09, pages 375-383. ACM-SIAM,
20009.

M. Chimani. Computing crossing numbers. PhD thesis, TU Dortmund,
2008. http://hdl.handle.net/2003/25955.

M. Chimani. Facets in the crossing number polytope. SIAM Journal on
Discrete Mathematics, 25(1):95-111, 2011.

M. Chimani, P. Hungerldnder, M. Jiinger, and P. Mutzel. An SDP ap-
proach to multi-level crossing minimization. In Proc. ALENEX’11. SIAM,
2011.

M. Chimani, P. Hlinény, and P. Mutzel. Vertex insertion approximates
the crossing number of apex graphs. Furopean Journal of Combinatorics,
33(3):326-335, 2012.

V. Chvatal. Linear Programming. W. H. Freeman and Company, New
York, 1983.

R. J. Cimikowski. Graph planarization and skewness. Congressus Numer-
antium, 88:21-32, 1992.

M. Chimani, M. Jiinger, and M. Schulz. Crossing minimization meets
simultaneous drawing. In Proc. PacificVis ’08, pages 33-40, 2008.

S. Cabello and B. Mohar. Crossing and weighted crossing number of near-
planar graphs. Algorithmica, 2010. in print.

M. Chimani, P. Mutzel, and I. Bomze. A new approach to exact crossing
minimization. In Proc. ESA ’08, volume 5193 of LNCS, pages 284—296.
Springer, 2008.

M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of multiple
Kuratowski subdivisions (TR). Technical Report TR07-1-002, June 2007,
TU Dortmund, June 2007.

M. Chimani, P. Mutzel, and J. M. Schmidt. Efficient extraction of multiple
Kuratowski subdivisions. In Proc. GD ’07, volume 4875 of LNCS, pages
159-170. Springer, 2008.

F. R. K. Chung and S.-T. Yau. A near optimal algorithm for edge sepa-
rators. In Proceedings of STOC’94, pages 1-8, 1994.

M. E. Dyer, L. R. Foulds, and A. M. Frieze. Analysis of heuristics for find-
ing a maximum weight planar subgraph. Furopean Journal of Operational
Research, 20(1):102-114, 1985.

G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari, and
F. Vargiu. An experimental comparison of four graph drawing algorithms.
Comput. Geom. Theory Appl., 7:303-325, 1997.

H. N. Djidjev. A linear algorithm for the maximal planar subgraph prob-
lem. In Proc. 4th Workshop Algorithms Data Struct., Lecture Notes Com-
put. Sci., pages 369-380. Springer-Verlag, 1995.

G. Di Battista and R. Tamassia. Incremental planarity testing. In Proc.
30th Annu. IEEE Sympos. Found. Comput. Sci., pages 436-441, 1989.

81

82 CHAPTER 2. CROSSINGS AND PLANARIZATION

[DT96] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J.
Comput., 25:956-997, 1996.
[DV02] H. Djidjev and I. Vrt’o. An improved lower bound for crossing numbers. In

GD ’01: Revised Papers from the 9th International Symposium on Graph
Drawing, pages 96-101, London, UK, 2002. Springer-Verlag.

[DV06] H. Djidjev and I. Vrt’o. Planar crossing numbers of genus g graphs. In
Proc. ICALP 06, volume 4051 of LNCS, pages 419-430. Springer, 2006.
[DW60] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs.

Operations Research, 8:101-111, 1960.

[EGS00] G. Even, S. Guha, and B. Schieber. Improved approximations of crossings
in graph drawing. In Proc. STOC 00, pages 296-305, 2000.

[EKEO03] M. Eiglsperger, M. Kaufmann, and F. Eppinger. An approach for mixed
upward planarization. J. Graph Algorithms Appl., 7(2):203-220, 2003.

[EW94] P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite
graphs. Algorithmica, 11(4):379-403, 1994.

[GHLS08] I. Gitler, P. Hlinény, J. Leanos, and G. Salazar. The crossing number
of a projective graph is quadratic in the face-width. Flectr. Journal of
Combinatorics, 15, 2008.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.
[GJ83] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. STAM

J. Algebraic Discrete Methods, 4(3):312-316, 1983.

[GJJI68] R. K. Guy, T. A. Jenkyns, and J.Schaer. The toroidal crossing number of
the complete graph. Journal of Combinatorial Theory, 4:376-390, 1968.

[GLSS8S] M. Grotschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer-Verlag, 1988.

[GMO1] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR
trees. In J. Marks, editor, Graph Drawing (Proc. GD 2000), volume 1984
of LNCS, pages 77-90. Springer-Verlag, 2001.

[GMO04] C. Gutwenger and P. Mutzel. An experimental study of crossing minimiza-
tion heuristics. In G. Liotta, editor, 11th Symposium on Graph Drawing
2003, volume 2912 of LNCS, pages 13—24. Springer-Verlag, 2004.

[GMWO05] C. Gutwenger, P. Mutzel, and R. Weiskircher. Inserting an edge into a
planar graph. Algorithmica, 41(4):289-308, 2005.

[Gro01] M. Grohe. Computing crossing numbers in quadratic time. In Proceedings
of STOC’01, 2001.

[Gut10] C. Gutwenger. Application of SPQR-Trees in the Planarization Ap-
proach for Drawing Graphs. PhD thesis, TU Dortmund, 2010.
http://hdl.handle.net/2003/27430.

[GuyT2] R. K. Guy. Crossing numbers of graphs. In Graph Theory and Ap-
plications (Proceedings, Lecture Notes in Mathematics, pages 111-124.
Springer-Verlag, 1972.

[HC10] P. Hlinény and M. Chimani. Approximating the crossing number of graphs
embeddable in any orientable surface. In Proc. SODA’10, pages 918-927.
SIAM, 2010. Proc. SODA ’10.

REFERENCES

[H1i06]

[HSO06]

[HSO07]

[HT73)
[HT74]

[JLMOS]

[IM96]

[IMO7]

[JTS89]

[KMP+06]

[KPS07]

[KROT]
[Kra91]
[La 94]
[Leis3]
[Leis4]

[LG77]

[Man83]

P. Hlinény. Crossing number is hard for cubic graphs. Journal of Combi-
natorial Theory, Series B, 96:455-471, 2006.

P. Hlinény and G. Salazar. On the crossing number of almost planar
graphs. In Proc. GD 05, volume 4372 of LNCS, pages 162-173. Springer,
2006.

P. Hlinény and G. Salazar. Approximating the crossing number of toroidal
graphs. In Proc. ISAAC 07, volume 4835 of LNCS, pages 148-159.
Springer, 2007.

J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-
nents. STAM J. Comput., 2(3):135-158, 1973.

J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM,
21(4):549-568, 1974.

M. Jiinger, S. Leipert, and P. Mutzel. A note on computing a maximal
planar subgraph using PQ-trees. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(7):609-612, 1998.

M. Jiinger and P. Mutzel. Maximum planar subgraphs and nice embed-
dings: Practical layout tools. Algorithmica, 16(1):33-59, 1996. (special
issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).
Michael Jiinger and Petra Mutzel. 2-layer straightline crossing minimiza-
tion: Performance of exact and heuristic algorithms. J. Graph Algorithms
Appl., 1(1):1-25, 1997.

R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. O(n?) algorithms
for graph planarization. IEFEE Trans. Comp.-Aided Design, 8:257-267,
1989.

E. de Klerk, J. Maharry, D. V. Pasechnik, R. B. Richter, and G. Salazar.
Improved bounds for the crossing numbers of K, ,, and K,,. STAM Journal
on Discrete Mathematics, 20(1):189-202, 2006.

E. de Klerk, D. V. Pasechnik, and A. Schrijver. Reduction of symmetric
semidefinite programs using the regular x-representation. Mathematical
Programming, 109(2):613-624, 2007.

K. Kawarabayashi and B. Reed. Computing crossing number in linear
time. In Proc. STOC 07, pages 382-380, 2007.

J. Kratochvil. String graphs. II: Recognizing string graphs is NP-hard. J.
Comb. Theory Ser. B, 52(1):67-78, 1991.

J. A. La Poutré. Alpha-algorithms for incremental planarity testing. In
Proc. 26th Annu. ACM Sympos. Theory Comput., pages 706-715, 1994.
F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-
exchange graph and other networks. MIT Press, 1983.

F. T. Leighton. New lower bound techniques for VLSI. Mathematical
Systems Theory, 17:47-70, 1984.

P. Liu and R. C. Geldmacher. On the deletion of nonplanar edges of a
graph. In Proc. 10th S.-E. Conf. on Combinatorics, Graph Theory and
Computing, pages 727-738, Boca Raton, FL, 1977.

A. Mansfield. Determining the thickness of a graph is np-hard. In Math-

ematical Proceedings of the Cambridge Philosophical Society, pages 9-23,
1983.

84 CHAPTER 2. CROSSINGS AND PLANARIZATION

[MJO1] Petra Mutzel and Michael Jinger. Graph drawing: Exact optimization
helps! In M. Grotschel, editor, The Sharpest Cut, Series on Optimization.
MPS - SIAM, 2001. Festschrift zum 60. Geburtstag von Manfred Padberg.

[MKNF86] S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. An NP-hard
crossing minimization problem for computer network layout. Technical
Report SRC TR 86-80, Electrical Engineering Department and Systems
Research Center, University of Maryland, 1986.

[MKNF87] S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the NP-
completeness of a computer network layout problem. In Proceedings of the
IEEE International Symposium on Circuits and Systems, pages 292295,
1987.

[MNKF90] S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing
minimization in linear embeddings of graphs. IEEFE Trans. Comput.,
39(1):124-127, 1990.

[Moh99] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary
surface. SIAM J. Discrete Math., 12:6-26, 1999.

[MZ99] P. Mutzel and T. Ziegler. The constrained crossing minimization problem.
In J. Kratochvil, editor, Graph Drawing (Proc. GD ’99), volume 1731 of
Lecture Notes in Computer Science, pages 175-185. Springer-Verlag, 1999.

[Nic68] T. A. J. Nicholson. Permutation procedure for minimising the number of
crossings in a network. IEE Proceedings, 115:21-26, 1968.
[PROT] S. Pan and R. B. Richter. The crossing number of K;; is 100. Journal of

Graph Theory, 56:128-134, 2007.

[PSS96] J. Pach, F. Shahrokhi, and M. Szegedy. Applications of the crossing num-
ber. Algorithmica, 16:111-117, 1996.
[PSS06] M. Pelsmajer, M. Schaefer, and D. Stefankovié. Odd crossing number

is not crossing number. In Proc. GD ’05, volume 3843 of LNCS, pages
386-396. Springer, 2006.

[PT97] J. Pach and G. Té6th. Graphs drawn with few crossings per edge. Combi-
natorica, 17(3):427-439, 1997.

[PTO00] J. Pach and G. Téth. Which crossing number is it, anyway? J. Comb.
Theory Ser. B, 80(2):225-246, 2000.

[Pul89] W. R. Pulleyblank. Polyhedral combinatorics. In G. L. Nemhauser,

A. H. G. Rinnooy Kan, and M. J. Todd, editors, Optimization, volume 1 of
Handbooks in Operations Research and Management Science, pages 371—
446. North-Holland, 1989.

[Pur97] Helen Purchase. Which aesthetic has the greatest effect on human under-
standing? In G. Di Battista, editor, Graph Drawing (Proc. GD ’97), vol-
ume 1353 of Lecture Notes Comput. Sci., pages 248-261. Springer-Verlag,

1997.
[RT97] C. Roos and T. Terlaky. Advances in linear optimization, 1997.
[Sch12] M. Schaefer, 2012. personal communication, joint work with D.

Stefankovi¢. Also mentioned in the unpublished manuscript The Graph
Crossing Number and Its Variants: A Survey.

[SV94] O. Sykora and I. Vrt’o. On VLSI layout of the star graph and related
networks. The VLSI Journal, 17:83-93, 1994.

REFERENCES 85

[Zie00] T. Ziegler. Crossing Minimization in Automatic Graph Drawing. PhD
thesis, Max-Planck-Institut fiir Informatik, Saarbriicken, 2000.

Symmetric Graph Drawing

3.1 Introduction...............oooiiiiiiiii 87
3.2 Basic Concepts for Symmetric Graph Drawing 89
Drawing of a graph ¢ Automorphisms of a graph ®
Symmetries of a graph drawing
3.3 Characterization of Geometric Automorphism Groups 91
3.4 Finding Geometric Automorphisms 95
3.5 Symmetric Drawings of Planar Graphs 98
Triconnected planar graphs ® Biconnected planar graphs
One-connected planar graphs ¢ Disconnected planar graphs

Peter Eades * Drawing algorithms

University of Sydney 3.6 Conclusion ... 108
Further topics ®* Open problems

Seok-Hee Hong Acknowledgments...... ... 110

University of Sydney References 111

3.1 Introduction

Symmetry is one of the most important aesthetic criteria that clearly reveals the structure
and properties of a graph. Graphs in textbooks on graph theory are normally drawn sym-
metrically. In some cases, a symmetric drawing may be preferred over a planar drawing.
As an example, consider the two drawings of the same graph in Figure 3.1 (from [KK89]).
The left drawing has five edge crossings, but eight symmetries (four rotations and four re-
flections). On the right is a planar drawing; it only has axial symmetry. Most people prefer
the drawing on the left. As another example, the Petersen graph is normally drawn as in
Figure 3.2. This drawing shows ten symmetries (five rotations and five reflections). In fact,
it can be shown that a drawing of the Petersen graph can have at most ten symmetries,
and Figure 3.2 is maximally symmetric.

Of course, every drawing has the trivial symmetry, the identity mapping on the plane.
The aim of symmetric graph drawing is to draw a graph with nontrivial symmetry. More
ambitiously, we aim to draw a graph with as much symmetry as possible.

Symmetries of a drawing of a graph G are clearly related to the automorphisms of G;
intuitively, a symmetry of a drawing of G induces an automorphism of the graph. For
example, in Figure 3.2, a rotational of the plane by 27 /5 is a symmetry of the drawing and
induces the automorphism (0,1,2,3,4)(5,6,7,8,9). A reflection of the plane in a vertical
axis induces the automorphism (1,4)(6,9)(7,8)(2,3). The automorphism group of a graph
G defines its “combinatorial symmetries.” However, not every automorphism can be rep-
resented as a symmetry of a drawing of G. For example, the automorphism group of the
Petersen graph has 120 elements, but, as mentioned above, a drawing can display only ten

87

88 CHAPTER 3. SYMMETRIC GRAPH DRAWING

A

Figure 3.1 Two drawings of the same graph: a planar drawing with eight symmetries
and five edge crossings, and a planar drawing with an axial symmetry [KK89].

Figure 3.2 A drawing of the Petersen graph.

of these. Symmetric graph drawing involves determining those automorphisms of a graph
G that can be represented as symmetries of a drawing of G.

This chapter describes a formal model for symmetric graph drawing in Section 3.2, and
gives a characterization of subgroups of the automorphism group of a graph that can be
displayed as symmetries of a drawing in Section 3.3. Most precise formulations of the
symmetric graph drawing problem are NP-complete. Section 3.4 describes a proof of the
NP-completeness of one such formulation and briefly reviews some heuristics for the general
symmetric graph drawing problem. Of course, we want a drawing of a graph to satisfy
other aesthetics as well as symmetry. In particular, it is useful to examine the problem
of constructing a planar straight-line drawing of a planar graph, such that symmetry is
maximized. Surprisingly, there is a linear-time algorithm for this problem; it is sketched
in Section 3.5. The chapter concludes with a brief survey of some other approaches to
symmetric graph drawing and some open problems.

3.2. BASIC CONCEPTS FOR SYMMETRIC GRAPH DRAWING 89

3.2 Basic Concepts for Symmetric Graph Drawing

3.2.1 Drawing of a graph

A graph G = (V, E) consists of a set V of vertices and a set E edges, that is, unordered
pairs of vertices. Unless explicitly stated otherwise, we assume that the graph is simple,
that is, it has no multiple edges and no self-loops.

A drawing D of a graph G consists of a point Dy (u) in R? for every vertex u € V, and
a closed curve segment Dg(u,v) in R? for every edge (u,v) € E. The curve Dg(u,v) has
its endpoints at Dy (u) and Dy (v). Through most of this chapter, the curve Dg(u,v) is a
straight-line segment.

For an investigation of symmetric graph drawing, we must take a little care about the
definition of the drawing of a graph. We allow two curves Dg(u,v) and Dg(u/,v") to cross
(share a point), but we have some non-degeneracy conditions as follows:

ND1 The mapping Dy is injective. This excludes, for example, the ultra-symmetric
case where all vertices are drawn at the origin.

ND2 A curve Dg(u,v) must not contain a point Dy (w) where u # w # v; in other
words, an edge must not intersect with a vertex to which it is not incident.
ND3 Two curves must not overlap; that is, they must not share a curve of nonzero
length. This excludes, for example, the axially symmetric case where all the

vertices of the graph are drawn on the x axis.

ND/ If two curves share a point, then they must cross at this point; that is, they
alternate in cyclic order around the crossing point.

Note that for straight-line drawings, ND2 implies both ND3 and ND4. Most of this chapter
is concerned with straight-line drawings, and so discussions of degeneracy concentrate on
ND1 and ND2.

3.2.2 Automorphisms of a graph

Basic concepts and terminology for permutation groups can be found in [Wie64].

An isomorphism from a graph Gy = (Vi,E;) to a graph Go = (V,, E3) is a one-
one mapping S of V; onto V, that preserves adjacency, that is, (u,v) € E; if and only
(B(w),B(v)) € Ea. An automorphism of a graph G = (V, E) is an isomorphism of G onto
itself, that is, a permutation of the vertex set that preserves adjacency. The order of an
automorphism 3 is the smallest positive integer k such that 8* is the identity.

Any set of automorphisms of G that forms a group is called an automorphism group of
G; the set of all automorphisms of G is denoted by aut(G). The size of an automorphism
group is the number of elements of the group.

We have defined an automorphism group A of a graph as a permutation group on the
vertex set V of a graph G = (V, E). It is easy to see that this defines a permutation group
A’ acting on the edge set E, and it is often convenient to regard A as acting on E. For

1The graph drawing literature is somewhat inconsistent about the precise details of the definition of
a graph drawing. In some places, a drawing with these non-degeneracy conditions is called a strict,
clear, and/or proper. In this chapter, however, we use the term “graph drawing” to includes these
non-degeneracy conditions.

90 CHAPTER 3. SYMMETRIC GRAPH DRAWING

example, if 8 € A and (u,v) € E, then we write “the edge 5(u,v)” to denote the edge
(B(w), B(v)).

A subset B = {f1, B2, ..., Bk} of an automorphism group A generates A if every element
of A can be written as a product of elements of B. We denote the group A generated by B by
(B1,B2,...,Pk). From the computational point of view, generators are important because
they give a succinct way to represent an automorphism group. If we were to represent a
permutation explicitly, then it may require (n) space, where n = |V|. Thus, an explicit
representation of an automorphism group of size k may take space Q(kn). In many cases
this is too large; for example, the space requirement may preclude a linear-time algorithm,
merely because the representation of the output is super-linear. To avoid this problem, we
usually represent a group by a set of generators; in general the set of generators is smaller
than the group. Most of the groups discussed in this chapter are generated by one or two
elements.

Many of the difficulties of symmetric graph drawing arise when vertices and/or edges are
fixed by an automorphism. For this reason, we need a careful notion of “fix.” Suppose that
A is an automorphism group of G = (V, E). The stabilizer of uw € V, denoted by staba(u),
is the set of automorphisms in A that fix u, that is,

staba(u) ={B € A| B(u) = u}. (3.1)
The definition can be extended to subsets of V: if Y C V, then
staba(Y) ={B€ A|Vy €Y, By) €Y} (32)

Note that the stabilizer of a set fixes the set setwise.
For each automorphism § we denote {u € V' | f(u) = u} by fizg. The set of vertices
that are fixed elementwise by every element of A is denoted by fiz 4, that is,

fixa={veV|VBeA Bv)=uv}. (3.3)

Note that while stabs(Y) is a set of group elements, fix4 is a set of vertices. Further, the
expression “fix the edge (u,v)” does not necessarily entail “fixing v and fixing v”; it could
mean that v and v are swapped.

If 8 € A and u € V, then the orbit of v under 8, denoted by orbitg(u), is the set of
images of v under (3), that is,

orbitg(u) = {B'(u) | 0 < i < k}, (3.4)
where 8 has order k. We can extend this definition to groups: the orbit of u under A is
orbita(u) = {B(u) | B € A}. (3.5)

Note that the orbits partition V. The following theorem is fundamental in finite group
theory.

Theorem 3.1 (Orbit-stabilizer theorem [Arm88]) Suppose that A is a group acting
on a set X and let x € X. Then |A| = |orbita(z)| X |staba(x)|.

The following corollary is helpful in the following sections.

COROLLARY 3.1 Suppose that A is a group acting on a set X.

e If A has no fixed points, then |orbit4(z)| = |A] for every x € X.
o If A has one fixed point w € X, then |orbit4(x)| = |A| for every z # w € X.

3.3. CHARACTERIZATION OF GEOMETRIC AUTOMORPHISM GROUPS 91

3.2.3 Symmetries of a graph drawing

Symmetry is an intuitive notion that can be formally defined in many different ways. In
this chapter we will concentrate on a standard mathematical notion of symmetry; other
notions are discussed in Section 3.6.

An isometry is a mapping of the plane onto itself that preserves distances. A symmetry
of a drawing D = (Dy, Dg) of a graph G = (V, E) is an isometry o of the plane that maps
the drawing onto itself, that is:

o for every vertex u € V, there is a vertex v € V such that o(Dy(u)) = Dy (v),
and

e for every edge (u,v) € E, there is an edge (a,b) € E such that o(Dg(u,v)) =
DE (a, b)

Note that if o is a symmetry of a drawing D = (Dy, Dg) of a graph G = (V, E), then
8= D;laDV is an automorphism of G. We say that D displays 8. Given an automorphism
3, if there is a drawing which displays (8, then we say that § is geometric.

An automorphism group A is geometric if every element of A is displayed in a single
drawing; in this case the drawing displays A.

To define the intuitive notion of “maximally symmetric drawing” of a graph, we need to
decide what it means for one drawing to display more symmetry than another. Here we
take a simple view: that if D displays A and D’ displays A’, then D is more symmetric than
D' if A has a larger size than A’. This means that searching for a maximally symmetric
drawing entails searching for a maximum size geometric automorphism group.

3.3 Characterization of Geometric Automorphism Groups

Suppose that a drawing D of a graph G = (V, E) displays the automorphism group A. Let
A’ denote the group of symmetries of D. It is useful to note the group-theoretic relationship
between A and A’. If D contains three non-collinear points, then A is isomorphic to A’
because a motion of three non-collinear points in the plane uniquely determines an isometry.
If all the vertices of the drawing lie on a single line, it may be the case that |A’| = 4 while
|A| = 2, because the rotation by 7 gives the same automorphism as a reflection in the line.
However, this is a pathological case, because the only graphs that have drawings on a single
line are sets of paths; in general, we assume that A is isomorphic to A’.

Next, we consider the simple question: Given an automorphism group A of a graph G,
is there a drawing of GG that displays A? The answer is straightforward, since a symmetry
of a finite set of points in the plane is relatively straightforward. The following theorem is
an extension of results of Lipton et al. [LNS85], Manning et al. [MA86, MA88, AMS88], and
Lin [Lin92] to handle degeneracies.

Theorem 3.2 Suppose that A is an automorphism group of a graph G. Then:

(a) A can be displayed as a reflection if and only if |A| = 2 and fiza induces a set
of disjoint paths.
(b) A can be displayed as a rotation if and only if all the following conditions hold

i. A has one generator p, and
it. |fiza] <1, and
iti. if A fizes an edge, then |fiza| = 0.

92 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Figure 3.3 A circular grid.

(c) A can be displayed as a dihedral group if and only if all the following conditions
hold.

i. A is dihedral; that is, it has two generators o and p such that a® =1, pF =1

or some k > 1, and ap = p~La.
, p=p

ii. |fiza] < 1.
1. fize induces a set of disjoint paths.
. If p fizes an edge, then |fixal = 0.

The proof of Theorem 3.2 is an algorithm, stated below, that takes a graph G and an
automorphism group A satisfying the conditions of the theorem, and draws G to display A.
The drawing is on a circular grid as illustrated in Figure 3.3. An m X n circular grid has
n > 2 equally spaced rays Ry, R1,...,R,_1 from the origin, that is, the ray R; makes an
angle of 27i/k to the x axis. There are m > 1 circles Cy,Cs, ..., Cyy, centered at the origin,
in increasing order of radius. However, the circles may not be equally spaced. The drawing
algorithm below chooses a radius for each circle, and places vertices at the grid points, that
is, at the intersection points between the circles and the rays.

To prove part (c) of Theorem 3.2, we need the following technical lemma.

LEMMA 3.1 Suppose that the radius of the circle C; in the m x n circular grid is n’,
and there are three circular grid points that lie on a straight line /. Then ¢ passes through
the origin.

Proof: Suppose that u, v and w are circular grid points on C;, C;, and Cy, respectively,
and that ¢ > j > k.
Note the case i = j = k is not possible.

3.3. CHARACTERIZATION OF GEOMETRIC AUTOMORPHISM GROUPS 93

=

Figure 3.4 Three-in-a-line for the circular grid: first case.

First, consider the case that ¢« > 5 > k, as in Figure 3.4. We show that the line segment
between v and v cannot intersect Cj unless it passes through the origin.

Assume that such an intersection occurs. Then let § = ZOuv and ¢ = ZOwvu. Since the
line segment between u and v intersects C with k < j and the radius of ¢ is at least n
times smaller than the radii of C; and Cj, it follows that sin(f) < n~! and sin(¢) < n~'.
One can deduce that for n > 2:

sin(f + ¢) < 2n~'. (3.6)

However, considering the triangle uOv and noting that v and v are at circular grid points,
we can see that 8+¢ is an integer multiple of 27n~'. If both are nonzero, then +¢ > 27n~";
this implies that sin(6 + ¢) > 2n~!, contradicting the inequality above. It follows that both
0 and ¢ are zero, and so the line segment between u and v passes through the origin.

For the case that ¢ > j = k, as in Figure 3.5, a variation of the argument above can be
used to show that ¢ passes through the origin.

O

Next, we prove Theorem 3.2. We prove each of the parts (a), (b), and (c) in turn.

Part (a) Suppose that A is displayed as a reflection. Then every vertex u on the
line of reflection is fixed by the reflection and thus u € fiz,. Any cycle or vertex of degree
more than two on this line violates the non-degeneracy conditions, thus fiz 4 induces a set
of disjoint paths.

Conversely, suppose that A = {1, a} is an automorphism group such that fiz 4 induces
a set of disjoint paths. We use the following algorithm.

First, draw V — fiz 4 on a circle about the origin, so that the coordinates of u and «(u)
are the same, then draw the edges induced by V — fix 4 as straight lines. Note that, so far,
the drawing is axially symmetric about the y axis and it is non-degenerate.

Next, note that the edges induced by V — fiza cross the y axis at a finite number of
places. Draw fiza on the y axis, one path at a time, in such a way that the vertices of
fix 4 avoid the edges induced by V — fizy4.

Finally, draw the edges between V — fizx 4 and fix 4.

94 CHAPTER 3. SYMMETRIC GRAPH DRAWING

N

Figure 3.5 Three-in-a-line for the circular grid: second case.

This drawing displays a as a reflection in the y axis; note that it satisfies the non-
degeneracy conditions.

Part (b) Suppose that A is displayed by a rotation. It is clear that A has one
generator. A rotation fixes only one point of the plane, and thus A can fix at most one
vertex. If A fixes an edge as well as a vertex w, then w must lie at the midpoint of the
edge, and thus the drawing is degenerate.

Conversely, suppose that A = (p) is an automorphism group satisfying the conditions
of the lemma. Assume, for the moment, that fiz4 is empty. Our algorithm places every
vertex u on a circle of radius one about the origin; it must choose the angle ,, that the line
between u and the origin makes with the x axis.

From Corollary 3.1, each orbit has the same size. Thus, there are n/k orbits
01,03, ...,0,), where n = |[V|. We choose an element u; from O; and, for j =
0,2,...,k — 1, place p’(u;) so that 0,;(,,) = 27(i + jn/k)/n. Effectively, this spaces the
vertices equally around the circle so that the angle between consecutive elements of the
same orbit is 27 /k. Thus the drawing displays A with a rotation by 27 /k. It is clear that
this drawing is non-degenerate.

If fixs is nonempty, then it has one element ¢, which we place at the origin. This
preserves symmetry but introduces a possible degeneracy: the central fixed vertex may
lie on an edge that forms a diameter of the circle. However, such an edge is fixed by a
rotation by 7 and, from the conditions of part (b) of the lemma, cannot occur when fix 4
is nonempty.

Part (c¢) Finally, suppose that A is dihedral. Suppose that A = («a, p), where
a? =1 and pF = 1, with k > 2. If fiz, is nonempty, then it forms a trivial orbit of (p).
Denote the nontrivial orbits of (p) by O1,0a,...,0, i, where n = |V — fiza].

For 0 < i < k—1, the automorphism p’ will be displayed as a rotation by 27i/k about the
origin, and the automorphism p—fap’ will be displayed as a reflection in the line through
the origin at an angle of 27i/k to the x axis.

We will use a circular grid with n rays Ro, R1,..., R,—1 and n/k circles C1,Cs, ..., Cy .

First, we draw fix,—i,,: for each i, starting with ¢ = 0. We assume first that fiz, = 0.

3.4. FINDING GEOMETRIC AUTOMORPHISMS 95

Since fix, is a set of disjoint paths, we can draw it on the x axis so that each vertex
is at a grid point of the circular grid and no vertex lies on any edge with which it is not
adjacent. If k is even, then we must ensure that a(fiz,—r/2qpk/2) = fiT,-k/2qk/2; this is
easily achieved.

Now consider fix,—iqpi.

Note that if u € fiz,, then pi(u) € Jiw—iqpi; in other words, if u is fixed by a then
every vertex in orbit,(u) is fixed by a conjugate of a. We can draw fiz,-ia,: on R,;/, and
Ry, (k—iy/i by rotating the drawing of fix, by 2mi/k. In this way, we draw orbit,(u) for
every vertex u € fixq.

Every other orbit is drawn on the innermost circle C;. We use a similar method to that
for cyclic groups, except that we display «. To do this, we choose a vertex u; from an orbit,
and draw uy on ray R;. Then draw «(u;) on ray R,_;. Next, we choose a vertex ug from
another orbit and draw us on Rs and «(us) on R, _5. This continues until we have placed
one vertex from each orbit. To place the remaining vertices from these orbits, we just rotate
by 27 /k.

The resulting drawing displays A; we must show that it is not degenerate.

From Lemma 3.1, we can assume that if there is a degeneracy, then there is a vertex w
lying on an edge (u,v) with w # wu,v, and the line through w, w, and v passes through
the origin. If u € fix,, then since v and w are on the line through u and the origin, we
must have v,w € fiz,. This is impossible since the layout method for fiz, precludes
degeneracies. We can deduce that neither u nor v is in fix,-in, for any i. Hence, we
conclude that u and v are on C. The only possible degeneracy is if w is the central vertex,
fixed by all automorphisms; thus, fiz4 # 0. However, {p) fixes the edge (u,v), contradicting
the conditions of the theorem. This completes the proof of Theorem 3.2.

The proof of Theorem 3.2 essentially consists of an algorithm for the following problem.

Geometric Automorphism Drawing Problem (GADP)

Instance: A graph G, and an automorphism group A of GG given as a set of at most
2 generators.

Owutput: If possible, a straight-line drawing of G that displays A.

COROLLARY 3.2 There is a linear-time algorithm that solves the Geometric Automor-
phism Drawing Problem.

Note that the resolution of the drawing obtained by the proof of Theorem 3.2 is poor in the
dihedral case, because the radii of the circles in the circular grid used increase exponentially.

Theorem 3.2 does not solve the main problem in symmetric graph drawing: given a
graph, find its largest geometric automorphism group. The next section shows that it is
NP-complete to find such a group.

3.4 Finding Geometric Automorphisms

In this section, we discuss the complexity of computing geometric automorphisms, and,
since the problem is NP-complete, we briefly mention heuristics.

The relationship between automorphisms of a graph and symmetries of drawings of the
graph suggests that the problem of drawing a graph symmetrically is at least as hard as
graph isomorphism. Manning [Man90] has shown a surprisingly stronger result: the problem
is NP-hard. The intuition behind Manning’s result comes from two directions. First, as
noted in Section 3.3, the major difficulties in drawing graphs symmetrically arise from the

96 CHAPTER 3. SYMMETRIC GRAPH DRAWING

0000 000000

Uy

o0 0000 06000009

uj

0 00000 0 0000000

uj3

Figure 3.6 The auxiliary graph H.

fixed points of the automorphisms. Secondly, a result of Lubiw [Lub81] states that finding
a fixed-point free automorphism of a graph is NP-complete.

In fact, Manning shows that a number of problems related to symmetric graph drawing
are NP-hard. Here, we study just one of these problems: detecting whether a graph has an
automorphism that can be displayed as a reflection.

Azial Geometric Automorphism Problem (AGAP)
Instance: A graph G.
Question: Is there an automorphism of G that can be displayed as a reflection?

Theorem 3.3 The axial geometric automorphism problem is NP-complete.

Proof: Lubiw [Lub81] showed that the following problem is NP-hard.

Fized Point Free Automorphism Problem (FPFAP)
Instance: A graph G.
Question: Is there an automorphism of G with no fixed points?

We show that FPFAP reduces to AGAP.

Suppose that G is an instance of FPFAP with n vertices. We assume without loss of
generality that G is connected and every vertex has degree at least 2. Define a graph H as
follows: H has a path P = (uy,ug,...,Upt1). For 1 <i<mn+1, u; is joined to two paths,
each of length n 4 4. This is illustrated in Figure 3.6.

Now consider an automorphism S of H. It is clear that for 1 < <n+1, 8(u;) = u;, and
B either fixes or swaps the two paths joined to u;. If a drawing D of H displays 3, then it
is displayed as a reflection, and P lies on the axis of reflection with the paths attached to
each u; on each side of the axis.

Now form a graph G’ from H and G. The vertex set is the union of the vertex sets of H
and G, plus extra vertices wg, wy, ..., w, for each vertex of v of G.. For 2 < ¢ < n, join u; to
every vertex of G. For each vertex v of G, join w§ to v, and join all vertices wg, wy, ..., wy,
together to make a clique of size n + 1.

Note that G’ can be formed in polynomial time.

We claim that G’ has an axial geometric automorphism if and only if G has a fixed point
free automorphism.

3.4. FINDING GEOMETRIC AUTOMORPHISMS 97

First, suppose that G has a fixed point free automorphism §. It is clear that one can
extend 8 to G’ to give an automorphism that satisfies part (a) of Theorem 3.2, and so G’
has an axial geometric automorphism group.

Now suppose that G’ has an axial geometric automorphism ~.

We claim that vy cannot map a vertex w of H to a vertex v of GG, or to one of the new
vertices wy. This is because every vertex of G is adjacent to a clique of size n + 1, while
no vertex of H has this property. Further, v cannot map a vertex of G to one of the new
vertices wy, because each w; is in a clique of size n + 1, and none of the original vertices
have this property. Thus, v restricted to H is an automorphism 5 of H; as mentioned
above, the only drawing that displays § has P lying on the axis of reflection.

Also, v restricted to G is an automorphism § of G. Suppose that § has a fixed point v.
Recall that v is joined by an edge to a vertex u; in P; this means that the induced subgraph
fiz, has a vertex of degree at least three. From Theorem 3.2, this is impossible. Thus § is
fixed-point-free.

Finally, note that AGAP is in NP, because one can guess an automorphism group, and,
using Theorem 3.2, check whether it is geometric. a

The NP-completeness results have led to a number of heuristic approaches; see [dF99,
Kam&9, Lin92, LNS85].

The most common are the generic multidimensional scaling, or force directed meth-
ods [dF99, Ead84, Kam88, Lin92]. Roughly speaking, this method projects a high-
dimensional drawing of the graph into low dimensions. The first step is to define a dis-
tance function d between vertices, and then the graph is drawn in a high-dimensional space
in such a way that the Euclidean distance in the high-dimensional space is equal or close
to the distances defined by d. In some cases, this (high-dimensional) drawing is unique
up to isometry; this implies that every automorphism of the graph is a symmetry of the
drawing. In other words, it achieves maximum symmetry in the high dimension. The next
step is to project the high-dimensional drawing into a low-dimensional space (either 2 or 3
dimensions) in such a way that the distances are preserved as much as possible.

As an example of such a method, de Fraysseix [dF99] uses the Czekanovski-Dice semi-
distance for a graph G = (V, E):

d(u,v) = \/1 - 2M (3.7

|Nu| + [Ny|
(A semi-distance d : X — R is a function that is almost a distance function: it satisfies
two of the axioms of a distance function: d(u,v) = d(v,u) and d(u,v) + d(v,w) > d(u,w).
However, it is possible that there are distinct elements u,v € X with d(u,v) = 0.) De

Fraysseix uses projections defined by the principal components of the corresponding inner
product matrix whose entries are defined by a pair s,t of vertices as follows:

1
W = §(d§ + d? - d%/)’ (38)

where for w = s, t,

and

98 CHAPTER 3. SYMMETRIC GRAPH DRAWING

These projections are remarkably successful in displaying two dimensional symmetry;
see [dF99] for details.

It is common to look at such methods as a system of forces: for example, one can simulate
a system of forces between vertices where the force exerted on u by v is proportional to the
distance d(u,v). A minimum energy configuration defines a drawing, and in many cases
this drawing displays symmetries. For example, one can view the Tutte method [Tut63,
DETT99] in this way. In fact, one of the reasons for the popularity of force directed methods
is the fact that the drawings often display some symmetry. One can give some explanation
(see [ELO0, Lin92]) of why the approach works.

3.5 Symmetric Drawings of Planar Graphs

In this section, we describe a linear-time algorithm to draw planar graphs with no edge
crossings and as much symmetry as possible.

The concept of geometric automorphism in Section 3.2.3 can be extended to planar draw-
ings: an automorphism 3 of a graph G is planar if there is a planar drawing of G that
displays 8, and an automorphism group A is a planar automorphism group if there is a
planar drawing which displays every element of A.

The problem of finding automorphisms of a planar graph can be solved in linear time
(see [HW74, Won75]); however, it is clear that not all automorphisms are geometric. Fur-
ther, not every geometric automorphism is planar. For example, the complete graph K,
with four vertices has a dihedral geometric automorphism group of size eight, but this group
is not planar. The largest planar automorphism group of K4 has size six.

The following theorem summarizes the result.

Theorem 3.4 There is a linear-time algorithm that constructs maximum planar auto-
morphism group of a planar graph.

The remainder of this section is a sketch of a proof of Theorem 3.4. The algorithm
to prove the theorem uses a connectivity decomposition. We decompose the graph into
connected components, then decompose each connected component into biconnected com-
ponents, and finally decompose each biconnected component into triconnected components.
Different algorithms are needed for triconnected, biconnected, one-connected, and discon-
nected graphs. Each uses the algorithms for higher connectivity as subroutines. Details of
the proof can be found in [HE05, HE06, HE03, HMEO06].

In Section 3.5.5, we briefly describe the drawing algorithms.

3.5.1 Triconnected planar graphs

This section describes an algorithm for finding planar automorphism groups of maximum
size for triconnected planar graphs.

The uniqueness of the faces of a triconnected planar graph G = (V, E) means that an
automorphism group A defines a permutation group acting on the set F' of faces of G.
Effectively this means that A defines an automorphism group of the dual G* of G. We can
regard A as acting on G*, and write, for example, “the face §(f)” for some € A, f € F.

It is well known that a triconnected planar graph can be represented as the skeleton of
a polyhedron in three dimensions [SR34]. A more surprising and less well known result,
due to Mani [Bab95, ManT71], states that the automorphism group of a triconnected planar
graph can be completely encapsulated in the symmetries of a polyhedron. The symmetry
finding algorithm relies on this fundamental result.

3.5. SYMMETRIC DRAWINGS OF PLANAR GRAPHS 99

SN
K TA

PV

Theorem 3.5 (Mani [Bab95, Man71]) Suppose that G is a triconnected planar graph.
Then there is a convex polytope P in R® such that G is the skeleton of P and the full
automorphism group of G is displayed by P.

Figure 3.7 Example of star triangulation.

Mani’s theorem leads to an elegant characterization of planar automorphisms of tricon-
nected planar graphs.

Theorem 3.6 Let G be a triconnected planar graph. An automorphism group of G is
planar if and only if it is the stabilizer of a face of G.

Proof: Every planar automorphism fixes the outside face. Further, if A stabilizes a face
f then, using Theorem 3.5, a projection about f from the polyhedron to the plane gives a
symmetric drawing. O

An outline of the algorithm for the triconnected case of Theorem 3.2 is as follows.

Algorithm Max PAG_tricon
1. Find a face f of G such that the stabilizer staba(f) of f in A is maximized.
2. Find the orbits of staba(f).
3. Find generators of staba(f).

For the first step, note that from Theorem 3.1, we must find an orbit (in the dual G*) of
minimum size. A linear-time algorithm of Fontet [Fon76] takes a triconnected planar graph
G as input and outputs the orbits on vertices of aut(G). Using Fontet’s algorithm, we can
compute the orbits of G*, then choose an orbit of minimum size. Choose a face f in this
minimum orbit; then f can be used as the outside face of an embedding that displays the
maximum number of symmetries.

The next step is to find the orbits of staba(f). This can be done by transformations of
the graph, and then using Fontet’s algorithm again. The first part of the transformation is
star triangulation: we triangulate each internal face by inserting a new vertex in the face
and joining it to each vertex of the face. This process is illustrated in Figure 3.7.

It is not difficult to show that the star triangulation takes linear time, and the new graph
has exactly the same planar automorphism group as the original graph (see [HME06]).

Next, we transform the graph to ensure that the outside face f has more than three ver-
tices. If f has three vertices vy, v1,v3, we draw a hexagon surrounding G in the plane, with
vertices wg, w1, - .., ws in clockwise order. Insert the edges vowg, vows, vows, viws, V1W3,

100 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Figure 3.8 Adding an outside face.

V1Wy, VoWyq, V2Ws, and vowgy. The transformation is shown in Figure 3.8. The transformation
preserves automorphisms that fix f.

The transformed graph has a new outside face with more than three vertices, and all
other faces are triangles. Now apply Fontet’s algorithm to the transformed graph. The
outside face must be fixed by all automorphisms, since all other faces have size three. Thus,
Fontet’s algorithm gives the orbits of staba (f) in the transformed graph, and we can extract
the orbits of A on the vertices of G.

The third and final step is to find generators of the planar automorphism group. Sup-
pose that the vertices on the outside face f are vg,v1,...,Um_1, in clockwise order. If
V0, V1, . ..,Um—1 are all fixed by A, then A is trivial. Otherwise, let v;,v;, v be three con-
secutive vertices in the same nontrivial orbit of A, where j — i is as small as possible and
vk is the same as v; if the orbit has size 2.

We need to introduce further terminology: a flag of an embedded graph is a triple
(v,w, f), where v and w are adjacent vertices and f is a face that has the edge (v, w)
on its boundary. The action of automorphisms on flags uniquely identifies them, as stated
in the following lemma.

LEMMA 3.2 Let G be a triconnected planar graph. Let F = (v,w, f) and F’' =
(v',w', f’) be flags of G. Then there is at most one automorphism of G that maps F
onto F’. Moreover, there is a linear-time algorithm that finds that automorphism or deter-
mines that it does not exist.

Lemma 3.2 is folklore in graph automorphism theory; a proof is in [HME06].
We can apply Lemma 3.2 to find three possible automorphisms or prove that they do not
exist. First, we compute three possible automorphisms «;, p1, p2, as follows:

e « is the automorphism mapping the flag (v;,viy1, f) onto the flag (v, v;_1, f),
if that automorphism exists. (That is, a reflection that exchanges v; and v;.)

e p; is the automorphism mapping the flag (v;, vi1, f) onto the flag (vj,v;11, f),
if that automorphism exists. (That is, a rotation by j — 4 positions.)

e po does not exist in the case that vy = v;. Otherwise, py is the automorphism
mapping the flag (v;,v;1+1, f) onto the flag (vg,vgy1, f), if that automorphism
exists. (That is, a rotation by k — i positions.)

This allows us to compute generators for A, as follows.

3.5. SYMMETRIC DRAWINGS OF PLANAR GRAPHS 101

e If o does not exist, then p; exists and A is a cyclic group of size m/(j —)
generated by the rotation p;.

o If o exists but neither p; nor py exists, then A is the group of size 2 generated
by the reflection «.

e If o and p; exist, then A is the dihedral group of size 2m/(j — i) generated by
the reflection o and the rotation p;.

e Otherwise, a and ps exist, and A is the dihedral group of size 2m/(k—1i) generated
by the reflection o and the rotation pa.

We summarize this section with the following lemma.

LEMMA 3.3 Algorithm Max PAG_tricon computes generators for the largest planar
automorphism group of a triconnected planar graph in linear time.

3.5.2 Biconnected planar graphs

If the input graph G is biconnected, then we break it into triconnected components and
apply the algorithm for triconnected graphs in Section 3.5.1. However, this process is not
as simple as it sounds.

We use a version of the “SPQR-tree” to represent the decomposition of a biconnected
planar graph into triconnected components. Various versions of the SPQR tree appear in the
literature; the version that we use is closely related to the original version of Tutte [Tut66].

It is useful to review the definition of triconnected components [HT73]. If G is tricon-
nected, then G itself is the unique triconnected component of G. Otherwise, let u,v be a
separation pair of G. We split the edges of GG into two disjoint subsets E1 and Fs, such that
|E1| > 1, |E2| > 1, and the subgraphs G and G5 induced by F; and E5 only have vertices
u and v in common. Form the graph G by adding an edge (called a virtual edge) between u
and v; similarly, form G%. We continue the splitting process recursively on G} and G%. The
process stops when each resulting graph reaches one of three forms: a triconnected simple
graph, a set of three multiple edges (a triple bond), or a cycle of length three (a triangle).
The triconnected components of G are obtained from these resulting graphs. They may be
of three types:

1. a triconnected simple graph;
2. a bond, formed by merging the triple bonds into a maximal set of multiple edges;
3. a polygon, formed by merging the triangles into a maximal simple cycle.

The triconnected components of G are unique. See [HT73] for further details.

Now we can describe the SPQR tree. Each node v in the SPQR tree is associated with a
graph skeleton(v), corresponding to a triconnected component. There are several types of
nodes in the SPQR tree, corresponding to the type of triconnected components described
above. The edges of the SPQR tree are defined by the virtual edges, that is, if v and v are
two nodes whose skeletons share a virtual edge, then v and v are connected in the SPQR
tree.

The SPQR tree can be rooted at its center (if the tree has two centers, it can be rooted at
either one). The motivation for using the rooted version is that the SPQR tree is unique for
each biconnected planar graph [Bab95, DT92]. This means that the triconnected component
corresponding to the root of the SPQR-tree is fixed by a planar automorphism group of a
biconnected planar graph. Further, each leaf is mapped to a leaf. These two properties of
the rooted SPQR tree are essential for our algorithm outlined below.

102 CHAPTER 3. SYMMETRIC GRAPH DRAWING

To state the algorithm, we need some more terminology. We say that a virtual edge e of
skeleton(v) is a parent (child) virtual edge if e corresponds to a virtual edge of u which is
a parent (resp. child) node of v. We define a parent separation pair s = (s1, s2) of v as the
two endpoints of a parent virtual edge e.

The overall algorithm is composed of three steps.

Algorithm MAX PAG bicon

Step 1. Construct the SPQR-tree T of G.
Step 2. Reduction: For each level ¢ of T' (from the lowest level to the root level)

(a) For each leaf node on level 4, compute labels on the parent virtual edge in
the leaf node.

(b) For each leaf node on level i, label the corresponding virtual edge in the
parent node with the labels.

(¢) Remove the leaf nodes on level i.

Step 3. Compute a maximum size planar automorphism group at the labeled center.

We briefly describe each step of the algorithm. The first step is to construct the SPQR-tree
for the input biconnected planar graph. This can be done in linear time using the classical
Hopcroft-Tarjan algorithm [HT73].

The second step, reduction, is the most important. This takes the rooted SPQR-tree of a
biconnected graph, and proceeds up the SPQR-tree from the leaf nodes to the center level
by level, computing labels. The labels consist of integer and boolean values that capture
some information of the planar automorphisms of the leaf nodes. First, it computes the
labels for the leaf nodes. Then, it labels the corresponding virtual edge in the parent node
and delete each leaf node. The reduction process stops when it reaches the root.

The reduction process clearly does not decrease the planar automorphism group of the
original graph. This is not enough; we need to also ensure that the planar automorphism
group is not increased by reduction. This is the role of the labels. As a leaf v is deleted, the
algorithm labels the virtual edge e of v in skeleton(u) where u is a parent of v. Roughly
speaking, the labels encode enough information about the deleted leaf to ensure that planar
automorphisms of the labeled reduced graph can be extended to a planar automorphisms
of the original graph.

We illustrate the basic idea of the algorithm with an example.

Consider the biconnected graph represented in Figure 3.9. Here the graph G has an SPQR
tree with three leaves; these are triconnected components, G1, G2, and G3, illustrated by
shaded blobs. The remainder of the graph, G*, is illustrated by a shaded oval. This is
connected to the leaves by separation pairs {u;,v;}, for i = 1,2,3..

Intuitively, G can be drawn with an axial symmetry (a reflection in a horizontal line) as
long as:

1. L; is isomorphic to Lo with an isomorphism that maps u; to us and vy to vs.
2. L3 has an axial planar automorphism that swaps ug with vs.

3. G* has an axial planar automorphism that swaps w3 with v3, and maps u; to us
and vy to vs.

To decide whether G can be drawn with an axial symmetry, we maintain a number of
labels, including:

3.5. SYMMETRIC DRAWINGS OF PLANAR GRAPHS 103

P w

Vi

V)

‘ B
U

Figure 3.9 A biconnected graph.

V)

‘e o Uy

IP(L)

Figure 3.10 Labels on the reduced biconnected graph.

1. An isomorphism code IP that has the property that IP(Ly) = IP(Ls) if and
only if L is isomorphic to Lo with an isomorphism that maps u; to us and vy
to vs.

2. A boolean azial swap label Asyap that has the property that Agpep(Lz) = true
if and only if L3 has an axial planar automorphism that swaps us with vs.

These labels can be computed at Step 2(a) of Algorithm MAX_PAG_bicon, then transferred
to the parent virtual edges in G* at Step 2(b). Then Step 2(c) gives the labeled reduced
graph illustrated in Figure 3.10.

The reduction then continues to the next iteration of Step 2, operating on the labeled
reduced graph in Figure 3.10. This continues to the root of the SPQR tree.

In fact, the reduction step is much more complex than this example suggests. There are
seven different kinds of labels and separate algorithms for computing these labels for each
type of triconnected component. Details of these algorithms are in [HE05].

104 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Step 3 of Algorithm MAX_PAG_bicon computes a maximum size planar automorphism
group at the center, using the information encoded on the labels. Again this step is quite
complex, with separate algorithms for computing these labels for each type of triconnected
component and each type of center (the center of the SPQR tree can be a node or and
edge). Details of these algorithms are in [HE05].

3.5.3 One-connected planar graphs

The algorithm for computing a maximum size planar automorphism group of one-connected
planar graph uses a reduction process that is similar to the biconnected case. For one-
connected graphs, we take the block-cut vertex tree (the BC-tree). The BC- tree defines the
structure of the biconnected components of a graph. If G is a one-connected graph, then
a maximal biconnected subgraph of G is a block, or a biconnected component. Two blocks
share a cut vertex. The BC-tree has a B-node for each block of G and a C-node for each
cut vertex of G. There is an edge between the B-node B and the C-node c if ¢ is a vertex
of B. The BC-tree can be computed in linear time [AHUS83].

Again we can choose the center of the BC-tree as a root, and the rooted BC-tree is
unique. This property allows a reduction and labeling process similar to that described in
the previous section, although the details are very different; see [HE06]. The algorithm uses
the algorithms for the biconnected case as subroutines.

3.5.4 Disconnected planar graphs

Drawing disconnected graphs is surprisingly challenging (see, for example, [FDKO01]). In this
section, we give an intuitive explanation of an algorithm for finding planar automorphisms
of a disconnected graph G. The algorithm uses the algorithms for the higher-connectivity
cases as subroutines. For the purposes of an intuitive explanation, we consider problems of
arranging objects in the plane to maximize symmetry.

First, suppose that we have a set of colored discs, with n; discs of color j, for j =
1,2,...,m. Each disc is circular and has radius one. We want to arrange the discs in
the plane so that no two discs overlap, and the arrangement is as symmetrical as possible.
We can make a picture something like a flower: one disc in the center, and the others as
“petals.” Such an arrangement is in Figure 3.11; here m = 2, n; = 4 and ny = 6, and the
discs are arranged to have a dihedral group of size 6.

The center of the flower may be empty. In this case, all discs must be arranged as petals;
if there are k petals, then n; must divide k for j = 1,2,...,m. If the center of the flower
has a disc of color 7, n; — 1 divides k, and for j # ¢, n; divides k. We can deduce that the

0 © O

® o
OO OO

Figure 3.11 A symmetrical arrangement of circular discs.

3.5. SYMMETRIC DRAWINGS OF PLANAR GRAPHS 105

Figure 3.12 A symmetrical arrangement of polygonal discs.

Figure 3.13 Nesting of discs with holes.
maximum symmetry group is dihedral of size 2k as long as the following equation holds:
k = max{gcd(ny,na, ... ,nm),mngmf(gcd(nl,ng, cey o1, — Lmiga, . nm) e (3.11)
i—

With some clever computation of the geds, we can compute equation (3.11) and a maximally
symmetric layout of the discs in time O(ny + na + -+ + 1y).

Now consider a problem with a little more complexity. Suppose that we have colored
polygonal discs, with n; discs of color j, for j = 1,2,...,m. Each disc is a regular polygon;
all discs of color ¢ have s; sides, and have radius one. Again, we can make a symmetric
picture something like a flower, as in Figure 3.12; here m = 2, n; =5, s1 =4, no = 4 and
So = 6.

In this case, we can obtain a dihedral symmetry group of size 2k if k satisfies either:

k= gcd(ni,ng,...,ny), (3.12)
(for the case where the center is empty), or for some 4,
k= ged(si,ni,ne, ..y ni—1,ns — 1,01, Mn) b (3.13)

(for the case where a disc with s; sides is in the center).

Again, using some clever computation of the gecds and maximizing over i, we can compute
a maximally symmetric layout of the discs in time O(s1nq + Sana + -+ + SN).

Now consider a more complex problem: suppose that some of the discs have holes. We
have n; discs of color j, for j = 1,2,...,m. The outside of each disc is a regular polygon;
all discs of color i have s; sides. For some values of i, the all discs of color i have a circular
hole in the middle. Further, each disc is shrinkable or expandable; this means that we can
fit one disc inside another to make a kind of “nest,” as in Figure 3.13.

106 CHAPTER 3. SYMMETRIC GRAPH DRAWING

o0
N

Figure 3.14 Symmetric arrangement of polygonal discs with holes.

Again, we can make a symmetric picture something like a flower, as in Figure 3.14; in
this case, we can place a “nest” of discs in the center of the flower, as long as all but one of
them have a hole.

Let H denote the set of colors of discs with holes. We can obtain a dihedral symmetry
group of size 2k if there is a subset H' of H such that k satisfies one of the following:

k= ged (ged{s; : j € H'},ged{n, : ¢ € H— H'}) (3.14)
(for the case where every discs in the center has a hole), or for some i,
k= ged (ged{s;: j € H'},ged{ne: £ € H— H',{ #i},s;,n; — 1), (3.15)

for the case where there is a disc of color ¢, without a hole, in the center.

One can maximize over 7 and H' to compute a maximally symmetric layout of the colored
polygonal discs, with and without holes, in time O(s1n1 + sang + -+ + Synpy).

One can use such disc arrangement algorithms to construct maximally symmetric draw-
ings of disconnected graphs. We can compute the connected components Gy of a discon-
nected graph G and, using planar graph isomorphism algorithms, divide the components
into isomorphism classes N1, Na,..., N,,, where |N;| = n;. We compute maximal planar
automorphism groups for G; using the algorithm for connected graphs; assume for the mo-
ment that these groups are dihedral and the group for isomorphism class IV; has size 2s;.
For the purposes of symmetric layout, the isomorphism class NN; is akin to a color class of
polygonal disc with s; sides. For some j, it is possible that the components in N; has two
faces fixed by their planar automorphism group. This is akin to a disc with a hole, because
one fixed face can be the outside face and the other can be a central inside face.

There are some further complexities. First, some of the components may have no dihedral
planar automorphism group: the group may be purely cyclic, or purely axial, or even trivial.
This requires algorithms that are substantially more complex, but follow the same general
pattern as above.

Secondly, the connected components may have several maximal planar automorphism
groups, and the largest of these may not lead to the maximum planar automorphism group
of the whole graph. An example is in Figure 3.15: the two pictures here show a graph with
two drawings, one displaying 6 symmetries and one displaying 8 symmetries.

We say that a planar automorphism group A of G is mazimal if A is not contained in
another planar automorphism group of G. One must take all maximal groups into account
when this graph is a connected component of a larger disconnected graph. Fortunately, this
pathological case is relatively contained; the next Lemma explains why.

LEMMA 3.4 [HEO03] A planar graph has at most 3 non-conjugate maximal planar au-
tomorphism groups.

3.5. SYMMETRIC DRAWINGS OF PLANAR GRAPHS 107

Figure 3.15 Display of two maximal planar automorphism groups.

This means that additional maximal planar automorphism groups only add a constant
to the time complexity of the algorithms.

3.5.5 Drawing algorithms

The algorithms presented in the preceding sections take a planar graph as input and produce
two outputs: a planar automorphism group of maximum size, and an embedding of the
graph. In this section, we show how to use this information to construct a straight-line
symmetric drawing of the graph. The drawing algorithms follow the same connectivity
hierarchy.

For triconnected graphs, one could use the well-known barycenter algorithm of
Tutte [Tut63, DETT99]. This algorithm draws symmetrically but unfortunately takes
super-linear time. A much more complex algorithm, described in [HMEO6], runs in lin-
ear time. Note that the drawing can be “squashed” at a specified vertex on the outer face;
that is, given an angle a and a vertex u on the outer face, we can adjust the drawing so
that the angle at u on the outer face is at most a. The squashing can be done so that any
axial symmetry that fixes a is preserved. This process, illustrated in Figure 3.16, is helpful
for lower connectivity drawings.

For a biconnected planar graph, we use “augmentation”: we increase the connectivity
by adding new edges and new vertices to make it triconnected, while preserving the planar
automorphism group. The easiest way to do this is to use the star triangulation method
described in Section 3.5.1. Then we can apply the algorithm for constructing symmetric
drawings of triconnected planar graphs with straight-line edges to construct a symmetric
drawing.

Given an embedding of a one-connected planar graph, we use “attachment,” as follows.
First, we augment the biconnected component to make them triconnected, as above, and
draw the triconnected components. Then we draw the root of the BC-tree; then we traverse
the BC-tree “attaching” blocks as we go. We can scale blocks to fit inside faces of previously
drawn blocks, using the “squash” operation described above.

108 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Figure 3.16 Squashing a triconnected component at u.

Figure 3.17 The graph Gs.

The drawing process takes linear time, and we can state the following result.

Theorem 3.7 Given a planar graph G and a planar automorphism group A of G, we
can construct a straight-line drawing of G that displays A in linear time.

The drawings obtained in this way have poor resolution. Unfortunately, in the worst
case, this is unavoidable, as the following example shows. Suppose that Gg is a single
triangle with vertices ag,bg,co. For i > 0, G; is a planar graph with a triangular out-
side face {a;,b;,¢;}. We form G; from G;_; by adding the face {a;,b;,¢;} and the edges
(ai, ai_l), (ai, bi—1)7 (bl, bi—l)y (bz, Ci—1)7 (CZ‘, Ci—1)7 (Ci, ai_l). The graph Gg is shown in Flg—
ure 3.17.

The graph Gj has 3k vertices and has a dihedral planar automorphism group of size 6.
However, one can show that every straight-line drawing of Gy that displays this dihedral
group requires exponential area; that is, if it has a minimum distance of one between
vertices, then the area of the drawing is (2%).

3.6 Conclusion

This chapter describes the symmetric graph drawing problem, and discusses some of its
qualitative and algorithmic aspects. In particular, we characterize those automorphism
groups that can be displayed as symmetries of a graph drawing, we show that the gen-

3.6. CONCLUSION 109

Figure 3.18 Almost symmetric drawings.

eral problem of finding such automorphisms is NP-complete, and we describe linear-time
algorithms for finding and displaying such symmetries in the case where the input graph is
planar.

In this section, we briefly mention some important aspects of symmetric graph drawing
that have not been covered in this chapter and conclude with some open problems.

