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Preface

Why this book?

Designing integrated electronics has become a multidisciplinary enterprise that involves solving
problems from fields as disparate as

e Hardware architecture

e Software engineering

e Marketing and investment

e Solid-state physics

e Systems engineering

e Circuit design

e Discrete mathematics

e Electronic design automation

e Layout design

e Hardware test equipment and measurement techniques

Covering all these subjects is clearly beyond the scope of this text and also beyond the author’s
proficiency. Yet, I have made an attempt to collect material from the above fields that I have found
to be relevant for deciding whether or not to develop digital Very Large Scale Integration (VLSI)
circuits, for making major design decisions, and for carrying out the actual engineering work.

The present volume has been written with two audiences in mind. As a textbook, it wants to intro-
duce engineering students to the beauty and the challenges of digital VLSI design while preventing
them from repeating mistakes that others have made before. Practising electronics engineers should
find it appealing as a reference book because of its comprehensiveness and the many tables, check-
lists, diagrams, and case studies intended to help them not to overlook important action items and
alternative options when planning to develop their own hardware components.

What sets this book apart from others in the field is its top-down approach. Beginning with hardware
architectures, rather than with solid-state physics, naturally follows the normal VLSI design flow
and makes the material more accessible to readers with a background in systems engineering,
information technology, digital signal processing, or management.

Highlights

e Most aspects of digital VLSI design covered

e Top-down approach from algorithmic considerations to wafer processing

e Systematic overview on architecture optimization techniques

e Scalable concepts for simulation testbenches including code examples

e Emphasis on synchronous design and HDL code portability

e Comprehensive discussion of clocking disciplines

e Key concepts behind HDLs without too many syntactical details

e A clear focus on the predominant CMOS technology and static circuit style

e Just as much semiconductor physics as digital VLSI designers really need to know
e Models of industrial cooperation
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e What to watch out for when purchasing virtual components

e Cost and marketing issues of ASICs

e Avenues to low-volume fabrication

e Largely self-contained (required previous knowledge summarized in two appendices)
e Emphasis on knowledge likely to remain useful in the years to come

e Many illustrations that facilitate recognizing a problem and the options available

e Checklists, hints, and warnings for various situations

e A concept proven in classroom teaching and actual design projects

A note to instructors

Over the past decade, the capabilities of field-programmable logic devices, such as FPGAs and
CPLDs, have grown to a point where they have become invaluable ingredients of many electronic
products, especially of those designed and marketed by small and medium-sized enterprises. Beginn-
ing with the higher levels of abstraction enables instructors to focus on those topics that are equally
relevant irrespective of whether a design eventually gets implemented as a mask-programmed custom
chip or from components that are just configured electrically. This material is collected in chapters
1 to 5 of the book and best taught as part of the Bachelor degree for maximum dissemination. No
prior introduction to semiconductors is required. For audiences with little exposure to digital logic
and finite state machines, the material can always be complemented with appendices A and B.

Learning how to design mask-programmed VLSI chips is then open to Master students who elect
to specialize in the field. Designing electronic circuits down to that level of detail involves many
decisions related to electrical, physical, and technological issues. An abstraction to purely logical
models is no longer valid since side effects may cause an improperly designed circuit to behave
differently than anticipated from digital simulations. How to cope with clock skew, metastability,
layout parasitics, ground bounce, crosstalk, leakage, heat, electromigration, latch-up, electrostatic
discharge, and process variability in fact makes up much of the material from chapter 6 onwards.

Again, the top-down organization of the book leaves much freedom as to where to end a class. A
shorter course might skip chapter 8 as well as all material on detailed layout design that begins
with section 11.5 on the grounds that only few digital designers continue to address device-level
issues today. A similar argument also applies to the CMOS semiconductor technology introduced
in chapter 14. Chapter 13, on the other hand, should not be dropped because, by definition, there
are no engineering projects without economic issues playing a decisive role.

For those primarily interested in the business aspects of microelectronics, it is even possible to put
together a quick introductory tour from chapters 1, 13, and 15 leaving out all the technicalities
associated with actual chip design.

The figure below explains how digital VLSI is being taught by the author and his colleagues at
the ETH. Probably the best way of preparing for an engineering career in the electronics and
microelectronics industry is to complete a design project where circuits are not just being modeled
and simulated on a computer but actually fabricated. Provided they come up with a meaningful
project proposal, our students are indeed given this opportunity, typically working in teams of two.
Following tapeout at the end of the 7th term, chip fabrication via an external multi-project wafer
service takes roughly three months. Circuit samples then get systematically tested by their very
developers in their 8th and final term. Needless to say that students accepting this offer feel very
motivated and that industry highly values the practical experience of graduates formed in this way.
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The technical descriptions and procedures in this book have been developed with the greatest of
care; however, they are provided as is, without warranty of any kind. The author and editors of the
book make no warranties, expressed or implied, that the equations, programs, and procedures in
this book are free of error, or are consistent with any particular standard of merchantability, or will
meet your requirements for any particular application. They should not be relied upon for solving
a problem whose incorrect solution could result in injury to a person or loss of property.
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Chapter 1

Introduction to Microelectronics

1.1 Economic impact

Let us begin by relating the worldwide sales of semiconductor products to the world’s gross domestic
product (GDP).! In 2005, this proportion was 237 GUSD out of 44.4 TUSD (0.53%) and rising.

Assessing the significance of semiconductors on the basis of sales volume grossly underestimates their
impact on the world economy, however. This is because microelectronics is acting as a technology
driver that enables or expedites a range of other industrial, commercial, and service activities. Just

consider
e The computer and software industry,
e The telecommunications and media industry,
e Commerce, logistics, and transportation,
e Natural science and medicine,
e Power generation and distribution, and — last but not least —
e Finance and administration.

Microelectronics thus has an enormous economic leverage as any progress there spurs many, if not
most, innovations in “downstream” industries and services.

A popular example. ..

After a rapid growth during the last three decades, the electric and electronic content of passen-
ger cars nowadays makes up more than 15% of the total value in simpler cars and close to 30%
in well-equipped vehicles. What’s more, microelectronics is responsible for the vast majority of
improvements that we have witnessed. Just consider electronic ignition and injection that have
subsequently been combined and extended to become electronic engine management. Add to that
anti-lock brakes and anti-skid stability programs, trigger circuits for airbags, anti-theft equipment,

! The GDP indicates the value of all goods and services sold during some specified year.
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virtual components &~

Semiconductor components %
Electronic components
Electronic goods. World-wide gross domestic product
(computers, mobile phones,
home entertainment equipment, etc.)

Applications:
e Goods with embedded electronics
(machines, cars, cameras, watches, etc.)
 Information technology services
(corporate IT, Internet, music download, etc.)

Fig. 1.1 Economic leverage of microelectronics on “downstream” industries and services.

automatic air conditioning, instrument panels that include a travel computer, remote control of
locks, navigation aids, multiplexed busses, electronically controlled drive train and suspension,
audio/video information and entertainment, and upcoming night vision and collision avoidance
systems. And any future transition to propulsion by other forms of energy is bound to intensify the
importance of semiconductors in the automotive industry even further.

Forthcoming innovations include LED illumination and headlights, active “flywheels”, hybrid
propulsion, electronically driven valve trains, brake by wire, drive by wire, and, possibly, 42 V
power supply to support the extra electrical load.

... and its less evident face

Perhaps less obvious but as important are the many contributions of electronics to the processes
of development, manufacturing, and servicing. Innovations behind the scenes of the automotive
industry include computer-aided design (CAD) and finite element analysis, virtual crash tests,
computational fluid dynamics, computer numeric-controlled (CNC) machine tools, welding and as-
sembly robots, computer-integrated manufacturing (CIM), quality control and process monitoring,
order processing, supply chain management, and diagnostic procedures.

This almost total penetration has been made possible by a long-running drop of cost per func-
tion. Historically, costs have been dropping at a rate of 25% to 29% per year according to [1]. While
computing, telecommunication, and entertainment products existed before the advent of microelec-
tronics, today’s anywhere, anytime information and telecommunication society would not have been
possible without it; just compare the electronic devices in fig.1.2.

Observation 1.1. Microelectronics is the enabler of information technology.

On the positive side, microelectronics and information technology improve speed, efficiency, safety,
comfort, and pollution control of industrial products and commercial processes, thereby bringing
competitive advantages to those companies that take advantage of them.
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Fig. 1.2 Four electronic products that take advantage of microelectronics opposed to analogous products that
do not. The antiquated devices operate with vacuum tubes, discrete solid-state devices, and other electronic
components but include no large-scale integrated circuits. Also observe that, were it not for display size and
audio volume, one might replace all four devices with Apple's iPhone that has brought seamless system
integration to even higher levels (photos courtesy of Alain Kaeslin).
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On the negative side, the rapid progress, most of which is ultimately fueled by advances in
semiconductor manufacturing technology, also implies a rapid obsoletion of hardware and software
products, services, know-how, and organizations. A highly cyclic economy is another unfortunate
trait of the semiconductor industry [2].

1.2 | Concepts and terminology

An integrated circuit (IC) is an electronic component that incorporates and interconnects a
multitude of miniature electronic devices, mostly transistors, on a single piece of semiconductor
material, typically silicon.? Many such circuits are jointly manufactured on a thin semiconductor
wafer with a diameter of 200 or 300 mm before they get cut apart to become (naked) dies. The
sizes of typical dies range between a pinhead and a large postage stamp. The vast majority of ICs,
or (micro)chips as they are colloquially referred to, gets individually encapsulated in a hermetic
package before being soldered onto printed circuit boards (PCB).

The rapid progress of semiconductor technology in conjunction with marketing activities of many
competing companies — notably trademark registration and eye catching — has led to a plethora
of terms and acronyms, the meaning of which is not consistently understood by all members of the
microelectronics community. This section introduces the most important terms, clarifies what they
mean, and so prepares the ground for more in-depth discussions.

Depending on perspective, microchips are classified according to different criteria.

1.2.1 The Guinness book of records point of view

In a world obsessed with records, a prominent question is “How large is that circuit?”

Die size is a poor metric for design complexity because the geometric dimensions of a circuit
greatly vary as a function of technology generation, fabrication depth, and design style.

Transistor count is a much better indication. Still, comparing across logic families is problematic

as the number of devices necessary to implement some given function varies.

Gate equivalents attempt to capture a design’s hardware complexity independently from its ac-
tual circuit style and fabrication technology. One gate equivalent (GE) stands for a two-input
NAND gate and corresponds to four MOSFETs in static CMOS; a flip-flop takes roughly
7 GEs. Memory circuits are rated according to storage capacity in bits. Gate equivalents and
memory capacities are at the basis of the naming convention below.

2 This is a note to non-Angloamerican readers made necessary by a tricky translation of the term silicon.

English ‘ German ‘ French ‘ Ttalian ‘ meaning ‘
silicon Silizium silicium silicio Si, the chemical element with atomic number 14 ‘
silicone Silikon silicone silicone a broad family of polymers of Si with hydrocarbon groups ‘

that comprises viscous liquids, greases, and rubber-like solids ‘

3 Consistent with our top-down approach, there is no need to know the technicalities of CMOS, TTL, and other

logic families at this point. Interested readers will find a minimum of information in appendix 1.6.
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circuit complexity GEs of logic + bits of memory
small-scale integration (SSI) 1-10
medium-scale integration (MSI) 10-100
large-scale integration (LSI) 100-10000
very-large-scale integration (VLSI) 10000-1 000 000
ultra-large-scale integration (ULST) 1000000...

Clearly, this type of classification is a very arbitrary one in that it attempts to impose
boundaries where there are none. Also, it equates one storage bit to one gate equivalent.
While this is approximately correct when talking of static RAM (SRAM) with its four-
or six-transistor cells, the single-transistor cells found in dynamic RAMs (DRAMs) and in
ROMs cannot be likened to a two-input NAND gate. A better idea is to state storage capacities
separately from logic complexity and along with the memory type concerned, e.g. 75000 GE
of logic + 32 kibit SRAM + 512 bit flash ~ 108 000 GE overall complexity.4

One should not forget that circuit complexity per se is of no merit. Rather than coming up with
inflated designs, engineers are challenged to find the most simple and elegant solutions that satisfy
the specifications given in an efficient and dependable way.

1.2.2  The marketing point of view

In this section, let us adopt a market-oriented perspective and ask
“How do functionality and target markets relate to each other?”

(GENERAL-PURPOSE ICs

The function of a general-purpose IC is either so simple or so generic that the component is being
used in a multitude of applications and typically sold in huge quantities. Examples include gates,
flip-flops, counters, and other components of the various 7400 families but also RAMs, ROMs,
microcomputers, and most digital signal processors (DSPs).

APPLICATION-SPECIFIC INTEGRATED CIRCUITS

Application-specific integrated circuits (ASICs) are being specified and designed with a particular
purpose, equipment, or processing algorithm in mind. Initially, the term had been closely associated
with glue logic, that is with all those bus drivers, decoders, multiplexers, registers, interfaces, etc.
that exist in almost any system assembled from highly integrated parts. ASICs have evolved from
substituting a single package for many such ancillary functions that originally had to be dispersed
over several SSI/MSI circuits.

Today’s highly-integrated ASICs are much more complex and include powerful systems or
subsystems that implement highly specialized tasks in data and/or signal processing. The term

4 Kibi- (ki), mebi- (Mi), gibi- (Gi), and tebi- (Ti) are binary prefixes recommended by various standard bodies for
210 920 1930 "and 20 respectively because the more common decimal SI prefixes kilo- (k), mega- (M), giga- (G)
and tera- (T) give rise to ambiguity as 210 £ 103, As an example, 1 MiByte = 8 Mibit = 8 - 229 bit.
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system-on-a-chip (SoC) has been coined to reflect this development. Overall manufacturing costs,
performance, miniaturization, and energy efficiency are key reasons for opting for ASICs.

Still from a marketing point of view, ASICs are subdivided further into application-specific standard
products and user-specific ICs.

Application-specific standard product (ASSP). While designed and optimized for a highly
specific task, an application-specific standard product circuit is being sold to various cus-
tomers for incorporation into their own products. Examples include graphics accelerators,
multimedia chips, data compression circuits, forward error correction devices, ciphering/de-
ciphering circuits, smart card chips, chip sets for cellular radio, serial-ATA and Ethernet
interfaces, wireless LAN chips, and driver circuits for power semiconductor devices, to name
just a few.?

User-specific integrated circuit (USIC). As opposed to ASSPs, user-specific ICs are being de-
signed and produced for a single company that seeks a competitive advantage for their prod-
ucts; they are not intended to be marketed as such. Control of innovation and protection of
proprietary know-how are high-ranking motivations for designing circuits of this category.
Parts are often fabricated in relatively modest quantities.

hardware

SSI | MSI | LSI | VLSI ULSI complexity
counter (i:r(])trgﬁgé%r . ... memory [and still more memory] . . ..
general logi llel . ... program-controlled processor . . . .
purpose g1 parate . . .
gate multiplier .. .. field-programmable logic devices .. ..
(before getting programmed)
functionality ——-------- - - - - - - - - -\ -\ - —(—
digital "gggl?br:géo spatial diversity
filter transceiver
i processor
application lue logic
specific 9 9 error-correcting video data
encoder/decoder compressor
...."system on a chip (SoC)". ...

Fig. 1.3 |Cs classified as a function of functionality and hardware complexity.

1.2.3 The fabrication point of view

Another natural question is
“To wh is ircui f d di ser specifications?”
o what extent i1s a circuit manufactured according to user specifications?

> Microprocessors that have their instruction sets, input/output capabilities, memory configurations, timers, and

other auxiliary features tailored to meet specific needs also belong to the ASSP category.
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FuLL-cusTtoMm ICs

Integrated circuits are manufactured by patterning multiple layers of semiconductor materials, met-
als, and dielectrics. In a full-custom IC, all such layers are patterned according to user specifications.
Fabricating a particular design requires wafers to go through all processing steps under control of a
full set of lithographic photomasks all of which are made to order for this very design, see fig.1.4.
This is relevant from an economic point of view because mask manufacturing is a dominant con-
tribution to non-recurring VLSI fabrication costs. A very basic CMOS process featuring two layers
of metal requires some 10 to 12 fabrication masks, any additional metal layer requires two more
masks. At the time of writing (late 2007), one of the most advanced CMOS processes comprises 12
layers of metal and involves some 45 lithography cycles.

T

(DA

7
/
few masks 7
made to order b
for one design Iy
T ~
/ s
— //1 / T
7 A
all masks LT ———— L
made to order K - Tt LT
for one design mostmasks /7, / !
shared with s /
/
e

preprocessed

unprocessed
wafer

wafer

a) b)

Fig. 1.4 Full-custom (a) and semi-custom (b) mask sets compared.

SEMI-cusToM ICs

Only a small subset of fabrication layers is unique to each design. Customization starts from pre-
processed wafers that include large quantities of prefabricated but largely uncommitted primitive
items such as transistors or logic gates. These so-called master wafers then undergo a few more
processing steps during which those primitives get interconnected in such a way as to complete the
electrical and logic circuitry required for a particular design. As an example, fig.1.5 shows how a
logic gate is manufactured from a few pre-existing MOSFET'Ss by etching open contact holes followed
by deposition and patterning of one metal layer.

In order to accommodate designs of different complexities, vendors make masters available in various
sizes ranging from a couple of thousands to millions of usable gate equivalents. Organization and
customization of semi-custom ICs have evolved over the years.
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preprocessed master

+

custom metallization

customized circuit

not use)d_‘;—’_I_LfJ jL
not used F:|_I_FT M

Fig. 1.5 Customization of a gate array site (simplified). A six-pack of prefabricated MOS transistors (a), metal
pattern with contact openings (b), and finished 2-input NAND gate (c).

Gate array, aka channeled gate array. Originally, sites of a few uncommitted transistors each were
arranged in long rows that extended across most of the die’s width. Metal lines were then used
to connect the prefabricated transistors into gates and the gates into circuits. The number of
custom photomasks was twice that of metal layers made to order. As long as no more than
two layers of metal were available, special routing channels had to be set aside in between to
accommodate the necessary intercell wiring, see fig.1.6a.

Sea-of-gates. When more metals became available in the early 1990s, those early components
got displaced by channelless sea-of-gate circuits because of their superior layout density. The
availability of higher-level metals allowed for routing over gates and bistables customized on
the layers underneath, so dispensing with the waste of routing channels, see fig.1.6b. More
metals further made it possible to insulate adjacent transistors electrically where needed,
doing away with periodic gaps in the layout. Sea-of-gates also afforded more flexibility for
accommodating highly repetitive structures such as RAMs and ROMs.
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Structured ASIC. A decade later, the number of metal layers had grown to a point where it

became uneconomical to customize them all. Instead, transistors are prefabricated and pre-
connected into small generic subcircuits such as NANDs, MUXes, full-adders, and bistables
with the aid of the lower layers of metal. Customization is confined to interconnecting those

subcircuits on the top two to four metal layers. What’s more, the design process is accelerated

as supply and clock distribution networks are largely prefabricated.

Fabric. Exploding mask costs and the limitations of sub-wavelength lithography currently work

against many custom-made photomasks. The idea behind fabrics is to standardize the metal

layers as much as possible. A subset of them is patterned into fixed segments of predetermined

lengths which get pieced together by short metal straps, aka jumpers, on the next metal layer

below or above to obtain the desired wiring. Customization is via the vertical contact plugs,

called vias, that connect between two adjacent layers.

©
>

row of prefabricated . . . . . . .
gate-array sites

row of prefabricated _|
transistor pairs

| predefined
routing channel

routing channel ,«.,>
only where needed
input/output '
pad

[— utilized devices —

| — unutilized areas —_|

— N

a)

avatlabiity ««HEBEENENENEN
b)

metal layers

Fig. 1.6 Floorplan of channeled gate-array (a) versus channelless semi-custom circuits (b).

Due to the small number of design-specific photomasks and processing steps, semi-custom manu-

facturing significantly reduces the non-recurring costs as well as the turnaround time. Conversely,

prefabrication necessarily results in non-optimal layouts. Note the unused transistor pair in fig.1.5,

for instance, or think of the extra parasitic capacitances and resistances caused by standardized

wiring. Prefabrication also implies a self-restraint to fixed transistor geometries, thereby further

limiting circuit density, speed, and energy efficiency. Lastly, not all semi-custom masters accommo-

date on-chip memories equally well.

S Turnaround time denotes the time elapsed from coming up with a finalized set of design data until physical

samples become available for testing.
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Incidentally, be informed that the concept of metal customization is also applied to analog and
mixed-signal circuits. Prefabricated masters then essentially consist of uncommitted transistors
(MOSFETs and/or BJTs) and of passive devices.”

FIELD-PROGRAMMABLE LOGIC

Rather than manufacturing dedicated layout structures, a generic part is made to assume a user-
defined circuit configuration by purely electrical means. Field-programmable logic (FPL) devices are
best viewed as “soft hardware”. Unlike semi- or full-custom ASICs, FPL devices offer turnaround
times that range from a few seconds to a couple of minutes; many product families even allow for
in-system configuration (ISC).

The key to obtaining various gate-level networks from the same hardware resources is the inclusion
of electrical links that can be done — and in many cases also undone — long after a device has
left the factory. Four configuration technologies coexist today; they all have their roots in memory
technology (SRAM, PROM, flash/EEPROM, and EPROM). For the moment, you can think of a
programmable link as some kind of fuse.

A second dimension in which commercially available parts differ is the organization of on-chip
hardware resources. Field-programmable gate arrays (FPGAs), for instance, resemble mask-
programmed gate arrays (MPGAs) in that they are organized into a multitude of logic sites and
interconnect channels. In this text, we will be using the term field-programmable logic (FPL) as a
collective term for any kind of electrically configurable IC regardless of its capabilities, organization,
and configuration ‘cechnology.8

FPL was initially confined to glue logic applications, but has become an extremely attractive propo-
sition for smaller volumes, for prototyping, when a short time to market is paramount, or when
frequent modifications ask for agility. Its growing market share affords FPL a more detailed dis-
cussion in section 1.4. What also contributed to the success of FPL is the fact that many issues
that must be addressed in great detail when designing a custom circuit are implicitly solved when
opting for configuring an FPL device instead, just consider testability, I/O subcircuits, clock and
power distribution, embedded memories, and the like.

STANDARD PARTS

By standard part, aka commercial off-the-shelf (COTS) component, we mean a catalog part with
no customization of the circuit hardware whatsoever.

1.2.4 The design engineer's point of view

Hardware designers will want to know the answer to
“Which levels of detail are being addressed during a part’s design process?”

7 Microdul MD300 and Zetex 700 are just two examples.

8 Referring to all such parts as “field-configurable” would be preferable as this better reflects what actually happens.
This would also avoid confusion with program-controlled processors. Yet, the term “programmable” has gained
so much acceptance in acronyms such as PLA, PAL, CPLD, FPGA, etc. that we will stay with it.
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HAND LAYOUT

In this design style, an IC or some subblock thereof gets entered into the CAD database by delineat-
ing individual transistors, wires, and other circuit elements at the layout level. To that end, designers
use a layout editor, essentially a color graphics editing tool, to draw the desired geometric shapes
to scale, much as in the illustration of fig.1.5c. Any design so established must conform with the
layout rules imposed by the target process. Porting it to some other process requires the layout to be
redesigned unless the new set of rules is obtained from the previous one by simple scaling operations.
Editing geometric layout is slow, cumbersome, and prone to errors. Productivity is estimated to
lie somewhere between 5 and 10 devices drawn per day, including the indispensable verification,
correction, and documentation steps, which makes this approach prohibitively expensive.

Conversely, manual editing gives designers full control over their layouts when in search of maximum
density, performance, and/or electrical matching. Geometric layout, which in the early days had been
the only avenue to IC design, continues to play a dominant role in memory and analog circuit design.
In digital design, it is considered archaic, although a fully handcrafted circuit may outperform a
synthesis-based equivalent by a factor of three or more.

CELL-BASED DESIGN BY MEANS OF SCHEMATIC ENTRY

Design capture here occurs by drawing circuit diagrams where subfunctions — mostly logic gates —
are instantiated and interconnected by wires as illustrated in fig.1.9¢c. All the details of those ele-
mentary subcircuits, aka cells, have been established before and are collected in cell libraries that
are made available to VLSI designers; see section 1.3.3 for more on this. For the sake of economy,
cell libraries are shared among numerous designs. A schematic editor differs from a standard
drawing tool in several ways.

e Circuit connectivity is maintained when components are being relocated.
e A schematic editor is capable of reading and writing both circuit diagrams and netlists.”
e It supports circuit concepts such as connectors, busses, node names, and instance identifiers.

The resulting circuits and netlists are then verified by simulation and other means. Compared
with manual layout entry, cell-based design represented a marked step towards abstracting from
process-dependent details.

Whether the circuit is eventually going to be fabricated as a full-custom IC or as a semi-custom IC
is, in principle, immaterial. In either case, physical design does not go beyond place and route
(P&R) where each cell is assigned a geometric location and connected to other cells by way of
metal lines. As this is done by automatic tools, the resulting layouts are almost always correct by
construction and design productivity is much better than for manual layout. Another advantage
is that any engineer familiar with electronics design can start to develop cell-based ASICs with little
extra training.

Library elements are differentiated into standard cells, macrocells, and megacells.

Standard cells are small but universal building blocks such as logic gates, latches, flip-flops,
multiplexers, adder slices, and the like with pre-established layouts and defined electrical

9 The difference between a netlist and a circuit diagram, aka schematic (drawing), is explained in section 1.7.
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Fig. 1.7 Views of a library cell or of any other subcircuit shown for a 3-input NOR gate. Icon (a), simulation
model (b), test vector set (c), transistor-level schematic (d), detailed layout (e), and cell abstract (f)
(simplified).

characteristics.!? They are the preferred means for implementing random logic as there is
virtually no restriction on the functionality that can be assembled from them. Commercial
libraries include between 300 and 500 standard cells with logic complexities ranging from 1/2
to some 60 gate equivalents; the collection of datasheets pertaining thereto typically occupies
some 400 to 800 pages.

On the semiconductor die, standard cells get arranged in adjoining parallel rows with the
interconnecting wires running over the top of them. This so-called over-the-cell routing
style has been being practiced ever since three and more layers of metal became available.!!

Megacells also come with a ready-to-use layout. What sets them apart from standard cells is their
larger size and complexity. Typical examples include microprocessor cores and peripherals
such as direct memory access controllers, various serial and parallel communication interfaces,
timers, A/D and D/A converters, and the like. Megacells are ideal for piecing together a
microcomputer or an ASIC with comparatively very little effort. Typical application areas
are in telecommunications equipment, automotive equipment, instrumentation, and control
systems.

10" Standard cells are also termed “books” (within IBM) and macros (in the context of semi-custom ICs).

11 Older processes did not afford that much routing resources and the wires had to be inserted between the rows
such as to form well-defined routing channels. The resulting separation between adjacent cell rows obviously
made a poor usage of silicon. In fact, it was not uncommon that routing channels occupied twice or even three

times as much area as the active cells themselves.
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Macrocells, in contrast, have their layout assembled on a per case basis according to designer
specifications. The software tool that does this is called a macrocell generator and is
also in charge of providing a simulation model, an icon, a datasheet, and other views of the
macrocell. For reasons of area and design efficiency, this approach is essentially limited to
a few common building blocks of medium complexity such as RAMs and ROMs. This is
because all such structures show fairly regular geometries that lend themselves well to being
put together from a limited collection of layout tiles. Those tiles are manually designed,
optimized, and verified before being stored as part of the generator package.

megacell

megacell

standard cell row

with over-the-cell routing

std‘ ‘ ‘ std ‘std ‘std std

megacell

cell cell [cell Il cell

megacell

Fig. 1.8 Typical cell mix in a full-custom IC.

As standard cells, macrocells, megacells, and hand layout all have their specific merits and draw-
backs, they are often combined in the design of full-custom ICs.'? The resulting mix of cells is
illustrated in fig.1.8. While design productivity in terms of transistors instantiated per day is clearly
higher for megacells and macrocells than for standard cells, expect an average of some 15 to 20 GEs
per day from cell-based design. Schematic entry at the gate level, and even more so at the transistor

12 In a microcomputer, for instance, the datapath might be implemented in hand layout, data RAM and pro-
gram ROM generated as macrocells, and the controller as a network of standard cells obtained from automatic

synthesis, while a serial interface from an earlier design might get reused as a megacell.
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level, should be confined to functions that are neither available as library items nor amenable to
automatic synthesis.

AUTOMATIC CIRCUIT SYNTHESIS

The entry level here is a formal description of an entire chip or of a major subblock therein. Most
such synthesis models are established using a text editor and look like software code. Yet, they
are typically written in a hardware description language (HDL) such as VHDL or Verilog; see
fig.1.9b. The output from the automatic synthesis procedure is a gate-level netlist. That netlist then
forms the starting point for place and route (P&R) or for preparing a bit stream that will eventually
serve to configure an FPL device.

Logic synthesis implies the generation of combinational networks and — as an extension — of
fairly simple finite state machines (FSMs). A synthesis tool accepts logic equations built from
operators such as NOT, AND, OR, XOR, etc., truth tables, state graphs, and the like. Automatic
tools for logic synthesis and optimization have been in routine use for a long time; they have
been completely absorbed in more advanced EDA flows.

Register transfer level (RTL) synthesis goes one step further in that an entire circuit is viewed
as a network made up of storage elements — registers and possibly also RAMs — that are held
together by combinational building blocks, see fig.1.9a. Also, behavioral specifications are no
longer limited to simple logic operations but are allowed to include arithmetic functions (e.g.
comparison, addition, subtraction, multiplication), string operations (e.g. concatenation),
arrays, enumerated types, and other more powerful constructs.

The synthesis process essentially begins with the registers that are necessary to store the
circuit’s state. Next, the combinational networks required to process data words while they
are moving back and forth between those registers are generated and optimized. Command on
a circuit’s structure is otherwise left to the designer who has to decide himself on the number
of registers, on the concurrency of operations, on the necessary computational resources, etc.

RTL synthesis became very popular in the early 1990s with the advent of adequate HDLs
and computer tools. It dispenses with the need for manually assembling a given functional-
ity from primitive logic gates and, therefore, greatly facilitates design parametrization and
maintenance. Synthesis further enables engineers to render their work portable, that is to
capture all relevant characteristics of a circuit design in a form that is virtually technology-
independent. It so becomes possible to defer the commitment to a specific silicon foundry,
to a particular cell library, or to subordinate idiosyncrasies of some FPL family until late in
the design process. As fabrication processes are frequently being upgraded, making designs
portable and reusable is extremely valuable.

Architecture synthesis, which is also referred to as high-level synthesis in VLSI circles, starts
from a data or signal processing algorithm such as a C++4 program or a MATLAB model,
for instance. As opposed to an RTL model, the source description is purely behavioral and
includes no explicit indications for how to marshal data processing operations and the nec-
essary hardware resources. Rather, these elements must be obtained in an automatic process
that essentially works in five major phases.
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Fig. 1.9 Formats for capturing designs at intermediate levels of abstraction. RTL diagram (a), RTL synthesis
model (b), and gate-level schematic (c) (simplified, note that (a) and (b) refer to different circuits).

1. Identify the computational and storage requirements of the algorithm.

2. From a virtual library of common hardware building blocks, select a suitable item for each
kind of processing and storage operation.

3. Establish a cycle-based schedule for carrying out the algorithm with those resources.
Where there is a choice, indicate which building block is to process what data item.

4. Decide on a hardware organization able to execute the resulting work plan. Specify the ar-
chitecture in terms of combinational logic blocks, data registers, on- and off-chip memories,
busses, switches, signals, and finite state machines.

5. Keeping track of data moves and operations for each clock cycle, translate all this into
the necessary instructions for synthesis at the RTL level.

Generating a close-to-optimum architecture under performance, power, cost, and further
constraints represents a formidable optimization problem, especially if a tool is expected
to work well for arbitrary applications. To get an idea, consult the more detailed lists of
issues to be addressed in section 1.3.2. Apart from a couple of specialized areas, automatic
architecture synthesis does not up to now produce results comparable to those of
inspired and experienced engineers. Nonetheless architecture synthesis continues to be an
active field of research as VLSI design can no longer afford to deal with low-level details.
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Even an experienced RTL code writer cannot be expected to complete much more than 40 lines of
code per day. Estimates say that design productivity ranges from 20 to 400 GE per working day.13
Albeit quite impressive, these figures are actually insufficient to keep pace with the rapid advances
of fabrication technology.

DESIGN WITH VIRTUAL COMPONENTS

In the late 1990s, synthesis technology together with HDL standardization opened the door for
an entirely new approach to designing digital VLSI circuits. A virtual component (VC)14 is
essentially a HDL synthesis package that is made available to others on a commercial basis for
incorporation into their own ICs. VLSI design teams across the electronics industry are thus put
in a position to purchase hardware designs for major subfunctions on the commercial market,
dispensing with the need to write too much HDL source code on their own. The licensees just

remain in charge of synthesis, place and route (P&R), and overall verification.

Though of highly specific nature, most VCs implement fairly common subfunctions; some degree of
parametrization is sought to cover more potential applications. Examples include, but are not limited
to, microprocessor and signal processor cores, all sorts of filters, audio and/or video en/decoders,
cipher functions, error correction en/decoders, USB, FireWire, and many other interfaces.

While hard modules such as standard cells, macrocells, and megacells had freed most IC designers
from addressing transistor-level issues and detailed layout by the mid 1980s, the soft VCs have
extended these benefits to higher levels of abstraction in a natural way. New business opportunities
have opened up and companies that specialize in marketing synthesis models have emerged. Yet, as
is to be explained in section 13.4, the concept has proved more difficult than anticipated for reasons
related to quality, adaptation, interfacing, licensing, and liability.

A classification scheme depicted in table 1.1 nicely complements the one of fig.1.3.

ELECTRONIC SYSTEM-LEVEL (ESL) DESIGN AUTOMATION

More recently, the competitive pressure towards shorter and leaner design cycles has incited the
industry to look at design productivity from a wider perspective. ESL is a collective term for efforts
that take inspirations from numerous ideas.

e Enforce a correct-by-construction methodology by supporting progressive refinement starting
with a virtual prototype of the system to be.

13 Be warned that design productivity is extremely dependent on circumstances.

The effort per transistor is not the same for memories, logic, and mixed-signal designs.

The more circuit blocks that have been validated before can be reused, the better.

Skilled engineering teams not only work faster but also manage with fewer design iterations.
Powerful EDA tools can work out many minor circuit and layout details automatically.

The existence of an established and proven design flow benefits the design process.

Tight timing, power, and layout density budgets ask for more human attention.

Unstable specifications and rapidly changing teams are detrimental to productivity.

' Virtual components are better known as intellectual property modules or IP modules for short. We prefer
the term “virtual component” because IP does not point to electronics in any way and because the acronym

might easily be misunderstood as “Internet protocol”. Other synonyms include “core” and “core ware”.
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Table 1.1 | IC families as a function of fabrication depth and design abstraction level

Fabrication Electrical Semi-custom Full-custom
depth configuration fabrication fabrication
Design Cell-based as obtained from Hand layout
level o synthesis with VCs in HDL form,
o synthesis from captive HDL code,
o schematic entry, or a mix of these
Product Field- Gate-array, Std. cell IC Full-custom IC
name programmable sea-of-gates, (with or w/o
logic device or structured | macrocells and
(FPGA, CPLD) ASIC megacells)

e Resort to architecture synthesis to explore the solution space more systematically and more
rapidly than with conventional, e.g. RTL synthesis, methods.

e Support hardware—software co-design by making it possible to start software development
before hardware design is completed.

e Improve the coverage and efficiency of functional verification by dealing with system-level
transactions and by taking advantage of formal verification techniques where possible.

1.2.5 The business point of view

Our final question relates to business.
“How are the industrial activities shared between business partners?”

Integrated device manufacturer (IDM) is the name for a company that not only designs and
markets microchips but also operates its own wafer processing line, aka fab.
Examples: Intel, Samsung, Toshiba, ST-Microelectronics, Infineon, NXP Semiconductors.

Fabless vendor. A company that develops and markets proprietary semiconductor components

but has their manufacturing subcontracted to an independent silicon foundry rather than
operating any wafer processing facilities of its own.
Examples: Altera (FPL), Actel (FPL), Broadcom (networking components), Cirrus Logic-
Crystal (audio and video chips), Lattice Semiconductor (FPL), Nvidia (graphics accelera-
tors), PMC-Sierra (networking components), Qualcomm (CDMA wireless communication),
Ramtron (non-volatile memories), Sun Microystems (UltraSPARC processors), and Xilinx
(FPL). Please check [3] for a more complete picture.

Silicon foundry, albeit technically incorrect, has become the name for a company that operates
a complete wafer processing line and that offers its manufacturing services to others.
Examples: TSMC, UMC, etc.

Virtual component vendor. A fabless company that makes it a business to develop synthesis
packages and to license them to others for incorporation into their ICs.
Examples: ARM, Sci-worx, Synopsys (formerly InSilicon).
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behavioral
perspective
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Originally, all IC business had been confined to vertically integrated semiconductor companies that
designed and manufactured standard parts for the markets they perceived. Opening VLSI to other
companies was essential to instilling new and highly successful fabless business models. Three factors
came together in the 1980s to make this possible.

e Generous integration densities at low costs.
e Proliferation of high-performance engineering workstations and EDA software.
e Availability of know-how in VLSI design outside IC manufacturing companies.

This text is intended to contribute to the third item with a focus on synthesis-based design.

1.3 | Design flow in digital VLSI

1.3.1 The Y-chart, a map of digital electronic systems

The Y-chart by Gajski is very convenient for situating the various stages of digital design and the
numerous attempts to automate them. Three axes stand for three different ways to look at a digital
system and concentric circles represent various levels of abstraction, see fig.1.10.
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Fig. 1.10 The Y-chart of digital electronic systems.
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From a behavioral perspective we are interested only in what a circuit or system does, not in how
it is actually built. Put differently, the design is viewed as a black box that processes information
by producing some output symbols in response to some input symbols. What matters most is the
dependency of the output from past and present inputs, but timing relationships between input

data, output data, and some clock signal are also of interest.

A structural way of looking at electronic circuits is concerned with connectivity, that is with
the building blocks from which a circuit is composed and with how they connect to each other.
Given some behavioral specification, it is almost always possible to come up with more than one
network for implementing it. Structural alternatives typically differ in terms of circuit complexity,
performance, energy efficiency, and in other characteristics of practical interest such as parts list,

fabrication technology, testability, etc.

What counts from a physical point of view is how the various hardware components and wires are
arranged in the space available in a cabinet, on a board, or on a semiconductor chip. Again, there
is a one-to-many relationship between structural description and physical arrangement.

Examples of circuits viewed at different levels of abstraction and from all three perspectives have
been given in figs.1.7 and 1.9. Figure 1.11 adds more illustrations not presented so far. In addi-
tion, table 1.2 lists the objects that are of interest for the individual views. It is interesting to
note that different time units are used depending on the abstraction level on which behavior is
described.

Table 1.2 | Views and levels of abstraction in digital design.
level of concept
abstraction behavioral structural physical of time
system input/output system with chip, board, sequence,
relationship input/output or cabinet throughput
architecture bus functional organization partitioning, partial ordering
model (BFM) | into subsystems floorplan relationships
register data transfers ALUs, muxes, placement and clock cycles
transfer and operations and registers routing (cycle true)
logic truth tables, gates, latches, standard cells events, delays,
state graphs and flip-flops or components timing parameters®
electrical transfer transistors, detailed layout, continuous
functions wires, R, L, C mask polygons

@ Such as t,q, tsu, tho. Glitches are also accounted for at this level of abstraction.

1.3.2 Major stages in VLSI design

The development cycle of VLSI circuits comprises a multitude of steps that are going to be explained
in more detail next. The interplay of all such steps is illustrated by way of two drawings that partially
overlap. Figure 1.12 focusses on system-level issues and reduces all activities that are related to
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Fig. 1.11 More design views. Floorplan of a VLSI chip (a), software model (b), encapsulated chip (c),
graphical formalisms (d), transfer characteristic of an inverter (e), and block diagram (f) (simplified).

actual IC design to their simplest expression while fig.1.13 does the opposite. Again, figs.1.7, 1.9,

and 1.11 help to clarify

what is meant. Also keep in mind that this text focuses on the design of

hardware modules in a system and ignores all steps towards implementing its software components.

System-level design.
the final outcome

The decisions taken during this stage are most important as they determine
more than anything else does.

e Specify the functionality, operating conditions, and desired characteristics

(in terms of performance, power, form factor, costs, etc.) of the system to be.

Partition the

It is a characteris
expertise, and the

system’s functionality into subtasks.

Explore alternative hardware and software tradeoffs.
Decide on make or buy for all major building blocks.
Decide on interfaces and protocols for data exchange.
Decide on data formats, operating modes, exception-handling procedures, and the like.
Define, model, evaluate, and refine the various subtasks from a behavioral perspective.

tic trait of this stage that acceptance criteria, design procedures, design
software tools that are being put to service vary greatly with the nature

of the overall application and of the subsystem currently being considered.
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Figure 1.12 exposes another difficulty of system-level design that has its roots in the highly
heterogeneous nature of electronic systems. At various points, some fairly abstract design
description must be propagated from one software tool to the next. Yet, there are no math-
ematical formalisms and agreed-on computer languages of sufficient scope to capture a suf-
ficient portion of a system, let alone a system as a whole. The practical consequences are
that some specifications need to be manually restated several times, that simulations do not
extend over the entire system, and that certain aspects are being lost in the process.

Algorithm design. The central theme is to meet the data and/or signal processing requirements

defined before with a series of computations that are streamlined in view of their implemen-
tation in hardware. The subsequent assignments are part of algorithm design.

Coming up with a collection of suitable algorithms or computational paradigms.15

Cut down computational burden and memory requirements.

Find acceptable compromises between computational complexity and accuracy.
Analyze and contain effects of finite word-length computation.

Decide on number representation schemes.

Evaluate alternatives and select the one best suited for the situation at hand.

Quantify the minimum required computational resources (in terms of memory, word
widths, arithmetic and logic operations, and their frequencies of occurrence).

Algorithm design culminates in a bit-true software model which is indispensable for checking
figures of merit relevant for the application at hand, e.g. signal-to-noise ratio, coding gain,
data compression factor, error rate, and the like against specifications.