3.6.1 Further topics

Directed graphs. The model of symmetry needs some modification for directed
graphs; for example, perhaps a directed geometric symmetry should either pre-
serve the direction of every directed edge or reverse the direction of every directed
edge. With a variety of modifications of the model, a number of algorithms have
been developed for symmetrically directed graphs. Examples include algorithms
for rooted trees [RT81, SR83], series-parallel digraphs [DETT99, HELO00], upward
planar graphs [DTT92], and hierarchical graphs [ELT96].

Three-dimensional graph drawing is now well established and some attempts have
been made to draw graphs symmetrically in 3D; see [HEQL98, HE00, Hon01].

Exact but exponential time algorithms often work well for small graphs. These
include methods based on integer linear programming [BJO01, BJ03] and group
theory [AHTO07].

Approximation algorithms. The formal definition of the intuitive notion of sym-
metry display given in Section 3.2.3 is fairly strong. For example, it does not
consider the drawings in Figure 3.18 to be symmetric at all. There have been sev-
eral attempts to formalize the intuitive “approximate” symmetry such as shown
in Figure 3.18. For example, Bachl [Bac99] gives a simple approach to approx-
imate axial symmetry: if a graph has two large disjoint isomorphic subgraphs,
then one can draw it so that a large part of the drawing displays axial symmetry.
Finding such subgraphs is, of course, NP-complete; Bachl gives algorithms for
some restricted cases. Other examples include [BJ03, CY02, CLY00].

3.6.2 Open problems

Here we list a couple of open problems in symmetric graph drawing.

Very very symmetric graph drawing. Consider the two drawings in Figure 3.19.
The two drawings, according to the model in Section 3.2.3, have the same degree

110 CHAPTER 3. SYMMETRIC GRAPH DRAWING

Figure 3.19 A symmetric drawing and a very very symmetric drawing.

of symmetry. However, intuitively the one on the right is more symmetric than
the one on the left. The extra symmetry does not come from isometry of the
plane; it arises in a more subtle way. Modeling this kind of “very very symmetric”
drawing has not been done at this point. Further, algorithms to draw graphs very
very symmetrically have not been designed.

An algorithmic version of Mani’s Theorem. Theorem 3.5 is one of the
most beautiful results in graph drawing. It is not clear how to make Mani’s
proof [Bab95, ManT71] into an algorithm. It would be very interesting to find a
linear-time algorithm that takes a triconnected planar graph as input and draws
it as the skeleton of a convex polyhedron so that every automorphism of the
graph is a symmetry of the polyhedron.

Acknowledgments

This work has been supported by the Australian Research Council. Parts of this chapter
were written when the authors were visiting the University of Kyoto under Grant-in-Aid
16092101 for Scientific Research on Priority Areas from the Ministry of Education, Culture,
Sports, Science and Technology of Japan.

REFERENCES

References

111

[AHTO7]

[AHUS3]
[AMSS]
[Arm88]
[Bab95]
[Bac99]

[BJO1]

[BJO3]

[CLY00]
[CY02]
[DETT99]
[AF99)]
[DT92]
[DTT92]
[Eads4]
[ELOO]
[ELT96]

[FDKO1]

[Fon76)

[HEOO]

David Abelson, Seok-Hee Hong, and Donald E. Taylor. Geometric automor-
phism groups of graphs. Discrete Applied Mathematics, 155(17):2211-2226,
2007.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algo-
rithms. Addison-Wesley, Reading, MA, 1983.

M. J. Atallah and J. Manning. Fast detection and display of symmetry in
embedded planar graphs, 1988.

M. A. Armstrong. Groups and Symmetry. Springer-Verlag, 1988.

L. Babai. Automorphism groups, isomorphism, and reconstruction. In
Groetschel Graham and Lovasz, editors, Handbook of Combinatorics, vol-
ume 2, chapter 27. Elsevier Science, 1995.

Sabine Bachl. Isomorphic subgraphs. In Kratochvil [Kra99], pages 286-296.
Christoph Buchheim and Michael Jiinger. Detecting symmetries by branch
& cut. In Mutzel et al. [MJLO02], pages 178-188.

Christoph Buchheim and Michael Jiinger. An integer programming ap-
proach to fuzzy symmetry detection. In Giuseppe Liotta, editor, Graph
Drawing, volume 2912 of Lecture Notes in Computer Science, pages 166—
177. Springer, 2003.

Ho-Lin Chen, Hsueh-I Lu, and Hsu-Chun Yen. On maximum symmetric
subgraphs. In Marks [Mar01], pages 372-383.

Ming-Che Chuang and Hsu-Chun Yen. On nearly symmetric drawings of
graphs. In IV, pages 489—, 2002.

G. Di Battista, P. Eades, R. Tamassia, and 1. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

Hubert de Fraysseix. An heuristic for graph symmetry detection. In Kra-
tochvil [Kra99], pages 276-285.

G. Di Battista and R. Tamassia. On-line planarity testing. Report CS-92-
39, Comput. Sci. Dept., Brown Univ., Providence, RI, 1992.

G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement and symme-
try display of planar upward drawings. Discrete Comput. Geom., 7(4):381—
401, 1992.

P. Eades. A heuristic for graph drawing. Congr. Numer., 42:149-160, 1984.
Peter Eades and Xuemin Lin. Spring algorithms and symmetry. Theor.
Comput. Sci., 240(2):379-405, 2000.

P. Eades, X. Lin, and R. Tamassia. An algorithm for drawing a hierarchical
graph. Internat. J. Comput. Geom. Appl., 6:145-156, 1996.

Karlis Freivalds, Ugur Dogrusoz, and Paulis Kikusts. Disconnected graph
layout and the polyomino packing approach. In Mutzel et al. [MJLO02],
pages 378-391.

M. Fontet. Linear algorithms for testing isomorphism of planar graphs. In
Proceedings Third Colloguium on Automata, Languages, and Programming,
pages 411-423, 1976.

Seok-Hee Hong and Peter Eades. An algorithm for finding three dimensional
symmetry in trees. In Marks [Mar01], pages 360-371.

112 CHAPTER 3. SYMMETRIC GRAPH DRAWING

[HEO03] Seok-Hee Hong and Peter Eades. Symmetric layout of disconnected graphs.
In Toshihide Ibaraki, Naoki Katoh, and Hirotaka Ono, editors, ISAAC, vol-
ume 2906 of Lecture Notes in Computer Science, pages 405-414. Springer,
2003.

[HEO05] Seok-Hee Hong and Peter Eades. Drawing planar graphs symmetrically, ii:
Biconnected planar graphs. Algorithmica, 42(2):159-197, 2005.

[HEO0G] Seok-Hee Hong and Peter Eades. Drawing planar graphs symmetrically, iii:
One-connected planar graphs. Algorithmica, 44(1):67-100, 2006.

[HELOO] Seok-Hee Hong, Peter Eades, and Sang Ho Lee. Drawing series parallel
digraphs symmetrically. Comput. Geom., 17(3-4):165-188, 2000.

[HEQL98] Seok-Hee Hong, Peter Eades, Aaron J. Quigley, and Sang Ho Lee. Drawing
algorithms for series-parallel digraphs in two and three dimensions. In
Graph Drawing, pages 198-209, 1998.

[HMEO06] Seok-Hee Hong, Brendan D. McKay, and Peter Eades. A linear time algo-
rithm for constructing maximally symmetric straight line drawings of tri-
connected planar graphs. Discrete & Computational Geometry, 36(2):283—
311, 2006.

[Hon01] Seok-Hee Hong. Drawing graphs symmetrically in three dimensions. In
Mutzel et al. [MJL02], pages 189-204.

[HT73] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-
nents. SIAM J. Comput., 2(3):135-158, 1973.

[HW74] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of
planar graphs. In Proc. of the Sixth Annual ACM Symposium on Theory
of Computing, pages 172-184, 1974.

[Kam88] T. Kamada. On Visualization of Abstract Objects and Relations. PhD
thesis, Department of Information Science, University of Tokyo, 1988.

[Kam89] T. Kamada. Symmetric graph drawing by a spring algorithm and its ap-
plications to radial drawing. Technical report, Department of Information
Science, University of Tokyo, 1989.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected
graphs. Inform. Process. Lett., 31:7-15, 1989.

[Kra99] Jan Kratochvil, editor. Graph Drawing, 7th International Symposium,
GD’99, Stirin Castle, Czech Republic, September 1999, Proceedings, vol-
ume 1731 of Lecture Notes in Computer Science. Springer, 1999.

[Lin92] X. Lin. Analysis of Algorithms for Drawing Graphs. PhD thesis, Depart-
ment of Computer Science, University of Queensland, 1992.

[LNS85] R. J. Lipton, S. C. North, and J. S. Sandberg. A method for drawing
graphs. In Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 153160,
1985.

[Lub81] Anna Lubiw. Some np-complete problems similar to graph isomorphism.
SIAM J. Comput., 10(1):11-21, 1981.

[MASG6] J. Manning and M. J. Atallah. Fast detection and display of symmetry in
outerplanar graphs. Technical Report CSD-TR-606, Department of Com-
puter Science, Purdue University, 1986.

[MA88] J. Manning and M. J. Atallah. Fast detection and display of symmetry in
trees. Congr. Numer., 64:159-169, 1988.

REFERENCES

[ManT71]
[Man90]

[Mar01]

[MJLO2]

[RTS1]
[SR34]
[SR83]
[Tut63]
[Tut66]

[Wie64]
[WonT5]

P. Mani. Automorphismen von polyedrischen graphen. Math. Annalen,
192:279-303, 1971.

J. Manning. Geometric Symmetry in Graphs. PhD thesis, Purdue Univ.,
1990.

Joe Marks, editor. Graph Drawing, 8th International Symposium, GD 2000,
Colonial Williamsburg, VA, USA, September 20-23, 2000, Proceedings, vol-
ume 1984 of Lecture Notes in Computer Science. Springer, 2001.

Petra Mutzel, Michael Jiinger, and Sebastian Leipert, editors. Graph Draw-
ing, 9th International Symposium, GD 2001 Vienna, Austria, September
23-26, 2001, Revised Papers, volume 2265 of Lecture Notes in Computer
Science. Springer, 2002.

E. Reingold and J. Tilford. Tidier drawing of trees. IEEE Trans. Softw.
Eng., SE-7(2):223-228, 19831.

E. Steinitz and H. Rademacher. Vorlesungen tuber die Theorie der Polyeder.
Julius Springer, Berlin, Germany, 1934.

K. J. Supowit and E. M. Reingold. The complexity of drawing trees nicely.
Acta Inform., 18:377-392, 1983.

W. T. Tutte. How to draw a graph. Proceedings London Mathematical
Society, 13(52):743-768, 1963.

W. T. Tutte. Connectivity in Graphs. University of Toronto Press, 1966.
Wielandt. Finite Permutation Groups. Academic Press, 1964.

J. K. Wong. Isomorphism Problems Involving Planar Graphs. PhD thesis,
Cornell Univ., 1975.

113

Proximity Drawings

4.1 Introduction..........c.ooieiiiiiiiiiiii 115

4.2 Proximity Rules and Proximity Drawings 116
Proximity Region Based Drawings ¢ Global Proximity

4.3 Results ... 123

Minimum Weight Drawings ¢ Delaunay and Voronoi
Drawings * Rectangle of Influence Drawings ® Nearest
Neighbor Drawings ® Sphere of Influence Drawings
B-Drawings

4.4 Variations of Proximity Drawings........................ 132
Witness Proximity Drawings ® Weak Proximity Drawings ¢
Approximate Proximity Drawings

4.5 Open Problems ... 142
4.6 Beyond this Chapter................coooiiiiiiii . 143
Giuseppe Liotta Acknowledgments. ... 145
University of Perugia References 146

4.1 Introduction

In 1969, Gabriel and Sokal [GS69] presented a method for associating a graph to a set
of geographic data points P by connecting points x,y € P with an edge if and only if
the closed disk having the segment Ty as diameter contained no other point of P. This
geometric graph, called the Gabriel graph of P, is just one example of what have come to
be called prozimity graphs. Loosely speaking, a proximity graph is a geometric graph (i.e., a
straight-line drawing) constructed from a set P of points in some metric space by connecting
pairs of points that are deemed to be “sufficiently” close together. A set P can give rise to
a variety of different proximity graphs depending upon the definition of closeness used.

Proximity graphs have applications in numerous areas where they are commonly used
to describe the underlying “shape” of a set of points, including computer graphics, com-
putational geometry, pattern recognition, computational morphology, numerical analysis,
computational biology, and GIS (see, e.g., [OBS92, GO04]). A paper by Toussaint [Tou05]
describes applications of proximity graphs in the context of instance-based learning and
data-mining and a paper by Carreira-Perpinan and Zemel [CPZ04] to the field of clustering
and manifold learning. Motivated by these many applications, a rich body of computational
geometry literature has been devoted to the question of efficiently computing different types
of proximity graphs of a given set of points. For exhaustive lists of references on the subject,
the interested reader is referred to the above-mentioned paper by Toussaint [Tou05] and to
the survey by Jaromczyk and Toussaint [JT92].

115

116 CHAPTER 4. PROXIMITY DRAWINGS

In this chapter, we shall look at proximity from the different perspective of graph drawing:
The goal is computing a straight-line drawing of a given graph with the additional constraint
that the drawing be a proximity graph. There is a strong connection between the graph
drawing and the computational geometry point of views about proximity. Indeed, the
(computational geometry) problem of analyzing the combinatorial properties of a given
type of geometric graph naturally raises the (graph drawing) question of characterizing
those graphs that admit the given type of straight-line drawing. This in turn leads to the
investigation of the design of efficient algorithms for computing such a drawing when one
exists.

We therefore will talk about the prozimity drawability problem: Given a graph G and a
definition of proximity, determine whether a set P of points exists such that the proximity
graph of P is isomorphic with the given graph, and if so, compute such a set. Clearly, the
set P, if it exists, gives rise to a straight-line drawing of G, called a proximity drawing of G,
where each vertex of G is mapped to a distinct point of P and each edge to a straight-line
segment between pairs of points of P. Proximity drawings have several interesting features.
They are usually unaffected by changes in scale, since the measures of proximity used are
based on relative distances between points. Also, adjacent vertices are drawn (relatively)
more closely together than non-adjacent vertices, and vertices not incident to a particular
edge are not drawn too close to the edge. Furthermore, neighbors of a given vertex tend to
cluster together.

This chapter surveys some of the central problems, results, and research trends on prox-
imity drawings. Although many of the ideas described here can be developed in the more
general setting of a metric space, we shall most often assume that the drawings are to be
made in Euclidean d-space (the only exception will be for Voronoi and Delaunay drawings).

The remainder of this chapter is structured as follows. In Section 4.2, various definitions
of proximity drawings are given; in Section 4.3, the basic graph drawing literature on the
proximity drawability problem is reviewed. Section 4.4 introduces extensions and relax-
ations of the definition of proximity drawing that make it possible to significantly enlarge
the families of representable graphs. Some challenging open problems on proximity draw-
ings are listed in Section 4.5. Finally, Section 4.6 concludes the chapter by briefly pointing
at two research directions in the areas of sensor networks and of robust geometric computing
where proximity graphs and drawings have received some attention in the last few years.

4.2 Proximity Rules and Proximity Drawings

At a first, broad approximation, the definition of closeness in a proximity drawing can be
either based on the concept of prozimity region or based on a global prorimity measure.
In a proximity region based drawing two or more vertices are adjacent if and only if some
suitably defined region that describes the neighborhood of these vertices contains at most
k other vertices, for a given integer value k > 0. Global proximity, by contrast, gives rise
to proximity drawings where the overall sum of the lengths of the edges in the drawing is
minimized. In the remainder of this section, we recall some of the most common definitions
of region-based and of global proximity rules and drawings; unless stated otherwise, P
denotes the set of vertices of a straight-line drawing I" of some graph G.

4.2.1 Proximity Region Based Drawings

Let R be a function that associates to every set S of k > 2 points in Euclidean d-space
E? a subset R(S) of E% R(S) is called the proximity region or region of influence of S.

4.2. PROXIMITY RULES AND PROXIMITY DRAWINGS 117

Now consider a straight-line drawing I' of G in which the vertices are drawn at a set of
locations P. Drawing I is an (h, k)-prozimity drawing of G if T results from the following
procedure: For every set S C P of h vertices, edges are drawn between all pairs of vertices
in S if and only if the proximity region R(S) contains at most k vertices from P —.S. While
the proximity region can be any subset of the space in question, usually the regions chosen
are homeomorphic to an open or closed ball of dimension equal to that of the space. Such
drawings are referred to as open or closed proximity drawings , respectively. Examples of
open/closed (h, k)-proximity drawings follow.

The Gabriel region [GS69] of two vertices = and y is defined to be the closed sphere (in
d dimensions) having the segment Ty as diameter. A Gabriel drawing is a closed (2,0)-
proximity drawing where the region of influence is the Gabriel region. Indeed, a Gabriel
drawing of GG is a straight-line drawing of G having the property that two vertices z and y
of the drawing form an edge if and only if the Gabriel region of x and y does not contain
any other vertex. Figure 4.1 (a) shows a Gabriel drawing of a planar triangulated graph; in
the figure, vertices p and g are adjacent because their Gabriel region does not contain any
other vertex, while vertices u and v are not adjacent because their Gabriel region contains
vertex ¢. If one changes the definition of Gabriel region by saying that the sphere defined by
the two vertices = and y is an open set, then the corresponding proximity region is termed
a modified Gabriel region and the associated drawing is called a modified Gabriel drawing.
Figure 4.1 (b) shows a modified Gabriel drawing of a wheel graph of five vertices; note that
vertices u and v are adjacent because the modified Gabriel region is an open set and hence
it does not contain vertex g. Note that the graph of Figure 4.1 (b) does not have a Gabriel
drawing [Cim92].

(a) (b)

Figure 4.1 (a) A Gabriel drawing. (b) A modified Gabriel drawing of a graph that does
not have a Gabriel drawing.

118 CHAPTER 4. PROXIMITY DRAWINGS

A relative neighborhood drawing of a graph G is an open (2, 0)-proximity drawing in which
the region of influence of two points x and y is the intersection of the open disks of radius
d(x,y) centered at x and y. Thus, in a proximity drawing of G, x and y are adjacent if and
only if there is no vertex whose distance to both x and y is less than the distance between x
and y. The proximity region of x and y is called the relative neighborhood region or lune of
x and y [T0u80].1 A relative neighborhood drawing of a wheel graph consisting of a vertex
of degree six adjacent to five vertices of degree three is depicted in Figure 4.2 (a): Since the
relative neighborhood region is an open set, vertex w is not in the relative neighborhood
region of vertices u and v and therefore the two vertices are adjacent.

(a) (b)

Figure 4.2 (a) A relative neighborhood drawing. (b) A relatively closest drawing of a
tree that does not have a relative neighborhood drawing.

Variants of relative neighborhood graphs have also been studied. One example is the k-
relative neighborhood drawing [CTL92] where the proximity constraint is relaxed by saying
that two vertices are adjacent if and only if their lune contains at most k other vertices
(for a given k > 0). As another example, if the relative neighborhood region is assumed to
be a closed set, we have the so-called relatively closest region [Lan69] and relatively closest
drawing. Figure 4.2 shows how proximity drawability differs for relative neighborhood
drawings and relatively closest drawings. The drawing of Figure 4.2 (b) uses the same
vertex set as the one of Figure 4.2 (a); however, the vertices u and v of Figure 4.2 (b) are

1While the term lune is commonly used in the computational geometry literature to denote the relative
neighborhood region, it has to be recalled that in plane geometry the non-empty intersection of two
disks of equal radius is called symmetric lens.

4.2. PROXIMITY RULES AND PROXIMITY DRAWINGS 119

not adjacent because their relatively closest region, which is a closed set, contains vertex
w. Note that a tree with one interior vertex and six leaves does not admit a relative
neighborhood drawing [BLL96].

The Gabriel, modified Gabriel, relative neighborhood, and relatively closest drawings de-
scribed above are all examples of members of a family of drawings called B-drawings. In
1985, Kirkpatrick and Radke [KR85, Rad88] introduced a family of closed (2, 0)-proximity
regions called B-neighborhoods, denoted by R[z,y,] and defined as follows (see also Fig-
ure 4.3):

1. For 8 =0, R[x,y, (] is the line segment Ty.

2. For 0 < 8 < 1, R[z,y,p] is the intersection of the two closed disks of radius
d(x,y)/(28) passing through both z and y.

3. For 1 < 8 < oo, R[z,y,] is the intersection of the two closed disks of radius
Bd(x,y)/2 and centered on the line through x and y.

4. For 8 = oo, R[z,y, 8] is the closed infinite strip perpendicular to the line segment
zy.

Figure 4.3 A set of (2,0)-proximity regions R[z,y, J].

Obviously, one can also define the analogous regions R(x,y,3) using open sets instead
of closed sets (R(z,y,0) is defined to be the empty set). The Gabriel, modified Gabriel,
relative neighborhood and relatively closest drawings mentioned above are obtained from
the fB-regions R[z,y,1], R(z,y,1), R(x,y,2) and R[z,y, 2], respectively. The closed strip
drawings are B-drawings that use the region R[z,y,oc0]. Similarly, the open strip drawings
are B-drawings that use the region R(z,y,o0). The regions defined above are also referred
to as lune-based (-regions. In the same papers, Kirkpatrick and Radke [KR85, Rad88] also
describe circle-based (-regions: for each 8 > 1, the region associated with two vertices x
and y is the union of the two disks of radius 8d(x,y)/2 passing through both z and y and
centered on the line through them.

120 CHAPTER 4. PROXIMITY DRAWINGS

In the (2,0)-proximity drawings described above, the proximity region chosen for a pair
of vertices z,y is symmetric about the perpendicular bisector of the segment Ty. This
guarantees a certain symmetry in the drawings produced. This symmetry, however, is
not always desirable. Veltkamp [Vel92, Vel94, Vel95] introduced a family of proximity
regions, called v-regions, in which the proximity region may lack this symmetry and that
generalize lune-based and circle-based (S-regions. While Veltkamp takes advantage of this
absence of symmetry in constructing object boundaries from a set of points in the context of
visual processing and pattern recognition, the notion of y-regions can be used from a graph
drawing perspective to define y-drawings. Another generalization of proximity drawings
based on [-region are the so-called empty region graphs, recently introduced by Cardinal,
Collette, and Langerman [CCL09]. An empty region graph is a proximity drawing where
the proximity region of any pair of points v and v in the plane is a template region, that is
a function mapping the pair u,v to a subset of the plane. In particular, the authors focus
on the combinatorial properties of proximity graphs whose template regions are convex and
symmetric.

Several (2,0)-proximity regions can be seen as special cases of either S-regions or ~-
regions; however, there are some well-known proximity regions defined in the literature
that cannot be classified as members of some parameterized infinite family. Among those
that have been investigated in the graph drawing context, we recall here the rectangle of
influence [IS85] region, for which the proximity region associated with two points « and y is
the axis-parallel rectangle determined by = and y. As in the case of S-drawings, one can use
either open or closed rectangles; as with S-regions, the choice will determine which graphs
can be drawn. A proximity drawing that uses the (open or closed) rectangle of influence
region is called (open or closed) rectangle of influence drawing. In this type of drawing two
vertices x and y are connected by an edge if and only if the (open or closed) rectangle of
influence of and y does not contain any other vertex. Figures 4.4 (a) and (b) show an
open and a closed rectangle of influence drawing, respectively; the two drawings have the
same vertex set.

(a) (b)

Figure 4.4 (a) An open rectangle of influence drawing; the dotted box represents the
rectangle of influence of two vertices. (b) A closed rectangle of influence drawing.

4.2. PROXIMITY RULES AND PROXIMITY DRAWINGS 121

The (2, k)-proximity drawing paradigm can also be used to produce drawings of directed
graphs by associating with each ordered pair of points (z,y) a proximity region R, ,. By
allowing the region R, to be different from the region R, ., it is possible to produce
drawings where the edge (z,y) is in the drawing, but not the edge (y,x). An early example
of this is the nearest neighbor drawing (see, e.g, [PY92]), where each vertex x € P is
connected to all vertices (or sometimes just one) of minimum distance from z. Although
the nearest neighbor drawing is usually considered to be an undirected graph, the definition
is inherently that of a directed graph. The proximity region R, , in this case is the open
disk of radius d(z,y) centered at x.

Besides (2, h)-proximity drawings, there are many other meaningful and well-investigated
families of proximity drawings. A Delaunay drawing [Del34] is an example of a closed (3, 0)-
proximity drawing: here triplets of points in P are connected into triangles if and only if
the closed disk they determine contains no other points of P. Delaunay drawings make
sense for planar triangulated graphs (a Delaunay drawing is commonly called a Delaunay
triangulation in the computational geometry literature). A Delaunay drawing of order
h (usually called a higher order Delaunay triangulation in the computational geometry
literature [GHvKO02]) is a (3, h)-proximity drawing of a planar triangulated graph, where
for every triplet of vertices connected into a triangle the closed disk through the triplet
contains at most h other points of P (for a given integer h > 0).

Related to Delaunay triangulations is another well-known proximity graph, namely, the
Voronoi diagram (see, e.g., [PS90]). A Voronoi diagram of a set of points P is the geometric
dual of the Delaunay triangulation of P, i.e., it is the straight-line drawing whose edges are
the perpendicular bisectors of the edges of the Delaunay triangulation and whose vertices are
the intersection points of these perpendicular bisectors. Equivalently, the Voronoi diagram
of P, for a given metric, is a subdivision of the plane into regions such that each region is
associated with a distinct point p of P and it contains all points of the plane that are closer
to p than to any other elements of P. We can therefore define a new type of proximity
drawing: A Voronoi drawing [LMO3] of a graph G is a straight-line drawing of G that is
also the Voronoi diagram of some set of points (also called sites).

Figures 4.5 (a) and (b) show examples of Voronoi drawings in the Euclidean and in the
Manhattan metric, respectively. In the figure, the white points are the sites; for display
purposes, the edges of infinite length of the Voronoi diagram have been replaced by edges
of finite length and endvertices have been added.

(a) (b)

Figure 4.5 Voronoi drawings: (a) in the Euclidean metric and (b) in the Manhattan
metric.

122 CHAPTER 4. PROXIMITY DRAWINGS

In our definition of (k,n)-proximity drawings, we have required that the sets S to which
we associate proximity regions contain at least two points, since otherwise no edges can be
formed. There is, however, a way in which proximity regions associated with single points
can be used to create proximity drawings: pairs of points can be connected by an edge if the
regions corresponding to the points intersect. We call such drawings intersection drawings.
An example of such a proximity drawing would be a sphere of influence drawing of a graph.
To produce this type of drawing, each point x € P has, as its proximity region, its sphere of
influence [Tou88], namely, the disk centered at z of radius r, = min{d(x,y) : y € P —{z}}.
One can consider either open or closed sphere of influence drawings. An example of a sphere
of influence graph is depicted in Figure 4.6; the drawing is valid for both the open and the
closed model of proximity.

Figure 4.6 A sphere of influence drawing.

4.2.2 Global Proximity

Several graph drawing algorithms are designed to produce a representation of a graph that
is as small as possible in some sense. For example, given a resolution rule (i.e., a minimum
acceptable distance between any pair of graphic features in the drawing) one may want to
optimize the area of the drawing or aim for minimum edge lengths. A proximity drawing
that adopts a global measure of proximity is, in a sense, the smallest possible representation
of a graph because it globally maximizes the closeness of adjacent vertices and the reciprocal
distances of those pairs that are not adjacent.

The weight of a drawing of a graph is defined to be the sum of the lengths of the edges
of the drawing. Frequently, drawings of graphs are required to satisfy some set of aesthetic
criteria such as planarity or orthogonality. For a graph G, a set P of points in the plane,
and a set £ of aesthetic criteria, the weight of G with respect to P, denoted by wp(G),
is defined as follows: wp(G) is the minimum taken over the weights of all drawings of G
having P as the vertex set and satisfying &; if no such drawing exists, then wp(G) = oo.
Now let C be a class of graphs. A graph G € C is minimum weight drawable (for C) if there
exists a set P of points such that wp(G) is finite and G minimizes wp() over all graphs in
C. Any drawing of GG that achieves this minimum value is called a minimum weight drawing
of G with respect to P. Two well-known examples of such drawings are given below (see,
e.g., [PS90]).

A minimum spanning tree of a set P of points is a connected, straight-line drawing that
has P as its vertex set and that minimizes the total edge length. So, letting C be the class

4.3. RESULTS 123

of all trees, and letting £ denote straight-line planar drawings, a tree G is minimum weight
drawable for C if there exists a set P of points in the plane such that G minimizes wp() over
all trees. This is equivalent to saying that G is isomorphic to a minimum spanning tree of
P. Figure 4.7 shows a minimum weight drawing of a tree. A minimum weight triangulation
of a set P is a triangulation of P having minimum total edge length. Letting C be the class
of all planar triangulations, and letting £ be as above, a planar triangulation G is minimum
weight drawable for C if there exists a set P of points in the plane such that G is isomorphic
to a minimum weight triangulation of P.

Figure 4.7 A minimum weight drawing of a tree.

We conclude this section by remarking that there are strong relations between global
and region-based proximity rules. For example, it is well known that every minimum span-
ning tree on a set P of points is a subgraph of the Delaunay triangulation of P (see,
e.g., [PS90]). Also, a significant research effort can be found in the computational geome-
try literature devoted to studying the relationships between (2, k)-proximity and minimum
weight triangulations (see, e.g., [Kei94, WY01, CX01]).

4.3 Results

In this section, we survey some of the most relevant results on the proximity drawability
problem for the types of proximity drawings described in the previous section.

4.3.1 Minimum Weight Drawings

If a graph admits a minimum weight drawing, it is called minimum-weight drawable; oth-
erwise, it is called minimum-weight forbidden. As already mentioned above, most research
on minimum weight drawings has focused on trees and on planar triangulated graphs.

The problem of testing whether a tree can be drawn as a Euclidean minimum spanning
tree in the plane is essentially solved. Monma and Suri [MS92] proved that each tree with
maximum vertex degree at most five can be drawn as a minimum spanning tree of some set
of vertices by providing a linear-time (real RAM) algorithm. In the same paper, it is shown
that every tree having at least one vertex with degree greater than six is minimum weight
forbidden. As for trees having maximum degree equal to six, Eades and Whitesides [EW96b]
showed that it is NP-hard to decide whether such trees can be drawn as minimum spanning
trees.

124 CHAPTER 4. PROXIMITY DRAWINGS

One of the most challenging questions in the seminal paper by Monma and Suri [MS92]
was about the area required by a minimum weight drawing of a tree. Namely, the construc-
tion by Monma and Suri used a grid of size O(2"") x O(2"") and the authors conjectured
an exponential lower bound for minimum weight drawings of trees with maximum vertex
degree five (i.e., the existence of a tree T with n vertices such that any minimum weight
drawing of T requires area at least ¢ x ¢" for some constant ¢ > 1). This long-standing con-
jecture was only recently proved to be correct by Angelini et al. [ABC*11], who describe
a tree T' with n vertices having maximum degree five such that in any minimum weight
drawing of T' the ratio between the longest and the shortest edge is 220", which implies
that the drawing requires exponential area.

On the other hand, Frati and Kaufmann [FK11] proved that the exponential area lower
bound of minimum weight drawings of trees does not hold for maximum vertex degree
smaller than five. More precisely, let T be any tree with n vertices and maximum vertex
degree four; Frati and Kaufmann show how to compute a minimum weight drawing of T" with
the following area upper bounds: (i) O(n*3) if T' is a complete binary tree; (i) O(n!!387)
if T is an arbitrary binary tree; (iii) O(n3 ™) if T is a complete ternary tree; (iv) O(n?1:252)
if T'is an arbitrary ternary tree. The area bound for complete binary tree has been further
reduced to O(n3®) by Di Giacomo et al. [DDLM12] (see also Section 4.4.3).

The 3-dimensional question about characterizing those trees that can be drawn as a
Euclidean minimum spanning tree is not yet completely solved. In [LD95], it is shown
that every tree having at least one vertex with degree greater than twelve is minimum
weight forbidden in 3-dimensional space while all trees with vertex degree at most nine are
drawable. King [Kin06] improved this last result by showing that all trees whose vertices
have vertex degree at most ten can be realized as a Euclidean minimum spanning tree in
3-dimensional space. In general, the maximum vertex degree of a minimum weight drawable
tree is bounded by the kissing number, i.e., by the maximum number of disjoint unit spheres
that can be simultaneously tangent to a given unit sphere [RS95].

A significant research effort has also been devoted to drawing a planar triangulated graph
G as a minimum weight triangulation of the points representing the vertices. However, the
problem is still far from being solved. It may be worth recalling that, while computing a
Euclidean minimum spanning tree of a set of points in the plane is solvable in polynomial
time (see, e.g. [PS90]), the problem of computing a Euclidean minimum weight triangulation
of a set of points in the plane is NP-hard [MROS].

In [LL96], it is shown that all maximal outerplanar triangulations are minimum-weight
drawable, and a linear time (real RAM) drawing algorithm for constructing such a drawing
is given. This naturally leads to investigation of the internal structure of minimum-weight
drawable planar triangulated graphs. In [LLO02] the authors examined the endoskeleton—
or skeleton, for short—of planar triangulated graphs, that is, the subgraph induced by
the internal vertices of the triangulation. They constructed skeletons that cannot appear
in any minimum weight drawable triangulation and skeletons that guarantee minimum
weight drawability. More precisely, the known results about of minimum weight drawable
triangulations are as follows.

e In [LLO2], the authors showed that any forest can be realized as the skeleton
of some minimum weight triangulation. On the other end, Wang, Chin, and
Yang [WCY00] gave examples of triangulations that do not admit a minimum
weight drawing even if their skeleton is acyclic.

e In [LLO02], it is also shown that any traingulation containing either the graph of
Figure 4.8 (a) or the graph of Figure 4.8 (b) is not minimum weight drawable.

4.3. RESULTS 125

(a) (b)

Figure 4.8 Two examples of triangulations that cannot be drawn as minimum-weight
triangulations.

Another contribution of [LL02] is to study the relationship between Delaunay drawability
and minimum weight drawability. The authors described graphs that do not admit a De-
launay drawing but do have a minimum weight drawing. One such example is the minimum
weight drawing of Figure 4.9: As explained in the next section,the depicted graph violates
a necessary condition for Delaunay drawability (see also Figure 4.11 (b)).

Figure 4.9 A minimum weight drawing of a Delaunay forbidden graph (see also Fig-
ure 4.11 (b).

4.3.2 Delaunay and Voronoi Drawings

The study of the combinatorial properties of Delaunay triangulations and of Voronoi di-
agrams (i.e., the Delaunay and the Voronoi drawability problems) has a long tradition in
the computational geometry literature and is of particular interest because it is closely re-

126 CHAPTER 4. PROXIMITY DRAWINGS

lated to the design of topologically consistent algorithms for computing Delaunay/Voronoi
diagrams in finite precision (see, e.g., [SI92, SH97, SITI00]).

The problem of characterizing which graphs admit Voronoi drawings has been studied
in [LMO3] both for the Euclidean and for the Manhattan metric. It is shown that every
tree, independently of its maximum vertex degree, can be drawn as the Voronoi diagram
of some set of points in the Euclidean metric. It is also proved that the maximum vertex
degree of a Voronoi drawable tree in the Manhattan metric is at most five and that this
bound is tight. Finally, the family of those binary trees that admit a Voronoi drawing in
the Manhattan metric is characterized. Figure 4.10 shows examples of Voronoi drawings of
trees in the Euclidean and in the Manhattan metric.

() (b)

Figure 4.10 Two Voronoi drawings of trees: (a) a Euclidean Voronoi drawing and (b) a
Manhattan Voronoi drawing. The white circles are sites and the black circles are vertices
of the drawing. For display purposes, the edges of infinite length of the Voronoi diagrams
have been replaced by edges of finite length and endvertices have been added.

An exact characterization of those graphs that admit Delaunay drawings remains a chal-
lenging open problem; however, some sufficient conditions and some necessary conditions for
Delaunay drawability are known. Dillencourt [Dil90a] proved that if a graph G is maximal
outerplanar, then G is Delaunay drawable. In a different paper, Dillencourt [Dil90b] studied
the relationship between Delaunay drawability and 1-toughness. A graph G is I-tough if
for any non-empty set S of vertices of G, the number of components obtained from G by
removing the vertices of S and their incident edges is at most |S|. For example, the graph
of Figure 4.11 (a) is not 1-tough because the removal of the four white vertices and of their
incident edges results in a graph with five components. Dillencourt showed in [Dil90b] that
every Delaunay drawable graph either (a) is 1-tough or (b) for any set S of vertices of G,
the number of interior components obtained from G by removing the vertices of S and their
incident edges is at most |S| —2 (an interior component is a component that has no vertices
in the outerface of GG). This necessary condition is used by Dillencourt to construct exam-
ples of graphs that are nor Delaunay drawable. For example, neither graph of Figure 4.11 is
Delaunay drawable: as already explained, the one of Figure 4.11 (a) violates the 1-toughness

4.3. RESULTS 127

condition; the one of Figure 4.11 (b), violates the second necessary condition stated above
because removing the four white vertices gives rise to three interior components. Another
interesting property proved in [Dil90b] is that any Delaunay drawable graph has a perfect
matching.

Based on the strict connection between the convex hull of a set of non-coplanar points on
the surface of a sphere and a (2-dimensional) Delaunay triangulation [Bro79], the following
equivalent definition of Delaunay drawable graphs was also given by Dillencourt [Dil96]: A
planar triangulated graph G with triangular outerface is Delaunay drawable if and only if
it is inscribable, i.e., it can be drawn in 3-dimensional space as the convex hull of a set of
non-coplanar points on the surface of a sphere. If the outerface f of GG is not triangulated,
then G is Delaunay drawable if and only if the graph obtained from G by “stellating” f (i.e.,
by adding a vertex in f and connecting it to all vertices of f) is inscribable. Dillencourt and
Smith [DS95] showed that every planar triangulated graph whose vertices all have degree
three is inscribable (after having possibly stellated the outerface) and therefore Delaunay
drawable. The same authors showed in [DS94] that any 4-connected planar graph is in-
scribable and that any triangulated graph with triangular outerface and without chords or
non-facial triangles is Delaunay drawable.

The question whether Delaunay drawable graphs are Hamiltonian was posed by Math-
ieu [Mat87] and by O’Rourke [O’R87]. Examples of Delaunay drawable graphs that are
not Hamiltonian can be found in papers by Dillencourt [Dil87, Dil89] and by Kantabu-
tra [Kan83]. These examples suggested the question of the computational complexity of
the Hamiltonicity of Delaunay drawable graphs. The question was answered by Dillen-
court [Dil96], who proved that determining whether a Delaunay drawable graph is Hamilto-
nian is NP-complete. In the same paper it is also shown that there exist Delaunay drawable
graphs that do not have a 2-factor (a 2-factor of a graph is a spanning collection of disjoint
cycles). Finally, in the papers by Di Battista and Vismara [DV96], and by Sugihara and
Hiroshima [SH97], the angles of Delaunay drawings were characterized.

() (b)

Figure 4.11 Two graphs that are not Delaunay drawable: (a) The graph is not 1-tough:
removing the white vertices produces five components. (b) Removing the four white vertices
produces three internal components.

128 CHAPTER 4. PROXIMITY DRAWINGS

4.3.3 Rectangle of Influence Drawings

The rectangle of influence drawability problem was first defined in [LLMW98], where both
the case that the rectangle of influence is an open set and the case that it is a closed set
are investigated. For both cases, characterization results are presented concerning cycles,
wheels, trees, outerplanar graphs, and cliques. As already observed, the set of representable
graphs can be quite different, depending on whether the open or the closed rectangle of
influence is used to define the proximity drawing. For example, Figure 4.12 (a) shows a
closed rectangle of influence drawing of a 4-cycle, which is not an open rectangle of influence
drawable graph. Figure 4.12 (b) gives an open rectangle of influence drawing of K5 (i.e.,
the complete graph on five vertices), which is not a closed rectangle of influence drawable
graph.

(@) (b)

Figure 4.12 Examples of rectangle of influence drawings: (a) a closed rectangle of influ-
ence drawing of a 4-cycle; (b) an open rectangle of influence drawing of K5. Note that a
4-cycle does not admit an open rectangle of influence drawings and that ks is not closed
rectangle of influence drawable.

4.3.4 Nearest Neighbor Drawings

Paterson and Yao [PY92] started the investigation of the combinatorial properties of nearest
neighbor graphs. Among other basic results, they proved that a nearest neighbor drawable
tree cannot branch too much: if the depth of the tree is high, then the tree contains some
long paths. More precisely, Paterson and Yao showed that if a tree of depth D is nearest
neighbor drawable, then it can have at most O(D?) vertices. The upper bound was reduced
to O(D®%) by Eppstein [Epp92] and to O(D?) by Eppstein, Paterson, and Yao [EPY97]; this
last upper bound is tight since Paterson and Yao [PY92] had shown the existence of nearest
neighbor drawable graphs of depth D and Q(D?®) vertices.

A precise characterization of nearest neighbor drawable graphs is still unknown. Epp-
stein, Paterson, and Yao [EPY97] conjectured that deciding whether a given graph is nearest
neighbor drawable is hard. The truth of the conjecture was proved by Eades and White-
sides [EW96a] who show that it is NP-hard to determine whether a graph G is nearest
neighbor drawable by using a mechanical device, called “logic engine,” that simulates the
well-known NP-complete problem NOT-ALL-EQUAL-3SATISFIABILITY [GJ79] and that
provides a proof paradigm based on an approach first used by Bhatt and Cosmodakis [BC87].
Kitching and Whitesides [KW04] extend the technique to 3-dimensional space and, by using
a “3-dimensional” logic engine, prove that the mutual nearest neighbor drawability problem
is NP-hard in 3-dimensional space. It may be worth recalling that the logic engine paradigm
can be used to prove the hardness of other graph drawing problems such as, for example,

4.3. RESULTS 129

determining whether a graph is a subgraph of the hexagonal tiling or an induced subgraph
of the square or hexagonal tilings [Epp09].

4.3.5 Sphere of Influence Drawings

Basic properties of sphere of influence drawable graphs are discussed by Harary et al. [HJLM93].
Harary et al. showed that if a graph G is open/closed sphere of influence drawable, an in-
duced subgraph of G may not necessarily be open/closed sphere of influence drawable. This
nonhereditary property greatly complicates the problem of characterizing sphere of influ-
ence drawable graphs. The conjecture of Harary et al. that K¢ does not admit an open
sphere of influence drawing remains, to date, an open problem.

On the positive side, Jacobson, Lipman, and McMorris [JLM95] proved that if G is
triangle-free and admits a sphere of influence drawing, then any subgraph of G is also
drawable. Jacobson, Lipman, and McMorris exploited this result to characterize those trees
that admit an open/closed sphere of influence drawing: A tree is open sphere of influence
drawable if and only if it has a perfect matching; a tree is closed sphere of influence drawable
if and only if it contains a {Ps, Ps}-factor (see, e.g., [Har69] for a definition of {Py, P3}-
factor).

The number of edges of sphere of influence drawable graphs was independently studied
by several researchers. Avis and Horton [AH82] proved that the number of edges of an open
sphere of influence drawable graph cannot be larger than 29n, where n is the number of ver-
tices. An upper bound of 21n had also been already proven by Besicovitch [Bes45] in 1945,
although he was not aware of the application of his result to the sphere of influence drawa-
bility problem. The bound of Besicovitch had later been improved by Reifenberg [Rei4§]
in 1948 and independently by Bateman and Erdos [BE51] in 1951, who showed an upper
bound of 18n for the problem. Michael and Quint [MQ94b] had lowered the bound to 17.5n.
The best-known upper bound is due to Soss [Sos99a], who showed that any open/closed
sphere of influence drawable graph can have at most 15n edges.

The study of sphere of influence drawings has also been extended to d-dimensional space
and/or to different metrics (see, e.g., [GPS94, S0s99b, MQ99, MQO03]). The interested
reader is also referred to the papers by Michael and Quint [MQ94a, MQO03] and to the
work of Boyer, Lister, and Shader [BLS00] for more references and a list of open problems
concerning the sphere of influence drawabality problem.

4.3.6 p-Drawings

Kirkpatrick and Radke [KR85, Rad88| defined the open and closed S-regions (R(z,y,),
R[z,y, 8]) discussed in the previous section. From the graph drawing perspective, the cen-
tral problem is that of determining, for a given graph G, the values of 8 such that G
admits a f-drawing. For example, for # < 2, only connected graphs admit S-drawings; for
B > 1, only planar graphs do. As mentioned previously, the open and closed S-drawings
include several well-studied proximity drawings, including Gabriel, Modified Gabriel, rela-
tive neighborhood, and relatively closest drawings; indeed, the Gabriel region is the closed
B-region for 8 = 1, the modified Gabriel region is the open S-region for § = 1, the relative
neighborhood region is the open S-region for 8 = 2, and the relatively closest region is the
closed B-region for 8 = 2. Some papers about these types of drawings are described below.

Toussaint [Tou80] studied the relationship between the graphs produced by relative neigh-
borhood drawings and other proximity drawings. He showed that the relative neighborhood
drawing on a set P of points is a supergraph of every minimum spanning tree of P and
a subgraph of the Delaunay triangulation of P. Agarwal and Matousek [AM92] showed

130 CHAPTER 4. PROXIMITY DRAWINGS

that the number of edges of an n-vertex graph that has a relative neighborhood drawing
in 3-dimensional space is O(n4/ 3). Chazelle, Edelsbrunner, Guibas, Hershberger, Seidel,
and Sharir [CEGT94] showed that the maximum number of edges of an n-vertex graph
that has a Gabriel drawing in d-dimensional space (d > 3) is Q(n?). In [MS80], [Tou80],
and [Lan69], the planarity of Gabriel drawable graphs, relative neighborhood graphs, and
relatively closest drawable graphs were shown, respectively. Furthermore, in [Cim92] it was
shown that a cycle with three vertices is not relatively closest drawable.

Particular attention has been devoted in the literature to S-drawings of trees. Matula and
Sokal [MS80] gave a partial characterization of trees that admit Gabriel drawings. They
proved that every tree with vertex degree at most three admits a Gabriel drawing, while no
tree with vertex degree greater than six does. Urquhart [Urq83] gave the same two bounds
on the vertex degree of relative neighborhood drawable trees. Cimikowski [Cim92] further
extended the bounds to both modified Gabriel drawable and relatively closest drawable
trees. Matula and Sokal [MS80] also conjectured that Gabriel drawable trees cannot have
vertices of degree greater than four and cannot have two adjacent vertices of degree four.

The gaps left open in the above papers between the smallest and the largest vertex degree
of a representable tree were the subject of a paper by Bose et al. [BLL96], who presented
a complete characterization of those trees that admit Gabriel, Modified Gabriel, relative
neighborhood, and relatively closest drawings. They showed that a tree admits a relative
neighborhood and a relatively closest drawing if and only if its maximum vertex degree
is at most five; also, a tree has a modified Gabriel drawing if and only if its maximum
vertex degree is at most three. As for Gabriel drawability, they proved the truth of the
conjecture by Matula and Sokal and characterized the family of representable trees by
exhibiting families of forbidden subtrees and by showing that every tree that does not
contain members of these families is Gabriel drawable. In the same paper, Bose et al. also
presented linear-time algorithms to test whether a tree admits one of the above proximity
drawings; it is shown that if such a drawing exists, one can be constructed in linear time in
the real-RAM model.

As for other S-neighborhoods, Kirkpatrick and Radke [KR85] studied open strip drawable
graphs (i.e., graphs that have §-drawings that use the open S-region R(z,y, o)) and showed
that neither non-planar graphs nor triangulated planar graphs admit open strip drawings.
A characterization of closed strip drawable graphs (i.e., proximity graphs that use the
R[z,y, 0] region) can be found in the work by Bose et al. [BDLL95|, where it is shown
that a graph admits a closed strip drawing if and only if it is a binary forest other than
one of the following: two non-adjacent vertices, a vertex and a non-adjacent edge, or two
non-adjacent edges.

Bose et al. [BDLLI5] also studied the proximity drawability of trees in the whole spectrum
of B-proximity regions. Let T(3) (T[8]) be the class of trees that have a proximity drawing
where the proximity region is the open (closed) S-region and let Ty be the set of all finite trees
of maximum vertex degree at most k. In [BDLL95|, a complete characterization of T (/3)
for all 8 values such that 0 < 8 < #S(%) ~ 1.45 or such that 3.23 ~ Wl%ﬂ) < B < oois

1

given. Also, a complete characterization of T[] for all 8 values such that 0 < 8 < =

or such that —L—
cos(&)
authors give a partial characterization: They show that all trees in 74 and only trees in 75
belong to 7(5) and T[3].
Table 4.1 summarizes the known results about families of trees that admit a S-drawing for

different values of 8 in 2-dimensional space (for proofs and detailed description of recognition
and drawing algorithms, see [BDLL95, BLL96]). In the table, T denotes the family of

< B < oo is presented. For all 8 values not in the above intervals, the

4.3. RESULTS 131

trees that have at least two adjacent vertices of degree three and 7 denotes the family of
“forbidden” graphs defined in [BLL96]. Figure 4.13 shows a S-drawing of a tree with all non-
leaf vertices having degree four; the drawing is computed with the technique of [BDLL95]
and assumes the value § = 4.

Figure 4.13 A (-drawing of a tree for § = 4 computed with the technique of [BDLL95].

The study of g-drawings of trees was also extended to 3-dimensional space. The def-
inition of [S-region recalled in the previous section can be straightforwardly extended to
3-dimensional space by considering open and closed 3-dimensional spheres instead of open
and closed 2-dimensional spheres. In [LD95] it is shown that by using the third dimension
the class of B-drawable trees becomes larger in many cases. For example, all trees having
maximum vertex degree at most 4 are Gabriel drawable in 3-dimensional space, while this
is not the case in the plane (see also Row 5 of Table 4.1); for 8 = 2 every tree having max-
imum vertex degree at most nine is drawable. The known results on S-drawability of trees
in 3-dimensional space are summarized in Table 4.2, where the same notation of Table 4.1
is adopted; in the table, K; and K5 denote the tree consisting of a single vertex and of a
single edge, respectively.

Returning now to [-drawings in 2-dimensional space, the study of the S-drawability
problem was extended from trees to outerplanar graphs by Lubiw and Sleumer [L.S93], who
showed that all maximal outerplanar graphs admit both a relative neighborhood drawing
and a Gabriel drawing. They also proved that every biconnected outerplanar graph admits
a relative neighborhood drawing. Lubiw and Sleumer also conjectured that any biconnected
outerplanar graph admits a Gabriel drawing. This conjecture was settled in the affirmative
in [LL97], where it is proved that indeed every biconnected outerplanar graph admits a
B-drawing for all values of 8 such that 1 < 8 < 2. In the same paper, the investigation was

132 CHAPTER 4. PROXIMITY DRAWINGS

‘ [value of 8 I TB) ‘ T15] I
1 =0 T(B) = {K1, K2} T8l ="T2
2 0<p<¥ TB) =T T8 =
3 B=% TB) =T T =T-T
4 P<p<l TB) =T _ T =Ts
5 B=1 TB=Ta-T | TIBl= 7’4—
6 | 1<B< i TB) =T T8l =
7 B = TB) =T ﬁcT[B}CTs
8 #(2%)<5<2 TaCTB)CTs | TaCTBICTs
9 B=2 TR =Ts T8l =Ts
10 2<B<@ TaCTB)CTs | TaCcTBICTs
11 B= oz TaCTB)CTs T8 =
12 || i <A< TB) =T T8l =
13 =00 TsCT(B)CTa T8 =

Table 4.1 (-drawability of trees for 0 < 8 < oo, 2-dimensional space.

extended to simply connected outerplanar graphs (notice that the family of these graphs
includes trees as a special case); the authors show an upper bound on the number of
biconnected components sharing a cutvertex in a S-drawable graph, for all possible values
of 3, which gives rise to partial characterization of the families of representable outerplanar
graphs.

Table 4.3 summarizes the characterization results about the g-drawability of outerplanar
graphs that can be found in [L.S93, LL97]. All other entries describe results from this paper.
CO, BO, and MO are the set of all connected outerplanar, biconnected outerplanar, and
maximal outerplanar graphs, respectively. Geo(8), Gro(8), and Gao(B) are the classes
of connected outerplanar, biconnected outerplanar, and maximal outerplanar (3)-drawable
graphs, respectively. Similarly, Geo[8], Gro[f], and Gamo|f] are the classes of connected
outerplanar, biconnected outerplanar, and maximal outerplanar [3]-drawable graphs, re-
spectively. G denotes the class of graphs such that the number of biconnected components
sharing a cut-vertex is at most k.

Little is known about the p-drawability of graphs that are not outerplanar. Irfan and
Rahman [IR07] gave a sufficient condition for the S-drawability of 2-outerplanar graphs
for values of 8 in the interval 1 < 8 < 2; they also described examples of 2-outerplanar
graphs that do not admit a fg-drawing for 1 < S < 2. In the same paper, Irfan and
Rahman described and O(n?)-time algorithm to test their sufficient condition on a given
2-outerplanar graph with n vertices. The time complexity of this test was later improved
to O(n) by Samee, Irfan, and Rahman [SIR08].

4.4 Variations of Proximity Drawings

Some generalizations and relaxations of proximity drawings have been described in the
literature. This section recalls three of them.

4.4. VARIATIONS OF PROXIMITY DRAWINGS

LI b [7®»3D [T[BI3D |
L B=0 TB) ={K,K:} | _TI8 _7-2
: 0<f<3 T(9) =T T8 =T
3 /3:25,“72() 3 T(B) =T TBI =TT
] E<hs zsmfz(msm[) TB)=Ts T ="Ts
5 B =075 TB) =T T CTBICT:
6 | §<P<smp=! T3 =T T =T,
! p=1 TA =T | LcThCT
® L<B< samemm T(B) =T TB =T
) m—szi(m) TeCTB)CT: | TsSTIBIC T
10 %m<5<27(37> TeCTB)CTs | TeCTIBICTs
T | omws SP<smbm | BCTWCT | GETHICT
12 b= s TCTBCT | -CTBICT
B == <pe s | FETBCT | TCTBEICT
1 m<5fm(ggg) T:CT(B)CTwo | T CTIB) C Tho
15 | swrtes) <P < smmims | FCTBCTh | FCTBIC T
16 | gtz <P S i | FCTBC T | TCTHC T
17 | goecesy <B < gaweem || 7S TP CTs | T CTHIC Tos
18 p=2 T CTB CTs | T CTIAIC Tos
19 2<P < T-CT(B)CTs | T CTIBIC Tis
20 W<ﬂ<m T CT(B)CTiz | T CTIB) C Tz
2| s SP< iz || FCTBCTa | FCTHICTn
22 cos(l‘””) <8< Cos<1§g) T:CTB)CTwo | T CTIB] C Tho
B | i <8< o TCTBHCT | ZCTBICT
24 b= =m ToCTBCT | ToCTBICTs
% | iz <B<imm | BCTBCT | GETHCT
% | o <B<ofmm || BCTBCT | LCTBICT
| ot <B<aotm | BETBHCT | TCTBICT
28 stqy <P < T(B) =Ts TIA =Ts
29 =0 LcTHCT | TH =T
Table 4.2 [-drawability of trees for 0 < 8 < oo, 3-dimensional space.

4.4.1 Witness Proximity Drawings

133

Witness proximity has been introduced and studied in a series of papers by Aronov, Dulieu,
and Hurtado [ADH, ADH11a, ADH11b]. These papers study both the computational ge-
ometry problem of computing witness proximity graphs on a given point set and the graph
drawing question of defining a set of points whose witness proximity drawing represents
a given combinatorial graph. We recall here only those results relative to the proximity
drawability problem.

Witness proximity drawings are region of influence based proximity drawings where the
adjacency between pairs of vertices depends on whether the proximity region of these ver-
tices contains or does not contain a point form a second set, called the witness points.

134 CHAPTER 4. PROXIMITY DRAWINGS

] B | Connected | Biconnected] Maximal |

1 B=1 Go Z Geoll] C Ga Groll] = {BO} Gmoll] = {MO}
2 1<8< ﬁb(h) Geo(B) C Ga Gso(B) ={BO} | Gmo(B) ={MO}
) GeolB] C Gu Gso[B] = {BO} | Gmolf] = {MO}

3 B = ﬁs(%ﬂ) Geo(B) C Ga Gpo(B) = {BO} Grmo(B) = {MO}
Gs Z GeolB] C Gs Gsolf] = {BO} GmolB] = {MO}

4 ﬁs(%,,) <P <2 || GsZGeo(B) CGs | Gso(B) ={BO} | Gmo(B)={MO}
Gs Z GeolB] C Gs GrolB] = {BO} GrmolB] = {MO}

5 B=2 Gs Z Geo(2) C Gs Gro(2) = {BO} Gmo(2) = {MO}

Table 4.3 S-drawability of outerplanar graphs for 1 < 8 < 2, 2-dimensional space.

Therefore, in a witness proximity drawing, we look at a set of points that represent the ver-
tices and at a set of points that play the role of the witnesses. The existence/absence of an
edge in the drawing depends on the location of the witness points (the set of witness points
and the set of points representing the vertices of the graph in drawing may not coincide).

In a positive witness prozimity drawing T, two vertices (x,y) are adjacent if and only
if the proximity region of z and y contains at least one vertex that belongs to the set of
witness points. In a negative witness prozimity drawing, x and y are adjacent if and only if
their region of influence does not contain any of the witness points (it may however contain
other vertices of the graph that are not witnesses). It is worth noticing that the definition of
witness proximity drawing includes the notion of (h,0)-proximity drawing as a special case:
A negative proximity drawing where the set of witness points coincides with the vertex set
is in fact an (h,0)-proximity drawing.

The computation of a witness proximity drawing requires to define the set of points
representing the vertices and the set of witness points. For example, Figure 4.14 (a) shows
a positive witness Gabriel drawing and Figure 4.14 (b) a negative witness Gabriel drawing;
the two drawings have the same witness point ¢ and the same set of vertices. In the figures,
the Gabriel disk of v and v contains the witness point ¢, which makes u and v adjacent in
the positive witness Gabriel drawing.

In [ADH11a], Aronov, Dulieu, and Hurtado studied witness Delaunay drawings. More
specifically, they consider negative witness Delaunay drawings, which are proximity draw-
ings where two vertices and y are adjacent if and only if there exists an open disk whose
boundary passes through = and y and does not contain any point of the witness set. It is
proved that every tree admits a negative witness Delaunay drawing for suitable set of witness
points and that the drawing can be computed in linear time, adopting the real RAM model
of computation. As for forbidden graphs, it is proved that non-planar bipartite graphs never
admit a negative witness Delaunay drawing. In the same paper, positive witness Delaunay
drawings in the L., metric are studied. These drawings, also called square drawings, are
such that two vertices x and y are adjacent if and only if there exists an axis-aligned square
whose boundary passes through x and y and that contains at least one witness point. It is
proved in [ADH11a] that a graph admits a square drawing if and only if it is a permutation
graph and that a square drawing of a permutation graph can be computed by using at most
one witness point.

The witness generalization of Gabriel drawings is studied in [ADH]. The paper describes
both graphs that do not admit a negative witness Gabriel drawing and graphs that are
negative witness Gabriel drawable. It is proved that all graphs containing K3 333 as an

4.4. VARIATIONS OF PROXIMITY DRAWINGS 135

(a) (b)

Figure 4.14 Two witness Gabriel drawings where ¢ is the witness point: (a) Positive
witness Gabriel drawing. (b) Negative witness Gabriel drawing.

induced subgraph do not have a negative witness Gabriel drawing. It is also proved that
all trees are negative witness Gabriel drawable.

Positive witness rectangle of influence drawings are explored in [ADH11b]. In this pa-
per, Aronov, Dulieu, and Hurtado show that a tree admits a positive witness rectangle of
influence drawing if and only if it has no three independent edges. The paper also gives
necessary conditions for positive witness rectangle of influence drawability of general graphs.
Namely, a graph that has a positive witness rectangle of influence drawing has at most two
non-trivial connected components (a connected component is non-trivial if its number of
vertices is larger than one). If the graph has exactly two components, then each component
has diameter three; if the graph has one component, it has diameter six. Finally, a charac-
terization of the positive witness rectangle of influence drawable graphs having exactly two
non-trivial components is given: A graph belongs to this family if and only if it is a disjoint
union of zero or more isolated vertices and two co-interval graphs.

4.4.2 Weak Proximity Drawings

We recall that, a (2,0)-proximity drawing I is a straight-line drawing such that: (i) for each
edge (z,y) of T, the proximity region of x and y does not contain any other vertex, and (ii)
for each pair of non-adjacent vertices x,y of I', the proximity region of z and y contains
at least one other vertex. In this section, we shall call such drawings strong proximity
drawings.

A relaxation of strong proximity drawings, called weak proximity drawings, was first
introduced and studied in [DLWO06]. A weak proximity drawing of a graph G is one that
ignores requirement (ii). In other words, if x,y is not an edge of the graph, then no
requirement is placed on the proximity region of x and y in the weak drawing. For example,
Figure 4.15 (a) shows a weak proximity drawing of a tree. Here, the proximity region of any
two points x and y is the disk having x and y as antipodal points. Note that the drawing is
not a strong drawing, as no edges between neighbors of the degree six vertex are included.