Architecture design. VLSI architects essentially decide on the necessary hardware resources and

organize their interplay in such a way as to implement a known computational algorithm
under the performance, cost, power, and other constraints imposed by the target application.
The hardware arrangement they have to come up with must capture the essential structural
characteristics of the future circuit but, at the same time, abstracts from implementation
details. Still, architecture design also implies selecting a target technology and taking into

account its possibilities and limitations.'®

Architecture design starts from fairly abstract notions of a circuit’s functionality and gradu-
ally proceeds to more detailed representations. The process is understood to happen in two
substages, namely high-level architecture design and register transfer-level design. The former
involves the following.

15

The term “computational paradigm” has been chosen to include finite state machines, cellular automata, neural
networks, fuzzy logic, and other computational schemes that are not necessarily covered by the word “algorithm”
as it is normally understood in the context of software engineering.

Take this as an analogy from everyday life. Assume you were given the recipe for a fantastic cake by your
grandmother and you were now to make a business out of it by setting up a bakery to mass-produce the cake.
The recipe corresponds to the algorithm or software model that specifies how the various ingredients must
be processed in order to obtain the final product. Architecture design can then be likened to deciding on the
mixers, kneaders, ovens, and other machines for processing the ingredients, and to planning the material flow
in an industrial bakery. Observe that you will arrive at different factory layouts depending on the quantity of

cakes that you intend to produce and depending on the availability and costs of labor and equipment.
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Partition a computational task in view of a hardware realization.

Organize the interplay of the various subtasks.

Decide on the hardware resources to allocate to each subtask (allocation).
Define datapaths and controllers.!”

Decide between off-chip RAMs, on-chip RAMs, and registers.

Decide on communication topologies and protocols (parallel, serial).

Define how much parallelism to provide in hardware.

Decide where to opt for pipelining and to what degree.

Decide on a circuit style, fabrication technology, and manufacturing process.
Decide what abstraction level to design at and what cell libraries to use, if any.
Get a first estimate of the circuit’s size and cost.

etc.

The result is captured in a high-level block diagram that includes datapaths, controllers,
memories, interfaces, and key signals. A preliminary floorplan is also being established. Veri-
fication of an architecture typically occurs by way of simulations, where each major building
block is represented by a behavioral model of its own.

The work is then carried down to the more detailed register transfer level (RTL) where
the circuit gets modelled as a collection of storage elements interconnected by purely combi-
national subcircuits. Relevant issues at this stage include

e How to implement arithmetic and logic units

(e.g. ripple-carry, carry-lookahead, carry-select).

Whether to use hardwired logic or microcode to implement a controller.
When to use a ROM rather than random logic.

What operations to perform during which clock cycle (scheduling).
What operations to carry out on which processing unit (binding).
Where to insert pipelining and shimming registers.

How to balance combinational depth between registers.

What clocking discipline to adopt.

What time interval to use as the basic clock period.

Where to use a bidirectional or a unidirectional bus, and where to prefer three-state bus
drivers over multiplexers.

By what test strategy is testability to be ensured.
e How to initialize the circuit.
e ctc.

The outcome is a set of more detailed diagrams that include every single register, mem-
ory, and major block of combinational logic. As opposed to gate-level schematics, however,
combinational functions are specified in behavioral rather than structural terms. Simulations
are instrumental in debugging the RTL code. The floorplan is refined on the basis of the
more detailed data that are now available and compared against the die size and cost tar-
gets for the final product. This is also the point to decide on the most appropriate design
level — synthesis, schematic entry, hand layout — for each circuit block.

17 These and other circuit-related terms are explained in section 1.7.
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Logic design. The translation into a gate-level netlist and its Boolean optimization are largely

automatic. The design is now definitively being committed to

e A fabrication depth (e.g. full-custom vs. semi-custom vs. FPL),

One or more cell libraries (e.g. by Artisan vs. LSI Logic vs. Xilinx),
A circuit style (e.g. static vs. dynamic CMOS logic),

A fabrication technology (e.g. CMOS vs. BICMOS), and

A manufacturing process (e.g. L130 by UMC vs. HCMOS9gp by ST).

The delays and energy-dissipation figures associated with the various computational and
storage operations are being calculated. Subcircuits that are found to limit performance
during pre-layout analysis are identified and redesigned or reoptimized where possible. The
result is a complete set of gate-level schematics and/or netlists validated by electrical rule
check (ERC), logic simulation, timing verification, and power estimation.

Improvement of testability. A malfunctioning IC is the result of design flaws, fabrication de-

fects, or both. Special provisions are necessary to ascertain the correct operation of millions
of transistors enclosed in a package with a couple of hundred pins at most. Design for
test (DFT) implies improving the controllability and observability of inner circuit nodes by

adding auxiliary circuitry on top of the payload logic.18

In addition, a test vector set is generated for distinguishing faulty circuits from correct ones.
Such a vector set typically includes thousands or millions of stimuli and expected responses.
In a procedure referred to as fault grading, testability is rated by relating the number of
fabrication defects that can in fact be detected with a test vector set under consideration
to the total number of conceivable faults. Both the test circuitry and the test patterns are
iteratively refined until a satisfactory fault coverage is obtained.

Physical design. Physical design addresses all issues of arranging the multitude of subcircuits

and devices along with their interconnections on a piece of semiconductor material. Floor-
planning is concerned with organizing the major circuit blocks into a rectangular area as
small as possible while, at the same time, limiting the effects of interconnect delays on the
chip’s performance.lg Chip-level power and clock distribution are also to be dealt with. A
padframe must be generated to hold the bond pads and the top-level layout blocks. During
the subsequent place and route (P&R) steps, each cell gets assigned a specific location on
the die before the courses of myriads of metal wires that are to carry electrical signals between
those cells get defined. It is often necessary to reoptimize the circuit logic as a function of
the estimated interconnect delays that become available during the process. The final phase

18

Standard techniques include block isolation, scan testing, and BIST. Block isolation makes major circuit blocks
accessible from outside a chip with the aid of extra multiplexers so that stimuli can be applied and responses
evaluated via package pins while in test mode. Scan testing is to be outlined in section 6.2.2. The idea behind
built-in self-test (BIST) is to move stimuli generation and response checking onto the chip itself, and to essentially
output a “go/no go” result [4]. BIST and block isolation are popular for testing on-chip memories. As DFT,
test vector preparation, and automated test equipment (ATE) are not part of this text, the reader is referred
to the specialized literature such as [5], for instance.

Floorplanning makes part of physical design much as layout design does. What is the difference then? As an
analogy, floorplanning is concerned with the partitioning of a flat into rooms and hallways whereas layout design

deals with tiny geometric patterns on a carpet.
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where the global wires running between padframe and core get routed is also known as chip
assembly.

As the inner layout details of the cells do not really matter for floorplanning, place, and
route, cells are typically abstracted to their outlines up to this point. To prepare for IC
manufacturing, detailed layout data must be filled in for those abstract views. The outcome
is a huge set of polygons that involves all mask layers. Prior to fabrication, the complete
layout data need to be checked carefully to protect against fatal mishaps. Physical design
verification relies on a number of software tools.

e Layout rule check — better known as design rule check (DRC) — examines
conformity of layout with geometric rules imposed by the target process.

e Manufacturability analysis searches for layout patterns likely to be

detrimental to the fabrication yield.

Layout extraction (re-)obtains the actual circuit netlist in preparation for

layout versus schematic (LVS) where it gets compared against the desired one.

Post-layout timing verification.

Post-layout simulation.

Sign-off. By accepting a design for prototype fabrication, an IC vendor commits himself to deliv-
ering circuits that behave like the post-layout simulation model (identical functionality for
the test vector set provided by the customer, same or better speed, same or lower power).
As no customer is willing to pay for fabricated parts that do not conform with this require-
ment, the vendor wants to make sure the design is consistent with good engineering practice
and with company-specific guidelines before doing so. DRC, manufacturability, ERC, LVS,
post-layout simulation, and fault coverage are routinely examined. Inspection often extends
to timing verification, clocking discipline, power and clock distribution, circuit design style,
test structures, and more.

A couple of comments are due after this rather general overview.

* In reality, the separation into individual subtasks is not as nice and clear as in fig.1.13. Various
side effects of deep submicron technologies and the quest for optimum results make it necessary
for most software tools to work across several levels of abstraction. As an example, it is no
longer possible to place and route a gate-level netlist without adapting the circuit logic as a
function of the resulting layout parasitics and interconnect delays. In the drawing, this gets
reflected by the joint refinement of layout data and netlists.

® Only ideally does design occur as a linear sequence of steps. Some back and forth between the
various subtasks is inevitable to obtain a truly satisfactory result. Also, not all design stages
are explicitly covered in every IC development project. Depending on the circuit’s nature,
fabrication depth, and design level, some of the design stages are skipped or outsourced, i.e.

delegated to specialists at third-party companies,20

20 The design of a simple glue logic chip, for instance, begins at the logic level as there are no algorithmic or

architectural questions to deal with. Models of industrial collaboration are to be discussed in section 13.2.
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Fig. 1.13 Digital VLSI design flow (simplified). See fig.1.14 for an explanation of symbols.
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* Note the presence of angular and rounded boxes in fig.1.13. While angular boxes refer to
construction activities, the rounded ones stand for analysis and verification steps. A backward
arrow implies that any problem uncovered during such an analysis triggers corrective action
by the designer. The results from construction steps are subject to immediate verification,
which is typical for VLSI.

The reason is that correcting a mistake becomes more and more onerous the further the design
process has progressed. Correcting a minor functional bug after layout design, for instance,
would require redoing several design stages and would waste many hours of labor and computer
time. Also, a functional bug can be uncovered more effectively from a behavioral or RTL model
than from a post-layout transistor-level netlist because simulation speed is orders of magnitude
higher and because automatic response checking is much easier to implement for logic and
numeric data types than for analog waveforms.

® A critical point is reached when first silicon is going to be produced. While it is possible
to cut and add wires using advanced and expensive equipment such as focused ion-beam
(FIB) technology to patch a malfunctioning prototype, there is virtually no way to fix bugs
in volume production. Depending on the circuit’s size, fabrication depth, process, and manu-
facturer, expenses somewhere between 12 kUSD and 1 MUSD are involved with preparation
of photomasks, tooling, wafer processing, preparation of probe cards and evaluation of pre-
production samples. Any design flaw found after prototype fabrication thus implies the waste
of important sums of money.

To make things worse, with turnaround times ranging between two weeks and three months,
a product’s arrival on the market is delayed so much that the chip is likely to miss its window
of opportunity.

Observation 1.2. Redesigns are so devastating for the business that the entire semiconductor
industry has committed itself to “first-time-right” design as a guiding principle. To avoid them,
VLSI engineers typically spend much more time verifying a circuit than actually designing it.

* Figure 1.13 also includes a number of forward arrows that bypass one or two construction
steps. They suggest how electronic design automation, cell libraries, and purchased know-how
help speed up the design process. Keeping pace with the breathtaking progress of fabrication
technology is in fact one of the major challenges for today’s VLSI designers.

* While there is not too much of a difference in the front-end flow, back-end design for field-
programmable logic (FPL) differs somewhat from that depicted in fig.1.13. The preliminary
gate-level netlist obtained from HDL synthesis is mapped onto configurable blocks available
in the target FPGA or CPLD device. After the EDA software has decided how to run all
necessary interconnects using the wires, switches, and drivers available, the result is converted
into a configuration bit stream for download into the FPL device. As FPGAs and CPLDs
come with many diverse architectures, product-specific back-end tools made available by the
FPL vendor are used for this procedure.

Observation 1.3. Whoever has learned to design full-custom ICs is in an excellent position for
designing semi-custom ICs and to design with field-programmable logic, but not necessarily the other
way round.
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1.3.3 Cell libraries
Library development occurs quite separately from actual IC design as cell-based circuits largely
dominate VLSL.?! Cell libraries are typically licensed to IC developers by specialized library vendors
since silicon vendors have largely withdrawn from this business.
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Fig. 1.14 Library design flow (simplified).

Once the set of prospective library cells has been defined functionally, library development proceeds
in three major phases, see fig.1.14. Electrical design deals with implementing logic functions as
transistor-level networks and with sizing the individual devices such as to find an optimum trade-off
between performance, circuit complexity, and energy efficiency.

During the subsequent layout design, the locations and geometric shapes of individual devices are
defined along with the shapes of the wires running in between. The goal is to obtain leaf cells that
are compact, fast, energy-efficient, suitable for automatic place and route (P&R), and that can be
manufactured with maximum yield.

Verification includes the customary ERC, DRC, manufacturability analysis, extraction, and LVS
procedures. Next the electrical and timing parameters that are to be included in data sheets and
simulation models of the cells are determined. This library characterization step typically relies

21 Semi-custom ICs and FPL rely on prefabricated primitives anyway.
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on repeated continuous-time continuous-value simulations under varying load, ramp, and operating

conditions.??

Designing, characterizing, documenting, and maintaining a cell library is a considerable effort as
multiple design views must be prepared for each cell, including

A datasheet with functional, electrical, and timing specifications.

A graphical icon or symbol for inclusion into schematic drawings.

An accurate behavioral model for simulation and timing analysis.

A set of simulation and test vectors.

A transistor-level netlist or schematic.

A detailed layout.

A simplified layout view showing cell outline and connector locations for the purpose of place

and route known as cell abstract, floorplanning abstract, or phantom cell.
Please refer back to fig.1.7 for illustrations.

In order to protect their investments, most library vendors consider their library cells to be propri-
etary and are not willing to disclose how they are constructed internally. They supply datasheets,
icons, simulation models, and abstracts, but no transistor-level schematics and no layouts. Under
this scheme, detailed layouts are to be substituted for all cell abstracts by the vendor before mask
preparation can begin. Note this extra step is reflected in fig.1.13.

1.3.4 Electronic design automation software

The VLSI industry long ago became entirely dependent on electronic design automation (EDA)
software. There is not one single step that could possibly be brought to an end without the assistance
of sophisticated computer programs. The sheer quantity of data necessary to describe a multi-million
transistor chip makes this impossible. The design flow outlined in the previous section gives a rough
idea of the variety of CAE/CAD programs that are required to pave the way for VLSI and FPL
design. Almost each box in fig.1.13 stands for yet another tool.

While a few vendors can take pride in offering a range of products that covers all stages from system-
level decision making down to physical layout, much of their effort tends to focus on relatively
small portions of the overall flow for reasons of market penetration and profitability. Frequent
mergers and acquisitions are another characteristic trait of the EDA industry. Truly integrated
design environments and seamless design flows are hardly available off the shelf.

Also, the idea of integrating numerous EDA tools over a common design database and with a
consistent user interface, once promoted as front-to-back environments, aka frameworks, has lost
momentum in the marketplace in favor of point tools and the “best in class” approach. Design
flows are typically pieced together from software components of various origins.23 The presence of
software tools, design kits, and cell libraries from multiple sources in conjunction with the absence of
agreed-on standards adds a lot of complexity to the maintainance of a coherent design environment.
Many of the practical difficulties with setting up efficient design flows are left to EDA customers

22 More details are to follow in section 12.7.

23 A very nice review of the evolution of the EDA industry is given in [6].
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and can sometimes become a real nightmare. It is to be hoped that this trend will be reversed one
day when customers are willing to pay more attention to design productivity than to layout density
and circuit performance.

1.4 | Field-programmable logic

The general idea behind programmable logic has been introduced in section 1.2.3. The goal of this
section is to explain the major differences that separate distinct product families from each other.
Key properties of any FPL device are fixed by decisions along two dimensions taken at development
time. A first choice refers to how the device is being configured and how its configuration is stored
electrically while a second choice is concerned with the overall organization of the hardware resources
available to customers. Customers, in this case, are design engineers who want to implement their
own circuits in an FPL device.

1.4.1 Configuration technologies

Static memory. The key element here is an electronic switch — such as a transmission gate, a
pass transistor, or a three-state buffer — that gets turned “on” or “off” under control of
a configuration bit. Unlimited reprogrammability is obtained from storing the configuration
data in SRAM cells or in similar on-chip subcircuits built from two cross-coupled inverters,
see fig.1.15a. As a major drawback, the circuit must (re)obtain its entire configuration from
outside whenever it is being powered up. The problem is solved in one of three possible ways,
namely

(a) by reading from a dedicated bit-serial or bit-parallel off-chip ROM,
(b) by downloading a bit stream from a host computer, or
(¢) by long-term battery backup.

Reconfigurability is very helpful for debugging. It permits one to probe inner nodes, to al-
ternate between normal operation and various diagnostic modes, and to patch a design once
a flaw has been located. Many RAM-based FPL devices further allow reconfiguring of their
inner logic during operation, a capability known as in-system configuration (ISC) that
opens a door towards configurable computing.

UV-erasable memory. Electrically programmable read-only memories (EPROM) rely on special
MOSFETs where a second gate electrode is sandwiched between the transistor’s bulk material
underneath and a control gate above, see fig.1.15b. The name floating gate captures the
fact that this gate is entirely surrounded by insulating silicon dioxide material. An electrical
charge trapped there determines whether the MOSFET, and hence the programmable link
too, is “on” or “off? 24

24 More precisely, the presence or absence of an electrical charge modifies the MOSFET’s threshold voltage and
so determines whether the transistor will conduct or not when a voltage is applied to its control gate during

memory readout operations.
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Fig. 1.15 FPL configuration technologies (simplified, programming circuitry not shown). Switch steered
by static memory cell (a), MOSFET controlled by a charge trapped on a floating gate (b), fuse (c), and
antifuse (d).

Charging occurs by way of hot electron injection from the channel. That is, a strong lateral
field applied between source and drain accelerates electrons to the point where they get
injected through the thin dielectric layer into the floating gate. The necessary programming
voltage in the order of 5 to 20 V is typically generated internally by an on-chip charge
pump.

Erasure of the charge is obtained by shining ultraviolet (UV) radiation on the chip, thereby
causing the charges to leak away from the floating gate. The necessary quartz window in the
plastic or ceramic package gives UV-erasable devices their unmistakable appearance but also
renders the package rather expensive.

UV-erasable devices are non-volatile and immediately live at power-up, thereby doing away
with the need for any kind of configuration-backup apparatus. Reprogramming necessitates
removing the component from the circuit board and placing it into a special UV eraser,
however, which is undesirable and often altogether impossible. This explains why EPROM-
based FPL devices — much like the memories themselves — have been superseded by parts
that are more convenient to reconfigure.

Electrically erasable memory. EEPROM technology borrows from UV-erasable memories. The
difference is that the electrons trapped on the floating gate are removed electrically by having
them tunnel through the oxide layer underneath the floating gate without exposure to ultra-
violet light, thereby making it possible to manufacture FPL devices that are non-volatile but
nevertheless reconfigurable through their package pins. The secret is a quantum-mechanical
effect known as Fowler-Nordheim tunneling that comes into play when a strong vertical field
(8-10 MV /cm or so) is applied across the gate oxide.
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Early electrically erasable devices were penalized by the fact that an EEPROM cell occupies
about twice as much area as its UV-erasable counterpart because each bit cell includes a select
transistor connected in series with the storage transistor. The flash memory technology
prevalent today manages with a single floating-gate transistor per bit. The fact that erasure
must occur in chunks, that is to say many bits at a time, is perfectly adequate in the context
of FPL. Data retention times vary between 10 and 40 years. Endurance of flash FPL is
typically specified with 100 to 1000 configure—erase cycles, which is much less than for flash
memory chips.

Fuse or antifuse. Fuses, which were used in earlier bipolar PROMs and SPLDs, are narrow bridges

of conducting material that blow in a controlled fashion when a programming current is
forced through. Antifuses, such as those employed in today’s FPGAs, are thin dielectrics
separating two conducting layers that are made to rupture upon applying a programming
voltage, thereby establishing a conductive path of low impedance.

In either case, programming is permanent. Whether this is desirable or not depends on the
application. Full factory testing prior to programming of one-time programmable links is
impossible for obvious reasons. Special circuitry is incorporated to test the logic devices and
routing tracks at the manufacturer before the unprogrammed devices are being shipped. On
the other hand, antifuses are only about the size of a contact or via and, therefore, allow for
higher densities than reprogrammable links, see fig.1.15¢ and d. Antifuse-based FPL is also
less sensitive to radiation effects, offers superior protection against unauthorized cloning, and
does not need to be configured following power-up.

Table 1.3 | FPL configuration technologies and their key characteristics.

Non- | Live at | Reconfi- | Unlimited | Radiation Area Extra
Configuration vola- | power- gurable endu- tolerance | occupation | fabr.
technology tile up rance of config. per link steps
SRAM no no in circuit yes poor large 0
EPROM yes yes out of no good small 3
circuit in array
Electr. erasable yes yes in circuit good >5
EEPROM no 2-EPROM
Flash memory no ~EPROM
Antifuse PROM yes yes no n.a. best small 3

1.4.2 Organization of hardware resources

Simple programmable logic devices (SPLDs). Historically, FPL has evolved from purely com-

binational devices with just one or two programmable levels of logic such as ROMs, PALs,
and PLAs. Flip-flops and local feedback paths were added later to allow for the construction
of finite state machines, see fig.1.16a and b. Products of this kind continue to be commercially
available for glue logic applications. Classic SPLD examples include the 18P8 (combinational)
and the 22V10 (sequential).
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Fig. 1.16 General architecture of CPLDs (c) along with precursors (a,b).

The rigid two-level-logic-plus-register architecture in conjunction with the limited numbers of inputs,
outputs, product terms, and flip-flops always restricted SPLDs to small applications. More scalable
and flexible architectures had thus to be sought, and the spectacular progress of VLSI technology

has made their implementation economically feasible from the late 1980s onwards. Two broad classes

of hardware organization prevail today.

Complex programmable logic devices (CPLDs) expand the general idea behind SPLDs by

providing many of them on a single chip. Up to hundreds of identical subcircuits, each of which
conforms to a classic SPLD, are combined with a large programmable interconnect matrix or
network, see fig.1.16¢c. A difficulty with this type of organization is that a partitioning into a
bunch of cooperating SPLDs has to be imposed artificially on any given computational task,
which benefits neither hardware nor design efficiency.

Depending on the manufacturer, products are known as complex programmable logic device
(CPLD), programmable large-scale integration (PLSI), erasable programmable logic device
(EPLD), and the like in the commercial world.

Field-programmable gate arrays (FPGAs) have their overall organization patterned after that

of gate arrays. Many configurable logic cells are arranged in a two-dimensional array with
bundles of parallel wires in between. A switchbox is present wherever two wiring channels
intersect, see ﬁg.l.l?.25 Depending on the product, each logic cell can be configured so as
to carry out some not-too-complex combinational operation, to store a bit or two, or both.

25 While it is correct to think of alternating cells and wiring channels from a conceptual point of view, you

will hardly be able to discern them under a microscope. The reason is that logic and wiring resources are

superimposed for the sake of layout density in modern FPGA chips.
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Fig. 1.17 General architecture of FPGAs.

As opposed to traditional gate arrays, it is the state of programmable links rather than
fabrication masks that decides on logic functions and signal routing.

Parts with this organization are being promoted under names such as field-programmable
gate array (FPGA), logic cell array (LCA), and programmable multilevel device (PMD).
The number of configurable logic cells greatly varies between products, with typical figures
ranging between a few dozens and hundreds of thousands.

FPGA architectures are differentiated further depending on the granularity and capabilities
of the configurable logic cells employed. One speaks of a fine-grained architecture when
those cells are so simple that they are capable of implementing no more than a few logic
gates and/or one bistable. In the example depicted in fig.1.18a, for instance, each logic cell
can be configured into a latch, or a flip-flop, or into almost any 3-input gate.

As opposed to this, cells that are designed to implement combinational functions of four
to six input variables and that are capable of storing two or more bits at a time are referred
to as coarse-grained. The logic cell of fig.1.18b has 16 inputs and 11 outputs, and includes
two programmable look-up tables (LUTSs), two generic bistables that can be configured either
into a latch or a flip-flop, a bunch of configurable multiplexers, a fast carry chain, plus other
gates. Of course, the superior functional capabilities offered by a coarse-grained cell are

accompanied by a larger area occupation.26

The gate-level netlists produced by automatic synthesis map more naturally onto fine-grained
architectures. The fact that fine-grained FPGAs and semi-custom ICs provide similar primi-
tives further supports extensive reuse of design flows, HDL code, building blocks, and design

26 Incidentally note that FPL vendors refer to configurable logic cells by proprietary names. “Logic tile” is Actel’s
term for their fine-grained cells whereas Xilinx uses the name “configurable logic block” (CLB) for their coarse-
grained counterparts. Depending on the product family, one CLB consists of two or three LUTs plus two flip-flops
or of several “slices”, each of which includes one LUT and one bistable. “Module” and “eCell”are commercial

names used by other vendors.
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know-how. It thus becomes practical to move back and forth between field- and mask-
programmed circuits with little overhead and to postpone any final commitment until fairly
late in the design cycle. Conversely, fine-grained FPGAs tend to be more wasteful in terms
of configuration bits and routing resources.

Another reason that contributed to the popularity of coarse-grained FPGAs is that on-chip
RAMs come at little extra cost when that architectural concept is combined with configura-
tion from static memory. In fact, a reprogrammable LUT is nothing else than a tiny storage
array. It is thus possible to bind together multiple logic cells in such a way as to make them
act collectively like a larger RAM. As opposed to many other types of FPGAs, there is no
compelling need to set aside special die areas for embedded SRAMs. In the occurrence of
fig.1.18b, each of the two larger LUTSs in each logic tile contributes another 16 bits of storage
capacity.

1.4.3 Commercial products

Table 1.4 classifies major CPLD and FPGA product families along the two dimensions configura-
tion technology and hardware organization. These are not the only features that distinguish the
numerous commercial products from each other, however. Most vendors combine field-programmable

Table 1.4 | Commercial field-programmable logic device families.

overall organization of resources

configuration CPLD FPGA
technology coarse-grained fine-grained
static Xilinx Spartan, Virtex. | Atmel AT6000,
memory Lattice SC, EC, ECP. AT40K.
(SRAM) Altera FLEX, APEX,
Stratix, Cyclone.
eASIC Nextreme SL®
UV-erasable Cypress MAX340°
(EPROM)
electrically Xilinx XC9500, Lattice XP€, Actel ProASIC
erasable CoolRunner-II. MACH XO. ProASICw,
(flash) Altera MAX3000, 7000. Fusion,
Lattice MACH 1,...,5. Igloo.
Cypress Delta39K,
Ultra37000.

antifuse QuickLogic Eclipse II, Actel MX,
(PROM) PolarPro. Axcelerator AX.

% Combines RAM-configurable LUTs with e-beam single via-layer customization for interconnect.
Remaining inventory transferred to Arrow/Zeus Electronics in 2006.
¢ Combines on-chip flash memory with an SRAM-type configuration memory.

4 Mixed-signal FPGAs with on-chip analog-to-digital converters and optional processor core.
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Fig. 1.18 Fine-grained vs. coarse-grained FPGAs. A small (Actel ProASIC) (a) and a large logic cell (Xilinx
Virtex-4, simplified) (b).
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logic with major hardwired subfunctions on a single die. SRAMs, FIFOs, phase-locked loops
(PLLs), processor cores (e.g. PowerPC, ARM), and standard interfaces (PCI, USB, FireWire,
Ethernet, WLAN, JTAG, LVDS, clock recovery circuits, etc.) are typical building blocks embedded
within FPGA chips. The intention behind all such extensions is to help customers reduce time to
market [7].

In addition to FPL, field-programmable analog arrays (FPAAs) began to appear on the market
in the late 1990s. The next logical step was the extension to mixed-signal applications. Advanced
products that combine configurable analog building blocks with a micro- or digital signal processor
and with analog-to-digital and digital-to-analog converters come quite close to the vision of field-
programmable systems on a chip. Vendors of field-programmable analog and mixed-signal arrays
include Anadigm, Actel, Cypress, Lattice, and Zetex FAS.

Technical details on commercial FPL devices are distributed over thousands of datasheets, [8] [9]
help to keep track of products and manufacturers. More condensed background information is
available from references such as [10] [11] [12].

Capacity figures of semi-custom ICs and FPL may be confusing. As opposed to full-custom ICs,
manufactured gates, usable gates, and actual gates are not the same. Mlanufactured gates indicate
the total number of GEs that are physically present on a silicon die. A substantial fraction thereof
is not usable in practice because the combinational functions in a given design do not fit into the
available look-up tables exactly, because an FPL device only rarely includes combinational and
storage resources with the desired proportions, and because of limited interconnect resources. The
percentage of usable gates thus depends on the application. The actual gate count, finally, tells
how many GEs are indeed put to service by a given design. The three figures frequently get muddled
up, all too often in a deliberate attempt to make one product look better than its competitors in
advertisements, product charts, and datasheets. Some FPL vendors prefer to specify the available
resources using their own proprietary capacity units rather than in gate equivalents.

Hint: It often pays to conduct benchmarks with a few representative designs before undertak-
ing serious cost calculations and making a misguided choice. This also helps to obtain realistic
timing figures that take into account interconnect delays.

1.5 | Problems

1. Various examples of design views have been given in figs.1.7, 1.9, and 1.11. Locate them in
the Y-chart of fig.1.10.

2. Think of some industrial product family of your own liking (record player/MP3 player, mo-
bile phone, (digital) camera, TV set/video recorder; car, locomotive, airplane; computer, pho-
tocopier, building control equipment, etc.). Discuss what microelectronics has contributed
towards making these products possible in their present form. How has the microelectronic
content evolved over the years? Where do you see challenges for improving these products and
their microelectronic content?
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1.6 | Appendix |: A brief glossary of logic families

A logic family is a collection of digital subfunctions that

e support the construction of arbitrary logic, arithmetic, and storage functions,
e are compatible among themselves electrically, and
e share a common fabrication technology.

A logic family must be available either as physical parts (SSI/MSI/LSI components for board design)
or in virtual form as a set of library cells to be instantiated and manufactured together on a die of
semiconductor material (for IC design).

Table 1.5 ‘ Major semiconductor technologies and logic families with their acronyms.

‘ Acronym Meaning
MOS Metal Oxide Semiconductor.
FET Field Effect Transistor (either of n- or p-channel type).
BJT Bipolar Junction Transistor (either of npn or pnp type).
NMOS n-channel MOS (transistor, circuit style, or fabrication technology).
PMOS p-channel MOS (transistor, circuit style, or fabrication technology).
CMOS Complementary MOS (circuit style or fabrication technology) where

pairs of n- and p-channel MOSFETSs cooperate in each logic gate;
features zero quiescent power dissipation, or almost so; supply
voltages have evolved from up to 15 V down to 1 V and less.
static CMOS circuit style that supports suspending all switching activities
indefinitely and in any state with no loss of state or data.
dynamic CMOS | circuit style where data and/or state are kept as electrical charges
that need to be refreshed or computed anew at regular intervals
as data and/or state are otherwise lost.

TTL Transistor Transistor Logic, made up of BJTs and passive devices;
first logic family to gain wide-spread acceptance as SSI/MSI parts,
has evolved over many generations, all of which share a 5 V supply.

ECL Emitter-Coupled Logic, non-saturating current switching circuits
built on the basis of BJTs, provides complementary outputs with
a mere 0.5 V swing; exhibits prohibitive static power dissipation.
BiCMOS CMOS subcircuits combined with bipolar devices on a single chip.

Originally a low-power but slow alternative to TTL, CMOS has become the technology that almost
totally dominates VLSI today. This is essentially because layout density, operating speed, energy
efficiency, and manufacturing costs have benefited and continue to benefit from the geometric down-
scaling that comes with every process generation. In addition, the simplicity and comparatively low
power dissipation of CMOS circuits have allowed for integration densities not possible on the basis
of BJTs, also see fig.1.19.
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Fig. 1.19 Major logic families exemplified by way of a 2-input NAND gate. Icon (d), PMOS (a), NMOS (b),
static CMOS (c), TTL (e,f), and ECL circuits (g). (e) shows the original multi-emitter structure that gave TTL
its name whereas (f) refers to a more recent F generation part that includes many auxiliary devices for clamping

and speed-up. Observe how disparate one gate equivalent (GE) can be.
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The focus of this text is on static circuits in CMOS technology. However, as designing digital VLSI
systems and developing with PLDs only loosely depend on technology, the discussion of further
details is postponed to forthcoming chapters, notably 8 and 14.

1.7 | Appendix II: An illustrated glossary of circuit-related terms

Table 1.6 lists important terms from digital circuits, microelectronics, and electronic design automa-
tion (EDA). Two illustrations follow. Figure 1.20 identifies most of the underlying concepts by way
of a circuit diagram while fig.1.21 shows how they reflect in a hardware description language (HDL)
model. Although those concepts are applied throughout the EDA community, the terms being used
and their meanings vary from one company to the next.

Note the difference between a schematic and a netlist. Either one unambiguously specifies a circuit
as a collection of components with their interconnections. On top of this, schematic data include
information that indicate where and how to draw icons, wires, busses, and the like on a computer
screen or on a piece of paper. While totally irrelevant from an electrical or functional point of
view, the graphical arrangement matters when humans want to grasp a circuit’s organization and
understand its operation. A netlist is easily derived from a schematic, but the converse is not
obvious. Except for trivial examples, circuit diagrams obtained from netlists by automatic means
lack the clarity and expressiveness of human-made schematics.

general term

circuit model

I
I
v

(instance) <component> leaf cell
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Fig. 1.20 Circuit-related terms illustrated by way of a schematic drawing. Make sure you understand why U2
and U3 relate to the same component but to distinct instances. Also note that “inv” and “xo02" are leaf cells
whereas “binaryenc” and “regwide2” are not.
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program library

program package ™ ‘
“["Tibrary IEEE; |

use IEE®.std logic 1164.all;

F library STDCELLS;
component library “Use STDCELLS.logicgates.all;

v
entity codeconverter is
clock input port (
"77t--» CP : in std_logic;
DAT : in std_logic_vector(2 downto 0)

___..-» BANTI, CVDl, CVD2 : out std_logic );
end codeconverter;

R R R

architecture structural of codeconverter is

-- list non-library components to be used
component binaryenc

BITA, BITB : out std_logic );
end component;
component regwide2
port ( CLK: in std_logic;

end component;

-- declare internal signals
signal N1, N2, N3, N4 : std logic;

begin

""™™ Ul binaryenc
vz, inv BITA=>N2, BITB=>N1 );

= 4
-~~~ _.-7 port map ( A=>N1, Z=>N3 );

.-~ U3: inv 3

T port map ( A=>N2, Z=>N4 );

leaf cell "~ U4: regwide2 \J
RRRE S port map ( CLK=>CP, D(1)=>N3, D(0)=>

U5 x02 Q(1)=>CvD1l, Q(0)=>CVD2 );
port map ( A=>N3, B=>N4, Z=>ANTI );

end structural;

port ( INP1, INP2, INP3 : in std_logic;

D : in std_logic_vector(1l downto 0);
Q : out std_logic_vector(l downto 0 );

-- instantiate components and interconnect them

port map ( INP1=>DAT(2), INP2=>DAT(1), INP3=>DAT(0),

2 oo

4,

( instance connector >
----/"node or net

Fig. 1.21 Circuit- and software-related terms in a structural VHDL model. Note that the only way to identify a

clock in a port clause is by way of its name. Similarly, the lexical name is the only way to distinguish between

leaf cells and other components in an architecture body.

Relating to information-processing hardware, datapath is a generic term for all those subcircuits

that manipulate payload data, see fig.1.22. That is, a datapath is not confined to arithmetic/logic

units (ALUs) that carry out operations on data words, but also includes short-term data storage

(accumulators, registers, FIFOs) plus the necessary data routing facilities (busses and switches).

Datapaths tend to be highly regular as similar functions are carried out on multiple bits at a time.

Datapath operation is governed by a control section that also coordinates activities with surrounding

circuits. The controller does so by interpreting various status signals and by piloting datapath

operation via control signals in response. A controller is implemented as a hardwired finite state
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Table 1.6 | A glossary of terms from electronic design.
General term Synopsys | Meaning
lingo
Circuit elements
circuit model design a description of an electronic circuit or subcircuit
component reference | a self-contained subcircuit of well-defined functionality
component library | library a named collection of components
(leaf) cell reference | an atomic component typically available from a library
that cannot be decomposed into smaller components
instance cell one specific copy of a subcircuit that is being used
as part of a larger circuit
Interconnect
node aka net net an electrical node or — which is the same thing — a wire
that runs between two or more (instance) connectors
port aka terminal port a node that can be electrically contacted
aka connector from the next higher level of circuit hierarchy
instance connector | pin a connector of an instance
clock input clock a connector explicitly defined as clock source
bus bus a named set of nodes with cardinality > 1
special net a net not shown but tacitly implied in schematics,
examples: ground and power
Circuit drawings
icon aka symbol symbol a graphical symbol for a component or a connector
schematic schematic | a drawing of a (sub)circuit that is made up of icons and
diagram of wires where the latter are graphically shown as lines
netlist netlist a data structure that captures what instances make
up a (sub)circuit and how they are interconnected
breakout ripper a special icon that indicates where a net or a subbus
leaves or enters the graphical representation for a bus
Integrated circuits
die aka chip a fully processed but unencapsulated IC
package the encapsulation around a die
(package) pin a connector on the outside of an IC package
pad pad a connector on a die that is intended to be wired
or otherwise electrically connected to a package pin;
the term is often meant to include interface circuitry
HDL software
program package package a named collection of data types, subprograms, etc.
program library library a named repository for compiled program packages
Functional verification
model under test design... | a circuit model subject to simulation

circuit under test

a physical circuit, e.g. a chip, subject to testing
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Table 1.6 (Cont.)

General term Synopsys | Meaning
lingo

testbench HDL code written for driving the simulation of a model
under test not meant to be turned into a physical circuit

Layout items

layout a 2D drawing that captures a component’s detailed
geometry layer by layer and that guides IC fabrication

(cell) row many standard cells arranged in a row such as to share
common ground lines, power lines, and wells

well a volume that accommodates MOSFETSs of identical polarity;
doping is opposite to the source and drain islands embedded

row end cell a special cell void of functionality to be instantiated
at either end of a cell row to properly end the wells

filler cell a special cell void of functionality to be instantiated
between two regular cells to add decoupling capacitance
typically where dense wiring asks for extra room anyway

tie-off cell a special cell void of functionality to be instantiated
where a regular net must connect to ground or power
cell outline a simplified view where a cell’s layout is reduced to
aka abstract the outline and the locations of all of its connectors
routing channel space set aside between adjacent cell rows for wiring,
no longer needed with today’s multi-metal processes
contact a galvanic connection between a metal and a silicon layer
via a galvanic connection between two superimposed metal layers
bonding area a square opening in the protective overglass exposing a

die’s top-level metal for connecting to a package pin

machine (FSM), as a stored program (program counter plus microcoded instruction sequence), or
as a combination of the two. In a computer-type architecture, all facilities dedicated to the sole
purpose of address processing must be considered part of the controller, not of the datapath, even
if they are ALUs or registers by nature.

datapath section control section
input datai ihigher—level control

control signals

; . finite state machines
data processing units, - \V, ! ; )
ata storage, and w RAM MUX i ROM m Ir?:rtél\:\ztrlgg If)?:)?cu,eonrcgr?)}
data switches > combination thereof

ALU status signals

output data i i higher-level status

Fig. 1.22 Interplay of datapath and controller in a typical information-processing circuit.




Chapter 2

From Algorithms to Architectures

2.1 | The goals of architecture design

VLSI architecture design is concerned with deciding on the necessary hardware resources for solving
problems from data and/or signal processing and with organizing their interplay in such a way as
to meet target specifications defined by marketing.

The foremost concern is to get the desired functionality right. The second priority is to meet
some given performance target, often expressed in terms of data throughput or operation rate. A
third objective, of economic nature this time, is to minimize production costs. Assuming a given
fabrication process, this implies minimizing circuit size and maximizing fabrication yield so as to
obtain as many functioning parts per processed wafer as possible.1

Another general concern in VLSI design is energy efficiency. Battery-operated equipment, such as
hand-held cellular phones, laptop computers, digital hearing aids, etc., obviously imposes stringent
limits on the acceptable power consumption. It is perhaps less evident that energy efficiency is also
of interest when power gets supplied from the mains. The reason for this is the cost of removing
the heat generated by high-performance high-density ICs. While the VLSI designer is challenged to
meet a given performance figure at minimum power in the former case, maximizing performance
within a limited power budget is what is sought in the latter.

The ability to change from one mode of operation to another in very little time, and the flexibility
to accommodate evolving needs and/or to upgrade to future standards are other highly desirable
qualities and subsumed here under the term agility. Last but not least, two distinct architectures
are likely to differ in terms of the overall engineering effort required to work them out in full
detail and, hence also, in their respective times to market.

! The problems and methods associated with making sure functionality is implemented correctly are addressed in
chapter 3. Yield and cost models are discussed in chapter 13 along with other business issues that relate to VLSI

design and manufacturing.
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2.1.1 Agenda

Driven by dissimilar applications and priorities, hardware engineers have, over the years, devised
a multitude of very diverse architectural concepts which we will try to put into perspective in this
chapter. Section 2.2 opposes program-controlled and hardwired hardware concepts before showing
how their respective strengths can be combined into one architecture. After the necessary ground-
work for architectural analysis has been laid in section 2.3, subsequent sections will then discuss how
to select, arrange, and improve the necessary hardware resources in an efficient way with a focus
on dedicated architectures. Section 2.4 is concerned with organizing computations of combinational
nature. Section 2.6 extends our analysis to nonrecursive sequential computations before timewise
recursive computations are addressed in section 2.7. Finally, section 2.8 generalizes our findings to
other than word-level computations on real numbers. Inserted in between is section 2.5 that discusses
the options available for temporarily storing data and their implications for architectural decisions.

2.2 | The architectural antipodes

Given some computational task, one basically has the choice of writing program code and running
it on a program-controlled machine, such as a microprocessor or a digital signal processor (DSP), or
of coming up with a hardwired electronic circuit that carries out the necessary computation steps.
This fundamental dichotomy, which is described in more detail in table 2.1, implies that a systems
engineer has to make a choice:

a) Select a processor-type general-purpose architecture and write program code for it, or
b) Tailor a dedicated hardware architecture for the specific computational needs.

Deciding between a general-purpose processor and an architecture dedicated to the application at
hand is a major decision that has to be made before embarking on the design of a complex circuit.
A great advantage of commercial microprocessors is that developers can focus on higher-level issues
such as functionality and system-level architecture right away. There is no need for them to address
all those exacting chores that burden semi- and — even more so — full-custom design.2 In addition,
there is no need for custom fabrication masks.

Observation 2.1. Opting for commercial instruction-set processors and/or FPL sidesteps many
technical issues that absorb much attention when a custom IC is to be designed instead. Conversely, it
is precisely the focus on the payload computations, and the absence of programming and configuration
overhead together with the full control over every aspect of architecture, circuit, and layout design
that make it possible to optimize performance and energy efficiency.

Circuit examples where dedicated architectures outperform instruction set computers follow.

2 Such as power distribution, clock preparation and distribution, input/output design, physical design and verifi-
cation, signal integrity, electrical overstress protection, wafer testing, and package selection, all to be discussed
in forthcoming chapters. Setting up a working CAE/CAD design flow typically also is a major stumbling block,
to say nothing of estimating sales volume, hitting a narrow window of opportunity, finding the right partners,
and providing the necessary resources, in-house expertise, and investments. Also note that field-programmable

logic (FPL) frees developers from dealing with many of these issues too.
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Table 2.1 | The architectural antipodes compared.
Hardware architecture
General purpose Special purpose
Algorithm any, not known a priori fixed, must be known
Architecture instruction set processor, dedicated design,

von Neumann or Harvard style

no single established pattern

Execution model

fetch—load—execute—store cycle
“instruction-oriented”

process data item and pass on
“dataflow-oriented”

benchmark programs

Datapath universal operations, specific operations only,
ALU(s) plus memory customized design
Controller with program microcode typically hardwired
Performance instructions per second, data throughput,
indicator run time of various can be anticipated

analytically

Paradigm from
manufacturing

craftsman in his machine shop
working according to
different plans every day

division of labor in a factory
set up for smooth production
of a few closely related goods

Possible hardware
implementations

standard pC|DSP components
or ASIC with on-chip pC|DSP

ASIC of dedicated architecture
or FPL (FPGA|CPLD)

Engineering effort

mostly software design

mostly hardware design

Strengths

highly flexible,
immediately available,
routine design flow,
low up-front costs

room for max. performance,
highly energy-efficient,
lean circuitry

Upon closer inspection, one finds that dedicated architectures fare much better in terms of per-
formance and/or dissipated energy than even the best commercially available general-purpose pro-
cessors in some situations, whereas they prove a dreadful waste of both hardware and engineering
resources in others.

Algorithms that are very irregular, highly data-dependent, and memory-hungry are unsuitable for
dedicated architectures. Situations of this kind are found in electronic data processing such as
databank applications, accounting, and reactive syst;ems3 like industrial control,* user interfaces,

3 A system is said to be reactive if it interacts continuously with an environment, at a speed imposed by that

environment. The system deals with events and the mathematical formalisms for describing them aim at capturing

the complex ordering and causality relations between events that may occur at the inputs and the corresponding

reactions events themselves at the outputs. Examples: elevators, protocol handlers, anti-lock brakes, process
controllers, graphical user interfaces, operating systems.

As opposed to this, a transformatorial system accepts new input values often at regular intervals
uses them to compute output values, and then rests until the subsequent data items arrive. The system is
essentially concerned with arithmetic/logic processing of data values. Formalisms for describing transformatorial
systems capture the numerical dependencies between the various data items involved. Examples: filtering, data
compression, ciphering, pattern recognition, and other applications colloquially referred to as number crunching
but also compilers and payroll programs.

4 Control in the sense of the German “programmierte Steuerungen” not “Regelungstechnik”.
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Fig. 2.1 Program-controlled general-purpose processor (a) and dedicated (special-purpose) hardware structure

(b) as architectural antipodes.

and others. In search of optimal architectures for such applications, one will invariably arrive at

hardware structures patterned after instruction set processors. Writing code for a standard micro-

computer — either bought as a physical part or incorporated into an ASIC as a megacell or as a

virtual component

is more efficient and more economic in this case.

Situations where data streams are to be processed in fairly regular ways offer far more room for

coming up with dedicated architectures. Impressive gains in performance and energy efficiency over

solutions based on general-purpose parts can then be obtained, see tables 2.2, 2.3, 2.4, and 2.5

among other examples.

Generally speaking, situations that favor dedicated architectures are often found in real-time appli-

cations from digital signal processing and telecommunications such as

(De)ciphering (primarily for secret key ciphers),
Channel coding (i.e. error correction),

Source coding (i.e. data, audio, and video (de)compression),

Digital (de)modulation (for modems, wireless communication, and disk drives),
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FEzxzample

Table 2.2 | Comparison of architectural alternatives for a Viterbi decoder (code rate %, constraint
length 7, soft decision decoding, Euclidean distance metric). DSPs are at their best for sustained
multiply—accumulate operations and offer word widths of 32 bit or so. However, as the Viterbi
algorithm can be arranged to make no use of multiplication and to make do with word widths of
6 bit or less, DSPs cannot take advantage of these resources. A pipeline of tailor-made stages
optimized for branch metric computation, path metric update, and survivor path traceback
operations, in contrast, makes it possible to exploit the parallelism inherent in the Viterbi
algorithm. Diverse throughput requirements can be accommodated by trading the number of
computational units in each stage for throughput. Sophisticated DSPs, such as the C6455, include
an extra coprocessor to accelerate path metric update and survivor traceback.

Architecture General purpose Special purpose
Key component DSP ASIC
TT TMS320C6455 sem03w6 sem05w1
without with ETH ETH
Viterbi coprocessor VCP2
Number of chips 1 1 1 1
CMOS process 90 nm 90 nm 250 nm 250 nm
Program code 187 kiByte | 242 kiByte none none
Circuit size n.a. n.a. 73 kGE 46 kGE
Max. throughput || 45 kbit/s 9 Mbit/s 310 Mbit/s | 54 Mbit/s
@ clock 1 GHz 1 GHz 310 MHz 54 MHz
Power dissipation || 2.1 W 21 W 19 W 50 mW
Year 2005 2005 2004 2006
O
FEzxzample

Table 2.3 ‘ Comparison of architectural alternatives for a secret-key block encryption/decryption
algorithm (IDEA cipher as shown in fig.2.14, block size 64 bit, key length 128 bit). The clear edge
of the VINCI ASIC is due to a high degree of parallelism in its datapath and, more particularly,
to the presence of four pipelined computational units for multiplication modulo (216 + 1) designed
in full-custom layout that operate concurrently and continuously. The more recent IDEA kernel
combines a deep submicron fabrication process with four highly optimized arithmetic units.
Full-custom layout was no longer needed to achieve superior performance.

Architecture General purpose Special purpose
Key component DSP RISC Workst. | ASSP ASSP
Motorola 56001 | Sun Ultra 10 | VINCI [13] | IDEA Kernel

Number of chips 1 + memory motherboard 1 1

CMOS process n.a. n.a. 1.2 um 250 nm

Max. throughput || 1.25 Mbit/s 13.1 Mbit/s 177 Mbit/s | 700 Mbit/s
@ clock 40 MHz 333 MHz 25 MHz 100 MHz

Year 1995 1998 1992 1998
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Table 2.4
Ziv-T7 algorithm that heavily relies on string matching operations [14]. The dedicated hard-

Comparison of architectural alternatives for lossless data compression with the Lempel-

ware architecture is implemented on a reconfigurable coprocessor board built around four field-
programmable gate-array components. 512 special-purpose processing elements are made to carry
out string comparison subfunctions in parallel. The content-addressed symbol memory is essentially
organized as a shift register, thereby giving simultaneous access to all entries. Of course, the two
software implementations obtained from compiling C source code cannot nearly provide a similar
degree of concurrency.

Architecture General purpose Special purpose
Key component RISC Workst. | CISC Workst. | FPGA Xilinx
Sun Ultra II Intel Xeon XC4036XLA
Number of chips motherboard motherboard 4 + config.
CMOS process n.a. n.a. n.a.
Max. throughput | 3.8 Mbit/s 5.2 Mbit/s 128 Mbit/s
@ clock 300 MHz 450 MHz 16 MHz

Year 1997 1999 1999

O

Ezample

Table 2.5 ‘ Comparison of architectural alternatives for a secret-key block encryption/decryption
algorithm (AES cipher, block size 128 bit, key length 128 bit). The Rijndael algorithm makes
extensive use of a so-called S-Box function and its inverse; the three hardware implementations
include multiple look-up tables (LUTSs) for implementing that function. Also, (de)ciphering and
subkey preparation are carried out concurrently by separate hardware units. On that background,
the throughput of the assembly language program running on a Pentium III is indeed impressive.
This largely is because the Rijndael algorithm has been designed with the Pentium architecture
in mind (MMX instructions, LUTs that fit into cache memory, etc.). Power dissipation remains
daunting, though.

Architecture General purpose Special purpose
Key component RISC Proc. CISC Proc. FPGA ASIC ASIC
Embedded Pentium III Virtex-I1 CryptoFun | core only
Sparc Amphion ETH UCLA [15]
Number of chips motherboard | motherboard | 1 + config. | 1 1
Programming C Assembler none none none
Circuit size n.a. n.a. n.a. 76 kGE 173 kGE
CMOS process n.a. n.a. 150 nm 180 nm 180 nm
Max. throughput || 133 kbit/s 648 Mbit /s 1.32 Gbit/s | 2.00 Gbit/s | 1.6 Gbit/s
@ clock 120 MHz 1.13 GHz n.a. 172 MHz 125 MHz
Power dissipation || 120 mW 414W 490 mW n.a. 56 mW¢*
@ supply 1.5V 1.8V 1.8V
Year n.a. 2000 ~2002 2007 2002

® Most likely specified for core logic alone, that is without I/O circuitry.

O
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Adaptive channel equalization (after transmission over copper lines and optical fibers),
Filtering (for noise cancellation, preprocessing, spectral shaping, etc.),

Multipath combiners in broadband wireless access networks (RAKE, MIMO),

Digital beamforming with phased-array antennas (Radar),

Computer graphics and video rendering,

Multimedia (e.g. MPEG, HDTV),

Packet switching (e.g. ATM, IP),

transcoding (e.g. between various multimedia formats),

Medical signal processing,

Pattern recognition, and more.

Observation 2.2. Processing algorithms and hardware architectures are intimately related. While
dedicated architectures outperform program-controlled processors by orders of magnitude in many
applications of predominantly transformatorial nature, they cannot rival the agility and economy of
processor-type designs in others of more reactive nature.

More precise criteria for finding out whether a dedicated architecture can be an option or not from
a purely technical point of view follow in section 2.2.1 while fig.2.2 puts various applications from
signal and data processing into pelrspective.5

2.2.1 What makes an algorithm suitable for a dedicated VLSI architecture?

Costs in hardware are not the same as those in software. As an example, permutations of bits within
a data word are time-consuming operations in software as they must be carried out sequentially.
In hardware, they reduce to simple wires that cross while running from one subcircuit to the next.
Look-up tables (LUTSs) of almost arbitrary size, on the other hand, have become an abundant and
cheap resource in any microcomputer while large on-chip RAMs and ROMs tend to eat substantial
proportions of the timing and area budgets of ASIC designs.

In an attempt to provide some guidance, we have collected ten criteria that an information processing
algorithm should ideally meet in order to justify the design of a special-purpose VLSI architecture

and to take full advantage of the technology. Of course, very few real-world algorithms satisfy all of
the requirements listed. It is nevertheless safe to say that designing a dedicated architecture capable
of outperforming a general-purpose processor on the grounds of performance and costs will prove
difficult when too many of these criteria are violated. The list below begins with the most desirable
characteristics and then follows their relative significance.

1. Loose coupling between major processing tasks. The overall data processing lends itself
to being decomposed into tasks that interact in a simple and unmutable way. Whether those
tasks are to be carried out consecutively or concurrently is of secondary importance at this
point; what counts is to come up with a well-defined functional specification for each task
and with manageable interaction between them. Architecture design, functional verification,
optimization, and reuse otherwise become real nightmares.

2. Simple control flow. The computation’s control flow is simple. This key property can be
tracked down to two more basic considerations:

® The discussion of management-level decision criteria is deferred to chapter 13.
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Fig. 2.2 Computational needs of various signal and data processing applications (grossly approximate figures,
exact meaning of operation and data item left unspecified; 16 bit-by-16 bit multiply—accumulate (MAC)
operations on 16 bit samples are often considered typical in a context of digital signal processing).

a) The course of operation does not depend too much on the data being processed;
for each loop the number of iterations is a priori known and constant.

b) The application does not ask for computations to be carried out with overly many vari-
eties, modes of operations, data formats, distinct parameter settings, and the like.

The benefit of a simple control flow is twofold. For one thing, it is possible to anticipate the
datapath resources required to meet a given performance goal and to design the chip’s archi-
tecture accordingly. There is no need for statistical methods in estimating the computational
burden or in sizing data memories and the like. For another thing, datapath control can be

5 Put in different terms, the target algorithm is virtually free of branchings and loops such as if...then[...elsel,
while...do, and repeat...until that include data items in their condition clauses.
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handled by counters and by simple finite state machines (FSMs) that are small, fast, energy-
efficient and — most important — easy to verify.

An overly complicated course of operations, on the other hand, that involves much data-
dependent branching, multitasking, and the like, favors a processor-type architecture that
operates under control of stored microcode. Most control operations will then translate into
a sequence of machine instructions that take several clock cycles to execute.

3. Regular data flow. The flow of data is regular and their processing is based on a recurrence

of a fairly small number of identical operations; there are no computationally expensive
operations that are called only occasionally. Regularity opens a door for sharing hardware
resources in an efficient way by applying techniques such as iterative decomposition and time-
sharing, see subsections 2.4.2 and 2.4.5 respectively. Conversely, multiple data streams that
are to be processed in a uniform way lend themselves to concurrent processing by parallel
functional units. A regular data flow further helps to reduce communications overhead in
terms of both area and interconnect delay as the various functional units can be made to
exchange data over fixed local links. Last but not least, regularity facilitates reuse and reduces
design and verification effort.

As opposed to this, operations that are used infrequently either will have to be decomposed
into a series of substeps to be executed one after the other on a general-purpose datapath,
which is slow, or will necessitate dedicated functional units bound to sit idle for most of the
time, which inflates chip size. Irregular data flow requires long and flexible communication
busses which are at the expense of layout density, operating speed, and energy efficiency.

4. Reasonable storage requirements. Overall storage requirements are modest and have a

fixed upper bound.” Memories that occupy an inordinate amount of chip area, say more than
half or so, cannot be incorporated into ASICs in an economic way and must, therefore, be
implemented off-chip from standard parts, see subsection 2.5. Massive storage requirements
in conjunction with moderate computational burdens tend to place dedicated architectures
at a disadvantage.

5. Compatible with finite precision arithmetics. The algorithm is insensitive to effects from

finite precision arithmetics. That is, there is no need for floating-point arithmetics; fairly
small word widths of, say, 16 bit or less suffice for the individual computation steps. Standard
microprocessors and DSPs come with datapaths of fixed and often generous width (24, 32,
64 bit, or even floating-point) at a given price. No extra costs arise unless the programmer
has to resort to multiple precision arithmetics.

As opposed to this, ASICs and FPL offer an opportunity to tune the word widths of
datapaths and on-chip memories to the local needs of computation. This is important because
circuit size, logic delay, interconnect length, parasitic capacitances, and energy dissipation of
addition, multiplication, and other operations all tend to grow with word width, combining
into a burden that multiplies at an overproportional rate.’

7 Which precludes the use of dynamic data structures.

8 Processor datapaths tend to be fast and area efficient because they are typically hand-optimized at the transistor
level (e.g. dynamic logic) and implemented in tiled layout rather than built from standard cells. These are only
rarely options for ASIC designers.
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6. Nonrecursive linear time-invariant computation. The processing algorithm describes a

nonrecursive linear time-invariant system over some algebraic field.” Each of these prop-
erties opens a door to reorganizing the data processing in one way or another, see sections
2.4 through 2.9 for details and table 2.11 for an overview. High throughputs, in particular,
are much easier to obtain from nonrecursive computations as will become clear in section 2.7.

7. No transcendental functions. The algorithm does not make use of roots, logarithmic, ex-

ponential, or trigonometric functions, arbitrary coordinate conversions, translations between
incompatible number systems, and other transcendental functions as these must either be
stored in large look-up tables (LUT) or get calculated on-line in lengthy and often irregu-
lar computation sequences. Such functions can be implemented more economically provided
that modest accuracy requirements allow approximation by way of lookups from tables of
reasonable size, possibly followed by interpolation.

8. Extensive usage of data operations unavailable from standard instruction sets. Of

course, there exist many processing algorithms that cannot do without costly arithmetic/-
logic operations. It is often possible to outperform traditional program-controlled processors
in cases where such operations need to be assembled from multiple instructions. Dedicated
datapaths can then be designed to do the same computation in a more efficient way. Exam-
ples include complex-valued arithmetics, add—compare—select operations, and many ciphering
operations. It also helps when part of the arguments are constants because this makes it pos-
sible to apply some form of preprocessing. Multiplication by a variable is more onerous than

by a constant, for instance.'°

9. Throughput rather than latency is what matters. This is a crucial prerequisite for

pipelined processing, see subsection 2.4.3.

10. No divisions and multiplications on very wide data words. Multiplications involving

wide arguments are not being used

The algorithm does not make extensive use of multiplications and even less so of divisions as
their VLSI implementation is much more expensive than that of addition/subtraction when
the data words involved are wide.

2.2.2 There is plenty of land between the architectural antipodes

Most markets ask for performance, agility, low power, and a modest design effort at the same time. In

the face of such contradictory requirements, it is highly desirable to combine the throughput and the

9 Recursiveness is to be defined in section 2.7. Linear is meant to imply the principle of superposition f(z(t) +

y(t)) = f(x(t)) + f(y(t)) and f(ca(t)) =cf(x(t)). Time-invariant means that the sole effect of delaying the
input is a delay of the output by the same amount of time: if z(¢) = f(z(t)) is the response to z(¢) then z(t — T')
is the response to x(t — T). Fields and other algebraic structures are compared in section 2.11.

Dropping unit factors and/or zero sum terms (both at word and bit levels), substituting integer powers of 2 as
arguments in multiplications and divisions, omitting insignificant contributions, special number representation
schemes, taking advantage of symmetries, precomputed look-up tables, and distributed arithmetic, see subsection
2.8.3, are just a few popular measures that may help to lower the computational burden in situations where

parts of the arguments are known ahead of time.
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energy efficiency of a dedicated VLSI architecture for demanding but highly repetitive computations
with the convenience and flexibility of an instruction set processor for more control-oriented tasks.
The question is

“How can one blend the best of both worlds into a suitable architecture design?”

Five approaches for doing so are going to be presented in sections 2.2.3 through 2.2.7 with diagram-
matic illustrations in figs.2.3 to 2.6.

2.2.3 Assemblies of general-purpose and dedicated processing units

The observation below forms the starting point for the conceptually simplest approach.

Observation 2.3. It is often possible to segregate the needs for computational efficiency
from those for flexibility.

This is because those parts of a system that ask for maximum computation rate are not normally
those that are subject to change very often, and vice versa. Examples abound, see table 2.6. The
finding immediately suggests a setup where a software-controlled microcomputer cooperates with
one or more dedicated hardware units. Separating the quest for computational efficiency from that
for agility makes it possible to fully dedicate the various functional units to their respective tasks and
to optimize them accordingly. Numerous configurations are possible and the role of the instruction

set microcomputer varies accordingly.

Ezxample

Table 2.6

Some digital systems and the computing requirements of major subfunctions thereof.

Application

Subfunctions primarily characterized by

irregular control flow and/or
need for flexibility

repetitive control flow and
need for comput. efficiency

DVD player

user interface, track seeking,
tray and spindle control,
processing of non-video data
(directory, title, author,
subtitles, region codes)

16-to-8 bit demodulation,
error correction,

MPEG-2 decompression
(discrete cosine transform),
video signal processing

Cellular phone

user interface, SMS,
directory management,
battery monitoring,
communication protocol,
channel allocation,
roaming, accounting

intermediate frequency
filtering, (de)modulation,
channel (de)coding,

error correction (de)coding,
(de)ciphering,

speech (de)compression

Pattern recognition
(e.g. as part of a
defensive missile)

pattern classification,
object tracking,
target acquisition,
triggering of actions

image stabilization,
redundancy reduction,
image segmentation,
feature extraction
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In fig.2.3a, three dedicated and one program-controlled processing units are arranged in a chain.
Each unit does its data processing job and passes the result to the downstream unit. While offer-
ing ample room for optimizing performance, this structure cannot accommodate much variation if
everything is hardwired and tailor-made. Making the specialized hardware units support a limited
degree of parametrization (e.g. wrt data word width, filter order, code rate, data exchange proto-
col, and the like) renders the overall architecture more versatile while, at the same time, keeping
the overhead in terms of circuit complexity and energy dissipation fairly low. The term weakly
programmable satellites has been coined to reflect the idea. An optional parametrization bus
suggests this extension of the original concept in fig.2.3a.

handles subtask C
inout specialized unit specialized unit programs- specialized unit outout
dgta — dedicated to - dedicated to - controlled - dedicatedto |—p» datg
subtask A subtask B processor subtask D
! ! | 1
a) . el ____________._____1 parametrization bus
(optional)
handles subtask C plus dispatching of data
programs
input data =————p»  controlled {———————» output data
processor
* * f * * + * * data exchange and control bus
specialized unit specialized unit specialized unit
dedicated to dedicated to dedicated to
subtask A subtask B subtask D
b)

Fig. 2.3 General-purpose processor and dedicated satellite units working in a chain (a), a host computer with
specialized coprocessors (b).

2.2.4 Coprocessors

Figure 2.3b is based on segregation too but differs in how the various components interact. All
specialized hardware units now operate under control of a software-programmable host. A bidirec-
tional bus gives the necessary liberty for transferring data and control words back and forth. Each
coprocessor, or helper engine as it is sometimes called, has a rather limited repertoire of instructions
that it can accept. It sits idle until it receives a set of input data along with a start command. As
an alternative, the data may be kept in the host’s own memory all the time but get accessed by
the coprocessor via direct memory access (DMA). Once local computation has come to an end, the
coprocessor sets a status flag and/or sends an interrupt signal to the host computer. The host then
accepts the processed data and takes care of further action.

2.2.5 Application-specific instruction set processors

Patterning the overall architecture after a program-controlled processor affords much more flexi-
bility. Application-specific features are largely confined to the data processing circuitry itself. That
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is, one or more datapaths are designed and hardwired so as to support specific data manipulations
while operating under control of a common microprogram. The number of ALUs, their instruction
sets, the data formats supported, the capacity of local storage, etc. are tailored to the computational
problems to be solved. What’s more, the various datapaths can be made to operate simultaneously
on different pieces of data, thereby providing a limited degree of concurrency. The resulting archi-
tecture is that of an application-specific instruction set processor (ASIP) [16], see fig.2.4a.
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Fig. 2.4 Application-specific instruction set processor (ASIP) (a), multiple cooperating ASIPs (b).

The hardware organization of an ASIP bears much resemblance to architectural concepts from
general-purpose computing. As more and more concurrent datapath units are added, what results
essentially is a very-long instruction word (VLIW) architecture. An open choice is that between
a multiple-instruction multiple-data (MIMD) machine, where an individual field in the overall
instruction word is set apart for each datapath unit, and a single-instruction multiple-data
(SIMD) model, where a bunch of identical datapaths works under control of a single instruction

word. Several data items can thus be made to undergo the same operation at the same time.!!

' In an effort to better serve high-throughput video and graphics applications, many vendors enhanced their
microprocessor families in the late 1990s by adding special instructions that provide some degree of concurrency.
During each such instruction, the processor’s datapath gets split up into several smaller subunits. A datapath
of 64 bit can be made to process four 16 bit data words at a time, for instance, provided the operation is the
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Ezample
Table 2.7 | An ASIP implementation of the Rijndael algorithm, compare with table 2.5.

Architecture ASTP
Key component Cryptoprocessor
core UCLA [17]

Number of chips 1
Programming Assembler
Circuit size 73.2 kGE
CMOS process 180 nm 4AI2Cu
Throughput 3.43 Gbit/s

@ clock 295 MHz
Power dissip. 86 mW¢

@ supply 1.8V
Year 2004

% Estimate for core logic alone, that is without I/O circuitry, not a measurement.

O

While the mono-ASIP architecture of fig.2.4a affords flexibility, it does not provide the same degree
of concurrency and modularity as the multiple processing units of fig.2.3a and b do. A multiprocessor
system built from specialized ASIPs, as shown in fig.2.4b, is, therefore, an interesting extension. In
addition, this approach facilitates the design, interfacing, reuse, test, and on-going update of the
various building blocks involved.

However, always keep in mind that defining a proprietary instruction set makes it impossible to take
advantage of existing compilers, debugging aids, assembly language libraries, experienced program-
mers, and other resources that are routinely available for industry-standard processors. Industry
provides us with such a vast selection of micro- and signal processors that only very particular
requirements justify the design of a proprietary CPU.12

Ezample

While generally acknowledged to produce more realistic renderings of 3D scenes than industry-
standard raster graphics processors, ray tracing algorithms have long been out of reach for real-time
applications due to the myriad floating-point computations and the immense memory bandwidth
they require. Hardwired custom architectures do not qualify either as they cannot be programmed
and as ray tracing necessitates many data-dependent recursions and decisions.

same for all of them. The technique is best described as sub-word parallelism, but is better known under
various trademarks such as multimedia extensions (MMX), streaming SIMD extensions (SSE) (Pentium family),
Velocity Engine, AltiVec, and VMX (PowerPC family).

[18] reports on an interesting approach to expedite ASIP development whereby assembler, linker, simulator,
and RTL synthesis code are generated automatically by system-level software tools. Product designers can
thus essentially focus on defining the most appropriate instruction set for the processor in view of the target

application.
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Ray tracing may finally find more general adoption in multi-ASIP architectures that combine mul-
tiple ray processing units (RPUs) into one powerful rendering engine. Working under control of its
own program thread, each RPU operates as a SIMD processor that follows a subset of all rays in a
scene. The independence of light rays allows a welcome degree of scalability where frame rate can
be traded against circuit complexity. The authors of [19] have further paid attention to defining
an instruction set for their RPUs that is largely compatible with pre-existing industrial graphics

processors.
|

2.2.6 Configurable computing

Another crossbreed between dedicated and general-purpose architectures did not become viable
until the late 1990s but is now being promoted by FPL manufacturers and researchers [20] [21]. The
IEEE 1532 standard has also been created in this context. The idea is to reuse the same hardware
for implementing subfunctions that are mutually exclusive in time by reconfiguring FPL devices on
the fly.

As shown in fig.2.5, the general hardware arrangement bears some resemblance to the coprocessor
approach of fig.2.3b, yet in-system configurable (ISC) devices are being used instead of hardwired
logic. As a consequence, the course of operations is more sophisticated and requires special action
from the hardware architects. For each major subtask, the architects must ask themselves whether
the computations involved

e Qualify for being delegated to in-system configurable logic,
e Never occur at the same time — or can wait until the FPL device becomes free —, and
e Whether the time for having the FPL reconfigured in between is acceptable or not.

Typically this would be the case for repetitive computations that make use of sustained, highly
parallel, and deeply pipelined bit-level operations. When designers have identified some suitable
subfunction, they devise a hardware architecture that solves the particular computational problem
with the resources available in the target FPGA or CPLD, prepare a configuration file, and have
that stored in a configuration memory. In some sense, they create a large hardware procedure
instead of programming a software routine in the customary way.

handles subtask C plus overhead

progrargg general-purpose
input data ==y conirolled  ——————————————p oOutput data
processor hardware structure
[re]configuration ‘ * + general-purpose hardware
requesw * * data exchange bus with application-specific
software content
repository for in-system handles subtasks
coprocessor - —» reconfigurable | A, B, and D application-specific
configurations confl?aut;atlon coprocessor one at a time hardware structure

Fig. 2.5 General-purpose processor with juxtaposed reconfigurable coprocessor.

Whenever the host computer encounters a call to such a hardware procedure, it configures the FPL
accordingly by downloading the pertaining configuration file. From now on, all the host has to do
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is to feed the “new” coprocessor with input data and to wait until the computation is completed.
The host then fetches the results before proceeding with the next subtask.!?

It thus becomes possible to support an assortment of data processing algorithms each with its
optimum architecture — or almost so — from a single hardware platform. What often penalizes
this approach in practice are the dead times incurred whenever a new configuration is being loaded.
Another price to pay is the extra memory capacity for storing the configuration bits for all operation
modes. Probably the most valuable benefit, however, is the possibility of being able to upgrade
information processing hardware to new standards and/or modes of operation even after the system
has been fielded.

Ezamples

Transcoding video streams in real time is a good candidate for reconfigurable computing because
of the many formats in existence such as DV, AVI, MPEG-2, DivX, and H.264. For each conversion
scheme, a configuration file is prepared and stored in local memory, from where it is transferred into
the reconfigurable coprocessor on demand. And should a video format or variation emerge that was
unknown or unpopular at the time when the system was being developed, extra configuration files
can be made available in a remote repository from where they can be fetched much like software
plug-ins get downloaded via the Internet.

The results from a comparison between Lempel-Ziv data compression with a reconfigurable copro-
cessor and with software execution on a processor [14] have been summarized in table 2.4. A related
application was to circumvent the comparatively slow PCI bus in a PC [23].

0

2.2.7 Extendable instruction set processors

This latest and most exotic approach pioneered by Stretch borrows from ASIPs and from con-
figurable computing. Both a program-controlled processor and electrically reconfigurable logic are
present on a common hardware platform, see fig.2.6.

The key innovation is a suite of proprietary EDA tools that allows system developers to focus on
writing their application program in C or C++ as if for a regular general purpose processor. Those
tools begin by profiling the software code in order to identify sequences of instructions that are
executed many times over. For each such sequence, reconfigurable logic is then synthesized into a
dedictated and massively parallel computation network that completes within one clock cycle —
ideally at least. Finally, each occurrence of the original computation sequence in the machine code
gets replaced by a simple function call that activates the custom-made datapath logic.

In essence, the base processor gets unburdened from lengthy code sequences by augmenting his
instruction set with a few essential additions that fit the application and that get tailor-made

13 As an extension to the general procedure described here, an extra optimization step can be inserted before the
coprocessor is configured [22]. During this stage, the host would adapt a predefined generic configuration to take
advantage of particular conditions of the specific situation at hand. Consider pattern recognition, for instance,
where the template remains unchanged for a prolonged lapse of time, or secret-key (de)ciphering, where the
same holds true for the key. As stated in subsection 2.2.1 item 1, it is often possible to simplify arithmetic and

logic hardware a lot provided that part of the operands have fixed values.
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handles subtasks A, B, C, and D with a combination of fixed and configurable datapaths
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Fig. 2.6 Extendable instruction set processor (simplified).

output
data

almost on the fly. Yet, the existence of reconfigurable logic and the business of coming up with a
suitable hardware architecture are hidden from the system developer. The fact that overall program

execution remains strictly sequential should further simplify the design process.

2.2.8 Digest

Program execution on a general-purpose processor and hardwired circuitry optimized for one specific
flow of computation are two architectural antipodes. Luckily, many useful compromises exist in

between, and this is reflected in figs.2.7 and 2.8. A general piece of advice is this:

Observation 2.4. Rely on dedicated hardware only for those subfunctions that are called many
times and are unlikely to change; keep the rest programmable via software, via reconfiguration, or

both.

general-purpose architectures

There is plenty of land ==~~~

between the antipodes

Ss

Fig. 2.7 The architectural solution space viewed as a globe.

GP

special-purpose architectures

Figure 2.8 gives rise to an interesting observation. While there are many ways to trade agility for
computational efficiency and vice versa, the two seem to be mutually exclusive as we know of no

architecture that would meet both goals at the same time.
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and/or frequent product enhancements

Fig. 2.8 The key options of architecture design.

23 A transform approach to VLSI architecture design

Let us now turn our attention to the main topic of this chapter:

“How to decide on the necessary hardware resources for solving a given computational problem and
how to best organize them.”

Their conceptual differences notwithstanding, many techniques for obtaining high performance at
low cost are the same for general- and special-purpose architectures. As a consequence, much of
the material presented in this chapter applies to both of them. Yet, the emphasis is on dedicated
architectures as the a priori knowledge of a computational problems offers room for a number of
ideas that do not apply to instruction-set processor architectures.™

Observation 2.5. Most data and signal processing algorithms would lead to grossly inefficient
or even infeasible solutions if they were implemented in hardware as they are. Adapting processing
algorithms to the technical and economic conditions of large-scale integration is one of the intellectual
challenges in VLSI design.

Basically, there is room for remodelling in two distinct domains, namely in the algorithmic domain
and in the architectural domain.

14 There exists an excellent and comprehensive literature on general-purpose architectures including [24] [25]. The
historical evolution of the microprocessor is summarized in [26] [27] along with economic facts and trends. [28]
[29] [30] emphasize the impact of deep-submicron technology on high-performance microprocessor architectures.
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2.3.1 There is room for remodelling in the algorithmic domain . ..

In the algorithmic domain, the focus is on minimizing the number of computational operations
weighted by the estimated costs of such operations. A given processing algorithm thus gets replaced
by a different one better suited to hardware realization in VLSI. Data structures and number
representation schemes are also subject to optimizations such as subsampling and/or changing
from floating-point to fixed-point arithmetics. All this implies that alternative solutions are likely
to slightly differ in their functionality as expressed by their input-to-output relations.

Six examples

When designing a digital filter, one is often prepared to tolerate a somewhat lower stopband sup-
pression or a larger passband ripple in exchange for a reduced computational burden obtained,
for instance, from substituting a lower order filter and/or from filling in zeros for the smaller co-
efficients. Conversely, a filter structure that necessitates a higher number of computations may
sometimes prove acceptable in exchange for less stringent precision requirements imposed on the
individual arithmetic operations and, hence, for narrower data words.

In a decoder for digital error-correction, one may be willing to sacrifice 0.1 dB or so of coding gain
for the benefit of doing computations in a more economic way. Typical simplifications to the ideal
Viterbi algorithm include using an approximation formula for branch metric computation, truncat-
ing the dynamic range of path metrics, rescaling them when necessary, and restricting traceback
operations to some finite depth.

The autocorrelation function (ACF) has many applications in signal processing, yet it is not always
needed in the form mathematically defined.

ACF,, (k) = 142 (k) = Z z(n)-x(n+k) (2.1)
Many applications offer an opportunity to relax the effort for multiplications because one is inter-
ested in just a small fragment of the entire ACF, because one can take advantage of symmetry, or
because modest precision requirements allow for a rather coarse quantization of data values. It is
sometimes even possible to substitute the average magnitude difference function (AMDF) that does
away with costly multiplication altogether.

AMDE,, (k) =i, (k) = i |z(n) —z(n + k)| (2.2)

n=0

Code-excited linear predictive (CELP) coding is a powerful technique for compressing speech sig-
nals, yet it has long been left aside in favor of regular pulse excitation because of its prohibitive
computational burden. CELP requires that hundreds of candidate excitation sequences be passed
through a cascade of two or three filters and be evaluated in order to pick the one that fits best.
In addition, the process must be repeated every few milliseconds. Yet, experiments have revealed
that the usage of sparse (up to 95% of samples replaced with zeros), of ternary (41, 0, —1), or
of overlapping excitation sequences has little negative impact on auditory perception while greatly
simplifying computations and reducing memory requirements [31].

In designing computational hardware that makes use of trigonometric functions, look-up tables
(LUTS) are likely to prove impractical because of size overruns. Executing a lengthy algorithm, on
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the other hand, may be just too slow, so a tradeoff among circuit size, speed, and precision must
be found. The CORDIC (coordinate rotation digital computer) family of algorithms is one such
compromise that was put to service in scientific pocket calculators in the 1960s and continues to
find applications in DSP [32] [33]. Note that CORDIC can be made to compute hyperbolic and
other transcendental functions too.

Computing the magnitude function m = v/a? + b? is a rather costly proposition in terms of circuit
hardware. Luckily, there exist at least two fairly precise approximations based on add, shift, and
compare operations exclusively, see table 2.8 and problem 1. Better still, the performance of many
optimization algorithms used in the context of demodulation, error correction, and related applica-
tions does not suffer much when the computationally expensive #%-norm gets replaced by the much
simpler £'- or £*°-norm. See [34] for an example.

0

The common theme is that the most obvious formulation of a processing algorithm is not normally
the best starting point for VLSI design. Departures from some mathematically ideal algorithm are
almost always necessary to arrive at a solution that offers the throughput and energy efficiency
requested at economically feasible costs. Most algorithmic modifications alter the input-to-output
mapping and so imply an implementation loss, that is a minor cut-back in signal-to-noise ratio,
coding gain, bit-error-rate, mean time between errors, stopband suppression, passband ripple, phase
response, false-positive and false-negative rates, data compression factor, fidelity of reproduction,
total harmonic distortion, image and color definition, intelligibility of speech, or whatever figures
of merit are most important for the application.

Experience tells us that enormous improvements in terms of throughput, energy efficiency, circuit
size, design effort, and agility can be obtained by adapting an algorithm to the peculiarities and
cost factors of hardware. Optimizations in the algorithmic domain are thus concerned with

“How to tailor an algorithm such as to cut the computational burden, to trim down memory require-
ments, and/or to speed up calculations without incurring unacceptable implementation losses.”

What the trade-offs are and to what extent departures from the initial functionality are acceptable
depends very much on the application. It is, therefore, crucial to have a good command of the
theory and practice of the computational problems to be solved.

Observation 2.6. Digital signal processing programs often come with floating-point arithmetics.
Reimplementing them in fized-point arithmetics, with limited computing resources, and with

Table 2.8 | Approximations for computing magnitudes.

Name aka Formula

lesser £~ *°-norm I = min(|al, |b])

sum ¢'-norm s =la|l + |b|
magnitude (reference) | ¢?-norm m = vVa? + b?
greater £°°-norm g = max(|al, |b])
approximation 1 m/Rm) = %s + %g
approximation 2 [35] m & mg = max(g, %g + 30
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minimum memory results in an implementation loss. The effort for finding a good compromise
between numerical accuracy and hardware efficiency is often underestimated.

The necessity to validate trimmed-down implementations for all numerical conditions that may
occur further adds to the effort. It is not uncommon to spend as much time on issues of numerical
precision as on all subsequent VLSI design phases together.

2.3.2 ...and there is room in the architectural domain

In the architectural domain, the focus is on meeting given performance targets for a specific data
processing algorithm with a minimum of hardware resources. The key concern is

“How to organize datapaths, memories, controllers, and other hardware resources for implementing
some given computation flow such as to optimize throughput, energy efficiency, circuit size, design
effort, agility, overall costs, and similar figures of merit while leaving the original input-to-output
relationship unchanged except, possibly, for latency.”

As computations are just reorganized, not altered, there is no implementation loss at this point.

Given some data or signal processing algorithm, there exists a profusion of alternative architectures
although the number of fundamental options available for reformulating it is rather limited. This
is because each such option can be applied at various levels of detail and can be combined with
others in many different ways. Our approach is based on reformulating algorithms with the aid
of equivalence transforms. The remainder of this chapter gives a systematic view on all such
transforms and shows how they can be applied to optimize VLSI architectures for distinct size,
throughput, and energy targets.

2.3.3 Systems engineers and VLSI designers must collaborate

Systems theorists tend to think in purely mathematical terms, so a data or signal processing al-
gorithm is not much more than a set of equations to them. To meet pressing deadlines or just
for reasons of convenience, they tend to model signal processing algorithms in floating-point arith-
metics, even when a fairly limited numeric range would amply suffice for the application. This
is typically unacceptable in VLSI architecture design and establishing a lean bit-true software
model is a first step towards a cost-effective circuit.

Generally speaking, it is always necessary to balance many contradicting requirements to arrive at a
working and marketable embodiment of the mathematical or otherwise abstracted initial model of a
system. A compromise will have to be found between the theoretically desirable and the economically
feasible. So, there is more to VLSI design than just accepting a given algorithm and turning that
into gates with the aid of some HDL synthesis tool.

Algorithm design is typically carried out by systems engineers whereas VLSI architecture is more the
domain of hardware designers. The strong mutual interaction between algorithms and architectures
mandates a close and early collaboration between the two groups, see fig.2.9.

Observation 2.7. Finding a good tradeoff between the key characteristics of the final circuit and
implementation losses requires an on-going collaboration between systems engineers and VLSI ex-
perts during the phases of specification, algorithm development, and architecture design.
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Fig. 2.9 Models of collaboration between systems engineers and hardware designers. Sequential thinking
doomed to failure (a) versus a networked team more likely to come up with satisfactory results (b).

The fact that algorithm design is not covered in this text does not imply that it is of less importance
to VLSI than architecture design. The opposite is probably true. A comprehensive textbook that
covers the joint development of algorithms and architectures is [36]; anecdotal observations can be
found in [37].

2.3.4 A graph-based formalism for describing processing algorithms

We will often find it useful to capture a data processing algorithm in a data dependency graph
(DDG) as this graphical formalism is suggestive of possible hardware structures. A DDG is a
directed graph where vertices and edges have non-negative weights, see fig.2.10. A vertex stands
for a memoryless operation and its weight indicates the amount of time necessary to carry out that
operation. The precedence of one operation over another one is represented as a directed edge. The
weight of an edge indicates by how many computation cycles or sampling periods execution of the
first operation must precede that of the second one.'? Edge weight zero implies the two operations
are scheduled to happen within the same computation or sampling period — one after the other,
though. An edge may also be viewed as expressing the transport of data from one operation to
another and its weight as indicating the number of registers included in that transport path.

To warrant consistent outcomes from computation, circular paths of total edge weight zero are
disallowed in DDGs.'® Put differently, any feedback loop shall include one or more latency registers.

!5 The term “computation cycle” is to be explained shortly in section 2.3.7.
16 A circular path is a closed walk in which no vertex, except the initial and final one, appears more than once

and that respects the orientation of all edges traversed. As the more customary terms “circuit” and “cycle” have
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Fig. 2.10 Data dependency graph (DDG) notation.

2.3.5 The isomorphic architecture

No matter how one has arrived at some initial proposal, it always makes sense to search for a better
hardware arrangement. Inspired VLSI architects will let themselves be guided by intuition and ex-
perience to come up with one or more tentative designs before looking for beneficial reorganizations.
Yet, for the subsequent discussion and evaluation of the various equivalence transforms available, we
need something to compare with. A natural candidate is the isomorphic architecture, see fig.2.11e

for an example, where

Each combinational operation in the DDG is carried out by a hardware unit of its own,
Each hardware register stands for a latency of one in the DDG,
There is no need for control because DDG and block diagram are isomorphic,17 and

Clock rate and data input/output rate are the same.

other meanings in the context of hardware design, we prefer “circular path” in spite of its clumsiness. For the
same reason, let us use “vertex” when referring to graphs and “node” when referring to electrical networks.