136 CHAPTER 4. PROXIMITY DRAWINGS

The strong proximity drawing with the same proximity region and on the same set of points
is shown in Figure 4.15 (b).

-~

(a) (b)
Figure 4.15 (a) A weak proximity drawing and (b) a strong proximity drawing.

For purposes of graph visualization, there are several reasons for studying weak proximity
drawings. We summarize the ones that, in our opinion, are the most relevant.

e Strong proximity drawability may appear too restrictive for graph drawing pur-
poses. By relaxing (ii), a graph G can no longer be reconstructed from the
locations of its vertices in a weak drawing; however, many graphs that do not
admit strong drawings can be drawn weakly. For example, a tree that has a
vertex of degree greater than five has no strong 2-dimensional S-drawing for any
B (see also Table 4.1). Thus, the drawing in Figure 4.15 (a) illustrates a graph
that is weak but not strong drawable for the Gabriel region.

e A visibility drawing of a graph is a drawing such that (e.g., see [DETT99, KWO01])
vertices are mapped to horizontal segments and edges are mapped to vertical
segments that intersect only adjacent vertex segments. Of course, a necessary
condition for drawing an edge is that the vertex segments corresponding to its
end-vertices are visible in the vertical direction. If this condition is also sufficient,
then we have a strong wvisibility drawing; otherwise, we have a weak visibility
drawing. In the field of visibility drawing, the coordinated study of both strong
and weak types of drawings led to deep and practical results.

o Weak proximity can be considered as an “edge-vertex resolution rule” in the sense
that a vertex cannot enter the region of influence of an edge. Thus, the study
of weak proximity can contribute to the body of drawing strategies that adopt a
resolution rule (e.g., see [DETT99, KWO01]).

e The weak proximity model may well be sufficient for many drawing applications,
particularly ones that do not require recovery of the graph solely from the posi-
tions of its vertices. For example, weak proximity drawings have been receiving
increasing interest for their applications to wireless network design, where dis-

4.4. VARIATIONS OF PROXIMITY DRAWINGS 137

tributed topology control can be based on proximity structures constructed from
given geometric graphs by deleting those edges that do not satisfy a given prox-
imity rule. The resulting graph is a weak proximity drawing because its edges
satisfy the given proximity rule, whereas pairs of non-adjacent vertices may or
may not contain other vertices in their proximity region. Papers devoted to the
study of weak proximity graphs defined in the context of sensor networks in-
clude [CWL02, LCWWO03, PS04, KL10]. See also Section 4.5 for more discussion
and some other references about proximity and wireless ad-hoc networks.

In particular the research in [DLWO06] focused on 2-dimensional weak (-drawing; the
following results were proved.

General graphs: Any graph G is weak S-drawable for all 8 in the range 0 to some upper
bound that is a function either of the number of vertices or of the maximum vertex
degree of G.

Planar graphs: For any value of 8 such that 1 < 8 < oo, strong and weak g-drawings
of triangulated planar graphs coincide. It was also shown how to interpret any
straight-line drawing algorithm for planar triangulated graphs as an algorithm
for constructing weak proximity drawings.

Trees: An algorithm was presented to draw any tree as a weak S-drawing for any value
of 3 less than two. It was shown that for 2 < 8 < oo, the weak and the strong
proximity models give rise approximately to the same class of 2-dimensional (-
drawable trees. Finally, the NP-hardness of deciding whether a tree has a weak
proximity drawing for S = oo, where the region of influence is an open strip, was
proved.

Table 4.4 schematically compares the known results on weak [-drawability against those
on strong [-drawability for trees. Each row corresponds to a different interval of 5 and
reports the maximum vertex degree k that a tree can have to admit a strong or weak -
drawing for some values of 3 in the interval. Of particular interest is the value g = 2, where
remarkable differences in the drawable trees can be noticed, depending on whether the
region of influence is an open set (in which case it coincides with the relative neighborhood
region) or a closed set (in which case it coincides with the relatively closest region).

value of 8 strong B-drawability weak [-drawability
1 0<pB<2 k<5 k=00
2 =2 k=5 k = oo (w-(B)-draw.), k =5 (w-[B]-draw.)
3] 2<pB<0 k<5 k<5

Table 4.4 Comparing weak [-drawability of trees vs. strong [-drawability of trees. In
the table, w-(3)-drawable means that the tree has a weak §-drawing where the S-region
is an open set and w-[f]-drawable means that the tree has a weak (-drawing where the
[B-region is a closed set.

The advantage of using a weak model of proximity was also highlighted in [LL97], where
it was proved that, in contrast with the results in Table 4.3, every connected outerplanar
graph admits a weak Gabriel drawing, a weak relative neighborhood drawing, and a weak
B-drawing for any given 8 such that 1 < 8 < 2.

138 CHAPTER 4. PROXIMITY DRAWINGS

A comparison of strong and weak [-drawings in terms of area requirement can be found
in [LTTV97] and in the work by Penna and Vocca [PV04]. Penna and Vocca [PV04]
extended the study of weak proximity g-drawings to 3-dimensional space and proved several
polynomial area/volume bounds for families of graphs for which a strong proximity drawing
is either not admitted or requires exponential area. In general however, there exist families
of graphs for which a Gabriel drawing in 2-dimensional space requires exponential area both
for the strong and the weak model of proximity [LTTV97].

Weak nearest neighbor graphs were studied by Eades and Whitesides [EW96a], who
showed that the problem of deciding whether a graph admits a weak nearest neighbor
drawing is NP-hard. Thus, nearest neighbor drawability is NP-hard both in the weak and
in the strong proximity model (see also Section 4.3.4).

Weak rectangle of influence drawings were first studied by Biedl, Bretscher, and Mei-
jer [BBM99]. They showed that a planar graph admits a weak closed rectangle of influence
drawing if and only if it admits a planar embedding where the outerface is not a 3-cycle
and such that there is no separating 3-cycle; they call a separating 3-cycle a filled triangle
and call the family of graphs with no filled triangles N F'3-graphs. In the same paper, Biedl,
Bretscher, and Meijer also showed that every N F'3-graph admits an open weak rectangle of
influence drawing but left as open the question of characterizing the open weak rectangle of
influence drawable graphs. There are several subsequent papers that present partial answers
to this question.

Miura, Matsuno, and Nishizeki [MMNO09] characterize those triangulated plane graphs
(i.e., maximal planar graph with a given planar embedding) that admit an open weak rect-
angle of influence drawing; the characterization gives rise to a linear time testing algorithm.
In addition, the paper gives a sufficient condition for the weak open rectangle of influence
drawability of inner triangulated plane graphs (i.e., planar graphs with a given planar em-
bedding and all triangular faces, except the external face that has more than three vertices).
This sufficient condition is expressed in terms of labeling of angles of a suitable subgraph,
called frame graph. The frame graph of an inner triangulated plane graph G is obtained
by removing all vertices and edges in the proper inside of every maximal filled triangle of
G. Testing the sufficient condition, and eventually constructing an open rectangle of influ-
ence drawing of G, can be executed in O(n'-5logn) time. The computed drawing has area
(n —1) x (n — 1) and it has the property that every edge of the frame graph is oblique,
i.e., it is neither vertical nor horizontal. Alamdari and Biedl [AB12] further elaborate on
the ideas by Miura, Matsuno, and Nishizeki and characterize the inner triangulated plane
graphs that admit a weak open rectangle of influence drawing such that no two vertices of
the frame graph have the same z-coordinate or the same y-coordinate. The characterization
by Alamdari and Biedl yields an O(n!-® log n)-time testing and drawing algorithm. A recent
paper by Alamdari and Biedl [AB] generalizes the characterization for non-aligned frames
to all planar graphs with a fixed planar embedding. The paper also shows that if the planar
embedding is not fixed, then deciding if a given planar graph has an open weak rectangle
of influence drawing is NP-complete. NP-completeness holds even for open weak rectangle
of influence drawings with non-aligned frames.

A significant research effort has also been devoted to the area required by weak open
and closed rectangle of influence drawings. The construction by Biedl, Bretscher, and
Meijer [BBM99] gives rise to weak closed and open rectangle of influence drawings with n
vertices on an integer grid of size (n — 1) x (n —1). Sadavisam and Zhang [SZ11] show that
an integer grid of size at most (n — 3) x (n — 3) is always sufficient and sometimes necessary
to compute a weak closed rectangle of influence drawing of an irreducible triangulation,
i.e., a maximal NF3-graph. In the same paper, they also proved an expected area of

(22 + /n) x (B2 + /n) for a weak closed rectangle of influence drawing of a random

4.4. VARIATIONS OF PROXIMITY DRAWINGS 139

irreducible triangulation. Miura and Nishizeki [MNO5] prove that the convex grid drawing
computed by the algorithm of Miura, Nakano, and Nishizeki [MNNO00, MNNO6] is in fact a
weak open rectangle of influence drawing; this result implies that a four connected planar
graph with n vertices has a weak open rectangle of influence drawing in area ["?_1] X L%‘lj
Zhang and Vaidya [ZV09a, ZV09b] further improve this bound as follows: (i) An irreducible
triangulation with n vertices taken uniformly at random has a weak open rectangle of

influence drawing whose area is asymptotically 121—7” x % with high probability, up to an

27

additive error of O(y/n); (ii) A quadriangulation with n vertices taken uniformly at random
has a weak open rectangle of influence drawing whose area is asymptotically 123—7" X 123—7" with
high probability, up to an additive error of O(y/n). Both results are proved as applications

of previous techniques by Fusy [Fus06, Fus09).

4.4.3 Approximate Proximity Drawings

As discussed in Section 4.3, proximity drawability imposes severe restrictions on the families
of the representable graphs; for example, the tables of Section 4.3.6 show families of -
drawable graphs whose maximum vertex degrees are all bounded by small constant values.
In order to overcome these restrictions on the combinatorial structure of the drawable
graphs, recent papers study straight-line drawings of graphs that are “good approximations”
of proximity drawings.

Di Giacomo et al. [DDLM12] investigate drawings that approximate the global proximity
rule; in particular, they study approximate minimum weight drawings of trees in the 2-
dimensional space. A (1+¢)-EMST drawing is a planar straight-line drawing of a tree such
that, for any fixed € > 0, the distance between any two vertices is at least ﬁ the length of
the longest edge in the path connecting them. Therefore, (1 + ¢)-EMST drawings are good
approximations of Euclidean minimum spanning trees. Figure 4.16 shows a (1 4 ¢)-EMST
drawing of a tree for ¢ = 0.5. In the figure, the ratio between the distance d(u,v) and

the length of the longest edge along the path between u and v is —4%v) ;= 0.714, which

ler (u,v)
is larger than %_FE = 0.667. Note that the tree of the figure does not admit a minimum
weight drawing (a Euclidean minimum spanning tree cannot have two adjacent vertices
both having degree six).

While it is known that all trees with maximum vertex degree five have a Euclidean
minimum spanning tree realization [MS92] and it is NP-hard deciding whether trees of
maximum vertex degree six admit one [EW96b], in [DDLM12] it is shown that every tree
T has a (1+¢)-EMST drawing for any given ¢ > 0 and that this drawing can be computed
in linear time in the real RAM model of computation.

Also, while Angelini et al. [ABC*11] have proved that EMST drawings of trees with vertex
degree at most five may require exponential area, Di Giacomo et al. describe polynomial area
approximation schemes for (1+¢)-EMST drawings: Any tree with n vertices and maximum
vertex degree A admits a (1 + ¢)-EMST drawing whose area is O(n°tf(&:2)) where ¢ is a
positive constant and f(e, A) is a polylogarithmic function that tends to infinity as € tends
to zero. As already mentioned in Section 4.3.1, a byproduct of the techniques of [DDLM12]
ia that the polynomial area upper bound for minimum weight drawings of complete binary
trees by Frati and Kaufmann [FK11] is improved from O(n*3) to O(n>#%).

Evans et al. [EGK™12], introduce and study approximations of (h, 0)-proximity drawings
called (e1,e9)-prozimity drawings. Intuitively, given a definition of proximity region and
two real numbers €1 > 0 and €3 > 0, an (g1, £2)-proximity drawing of a graph is a planar
straight-line drawing I such that: (i) For every pair of adjacent vertices u, v, their proximity

region “shrunk” by the multiplicative factor ﬁ does not contain any vertices of I'; and

140 CHAPTER 4. PROXIMITY DRAWINGS

Figure 4.16 A (1+¢)-EMST drawing I of a tree with maximum vertex degree 6 for ¢ =
0.5. For the two highlighted vertices u and v, we have that —2%%_ = (.714 > %ﬁ = 0.667.

ler (u,0)]

(ii) For every pair of non-adjacent vertices w, v, their proximity region “blown-up” by the
factor (1 + e2) contains some vertices of I" other than v and v. More formally, let D be a
disk with center ¢ and radius r, and let €; and €2 be two nonnegative real numbers. The
e1-shrunk disk of D is the disk centered at ¢ and having radius ﬁ; the eo-expanded disk
of D is the disk centered at ¢ and having radius (1 +¢e2)r. An (g1, e2)-proximity drawing is
a planar straight-line drawing where the proximity region of two adjacent vertices is defined
by using e1-shrunk disks, while the region of influence of two non-adjacent vertices uses
e9-expanded disks.

Figure 4.17 is an example of an (€1, e2)-Gabriel drawing for e; = 0 and 5 = 0.7. Note
that the drawing is not a Gabriel drawing: For example, the dotted disk in the figure is a
Gabriel disk (and its emptiness would imply an edge), while the solid one is its 0.7-expanded
version. In fact, the tree of Figure 4.17 is not Gabriel drawable (see also Table 4.1).

In [EGK*12], it is proved that one can arbitrarily approximate a proximity drawing of
any planar graph for some of the most-studied definitions of proximity. Namely, it is shown
that for any positive values of €1,e2 an embedded planar graph admits both an (e1,e2)-
Gabriel drawing and an (g1, €2)-Delaunay drawing and an (g1, £2)--drawing (1 < § < 00)
that preserve the given embedding. These results are proved to be, in a sense, tight since
it is shown that for each of the above types of proximity rules there are embedded planar
graphs that do not have an embedding preserving (e1,e2)-proximity drawing with either
g1 =0o0rey =0.

Note that both the strong and the weak proximity drawings described in Sections 4.2.1
and 4.4.2 are special cases of (g1,e2)-proximity drawings. Namely, an (1, &2)-proximity
drawing is a strong proximity drawing if 1 = g5 = 0; also, an (g1, €2)-proximity drawing
is a weak proximity drawing if e; = 0 and €9 = co. Therefore, (0, e2)-proximity drawings
make it possible to study weak and strong proximity drawability in a unified framework:
As the value of €5 increases, (0, €2)-proximity drawings approach weak proximity drawings.

Several questions can be asked within this unifying framework. For example, not all trees
have a Gabriel drawing [BLL96], while all trees have a weak Gabriel drawing [DLWO06].

4.4. VARIATIONS OF PROXIMITY DRAWINGS 141

*—o—0

(]
Figure 4.17 A ((0,0.7)-Gabriel drawing of a tree that does not have a Gabriel drawing.

What is the minimum threshold value such that if €5 is larger than this threshold all trees
are drawable? Evans et al. [EGK™12] answer this question by proving that every tree has
a (0,e9)-Gabriel drawing for any given value of €2 such that €5 > 2. In the same paper, it
is also proved that for each value of 5 such that 0 < g5 < 2, there exists a tree T such that
T does not have a (0, e3)-Gabriel drawing.

All biconnected outerplanar graphs have a Gabriel drawing [LL97], while a connected
outerplanar graph where a cut vertex is shared by more than four biconnected components
is not Gabriel drawable (see also Section 4.3). For a contrast, it is shown in [EGK™12] that
every outerplanar graph without vertices of degree one admits a (0, e2)-Gabriel drawings
for any arbitrarily chosen positive value of e5.

The study of approximate rectangle of influence drawings has also been recently initiated
in [DLM], where it is proved that all planar graphs have an open/closed (e1,e2)-rectangle
of influence drawing for €1 > 0 and 5 > 0, while there are planar graphs that do not admit
an open/closed (g1, 0)-rectangle of influence drawing and planar graphs that do not admit
a (0, e2)-rectangle of influence drawing. In the same paper, it is shown that all outerplanar
graphs have an open/closed (0, €5)-rectangle of influence drawing for any 2 > 0. Concerning
area bounds, it is shown that if €5 > 2 an open/closed (0, e5)-rectangle of influence drawing
of an outerplanar can be computed in polynomial area. For values of €5 such that es < 2,
a drawing algorithm is described that computes (0, eq)-rectangle of influence drawings of
binary trees in area O(nt/(¢2)), where c is a positive constant, f(ez) is a polylogarithmic
function that tends to infinity as €9 tends to zero, and n is the number of vertices of the
input tree.

We conclude the section by recalling a different approach, studied by Hurtado et al. [HLW10],
to approximate a proximity drawing. Given a graph G, the idea is to first partition G into
subgraphs such that each subgraph is proximity drawable and then compute a drawing I" of
G such that each subdrawing of I' representing a subgraph of the partition is a proximity
drawing. In particular, Hurtado et al. showed different drawing techniques that receive as
input a tree T" with a partition into subtrees of bounded degree and produce as output a
drawing of T' such that the subdrawing of each subtree is a minimum spanning tree. In a

142 CHAPTER 4. PROXIMITY DRAWINGS

companion paper, Wood [Woo010] studied how to efficiently partition a tree into subtrees of
bounded degree.

4.5 Open Problems

To date, a full understanding of the combinatorial properties of the vast majority of proxim-
ity drawable graphs is still an elusive goal and the results presented in the previous sections
can be regarded as just the first steps moved into this fascinating wide-open research area.
We list below some of the possible research directions that in our opinion are among the
most interesting.

Minimum Weight Drawings: Characterizing minimum weight drawable triangulations
seems to be a serious challenge; a probably less ambitious goal could be to char-
acterize those minimum weight drawable triangulations whose skeleton is a tree.
Another interesting open problem for these types of proximity drawings is de-
termining the computational complexity of deciding whether a tree with vertices
of degree at most twelve can be drawn as a Euclidean minimum spanning tree
in 3-dimensional space. Also, as described in Section 4.3.1, the algorithm by
Monma and Suri [MS92] requires O(2"") x O(2"") area for a 2-dimensional min-
imum weight drawing of a tree with n vertices and vertex degree at most five.
Angelini et al. [ABC™11] establish an Q(2") x £(2") lower bound for these trees
and conjecture that there is a tree requiring Q(2"2) X 9(2”2). Proving/disproving
this conjecture is a fascinating question.

Delaunay and Voronoi Drawings: Characterizing Delaunay drawable graphs is one of the
oldest open problems in this area. It would also be interesting to better under-
stand the combinatorial relationship between minimum weight and Delaunay
drawable triangulations. Indeed, while Figure 4.9 shows a Delaunay forbidden
graph that is minumum weight drawable, it is not known whether there exist
Delaunay drawable graphs that are minimum weight forbidden. Another re-
search direction is to study graphs that admit a Delaunay drawing of order h
for some h > 0; good starting points for this problem are the papers by Abrego
et al. [AMFM™11] and by Bose et al. [BCH'10], devoted to the combinatorial
properties of higher-order proximity graphs. Finally, a complete characterization
of (positive or negative) witness Delaunay drawable graphs is another fascinating
question.

[B-Drawings: The entries of Tables 4.1, 4.2, and 4.3 show gaps in the characterization
of strong ([-drawable trees and outerplanar graphs. Each of these gaps moti-
vates further research. Also, little is known about the S-drawability properties
of general graphs; for example, finding a complete characterization of § drawable
k-outerplanar graphs for a given constant k such that k > 2 is an interesting prob-
lem. Tt would be also interesting to investigate area/volume bounds for strong
and weak proximity drawings, also in the unifying framework of (0, €2)-proximity
drawings. Finally, a natural question is to extend the study of (positive/negative)
witness proximity drawability to the whole spectrum of possible £ values.

Sphere of Influence Drawings: There are examples of non-planar graphs that admit a
sphere of influence drawing. However, the result by Soss [Sos99a] proves that a
sphere of influence drawable graph always has a number of edges that is linear
in the number of the vertices. It is however not known whether the upper bound
of 15n by Soss is tight; Toussaint [Tou05] reports on a conjecture of Avis, who

4.6. BEYOND THIS CHAPTER 143

claims that such a tight upper bound could be 9n. What about approximate
sphere of influence drawings? Or witness sphere of influence drawings?

Rectangle of Influence Drawings: Except for the classes of graphs described in [LLMW98],
very little is known about recognizing which graphs have admit an (open or
closed) strong rectangle of influence drawing. Also, as mentioned in the previous
section, it would be interesting to characterize which planar graphs have a weak
open rectangle of influence drawing. Similar characterizations can also be studied
either in the witness proximity or in the approximate proximity models.

Other Proximity Rules: Several well-known proximity rules are still unexplored from a
graph drawing point of view. For example, one could study the -drawability
problem (see Section 4.2.1) or other proximity rules, not mentioned in the pre-
vious sections. A very limited list includes a-complezes (see, e.g., [Ede95] and
also [SLLT08] for preliminary results on a-drawability), sphere-of-attraction graphs
(see, e.g., [MWO0]), class-cover catch digraphs (see, e.g., [PMDS03]), and mazi-
mum weight triangulations (see, e.g., [WCY99, QW04, QW06]).

4.6 Beyond this Chapter

We conclude this chapter by briefly pointing at two research directions in the areas of sensor
networks and of robust geometric computing where proximity graphs and drawings have
received some attention in the last few years.

Proximity Drawings and Ad-Hoc Networks: Different types of proximity graphs have at-
tracted the interest of network engineers. Indeed, topology control and manage-
ment, i.e., how to maintain network connectivity while consuming the minimum
possible power, has emerged as one of the most important issues in wireless net-
works.

A wireless sensor network can be modeled as a set of points in the plane where
each sensor s can communicate directly with each other sensor that is within its
power range; this model gives rise to a proximity graph called a unit distance
graph, where the proximity region for a sensor s is a circle of radius one centered
at s, and there is an edge connecting s to another sensor ¢ if and only if ¢ is
within the power range of S. However, the unit distance graph may be too dense
for the limited memory of the sensors in the network; also, in order to reduce
energy consumption, it is desirable that each sensor communicates directly with
only a few of the sensors that are within its range.

An increasing number of topology control algorithms have thus been presented
in the literature that are based on proximity graphs that are sparser than the
unit distance graph, have small vertex degree, can be computed locally in a dis-
tributed manner, and are good spanners (a straight-line drawing I" of a graph
G is a k-spanner if for every pair of vertices u and v of G their geometric dis-
tance in I' is at most k times the graph theoretic distance of v and v in G). A
limited list of these structures includes k-localized Delaunay triangulations (see,
e.g., [LCWWO03)), local minimum spanning trees (see, e.g., [LHS03, CISRS05]),
partial Delaunay triangulations (see, e.g., [LSWO04]), directed relative neighbor-
hood graphs, and directed local minimum spanning trees [LHO4]. The interested
reader is also referred to [BM04, BDEK06, BDL*11, CKLS10, CKX11, GLN02,
Kan09, KPX10, NS07, Li04] for a limited list of references on geometric spanners
and applications of proximity graphs to wireless networks. See also [CBF106]

144 CHAPTER 4. PROXIMITY DRAWINGS

for a paper that studies the drawability of a graph as a local minimum spanning
tree.

We only remark here that all the proximity graphs mentioned above are con-
structed by pruning those edges of the unit distance graph which do not satisfy
a given proximity rule; hence, the resulting proximity drawing guarantees close-
ness among adjacent vertices while there is no constraint on pairs of non-adjacent
vertices. In other words, these structures inherently adopt a weak model of prox-
imity.

Finally, there is general consensus that the knowledge of the combinatorial prop-
erties of the communication network is a basic requirement for the design of effi-
cient localized routing algorithms (see, e.g., [BMSU01, KWZ03, LSW05]). Unlike
traditional wired and cellular networks, the movement of wireless devices during
the communication could change the network topology to some extent: Under-
standing what types of networks (proximity drawings) can result is therefore a
natural question to ask. See, for example, [PS04], where the edge complexity of
locally Delaunay triangulations is studied.

Proximity Drawings and Geometric Checkers: The intrinsic structural complexity of the
implementation of geometric algorithms makes the problem of formally proving
the correctness of the code unfeasible in most of the cases. This has been moti-
vating research on checkers. A checker is an algorithm that receives as input a
geometric structure and a predicate stating a property that should hold for the
structure. The task of the checker is to verify whether the structure satisfies or
not the given property. Here, the expectation is that it is often easier to evaluate
the quality of the output than the correctness of the software that produces it.
Different papers (see, e.g., [DLPT98, MNST99]) have agreed on the basic features
that a “good” checker should have:

Correctness: The checker should be correct beyond any reasonable doubt. Oth-
erwise, one would incur into the problem of checking the checker.

Simplicity: The implementation should be straightforward.

Efficiency: The expectation is to have a checker that is not less efficient than the
algorithm that produces the geometric structure.

Robustness: The checker should be able to handle degenerate configurations of
the input and should not be affected by errors in the flow of control due to
round-off approximations.

Geometric checkers can be quite naturally studied in the context of proximity
drawings. Suppose one is given a straight-line drawing I' of a graph together
with some proximity rule R. A prozimity drawing checker for T" is an algorithm
that either certifies that I" satisfies the proximity rule R or reports evidence that
I' does not satisfy R.

One possible approach to solve this problem is to compute the proximity graph on
the vertex set of I' by applying the proximity rule R and then verify whether the
computed drawing coincides with I'. For example, suppose that I' is a drawing
of a binary tree and one wants to check whether I is a minimum weight drawing.
One could compute the Euclidean minimum spanning tree of the vertices of I'
in O(nlogn) time [PS90] and verify whether the computed graph coincides with
I'. However, can one perform the check in o(nlogn) time? Also, what if the
proximity graph on the vertex set of I' is not unique? Linear-time checkers for
Delaunay and Voronoi drawings can be found in [DLPT98, MNST99]. Aronov,

4.6. BEYOND THIS CHAPTER 145

Dulieu, and Hurtado [ADH] show an O(n? log m)-time algorithm that receives as
input a straight-line drawing I' with n vertices and m edges and checks whether
I" is a negative witness Gabriel drawing for some set of witness points. If the
answer is affirmative, the algorithm also returns the witness points.

Acknowledgments

This chapter extends and updates an early survey on proximity drawings co-authored by
Giuseppe Di Battista, William Lenhart, and me [DLL95]. I thank Boris Aronov, Ferran
Hurtado, and Sue H. Whitesides for their insights and constructive comments on earlier
versions of this chapter. Work supported in part by MIUR of Italy under project AlgoDEEP
prot. 2008 TFBWLA4.

146 CHAPTER 4. PROXIMITY DRAWINGS

References

[AB] Soroush Alamdari and Therese Bied. Open rectangle-of-influence draw-
ings of non-triangulated planar graphs. In W. Didimo and M. Patrignani,
editors, Graph Drawing (Proc. 20th International Symposium, GD 2012),
Lecture Notes Comput. Sci. to appear.

[AB12] Soroush Alamdari and Therese C. Biedl. Planar open rectangle-of-
influence drawings with non-aligned frames. In Marc J. van Kreveld
and Bettina Speckmann, editors, Graph Drawing (Proc. 19th Interna-
tional Symposium, GD 2011), volume 7034 of Lecture Notes Comput.
Sci., pages 14-25. Springer-Verlag, 2012.

[ABCT11] Patrizio Angelini, Till Bruckdorfer, Marco Chiesa, Fabrizio Frati, Michael
Kaufmann, and Claudio Squarcella. On the area requirements of Eu-
clidean minimum spanning trees. In Frank Dehne, John Iacono, and
Jorg-Riidiger Sack, editors, Algorithms and Data Structures (Proc. 12th
International Symposium, WADS 2011), volume 6844 of Lecture Notes
Comput. Sci., pages 25-36. Springer-Verlag, 2011.

[ADH] Boris Aronov, Muriel Dulieu, and Ferran Hurtado. Witness Gabriel
graphs. Computational Geometry. to appear.

[ADH1la] Boris Aronov, Muriel Dulieu, and Ferran Hurtado. Witness (Delaunay)
graphs. Comput. Geom., 44(6-7):329-344, 2011.

[ADH11b] Boris Aronov, Muriel Dulieu, and Ferran Hurtado. Witness rectangle
graphs. In Frank Dehne, John Iacono, and Jorg-Riidiger Sack, editors,
Algorithms and Data Structures (Proc. 12th International Symposium,
WADS 2011), volume 6844 of Lecture Notes Comput. Sci., pages 73-85.
Springer-Verlag, 2011.

[AH&2] D. Avis and J. Horton. Remarks on the sphere of influence graphs. Ann.
New York Acad. Sci., 440:323-327, 1982.
[AM92] Pankaj K. Agarwal and J. Matousek. Relative neighborhood graphs in

three dimensions. Comput. Geom. Theory Appl., 2(1):1-14, 1992.

[AMFM™*11] Bernardo M. Abrego, Ruy Fabila Monroy, Silvia Ferndndez-Merchant,
David Flores-Penaloza, Ferran Hurtado, Vera Sacristan, and Maria
Saumell. On crossing numbers of geometric proximity graphs. Comput.
Geom., 44(4):216-233, 2011.

[BBM99] T. Biedl, A. Bretscher, and H. Meijer. Rectangle of influence drawings
of graphs without filled 3-cycles. In Graph Drawing (Proc. GD ’99),
volume 1731 of Lecture Notes Comput. Sci., pages 359-368. Springer-
Verlag, 1999.

[BC87] S. Bhatt and S. Cosmadakis. The complexity of minimizing wire lengths
in VLSI layouts. Inform. Process. Lett., 25:263-267, 1987.

[BCH'10] Prosenjit Bose, Sébastien Collette, Ferran Hurtado, Matias Korman, Ste-
fan Langerman, Vera Sacristan, and Maria Saumell. Some properties of
higher order Delaunay and Gabriel graphs. In Proceedings of the 22nd
Annual Canadian Conference on Computational Geometry, CCCG 2010,
pages 13-16, 2010.

[BDEKO06] Prosenjit Bose, Luc Devroye, William S. Evans, and David G. Kirk-
patrick. On the spanning ratio of Gabriel graphs and beta-skeletons.
SIAM J. Discrete Math., 20(2):412-427, 2006.

REFERENCES 147

[BDLT11] Prosenjit Bose, Luc Devroye, Maarten LofHler, Jack Snoeyink, and Vishal
Verma. Almost all Delaunay triangulations have stretch factor greater
than pi/2. Comput. Geom., 44(2):121-127, 2011.

[BDLL95] P.Bose, G. Di Battista, W. Lenhart, and G. Liotta. Proximity constraints
and representable trees. In R. Tamassia and 1. G. Tollis, editors, Graph
Drawing (Proc. GD ’94), volume 894 of Lecture Notes Comput. Sci.,
pages 340-351. Springer-Verlag, 1995.

[BE51] P. Bateman and P. Erdés. Geometrical extrema suggested by a lemma
of Besicovitch. American Mathematical Monthly, 58:306-314, 1951.
[Bes45] A.S. Besicovitch. A general form of the covering principle and relative

differentiation of additive functions. Proceedings of the Cambridge Philo-
sophical Society, 41:103-110, 1945.

[BLL96] P. Bose, W. Lenhart, and G. Liotta. Characterizing proximity trees.
Algorithmica, 16:83-110, 1996. (special issue on Graph Drawing, edited
by G. Di Battista and R. Tamassia).

[BLS00] E. Boyer, L. Lister, and B. Shader. Sphere of influence graphs using
the sup-norm. Mathematical and Computer Modelling, 32(10):1071-1082,
2000.

[BMO04] Prosenjit Bose and Pat Morin. Online routing in triangulations. SIAM

J. Comput., 33(4):937-951, 2004.

[BMSUO1] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing
with guaranteed delivery in ad hoc wireless networks. Wireless Networks,
7(6):609-616, 2001.

[Bro79] K. Q. Brown. Voronoi diagrams from convex hulls. Inform. Process.
Lett., 9(5):223-228, 1979.

[CBF06] Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Luca Grilli,
Katharina Anna Lehmann, Giuseppe Liotta, Maurizio Patrignani, Ioan-
nis G. Tollis, and Francesco Trotta. On the topologies of local minimum
spanning trees. In Thomas Erlebach, editor, Combinatorial and Algorith-
mic Aspects of Networking, Third Workshop, CAAN 2006, volume 4235
of Lecture Notes in Computer Science, pages 31-44. Springer, 2006.

[CCL09] Jean Cardinal, Sébastien Collette, and Stefan Langerman. Empty region
graphs. Comput. Geom., 42(3):183-195, 2009.

[CEG'94] B. Chazelle, H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, and
M. Sharir. Selecting heavily covered points. SIAM J. Comput., 23:1138—
1151, 1994.

[Cim92] R. J. Cimikowski. Properties of some Euclidian proximity graphs. Pattern
Recogn. Lett., 13(6):417-423, June 1992.

[CISRS05] Julien Cartigny, Francois Ingelrest, David Simplot-Ryl, and Ivan Stoj-
menovic. Localized LMST and RNG based minimum-energy broadcast
protocols in ad hoc networks. Ad Hoc Networks, 3(1):1-16, 2005.

[CKLS10] Siu-Wing Cheng, Christian Knauer, Stefan Langerman, and Michiel
H. M. Smid. Approximating the average stretch factor of geometric
graphs. In Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park,
editors, Algorithms and Computation - 21st International Symposium,
ISAAC 2010, volume 6506 of Lecture Notes in Computer Science, pages
37-48. Springer, 2010.

148 CHAPTER 4. PROXIMITY DRAWINGS

[CKX11] Shiliang Cui, Iyad A. Kanj, and Ge Xia. On the stretch factor of Delaunay
triangulations of points in convex position. Comput. Geom., 44(2):104—
109, 2011.

[CPZ04] Miguel A. Carreira-Perpinan and Richard S. Zemel. Proximity graphs
for clustering and manifold learning. In Newral Information Processing

Systems, NIPS 2004, 2004.

[CTL92 M. S. Chang, C. Y. Tang, and C. T. Lee. Solving the Euclidean bottle-
neck matching problem by k-relative neighborhood graphs. Algorithmica,
8:177-194, 1992.

[CWLO02] G. Calinescu, P. Wan, and X. Li. Distributed construction of planar
spanners and routing for ad hoc wireless networks. In Proc. 21st Annual

Joint Conference of the IEEE Computer and Communication Societies
(INFOCOM 02), 2002.

[CXO01] Siu-Wing Cheng and Yin-Feng Xu. On f-skeleton as a subgraph of the
minimum weight triangulation. Theoretical Computer Science, 262:459—
471, 2001.

[DDLM12] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer.
Drawing a tree as a minimum spanning tree approximation. J. Comput.
Syst. Sci., 78(2):491-503, 2012.

[Del34] B. Delaunay. Sur la sphere vide. A la memoire de Georges Voronoi.
Izv. Akad. Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk,
7:793-800, 1934.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

[Dil87) M. B. Dillencourt. A non-Hamiltonian, nondegenerate Delaunay trian-
gulation. Inform. Process. Lett., 25:149-151, 1987.

[Dil89) M. B. Dillencourt. An upper bound on the shortness exponent of in-
scribable polytopes. J. Combin. Theory Ser. B, 46(1):66-83, February
1989.

[Dil90a] M. B. Dillencourt. Realizability of Delaunay triangulations. Inform.
Process. Lett., 33(6):283-287, February 1990.

[Dil90b] M. B. Dillencourt. Toughness and Delaunay triangulations. Discrete
Comput. Geom., 5:575-601, 1990.

[Dil96] M. B. Dillencourt. Finding Hamiltonian cycles in Delaunay triangulations

is NP-complete. Discrete Applied Mathematics, 64(3):207-217, 1996.

[DLL95] G. Di Battista, W. Lenhart, and G. Liotta. Proximity drawability: a
survey. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc. GD
’94), volume 894 of Lecture Notes Comput. Sci., pages 328-339. Springer-
Verlag, 1995.

[DLM] Emilio Di Giacomo, Giuseppe Liotta, and Henk Meijer. The approximate
rectangle of influence drawability problem. In W. Didimo and M. Patrig-
nani, editors, Graph Drawing (Proc. 20th International Symposium, GD
2012), Lecture Notes Comput. Sci. to appear.

[DLPT98] Olivier Devillers, Giuseppe Liotta, Franco P. Preparata, and Roberto
Tamassia. Checking the convexity of polytopes and the planarity of sub-
divisions. Comput. Geom. Theory Appl., 11:187-208, 1998.

REFERENCES

[DLWO6]

[DS94]

[DS95]

[DV96)]
[Ede95]

[EGK+12]

[Epp92]

[Epp09]

[EPY97]

[EW96a]

[EW96b)]

[FK11]
[Fus06]

[Fus09]

[GHvKO02]

[GJT79]

[GLN02]

Giuseppe Di Battista, Giuseppe Liotta, and Sue Whitesides. The strength
of weak proximity. J. Discrete Algorithms, 4(3):384-400, 2006.

M. B. Dillencourt and W. D. Smith. Graph-theoretical conditions for in-
scribability and Delaunay realizability. In Proc. 6th Canad. Conf. Com-
put. Geom., pages 287-292, 1994.

M. B. Dillencourt and W. D. Smith. A linear-time algorithm for testing
the inscribability of trivalent polyhedra. Internat. J. Comput. Geom.
Appl., 5:21-36, 1995.

G. Di Battista and L. Vismara. Angles of planar triangular graphs. STAM
J. Discrete Math., 9(3):349-359, 1996.

Herbert Edelsbrunner. The union of balls and its dual shape. Discrete
& Computational Geometry, 13:415-440, 1995.

William Evans, Emden R. Gansner, Michael Kaufmann, Giuseppe Liotta,
Henk Meijer, and Andreas Spillner. Approximate proximity drawings. In
Marc J. van Kreveld and Bettina Speckmann, editors, Graph Drawing
(Proc. 19th International Symposium, GD 2011), volume 7034 of Lecture
Notes Comput. Sci., pages 166-78. Springer-Verlag, 2012.

D. Eppstein. The diameter of nearest neighbor graphs. Tech. Report
92-76, Dept. Inform. Comput. Sci., Univ. California, Irvine, CA, July
1992.

David Eppstein. Isometric diamond subgraphs. In Ioannis G. Tollis and
Maurizio Patrignani, editors, Graph Drawing (Proc. 16th International
Symposium, GD 2008), volume 5417 of Lecture Notes in Computer Sci-
ence, pages 384-389, 2009.

David Eppstein, Mike Paterson, and F. Frances Yao. On nearest-neighbor
graphs. Discrete & Computational Geometry, 17(3):263-282, 1997.

P. Eades and S. Whitesides. The logic engine and the realization problem
for nearest neighbor graphs. Theoret. Comput. Sci., 169:23-37, 1996.

P. Eades and S. Whitesides. The realization problem for Euclidean min-
imum spanning trees is NP-hard. Algorithmica, 16:60-82; 1996. (special
issue on Graph Drawing, edited by G. Di Battista and R. Tamassia).
Fabrizio Frati and Michael Kaufmann. Polynomial area bounds for mst
embeddings of trees. Comput. Geom., 44(9):529-543, 2011.

Eric Fusy. Counting d-polytopes with d+3 vertices. FElectr. J. Comb.,
13(1), 2006.
Eric Fusy. Transversal structures on triangulations: A combinatorial
study and straight-line drawings. Discrete Mathematics, 309(7):1870—
1894, 2009.

Joachim Gudmundsson, Mikael Hammar, and Marc J. van Kreveld.
Higher order Delaunay triangulations. Comput. Geom., 23(1):85-98,
2002.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, New York, NY,
1979.

Joachim Gudmundsson, Christos Levcopoulos, and Giri Narasimhan.

Fast greedy algorithms for constructing sparse geometric spanners. STAM
J. Comput., 31(5):1479-1500, 2002.

149

150 CHAPTER 4. PROXIMITY DRAWINGS

[GO04] J. E. Goodman and J. O’Rourke, editors. Handbook of Discrete and
Computational Geometry, 2nd Edition. CRC Press, 2004.

[GPS94] L. Guibas, J. Pach, and M. Sharir. Sphere of influence graphs in higher
dimensions. Colloquia Mathematica Societatis Janos Bolyai, 63:131-137,
1994.

[GS69] K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic
variation analysis. Systematic Zoology, 18:259-278, 1969.

[Har69] F. Harary. Graph Theory. Addison-Wesley, Reading, Mass., 1969.

[HILM93] F. Harary, M.S. Jacobson, M.J. Lipman, and F.R. Morris. On ab-
stract sphere of influence graphs. Mathematical and Computer Modelling,
17(11):77-83, 1993.

[HLW10] Ferran Hurtado, Giuseppe Liotta, and David R. Wood. Proximity draw-
ings of high-degree trees. CoRR, abs/1008.3193, 2010.

[IROT7] Mohammad Tanvir Irfan and Md. Saidur Rahman. Computing beta-
drawings of 2-outerplane graphs. In M. Kaykobad and Md. Saidur Rah-
man, editors, Workshop on Algorithms and Computation 2007 - Proceed-
ings of First WALCOM, pages 46—61. Bangladesh Academy of Sciences
(BAS), 2007.

[IS85] M. Ichino and J. Sklansky. The relative neighborhood graph for mixed
feature variables. Pattern Recognition, 18(2):161-167, 1985.

[JLMO95] M.S. Jacobson, M.J. Lipman, and F.R. Morris. Trees that are sphere of
influence graphs. Appl. Math. Letters, 8(6):89-93, 1995.

[JT92] J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs
and their relatives. Proc. IEEE, 80(9):1502-1517, September 1992.

[Kan83] V. Kantabutra. Traveling salesman cycles are not always subgraphs of
Voronoi duals. Inform. Process. Lett., 16:11-12, 1983.

[Kan09] Iyad A. Kanj. On spanners of geometric graphs. In Jianer Chen and

S. Barry Cooper, editors, Theory and Applications of Models of Com-
putation, 6th Annual Conference, TAMC 2009, volume 5532 of Lecture
Notes in Computer Science, pages 49-58. Springer, 2009.

[Kei94] M. Keil. Computing a subgraph of the minimum weight triangulation.
Comput. Geom. Theory Appl., 4:13-26, 1994.
[Kin06) James A. King. Realization of degree 10 minimum spanning trees in

3-space. In Proceedings of the 18th Annual Canadian Conference on
Computational Geometry, CCCG 2006, 2006.

[KL10] Sanjiv Kapoor and Xiang-Yang Li. Proximity structures for geometric
graphs. Int. J. Comput. Geometry Appl., 20(4):415-429, 2010.

[KPX10] Iyad A. Kanj, Ljubomir Perkovic, and Ge Xia. On spanners and
lightweight spanners of geometric graphs. SIAM J. Comput., 39(6):2132—
2161, 2010.

[KR85] D. G. Kirkpatrick and J. D. Radke. A framework for computational
morphology. In G. T. Toussaint, editor, Computational Geometry, pages
217-248. North-Holland, Amsterdam, Netherlands, 1985.

[KWO01] M. Kaufmann and D. Wagner, editors. Drawing Graphs, volume 2025 of
Lecture Notes in Computer Science. Springer-Verlag, 2001.
[KW04] Matthew Kitching and Sue Whitesides. The three dimensional logic en-

gine. In Jénos Pach, editor, Graph Drawing (Proc. 12th International

REFERENCES

[KWZ03]

[Lan69]

[LCWWO03]

[LDY5]

[LHO4]

[LHS03]

[Li04]

[LL96]

[LL97]

[LLO2]

[LLMWO9g]

[LMO3]

[LS93]

[LSW04]

[LSWO05)

[LTTV97]

Symposium, GD 2004), volume 3383 of Lecture Notes in Computer Sci-
ence, pages 329-339. Springer, 2004.

Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Worst-case op-
timal and average-case efficient geometric ad-hoc routing. In Proceedings
of the 4th ACM Interational Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc 2003, pages 267-278. ACM, 2003.

P. M. Lankford. Regionalization: theory and alternative algorithms. Ge-
ogr. Anal., 1:196-212, 1969.

X.Y. Li, G. Calinescu, P.J. Wan, and Y. Wang. Localized Delaunay trian-
gulation with application in ad hoc wireless networks. IEEFE Transactions
on Parallel and Distributed Systems, 14:1035-1047, 2003.

Giuseppe Liotta and Giuseppe Di Battista. Computing proximity draw-
ings of trees in the 3-dimensional space. In Proc. 4th Workshop Algo-
rithms Data Struct., volume 955 of Lecture Notes Comput. Sci., pages
239-250. Springer-Verlag, 1995.

Ning Li and Jennifer C. Hou. Topology control in heterogeneous wireless
networks: Problems and solutions. In INFOCOM, 2004.

Ning Li, Jennifer C. Hou, and Lui Sha. Design and analysis of an mst-
based topology control algorithm. In INFOCOM, 2003.

X.Y. Li. Applications of computational geometry in wireless networks. In
X. Cheng, X. Huang, and D.-Z. Du, editors, Ad Hoc Wireless Networking,
pages 197-264. Kluwer Academic Publisher, 2004.

W. Lenhart and G. Liotta. Drawing outerplanar minimum weight trian-
gulations. Inform. Process. Lett., 57(5):253-260, 1996.

W. Lenhart and G. Liotta. Proximity drawings of outerplanar graphs. In
S. North, editor, Graph Drawing (Proc. GD ’96), volume 1190 of Lecture
Notes Comput. Sci., pages 286-302. Springer-Verlag, 1997.

W. Lenhart and G. Liotta. The drawability problem for minimum weight
triangulations. Theoretical Computer Science, 270:261-286, 2002.

G. Liotta, A. Lubiw, H. Meijer, and S.H. Whitesides. The rectangle of
influence drawability problem. Comput. Geom. Theory and Applications,
10(1):1-22, 1998.

G. Liotta and H. Meijer. Voronoi drawings of trees. Comput. Geom.
Theory and Applications, 24(3):147-178, 2003.

A. Lubiw and N. Sleumer. Maximal outerplanar graphs are relative neigh-
borhood graphs. In Proc. 5th Canad. Conf. Comput. Geom., pages 198—
203, 1993.

Xiang-Yang Li, Ivan Stojmenovic, and Yu Wang. Partial Delaunay tri-
angulation and degree limited localized bluetooth scatternet formation.
IEEE Transactions on Parallel and Distributed Systems, 15(4):350-361,
2004.

Xiang-Yang Li, Wen-Zhan Song, and Weizhao Wang. A unified energy
efficient topology for unicast and broadcast. In Proc. MobiCom’05, 2005.
G. Liotta, R. Tamassia, I. G. Tollis, and P. Vocca. Area requirement
of Gabriel drawings. In Algorithms and Complexity (Proc. CIAC’ 97),

volume 1203 of Lecture Notes Comput. Sci., pages 135-146. Springer-
Verlag, 1997.

151

152 CHAPTER 4. PROXIMITY DRAWINGS

[Mat87] C. Mathieu. Some problems in computational geometry. Algorithmica,
2:131-134, 1987.

[MMNO9] Kazuyuki Miura, Tetsuya Matsuno, and Takao Nishizeki. = Open
rectangle-of-influence drawings of inner triangulated plane graphs. Dis-
crete & Computational Geometry, 41(4):643-670, 2009.

[MNO5] Kazuyuki Miura and Takao Nishizeki. Rectangle-of-influence drawings
of four-connected plane graphs. In Seok-Hee Hong, editor, Asia-Pacific
Symposium on Information Visualisation, APVIS 2005, volume 45 of
CRPIT, pages 75-80, 2005.

[MNNOO] Kazuyuki Miura, Takao Nishizeki, and Shin-Ichi Nakano. Convex grid
drwaings of four-connected plane graphs. In D. T. Lee and Shang-Hua
Teng, editors, Algorithms and Computation, 11th International Confer-
ence, ISAAC 2000, volume 1969 of Lecture Notes in Computer Science,
pages 254-265. Springer, 2000.

[MNNOG] Kazuyuki Miura, Shin-Ichi Nakano, and Takao Nishizeki. Convex grid
drawings of four-connected plane graphs. Int. J. Found. Comput. Sci.,
17(5):1031-1060, 2006.

[MNS*t99] K. Mehlhorn, S. Niher, M. Seel, R. Seidel, T. Schilz, S. Schirra, and
C. Uhrig. Checking geometric programs or verification of geometric struc-
tures. Comput. Geom. Theory Appl., 12(1-2):85-103, 1999.

[MQ94a] T.S. Michael and T. Quint. Sphere of influence graphs: a survey. Con-
gressus Numerantium, 105:153-160, 1994.

[MQ94b] T.S. Michael and T. Quint. Sphere of influence graphs: Edge density and
clique size. Mathematical and Computer Modelling, 127(7):19-24, 1994.

[MQ99] T.S. Michael and T. Quint. Sphere of influence graphs in general metric
spaces. Mathematical and Computer Modelling, 29(7):45-53, 1999.

[MQO3] T.S. Michael and T. Quint. Sphere of influence graphs and the [, metric.
Discrete Applied Mathematics, 127:447-460, 2003.

[MROS] Wolfgang Mulzer and Giinter Rote. Minimum-weight triangulation is
NP-hard. J. ACM, 55(2), 2008.

[MS80] D. W. Matula and R. R. Sokal. Properties of Gabriel graphs relevant

to geographic variation research and clustering of points in the plane.
Geogr. Anal., 12(3):205-222, 1980.

[MS92] C. Monma and Subhash Suri. Transitions in geometric minimum span-
ning trees. Discrete Comput. Geom., 8:265-293, 1992.

[MWO00] F. R. McMorris and C. Wang. Sphere of attraction graphs. Congressus
Numerantium, 142:149-160, 2000.

[NSO7] Giri Narasimhan and Michiel H. M. Smid. Geometric spanner networks.

Cambridge University Press, 2007.

[OBS92] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara. Spatial Tessella-
tions: Concepts and Applications of Voronoi Diagrams. John Wiley &
Sons, Chichester, UK, 1992.

[O'RAT7] J. O’'Rourke. Computational geometry column 2. SIGACT News,
18(2):10-12, 1987. Also in Computer Graphics 21(1987), 155-157.

[PMDS03] C.E. Priebe, D. J. Marchette, J. DeVinney, and D.A. Socolinsky. Classifi-

cation using class cover catch digraphs. Journal of Classification, 20(1):3—
23, 2003.

REFERENCES 153

[PS90] F. P. Preparata and M. I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, 3rd edition, October 1990.

[PS04] R. Pinchasi and S. Smorodinsky. On locally Delaunay geometric graphs.
In Proc. 20th ACM Symposium on Computational Geometry (SoCG’04),
pages 378-382, 2004.

[PV04] Paolo Penna and Paola Vocca. Proximity drawings in polynomial area
and volume. Comput. Geom. Theory and Applications, 29(2):91-116,
2004.

[PY92] M. S. Paterson and F. F. Yao. On nearest-neighbor graphs. In Proc. 19th

Internat. Colloq. Automata Lang. Program., volume 623 of Lecture Notes
Comput. Sci., pages 416—426. Springer-Verlag, 1992.

[QW04] Jianbo Qian and Cao An Wang. A linear-time approximation scheme
for maximum weight triangulation of convex polygons. Algorithmica,
40(3):161-172, 2004.

[QW06] Jianbo Qian and Cao An Wang. Progress on maximum weight triangu-
lation. Comput. Geom., 33(3):99-105, 2006.
[Rad88] J. D. Radke. On the shape of a set of points. In G. T. Toussaint, editor,

Computational Morphology, pages 105-136. North-Holland, Amsterdam,
Netherlands, 1988.

[Reid8] E.R. Reifenberg. A problem on circles. Mathematical Gazette, 32:290—
292, 1948.

[RS95] G. Robins and J. S. Salowe. Low-degree minimum spanning trees. Dis-
crete Comput. Geom., 14:151-165, 1995.

[SHI7] Kokichi Sugihara and Tetsuya Hiroshima. How to draw a Delaunay di-

agram with a given topology. In Abstracts 15th Furopean Workshop
Comput. Geom., pages 13—15. Universitdt Wiirzburg, 1997.

[S192] K. Sugihara and M. Iri. Construction of the Voronoi diagram for ‘one mil-
lion’ generators in single-precision arithmetic. Proc. IEEE, 80(9):1471—
1484, September 1992.

[STIT00] K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-oriented imple-
mentation - an approach to robust geometric algorithms. Algorithmica,
27(1):5-20, 2000.

[SIRO8] Md. Abul Hassan Samee, Mohammad Tanvir Irfan, and Md. Saidur Rah-
man. Computing beta -drawings of 2-outerplane graphs in linear time.
In Shin-Ichi Nakano and Md. Saidur Rahman, editors, Algorithms and
Computation, Second International Workshop, WALCOM 2008, volume
4921 of Lecture Notes in Computer Science, pages 81-87. Springer, 2008.

[SLL*08] Svetlana Stolpner, Jonathan Lenchner, Giuseppe Liotta, David Brem-
ner, Christophe Paul, Marc Pouget, and Stephen K. Wismath. A note
on alpha-drawable k-trees. In Proceedings of the 20th Annual Canadian
Conference on Computational Geometry, 2008.

[S0s99a] M. Soss. On the size of the Euclidean sphere of influence graph. In Proc.
11th Canad. Conf. Comput. Geom., 1999.
[Sos99b] M. Soss. The size of the open sphere of influence graph in L., metric

spaces. In Graph Drawing (Proc. GD ’98), volume 1547 of Lecture Notes
Comput. Sci., pages 458-459. Springer-Verlag, 1999.

154 CHAPTER 4. PROXIMITY DRAWINGS

[SZ11] Sadish Sadasivam and Huaming Zhang. Closed rectangle-of-influence
drawings for irreducible triangulations. Comput. Geom., 44(1):9-19,
2011.

[Tou80] G. T. Toussaint. The relative neighbourhood graph of a finite planar set.
Pattern Recogn., 12:261-268, 1980.

[Tou88] G. T. Toussaint. A graph-theoretical primal sketch. In G. T. Toussaint,

editor, Computational Morphology, pages 229-260. North-Holland, Ams-
terdam, Netherlands, 1988.
[Tou05] G. Toussaint. Geometric proximity graphs for improving nearest neigh-

bor methods in instance-based learning and data mining. International
Journal of Comput. Geom. and Applications, 15(2):101-150, 2005.

[Urq83] R. B. Urquhart. Some properties of the planar Euclidean relative neigh-
bourhood graph. Pattern Recogn. Lett., 1:317-332, 1983.

[Vel92] R. C. Veltkamp. The 7-neighborhood graph. Comput. Geom. Theory
Appl., 1(4):227-246, 1992.

[Vel94] R. C. Veltkamp. Closed Object Boundaries from Scattered Points, volume
885 of Lecture Notes Comput. Sci. Springer-Verlag, 1994.

[Vel95] R. C. Veltkamp. Boundaries through scattered points of unknown density.

Graphics Models and Image Processing, 57(6):441-452, November 1995.
[WCY99] Cao An Wang, Francis Y. L. Chin, and Bo-Ting Yang. Maximum weight
triangulation and graph drawing. Inf. Process. Lett., 70(1):17-22, 1999.
[WCY00] C. An Wang, F. Y. Chin, and B. Yang. Triangulations without minimum
weight drawing. Information Processing Letters, 74(5-6):183-189, 2000.

[Wo010] David R. Wood. Partitions and coverings of trees by bounded-degree
subtrees. CoRR, abs/1008.3190, 2010.

[WYO01] C. A. Wang and B. Yang. A lower bound for f-skeleton belonging to
minimum weight triangulations. Comput. Geom. Theory Appl., 19:35—
46, 2001.

[ZV09a] Huaming Zhang and Milind Vaidya. On open rectangle-of-influence and

rectangular dual drawings of plane graphs. Discrete Mathematics, Algo-
rithms and Applications, 1(3):319-333, 2009.

[ZV09b) Huaming Zhang and Milind Vaidya. On open rectangle-of-influence draw-
ings of planar graphs. In Ding-Zhu Du, Xiaodong Hu, and Panos Parda-
los, editors, Combinatorial Optimization and Applications, volume 5573
of Lecture Notes in Computer Science, pages 123-134. Springer Berlin /
Heidelberg, 2009.

Tree Drawing Algorithms

5.1 Introduction...............oooiiiiiiiiii 155
Drawing Conventions * Aesthetics
5.2 Level-Based Approachoii . 158
5.3 H-V Approacho o 160
5.4 Path-Based Approachcoooiiiiiiii.. 160
5.5 Ringed Circular Layout Approach 162
5.6 Separation-Based Approach 162
5.7 Algorithms for Drawing Binary Trees 163

Theoretical Results ® Experimental Analysis ¢ Unordered
Trees ® Ordered Trees

5.8 Algorithms for Drawing General Trees.................. 178

Theoretical Results ® Unordered Trees ® Ordered Trees
Adrian Rusu 5.9 Other Tree Drawing Methods 183
Rowan University Referenceso 188

5.1 Introduction

Tree drawing is concerned with the automatic generation of geometric representations of
relational information, often for visualization purposes. The typical data structure for
modeling hierarchical information is a tree whose vertices represent entities and whose
edges correspond to relationships between entities. Visualizations of hierarchical structures
are only useful to the degree that the associated diagrams effectively convey information to
the people that use them. A good diagram helps the reader understand the system, but a
poor diagram can be confusing.

The automatic generation of drawings of trees finds many applications, such as software
engineering (program nesting trees, object-oriented class hierarchies), business administra-
tion (organization charts), decision support systems (activity trees), artificial intelligence
(knowledge-representation isa hierarchies), logic programming (SLD-trees), website design
and browsing (structure of a website), biology (evolutionary trees), and chemistry (molec-
ular drawings).

Algorithms for drawing trees are typically based on some graph-theoretic insight into the
structure of the tree. The input to a tree drawing algorithm is a tree T' that needs to be
drawn. The output is a drawing I', which maps each node of T' to a distinct point in the
plane, and each edge (u,v) of T to a simple Jordan curve with endpoints v and v.

T is an ordered tree if the children of each node are assigned a fixed left-to-right order.
For any node u in T, its leftmost child (rightmost child) is the one that comes first (last) in
the left-to-right ordering of the children of u in T'. The leftmost path p of T is the maximal
path consisting of nodes that are leftmost children, except the first one, which is the root

155

156 CHAPTER 5. TREE DRAWING ALGORITHMS

of T. The last node of p is called the leftmost node of T. Two nodes of T are siblings if
they have the same parent. The subtree of T rooted at a node v consists of v and all the
descendants of v. T is the empty tree if it has zero nodes in it.

Let v be a node of an ordered tree. Then n(v), p(v), [(v), r(v), and s1(v), ..., s;(v), are
the number of nodes in the subtree rooted at v, parent, leftmost child, rightmost child, and
siblings of v, respectively.

The rest of the chapter is organized as follows. After motivating the need for tree drawing
algorithms and providing drawing conventions and aesthetics in this section, we describe
the main approaches for tree drawing algorithms in subsequent sections. We then present
some of the most representative algorithms for drawing binary and general trees.

5.1.1 Drawing Conventions

A drawing convention is a basic rule that a drawing must satisfy to be admissible [DETT99].
A list of the most used drawing conventions for drawing trees and their significance is given
below (see Figure 5.1):

Polyline Drawings

A polyline drawing is a drawing in which each edge is drawn as a connected sequence
of one or more line segments, where the meeting point of consecutive line segments is called
a bend (see Figure 5.1(a)).

Orthogonal Drawings

An orthogonal drawing is one in which each edge is drawn as a chain of alternating
horizontal and vertical segments (see Figure 5.1(b)).

Upward and Non-Upward Drawings

An upward drawing is defined as a drawing where no child is placed higher in the
y-direction than its parent (see Figure 5.1(a),(c)). A non-upward drawing is a drawing that
is not upward (see Figure 5.1(b),(d)).

Grid Drawings

A grid drawing is one in which each vertex is placed at integer coordinates. Assuming
that the plane is covered by horizontal and vertical channels, with unit distance between
two consecutive channels, the meeting point of a horizontal and a vertical channel is called
a grid-point. The computer screen can be viewed as a grid of pixels placed at integer
coordinates. Grid drawings guarantee at least unit distance separation between the nodes
of the tree, and the integer coordinates of the nodes and edge-bends allow the drawings
to be rendered in a (large-enough) grid-based display surface, such as a computer screen,
without any distortions due to truncation and round-off errors. The smallest rectangle with
horizontal and vertical sides parallel to the axes that covers the entire grid drawing is called
the enclosing rectangle.

Planar Drawings

A planar drawing is a drawing in which edges do not intersect each other in the
drawing (for example, the drawings (a), (b), and (c¢) in Figure 5.1 are planar drawings,
and the drawing (d) is a non-planar drawing). Planar drawings are normally easier to
understand than non-planar drawings, i.e., drawings with edge-crossings. Since any tree

5.1. INTRODUCTION 157

(b) (c) (d)

(a)

Figure 5.1 Various kinds of drawings of the same tree: (a) polyline, (b) orthogonal, (c)
straight-line, (d) non-planar. Also note that the drawings shown in Figures (a) and (c) are
upward drawings, whereas the drawings shown in Figures (b) and (d) are not. The root of
the tree is shown as a shaded circle, whereas other nodes are shown as black circles.

admits a planar drawing, it is desirable to obtain planar drawings for trees.