A zero-weight circular path in a DDG implies immediate feedback and expresses a self-referencing combinational
function. Such zero-latency feedback loops are known to expose the pertaining electronic circuits to unpredictable
behavior and are, therefore, highly undesirable, see section 5.4.3 for details.

Two directed graphs are said to be isomorphic if there exists a one-to-one correspondence between their vertices
and between their edges such that all incidence relations and all edge orientations are preserved. More informally,
two isomorphic graphs become indistinguishable when the labels and weights are removed from their vertices

and edges. Remember that how a graph is drawn is of no importance for the theory of graphs.
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Fig. 2.11 Third order (N = 3) transversal filter expressed as a mathematical function (a), drawn as data
dependency graph (DDG) (b), and implemented with the isomorphic hardware architecture (d). Signal flow
graph shown for comparison (c).

O

An architecture design as naive as this obviously cannot be expected utilize hardware efficiently, but
it will serve as a reference for discussing both the welcome and the unfavorable effects of various
architectural reorganizations. You may also think of the isomorphic architecture as a hypotheti-
cal starting point from which any more sophisticated architecture can be obtained by applying a

sequence of equivalence transforms.'®

2.3.6 Relative merits of architectural alternatives

Throughout our analysis, we will focus on the subsequent figures of merit.

Circuit size A. Depending on how actual hardware costs are best expressed, the designer is free
to interpret size as area occupation (in mm? or lithographic squares F? for ASICs) or as
circuit complexity (in terms of GE for ASICs and FPL).

Cycles per data item I' denotes the number of computation cycles that separates the releasing
of two consecutive data items, or — which is normally the same — the number of computation
cycles between accepting two subsequent data items.

1% See problem 2.10 for a more thorough exposure. Also observe that our transform approach to architecture design

bears some resemblance to the theory of evolution.
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Longest path delay {;, indicates the lapse of time required for data to propagate along the
longest combinational path through a given digital network. Path lengths are typically in-
dicated in ns. What makes the maximum path length so important is that it limits the
operating speed of a given architecture. For a circuit to function correctly, it must always be
allowed to settle to a — typically new — steady state within a single computation period
Tcp.lg We thus obtain the requirement t;, < Tcp, where the exact meaning of computation
period is to be defined shortly in section 2.3.7.

Time per data item T indicates the time elapsed between releasing two subsequent data items.
Depending on the application, 7' might be stated in ps/sample, ms/frame, or s/calculation,
for instance. T'=1T"-T¢p > T' -, holds with equality if the circuit gets clocked at the fastest
possible rate.

Data throughput © = % is the most meaningful measure of overall circuit performance.
Throughput gets expressed in terms of data items processed per time unit; e.g. in pixel/s,
sample/s, frame/s, data record/s, FFT/s, matrix inversion/s, and the like.?" It is given by
o _ for 1 1

- < 2.
I T-T., Tt (2:3)

for a circuit operated at computation rate fe, or, which is the same, with a computation
period Tcp.Ql Again, we are most interested in the maximum throughput where T¢, = ;.

Size—time product AT combines circuit size and computation time to indicate the hardware
resources spent to obtain a given throughput. This is simply because AT = A The lower the
AT-product, the more hardware-efficient a circuit.

Latency L indicates the number of computation cycles from a data item being entered into a
circuit until the pertaining result becomes available at the output. Latency is zero when the
result appears within the same clock cycle as that during which the input datum was fed in.

Energy per data item E is meant to quantify the amount of energy dissipated in carrying out
some given computation on a data item. As examples consider indications in pJ/MAC,
nJ/sample, pwJ/datablock or mWs/videoframe.

The same quantity can also be viewed as the quotient £ = g that relates power dissipation
to throughput and is then be expressed in mW/@, or W/GOPS (Giga operations per
second), for instance. Using inverse term such as MOPS/mW and GOPS/W is more popular
in the context of microprocessors.

Energy per data item is further related to the power—delay product (PDP) pdp = P - t;,,
a quantity often used for comparing standard cells and other transistor-level circuits. The

19 We do not consider multicycle paths, wave-pipelined operation, or asynchronous circuits here.

20 Note that Mega Instructions Per Second (MIPS), a performance indicator most popular with IT specialists,
neither reflects data throughput nor applies to architectures other than program-controlled processors.
21 Tt is sometimes more adequate to express data throughput in terms of bits per time unit; (2.3) must then be

restated as © = w/{Tp where w indicates how many bits make up one data item.
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difference is that our definition explicitly accounts for multicycle computations and for longer-
than-necessary computation periods E = PT' = P-T -1y, > P-T -1, =T - pdp.

Ezample

In the occurrence of the architecture shown in fig.2.11e, one easily finds the quantities below

A =3Arcg +4As + 344 (2.4)
r=1 (2.5)
tip = treg + te + 3ty (2.6)
AT = (3Ayeg + 444 + 3A4 ) (breg + e + 3t4) (2.7)
L=0 (2.8)
E = 3Ereg + 4B + 3B, (2.9)

where indices *, +, and reg refer to a multiplier, an adder, and a data register respectively.
O

A word of caution is due here. Our goal in using formulae to approximate architectural figures of
merit is not so much to obtain numerical values for them but to explain roughly how they are going

to be affected by the different equivalence transforms available to VLSI architects.??

2.3.7 Computation cycle versus clock period

So far, we have been using the term computation period without defining it. In synchronous digital
circuits, a calculation is broken down into a series of shorter computation cycles the rhythm of which
gets imposed by a periodic clock signal. During each computation cycle, fresh data emanate from
a register, and propagate through combinational circuitry where they undergo various arithmetic,
logic, and/or routing operations before the result gets stored in the next analogous register (same
clock, same active edge).

Definition 2.1. A computation period Tcp is the time span that separates two consecutive compu-
tation cycles.

For the moment being, it is safe to assume that computation cycle, computation period, clock cycle,
and clock period are all the same, T¢p = Tij;, which is indeed the case for all those circuits that
adhere to single-edge-triggered one-phase clocking.23 The inverse, that is the number of computation
cycles per second, is referred to as computation rate fc, = %

cp

22 As an example, calculation of the long path delay ¢;, is grossly simplified in (2.6). For one thing, interconnect
delays are neglected which is an overly optimistic assumption. For another thing, the propagation delays of
the arithmetic operations are simply summed up which sometimes is a pessimistic assumption, particularly in
cascades of multiple ripple carry adders where all operands arrive simultaneously. Synthesis followed by place
and route often is the only way to determine overall path delays with sufficient accuracy.

23 As an exception, consider dual-edge-triggering where each clock period comprises two consecutive computation

periods so that T., = % -1k - Details are to follow in section 6.2.3.
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2.4 | Equivalence transforms for combinational computations

A computation that depends on the present arguments exclusively is termed combinational. A
sufficient condition for combinational behavior is a DDG which is free of circular paths and where
all edge weights equal zero.

Consider some fixed but otherwise arbitrary combinational function y(k) = f(z(k)). The DDG in
fig.2.12a depicts such a situation. As suggested by the dashed edges, both input z(k) and output y(k)
can include several subvectors. No assumptions are made about the complexity of f which could
range from a two-bit addition, over an algebraic division, to the Fast Fourier Transform (FFT)
operation of a data block, and beyond. In practice, designers would primarily be concerned with
those operations that determine chip size, performance, power dissipation, etc. in some critical way.

x(k) .
\ / input stream
\ i / | |
\ /
wy combinational  ~—< no control )
datapath : h T 2
N e logic section % N longest path
/ register = Y
¥ throughput
a) y(k) b) output stream c) L 97p

Fig. 2.12 DDG for some combinational function f (a). A symbolic representation of the reference hardware
configuration (b) with its key characteristics highlighted (c).

The isomorphic architecture simply amounts to a hardware unit that does nothing but evaluate
function f, a rather expensive proposal if f is complex such as in the FFT example. Three options

for reorganizing and improving this unsophisticated arrangement exist.?

1. Decomposing function f into a sequence of subfunctions that get executed
one after the other in order to reuse the same hardware as much as possible.

2. Pipelining of the functional unit for f to improve computation rate by cutting down combi-
national depth and by working on multiple consecutive data items simultaneously.

3. Replicating the functional unit for f and having all units work concurrently.

It is intuitively clear that replication and pipelining both trade circuit size for performance while
iterative decomposition does the opposite. This gives rise to questions such as

“Does it make sense to combine pipelining with iterative decomposition
in spite of their antagonistic effects?” and
“Are there situations where replication should be preferred over pipelining?”

which we will try to answer in the following subsections.

24 Of course, many circuit alternatives for implementing a given arithmetic or logic function also exist at the gate
level. However, within the general context of architecture design, we do not address the problem of developing
and evaluating such options as this involves lower-level considerations that strongly depend on the specific
operations and on the target library. The reader is referred to the specialized literature on computer arithmetics

and on logic design.
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2.4.1 Common assumptions

The architectural arrangement that will serve as a reference for comparing various alternative
designs is essentially identical to the isomorphic configuration of fig.2.12a with a register added
at the output to allow for the cascading of architectural chunks without their longest path delays
piling up. The characteristics of the reference architecture then are

where subscript ; stands for the datapath hardware that computes some given combinational func-
tion f and where subscript ey denotes a data register. For the sake of simplicity the word width w
of the datapath is assumed to be constant throughout. For illustration purposes we use a graphical
representation that suggests hardware organization, circuit size, longest path length, data through-
put, and latency in a symbolic way, see figs.2.12b and c.

The quotient Af /Areg relates the size of the datapath hardware to that of a register, and tr [treg
does the same for their respective time requirements.25 Their product AA-’ tt—f thus reflects the
reg treg

computational complexity of function f in some sense. (2.16) holds whenever logic function f is a

fairly substantial computational operation. We will consider this the typical, although not the only
possible, case.

Aragt'/'ag < Ajtf (216)

Many of the architectural configurations to be discussed require extra circuitry for controlling
datapath operation and for routing data items. Two additive terms A.; and E.; are introduced
to account for this where necessary. As it is very difficult to estimate the extra hardware without
detailed knowledge of the specific situation at hand, the only thing that can be said for sure is that
Ay is on the order of Ayey or larger for most architectural transforms. Control overhead may in
fact become significant or even dominant when complex control schemes are brought to bear as a
result of combining multiple transforms.

As for energy, we will focus on the dynamic contribution that gets dissipated in charging and
discharing electrical circuit nodes as a consequence of fresh data propagating through gate-level
networks. Any dissipation due to static currents or due to idle switching is ignored, which is a
reasonable assumption for comparing low-leakage static CMOS circuits that are fairly active.?°

Throughout our architectural comparisons, we further assume all electrical and technological condi-
tions to remain the same.?” A comparison of architectural alternatives on equal grounds is otherwise

25

Typical size A and delay figures ¢ for a number of logic and arithmetic operations are given as illustrative
material in appendix 2.12.

26 pPower dissipation, switching activities, leakage currents, and the like are the subjects of chapter 9.

This includes supply voltage, cell library, transistor sizes, threshold voltages, fabrication process, and the gate-

level structure of arithmetic units.



72

Architectures of VLSI Circuits

not possible as a shorter path delay or a lower energy figure would not necessarily point to a more
efficient design alternative.

2.4.2 |terative decomposition

The idea behind iterative decomposition — or decomposition, for short — is nothing else than
resource sharing through step-by-step execution. The computation of function f is broken up
into a sequence of d subtasks which are carried out one after the other. From a dataflow point
of view, intermediate results are recycled until the final result becomes available at the output d
computation cycles later, thereby making it possible to reuse a single hardware unit several times
over. A configuration that reuses a multifunctional datapath in a time-multiplex fashion to carry
out f in d = 3 subsequent steps is symbolically shown in fig.2.13. Note the addition of a control
section that pilots the datapath on a per-cycle basis over a number of control lines.

E iterative I

decomposition P
E> datapath E> 12 control
@ Secnon D }L T D SeCtlon

a) b)

Fig. 2.13 Iterative decomposition. DDG (a) and hardware configuration for d = 3 (b).

PERFORMANCE AND COST ANALYSIS
Assumptions:

1. The total size requirement for implementing the various subfunctions into which f is decomposed
ranges between AT/ and Ay.
2. The decomposition is lossless and balanced, i.e. it is always possible to break up f into d sub-

. . . . . . t
functions the computations of which require a uniform amount of time Ff.

As a first-order approximation, iterative decomposition leads to the following figures of merit:

A
a5 + Areg + At < A(d) < Af + Areg + Acul (2.17)

d
I(d) = d (2.18)
t
tlp(d) ~ Ef + treg (2.19)
1
d(Arﬁg + Actl)t”’z‘/ + (Areg + Actl)tf + Aft’r'e_(] + aAftf < AT(d) <

d(Af + ATCQ + Actl)trﬁg + (Af + Areg + Actl)tf (2.20)

L(d)=d (2.21)

E(d) 2 Ef + Eyeg (2.22)
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Let us confine our analysis to situations where the control overhead can be kept small so that
Areg = Ay < Aj and Ereg = B < Ey. A key issue in interpreting the above results is whether
size A(d) tends more towards its lower or more towards its upper bound in (2.17). While iterative
decomposition can, due to (2.16), significantly lower the AT-product in the former case, it does not
help in the latter.

The lower bounds hold in (2.17) and (2.20) when the chunk’s function f makes repetitive use
of a single subfunction because the necessary datapath is then essentially obtained from cutting
the one that computes f into d identical pieces only one of which is implemented in hardware. A
monofunctional processing unit suffices in this case.

At the opposite end are situations where computing f asks for very disparate subfunctions that
cannot be made to share much hardware resources in an efficient way. Iterative decomposition is
not an attractive option in this case, especially if register delay, control overhead, and the difficulty
of meeting assumption 2 are taken into consideration.

Operations that lend themselves well to being combined into a common computational unit include
addition and subtraction in either fixed-point or floating-point arithmetics, and various shift and
rotate operations. CORDIC units reuse essentially the same hardware for angle rotations and for
trigonometric and hyperbolic functions.

As for energy efficiency, there are two mechanisms that counteract each other. On the one hand,
iterative decomposition entails register activity not present in the original circuit. The extra control
and data recycling logic necessary to implement step-by-step execution further inflate dissipation.

On the other hand, we will later find that long register-to-register signal propagation paths
tend to foster transient node activities, aka glitches. Cutting such propagation paths often helps to
mitigate glitching activities and the associated energy losses.2® Such second-order effects are not
accounted for in the simplistic unit-wise additive model introduced in (2.15), however, making it
difficult to apprehend the impact of iterative decomposition on energy before specific circuit details
become available.

Ezample

A secret-key block cipher operated in electronic code book (ECB) mode is a highly expensive com-
binational function. ECB implies a memoryless mapping y(k) = c¢(z(k), u(k)) where x(k) denotes
the plaintext, y(k) the ciphertext, u(k) the key, and k the block number or time index. What most
block ciphers, such as the Data Encryption Standard (DES), the International Data Encryption
Algorithm (IDEA), and the Advanced Encryption Standard (AES) Rijndael have in common is a
cascade of several rounds, see fig.2.14 for the IDEA algorithm [38]. The only difference between the
otherwise identical rounds is in the values of the subkeys used that get derived from wu(k). What is
referred to as output transform is nothing else than a subfunction of the previous rounds.

If we opt for iterative decomposition, a natural choice consists in designing a datapath for one
round and in recycling the data with changing subkeys until all rounds have been processed. As
control is very simple, the circuit’s overall size is likely to stay close to the lower bound in (2.17)
after this first step of decomposition. On continuing in the same direction, however, benefits will
diminish because the operations involved (bitwise addition modulo 2, addition modulo 216 and

28 Gee chapter 9 for explanations.
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multiplication modulo (216 + 1)) are very disparate. In addition, the impact of control on the
overall circuit size would be felt.
x(k)
first round
bitwise
= addition
modulo 2
_ addition 6
~ modulo 2
@ _ multiplication
~ modulo 2'%+1
seven more f
identical rounds
output transformation < iUb_ iUb_ iUb_ iUb_
ey, ey, 24 e
y(k)

Fig. 2.14 DDG of the block cipher IDEA.

|

A more radical approach is to decompose arbitrary functions into sequences of arithmetic and/or
logic operations from a small but extremely versatile set and to provide a single ALU instead.
The datapath of any microprocessor is just a piece of universal hardware that arose from the
general idea of step-by-step computation, and the reduced instruction set computer (RISC)
can be viewed as yet another step in the same direction. While iterative decomposition together
with programmability and time sharing, see section 2.4.5, explains the outstanding flexibility and
hardware economy of this paradigm, it also accounts for its modest performance and poor energy
efficiency relative to more focussed architecture designs.

Ezxamples

Examples of ASICs the throughputs of which exceeded that of contemporary high-end general-
purpose processors by orders of magnitude are given in sections 2.2 and 2.7.3.
|
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2.4.3 Pipelining

Pipelining aims at increasing throughput by cutting combinational depth into several separate stages

of approximately uniform computational delays by inserting registers in between.?? The combina-

tional logic between two subsequent pipeline registers is designed and optimized to compute one

specific subfunction. As an ensemble, the various stages cooperate like specialist workers on an

assembly line. Figure 2.15 sketches a functional unit for f subdivided into p = 3 pipeline stages by

p — 1 extra registers. Note the absence of any control hardware.

I pipelining
> %mﬂ[l =
(1) I

a) b)

Fig. 2.15 Pipelining. DDG (a) and hardware configuration for p = 3 (b).

no control
section

PERFORMANCE AND COST ANALYSIS

Assumptions:

1. The combinational logic for implementing function f is not affected by the number of pipeline

stages introduced. Its overall size Ay, therefore, remains constant.

2. The pipeline is lossless and balanced, i.e. similarly to decomposition it is always possible to

partition the logic into p stages such that all have identical delays %f

3. The size penalty of pipelining can be expressed by an additive term A;.qy for each register

accounting for the silicon area occupied by storage elements.

4. At each pipeline stage a performance penalty results from introducing a register delay t,¢y which

includes the delay caused by the storage element.

Pipelining changes performance and cost figures as follows:

A(p) = Aj + pAreg
I'(p) =1

t
mw~§+mg

1
AT (p) = pAregtreg + (Aregty + Astreg) + I;A.ftf

L(p) =p
fine grain

E(p) 2 Ep+Ere

coarse grain

29 For a more formal discussion see subsection 2.6.1.
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Both performance and size grow monotonically with pipeline depth. The same holds true for latency.
What is more interesting is that a modest number of pipeline stages each of which has a substantial
depth dramatically lowers the AT-product due to (2.16). This regime is referred to as coarse grain
pipelining.

FEzxzample

Equation (2.25) relates combinational delay to register delay. Another popular way to quantify the
degree of pipelining is to express the delay on the longest path as a multiple of fanout-of-4 (FO4)
inverter delabys.30

year | clock freq. | FO4 inverter delays
CPU [MHz| per pipeline stage
Intel 80386 1989 33 ~80
Intel Pentium 4 2003 3200 12-16
IBM Cell Processor | 2006 3200 11

d

Continuing along this line, one may want to insert more and more pipeline registers. However, (2.25)
reveals that the benefit fades when the combinational delay per stage % approaches the register
delay treg. For large values of p the area-delay product is dominated by the register delay rather
than by the payload function. A natural question for this type of deep or fine grain pipelining is
to ask

“What is the maximum computation rate for which a pipeline can be built?”

The fastest logic gates from which useful data processing can be obtained are 2-input NAND or NOR
gates.31 Even if we are prepared to profoundly redesign a pipeline’s logic circuitry in an attempt to
minimize the longest path ¢;,, we must leave room for at least one such gate between two subsequent
registers. It thus is not possible to accelerate the computation rate beyond

th > min(tlp) = min(tgate) + treg = min(tnandytnor) + tsu F+ tpd i (229)

which represents a lower bound for (2.25). Practical applications that come close to this theoretical
minimum are limited to tiny subcircuits, however, mainly because of the disproportionate number
of registers required, but also because meeting assumptions 1 and 2 is difficult with fine grained
pipelines. Even in high-performance datapath logic, economic reasons typically preclude pipelining
below 11 FO4 inverter delays per stage.

Equation (2.29) further indicates that register delay is critical in high speed design. In fact, a
typical relation is treg = 3-5min(tgate). As a consequence, it takes twenty or so levels of logic
between subsequent registers before flip-flop delays are relegated to insignificant proportions. A

30 Comparing circuit alternatives in terms of FO4 inverters makes sense because fanout-of-4 inverters are common-
place in buffer trees driving large loads and because the delays of other static CMOS gates have been found to
track well those of FO4 inverters.

31 This is because binary NAND and NOR operations (a) form a complete gate set each and (b) are efficiently

implemented from MOSFETSs, see sections A.2.10 and 8.1 respectively.
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high-speed cell library must, therefore, not only include fast combinational gates but also provide

bistables with minimum insertion delays.??

Ezample

Plugging into (2.29) typical numbers for a 2-input NOR gate and a D-type flip-flop with no reset from
a 130 nm CMOS standard cell library, one obtains T¢p > tNoR2D1 + tDFFPB1 = 18 ps + 249 ps ~
267 ps which corresponds to a maximum computation rate of about 3.7 GHz.

O

“How many stages yield optimum pipeline efficiency?”

Optimum hardware efficiency means minimum size-time product
AT (p) = min (2.30)
which is obtained for

Aty

_— 2.31
Arcgtr(zg ( )

Pbo =

Beyond this point, adding more pipeline registers causes the size-time product to deteriorate even
though performance is still pushed further. It also becomes evident from (2.31) that, in search of
an economic solution, the more complex a function, the more pipelining it supports. In practice,
efficiency is likely to degrade before pg is reached because our initial assumptions 1 and 2 cannot be
entirely satisfied. [39] indicates the optimal depth is 6 to 8 FO4 inverter delays per pipeline stage.

“How does pipelining affect energy efficiency?”

The additional registers suggest that any pipelined datapath dissipates more energy than the ref-
erence architecture does. This is certainly true for fine grain pipelines where the energy wasted by
the switching of all those extra subcircuits becomes the dominant contribution.

For coarse grain designs, the situation is more fortunate. Experience shows that pipeline registers
tend to reduce the unproductive switching activity associated with glitching in deep combinational
networks, a beneficial side effect neglected in a simple additive model.

Interestingly, our finding that throughput is greatly increased makes it possible to take advantage
of coarse grain pipelining for improving energy efficiency, albeit indirectly. Recall that the improved
throughput is a result from cutting the longest path while preserving a processing rate of one
data item per computation cycle. The throughput of the isomorphic architecture is thus readily
matched by a pipelined datapath implemented in a slower yet more energy-efficient technology, e.g.
by operating CMOS logic from a lower supply voltage or by using mostly minimum-size transistors.
Our model cannot reflect this opportunity because we have decided to establish energy figures under
the assumption of identical operating conditions and cell libraries. Another highly welcome property
of pipelining is the absence of energy-dissipating control logic.

32 Function latches where bistables and combinational logic get merged into a single library cell in search of better

performance are to be discussed in sections 6.2.6 and 8.2.2.
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PIPELINING IN THE PRESENCE OF MULTIPLE FEEDFORWARD PATHS
Although pipelining can be applied to arbitrary feedforward computations, there is a reservation
of economic nature when a DDG includes many parallel paths. In order to preserve overall func-
tionality, any latency introduced into one of the signal propagation paths must be balanced by
inserting an extra register into each of its parallel paths. Unless those shimming registers help
cut combinational depth there, they bring about substantial size and energy penalties, especially
for deep pipelines where p is large.
I(k) (k) I(k) r(k)
® @
pipelining N T
enciphering E>
nction u(k u(k, 1
unciop (¢ ) ut (k1)
® ® @F u(k2)
R —
vik) wik) v - L Ty
shimming - — e
registers -
arbitrary
@ = memoryless
mapping
bitwise
= addition
modulo 2
2) b) v(k) w(k)
Fig. 2.16 Involutory cipher algorithm. DDG before (a) and after pipelining (b).
FEzxzample

With simplifications, fig.2.16a reproduces the block cipher IDEA. Variable k stands for the block
index, I(k) and r(k) each denote half of a 64 bit plaintext block while v(k) and w(k) do the same for a
64 bit ciphertext block. u(k) and v’ (k) stand for the keys used during enciphering and deciphering
operations respectively. Provided the two keys are the same, i.e. u'(k) = u(k), the net result is
(k) = I(k) and (k) = r(k), which implies that the plaintext is recovered after calling g twice.
Note that this involution property33 is totally independent of function ¢ which, therefore, can be
designed so as to maximize cryptographic security.

Extensive pipelining seems a natural way to reconcile the computational complexity of ¢ with
ambitious performance goals. Yet, as a consequence of the two paths bypassing ¢, every pipeline

33 A function g is said to be involutory iff g(g(x)) =z, Va. As trivial examples, consider multiplication by —1
in classic algebra where we have —(—xz) = z, the complement function in Boolean algebra where T =z, or a
mirroring operation from geometry. Involution is a welcome property in cryptography since it makes it possible

to use exactly the same equipment for both enciphering and deciphering.
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register entails two shimming registers, effectively tripling the costs of pipelining, see fig.2.16b.
This is the reason why pipeline depth had to be limited to eight stages per round in a VLSI
implementation of the IDEA cipher in spite of stringent throughput requirements [40].

2.4.4 Replication

Replication is a brute-force approach to performance: If one functional unit does not suffice, allow
for several of them. Concurrency is obtained from providing ¢ instances of identical functional units
for f and from having each of them process one out of ¢ data items in a cyclic manner. To that
end, two synchronous g-way switches distribute and recollect data at the chunk’s input and output
respectively. An arrangement where ¢ = 3 is shown in ﬁg.2.17.34 Overall organization and operation
is reminiscent of a multi-piston pump.

O
distributor /" \ *----- ‘
replication }
datapath Ex; L control
section D T === D) cection
|
I recollector \_ / «+—----— J
a) b) I

Fig. 2.17 Replication. DDG (a) and hardware configuration for ¢ = 3 (b).

PERFORMANCE AND COST ANALYSIS
Assumptions:

1. Any size penalties associated with distributing data to replicated functional units
and with recollecting them are neglected.
2. Any energy dissipated in data distribution and recollection is ignored.

The above assumptions hold fairly well provided the circuitry for computing f is much larger than
that for data distribution and recollection. The key characteristics of replication then become

Alq) = q(Ap + Areg) + Acy (2.32)
I'(q) = é (2.33)
tip(q) Rty +treg (2.34)
AT() (A5 + Areg Ao ) (b7 + treg) % (A + Areg)t5 +tr) (2.35)
L(g) =1 (2.36)
E(q) = Ef + Ereg + Ecy (2.37)

34 Multiple processing units that work in parallel are also found in situations where the application naturally
provides data in parallel streams, each of which is to undergo essentially the same processing. In spite of
the apparent similarity, this must not be considered as the result of replication, however, because DDG and
architecture are isomorphic. This is reflected by the fact that no data distribution and recollection mechanism

is required in this case. Please refer to section 2.4.5 for the processing of multiple data streams.
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As everyone would expect, replication essentially trades area for speed. Except for the control
overhead, the AT-product remains the same. Pipelining, therefore, is clearly more attractive than
replication as long as circuit size and performance do not become dominated by the pipeline registers,
see fig.2.18 for a comparison.
FEzxzample
Consider a simple network processor that handles a stream of incoming data packets and does
some address calculations before releasing the packets with a modified header. Let that processor
be characterized by the subsequent cost figures: Ay = 60w GE, Ayey = 6w GE, where w is an integer
relating to datapath width, ty = 12 ns, tyeg = 1.2 ns, and min(tgqate) = 0.3 ns.
A
[GE]
800w — 12
12 °©
infeasible &1
except with towards
700w — supe’r]-fast throughput <
distribution o .
and 10077 break-even point
recollection
600w Circuitry
towards
hardware
o efficiency towards
hardware
500w — deepest economy
pipelining
possible
O
400w —| &0
50 replication
ipelinin
300w—| pipeining
40
i 4
| fine-
30 grain
200w —| 25 regime 3
optimum efficiency ) ) 2
100w— coarse-grain regime isomorphic
Ay .| minmumsize! R S  ——— . configuration |4 1
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Da— f d
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Fig. 2.18 AT-characteristics of pipelining and replication compared. Simplified by assuming perfect balancing,
by not accounting for shimming registers in the occurrence of pipelining, and by abstracting from control, data
distribution, and recollection associated with replication.

d

Energywise, replication is indifferent except for the contributions for datapath control and data
distribution /recollection. Also note, by the way, that replication does not shorten the computation
period, which contrasts with iterative decomposition and pipelining.35

35 Observe that the entirety of functional units must be fed with ¢ data items per computation cycle and that

processed data items emanate at the same rate. Only the data distribution and recollection subcircuits must
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A more accurate evaluation of replication versus pipelining would certainly require revision of some
of the assumptions made here and does depend to a large extent on the actual DDG and on
implementation details. Nevertheless, it is safe to conclude that neither fine grain pipelining nor
replication is as cost-effective as coarse grain pipelining.

Its penalizing impact on circuit size confines replication to rather exceptional situations in ASIC
design. A megacell available in layout form exclusively represents such a need because adding
pipeline registers to a finished layout would ask for a disproportionate effort. Replication is limited
to high-performance circuits and always combined with generous pipelining.

Superscalar and multicore microprocessors are two related ideas from computer architecture.3%

Several factors have pushed the computer industry towards replication: CMOS technology offered
more room for increasing circuit complexity than for pushing clock frequencies higher. The faster
the clock, the smaller the region on a semiconductor die that can be reached within a single clock
period,37 Fine grain pipelines dissipate a lot of energy for relatively little computation. Reusing a
well-tried subsystem benefits design productivity and lowers risks. A multicore processor can still
be of commercial value even if one of its CPUs is found to be defective.

2.45 Time sharing

So far we have been concerned with the processing of a single data stream as depicted in fig.2.12.
Now consider a situation where a number of parallel data streams undergo processing as illustrated
in fig.2.19, for instance. Note that the processing functions f, g, and h may, but need not, be the
same. The isomorphic architecture calls for a separate functional unit for each of the three operations
in this case. This may be an option in applications such as image processing where a great number
of dedicated but comparatively simple processing units are repeated along one or two dimensions,
where data exchange is mainly local, and where performance requirements are very high.

More often, however, the costs of fully parallel processing are unaffordable and one seeks to cut
overall circuit size. A natural idea is to pool hardware by having a single functional unit process
the parallel data streams one after the other in a cyclic manner. Analogously to replication, a
synchronous s-way switch at the input of that unit collects the data streams while a second one
redistributes the processed data at the output. While the approach is known as time-sharing in
computing, it is more often referred to as multiplexing or as resource sharing in the context of
circuit design.38 What it requires is that the circuitries for computing the various functions involved
all be combined into a single datapath of possibly multifunctional nature. A student sharing his
time between various subjects might serve as an analogy from everyday life.

be made to operate at a rate ¢ times higher than the computational instances themselves. High data rates are
obtained from configuring data distribution/recollection networks as heavily pipelined binary trees. Maximum
speed is, again, determined by (2.29). Yet, circumstances permitting, it may be possible to implement data dis-
tribution and recollection using a faster technology than the one being used in the body of the processing chunk
(superfast distribution and recollection). Also see [41] for further information on fast data distribution/recollec-
tion circuitry.

A superscalar processor combines multiple execution units, such as integer ALUs, FPUs, load/store units, and
the like, into one CPU so that superscalar CPU can fetch and process more than one instruction at a time.
Multicore architectures go one step further in that they replicate entire CPUs on a single chip and so enable
a processor to work on two or more threads of execution at a time.

37 For a rationale, refer to section 6.3 that discusses delay in interconnect lines without and with repeaters.

38 This is our second resource-sharing technique, after iterative decomposition introduced in section 2.4.2.
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Fig. 2.19 Time sharing. DDG with parallel data streams (a) and hardware configuration for s = 3 (b).

PERFORMANCE AND COST ANALYSIS
Assumptions:

1. The size of a circuit capable of implementing functions f, g, and h with a single computational
unit ranges between }na)}i(A) =max(Ay, Ag, Ap) and 30, A= (Af + Ag + Ap).
195 .

2. The time for the combined computational unit to evaluate any of the functions f, g, and h has

a fixed value }naa{(t) = max(ty,tg,tp).
:9,h
3. As for replication, any size and energy penalties associated with collecting and redistributing

data are neglected.
4. The energy spent for carrying out functions f, g, and h (all together) with one shared unit is
closer to s;na)li(E) = smax(Ey, Eg, Ep,) than to }5; E'= Ef + Eg + Ej.
9 b

Time-sharing yields the following circuit characteristics:

max(A) + Areg + Aeyt S A(s) < Y A+ Areg + Aeyy (2.38)

f.g9.h

f9:h
I'(s)=s (2.39)
tp(s) = }ng&}lf(t) + treg (2.40)
5(?133}4/1) + Areg + Aetl)(ffﬂa)f(t) +treg) < AT(s) <
frg:h f.g.h
| 30 A Are + A} anax(®) + treg (2.41)
R
L(s)=s (2.42)
E(s) =~ s;na)}((E) + Ereg + Eoyg (2.43)
.g:h

Similarly to what was found for iterative decomposition, whether size A(s) tends more towards its
lower or more towards its upper bound in (2.38) greatly depends on how similar or dissimilar the
individual processing tasks are.

The most favorable situation occurs when one monofunctional datapath proves sufficient because

all streams are to be processed in exactly the same way. In our example we then have f=¢g=h

from which ;na)}i(A):Af =Ay=A; and ;na)li(t):tf =ty =ty follow immediately. Apart from the
g, 195

overhead for control and data routing, AT'(s) equals the lower bound s(Af + Areg)(t + treg) which
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is identical to the isomorphic architecture with its s separate computational units. It is in this best
case exclusively that time-sharing leaves the size—time product unchanged and may, therefore, be
viewed as complementary to replication.

The contrary condition occurs when f, g, and h are very dissimilar so that no substantial
savings can be obtained from concentrating their processing into one multifunctional datapath.
Time-sharing will then just lower throughput by a factor of s, thereby rendering it an unattractive
option. Provided speed requirements are sufficiently low, a radical solution is to combine time-
sharing with iterative composition and to adopt a processor style as already mentioned in subsection
2.4.2.

The energy situation is very similar. If the processing functions are all alike and if the computation
rate is kept the same, then the energy spent for processing actual data also remains much the same.??
Extra energy is then spent only for controlling the datapath and for collecting and redistributing
data items. More energy is going to get dissipated in a combined datapath when the functions
markedly differ from each other. As time-sharing has no beneficial impact on glitching activity
either, we conclude that such an architecture necessarily dissipates more energy than a comparable

non-time-shared one.

By processing s data streams with a single computational unit, time-sharing deliberately refrains
from taking advantage of the parallelism inherent in the original problem. This is of little importance
as long as performance goals are met with a given technology. When in search of more performance,
however, a time-shared datapath will have to run at a much higher speed to rival the s concurrent
units of the isomorphic architecture, which implies that data propagation along the longest path
must be substantially accelerated. Most measures suitable to do so, such as higher supply voltage,
generous transistor sizing, usage of high-speed cells and devices, adoption of faster but also more
complex adder and multiplier schemes, etc., tend to augment the amount of energy spent for the
processing of one data item even further.

Ezample

The Fast Fourier Transform (FFT) is a rather expensive combinational function, see fig.2.20. Luck-
ily, due to its regularity, the FFT lends itself extremely well to various reorganizations that help
reduce hardware size. A first iterative decomposition step cuts the FFT into logs(n) rounds where
n stands for the number of points. When an in-place computation scheme is adopted, those rounds

40

become identical except for their coefficient values.™ Each round so obtained consists of § parallel

computations referred to as butterflies because of their structure, see fig.2.20b. The idea of sharing

39 Consider (2.27) and note that the equation simplifies to sEf + Eyeqg + Ecyy when f, g, and h are the same.
The partial sum sEf + E,., then becomes almost identical to s(Es + E,.y) of the reference architecture. The
apparent saving of (s — 1)E, ., obtained from making do with a single register does not materialize in practice
because of the necessity to store data items from all streams.

40 For a number of computational problems, it is a logical choice to have two memories that work in a ping-

pong fashion. At any moment of time, one memory provides the datapath with input data while the other

accommodates the partial results at present being computed. After the evaluation of one round is completed,
their roles are swapped. Simple as it is, this approach unfortunately requires twice as much memory as needed
to store one set of intermediate data. A more efficient technique is in-place computation, whereby some of the
input data are immediately overwritten by the freshly computed values. In-place computation may cause data
items to get scrambled in memory, though, which necessitates corrective action. Problems amenable to in-place

computation combined with memory unscrambling include the FFT and the Viterbi algorithm [42].
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Fig. 2.20 DDG of 8-point FFT (a) and of butterfly operator (b) (reduced for simplicity).

one or two computational units between the butterfly operations of the same round is very obvious

at this point.41

DDGs as regular as this offer ample room for devising a range of architectures that represent diverse
compromises between a single-ALU microprocessor and a hardwired data pipeline maximized for
throughput. Providing a limited degree of scalability to accommodate FFTs of various sizes is not
overly difficult either. Favorable conditions similar to these are found in many more applications
including, among others, transversal filters (repetitive multiply—accumulate operations), correlators
(idem), lattice filters (identical stages), and block ciphers (cascaded rounds).

|

So far, we have come up with four equivalence transforms, namely

e [terative decomposition,
e Pipelining,

e Replication, and

e Time-sharing.

Figure 2.21 puts them into perspective in a grossly simplified but also very telling way. More
comments will follow in section 2.4.8.

11 Alternative butterfly circuits and architectures have been evaluated in [43] with emphasis on energy efficiency.
Also, in fig.2.20, we have assumed input samples to be available as eight concurrent data streams. FFT processors
often have to interface to one continuous word-serial stream, however. Architectures that optimize hardware

utilization for this situation are discussed in [44].
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Fig. 2.21 A roadmap illustrating the four universal transforms for tailoring combinational hardware. Only a
subset of all possible architectural configurations is shown, see problem 2.10. Greatly simplified by

e abstracting from register overhead (Arcy = 0, trey = 0), which also implies

® not making any difference between RAMs and flip-flops (Araa = Ap - #vits, tRAM = tgr),

e assuming ideal iterative decomposition and ideal time-sharing (lower bounds in (2.17) and (2.38)), and

e ignoring any overhead associated with control and/or data distribution and collection.
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2.4.6 Associativity transform

All four architectural transforms discussed so far have one thing in common. Whether and how to
apply them for maximum benefit can be decided from a DDG’s connectivity and weights alone,
no matter what operations the vertices stand for. In what follows, we will call any architectural
reorganization that exhibits this property a universal transform.

The practical consequence is that any computational flow qualifies for reorganization by way of uni-
versal transforms. This also implies that any two computations the DDGs of which are isomorphic
can be solved by the same architecture just with the vertices interpreted differently.

More on the negative side, universal transforms have a limited impact on the flow of computation
because the number and precedence of operations are left unchanged.42 As many computational
problems ask for more specific and more profound forms of reorganization in order to take full advan-
tage of the situation at hand, one cannot expect to get optimum results from universal transforms
alone. Rather, one needs to bring in knowledge on the particular functions involved and on their
algebraic properties. Architectural reorganizations that do so are referred to as operation-specific
or algebraic transforms.

Probably the most valuable algebraic property from an architectural point of view is the associative
law. Associativity can be capitalized on to

o Convert a chain structure into a tree or vice versa, see example below,

o Reorder operations so as to accommodate input data that arrive later than others do,
o Reverse the order of execution in a chain as demonstrated in section 2.6, or

o Relocate operations from within a recursive loop to outside the loop, see section 2.7.

This explains why the associativity transform is also known as operator reordering and as
chain/tree conversion.

FEzxzample
Consider the problem of finding the minimum among I input values

y(k) = min(z;(k)) where ¢ =0,1,...,({ — 1) (2.44)

Assuming the availability of 2-way minimum operators, this immediately suggests a chain structure
such as the one depicted in fig.2.22a for I = 8. The delay along the longest path is (I — 1), and
increases linearly with the number of terms. As the 2-way minimum function is associative, the
DDG lends itself to being rearranged into a balanced tree as shown in fig.2.22b. The longest path
is thereby shortened from I — 1 to [logy!] operations, which makes the tree a much better choice,
especially for large values of I. The number of operations and the circuit’s size remain the same.

|

The conversion of a chain of operations into a tree, as in the above example, is specifically referred
to as tree-height minimization. As a side effect, this architectural transform often has a welcome
impact on energy efficiency. This is because glitches die out more rapidly and are more likely to

12 While it is true that the number of DDG vertices may change, this is merely a consequence of viewing the

original operations at a different level of detail.
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Fig. 2.22 8-way minimum function. Chain-type DDG (a), tree-type DDG (b).

neutralize when all data propagation paths are of similar lengths. In addition, we observe the same
indirect benefit as with pipelining, in that a shortened longest path makes it possible to use a slower
yet more energy-efficient circuit style or a reduced supply voltage if circumstances permit.

2.4.7 Other algebraic transforms

It goes without saying that many more algebraic laws can be put to use for improving dedicated
architectures. Distributivity helps to replace the computation of (a2 — 2az + a:2) by the more
economic form of (a — x)2, for instance, and is instrumental in exploiting known symmetries in
coefficient sets. Together with commutativity, distributivity is also at the heart of distributed
arithmetic, see subsection 2.8.3. Horner’s scheme serves to evaluate polynomials with a mini-
mum number of multiplications, the principle of superposition holds in linear systems, the De
Morgan theorem helps in optimizing Boolean networks, and so on. See problem 5 for yet another
operation-specific alteration. As a rule, always ask yourself what situation-specific properties might
be capitalized on. The transforms discussed in this text just represent the more common ones and

are by no means exhaustive.

2.4.8 Digest

® Jterative decomposition, pipelining, replication, and time-sharing are based on the DDG as
a graph and make no assumptions on the nature of computations carried out in its vertices,
which is why they are qualified as universal. The associativity transform, in contrast, is said
to be an algebraic transform because it depends on the operations involved being identical
and associative.
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* [terative decomposition, pipelining, replication, and a variety of algebraic transforms make
it possible to tailor combinational computations on a single data stream to given size and
performance constraints without affecting functionality. Time-sharing is another option in the
presence of inherently parallel data streams and operations.

* For iterative decomposition to be effective, complex functions must be amenable to being
broken into similar subfunctions so as to make it possible to reuse the same circuitry. Much
the same reasoning also holds for time-sharing in that parallel functions must not be too
diverse to share a single functional unit in a fairly efficient way.

* Pipelining is generally more efficient than replication, see fig.2.18. While coarse grain pipelin-
ing improves throughput dramatically, benefits decline as more and more stages are included.
When in search of utmost performance, begin by designing a pipeline the depth of which yields
close-to-optimum efficiency. Only then if throughput is still insufficient consider repli-
cating the pipelined functional unit a few times; see problem 2 for an example. This approach
also makes sense in view of design productivity because duplicating a moderately pipelined
unit may be easier and quicker than pushing pipelining to the extreme.

® A theoretical upper bound on throughput, expressed as data items per time unit, that holds
for any circuit technology and architecture is © < m.“

* Pipelining and iterative decomposition are complementary in that both can contribute to
lowering the size—time product. While the former acts to improve performance, the latter cuts
circuit size by sharing resources. Combining them indeed makes sense, within certain bounds,
in order to obtain a high throughput from a small circuit.

® Starting from the isomorphic configuration, a great variety of architectures is obtained from
applying equivalence transforms in different orders. Combining several of them is typical for
VLSI architecture design. Figure 2.21 gives an idealized overview of the design space spanned
by the four universal transforms.** Which configuration is best in practice cannot be decided
without fairly detailed knowledge of the application at hand, of the performance requirements,
and of the target cell library and technology.

® Program-controlled microprocessors follow an architectural concept that pushes iterative de-
composition and time-sharing to the extreme and that combines them with pipelining, and
often with replication too. Developers of general-purpose hardware cannot take advantage of
algebraic transforms as their application requires detailed knowledge about the data process-
ing algorithm.

® It can be observed from fig.2.21 that lowering the size-time product AT always implies cutting
down the longest path t;,, in the circuit. This comes as no surprise as better hardware efficiency
can be obtained only from keeping most hardware busy for most of the time by means of a
higher computation rate fep.

13 Further improvements are possible only by processing larger data chunks at a time i.e. by packing more bits,
pixels, samples, characters, or whatever into one data item. Note this is tantamount to opting for a larger w in
the sense of footnote 21.

11 As a more philosophical remark, observe from fig.2.21 that there exists no single transform that leads towards
optimum hardware efficiency. To move in that direction, designers always have to combine two or more transforms

much as a yachtsman must tack back and forth to progress windward with his sailboat.



2.5 OPTIONS FOR TEMPORARY STORAGE OF DATA

89

* Important power savings are obtained from operating CMOS logic with a supply voltage below
its nominal value. Clever architecture design must compensate for the loss of speed that is
due to the extended gate delays. Suggestions are given not only throughout this chapter, but

also in the forthcoming material on energy efﬁciency.45

2.5 | Options for temporary storage of data

Except for trivial SSI/MSI circuits, any IC includes some form of memory. If the original data
processing algorithm is of sequential nature and, therefore, mandates the temporary storage of
data, we speak of functional memory. If storage gets introduced into a circuit as a consequence of

architectural transformations, the memory is sometimes said to be of nonfunctional nature.
The major options for temporary storage of data are as follows:

o On-chip registers built from individual bistables (flip-flops or latches),
o On-chip memory (embedded SRAM or — possibly — DRAM macrocell), or
o Off-chip memory (SRAM or DRAM catalog part).1®

There are important differences from an implementation point of view that matter from an archi-
tectural perspective and that impact high-level design decisions.

2.5.1 Data access patterns

Standard single-port RAMs provide access to data words one after the other.*” This is fine in
sequential architectures as obtained from iterative decomposition and time-sharing that process
data in a step-by-step fashion. Program-controlled microprocessors with their “fetch, load, execute,
store” processing paradigm are a perfect match for RAMs.

Fast architectures obtained from pipelining, retiming, and loop unfolding748 in contrast, keep
data moving in every computation cycle, which mandates the usage of registers as only those allow
for simultaneous access to all of the data words stored.

Incidentally, also keep in mind that the contents of DRAMs need to be periodically refreshed, which
dissipates electrical power even when no data accesses take place.

2.5.2 Available memory configurations and area occupation

Next compare how much die area gets occupied by registers and by on-chip RAMs. While register
files allow for any conceivable memory configuration in increments of one data word of depth and one
data bit of width, their area efficiency is rather poor. In the occurrence of fig.2.23, registers occupy
an order of magnitude more area than a single-port SRAM for capacities in excess of 5000 bits. This
is because registers get assembled from individual flip-flops or latches with no sharing of hardware

resources.

5 In chapter 9.

Please refer to section A.4 if totally unfamiliar with semiconductor memories.

Dual-port RAMs can access two data words at a time, multi-port RAMs are rather uncommon.
Retiming and loop unfolding are to be explained in sections 2.6 and 2.7 respectively.
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Due to their simple and extremely compact bit cells, RAMs make much better use of area in
spite of the shared auxiliary subcircuits they must accommodate. In a typical commodity DRAM,
for instance, roughly 60% of the die is occupied by storage cells, the rest by address decoders,
switches, precharge circuitry, sense amplifiers, internal sequencers, I/O buffers, and padframe. Yet,
such circuit overheads tend to make RAMs less attractive for storing smaller data quantities, which
is also evident from fig.2.23. A more serious limitation is that macrocells are available in a very
limited number of configurations only. Adding or dropping an address bit alters memory capacity
by a factor of two, and fractional cores are not always supported.

Always keep in mind that such effects have been ignored in the cost and performance analyses carried
out in sections 2.4.2 through 2.4.5 where A,cy had been assumed to be fixed with no distinction
between registers and RAMs. More specifically, this also applies to fig.2.21.
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& hd 8 o register file, 8bit wordwidth
g a a register file, 16bit wordwidth
= é register file, 32bit wordwidth
o 5 ﬁ © register file, 64bit wordwidth
T 100000 = & m on-chip SRAM, 8bit wordwidth
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8 - B o on-chip SRAM, 32bit wordwidth
S b PR o on-chip SRAM, 64bit wordwidth
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10000 =
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Fig. 2.23 Area occupation of registers and on-chip RAMs for a 130 nm CMOS technology.

2.5.3 Storage capacities

Embedded memories cannot rival the copious storage capacities offered by commodity RAMs. The
densest memory chips available are DRAMs built from one-transistor cells whereas the macro-
cells intended for being embedded within ASICs typically get assembled from six-transistor SRAM

storage cells, see table 2.9.49

The economic disparity between on-chip memories and cheap commodity DRAMs that are cost-
optimized, fabricated in large quantities, and — all too often — subject to ruinous competition has

19 DRAMs further take advantage of three-dimensional trench capacitors and other area-saving structures made
possible by dedicated fabrication steps and process options unavailable to macrocells that are to be compatible
with a baseline CMOS process. Also, processes for commodity memories are often ahead of ASIC processes in
terms of feature size. Finally, the layout of memory chips is highly optimized by hand.
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long discouraged the on-chip storage of very large amounts of data within ASICs. The design of true
“systems on a chip” requires this gap to be closed. In fact, some integrated VLSI manufacturers are
capable of embedding high-density DRAMs within their designs, but the approach has been slow
to catch on with the ASIC community and, more particularly, with the providers of ASIC design
kits.

Ezxzamples

Embedded DRAMs occupy a large part of the market for 3D graphics accelerator chips for laptops
because higher performance and lower power dissipation are key value propositions [45]. The so-
called “Emotion Engine” superscalar multimedia processor chip designed and produced by Toshiba
for Sony’s PlayStation 2 is another popular example.

O

2.5.4 Wiring and the costs of going off-chip

On the negative side, off-chip memories add to pin count, package count, and board space. Com-
municating with them involves a profusion of parasitic capacitances and delays that cause major
bottlenecks in view of operating speed, performance, and energy efficiency.

In addition, most commodity RAMs feature bidirectional data pins in an effort to keep costs and
pin counts as low as possible. They thus impose the adoption of a bidirectional bus on any IC that
is going to exchange data with them. Yet, note that bidirectional on-chip busses and even more so
bidirectional pads require special attention during circuit design and test.

e Not only stationary but even transient drive conflicts must be avoided because of the strong
drivers and important currents involved.

e Automated test equipment (ATE) must be made to alternate between read and write modes
with no physical access to any control signal within the chip.

e Test patterns must be prepared for verifying bidirectional operation and high-impedance states
during circuit simulation and testing.

e Electrical and timing measurements become more complicated.

2.5.5 Latency and timing

RAM-type memories further differ from registers in terms of latency, paging, and timing. Firstly,
some RAMs have latency while others do not. In a read operation, we speak of latency zero if the
content of a memory location becomes available at the RAM’s data output in the very clock cycle
during which its address has been applied to the RAM’s address port. This is also the behavior of
a register bank.

As opposed to this, we have a latency of one if the data word does not appear before an
active clock edge has been applied. Latency is even longer for memories that operate in a pipelined
manner internally. Latency may have a serious impact on architecture design and certainly affects
HDL coding.?"

50" A trick that may help to conceal latency is to operate the RAM’s memory address register on the opposite clock
edge to the rest of the circuit. Note that this introduces extra timing conditions with respect to the supposedly

inactive clock edge that do not exist in a single-edge triggered circuit, however.
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Secondly, commodity DRAMs have their row and column addresses multiplexed over the same pins
to cut down package size and board-level wiring. Latency then depends on whether a memory
location shares the row address with the one accessed before, in which case the two are said to sit
on the same page, or not. Paged memories obviously affect architecture design.

Thirdly, address decoding, precharging, the driving of long word and bit lines, and other internal
suboperations inflate the access times of both SRAMs and DRAMs. RAMs thus impose a compar-
atively slow clock that encompasses many gate delays per computation period whereas registers are

compatible with much higher clock frequencies.51

2.5.6 Digest

Table 2.9 ‘ Key characteristics of register-based and RAM-based data storage compared.

architectural option on-chip off-chip
bistables embedded commodity

flip-flop | latch SRAM | DRAM DRAM

fabrication process compatible with logic optimized

devices in each cell 20-30T ‘ 12-16T 6T|4T&2R ‘ 1T&1C 1T&1C

cell area per bit (F?)® || 1700-2800 | 1100-1800 | 135-170 | 18-30 6-8

extra circuit overhead none 1.3 < factor < 2 off-chip

memory refresh cycles none ‘ yes

extra package pins none none address & data bus

nature of wiring multitude of local lines on-chip busses package & board

bidirectional busses none optional mandatory

access to data words all at a time one at a time

available configurations any restricted

energy efficiency goodb fair poor very poor

latency and paging none no fixed rules yes

impact on clock period minor substantial severe

@ Area of one bit cell in multiples of F?, where F? stands for the area of one lithographic square.

b

Depending on the register access scheme, conditional clocking may be an option.

Observation 2.8. Most on-chip RAMs available for ASIC design

+ are of static nature (SRAMs),

+ have their views obtained automatically using a macrocell generator,

— offer a limited choice of configurations (in terms of #yords and Wyaiq ),
+ occupy much less area than flip-flops,

— but do so only above some minimum storage capacity,

+ greatly improve speed and energy efficiency over off-chip RAMs,

It is sometimes possible to multiply maximum RAM access rate by resorting to memory interleaving, a
technique whereby several memories operate in a circular fashion in such a way as to emulate a single storage
array of shorter cycle time.
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— but cannot compete in terms of capacity,
— restrict data access to one read or write per cycle,
— impose rigid constraints on timing, minimum clock period, and latency.

Examples

Cu-11 is the name of an ASIC technology by IBM that has a drawn gate length — and hence also
a minimum feature size — of 110 nm and that operates at 1.2 V. The process combines copper
interconnect with low-k interlevel dielectric materials. As part of the Cu-11 design library, IBM offers
an SRAM macrocell generator for memories ranging from 128 bit to 1 Mibit as well as embedded
DRAM megacells of trench capacitor type with up to 16 Mibit. A 1 Mibit eDRAM has a cycle time
of 15 ns which is equivalent to 555 times the nominal delay of a 2-input NAND gate. eDRAM bit cell
area is 0.31 p.m2, which corresponds to 25.6F%. A 1 Mibit eDRAM occupies an area of 2.09 mm?
(with an overhead factor 1.84) and its 16 Mibit counterpart 14.1 mm? (overhead factor 1.63).

Actel’s ProASICELEUS flash-based FPGA family makes embedded SRAMSs available in chunks of
256 x 9 bit. The APA1000 part includes 88 such blocks, which corresponds to 198 kibit of embedded
RAM if fully used.

O

Flash memories have not been addressed here as they do not qualify for short-time random-
access storage. This is primarily because data must be erased in larger chunks before it becomes
possible to rewrite individual words. The comparatively low speed and limited endurance are other
limitations that make flash more suitable for longer-term storage applications such as retaining FPL
configurations as explained in section 1.4.1.

Just for comparison, the physical bit cell area of flash technology is a mere 4 to 12F? and, hence,
comparable to DRAM rather than SRAM. What’s more, by using four voltage levels intead of
two, two bits can be stored per flash cell, bringing down the minimum area to just 2F? per bit.
Endurance is on the order of 100 000 write&erase cycles for flash cells that hold one bit (two states)
and 10000 cycles for those that hold two bits (four states). Still higher numbers are made possible
by wear-leveling schemes implemented in special memory controllers.

As further details of the various memory technologies are of little importance here, the reader is
referred to the literature [46] [47] [48] [49]. An excellent introduction to flash memory technology
is given in [50] while [51] elaborates on improvements towards high-density storage and high-speed
programming. According to the top-down approach adopted in this text, transistor-level circuits for
bistables and RAMs will be discussed later, in sections 8.2 and 8.3 respectively.

2.6 | Equivalence transforms for nonrecursive computations

Unlike combinational computations, the outcome of sequential computations depends not only on
present but also on past values of its arguments. Architectures for sequential computations must
therefore include memory. In the DDG this gets reflected by the presence of edges with weights
greater than zero. However, as nonrecursiveness implies the absence of feedback, the DDG remains



94

Architectures of VLSI Circuits

free of circular paths. The storage capacity required by the isomorphic architecture is referred to as
memory bound because no other configuration exists that could do with less.?? Table 2.9 allows
approximate translation from memory bits to chip area.

2.6.1 Retiming

The presence of registers in a circuit suggests a new type of reorganization known as retiming or
as register balancing, whereby registers get relocated so as to allow for a higher computation rate
without affecting functionality [52] [53]. The goal is to equalize computational delays between any
two registers, thereby shortening the longest path that bounds the computation period from below.
Referring to a DDG one must therefore know.

“In what way is it possible to modify edge weights without altering the original functionality?”

] retiming ]
vt Y9 datapath E> no control
section section
h I |
@ nonuniform uniform
b) computational delays

Fig. 2.24 Retiming. DDG (a) and a hardware configuration for [ = 1 (b).

Let us follow an intuitive approach to find an answer.’® Consider a DDG and pick a vertex, say
h in fig.2.24, for instance. Now suppose the operation of vertex h is made to lag behind those
of all others by adding latency to every edge pointing towards that vertex, and by removing the
same amount of latency from every edge pointing away from that vertex. Conversely, any vertex
could be made to lead the others by transferring latency from its incoming to its outgoing edges.
Since any modifications made to the incoming edges are compensated for at the outgoing edges,
nothing changes when the DDG is viewed from outside. The retimed DDG is, therefore, functionally
equivalent to the initial one. As it is always possible (a) to think of an entire subgraph as one
supervertex, and (b) to repeat the operation with changing vertices and supervertices, the idea
paves the way for significant hardware reorganizations.

Not all DDGs obtained in this way are legal, though, because the general requirements for DDGs
stated in subsection 2.3.4 impose a number of restrictions on edge weights or — which is the same —
on latency registers. Any legal retiming must observe the rules below.

1. Neither data sinks (i.e. outputs) nor sources of time-varying data (i.e. variable inputs) may be
part of a supervertex that is to be retimed. Sources of constant data (i.e. fixed inputs) do not
change in any way when subjected to retiming.

2. When a vertex or a supervertex is assigned a lag (lead) by I computation cycles, the weights of
all its incoming edges are incremented (decremented) by | and the weights of all its outgoing
edges are decremented (incremented) by [.

52 . . . . .
° For combinational computations, the memory bound is obviously zero.

>3 A more formal treatise is given in [54].
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3. No edge weight may be changed to assume a negative value.
4. Any circular path must always include at least one edge of strictly positive weight.54

Interestingly, rule 4 does not need to be taken into consideration explicitly — provided it was
satisfied by the initial DDG — because the weight along a circular path will never change when
rule 2 is observed. The proof is trivial.

As a direct consequence of rule 1, retiming does not affect latency. Retiming necessitates neither
control logic nor extra data storage facilities but may alter the total number of registers in a circuit,
depending on the structure of the DDG being subjected to the transformation.””

Energywise, it is difficult to anticipate the overall impact of retiming as switching activities, fanouts,
and node capacitances all get altered. Yet, much as for pipelining, the reduced long path delay either
allows for compensating a lower supply voltage or can be invested in using a slower but more energy-
efficient circuit style or technology. The fact that retiming does not normally burden a circuit with
much overhead renders it particularly attractive.

2.6.2 Pipelining revisited

Recall from section 2.4.3 that pipelining introduces extra registers into a circuit and necessarily
increases its latency, which contrasts with what we have found for retiming. Pipelining can in fact
be interpreted as a transformation of edge weights that differs from retiming in that rule 1 is turned
into its opposite, namely

1. Any supervertex to be assigned a lag (lead) must include all data sinks (time-varying data
sources).

What retiming and pipelining have in common is that they allow a circuit to operate at a higher
computation rate. Most high-speed architectures therefore combine the two.

Ezample

Consider the problem of computing

N
y(k) = h(en,z(k —n)) (2.45)

n=0
i.e. a time-invariant Nth-order correlation where h(c,z) stands for some unspecified — possibly

nonlinear — function. Think of h(e, z) as some distance metric between two DNA fragments ¢ and
x, for instance, in which case y(k) stands for the overall dissimilarity between the DNA strings
(co,c1y...,en) and (z(k),z(k —1),...,x(k — N)) of length N.

54 Although irrelevant here due to the absence of circular paths, this stipulation does apply in the context of

recursive computations.

55 For many applications it is important that a sequential circuit assumes its operation from a well-defined start
state. (As a rule, initial state does matter for controllers but is often irrelevant for datapath circuitry.) If so, a
mechanism must be provided for forcing the circuit into that state. Finding the start state for a retimed circuit
is not always obvious. The problem of systematically computing the start state for retimed circuits is addressed

in [55].
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Fig. 2.25 Nonlinear time-invariant third-order correlator. Original DDG (a), with adder chain reversed by
associativity transform (b), after retiming (c), with pipelining added on top so as to obtain a systolic
architecture (d).

The DDG of a third-order correlator is shown in fig.2.25 together with its stepwise reorganization.
For the sake of concreteness, let us assume that a register delay is treg = 0.5 ns, that computing
one distance metric takes t;, = 3 ns, and that adding up two items costs t+ = 2 ns.

(a) Original DDG as obtained from straight interpretation of (2.45). The delay along the longest
path is stated in the table below, note that it grows with correlation order N. There is no
retiming that would relocate the existing registers in a useful way. Although the configuration
is amenable to pipelining, reformulating it first will eventually pay off.

(b) Same as (a) with the adder chain reversed by an associativity transform. Maximum delay and
register count remain unchanged, but the computation has now become suitable for retiming.
Also refer to problem 3.
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(c¢) Functional registers transferred into the adder chain by retiming of (b). The three vertices and
supervertices enclosed by dashed lines have been assigned leads of 1, 2, and 3 computation
cycles respectively. Long path delay is substantially reduced with no registers added. Also
notice that the maximum operating speed is no longer a function of correlation order V.

(d) Retiming complemented by pipelining. The supervertex enclosed by a dashed line, which
includes the data sink, has been assigned a lag of 1. The longest path is further shortened
at the price of extra registers and of an increased latency. Observe that it is not possible to
improve performance any further unless one is willing to intervene into the adders on a lower
level of circuit detail, also see section 2.8.1.

Architectural variant

Key characteristics (a) ‘ (b) ‘ (c) ‘ (d)
arithmetic units (N+1)A, + NA4 idem idem idem
functional registers NApeqy idem idem idem
nonfunctional registers 0 idem idem (N +1)Areqg
cycles per data item I' 1 idem idem idem
longest path delay t;,, treg +tn + Nty idem treg +tp +t+ | treg + max(tp,t4)

for N = 3 (ns) 9.5 idem 5.5 3.5

for N = 30 (ns) 63.5 idem 5.5 3.5
latency L 0 idem idem 1

O

Make sure you understand there is a fundamental difference between the architectural transforms
used in the above example. While retiming and pipelining are universal transforms that do not
depend on the operations involved, changing the order of execution in the algebraic transform
that leads from (a) to (b) insists on the operations concerned being identical and associative. The
practical significance is that the sequence of reorganizations that has served to optimize the nonlinear
correlator example also applies to transversal filters which are of linear nature, for instance, but not
to DDGs of similar structure where addition is replaced by some non-associative operation.

2.6.3 Systolic conversion

Both pipelining and retiming aim at increasing computation rate by resorting and by equalizing
register-to-register delays. For a given granularity, maximum speed is obtained when there is no
more than one combinational operation between any two registers. This is the basic idea behind
systolic computation.

A DDG is termed systolic if the edge weight between any two vertices is one or more. The ar-
chitecture depicted in fig.2.25d is in fact systolic, and the ultimate pipeline in the sense of (2.29)
is now also recognized as a circuit that is systolic at the gate level. Please refer to [56] for a more
comprehensive discussion of systolic computation and to [57] for details on systolic conversion, that
is on how to turn an arbitrary nonrecursive computation into a systolic one.
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2.6.4 lterative decomposition and time-sharing revisited

Applying the ideas of decomposition and time-sharing to sequential computations is straightforward.
Clearly, only combinational circuitry can be multiplexed whereas functional memory requirements
remain the same as in the isomorphic architecture.

FEzxzample

In the isomorphic architecture of a transversal filter, see fig.2.11e, each filter tap is being processed
by its own multiplier. All calculations associated with one sample are thus carried out in parallel
and completed within a single computation cycle. Nevertheless, the architecture is slow because the
longest path traverses the entire adder chain, thereby mandating a long computation period. Also,
hardware costs are immoderate, at least for higher filter orders N.

A more economic alternative that handles one filter tap after the other follows naturally, see fig.2.26.
This architecture manages with a single multiplier that gets time-shared between taps. A single
adder iteratively sums up the partial products until all taps that belong to one sample have been
processed after N + 1 computation cycles. An accumulator stores the intermediate sums. Coeffi-
cients may be kept in a hardwired look-up table (LUT), in a ROM, or in some sort of writable
memory. Datapath control is fairly simple. An index register that counts n = N, N —1,...,0 ad-
dresses one coefficient at any time. The very same register also selects the samples from the input
shift register, either by way of a multiplexer or a three-state bus, or by arranging the shift register
in circular fashion and by having data there make a full cycle between any two subsequent samples.
An output register maintains the end result while computation proceeds with the next sample.

For filters of higher order, one would want to substitute a RAM for the input shift register. While
this requires some extra circuitry for addressing, it does not fundamentally change the overall
architecture.

O

2.6.5 Replication revisited

The concept of replication introduced in section 2.4.4 cannot normally be applied to sequential
computations as the processing of one data item is dependent on previous data items. A notable
exception exists in the form of so-called multipath filters (aka N-path filters) designed to im-
plement sequential computations of linear time-invariant nature. With Hj(z) denoting the transfer
function of a single path, all of which are identical, and with ¢ as replication factor, a composite
transfer function

H(z) = Hy (%) (2.46)

is obtained [58], which implies that the elemental transfer function Hj(z) is compressed and re-
peated along the frequency axis by a scaling factor of q. Due to the resulting extra passbands the
usefulness of this approach is very limited. An extended structure capable of implementing general
FIR and IIR®S transfer functions is proposed in [58] under the name of delayed multipath structures.
Regrettably, the number of necessary operations is found to grow with 7.

%6 FIR stands for finite impulse response, IIR for infinite impulse response.
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Fig. 2.26 Third-order transversal filter. Isomorphic architecture (a) and a more economic alternative obtained
by combining time-sharing with iterative decomposition (b) (simplified).

2.6.6 Digest

® The throughput of arbitrary feedforward computations can be improved by way of retiming,
by way of pipelining, and by combining the two. Replication is, in general, not a viable
alternative.

® The associative law is often helpful in rearranging a DDG prior to iterative decomposition,
pipelining, and especially retiming in order to take full advantage of these transforms.

®* Much as for combinational computations, iterative decomposition and time-sharing are the
two options available for reducing circuit size for feedforward computations. Highly time-
multiplexed architectures are found to dissipate energy on a multitude of ancillary activities
that do not directly contribute to data computation, however.

2.7 | Equivalence transforms for recursive computations

A computation is said to be timewise recursive — or recursive for short — if it somehow depends
on an earlier outcome from that very computation itself, a circumstance that gets reflected in the
DDG by the presence of a feedback loop. Yet, recall that circular paths of weight zero have been
disallowed to exclude the risk of race conditions. Put differently, circular paths do exist but each of
them includes at least one latency register.

E> N+1 words | | N+1
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This section examines equivalence transforms that apply specifically to recursive computations. We
will find that such transforms are not universal. This is why we address linear time-invariant, linear
time-variant, and nonlinear computations separately.

2.7.1 The feedback bottleneck

Consider a linear time-invariant first-order recursive function
y(k) = ay(k — 1) + z(k) (2.47)
which, in the z domain, corresponds to transfer function

H(z) = )Y(((’z)) = ﬁ (2.48)

The corresponding DDG is shown in fig.2.27a. Many examples for this and similar types of compu-
tations are found in IIR filters, DPCM®" data encoders, servo loops, etc.

parallel
multiplier

y(k-1)

x(k) >—» y(k) X(k)

a) b)

Fig. 2.27 Linear time-invariant first-order feedback loop. DDG (a) and isomorphic architecture with longest
path highlighted (b).

Recursion demands that the result from the actual computation cycle be available no later than the
next input sample. The longest path defined by all computations that are part of the loop must,
therefore, not exceed one sampling interval. In the occurrence

S t=tregttatty =ty, <To (2.49)

loop

As long as this iteration bound is satisfied by the isomorphic architecture of fig.2.27b implemented
using some available and affordable technology, there is no out-of-the-ordinary design problem. As
an example, we could easily provide a sustained computation rate of 100 MHz if the three delay
figures for the actual word width were of 0.5 ns, 5 ns, and 2 ns respectively.

When in search of some higher throughput, say 200 MHz, recursiveness becomes a real bottleneck
since there is no obvious way to make use of replication or to insert pipeline registers without altering
the overall transfer function and input-to-output mapping. Retiming does not help either as the
weight along a circular path is always preserved. So the problem is

“How to allow more time for those computations that are part of the recursion loop.”

°" DPCM is an acronym for differential pulse code modulation.
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2.7.2  Unfolding of first-order loops

The key idea is to relax the timing constraint by inserting additional latency registers into the
feedback loop while preserving the original transfer function. In other words, a tentative solution
for a first-order loop must look like

Y(z) N(z)

HE) = %00 = 1w (2.50)

where an unknown expression N (z) is here to compensate for the changes that are due to the new
denominator 1 — a” 27, Recalling the sum of geometric series we easily establish N(z) as

1—a’z _
N(z) = " 2.51
()= 220 ? O:a (251)
The new transfer function can then be completed to become

p 1 n_—n
Oa z

H = 2.52
() = Z0t 2 (2.52)
and the new recursion in the time domain follows as
p—1
y(k) = a’y(k —p) + Z a"xz(k —n) (2.53)

n=0

The modified equations correspond to a cascade of two sections. A first section, represented by the
numerator of (2.52), is a DDG that includes feedforward branches only. This section is amenable
to pipelining as discussed in section 2.4.3. The denominator stands for the second section, a simple
feedback loop which has been widened to include p unit delays rather than one as in (2.47).

Using retiming, the corresponding latency registers can be redistributed into the combinational
logic for computing the loop operations so as to serve as pipeline registers there. Neglecting, for a
moment, the limitations to pipelining found in section 2.4.3, throughput can in fact be multiplied
by an arbitrary positive integer p through this unfolding technique, several variations of which are
dicussed in [59].

Unless p is prime, it is further possible to simplify the DDG — and hence the implementing cir-
cuit — by factoring the numerator into a product of simpler terms. Particularly elegant and efficient
solutions exist when p is an integer power of two because of the lemma

2P —

p—1
Sata = H " 27 41 p=24,8,16,... (2.54)
n=>0

The feedforward section can then be realized by cascading logs p subsections each of which consists
of just one multiplication and one addition.

Ezxample

The linear time-invariant first-order recursive function (2.47) takes on the following form after
unfolding by a factor of p = 4:

y(k) = a4y(k —4)+ agx(k -3)+ aZx(k —2) 4 ax(k—1)+ z(k) (2.55)
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which corresponds to transfer function

1+ az ' +a’z? + a7

H(z) Tppy— (2.56)
Making use of (2.54), the numerator can be factorized to obtain
-1 2 -2
H(z) = (I4+az")(1+a"27%) (2.57)

1—aqtz—1

The DDG corresponding to this equation is shown in figure 2.28a. Note that the configuration
is not only simple but also highly regular. Further improvements are obtained from pipelining in
conjunction with retiming and shimming where necessary. The final architecture, shown in fig.2.28b,
is equivalent except for latency. Incidentally, also note that threefold instantiation of one pipelined
multiply—add building block favors further optimizations at lower levels of detail.

a

PERFORMANCE AND COST ANALYSIS

In the case of optimally efficient configurations, where p is an integer power of two, a lower bound
for total circuit size can be given as follows:

A(p) > (logy p+ 1) Ay + p(logy p + 1) Arey (2.58)

In the above example, we count three times the orginal arithmetic logic plus 14 extra (nonfunctional)
registers. In return for an almost fourfold throughput, this is finally not too bad.

Analogously to what was found for pipelining in section 2.4.3, the speedup of loop unfolding tends
to diminish while the difficulties of balancing delays within the combinational logic tend to grow
when unfolding is pushed too far, p > 1.

A hidden cost factor associated with loop unfolding is due to finite precision arithmetics. For the
sake of economy, datapaths are designed to make do with minimum acceptable word widths, which
implies that output and intermediate results get rounded or truncated somewhere in the process. In
the above example, for instance, addition would typically handle only part of the bits that emanate
from multiplication. Now, the larger number of roundoff operations that participate in the unfolded
loop with respect to the initial configuration leads to more quantization errors, a handicap which
must be offset by using somewhat wider data words [60].

Loop unfolding greatly inflates the amount of energy dissipated in the processing of one data
item because of the extra feedforward computations and the many latency registers added to the
unfolded circuitry. More on the positive side, the shortened longest path may bring many recursive
computations into the reach of a relatively slow but power-efficient technology or may allow a lower
supply voltage.

The idea of loop unfolding demonstrated on a linear time-invariant first-order recursion can be
extended in various directions, and this is the subject of the forthcoming three subsections.
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Fig. 2.28 Linear time-invariant first-order feedback loop. DDG after unfolding by a factor of p = 4 (a) and
high-performance architecture with pipelining and retiming on top (b).
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Fig. 2.29 Linear time-invariant second-order feedback loop. DDG (a) and isomorphic architecture with longest
paths highlighted (b).

2.7.3 Higher-order loops

Instead of unfolding loops of arbitrary order directly, we make use of a common technique from
digital filter design that consists in factoring a higher-order transfer function into a product of
second- and first-order terms. The resulting DDG takes the form of cascaded second- and first-order
sections. High-speed IIR filters of arbitrary order can be constructed by pipelining the cascade so
obtained. As an added benefit, cascade structures are known to be less sensitive to quantization of
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coefficients and signals than direct forms. We will, therefore, limit the discussion to second-order
recursive functions here,

y(k) =ay(k — 1) + by(k — 2) + z(k) (2.59)
which correspond to the DDG depicted in fig.2.29. The equivalent in the z domain is

Y(2) 1
X(z) l—az7! —bz2

H(z) = (2.60)

1

After multiplying numerator and denominator by a factor of (1 + az™" — bz_2) the transfer function

becomes
14+az"t —bz2
H(z) = 2.61
(2) 1—(a®+2b)z=2 + b2z~ (261)
which matches the requirements for loop unfolding by a factor of p = 2.
Analogously we obtain for p = 4
1 -1 _py—2)(1 2 | 9p) 2 2 —4
H(z):( +az bz )(‘-i-(ax—&- b)z=* +b°27") (2.62)
1—((a® +2b)> —20%)z=* + btz

Ezxample

Figure 2.30 shows a DDG and a block diagram that implement the second-order recursion (2.62).
Except for finite precision effects, the transfer function remains exactly the same as in (2.59), but the
arithmetic operations inside the loop can now be carried out in four rather than one computation
periods. The same pipelined hardware block is instantiated three times.

A high-speed fourth-order ARMA®® filter chip that includes two sections similar to fig.2.30b has been
reported in [61]. Pipelined multiply—add units have been designed as combinations of consecutive
carry—save and carry-ripple adders. The circuit, fabricated in a standard 0.9 pm CMOS technology,
has been measured to run at a clock frequency of 85 MHz and spits out one sample per clock cycle,
so we have I' = 1. Overall computation rate roughly is 1.5 GOPSSQ, a performance that challenges
more costly semiconductor technologies such as GaAs — or at least did so when it appeared in 1992.
The authors write that one to two extra data bits had to be added in the unfolded datapath in order
to maintain similar roundoff and quantization characteristics to those in the initial configuration.
Circuit size is approximately 20 kGE, supply voltage 5 V, and power dissipation 2.2 W at full speed.
a

PERFORMANCE AND COST ANALYSIS

In comparison with the first-order case, the number of pipeline registers per subsection is doubled
while the other figures remain unchanged. Hence, size estimation yields

A(p) > (logy p+ 1) Ay + (2p(logy p + 1)) Areg (2.63)

58 ARMA is an acronym for “auto recursive moving average” used to characterize IIR filters that comprise both
recursive (AR) and nonrecursive computations (MA).

59 Multiply-add operations, in this case taking into account all of the filter’s AR and MA sections.
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Fig. 2.30 Linear time-invariant second-order feedback loop. DDG after unfolding by a factor of p = 4 (a) and
high-performance architecture with pipelining and retiming on top (b).

2.7.4 Time-variant loops

Here, the feedback coefficient a is no longer constant but varies as a function of time a(k)
y(k) = a(k)y(k — 1) + z(k) (2.64)
The unfolded recursions are derived in the time domain. Substituting y(k — 1) into (2.64) yields
y(k) = a(k)a(k — )y(k — 2) + a(k)x(k — 1) + z(k) (2.65)

which computes y(k) from y(k — 2) directly, so the unfolding factor is p = 2. Repeating this opera-
tion leads to a configuration with p = 3 where

y(k) = a(k)a(k — )a(k — 2)y(k — 3) + a(k)a(k — Dx(k — 2) + a(k)z(k — 1) + x(k) (2.66)
and once more to p =4

y(k) = a(k)a(k — 1)a(k — 2)a(k — 3)y(k — 4)
+ a(k)a(k —1)a(k — 2)x(k —3) + a(k)a(k — )z(k —2) + a(k)z(k — 1) + (k) (2.67)
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As for the time-invariant case, the process of unfolding can be continued to widen the recursive
loop by an arbitrary positive integer p as expressed by

y(k) = (H a(k — n)) ~y(k—p)+ <Z (1:[ a(k — m)) ~x(k — n)) + z(k) (2.68)
n=0

n=1 \m=0

However, because precomputation is not applicable here, all necessary coefficient terms must be cal-
culated on-line, which requires extra hardware. Depending on how the terms of (2.68) are combined,
various DDGs can be obtained. One of them derived from (2.67) is depicted in fig.2.31.

Fig. 2.31 Linear time-variant first-order feedback loop. DDG after unfolding by a factor of p = 4.

PERFORMANCE AND COST ANALYSIS

The count of adders and multipliers is proportional to the number of subsections p. Each subsection
requires approximately 2p pipeline registers as both multipliers must be pipelined. Together with
shimming registers, many of which are needed in this configuration due to the numerous parallel
branches, roughly 4p2 registers are needed.

2.7.5 Nonlinear or general loops

A nonlinear difference equation implies that the principle of superposition does not hold. The most
general case of a first-order recursion is described by

y(k) = fly(k —1),z(k)) (2.69)

and can be unfolded an arbitrary number of times. For sake of simplicity we will limit our discussion
to a single unfolding step, i.e. to p = 2 where

y(k) = f(f(y(k = 2),2(k = 1)), 2(k)) (2.70)

The associated DDG of fig.2.32¢ shows that loop unfolding per se does not relax the original timing
constraint, the only difference is that one can afford two cycles for two operations f instead of one
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Fig. 2.32 Architectural alternatives for nonlinear time-variant first-order feedback loops. Original DDG (a) and
isomorphic architecture (b), DDG after unfolding by a factor of p = 2 (c), same DDG with retiming added on
top (d). DDG reorganized for an associative function f (e), pertaining architecture after pipelining and retiming
(f), DDG with the two functional blocks for f combined into f” (g), pertaining architecture after pipelining and
retiming (h).

cycle for one operation. As confirmed by fig.2.32d, there is no room for any meaningful retiming in
this case.

Yet, the unfolded recursion can serve as a starting point for more useful reorganizations. Assume
function f is known to be associative. Following an associativity transform the DDG is redrawn as
shown in fig.2.32e. The computation so becomes amenable to pipelining and retiming, see fig.2.32f,

g

y(k-4)
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which cuts the longest path in half when compared with the original architecture of fig.2.32b. Even
more speedup can be obtained from higher degrees of unfolding, the price to pay is multiplied circuit
size and extra latency, though. In summary, architecture, performance, and cost figures resemble
those found for linear computations.

The situation is definitely more difficult when f is not associative. Still, it is occasionally possible
to relax the loop constraint to some extent by playing a trick. Reconsider fig.2.32c and think of the
two occurrences of f being combined into an aggregate computation

y(k) = [ (y(k = 2), 2(k — 1), 2(k)) (2.71)

as sketched in fig.2.32g. If that aggregate computation can be made to require less than twice
as much time as the original computation, then the bottleneck gets somewhat alleviated. This is
because it should then be possible to insert a pipeline register into the datapath unit for f” so that
the maximum path length in either of the two stages becomes shorter than the longest delay in a
datapath that computes f alone.

tp o = max(ty py by o) < tipy (2.72)

More methods for speeding up general time-variant first-order feedback loops are examined in [62].
One technique, referred to as expansion or look-ahead, is closely related to aggregate computa-
tion. The idea is to process two or more samples in each recursive step so that an integer multiple
of the sampling interval becomes available for carrying out the necessary computations. In other
terms, the recursive computation is carried out at a lower pace but on wider data words. This
approach should be considered when the combinational logic is not amenable to pipelining, for ex-
ample because it is implemented as table look-up in a ROM. The limiting factor is that the size of
the look-up table (LUT) tends to increase dramatically.

Yet another approach, termed concurrent block technique, groups the incoming data stream
into blocks of several samples and makes the processing of these blocks independent from each
other. While data processing within the blocks remains sequential, it so becomes possible to process
the different blocks concurrently.

The unified algebraic transformation approach promoted in [63] combines both universal and
algebraic transforms to make the longest path independent of problem size in computations such
as recursive filtering, recursive least squares algorithms, and singular value decomposition.

Any of the various architectural transforms that permit one to successfully introduce a higher degree
of parallel processing into recursive computations takes advantage of algorithmic properties such as
linearity, associativity, fixed coefficients, and limited word width, or of a small set of register states.
If none of these applies, we can’t help but agree with the authors of [62].

Observation 2.9. When the state size is large and the recurrence is not a closed-form function of
specific classes, our methods for generating a high degree of concurrency cannot be applied.

Ezxzample

Cryptology provides us with a vivid example for the implications of nonlinear nonanalytical feedback
loops. Consider a block cipher that works in electronic code book (ECB) mode as depicted
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in fig.2.34a. The algorithm implements a combinational function y(k) = c(z(k), u(k)), where u(k)
denotes the key and k the block number or time index. However complex function ¢, there is no
fundamental obstacle to pipelining or to replication in the datapath.

Unfortunately, ECB is cryptologically weak as two identical blocks of plaintext result in two identical
blocks of ciphertext because y(k) = y(m) if z(k) = z(m) and u(k) = u(m). If a plaintext to be
encrypted contains sufficient repetition, the ciphertext necessarily carries and betrays patterns from
the original plaintext. Figure 2.33 nicely illustrates this phenomenon.

Fig. 2.33 A computer graphics image in clear text, ciphered in ECB mode, and ciphered in CBC-1 mode (from
left to right, Tux by Larry Ewing).

To prevent this from happening, block ciphers are typically used with feedback. In cipher block
chaining (CBC) mode, the ciphertext gets added to the plaintext before encryption takes place,
see fig.2.34b. The improved cipher algorithm thus becomes y(k) = c(z(k) ® y(k — 1), u(k)) and is
sometimes referred to as CBC-1 mode because y(k — 1) is being used for feedback.

From an architectural point of view, however, this first-order recursion is awkward because it offers
little room for reorganizing the computation. This is particularly true in ciphering applications
where the nonlinear functions involved are chosen to be complex, labyrinthine, and certainly not
analytical. The fact that word width (block size) is on the order of 64 or 128 bit makes everything
worse. Inserting pipeline registers into the computational unit for ¢ does not help since this would
alter algorithm and ciphertext. Throughput in CBC mode is thus limited to a fraction of what is
obtained in ECB mode.%’

2.7.6 Pipeline interleaving is not an equivalence transform

It has repeatedly been noted in this section that any attempt to insert an extra register into a
feedback loop with the idea of pipelining the datapath destroys the equivalence between original
and pipelined computations unless its effect is somehow compensated. After all, circuits ¢ and b of
fig.2.34 behave differently. Although this may appear a futile question, let us ask

“What happens if we do just that to a first-order recursion?”

60 Higher data rates must then be bought by measures on lower levels of abstraction, that is by optimizing the
circuitry at the arithmetic/logic level, by resorting to transistor-level design in conjunction with full-custom
layout, and/or by adopting a faster target technology, all of which measures ask for extra effort and come at
extra cost. Only later have cryptologists come up with a better option known as counter mode (CTR) that
does without feedback and still avoids the leakage of plaintext into ciphertext that plagues ECB.
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Fig. 2.35 Pipeline interleaving. DDG of nonlinear time-variant first-order feedback loop with one extra register
inserted (a) and isomorphic architecture (b). Interpretation as two interleaved data streams each of which gets
processed exactly as specified by the original nonlinear first-order recursion of fig.2.32a (c,d).