Straight-line Drawings

The so-called straight-line tree drawings have each edge drawn as a straight-line seg-
ment (see Figure 5.1(c)). It is natural to draw each edge of a tree as a straight-line between
its end-nodes. Straight-line drawings are easier to understand than polyline drawings.

The experimental study of the human perception of graph drawings has concluded that
minimizing the number of edge crossings and minimizing the number of bends increases
the understandability of drawings of graphs [TDB88, Pur97, PCJ97, Pur00]. Ideally, the
drawings should have no edge crossings, i.e., they should be planar drawings and should
have no edge-bends, i.e., they should be straight-line drawings.

5.1.2 Aesthetics

Aesthetics specify graphic properties of the drawing that we would like to apply as much
as possible. Most of the tree drawing algorithms have concentrated on drawing trees in
as small as possible area with user-controlled aspect ratio. A list of the most important
aesthetics of drawings of trees is given below:

e Area: The area of a grid drawing is defined as the number of grid points con-
tained in its enclosing rectangle. Drawings with small area can be drawn with
greater resolution on a fixed-size page. Note that we cannot discuss the area of
non-grid drawings (i.e., drawings that have the nodes placed at real coordinates),
since, by placing the nodes closer or farther, such a drawing can be scaled down
or up by any value.

e Aspect Ratio: The aspect ratio of a grid drawing is defined as the ratio of
the length of the shortest side to the length of the longest side of its enclosing
rectangle. An aspect ratio is considered optimal if it is equal to 1. Giving the
users control over the aspect ratio of a drawing allows them to display the drawing
in different kinds of displays surfaces with different aspect ratios. The optimal
use of the screen space is achieved by minimizing the area of the drawing and by
providing user-controlled aspect ratio.

e Subtree Separation: Let T[v] be the subtree rooted at node v of tree T. T'[v]
consists of v and all the descendants of v. A drawing of T has the subtree-

158 CHAPTER 5. TREE DRAWING ALGORITHMS

separation property [CGKT97] if, for any two node-disjoint subtrees T[u] and
T'[v] of T, the enclosing rectangles of the drawings of T'[u] and T'[v] do not overlap
with each other. Focus+context [SB94] is a style in which part of the information
is presented in detail (the focus) while the rest is still available, but at a smaller
size (the context). The subtree-separation property allows for a focus+context
style rendering of a drawing, so that if the tree has too many nodes to fit in
the given drawing area, then the subtrees closer to focus can be shown in detail,
whereas those farther away from the focus can be contracted and simply shown
as filled-in rectangles.

e Closest Leaf: The closest leaf is defined as the smallest euclidean distance
between the root of the tree and a leaf in the drawing [RS08].

e Farthest Leaf: The farthest leaf is defined as the largest euclidean distance
between the root of the tree and a leaf in the drawing [RS08].

The aesthetics closest leaf and farthest leaf help determine whether the algorithms place
leaves close or far from the root. It is important to minimize the distance between the root
and the leaves of the tree, especially in the case when the user needs to visually analyze the
information contained in the levels close to the root and levels close to the leaves, without
the information in between. Such a case appears in particular for algorithms where a change
at the top level (root) of the tree generates modifications at the bottom levels (leaves) of
the tree (for example, usual operations—find, insert, remove—on binary search trees, splay
trees, or BT trees).

Other well-known aesthetics that have been used in various tree drawing studies are as
follows [DETT99]:

e Size: the longest side of the smallest rectangle with horizontal and vertical sides
covering the drawing.

e Total Edge Length: the sum of the lengths of the edges in the drawing.

e Average Edge Length: the average of the lengths of the edges in the drawing.

e Maximum Edge Length: the maximum among the lengths of the edges in the
drawing.

e Uniform Edge Length: the variance of the edge lengths in the drawing.

e Angular Resolution: the smallest angle formed by two edges incident on the
same node.

e Symmetry: visual identification of symmetries in the drawing.

It is widely accepted [DETT94, DETT99, Pur97, PCJ97] that small values of the size,
total edge length, average edge length, maximum edge length, and uniform edge length
are related to the perceived aesthetic appeal and visual effectiveness of the drawing. High
angular resolution is desirable in visualization applications and in the design of optical
communication networks. For binary trees, the degree of a node is at most three, hence
a trivial upper bound on the angular resolution is 120°. Given a symmetric drawing, a
conceptual understanding of the entire tree can be built up from that of a smaller subtree,
replicated a number of times.

5.2 Level-Based Approach

The level-based approach can be used on both binary and general trees, and it is characterized
by the fact that in the drawings produced, the nodes at the same distance from the root are

5.2. LEVEL-BASED APPROACH 159

horizontally aligned. Algorithms based on this approach are usually simple to understand
and implement and produce intuitive drawings that exhibit clear display of symmetries.
However, these algorithms have two disadvantages: the drawing has an area of Q(n?) and,
for balanced trees with many nodes, the width is much larger than the height.

Level-based algorithms have been designed previously [Blo93, RT81, BJL02, Wal90]. The
algorithms described in [BJL02, Wal90] achieve better area, but they do not exhibit the
subtree separation property.

A recursive algorithm for binary trees [RT81], which exhibits the subtree separation
property, uses the following steps: draw the subtree rooted at the left child, draw the
subtree rooted at the right child, place the drawings of the subtrees at horizontal distance
2, and place the root one level above and halfway between the children. If there is only one
child, place the root at horizontal distance 1 from the child. A drawing produced by this
algorithm is provided in Figure 5.2.

Figure 5.2 Drawing of the Fibonacci tree with 88 nodes, generated by the level-based
algorithm of [RT81].

By using a geometric transformation (cartesian — polar), level drawings yield radial
drawings, where nodes are placed on concentric circles by level (see Figure 5.3).

w5 - i

Figure 5.3 Example of a transformation from a level drawing to a radial drawing. Figure
taken from [CT].

Radial drawings are often used in drawing graphs, even though they do not always guar-
antee planarity. Several algorithms for radial drawings of trees have been designed, and
some of them have also been used in various applications [Ber81, Ead92, CPM*98, CPP00,
BMO03, Bac07].

160 CHAPTER 5. TREE DRAWING ALGORITHMS

5.3 H-V Approach

The horizontal-vertical approach can be used on both binary and general trees. In this
approach, a divide-and-conquer strategy is used to recursively construct an upward, or-
thogonal, and straight-line drawing of a tree, by placing the root of the tree in the top-left
corner, and the drawings of its left and right subtrees one next to the other (horizontal
composition) or one below the other (vertical composition) (see Figure 5.4). The resulting
drawing also exhibits the subtree separation property within an O(nlogn) area.

(o)
L1)
I
0
Ko) Ko)e—
T T

(a) (b)

Figure 5.4 General H-V approach. (a) Horizontal composition: the drawings of the sub-
trees rooted at the children of o are placed one next to the other. (b) Vertical composition:
the drawings of the subtrees rooted at the children of o are placed one below the other.

Various H-V algorithms can be obtained, depending on which layout is used and what
other conditions are imposed on the drawing. An algorithm using this approach has been
developed for binary trees [CDP92]. This algorithm places the drawing of the subtree
with the greater width one unit below the drawing of the subtree with the smaller width
(see Figure 5.4(b)). A modification of this algorithm, in which vertical and horizontal
combinations are used alternatively, produces area-efficient drawings of complete, AVL,
and Fibonacci trees. The algorithm can easily be extended to general trees.

5.4 Path-Based Approach

The path-based approach uses a recursive winding paradigm to draw a binary tree T' by laying
down a small chain of nodes monotonically in the z-direction leading to a distinguished node
v, and then “winding” by recursively laying out the subtrees rooted at the children of v in
the opposite direction.

Several path-based algorithms have been designed [CGKT02, GR03a, SKC00].

Recursively, for every subtree rooted at a node v, a parameter A is fixed, so that, if
n(v) < A, then the drawings of the subtrees rooted at the children of v are placed one next
to the other, as in Figure 5.5 (a). Otherwise, the subtree looks like Figure 5.5 (b), where
vy is the root of the subtree, v; 1 = r(v;) for ¢ > 1, k > 1 is the first index for which
n(vg) > n — A and n(vg41) < n— A, T; is the subtree rooted at I(v;), 7' = l(vg), and
T"” = r(vg). In the second case, depending on whether an upward or a non-upward drawing
is to be obtained, the drawings are placed as in Figures 5.6(a) and 5.6(b), respectively.

The user controls the aspect ratio by modifying parameter A.

5.4. PATH-BASED APPROACH 161

L

Figure 5.5 (a) When n(v) < A, the subtrees are placed one next to the other. (b) When
n(v) > A, the tree is divided into subtrees Ty, T5, ..., Tk—2, Tx—1, 1", T".

Viel

il T e T

(a) (b)

Figure 5.6 (a) Upward drawing of binary tree T. (b) Non-upward drawing of binary
tree T

A drawing of the Fibonacci tree with 88 nodes produced by the algorithm of Chan et
al. [CGKTO02], with the value for the parameter A at one of the extremes, is provided in
Figure 5.7. This algorithm produces the best worst-case theoretical bound on area for
path-based algorithms: O(nloglogn).

e o e el el e el sl L SR oy gad ekl

Figure 5.7 Drawing of Fibonacci tree with 88 nodes produced by the path-based algo-
rithm [CGKTO02], with parameter A at one of the extremes: A = 88.

162 CHAPTER 5. TREE DRAWING ALGORITHMS

5.5 Ringed Circular Layout Approach

In these algorithms, children are placed on the circumference or the interior of a circle cen-
tered at their parents [GADMO04, CC99, Ead92, MH98, MMC99, TM02, RSJ07]. In general,
these algorithms are used to draw high-degree trees. However, the resulting drawings are
often not planar. An example of the general idea of the approach is provided in Figure 5.8.

Figure 5.8 General idea for the ringed circular layout approach.

Cone trees [RMC91] are a 3D extension of the 2D ringed circular layout approach. In
cone trees, the parent is located at the tip of a cone, and its children are spaced equally on
the bottom circle of the cone.

5.6 Separation-Based Approach

The separation-based approach can be used on both binary and general trees. Separation-
based algorithms have been designed [GR02, GR03b, GR03c, RS07]. In this approach, a
divide-and-conquer strategy is used to recursively construct a drawing of a tree, by per-
forming the following actions at each recursive step:

e Find a Separator Edge or a Separator Node: A separator edge (node) of a tree T'
with degree(T) = d is an edge (node), which, if removed, divides T into at most
d smaller, partial, trees. It has been shown that every tree contains a separator
edge or a separator node [GR03c, Val81].

e Split Tree: Split T into at most d partial trees by removing a separator edge or
a separator node.

o Assign Aspect Ratios: Preassign a desirable aspect ratio to each partial tree.

e Draw Partial Trees: Recursively construct a drawing of each partial tree using
its preassigned aspect ratio.

e Compose Drawings: Arrange the drawings of the partial trees, and draw the
nodes and edges that were removed from the tree to divide it, such that the
drawing of the tree thus obtained meets certain aesthetics.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 163

5.7 Algorithms for Drawing Binary Trees

A binary tree is one where each node has at most two children. Most of the research on
drawing trees targets binary trees; hence, in this section, several algorithms for drawing
binary trees are presented.

Binary trees have a strong connection to real-life applications. For instance, binary
trees represent programs in combinatory logic, which is under investigation as an approach
to nanostructure synthesis and control [Mac03]. The idea is to use molecular processes
to implement the combinatory logic tree substitution operations, so that the molecular
reorganization of the trees results in the desired structure or process. Visualization of
these binary trees could improve the investigator’s ability in interpreting the substitution
operations involved in combinatory logic.

5.7.1 Theoretical Results

We summarize some known theoretical results on planar grid drawings of binary trees. (See
Table 5.1.)

\ Drawing Type \ Area \ Aspect Ratio \ Reference \
upward orthogonal
polyline O(nloglogn) | ©(log®n/(nloglogn)) [GGTI6]
(non-upward) orthogonal
polyline O(n) O(1) [Lei80, Val81]
upward orthogonal
straight-line O(nlogn) [1,n/logn] [CDP92, CGKTO02]
(non-upward) orthogonal
straight-line O(nloglogn) | O(log®n/(nloglogn)) | [CGKT02, SKCO0]
upward polyline O(n) [n™¢,n [GGTI6]
upward straight-line O(nloglogn) | ©(log® n/(nloglogn)) [SKCO00]
(non-upward) straight-line O(n) [n™°, n [GRO4]

Table 5.1 Bounds on the areas and aspect ratios of various kinds of planar grid drawings
of an n-node unordered binary tree. Here, € is an arbitrary constant, such that 0 < e < 1.

Let T be an n-node binary tree. Garg et al. [GGT96] present an algorithm for constructing
an upward polyline drawing of T with O(n) area, and any user-specified aspect ratio in the
range [n~¢ n¢|, where € is any constant, such that 0 < e < 1. It also shows that nloglogn
is a tight bound for the area of upward orthogonal polyline drawings, i.e., any binary tree
can be drawn in this fashion in O(nloglogn) area, and there exists a family of binary trees
that requires Q(nloglogn) area in any such drawing. Leiserson [Lei80] and Valiant [Val81]
present algorithms for constructing a (non-upward) orthogonal polyline drawing of T" with
O(n) area. Chan et al. [CGKTO02] give an algorithm for constructing an upward orthogonal
straight-line drawing of T' with O(nlogn) area, and any user-specified aspect ratio in the
range [1,n/logn]. It also shows that nlogn is a tight bound for such drawings. Shin et
al. [SKCO00] give an algorithm for constructing an upward straight-line drawing of T with
O(nloglogn) area. Chan et al. [CGKT02] and Shin et al. [SKC00] show that 7" admits
a non-upward planar straight-line orthogonal grid drawing with height O(n/A)log A and
width O(A +logn), where 2 < A < n is any user-specified number. This result also implies

164 CHAPTER 5. TREE DRAWING ALGORITHMS

that we can draw any binary tree in this fashion in area O(nloglogn) (by setting A = logn).
If T is a Fibonacci tree (AVL tree and complete binary tree), then Crescenzi et al. [CDP92]
and Trevisan [Tre96] (Crescenzi et al. [CPP98, CDP92], respectively) give algorithms for
constructing an upward straight-line drawing of T' with O(n) area. Garg and Rusu [GR04]
present an algorithm for constructing a (non-upward) straight-line drawing of T" with O(n)
area, and any user-specified aspect ratio in the range [n~¢, n], where € is any constant, such
that 0 < € < 1. This is trivially a tight bound, as any straight-line drawing of a binary tree
with n nodes requires 2(n) area.

Table 5.2 summarizes the results for order-preserving algorithms.

[Drawing Type | Area | Aspect Ratio | Ref. |
Complete tree
upward straight-line order- O(n) o(1) [CDP92]
preserving
Fibonacci tree
upward straight-line order- O(n) 0(1) [Tre96]
preserving
Special balanced binary tree such as red-black
upward straight-line order- | O(n(loglogn)?) n/log”n [SKCO00]
preserving
Logarithmic tree
upward straight-line order- O(n) o(1) [CP9g]
preserving
Binary tree
upward orthogonal O(nlogn) O(log”n/(nloglogn)) | [Kim95, GGTI6]
polyline order-preserving
non-upward orthogonal O(n) (9a + 8)/(9b + 8) [DT81]
polyline order-preserving
upward orthogonal 0(n?) o(1) [CDP92, Fra07]

straight-line

order-preserving
non-upward orthogonal O(n'?) O(\ﬂn) /n) [Fra07]
straight-line

order-preserving
upward polyline O(nlogn) logn/n [Kim04]
order-preserving

O(nlogn) O(log?n/(nloglogn)) | [GGTY6, CDPY2]

non-upward polyline O(nloglogn) (nloglogn)/log®n [GRO3a]
order-preserving
upward straight-line O(nlogn) n/logn [GRO3a]
order-preserving
non-upward straight-line O(nlogn) [1,n/logn] [GRO3a]

order-preserving

O(nloglogn) (nloglogn)/log?®n [GRO3a]

Table 5.2 Bounds on the areas and aspect ratios of various kinds of order-preserving
planar grid drawings of an n-node ordered tree. Here, ab < kn, where & is some constant.

Shin et al. [SKCO00] have shown that a special class of balanced binary trees, which in-
cludes k-balanced, red-black, BB|a], and (a, b) trees, admits order-preserving planar upward

5.7. ALGORITHMS FOR DRAWING BINARY TREES 165

straight-line grid drawings with area O(n(loglogn)?). Crescenzi et al. [CDP92], Crescenzi
and Penna [CP98], and Trevisan [Tre96] give order-preserving planar upward straight-line
grid drawings of complete, logarithmic, and Fibonacci trees, respectively, with area O(n).
Dolev and Trickey [DT81] prove that binary trees admit ©(n) area order-preserving or-
thogonal drawings. Kim [Kim95] shows an upper bound of O(nlogn) area for upward
order-preserving orthogonal drawings of ternary trees (trees whose nodes have at most
three children), result that immediately extends to binary trees. This area bound is opti-
mal, as Garg et al. [GGT96] demonstrate a lower bound of O(nlogn) area for such drawings
of binary trees. Crescenzi et al. [CDP92] give an algorithm that achieves O(n?) area for
upward orthogonal straight-line order-preserving drawings of binary trees. Frati [Fra07]
proves that this bound is optimal. Frati [Fra07] also gives the best known upper bound of
O(n'?) area for non-upward orthogonal straight-line order-preserving drawings of binary
trees. It is unknown whether this is an optimal bound, as the trivial O(n) is the lower bound
currently known. Garg et al. [GGT96] provides an algorithm that constructs an upward
polyline order-preserving drawing of a binary tree with O(nlogn) area, which is the opti-
mal bound for such drawings [CDP92]. Kim [Kim04] improves the number of bends from
O(n) to O(n/logn), while matching the area bound. Garg and Rusu [GR03a] show that a
binary tree admits an order-preserving planar straight-line grid drawing with O(nloglogn)
area. In addition, they show that a binary tree admits an order-preserving upward planar
straight-line drawing with optimal O(nlogn) area.

A variety of results exist for other kinds of drawings. Di Battista et al. [DETT99] and
Frati [Fra09] have given a survey of these results.

5.7.2 Experimental Analysis

Experimental studies provide insight into the behavior of tree drawing algorithms beyond
their targetted aesthetic criteria. In a comprehensive experimental study [RS08], separation-
based algorithm by Garg and Rusu [GR04], path-based algorithm by Chan et al. [CGKT02],
level-based algorithm by Reingold and Tilford [RT81], and ringed circular layout algorithm
by Teoh and Ma [TMO02] were compared on a large suite of seven types of binary trees
of various sizes, based on ten quality measures: area, aspect ratio, size, total edge length,
average edge length, maximum edge length, uniform edge length, angular resolution, closest
leaf, and farthest leaf. As the specific algorithms compared are intended to be representa-
tive of their respective approaches, it is expected that the results generally apply to other
algorithms using the same approach and even extend to trivial extensions to general trees.
This experimental analysis includes some interesting findings:

e The performance of a drawing algorithm on a tree-type is not a good predic-
tor of the performance of the same algorithm on other tree-types: some of the
algorithms perform best on a tree-type, and worst on other tree-types.

e Reingold-Tilford algorithm [RT81] scores worse in comparison to the other chosen
algorithms for almost all ten aesthetics considered.

e The intuition that low average edge length and area go together is contradicted
in only one case.

e The intuitions that average edge length and maximum edge length, uniform edge
length and total edge length, and short maximum edge length and close farthest
leaf go together are contradicted for unbalanced binary trees.

e With regards to area, of the four algorithms studied, three perform best on
different types of trees.

166 CHAPTER 5. TREE DRAWING ALGORITHMS

e With regards to aspect ratio, of the four algorithms studied, three perform well
on trees of different types and sizes.

e Not all algorithms studied perform best on complete binary trees even though
they have one of the simplest tree structures.

e The level-based algorithm of Reingold-Tilford [RT81] produces much worse as-
pect ratios than algorithms designed using other approaches.

e The path-based algorithm of Chan et al. [CGKT02] tends to construct drawings
with better area at the expense of worse aspect ratio.

5.7.3 Unordered Trees

In this section, we present the algorithm of [GR04] in more detail. This algorithm uses a
separation-based approach (therefore, we call it Separation), and achieves optimal linear
area for planar straight-line grid drawings, while at the same time, giving the user control
over the aspect ratio. In addition, the drawings produced by this algorithm exhibit the
subtree separation property.

Let T be a tree with root 0. Let n be the number of nodes in T. A partial tree of T is a
connected subgraph of T

For some trees, the algorithm designates a special link node u* that has at most one child.

Let T be a tree with link node u*. A planar straight-line grid drawing I" of T is a feasible
drawing of T, if it has the following three properties:

e Property 1: The root o is placed at the top-left corner of T.

e Property 2: If u* # o, then u* is placed at the bottom boundary of I". Moreover,
u* can move downward in its vertical channel by any distance without causing
any edge-crossings in I'.

e Property 3: If u* = o, then no other node or edge of T is placed on or crosses the
vertical and horizontal channels occupied by o. Moreover, u* (i.e., 0) can move

upward in its vertical channel by any distance without causing any edge-crossings
inT.

Let A and € be two numbers, where € is a constant, such that 0 < e < 1, andn™¢ < A < n¢.
A is called the desirable aspect ratio for T.

Theorem 5.1 [Separator Theorem [Val81]] Every binary tree T with n nodes, wheren > 2,
contains an edge e, called a separator edge, such that removing e from T splits it into two
non-empty trees with nq and ny nodes, respectively, such that for some x, where 1/3 < x <
2/3, ny = an, and ny = (1 — x)n. Moreover, e can be found in O(n) time.

The algorithm takes e, A, and T as input and uses a divide-and-conquer strategy to
recursively construct a feasible drawing I' of T', by performing the following actions at each
recursive step:

e Split Tree: Split T into at most five partial trees by removing at most two nodes
and their incident edges from it. Each partial tree has at most (2/3)n nodes.
Based on whether the separator edge is on the leftmost path of T' or not, there
are two general cases, which are shown in Figure 5.9.

o Assign Aspect Ratios: Correspondingly, assign a desirable aspect ratio Ay to each
partial tree Ty. The value of Ay is based on the value of A and the number of
nodes in Tj.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 167

e Draw Partial Trees: Recursively construct a feasible drawing of each partial tree
Ty, with Ay as its desirable aspect ratio.

o Compose Drawings: Arrange the drawings of the partial trees, and draw the
nodes and edges that were removed from T to split it, such that the drawing "
of T is a feasible drawing. Note that the arrangement of these drawings is done
based on the cases shown in Figure 5.9. In each case, if A < 1, then the drawings
of the partial trees are stacked one above the other, and if A > 1, then they are
placed side-by-side.

Remark: The drawing I" constructed by the algorithm may not have aspect ratio exactly
equal to A, but it fits inside a rectangle with area O(n) and aspect ratio A.

Figure 5.9 (a) Drawing T in Case 1 (when the separator (u,v) is not in the leftmost
path of T'). (b) Drawing T in Case 2 (when the separator (u,v) is in the leftmost path of
T). For each case, first the structure of T for that case is shown, then its drawing when
A < 1, and then its drawing when A > 1. For simplicity, p(a) and p(u) are shown to be in
the interior of I" 4, but actually, either they are the same as o, or if A < 1 (A > 1), then
they are placed at the bottom (right) boundary of T'4. For simplicity, I'4, I'p, and I'c are
shown as identically sized boxes, but in actuality, they may have different sizes.

Figure 5.10 (a) shows a drawing of a complete binary tree with 63 nodes constructed by
algorithm Separation, with A = 1 and € = 0.5. Figure 5.10 (b) shows a drawing of a tree
with 63 nodes, consisting of a single path, constructed by algorithm Separation, with A =1
and ¢ = 0.5.

Split Tree

The splitting of tree T into partial trees is done as follows:

168 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

Figure 5.10 (a) Drawing of the complete binary tree with 63 nodes constructed by Algo-
rithm Separation, with A =1 and € = 0.5. (b) Drawing of a tree with 63 nodes, consisting
of a single path, constructed by Algorithm Separation, with A =1 and ¢ = 0.5.

e Order the children of each node such that u* becomes the leftmost node of T.
e Using Theorem 5.1, find a separator edge (u,v) of T, where w is the parent of v.

e Based on whether (u,v) is in the leftmost path of T, there are two general cases
(each with several subcases—not covered here):

— Case 1: The separator edge (u,v) is not in the leftmost path of T. Let o
be the root of T. Let a be the last node common to the path o ~ v, and
the leftmost path of T'. Let partial trees T4, T, Tc, Tw, 13, 11, and T3 be
defined as follows (see Figure 5.9 (a)):

x If 0 # a, then T4 is the maximal partial tree with root o, that contains
p(a), but does not contain a. If o = a, then Ty = 0.

x Tpg is the subtree rooted at r(a).

x If u* # a, then T¢ is the subtree rooted at I(a). If u* = a, then T = 0.

x If s(v) exists, i.e., if v has a sibling, then T} is the subtree rooted at
s(v). If v does not have a sibling, then T = .

* Ty is the subtree rooted at v.

x If u # a, then T, is the subtree rooted at u. If u = a, then T, = T5.
Note that T, is a subtree of Tg.

« If u # a and u # r(a), then T3 is the maximal partial tree with root
r(a), that contains p(u), but does not contain u. If u = a or v = r(a),
then T = (). Again, note that T belongs to T's.

Nodes a and u and their incident edges are being removed to split 7' into
at most five partial trees T4, T, T, T1, and Tb. p(a) is designated as the
link node of T4, p(u) as the link node of T, and u* as the link node of T¢.
Arbitrarily select a leaf of Ty, and a leaf of T5, and designate them as the
link nodes of T} and T5, respectively.

— Case 2: The separator edge (u,v) is in the leftmost path of T. Let o be
the root of T. Let partial trees T, T, and Tc be defined as follows (see
Figure 5.9 (b)):

x If 0 # u, then T4 is the maximal partial tree with root o, that contains
p(u), but does not contain u. If 0 = u, then T4 = 0.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 169

« If r(u) exits, i.e., u has a right child, then T is the subtree rooted at
r(u). If u does not have a right child, then Tz = 0.
* T is the subtree rooted at v.

Node u and its incident edges are being removed to split T into at most
three partial trees T4, Ts, and Te. p(u) is designated as the link node
of T4, and u* as the link node of Tz. Arbitrarily select a leaf of Ts and
designate it as the link node of Ts.

Assign Aspect Ratios

Let T}, be a partial tree of T, where for Case 1, T}, is either T, T, T, T4, or T3, and
for Case 2, T}, is either Ty, T, or T¢. Let ni be the number of nodes in Tk.

Definition: T} is a large partial tree of T if:

e A>1andny > (n/A)Y0+9) or
e A< 1andng > (An)/0+e),

and is a small partial tree of T otherwise.
In Step Assign Aspect Ratios, a desirable aspect ratio Ay is assigned to each non-empty
Ty as follows: Let x = ny/n.

o If A > 1: If T}, is a large partial tree of T, then Ay = xp A, otherwise (i.e., if Ty
is a small partial tree of T') Ay =n,“.

o If A< 1: If Ty, is a large partial tree of T, then Ay = A/xy, otherwise (i.e., if Ty
is a small partial tree of T') Ay = nj,.

Intuitively, the above assignment strategy ensures that each partial tree gets a good
desirable aspect ratio.

Draw Partial Trees

If A > 1, then the values of A4 and Ag (A4 and Ag are the desirable aspect ratios
for T4 and Tp, respectively) are being changed to 1/A4 and 1/Ag, respectively. This is
done so because later in Step Compose Drawings, when constructing I', if A > 1, then the
drawings of T4 and T} are rotated by 90°. Drawing T4 and T with desirable aspect ratios
1/A4 and 1/Ag, respectively, compensates for the rotation, and ensures that the drawings
of T4 and T that eventually get placed within I' are those with desirable aspect ratios A4
and Ag, respectively.

Next, each non-empty partial tree Ty, k € {A, B,C,a, 8, 1,2}, is drawn recursively with
Ay as its desirable aspect ratio. The base case for the recursion happens when T}, contains
exactly one node, in which case, the drawing of T} is simply the one consisting of exactly
one node.

Compose Drawings

Let Ty denote the drawing of a partial tree T} constructed in Step Draw Partial
Trees. We now describe the construction of a feasible drawing I' of T from the drawings of
its partial trees in Case 1.

In Case 1, first a drawing I', of the partial tree Ty, is constructed by composing I'; and
I'5 as shown in Figure 5.11, then a drawing I'p of Tp is constructed by composing I',, and
I'g as shown in Figure 5.12, and finally I' is constructed by composing I' 4, I's, and I'c as
shown in Figure 5.9 (a).

In the general case (u # a and Ty # 0), T, is constructed as follows (see Figure 5.11):

170 CHAPTER 5. TREE DRAWING ALGORITHMS

s(v)
Iy

/TN /T I,

Figure 5.11 Drawing T, in the general case (u # a and T} # (). First, the structure
of T, is shown, then its drawing when A < 1, and then its drawing when A > 1. For
simplicity, I'; and I's are shown as identically sized boxes, but in actuality, their sizes may
be different.

e If A <1, then I'y is placed above I'y such that the left boundary of I'; is one unit
to the right of the left boundary of I's; u is placed in the same vertical channel
as v and in the same horizontal channel as s(v).

e If A>1, then I'y is placed one unit to the left of 'y, such that the top boundary
of I'1 is one unit below the top boundary of I's; w is placed in the same vertical
channel as s(v) and in the same horizontal channel as v.

Draw edges (u, s(v)) and (u,v).

ﬁ % -
p(u)

r(l
rli

Figure 5.12 Drawing T in the general case (I # (). First, the structure of Tp is
shown, then its drawing when A < 1, and then its drawing when A > 1. For simplicity,
p(u) is shown to be in the interior of I'g, but actually, it is either same as r(a), or if A <1
(A > 1), then is placed on the bottom (right) boundary of I's. For simplicity, I'g and T,
are shown as identically sized boxes, but in actuality, their sizes may be different.

In the general case (T # (), I'p is constructed as follows (see Figure 5.12):

o if A < 1, then I'g is placed one unit above I', such that the left boundaries of
I'g and I', are aligned.

o If A > 1, then first I'g is rotated clockwise by 90° and then flipped right-to-left,
then I'g is placed one unit to the left of I', such that the top boundaries of I'g
and T', are aligned.

Draw edge (p(u),u).
In general Case 1, I" is constructed from I'4, I'g, and I'c as follows (see Figure 5.9 (a)):

o If A< 1, then I'y, I'g, and I'¢ are stacked one above the other, such that they
are separated by unit distance from each other, and the left boundaries of I'4
and I'¢ are aligned with each other and are placed one unit to the left of the left
boundary of I'g; a is placed in the same vertical channel as o and [(a), and in
the same horizontal channel as 7(a).

o If A > 1, then first 'y is rotated clockwise by 90° and flipped right-to-left.
Then, ', I'c, and I'p are placed from left-to-right in that order, separated by

5.7. ALGORITHMS FOR DRAWING BINARY TREES 171

unit distances, such that the top boundaries of I' 4 and I'g are aligned with each
other, and are one unit above the top boundary of I'c. Then, I'¢ is moved down
until ©* becomes the lowest node of I'; a is placed in the same vertical channel
as l(a) and in the same horizontal channel as o and r(a).

Draw edges (p(a),a), (a,r(a)), and (a,l(a)).
In general Case 2, I is constructed by composing I' 4, I'g, and I'¢, using a procedure similar
to the one of Case 1 (see Figure 5.9(b)).

Theorem 5.2 Let T be a binary tree with n nodes. Given two numbers A and €, where
€ is a constant, such that 0 < e <1, and n™¢ < A < n€, a planar straight-line grid drawing
of T with O(n) area and aspect ratio A, can be constructed in O(nlogn) time. Moreover,
I' has the subtree-separation property.

Proof: Designate any leaf of T" as its link node. Construct a drawing I" of T' by invoking
Algorithm Separation with T'; A, and € as input. I" will be a planar straight-line grid drawing
contained entirely within a rectangle with O(n) area and aspect ratio A, and which exhibits
the subtree separation property. O

5.7.4 Ordered Trees

In this Section, we present two algorithms of [GR03a] in detail. The first algorithm (we
call it Fized Spine) shows that a binary tree admits an order-preserving upward planar
straight-line grid drawing with optimal O(nlogn) area. The second algorithm (we call it
Arbitrary Spine), shows that a binary tree admits an order-preserving planar straight-line
grid drawing with width O(A + logn), height O((n/A)log A), and area O(nlogn), for any
given 2 < A < n. Setting A = logn, it results in an area of O(nloglogn). Both algorithms
take O(n) time to construct the drawings.

Let T be an ordered tree. Each node of T has at most two children, called its left and
right children, respectively.

Let « be a positive integer. An order-preserving planar straight-line grid drawing of T is
an a-drawing of T, if it has the following two properties:

e Property 1: No node is placed to the left of, or above the root of, T

e Property 2: The vertical and horizontal separations between the root and its
rightmost child are equal to a and one units, respectively.

A left-corner drawing of an ordered tree is an order-preserving planar straight-line grid
drawing, where no node of the tree is placed to the left of, or above its root. Note that an
a-drawing is also a left-corner drawing.

The mirror-image of T is the ordered tree obtained by reversing the counterclockwise
order of edges incident on each node.

A spine of T is a path vgv1vs . . . v,,, Where vg, v1, Vs, ..., vy, are nodes of T', that is defined
recursively as follows (see Figure 5.13):

e g is the same as the root of T

e v;11 is a child of v;, such that the subtree rooted at v;y; has the maximum
number of nodes among all the subtrees that are rooted at the children of v;.

A non-spine node of T is one that does not belong to its spine.

172 CHAPTER 5. TREE DRAWING ALGORITHMS

(a) (b)

Figure 5.13 (a) A binary tree T with spine vgv; ... v13. (b) The order-preserving planar
upward straight-line grid drawing of T' constructed by fized spine algorithm.

Algorithm Fixed Spine

For simplicity, throughout this section, it is assumed that each non-leaf node has
exactly two children. The algorithm can be simply extended to cover the case where a
non-leaf node has only one child.

The fized spine drawing algorithm uses a path-based approach to obtain an order-preserving
upward planar straight-line grid drawing with optimal (O(nlogn)) area of an ordered bi-
nary tree T. In each recursive step, it breaks T into several subtrees, draws each subtree
recursively, and then combines their drawings to obtain an upward a-drawing D(T') of T,
where « is a positive integer given as a parameter to the algorithm.

Let P = vgvivs ... v, be a spine of T.

There are two cases (see Figures 5.14 and 5.15):

o Case 1: vy is the left child of vy (see Figure 5.14(a)).
Let L be the subtree rooted at v1, s be the non-spine child of vy, and R be the

5.7. ALGORITHMS FOR DRAWING BINARY TREES 173

subtree rooted at s. v is placed at the origin. 1-drawings D(L) and D(R) of
L and R are recursively constructed. D(R) is placed such that s is one unit to
the right of, and « units below vg. D(L) is placed such that v; is in the same
vertical channel as vg, and is one unit below D(R) (see Figure 5.14(b)).

Figure 5.14

(a) The structure of a binary tree T in Case 1, where v is the left child of

vg. (b) The drawing of T in Case 1. For simplicity, D(L) and D(R) are shown as identically
sized boxes, but in actuality, they may have different sizes.

o Case 2: vy is the right child of vy (see Figure 5.15(a)).
Let k > 1 be the smallest integer, such that vy is either a leaf, or has a non-spine
node as its left child.
There are two subcases:

— v has a non-spine node as its left child: Let sg, s1, ..., S, be the non-spine
children of vg,v1,...,vs, respectively. Let L, A, and B be the subtrees
rooted at sg, s, and vg41, respectively. Let Ri, Ro,..., Rp—1 be the sub-
trees rooted at si,ss,...,Sr_1, respectively. T is drawn as shown in Fig-
ure 5.15(b). vy is placed at the origin. vy is placed one unit to the right of,
and « units below, vg. 1-drawings D(L), D(A), D(Ry), D(Rs), ..., D(Ri—-1)
of L,A,R1, Ry, ..., Rx_1, respectively, are recursively constructed. D(R;)
is placed one unit to the right of, and one unit below, v;. For each i, where
2 <i<k-1,v; and D(R;) are placed such that v; is in the same horizontal
channel as the bottom of D(R;_1) and is in the same vertical channel as
vi_1, and D(R;) is one unit to the right of, and one unit below, v;. Node
v is placed in the same vertical channel as v;_1, and in the same hori-
zontal channel as the bottom of D(Ry_1). D(A) is placed one unit below
vk, such that sy is in the same vertical channel as vi. D(L) is placed one
unit below D(A), such that so is in the same vertical channel as vy. Let
B =h(D(A))+h(D(L))+2, where h(D(A)) and h(D(L)) denote the heights
of D(A) and D(L), respectively. Let G be the drawing with the maximum
width among D(L), D(A), D(R1), D(R2), ..., D(Rk_1). Let W be the width
of G. A -drawing of the mirror image of B is recursively constructed, and
then flipped right-to-left to obtain a drawing D(B) of B. D(B) is placed
such that vy is one unit below vy, and max{W + 3, width of D(B)} units
to the right of vg.

— v i a leaf: T is drawn in a similar fashion as in the previous subcase,
except that D(A) and D(B) do not exist.

174 CHAPTER 5. TREE DRAWING ALGORITHMS

Figure 5.15 The structure of a binary tree T in Case 2, where vy is the right child of
vo: (a) v has a non-spine node as its left child; (b) the drawing of T, when v has a
non-spine node as its left child. For simplicity, D(A), D(L), D(R1), ..., D(Rk—1) are shown
as identically sized boxes, but in actuality, they may have different sizes.

Theorem 5.3 An ordered binary tree with n nodes admits an order-preserving up-
ward planar straight-line grid drawing with height at most n, width O(logn), and optimal
O(nlogn) area, which can be constructed in O(n) time.

Proof: Let T be an n-node ordered binary tree. Using the above algorithm, construct a
1-drawing D(T') of T in O(n) time. As discussed above, D(T') will be an order-preserving
upward planar straight-line grid drawing of 7' with height at most n, width O(logn), and
optimal O(nlogn) area. O

LEMMA 5.1 A left-corner drawing of an n-node ordered binary tree with area O(nlogn),
height O(logn), and width at most n, can be constructed in O(n) time.

Proof: First a 1-drawing of the mirror image of T is constructed using Theorem 5.3,
then it is rotated clockwise by 90°, and then it is flipped right-to-left. a

Algorithm Arbitrary Spine

For any user-defined number A, where 2 < A < n, algorithm Arbitrary Spine uses a
path-based approach to construct an order-preserving planar straight-line grid drawing of
T with O((n/A)log A) height and O(A + logn) width. Thus, by setting the value of A,
users can control the aspect ratio of the drawing. This implies that, by setting A = logn,
such a drawing can be constructed with area O(nloglogn).

An order-preserving planar straight-line grid drawing of a binary tree T is called a feasible
drawing, if the root of T is placed on the left boundary and no node of T is placed between
the root and the upper-left corner of the enclosing rectangle of the drawing. Note that a
left-corner drawing is also a feasible drawing.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 175

Let n be the number of nodes in T'. Let 2 < A <n be any number given as a parameter
to the algorithm.

Figure 5.16 shows the drawing of the tree of Figure 5.13(a) constructed by algorithm
Arbitrary Spine with A = y/n, using Lemma 5.1.

ERRE

Figure 5.16 Drawing of the tree with n = 57 nodes of Figure 5.13(a) constructed by the
Algorithm Arbitrary Spine with A = \/n = /57 = 7.55, using Lemma 5.1.

In each recursive step, the algorithm constructs a feasible drawing of a subtree 7" of T'. If
T’ has at most A nodes in it, then it constructs a left-corner drawing of 7" using Lemma 5.1
such that the drawing has width at most m and height O(logm), where m is the number of
nodes in T”. Otherwise, i.e., if 7" has more than A nodes in it, then it constructs a feasible
drawing of T" as follows:

1. Let P = vov1vs . ..vq be a spine of T".

2. Let m; denote the number of nodes in the subtree of 7" rooted at v;, where
0 <i < gq. Let vy be the node of P with the value for k such that my >m — A
and my41 < m — A (since 77 has more than A nodes in it, and mg, mq,...,m,
is a strictly decreasing sequence of numbers, such a k exists).

3. See Figures 5.17 and 5.18. Let T; denote the subtree rooted at the non-spine
child of v;, where 0 <4 < k—1. Assume, for simplicity, that vy and vi41 are not
leaves (the algorithm can be easily extended to handle the case, where vy or vg41
is a leaf). Let T* and T denote the subtrees rooted at the non-spine children
of vy and vgy1, respectively. Let T" denote the subtree rooted at vgyi. Let T
denote the subtree rooted at vg4o.

4. Place vy at the origin.

5. There are two cases:

e k = 0: Recursively construct a feasible drawing D* of T*. Recursively
construct a feasible drawing DT of the mirror image of T. Recursively
construct a feasible drawing D"’ of the mirror image of T"”. Let sy be the
root of T* and s; be the root of T.

T’ is drawn as shown in Figure 5.17. If sq is the left child of vy, then D*
is placed one unit below vy, with its left boundary aligned with vy (see

176 CHAPTER 5. TREE DRAWING ALGORITHMS

Vi

Figure 5.17 Case k = 0: (a) s is the left child of v, and s; is the left child of vy; (b) so
is the right child of vg, and s; is the left child of vy; (c) sg is the left child of vy, and s; is
the right child of v1; (d) sg is the right child of vy, and s; is the right child of v;.

Figure 5.17(a,c)). If s is the right child of vy, then D* is placed one unit
above, and one unit to the right of vy (see Figure 5.17(b,d)). Let W*,
W+, and W be the widths of D*, DT, and D", respectively. Place v; in
the same horizontal channel as vy to its right at the distance max{W™* +
2, Wt +2 W} from it. Let By and Cy be the lowest and highest horizontal
channels, respectively, occupied by the subdrawing consisting of vy and D*.
If 51 is the left child of vy, then D7 is flipped right-to-left, and placed one
unit below By, and one unit to the left of v (see Figure 5.17(a,b)). If s1 is
the right child of vy, then DT is flipped right-to-left, and placed one unit
above Cp, and one unit to the left of vy (see Figure 5.17(c,d)). Let By be
the lowest horizontal channel occupied by the subdrawing consisting of g,
D*, vy and DT. Flip D" right-to-left, and place it one unit below By, such
that its right boundary is aligned with v; (see Figure 5.17).

e k> 0: For each T;, where 0 < i < k — 1, construct a left-corner drawing D;
of T; using Lemma 5.1.

Recursively construct feasible drawings D* and D" of the mirror images of
T* and T”, respectively.

T’ is drawn as shown in Figure 5.18. If T is rooted at the left child of vy,
then Dy is placed one unit below vg, with its left boundary aligned with vg.
If Ty is rooted at the right child of vy, then Dy is placed one unit above,
and one unit to the right of vy. Place each D; and v;, where 1 <i <k —1,
such that:

— v; is in the same horizontal channel as v;_; and is one unit to the right
of D;_1, and

— if T; is rooted at the left child of v;, then D, is placed one unit below
v;, with its left boundary aligned with v;, otherwise (i.e., if T} is rooted
at the right child of v;) D; is placed one unit above, and one unit to the
right of v;.

5.7. ALGORITHMS FOR DRAWING BINARY TREES 177

s

2
v v V. A\
0 1 2 3 \P

83
| D~ s
(d)

Figure 5.18 Case k > 0: Here k = 4, s, s1, and sz are the left children of vy, v1, and
v3, respectively, s is the right child of vy, Ty, T1, T, T3, and T" are the subtrees rooted
at vg, v1, U2, v3, and vs, respectively, s4 is the non-spine child of v4, and T* is the subtree

rooted at s4; (a) sy is the left child of vy; (c) sy is the right child of v4. For simplicity, boxes
Dy, D1, Dy, D3 are drawn with same size, but in actuality, they may have different sizes.

Let Bx—1 and Ci_1 be the lowest and highest horizontal channels, respec-
tively, occupied by the subdrawing consisting of vy, v1,ve,...,v5—1 and
Do,D1,Ds5,...,Di_1. Let d be the width of the subdrawing consisting
of vg,v1,v9,...,v5_1 and Dy, D1,Do,...,Dp_1. Let W* and W” be the
widths of D* and D", respectively.

Place v, to the right of and in the same horizontal channel as v _1, such that
the horizontal distance between vy, and vy is equal to max{d+1, W*+2, W"}.
If T* is rooted at the left-child of v, then D* is flipped right-to-left, and
placed one unit below Bjy_;, and one unit left of v; (see Figure 5.18(b)).
If T is rooted at the right-child of vy, then D* is flipped right-to-left,
and placed one unit above Ci_1, and one unit to the left of v (see Fig-
ure 5.18(d)). Let By be the lowest horizontal channel occupied by the sub-
drawing consisting of vy, v, ..., v, and Dy, D1, Da, ..., Dy_1, D*. Flip D"
right-to-left, and place it one unit below By, such that its right boundary
is aligned with vy (see Figure 5.18(b,d)).

Theorem 5.4 Let T be an ordered binary tree with n nodes. Let 2 < A < n be any
number. T admits an order-preserving planar straight-line grid drawing with width O(A +
logn), height O((n/A)log A), and area O((A + logn)(n/A)log A) = O(nlogn), which can
be constructed in O(n) time.

178 CHAPTER 5. TREE DRAWING ALGORITHMS

Setting A = logn, it is obtained that:

COROLLARY 5.1 An n-node ordered binary tree admits an order-preserving planar
straight-line grid drawing with area O(nloglogn), which can be constructed in O(n) time.

5.8 Algorithms for Drawing General Trees

In a general tree, a node may have more than two children. This makes it more difficult
to draw a general tree than a binary tree. The degree of a tree is equal to the maximum
number of edges incident on a node.

5.8.1 Theoretical Results

We summarize known theoretical results on planar grid drawings of general trees. Chan
[Cha02] has shown an upper bound of O(n!*€), where € > 0 is any user-defined constant,
on the area of an order-preserving planar upward straight-line grid drawing of a general
tree. Garg et al. [GGT96] have given an upper bound of O(nlogn) on order-preserving
planar upward polyline grid drawings. As for the lower bound on the area-requirement of
order-preserving drawings, Garg et al. [GGT96] have shown a lower bound of Q(nlogn) for
order-preserving planar upward grid drawings. There is no known lower bound for non-
upward order-preserving planar grid drawings other than the trivial Q(n) bound. Garg et
al. [GGTI6] show that any tree with degree d admits a non-order-preserving planar upward
polyline grid drawing with height h = O(n!~?) and area O(n + dhlogn), where 0 < o < 1
is any user-specified constant. This result implies that any tree with degree O(n”), where
0 < B < 1 is any constant, can be drawn in this fashion in O(n) area with aspect ratio
O(n7), where v is any user-defined constant, such that max{0,28 — 1} <y < 1. Garg and
Rusu [GRO3c] show that any tree with degree O(n®), where 0 < § < 1/2 is any constant,
admits a non-order-preserving planar non-upward straight-line drawing with area O(n), and
any user-specified aspect ratio in the range [1,n%], where 0 < a < 1 is any constant.

Table 5.3 summarizes these results.

A variety of results are available for other kinds of drawings. Di Battista et al. [DETT99)
and Frati [Fra09] have given a survey of these results.

5.8.2 TUnordered Trees

In this section, we briefly sketch a bottom-up algorithm developed using the ringed circular
layout approach [TMO02]. This algorithm (called Rings) is space-efficient for high-degree
trees, however, the resulting drawing is straight-line but not planar.

The subtrees rooted at the children of the root of the tree are drawn recursively as circles
placed in concentric rings around the center of the circle to ensure efficient use of space.
The children of the root are divided into multiple categories according to their size. One
ring is assigned to each category, so the outer rings consist of the largest trees, while the
inner rings consist of the smallest ones (see Figure 5.19). In this way, a tree containing more
information is allocated more space, thus showing more distinguishable edges and allowing
more structural information to be shown in context.

The relationship below can be established between the number of children circles in the
outermost ring and the percentage of area taken up by the ring.

5.8. ALGORITHMS FOR DRAWING GENERAL TREES

Tree Type | Drawing Type Area | Aspect Ratio | Ref.
Tree with non-upward
degree O(n®), straight-line O(n) [1,n%] [GRO3c]
for any non-order-preserving
constant
0<6<1/2
Tree with upward polyline
degree O(n”), | non-order-preserving O(n) [1,n7] [GGT96]
for any
constant
0<p<1
General upward polyline
order-preserving O(nlogn) n/logn [GGTI6]
upward straight-line
order-preserving O(n'*e) n Cha02
non-upward O(n'™) n Cha02
straight-line
order-preserving O(nlogn) n/logn [GRO3a]

179

Table 5.3 Bounds on the areas and aspect ratios of various kinds of planar straight-line
grid drawings of an n-node tree. Here, «, v, and e are arbitrary user-defined constants, such
that 0<a<1,0<y<1l,and 0 <e< 1.

fn)

(R2)? _ (1—sin(0))®

(1 —sin(

)?

(B1)? (1 +sin(0))?

(14 sin(

SAEISAE]

))?

(5.1)

here, f(n) is the fraction of the area left after n circles have been placed in the ring.
The basic steps of the algorithm are presented below:

Algorithm Rings

Sort the children by their number of children;

Find the smallest & for which the sum of the number of children of the first k£ children
expressed as a fraction of the total number of grandchildren is greater or equal to

f(k);

Place first k children in the outermost ring;

Place the rest of the children in the same way in the inner rings;

end Algorithm.

Visual cues like color and transparency are also used to enhance structural information,
as well as to highlight specific information (such as information importance or relevance).
Adjacent concentric rings are rotated in opposite directions to decrease the occlusion of a
particular branch (see Figure 5.20).

A binary tree adaptation of the Rings algorithm [RS08] places the children of a node in
either the same vertical or horizontal channel, starting with the same horizontal channel at
the root (depth 0), and alternates between vertical and horizontal channel placement for
every following depth in the tree. In addition, the length of the edge connecting a subtree
to its parent is set to depth(subtree(v)) + 1, where depth(subtree(v)) is the depth of the
subtree rooted at node v. This ensures that enough space is made available to draw the rest
of the subtree, which is consistent with other rings-based algorithms. A drawing produced
by the binary tree adaptation of the Rings algorithm is provided in Figure 5.21.

180 CHAPTER 5. TREE DRAWING ALGORITHMS

R,

Figure 5.19 Layout of the ringed circular layout algorithm of [TM02]. The four larger
rings represent the largest children of the parent node, and the inner ring represents the
area left for the rest of the children.

Figure 5.20 Rotation strategy to decrease occlusion. Figure taken from [TMO02].

In order to allow for real-time interaction, a top-down variation of the Rings algorithm,
called FastRings [RSJ0T7], trades space for time. In FastRings, all nodes of the tree are
considered to be equivalent and assigned same size circles. This allows the algorithm to
start drawing the tree much sooner, when only the first level of children is available. The
drawing can be refined later by filling up the circles from the first level once new information
becomes available. Experiments show that FastRings increases the speed of constructing
entire drawings by 51%, and is twelve times faster in producing first drawings.

5.8.3 Ordered Trees

In this section, we briefly sketch an algorithm for constructing a (non-upward) order-
preserving planar straight-line grid drawing of a general ordered tree with n nodes with
O(nlogn) area in O(n) time [GR03a]. This algorithm uses a path-based approach.

Let T be an ordered tree with n nodes. In each recursive step, the algorithm breaks T
into several subtrees, draws each subtree recursively, and then combines their drawings to

5.8. ALGORITHMS FOR DRAWING GENERAL TREES 181

s

e s
Al

"}__I

_"I

HE
il A

Figure 5.21 Drawing of the Fibonacci tree with 88 nodes, generated by the binary tree
adaptation of the Rings algorithm.

obtain an a-drawing D(T') of T, where « is a positive integer given as a parameter to the
algorithm.
Let P = vgv1v2 ... v, be a spine of T' (see Section 5.7.4 for the definition of spine). The

general structure of T is shown in Figure 5.22(a). Let sg,81,...,8:,V1, Sit1, Sit2,-- -, Sp
be the left-to-right order of the children of vy, where the list sg,s1,...,s; is empty if vy
is the leftmost child of vy, and the list s;y1,8i42,...,5, is empty if v; is the rightmost

child of vy. Let A, denote the subtree rooted at the node sp, where 0 < k < p. Let
to,t1,. .., tj,v2,tj41,tj42, ..., 1 be the left-to-right order of the children of v, where the
list to,%1,...,t; is empty if vo is the leftmost child of v, and the list ¢;41,¢j42,...,¢, is
empty if vy is the rightmost child of v,. Let By denote the subtree rooted at the node ¢y,
where 0 < k < r. Let C denote the subtree rooted at wvs.

T is drawn as follows (see Figure 5.22(b)):

1. Recursively construct 1-drawings D(Ag),...,D(Ap) of Ao,...,A,, respectively,
and D(By),...,D(B;) of By,...,B,, respectively.

2. Place vy at the origin.

3. Place D(A;11),...,D(A,) one above the other at unit vertical separations from
each other, such that D(A,) is at the top, D(A;41) is at the bottom, s;41,...,5p
are in the same vertical channel, and s, is o units below, and one unit to the
right of vp.

4. Place D(Bj41),...,D(B,) one above the other at unit vertical separations from
each other, such that D(B,) is at the top, D(Bj+1) is at the bottom, ¢;11,...,t,
are in the same vertical channel, and ¢, is one unit below D(A;11), and one unit
to the right of s;41.

5. Place vy in the same horizontal channel as the bottom of D(B;41), and one unit
to the right of vy.

6. Place D(By),...,D(Bj) one above the other at unit vertical separations from
each other, such that D(B;) is at the top, D(By) is at the bottom, to,...,t; are
in the same vertical channel, and ¢; is one unit below, and one unit to the right
of V1.

182 CHAPTER 5. TREE DRAWING ALGORITHMS

]
i

Sy i

D(C)

(b)

Figure 5.22 (a) The structure of a general tree T. (b) The drawing of T' constructed
by the algorithm of Section 5.8.3. For simplicity, D(Ao), ..., D(Ap), D(Bo),...,D(B,) are
shown as identically sized boxes, but in actuality they may have different sizes.

7. Place D(Ap),...,D(A;) one above the other at unit vertical separations from
each other, such that D(A;) is at the top, D(Ag) is at the bottom, sq,...,s; are
in the same vertical channel, and s; is one unit below D(By), and in the same
vertical channel as v;.

8. Let B = h(D(Bo)) + ... + h(D(B;)) + h(D(Ap)) + ... + h(D(A)) +i + j +
2, where h(D(By)), ..., h(D(Bj)),h(D(Ay)), ..., h(D(A;)) denote the heights of
D(By),...,D(B;),D(Ao),...,D(4;), respectively. Recursively construct a S-
drawing of the mirror image of C, and flip it right-to-left to obtain a drawing
D(C) of C. Let W be the width of G, which is the drawing with the maximum
width among D(Ay),...,D(A4,), D(By),...,D(By). Place D(C) such that v is
one unit below vy, and max{W + 3, width of D(C)} units to the right of vg.

Theorem 5.5 An ordered tree with n nodes admits a (non-upward) order-preserving
planar straight-line grid drawing with O(nlogn) area, O(logn) width, and height at most
n, which can be constructed in O(n) time.

Proof: Let T be an n-node ordered tree. Using the above algorithm, construct a 1-
drawing D(T') of T in O(n) time. As discussed above, D(T) is an order-preserving planar

straight-line grid drawing of 7" with height at most n, width O(logn), and area O(nlogn).
O

5.9. OTHER TREE DRAWING METHODS 183
LEMMA 5.2 A left-corner drawing (see Section 5.7.4 for the definition of a left-corner

drawing) of an n-node ordered tree with area O(nlogn), height O(logn), and width at most
n, can be constructed in O(n) time.

Proof: First a 1-drawing of the mirror-image of T is constructed using Theorem 5.5,
then it is rotated clockwise by 90°, and then it is flipped right-to-left. O

5.9 Other Tree Drawing Methods

Drawing trees is one of the best studied areas in graph drawing, initiated more than forty
years ago [Knu68]. Any tree accepts a planar drawing, hence most tree drawing algorithms
achieve this aesthetic. Several tree drawing strategies exist that allow one to create drawings
with small area, user-controlled aspect ratio, relatively high angular resolution, a small
number of bends, and in efficient time.

We conclude the chapter by introducing several algorithms and techniques that do not
fit the general approaches described in the previous sections.

Hyperbolic tree [LRP95] (see Figure 5.23) simulates the distortion effect of fisheye lens
(enlarge the focus and shrink the rest).

{0.T. Fearns, CED. Chairman, Chief Exscutive officer £6T == 136

Figure 5.23 Screenshot of Hyperbolic tree, taken from [LRP95].

184 CHAPTER 5. TREE DRAWING ALGORITHMS

Pad++ [BHST97] (See Figure 5.24) displays the nodes as thumbnails of pages of infor-
mation. It institutes a focus+context style by enlarging the focus node and allowing other
nodes to be in view.

= Pacer 300V =1L
File_Edt Amange Odject Fent Tools Deoug Demo Help
Paeit| Previous| Forwad| Show All

Figure 5.24 Screenshot of Pad++, taken from [BHS197].

Botanical tree [KvdWWO01] (see Figure 5.25) is based on the observation that people
can easily see the branches, leaves, and their arrangement in a botanical tree, despite the
large number of elements. Non-leaf nodes are mapped to branches and child nodes to sub-
branches. Continuing branches are emphasized, long branches are contracted, and sets of
leaves are shown as fruit.

A layered drawing of a tree T is a planar straight-line drawing of T such that the ver-
tices are drawn on a set of layers. Some applications such as phylogenetic evolutions and
programming language parsing benefit from layered upward drawings of trees. Alam et
al. [ASRRO8] (see Figure 5.26) provide algorithms for minimum-layer upward drawings of
both ordered and unordered trees.

Space tree [PGB02] (see Figure 5.27) allows dynamic rescaling of branches of the tree to
best fit the available screen space. Branches that do not fit on the screen are summarized
by a triangular preview.

Quad [RYCO08] (see Figure 5.28) allows the user to specify a preferred angular resolution,
and then employs a best-effort delivery to generate a planar straight-line drawing in which
all angles between edges are above the specified angular coefficient. When a node has too
many children, resulting in an impossibility of achieving angles above the specified angular
coefficient, the algorithm distributes all remaining children evenly among the three quads
of the Cartesian plane.

Adaptive tree drawing [RCJ06] is a system that first analyzes the input tree to classify
it as a specific type and then selects an algorithm to draw it with respect to user-specified
quality measures. The algorithm that is selected to draw a given tree is based on an
experimental comparison [RJSCO06], which orders the performance of the algorithms for
each quality measure.

5.9. OTHER TREE DRAWING METHODS 185

Figure 5.25 (a) Node and link diagram (top) and corresponding strands model (bottom).
(b) Screenshot of Botanical tree, taken from [KvdWWO01].

(b)

Figure 5.26 (a) A tree with root r and layer-labelings. (b) A minimum-layer upward
drawing of the tree in (a). Figure taken from [ASRROS].

Hezagonal tree drawing [BBB109] (see Figure 5.29) allows drawings of degree-6 trees on
the hexagonal grid, which consists of equilateral triangles.

Most of the tree drawing algorithms draw trees on unbounded planes, and few of them
draw trees on regions that are bounded by rectangles. However, certain applications, such
as a graphics software by which one would like to draw a tree inside a star-shaped polygon,
require trees to be drawn on regions which are bounded by general polygons [BR04] (see
Figure 5.30).

A comparative experiment with five tree visualization systems, some which do not draw
trees as node-link diagrams, was performed in [Kob04]. Subjects performed tasks relating
to the structure of a directory hierarchy and to attributes of files and directories. Task
completion times, correctness, and user satisfaction were measured, and video recordings of
subjects interaction with the systems were made. The study showed the merits of distin-
guishing structure and attribute-related tasks, for which some systems behave differently.

186 CHAPTER 5. TREE DRAWING ALGORITHMS

@kangaroo

|

| I

- I Marsupial |{—| @0pussum |
I/ / I\

@Kaola

I Jpeople A Invertetrates |/ m
\ J Animal & 14 \
1 Vertebrates [——| Fishes | | ! @Nambat

Fungi
1 Qualities /
| Atiicial |

s

Bats

| | Carnivores

erhivares

1 Flacental K—' insectivores |
[\

\ Vegetable

@
=
o

Viral \
| | Primates

Shrews

Figure 5.27 Screenshot of Space tree, taken from [PGB02].

Figure 5.28 (a) Subtrees are distributed into three quads of the Cartesian plane when
the angular coefficient cannot be met by using only one or two quads. (b) Screenshot of
a drawing generated using Quad algorithm, with user-specified angular resolution of 45°.
Figure taken from [RYCO08].

5.9. OTHER TREE DRAWING METHODS 187

Figure 5.29 A planar straight-line drawing of a tree with outdegree five on the hexagonal
grid. Figure taken from [BBB*09).