Adding an extra latency register to (2.69) results in the DDG of fig.2.35a and yields
y(k) = f(y(k —2),z(k)) (2.73)
Observe that all indices are even in this equation. As k increments with time £ = 0,1,2, 3, ... indices

do in fact alternate between even and odd values. It thus becomes possible to restate the ensuing
input-to-output mapping as two separate recursions with no interaction between “even” data items
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z(k=0,2,4,...,2n,...) and “odd” items z(k =1,3,5,...,2n+ 1,...).

y(2n) = F(y(2n —2),(2n)) (2.74)
y(2n+1) = f(y(2n —1),z(2n + 1)) (2.75)

This pair of equations says that the original data processing recursion of (2.69) now gets applied
to two separate data streams as depicted in fig.2.35¢c. From a more general perspective, it is indeed
possible to cut the combinational delay in any first-order feedback loop down to 11; by inserting p — 1
pipelining registers, yet the computation then falls apart into the processing of p interleaved but
otherwise independent data streams. More often than not this is undesirable. However, practical
applications exist where it is possible to take advantage of this effect.

Ezxamples

Cipher block chaining (CBC) implements the recursion y(k) = c(z(k) ® y(k — 1), u(k)). What
counts from a cryptographic point of view is that patterns from the plaintext do not show up
in the ciphertext. Whether this is obtained from feeding back the immediately preceding block of
ciphertext y(k — 1) (CBC-1 mode) or some prior block y(k — p) where 2 < p € N (CBC-p mode)
is of minor importance. Some cryptochips, therefore, provide a fast but nonstandard CBC-8 mode
in addition to the regular CBC-1 mode, see fig.2.34c. In the case of the IDEA chip described in
[64], maximum throughout is 176 Mbit/s both in pipelined ECB mode and in pipeline-interleaved
CBC-8 mode as compared with just 22 Mbit/s in nonpipelined CBC-1.

For another example, take a subband coding or some other image processing algorithm where rows
of pixels are dealt with independently from each other. Rather than scanning the image row by
row, pixels from p successive rows are entered one by one in a cyclic manner before the process is
repeated with the next column, and so on. It so becomes possible to deal with a single pipelined
datapath of p stages [65].

O

Pipeline interleaving obviously does not qualify as an equivalence transform. Still, it yields useful
architectures for any recursive computation — including nonlinear ones — provided that data items
arrive as separate time-multiplexed streams that are to be processed independently from each other,
or can be arranged to do so. From this perspective, pipeline interleaving is easily recognized as a
clever and efficient combination of time-sharing with pipelining.

2.7.7 Digest

®* When in search of high performance for recursive computations, reformulating a high-order
system as a cascade of smaller-order sections in order to make the system amenable to coarse
grain pipelining should be considered first. As a by-product, the reduced orders of the indi-
vidual recursion loops offer additional speedup potential.

® Throughput of low-order recursive computations can be significantly improved by loop un-
folding in combination with fine grain pipelining. This may bring computations into the reach
of static CMOS technology that would otherwise ask for faster but also more expensive alter-
natives such as SiGe, BICMOS, or GaAs.
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®* Whether the inflated latency is acceptable or not depends on the application. Also, the rapid
growth of overall circuit size tends to limit the economically practical number of degrees of
unfolding to fairly low values, say p = 2-8, especially when the system is a time-varying one.

® The larger number of roundoff operations resulting from loop unfolding must be compensated
for by using longer word widths, which increases the cost of loop unfolding beyond solely the
proliferation of computational units and intermediate registers.

* Nonlinear feedback loops are, in general, not amenable to throughput multiplication by ap-
plying unfolding techniques. A notable exception exists when the loop function is associative.

* Pipeline interleaving is highly efficient for accelerating recursive computations because it does
not depend on any specific properties of the operations involved. Yet, as it modifies the
input-to-output mapping, it is not an option unless the application admits that multiple data
streams undergo the same processing independently from each other.

2.8 | Generalizations of the transform approach

2.8.1 Generalization to other levels of detail

As stated in section 2.3.4, DDGs are not concerned with the granularity of operations and data.
Recall, for instance, figs.2.14 and 2.34a that describe the same block cipher at different levels of
detail. As a consequence, the techniques of iterative decomposition, pipelining, replication, time-
sharing, algebraic transform, retiming, loop unfolding, and pipeline interleaving are not limited to
any specific level of abstraction although most examples so far have dealt with operations and data
at the word level, see table 2.10.

Table 2.10 | An excerpt from the VLSI abstraction hierarchy.

Level Granularity Relevant items

of abstraction Operations Data
Architecture O subtasks, processes time series, pictures, blocks
Word o arithmetic/logic operations words, samples, pixels
Bit . gate-level operations individual bits

ARCHITECTURE LEVEL

Things are pretty obvious at this higher level where granularity is coarse. As an example, fig.2.36
gives a schematic overview of a visual pattern recognition algorithm. Four subtasks cooperate in a
cascade with no feedback, namely preprocessing, image segmentation, feature extraction, and object
classification.

In a real-time application, one would definitely begin by introducing pipelining because four pro-
cessing units are thereby made to work concurrently at negligible cost. In addition, each unit is thus
dedicated to a specific subtask and can be optimized accordingly.
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Fig. 2.36 Overall architectural alternatives for a pattern recognition system. Isomorphic architecture (a),
iteratively decomposed computation flow (b), and pipelined operation (c).

The option of replicating the entire datapath would most likely get discarded at this point be-
cause it cannot compete with pipelining in terms of hardware efficiency. Replication of selected
functional units could become an interesting alternative in later transforms, however, when the
actual performance bottlenecks are known.

Iterative decomposition would be considered only if the desired throughput were so modest that it
could be obtained from a single processing unit.

BIiT LEVEL

Equivalence transformations can also be beneficial at low levels of abstraction. Take addition, for
instance, which is an atomic operation when considered at the word level, see fig.2.37a. When
viewed at the gate level, however, the same function appears as a composite operation that can
be implemented from bit-level operations in many ways, the most simple of which is a ripple-carry
adder shown in fig.2.37b. This detailed perspective clearly exposes the longest path and opens up
new opportunities for reorganizing the DDG that remain hidden from a word or higher level of
abstraction.

A gate-level pipelined version makes it possible to operate the circuit at a computation rate many
times higher than with word-level pipelining alone, see fig.2.37c. As this amounts to fine-grain
pipelining, the price to pay in terms of circuit size is likely to be excessive, however. In the above ex-
ample, better solutions are obtained from more sophisticated arithmetic schemes such as carry-save,
carry-select, or carry-lookahead adders [66] [67] [68] [69], possibly in combination with moderate
pipelining. Incidentally, note that modern synthesis tools support automatic retiming of gate-level
networks.

Conversely, the structure shown in fig.2.37d follows when the W-bit addition is decomposed into
one-bit suboperations. Computation starts with the LSB. A flip-flop withholds the carry-out bit for
the next computation period where it serves as carry-in to the next more significant bit. Obviously,
the flip-flop must be properly initialized in order to process the LSB and any potential carry input
in a correct way. Although this entails some extra control overhead, substantial hardware savings
may nevertheless result when the words being processed are sufficiently wide.

2.8.2 Bit-serial architectures

The idea underlying fig.2.37d gives rise to an entirely different family of architectures known as bit-
serial computation [70]. While most datapaths work in a bit-parallel fashion in that word-level

preprocessing
segmentation
feature extraction
classification
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Fig. 2.37 4-bit addition at the register transfer level (a), broken up into a ripple-carry adder (b) before being
pipelined (c) or iteratively decomposed (d).

operations are executed one after the other with all bits of a data word being processed simulta-
neously, organizing computations the other way round is also possible. Here, the overall structure
remains isomorphic with the DDG, but the various word-level operations are decomposed into steps
that are carried out one bit after the other.

Ezxample

A bit-serial implementation of a third-order transversal filter is shown in fig.2.38, also see fig.2.11c
for the DDG. The w-bit wide input samples z(k) enter serially with the LSB first whereas coef-
ficients by, (k) must be applied in a parallel format. The circuit is operated at a computation rate
s times higher than the sampling frequency. Evaluation proceeds from the LSB to the MSB with
computation periods numbered w = s —1,...,0.

The first computation period ingests the LSB of the actual input sample x(k), evaluates the LSBs
of all samples z(k),...,z(k — 3), and sees the LSB of the result y(k) emerge at the output. The
second period then handles the next significant bit and so on.%! Shifts and carry-overs from one bit
to the next higher position are obtained by using latency registers. As these registers may contain
carries from previous additions after all W bits of the input have been processed, extra computation
periods are required to bring out the MSB of y(k), so that s > W.

51 DSP applications frequently deal with input data scaled such that |z;| < 1 and coded with a total of W bits
in 2’s-complement format, see (2.77). In this particular case, computation periods w = s —1,..., 1 process the

input bits of weight 27" respectively, while the last computation period with w = 0 is in charge of the sign bit.



2.8 GENERALIZATIONS OF THE TRANSFORM APPROACH

115

Note that iterative decomposition has led to nonfunctional feedback loops in the architecture of a
transversal filter, although the DDG is free of circular paths by definition. As this kind of feedback is
confined to within the multiply and add units, the filter as a whole remains amenable to pipelining,

provided computations inside the loops are not affected.

s s s
X(k,w)
by by b, by
0 =0 o0 0
multiplier — scalar (single wire)
—#—> vector (parallel bus)
T N Y T e
LSB LSB LSB LsSB
s s s
el bl Ll
studied at full
bit level ¢ c adder i

Fig. 2.38 Bit-serial implementation of a third-order transversal filter functionally equivalent to the bit-parallel
architecture of fig.2.26 (simplified).

O

Closer examination of bit-serial architectures reveals the following properties:

+

Control overhead is small when compared with bit-parallel alternatives because the isomor-
phism of DDG and architecture is maintained.

As the DDG is hardwired into the datapath with no explicit control instance, changes to the
processing algorithm, switching between different modes of operation, and exception handling
are awkward to deal with.

The shallow combinational depth in conjunction with a high computation rate helps to keep
all computational units busy for most of the time.

All global data communication is via serial links that operate at close to the maximum rate
supported by the target technology, which cuts down on-chip wiring requirements.

Much of the data circulation is local, which contrasts favorably with the data items travelling
back and forth between datapath and storage in bit-parallel architectures.

As FPL devices provide only limited wiring resources, the two previous assets tend to favor
bit-serial architectures when designing for FPGAs or CPLDs.

The word width must be the same throughout a serial architecture. Parts of the computation
that do not make use of the full precision typically cause the hardware to idle for a number
of computation periods.

Conversely, arbitrary precision can be accomodated with the same hardware when execution
time is allowed to grow with word length.

Bit-serial computation is incompatible with the storing of data in word-oriented RAMs and
ROMs. Extra format conversion circuitry is required whenever such memories are preferred
for their high storage densities.
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— Division, data-dependent decisions, and many other functions are ill-suited to bitwise iterative
decomposition and pipelining. While it is possible to incorporate bit-parallel functions, pro-
vided their interfaces are serialized and that they exhibit a fixed latency, the resulting hybrid
structures often prove unsatisfactory and inefficient.

— Some algorithms based on successive approximation naturally operate with the MSB first. It
is sometimes possible to reconcile LSB-first and MSB-first functions at the price of resorting
to redundant number representation schemes.

In summary, bit-serial architectures are at their best for unvaried real-time computations that
involve fixed and elementary operations such as addition and multiplication by a constant. The
reader is referred to the specialized literature [70] [71] for case studies and for further information
on bit-serial design techniques.

2.8.3 Distributed arithmetic

Bit-serial architectures have been obtained from breaking down costly word-level operations into bit-
level manipulations followed by universal transforms such as iterative decomposition and pipelining.
Another family of serial architectures results from making use of algebraic transforms at the bit
level too. Consider the calculation of the following inner product:

K—1
y= 3 o (2.76)
k=0

where each ¢, is a fixed coefficient and where each zj, stands for an input variable. Figure 2.39a shows
the architecture that follows from routinely applying decomposition at the word level. Computation
works by way of repeated multiply—accumulate operations, takes K computation periods per inner
product, and essentially requires a hardware multiplier plus a look-up table for the coefficients.

Now assume that the inputs are scaled such that |z;| < 1 and coded with a total of W bits in
2’s-complement format.52 We then have

w -1

Tp = —Tko + Z Thow 27" (2.77)
=1

with x, o denoting the sign bit and with xj, ,, standing for the bit of weight 27" in the input word
xy. By combining (2.76) and (2.77) the desired output y can be expressed as

K—1 W -1
=3 (—xk,o + ) T 2‘“’) (2.78)
k=0 w=1

With the aid of the distributive law and the commutative law of addition, the computation now
gets reorganized into the equivalent form below where the order of summation is reversed:

K—1 wW-—-1 /K-1
Yy = Z Ck(—mk‘o) + Z (Z Ck.'l'k}w> 2_1“ (279)
k=0

k=0 w=1

62 This is by no means a necessity. We simply assume |z | < 1 for the sake of convenience and 2’s-complement

format because it is the most common representation scheme for signed numbers in digital signal processing.
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The pivotal observation refers to the term in parentheses

K -1

> ekarw = plw) (2.80)
k=0

For any given bit position w, calculating the sum of products takes one bit from each of the K
data words zj, which implies that the result p(w) can take on no more than 2K distinct values.
Now, as coefficients c; have been assumed to be constants, all those values can be precomputed and
kept in a look-up table (LUT) instead of being calculated from scratch whenever a new data set x,
arrives at the input. A ROM is typically used to store the table. It must be programmed in such
a way as to return the partial product p(w) when presented with the address w, i.e. with a vector
obtained from concatenating all bits of weight 27" across all input variables zj,. Playing this trick,
and noting that 25:701 ¢ (= 0) is nothing else than p(0) with the sign reversed, (2.79) takes on
the utterly simple form

W -1

y=—p0)+ Y pw)2™" (2.81)

w=1

While the isomorphic architecture calls for W LUTs with identical contents, a much smaller archi-
tecture can be obtained from decomposing the evaluation of (2.81) into a series of W consecutive
steps. The new architecture manages with a single look-up table but requires a nonfunctional reg-
ister for accumulating the partial products, see fig.2.39b. Calculation proceeds one bit position at
a time, starting with the LSB in computation period w = W — 1 and processing the sign bit in the
final cycle where w = 0.

A minor complication comes from the fact that the term —p(0) has a sign opposite to all other
contributions to y. A simple solution consists of using an adder-subtractor working under control
of a “sign-bit cycle” signal from a modulo W counter that acts as a controller. The same counter is
also in charge of releasing the fully completed result and of clearing the accumulator at the end of
the last computation period (two details not shown in fig.2.39b). In addition, it guides the selection
of the appropriate input bits unless the x;s can be made to arrive in a bit-serial format LSB first.

The most striking difference between the two architectural alternatives of fig.2.39 is the absence
of any multiplier in the second design. Rather than being concentrated in a single hardware unit,
multiplication is spread over the circuit, which is why such architectures were given the name
distributed arithmetic.

A limitation of distributed arithmetic is that memory size is proportional to 2K7 where K is the
order of the inner product to be computed. Although a more sophisticated coding scheme makes it
possible to introduce a symmetry into the look-up table which can then be exploited to halve its
size [72], the required storage capacity continues to grow exponentially with K. More impressive
memory savings are obtained from reformulating (2.80) in the following way:

K -1

H-1 K -1
Z CkTh,w = Z CkTh,w + Z Ck Tk, w (2.82)
k=0 k=0 k=H

where 0 < H < K. Instead of having all K bits address a single ROM, they are split into two subsets

of H and K — H bits respectively, each of which drives its own LUT. The total storage requirement
N
is so reduced from 2% data words to 27 + 25— PERE

, which amounts to when input bits are
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Fig. 2.39 Architectures for computing a sum of products by way of repeated multiply-accumulate operations
(a) and with distributed arithmetic (b) (simplified).

split such that H = LK. The price to pay is an extra adder for combining the outputs from the two
tables. Clearly, the idea can be extended to more than two tables.

Memory requirements may sometimes be slashed further by taking advantage of properties of the
coefficient values at hand such as symmetries, repetitions, and relations between their binary codes,
also see problem 2.10. Memory size and circuit structure thereby become highly dependent on the
particular coefficient values, though, which makes it difficult to accomodate modifications.

In conclusion, distributed arithmetic should be considered when coefficients are fixed, when the
number of distinct coefficient values is fairly small, and when look-up tables (LUT) are available
at little cost compared with bit-parallel multipliers. This explains why this approach has recently
regained popularity in the context of DSP applications with LUT-based FPGAs [73] [74]. Please refer
to the literature for tutorials [72] and further VLSI circuit examples [75] if distributed arithmetic
appears to be an option for your filtering problem.

2.8.4 Generalization to other algebraic structures

So far we have mostly been dealing with the infinite ﬁcld63(R, +, - ) formed by the set of all real
numbers together with addition and multiplication. Accordingly, most examples have been taken
from digital signal processing, where this type of computation is commonplace. Now, as all algebraic
fields share a common set of axioms, any algebraic transform that is valid for some computation in
(R, +, -) must necessarily hold for any other field.

63 See appendix 2.11 for a summary on algebraic structures.

64 Universal transforms remain valid anyway as they do not depend on algebraic properties.
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FINITE FIELDS

Galois fields®® such as GF(2), GF(p), and GF(p") have numerous applications in data compression
(source coding), error correction (channel coding), and information security (ciphering). Thus, when
designing high-speed telecommunications or computer equipment, it sometimes proves useful to
know that the loop unfolding techniques discussed for linear systems in (R, +, ) directly apply to
any linear computation in any Galois or other finite field too.

SEMIRINGS

The analysis of recursive computations in section 2.7 has revealed that almost all successful and
efficient loop unfolding techniques are tied to linear systems over a field. That computation be
performed in a field is a sufficient but not a necessary condition, however, as will become clear
shortly. Recall how loop unfolding was derived for the time-variant linear case in (2.64) through
(2.68). Substituting the generic operator symbols B for 4+ and [ for - we can write

y(k) =a(k) Dy(k — 1) Ba(k) (2.83)
After the first unfolding step, i.e. for p = 2, one has
yk)=ak)Balk —1)By(k —2)Balk) Dz(k — 1) Ba(k) (2.84)

and for arbitrary integer values of p > 2

y(k) = (H a(k — n)) Hyk—p) B8 i < 1:[ a(k — m)) BDz(k —n)Baz(k) (2.85)

n=1 m=0

where > and [] refer to operators H and [ respectively. The algebraic axioms necessary for that
derivation were closure under both operators, associativity of both operators, and the distributive
law of [ over H. The existence of identity or inverse elements is not required. Also, we have never
made use of commutativity of operator [, which implies (a) that the result also holds for other
than commutative operators [J, in which case (b) the above order of “multiplication” is indeed
mandatory. The algebraic structure defined by these axioms is referred to as a semiring.

The practical benefit is that recursive computations of seemingly nonlinear nature when formulated
in the field (R, +, -) — or in some other field — become amenable to loop unfolding, provided it
is possible to restate them as linear computations in a ring or semiring [76]. A number of problems
related to finding specific paths through graphs are amenable to reformulation in this way. Suitable
algebraic systems that satisfy the axioms of a semiring are listed in [77] under the name of path
algebras and in appendix 2.11.

Ezample

Convolutional codes find applications in telecommunication systems for error recovery when data
gets transmitted over noisy channels. While a convolutional coder is simple, the computational effort
for decoding at the receiver end is much more substantial. The most popular decoding method is
the Viterbi algorithm [78], a particular case of dynamic programming for finding the shortest
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path through a trellis graph.65 Its sole recursive step includes an operation commonly referred to
as add—compare-select (ACS) and goes®®
U1 (/i?) = min(au(k) + Y1 (/i? — 1), alz(k}) + yz(k’ — 1)) (286)
yz(l{:) = min(a21 (k:) + Y1 (k: — 1), agz(k) + yg(k: — 1)) (287)
As all other computations are of feedforward nature, the maximum achievable throughput of the
decoding process is indeed limited by this nonlinear recursion in very high-speed applications, see
fig.2.40a.
v (k1) ¥, (k) Y1) ¥, (k) ¥, (k-1) y,(k)
| nonlinear linear
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Fig. 2.40 The add—compare-select recursion in the Viterbi algorithm before (a) and after being reformulated
over a semiring (b), and with loop unfolding on top (c) (simplified).

%% Dynamic programming encompasses a broad class of optimization algorithms that decompose the search for
a global optimum into a sequence of simpler decision problems at a local level. All decisions obey Bellman’s
principle of optimality, which states that the globally optimum solution includes no suboptimal local decisions.
This is a very welcome property because it permits one to prune inferior candidates early during the search
process. Dynamic programming finds applications in fields as diverse as telecommunications, speech processing,
video coding, watermark detection, flight trajectory planning, and genome sequencing.

For an anecdotal introduction, think of the following situation. During the darkness of night, a group of four
has to cross a fragile suspension bridge that can carry no more than two persons at a time. The four persons
take 5, 10, 20 and 25 minutes respectively for traversing the bridge. A torch must be carried while on the bridge,
the torch available will last for exactly one hour. The problem is how to organize the operation. Draw a graph
where each state of affair gets represented by a vertex and each traversal of the bridge by an edge. By solving
this quiz in a systematic way, you are bound to discover the ideas behind dynamic programming yourself.

66 A 2-state convolutional code is assumed here. Codes with 32, 64, 128 or 256 states are more useful and hence

also more widely used, but their discussion would unnecessarily complicate the argument.
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Now consider a semiring where

e Set of elements: S = RU {oo},
e Algebraic addition: B = min, and
e Algebraic multiplication: [ = +.

The new and linear — in the semiring — formulation of the ACS operation goes

Y1 (k’) :an(k)EIyl (k— 1)EEa12(k’)E|y2(k— 1) (288)
Y2 (k) = a1 (k) - Y1 (k — l) H asy (k) J Y2 (k — l) (2.89)

which, making use of vector and matrix notation, can be rewritten as

(k) = A(k) B gk — 1) (2.90)
By replacing §(k — 1) in (2.90) one gets the unfolded recursion for p = 2

yk) =Ak) DAk -1)Dyk-2) (2.91)

To take advantage of this unfolded form, the product B(k) = A(k) 0 A(k — 1) must be computed
outside the loop. Resubstituting the original operators and scalar variables, we finally obtain the

y1 (k) = min(bi1 (k) + y1 (k — 2), bi2 (k) + y2 (k — 2)) (2.92)
Y2 (k) = min(ba1 (k) + y1 (k — 2),b22 (k) + y2 (k — 2)) (2.93)

which includes the same number and types of operations as the original formulation but allows for
twice as much time. The price to pay is the extra hardware required to perform the nonrecursive
computations below in a heavily pipelined way.

bi1 (k) = min(a11 (k) + a1 (k — 1), a12(k) + a21(k — 1)) (2.94)
bi2(k) = min(a11 (k) + a12(k — 1), a12(k) + az2(k — 1)) (2.95)
be1 (k) = min(az1 (k) + a11(k — 1), az2 (k) + a21(k — 1)) (2.96)
b2z (k) = min(az1 (k) + a12(k — 1), a2z (k) + a22(k — 1)) (2.97)

O

The remarkable hardware structure so obtained demonstrates that taking advantage of specific
properties of an algorithm and of algebraic transforms has more potential to offer than universal
transforms alone. Some computations can be accelerated by creating concurrencies that did not exist
in the original formulation, which opens a door to solutions that would otherwise have remained
off-limits.

2.8.5 Digest

® The transform approach to architecture design promoted in this text has been found to yield
useful solutions at any level of granularity. Some of the resulting architectures are truly sur-
prising.

* Both bit-serial architectures and distributed arithmetic follow quite naturally when arith-
metic/logic operations are dissected into bit-level manipulations before the various equivalence



122

Architectures of VLSI Circuits

transforms are applied. It is worthwhile to consider them when fixed and data-independent
computations are to be carried out with limited hardware resources and moderate perfor-
mance. After having sunk into oblivion for many years, the two techniques have had a come-
back for filtering and other DSP applications with LUT-based FPGAs.

® All universal and algebraic transforms that apply to computations on the field of reals also
apply to computations on Galois fields, of course.

* While loop unfolding is applicable to any linear computation in the field of reals, this is
not a necessary condition. In case a recursion forms a bottleneck when in pursuit of higher
performance, check whether it is possible to restate or modify the computations within the
feedback loop in such a way as to make them linear over a semiring.

2.9 | Conclusions

2.9.1 Summary

We began this chapter by comparing instruction set processors with dedicated architectures. It
was found that general-purpose computing asks for a high degree of flexibility that only program-
controlled processors can provide. However, the ability to execute an arbitrary sequence of instruc-
tions on an unknown range of data types brings about numerous inefficiencies and largely precludes
architectural optimizations. For well-defined computational tasks, much better performance and en-
ergy efficiency can be obtained from hardwired architectures with resources tailored to the specific
computational needs of the target application. Segregation, weakly-programmable satellites, ASIPs,
and configurable computing have been found to form useful compromises.

Next, we investigated a number of options for organizing datapath hardware. Our approach was
based on reformulating a given data processing algorithm in such a way as to preserve its input-
to-output relationship except, possibly, for latency, while improving on performance, circuit size,
energy efficiency, and the like. Findings on how best to rearrange combinational, nonrecursive, and
recursive computations were given in sections 2.4.8, 2.6.6, and 2.7.7 respectively. The approach was
then generalized in terms of granularity and algebraic structure with the results summarized in
section 2.8.5. The essence of these insights is collected in tables 2.12 and 2.11.

As energy efficiency depends on so many parameters, the pertaining entries of table 2.12 deserve
further clarification. Assuming fixed energy costs per operation and ignoring any static currents,
most architectural transforms discussed inflate the energy dissipated on a given calculation as
conveyed by table entries F and “Extra hardware overhead”. Put in other words, cutting circuit
size and boosting throughput typically are at the expense of energy efficiency.

The picture is more favorable when there is room for cutting the energy spent per computational
operation by playing with voltages, transistor sizes, circuit style, fabrication process, and the like.
The most effective way to do so in CMOS is to lower the supply voltage since the energy dissipated
per operation augments quadratically with voltage whereas a circuit’s operating speed does not.
The longer paths through a circuit are likely to become unacceptably slow, though. A suitable
architecture transform may then serve to trim these paths in such a way as to compensate for
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Table 2.11 | Options available for reorganizing datapath architectures. Upper-case letters denote
transforms that are generally available whereas lower-case letters indicate some preconditions must
be satisfied by the application and/or type of computation to make this a viable option.

Type of computation
combinational sequential or memorizing
or memoryless nonrecursive recursive
Data flow feedforward feedforward feedback
Memory no yes yes
Data DAG*? with DAG with Directed cyclic graph
dependency all edge some or all edge | with no circular path
graph weights zero weights non-zero of weight zero
Response length M=1 1< M< M = oo
Nature | linear time-invariant D,P,Q,S,a D,P.q,S,a,R D,S,a,R,i,U
of linear time-variant D,P,Q,S,a D,P,S,a,R D,S,a,R,i,U
system | nonlinear D,P,Q,S,a D,P,S,a,R D,S,a,R,i,u
Discussed in section 2.4 2.6 2.7
D : Iterative decomposition
P : Pipelining
Q : Replication
q : Multipath filtering as special case of replication
provided the resulting repetitive transfer function is acceptable
S: Time-sharing
a: Associativity transform provided operations are identical and associative
R : Retiming
i: Pipeline interleaving, i.e. pipelining in conjunction with time-sharing,
provided a number of data streams can be processed separately from each other
U : Loop unfolding
u: Loop unfolding provided computation is linear over a semiring

% DAG is an acronym for directed acyclic graph, i.e. for a directed graph with no circular path.

the loss of speed incurred by opting for a more energy-efficient, yet also slower alternative. The
attribute “Helpful for indirect energy saving” in table 2.12 refers to this option. Retiming, algebraic
transforms, and coarse grain pipelining are the most promising candidates as they entail no or very
little overhead. Whether such a potential for indirect energy optimization indeed materializes or
not must be examined in detail on a per case basis.



124

‘ Architectures of VLSI Circuits

2.9.2 The grand architectural alternatives from an energy point of view

Let us re-examine the fundamental architectural alternatives from an energy point of view. Program-

controlled processors heavily rely on subcircuits and activities such as

Table 2.12 | Summary of the most important architectural transforms and their characteristics.

Impact on Architectural transform
figure of Decom- Pipe- Repli- Time- Associa- | Retiming Loop
merit below position lining cation sharing tivity unfolding
r + = + = = =
tip =, mux — = —..F
T=T- 2tlp = - + —...F — —
AT — = — = = ..+ — o+ +
L + + =, mux + + = = +
E —..t —..t = = ..+ —..t = +
Extra recy. distrib., collect., extra
hardware and none recoll., redist., none none word
overhead cntl. and cntl. | and cntl. width
Helpful no coarse possibly no yes yes possibly
for indirect grain yes yes
energy saving yes
Compatible any register register any any register register
storage type
Universal yes yes yes yes no yes no
Discussed in 2.4.2 2.4.3 24.4 2.4.5 2.4.6 2.6.1 2.7.2
subsection]s] 2.6.4 2.6.2 2.6.4 2.7.2

A circuit size .

R = approximately constant
I' 1 cycles per data item .
+ : tends to increase
t;p :  longest path length
. . — tends to decrease
T : time per data item . . .
. . . in less favorable situations
L : latency in computation periods
E . energy per data item

auxiliary circuitry for

recy.:
cntl.:
dist.:
coll.:

General-purpose multi-operation ALUs,

data recycling
datapath control
data distribution
data collection

Generic register files of generous capacity,
Multi-driver busses, bus switches, multiplexers, and the like,
Program and data memories along with address generation,
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Controllers or program sequencers,

Instruction fetching and decoding,

Stack operations and interrupt handling,

Dynamic reordering of operations,

Branch prediction and speculative execution,

Data shuffling between main memory and multiple levels of cache, and

Various mechanisms for maintaining cache and data consistency.

From a purely functional point of view, all of this is a tremendous waste of energy because none of
it contributes to payload data processing. The welcome agility of instruction set processors is thus
paid for with an overhead in terms of control operations and a formidable inflation of switching
activi‘cy.G7

The isomorphic architecture, in contrast, does not carry out any computations or data transfers
unless mandated by the original data processing algorithm itself. There are no instructions to fetch
and decode. There is no addressing and no accessing of memories either as all data are kept in
registers. Data transfers are local, there is no data shuffling between registers, cache, and main
memory. There are no busses with their important load capacitances to drive.

“Does this imply the isomorphic architecture is the most energy-efficient option then?”

Somewhat surprisingly, this is not so. The reason is glitching, a phenomenon observed in digital
circuits that causes extra signal transients to occur on top of those stipulated by the computation
flow. Glitch-induced switching is particularly intense when data recombine in combinational logic
after having travelled along propagation paths of greatly disparate lengths because circuit nodes are
then likely to rock back and forth several times before settling.ﬁ7 By cutting overlong propagation
paths, moderate pipelining and iterative decomposition tend to abate glitching and so help to
improve overall energy efficiency.

General-purpose processors further operate with data words of uniform and often oversized width
throughout an entire algorithm.68 As opposed to this, dedicated architectures make it possible to
fine-tune the number of bits in every register and logic block to individual requirements as there
is no compelling need to combine subfunctions with greatly different precision requirements into
a single datapath sized for worst-case requirements. The overriding concern is to avoid switching
activities that are not relevant to the final result. Turning off entire functional blocks whenever they
sit idle naturally follows from applying this idea to higher levels of granularity.

Last but not least, the impressive throughputs of modern uniprocessors have been bought at the
price of operating CMOS circuits under conditions that are far from optimal in view of energy
efficiency (extremely fast clock, small MOSFET threshold voltages, large overdrive factors, and
hence comparatively high supply voltage, significant leakage). An alternative design that takes
advantage of concurrent processing to arrive at more favorable operating conditions may prove
beneficial. Yet, as these issues are of electrical rather than architectural nature, their discussion will
have to wait until chapter 9.69

57 You may want to refer to appendix A.5 to learn more about the causes of glitching.
58 Only the so-called multimedia instructions can provide programmers with an opportunity to process fewer bits
per data item. Yet, not all instruction sets include them and not all algorithms lend themselves to taking

advantage of sub-word parallelism.

69 Which is also the place where a node’s switching activity will be formally defined.
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Energy considerations thus tend to give dedicated processing units new momentum over the unimag-
inative usage of general-purpose microcomputers. It is not unusual to find that a program-controlled
processor dissipates two or three orders of magnitude as much energy as an application-specific ar-

chitecture does for the same Computat1011.70

Observation 2.10. A key challenge of low-power design is to minimize all redundant switching
activities by accommodating just as much flexibility as required by the application in an otherwise
dedicated processing unit.

2.9.3 A guide to evaluating architectural alternatives

In spite of our efforts to present a systematic overview on dedicated datapath architectures, we must
admit that architecture design is more art than science. Many practical constraints and technical
idiosyncrasies make it impossible to obtain a close-to-optimum solution by analytical means alone.
The common procedure, therefore, is to come up with a variety of alternative ideas, to devise the
corresponding architectures to a reasonable level of detail, and to evaluate their respective merits
and drawbacks before decisions are taken. This approach — which is typical for many engineering
activities — asks for creativity, methodology, and endeavor. It is nevertheless hoped that the ma-
terial in this chapter gives some insight into the options available and some directions on when to
prefer what option for tailoring VLSI architectures to specific technical requirements. What follows
are some practical guidelines.

1. Begin by analyzing the algorithm. Section by section, identify the data flow and the nature of
the essential computations. Estimate the necessary datapath resources by giving quantitative
indications for
e the word widths truly required (check [80] for references),

e the data rates between all major building blocks,
e the memory bounds, access rates, and access patterns in each building block, and

e the computation rates for all major arithmetic operations.”!

2. Identify the controllers that are required to govern the flow of computation along with its
interplay with the external world. Analyze the control flow for data dependencies, overall
complexity, and flexibility requirements. Find out where to go for a hard-wired dedicated
architecture, where for a program-controlled processor, and where to look for a compromise.

3. Rather than starting from a hypothetical isomorphic architecture, let your intuition come up
with a number of preliminary architectural concepts. Establish a rough block diagram for
each of them. Make the boundaries between major subfunctions coincide with registers as you
would otherwise have to trace path delays across circuit blocks during timing verification and
optimization.

70 [79] estimates the gap to be up to four orders of magnitude over direct-mapped architectures and growing.

™ Watch out if you are given source code from some prior implementation, such as C code for a 32 bit DSP, for
instance. You are likely to find items solely mandated by the resources available there or by software engineering
considerations. Typical examples include operations related to (un)packing and (re)scaling, usage of computa-
tionally expensive data types, arithmetic operations substituted for bit-level manipulations, multitudes of nicely

named variables that unnecessarily occupy distinct memory locations, and more.
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4. Tt is always a good idea to prepare a comprehensive and, hence, fairly large table that opposes
the different architectures under serious consideration.

The rows serve to describe the hardware resources. Each major subfunction occupies a row of
its own. Each such subfunction is then hierarchically decomposed into ever smaller subcircuits
on a number of subsequent rows until it becomes possible to give numerical estimates for A
and t;,, and, possibly, for £ as well. Once a subcircuit has been broken down to the RTL
level, one can take advantage of HDL synthesis to obtain those figures with a good degree of
precision. Finite state machines, in particular, are difficult to estimate otherwise.

For each architectural variant, a few adjacent columns are reserved to capture A, t;,, E and
I'. An extra column is set aside for n, a natural number that indicates how many times
the hardware resource is meant to be instantiated for the architecture being considered. I'
stands for the number of cycles required to obtain one processed data item with the hardware
resources available. Of course, this quantity tends to diminish with n but it is not possible to
state the exact dependency in general terms.

5. Estimating the overall circuit size, cycles per data item, latency, and dissipated energy for each
architecture now essentially becomes a matter of bookkeeping that can be carried out with the
aid of spreadsheet software. Path delays are more tricky to deal with as logic and interconnect
delays are subject to significant variation as a function of lower-level details.”” Tt is thus
quite common to code, synthesize, place, and route the most time-critical portions of a few
competing architectures merely for the purpose of evaluating max(t;,) and of extrapolating
clock frequency, overall computation rate, and overall throughput.

6. Analysis of the figures so obtained will identify performance bottlenecks and inacceptably
burdensome subfunctions in need of more efficient implementations. This is the point where
the architecture transforms discussed in this chapter come into play.

7. Compare the competing architectural concepts against the requirements. Narrow down your
choice before proceeding to more detailed analyses and implementations.

Ezample

The table below shows results from exploring the design space for AES encryption with a key
length of 128 bit [81]. The available options for trading datapath resources for computation time
are evident. The narrower datapaths require extra circuitry for storing and routing intermediate
results, which inflates complexity and adds to path delays. What all variants have in common is that
the ten cipher rounds are carried out by a single datapath as a result from iterative decomposition of
the AES algorithm. Also, none of the architectures makes use of pipelining, which results in latency
and cycles per data item being the same. SubBytes refers to the cipher’s most costly operation
from a hardware point of view. While the figures include control logic and have been obtained from
actual synthesis, simplifications have been made to obtain reasonably accurate estimates for the
key figures of merit without having to establish the HDL code for each architectural alternative in
full detail.

72 Please refer to footnote 22 for a comment on the limitations of anticipating path delays.
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| Datapath width (bit) 8 | 16 | 32 | 64 128 |
Parallel SubBytes units 1 2 4 8 16
Circuit complexity (GE) 5052 | 6281 | 7155 | 11628 | 20410
Area A (normalized) 1 1.27 | 147 2.43 4.27
Cycles per data item I’ 160 80 40 20 10
Longest path delay ¢, (normalized) | 1.35 1.34 1.21 1.13 1
Time per data item T (normalized) | 21.6 | 10.7 | 4.83 2.23 1
Size-time product AT 21.6 13.6 7.10 5.42 4.27

g

Designers of large VLSI chips running at elevated clock rates, such as high-performance uniproces-
sors, inevitably run into interconnect delay as another limiting factor. This is because it is no longer
possible to transmit data from one corner of a chip to the opposite one within a single clock cycle.
While this important aspect has been left aside in this chapter, more will be said in fig.6.18 and
section 15.5.2.

As a concluding remark, we would like to recall once more that good solutions call for analy-
sis and reorganization of data processing algorithms at all levels of details, including architecture
(process/block), register transfer (arithmetic/word), and logic (gate/bit) levels. It has been shown
on numerous occasions that viewing a problem from a totally different angle can pave the way to

unexpected architectural solutions that feature uncommon characteristics. Also, the possibilities for
replacing a given algorithm by a truly different suite of computations that is equivalent for any prac-
tical purpose of the application at hand, but better suited to VLSI, should always be investigated
first.

2.10 | Problems

1. Computationally efficient approximations for the magnitude function va? + b2 have been
presented in table 2.8. (a) Show that approximation 2 remains within £3% of the correct
result for any values of a and b. (b) Give three alternative architectures that implement the
algorithm and compare them in terms of datapath resources, cycles per data item, longest
path, and control overhead. Assume input data remain valid as long as you need them, but
plan for a registered output. Begin by drawing the DDG.

2. Discuss the idea of combining replication with pipelining. Using fig.2.18 and the numbers that
come along with it as a reference, take a pipelined datapath before duplicating it. Sketch
the result in the AT-plane for various pipeline depths, e.g. for p = 2,3,4,5,6,8,10. Compare
the results with those of competing architectures that achieve similar performance figures
(a) by replicating the isomorphic configuration and (b) by extending the pipeline approach
beyond the most efficient depth. How realistic are the various throughput figures when data
distribution/recollection is to be implemented using the same technology and cell library as
the datapath?
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. Reconsider the third-order correlator of fig.2.25a. (a) To boost performance, try to retime and
pipeline the isomorphic architecture without prior reversal of the adder chain. How does the
circuit so obtained compare with fig.2.25d. Give estimates for datapath resources, cycles per
data item, longest path, latency, and control overhead. (b) Next assume your prime concern
is area occupation. What architectures qualify?

. Figure 2.26 shows a viable architecture for a transversal filter. Before this architecture can
be coded using an HDL, one must work out the missing details about clocking, register clear,
register enable, and multiplexed control signals. Establish a schedule that lists clock cycle
by clock cycle what data items the various computational units are supposed to work on,
what data items or states the various registers are supposed to hold, and what logic values
the various control signals must assume to marshal the interplay of all those hardware items.
Samples are to be processed as specified by fig.2.11a.

. Arithmetic mean T and standard deviation o are defined as

N
1
T = N Z Tn 0_2 = m Z(xn — 5)2 (298)
n=1

Assume samples x,, arrive sequentially one at a time. More specifically, each clock cycle sees
a new w-bit data item appear. Find a dedicated architecture that computes T and o2 after N
clock cycles and where N is some integer power of two, say 32. Definitions in (2.98) suggest one
needs to store up to N — 1 past values of z. Can you make do with less? What mathematical
properties do you call on? What is the impact on datapath word width? This is actually an
old problem the solution of which has been made popular by early scientific pocket calculators
such as the HP-45, for instance. Yet, it nicely shows the difference between a crude and a more
elaborate way of organizing a computation.

. Most locations in the map of fig.2.21 can be reached from the isomorphic configuration on
more than one route. Consider the location where A = 1/3 and T = 1, for instance. Possible
routes include

o (time share — decompose — pipeline) as shown on the map,

o (pipeline — decompose — time share

)
o (time share — pipeline — decompose),
),
)

o (pipeline — time share — decompose), and

o (decompose — decompose).

Architectures obtained when following distinct routes typically differ. Figure 2.21 indicates
only one possible outcome per location and is, therefore, incomplete. Adding the missing
routes and datapath configurations is left as a pastime to the reader. Purely out of academic
interest, you may want to find out which transforms form commutative pairs.

. Figure 2.21 shows a kind of compass that expresses the respective impact of iterative de-
composition, pipelining, replication, and time-sharing. Include the impact of the associativity
transform in a similar way.