(a) (b)

Figure 5.30 (a) Drawing of a 31-node complete binary tree inside a U-shaped rectiliniar
polygon. (b) Drawing of a 31-node complete binary tree inside a W-shaped polygon. Figure
taken from [BRO4].

188 CHAPTER 5. TREE DRAWING ALGORITHMS

References

[ASRRO8] M.J. Alam, M.A.H. Samee, M.M. Rabbi, and M.S. Rahman. Upward
drawing of trees on the minimum number of layers. In Proceedings of the
2nd Workshop on Algortihms and Computation, volume 4921 of Lecture
Notes in Computer Science, pages 88-99, 2008.

[Bac07] C. Bachmaier. A radial adaptation of the Sugiyama framework for vi-
sualizing hierarchical information. IEEE Transactions on Visualization
and Computer Graphics, 13(3):583-594, 2007.

[BBB*T09] C. Bachmaier, F.J. Brandenburg, W. Brunner, A. Hofmeier,
M. Matzeder, and T. Unfried. Tree drawings on the hexagonal grid.
In Proceedings 16th International Symposium on Graph Drawing, pages
372-383. Springer-Verlag, 2009.

[Ber81] M. A. Bernard. On the automated drawing of graphs. In Proc. 3rd
Caribbean Conf. on Combinatorics and Computing, pages 43-55, 1981.

[BHST97] B.B. Bederson, J.D. Hollan, J. Stewart, D. Rogers, A. Druin, D. Vick,
L. Ring, E. Grose, and C. Forsythe. A zooming web browser. In Human
Factors and Web Development, chapter 19, pages 255-266. New Jersey:
Lawrence Erlbaum, 1997.

[BJLO2] C. Buchheim, M. Jiinger, and S. Leipert. Improving Walker’s algorithm
to run in linear time. In Michael T. Goodrich and Stephen G. Kobourov,
editors, Graph Drawing (Proceedings of 10" International Symposium
on Graph Drawing, 2002), volume 2528 of Lecture Notes in Computer
Science, pages 344-353. Springer, 2002.

[Blo93] A. Bloesch. Aesthetic layout of generalized trees. Software Practice and
Experience, 23(8):817-827, 1993.
[BMO03] M. Bernard and S. Mohammed. Labeled radial drawing of data struc-

tures. In Proceedings 7th International Conference on Information Visu-
alisation, pages 479-555. IEEE Computers Society, 2003.

[BRO4] A. Bagheri and M. Razzazi. How to draw free trees inside bounded
rectilinear polygons. International Journal of Computer Mathematics,
81(11):1329-1339, 2004.

[CC99] E. A. Chi and S. K. Card. Sensemaking of evolving web sites using visu-
alization spreadsheets. In Proceedings of the Symposium on Information
Visualization (InfoViz '99), volume 142, pages 18-25. IEEE Press, 1999.

[CDP92] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal area
algorithms for upward drawings of binary trees. Comput. Geom. Theory
Appl., 2:187-200, 1992.

[CGKT97] T. M. Chan, M. T. Goodrich, S. R. Kosaraju, and R. Tamassia. Opti-
mizing area and aspect ratio in straight-line orthogonal tree drawings. In
S. North, editor, Graph Drawing (Proc. GD ’96), volume 1190 of Lecture
Notes Comput. Sci., pages 63-75. Springer-Verlag, 1997.

[CGKT02] T. Chan, M. Goodrich, S. Rao Kosaraju, and R. Tamassia. Optimizing
area and aspect ratio in straight-line orthogonal tree drawings. Compu-
tational Geometry: Theory and Applications, 23:153-162, 2002.

[Cha02] T. M. Chan. A near-linear area bound for drawing binary trees. Algo-
rithmica, 34(1):1-13, 2002.

REFERENCES

[CPOs]

[CPM*+98]

[CPPYS]

[CPPO00]

[CT]
[DETT94]

[DETT99]

[DT81]

[Ead92]

[Fra07]

[Fra09]

[GADMO04]

[GGT96]

[GRO2]

[GRO3a|

[GRO3b)]

P. Crescenzi and P. Penna. Strictly-upward drawings of ordered search
trees. Theoretical Computer Science, 203(1):51-67, 1998.

E. H. Chi, J. Pitkow, J. Mackinlay, P. Pirolli, and R. Gossweiler. Vi-
sualizing the evolution of Web ecologies. In Proceedings of the Human
Factors in Computing Systems, pages 400-407, 1998.

P. Crescenzi, P. Penna, and A. Piperno. Linear-area upward drawings of
AVL trees. Comput. Geom. Theory Appl., 9:25-42, 1998. (special issue
on Graph Drawing, edited by G. Di Battista and R. Tamassia).

E.H. Chi, P. Pirolli, and J. Pitkow. The Scent of a Site: A system for
analyzing and predicting information scent, usage, and usability of a Web
site. In Proceedings of the Human Factors in Computing Systems, pages
161-168, 2000.

Isabel F. Cruz and Roberto Tamassia. Graph drawing tutorial.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms
for drawing graphs: an annotated bibliography. Comput. Geom. Theory
Appl., 4:235-282, 1994.

G. Di Battista, P. Eades, R. Tamassia, and 1. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

D. Dolev and H.-W. Trickey. On linear area embedding of planar graphs.
Technical report, Stanford University, Stanford, USA, 1981.

P. D. Eades. Drawing free trees. Bulletin of the Institute for Combina-
torics and its Applications, 5:10-36, 1992.

F. Frati. Straight-line orthogonal drawings of binary and ternary trees.
In Seok-Hee Hong and Takao Nishizeki, editors, 15th International Sym-
posium on Graph Drawing, volume 4875 of Lecture Notes in Computer
Science, pages 76-87, 2007.

F. Frati. Small Screens and Large Graphs: Area-Efficient Drawings of
Planar Combinatorial Structures. PhD thesis, Computer Science and
Engineering, Roma Tre University, 2009.

S. Grivet, D. Auber, J.-P. Domenger, and G. Melancon. Bubble tree
drawing algorithm. In International Conference on Computer Vision
and Graphics, pages 633-641. Springer Verlag, 2004.

A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward tree drawings
with optimal area. Internat. J. Comput. Geom. Appl., 6:333-356, 1996.
A. Garg and A. Rusu. Straight-line drawings of binary trees with linear
area and arbitrary aspect ratio. In Michael T. Goodrich and Stephen G.
Kobourov, editors, Graph Drawing (Proceedings of 10" International
Symposium on Graph Drawing, 2002), volume 2528 of Lecture Notes in
Computer Science, pages 320-331. Springer, 2002.

A. Garg and A. Rusu. Area-efficient order-preserving planar straight-
line drawings of ordered trees. International Journal of Computational
Geometry and Applications, 13(6):487-505, 2003.

A. Garg and A. Rusu. A more practical algorithm for drawing binary
trees in linear area with arbitrary aspect ratio. In Giuseppe Liotta, ed-
itor, Graph Drawing (Proceedings of 11" International Symposium on
Graph Drawing, 2003), volume 2912 of Lecture Notes in Computer Sci-
ence, pages 159-165. Springer, 2003.

189

190 CHAPTER 5. TREE DRAWING ALGORITHMS

[GRO3c] A. Garg and A. Rusu. Straight-line drawings of general trees with linear
area and arbitrary aspect ratio. In Proceedings 2003 International Con-
ference on Computational Science and Its Applications, volume 2669 of
Lecture Notes in Computer Science, pages 876-885. Springer, 2003.

[GRO4] A. Garg and A. Rusu. Straight-line drawings of binary trees with lin-
ear area and arbitrary aspect ratio. Journal of Graph Algorithms and
Applications, 8(2):135-160, 2004.

[Kim95] Sung Kwon Kim. Simple algorithms for orthogonal upward drawings of
binary and ternary trees. In Proc. 7th Canad. Conf. Comput. Geom.,
pages 115-120, 1995.

[Kim04] S.K. Kim. Order-preserving, upward drawing of binary trees using fewer
bends. Discrete Applied Mathematics Journal, 143(1-3):318-323, 2004.

[Knu68§] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, Reading, MA, 1st edition, 1968.

[Kob04] Alfred Kobsa. User experiments with tree visualization systems. In Pro-

ceedings of the IEEE Symposium on Information Visualization, INFOVIS
'04, pages 9-16. IEEE Computer Society, 2004.

[KvdWW01] E. Kleiberg, H. van de Wetering, and J.J. Van Wijk. Botanical visual-
ization of huge hierarchies. In Proceedings of the IEEE Symposium on
Information Visualization, 2001.

[Lei80] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proc. 21st
Annu. IEEE Sympos. Found. Comput. Sci., pages 270-281, 1980.
[LRP95) J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based

on hyperbolic geometry for visualizing large hierarchies. In Proc. ACM
Conf. on Human Factors in Computing Systems (CHI), 1995.

[Mac03] B. MacLennan. Molecular combinatory computing for nanostructure syn-
thesis and control. In Proceedings 3rd IEEE Conference on Nanotechnol-
ogy, volume 2 of IEEE Press, pages 179-182, 2003.

[MH98] G. Melacon and I. Herman. Circular drawing of rooted trees. Technical
Report INS-9817, Netherland National Research Institute for Mathemat-
ics and Computer Sciences, 1998.

[MMC99] G. Melacon, J.D. Mackinlay, and S. K. Card. Cone trees: animated 3D

visualization of hierarchical information. In Human Factors in Comput-
ing Systems, CHI’99 Conference Proceedings, pages 189-194. ACM Press,

1999.

[PCJI7) H. C. Purchase, R. F. Cohen, and M. I. James. An experimental study of
the basis for graph drawing algorithms. ACM J. Ezperim. Algorithmics,
2(4), 1997.

[PGB02] C. Plaisant, J. Grosjean, and B.B. Bederson. Spacetree: supporting

exploration in large node link tree, design evolution and empirical eval-
uation. In Proceedings of the IEEE Symposium on Information Visual-
1zation, pages 57-64, 2002.

[Pur97] Helen Purchase. Which aesthetic has the greatest effect on human un-
derstanding? In G. Di Battista, editor, Graph Drawing (Proc. GD ’97),
volume 1353 of Lecture Notes Comput. Sci., pages 248-261. Springer-
Verlag, 1997.

REFERENCES 191

[Pur00] Helen C. Purchase. Effective information visualisation: A study of graph
drawing aesthetics and algorithms. Interact. Comput., 13(2):147-162,
2000.

[RCJ06] A. Rusu, C. Clement, and R. Jianu. Adaptive binary trees visualiza-

tion with respect to user-specified quality measures. In Proceedings 10th
International Conference on Information Visualisation, pages 469-474.
IEEE Computers Society, 2006.

[RISCO6] A. Rusu, R. Jianu, C. Santiago, and C. Clement. An experimental study
on algorithms for drawing binary trees. In Proceedings 5th Asia Pacific
Symposium on Information Visualization, volume 60 of Conference in Re-
search and Practice in Information Technology, pages 85—88. Australian
Computer Society Inc., 2006.

[RMCI1] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: Animated
3D visualizations of hierarchical information. In Proc. ACM Conf. on
Human Factors in Computing Systems, pages 189-193, 1991.

[RS07] A. Rusu and C. Santiago. A practical algorithm for planar straight-line
grid drawings of general trees with linear area and arbitrary aspect ratio.
In Proceedings 11th International Conference on Information Visualisa-
tion, pages 743-750. IEEE Computers Society, 2007.

[RS08] A. Rusu and C. Santiago. Grid drawings of binary trees: An experimental
study. Journal of Graph Algorithms and Applications, 12(2):131-195,
2008.

[RSJOT] A. Rusu, C. Santiago, and R. Jianu. Real-time interactive visualization

of information hierarchies. In Proceedings 11th International Conference
on Information Visualisation, pages 117-123. IEEE Computers Society,
2007.

[RT81] E. Reingold and J. Tilford. Tidier drawing of trees. IEEFE Trans. Softw.
Eng., SE-7(2):223-228, 1981.

[RYCO0g] A. Rusu, C. Yao, and A. Crowell. A planar straight-line grid drawing
algorithm for high degree general trees with user-specified angular co-

efficient. In Proceedings 12th International Conference on Information
Visualisation, pages 600-609. IEEE Computers Society, 2008.

[SB94] M. Sarkar and M. H. Brown. Graphical fisheye views. Commun. ACM,
37(12):73-84, 1994.

[SKCO00] C.-S. Shin, S. K. Kim, and K.-Y. Chwa. Area-efficient algorithms for
straight-line tree drawings. Comput. Geom. Theory Appl., 15:175-202,
2000.

[TDBSS] R. Tamassia, G. Di Battista, and C. Batini. Automatic graph drawing
and readability of diagrams. IEEE Trans. Syst. Man Cybern., SMC-
18(1):61-79, 1988.

[TMO02] S. T. Teoh and K. L. Ma. Rings: A technique for visualizing large hierar-
chies. In Michael T. Goodrich and Stephen G. Kobourov, editors, Graph
Drawing (Proceedings of 10" International Symposium on Graph Draw-
ing, 2002), volume 2528 of Lecture Notes in Computer Science, pages
268-275. Springer, 2002.

[Tre96] L. Trevisan. A note on minimum-area upward drawing of complete and
Fibonacci trees. Inform. Process. Lett., 57(5):231-236, 1996.

192

[Val81]

[Wal90]

CHAPTER 5. TREE DRAWING ALGORITHMS

L. Valiant. Universality considerations in VLSI circuits. IEEE Trans.
Comput., C-30(2):135-140, 1981.

J. Q. Walker II. A node-positioning algorithm for general trees. Softw.
~ Pract. Exp., 20(7):685-705, 1990.

Planar Straight-Line Drawing
Algorithms

6.1 Introduction.............. .. 193

6.2 Preliminaries...............oooiiiiiiii i 195
Planar Drawings ® Convex Drawings * Connectivity

6.3 Real-Coordinate Drawingsccvviiiiiinn.. 197

6.4 Grid Drawingsooiiiiiiii 198

6.5 Canonical Orderingsccoiiiiiiiiiiii. .. 199

6.6 Shift Method ... 202
Construction ® Implementation ® Refinements and Variations

6.7 Realizer Method 212

Realizers * Barycentric Representation * Implementation ®
Refinements and Variations

Acknowledgment ... 220
Luca Vismara References ... 221

6.1 Introduction

Planar straight-line drawings have been an early subject of investigation in combinatorial
mathematics. A classic result states that every planar graph admits a planar straight-line
drawing. Namely, if a graph can be drawn with no crossings using edges of arbitrary shape
(e.g., polygonal lines or curves), then it can be drawn with no crossings using only straight-
line edges (see Figure 6.1). The proof of this result was independently discovered by Steinitz
and Rademacher [SR34], Wagner [Wag36], Fary [Far48], and Stein [Ste51].

All the above classic constructions focus on establishing the existence of planar straight-
line drawings but do not address the area of the drawing or the arithmetic precision required
for representing the coordinates of the vertices. Indeed, following the constructions in these
papers one obtains drawings of area exponential in the length of the shortest edge, which
are unsuitable in practice.

Algorithms for constructing planar straight-line grid drawings, where the edges have
integer coordinates, were developed by de Fraysseix, Pach, and Pollack [dFPP90] (shift
method) and by Schnyder [Sch90] (realizer method). They independently showed that
every n-vertex planar graph has a planar straight-line grid drawing with O(n) height and
O(n) width, resulting in O(n?) area. These bounds are asymptotically tight in the worst
case as can be shown with the example of Figure 6.2.

Convex drawings are planar straight-line drawings where all the faces are drawn as convex
polygons (see Figure 6.1(c)). We say that a planar graph is convex planar if it admits a
convex drawing. In another classic work, Tutte [Tut60, Tut63] showed how to construct a

193

194 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

N
@)
O
Q

O

O
u
@

(a)

S

i ; t

'

(b)

S

ii t

’
z

(c)
Figure 6.1 Examples of planar drawings of the same graph: (a) planar drawing with
curved edges; (b) planar straight-line drawing; (c) planar convex drawing.

convex planar drawing of every triconnected planar graph. His method places the vertices
of the external face on an arbitrary convex polygon and computes the coordinates of the
remaining vertices by solving a system of linear equations.

The rest of this chapter is organized as follows. Basic definitions are introduced in
Section 6.2. Tutte’s classic algebraic method for convex drawings is presented in Section 6.3.
Area bounds for planar straight-line grid drawings computed by the shift method and by
the realizer method are summarized in Section 6.4. Canonical orderings of planar graphs
are discussed in Section 6.5. Section 6.6 describes the shift method and Section 6.7 describes
the realizer method.

For further details on the subject of planar drawings of graphs, we refer the reader to the
book by Nishizeki and Rahman [NRO04] and the survey by Di Battista and Frati [DF13].
See also the work by Cruz and Garg [CG95] for a declarative approach to the construction
of planar drawings.

6.2. PRELIMINARIES 195

——\

[e; O

Figure 6.2 Planar straight-line grid drawing of graph S5 consisting of five nested cycles
of four vertices. This drawing has height 9 and width 9. In general, graph S}, has 4k vertices
and requires height and width proportional to k£ in any planar-straight-line grid drawing.

6.2 Preliminaries

6.2.1 Planar Drawings

In the context of this chapter, a drawing of a graph G is a mapping of each vertex v of G
to a distinct point P(v) = (vg,vy) of the plane' and of each edge (u,v) of G to a simple
Jordan curve with endpoints P(u) and P(v). A straight-line drawing is a drawing in which
every edge is mapped to a straight-line segment; more formally, a straight-line drawing is
an injective function f:v € V = (vg,v,) € R%

A drawing is planar if no two edges intersect, except, possibly, at common endpoints.
A graph is planar if it has a planar drawing. Two planar drawings of a planar graph G
are equivalent if, for each vertex v, they have the same circular clockwise sequence of edges
incident with v. Hence, the planar drawings of G are partitioned into equivalence classes.
Each of those classes is called an embedding of G. An embedded planar graph (also plane
graph) is a planar graph with a prescribed embedding. A triconnected planar graph has a
unique embedding, up to a reflection. A planar drawing divides the plane into topologically
connected regions delimited by cycles; these cycles are called faces. The external face is
the cycle delimiting the unbounded region; all the other faces are internal. Two equivalent
planar drawings have the same faces. Hence, one can refer to the faces of an embedding. A
vertex or edge of a plane graph is said to be external if it belongs to the external face, and
internal otherwise.

A mazimal planar graph is a planar graph with the maximal number of edges, i.e., adding
an edge between any two vertices destroys its planarity. Note that in a maximal planar graph
all faces consist of three edges. An outerplanar graph is a planar graph that admits a planar
drawing with all its vertices on the same (say, the external) face; such a drawing is called
an outerplanar drawing.

Let G be a plane graph; the dual graph G* of G is defined as follows: (i) each face f of
G has a dual vertex f* in G*; (i) each vertex v of G has a dual face v* in G*; (4ii) let e be

1'We will use interchangeably (vz,vy) and (z(v),y(v)) to denote the coordinates of P(v).

196 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

an edge of G and let f; and fy be the two faces of G incident with e (note that f; and f»
may not be distinct); e has a dual edge e* = (ff, f5) in G*.

6.2.2 Convex Drawings

A polygon is a finite set of segments such that every segment endpoint is shared by exactly
two segments and no subset of segments has the same property. A polygon is simple if there
is no pair of nonconsecutive segments sharing a point. A simple polygon is convez if its
interior is a convex set. A simple polygon is strictly convex if its interior is a strictly convex
set, i.e., no 180° angle is allowed. A convex drawing of a planar graph G is a planar straight-
line drawing of G in which all faces are drawn as convex polygons (see Figure 6.3(a)). A
strictly convex drawing of a planar graph G is a planar straight-line drawing of G in which
all faces are drawn as strictly convex polygons (see Figure 6.3(b)). A planar graph is said
to be (strictly) convex planar if it admits a (strictly) convex drawing.

(b)

Figure 6.3 (a) A convex drawing of a biconnected planar graph G. (b) A strictly convex
drawing of a biconnected planar graph G.

6.2.3 Connectivity

We recall some basic definitions on connectivity. A separating k-set of a graph is a set
of k vertices whose removal disconnects the graph; separating 1-sets and 2-sets are called
cutvertices and separation pairs, respectively. A graph is k-connected if it contains more
than k vertices and no separating (k — 1)-set; 1-connected, 2-connected, and 3-connected

6.3. REAL-COORDINATE DRAWINGS 197

graphs are called connected, biconnected, and triconnected, respectively. A separating edge
of a graph is an edge whose removal disconnects the graph.

The biconnected components of a connected graph (also called blocks) are its maximal
biconnected subgraphs and its separating edges. The triconnected components of a bicon-
nected graph G are defined as follows [HT73].

If G is triconnected, then G itself is the unique triconnected component of G. Otherwise,
let {u,v} be a separation pair of G. We partition the edges of G into two disjoint subsets
E, and Es, |Ey| > 2,|E2| > 2, such that the subgraphs G; and G5 induced by them have
only vertices v and v in common. Graphs G} = G; + (u,v) and G} = G2 + (u,v) are
called the split graphs of G with respect to {u,v} (multiple edges are allowed); edge (u,v)
in G} and GY is called a wirtual edge. Dividing G into split graphs G} and G is called
splitting. Reassembling split graphs G} and GY into G, is called merging. Note that only
split graphs that resulted from the same splitting operation can be merged together. We
continue the splitting process recursively on G| and G until no further splitting is possible.
Each resulting graph is either a triconnected simple graph, or a set of three multiple edges
(called “triple bond” in [HT73]), or a cycle of length three (called “triangle” in [HT73]).
The triconnected components of G are obtained from these graphs by merging the “triple
bonds” into maximal sets of multiple edges (called “bonds” in [HT73]), and the “triangles”
into maximal simple cycles (called “polygons” in [HT73]). When merging “triple bonds” into
“bonds” and “triangles” into “polygons,” virtual edges with both endvertices in common
are removed; we refer to the remaining virtual edges at the end of the merging process as
the virtual edges of the triconnected components. Note that, although the graphs obtained
at the end of the splitting process depend on the order of the splittings, the triconnected
components of G are unique. See [HT73] for further details.

In the rest of the chapter, we denote by n, m, and [the number of vertices, edges, and
faces of a plane graph, respectively; we always assume n > 3. Unless otherwise specified,
graphs are assumed to be simple, i.e., without self-loops and multiple edges. Often, we do
not distinguish between a vertex (edge) of G and the point (segment) representing it.

We recall Fuler’s formula, which holds for every plane graph, and two bounds for the
number of edges and faces of a plane graph (the equalities hold for maximal planar graphs),
which easily follow from it:

n+l=m+2 (6.1)
m<3n—6 (6.2)
[<2n—-4 (6.3)

Let P, = (x1,y1) and P> = (z2,y2) be two points on the plane; the Manhattan distance
between P and P, is defined as |21 — xa| + |y1 — y2|.

A w x h integer grid is a grid of integer points of width w and height h; note that a w x h
integer grid contains (w+1) x (h+1) integer points. A grid drawing is an injective function
f:v eV = (vg,v,) € Z* The area of a grid drawing is the number of integer points
contained in the smallest integer grid containing the drawing. In the rest of the chapter,
we will often omit “integer” before “grid” for brevity.

6.3 Real-Coordinate Drawings

In a classic paper, Tutte [Tut60, Tut63] presented a method for constructing strictly convex
drawings of triconnected plane graphs by solving a system of linear equations that place
each internal vertex at the barycenter of its neighbors. Hence, this method is referred to as
the barycenter method.

198 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Initially, the vertices of the external face are placed at the vertices of a strictly convex
polygon, P. We refer to the vertices not on the external face as internal vertices.

For a vertex v, let N(v) be the set of neighbors of v and d(v) the degree of v, i.e.,
d(v) = |N(v)|. The position of an internal vertex v is determined by the following linear

equations:
1

z(v) =) wg;(v) z(w) (6.4)
1
y(v) = aw wEZN(U) y(w) (6.5)

Tutte showed that the above system of linear equations admits a unique solution that
corresponds to a strict convex drawing of the graph. An example of a drawing constructed
with the barycenter method is shown in Figure 6.4.

Figure 6.4 Planar convex drawing obtained with Tutte’s barycenter method. Drawing
created by the PIGALE tool (see Chapter 18).

Combinatorial characterizations of convex and strictly convex planar graphs and meth-
ods for constructing convex and strictly convex drawings appear in papers by Tutte [Tut60,
Tut63], Thomassen [Tho80, Tho84], Chiba, Yamanouchi, and Nishizeki [CYN84], Chiba,
Onoguchi, and Nishizeki [CON85], and Djidjev [Dji95]. Note that the above methods com-
pute drawings with real coordinates for the vertices.

6.4 Grid Drawings

The drawings generated by Tutte’s algorithm presented in Section 6.3 exhibit some draw-
backs:

6.5. CANONICAL ORDERINGS 199

e they require high-precision real arithmetic relative to the size of the input graph,
and therefore cannot be used even for graphs of moderate size; and

e in the produced drawings, the ratio of the largest distance to the smallest distance
between vertices is very large (exponential in the size of the graph), i.e., vertices
are represented by arbitrarily close points, or, equivalently, if the graph is drawn
on an integer grid, then the grid has exponential size.

Motivated by these drawbacks, Rosenstiehl and Tarjan [RT86] posed the question whether
every planar graph has a planar straight-line drawing on an O(n*) x O(n*) integer grid for
some fixed constant k, where n is the number of vertices of the graph. As we will see, the
question was answered in the positive and various algorithms were presented over the years.
Selected algorithms are summarized in Table 6.1.

[CP95, dFPPI0] (2n—4) x (n—2) shift
[CN9g] [2(n—1)| x4 |2(n—1)| — 1 | shift
[Bra0g] [3n] x [2n] shift
[Sch90] (2n —5) x (2n = 5) realizer

(n—2)x(n-—2)

Table 6.1 Width and height of the drawing achieved by selected planar straight-line grid
drawing algorithms that use the shift method or the realizer method. We denote with n
the number of vertices of the graph.

The algorithms listed in Table 6.1 are designed for drawing maximal plane graphs but
can actually be used to draw general plane graphs: it is sufficient to transform the input
plane graph into a maximal plane graph by adding a linear number of extra edges, draw the
resulting graph, and then remove the segments corresponding to the extra edges from the
obtained drawing. These algorithms are based on two different methods, called the shift
method and the realizer method, and are described in Sections 6.6 and 6.7, respectively.

6.5 Canonical Orderings

In this section, we recall the definitions of canonical ordering of maximal plane graphs, as
given by de Fraysseix, Pach, and Pollack [dFPP90], and of triconnected plane graphs, as
given by Kant [Kan96).

DEFINITION 6.1 Let G be a maximal plane graph with n vertices, and let ug, uy, us
be the external vertices of G in counterclockwise order. A canonical ordering of G (see
Figure 6.5) is an ordering vy, ..., v, of the vertices of G such that the following conditions
are verified:

1. vy =uq, v2 = us.

2. For 3 < k < n, let Gy, be the plane subgraph of G induced by vertices vy, ..., vk
and let Cj be the external face of Gj. Vertex vy is on face Cy. Also, if k < n,
vertex vy has at least one neighbor in G — Gy.

200 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

3. For each 3 < k < n—1, subgraph Gy, is biconnected and internally maximal (i.e.,
all internal faces of Gy, are triangles).

4. Un = UQ-.

LEMMA 6.1 [dFPP90] Each maximal plane graph has a canonical ordering, which can
be computed in linear time and space.

A canonical ordering of GG yields an incremental construction of graph G starting from
edge (v1,v2). In step k (3 < k < n), vertex v;, and the edges between v, and its neighbors
in Cx_; are added to the current graph Gi_;. For each 3 < k < n, we denote by v; =
wy,Ws, ..., w; = vy the sequence of vertices of Ci_1, when traversed in clockwise order.
For the sake of enhancing intuition, we visualize ws, ..., w;_1 as arranged from left to right
above (v1,v2) in the plane. For each 3 < k < n, let wp,...,w, be the subsequence of
vertices of Cx_1 that are adjacent to vg (note that p + 1 may be equal to ¢). After v; has
been added to Gi_1, vertices wpt1,...,wq—1 (if any) are no longer external; we say that
vertex vy covers these vertices.

A canonical ordering v1,...,v, of graph G defines a spanning tree of graph G — {vy, v2},
called cover tree, which consists of all edges (u, v) such that u covers v. We set v,, as the root
of the cover tree. Thus, the children of a vertex u in the cover tree are the vertices covered
by u. (See Figure 6.6.) We define the cover forest associate with a canonical ordering as
its cover tree together with the single-vertex trees v; and vs.

The definition of canonical ordering can be generalized to triconnected plane graphs
as follows. A biconnected plane graph G is said to be internally triconnected if for any
separation pair {u,v} of G, u and v are external vertices and each connected component
of G\ {u,v} contains an external vertex; in other words, G is internally triconnected if
and only if the graph obtained from G by adding a new vertex and connecting it to all the
external vertices of G is triconnected.

DEFINITION 6.2 Let G be a triconnected plane graph with n vertices, (uj,us) be an
external edge of G, and ug # w1, us be an external vertex of G. A canonical ordering of
G is an ordering vy, ...,v, of the vertices of G that can be partitioned into subsequences
Vi,...,Vy, where V;, = {Usk""’vsk"rdk}’ 1<k<hl=s<8<- - <s,< Sp+1 = n+1,
dy, = Sk4+1 — Sk — 1, such that the following conditions are verified:

1. v1 = uq, va = ug, and V; = {v1,v2}.
2. Let Gy be the plane subgraph of G induced by Vi U--- UV, 1 <k < h, and Cy,

be the external face of Gi. For each 2 < k < h — 1, one of the following cases
occurs:

(a) Vi = {vs,} is a vertex of Cj (and has at least one neighbor in G — Gy);

(b) Vi = {vsy,- -, Vsptd,} is a subpath of Cj, and each vertex v;, s < i <
Sk + di, has degree two in Gy (and has at least one neighbor in G — Gy,).

3. Each subgraph Gy, 2 < k < h — 1, is biconnected and internally triconnected.
4. v, = up and Vi = {v, }.

LEMMA 6.2 [Kan96] Each triconnected plane graph has a canonical ordering, which
can be computed in linear time and space.

6.5. CANONICAL ORDERINGS 201

Figure 6.6 Cover tree induced by a canonical ordering of a maximal plane graph. The
edges of the tree are drawn with thick lines.

202 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

6.6 Shift Method

de Fraysseix, Pach, and Pollack [dFPP90] presented an algorithm for constructing a planar
straight-line drawing of an n-vertex maximal plane graph on the (2n —4) x (n — 2) grid.
The algorithm is summarized as follows:2

e the vertices are placed on the grid one at a time following a canonical ordering
(see Definition 6.1) of the input graph;

e at each step, the contour of the drawing of the current graph satisfies certain
invariants that involve restrictions on the slopes of the contour edges;

e when a vertex is placed on the grid, some of the previously placed vertices are
shifted leftward and some others are shifted rightward to accommodate the new
vertex while maintaining the contour invariants and the planarity of the current
drawing.

6.6.1 Construction

We now give a detailed description of the algorithm. Let G be an n-vertex maximal plane
graph, and let vy, ..., v, be a canonical ordering of G. We denote by P(v) = (z(v),y(v))
the current position of vertex v on the grid. For each vertex v, we maintain the set of
vertices that need to be shifted whenever v is shifted; we denote this set by L(v).

As described in Section 6.5, for each 3 < k < n, we denote by v; = wi,ws, ..., ws = U9
the sequence of vertices C,_; (the external face of graph Gj_1) when traversed in clockwise
order, and by wyp, ..., w, the subsequence of vertices of C,_; that are adjacent to vertex vy.
We call wy, the left attachment of vi, and wy the right attachment of v,. Note that vertices
Wpi1, ..., We—1 are covered by vy.

For two grid points Py = (z1,y1) and Py = (x2,y2), we denote by u(P;, P2) the inter-
section of the line with slope +1 passing through P; and the line with slope —1 passing
through P, (see Figure 6.7), i.e.,

M(P17P2):(3624-961‘21'1/2—91,3?2—301"21‘y2+yl> (6.6)
Note that if the Manhattan distance between P; and P; is even, then u(Py, P) is a grid
point.

Initially, we set P(v1) = (—1,0), P(v2) = (1,0), and P(v3) = (0,1), i.e., we draw G5 as
a triangle I's; we also define shift sets L(v;) = {v;},1 <i < 3.

For each 4 < k < n, we assume that a planar straight-line grid drawing I'y_1 of Gi_1
has been constructed in such a way that the following contour conditions hold (see Fig-

ure 6.8):
1. P(v1) =(—((k—1)=2),0) and P(vs) = ((k — 1) — 2,0);
2. z(wr) < x(w2) < -+ < x(we1) < z(wy);
3. each segment P(w;)P(w;+1),1 <i <t—1, has slope either +1 or —1.

Note that, by Condition 3, the Manhattan distance between any two vertices of Cy_1 is
even; thus, u(P(wp), P(wq)) is a grid point.

20ur description of the algorithm, which uses left shifts and right shifts, is slightly different from the
one given in [dFPP90], which uses only right shifts, but is conceptually equivalent.

6.6. SHIFT METHOD 203

Figure 6.7 Definition of point u(P;, P») as the intersection of the line with slope +1
passing through P; and the line with slope —1 passing through Ps.

wp=v, W=V,

Figure 6.8 Schematic illustration of a drawing of I';_; that satisfies the contour condi-
tions, i.e., the external face is drawn as a polygon consisting of a horizontal edge and a
chain of segments with slope +1 or —1 between endpoints P(v;) = (—((k — 1) — 2),0) and
P(vg) = ((k—1)—2,0).

Vi

wp=v W=V,

Figure 6.9 Schematic illustration of the addition of vertex vy to drawing I'y,_; to obtain
drawing T'y. Contour vertices wy, ..., w + p (black-filled) are shifted by one unit to the left
and contour vertices wg, ..., w; (white-filled) are shifted by one unit to the right. When a
contour vertex is shifted, we also shift all the vertices in its shift set (not shown). Finally,
vertex vy, is placed at point p(P(wp), P(wy)). Drawing I'y, satisfies the contour conditions,
i.e., the external face is drawn as a polygon consisting of a horizontal edge and a chain of
segments with slope +1 or —1 between endpoints P(vy) = (—k—2,0) and P(vy) = (k—2,0).

We now show how to add point P(vg) to T'y—; and obtain a planar straight-line drawing
Ty of G (see Figure 6.9):

204 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Step 1 For each v € J/_; L(w;), set z(v) = x(v) — 1. This step translates leftward by
1 the vertices of the external face from w; to the left attachment w, of v plus
all the other vertices in the shift sets of these vertices.

Step 2 For each v € Uf:q L(w;), set x(v) = x(v) + 1. This step translates rightward
by 1 the vertices of the external face from the right attachment v, of v to wy
plus all the other vertices in the shift sets of these vertices.

Step 3 Set P(vg) = pu(P(wp), P(wy)). This step places vertex vy so that it can be
joined with straight-line edges to its neighbors.

Step 4 Set L(vg) = {vg} U (Ug;;-u L(w;)). This step defines shift set L(vy) as the
union of vg and the shift sets of the vertices covered by wvy.

Steps 1, 2, and 3 ensure that points P(wy),..., P(w,) are all visible from P(vg), i.e.,
segments P(vy)P(w;),p < i < g, can be added to T'y_; without introducing crossings.
Conditions 1-3 above are clearly satisfied in I'y. By Step 4, we obtain inductively that each
set L(u) is the subtree of the cover forest rooted at vertex u. Thus, sets L(wi),..., L(w;),
form a partition of the vertices of Gx_1. It remains to prove that the shift operations in
Steps 1 and 2 preserve the planarity of I'y_1, and this is done in the following lemma.

LEMMA 6.3 Let I'; be a planar straight-line drawing of G;, as described above, and let
v1 = Wi, Wwh, ..., w; = vy be the sequence of vertices of C;. Let s be an index such that
1<s<t.If for each 1 <1 < s (resp., s < i < t'), we shift the vertices in L(w}) leftward
(resp., rightward) by a positive integer number p, then the resulting straight-line drawing
is still planar.

Proof: By induction on j. For I's the lemma is trivially true. We now suppose that the
lemma is true for I';_1, j > 4, and prove that it is true for I';. We use the notation from the
algorithm description above; namely, v; = wy, wa, ..., w; = vy is the sequence of vertices of
Cj_1, and wy, and w, are the leftmost and rightmost neighbors of v; in C;_;, respectively.
We denote by ¢ the difference between the number of vertices of C;_; and the number of
vertices of Cj, i.e., (= (¢ —p—1) —1 > —1. Thus, we have:

=t

w; fori=1,...,p
w) =4 v; fori=p+1

Wipe fori=p+2,...,¢

Note, in particular, that w; 12 = wg. We prove the claim for the rightward shift; the proof
for the leftward shift is symmetric.

If s > p+ 2, then v; and its neighbors wy, ..., wy in Cj_; do not move. Thus, by the
induction hypothesis, I'; is planar.

If s < p, then v; and its neighbors wy, ..., wq in C;_; shift rigidly rightward by p. Thus,
by the induction hypothesis, I'; is planar.

If s = p+1, we apply the induction hypothesis to I';_; with s = p+1; thus, the planarity
of I';_; is preserved. Vertex v; and its neighbors wp41, ..., wq in C;_; shift rigidly rightward
by p, while w,, does not move. Point P(wp) is clearly still visible from points P(v;) and
P(wp41), and thus, I'; is planar.

If s = p+2, we apply the induction hypothesis to I';_; with s = ¢; thus, the planarity of
I';_; is preserved. Vertex v; and its neighbors wyp, ..., wq—1 in C;_1 do not move, while w,

6.6. SHIFT METHOD 205

shifts rightward by p. Point P(wq) is clearly still visible from points P(v;) and P(wg—1),
and thus I'; is planar. m]

In the end, we obtain a planar straight-line drawing of G in which P(v;) = (—(n —2),0)
and P(vy) = (n — 2,0). By Condition 3 above, P(v,) = (0,n — 2). Therefore, G is drawn
on the (2n —4) x (n — 2) grid.

Figures 6.10 through 6.19 show several steps of the execution of the algorithm on the
graph and canonical ordering of Figure 6.5. The final drawing is shown in Figure 6.20.

6.6.2 Implementation

A straightforward implementation of the shift method results in an O(n?)-time algorithm.
In their paper, de Fraysseix, Pach, and Pollack [dFPP90] were able to reduce this time bound
to O(nlogn). An optimal O(n)-time implementation of the shift method was presented by
Chrobak and Payne [CP95], and this is the implementation we describe below.

The crucial observation is that, when vertex vy is placed on the grid, it is not necessary
to know the exact positions of w, and w,. If their y-coordinates and their z-offset, i.e.,
z(wq) — x(wp), are known, then y(vi) and the z-offset between vy, and w, can be computed;
namely, by Eq. 6.6, we have

z(wy) — x(wp) + y(wy) + y(wp)

y(Uk-,) = 2 ’ (67)
(o) — auy) = XD =) Fyn) Zyn), (6:5)

The algorithm consists of three phases. In the first phase, we compute a canonical
ordering of the input graph. In the second phase, we add vertices one at a time, according
to that canonical ordering: for each added vertex v, we compute its y-coordinate and x-
offset z(vi) — z(wp), update the z-offset of w, (from its previous value z(wq) — x(wy—1))
to x(wq) — x(vk), and possibly update the x-offset of wyy1. In the third phase, we suitably
traverse the graph starting from v; and compute the final z-coordinates of the vertices by
accumulating offsets.

We now describe the data structure used to implement the algorithm. For each 4 < k < n,
the family of sets L(wy),...,L(w;) for vertices wi,...,w; of Cx—1 can be viewed as an
ordered forest F of trees L(w;) rooted at vertex w;,1 < i < ¢t. When vertex vy is added
and set L(vg) is created (see Step 4 above), a new tree L(vg) of F' is created out of trees
L(wps1), - ., L(wg—1) by making vy, the parent of wpy1,...,wy—1 (in this order from left
to right). A standard way to represent an ordered forest F' is by means of a binary tree
T: the roots of the trees of F' are all considered siblings; the root of T" corresponds to the
root of the first tree of F'; if ny is a node of T' corresponding to a node ng of F', then the
left child of np corresponds to the leftmost child of ng (if any), and the right child of np
corresponds to the next sibling of ng (if any).

In our context, the root of T' corresponds to v; = wy, its right child corresponds to ws, its
right child’s right child corresponds to w3, and so on; thus, the rightmost leaf corresponds to
wy = ve. Tree L(w;),1 <14 <t is represented by the node corresponding to w; and its left
subtree. The subtree of T' rooted at the node corresponding to w; represents J;; L(w;).
For brevity, in the rest of the section, we refer with the same symbol to a vertex of G, the
corresponding node of F', and the corresponding node of 7.

If u is an ancestor of v in T, the x-offset between v and u is defined as Az(v,u) =
x(v) — z(u). If u is the parent of v, we simply use the term z-offset of v and the symbol
Ax(v). With each vertex v of G, we store the following information:

206 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Vo Ve

| PN |

g / //\k /J\‘\ \\ }
v, | 2/// §V3 \\\\Qt 3 vy
Figure 6.10 Drawing I'g of graph Gy which consists of vertices vy, vs,. .., vg.
Vo V6
\rs\"*‘ vs i
P
TR AN
- // '\ \/ VN~ \\
v, i ﬁ _’_‘_—.—— 3‘}3 \\\‘\Q 3 v,

Figure 6.11 Preparing to add vertex vig to drawing I'g. Vertex v1¢ has left attachment
vg and right attachment vy: the black-filled vertices are shifted to the left by one unit; the
gray-filled vertices do not move; and the white-filled vertices are shifted to the right by one
unit.

,,,,,,,,,,,, Vo
Vo V6 N
e ; <
\/\ NG
121 3 —C———"’"——— \N\Q(3\/’2

Figure 6.12 Addition of vertex vip and its incident edges, which yields drawing I'yq.
Vertex vyg covers vertices vg, v7, and vs.

,,,,,,,,,,,,,,,,,, V1o
,i\"n
Vo 4\,\
A\ L
V4 /uvs\
,// \,\ :
i — d
v : / ____‘___————‘ V3 N\\NN\‘ 1V2

Figure 6.13 Drawing I'y; obtained by adding vertex vy; and its incident edges after
shifting the black-filled vertices to the left and the white-filled vertices to the right. Vertex
V11 covers vertex vs.

6.6. SHIFT METHOD 207

777777 V1o o o . V12 o o
N
,/4'\‘\
// /(¢
v,
4 // %
—
—~ |
I P— '
\ZP /“ "“*&_ T V)
Figure 6.14 Drawing I'1,.
777777777777777777777777 Vi3
v
Vi
Vo >\
Ve
L —_—
v, : — I \‘\ V)

Figure 6.15 Drawing I';3.

Y10

Vi g 2

Figure 6.16 Drawing I'y4.

208 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Vi3
0O

Vis V14j\
') i
I \\
// V1o N\
Vo \
/’-‘é v \\ 7 }‘\
V9 \>\\\ - r&/ V6
N N
// ///77\ V3 V4\\\\\45\3> T~
— —— | | 1 T S s s S s o MR
: : —— \)
12 V2

Figure 6.17 Drawing I'14. Note that we have skipped drawing I'y5. Also, here and in the
next two figures we do not fill the vertices to denote the amount of shifting.

Vi
Y/AIIRNN
7445 SR\
/44 BN
WY
V16 1)
TN
' \
v N\
Vil §>\
T
 —
ST N T
e, —— == s N S D e e ———— V2
Figure 6.18 Drawing I'17.
Y18
V17,
7/8 B\
/ Vi3 AR
//// \\ \\
y4 LNNA
/// \ V16
(V15 V14 \
/4 L0 . \\
/ Vis \
, V11})\
AP\ \\ L
7 _—T N\ %// O N
o L Vs > :/ 77777 Vy | \\\ N
— | | W T T~ v,

Vi

Figure 6.19 Drawing I';g of the graph of Figure 6.5.

6.6. SHIFT METHOD 209

Figure 6.20 Planar straight-line grid drawing of the graph of Figure 6.5 constructed
with the shift method by de Fraysseix, Pach, and Pollack (Algorithm MaximalShift shown
in Figure 6.21). The graph has n = 18 vertices and the drawing has width 2n — 4 = 32 and
height n — 2 = 16. Note that the drawing is the same as that of Figure 6.19 except that it
has been rotated counterclockwise by 90 degrees and the grid lines have been omitted for
better readability.

210 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Az (v), the z-offset of v;

y(v), the y-coordinate of v;
left(v), the left child of v in T
right(v), the right child of v in T.

The pseudo-code of the algorithm, which we call MaximalShift, is given in Figure 6.21. The
first phase of the algorithm consists of line 1. The second phase consists of lines 2-30; note
that, on line 23, the right child of w,_1, which before the insertion of v;, was wy, is set to nil
since now wy—1 ¢ Cy and wy is the right child of vi. The third phase consists of lines 31—
32, where the z-coordinate of v; is set to 0 and recursive procedure AccumulateOffset is
called. The pseudo-code of procedure AccumulateOffset is given in Figure 6.22. It performs
a preorder visit of T' and computes the z-coordinate of each vertex v # v; of G as the sum
of the z-coordinate of the parent of v in T and the z-offset of v (line 1).

The following theorem summarizes the area bound and computational complexity of the
shift method.

Theorem 6.1 [dFPP90, CP95] Let G be a mazimal plane graph with n vertices. The
shift method computes a planar straight-line drawing of G on the (2n —4) x (n — 2) grid in
O(n) time and space.

Proof: We refer to Algorithm MaximalShift, shown in Figure 6.21. Clearly, the z-
coordinate of each vertex v # v; of G can be computed by adding the z-offset Ax(v,v)
between v and vy to the z-coordinate x(v1) of vy (the root of T'). Thus, we only have to
prove that those z-offsets are correct at the end of the second phase of the algorithm. Note
that the only steps of the algorithm where the x-offsets of some vertices of the current graph
Gj,_1 are modified are those on lines 7-8 and on lines 26-29.

For the “stretch” step on lines 7-8, we recall that the subtree T'(w;) of T rooted at w; rep-
resents (J;; L(w;); thus, incrementing Az(w;) increments the z-offset between each vertex
of T(w;) and vy, i.e., correctly shifts all vertices in i L(w,) rightward, or, equivalently,
all vertices in {J,_; L(w;) leftward.

During the “adjust” step on lines 26-29, only Az(w,) and possibly Az(wpy1) are modi-
fied. Note that, after the insertion of vy, w, is still an ancestor of both w, and wp41 in T*:
namely, vy is the parent of w,41 and wg, and w,, is the parent of v;. We now prove that
the values of Ax(w,,w,) and Az(wp+1,w,) are not modified by the insertion of vy.

o After the insertion of vy we have Az(wg,wp) = Ax(wg,vi) + Ax(vg, wp) =
Ax(wq) + Az(vg), which, by the choice of Az(w,) on line 26, is clearly equal to
the value of Az(wg,w,) before the insertion of vy, computed on line 10.

o If p+ 1 # ¢, after the insertion of v, we have Ax(wpt1,wp) = Az(wpt1,vr) +
Ax(vk, wp) = Ax(wpy1) + Az (vg), which, by the choice of Az(v,y1) on line 28,
is clearly equal to the value of Ax(wy41) before the insertion of vy.

It follows that, for each vertex v # v1 € Gi_1, z-offset Azx(v,v1) is not modified during
the “adjust” step. Hence, algorithm MaximalShift is a correct implementation of the shift
method.

As for its space and time complexity, the data structure used to implement the algorithm
clearly takes O(n) space. By Lemma 6.1, the first phase takes O(n) time and space. The
time complexity of the body (lines 6-29) of the main for loop is dominated by the compu-
tation of Az(wg,wp) on line 10, which takes O(deg(vy)); thus, by Eq. 6.2, the second phase
globally takes O(n) time. The third phase clearly takes O(n) time since at the end of the
second phase T has n nodes. O

6.6. SHIFT METHOD

211

Input: A maximal plane graph G with n vertices

Output: A planar straight-line drawing of G on the (2n — 4) x (n — 2) grid

1: compute a canonical ordering vy,...,v, of G

2: (Az(v1),y(v1), left(v1), right(v1)) < (0,0, nil, v3)

3: (Ax(vs),y(vs), left(vs), right(vs)) < (1,1, nil, va)

4: (A:E(UZ)v y(UQ)a left(UQ)a TZght(UQ)) A (13 Oa nZla ’Illl)

5. for 4 < k <n do

/* stretch the L(wy)-to-L(wpt1) and L(wg—1)-to-L(w,) gaps */
Az(wpi1) + Az(wpir) +1

Az(wg) + Az(wy) + 1

/* compute Ax(wq, w,) */

100 Az(wg, wp) ¢ Az(wpt1) + - - + Az(wg)

11: /* compute Az(vi) and y(vy); see Eqgs. 6.8 and 6.7 */
122 Az(vg) « (Az(wg, wp) + y(we) — y(wp))/2

13 y(u) = (Ax(wg, wp) + y(we) + y(wp))/2

14: />|< add vy, tOT*/

15 right(wp) < vk

16: if p+ 1 # q then

17: left(vg) <= Wpt1
18: else

19: left(vy) + nil
20: end if

21: right(vg) < wq

22: if ¢—1# p then

23: right(wq—1) < nil

24: end if

25: /* adjust Az(w,) and Az(wpy1) */
26: Az(wg) + Az(wg, wp) — Az(vg)
27 if p+1 # q then

28: Ax(wpt1) < Ax(wpr1) — Az(vg)
29: end if
30: end for

31: x(vy) <0
32: AccumulateOffset(vq,z(v1))

Figure 6.21 Algorithm MaximalShift.

Input: A vertex v of T and an integer x
1: if v # nil then
2. z(v) x4+ Az(v)
3: AccumulateOffset(left(v),z(v))
4: AccumulateOffset(right(v),z(v))
5. end if

Figure 6.22 Procedure AccumulateOffset.

212 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

6.6.3 Refinements and Variations

Chrobak and Nakano [CN98] and Brandenburg [Bra08] refined the shift method by de Frays-
seix, Pach, and Pollack [dFPP90], thus reducing the area of the drawing.

In the original shift method [dFPP90], we have seen that at each step the drawing satisfies
the contour conditions. In the refinement by Chrobak and Nakano [CN98], these conditions
are relaxed: z(w;) < z(w;41),1 <14 <t —1 and the equality may hold only when y(w;) <
y(w;y1). Thus, each contour segment P(w;)P(w;+1) belongs to one of the following four
types:

vertical z(w;) = z(w;y) and y(w;) < y(wiqr);

upward z(w;) < z(w;4;) and y(w;) < y(wit1);

horizontal x(w;) < x(w;1;) and y(w;) = y(wiy1);
(

downward z(w;) < z(w;y;) and y(w;) > y(wi4r).

The presence of vertical contour segments allows to avoid some shifts, thus obtaining a more
compact drawing. The authors present a new combinatorial structure, called a domino
chain, which allows to partition the vertices into stable and unstable; a stable vertex vy can
be added to Gj—_1 with edge (wp,vy) drawn as a vertical segment and no shift is necessary.
Namely, the method avoids making any shifts in approximately % steps and results in a
drawing of size [2(n—1)| x4[2(n—1)| — 1.

Brandenburg further improves the shifting strategy and also rotates the drawing to choose
the best base edge. This refinement of the shift method results in a drawing of size {%n] X
[%n} . Also, this height and width are necessary if the drawing is constrained to be enclosed
by an isosceles right-angled triangle.

Kant [Kan96] presents an algorithm based on the shift method for constructing convex
drawings of triconnected plane graphs on the (2n — 4) x (n — 2) grid. The size of the grid

is reduced to (n — 2) x (n — 2) in a successive algorithm by Chrobak and Kant [CK97].

6.7 Realizer Method

An alternative method for drawing maximal planar graphs on an integer grid was presented
by Schnyder [Sch90]. The origins of the approach can be found in [Sch89], where it was
used to characterize planar graphs as the graphs whose incidence relation is the intersection
of at most three total orders® (see Theorems 4.1 and 6.2 of [Sch89]).

6.7.1 Realizers

DEFINITION 6.3 A realizer of a maximal plane graph G is a triplet of rooted directed
spanning trees of G with the following properties* (see Figure 6.23):

3 More formally, a graph G = (V, E) is planar if and only if the order dimension of the poset (V U E, <),
where incidence relation < is defined by v < e < v € V,e € E,v € e, is at most 3. The order dimension
of a poset is the minimum cardinality of its realizers. A realizer of a poset (X, <) is a nonempty set of
total orders on X whose intersection is <.

4This definition of a realizer of a maximal plane graph is slightly different from the one given in [Sch90],
as we consider also the external edges; our definition allows to reduce the number of special cases and
to generalize the concept of realizer to triconnected plane graphs.

6.7. REALIZER METHOD 213

1. In each spanning tree, the edges of G are directed from children to parent.

2. The sinks (roots) of the spanning trees are the three external vertices of G.

3. Each internal edge of G is contained in one spanning tree.

4. Each external edge of GG is contained in two spanning trees and it has different
directions in the two trees.

5. Consider the edges of G with the directions they have in the three spanning trees
(the external edges are considered twice):

(a) Each non-sink vertex v of G has exactly three outgoing edges; the circular
order of the outgoing edges around v induces a circular order of the spanning
trees around v; all the non-sink vertices of G have the same circular order
of the spanning trees.

(b) For each vertex of G, the incoming edges that belong to the same span-
ning tree appear consecutively between the outgoing edges of the other two
spanning trees (for the sink of each spanning tree the first and last incoming
edges are coincident with the two outgoing edges).

6. For the sink of each spanning tree, all the incoming edges belong to that spanning

tree.

Vi V)

Figure 6.23 A realizer of a maximal plane graph whose vertices are numbered according
to a canonical ordering. The edges are thick for the green spanning tree, medium for the
blue spanning tree, and thin for the red spanning tree. Note the 2-colored edges on the

external face.

Let Tj, Ty, and T, be the spanning trees forming a realizer of a maximal plane graph G
(see Figure 6.23). We assign a color to the edges of G contained in Ty, Ty, and T, say, blue,
green, and red, respectively. In the figures, we use dark grey for blue, light grey for green,
and medium grey for red. According to Property 3 of the realizers, each internal edge of

214 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

G is assigned one color and is said to be 1-colored, while the three external edges of G are
assigned two colors and are said to be 2-colored.

In the proof of the following lemma, we present a mechanism for constructing a realizer
of a maximal plane graph G based on a canonical ordering of G; this is different from the
mechanism based on edge labelings presented in [Sch90].

LEMMA 6.4 Each maximal plane graph has a realizer, which can be computed in linear
time and space.

Proof: Let G be a maximal plane graph. A realizer of G can be constructed by assigning
colors and directions to the edges of G as follows:

1. a canonical ordering of G is computed;
2. vy1, vg, and v, are the sinks of the blue, green, and red tree, respectively;
3. (v1,v2) is an outgoing blue edge for vo and an outgoing green edge for vy;

4. for each 3 < k < n, let ¢, ...,c. be the consecutive neighbors of v on Ci_1
from left to right; (vg, ;) is an outgoing blue edge for vg; (vk, ¢,) is an outgoing
green edge for vy; each edge (vk,¢;),l < i < r,is an outgoing red edge for ¢; (see
Figure 6.23);

5. (vp,v1) is also an outgoing red edge for vy, and (v,,v2) is also an outgoing red
edge for vs.

Note that v; has no outgoing blue edge, v, has no outgoing green edge, and v, has no
outgoing red edge. Besides, for each 3 < k < n, the following invariants hold for Gy:

e v, has exactly one outgoing blue edge, exactly one outgoing green edge, and no
outgoing red edge; the outgoing blue edge precedes the outgoing green edge in
the clockwise circular order of the edges of Cy, and all the (possible) incoming
red edges are incident with vertices of C_1;

e for every vertex of Cj the (possible) incoming blue edge of Cy, follows the (pos-
sible) incoming green edge of Cy in the clockwise circular order of the edges of
Ck;

e 1o vertex of Ci_; has an outgoing blue or green edge incident with vg;

e cvery vertex of C;_; with no neighbor in G — G, has exactly one outgoing red
edge, while every vertex of Ci_; with neighbors in G — G, has no outgoing red
edge;

e (G contains no cycle such that a common color is assigned to all its edges.

All the properties of a realizer easily follow from these invariants. By Lemma 6.1, the above
construction can be carried out in linear time and space. 0O

From the construction in the proof of Lemma 6.4, it follows that, for every realizer of a
maximal plane graph G, all internal edges of G are 1-colored, while the three external edges
are 2-colored. Also, for each vertex of G, the colors of the three outgoing edges appear in the
following counterclockwise circular order: blue, green, red. Set {b, g,r} will be considered
accordingly ordered in the rest of the chapter.

In the rest of the section, we consider a maximal plane graph G equipped with a realizer
{Tb,Tg,Tr}. We denote v1, v2, and v, by s, 54, and s,., respectively. For each vertex v of
G, the blue path py(v) is the path of G along T}, from v to sp. In the same way, we define the
green path py(v) as the path of G along T}, from v to s, and the red path p,(v) as the path

6.7. REALIZER METHOD 215

of G along T, from v to s,. Note that p;(s;),7 € {b,g,7}, is a degenerate path consisting
only of s;. The subpath of p;(v),i € {b, g,r}, from v to the ancestor u of v in T; is denoted
by p;(v,u). The parent of vertex v in T;,% € {b,g,7}, is denoted by par;(v). The lowest
common ancestor of vertices u and v in T;,4 € {b, g,r}, is denoted by lca;(u,v).

LEMMA 6.5

For each vertex v of G, pp(v), pg(v), and p,(v) have only vertex v in
common.

Proof: ~ W.lo.g., suppose, for a contradiction, that p,(v) and py(v) have a vertex u in
common, and that py(v,u) — {u,v} and pgy(v,u) — {u,v} have no vertex in common with
each other and with p,(v). Vertex u has both a blue and a green incoming edge; thus, by
Property 6 of the realizers, we have u # s3,5,. Let R be the subgraph of G bounded by
pp(v, u) and pg(v, u); from the circular order of the outgoing edges at v, we have that py (v, u)
(resp., pg(v,u)) follows the boundary of R counterclockwise (resp., clockwise). Thus, by
Property 5 of the realizers at u and by the planarity of G, par,(u) € R (the same is true
for par,(u)). Still by the planarity of G, py(par;(u)) leaves R at a vertex w; two cases are

possible: (i) w € pg(v,u) — {u, v}, but this contradicts Property 5 of the realizers at w, or

(i1) w € pp(v,u), but this contradicts the acyclicity of Tp. m|

V)

Figure 6.24 The blue (medium), green (thick), and red (thin) paths for vertex vy and
corresponding blue (medium shaded), green (dark shaded) and red (light shaded) regions of

vertex vg. The coordinates of vg in the barycentric representation are the number of faces
in the blue, green, and red region, respectively, i.e., (4,2,9).

For each vertex v of G, the blue region Ry(v) is the subgraph of G bounded by p,4(v), p,(v)
and (sg, $,). In the same way, the green region Ry (v) is the subgraph of G bounded by py(v),
pr(v) and (sr, sp), and the red region R,(v) is the subgraph of G bounded by py(v), pge(v)

and (sp,s,) (see Figure 6.24). Note that Ry(sg) = Ry(s,) is a degenerate region consisting

only of (sg, s,). In the same way, R, (s,) = Ry(sp) = (sr,55) and Ry(sp) = Ry (54) = (51, Sg)-

216 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

LEMMA 6.6 Let u and v be two distinct vertices of G. If u € Ri(v), k € {b, g, r}, then
Rk(u) C Rk(v).

Proof: W.lo.g, we assume k = r. Two cases are possible: (i) u & py(v) U pg(v),
or (i) u € pp(v) Upg(v). We consider only the first case; the second is similar. By the
planarity of G and by Property 5 of the realizers, p,(u) has no vertex in common with pg(v),
and py(u) has no vertex in common with py(v). Thus, the region R, (v) — R, (u) bounded by
o, leap(u, v)), pg(u, leag(u,v)), py(v, leap(u,v)), and py(v, leag(u,v)) is nonempty; hence,
R.(u) C R-(v). O

Note that, for each k € {b,g,7}, the inclusion partial order of the k-regions induces a
partial order on the vertices of G defined by u <j v < Ri(u) C Ry(v). Partial order <y, is
represented by tree Ty, k € {b, g, 7} of the realizer of G. Also, for each edge (u,w) and each
vertex v # u,w of G, by the planarity of G, (u,w) is in some region Ry(v),k € {b,g,r};
hence, u <, v and w <j v. Any choice of three linear extensions of <;, <4, and <,
produces a realizer of the poset defined in footnote (3) on page 212.

6.7.2 Barycentric Representation

DEFINITION 6.4 A barycentric representation of a graph G = (V, E) is an injective
function f:v € V = (vp,v,,v,) € Z3 that satisfies the following conditions:

1. For each vertex v of G, vy + vy + v, = ¢, where c is a constant dependent on G.

2. For each edge (u,w) and each vertex v # u,w of G, there exists a coordinate i €
{b, g,7} such that v; > u; and v; > w;.

One can view v, v4, and v, as barycentric coordinates of vertex v. Note that these
coordinates have a purely combinatorial meaning.

LEMMA 6.7 A barycentric representation f : v € V. — (vp,v4,v,) of a graph G = (V, E)
is a planar straight-line drawing of G on plane b+ g +r = ¢ in Z3.

Proof: Let 7 be the plane in Z2 defined by equation b + g + r = c¢. By Condition 1 of
Definition 6.4, all vertices of G are mapped to points of . In order to prove the planarity
of the straight-line drawing, we must prove the following:

e No two vertices are mapped to the same point of 7. By definition, since f is injective.

e No vertex overlaps an edge. Let (u, w) be an edge of G and let maz; = max{u;,v;},i €
{b,g,7}. Let X\, be the line of 7 defined by equation b = mazy, i.e., the line of
7 passing through the endpoint of segment f(u)f(w) with maximum b-coordinate
and perpendicular to the b axis. Lines Ay and A, are defined in a similar way, and,
together with A, identify a (closed) triangle T containing f(u)f(w). Suppose, for
a contradiction, that there exists a vertex v # u,w of G such that f(v) overlaps
f(u)f(w). Clearly, f(v) is contained by T, i.e., v; < maz;, for each i € {b,g,r}. But
this contradicts Condition 2 of Definition 6.4.

e No two edges cross. Let e; = (u,w) and e = (x,y) be two nonincident edges of G,
and let T} and T be the two (closed) triangles containing f(u)f(w) and f(x)f(y),

6.7. REALIZER METHOD 217

respectively, identified as above. Suppose, for a contradiction, that f(u)f(w) and
f(z)f(y) cross. Then, either T} contains f(z) or f(y), or Ta contains f(u) or f(v).
But this again contradicts Condition 2 of Definition 6.4.

O

Lemma 6.7 implies that only a planar graph can have a barycentric representation. For
each vertex v of G, we denote by l;(v), l4(v), and I,(v) the number of faces in Ry(v), Ry(v),
and R, (v), respectively. Note that 0 < l;(v),l4(v),l(v) < 2n —5 and

Iy(v) +1g(v) +1-(v) = 2n — 5.

We have that these values yield barycentric coordinates (see Figures 6.24 and 6.25), as
shown by the following lemma.

LEMMA 6.8 Let G = (V, E) be a maximal plane graph equipped with a realizer. Func-
tion f:v eV = (lh(v),l4(v),l,(v)) is a barycentric representation of G.

Proof: The injectivity of f follows from Lemma 6.6. Condition 1 of Definition 6.4 is
trivially satisfied since for each vertex v, vy + v4 + v, = 2n — 5. As for Condition 2, let
(u,w) and v # u,w be an edge and a vertex of G, respectively. W.Lo.g., let u € R,.(v); by
the planarity of G, w € R, (v), as well. By Lemma 6.6, R.(u) C R,(v) and R,(w) C R, (v).
Hence, v, > u, and v, > w,. O

Let T’ be the planar straight-line drawing resulting from the barycentric representation of
Lemma 6.8. By that lemma and by Lemma 6.7, T" is a planar straight-line drawing of G on
plane b+ g +r = 2n — 5 in Z*. In particular, vertices sp, s4, and s, are mapped to points
(2n—5,0,0), (0,2n—5,0), and (0,0,2n —5), respectively. A planar straight-line drawing of
G on the (2n —5) x (2n —5) grid in Z?2 can be obtained by projecting I, e.g., by dropping,
for each vertex v, the red coordinate wv,., as illustrated in Figure 6.26.

As for the time and space complexity, by Lemma 6.4, a realizer of G can be constructed
in linear time and space. The coordinates of the vertices of G can also be computed in
linear time and space.

It is possible to obtain more compact drawings by relaxing the constraints imposed on
the vertex coordinates by Definition 6.4. Given two ordered pairs (a,b) and (c,d), the >,
relation is defined by (a,b) >er (¢,d) & a>cV(a=cAb>d).

DEFINITION 6.5 A weak barycentric representation of a graph G = (V, E) is an injec-
tive function f:v € V = (vp,vg,v,) € Z> that satisfies the following conditions:

1. For each vertex v of G, v, 4+ v4 4+ v, = ¢, Where c is a constant dependent on G.

2. For each edge (u,w) and each vertex v # w,w of G, there exist two consecutive
coordinates ¢ and j in the circularly ordered set {b, g, 7} such that (v;,v;) >ieq (s, u;)
and (v;,v5) >iex (Wi, w;).

The following lemma can be proved similarly to Lemma 6.7 and implies that only a
planar graph can have a weak barycentric representation.

LEMMA 6.9 [Sch90] A weak barycentric representation f : v € V. — (v, vg,v,) of a
graph G = (V, E) is a planar straight-line drawing of G on plane b+ g +r = ¢ in Z3.

218 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

v10=(0, 0, 15)

’
I'I v8: (7a la 7) ‘

P

\

ve= (1, 11, 3)

v3: (7’ 75 1)

v, = (15,0, 0) v,=(0, 15, 0)

Figure 6.25 Barycentric coordinates obtained from a realizer.

1514131211109 8 7 6 5 4 3 2 1 0

v
1 (\ r\vl 0
~ v
—— 8 [

N [K ’
v \\
\ |
\
\

\

<

&

,
)=
Lo

\
NI
V\f%%

TS0 0NN bk W — O

/
//
—_—
W N

—
N

O-—+15

Figure 6.26 Planar straight-line grid drawing obtained from the barycentric coordinates
of Figure 6.25 by dropping the third (red) coordinate. The horizontal and vertical axes are
shown reversed to maintain the visual correspondence with the drawing of Figure 6.25.

6.7. REALIZER METHOD 219

For each vertex v of G, we denote by ny(v), ng(v), and n,(v) the number of ver-
tices in Ry(v) — pr(v), Ry(v) — pp(v), and R,(v) — py(v), respectively. Note that 0 <
ny(v), ng(v),ny(v) <n—2 and ny(v) + ng(v) + n.(v) =n — 1.

LEMMA 6.10 Let u and v be two distinct vertices of G, and let i and j be two consecutive
coordinates in the circularly ordered set {b,g,7}. If u € R;(v), then (n;(v),n;(v)) >ies

(ni(w), n;(u)).
Proof: W.lo.g, we assume ¢ = 7 and thus j = b. Two cases are possible:

1. u & py(v); by Lemma 6.6, R, (u) C R, (v), and thus p,(u) is in R, (v); since u € py(u),
we have u € R, (u)—pg(u) while u € R, (v)—p,4(v); thus, R, (u)—p,(v) C R, (v)—pg(v);
hence, n,(v) > n,(u);

2. u € py(v); two subcases are possible:

(a) R?(u) - pg(u) C RT‘(U) _pg(v); hence, nT(U) > nr(”)?

(b) Ry(u)—pg(u) = Ry(v) — pg(v) (this subcase occurs if par,(u) = par,(v)); hence,
ny(v) = ny(u); however, u € Ry(v) and u ¢ p,(v); by the same argument used
for Case 1, ny(v) > np(u).

Thus, (n,(v), np(V)) >iex (nr(w), np(w)). O

LEMMA 6.11 Let G = (V,E) be a maximal planar graph equipped with a realizer.
Function f:v € V — (np(v), ng(v), nr(v)) is a weak barycentric representation of G.

Proof: Injectivity of f follows from Lemma 6.10. Condition 1 of Definition 6.5 is trivially
satisfied, since, for each vertex v, vy + vy + v, = n — 1. As for Condition 2, let (u,w) and
v # u,w be an edge and a vertex of G, respectively. W.l.o.g., let u € R,.(v); by the
planarity of G, w € R,.(v), as well. Hence, by Lemma 6.10, (v,,vs) >iex (tr,up) and
(/Ur,vb) >lex (wrawb)~]

6.7.3 Implementation

Let T be the straight-line drawing of G resulting from the weak barycentric representation
of Lemma 6.11. By that lemma and by Lemma 6.9, I is a planar straight-line drawing of G
on plane b+ ¢g+r =n—1in Z3. In particular, vertices sy, 54, and s, are mapped to points
(n—2,1,0), (0,n—2,1), and (1,0,n — 2), respectively. A planar straight-line drawing of G
on the (n —2) x (n — 2) grid in Z? can be obtained by projecting I, e.g., by dropping, for
each vertex v, the red coordinate v,..

We now consider the time and space complexity. By Lemma 6.4, a realizer of G can be
constructed in linear time and space. Next, we show that the coordinates for the vertices
of G can be computed in linear time and space. In particular, we show how to compute,
for each vertex v of G, coordinate v,; coordinates v, and v, can be computed similarly.

From the planarity of G and Property 5 of the realizers, it follows that, for each vertex
u # v € Ry (v), (i) the subtree T} (u) of T} rooted at u is contained by R, (v), and (i) p,(u)
has exactly one vertex w in common with p;(v) U pg(v) (note that u € T, (w)).

First, we compute, for each vertex v of G, the number of its descendants in 7., including
v itself, and store it in variable numdesc,(v); this can be done by a postorder visit of 7.

220 CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Second, we compute, for each vertex v of GG, the number of its ancestors in T}, including v
itself, and store it in variable numanc,(v); this can be done by a preorder visit of T;,. Finally,
we compute, for each vertex v of G, Zwepb(v) numdesc, (w) and Zwepg(v) numdesc,(w); this
can be done by a preorder visit of T, and T}, respectively.

For each vertex v of G, the number n,(v) of vertices in R, (v) — py(v), i.e., coordinate vy,
is given by the expression

Z numdesc, (w) + Z numdesc, (w) — numdesc, (v) — numancg(v)
wEPy(v) wEpg(v)

It follows that the coordinates for the vertices of G can be computed by a constant number
of traversals of Ty, T,, and T, and thus globally in O(n) time. Furthermore, the additional
variables used in the tree traversals clearly take O(n) space.

Thus, we obtain the following theorem that summarizes the area bound and computa-
tional complexity of the realizer method.

Theorem 6.2 [Sch90]| Let G be a mazimal plane graph with n vertices. The realizer
method computes a planar straight-line drawing of G on the (n —2) x (n —2) grid in O(n)
time and space.

6.7.4 Refinements and Variations

Zhang and He [ZH03] discovered some new properties of Schnyder’s realizers and were able
to further reduce the grid size (in most cases).

Di Battista, Tamassia, and Vismara [DTV99] extend the realizer method to construct in
linear time a convex grid drawing of a triconnected plane graph on the (f — 1) x (f — 1)
grid, where f is the number of faces of the graph. The same result had been claimed by
Schnyder and Trotter [ST92] without proof and is independently obtained by Felsner [Fel01]
with different techniques. A method that further improves the grid size was developed by
Bonichon, Felsner, and Mosbah [BFMO7].

Acknowledgment

Roberto Tamassia contributed to the writing of this chapter.

REFERENCES 221

References

[BFMO7]

[Bra0g]

[CGY5)

[CK97]

[CNOg]

[CONS5]

[CPY5]

[CYN84]

[DF13]

[dFPP90]

[Dji95]

[DTV99)]

[F4r4s]

[Fel01]

[HT73]

[Kan96]

Nicolas Bonichon, Stefan Felsner, and Mohamed Mosbah. Convex drawings of
3-connected plane graphs. Algorithmica, 47:399-420, 2007.

Franz J. Brandenburg. Drawing planar graphs on %nQ area. Flectronic Notes in

Discrete Mathematics, 31:37-40, 2008.

I. F. Cruz and A. Garg. Drawing graphs by example efficiently: Trees and planar
acyclic digraphs. In R. Tamassia and I. G. Tollis, editors, Graph Drawing (Proc.
GD ’94), volume 894 of Lecture Notes Comput. Sci., pages 404-415. Springer-
Verlag, 1995.

M. Chrobak and G. Kant. Convex grid drawings of 3-connected planar graphs.
Internat. J. Comput. Geom. Appl., 7(3):211-223, 1997.

Marek Chrobak and S. Nakano. Minimum-width grid drawings of plane graphs.
Comput. Geom. Theory Appl., 11:29-54, 1998.

N. Chiba, K. Onoguchi, and T. Nishizeki. Drawing planar graphs nicely. Acta
Inform., 22:187-201, 1985.

M. Chrobak and T. Payne. A linear-time algorithm for drawing planar graphs.
Inform. Process. Lett., 54:241-246, 1995.

N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for convex draw-
ings of planar graphs. In J. A. Bondy and U. S. R. Murty, editors, Progress in
Graph Theory, pages 153—-173. Academic Press, New York, NY, 1984.

Giuseppe Di Battista and Fabrizio Frati. Drawing trees, outerplanar graphs,
series-parallel graphs, and planar graphs in a small area. In J. Pach, editor,
Thirty FEssays on Geometric Graph Theory, pages 121-166. 2013.

H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10(1):41-51, 1990.

H. N. Djidjev. On drawing a graph convexly in the plane. In R. Tamassia and
I. G. Tollis, editors, Graph Drawing (Proc. GD ’94), volume 894 of Lecture Notes
Comput. Sci., pages 76-83. Springer-Verlag, 1995.

G. Di Battista, R. Tamassia, and L. Vismara. Output-sensitive reporting of
disjoint paths. Algorithmica, 23(4):302-340, 1999.

I. Fary. On straight lines representation of planar graphs. Acta Univ. Szeged.
Sect. Sci. Math., 11:229-233, 1948.

Stefan Felsner. Convex drawings of planar graphs and the order dimension of
3-polytopes. Order, 18:19-37, 2001.

J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135-158, 1973.

G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica,
16:4-32, 1996. (special issue on Graph Drawing, edited by G. Di Battista and R.
Tamassia).

222

[NRO4]

[RTS6]

[Sch89]
[Sch90]

[SR34]

[ST92]

[Steb1)
[ThoS0]

[Tho84]

[Tut60]

[Tut63]

[Wag36]

[ZH03]

CHAPTER 6. PLANAR STRAIGHT-LINE DRAWING ALGORITHMS

Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing. World Scien-
tific, 2004.

P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orienta-
tions of planar graphs. Discrete Comput. Geom., 1(4):343-353, 1986.

W. Schnyder. Planar graphs and poset dimension. Order, 5:323-343, 1989.

W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-SIAM
Sympos. Discrete Algorithms, pages 138-148, 1990.

E. Steinitz and H. Rademacher. Vorlesungen 1iber die Theorie der Polyeder.
Julius Springer, Berlin, Germany, 1934.

W. Schnyder and W. T. Trotter. Convex embeddings of 3-connected plane graphs.
Abstracts of the AMS, 13(5):502, 1992.

S. K. Stein. Convex maps. Proc. Amer. Math. Soc., 2(3):464-466, 1951.

C. Thomassen. Planarity and duality of finite and infinite planar graphs. J.
Combin. Theory Ser. B, 29(2):244-271, 1980.

C. Thomassen. Plane representations of graphs. In J. A. Bondy and U. S. R.
Murty, editors, Progress in Graph Theory, pages 43—-69. Academic Press, New
York, NY, 1984.

W. T. Tutte. Convex representations of graphs. Proceedings London Mathemat-
ical Society, 10(38):304-320, 1960.

W. T. Tutte. How to draw a graph. Proceedings London Mathematical Society,
13(52):743-768, 1963.

K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker- Vereinigung, 46:26-32, 1936.

Huaming Zhang and Xin He. Compact visibility representation and straight-line
grid embedding of plane graphs. In Algorithms and Data Structures, volume 2748
of Lecture Notes in Computer Science, pages 493-504. Springer, 2003.

Planar Orthogonal and Polyline
Drawing Algorithms

7.1 Introduction...............coiiiiiiiiiiiiiii 223
7.2 Preliminaries..................oo i 224
Definitions ® Canonical Ordering and Shifting Sets ©
Visibility Representations ¢ Network Flows
7.3 Orthogonal Drawingsccoooiiiiiiiiiii. .. 234
Orthogonal Drawings from Visibility Representations ®
Network Flow Algorithms
Christian A. Duncan 7.4 Polyline Drawingsooooiiiiiii i 239
Mixed-Model Algorithm ® One Bend Algorithm * Vertex
Regions ® The Embedding

Michael T. Goodrich 7.5 Conclusionooooiiiiiiiiii 244
University of California, Irvine References 245

Quinnipiac University

7.1 Introduction

One can assess the quality of a drawing of a graph in many different ways. Many important
criteria deal with the aesthetics, readability, of the drawing. For example, the size of the
drawing, roughly measured as the ratio between the farthest two objects of the drawings and
the closest two, is a measure of how much information can be displayed at one time. The
aesthetic that is of biggest concern in this chapter is that of angular resolution. Essentially,
we are concerned with how close together edges that stem from the same vertex are to each
other. The smaller the angle the more likely are the chances that the distinct edges become
one. Clearly, a high-degree vertex, one with many edges extending out of it, will inevitably
have a small angle between at least one pair of edges. So, the goal is to make the resolution
determined to some extent by the degree of the vertex.

Optimizing angular resolution in drawings has been addressed by countless researchers.
The two approaches we focus on in this chapter are to draw the graph orthogonally, that
is using only vertical and horizontal line segments for the edges. Orthogonal drawings have
the benefit that the smallest angle is at most m/2 and that the resulting graphs are often
quite pleasing to the eye because of the few edge directions employed, but they also have
the disadvantage that no vertex can have degree more than four. The study of orthogonal
graphs also has the advantage of being of interest to VLSI design, because many wires
are routed similarly. There are many different approaches to drawing orthogonal graphs.
Early results draw the graph using few bends but sacrificed size or running-time efficiency.
Improved techniques, involving computing a visibility representation, yielded orthogonal
drawings in linear time with few bends and small size. By using network flows, we can draw

223

224 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

(embedded) graphs with the guaranteed minimum number of bends possible in the smallest
area allowable, but the run-time performance goes up to near quadratic time.

When using graphs containing vertices with degree more than four, one can no longer
apply standard orthogonal drawing techniques. More general polyline drawing techniques,
however, do exist. The goal is usually to focus directly on the sizes of angles created
rather than the types of edges allowed. Thus, during the drawing, we can route edges in
any orientation so long as the angle does not go below some fixed threshold. The most
successful approaches all seem to work by taking a vertex and assigning exit ports, which
are adequately spaced, such that edges are routed from the start vertex through distinct
ports to the destination vertex. These techniques typically produce the layout by creating
a canonical ordering on the vertices and adding the vertices into the drawing based on this
ordering, while constantly maintaining the routing requirements of the edges. Using this
approach, one can guarantee, for example, that a drawing can be made in linear time with
good angular resolution, good size bounds, and using at most one bend per edge.

Before going into the details of the different approaches, we first present some basic
terminology and general techniques in Section 7.2. Section 7.3 describes some standard
approaches to drawing orthogonal graphs. Section 7.4 describes work done on more general
polyline drawings. We conclude our chapter in Section 7.5 with a brief summary of the
main results presented.

7.2 Preliminaries

We begin with a few basic definitions of some general graph terminology along with some
more detailed descriptions of techniques useful for constructing drawings of graphs.

7.2.1 Definitions

Although common in nearly any book on graph algorithms, we borrow notation predomi-
nantly from [DETT99]. A (simple) graph G = (V, E) is a finite set V' of vertices and a finite
set E of edges, where each edge is an unordered pair e = (u,v) of vertices. A multigraph is
a graph where the edges are multisets, that is two edges may have the same pair of vertices.
For each edge e = (u,v), we say that e is incident to u and v. We also say that v and v
are neighbors. The degree of a vertexr is the number of edges incident to it. The mazimum
degree of a graph is the maximum degree among all vertices in V. A (simple) path p of G is
a sequence of distinct vertices of G, (v1,va,...,v) such that for 1 <1i < k, (v;,v;41) € E.
A (simple) cycle ¢ of G is a path such that v; = v, with k > 1. A graph is acyclic if it has
no cycles. A graph is connected if for every pair of vertices u,v € V, there is a path from
u to v. For any k > 0, a graph is k-connected if the removal of any k — 1 vertices from the
graph still leaves the graph connected. We often refer to 2-connected graphs as biconnected
and 3-connected graphs as triconnected.

We may also define many of our terms based on giving each edge a specific direction. A
directed graph (digraph) is a graph where each directed edge e = (u,v) is an ordered pair,
where we consider u to be the origin and v to be the destination of the edge. In addition,
e = (u,v) is an incoming edge of v and an outgoing edge of u. The indegree of a vertex v
is the number of its incoming edges, and the outdegree of a vertex v is the number of its
outgoing edges. A source is a vertex with no incoming edges, i.e., with indegree 0. A sink
is a vertex with no outgoing edges, i.e., with outdegree 0. A directed path of G is a path
of G, (v1,va,...,v;), such that for 1 <4 < k, (v;,v;41) is a directed edge in E. A directed
acyclic graph (DAG) is a directed graph that has no cycles.

7.2. PRELIMINARIES 225

A drawing T of a graph G = (V, E) is essentially a mapping of each vertex v € V to a
distinct point T'(v) and of each edge e = (u,v) € E to a simple open Jordan curve I'(e),
which has I'(u) and T'(v) as its endpoints. If G is directed, it is common to draw the edge
with an arrow toward the destination vertex. When the drawing is understood from the
context, we often leave out the I' notation. For example, we may say that an edge e is made
of horizontal and vertical segments rather than the drawing I'(e).

A planar graph is a graph G that admits a planar drawing I', a drawing with no edges
intersecting, except for edges that share a common vertex v and only at that vertex. A
planar embedding, or, simply, embedding, of a graph is the collection of (counter-clockwise)
circular orderings of incident edges around every vertex induced by a planar drawing. A
plane graph is a graph that has been associated with a specific planar embedding. A
maximal planar graph is a graph where the addition of any edge e ¢ E causes the graph to
be non-planar. Maximally planar graphs have the property that every face is a triangle, a
cycle of three edges. For notation, we often refer to planar graphs with maximum degree k
as k-planar graphs, in particular, we deal with many cases of 4-planar graphs.

A straight-line drawing of a graph is a drawing where every edge is a straight-line segment.
A polyline drawing of a graph is a drawing T' such that every edge e = (u,v) € E is
represented as a connected sequence of line segments p1pz, P2ps, - - -, Dk—1DPk, Where p; =
I'(u) and py = I'(v) are the endpoints of the edge. We refer to pa, ..., pr—1 as bend points of
the drawing of the edge. An orthogonal drawing of a graph is a polyline drawing where every
edge is an alternating sequence of horizontal and vertical line segments. A grid drawing
is a drawing of the graph where each vertex and each bend point has integer coordinate
values, effectively being placed on an integer grid. The area of a grid drawing is the area of
the smallest enclosing axis-aligned rectangle containing the drawing. For a given drawing
of G, the angular resolution of a vertex v is the smallest angle between two distinct edges
incident to v and the angular resolution of G is the minimum angular resolution among all
vertices.

An st-graph is a DAG with one source and one sink. A planar st-graph is an st-graph
that has a planar embedding with the source s and sink ¢ located on the external face.

DEFINITION 7.1 Given a planar st-graph G, the dual planar st-graph G* = (V*, E*)
is a digraph with the following properties:

e V" is the set of faces in G with the addition that the external face (s,...,t,...,s)
is broken into two parts s* representing the portion of the face from s to ¢ and
t* representing the portion from t to s.

e For every edge e € E, we have an edge e¢* = (f,g) € E* where f is the face to
the left of e and ¢ is the face to the right of e.

In the construction of an orthogonal drawing of a graph G discussed in Sections 7.2.3
and 7.3.1, the dual graph coupled with the following special ordering of vertices play a
critical role in the creation of an intermediate visibility representation of G.

DEFINITION 7.2 Let G = (V, E) be a directed acyclic graph. A topological ordering
T(G) is an assignment of integer values T'(v) to each vertex v € V such that for every
directed edge (u,v) € E, we have that T'(u) < T(v). The size of the topological ordering
s(T) is max,ey T'(v) —ming,ey T(u). An optimal topological ordering T*(G) is a topological
ordering with the smallest size, s(T*) = ming(q) s(T).

226 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

Require: G = (V, E) be a Directed Acyclic Graph
Ensure: T(G) is an optimal topological ordering
{Compute the indegree for every vertex}
for allv € V do

in(v) <0
end for
5: for all (u,v) € E do
increment in(v)
end for
{Identify all sinks}
S() — 0
10: for all v € V' do
if in(v) =0 then

Sp.add(v)
end if
end for
15: m <0
repeat
{Mark all current sinks and remove them from G}
Sn+1 — @
for all v €5, do
20: T(v) < n

for all (v,u) € E do {remove v from the graph}
decrement in(u)
if in(u) = 0 then {u is a new sink}

Syp+1.add(u)
25: end if
end for
increment n
end for
until S, is empty {No more sinks}

Figure 7.1 Algorithm for computing an optimal topological ordering of a DAG.

In our definition, it is possible for two vertices u and v to have the same value if there is no
directed path between u and v. Note, this is basically a partial ordering where the optimal
size is the length of the longest chain in the partial order. Topological orderings are discussed
in most standard graph and algorithms textbooks. See, for example, [CLR90, GT02].

Computing an optimal topological ordering in linear time is fairly straightforward. We
assign every sink vertex a number 0, remove these vertices and their edges from the graph,
and repeat the process with a number one larger until there are no vertices left. Figure 7.1
describes the process in more detail.

This common algorithm proves useful for the construction of orthogonal graphs via a vis-
ibility representation. However, there are other more difficult, but equally useful, orderings.
We next discuss one such ordering, the canonical ordering.

7.2.2 Canonical Ordering and Shifting Sets

In [dFPPY0], de Fraysseix, Pach, and Pollack describe a technique for embedding a plane
graph on a grid. Their technique uses an incremental approach that is built around a
particular ordering of the vertices known as a canonical ordering. Initially defined for

7.2. PRELIMINARIES 227

maximal plane graphs, Kant [Kan96] later extended it to triconnected plane graphs and
Gutwenger and Mutzel [GM98] to biconnected plane graphs. In this section, we define
and describe the canonical ordering of [dFPP90, CDGKO01] as well as the shifting sets
derived from this ordering, which are needed in the polyline drawing method described in
Section 7.4.

DEFINITION 7.3 Let G be a maximal plane graph on m vertices. Let m = (v1, va, ..., v,)
be an ordering of the vertices of G. For 1 < k < n, let G} be the plane subgraph of G
induced by the vertices of vq,...,v; and let Cy = (v1 = wy,wa,...,w, = v2) be the cycle
forming the external face of G. We call m a canonical ordering of G if

1. v1, vo, and v, are the external vertices of G in counter-clockwise order,

2. for 2 < k < n, Gy, is 2-connected and internally maximal, i.e., every internal face
is a triangle, and

3. for 2 < k < n, v is a vertex of Cf and has at least one neighbor in G — Gy.

de Fraysseix, Pach, and Pollack [dFPP90] prove the following theorem, which was later
extended to triconnected plane graphs by Kant [Kan96]:

Theorem 7.1 FEvery maximal plane graph has a canonical ordering that can be found in
linear time and space.

The canonical ordering has the property that all of the neighbors of vi41 in Gi4q lie
on C. Intuitively, the ordering is constructed in reverse order by starting with the initial
external triangular face and repeatedly removing a vertex vii1 ¢ {v1,v2} that has at most
two neighbors on C}4 1 creating the new graph G and external face Cj. See Figure 7.2.

Once constructed, the canonical ordering 7 leads to an incremental approach for con-
structing a drawing of GG. Here, we start with the triangle vy, ve,v3 and repeatedly add
the next vertex vpy; to the graph of Gy by adding edges for viy; to its neighbors in
Cy forming Ggi1 and Ciy1. The vertices of Cy that are no longer on Cjyyq are said
to be covered by vgi1. Since the neighbors of vy are all continuous on the cycle Cj,
we can label them as wy,wiyq,...,w,. We refer to the two vertices w; and w, as the
leftmost and rightmost neighbors of vi41 in Cf. Since all the neighbors of wvi41 ex-
cept the leftmost and rightmost neighbors are covered by viy1, we know that the cycle
Cri1 = (V1 = w1, Wy ..., W, Vg1, Wy . . Wy, = V2). See Figure 7.3.

Starting with de Fraysseix, Pach, and Pollack, several authors have used this canonical
ordering (or a variant) to build a graph incrementally. However, to place the vertices
effectively, onto a grid location for example, one must also repeatedly shift the vertices in
G} to create a proper location for v, 1. Typically, the approach is to increase the space
between the leftmost and rightmost neighbors of vy1. However, shifting these two vertices
also forces other vertices to shift to avoid creating edge crossings.

To solve the problem of determining which vertices must shift together, we also de-
fine a shifting set associated with each vertex on the current external face. See Cheng et
al. [CDGKO1].

DEFINITION 7.4 For a given canonical ordering 7 = (v1,vs,...,v,), we define for
3 < k < n, the shifting set My(w;) C V for each vertex w; € C} on the external face
of Gy, as follows. Ms(vs) = {vs}, M3(v2) = Ms(vs) U {va}, M3(v1) = Ms(ve) U {v1}. For
3 <k <n, let w; and w, be the leftmost and rightmost neighbors of vy1 in C%. Then,

228 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

Us

(b)

Figure 7.2 An illustration showing the creation of the canonical ordering in reverse order.
(a) The first vertex vg is about to be removed with the external cycle highlighted. (b)
Removal of the next vertex, v7. (c) Removal of vertex vg. (d) The final canonical ordering
of the vertices.

U1

Figure 7.3 Inserting a vertex using the canonical ordering. This example does not follow
the vertex placement techniques employed by the standard algorithms used to produce
good area drawings. (a) The graph Gg, with its external cycle Cs drawn in bold. (b) The
graph G7 after inserting vertex vy;. The covered vertex vs is lightened. The leftmost and
rightmost neighbors are w; = vg and w, = vy. The new external cycle C7 is therefore
(1)17 V3, Vg, U7, V4, 1)2).

7.2. PRELIMINARIES 229

Figure 7.4 The incremental construction of a shifting set. The vertices for each set shown
are highlighted. (a) The shifting set for Mg(vs). (b) After inserting vy, the shifting set for
M7(v3). This simply merges in the new vertex. (c¢) The shifting set for Mg(vs). (d) After
inserting vy, the shifting set for M7 (v7). Since w;11 = vs, this set is the union of Mg(vs)
and vy.

o for i <1, My41(w;) = My(w;) U {vgs1},
e for j > r, Myi1(w;) = Mi(w;), and
® M1 (vig1) = My (wi1) U{vis1}-

From this definition, one can show that the following properties of the shifting set hold
for all 3 < k < n for the incremental drawing algorithms described in Section 7.4:

2. Mk(wl) D) Mk(’u)g) D)]Mk(wm),
3. For 1 < i < m and a planar drawing of Gy, if we shift all vertices in My (w;) by
distance §; > 0 to the right, then the resulting drawing of G remains planar.

In other words, the shifting set for a vertex w; on the external face is just the set of all
vertices that need to be shifted to the right to maintain planarity if w; is shifted to the
right.

Note that M1 (w;) is undefined for | < i < r, since these covered vertices are no longer
on the external face. See Figure 7.4.

A careful examination of the set reveals that a vertex w; that is covered by vy shifts by §
units if and only if vgy; shifts by § units. That is, for &' > k, w; € My (v) iff vp11 € My (v).
This property of the shifting set is exploited during the incremental embedding algorithms
that use a canonical ordering to ensure that shifts do not produce crossings.

230 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

7.2.3 Visibility Representations

Orthogonal drawings, and even general drawings, of planar graphs often start by computing
a visibility representation of the graph. Before going into the details of using a visibility
representation to compute an orthogonal drawing, presented in Section 7.3.1, we first explain
the general approach of computing such a representation.

DEFINITION 7.5 Given a graph G = (V, E), a visibility representation T', for G maps
every vertex v € V to a horizontal vertex segment I'(v) and every edge (u,v) € E to a
vertical edge segment I'(u, v) such that each vertical edge segment I'(u, v) has its endpoints
lying on the horizontal vertex segments I'(u) and I'(v) and no other segment intersections
or overlaps occur.

I"(vg)

I'(vg) I'(v3) ['(vs)

Ve t

U1 Vo S F(Ul)

(a) (b) (c)

Figure 7.5 (a) A simple graph G (b) An st-ordering of G (c¢) A visibility representation
of G.

See Figure 7.5 for one example of a visibility representation. Otten and van Wijk [OvWT78§]
introduced the visibility representation. With varying improvements, several researchers
have proved that every planar graph has such a representation, which can be found in
linear time [OvW78, DHVMS3, RT86, TT86]. In general, we have the following theorem
about computing a visibility representation:

Theorem 7.2 [TT86] A graph admits a visibility representation if and only if it is planar.
Furthermore, a visibility representation for a planar graph can be constructed in linear time.

Figure 7.6 describes an algorithm to compute the visibility representation of a given
graph. After making the graph biconnected by adding dummy edges [FM98], we compute
an st-ordering on the graph creating a planar st-graph and its dual graph G*. The location
of the vertex-segments and edge-segments are then determined by a topological ordering of
the st-graph and its dual with the former serving to determine y-values and the latter to
determining z-values. Figure 7.7 shows an example construction.

7.2. PRELIMINARIES 231

Require: G = (V, E) be a plane graph
Ensure: T is a visibility representation of G on the integer grid of size O(n?)
Make G biconnected by adding “dummy” edges {See [FM98]}
Select an edge (s,t) on the external face
Compute a planar st-graph on G {For simplicity, we refer to it as G}
Create the dual planar st-graph G*
5. Compute the optimal topological ordering T, = T'(G*) {See Figure 7.1}
Compute the optimal topological ordering T, = T'(G)
for all v € V do {Assigning positions to the horizontal vertex segments}
Let f; be the face to the left of the leftmost outgoing edge of v
Let f, be the face to the right of the rightmost outgoing edge of v
10: {f; and f, are vertices in the dual graph G*}
I'(v).y < Ty(v)
I'(v).xmin < T, (f1)
I'(v).xmax < T, (fr) — 1
end for
15: for all e = (u,v) € E do {Assigning positions to the vertical edge segments}
Let f; be the face to the left of e {f; is a vertex in G*}
F(e).x — Tm(fl>
I'(e).ymin < T, (u)
I'(e).ymax < T, (v)
20: end for
Remove any added “dummy’

)

edges

Figure 7.6 Algorithm for constructing a visibility representation of a plane graph.

7.2.4 Network Flows

Network flows, useful in many areas of graph theory and graph drawing, are particularly
useful in finding drawings of orthogonal graphs with a minimum number of bends. We
describe this use in Section 7.3.2. Beforehand, we discuss the general structure of a network
flow, borrowing notation from Goodrich and Tamassia [GT02].

A (single-source single-sink) flow network N is a connected directed graph of arcs and
nodes' with the following properties:

e Each arc e has a positive integer capacity c(e) and a nonnegative integer cost
w(e);

e There exists a source node, s, such that s has no incoming arcs;

e There exists a sink node, t, such that ¢t has no outgoing arcs;

e All other non-terminal nodes have at least one incoming and one outgoing arc.

Figure 7.8(a) shows one particular flow network. The network is viewed as transporting
some commodity from the source to the sink by flowing along the arcs. A flow f for some
network N is an assignment to each arc e of some (integer) flow value f(e) such that the
following two rules apply:

e Capacity rule: The (positive) flow for each arc does not exceed the capacity.
For each arc e € N, 0 < f(e) < c(e).

1We use the terms arc and node for a flow network instead of the analogous terms edge and vertex to
help differentiate between a flow network and a graph, which is to be drawn using the flow network.

232 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

Vg

V4 Us

U1 V2

(d)

Figure 7.7 (a) A simple graph G. (b) G after augmenting to make it biconnected. (c¢) The
st-planar graph of G (solid) and the dual graph G* (dashed). The two topological orderings
from these graphs are shown labeled by their nodes. (d) The visibility representation of G
computed from these orderings.

7.2. PRELIMINARIES 233

(2,2) 3,3
O—» Ot
(4,1) (1,1) (2,2)

Figure 7.8 (a) A (single-source single-sink) flow network N with arcs labeled with the
pair (c(e),w(e)) (capacity, cost). (b) A maximum flow of value 6 for flow network N. Each
arc of IV is labelled with its flow and, in parentheses, the cost of the flow on that arc. The
total cost of this flow is 20. (¢) A minimum-cost maximum flow for N. Note, the value of
this flow is still 6 but the cost is now 18.

e Conservation rule: The flow coming in to a non-terminal node is the same as the
flow going out of the node.
For each non-terminal node v € N, with v # s, t,

Eeeinarc(v)f(@) = Yeceoutarc(v)f(€)-

The wvalue of the flow v(f) is the total flow leaving the source node, which because of
the conservation rule is the same as the flow entering the sink node. That is, v(f) =
Yecoutarc(s)f(e). For a given flow f, the cost of the flow on a given arc e is the cost of the
arc w(e) times the amount of flow on that arc f(e). The cost of the flow w(f) is the sum of
the costs of each arc. That is, w(f) = Zcenw(e)f(e).

The mazimum flow problem for N is to find a flow f* with maximum value among all
possible flows of N. The minimum-cost flow problem for N is to find the minimum cost
flow among all possible maximum flows in N. Figure 7.8 shows a maximum flow that does
not have minimum cost as well as a minimum-cost maximum-flow solution.

There are several methods for solving flow networks, which are beyond the scope of this
chapter. Their running times often depend on combinations of the number of nodes in the
network, the capacity of the edges in the network, and the cost of the edges in the network.
For details, see [CLR90, GT02].

Of particular relevance are minimum cost flow algorithms with running time that depends
on the value of computed flow [CK12, GT97]. We use such an algorithm in Section 7.3.2 to
compute a planar orthogonal drawing with the minimum number of bends.

234 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

7.3 Orthogonal Drawings

One highly effective way to draw graphs with good angular resolution is to use only edges
that are rectilinear, or orthogonal. Such edges consist of alternating sequences of vertical
and horizontal segments. In graph representations where each vertex is a point and where
two edges are not allowed to overlap, a necessary condition for a graph to have an orthogonal
drawing is that the maximum vertex degree be at most four. However, the introduction of
rectangular regions for vertices allows for larger graph degrees.

7.3.1 Orthogonal Drawings from Visibility Representations

Given a 4-planar graph G = (V, E), one can construct a good orthogonal drawing using
the wvisibility representation discussed in Section 7.2.3. The following theorem is due to
Tamassia and Tollis [TT89]:

Theorem 7.3 Let G be a 4-plane graph. If G is biconnected, there exists an orthogonal
grid drawing of G using O(n?) area with at most 2n + 4 bends and where only two edges
have more than two bends. If G is connected, the number of bends is 2.4n + 2 and no edge
has more than four bends.

The version of the algorithm used to prove this theorem uses a constrained wvisibility
representation. The additional constraint is that each (horizontal) vertex segment other
than the source and sink have two (vertical) edge segments incident to its leftmost endpoint,
with one being above and the other below the vertex segment. We describe the simpler,
but slightly less effective, algorithm that uses a regular visibility representation. First,
we compute a visibility representation I'(G). For each vertex v € V, place the vertex at
a single point on the horizontal vertex segment I'(v), determined below. The routing of
the edges incident to v and the location of v on the vertex segment are based on various
cases. Since each vertex has at most 4 incident edges and accounting for symmetry and
subcases with smaller vertex degrees, Figure 7.9 shows the six possible cases along with
the resulting edge routings and vertex placements. A careful study of the cases shows
that no edge has more than two bends per endpoint, resulting in no more than four bends
total. This creates an orthogonal shape, discussed in the next section, for G. To help
improve the size and number of bends one can do a few heuristics to straighten out various
edges. Finally, using the compaction technique described in the next section or similar more
efficient techniques, one can convert the orthogonal shape into an orthogonal drawing using
the smallest area. Figure 7.10 shows an example of an orthogonal drawing constructed from
a visibility representation.

7.3.2 Network Flow Algorithms

Tamassia [Tam87] showed that by using a network flow algorithm one could construct
orthogonal drawings of embedded 4-planar graphs with a minimum number of bends.

The fact that the graph is given with its embedding is significant. Formann et al. [FHHT 93]
and Garg and Tamassia [GT01] showed that the problem of determining whether a drawing
with no bends exists is NP-hard for 4-planar graphs. The strategy in their proof deals with
the difficulty of assigning an order of the edges around vertices of degree 4. It is interesting
to note that the problem is polynomial when the maximum degree is 3 [DLV98].

Tamassia’s algorithm originally ran in O(n?logn) time. However, an improvement for
certain types of planar flow networks (see Section 7.2.4) presented by Garg and Tamas-

7.3. ORTHOGONAL DRAWINGS 235

a1l h

Figure 7.9 (a) The six possible cases for horizontal vertex segments intersecting with its
4 incident vertical edge segments in a visibility representation, accounting for symmetry.
(b) The vertex placement and edge routings for each of the cases.

Vg

Ve
Us

U3

V2

U1

Figure 7.10 An orthogonal drawing from the visibility representation of Figure 7.7.

236 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

sia [GT97] reduced the running time to O(n7/4\/logn). Recently, Cornelsen and Karren-
bauer obtained a running time of O(n%/?logn) [CK12].

Let G = (V, E) be an embedded planar graph having maximum degree 4. We can compute
a drawing of G with the minimum number of bends in two phases. First, we compute an
orthogonal shape for G. Here we only define the bends of the edges and angles between
adjacent edges at a vertex of G. In the second phase, we assign integer lengths to the edge
segments of the orthogonal shape.

By transforming the first phase into a network flow problem, we are able to compute
the required drawing’s orthogonal shape. In this network, the commodities are the angles
between adjacent edges. Each unit of flow in the network is associated with a right angle
in the orthogonal shape, originating from the vertices, flowing across the faces by the edge
bends, and ultimately sinking at the faces. Since this interpretation leads to a multi-source,
multi-sink flow, we actually create a dummy source and sink that connect to the respective
nodes. For simplicity, we allow certain arcs to have a lower bound in addition to a capacity.
This is easily incorporated into the algorithms for the original flow network.

We want each vertex v to supply 4 units of flow and to have the faces consume these units.
Here, 4 “units” correspond to a 27 angle. Let d(f), the degree of a face f in the graph G,
be the length of the cycle bounding face f. If the graph is not biconnected, an edge may be
counted twice on the same face. The consumption rate of each face is designated by o(f)
with

(f) = 2d(f) —4 if f is an internal face
o) = 2d(f) +4 1if f is the external face

From Euler’s formula, we know that X;o(f) = 4n, which is the total number of units
supplied by the vertices. Our network N has three types of nodes and four types of arcs
with the following described attributes:

e Non-terminal nodes correspond to the vertices and faces of G;
e A source node s and sink node t serve to supply and consume the commodity;

e For every vertex v, arcs of type (s,v) with a capacity of 4, cost 1, and lower
bound 4 act to supply the vertex v with its commodity;

e For every face f, arcs of type (f,t) with a capacity of o(f) and cost 1 act to
consume the commodity from the face vertices;

e From every face f and every vertex v on the cycle of f, we use an arc of type
(v, f) with a capacity of 4, cost 1, and lower bound 1. This arc flow represents
the angle at vertex v in face f;

e For every pair of faces f and g sharing an edge, we designate an arc of type (f, g)
having a capacity of 400, cost 1, and lower bound 0. This arc flow represents
the number of bends along edge e with the right angle inside of the face f.

Figure 7.11 shows a detailed example of a 4-planar graph, its network model, and the
minimum cost solution. We now take a closer look at an interpretation of the network from
the source side. At every vertex v the network supplies the vertex with 4 units, all of which
must, by the conservation rule, flow across the (v, f) arcs. Since each unit corresponds to
7 /2 radians, this guarantees that the sum of the angles around a vertex, which is equivalent
to the sum of the flow leaving v along these arcs, is 2.

From the sink side, by the conservation rule, we know that the sum of the units at the
vertices and the bends of a face is equal to 2d(f) — 4 units for an internal face and 2d(f)+4

7.3. ORTHOGONAL DRAWINGS 237
fo

O

Vg

Figure 7.11 (a) A simple planar graph G with maximum degree 4. (b) The network
N associated with G. The arcs from the source s to the vertex nodes have label (4, 1,4),
i.e., capacity 4, cost 1, and a lower bound of 4. The vertex to face arcs are drawn as solid
lines with label (4,1,1). The face to face arcs are drawn bi-directional with both directions
having label (4+00,1,0). (¢) A minimum cost max flow with the arc labels reflecting the
flow. Some vertices are omitted and some edges are partially drawn for better readability.

238 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

for the external face. Again, since each unit corresponds to 7/2 radians, we know the sum
of these angles is equal to m(d(f) — 2) for an internal face and 7(d(f) + 2) for the external
face. Thus, each face is properly closed, and we can see that any valid flow ¢ on the network
corresponds to a proper orthogonal shape for G.

We now interpret the cost associated with a specific flow. For arcs of type (s, v) the cost
is 1 and the flow is fixed. So, for this case, the total cost is exactly 4n. Similarly, all the
arcs of type (f,t) have cost that sum to exactly 4n. Since all the arcs of type (v, f) have to
release the commodity sent from the source s, we know that the sum of these arcs is also
4n. Finally, the arcs of type (f,g) represent the number of bends for the given edge with
each bend costing one unit. Therefore, the total cost of the flow is 12n + B, where B is
the total number of bends in the orthogonal shape represented by the flow. Since 12n is
fixed for all flows along the same network, minimizing the cost of the flow corresponds to
minimizing the number of bends in the orthogonal shape.

In the second phase, we take this orthogonal shape and determine a compact drawing
for the actual graph. Since each bend for an edge switches between horizontal and vertical
lines, our strategy is to determine the (integer) lengths of these line segments. We do this
by computing the lengths of the horizontal segments independently of the vertical segments.
We shall explore the vertical computation as the horizontal one is analogous.

We can compute the length of each vertical segment by, once again, using a network flow
model. However, this flow model assumes that the faces are all rectangular. Therefore, we
first split the faces into rectangular faces by converting bend points into dummy vertices
and inserting dummy edges where necessary. This process is described in detail in Chapter
5 of [DETT99]. We therefore explain the solution for when we have an orthogonal repre-
sentation where each face is a rectangle, referring to this modified graph as G’. In this case,
our model has three types of nodes and three types of arcs.

e A source node s and sink node t serve to supply and consume the commodity
and also represent the “left” and “right” regions of the external face;

e Non-terminal nodes correspond to the faces of G’;

e For every pair of faces f and g sharing a vertical edge segment, with f to the
left of g, we designate an arc of type (f, g), with capacity +oo, cost 1, and lower
bound 1. The arc flow represents the length of this vertical segment.

Figure 7.12 illustrates an example of computing a compact orthogonal drawing using this
network flow approach. Since the source node s (and similarly sink node t) represents the
entire left vertical border of the final drawing and the flow leaving s corresponds to the
height of this border, the flow value is exactly the height of the drawing. In addition, the
cost of the flow is equal to the total length of all vertical segments in the drawing. Similarly,
the horizontal flow model computes the width of the drawing and the total length of all
horizontal segments. By solving the minimum-cost minimum-flow problem for both vertical
and horizontal networks, we can create an orthogonal drawing of G with the minimum
height, width, area, and total edge length. Observe that the flow here is the smallest flow
that meets the lower bound requirements for each arc.

Using their improved network flow algorithm, Cornelsen and Karrenbauer proved the
following result, which improves the running time of the original algorithm by Tamas-
sia [Tam87]:

Theorem 7.4 [CK12] Let G be an embedded J-planar graph with n vertices. A planar or-
thogonal drawing of G with the minimum number of bends can be computed in O(n>/?logn)
time.

7.4. POLYLINE DRAWINGS 239

U, U,
V4 g Vs V4 g Vs

V1 -- (%) V1 -- (%]
by bs

(a) (b)
v o
vy g vs Vsl Gb # s
1 o— 1

Figure 7.12 (a) An orthogonal drawing with the orthogonal representation described by
Figure 7.11c. (b) The same drawing with the two bend points temporarily converted to
vertices so that each face is rectangular. (c) The network flow for computing the vertical
segments along with the solution. (d) The network flow for computing the horizontal
segments along with the solution. (e) The final compact solution with the horizontal and
vertical segments determined from the two flows and the inserted dummy vertices removed.

7.4 Polyline Drawings

When one wishes to draw planar graphs having maximum degree more than 4 with good
angular resolution and with vertices as single points, clearly orthogonal drawings do not
suffice. There have been various other approaches to creating planar polyline drawings
with good angular resolution, many of these results extend the work of Kant [Kan96],
including work by Goodrich and Wagner [GW00], Gutwenger and Mutzel [GM98], Cheng
et al. [CDGKO1], and Duncan and Kobourov [DK03]. The general approach is to use an
incremental insertion method to add vertices one at a time using a canonical ordering and
continually maintain the proper angular resolution qualities and other specific restrictions.

7.4.1 Mixed-Model Algorithm

The approach of Gutwenger and Mutzel [GM98] is similar to the approaches taken by [GW00,
CDGKO01, DKO03], which are discussed in the next subsection. However, unlike those ap-
proaches which rely on the graph being either maximal, tri-connected, or having artificial
edges added to make them maximal, the approach by Gutwenger and Mutzel uses an order-
ing that is defined for biconnected graphs. The benefits are significant in the sense that such
artificial edges, once removed, often create unexpected artifacts. In their mized-model algo-
rithm, they take a given biconnected plane graph G = (V, E), and using this new ordering,

240 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

assign for each edge e € E, an inpoint e;, = (¥jy, ¥jy) and an outpoint eqyt = (Tout, Yout)-
Then each edge e = (v,w) is drawn as a polyline edge. Route the edge from v to w in the
following manner:

e from v to eqyt,

e from e, vertically to point b = (zgut, ¥ip),
e from b horizontally to e;),

e and finally to w.

This approach results in quite aesthetically pleasing graphs that combine a mixture of
good angular resolution via general direction edges and orthogonal edges. However, the
results require, in general, three bends per edge. The next section describes a technique
that achieves similar results but with only one bend per edge.

7.4.2 One Bend Algorithm

Building off previous work by Kant [Kan96], Goodrich and Wagner [GW00], and Cheng
et al. [CDGKO01], Duncan and Kobourov [DKO03] use an incremental insertion approach to
create a planar polyline drawing with the following key properties:

e cach edge is drawn with at most one bend;
e each vertex v has angular resolution ©(1/d(v));
e all vertices and bend points lie on an O(n) x O(n) grid.

The incremental approach uses the canonical ordering and the shifting set described in
Section 7.2.2.

7.4.3 Vertex Regions

In [dFPPI0], de Fraysseix, Pach, and Pollack present an algorithm to draw an n-vertex plane
graph with straight-line edges on an O(n) x O(n) integer grid. Chrobak and Payne [CP95]
show how to implement the algorithm in linear time. In this algorithm, each new vertex
V41 1s inserted above its neighbors wy, . . ., w,., and after proper shifting, edges are drawn as
straight-line segments from the location of vi41 to each neighbor of v41. In the approach
used in [GW00, CDGKO1], each vertex is associated with a diamond-shaped region where
edges are routed through ports along the boundary of the region before connecting to
the vertices. This creates bends in the edges but allows better control over the angles
that are formed by the edges around vertices. To reduce the overall grid size, Duncan
and Kobourov [DKO03] use slightly altered vertex regions. Each vertex is surrounded by
six vertex regions of two types, free regions and port regions, which alternate around the
vertex. The regions are bounded by rays extending from v in various directions, with 0°
indicating a positive vertical direction. See Figure 7.13.

DEFINITION 7.6 Let v € V have degree d = d(v). The vertex regions associated with v
are of two types, free regions and port regions. Free regions have the property that only one
edge extends from v to another vertex through that region. Port regions are bounded on
one side by a horizontal or vertical line segment with a number of (integer coordinate) ports,
and each edge going through a port region of v from v to any other vertex passes through
a unique port. Moreover, every edge is drawn as two line segments. The first, starting at
one endpoint v, connects to a port in the port region of v, and the second connects from

7.4. POLYLINE DRAWINGS 241

/TN
M7

2 L2 W

(a) (b)

Figure 7.13 (a) The vertex regions around a particular vertex v. Notice that each port
region can have a different number of ports. (b) Edges extending from a (darkened) vertex.
The port edge segment is drawn dashed and the free edge segment is drawn solid.

that port to the other vertex w passing through one of w’s free regions. The six regions
associated with v are defined as follows:

e Free region M/ lies between —45° and 45°;

e Free region R/ lies between 90° and 135°;

e Free region L/ lies between —135° and —90°;
Port region MP? lies between LY and R/;
Port region LP lies between L/ and M7; and
Port region RP lies between R and M/,

The algorithm proceeds similar to the standard embeddings that use the canonical or-
dering. In particular, one starts with an initial face vy, vs,v3 and then repeatedly inserts
the next vertex vi41 by finding its leftmost and rightmost neighbors, w; and w,, on the
current external face shifting the space between these vertices so that the lines connecting
Uk+1 to w; and w, intersect at a grid location. To ensure good angular resolution, one must
introduce some bends, which requires a slight alteration in the approach.

Except for the initial horizontal edge (v, v2), we route each edge (v;,v;) through a port
of one of the two vertices. In the process, each edge consists of two edge segments. One
segment, the port segment, extends from v; to one of v;’s ports, lying entirely in one of v;’s
port regions. The other, free segment, extends from this port to v; passing through one of
v;’s free regions. See Figure 7.13(b).

The ports are arranged in such a way that the angle between successive ports and v is
O(1/d(v)). By Definition 7.6, since for every vertex v each free segment associated with
v lies inside a free region boundary, each free region has exactly one free segment passing
through it, each port segment associated with v lies inside a port region and passes through
a unique port, the resulting angular resolution at v is O(1/d(v)). For compactness, port
segments, which are essentially bend points, can also coincide with the destination vertex,
effectively creating a free edge segment of zero length. That is, if we have an edge (u,v)
that goes through u’s port p, we may have a situation where p coincides with v. This is not
necessary but allows for smaller grid size in the end.

242 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

The embedding is constructed in incremental stages, with each stage corresponding to
the insertion of a new vertex viyi. At each stage, we maintain that each vertex except
those on the current external face has exactly three free edge segments. The remaining
edge segments connect to a vertex v through port segments. We can divide the current
degree of v into three parts: d;(v), d,(v), and d,,(v). The degree d;(v) corresponds to the
current number of port edge segments using the LP region. The degrees d,(v) and d,,(v)
are defined similarly for the R? and MP regions. At each insertion, we route port edge
segments involving the new vertex viy1 through maximal left and right ports.

DEFINITION 7.7 Let a vertex v have coordinates (v,,v,). Then, the mazimal left port
of v, L% .. (v), has coordinates (v, —d;(v) +1, vy, +d;i(v)) if di(v) > 0 and (v, v,) otherwise.

Define the mazimal right port of v, RP . (v), similarly.

7.4.4 The Embedding

Initially, the first three vertices have integer coordinates v; = (0,0), vo = (4,0), and vz =
(2,1). In subsequent stages, we insert the next vertex vii; maintaining the following
invariants:

e All vertices and ports lie on the integer grid.

e Let Cy = (w1 = vy, wa,...,w, = v2) be the exterior face of Gj with w;(x)
corresponding to the z-coordinate of w;. Then wi(z) < wa(z) < ... < Wy ().
In other words, the vertices of the exterior face are strictly x-monotonic.

e Let e = (w;,w;+1) be an edge on the external face. The free edge segment of e
has a slope of £1. The port edge segment of e passes through a maximal port.

e Every vertex v has at most one free edge segment crossing each free region, and
each port segment goes to a unique port.

When we insert a new vertex vy11, we must create enough space so that the two neighbors
w; and w, can “see” the new vertex through their maximal right and left ports, which are
typically already used. Thus, we must shift these vertices over to create space and also to
ensure that the intersection of these ports lies on a grid location, for the new vertex. Of
course, we cannot simply shift these vertices, we must shift other vertices to be sure that
we do not produce any crossings. Therefore, to shift a vertex w, we shift all vertices in its
shifting set, defined in Section 7.2.2, and also most of the ports. See Figure 7.14.

DEFINITION 7.8 For § > 0 and a vertex w; € Cy, define a regular-shift by § units of
w; as shifting all vertices in My (w;) by ¢ units to the right, including all associated ports.
Define the right-shift by § units on w; as a regular-shift of w; except that the ports in the
LP region of w; are not shifted. Similarly, define the left-shift by § units on w; as a regular
shift of w; 11 and additionally shifting the ports in the RP region of w;.

Notice that left-shifting a vertex w; is nearly identical to right-shifting its neighbor w; 1
except for the ports that are moved.

Assume that G has been embedded and that the invariants hold. We now look at the
specific insertion of a new vertex vg11 to create Gy41 while maintaining the invariants. For
a vertex w € Cy, recall that the current number of port edge segments using RP is d,.(w)
and for L? is dj(w). If d.(w;) = 0, we perform a left-shift of 2 units on w;; otherwise,
we perform a left-shift of 1 unit on w;. This frees a space for a new maximal port in the

7.4. POLYLINE DRAWINGS 243

Figure 7.14 (a) A (darkened) vertex and its neighbors before a right shift of one unit.
(b) And after a right shift of one unit. The other vertices that are part of the shifting set
are highlighted, while those that are not are drawn dashed. Notice that the left port region
remains in place creating a location for one more port.

R, region of w;. Similarly, if d;(w,) = 0, we perform a right-shift of 2 units on w,, and
otherwise, we perform a right-shift of 1 unit.

Let [be the line of slope +1 passing through w;’s newly created maximal right port. Let
r be the line of slope —1 passing through w,’s newly created maximal left port. We place
vk+1 at the intersection of lines [and r. If [and r intersect at a non-grid location, we simply
perform a regular-shift of 1 unit on w,. Observe that we therefore perform at most 5 shifts
per insertion.

We now route the edges as follows. The edge from w; to vi11 goes from w; to RE . (w;)
and then to vg4; through its free region LY. The edge from w, to vg1 goes from w, to
L?..(w,) and then to vyy1 through its free region R/. The remaining edges are from v 1
to w; for | < i < r. These edges are routed from vy41 to nearly consecutive ports on the
MP region of vy, 1 and then to w; through its free region M7. We locate the horizontal
line segment containing the ports of MP exactly [(r —1)/2] units below vg41. Duncan and
Kobourov [DKO03] prove that this guarantees that each port is above each neighbor vertex
w;. In the case that » — [is even, there is exactly one port per edge routed, and the ports
are mapped consecutively. In the case of an odd value, we must skip one port in the region,
which is easy to identify [DKO03]. Figure 7.15 shows the insertion of five vertices of a planar

graph using this algorithm.

Duncan and Kobourov prove that this algorithm properly maintains the previous invari-
ants leading to the following theorem:

Theorem 7.5 [DK03] For a given plane graph G = (V, E), there is a linear-time algorithm
that constructs a planar polyline drawing of G with grid size 5n X 5n/2 using at most one
bend per edge and with an angular resolution no less than 1/2d(v) for every vertex v € V.

244 CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

: Us

U1 U2 U1 U2 U1 U2

(a) (b) (c)

Figure 7.15 The insertion of the first five vertices of a particular planar graph. (a) The
initial configuration with 3 vertices. Note that the port edge segment connecting v; to v
connects to v1’s port which is at the same location as v3. For clarity, we illustrate the port
slightly outside this location. (b) Insertion of vs. This requires a left-shift of 1 unit for
vz and a right-shift of 1 unit for vy before placing v4. (c¢) Insertion of vs. This requires
a left-shift of 1 unit for vz and a right-shift of 1 unit for vs before placing vs, which also
connects to the covered vertex vy.

7.5 Conclusion

When angular resolution is a desired criterion in drawing a graph, many techniques exist to
accommodate it. If the graph is known to be 4-planar or if one is willing to use rectangular
regions instead of points for vertices, one can efficiently construct aesthetically pleasing
orthogonal drawings [Tam87, TT89, GT97, CK12]. This body of work uses network flows
to compute an orthogonal shape with the minimum number of bends and to compact the
representation into an orthgonal drawing with minimal height and width.

In addition, several polyline drawing strategies exist that allow one to create good draw-
ings with relatively high angular resolution, a small number of bends, and good area bounds
even when the maximum degree of the graph is greater than four [Kan96, GM98, GW00,
CDGKO1, DKO03]. These all extend the incremental insertion algorithm using a canonical
ordering initially employed by de Fraysseix, Pach, and Pollack [dFPP90]. The mixed-model
approach, employed by Kant [Kan96] and Gutwenger and Mutzel [GM98], uses primarily
orthogonal edges but must still connect vertices using some segments whose slopes de-
pend on the degree of the vertex. The works of Cheng et al. [CDGKO01] and Duncan and
Kobourov [DK03] use an optimal one bend per edge but with one of the two segments of
each edge having arbitrary slope. Unlike the purely orthogonal representations, the set of
slopes determined by the edges in these polyline drawings is possibly large.

REFERENCES

References

245

[CDGKO1]

[CK12]
[CLR90]
[CPY5)
[DETT99]
[dFPPYO]

[DHVMSS3]

[DK03]

[DLV9S]

[FHH*93]

[FMO8]

[GMOS]

[GT97)

[GTO1]

(GT02]

[GWOO]

C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Drawing
planar graphs with circular arcs. Discrete and Computational Geometry,
25(3):405-418, 2001.

Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimiza-
tion. Journal of Graph Algortihms and Applications, 16(3):635-650, 2012.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 1990.