. Calculating the convolution of a two-dimensional array with a fixed two-dimensional operator
is a frequent problem from image processing. The operator c; . is moved over the entire
original image p(z,y) and centered over one pixel after the other. For each position X,Y the
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pertaining pixel of the convoluted image ¢(z,y) is obtained from evaluating the inner product

+w +w

X, Y)= > > ey pX+a,Y +y) (2.99)
Yy=—w r=—w

Consider an application where w = 2. All pixels that contribute to (2.99) are then confined
to a 5-by-5 square with the current location in its center. An uninspired implementation with
distributed arithmetics would thus call for a look-up table with 225 entries, which is exorbitant.
A case study by an FPGA manufacturer explains how it is possible to cut this requirement
down to one look-up table of a mere 16 words. Clearly, this remarkable achievement requires
a couple of extra adders and flip-flops and is dependent on the particular set of coefficients
given below. It combines putting together multiple occurrences of identical weights, splitting
of the look-up table, taking advantage of nonoverlapping 1s across two coefficients, and clever
usage of the carry input for the handling unit weights. Try to reconstruct the architecture.
How close can you come to the manufacturer’s result published in [73]?

Cry x
-2/ -1 o0 1] 2
—16 | =7 | —13 | -7 | —16
1| =7 -1| 12| -1 -7
y 0 -13 | 12 160 12 -13
-1 -7 -1| 12| -1 | -7
-2 || -16 | -7 | -13 -7 | -16

2.11 | Appendix |: A brief glossary of algebraic structures

Any algebraic structure is defined by a set of elements S and by one or more operations. The nature

of the operations involved determines which of the axioms below are satisfied.

Consider a first binary operation H

1. Closure wrt H: if @ and b are in S then a H b is also in S.

4.
5.

Associative law wrt B: (aBb)Bc=a BB (bHc).
Identity element wrt H: There is a unique element e such that a He = e H a = a for any a,

(e is often referred to as the °

‘zero” element).
Inverse element wrt H: For every a in S there is an inverse —a such that alB —a = —aHBa =e.

Commutative law wrt H: a Hb = bH a.

Consider a second binary operation [ that always takes precedence over operation H

6.
7.
8.

Closure wrt [J: if @ and b are in S then a [1b is also in S.

Associative law wrt [: (a@b)He=al (be).

Identity element wrt [J: There is a unique element i such that a L1¢ = i [ a = a for any a,
(¢ is often referred to as “one” or the “unity” element).
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9. Inverse element wrt [J: For every a in S there is an inverse a 'suchthataBa ' =a ' Ba=1,
the only exception is e for which no inverse exists.
10. Commutative law wrt [: a 1 b = b a.

11. Distributive law of & over B: a [ (bHe¢) =aHbHaHcand (aBb)HDe=al0cBb e
12. Distributive law of B over [: a BbHec= (aBb) H(aBc) and aDbHBe = (aBc) D (bH¢).
13. Complement: For every a in S there is a complement @ such that a EBa =14 and a[da = e.

Name of Opera- Axioms satisfied

algebraic structure tions 1 2 3 4 5,6 7 8 9 10|11 12 13

Set

Semigroup H 1 2

Monoid H 1 2 3

Group H 1 2 3 4

Abelian or commutative group H 1 2 3 5

Abelian semigroup H 1 2 5

Abelian monoid H 1 2 3 5

Ring HH 1 2 3 4 56 7 11

Ring with unity =20 1 2 3 4 56 7 8 11

Division algebra aka skew field B 1 2 3 4 56 7 8 9 11

Field =[H] 1 2 3 4 5,6 7 8 9 10|11

Commutative ring =2/ 1 2 3 4 5|6 7 10 | 11

Commutative ring with unity =2/ 1 2 3 4 5|6 7 8 10 | 11

Semiring =20 1 2 516 7 11

Commutative semiring B 1 2 516 7 10 | 11

Boolean algebra =2/ 1 2 3 516 7 8 10 | 11 12 13
EXAMPLES

Consider the set Spyg of all possible DNA sequences of finite but non-zero length with charac-
ters taken from the alphabet {A,T,C,G}. This set together with the binary operation of string
concatenation denoted as — '3 forms a semigroup (Spna, —).

A monoid (Spya U{e}, — ) is obtained iff the empty sequence € is also admitted.

All possible permutations of a given number of elements make up a group when combined with
binary composition of functions™ as sole operation. For a practical example, consider all six distinct
rearrangements of three elements, shown below, and let us refer to them as set Ss.

1. 2. 3 . 2. 3 . 2. 3 .2 3 1. 2. 3 . 2. 3
l 1 Lol Lol Lo 1 1 1
1. 2. 3 2. 3. 1 3. 1. 2 3.2, 1 1. 3. 2 2. 1. 3

™ Alternative symbols for the concatenation operator include . (mathematics) and & (computer science).
™ Binary composition of functions means that two functions are invoked one after the other (..)ofog=g(f(...)).

Also keep in mind that a permutation is just a particular kind of function.
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This set of permutations along with binary composition o forms a group (Ss, o).

The set of all positive integers N* = {1,2,3, ...} together with addition as sole operation constitutes
an infinite Abelian semigroup (N, +).

When supplemented with 0, the above structure turns into an Abelian monoid (N, +).

The set of all integers Z together with addition forms an infinite Abelian group (Z, +).

A commutative ring with unity (Z, +, -) results when multiplication is added as a second
operation to the aforementioned Abelian group.

(N, +, -), in contrast, is merely a commutative semiring because natural numbers have no
additive inverses. Yet, in addition to the necessary requirements for a semiring, identity elements
with respect to both operations also happen to exist in this example.

The set of all rational numbers Q together with addition as a first and multiplication as a second
operation forms the field”® (Q, +, -). Other popular fields with infinitely many elements are (R,
+, -) over the real numbers, and (C, +, -) over the complex numbers.

The set of all quotients % of two polynomials P(z) and Q(z) with real-valued coefficients together

with addition and multiplication makes up yet another infinite field.

Any subset of integers S = {0,1,...,p — 1} forms a field together with addition modulo p and mul-
tiplication modulo p iff p is a prime number. Any such finite field is called a Galois field GF(p).
The best-known finite field is the GF(2) ({0,1}, &, A). Observe that the additive inverse in GF(2)
of a —a is a itself and that the multiplicative inverse of 1 17! is 1 while 0 has no multiplicative
inverse. As a second example, consider the GF(5) ({0, 1, 2, 3, 4}, + mod5, - mod5).

Cardinalities of finite fields are not confined to prime numbers p but can take on any power p"
provided n € N*. A Galois field where n > 2 is termed an extension field GF(p"). All polynomials
of degree 0,1, ...,n — 1 with coefficients from GF(p) make up the set of elements. The first operation
is addition modulo M (z) and the second one multiplication modulo M(z), where M (z) is an
irreducible polynomial of degree n with coefficients from GF(p). GF(3?), for instance, is exemplified
by ({0,1,2,z,z + 1,2 + 2,2z, 22 + 1,2z + 2}, +mod (x> + 1), - mod (x> + 1)).

For the set of all square matrices My, ., with coefficients taken from a field, there exist identity
elements with respect to both addition and multiplication.76 There is also an additive inverse for
any element. As not every element has a multiplicative inverse, though, and as matrix multiplication
is not commutative, the algebraic structure is an infinite ring with unity.

The factors of 30 together with operations least common multiple (lem) and greatest common

divisor (ged) constitute a Boolean algebra of eight elements ({1, 2, 3, 5, 6, 10, 15, 30}, lem, ged).
30

. for any a.

It necessarily follows that taking the complement @ is tantamount to computing

(S, U, N) is a Boolean algebra with union and intersection as binary operations iff S is a power
set . Consider a set of three elements Q = {a, b, ¢}, for instance. The set of all sets that can be

"> The German term for a field is “(Zahlen)korper”, the French “corps”, and the Italian “campo”.
™6 Incidentally note that all concepts of linear algebra (matrices, inverses, determinants, etc.) apply to matrices

with coefficients from any field.
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composed from these three elements, that is {0, {a}, {b}, {c}, {a, b}, {a, c}, {b, ¢}, {a, b, ¢} }, is
called the power set of Q and denoted as P(Q2). (P(22), U, N) then forms a Boolean algebra. Two
particular elements of PB(Q), namely the empty set f and the universal set Q, act as identity elements
e and ¢ for the first and the second operation respectively. Each structure element z € P(2) has a
complement T = Q — z.

The above structure is readily extended to an infinite Boolean algebra when elements and sets
are chosen such that [P(€Q)| = oo, which, in turn, is obtained from making |Q2] = co. As an example,
assume ) is made up of all DNA sequences of arbitrary length.

The well-known switching algebra ({0,1}, V, A) is a Boolean algebra with just two elements. The

complement of an element is its logic inverse and denoted with the negation operator —.

With no more than six axioms, the class of semirings is very broad. It includes but is not limited
to the embodiments tabulated below:

Constituent H S ‘ H ‘ G ‘
the commutative semiring of natural numbers || N +
the commutative ring with unity of integers VA +
the “ordinary” fields Q +
R +
C +
all Galois fields, e.g. {0, 1} D A
all other fields, e.g. gg;g +
the switching algebra {0, 1} v A
other finite Boolean algebras, e.g. {0, 1} A Y
or {1, 2, 3, 4, 6, 12} lem | ged
all other Boolean algebras, e.g. PB(NQ) U al
the path algebras {0,1} max | min
R U {0} min +
RU{—o0} max | +
{zreR|0<z <1} max
{z €eR|z>0}U{co} | max | min
the matrix algebras for every n € NT Mn o n +

2.12 | Appendix II: Area and delay figures of VLSI subfunctions

This appendix lists real-world numbers for common subfunctions such as logic gates, bistables,
adders, and multipliers.77 All data refer to commercial cell libraries in static CMOS technology

7T Please refer back to section 2.5 for indications on the area occupation of register files and memories.
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under typical operating conditions.”™ When talking about an individual cell, numbers relate to a
version with simple output strength (1x drive).

Process generations and figures of merit compared

Process M1 min. half-pitch | Lithographic square | Number | Supply
generation F  [nm] F?  [nm?] of metals V]
250 nm 320 102 400 5 2.5
180 nm 240 57600 6 1.8
130 nm 190 36100 up to 8 1.2
90 nm 120 14400 up to 9 1.0

A states the area occupied by the circuitry required to implement the target functionality. Except
for individual standard cells, the intercell wiring has been completed and the associated overhead
included. No provisions were made for global routing and I/O pads.

Parameter ¢;; denotes the insertion delay.79 When referring to an individual library cell, a (purely
capacitive) load of four standard inverters (FO4) is assumed. In the case of bistables, all delay
figures refer to the non-inverting output.

Bistable storage functions

Table 2.13 ‘ Selected flip-flops and latches (D flip-flops with no reset are found in pipelines).

D flip-flop A tid D scan flip-flop A tid
with no reset [wm?] | [F?] | [ps] with async. reset | [um?] | [F?] | [ps]
250 nm 97.9 956 | 267 250 nm 121.0 | 1181 | 279
180 nm 59.9 | 1040 | 203 180 nm 73.2 | 1271 | 202
130 nm 22.4 620 | 249 130 nm 30.2 837 | 257
90 nm 14.3 993 | 160 90 nm 19.8 | 1375 | 174
E (enable) flip-flop A tid (transparent) latch A tid
with async. reset [wum?] | [F?] | [ps] with async. reset [um?] | [F?] | [ps]
250 nm 126.7 | 1238 | 267 250 nm 63.4 619 | 213
180 nm 76.5 | 1328 | 196 180 nm 36.6 | 635 | 151
130 nm 32.5 900 | 245 130 nm 15.7 435 | 119
90 nm n.a. 90 nm 11.0 764 | 251

78 As a consequence of changes in the industry, it has not been possible to compile the table from datasheets of any
single vendor; a horizontal line thus separates data from distinct companies. When comparing across process
generations, be cautioned that cells are bound to differ significantly in their transistor-level circuits, MOSFET
sizes, and threshold voltages due to divergent priorities (such as dense layout, high speed, low dynamic power,
or low leakage). The lack of a universal standard for library characterization further contributes to distinctions.

™ Insertion delay reflects the lapse of time that a subcircuit takes to pass on a data item from its input to

the output and is defined in section A.6. As a reminder, t. = t;4. = max(t,q.) for combinational functions,

ty =tia g = tsu gy + tpa gy for flip-flops, and t;. = tigic = tsuic + tpaie for latches.
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Elementary logic functions

Table 2.14 | Selected

logic gates.

Inverter A tia | Cinp Full adder A tid
(wm®] | [F?] | [ps] | [fF] (wm®) | [F?] | [ps]
250 nm 11.5 113 69 5.6 250 nm 144.0 | 1410 | 230
180 nm 10.0 173 50 3.6 180 nm 76.5 | 1330 | 197
130 nm 34 93 17 1.9 130 nm 30.2 838 | 135
90 nm 3.3 229 18 2.2 90 nm 18.7 | 1300 92
2-input NAND A tiq 2-input NOR A tiq
[um?] | [F?] | [ps] (um?] | [F?] | [ps]
250 nm 17.3 169 64 250 nm 17.3 169 | 115
180 nm 10.0 | 173 63 180 nm 10.0 | 173 54
130 nm 4.5 124 25 130 nm 4.5 124 18
90 nm 4.4 | 305 34 90 nm 4.4 | 305 45
2-input XOR A tia 2-to-1 MUX A tid
(wm®] | [F?] | [ps] (wm®] | [F?] | [ps]
250 nm 51.8 506 | 214 250 nm 46.1 450 | 210
180 nm 26.6 462 | 178 180 nm 29.9 520 | 149
130 nm 10.1 279 50 130 nm 11.2 310 84
90 nm 8.8 | 610 61 90 nm 8.8 | 610 71

Arithmetic functions

Tables 2.15 and 2.16 refer to unpipelined adders and multipliers respectively. They include the ap-
proximate area for intercell wiring as estimated by Synopsys DesignCompiler. Synthesis results have
been obtained by instantiating the appropriate DesignWare component followed by optimization

with no timing constraint.

Table 2.15 | 2’s complement adders with carry-in and carry-out.

ripple-carry adder A tid carry-lookahead A tid
DWO01_add [um?] [F?] [ps] DWO01_addsub [um?] [F?] [ps]
90 nm 8 bit 149 | 10400 720 90 nm 8 bit 237 | 16500 800
90 nm 16 bit 299 | 20700 | 1400 90 nm 16 bit 457 | 31700 | 1480
90 nm 24 bit 448 | 31100 | 2080 90 nm 24 bit 676 | 47000 | 2150
90 nm 32 bit 598 | 41500 | 2750 90 nm 32 bit 896 | 62200 | 2830
Table 2.16 | 2’s complement multipliers.

carry-save multiplier A tid

DW02_mult [wm?] [F?] [ps]

90 nm 8 bit x 8 bit 1670 116 000 | 1350

90 nm 16 bit x 16 bit 5670 394000 | 2980

90 nm 24 bit x 24 bit | 11800 821000 | 4200

90 nm 32 bit x 32 bit | 20530 | 1430000 | 5620




Chapter 3

Functional Verification

The ultimate goal of design verification is to avoid the manufacturing and deployment of flawed
designs. Large sums of money are wasted and precious time to market is lost when a microchip
does not perform as expected. Any design is, therefore, subject to detailed verification long before
manufacturing begins and to thorough testing following fabrication. One can distinguish three
motivations (after the late A. Richard Newton):

1. During specification: ~ “Is what I am asking for what is really needed?”
2. During design: “Have I indeed designed what I have asked for?”
3. During testing: “Can I tell intact circuits from malfunctioning ones?”

In any of these cases, one can focus on different circuit properties.

Functionality describes what responses a system produces at the output when presented with
given stimuli at the input. In the context of digital ICs, we tend to think of logic networks and of
package pins but the concept of input-to-output mapping applies to information processing systems
in general. Functionality gets expressed in terms of mathematical concepts such as algorithms, equa-
tions, impulse responses, tolerance bands for numerical inaccuracies, finite state machines (FSM),
and the like, but often also informally.

Parametric properties, in contrast, relate to physical quantities measured in units such as Mbit/s,
ns, V, uA, mW, pF, etc. that serve to express electrical and timing-related characteristics of an
electronic circuit.

Observation 3.1. FExperience has shown that a design’s functionality and its parametric
properties are best checked separately since goals, methods, and tools are quite different.

Our presentation is organized accordingly with section 3.1 discussing the options for specifying a
design’s functional behavior. Neither parametric issues nor the testing of physical parts will be
addressed in this chapter.! After having exposed the puzzling limitations of functional verification

! The checking of timing-related quantities will be discussed in chapter 12 along with the verification of a circuit’s

inner layout. The testing of physical circuits is not part of this text.
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in the first part of section 3.2, we will go on to suggest a couple of approaches that help to improve
the likelihood of finding design flaws. Testbench design and other practical issues of how to organize
simulation runs and simulation data are the subjects of section 3.3.

3.1 | How to establish valid functional specifications

Specifications available at the outset of a project are almost always inaccurate and incomplete. While
parametric properties are relatively easy to state, expressing complex functionalities in precise yet
concise terms is much more difficult. Functional specifications are, therefore, often stated verbally
or graphically. There is a serious risk with doing so, however.

Warning example

An ASIC had to interface with an industry-standard microprocessor bus. Specifications made refer-
ence to official documents released by the CPU manufacturer, where bus read and write cycles were
described in great detail along with precise timing diagrams. Although the ASIC was designed and
tested with these requirements in mind, systems immediately crashed because of bus contentions
when first prototypes were plugged into the target board.

What had gone wrong? It was found that the ASIC worked fine as long as its chip select line was
active. When deselected, however, its pad drivers failed to release the bus by switching to a high-
impedance state. This obvious necessity had been omitted in the original specifications and, as a
consequence, also been ignored throughout the subsequent design and test phases.

O

In more general terms, the subsequent quote from [82] nicely summarizes an experience acquired
by most designers of complex technical systems.

Many computer systems fail in practice, not because they don’t meet their specifications,
but because the specifications left out some unanticipated circumstances or some unusual
combination of events, so that when the unexpected occurred, the system was not able to
deal with it. This is not necessarily due to sloppiness or stupidity on the part of the designer
or to inadequate design methodology; it is a fundamental characteristic of the design process.

This leaves us with three important issues:

“How to have customers, marketing and engineers share the same understanding”
“How to ascertain specifications are precise, correct, and complete”
“How to make sure specifications describe the functionality that is really wanted and needed”

As natural language and informal sketches have been found to be inadequate, let us next discuss
two approaches for arriving at more dependable specifications.
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3.1.1 Formal specification

Ideally, all requirements for a circuit or system could be cast into a set of formal specifications which
then would serve as a starting point for a rigorous mathematical proof of correctness. Over the
years, a broad variety of formalisms has been devised for capturing behavioral aspects of numerous
subsystems from many different fields, including truth tables, signal flow graphs, equations, state
graphs, statecharts, Petri nets, and signal transition graphs (STGs).

A difficulty is the limited scope of each such formalism. While signal flow graphs, for instance,
were developed for describing transformatorial systems, they are inadequate for modelling reactive
systems. Although Petri nets and finite state machines can, in theory, describe any kind of compu-
tation, they tend to become unmanageable when applied to more complex processing algorithms
due to combinatorial explosion. Yet, no real-world system of substantial size falls entirely into one
of the above two categories. Most VLSI circuits include a great variety of subsystems, some of which
are more of transformatorial nature (datapaths, look-up tables) and others more of reactive nature
(controllers, interfaces). Relying on a single formal method for specifying the desired functionality
of an entire chip or system is thus not normally practical.

A more mundane difficulty is that mathematical formalisms are unsuitable for communicating with
customers and management. Also from a practical perspective, there must exist a straightforward
and foolproof way to break down a system’s specifications into specs for its various components in
order to support collaborative development in a team, and to support products that comprise both
hardware and software.

3.1.2 Rapid prototyping

Prototyping often is the only viable compromise between strictly formal and totally informal spec-
ification. By rapid or virtual prototype we understand an algorithmic model that emulates the
functionality of the target circuit but not necessarily its architectural, electrical, and timing char-
acteristics. A virtual prototype can be implemented

o As software code that runs on a general-purpose computer, microprocessor or DSP,
o With the aid of generic software tools for system-level simulations,? or
o By configuring FPGAs or other FPL devices.

The typical procedure goes

Apply formal methods (e.g. equations and statecharts) to capture specifications.
Use them as a starting point for developing a virtual prototype.
Make the prototype as widely available as possible for a thorough evaluation.

Ll

Refine specifications and prototype until satisfied before freezing them.
The pros and cons of rapid prototyping are as follows.

+ Demonstrations of the prospective functionality can be arranged at an early stage.
+ Shortcomings of the initial specifications are likely to get exposed in the process.

2 Such as MATLAB/Simulink.
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— Performance of the prototype does not normally come close to that of the final VLSI chip.

+ It is possible to submit a functional prototype to project management and/or customers for
approval before investing time and money into actual hardware design.

+ The chances of discovering functional flaws early on are fairly good as functionality can be
verified on the basis of real-world data.’

— There is no guarantee that all critical cases get covered during prototype testing.

+ A functional prototype is amenable to peer review and code inspection.

+ Design iterations and fine tuning are not penalized by the long turnaround times associated
with IC design and manufacturing.

— Slips that are related to timing or electrical problems are unlikely to be found because they
are not rendered correctly by a purely functional model.

Observation 3.2. Rapid prototyping gives developers the opportunity to make and uncover more
mistakes earlier and so to save precious cost and time.

3.2 | Developing an adequate simulation strategy

Following fabrication, every physical part is subject to thorough tests. Most of those tests have
automated test equipment (ATE) monitor the signal waveforms that result when predefined
electrical waveforms are being applied to the circuit under test (CUT) over many, many clock
cycles. Simulation essentially does the same, albeit with a virtual circuit model commonly referred
to as the model under test (MUT).

Both simulation and testing are said to be dynamic verification techniques as opposed to code
inspection, formal verification, equivalence checking, timing analysis, and other static verification
techniques that do not depend on signals, clocks, waveforms, or test patterns in any way. Simulation
prevails when it comes to checking a design’s functional behavior. This is mainly because of the
limited capabilities of today’s formal verification methods. However, simulation and testing both
raise a couple of fundamental issues and bring about a variety of practical difficulties that we are
going to address in the remainder of this chapter.

3.2.1 What does it take to uncover a design flaw during simulation?
Ezample

Consider a multiplexer buried within a large circuit. Assume that its two control inputs have been
permuted by accident, see fig.3.1. A minor oversight during schematic entry or writing ... to ...
rather than ... downto ... in the VHDL code suffices for this kind of mishap.

3 It is even possible to operate a functional prototype within the target hardware environment, provided all
surrounding equipment can be made to operate at a (reduced) clock rate that is consistent with the prototype’s
execution speed. This approach is particularly helpful for locating interface problems.

1 A difference is that stimulation and observation of hardware are strictly confined to package pins, whereas all

nodes can at least in principle be observed and controlled during simulation.
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Fig. 3.1 A typical design mistake and the preconditions necessary for uncovering it during simulation.

Three preconditions must hold for that design flaw to become manifest during simulation.

Bug sensitization. The stimuli must drive the permuted nodes to opposite logic values. The data
inputs to the multiplexer must further be adjusted such that a logic value opposed to the

correct one indeed appears at the multiplexer output.

Bug propagation. The stimuli must permit the erroneous condition to propagate to observable
nodes by causing a cascade of intermediate nodes to assume incorrect values.

Bug observation. The logic value observed on one or more of the nodes affected by the design
error must get checked against the logic value that a correct design is expected to produce.

Unless all three conditions are met, the design flaw will have no consequence whatsoever during
simulation, although circuits fabricated on the basis of the faulty netlist are almost sure to fail when

put into service.
a

The same reasoning essentially applies to any other bug that affects functional behavior.

3.2.2 Stimulation and response checking must occur automatically

In the context of simulation, bug observation means checking the MUT’s output. How to do so is
dictated by the volume of data. Even a fairly modest subcircuit asks for keeping track of hundreds
of waveforms over thousands of clock cycles. Digging through waveform plots, event lists, tabular
printouts of logic values, and similar records from simulation runs is not practical for efficiency
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reasons. It is also unacceptable from a quality point of view because some incorrect data value
hiding within myriads of correct items is very likely to be overlooked.

Observation 3.3. Purely visual inspection of simulation data is not acceptable in VLSI design.
Rather, designers must arrange for the simulator software to automatically check the actual responses
from the model under test against the correct ones and to report any differences.

The answer is to collect the expected responses along with the pertaining stimuli in a sequence
of data patterns that we call a functional gauge. In mechanical engineering, gauges serve to verify
the geometric conformity of manufactured parts so as to eliminate inaccurate parts before they are
put together with other components. In some sense, gauges are specifications that have materialized.
Similarly, a functional gauge serves to verify the functional correctness of some digital (sub)circuit.
In its most simple expression, a functional gauge is a set of binary vectors listed cycle by cycle that
specifies what kind of responses a correct design or circuit is supposed to provide when fed with
certain stimuli.

Table 3.1 | Terms used in the context of dynamic verification.

In the physical reality world of simulation
a design exists as fabricated circuit HDL model or netlist
and is referred to as | circuit under test (CUT). | model under test (MUT).
As part of prototype testing functional verification
all those stimuli and expected responses,
collectively called functional gauge,

get administered by | automated test equipment ‘ a software testbench
in search of potential design flaws.

As part of production testing ‘ fault simulation
all those stimuli and expected responses,
collectively called the test vector set,

get administered by | automated test equipment ‘ a software testbench
in search of potential fabrication defects.

Test suite, test cases, and test patterns are often used as synonyms for functional gauge. The word
testbench is also used in this context, but we reserve it for a somewhat different concept. A
testbench is a piece of software used to pilot a simulation that provides the following services:

Obtain stimuli vectors and apply them to the MUT at well-defined moments of time.
Acquire the signal waveforms that emanate from the MUT as actual response vectors.

L]

]

e Obtain expected response vectors and use them as a reference against which to compare.
e Establish a simulation report that points to problems (functional or timingwise), if any.
[ ]

Generate a periodic clock signal for driving simulation and clocked circuit models.

A testbench is to a MUT in the simulation world what ATE is to a fabricated circuit in the physical
reality, see table 3.1, whereas functional gauge is a collective term for all those pairs of stimuli and
expected responses being used to verify the functionality of a design, irrespective of whether that
design is available as virtual HDL model or as tangible circuit.
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Ezxzample

Consider a rising-edge-triggered Gray counter of word width w =4 with enable and asynchronous
reset. A suitable functional gauge is shown in fig.3.2a. Note that the gauge includes one stimulus/
response pair per clock cycle and that both stimulus and response refer to the same cycle in each
pair. Also observe that nothing else than the input-to-output mapping matters for the gauge. How
states are being encoded inside the MUT and whether the counter is actually implemented as a

Medvedev or as a full Moore machine is of no importance.’
clock alternative
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Fig. 3.2 A functional gauge for a 4 bit Gray counter with enable and asynchronous reset (a). Three alternative
state encoding schemes (b).

|

The functional gauge shown in fig.3.2 is very primitive and does not extend easily to more general
situations, though. The concepts of functional gauge and testbench will thus have to be refined in
numerous ways in the sections to come to make them more practically useful.® Let us begin with a
fundamental problem.

3.2.3 Exhaustive verification remains an elusive goal

An unfailing way — in fact the sole one — to safeguard against any possible design flaw is to verify
a design’s functional behavior in perfect detail.” Let us see whether this is practical.

Exhaustive verification calls for traversing all edges in the design’s state graph by exercising it
with every possible input condition ¢ € I in every possible state s € S8 One might be tempted

The difference is that a Medvedev machine has no output logic whereas a full Moore machine includes a non-
trivial logic that translates each state into an output value. Refer to section B.1 for further explanations.

o

This section focusses on devising functional gauges, testbench design is the subject of sections 3.3 and 4.4.
7 Incidentally, note that the same argument also applies to the testing of physical parts for fabrication defects.

o

Parallel edges are likely to exist, yet exhaustiveness indeed calls for checking the circuit’s behavior for every
single edge, that is for every state/condition pair, unless the presence of Mealy-type outputs can be ruled out.
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to think that the product |7]|S]| indicates the number of clock cycles ¢, necessary for exhaustive
verification. In almost all practical applications, traversing every edge once will necessitate traversing
others twice or more, howcver,9 so that we must accept

Cean = IS (3.1)

as a lower bound. Let w;, ws, and w, denote the numbers of bits in the input, state, and output
vectors respectively. The maximum number of possible input symbols || then is 2“7, which figure
must be discounted by the parasitic — i.e. unused — input codes. An analogous reasoning holds
for |S|. Although it is not possible to accurately state |I||S| in the general case, an upper bound
can always be given as

Corn > |I]|S] < 270H" (3.2)

The “less or equal” operator holds with equality in the absence of parasitic states and input symbols,
i.e. when every combination of bits is being used for encoding some legal state and some input symbol
respectively.

Let us plug in real figures to understand the practical significance. Consider the Intel 8080, an early
microprocessor released in 1974 with an 8 bit datapath and almost trivial by today’s standards.
Abstracting from further details we find the following word widths:

input ports 8 bit data, 3 bit control, 1 bit reset w; = 12
registers 8 bit: A,B,C,D,E,H,L,IR; 16 bit: PC,SP; flags: 5 ws = 101
output ports 8 bit data, 16 bit address, 6 bit status/control  w, = 30

Assume there are no parasitic states and input symbols. The minimum number of clock cycles
required for exhaustive simulation then is 2113 ~ 1034, Using test hardware running at 100 MHz, the

018

process would run for more than 3 - 1 years. Software simulation would take orders of magnitude

longer. To our regret, we must conclude that

Observation 3.4. Ezhaustive verification is not practical, even for relatively modest functions.
Dynamic verification, therefore, almost always has to make do with a limited choice of test cases.
The problem is to come up with a functional gauge of practical size and sufficient coverage.

There is no cheap answer. We are thus going to discuss a number of more and less useful approaches
to this problem that plagues both circuit simulation and IC testing.

3.2.4 All partial verification techniques have their pitfalls
TESTING DISTINCT FUNCTIONAL MECHANISMS SEPARATELY

The problem of exhaustive verification is combinatorial explosion. Exhaustive verification starts
from a flat behavioral model obtained from combining the states of all data registers, counters,
state machines, and the like into a single composite state. In addition, each possible state gets
indiscriminately combined with each possible input. The Cartesian product so obtained describes
all situations the circuit might conceivably encounter but, at the same time, causes the number of

9 Fortunate exceptions are those cases where the state graph includes an Euler line. An (open) Euler line is a

walk through a graph that runs through every edge exactly once.
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test cases to explode as VLSI circuits actually include thousands of state registers and hundreds
of inputs. A more pragmatic idea is to identify distinct subcircuits with fewer internal states and
functional mechanisms, and to check them individually.

Ezxample

Reconsider the Gray counter example. The functional gauge presented in fig.3.2 offers only partial
coverage because it includes 26 cycles whereas (3.2) tells us 64 cycles is a lower bound for exhaustive
verification.” Why is this nevertheless a reasonable compromise between functional coverage and
verification costs?

Table 3.2 ‘ Truth table of a w-bit binary Gray counter with enable and asynchronous reset.

ST CLK ENA (0103

0 - - 00...0 reset

1 1 - oupP keep output unchanged

1 ) 0 oupP idem

1 1 1 | graycode((bincode(0UP) + 1) mod 2*) | increment Gray-coded output

Begin with truth table 3.2 that specifies the behavior of Gray counters in more general and
parametrized terms. Note that the desired functionality is made up of three mechanisms, namely
a reset mechanism, an enable/disable mechanism, and the actual counting mechanism, see fig.3.3.
The functional gauge of fig.3.2 addresses each of them separately.

O regular state

parasitic state

Y reset
ST=0 mechanism

. — enable/disable
RST=1 and ENA=0 mechanism

Fig. 3.3 The state graph of a 4 bit Gray counter with edges colored according to the functional mechanism
they implement.

More precisely, the reset mechanism is being verified in cycles 0, 1, and 2, and the enable/disable
mechanism in cycles 3, 4, and 5. The succession of output values is then being checked against
the 4 bit Gray code in cycles 4 through 20. Provided the mechanisms involved function indepen-
dently from each other, one can generalize from these partial checks and so obtain a high degree of

10 Finding the exact minimum is left to the reader as an exercise, see problem 1.
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confidence that the circuit will indeed work as intended. To be on the safe side, five extra vectors
have been added to address a few more — and maybe more general — cases.
O

Though a workable and adequate solution in the above example, partial verification suffers from
four limitations. Firstly, while refraining from traversing all edges (state transitions), the functional
gauge of fig.3.2a does visit all nodes (states). The problem of combinatorial explosion persists and
visiting all states rapidly becomes impractical on more substantial circuits.

Secondly, there exists a great variety of circuit models that comply with the gauge of fig.3.2a but,
at the same time, contravene the functional specification of truth table 3.2. In the occurrence, one
could easily come up with a modified design that allows counting to get disabled in some of the
states but not in others. The example gauge would fail to uncover such a fault.

Thirdly, verifying each mechanism and subcircuit separately holds the risk of missing those problems
that relate to the interaction of two (or more) of them.

Finally, identifying mechanisms and subcircuits for verification requires partial insight into its inner
organization and Working.11

Observation 3.5. Unless functional coverage is exhaustive, a multitude of logic networks will
necessarily exist that satisfy all verification steps deemed mecessary and still fall short of meeting
the original specifications for the overall circuit.

Any simulation or test run that lacks exhaustiveness is tantamount to spot checking and, as such,
perforce implies compromising among functional coverage, run time, and engineering effort. Ideally,
an engineer would begin by enumerating all slips that might possibly occur during the design process
before writing a functional gauge capable of sensitizing, propagating, and observing each of them.
This is not possible in practice, though, because the number of potential bugs is virtually unlimited
and our imagination insufficient to list them all.

Warning example

A tiny portion from an incorrect ASIC design is shown in fig.3.4. The designer’s intention was to
detect the zero state of a down counter by way of a 12-input NOR function.'? Since no 12-input
gate was available, he decided to compose the function from an 8-input and a 4-input NOR gate, but
mistakenly instantiated a NAND gate during schematic entry. A simulation involving these four bits
would have exposed the problem, but no such check was undertaken because the functional gauge
never had the counter assume a state in excess of 18.

Why did the designer refrain from exercising the upper bits? Firstly, he wanted to keep simulation
runs short, and exhausting a 12 bit counter with enable and reset would have required 16 384 cycles.
More importantly, however, the designer was convinced that all input bits to a zero detector are

1A situation of limited knowledge is termed gray box probing and as opposed to the black box approach
of exhaustive verification that makes no assumptions about the MUT whatsoever. A situation that assumes
perfect knowledge of a circuit’s inner details is referred to as clear box probing. The dilemma is this: Black
box probing takes many vectors for a low probability of finding a problem. Clear box probing enables a test
engineer to select such test cases as to address specific and likely problems, but may obstruct his view on other
potential issues by contaminating his understanding with preconceptions from the circuit’s design phase.

12 Using the counter’s carry/borrow bit instead would probably have been a more economic choice anyway.
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interchangeable. He concluded it was sufficient to check the subcircuit’s functioning by initializing
the counter to 18 — or some other fairly low number — followed by having it count back to zero.
Although he identified the end count mechanism and planned to check its functioning, the designer
was just not prepared for a problem that would challenge his preconceptions.
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Fig. 3.4 A silly little oversight that managed to slip through simulation unnoticed because of poor coverage.

O

What we learn from this example is that a critical difficulty of verification is to protect oneself
against the unthinkable. Most examples of circuits and systems that have failed when put to service
indeed confirm this.

MONITORING TOGGLE COUNTS IS OF LIMITED USE

A simple precautionary measure consists in collecting the toggle counts of all circuit nodes during
simulation. Any node that never changes its logic value points to a weakness in the test suites
chosen. In the example of fig.3.4, insisting on non-zero toggle counts would definitely have helped
to recognize the stimuli as being inadequate. Yet, in spite of its utility and popularity, monitoring
of node activities is far from solving all problems. A functional gauge may well toggle all nodes of
a logic netlist back and forth and still be insufficient, see problem 3. Also, the concept of a circuit
node is meaningless before a gate-level netlist has been established.

Observation 3.6. The toggling of all nodes must be considered a desirable
rather than a sufficient requirement for a good functional gauge.

AUTOMATIC TEST PATTERN GENERATION DOES NOT HELP EITHER

Automatic test pattern generation (ATPG) is a technique that helps to tell intact ICs from defective
ones following manufacturing. It is important to understand that ATPG does not normally help to
uncover design flaws in nonmaterial circuit models such as HDL code or gate-level netlists. This
is because ATPG starts from a presumably correct netlist and produces a set of test vectors for
checking for the presence of predefined fabrication defects.!3

13 For the purpose of ATPG, fabrication defects are almost universally assumed to follow the so-called “single
stuck-at fault” model whereby one circuit node at a time is assumed to be shorted to either logic 0 or 1. ATPG

software attempts to cover close to 100% of all such faults with as few test vectors as possible.
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Functional verification, in contrast, questions the correctness of a circuit model by setting its logic
behavior against some kind of functional specification or reference model.

MONITORING CODE COVERAGE IS CERTAINLY USEFUL BUT NOT SUFFICIENT

All decent HDL simulators can calculate code coverage figures by keeping track of how many times
the individual statements in a MUT’s source code are being exercised during a simulation run. 100%
code coverage implies all executable statements have been executed once or more.

Observation 3.7. However useful code coverage figures are, executing all statements in an RTL
or behavioral circuit model implies neither that all states and transitions have been traversed mor
that all conditions and subconditions for doing so have been checked.

Also, code coverage relates to bug sensitization but neither to bug propagation nor to bug observa-
tion. Executing a flawed statement does not imply the bug must necessarily become manifest at an
observable output. And whether it will be caught there or not depends on the expected responses,
not on the stimuli.

The subsequent case study shows that functional coverage problems can take on much more subtle
forms than in the above zero detector.

Warning example

Electronic dimmers for incandescent lamps work by varying the duty cycle of the load current. For
every half wave of the 50 or 60 Hz mains voltage, a Triac connected in series with the lamp is turned
on (“fired”) at a phase angle adjustable between 0° and 180° and stays in the conducting state
until the next zero crossing. A digital implementation is shown in fig.3.5.

The controller accepts commands from a touch key, converts the desired luminosity into a target
phase angle, and fires the Triac via an optical coupler. The trigger impulse is initiated by a compara-
tor when the actual phase angle matches the target value. The actual angle counter is clocked at
64 times the mains frequency so that in total 32 intensity levels are available. Synchronization with
the mains is obtained through a zero-crossing detector that resets all 5 bits of the counter whenever
a new half wave begins. Post-layout simulations and testing of fabricated samples on ATE confirmed
circuit operation. Yet, the design of fig.3.5 is flawed.

When the first prototype was plugged into the target board, the dimmer was found to function o.k.
except for a slight but disturbing oscillation of luminous intensity. The problem was quickly located
in the synchronization mechanism. Since only the actual angle counter is reset, the clock divider
proceeds from its current but otherwise indeterminate state whenever a new half wave begins. As a
consequence, the next increment impulse for the actual angle counter can arrive anytime between a
zero-crossing and 31—2 half waves later. This, together with the fact that a free-running clock oscillator
is being used, leads to a beat in firing angle and luminosity.

Why had this flaw passed unnoticed during circuit simulation and testing? The answer is that all
simulations were carried out with the clock frequency an integer multiple of the mains frequency. It
just never had occurred to the designers that non-integer frequency ratios might give rise to specific
behavioral phenomena.
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Fig. 3.5 Block diagram of flawed digital dimmer.

d

ROUTINE IS THE DARK SIDE OF EXPERIENCE

The above examples have demonstrated the perils of unconcious, unspoken, and unjustified as-
sumptions and misconceptions. We are now in a position to formulate what is considered to be the
fundamental problem of any dynamic system verification approach, independently of whether the
desired functionality is embodied in a piece of hardware, of software, or both.

Observation 3.8. The innate difficulty with selecting critical test cases for dynamic verification is
that human beings tend to check only for those problems that they expect.

It is absolutely essential to select test cases with a clear and open mind, and section 3.2.5 will suggest
how to get organized for this. Before doing so, however, let us point to another and particularly
treacherous preconception.

Warning example

On its maiden flight on June 4, 1996, the Ariane 5 rocket had to be neutralized by its built-in
self-destruct system at an altitude of 3500 m because excessive aerodynamic loads had ripped the
solid boosters off the rocket shell after more than 30 s of seemingly normal flight [83]. Analysis of
telemetry data revealed that there had been no structural failure but that the on-board computer
had commanded the booster nozzles to maximum deflection two seconds before self-destruction
occurred, and had so steered the rocket into an abnormal angle of attack.

Why did this happen? The flight control system of Ariane 5 depends on two computerized inertial
reference platforms, one active and one for backup, that provide the on-board computer with velocity
and attitude information. This flight control system was a proven design that had flown with Ariane
4 for years. On that fatal morning, however, both inertial reference platforms simultaneously ceased
to deliver meaningful flight data and presented the on-board computer with diagnostic bit patterns
instead. Misinterpreted as they were, these garbage data caused the on-board computer to initiate
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a sharp change in trajectory. The underlying reason was a numeric overflow that occurred when
a parameter of minor importance was converted from a 64 bit floating-point number to a 16 bit
signed integer combined with poor exception handling.

How was it possible for such a disastrous design flaw to remain undiscovered for so long? No numeric
overflow had ever occurred in an Ariane 4 flight. Yet, the Ariane 5 trajectory implied considerably
higher horizontal velocity values, which caused the critical parameter to accumulate beyond its
habitual range. Tests for making sure that the navigational system would operate as intended in the
new context had not been conducted. It was precisely the system’s excellent reliability record that
led the Ariane 5 design team to believe that everything worked fine and that no extra qualification
steps were necessary.

O

Observation 3.9. How a system responds to the things going wrong shows how good it really is
(quoted from Hans Stork, CTO of Tezxas Instruments).

The fact that a subsystem has performed as expected when subjected to certain data sets, operating
conditions, parameter configurations, and the like is no guarantee for its correct functioning in
similar situations.

EVEN REAL-WORLD DATA SOMETIMES PROVE TOO FORGIVING

It is often argued that the functional coverage problem is best dealt with by using genuine data
collected from real-world service instead of limiting dynamic verification to a small number of
artificially prepared test suites. A test with data from the anticipated flight time sequence of Ariane 5
injected into the data processing section of the inertial reference system would indeed have disclosed
its fatal limitation. Similarly, a software or a hardware prototype of the digital dimmer ASIC
embedded within the remainder of the circuitry and operated with real-world waveforms would
have led designers to recognize the oversight in their design.