M. Chrobak and T. Payne. A linear-time algorithm for drawing planar
graphs. Inform. Process. Lett., 54:241-246, 1995.

G. Di Battista, P. Eades, R. Tamassia, and 1. G. Tollis. Graph Drawing.
Prentice Hall, Upper Saddle River, NJ, 1999.

H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on
a grid. Combinatorica, 10(1):41-51, 1990.

P. Duchet, Y. Hamidoune, M. Las Vergnas, and H. Meyniel. Representing
a planar graph by vertical lines joining different levels. Discrete Math.,
46:319-321, 1983.

C. A. Duncan and S. G. Kobourov. Polar coordinate drawing of planar
graphs with good angular resolution. Journal of Graph Algorithms and
Applications, 7(4):311-332, 2003.

G. Di Battista, G. Liotta, and F. Vargiu. Spirality and optimal orthogonal
drawings. SIAM J. Comput., 27(6):1764-1811, 1998.

M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F. T. Leighton,
A. Simvonis, Emo Welzl, and G. Woeginger. Drawing graphs in the plane
with high resolution. STAM J. Comput., 22:1035-1052, 1993.

S. Fialko and P. Mutzel. A new approximation algorithm for the planar
augmentation problem. In Proceedings of the 9th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’98), pages 260-269. ACM Press,
1998.

C. Gutwenger and P. Mutzel. Planar polyline drawings with good angular
resolution. In S. Whitesides, editor, Graph Drawing (Proc. GD ’98), vol-
ume 1547 of Lecture Notes Comput. Sci., pages 167-182. Springer-Verlag,
1998.

A. Garg and R. Tamassia. A new minimum cost flow algorithm with
applications to graph drawing. In S. C. North, editor, Graph Drawing
(Proc. GD ’96), volume 1190 of Lecture Notes Comput. Sci., pages 201—
216. Springer-Verlag, 1997.

A. Garg and R. Tamassia. On the computational complexity of upward and
rectilinear planarity testing. SIAM J. Computing, 31(2):601-625, 2001.
Michael T. Goodrich and Roberto Tamassia. Algorithm design: founda-
tions, analysis, and Internet examples. John Wiley and Sons, Inc., New
York, NY, 2002.

M. T. Goodrich and C. G. Wagner. A framework for drawing planar graphs
with curves and polylines. Journal of Algorithms, 37(2):399-421, 2000.

246

[Kan96]

[OvWTS]

[RT86]

[Tam87]
[T'T86]

[TT89]

CHAPTER 7. PLANAR ORTHOGONAL AND POLYLINE DRAWINGS

G. Kant. Drawing planar graphs using the canonical ordering. Algorith-
mica, 16:4-32, 1996. Special issue on Graph Drawing, edited by G. Di
Battista and R. Tamassia.

R. H. J. M. Otten and J. G. van Wijk. Graph representations in interactive
layout design. In Proc. IEEE Internat. Sympos. on Circuits and Systems,
pages 914-918, 1978.

P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipo-
lar orientations of planar graphs. Discrete Comput. Geom., 1(4):343-353,
1986.

R. Tamassia. On embedding a graph in the grid with the minimum number
of bends. SIAM J. Comput., 16(3):421-444, 1987.

R. Tamassia and I. G. Tollis. A unified approach to visibility representa-
tions of planar graphs. Discrete Comput. Geom., 1(4):321-341, 1986.

R. Tamassia and I. G. Tollis. Planar grid embedding in linear time. IEEE
Trans. Circuits Syst., CAS-36(9):1230-1234, 1989.

Spine and Radial Drawings

81 Imtroduction............. 247

8.2 A Unified Framework for Spine and Radial Drawings 248
Definitions ® Scenarios

8.3 Results in the General Scenario.......................... 251
Spine Drawings in the General Scenario ® Radial Drawings

Emilio Di Giacomo in the General Scenario

University of Perugia 8.4 Results in the Constrained Scenarios.................... 266
Upright and Proper Spine Drawings ® Partitioned Spine

Walter Didimo Drawings ® Radial Drawings with Assigned Layers

University of Perugia 8.5 Related Problems 273
Hamiltonicity ® Point-Set Embeddability

Giugeppe Liotta 8.6 Conclusions ...t 280

University of Perugia References 281

8.1 Introduction

A layered drawing of a graph is a drawing such that the vertices are constrained to lie on
geometric layers that can be lines, circles, or other kinds of curves. Partitioning the vertices
into distinct layers can be an effective way to emphasize some structural properties of the
graph; in many cases this is required in some real-world applications to convey the so-called
semantic constraints [Sug02].

In this chapter, we concentrate on layered drawings of undirected graphs, where the
edges are not constrained to be monotone in a given direction. Conversely, this is typically
a basic requirement in the layered drawings of directed graphs or hierarchies, where all edges
must flow in a common direction (usually the vertical one), according to their orientation.
Layered drawings algorithms for directed graphs are extensively investigated in Chapter 13.

Although it is theoretically interesting to study layered drawings where the layers can be
curves of any type, it is rather difficult to extract properties and design algorithms if the
layers do not have a quite “regular” shape. Indeed, most of the literature assumes that the
layers are either parallel straight lines or concentric circles, which is also the most common
requirement in real-world application domains. Therefore, we only give an overview of the
results on layered drawings where layers are straight lines or circles. We call the first family
of drawings spine drawings and the second family radial drawings.

The remainder of this chapter is structured as follows. We first give formal definitions
that are needed in the chapter and describe a unified investigation framework for spine
and radial drawings (Section 8.2). Then, we investigate the results on spine and radial
drawings in a general scenario (Section 8.3); this scenario has the only requirement that the
vertices are placed on layers. Results on scenarios that consider additional constraints are

247

248 CHAPTER 8. SPINE AND RADIAL DRAWINGS

investigated in Section 8.4. Finally, we mention some topological and geometric problems
related to the spine and radial drawability of a graph (Section 8.5) and we give conclusions
(Section 8.6).

8.2 A Unified Framework for Spine and Radial Drawings

8.2.1 Definitions

A drawing T of a graph G is a geometric representation of G such that each vertex wu of
G is mapped to a distinct point p, of the plane and each edge (u,v) of G is drawn as a
simple Jordan curve with end-points p, and p,. Drawing I' is planar if two distinct edges
never intersect except at common end-vertices. G is planar if it admits a planar drawing.
A planar drawing I" of G partitions the plane into topologically connected regions called
the faces. The unbounded face is called the external face and the other faces are called
internal faces. The boundary of a face is its delimiting circuit (not necessarily a simple
cycle) described by the circular list of its edges and vertices. The boundary of the external
face, also called the external boundary, is the circular list of edges and vertices delimiting
the unbounded region. If the graph is biconnected, the boundary of each face is a simple
cycle. An embedding of a planar graph G is an equivalence class of planar drawings that
determine the same set of faces, i.e., the same set of face boundaries. A planar graph G
with a given embedding is called an embedded planar graph. In this chapter, we only deal
with planar graphs and planar drawings. From a practical point of view, if a graph is not
planar, one can think of applying a planarization algorithm on it in order to find a planar
embedding with dummy vertices that replace crossings [DETT99].

A drawing T" of G such that the edges are represented as a polygonal chain is a polyline
drawing. A bend along an edge e of I" is a common point between two consecutive straight-
line segments that form e. If every edge of I" has at most b bends, I is a b-bend drawing of
G. A 0-bend drawing is also called a straight-line drawing.

Let 1 and 2 be two curves. Curves «y; and vy, are parallel if every normal to one curve is
a normal to the other curve and the distance between the points where the normals cut the
two curves is a constant. Examples of parallel curves are parallel straight lines or concentric
circles. A set of layers is a set of pairwise parallel curves; each curve in the set is called a
layer. Given a set of layers it is possible to order the layers according to the order they are
encountered while walking along a straight line normal to all of them. More precisely, let
C be a set of layers, and let [,, be a normal to all the layers in C. Let p; be the intersection
point between [, and 7; € C and let p; be the intersection point between [, and v; € C.
Given an orientation for /,,, we have that -y; is before v; if p; is encountered before p; while
walking along [, according to the given orientation, ; is after v; otherwise. In the following,
given a set of layers denoted as g, ...,Vx—1, we always assume that -; is before ;41 for
each0<i<k-—1.

DEFINITION 8.1 Let G = (V,E) be a planar graph, and let C = {70,...,7k—1} be a
set of layers, with k < n. A k-layered drawing of G on C is a polyline planar drawing I' of
G such that each vertex v € V' is represented in I" as a point p, € v; (0 <i <k —1).

An example of a 4-layered drawing is shown in Figure 8.1. A k-layered drawing will be
simply called a layered drawing when we are not interested in the number of layers.

Let T be a k-layered drawing of a graph G, and let e = (u,v) be an edge of G such that
w is drawn in I" on layer «y; and v is drawn in I on layer v; (0 <4,j < k—1). The span of e

8.2. A UNIFIED FRAMEWORK FOR SPINE AND RADIAL DRAWINGS 249

Figure 8.1 (a) A planar graph G. (b) A set C of four layers. (¢) A 4-layer, 0-bend drawing
of GonC

in T is |[¢ — j|. An intra-layer edge is an edge with span equal to 0, i.e., an edge connecting
vertices that are on the same layer. A long edge is an edge with span greater than 1.

In the following, we shall consider two special cases of layered drawings: spine dmwingsl
and radial drawings, which are defined as follows.

DEFINITION 8.2 A k-spine drawing of a planar graph is a planar k-layered drawing
such that the layers are horizontal straight lines, called spines.

DEFINITION 8.3 A k-radial drawing of a planar graph is a planar k-layered drawing
such that the layers are concentric circles.

For a k-spine drawing, we denote the set of layers as C = {Lg,...,Ly_1} and we as-
sume that they are ordered from the highest to the lowest, i.e., Ly is the topmost line
and Lj_; is the bottommost one. For a k-radial drawing, we denote the set of layers as
C ={Co,...,Cr_1}, and we assume that they are ordered from the more external to the
innermost, i.e., Cy is the circle with the largest radius and Cj_; is the one with the smallest
radius. When we are not interested in distinguishing between spine and radial drawings,
we will generically denote the layers as C = {7o,...,Vk—1}. If a planar graph G admits a k-
spine, b-bend drawing (k-radial, b-bend drawing), we say that G is k-spine, b-bend drawable
(k-radial, b-bend drawable).

We conclude this section with some definitions about Hamiltonicity that will be used in
the following. A Hamiltonian cycle of G is a simple cycle that contains all vertices of G.
A graph G that admits a Hamiltonian cycle is said to be Hamiltonian. A planar graph G
is sub-Hamiltonian if either G is Hamiltonian or G can be augmented with dummy edges
(but not with dummy vertices) to a graph that is Hamiltonian and planar. We denote
by aug(G) a planar Hamiltonian graph obtained by G by possibly adding edges (if G is
Hamiltonian then aug(G) = G). A subdivision of a graph G is a graph obtained from G by

1Drawings on a set of horizontal layers are often called layered drawings in the literature. Since in this
chapter we use the term layered drawing to denote the more general case of a drawing on any set of
parallel curves, we use the term spine drawings when the layers are straight lines. This term is taken
from the theory of book embeddings, which can be regarded as drawings on a single horizontal line,
usually called the spine of the book embedding.

250 CHAPTER 8. SPINE AND RADIAL DRAWINGS

replacing each edge by a path with at least one edge. Internal vertices on such a path are
called division vertices. It is easy to see that any planar graph always admits a subdivision
that is sub-Hamiltonian. Let G be a planar graph and let sub(G) be a sub-Hamiltonian
subdivision of G (if G is sub-Hamiltonian, then sub(G) = G). The graph aug(sub(G)) is
called a Hamiltonian augmentation of G and will be denoted as Ham(G) (if G is Hamiltonian
then Ham(G) = G). A Hamiltonian cycle of Ham(G) is called an augmenting Hamitonian
cycle of G.

8.2.2 Scenarios

In the following, we are interested in characterizing k-spine, b-bend drawable and k-radial,
b-bend drawable graphs for different values of k£ and b. We are also interested in the
drawability testing problems, i.e., in studying the complexity of deciding whether a given
planar graph is k-spine, b-bend drawable (k-radial, b-bend drawable). More precisely, we
consider the following two problems.

Characterization Problem. Let k and b be two given integers. What is the largest
class of k-spine, b-bend drawable (k-radial, b-bend drawable) graphs?

Drawability Testing Problem. Let k& and b be two given integers and let G be a
planar graph. What is the complexity of deciding whether G is k-spine, b-bend
drawable (k-radial, b-bend drawable)?

The study of these two problems is motivated by the fact that, for aesthetic reasons,
one can be interested in keeping the number of layers and the number of edge bends in a
layered drawing as small as possible. Observe that every planar graph G with n vertices
is k-spine 0-bend drawable, for some value of k < n. Indeed, it is known that G admits
a planar straight-line drawing I' [F&r48], and at most n distinct horizontal parallel layers
are sufficient to intersect all vertex-points in I'. Furthermore, since G also admits a planar
straight-line drawing on an integer grid of size O(n) x O(n) [dPP90], G is always k-spine
0-bend drawable within an O(n?) area. With analogous considerations, every planar graph
with n vertices is k-radial 0-bend drawable for some value of & < n.

The Characterization Problem and the Drawability Testing Problem can be studied within
different scenarios, depending on the additional constraints that one can define. We first
consider the two problems without any additional constraint. We will refer to this scenario
as the genmeral scenario. We then consider the same problems with some of the following
additional constraints:

Intra-layer edges not allowed. Many results in the literature assume that there is
no intra-layer edge in a layered drawing. For example, avoiding intra-layer edges
in a k-layered drawing could be important to put in evidence a k-partite structure
of the graph. Indeed, a k-layered drawing of a graph G = (V, E) implicitly defines
a partition of the set V into k sets Vp, Vi,...,Vi_1, where each set V; is the set
of vertices drawn on layer ~;. Layered drawings with no intra-layer edges will be
called upright drawings.

Assigned vertex partitioning. In some cases, the partitioning of the vertices can
be given as a part of the input. In these cases, the vertex partition determined
by the layered drawing has to preserve the one given in the input. Layered
drawings where the partition of the vertices is given will be called partitioned
layered drawings.

Long edges not allowed. Edges that span more than one level are more difficult to
follow by the human eye than edges connecting vertices on consecutive layers.

8.3. RESULTS IN THE GENERAL SCENARIO 251

Thus another common constraint in a layered drawing is to avoid long edges.
Layered drawings with no long edges will be called proper drawings.

Assigned layers. In the general scenario, we are assuming that only the number and
the type (spines or circles) of layers are given. However, one can consider the
case when also the distance between every two consecutive layers is given as part
of the input. Having the distances of the layers assigned as a part of the input
may change the answer to both the Characterization and the Drawability Testing
Problem.

8.3 Results in the General Scenario

8.3.1 Spine Drawings in the General Scenario

We start by considering the easiest case for k-spine drawings, i.e., the case when k = 1. A
trivial result is that if only 0 bends per edge are allowed we can only draw forests of paths,
and therefore, the drawability test can be executed in O(n) time, where n is the number of
vertices of the input graph.

PROPOSITION 8.1 A planar graph is 1-spine, O-bend drawable if and only if it is a
forest of paths.

If one bend per edge is allowed the problem of computing a 1-spine, 1-bend drawing of a
planar graph G is equivalent to that of computing a book embedding of G on two pages. A
book embedding of a graph G = (V, E) consists of a total order <, of V' and a partition of
E into p sets, called pages, such that there are no two edges (u,v) and (w,z) in the same
page with u <, w <, v <, 2. The pagenumber of a graph G is the minimum value p for
which G admits a book embedding with p pages.

A book embedding can be seen as a drawing of G where: (i) all vertices are drawn along
a straight line, called the spine, according to the total order <,, (ii) each edge is assigned
to one among p half-planes having the spine as a common boundary, (iii) no two edges
in the same page cross (see Figure 8.2). It is not difficult to prove that if two edges can
be drawn without crossings on a half-plane with the endvertices on the boundary of the
half-plane, then they can be drawn without crossings as two polylines with one bend on the
same half-plane and with the end-vertices in the same position (see also Figure 8.2). Since
a straight line on a plane define two half-planes we have the following lemma.

LEMMA 8.1 A planar graph is 1-spine, 1-bend drawable if and only if it has pagenumber
two.

Bernhart and Kainen [BK79] prove that a graph has pagenumber at most two if and only
if it is sub-Hamiltonian. If a graph G admits a book embedding on two pages, then let
v, V1, - - -, Up—1 be the vertices of G ordered according to the total ordering <, of the book
embedding. An augmenting Hamiltonian cycle of G is (vg,v1), (v1,v2), ..., (Vn—2,Vn—1),
(Vn—1,v0) where each edge (v;,v;+1) is either an edge of G or a dummy edge that can be
added to G without violating planarity (see Figure 8.3 for an example). Conversely, if G
is sub-Hamiltonian there exists an augmenting Hamiltonian cycle H (possibly obtained by
adding some edges) in G. Choose an embedding ¥ of G with an edge e of H on the external
face. By removing e we have a path P containing all the vertices of G. Define the total

252 CHAPTER 8. SPINE AND RADIAL DRAWINGS

Figure 8.2 (a) A planar graph G. (b) A book embedding of G on two pages: the total
order of the vertices is the left-to-right order of the vertices along the horizontal line, while
the two pages are represented by the two half-planes defined by the same line. (¢) A 1-spine,
1-bend drawing of G.

8.3. RESULTS IN THE GENERAL SCENARIO 253

order <, according to the order the vertices of G are encountered while walking along P.
The edges in P can be assigned to one of the two pages. Edge e can also be assigned to the
same page as the edges in P. All the remaining edges of G are either inside or outside H in
the embedding . Those that are inside H are assigned to the same page as all the edges of
H, those that are outside are assigned to the other page. There cannot be two edges (u,v)
and (w, z) in the same page such that u <, w <, v <, z, because otherwise there would
be a crossing in the embedding .

Figure 8.3 An augmentation of the planar graph of Figure 8.2 to a planar Hamiltonian
graph.

Based on the result of Bernhart and Kainen and on Lemma 8.1, we have that the class of
graphs that admit a planar 1-spine, 1-bend drawing is the class of sub-Hamiltonian graphs.
Since testing sub-Hamiltonicity is A'P-complete [Wig82], we have that testing a graph for
1-spine, 1-bend drawability is NP-complete, too.

Theorem 8.1 A planar graph is 1-spine, 1-bend drawable if and only if it is sub-Hamiltonian.

Although Theorem 8.1 gives a complete characterization of 1-spine, 1-bend drawable
graphs, such graphs cannot be recognized efficiently; thus it is worth investigating some
specific families of graphs that are sub-classes of the sub-Hamiltonian graphs and that can
be recognized efficiently. Among them we recall here: outerplanar graphs [BK79] (that
coincide with the graphs having pagenumber one), series-parallel graphs [DDLW06, RM95],
planar bipartite graphs [ddMP95], square grids, and X-trees [CLR87].

If two bends per edge are allowed, then every planar graph is drawable on one spine.
This result is a consequence of a result by Kaufmann and Wiese [KW02] about point-set
embeddability. Given a planar graph G = (V, F) and a set S of points in the plane such
that |S| = |V| = n, a point-set embedding of G onto S is a planar drawing of G such that
each vertex of G is represented as a point of S. Kaufmann and Wiese [KW02] prove that

254 CHAPTER 8. SPINE AND RADIAL DRAWINGS

Figure 8.4 (a) A non-Hamiltonian graph G. (b) A Hamiltonian augmentation Ham(G)
of G. (c¢) A 1-spine, 1-bend drawing of Ham(G). (d) A 1-spine, 3-bend drawing of G; the
edges with 3 bends are highlighted. (e) A 1-spine, 2-bend drawing of G obtained by rotating
the segments of the edges that had 3 bends in the previous picture.

8.3. RESULTS IN THE GENERAL SCENARIO 255

every planar graph G admits a point-set embedding on any given set of points such that
every edge of GG is represented as a polyline with at most 2 bends. Such a drawing can
be computed in O(nlogn) time. In order to compute a planar 1-spine, 2-bend drawing of
a planar graph G, it is sufficient to choose a set of n collinear points and then apply the
Kaufmann and Wiese algorithm. As a consequence, the following theorem holds.

Theorem 8.2 FEvery planar graph is 1-spine, 2-bend drawable.

Although the paper by Kaufmann and Wiese is about point-set embeddings and does not
mention book embeddings, their drawing technique can be regarded as an extension of the
technique used to compute a 1-spine, 1-bend drawing of a Hamiltonian graph. Kaufmann
and Wiese compute a Hamiltonian augmentation Ham(G) of the input graph G such that
each edge of G is subdivided at most once (see Figure 8.4). Since Ham(G) is Hamiltonian
it admits a 1-spine, 1-bend drawing by Theorem 8.1. An edge e = (u,v) that has been
subdivided by a division vertex w, is represented in the 1-spine, 1-bend drawing of Ham(G)
by two edges (u,w) and (w,v) each one drawn with at most one bend. Removing the
division vertex w we obtain another bend on edge e at the point p,, where w was drawn.
This removal would give rise to at most three bends per edge (see Figure 8.4). However, it
is possible to remove this third bend by suitably rotating the segments incident to p,, (see
Figure 8.4). The drawing technique described above requires to compute a Hamiltonian
augmentation Ham(G) of G. Kaufmann and Wiese describe a Hamiltonian augmentation
technique that runs in O(n) time and subdivides each edge at most once. Details about
different Hamiltonian augmentation techniques are given in Section 8.5.1.

We conclude this discussion about 1-spine, 2-bend drawings by further remarking the
connection between them and book embeddings. The 1-spine, 2-bend drawing of the input
graph G is obtained from a 1-spine, 1-bend drawing of the Hamiltonian graph Ham(G).
An edge e = (u,v) that has been subdivided by a division vertex w, is represented in the
1-spine, 1-bend drawing of Ham(G) by two edges (u,w) and (w,v) that may be on the two
different half-planes defined by the spine. This means that a 1-spine, 2-bend drawing of
a planar graph GG can be seen as a book embedding of G on two pages, where each edge
is not required to be on one page only but is allowed to cross the spine at most once. A
book embedding where edges are allowed to cross the spine is also called a topological book
embedding. Therefore, Theorem 8.2 implies that every planar graph has a topological book
embedding on two pages where each edge crosses the spine at most once. Since two bends
are sufficient to draw all planar graphs on a single spine, it does not make sense to further
investigate 1-spine, b-bend drawings for b > 2.

Figure 8.5 An outerplanar graph that does not admit a 2-spine, 0-bend drawing.

Consider now the case when two spines are given. It is immediate to see that if a graph
admits a 2-spine, 0-bend drawing, then it is outerplanar (i.e., it admits a planar embedding
such that all the vertices are on the external face). Indeed, in a 2-spine, 0-bend drawing

256 CHAPTER 8. SPINE AND RADIAL DRAWINGS

each vertex is either a topmost vertex or a bottommost vertex, and therefore, since the
edges are straight lines, it is on the external face. Observe however that not all outerplanar
graphs admits a 2-spine, 0-bend drawing. The graph in Figure 8.5 is the smallest (in terms
of number of vertices) outerplanar graph that is not 2-spine, 0-bend drawable.

Some preliminary results about 2-spine, 0-bend drawability were presented by Felsner et
al. [FLWO03], who characterize trees that are 2-spine, 0-bend drawable. They prove that a
tree T admits a 2-spine, 0-bend drawing if and only if there exists a path P in T such that
removing P from T we are left with a collection of vertex disjoint paths (see Figure 8.6).
A characterization of (outer)planar graphs that admit a planar 2-spine, 0-bend drawing
has been given by Cornelsen et al. [CSWO04]. They first consider biconnected outerplanar
graphs and prove that a biconnected outerplanar graph G admits a 2-spine, 0-bend drawing
if and only if its internal faces induce a path in the dual graph of G (see Figure 8.6).
The dual graph G* of a planar graph G is a multigraph that has a vertex for each face
of G and an edge between two vertices f and g if the two faces represented by f and g
share an edge. For general simply connected outerplanar graphs Cornelsen et al. [CSW04]
describe a decomposition of an outerplanar graph G into components like paths, trees
and biconnected outerplanar components and describe necessary and sufficient conditions
that these components must satisfy for the 2-spine, 0-bend drawability of G. Therefore,
the outerplanar graphs whose components satisfy these conditions are exactly the planar
graphs that are 2-spine, 0-bend drawable. The necessary and sufficient conditions described
in [CSWO04] cannot be shortly summarized. Intuitively, they guarantee that each single
component is 2-spine, 0-bend drawable and that the vertices shared by different components
are drawn so that the drawings of the different components can be merged together. Finally,
Cornelsen et al. [CSWO04] prove that the necessary and sufficient condition above can be
tested in O(n) time, thus proving that 2-spine, O-bend drawability can be tested in linear
time.

() (b)

Figure 8.6 (a) A 2-spine, 0-bend drawable tree. The removal of the highlighted path
leaves a set of paths. (b) A 2-spine, 0-bend drawing of a biconnected outerplanar graph G
such that the inner faces of G induce a path in the dual graph of G. In the picture, the
node of the dual graph corresponding to the outer face is not shown.

Drawings on two spines with at most one bend per edge are the subject of [DDLS06]
where, in fact, k-spine, 1-bend drawings have been studied. In [DDLS06], a k-spine, 1-bend
drawing is considered as an extension of a 2-page book embedding where the spines are
more than one, and it is proved that, for any fixed k£ > 2, not all planar graphs are k-spine,
1-bend drawable. The proof is based on the observation that, if a graph admits a k-spine,
1-bend drawing, it must exist a special cycle, called cutting cycle (see Figure 8.7), removing
which we are left with (k — 1)-spine, 1-bend drawable subgraphs. The cutting cycle is
actually a sequence of vertices that may or may not correspond to an actual cycle in the

8.3. RESULTS IN THE GENERAL SCENARIO 257

graph. Instead, the sequence of vertices is such that, if dummy edges are inserted between
non-adjacent vertices that are consecutive in the sequence, then the resulting drawing is
still a k-spine, 1-bend drawing. The following lemma holds.

LEMMA 8.2 If (G is a maximal planar graph that is k-spine, 1-bend drawable for k > 2,
then there exists a simple cycle C' in G such that G \ C is (k — 1)-spine, 1-bend drawable.

Figure 8.7 (a) A planar 2-spine, 1-bend drawing of a planar graph G. (b) A cutting cycle
of G. Figure taken from [DDLS06].

We can use now the necessary condition expressed by Lemma 8.2 to construct, for any
fixed k > 1, a maximal planar graph N* that is not k-spine, 1-bend drawable. Graph N*
is the graph shown in Figure 8.8 (it is the same graph as in Figure 8.4), which is a non-
Hamiltonian graph. Graph N* is obtained from N' by replacing each black vertex with a
copy of N*~1 and triangulating the result (see Figure 8.8).

The proof that N¥ is not k-spine, 1-bend drawable is by induction on k. N' is not 1-
spine, 1-bend drawable by Theorem 8.1 because it is not Hamiltonian. Let N¥~! be not
(k — 1)-spine, 1-bend drawable and assume by contradiction that N* is k-spine, 1-bend
drawable. By Lemma 8.2 there exists a simple cycle C' in N* whose removal leaves us with
(k — 1)-spine, 1-bend drawable subgraphs. Since each copy of N*~1 is not (k — 1)-spine,
1-bend drawable, then C contains at least one vertex for each copy of N*~1. Also, since
each copy of N*~1 is inside a triangle of white vertices we have that also all white vertices
must be in C. However, this would imply that N! is Hamiltonian.

258 CHAPTER 8. SPINE AND RADIAL DRAWINGS

Theorem 8.3 For each integer k > 1, there exists a planar graph that is not k-spine,
1-bend drawable.

Figure 8.8 (a) A graph that is not 1-spine, 1-bend drawable. (b) A graph that is not
k-spine, 1-bend drawable. Figure taken from [DDLSO06].

Motivated by the fact that not all planar graphs are k-spine, 1-bend drawable, in [DDLS06]
the complexity of deciding whether a planar graph is k-spine, 1-bend drawable is studied,
and it is proved that this problem is N'P-complete. The reduction is from the MAXIMAL
PLANAR EXTERNAL HAMILTONIAN CIRCUIT problem, i.e., the problem of deciding whether
a planar embedded graph contains a Hamiltonian circuit with an edge on the external face.
In [DDLS06], a construction is described that, given a maximal planar graph G, produces a
maximal planar graph H*(G) that is k-spine, 1-bend drawable if and only if G is externally
Hamiltonian.

Theorem 8.4 The problem of deciding whether a given planar graph is k-spine, 1-bend
drawable is N'P-complete for any fized k > 1.

For the special case of k = 2, a complete characterization of 2-spine, 1-bend drawable
graphs is given in [DDLS06]. In this case, the necessary condition expressed by Lemma 8.2
can be better detailed. Namely, after removing the cutting cycle, we are left with a set
of disjoint paths whose endvertices are adjacent (or can be made adjacent) to the cutting
cycle and that satisfy some additional properties (see Figure 8.9). It can be proved that
this necessary condition is also sufficient. Graphs whose vertices can be covered by a
cycle and a set of vertex-disjoint paths whose end-vertices are connected to the cycle are
called (sub-)Hamiltonian-with-handles graphs in [DDLS06], which appears as an extension
of (sub-)Hamiltonian graphs.

Theorem 8.5 A planar graph is 2-spine, 1-bend drawable if and only if it is sub-Hamiltonian-
with-handles.

Theorem 8.4 says that it is AP-complete to recognize sub-Hamiltonian-with-handles
graphs. However, there are subclasses of sub-Hamiltonian-with-handles graphs that can
be recognized in polynomial time. For example, in [DDLS06] it has been proved that 2-
outerplanar graphs are sub-Hamiltonian-with-handles and hence 2-spine, 1-bend drawable.

8.3. RESULTS IN THE GENERAL SCENARIO 259

Figure 8.9 The planar graph of Figure 8.7 covered by a cycle (thick blue edges) and a
set of vertex-disjoint paths (thick red edges) whose end-vertices are connected to the cycle
(thick green edges). The dashed edges are dummy edges. Labels b, g, and r denote the
color of the solid thick edges. The color of the dashed thick edges can be easily inferred.

A complete characterization of the family of k-spine, 1-bend drawable graphs is still
missing, but Theorem 8.3 tells us that this family is a proper subclass of planar graphs.

A characterization is still missing also for k-spine, O-bend drawable graphs, where some
preliminary results have been obtained only for trees. Felsner et al. [FLWO03] proved that,
for any fixed k, it is possible to construct a tree that is not k-spine, O-bend drawable. To
produce such a tree, Felsner et al. [FLWO03] introduce the notion of strictness of a tree T
defined as follows. A tree T is 2-strict if it contains a vertex of degree greater than or equal
to three. T is k-strict if it contains a vertex v adjacent to at least three vertices w1, us,
and ug such that the subtrees rooted at uy, ug, and ug are (k — 1)-strict. In [FLWO03] it is
proved that a k-strict tree is not (k — 1)-spine, 0-bend drawable. The proof is by induction.
A 2-strict tree is not 1-spine, 0-bend drawable since it is not a path. If a tree is k-strict,
then the three subtrees rooted at wi, us and ug are (k — 1)-strict and require at least k
spine to be drawn. In this case, there is no location for v on the k spines that allows it to
connect to the three subtrees without creating a crossing. Based on this result about the
strictness of a tree we have that the complete ternary tree of height? k -+ 1 is not k-spine,
0-bend drawable because it is (k + 1)-strict.

An interesting result shown in [FLWO03] is that the strictness of a tree T is closely related
to the pathwidth; more precisely, we have that the strictness s of T" and the pathwidth p of
T are such that p < s < p—+ 1. This implies that if a tree has pathwidth p, then it is not k-
spine, O-bend drawable for k£ < p. The relationship between the pathwidth p of a tree T and
the k-spine, 0-bend drawability of T has been further investigated by Suderman [Sud04] who
proved that every tree with pathwidth h has a k-spine, 0-bend drawing with p < k < [3p/2].
Suderman [Sud04] also describes a linear-time drawing algorithm that computes a k-spine,
0-bend drawing for a tree with pathwidth p, where k¥ = [3p/2]. In his paper, Suderman
studies layered drawings of trees with pathwidth p not only within the general scenario, but
also in several different constrained scenarios. We will describe these results in Section 8.4.

A summary of the results described in this section is presented in Table 8.1 (for the
Characterization Problem) and in Table 8.2 (for the Drawability Testing Problem).

2The height is measured as the number of vertices on the path from the root to the deepest leaf.

260 CHAPTER 8. SPINE AND RADIAL DRAWINGS

0 bends 1 bend 2 bends

sub-Hamiltonian
[BK79]

subclass of sub-Hamiltonian-

2 spi ith-handl 1 KWO02
spines outerplanar [CSW04] with-handles planar [KW02]

1 spine paths planar [KW02]

[DDLS06]
. OPEN (not all trees OPEN (not all
k > 2 spines (FLW03]) planar [DDLS06)) planar [KW02]

Table 8.1 Summary of the results about the Characterization Problem for different
numbers of spines and bends.

0 bends 1 bend 2 bends
1 spine O(n) NP-complete [BK79] always true
, NP-complete
2 spines O(n) [CSW04] (DDLSOG always true
k > 2 spines OPEN Né’)—]girrslggte always true

Table 8.2 Summary of the results about the Drawability Testing Problem for different
numbers of spines and bends.

8.3.2 Radial Drawings in the General Scenario

In this section, we consider k-radial, b-bend drawings, and start with the case of a single
circle. If no bend per edge is allowed, then the class of planar graphs that can be drawn on
a circle trivially coincides with the class of outerplanar graphs, which can be recognized in
linear time.

Theorem 8.6 A planar graph is 1-radial, 0-bend drawable if and only if it is outerplanar.

Drawings on one circle and at most one bend per edge have been studied in [DDLWO05]
where it is proved that every planar graph admits a planar 1-bend drawing on a semi-circle
and therefore it is 1-radial, 1-bend drawable. More generally, in [DDLWO05] it has been
shown that, for every planar graph G, it is possible to define a linear ordering L of the
vertices of G, called curve embedding, such that G admits a planar 1-bend drawing on any
concave curve A where the vertices appear along A in the same order as in L. This rather
surprising result says that, although not all planar graph can be drawn with one bend on a
single spine, it is sufficient to “curve” this spine in order to support all of them. Thus, in
one sense, a circle is “more powerful” than any number of spines, because, for any k > 0,
we know that there are planar graphs that are not k-spine, 1-bend drawable.

The algorithm described in [DDLWO05] to compute a 1-bend drawing on a semi-circle A
of a maximal planar graph G uses the canonical ordering defined by de Fraysseix, Pach,
and Pollack [dPP90]. Let G be a maximal embedded planar graph with external boundary
u, v, w; a canonical ordering of G is an ordering vy = u,vy = v,vs,...,Vy_1,v, = w of the
vertices of G such that for every 4 < k < n:

e the subgraph Gi_1 of G induced by vi,vs,...,v;_1 is biconnected and the ex-
ternal boundary Cy_1 of Gi_1 contains edge (u,v).

8.3. RESULTS IN THE GENERAL SCENARIO 261

e v is on the external face of Gi_1, and its neighbors in G_; form a subpath of
the path Cy_1 — (u,v) (see Figure 8.10).

Figure 8.10 Illustration of the properties of the canonical ordering. Figure taken
from [DDLWO5].

Once a canonical ordering has been computed, the drawing algorithm in [DDLWO05] first
draws G3 by placing vertices v, vo, and v3 at three arbitrary points of A in the order vy, v3,
and vs; the edges between them are drawn as straight-line segments. Vertices vy, vs, ..., U,
are added one per step. At step k vertex vy is placed and a planar 1-radial, 1-bend drawing
I'y, of G, is computed. The algorithm guarantees that the following invariants hold for I'y:

e the clockwise order of the vertices along A is equal to the clockwise order they
have on the external boundary Cj of Gy;

e each vertex c¢ on the external boundary of C} is drawn on A so that there exists
two points a. and S, such that no point of an edge (i.e., no vertex and no internal
point of an edge) is encountered going clockwise along A between «. and ¢ and
between ¢ and 8.. The arc of A between «. and c is called the left safe region of
c while the arc of A between ¢ and . is called the right safe region of c.

After the drawing of G} has been computed, vertex viy; has to be added to the draw-
ing. By the properties of the canonical ordering, vg41 is adjacent to a set of vertices
w1, Wa,. .., wy that are consecutive on the external boundary of Gy and, by the first in-
variant, are consecutive along A. Vertex vgy; is placed in the right safe region of w; (i.e.,
between w; and f,,). By the second invariant, this arc is “free,” i.e., it does not contain
any vertex or any crossing between an edge and A. Edge (w1, vg41) is drawn as a straight-
line segment, while each edge e; = (vgy1,w;) (i =2,...,h) is drawn as a polyline with one
bend by suitably choosing two intersection points between e; and A. The first intersection
point is a point of the arc of A between vgy; and (,,, while the second is a point of the
left safe region of w; (i.e., it is a point between «,,, and w;). This choice of the two inter-
section points guarantees that edges es, e3, ..., e, can be drawn without crossings. For an
illustration of the incremental technique described above, see Figure 8.11. For an example
of a 1-radial, 1-bend drawing of a planar graph, see Figure 8.12.

Theorem 8.7 Fvery planar graph is 1-radial, 1-bend drawable.

A 1-bend drawing on a semi-circle can be seen as an extension of a book embedding on two
pages and, indeed, in [DDLWO05] planar 1-bend drawings on a semi-circle are used to give an
alternative proof of Theorem 8.2. Informally speaking, a planar 1-bend drawing on a semi-

262 CHAPTER 8. SPINE AND RADIAL DRAWINGS

Figure 8.11 Illustration of the technique used to draw a planar graph on a semi-circle.
Figure taken from [DDLWO05].

(b)

Figure 8.12 (a) A planar graph G (where the vertices are numbered according to a canon-
ical ordering of G). (b) A 1-radial, 1-bend drawing. The linear ordering of the vertices along
the (semi)-circle is different from the canonical ordering. Figure taken from [DDLWO05].

8.3. RESULTS IN THE GENERAL SCENARIO 263

circle is a topological book embedding where the spine is “bent.” By “straightening” this
“bent” spine, one can obtain a topological book embedding on two pages. More precisely,
according to the algorithm presented in [DDLWO05], each edge is either straight-line or
it crosses the circle in two points (other than its endvertices). If we consider these two
intersection points as two division vertices, then each edge (real or obtained by subdividing
a real edge with two division vertices) is either straight-line and completely inside the (semi)-
circle or it is bent and completely outside the (semi)-circle. A topological book embedding
on two pages can now be computed by assigning edges inside the circle to one page (for
example to the one corresponding to the half-plane below the spine), and edges outside the
circle to the other page (for example, to the one corresponding to the half-plane above the
spine). In the obtained topological book embedding each edge crosses the spine at most
twice. However, the 1-bend drawing on a semi-circle is such that one of this spine crossing
can be avoided. For an illustration, see Figure 8.13, for more details see [DDLWO5].

Figure 8.13 A 1-spine, 2-bend drawing of the graph of Figure 8.12, obtained by using
the 1-radial, 1-bend drawing shown in Figure 8.12. Figure taken from [DDLWO05].

In [DDLMO05] k-radial, 0-bend drawings have been studied, for & > 2. The existence of
a k-radial, 0-bend drawing of a planar graph G is related to the outerplanarity of G. The
outerplanarity is defined as follows. A 1-outerplanar embedded graph (or simply outerplanar
embedded graph) is an embedded planar graph where all vertices are on the external face.
An embedded graph is a k-outerplanar embedded graph (k > 1) if the embedded graph
obtained by removing all vertices of the external face is a (k — 1)-outerplanar embedded
graph. The planar embedding of a k-outerplanar embedded graph is called a k-outerplanar
embedding. A graph is k-outerplanar if it admits a k-outerplanar embedding. A planar
graph G has outerplanarity k (for an integer k > 0) if it is k-outerplanar but not (k — 1)-
outerplanar. In [DDLMO05], it is proved that if a planar graph G admits a k-radial, 0-bend
drawing, then its outerplanarity is at most k. The proof is by induction on the number of
circles k. If G has a 1-radial, 0-bend drawing, then it is outerplanar by Theorem 8.6. Let
I" be a planar k-radial, 0-bend drawing of G. All the vertices that are on the most external
circle in I' are vertices of the external face because the drawing is planar and straight-line.
Therefore, removing the vertices of the external face we are left with a (k — 1)-radial, 0-

264 CHAPTER 8. SPINE AND RADIAL DRAWINGS

bend drawing and, by induction, with an embedded (k — 1)-outerplanar graph. Therefore,
G is an embedded k-outerplanar graph and its outerplanarity is at most k. In the same
paper [DDLMO5], an algorithm is presented to compute a k-radial, 0-bend drawing of a k-
outerplanar embedded graph G. Figure 8.14 shows an example of a 2-radial, 0-bend drawing
of a 2-outerplanar embedded graph. A consequence of these two results in [DDLMO5] is
that the class of graphs that are k-radial, 0-bend drawable, is the class of graphs with
outerplanarity at most k.

Theorem 8.8 A planar graph is k-radial, 0-bend drawable (k > 1) if and only if its
outerplanarity is at most k.

Theorem 8.8 implies that, in order to test whether a planar graph is k-radial, 0-bend draw-
able, one has to compute the outerplanarity of a planar graph G. In [DDLMO5], it is stated
that this can be done in O(n” log n) time based on a result by Bienstock and Monma [BM90)].
Recently, this result has been improved to O(n?*) by Angelini et al. [ADP11]; as a conse-
quence the problem of deciding whether a planar graph is k-radial, 0-bend drawable can
be solved in O(n*) time. The algorithm by Angelini et al. [ADP11] can also be used to
compute a k-outerplanar embedding of a planar graph G, where k is the outerplanarity of
G. Thus, another consequence of the results in [DDLMO5] is that there exists an O(n*)-time
algorithm to compute a k-radial, 0-bend drawing of a planar graph G such that k is the
minimum possible value. Namely, given a planar graph G, one can use the Angelini et al.
algorithm to compute a planar k-outerplanar embedding of G where k is the outerplanarity
of G and then use the algorithm described in [DDLMO5] to compute a k-radial, 0-bend
drawing. The number of circles used is the minimum possible because, if G admitted a
h-radial, 0O-bend drawing for h < k, then its outerplanarity would be smaller than k.

0 bends 1 bend 2 bends
1 circle outerplanar all planar [DDLWO05] | all planar [DDLWO05]

outerplanarity < k

> .
k > 2 circles [DDLMO5]

all planar [DDLWO05] | all planar [DDLWO5]

Table 8.3 Summary of the results about the Characterization Problem for different
numbers of circles and bends.

0 bends 1 bend 2 bends
1 circle O(n) always true always true
k > 2 circles O(n*) [ADP11] always true always true

Table 8.4 Summary of the results about the Drawability Testing Problem for different
numbers of circles and bends.

266 CHAPTER 8. SPINE AND RADIAL DRAWINGS

8.4 Results in the Constrained Scenarios

In this section, we describe results about spine and radial drawings with the additional
constraints described in Section 8.2.

8.4.1 Upright and Proper Spine Drawings

We start by considering upright spine drawings, i.e., drawings where intra-layer edges are
not allowed. This constraint implies that the number of layers is at least two, because on
a single layer only isolated vertices can be represented. The characterization of upright
2-spine, 0-bend drawable graphs can be stated in several different but equivalent ways. A
graph is a caterpillar if it consists of a simple path and degree-one vertices attached to this
path. A 2-claw is a graph consisting of one vertex of degree 3 (the center), which is adjacent
to three degree-two vertices, each of which is adjacent to the center and to a vertex of degree
one. These definitions are illustrated in Figure 8.15. The following characterizations can be
found in the works of Eades, McKay and Wormald [EMW86], Harary and Schwenk [HS72],
and Tomii, Kambayashi, and Yajima [TKY77].

M

(a) (b)

Figure 8.15 (a) A caterpillar. (b) A 2-claw.

Theorem 8.9 Let G be a planar graph. The following are equivalent.

1. G is upright 2-spine, 0-bend drawable.
2. G is a forest of caterpillars.
3. G is acyclic and does not contain a 2-claw.

An interesting work about upright 2-spine, 0-bend drawings is the one by Waterman and
Griggs [WG86]. In this paper, the authors study a DNA mapping problem with applications
in biology. Very roughly speaking, we have a specific DNA sequence that can be “cut” by
means of enzymes. Each cut can be modeled as a partition of a straight line into intervals.
Different enzymes give different cuts, i.e., different intervals. Biologists are interested in the
order of the “pieces” (intervals) in the sequence, but they cannot directly observe this order.
Instead, they can easily establish if different intervals of different cuts (i.e., cuts produced
by different enzymes) overlap. This overlapping between intervals can be modeled as a
bipartite graph. Namely, let A and B be two cuts of the same DNA sequence. We define
a vertex for each interval a; € A, a vertex for each interval b; € B, and an edge (a;,b;)
with a; € A and b; € B iff a; and b; overlap. The problem of reconstructing the two orders
of the intervals in A and B can be modeled as the problem of finding an ordering of the
vertices in A and an ordering of the vertices in B such that they are “consistent” with the

8.4. RESULTS IN THE CONSTRAINED SCENARIOS 267

given overlaps. But this means to find a layout of the bipartite graph on two straight lines
such that there is no edge crossing. In other words, the problem of reconstructing the two
orders of the intervals in A and B is equivalent to the problem of computing an upright
2-spine, 0-bend drawing of the bipartite graph representing the overlaps. Waterman and
Griggs study the properties of this bipartite graph, prove that it is a caterpillar and give a
linear-time algorithm to compute an upright 2-spine, 0-bend drawing.

Remaining in the case of upright drawings, when the number of spines is greater than
two, the problem is different depending on whether one admits long edges (i.e., edges that
span more than one level) or not.

In the case when long edges are not allowed, i.e., the case of upright proper drawings?’,
Heath and Rosenberg [HR92| show that the drawability testing problem is AP-complete
if the number of spines is not fixed. By using the theory of the parametrized complexity,
Dujmovié¢ et al. [DFKT08] prove that it is possible to decide whether a planar graph G
admits an upright proper k-spine, 0-bend drawing in O(f(k) - n). This implies that, for a
fixed number of layers k, k-spine, 0-bend drawable graphs can be recognized in linear time.
However, the dependency of time complexity from & is given by f(k) = 232"“3, which gives
impractical large constants also for small values of k.

FoBmeier and Kaufmann [FK97] studied upright proper 3-spine, 0-bend drawable graphs,
gave a characterization of them, and presented a linear-time algorithm to recognize them.
Recently, Suderman [Sud05] pointed out some errors in the work by Féfimeier and Kauf-
mann and, based on the ideas found there, presented a new characterization and a new
linear-time algorithm to recognize upright proper 3-spine, 0-bend drawable graphs. The
characterization presented by Suderman consists of constraints on vertices and biconnected
components. For example, it is not difficult to see that if C' is a biconnected component of an
upright proper 3-spine, 0-bend drawable graph, then G — C contains at most two connected
components that are not upright proper 2-spine, 0-bend drawable. However, this in itself
is not sufficient to guarantee upright proper 3-spine, 0-bend drawability. Consequently,
additional constraints must be defined. Suderman describes constraints on vertices and
biconnected components that guarantee upright proper 3-spine, 0-bend drawability. Such
constraints cannot be easily summarized. The interested reader is referred to the original
work by Suderman [Sud05].

Upright spine drawings (proper or not) have also been studied by Suderman [Sud04] in the
case of trees with pathwidth p. Suderman proves that every tree with pathwidth p admits
an upright k-spine, 0-bend drawing with p < k < [3p/2] and an upright proper k-spine,
0-bend drawing with p < k < [3p—3]. Suderman also proves that these bounds are optimal
and present linear-time algorithms that, given a tree with pathwidth p, compute an upright
k-spine, 0-bend drawing where k = [3p/2] and an upright proper k-spine, 0-bend drawing
where k = [3p — 3]. In the same paper [Sud04], Suderman studies proper (non-upright)
spine drawings of trees with pathwidth p. In this case, a lower bound of p and an upper
bound of 2p—1 on the number of spines in a proper spine drawings of a tree with pathwidth
p are given. Also in this case the bounds are optimal and a linear-time algorithm exists to
compute a proper k-spine, 0-bend drawing with k& = 2p — 1 of a tree with pathwidth p.

3These drawings are usually called simply proper layered drawings.

268 CHAPTER 8. SPINE AND RADIAL DRAWINGS

8.4.2 Partitioned Spine Drawings

As explained in Subsection 8.2.2, in the partitioned layered drawing problem the input
graph is partitioned into subsets of vertices, and all vertices in the same set must be drawn
on the same layer.

The special case of partitions into two sets have been studied in the literature with
two different assumptions: (i) vertices of a same set are never adjacent; (ii) vertices of a
same set can be adjacent. Observe that partitioned k-spine, 0-bend drawings of a bipartite
planar graph with & € {2,3} can be regarded as upright proper k-spine, 0-bend drawings
of (non-bipartite) planar graphs. Namely, if a planar graph admits an upright 2-spine, 0-
bend drawing, then the vertices on each spine are not adjacent and therefore the graph is
bipartite. Analogously, if a planar graph admits an upright proper 3-spine, 0-bend drawing
then the vertices on the middle spine are adjacent to the vertices on the top spine and to
the vertices on the bottom spine and there is no edge on each spine. This means that the
vertices in the middle spine form a set of the bipartition and the vertices in the top and
bottom spines form the other set. Thus, the results about upright 2-spine, 0-bend drawings
and upright proper 3-spine, 0-bend drawings can also be regarded as results for bipartite
graphs.

Biedl [Bie98] characterizes the family of planar graphs that admit a partitioned 2-spine,
0-bend drawing, where vertices in the same set (layer) can be adjacent. Starting from a
partitioned planar graph G = (AU B, F) Biedl constructs a graph G’ whose vertex set is
AUBU{v,,vp}. Vertex v, is connected to all the edges in A, vertex vy, is connected to all
the edges in B, and v, and v, are adjacent. Graph G admits a partitioned 2-spine, 0-bend
drawing if and only if G’ is planar and there exists a planar embedding of G’ such that any
triangle containing v, or vy is a face (see Figure 8.16).

Up

Va

Figure 8.16 The graph G’ constructed by Biedl [Bie98] in order to compute a partitioned
2-spine, 0-bend drawing of a partitioned planar graph G.

Partitioned layered drawings on three layers have been studied by Cornelsen et al. [CSW04]
who considered partitioned (non-bipartite) planar graphs with the additional property that
every B-vertex of degree one is adjacent to an A-vertex. Cornelsen et al. derive a graph
G’ from the input graph G by means of a suitable transformation and prove that G' admits
a partitioned 3-spine, 0-bend drawing if and only if G’ admits a 2-spine, 0-bend drawing.
Since G’ can be computed in linear time and 2-spine, 0-bend drawability can be tested in
linear time (see Section 8.3.1), we have that partitioned 3-spine, 0-bend drawable graphs
can be recognized in linear time.

We remark that several other models have been introduced in the literature to draw
partitioned planar graphs. We recall, for example, the L H-drawings, where only one set of
the partition is required to be on a straight line while the other is drawn in one of the two

8.4. RESULTS IN THE CONSTRAINED SCENARIOS 269

half-space defined by the line itself, and the H H-drawings, where each set is drawn in one
of the two half-planes defined by a straight line. These drawings, however, are not layered
drawings, and therefore, we do not describe the results about them here. The interested
reader is referred to the literature [Bie98, BKM9S].

8.4.3 Radial Drawings with Assigned Layers

As discussed in Subsection 8.3.2 for the general scenario, a planar graph is k-radial, 0-bend
drawable (k > 1) if and only if it has outerplanarity at most k. The algorithm that computes
a k-radial, 0-bend drawing strongly relies on the possibility of choosing the radius of each
circle, and therefore the distance between every two consecutive layers. This often leads to
consecutive layers that are very close to each other, and the angular resolution of the drawing
becomes very poor. To improve the readability of radial drawings, consecutive layers should
be at least at a given distance that can be specified as part of the input. However, if the
layers are given the drawability problem cannot be tackled with the technique described
in [DDLMO5]. Providing a complete characterization in this case is still an open problem.
Partial results are given in [DD03] and in [DGLO08]. In [DDO03] it is proven that the family
of 2-outerplanar embedded graphs whose internal vertices induce a biconnected graph are
2-radial, 0-bend drawable. The drawing can be computed in linear time in such a way that
the internal vertices are placed on the internal circle and the external vertices are placed on
the external circle. The idea of the drawing technique is as follows (refer to Figure 8.17).

Figure 8.17 (a) A 2-outerplanar embedded graph G where the internal vertices induce a
biconnected graph. (b) The structure of G decomposed into three edge-disjoint outerplanar
embedded graphs. (c¢) Notation used in the description of the drawing algorithm. (d) A
2-radial, 0-bend drawing of G on any two given given circles. Figure taken from [DD03].

270 CHAPTER 8. SPINE AND RADIAL DRAWINGS

Let G = (V,E) be the 2-outerplanar embedded graph given as input, let Cy and C4
be the external and the internal circles given in input, and let V{) and V; be the external
vertices and the internal vertices of G. The algorithm places all the vertices on two parallel
semi-circles of Cy and C;. First, it chooses two distinct points, p and ¢, of Cy such that:
(i) the z- and y-coordinate of p is less than the z- and the y-coordinate of g, respectively;
(ii) segment pq is a chord of Cy that has two intersection points ¢,, ¢, with Cy, where ¢,
is the first point encountered while walking on pg from p to ¢; (iii) there are two lines ¢,
and t, passing for p and g, respectively, that are tangent to C;, and intersecting in a point
lying in the portion of the annulus delimited by C; and Cy. Denote by pers # p and ping
the points where t, intersects Cp and Ci, respectively. Similarly, let geq: 7# ¢ and gin: be
the points where t, intersects Cy and C1, respectively. Also denote by ¢* any point of C
between ¢;,; and ¢y, and by p* any point of Cy between p;,,; and the point pg* N C;.

Then the algorithm maps all the vertices of V; to points of C, according to the clockwise
order they appear on the external boundary of G(V7), in such a way that: (i) u, and u; are
mapped to p* and p;,e, respectively; (ii) w, is mapped to ¢;ne; (iii) v is mapped to ¢*.

Also, it maps all vertices of Vj to points of Cy, according to the clockwise order they
appear on the external boundary of G, in such a way that: (i) v and w are mapped to p
and ¢, respectively; (ii) all vertices from u to w are mapped to points between ge,; and peqt
(iii) all vertices from w to u are mapped to points below g.

A characterization of upright 2-radial, 0-bend drawable graphs is given by Di Giacomo et
al. [DGLO8] who, more in general, studied upright 2-layer, 0-bend drawable graphs in the
case when the two layers are two parallel convex curves (a curve is convex if any straight
line intersects it in at most two points). The characterization depends on the properties of
the curves considered. Roughly speaking, if the two curves have not enough “curvature,”
then they behave as two straight lines and the class of graphs that admit an upright 2-
layer, 0-bend drawing on the two curves coincides with the class of upright 2-spine, 0-bend
drawable graphs; on the other hand, if the “curvature” of the two curves is enough, the class
of graphs admitting a 2-layer, O-bend drawing is larger. These concepts can be formalized
by defining paired and non-paired curves (see Figure 8.18). Let A, \; be two parallel convex
curves such that the curvature of). is less than the curvature of \;; A. is the external curve,
A; is the internal curve (in the special case of two concentric circles, A. is the circle with
larger radius). Curves A, \; are paired if there exist two points p € \; and ¢ € A, such
that the straight-line segment pg intersects A; twice. Observe that two concentric circles
are paired. Two curves will be called non-paired if they are parallel, convex, but are not
paired. The following theorems are proved in [DGLOS].

Figure 8.18 (a) Two paired curves. (b) Two non-paired curves. Figure taken from [DGLOS].

8.4. RESULTS IN THE CONSTRAINED SCENARIOS 271

Theorem 8.10 Let C be a set of layers consisting of two non-paired curves and let G be a
planar graph. G admits an upright 2-layer, 0-bend drawing on C if and only if G is a forest
of caterpillars.

Theorem 8.11 Let C be a set of layers consisting of two paired curves and let G be a
planar graph. G admits an upright 2-layer, 0-bend drawing on C if and only if G is bipartite
and admits a planar embedding such that all vertices of one partite set belong to the external
face.

The proof of Theorem 8.10 is an easy adaptation of the proof of Theorem 8.9. The
necessity of Theorem 8.11 can be easily proved as follows. Since the drawing is upright the
graph must be bipartite with each partite set defined by the vertices drawn on each curve.
Also, since the drawing is straight-line and planar, it defines a planar embedding in which
all vertices of the external curve are on the external face. As for the sufficiency, Di Giacomo
et al. describe a drawing algorithm based on a suitable decomposition of the graph called
bipartite fan decomposition. A bipartite fan is a biconnected bipartite planar graph having
a vertex u, called apez, that is shared by all its faces (including the external one). Let
u, Vg, V1, - . ., Up_o be the vertices of a fan GG in the counterclockwise order they have on the
external face. Any three vertices vaj,v2j41,v2542 (0 < j < ”774) form a fan triplet of G.
Notice that vgj4+1 belongs to the same partite set as u. See Figure 8.19 (a) for an example
of a bipartite fan.

(a) (b)

Figure 8.19 (a) A bipartite fan. (b) A bipartite graph G embedded with all vertices of one par-
tition set on the external face. (c¢) A bipartite fan decomposition of G. Figure taken from [DGLOS].

Given a biconnected bipartite graph embedded with all vertices of one partition set on
the external face,? it is possible to decompose it into bipartite fans as follows. A first
bipartite fan F is computed; the two edges of each fan triplet of F, either belong to the
external face, or they are a cut-set for G and they identify a subgraph that can be recursively
decomposed (see Figure 8.19 (b) for an example of bipartite fan decomposition). Once G
has been decomposed, a wedge W, is defined on the paired curves; a wedge is a portion of
plane delimited by the external curve). and by two segments having and endpoint on each
curve, one of which has two intersections with the internal curve \; (see Figure 8.20 (a)
for an example). Fan F, is drawn inside W, as shown in Figure 8.20 (b). Notice that
the drawing of F is such that each fan triplet defines a new wedge where the subgraph

4If the input graph is not biconnected, it can be augmented with vertex and edge addition to became
biconnected while maintaining all the vertices of one partition set on the external face. For details,
see [DGLOS]

272 CHAPTER 8. SPINE AND RADIAL DRAWINGS

identified by the fan triplet can be recursively drawn. We conclude by mentioning that
based on Theorem 8.11 upright 2-layer, 0-bend drawable graphs can be recognized in linear
time and that, when the two paired curves are two circles, an upright 2-radial, 0-bend
drawing can be computed in linear time [DGLO0S].

Figure 8.20 (a) A wedge W, defined on two paired curves. (b) A 2-layer, O-bend drawing of
the fan F, of Figure 8.19 inside W,,.

Di Giacomo et al. [DDLO8b] studied k-radial drawings of graphs with assigned layers and
a prescribed assignment of vertices to the layers. More precisely, the layers are concentric
circles such that the difference between the radii of any two consecutive circles is constant
and equal to the radius of the smallest circle. Also, a function ¢ : V- — {0,1,...,k — 1} is
given and it is required that each vertex v € V' is drawn as a point of circle Cy,). A planar
graph G equipped with such a function is called a layered planar graph. We observe that the
assignment of vertices to layers described by the function ¢ represents a stronger constraint
than assigning a vertex partition. In [DDLO08b], k-radial drawings with different trade-offs
between the maximum number of bends along an edge and the angular distance ratio are
studied. The angular distance ratio measures how uniform is the angular distribution of the
vertices. More precisely, let pg, p1,...,pn—1 (h > 1) be the distinct rays passing through
the vertices in the order they are encountered in a radial sweep of the drawing. If h > 1,
define o; = (Zpiy1 — £p;) (the indices are taken modulo h and the angles are measured
modulo 27), @min = min;{a;} and ame, = max;{a;}. If h = 1, we define ay,,, = 0 and
Qmaz = 2m. The angular distance ratio is defined as ADR = % Notice that, when
h =1 we have ADR = +o0.

In [DDLO8b], it is first proved that there exist layered graphs that do not admit a k-radial,
0-bend drawing satisfying the vertex assignment that have optimal angular distance ratio
(i.e., ADR =1). The graph G = (V, E, ¢) is defined as follows (refer to Figure 8.21). The set
of vertices is V' = {ug, u1, ..., up—1}U{vg, v1,...,0p—1 }U{wo, w1, ..., wp_1} with h > 3; the
set of edges is B = {(us, wit1), (Vi wi), (05, wig1), (Wi, wi), (Wi, wig1), (wi,v;) [0 <i < h—1}
(indices are taken modulo h), ¢(u;) = 0, ¢(v;) = 0, and ¢(w;) = 1 (i = 0,...,h —1).

Consider now a 3-cycle u;,u;yr1,v; (i = 0,...,h —2). All the vertices of the cycle must
be drawn on circle Cy and if we want ADR = 1 the angle between the two rays passing
through w; and w;; must be 27” Vertex w; must be drawn on circle C7 and, in order to

guarantee planarity, wy must be inside the triangle representing the 3-cycle w;, u;41,v;. It

8.5. RELATED PROBLEMS 273

follows that circle C; must cross the segment representing the edge (u;, u;11); thus, it must
be r1 > g cos(7), but this is possible only if A < 3 because 71 = %’I‘O.

Figure 8.21 A layered planar graph that does not admit a k-radial, 0-bend drawing with
optimal angular distance ratio if the white vertices are assigned to layer 0 and the black
vertices are assigned to layer 1. Figure taken from [DDLO08b].

The negative result above motivates the study of k-radial drawings with bends. Di
Giacomo et al. [DDLO8b] prove that every layered planar graph G admits a k-radial, 3-
bend drawing consistent with the assignment of the vertices the layers having optimal
angular distance ratio. Such a drawing can be computed in linear time. It is interesting to
note that the drawing algorithm exploits the connection between 1-spine, 2-bend drawings,
topological book embeddings, and Hamiltonicity observed in Section 8.3.1 and that will
be explained in detail in Section 8.5.1. By using the Hamiltonian augmentation technique
described in [DDLWO05], a Hamiltonian augmentation Ham(G) of G and an augmenting
Hamiltonian cycle H of G are computed. The cycle H is drawn with straight-line edges
(and each vertex v drawn on circle Cy(,). All the remaining edges are either inside H or
outside it in the planar embedding of Ham(G). The edges that are outside H are drawn as a
2-bend polyline outside the polygon representing H; the edges that are inside H are drawn
as a l-bend polyline inside the polygon representing H. The properties of the cycle H
computed with the augmentation technique of [DDLWO05] guarantees that edges subdivided
with a division vertex have at most three bends.

In [DDLO8b], a drawing algorithm to compute a k-radial, 2-bend drawing consistent with
the assignment of the vertices to the layers is also presented. In this case, however, the
angular distance ratio is not optimal.

8.5 Related Problems

In this section, we present two applications of the results described in Subsections 8.3.1
and 8.3.2. The first application is in the field of graph theory and the second one is in
computational geometry.

274 CHAPTER 8. SPINE AND RADIAL DRAWINGS
8.5.1 Hamiltonicity

We have already seen in the description of Section 8.3.1 that there is a connection between
1-spine, 1-bend drawings and Hamiltonicity. As stated by Theorem 8.1, a planar graph
admits a 1-spine, 1-bend drawing if and only if it is sub-Hamiltonian. Given a planar
1-spine, 1-bend drawing of a planar graph G (or equivalently a book embedding on two
pages), denote by vg, v1,...v,—1 the vertices of G in the order they appear along the spine.
Ham(G) can be computed by augmenting G with the edges (v;,v;4+1) (indices are taken
modulo n) that are not in G. A Hamiltonian cycle of Ham(G) is given by the sequence of
edges (vg,v1), (v1,v2), .., (Vn—2,Vn—1), (Un—1,v0). This implies that if one can compute a
planar 1-spine, 1-bend drawing (or equivalently a book embedding on two pages) efficiently,
then it is also possible to find an augmenting Hamiltonian cycle of G efficiently. Since
a book embedding on at most two pages can be computed in O(n) time for outerplanar
graphs [BK79], series-parallel graphs [DDLWO06], planar bipartite graphs [ddMP95], square
grids and X-trees [CLR8T7], for all these families of graphs it is also possible to find an
augmenting Hamiltonian cycle in O(n) time.

(d)

Figure 8.22 The PW Augmentation Technique [PWO01]. (a) A planar graph G. (b) A
spanning tree S of G. (c¢) Visit of S. (d) The resulting Hamiltonian augmentation of G.
Figure taken from [PWO01].

In the general case of planar graphs, there are different techniques to compute Ham(G)
and a Hamiltonian cycle of Ham(G), i.e., an augmenting Hamiltonian cycle of G. A first
technique is the one described by Pach and Wenger [PWO01] (see also Figure 8.22), which
we will call the PW Augmentation Technique. Let S be a spanning tree of G and let T be a
planar drawing of G. Starting at any vertex, walk clockwise around S, visiting its vertices
in order. Note that the internal vertices of S will be visited more than once. Label the
vertices with wi,ws, ..., w, by the order in which they are first visited. If w; and w;y; are
connected by an edge, then let this edge belong to the Hamiltonian cycle (1 < ¢ < n and
assume that the indices are taken modulo n). If not, connect w; to w;+1 by a simple curve

8.5. RELATED PROBLEMS 275

clockwise around the boundary of S, passing very close to it. Wherever this curve intersects
an edge of GG, introduce a new vertex. This curve becomes a path whose pieces are added as
edges to the graph and to its Hamiltonian cycle. Multiple edges (if any) are merged and the
resulting graph is Ham(G). It can be proved that, using the PW Augmentation Technique,
each edge is split at most twice. Since G has at most 3n — 6 edges and the edges of S are
not split, Ham(G) has at most 5n — 10 vertices.

An alternative technique to compute a Hamiltonian augmentation of G is the one de-
scribed in the work by Kaufman and Wiese [KWO02], which we will denote as the KW
Augmentation Technique. This technique is based on the fact that every 4-connected graph
is Hamiltonian and a Hamiltonian cycle can be found in O(n) time [CN89]. Thus, the idea
of Kaufman and Wiese is to make a graph 4-connected. Assume that the input graph is
maximal planar (if not it can be augmented in linear time to a maximal planar graph). By
using an algorithm by Chiba and Nishizeki [CN85] one can find the separating triangles of
G in O(n) time. Each separating triangle can be removed by using the following approach.
Let e = (u,v) be and edge of a separating triangle. Since G is maximal planar, e is shared
by two triangular faces u,v,w and w, v, z. Edge e is replaced by a chain consisting of two
edges (u,d), (d,v) and a division vertex d. Furthermore, edges (d,w) and (d, z) are added
to the graph (see Figure 8.23). By applying this transformation the separating triangle
has been removed and no other separating triangle is created. Thus repeatedly apply-
ing this technique for every separating triangle we eventually obtain a 4-connected graph,
which therefore is a Hamiltonian augmentation Ham(G) of G. The algorithm by Chiba
and Nishizeki [CN89] can then be applied to find a Hamiltonian cycle in Ham(G). The
KW Augmentation Technique splits each edge with at most one division vertex, therefore
Ham(G) has at most 4n — 6 vertices.

u

Figure 8.23 The augmentation described by Kaufmann and Wiese [KWO02] to make a
planar graph 4-connected.

The curve embedding defined in [DDLWO05] can be used to define another alternative
technique to compute a Hamiltonian augmentation of G, which will be called in the following
the DDLW Augmentation Technique. As explained in Section 8.3.2, a curve embedding of a
planar graph is a linear ordering L of the vertices of G such that G admits a planar 1-bend
drawing on any concave curve A where the vertices appear along A in the same order as
L. In particular, such an ordering can be computed by drawing GG on a semi-circle with
at most 1 bend per edge according to the technique described in Section 8.3.2. As already
explained in Section 8.3.2, by using the 1-bend drawing on a semi-circle we can obtain a
topological book embedding of G on two pages where each edge crosses the spine at most
once. If we consider the crossings between the edges and the spine as division vertices of
the edges, we have a book embedding on two pages of a subdivision sub(G) of G. Graph
sub(G) has at most one division vertex per edge. Since sub(G) admits a book embedding

276 CHAPTER 8. SPINE AND RADIAL DRAWINGS

on two pages, it is sub-Hamiltonian and we can augment it with edge addition so to make it
Hamiltonian. As explained above this can be done by adding edges between non adjacent
vertices that are consecutive along the spine of the book embedding and between the first
and the last vertex on the spine if such an edge does not exist (see Figure 8.24). With the
DDLW Augmentation Technique, each edge is split at most once and therefore, like in the
case of the KW Augmentation Technique, Ham(G) has at most 4n—6 vertices. However, the
DDLW Augmentation Technique does not require to preliminarily make G 4-connected. The
augmenting Hamiltonian cycle H of G computed by the DDLW Augmentation Technique
has another interesting property. Let d be a division vertex that subdivide the edge (u,v),
and consider the linear ordering of both the real vertices and the division vertices defined by
the topological book embedding of sub(G) used to compute Ham(G). The division vertex
d is encountered after u and before v in the considered order. This is a consequence of the
fact that, according to the algorithm described in [DDLWO05], the crossing between an edge
and the spine always falls between the end-vertices of the edge. We say that all the division
vertices of H are flat with respect to the considered order. The flatness of the division
vertices will be used in the next application.

Figure 8.24 (a) A 1-spine, 2-bend drawing (or equivalently a topological book embedding
on two pages) of the non-Hamiltonian graph G of Figure 8.4 obtained by using the curve
embedding. (b) A Hamiltonian augmentation of G.

8.5.2 Point-Set Embeddability

The results described in Subsections 8.3.1 and 8.3.2 can be applied to the point-set embed-
ding problem, which is widely investigated both in graph drawing and in computational
geometry. Let G be a planar graph with n vertices and let S be a set of n points in the
plane, a point-set embedding of G onto S is a planar drawing of GG such that each vertex of
G is represented by a point of S. Observe that there are two main variants of this problem,
depending on whether the mapping between the vertices and the points is given as a part
of the input or not. If the mapping is not given and the points are in general position,
then every outerplanar graph admits a point-set embedding on any given set of points and

8.5. RELATED PROBLEMS 277

straight-line edges [Bos02]. In [Bos02], an O(nlog® n)-time algorithm is also presented to
compute a straight-line point-set embedding of an outerplanar graph G on a given set of
points. For trees, an optimal ©(nlogn)-time algorithm is given by Bose et al. [BMS97],
who improve previous results by Ikebe et al. [[PTT94] and Pach and T6r6esik [PT93].

The problem of deciding whether there exists a point set embedding with straight-line
edges of a planar graph on a given set of points is, in general, A’P-hard [Cab06]. Since
outerplanar graphs are the largest class of graphs admitting a straight-line point-set em-
bedding on every set of points [GMPP91] in general position, Kaufmann and Wiese [KW02]
investigate the problem of computing a point-set embedding of a planar graph with a small
number of bends per edge. They show that any planar graph admits a point-set embedding
with at most two bends per edge on any given set of points, and that two bends are required
in some cases. Pach and Wenger [PWO01] show that, if the mapping of the vertices of G
to the points of P is given, then a planar drawing of G exists with O(n) bends per edge
and that Q(n) bends per edge may be necessary even for paths. Recently, the two main
variants (with or without mapping) have been unified and generalized by introducing the
concept of coloured point-set embedding where the set of vertices and the set of points are
coloured with k colours and it is required that each vertex is drawn on a point with the
same colour [BDL08, DDL*08a, DLT06, DGLT10]. Badent et al. [BDLOS] generalized the
result by Pach and Wenger by proving that, for every k > 2, a k-coloured planar graph
admits a k-coloured point-set embedding on every k-coloured set of points with O(n) bends
per edge. They also show that £2(n) bends may be necessary.

We briefly recall here the technique of Kaufmann and Wiese [KW02] and highlight con-
nections between this technique and spine drawings. Assume first that the input graph G
is (sub)-Hamiltonian. Let H = vy, vs,...,v, be a (augmenting) Hamiltonian cycle in G,
and let U be a planar embedding of G such that edge (v1,v,) lies on the external face.
Let p1,pa2,...,pn be the sequence of points in S ordered by increasing z-coordinates (we
can assume that all the points have distinct z-coordinates because, if not, we can rotate
the plane to achieve this condition). Assign each vertex v; to point p; in P and draw the
edges of path P = H \ {(v1,v,,)} as straight-line segments. Draw each remaining edge e
using two segments, one with slope ¢ > 0 and the other with slope —c. In order to prevent
e from crossing the previously drawn edges, the slope ¢ is chosen to be greater than the
absolute value of the slope of each edge in P. With segments of slope +o, it is possible
to draw e above or below P. Edge e is drawn above P if e is on the left-hand side when
walking from vy to v, in G, and below P otherwise. The resulting drawing is planar except
that edges outside P incident to the same vertex may contain overlapping segments. To
eliminate overlapping, perturb overlapping edges by decreasing the absolute value of their
segment slopes by slightly different amounts (see [KWO02] for details).

When the input graph G is not Hamiltonian, Kaufmann and Wiese compute a Hamilto-
nian augmentation Ham(G) of G by using the KW Augmentation Technique described in
Section 8.5.1. Since Ham(G) has more vertices than G, the set of points S is also enriched
with extra points at suitable positions. Ham(G) can be point-set embedded as described
above. Some edges of G are split into two pieces in Ham(G). Let e = (u,v) be an edge of
G split by a division vertex d in G’. The edge e is replaced by the two edges (u,d) and
(d,v); each of these two edges may have one bend. Furthermore, the two segments incident
to d can have different slopes, thus creating a third bend at d. Hence, each edge of G is
drawn with at most three bends. In order to remove the third bend, Kaufmann and Wiese
rotate the segments incident to d and make them both vertical. Note that this may imply
to rotate other segments that are “above” or “below” the rotating segments. An example
of a point-set embedding of the non-Hamiltonian graph G of Figure 8.4 computed by the
Kaufmann and Wiese technique is shown in Figure 8.25.

278 CHAPTER 8. SPINE AND RADIAL DRAWINGS

Figure 8.25 A point-set embedding of the non-Hamiltonian graph G of Figure 8.4. The
drawing is created with the Kaufmann and Wiese technique [KW02] and using the Hamil-
tonian cycle (highlighted in the picture) shown in Figure 8.24.

As one can see from the description above, computing an augmenting Hamiltonian cycle
of the input graph G plays an important role in the Kaufmann and Wiese technique. As
discussed in Subsection 8.5.1, Hamiltonicity is related to spine and radial drawings. A first
consequence of this fact is that one can compute a point-set embedding on any set of points
with at most 1 bend per edge for all those families of (sub)-Hamiltonian graphs for which a
(augmenting) Hamiltonian cycle can be found efficiently. In Section 8.5.1, we have seen that
among these families we have outerplanar graphs, series-parallel graphs, planar bipartite
graphs, square grids, and X-trees.

Another connection between spine and radial drawings, Hamiltonicity, and point-set em-
beddings, is given by the fact that one can use the DDLW Augmentation Technique (see
Section 8.5.1) as an alternative to the KW Augmentation Technique to compute a Hamil-
tonian augmentation of the input graph G. The DDLW Augmentation Technique has the
advantage that the rotation needed to avoid the third bend is not required. If e = (u,v) is
an edge of G split by a division vertex d, the rotation is needed only when the z-coordinate
of d is not between the z-coordinates of u and v, i.e., only if d is not flat with respect to
the left to right order of the vertices (see Figure 8.26). As pointed out in Section 8.5.1, the
technique based on curve embeddings guarantees that d is always flat, and thus no rotation
is required. To avoid the final rotation not only simplifies the drawing algorithm, but it
also has impact on the area of the final drawing. Namely, Kaufmann and Wiese prove
that the drawing before the rotation has area O(W?3), where W is the size of S, i.e., the
length of the side of the smallest axis parallel square containing S. The rotation may cause
an exponential growth of the area of the drawing. Thus, avoiding the rotation keeps the
drawing in a polynomial area.

We conclude this section by mentioning that the DDLW Augmentation Technique has
been used to investigate other problems related to point-set embeddability, such as the
study of universal point sets. A set S of m points is h-bend universal for a family of planar

8.5. RELATED PROBLEMS

POV

Figure 8.26 An illustration of the segments rotation performed in the technique by Kauf-
mann and Wiese [KWO02] in order to remove a third bend. The division vertex z requires the
rotation, the division vertex w does not require the rotation. Figure taken from [DDLWO05].

graphs with n vertices (n < m) if each graph in the family admits a point-set embedding
on a subset of S that has at most h bends per edge.

Many results about point-set embeddings can be regarded as results about universal point
sets. For example, the results about the point-set embeddability of outerplanar graphs on
every set of points in general position [Bos02] imply that every set of points in general
position is 0-bend universal for the class of outerplanar graphs with n vertices. Analogously,
the result about Kaufmann and Wiese implies that every set of points is 2-bend universal
for the class of planar graphs.

De Fraysseix, Pach, and Pollack [dPP90] and independently Schnyder [Sch90] proved
that a grid with O(n?) points is 0-bend universal for all planar graphs with n vertices.
De Fraysseix et al. [dPP90] also showed that a 0-bend universal set of points for all planar
graphs having n vertices cannot have n+o(y/n) points. This last lower bound was improved
by Chrobak and Karloff [CK89] and later by Kurowski [Kur04] who showed that linearly
many extra points are necessary for a 0-bend universal set of points for all planar graphs
having n vertices.

Since 0-bend universal point sets for planar graphs must have more that n points [Kur04],
while every set of n points is 2-bend universal for planar graphs [KWO02], Everett et
al. [ELLW10] investigated 1-bend universal point sets and proved that there exists a set
of n distinct points in the plane in general position that is 1-bend universal for all planar
graphs with n vertices. The proof of the latter result is constructive. A set S of n points is
defined and a point-set embedding of a planar graph G on this set of points is constructed
by exploiting the DDLW Augmentation Technique. Namely, the points are chosen to be
in convex position and an augmenting Hamiltonian cycle H of the input graph G is drawn
as the convex hull CH of S suitably enriched with extra points that represent the division
vertices. The edges of Ham(G) that are not in H are either inside H or outside it. Those
inside are drawn as chords inside C'H, the others are drawn with one bend outside C'H.
The choice of points and the property of H that all division vertices are flat guarantee that
no additional bend is required when the division vertices are removed.

Dujmovi¢ et al. [DELT13] study 0-bends universal point sets for sub-classes of planar
graphs. They prove that there exist sets of n points that are 0-bend universal for maximum
degree 3 series-parallel lattices with n vertices. They also study h-bend universal point sets
with the additional requirement that bends are also constrained to be represented by points
in the set. They prove that, if 1, 2, or 3 bends per edge are allowed then universal point
sets exist of size O(n?/logn), O(nlogn), and O(n), respectively. All these results use as a
basic tool the DDLW Augmentation Technique.

280 CHAPTER 8. SPINE AND RADIAL DRAWINGS

8.6 Conclusions

In this chapter, layered drawing conventions and drawing algorithms have been presented,
where layers can be parallel straight lines (spine drawings) or concentric circles (radial
drawings). One of the main differences between these drawings and hierarchical drawings
is that we do not take into account the orientation of the edges and we do not require that
edges are represented as monotone curves in a common direction.

In the discussion of the results, we used a unified framework for spine and radial drawings,
which studies the drawability problem assuming that upper bounds are given on the number
of layers and on the number of bends along each edge. We summarized the literature by
providing characterization and time-complexity results for each specific drawability problem,
and we also presented variations of the problem and related results for some constrained
scenarios.

Some theoretical connections between spine drawings, radial drawings, and well-studied
problems in graph theory and computational geometry were also pointed-out.

REFERENCES

References

281

[ADP11]

[BDLOS)]

[Bie9g)]

[BK79]

[BKMOS]

[BM90)]

[BMS97]

[Bos02]

[Cab06]

[CKS9]

[CLRS7]

[CN85]

[CN8Y)]

[CSWO04]

[DDO3]

[DDL*08a]

Patrizio Angelini, Giuseppe Di Battista, and Maurizio Patrignani. Finding
a minimum-depth embedding of a planar graph in O(n?) time. Algorith-
mica, 60:890-937, 2011.

Melanie Badent, Emilio Di Giacomo, and Giuseppe Liotta. Drawing col-
ored graphs on colored points. Theoretical Computer Science, 408(2-3):129
— 142, 2008.

Therese C. Biedl. Drawing planar partitions I: LL-drawings and LH-
drawings. In Symposium on Computational Geometry, pages 287296,
1998.

Frank Bernhart and Paul C. Kainen. The book thickness of a graph.
Journal Combinatorial Theory, Series B, 27(3):320-331, 1979.

Therese C. Biedl, Michael Kaufmann, and Petra Mutzel. Drawing planar
partitions. II. HH-drawings. In Graph-Theoretic Concepts in Computer
Science, pages 124-136. Springer-Verlag, 1998.

Daniel Bienstock and Clyde L. Monma. On the complexity of embed-
ding planar graphs to minimize certain distance measures. Algorithmica,
5(1):93-109, 1990.

Prosenjit Bose, Michael McAllister, and Jack Snoeyink. Optimal algo-
rithms to embed trees in a point set. Journal of Graph Algorithms and
Applications, 2(1):1-15, 1997.

Prosenjit Bose. On embedding an outer-planar graph in a point-set. Com-
putational Geometry, 23(3):303-312, 2002.

Sergio Cabello. Planar embeddability of the vertices of a graph using a
fixed point set is np-hard. Journal of Graph Algorithms and Applications,
10(2):353-363, 2006.

M. Chrobak and H. Karloff. A lower bound on the size of universal sets
for planar graphs. SIGACT News, 20(4):83-86, 1989.

Fan R. K. Chung, Frank T. Leighton, and Arnold L. Rosenberg. Embed-
ding graphs in books: A layout problem with applications to VLSI design.
SIAM Journal on Algebraic and Discrete Methods, 8:33-58, 1987.

Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing
algorithms. SIAM Journal on Computing, 14:210-223, 1985.

Norishige Chiba and Takao Nishizeki. The Hamiltonian cycle problem
is linear-time solvable for 4-connected planar graphs. J. Algorithms,
10(2):187-211, June 1989.

Sabine Cornelsen, Thomas Schank, and Dorothea Wagner. Drawing graphs
on two and three lines. Journal of Graph Algorithms and Applications,
8(2):161-177, 2004.

Emilio Di Giacomo and Walter Didimo. Straight-line drawings of 2-
outerplanar graphs on two curves. In Graph Drawing, volume 4912, pages
419-424, 2003.

E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, F. Trotta, and S. K. Wis-
math. k-colored point-set embeddability of outerplanar graphs. Journal
of Graph Algorithms and Applications, 12(1):29-49, 2008.

282 CHAPTER 8. SPINE AND RADIAL DRAWINGS

[DDLO08b] Emilio Di Giacomo, Walter Didimo, and Giuseppe Liotta. Radial draw-
ings of graphs: Geometric constraints and trade-offs. Journal of Discrete
Algorithms, 6(1):109 — 124, 2008.

[DDLMO5] E. Di Giacomo, W. Didimo, G. Liotta, and H. Meijer. Computing radial
drawings on the minimum number of circles. Journal of Graph Algorithms
and Applications, 9(3):365-389, 2005.

[DDLS06] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Matthew Sud-
erman. k-spine, 1-bend planarity. Theoretical Computer Science, 359(1—
3):148-175, 2006.

[DDLWO05] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K.
Wismath. Curve-constrained drawings of planar graphs. Computational
Geometry: Theory and Applications, 30:1-23, 2005.

[DDLWO06] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Stephen K.
Wismath. Book embeddability of SeriesParallel digraphs. Algorithmica,
45:531-547, 2006.

[ddMP95] Hubert de Fraysseix, Patrice Ossona de Mendez, and Jdnos Pach. A left-
first search algorithm for planar graphs. Discrete & Computational Geom-
etry, 13:459-468, 1995.

[DEL*T13] V. Dujmovi¢, W. Evans, S. Lazard, W. Lenhart, G. Liotta, D. Rappaport,
and S. Wismath. On point-sets that support planar graphs. Computational
Geometry, 46(1):29-50, 2013.

[DETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.

[DFK*08] Vida Dujmovi¢, Michael Fellows, Matthew Kitching, Giuseppe Liotta,
Catherine McCartin, Naomi Nishimura, Prabhakar Ragde, Frances Rosa-
mond, Sue Whitesides, and David Wood. On the parameterized complexity
of layered graph drawing. Algorithmica, 52:267-292, 2008.

[DGLO8] E. Di Giacomo, L. Grilli, and G. Liotta. Drawing bipartite graphs on two
parallel convex curves. Journal of Graph Algorithms and Applications,
12(1):97-112, 2008.

[DGLT10] Emilio Di Giacomo, Giuseppe Liotta, and Francesco Trotta. Drawing
colored graphs with constrained vertex positions and few bends per edge.
Algorithmica, 57:796-818, 2010.

[DLT06] E. Di Giacomo, G. Liotta, and F. Trotta. On embedding a graph on two
sets of points. IJFCS, Special Issue on Graph Drawing, 17(5):1071-1094,
2006.

[dPP90] Hubert de Fraysseix, Janos Pach, and Richard Pollack. How to draw a
planar graph on a grid. Combinatorica, 10(1):41-51, 1990.

[ELLW10] Hazel Everett, Sylvain Lazard, Giuseppe Liotta, and Stephen Wismath.
Universal sets of n points for one-bend drawings of planar graphs with n
vertices. Discrete & Computational Geometry, 43:272-288, 2010.

[EMWS86] Peter Eades, Brendan D. McKay, and Nicholas C. Wormald. On an
edge crossing problem. In 9th Australian Computer Science Conference
(ACSC9), pages 327334, 1986.

[Far48] Istvan Féary. On straight lines representations of planar graphs. Acta Sci.
Math. Szeged, 11:229-233, 1948.

REFERENCES 283

[FK97] Ulrich FoBmeier and Michael Kaufmann. Nice drawings for planar bi-
partite graphs. In 8rd Italian Conference on Algorithms and Complexity
(CIAC ’97), volume 1203 of Lecture Notes in Computer Science, pages
122-134. Springer-Verlag, 1997.

[FLWO03] Stefan Felsner, Giuseppe Liotta, and Stephen K. Wismath. Straight-line
drawings on restricted integer grids in two and three dimensions. Journal
of Graph Algorithms and Applications, 7(4):363-398, 2003.

[GMPP91] Peter Gritzmann, Bojan Mohar, Janos Pach, and Richard Pollack. Em-
bedding a planar triangulation with vertices at specified points. American
Mathematical Monthly, 98(2):165-166, 1991.

[HR92] Lenwood S. Heath and Arnold L. Rosenberg. Laying out graphs using
queues. STAM Journal on Computing, 21(5):927-958, 1992.

[HST2] Frank Harary and Allen Schwenk. A new crossing number for bipartite
graphs. Utilitas Mathematica, 1:203-209, 1972.

[IPTT94] Yoshiko Tkebe, Micha A. Perles, Akihisa Tamura, and Shinnichi Tokunaga.
The rooted tree embedding problem into points in the plane. Discrete
Computational Geometry, 11:51-63, 1994.

[Kur04] Maciej Kurowski. A 1.235 lower bound on the number of points needed to
draw all n-vertex planar graphs. Inf. Process. Lett., 92(2):95-98, 2004.

[KW02] Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few
bends suffice for planar graphs. Journal of Graph Algorithms and Appli-
cations, 6(1):115-129, 2002.

[PT93] Janos Pach and Jeno Tor6csik. Layout of rooted trees. In W. T. Trotter,
editor, Planar Graphs, volume 9 of DIMACS, pages 131-137. American
Mathematical Society, 1993.

[PWO1] Janos Pach and Rephael Wenger. Embedding planar graphs at fixed vertex
locations. Graphs and Combinatorics, 17:717-728, 2001.

[RM95] S. Rengarajan and C. E. Veni Madhavan. Stack and queue number of
2-trees. In Ding-Zhu Du and Ming Li, editors, COCOON, volume 959 of
Lecture Notes in Computer Science, pages 203-212. Springer, 1995.

[Sch90] Walter Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-
SIAM Sympos. Discrete Algorithms (SODA’90), pages 138-148, 1990.

[Sud04] Matthew Suderman. Pathwidth and layered drawings of trees. Interna-
tional Journal of Computational Geometry & Applications, 14(3):203-225,
2004.

[Sud05] Matthew J. Suderman. Proper and planar drawings of graphs on three lay-
ers. In Graph Drawing, 13th International Symposium (GD 2005), volume
to appear, 2005.

[Sug02] Kozo Sugiyama. Graph Drawing and Applications. World Scientific, Sin-
gapore, 2002.

[TKY77] N. Tomii, Yahiko Kambayashi, and Shuzo Yajima. On planarization algo-
rithms of 2-level graphs. Technical Report EC77-38, Institute of Electronic
and Communication Engineers of Japan (IECEJ), 1977.

[WG86] Michael S. Waterman and Jerrold R. Griggs. Interval graphs and maps of
DNA. Bulletin of Mathematical Biology, 48(2):189-195, 1986.

284 CHAPTER 8. SPINE AND RADIAL DRAWINGS

[Wig82] Avi Wigderson. The complexity of the Hamiltonian circuit problem for
maximal planar graphs. Technical Report 298, Princeton University, EECS
Department, 1982.

Circular Drawing Algorithms

9.1 Introduction..............oooiiiiiiiiii i 285
Other Circular Drawing Techniques ® Complexity of the
Circular Graph Drawing Problem

9.2 Circular Drawings of Biconnected Graphs.............. 288
Properties of Algorithm CIRCULAR
9.3 Further Reduction of Edge Crossings 292

Counting All the Crossings in a Circular Drawing ®
Determining the New Number of Crossings after Moving a

Node
9.4 Nonbiconnected Graphs on a Single Circle 296
9.5 Nonbiconnected Graphs on Multiple Circles 297
9.6 A Framework for User-Grouped Circular Drawing 303

Circular-Track Force-Directed ® A Technique for Creating
User-Grouped Circular Drawings

9.7 Implementation and Experiments........................ 307
Janet M. Six Experimental Analysis of Algorithm CIRCULAR e
Lone Star Interaction Design Implementation Issues ® Experimental Analysis of Algorithm
CIRCULAR-with Radial ® Implementation of Algorithm
Toannis G. Tollis CIRCULAR-with Forces
University of Crete and 9.8 ConcluSionscoouiiuiii 313
Technology Hellas-FORTH References ... 314

9.1 Introduction

A circular drawing of a graph (see Figure 9.1 for an example) is a visualization of a graph
with the following characteristics:

e The graph is partitioned into clusters;

e The nodes of each cluster are placed onto the circumference of an embedding
circle; and

e Each edge is drawn as a straight line.

There are many applications that would be strengthened by an accompanying circular
graph drawing. For example, the drawing techniques could be added to tools which ma-
nipulate telecommunication [Ker93], computer [Six00], and social networks [Kre96] to show
clustered views of those information structures. The partitioning of the graph into clus-
ters can show structural information such as biconnectivity, or the clusters can highlight
semantic qualities of the network such as sub-nets. Emphasizing natural group structures
within the topology of the network is vital to pinpoint strengths and weaknesses within that
design. It is essential that the number of edge crossings within each cluster remains low in

285

286 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

Figure 9.1 A graph with arbitrary coordinates for the nodes and a circular drawing of
the same graph as produced by an implementation of Algorithm CIRCULAR. Figure taken
from [ST99, ST06].

order to reduce the visual complexity of the resulting drawings. Researchers have produced
several circular drawing techniques [Bra97, DMM97, KMG88, Kre96, TX95], some of which
have been integrated into commercial tools. However, the resulting drawings are visually
complex with respect to the number of crossings. In this chapter, we present circular draw-
ing techniques for simple biconnected and nonbiconnected graphs which are efficient and
also produce drawings with a low number of edge crossings. The first technique produces
single-circle drawings of biconnected graphs. The second technique produces single-circle
drawings of nonbiconnected graphs. Finally, the third technique produces multiple-circle
drawings of nonbiconnected graphs.

These techniques are very useful for many applications, however, with the exception of
the Graph Layout Toolkit (GLT) technique [DMM97, KMG88], these techniques do not
allow the user to define which nodes should be grouped together on an embedding circle.
And in the GLT technique, the layouts of the user-defined groups are themselves placed on
a single embedding circle. For some graph structures, this may not be ideal. In this chapter,
we also present a circular drawing algorithm that allows the user to define the node groups,
draws each group of nodes efficiently and effectively, and visualizes the superstructure well.
We call this approach user-grouped circular drawing.

An example of an application in which user-grouped circular drawing would be useful
is a computer network management system in which the user needs to know the current
state of the network. It would be very helpful to allow the user to group the computers
by department, floor, usage rates, or other criteria. See Figure 9.2. This graph drawing
could also represent a telecommunications network, social network, or even the elements of
a large software project. There are, of course, many other applications which would benefit
from user-grouped circular drawing: e.g., biological networks, financial market modeling,
HR management, and physical science models.

The remainder of this chapter is organized as follows: Section 9.1.1 discusses previous
work in this area. In Section 9.2, we present an O(m) time algorithm for the circular layout
of biconnected graphs. The algorithm guarantees that if a zero-crossing circular drawing
exists for a biconnected graph, then it will find it. In Section 9.2.1, we discuss properties
of circular drawings created by the technique in Section 9.2. In Section 9.3, we discuss an
approach for reducing the number of edge crossings in circular drawings. In Section 9.4, we
present an O(m) time algorithm for drawing nonbiconnected graphs on a single embedding
circle. In Section 9.5, we present an O(m) time algorithm for drawing nonbiconnected

9.1. INTRODUCTION 287

Figure 9.2 A user-grouped circular drawing. Figure taken from [ST03b].

graphs on multiple embedding circles. In Section 9.6, we introduce a framework for user-
grouped circular drawing. In Section 9.7, we discuss implementation details and give results
of experimental studies for these techniques. In Section 9.8, we present conclusions.

9.1.1 Other Circular Drawing Techniques

Kar, Madden, and Gilbert present a circular drawing technique and tool in [KMG88] for
network management. Recognizing that a clustered view of a network can be quite helpful
to its design and maintenance, the authors build a system that first partitions the network
into clusters, places the clusters onto the main embedding circle, and then sets the coordi-
nates of individual nodes. Finally, a heuristic approach is used to minimize the number of
crossings. As discussed in [DMM97], an advanced version of this O(n?) technique has been
implemented as part of Tom Sawyer Software’s successful Graph Layout Toolkit (GLT). An
early heuristic on circular drawings was presented in [Ma88].

Tollis and Xia introduced several linear time algorithms for the visualization of survivable
telecommunication networks in [TX95]. Given the ring covers of a network, these algorithms
create circular drawings such that the survivability of the network is clearly visible. Tech-
niques were presented for outside (inside) drawings such that the rings are placed outside
(inside) a root circle. An additional linear time algorithm produces drawings that are a
combination of outside and inside drawings. This type of flexibility in a tool allows each
network designer to choose the best technique given the exact application.

Citing a need for graph abstraction and reduction of today’s large information structures,
Brandenburg describes an approach to draw a path (or cycle) of cliques in [Bra97]. This
O(n?) algorithm creates a two-level abstraction of the given graph giving the ability to
project a clique on each node of the abstracted graph.

Circular drawing techniques are not limited to telecommunication and computer net-
work applications by any means. InFlow [Kre96] is a tool to visualize human networks
and produces diagrams and statistical summaries to pinpoint the strengths and weaknesses
within an organization. The usually unvisualized characteristics of self-organization, emer-
gent structures, knowledge exchange, and network dynamics can be seen in the drawings
of InFlow. Resource bottlenecks, unexpected work flows, and gaps within the organization
are clearly shown in these circular drawings.

288 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

In [KWO02], new ideas are presented that extend the framework for circular drawings de-
scribed in this chapter, in order to make the framework suitable for user interaction. They
introduce the concept of hicircular drawings, a hierarchical extension of the mentioned
framework replacing the circles of single vertices by circles of circular or star-like struc-
tures. Various heuristic algorithms that find an ordering of vertices that reduce the number
of crossings in the corresponding circular drawing are presented in [HS04]. A two-phase
heuristic for crossing reduction in circular layout is proposed in [BB05]. Their extensive
experimental results indicate that they yield few crossings. Three independent, complemen-
tary techniques for lowering the density and improving the readability of circular layouts
are presented in [GKO07]. First, an algorithm places the nodes on the circle such that edge
lengths are reduced. Second, the circular drawing style is enhanced by allowing a set of
carefully selected edges to be routed around the exterior of the circle. The third technique
reduces density by coupling groups of edges as bundled splines that share part of their route.

Due to lack of space, we can not describe other techniques here, but refer the reader to
other works such as [BB05, GK07, HS04, KW02, Mag&8].

For more information on the algorithms presented in this chapter, see [ST06, ST03b].

9.1.2 Complexity of the Circular Graph Drawing Problem

Intuitively, the problem of creating circular graph drawings while minimizing the number
of edge crossings seems very hard. The general problem of placing nodes such that the
number of edge crossings is minimum is the well-known NP-hard crossing number problem.
Furthermore, the more restricted problem of finding a minimum crossing embedding such
that all the nodes are placed onto the circumference of a circle and all edges are repre-
sented with straight lines is also NP-hard as proven in [MKNF87]. The authors show the
NP-hardness by giving a polynomial time transformation from the NP-complete Modified
Optimal Linear Arrangement problem.

9.2 Circular Drawings of Biconnected Graphs

In order to produce circular drawings with few crossings, the algorithm tends to place edges
toward the outside of the embedding circle. This characteristic is a result of placing a few
edges in the middle of the drawing to be crossed. Also, nodes are placed near their neighbors.
In fact, this algorithm tries to maximize the number of edges appearing toward the periphery
of the embedding circle. The algorithm achieves this improvement by selectively removing
some edges and then building a depth first search (DFS) based node ordering of the resulting
graph. However, the edge placement near the periphery may decrease the readability of the
drawing. If this is an issue, an increase of scale will be helpful. An alternative approach
where selected edges are drawn outside the embedding circle is described in [GKO07].

In order to selectively remove some edges, this technique visits the nodes in a wave-like
fashion. Define a wave front node to be adjacent to the last node processed; see Figure 9.3.
A wave center node is adjacent to some other node that has already been processed. The
algorithm starts at a lowest degree node and continues to visit wave front and wave center
nodes if they are of lowest degree. If none of the current wave front or wave center nodes
are of lowest degree, then some lowest degree node is chosen. The wave-like node traversal
begins again from this newly chosen node and will continue from this node and the previous
wave front and wave center nodes.

A pair edge is incident to two nodes which share at least one neighbor; see Figure 9.4.
Nodes v and w are said to be paired by u, and u is said to establish the pair edge (v, w).

9.2. CIRCULAR DRAWINGS OF BICONNECTED GRAPHS 289

‘Wave Center
. Node

Wave Center
Node ~

7 8

3
/
Wave Front
Node

Wave Front
Node

Figure 9.3 Examples of wave front and wave center nodes. The shaded region includes
those nodes that have already been processed. The node labeled 2 is the most recently
processed. Figure taken from [ST06].

In other words, u, v, and w form a triangle. Pair edges will be removed before the DFS
step of the technique. A triangulation edge is a new pair edge that is inserted into the
graph by the technique. The triangulation edges are also removed from the graph before
the DFS portion of the algorithm. Each time a node w is visited, a list of pair edges is built.
If there is an insufficient number of pair edges in the graph, the algorithm automatically
inserts triangulation edges into the graph. With the ensuing removal of u, that node is
inherently represented by the newly found pair edges; see Figure 9.5. The illustrations
marked (a) show a degree two node w and its neighbors v and w at three different points in
the algorithm. The pair edge established by u, (v, w), is shown with a bold line in the first
illustration. The illustration immediately to the right shows the same graph fragment when
the next node is processed. Although node u and edges (u,v) and (u,w) are not in the
graph anymore, they are inherently represented by the edge (v, w). The next illustration
to the right shows the same graph fragment after the pair edge (v, w) has been removed.
At this point, the pair edge (v, w) is inherently represented by node w and edges (u,v) and
(u,w). A similar example is shown in the illustrations labeled (b), where the current node
being processed has degree three. It is this selective absorption that causes the behavior of
edge placement toward the periphery of the embedding circle.

A
‘\ a pair edge /‘\
Figure 9.4 Example of a pair edge. Figure taken from [ST99, ST06].

It is important to note that we do not find all pair edges. For each node u, we visit its
neighbors vy, vs, ..., v, in some order, say, the order in which they appear in the adjacency
list. For example, we check to see whether (vq,v9) exists: if so, we add that edge to the
removal list. If not, we add the triangulation edge (v1,v2) to the graph and to the removal
list. This part of the algorithm takes O(deg(u)) time. Notice that a new edge is added only
between two nodes that are consecutive in the adjacency list of the current node (and, of
course, if such an edge does not already exist). Also note that the first and last neighbors

290 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

(a)

o

/TN /TN /<\\ | %V)\

counter =i counter =1 + 1 After Step 14

()
(b) u}

(v) () (V—(n—()
/T /\ /T /TN /TN /TN

counter = i counter =i+ 1 After Step 14

Figure 9.5 The node and edge absorption qualities of Algorithm CIRCULAR. Part (a)
shows a degree-two node u and its neighbors v and w at three different points in the algo-
rithm. First, the pair edge established by u, (v, w), is shown. Next, after node u is processed,
node u and edges (u,v) and (u,w) are inherently represented by the edge (v, w). Finally, we
see the same graph fragment after the pair edge (v, w) has been removed in Step 14. Part (b)
shows a similar example with a degree-three node. Figure taken from [ST99, ST06].

visited cannot experience an increase in degree. For each of those nodes, the edge incident
to u is removed while at most one triangulation edge is added. Next, we show that the total
number of triangulation edges added is O(m).

The number of triangulation edges added to G over the course of the algorithm is at most
Z?:_lg minDeg; — 1, where minDeg; is the minimum degree found in G at the ¢th iteration
of the While loop. minDeg; < avgDeg before the ith iteration, Vi > 1 and where avgDeg
is the average degree of the nodes in the original graph G. It is important to note that the
visit of the neighbors starts from the lowest degree neighbor and proceeds cyclically around
the adjacency list. Since we know that minDeg; < avgDeg before the ith iteration, Vi > 1,
we also know that

n—3 n n
Z minDeg; — 1 < ZminDegi < Z avgDeg = 2m.
i=1 i=1 i=1

Therefore, the number of triangulation edges added is O(m).

Subsequent to the edge removal, the algorithm proceeds to build an ordering of the nodes
for the reduced graph. A traditional DFS is performed and then the nodes in a longest
path of the DFS tree are placed around the embedding circle. Alternatively, a heuristic
algorithm for finding a longest path in a graph can be used. Finally, the remaining nodes
are nicely merged into the ordering. This can be accomplished by visiting each neighbor of
u and asking if it is next to another neighbor of v on the embedding circle. If two neighbors
of u are next to each other on the embedding circle, then we place u between those two
neighbors. (If there are multiple pairs of such neighbors, we arbitrarily pick one of those
pairs.) If there are no two neighbors of u next to each other on the embedding circle, then
we place u next to some neighbor or u or, if there are no neighbors of u on the embedding
circle yet, we pick an arbitrary position for wu.

9.2. CIRCULAR DRAWINGS OF BICONNECTED GRAPHS 291

Algorithm CIRCULAR

Input: A biconnected graph, G = (V, E).

Output: A circular drawing I'" of G such that each node in V lies on the periphery of a
single embedding circle.

. Bucket sort the nodes by ascending degree into a table T'.

. Set counter to 1.

. While counter <n — 3

If a wave front node u has lowest degree, then currentNode = u.

Else If a wave center node v has lowest degree, then
currentNode = v.

Else set currentNode to be some node with lowest degree.

Visit the adjacent nodes consecutively. For each two nodes,
If a pair edge exists place the edge into removalList.
Else place a triangulation edge between the current pair of

neighbors and also into removal List.
10. Update the location of currentNode’s neighbors in T
11. Remove currentNode and incident edges from G.

U W N =

© o N>

12. Increment counter by 1.
13. Restore G to its original topology.
14. Remove the edges in removalList from G.
15. Perform a DFS (or a longest path heuristic) on G.
16. Place the resulting longest path onto the embedding circle.
17. If there are any nodes that have not been placed, then place the remaining nodes
into the embedding order with the following priority:
(i) between two neighbors, (ii) next to one neighbor, (iii) next to
zero neighbors.

Figure 9.6 Algorithm CIRCULAR.

Figure 9.6 shows the pseudocode for Algorithm CIRCULAR. The time complexity of
Algorithm CIRCULAR is O(m), where m is the number of edges in G. Step 1 takes O(m)
time. Step 3 takes O(m) time over all iterations since the use of efficient data structures
(as explained in Section 6.2) allows each iteration to take only O(deg(v;)) time, where v; is
the vertex chosen during the ith iteration. Notice that the number of triangulation edges
added by Step 9 is O(m), as shown above. Clearly, Steps 13-16 require O(m) time. Finally,
Step 17 also requires O(m) time since at most Y ., deg(v;) = O(m) possible placements
are reviewed.

9.2.1 Properties of Algorithm CIRCULAR

In this section, we give properties of Algorithm CIRCULAR. See [ST06, ST03b] for the
detailed proofs. A biconnected graph, G, is outerplanar if and only if G can be drawn on
the plane such that all nodes lie on the boundary of a single face and no two edges cross. If
the biconnected graph given to Algorithm CIRCULAR is outerplanar, then the result will
be a circular visualization such that no two edges cross. In fact, the technique has been
inspired by the algorithm for recognizing outerplanar graphs presented in [Mit79].

By the definition of outerplanar graphs, we know that there exists a plane circular draw-
ing for any outerplanar graph. Also, by that same definition, we know that a graph that

292 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

is not outerplanar does not admit a plane circular drawing. In fact, the set of biconnected
graphs that may be drawn in a circular fashion without any crossings is exactly the set
of biconnected outerplanar graphs. The requirement of placing all nodes on the periphery
of some embedding circle is equivalent to placing all nodes on a single face (say, the ex-
ternal face) of some embedding. Furthermore, if a zero-crossing visualization exists for a
biconnected graph, G, then that drawing can be found by Algorithm CIRCULAR.

Therefore, we have the following theorem:

Theorem 9.1 Given a biconnected graph G, if G admits a circular layout with zero
crossings, then Algorithm CIRCULAR produces a circular drawing with zero crossings in
O(n) time.

Also, as shown in the discussion of the time requirements for Algorithm CIRCULAR, we
have:

Theorem 9.2 Algorithm CIRCULAR produces a circular drawing of any biconnected
graph in O(m) time.

9.3 Further Reduction of Edge Crossings

As will be shown in the experimental results of Section 7.1, Algorithm CIRCULAR produces
drawings with a low number of edge crossings and works very well in practice. We can
further reduce the number of edge crossings with the technique presented in this section.
As discussed in Section 9.1.2, the problem of minimizing the number of edge crossings in
a circular graph drawing is NP-hard. The configuration of the nodes as determined by
Algorithm CIRCULAR produces drawings with a low number of crossings, which can then
be further reduced to some local minima with a monotonic crossing reduction technique.
The postprocessing step visits each node v and queries whether crossings can be reduced
further by moving v next to one of its neighbors.

See Figure 9.7 for Algorithm CIRCULAR-Postprocessing. The time complexity of Algo-
rithm CIRCULAR-Postprocessing is O(m?). This order is dominated by the required time
for counting the number of crossings (Steps 1 and 9). It is vitally important to the time
efficiency of Algorithm CIRCULAR-Postprocessing that the number of crossings be counted
in an efficient fashion. As will be shown in Lemma 9.1, Step 1 of Algorithm CIRCULAR-
Postprocessing requires O(m + x) time to find the total number of crossings, where m is
the number of edges and x is the number of crossings. The experimental study presented
in Section 9.7 has shown that the loop of Step 2 needs to be iterated at most 9 times. In
fact, the vast majority of drawings converged within the first two iterations. In the worst
case, Step 2 requires a constant amount of time. Steps 3 and 6 require O(n) time. Steps 4
and 5 require O(m) time since we explore Y ., degree(i) = O(m) positions. Steps 7 and 8
require O(m) time since we know there will be at most Y-, degree(i) = O(m) positions.
In section 12.3.2, we will show that it takes O(m) time to find the new number of crossings
in Step 9. And since over the course of the algorithm, Step 9 is repeated O(m) times Step 9
requires O(m?) time. Steps 10 and 11 require O(m) time. So the time complexity of the
entire algorithm is O(m? + x). Since, each edge can cross any other edge in the drawing at
most once in a circular visualization, y is O(X7 i), which is O(m?). Therefore, Algorithm
CIRCULAR-Postprocessing has time complexity O(m?).

9.3. FURTHER REDUCTION OF EDGE CROSSINGS 293

Algorithm CIRCULAR-Postprocessing
Input: A drawing I" of biconnected graph G = (V, E) produced by Algorithm CIRCULAR.
Output: A drawing IV of G with fewer or equal number of crossings.

1. currentCrossings = current number of crossings in the drawing.
2. For a fixed number of times

3. For each node, u, in G
4. Initialize List; to contain the embedding circle positions
which lie between two nodes adjacent to u.
5. If List, is empty
(a) Initialize Lists to contain the embedding circle
positions which lie next to one neighbor
of u.
(b) PositionList = Lists.
6. Else PositionList = List.
7. For each location in PositionList
8. Place u at this location
9. newCrossings = the new number of crossings.
10. If newC'rossings < currentCrossings then
currentCrossings = newCrossings.
11. Else Place u back into its previous position.

12. If no improvement was made during this iteration, stop.
Figure 9.7 Algorithm CIRCULAR-Postprocessing.

9.3.1 Counting All the Crossings in a Circular Drawing

Consider the straight edges e; and e; of Figure 9.8. The edge e; can cross ¢; if and only if
one endpoint v of e; appears between the two endpoints u and w of e;. In this case, e; is
called an open edge with respect to the arc vvw. If both endpoints of e; appear between u
and w on the perimeter of the embedding circle, then e; and e; do not cross. So, if we order
the edges as they are encountered around the embedding circle and visit their endpoints in
that order, we can determine the total number of edge crossings by counting the number of
open edges. Although the problem is one dimensional, this technique has some similarities
to the line segment intersection algorithm presented in [PS85].

Figure 9.8 An open edge with respect to the arc vvw. Figure taken from [ST99, STO06].

294 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

Algorithm CountAllCrossings
Input: A single circle drawing I" of a biconnected graph G = (V, E).
Output: The number of edge crossings in I'.
1. Order the edges as they are encountered around the circle in a clockwise order.
2. numberO fCrossings = 0.
3. For each edge endpoint, p;, of edge e;, do
4 If p; is the first endpoint of edge e; append e; to openEdgeList.
5 Else

(a) Increase numberO fCrossings by the number of open
edges with respect to the arc pgpnp;, where p, and p;
are the endpoints of e; and py, is some endpoint which
was visited after p, and before p;.

(b) Remove e; from openEdgeList.

Figure 9.9 Algorithm CountAllCrossings.

Algorithm CountAllCrossings requires O(m + x) time. Step 1 takes O(m) time. This
step can be accomplished in O(m) time by visiting the incident edges of each node as they
appear around the embedding circle. Steps 3, 4, and 5(b) require O(m) time. Step 5(a)
requires time

2m
> xi =0(x),
=1

where ; is the number of edge crossings caused by the edge e; and x is the total number
of edge crossings in the embedding. We accomplish this time requirement by traversing
openEdgeList backward from the end of the list to the element which contains e;. Therefore,
we have the following:

LEMMA 9.1 Algorithm CountAllCrossings counts the total number of edge crossings in
a single circle embedding, where m is the number of edges and y is the number of crossings
in O(m + x) time.

9.3.2 Determining the New Number of Crossings after Moving a Node

Since we can determine the overall number of crossings at the beginning of the algorithm
and then move one node at a time, it is necessary to count only the number of crossings
caused by the incident edges of the current node, v, to update the number of crossings in
the drawing. During each iteration of the crossing reduction, the number of crossings in the
entire drawing is equal to the following formula:

New Number of Crossings = Old Number of Crossings — x. + X,

where, x, = Number of crossings caused by v in the old location,
and ., = Number of crossings caused by v in the new location.

Because we already know the old number of crossings, finding the new number of crossings
is dominated by the time to find x, and x,. Any change in the edge crossings will occur
between edges incident to v and edges that have exactly one endpoint in the arc between the

9.3. FURTHER REDUCTION OF EDGE CROSSINGS 295

old and new positions of v. These pertinent edges are visited in order from the old toward
the new position of v. A counter, ctr, holds the number of open edges in the arc (not
including the open edges incident to v). Each time that an endpoint of an edge incident to
v is encountered, the number of crossings is increased by the value in ctr. At the conclusion
of this process, the number of crossings caused by v in the old position is known. The
number of crossings caused by v in its new position is found by repeating this process from
the new towards the old position of v after moving v to its new position; see Figure 9.10.

old position

\" 1 2 of V\ 1 2
3 3
4 o 4
new position
- A%
of v
u w u w
7 7
6 > 6 >

(a) (b)

Figure 9.10 The arc created by moving node v to the position denoted with the arrow.
The pertinent edges of the arc are shown. Figure taken from [STO06].

Therefore, we have the following result:

LEMMA 9.2 An O(m) time algorithm exists to count the number of edge crossings
gained or lost by moving a node v within a single circle embedding.

The pseudocode for Algorithm CountSingleNodeCrossings is shown in Figure 9.11. This
algorithm requires O(m) time. Steps 3, 4, 5, 6, 7, and 8 require O(m) time since the number
of pertinent edges is O(m) as described above. Step 13 requires O(m) time. Finally, Step 14
requires O(m) time since it is a repetition of Steps 5-8.

If Algorithm CountSingleNodeCrossings is swapping the placement of two nodes which
are next to each other, v and v, on the embedding circle, then Algorithm CountSingleN-
odeCrossings only takes O(maxDegree) time, where maxzDegree is the maximum degree
of all nodes in V. This is because the number of pertinent edges is the smaller degree of u
and v, see Figure 9.12. Since a swap of these two nodes can be accomplished by moving u
between v and 8 or moving v between « and u, we choose the move such that the number
of pertinent edges (i.e., the degree of the node which is not moved) is smaller. Both of the
moves produce the same node ordering, so we perform the move which requires less time.
In the specific case of Figure 9.12, we choose to move node u.

Given Lemma 9.1, and Lemma 9.2, Algorithm CIRCULAR-Postprocessing produces a
visualization with a reduced number of edge crossings in O(m?) time.

296 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

Algorithm CountSingleNodeCrossings
Input: A single circle drawing of a graph G = (V, E),
anode v € V, and
a new position « for v.
Output: The change in the number of edge crossings caused by moving v to «.
1. ctr = 0.
2. numberO fCrossings = 0.
3. Order the pertinent edge endpoints as they are encountered around the embedding
circle.

Mark the pertinent edges as not seen.

For each pertinent edge endpoint p; of edge e; do
If e; is incident to v increment the numberO fCrossings by ctr.
Else If e; has been seen decrement ctr by 1.

Else increment ctr by 1 and mark e; as seen.
OldNumberSingleNodeCrossings = numberO fCrossings.
10. c¢tr = 0.

11. numberO fCrossings = 0.

12. Move v to its new position, .

13. Mark the pertinent edges as not seen.

14. Repeat Steps 5-8 in the opposite direction.

15. NewNumberSingleNodeCrossings = numberO fCrossings.

16. changeInCrossings = NewNumberSingleNodeCrossings—
OldNumberSingleN odeCrossings.

Figure 9.11 Algorithm CountSingleNodeCrossings.

@

© NG

-
(v)

Figure 9.12 The pertinent edges for Algorithm CountSingleNodeCrossings if the two
adjacent nodes u and v are being swapped. Figure taken from [ST99, ST06].

9.4 Nonbiconnected Graphs on a Single Circle

Most networks are not biconnected. Therefore, it is important for a circular drawing tool
to provide a component that visualizes nonbiconnected graphs. An algorithm for produc-
ing circular drawings of nonbiconnected graphs on a single embedding circle is presented
in [Six00, ST06]. Given G, a nonbiconnected graph, it can be decomposed into its bicon-
nected components. The algorithm layouts the resulting block-cutpoint tree on a circle and
then it layouts each biconnected component with a variant of Algorithm CIRCULAR.
First, we consider how to obtain a circular drawing of a tree. A DFS produces a numbering
that we can use to order the nodes around the embedding circle in a crossing-free manner.
From this result, we know how to order the biconnected components around the embedding
circle. Next, we need to consider articulation points which are not adjacent to a bridge (strict

9.5. NONBICONNECTED GRAPHS ON MULTIPLE CIRCLES 297

articulation points). Strict articulation points appear in multiple biconnected components.
In which biconnected component should a strict articulation point appear in the circular
drawing? Multiple approaches to this issue are discussed in [Six00, ST99]. Due to space
restrictions, we do not discuss these solutions here. A third issue to consider is how to
transform the layout of each biconnected component to fit onto an arc of the embedding
circle. This transformation is called breaking. The resulting breaks occur at an articulation
point within the biconnected component.

The worst-case time requirement for the above algorithm is O(m) if we use Algorithm
CIRCULAR to layout each biconnected component. The resulting drawings have the prop-
erty that the nodes of each biconnected component (with the exception of some strict
articulation points) appear consecutively. Furthermore, the order of the biconnected com-
ponents on the embedding circle are placed according to a layout of the accompanying
block-cutpoint tree. Therefore, the biconnectivity structure of a graph is displayed even
though all of the nodes appear on a single circle. An example drawing is shown in Figure
9.13. More details on this algorithm can be found in [Six00, STO06].

S

Figure 9.13 An example drawing produced by Algorithm CIRCULAR-Nonbiconnected.

9.5 Nonbiconnected Graphs on Multiple Circles

In this section, we will present a technique for producing circular drawings of graphs
on multiple embedding circles. Given a nonbiconnected graph G we can decompose the
structure into biconnected components in O(m) time. Taking advantage of this inherent
structure, we first layout the block-cutpoint tree using a radial layout technique similar to
[Ber81, Ead92, Esp88], then we layout each biconnected component of the graph with a
variant of Algorithm CIRCULAR. See Figure 9.14.

The algorithm addresses several issues in order to produce good quality circular drawings:
1) which biconnected component is considered to be the root of the block-cutpoint tree, 2)
articulation points can appear in multiple biconnected components of the block-cutpoint
tree and need to be assigned to a unique biconnected component, 3) the nodes of the block-
cutpoint tree can represent biconnected components of differing size, and 4) the nodes of
each biconnected component should be visualized such that the articulation points appear
in good positions and also there is a low number of edge crossings. We will address each of
these issues in turn.

298 CHAPTER 9. CIRCULAR DRAWING ALGORITHMS

In order to address the first issue, we can choose the root with a recursive leaf-pruning
algorithm to find the “center” of the tree [DETT99]. Alternatively, we can pick the root
dependent on some important metric: e.g., size of the biconnected component. Next we
address the second issue. Strict articulation points (i.e., articulation points that are not
adjacent to a bridge) are duplicated in more than one biconnected component of the block-
cutpoint tree, but of course each node should appear only once in a drawing of that graph.
Therefore, we offer three approaches in which each articulation point will appear only once in
the drawing. The first approach assigns each strict articulation point, u, to the biconnected
component which contains u and is also closest to the root in the block-cutpoint tree. This
biconnected component is the parent of the other biconnected components which contain u.
See Figure 9.15(a). The second approach assigns the articulation point to the biconnected
component which contains the most neighbors of that articulation point, see Figure 9.15(b).
The third approach assigns the articulation point to a position between its biconnected
components, see Figure 9.15(c). Placing a node in this manner will highlight the fact that
this node is an important articulation point. Following the assignment step, the duplicates
of a strict articulation point are removed from the blocks in the block-cutpoint tree. We refer
to the nodes adjacent to a removed strict articulation point in a biconnected component
as inter-block nodes. In order to maintain biconnectivity for the method which will layout
this component, a thread of edges is run through the inter-block nodes. These edges will
be removed from the graph after the layout of the cluster is determined.

The third issue to be addressed while performing the layout of the block-cutpoint tree
is that the biconnected components may be of differing sizes. The node sizes are propor-
tional to the number of nodes contained in the current block. The radial layout algorithms
presented in [Ber81, Ead92, Esp88] place the root at (0,0) and the subtrees on concen-
tric circles around the origin. These algorithms require linear time and produce plane
drawings. However, unlike the block-cutpoint trees, the nodes of the trees laid out with
[Ber81, Ead92, Esp88| are all the same size. The technique in [YFDHO1] handles graphs
with different node sizes; however, node overlap is allowed. In order to produce radial
drawings of trees with differing node sizes, we present a modification of the classical radial
layout technique [Ber81, Ead92, Esp88]:

Figure 9.14 The illustration on the left shows the block-cutpoint tree of a nonbiconnected
graph. The small black tree nodes represent articulation points and the small white tree
nodes represent bridges. The right illustration is a drawing of the same graph where the
block-cutpoint tree is laid out with a radial tree layout technique. Figure taken from [STO06].

9.5. NONBICONNECTED GRAPHS ON MULTIPLE CIRCLES 299

() () (©)

Figure 9.15 Examples of three approaches for the assignment of strict articulation points
to biconnected components. The black nodes are strict articulation points. Figure taken
from [ST06].

RADIAL — with Different Node Sizes: For each node, we must assign a p coordinate,
which is the distance from point (0,0) to the placement of that node and a 6 coordinate
which is the angle between the line from (0,0) to (00,0) and the line from (0,0) to the
placement of that node. The p coordinate of node v, p(v), is defined to be

o) + 6 + dy n max(dl,dg,...,dk)’
2 2
where p(u) is the p coordinate of the parent u of v, ¢ is the minimum distance allowed
between two nodes, d,, is the diameter of u, and maz(dy, da, ..., dx) is the maximum of the
diameters of all the children of u. It is important to note that while all descendants of
a node i are placed on the same concentric circle, not all nodes in the same level of the
block-cutpoint tree are placed on the same concentric circle.

In order to prevent edge crossings, each subtree must be placed inside an annulus wedge,
and the w