Using actual data material is no panacea, however, because it may take an excessively large number
of cycles before genuine stimuli might activate some rare but critical set of circumstances whereby
a potential misbehavior of a design or its model could become apparent.

Warning example

A case that was given world-wide publicity in the fall of 1994 was the flaw in the floating-point
division unit of early Pentium microprocessors [84] [85]. Due to a software problem, 5 out of 1066
table entries had been omitted from a PLA look-up table employed in the radix-4 SRT division
algorithm.14 Whether results from floating-point division came out wrong or not depended on the
mantissa values involved. Intel scientists estimated the fraction of the total input number space that
is prone to failure to be 1.14 - 10710 [86], which explains why it took several months before the user
community eventually became aware of the problem.

O

4 SRT stands for Sweeney, Robertson, and Tocher, who independently invented the method in the 1950s.
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RANDOM TESTING IS UNBIASED BUT ALSO UNFOCUSSED

The basic idea behind random testing is to get rid of human preconceptions and misconceptions
by having an impartial random process select the test cases. Note that random testing does not
simply mean random vectors, though. In order to exercise much of a circuit’s state graph, it is the
higher-level transactions that are to be chosen randomly, not the gate-level bit patterns. Except for
simple combinational subcircuits, applying random bit patterns would be very inefficient.

3.2.5 Collecting test cases from multiple sources helps

We now know about the benefits and difficulties of simulation and testing. The trouble with dynamic
verification is indeed knowing how to select a compact set of test cases that makes a mistaken design
behave differently from a functionally correct one for any situation that might be relevant to the final
circuit’s operation. The fact that today’s VLSI circuits comprise entire systems only exacerbates
the problem. Some good advice is as follows.

Observation 3.10. FExcept for the simplest subsystems where erhaustive testing is feasible,
an acceptable selection of test cases shall comprise:
e A wvast set of data that makes the MUT work in all reqular regimes of operation,
that exercises every functional mechanism, and that strains array and memory bounds.
e Particular numeric data that are likely to cause uncommon arithmetic conditions, including
over-/underflow, division by small numbers, sign, carry, borrow, and not-a-number handling.
e Pathological cases that ask for exception handling and out-of-the-normal control flows.
e Genuine data sequences collected from real-world service.
e Randomly selected test cases.

3.2.6 Assertion-based verification helps

Assertions are small pieces of simulation code embedded within a MUT that do not affect func-
tionality. Instead, these Boolean tests are included solely to monitor the model’s operation and to
report any anomalous or unexpected condition that might occur, e.g.

Memory addresses that point outside their legal range,

State machines that assume parasitic, illegal or otherwise suspect states,
Unforeseen input values and other out-of-the-ordinary conditions,

Illegal instruction codes (opcodes) and unexpected status codes,
Numeric over/underflows and other scaling problems,

Event sequences unforeseen by the application or protocol,

Resource conflicts and other situations of mutual lock-up,

Excessive iteration counts or other unexpected state variables, and the like.

Assertions, aka in-code sanity checks, included in simulation models are effective at providing pro-
tection against design and coding errors. They nicely complement response checking because

e Feedback is immediate. There is no need for an abnormal condition to propagate to some
distant node placed under constant monitoring.
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e The link between a design flaw and its manifestation is short. There is no need for the engineer
to trace back an output mismatch in an attempt to locate its place of origin.

e Assertions are a long-lasting investment. There is no need to repeatedly adjust them when
submodels are being assembled to form larger design entities.

Especially the third feature is in sharp and welcome contrast to the stimulus/response pairs of a
prerecorded functional gauge that must be modified whenever latency changes. Many assertions
refer to the interface between a subcircuit and the embedding circuitry and between a subprogram
and the calling code, but they are not limited to this.

Hint: While writing code for a MUT, enter an assertion wherever you explicitly or implicitly
assume that a certain property would hold in real-life service.
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Fig. 3.6 Assertions resemble spies placed right into the MUT itself.

Assertions are not normally intended for synthesis. Unless they are ignored by synthesizers
anyway — as VHDL assert statements are — assertions must get commented out or otherwise
disabled prior to synthesis. As an alternative, a designer is free to implement part of the sanity
checks in his HDL code in such a manner as to synthesize them into extra surveillance circuitry. By
having that circuitry activate an alarm upon detection of an out-of-the-ordinary condition, he can
take advantage of assertions to add self-checking capabilities to physical parts.

3.2.7 Separating test development from circuit design helps

The idea is to safeguard a design against oversights, misconceptions, and poor functional coverage by
organizing manpower into two independent teams. A first team or person works towards designing
the circuit while a second one prepares the functional gauge. Their respective interpretations are
then crosschecked by verifying early behavioral models of the circuit against the gauge, see fig.3.7.

expected
responses
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The goal of the circuit designers is to come up with a model that is functionally correct whereas
the test engineers essentially try to prove them wrong.

The benefits and shortcomings of this healthy adversarial relationship are as follows.

+ Mistakes made by either team are likely to be uncovered by the crosschecking process.

+ The same holds for ambiguities in the initial specifications.

+ Having the design and the test teams work concurrently helps to cut down design time.

— A chance always remains that truly misleading specifications get interpreted in identical but
erroneous ways by both teams.

— The difficult task of finding test cases of adequate coverage is left to humans.

l write behavioral model

supposedly correct answers

I adjust until functionally consistent

select test cases and determine l

crosschecking by
behavioral simulation
model compilation
M M -
" /B|/B »E|E|] — &
e a
S selected stimuli B behavioral language »  human effort
R expected responses
M simulation model E executable code » data transport

Fig. 3.7 Circuit models and functional gauge being prepared by separate teams.!®

Figures 3.7, 3.8, and 3.9 come as T-diagrams, a notation popular in the context of compiler engineering that
serves to plan the porting of programs from one machine to another [87]. As an extension to the established
T-diagram notation, two extra symbols have been added. One stands for a functional gauge and the other for
a piece of information-processing hardware, such as a digital ASIC or an FPL device. Also note that synthesis
tools are viewed here as compilers that turn behavioral models into gate-level netlists, and gate-level simulators
as interpreters that translate between netlists and executable code.
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Fig. 3.8 Preparation of a functional gauge with the aid of a virtual prototype.

3.2.8 Virtual prototypes help to generate expected responses

Rapid prototyping has been introduced in section 3.1.2. Once a virtual prototype has been throughly
certified in a multitude of test runs, it becomes a golden model which is assumed to be free of
functional errors for the purpose of the upcoming design steps. As illustrated in fig.3.8, golden
models come in handy for automatically computing expected responses from a selection of stimuli.
Yet, note that the problem of selecting a set of relevant test cases is not addressed by this technique.

3.3 | Reusing the same functional gauge throughout the entire
design cycle

Over the last few decades, functional verification has become ever more onerous because the overall
set of potential circuit behaviors, correct and incorrect, has exploded with VLSI and ULSI circuit
complexities. The concern is best expressed by a quote (from Walden Rhines):

The question is whether the percentage for verification time tops out at 70%
[of the total engineering effort in VLSI design] or it goes to 95% in the future.

Industry just cannot afford to rewrite functional gauges and testbenches over and over again as a
design matures from a virtual prototype into synthesis code, a gate-level netlist, and — finally —
into a physical part. Moreover, it is absolutely essential that a MUT be checked against the same
specifications throughout the entire design cycle. Figure 3.9 again illustrates the design process
but differs from fig.1.13 in that it emphasizes the reuse of stimuli and expected responses. How to
do so is not immediately obvious because design views and tools greatly differ in their underlying
assumptions, see table 3.3.
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Fig. 3.9 Life cycle of a functional gauge during VLSI design and test in T-diagram notation.
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Table 3.3 | Data, signal, and timing abstractions encountered during VLSI design and test.

relevant numerical modelling relevant timewise
level of data types precision of electrical time scale simulation
abstraction and structures phenomena for latency resolution

mmaterial circuit models

-

algorithmic model abstract and essentially not an issue || system-level | not an issue
fairly free unlimited transaction

automata theory discr. symbols | not an issue | not an issue || abstr. cycle clock cycle

RTL synthesis numbers, bits, finite optional clock cycle event

model (VHDL) enumer. types sequence

gate-level netlist bits finite logic values clock cycle circuit

post-layout netlist delays

physical hardware
autom. test equip. bits finite discr. volt. clock cycle | discr. strobes
physical circuit cont. quant. continuous

The difficulty is in

“How to make sure the same stimuli and expected responses can be reused across the full VLSI
design cycle from purely algorithmic specifications to the testing of fabricated parts in spite of the
various pieces of software and hardware being involved”

This is more than just a matter of format conversion. Ideally, a single functional gauge is reused
with only minimal modifications to account for unavoidable differences in timewise and numerical
resolution. Having to rewrite or to reschedule test patterns at each development step must be
avoided for reasons of quality, trustworthiness, and engineering productivity.

From a hardware engineering point of view, a good simulation setup

e Is compatible with all formalisms and tools used during VLSI specification, design, and test
(such as automata theory, MATLAB, HDLs, logic simulators, and ATE).

Adheres to good software engineering practices (modular design, data abstraction, reuse, etc.).
Translates stimuli and responses from bit-level manipulations to higher-level transactions.
Consolidates simulation results in such a way a as to facilitate interpretation by humans.

Is capable of handling situations where the timewise relationship between circuit input and
output is unknown or difficult to predict.
e Manages with reasonable run times.

Next, we are going to discuss six measures that greatly contribute towards these goals.

3.3.1 Alternative ways to handle stimuli and expected responses

There is much liberty regarding how to organize a testbench. Even after one has selected the stimuli
and response vectors that together form a functional gauge, there exist at least three conceptual
alternatives for handling them.
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Hardcoded testbench. Stimuli and expected responses are prepared before simulation begins
and are included in the source code of the testbench itself, e.g. with the aid of repetitive
instruction sequences, program loops, conditional branching, look-up tables, and the like.

File-based testbench. Stimuli and expected responses are prepared beforehand and are stored
on disk files from where they are retrieved at run time under control of the testbench.

Golden-model-based testbench. Stimuli are generated at run time, e.g. by having the testbench
invoke subprograms that act as test pattern generators. The expected responses are obtained
from feeding some previously certified golden model with the same stimuli.

With the exception of trivial subcircuits, the first approach is too limited and too rigid to be of
any practical value. We are thus going to elaborate on the latter two approaches, the most simple
embodiments of which are depicted in figs.3.10a and b respectively.

3.3.2 Modular testbench design

Checking a MUT against a golden model often comes in handy, all the more so as modern simulators
accept multilingual input.16 As an example, you may want to check a synthesis model written
in VHDL against a behavioral model developed earlier with SystemC. Yet, golden-model-based
simulation implies recomputing the same sequence of expected responses for every single run. If
debugging a MUT necessitates many iterations, a lot of computing resources get wasted in the
process, and much the same applies to run-time stimuli generation. A better idea then is to compute
stimulus/response pairs once and to store them on disk for subsequent file-based simulation runs
as illustrated in figs.3.10f, g, and h.

The engineering effort to satisfy many different needs easily gets out of hand, however, unless one
can identify a small number of versatile and reusable software modules from which all sorts of
simulation setups can be readily assembled. This has been done in fig.3.10, while fig.3.14 shows the
key modules in more detail. VHDL source code for a testbench that adheres to this concept will be
given elsewhere in this text.!”

Observation 3.11. With testbenches being magor pieces of software,
it pays to have a look at them from a software engineering perspective.

3.3.3 A well-defined schedule for stimuli and responses

Another important choice refers to the timewise sequence of key events that repeat within every
stimulus/response cycle, and to their relative timing. Poor timing may cause a gate-level model
to report hundreds of hold-time violations per clock cycle during a simulation run, for instance,
whereas a purely algorithmic model is simply not concerned with physical time. To complicate
things further, engineers are often required to co-simulate an extracted gate-level netlist for one
circuit block with a delayless model for some other part of the same design.

16 ModelSim by Mentor Graphics is one such product, for instance.
7 In section 4.9.4.
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Fig. 3.10 Software modules from which testbenches can be assembled to serve a variety of needs. A setup that
operates with a functional gauge previously stored on disk (a), a setup that generates stimuli and expected
responses at run time (b), and an arrangement suitable for designs that implement involutory mappings (c).
Alternatives for using a golden model as a reference (d,e); (e) addresses the special case where the stimuli exist
as a piece of source code for a program-controlled processor. Options for preparing stimulus/response pairs (f,g).

Observation 3.12. To be useful for comparing circuit models across multiple levels of abstraction,
a testbench must schedule all major events in such a way as to respect the limitations imposed by
all formalisms and tools involved in circuit specification, design, simulation, and test combined.

Formalisms and tools are meant to include automata theory, HDLs, RTL models, gate-level netlists
(whether delayless or backannotated with timing data), simulation software, and automated test
equipment (ATE). In their choice of a schedule, many circuit designers and test engineers tend to
be misled by the specific idiosyncrasies of one such instrument.

Key events

Consider some synchronous digital design.18 The most important events that repeat in every clock
cycle during both simulation and test then include

18 We assume the popular single-phase edge-triggered clocking discipline where there is no difference between clock

cycle and computation period, see section 6.2.2 for details.
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The application of a new stimulus denoted as A (for Application),

The acquisition and evaluation of the response denoted as T (for Test),

The recording of a stimulus/response pair for further use denoted as O (for storage),
The active clock edge symbolically denoted as T, and

The passive clock edge denoted as | (mandatory but of subordinate significance).

When these events are ordered in an ill-advised way, the resulting schedules most often turn out to
be incompatible. Exchanging functional gauges between software simulation and hardware testing
then becomes very painful, if not impossible. The existence of a problem is most evident when
supposedly identical simulation runs must be repeated many times over, fiddling around with the
order and timing of these events just to make the schedule fit with the automated test equipment
(ATE) at hand. A suspicion always remains that such belated manipulations of test vectors can-
not be trusted because any change to the sequence of events or to their timing raises the question
of whether the original and the modified simulation runs are equivalent, that is, whether they are
indeed capable of uncovering exactly the same set of functional flaws.

A coherent stimulus/response schedule

The schedule of fig.3.11 has been found to be portable across the entire VLSI design and test cycle.
Its formal derivation is postponed to section 3.7.

Observation 3.13. At the RTL and lower levels, any consistent testbench shall

e provide a clock signal even if the MUT is of purely combinational nature,

e log one stimulus/response pair per clock cycle, and

e have all clock edges, all stimulus applications, and all response acquisitions occur
in a strictly periodic fashion, symbolically denoted as A | (T =0) 1.

via state transition function

| via output function

cause | l observable effect observable effect

K |
i(k) st o(k) | i(k+2)

T A VAN A\ T A

» simulation time

| O
oK ... clock signal

cycle k with its vector set cycle k+2

Fig. 3.11 A coherent schedule for simulation and test events with cause/effect relationships and single-phase
edge-triggered clock signal waveform superimposed.

As becomes clear from fig.3.11, each computation period gets subdivided into four phases. A stan-
dard setup for a symmetric clock of 10 MHz is given below as an example. Of course, the numerical
figures must be adapted to the situation at hand.
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cycle events with times of occurrence [ns]
k A 1 TO 1
0 10 50 90 100
1 110 150 190 200
2 210 250 290 300

Observe that we have elected to assign the active clock edge to the end, rather than to the beginning,
of a cycle because a finite state machine originates in some state — termed start state s) — without
any intervention of a clock.

It is important to know when and how the effects of a specific stimulus i(k) become observable.
Note from fig.3.11 that o(k) = g(i(k), s(k)) is visible in the response acquired after applying i(k),
while its effect on the state s(k) can be observed only in the response acquired one clock cycle later
and only indirectly as o(k + 1) = g(i(k + 1), f(i(k), s(k))).

3.3.4 Trimming run times by skipping redundant simulation sequences

Memories, counters, and state machines tend to inflate the number of stimulus/response pairs
necessary to verify functionality. This is because stereotypical activities eat a lot of computation
time without contributing much towards uncovering design flaws. Much of a simulation run then
just reiterates the same state transitions many times over without moving on to fresh states and
functional mechanisms for a long time. Examples are quite common in timers, filters, data acquisition
equipment, and data transfer protocols, but the situation is notorious in image processing and man—
machine interfaces.

For productivity reasons, designers seek to cut back cycles that feature little or highly recurrent
computational activities in a design. What follows are suggestions of what they can do.

Take advantage of the scan path facility to skip uninteresting portions of a simulation.
e Include auxiliary logic in the MUT that trims lengthy counting or waiting sequences and
unacceptably large data quantities while in simulation mode.

Do the same to synthesis models in view of the later testing of physical circuits.

Model circuit operation on two different time scales (fine and coarse).

FEzxample

Imagine you are designing a graphics accelerator chip. Instead of always simulating the processing
of full-screen frames of 1280 pixels x 1024 pixels, make your MUT code capable of handling smaller
graphics of, say, 40 pixels x 32 pixels as well. Use this thinned-out model for most of your simulation
runs, but do not forget to run a couple of full-size simulations before proceeding to back-end design
and prior to tapeout.

0
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3.3.5 Abstracting to higher-level transactions on higher-level data

Abridged simulation techniques notwithstanding, humans are easily overwhelmed by the volume of

bits and bytes when confronted with raw simulation data. Rather than drowning engineers with

tons of 0s and 1s, functional gauges can be made to work at higher levels of abstraction. Table 3.4

makes a distinction among four grades.

Table 3.4

Circuit models and testbenches can be made to cooperate in various ways.

Grade
Operation steps

0 1

free style cycle per cycle

2 3
word per word

trans. per trans.

Theoretical underpinning none automata theory ‘ systems theory
Response checking visually by self-checking testbench

Reporting is in terms of waveforms bit errors word errors ‘ figures of merit
Typical data items bit string, sample, block, frame
packaged in VHDL as std-logic and ..._vector record

I/O data formats

must match bit for bit

translated by protocol adapters

High-level I/O processing

none

with MATLAB or similar tool

Event sequence

arbitrary

periodic and locked to clock A | (T =0) 1

Simulation driven by

signal changes
(VHDL events)

clock signal

transactions on
high-level data

between MUT and

Clock generator none is part is part
(hardcoded) of testbench of MUT

Stimulus—response pair n.a. per clock per data word per transaction

Latency relationship n.a. must match adjusted by adjusted by

cycle for cycle start and

full handshake

expected responses compl. signals protocol
Overall quality chaotic and sound but offers welcome abstract,
much too low-level, isolation MUT to support
limited matches ATE from details handshaking
Best for nothing small larger circuits multi-clock
subfunctions and systems systems

The functional gauges presented so far have worked with bit vectors locked to predetermined clock

cycles. This straightforward concept is adequate for circuit blocks of modest complexity and will

be referred to as grade 1 simulation. A testbench organized in this way is shown in fig.3.14. As a

matter of fact, cycle-true binary stimuli and responses are the only way to go when it comes to the

testing of physical parts with automated test equipment (ATE).

Dealing with high-level stimuli and responses asks for protocol adapters

Grade 1 setups are inadequate for simulating larger circuits and systems. A first improvement is to

collect stimuli and responses in composite data types such as records, data packets, audio fragments,

or whatever is most appropriate for the application at hand.
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Example

JPEG image compression in essence accepts an image frame, subdivides it into square blocks, and
uses the Discrete Cosine Transform (DCT) to calculate a set of spectral coefficients for each block.
Those coefficients are then quantized or outright replaced by zero when their impact on the per-
ceived image quality is only minor. Image frames, blocks, and coefficient sets are the data items you
would want to deal with when comparing the behavior of a JPEG MUT against a golden model. You
would probably consider the compression of one block or, alternatively, of an entire frame to be a rel-
evant transaction. Details such as the reading in of pixels or the toggling of individual data bits would
just distract your attention (unless you were forced to debug a model at a very elementary level).
O

Observation 3.14. A testbench serves not only to drive the MUT, its more noble duties are to
translate stimuli and responses across levels of abstraction, and to consolidate simulation results so
as to render interpretation by humans as convenient as possible.

The difficulty is that the MUT — and possibly other system components as well — will undergo
profound changes during the development process. What begins as a purely behavioral model is
later refined into an RTL model, and ultimately becomes a gate-level netlist. The latter models
will necessarily operate in terms of bits and clock cycles, however, exactly like the physical circuits
they emulate. Any decent simulation setup must thus follow and support the process of successive
refinement. A helpful aid for doing so are protocol adapters, aka bus-functional models (BFM), that
translate stimuli and actual responses across levels of abstraction.

An input protocol adapter accepts a high-level stimulus (an image frame in the above example),
breaks it down into smaller data items (e.g. blocks and pixels), and feeds those to the MUT word
by word or bit by bit over a time span that may cover hundreds of clock cycles, see fig.3.12. Another
adapter located downstream of the MUT does the opposite to consolidate output bits into a higher-
level response (e.g. collecting bits into JPEG image data). The need to rework stimulus/response
pairs each time a modification is made to the MUT can thus be avoided. Any change just affects the
MUT itself and one or more of the protocol adapters but neither the testbench nor the functional
gauge, thereby greatly simplifying maintenance.

simulation
driven by

1st stimulus-response cycle 2nd stimulus-response cycle nth stimulus-response cycle

relevant
data items
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actions ' ° T A TiA
N s LN R protocol adapters
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Fig. 3.12 Protocol adapters fill the gap between high-level transactions and cycle-true bit-level models (RTL or
gate-level netlist).
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Math packages are a great help for processing high-level data

Rather than just report the number of bit-level mismatches found, a high-level simulation setup
ought to distill the essence of a simulation run into a few figures of merit relevant for the applica-
tion. In the occurrence of lossy image compression, the decompressed and the original image will
necessarily differ, and the system designer will be most interested in learning about the signal-
to-quantization-noise ratio (SQNR), the maximum perceived color deviation, and similar overall
ratings. It is a good idea to unburden the HDL testbench from such calculations by taking advan-
tage of some standard mathematics tool such as MATLAB instead. Math packages not only provide
high-level functions for data and signal processing and for statistics, but also offer superior means
of visualization.

Simulation setups patterned after target system facilitate successive refinements

In practice, most simulation setups for large circuits follow the organization of the target system; see
fig.3.13 for an example from wireless telecommunications where multiple antennas are being used at
the transmitter and at the receiver end of a wireless channel to improve data rate and robustness.

In the setup of fig.3.13, a behavioral model is substituted for each RAM, IF (de)modulator, PCI
interface, and other subfunction that collaborates with the MUT. The various HDL models for
one design entity share the same interface so that they can serve as drop-in replacements for each
other during the development process. The preparation of stimuli and the evaluation of responses
is implemented in MATLAB so that the HDL testbench code remains essentially limited to config-
uring, controlling, and monitoring the MUT via the PCI interface. Protocol adapters take care of

functional gauge

co-model co-model co-model
o on-chip on-chip clock
h'gt?nl]i\{iel SRAM 1 SRAM 2 generator
and i y
expected
responses MUT
co-model
: c frol Y Y -model rotocol adapter
PCl interface PCI _contro N co-mode protocol adapte!
' ‘o > interface = g MiMO v
HSPDA complex iF .| waveform actual
| transceiver modulator F o deconstructor resp
— X T : ¢ signal
stimuli 4'—L>protocol adapter compact signal
data HSPDA co-model protocol adapter waveforms
payload data reformatter [T baseband baseband T —
v propriét. filters signals | complex iF waveform
actual format demodulator F preparator
resp signal
generated generated
evaem%ted MIMO = multiple-input multiple-output [or antennas] PCI = peripheral component interconnect evaﬁlr}%ted
witl : ; : : Wit
MATHLAB HSPDA = high-speed downlink packet access IF = intermediate frequency MATHLAB

Fig. 3.13 Example of a sophisticated simulation setup patterned after a target system from wireless
telecommunication (simplified).
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translating where necessary. All this together greatly simplifies the process of successive refinement
and qualifies the setup as of grade 2.

3.3.6 Absorbing latency variations across multiple circuit models

Most RTL circuit models exhibit latencies not found in purely algorithmic models. This is a con-
sequence of various optimization steps that designs undergo as part of architecture design. The
necessity to accommodate RAM, parallel « serial conversions, and specific input/output protocols
further contributes to latency in MUTSs of actual circuits.

FEzxzample

From a mathematical point of view, JPEG decoding is a combinational function that can be com-
puted by a delayless model, that is, with latency zero. As opposed to this, typical image decoding
hardware ingests one set of quantized DCT coefficients at a time and takes many clock cycles before
spitting out the pixels of a block or of the assembled image.

a

The point is that most architectural decisions have a dramatic impact on latency. For certain
algorithms, the number of clock cycles required to complete a given computation may even depend
on numerical data values. Probably the utmost tolerance towards latency variations is required when
testing network processors because data packets do not necessarily emanate from such processors
in the same order as that in which they were fed in. We must accept that

e latency is subject to change many times during a typical design cycle and that

e MUT and golden model might not exhibit identical latencies.

Locking stimuli and responses to specific clock cycles, as in the grade 1 setup of fig.3.2, for instance,
does not offer the flexibility to handle such situations.

Observation 3.15. To be truly reusable, a testbench must be capable of handling models where the
timewise relationship between circuit input and output is unknown or difficult to predict.

In a grade 2 testbench, the comparison of responses and the calculation of high-level figures of
merit can be made to absorb latency variations by delegating the task of knowing when to request
and when to accept new data items to protocol adapters, see fig.3.15 for such a setup. Upstream
adapters are designed so as to feed the MUT on request and, analogously, downstream adapters
so as to wait for the next valid data item to emerge at the MUT’s output. To make data-driven
transfers a reality, each protocol adapter must either
o interprete status flags from the MUT (such as “ready/busy”) or, in the absence thereof,
o tacitly count clock cycles concurrently to the model’s internal operation;

emulating state machines that are part of the MUT may also be required.
While any substantial change to the MUT’s architecture is likely to necessitate adjustments to the
latency parameters coded into protocol adapters and co-models, the functional gauge, the testbench,
and the golden model can hence remain the same.

A more radical solution is to impose handshaking for all data transfers between all subsystems and
circuits involved. In a grade 3 simulation, self-timed I/O transfers are supported not only by the
testbench but also by the MUT and, hence, ultimately by the physical circuit itself. The MUT must
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implement a full handshake protocol and must provide the necessary control signals on its input
and output ports. The same applies to the golden model, if any. Clocking is viewed as a technicality
internal to the MUT that is essentially unrelated to the high-level transactions that matter from a
system perspective alone; see fig.3.16 for a sample setup.

An authoritative treatise on functional verification is [88]. Further ideas are discussed in [89] and
other papers in the same journal issue. [90] discusses testbench reuse while [91] shows how to
automate testbench generation with the e verification language.

3.4 | Conclusions

* More often than not, what is available at the onset of a VLSI project are intentions rather
than specifications. Identifying the real needs and casting them into workable instructions
always is the first step and a primary occupation in the design process. Rapid prototyping
often is the only practical way to condense initial conceptions into detailed and unambiguous
specs.

® In the absence of a more integral alternative such as formal verification, simulation remains
the prevalent method for functional design verification. Being a dynamic technique, it gives
only limited coverage against design flaws. This finding, that applies to both VLSI design and
software engineering, reflects an unsolved puzzle of systems design in general.

® The challenge of dynamic verification is to safeguard oneself against all plausible design slips
without attempting exhaustive software simulation or hardware testing. Coming up with a
comprehensive collection of test cases simply requires foresight, care, precision, and a lot of
work at the detail level. Albeit very general, the rules below give some guidance.

- Cover all modes, situations, and conditions under which the system is to operate.

- Have the test suites address uncommon situations and exceptional, if not pathological,
inputs as well. To increase the likelihood of disclosing problems, blend genuine data with
tests that focus on anomalous input, unusual states, numerical corners, and other exceptional
conditions. Also consider adding test cases selected at random.

- Identify distinct subsystems and functional mechanisms. You may address them separately
provided they do indeed work independently from each other.

- Make sure you understand what potential design flaws might pass undetected whenever a
shortcut is taken.

- Generously include in-code sanity checks (assertions) into simulation models.

* While establishing a verification plan, beware of preconceptions from the design process as
to what situations and issues are to be considered uncritical. Insist on having persons other
than the IC designers or HDL code writers select, or at least review, the test cases.

* Making the same functional gauge work across the entire VLSI design and test cycle is a
necessity as functional consistency is otherwise lost. Doing so typically implies data abstraction
and latency absorption.

® The desirable characteristics for hardware testbenches include:
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- Testbench design can bank on a library of reusable software modules.

- Code writing is confined to application-specific items as much as possible.

- Alternating between file-based and golden-model-based simulations is painless.
- Events are ordered so as to conform with modelling at all levels of abstraction.

While established software engineering practices such as modular design, reuse, and data
abstraction help to make testbench development more efficient, be prepared to spend more
time on verifying functionality than on designing the circuit that implements it.

There are virtually no limits to making simulation setups more sophisticated.

3.5

| Problems

. Design a functional gauge for exhaustive verification of the Gray counter specified by truth

table 3.2. With how many clock cycles can you manage? Indicate the formula for w-bit counters
and the actual value for w = 4. How does this figure relate to the lower bound given in (3.2)?

. Devise a functional gauge for a logic comparator function that tells whether two 6-bit vectors

are the same or not. Go for a set of vectors that you consider a reasonable compromise between
simulation time and functional coverage. Verify the VHDL architecture correct given below
or the gate-level circuit obtained after synthesis against that gauge. No inconsistency must
occur. Now check how your gauge performs on the flawed architectures given below. Note
that the mistaken circuits named flawedy and flawedu are authentic outcomes from efforts
by human designers who were using schematic entry tools. The deficiency of the fourth example
flawedz, in contrast, has been built in on purpose in order to demonstrate the impact of an
oversight during the editing of HDL code.

entity compara6 is
port (
INA: in Std_Logic_Vector (5 downto 0);
INB: in Std_Logic_Vector (5 downto 0);
EQ: out Std_Logic );
end compara6;

-- correct description of 6bit logic comparator function
architecture correct of compara6 is
begin
EQ <= ’1’ when INA=INB else ’07;
end correct;

-- flawed as one of the two arguments has its bits misordered
-- note: a wrong ordering of INB in the port list has the same effect
architecture flawedy of compara6 is

signal INBM : Std_Logic_Vector (5 downto 0);
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begin
each_bit : for i in 5 downto O generate
INBM(i) <= INB(5-i);
end generate;
EQ <= ’1’ when INA=INBM else ’07;
end flawedy;

-- mistaken translation of desired function into boolean operations
architecture flawedu of compara6 is
signal C1 : Std_Logic_Vector (5 downto 0);
signal C2 : Std_Logic_Vector (2 downto 0);
begin
first_level : for i in 5 downto 0 generate
C1(i) <= not (INA(i) xor INB(i));
end generate;
second_level : for i in 2 downto O generate
C2(i) <= not (C1(i) xor C1(i+3));
end generate;
EQ <= C2(2) xor C2(1) xor C2(0);
end flawedu;

-- corrupt due to a useless statement forgotten in the code
architecture flawedz of compara6 is
begin
process (INA,INB)
begin
if INA=INB then EQ <= ’17;
else EQ <= ’0°’;
end if;
if INA="110011" then EQ <= INA(O);
end if;
end process;

end flawedz;

3. The purpose of this problem is to show that a functional gauge may ensure full toggling of all
nodes in a gate-level circuit and still be inadequate for functional verification. To that end,
find two combinational networks together with a (nonexhaustive) gauge such that
e all nodes get toggled back and forth,

e both networks comply with the functional gauge, and

e the two networks are functionally different.

What are the simplest two such circuits you can think of? Generalizing to combinational n-
input single-output functions, how does the number of test patterns necessary for full toggling
relate to that required for exhaustive verification?

4. Consider a digital circuit that connects to a microprocessor bus, a situation sketched in fig.8.42
that mandates the usage of bidirectional pads on the data bus. A state machine inside the
chip generates the enable signal for the pad drivers from its state and from WR/RD or some
similar signal available at one of the chip’s control pins. In order to stay clear of transient drive
conflicts, the bus must not be driven from externally before the on-chip drivers have actually
released the bus in reaction to the control pin asking them to do so. As a consequence, both



170

Architectures of VLSI Circuits

a testbench and physical test equipment must observe a brief delay between updating the
control signal and imposing data on the bus. Extend the precedence graph and the schedule
of figs.3.17 and 3.11 accordingly.

3.0 | Appendix |: Formal approaches to functional verification

Formal verification attempts to prove or disprove the correctness of some circuit representation by
purely analytical means, i.e. without simulating the circuit’s behavior over time. A successful proof
gives the designer the ultimate confidence that his design will indeed function as previously specified
at some higher level of abstraction, and this irrespective of the input as there is no need to apply
stimuli. Most formal verification algorithms work by converting a given design representation into a
state graph, an ordered binary decision diagram (OBDD), or some other graph-type data structure
before analyzing that structure and/or comparing it against similar design representations. There
are different degrees of ambition, though.

EQUIVALENCE CHECKING

Verifying the functional equivalence between two gate-level netlists or between a netlist and a piece
of HDL code is not that difficult. Logic equations extracted from the gate-level netlist are compared
against the reference set of logic equations using theorems from switching algebra. Software tools
capable of doing so are typically used to check the consistency — in regular operation mode — of a
gate-level netlist with the original RTL synthesis model after test structures have been added. Other
relatively minor modifications such as clock tree insertion, logic reoptimization, and conditional
clocking are covered as well.

While combinational subfunctions make up much of an RTL model, there are severe limitations
when the checking is to be extended to sequential behavior. Automatic conformity checking of
circuit models that are supposed to have equivalent external behavior but that differ in the number
and/or location of registers, e.g. as a consequence of state reduction or architectural optimizations,
remains a challenging research topic [92].

Last but not least, equivalence checking always presupposes the availability of a golden model.

MODEL CHECKING

As opposed to the above, model checking does not need any reference model, but aims at finding
out whether a circuit model satisfies under all circumstances a set of specified criteria that any
meaningful implementation must satisfy. A welcome property of model checking is that it provides
a counterexample when some specification is violated by a design. A serious problem is the combi-
natorial explosion that confines the approach to subsystems with a fairly limited number of states.
A detailed discussion is given in [93].

DEDUCTIVE VERIFICATION OR MODEL PROVING

Deductive verification is closely related to theorem proving. The goal is a mathematical proof that
a given circuit model or protocol does indeed conform with its formal specifications. The answer
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essentially is of type “true” or “false” and thus provides few clues to developers as to what is wrong
with their designs. Deductive verification further suffers from the problems mentioned in section
3.1.1, but remains an active research area. The reader is referred to [94] [95] for accounts on formal
verification technology.

3.7 | Appendix Il: Deriving a coherent schedule for simulation
and test

This section serves to confirm that the simulation schedule presented in section 3.3.3 is indeed a
well-founded one that conforms to the fundamental timing requirements of synchronous circuits
without being unnecessarily constrained further. In order to do so, we approximate timing to a
degree that makes it possible to describe how a circuit behaves when viewed from outside.!?

EXTERNAL TIMING REQUIREMENTS IMPOSED BY A MODEL UNDER TEST (MUT)

Four sets of data propagation paths can be identified in any synchronous design that adheres to
single-phase edge-triggered clocking.20 These paths go

e from inputs to outputs with no intervening registers (i — o),

e from state-holding registers to outputs (s — o),

e from inputs to state-holding registers (i — s), and

e from state registers to state registers (s — s).

combinational /\ stimulus application T response acquisition [] recording of values # order of events
circuitry

A active clock edge ¥ passive clock edge

ik) o(k)
present present
input output
topological |
sorting ‘
s(k) s(k+1) />
present next
state state
cycle k-1
S -
tc/k hi m/}“\*®/”/ [clk lo min
a) CLK b)

Fig. 3.17 Data propagation paths through single-phase edge-triggered synchronous circuits (a) along with the
pertaining precedence graph for simulation events (b,c).

19 We do not aim at modelling or even at understanding what exactly happens inside the circuit yet. A more
accurate analysis will become feasible on the basis of a detailed timing model to be introduced in section 6.2.2.
20 Any asynchronous reset input can be handled like an ordinary input in this context.
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Not surprisingly, we find the same four sets of paths in a Mealy automaton. This is simply because
the functionality of any synchronous circuit can be modelled as a Mealy-type state machine. In
response to a new input or state, a physical circuit finishes re-evaluating g and f after the fresh
data have propagated along all paths through the combinational logic. As input and state do not,
in general, switch simultaneously, four delay parameters need to be introduced, namely t;,, tso, tis,
and tss.2' Parameter tio, for instance, denotes the time required to compute a new output o after
input ¢ has changed.

The necessary precedence relations for the circuit to settle to a stationary state are??

t(k) > max(ta (k) + tio , t1(k — 1) + teo) (3.3)
tr (k) > max(ta(k) + tis, t1(k — 1) + to)

PRECEDENCE RELATIONS CAPTURED IN A CONSTRAINT GRAPH

The above precedence relations can be expressed by the constraint graph of fig.3.17b where each
node stands for a major event associated with clock period k. Note that there are two active clock
nodes, namely one for the clock event immediately before the clock period under consideration and
a second one for the clock event at its end. Each precedence relation is represented by a directed
edge that runs from the earlier event to the later one. The minimum time span called for by the
associated condition is indicated by the weight of that edge:

* Computational delays. The aforementioned data propagation paths t;,, tso, tis, and tss map
to a first set of four edges.

* State register hold-time requirement. A fifth non-zero weight says that new stimuli must not
be applied earlier than ¢, after the previous active clock event. Ignoring this constraint is
likely to cause hold-time violations at some bistables or might otherwise interfere with the

precedent state transition.??

¢ Clock minimum pulse widths. Two more edges of small but non-zero weight are labeled
teik himin and tepiomin and indicate the minimum time spans during which the driving
clock signal must remain stable.

® Securing coherent vector sets. There are also four edges of weight zero or close to zero. One of
them leads from T to T and has an infinitesimally small weight €. It reflects the requirement
that response acquisition must occur before the circuit gets any chance to change its state in
reaction to the next active clock event. Three more edges define the preconditions for recording
a consistent stimulus/response pair for the current clock cycle.

21 Most practical circuits have their set of input bits grouped into a number of vectors, each of which has its own
delay parameters, and similarly for outputs. Extending our approach to cover such situations as well is left to
the reader as an exercise, see problem 4.

Of course, precedence relations may be simpler in a given particular case, say for a combinational circuit
(automaton with no state where ty,, t;s, and t,s are not defined) or for a counter (Medvedev machine where
tio is not defined and ts, = t55). However, by consistently sticking to a scheme that is suitable for the most
general case, we can avoid having to reorder events whenever we must move from one circuit type to another.
23 Note that tis and tgs are meant to include the setup times of the registers. This explains why ¢, does not

appear in the constraint graph, as opposed to t,,, which cannot be subsumed anywhere else.
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SOLVING THE CONSTRAINT GRAPH

Any desirable sequence must order the events in such a way as to satisfy the above precedence
relations for positive but otherwise arbitrary values of the seven timing parameters involved. All
solutions are obtained from topological sorting of the precedence graph.24 One such ordering is
indicated by the underlined numbers in fig.3.17c. It corresponds to a periodic repetition of stimulus
application, response acquisition, and clocking, and is symbolically denoted as A T T.

The precedence graph also indicates minor liberties. While it is true that the recording of a stim-
ulus/response pair may take place at any time between response acquisition and the subsequent
active clock edge, there is nothing to be gained from defining an extra point in time for doing so.
The events of response acquisition T and recording [J may as well be tied together.

The passive clock edge, on the other hand, is free to float between two consecutive active edges as
long as the two constraints t.;; ni min and ter 1o min are respected. As a final result, the event order
A | (T=0) 7 will almost always represent a workable solution. The recommended simulation
schedule is depicted in fig.3.11.

active clock edge active clock edge

A A stimulus

response
acquisition

0T

0T

response
acquisition

stimulus
application

a) v b) v

Fig. 3.18 Anceau diagram for a Mealy-type circuit operated at moderate speed (a) and close to maximum
speed (b).

24 The nodes of a graph are said to be in topological order if they are assigned integer numbers such that every

edge leads from a smaller-numbered node to a larger-numbered one.

application

A
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ANCEAU DIAGRAMS HELP VISUALIZE PERIODIC EVENTS AND TIMING

The Anceau diagram is very convenient for visualizing events and timewise relationships that repeat
periodically. Each round trip corresponds to one clock cycle (or to one computation period). The
example of fig.3.18a illustrates the simulation schedule just found.

Each arrow stands for the delay along one of the four signal propagation paths in a Mealy machine.
The two short radial bars are just graphical representations of the max operators in (3.3) and
(3.4) respectively. The outer one indicates when the output has settled to a new value and becomes
available for acquisition. Similarly, the inner bar tells when the computation of the next state comes
to an end and so determines the earliest point in time when an active clock edge can be applied.

If the operating speed is to be increased, the clock period grows shorter while delays and timing
conditions remain the same. Beyond a certain point, stimuli must be applied earlier and/or responses
will have to be acquired later in the clock cycle. This is shown in fig.3.18b, which corresponds to a
circuit operating at close to its maximum speed.

Anceau diagrams come in handy for visualizing periodic event sequences and timing conditions. We
will make use of them in later chapters in the context of clocking and input/output timing.



Chapter 4

Modelling Hardware with VHDL

4.1 | Motivation

4.1.1 Why hardware synthesis?

VLSI designers constantly find themselves in a difficult situation. On the one hand, buyers ask for
microelectronic products that integrate more and more functions on a single chip. Following Moore’s
law, fabrication technology has always supported this aspiration by quadrupling the achievable
circuit complexity every three years or so. Market pressure, on the other hand, vetoes a proportional
dilation of product development times. Worse than this, time to market is even supposed to shrink.
As a consequence, design productivity must constantly improve.

Hardware description languages (HDLs) and design automation come to the rescue in three ways:
they

e Exonerate designers from having to deal with low-level details by moving design entry to more
abstract levels,

e Allow designers to focus more strongly on functionality as synthesis tools construct the nec-
essary circuits along with their structural and physical views automatically, and

e Facilitate design reuse by capturing a circuit description in a parametrized technology- and
platform-independent form (as opposed to schematic diagrams, for instance).

Today, the transition from structural to physical is largely automated in digital VLSI design. The
transition from purely behavioral to structural has not yet reached the same maturity, but HDL
synthesis is routinely used for turning register transfer level (RTL) descriptions into gate-level
networks that are then processed further with the aid of cell-based design automation software. A
digital HDL essentially must be able to describe how subcircuits interconnect to form larger circuits
and how those individual subcircuits behave functionally and timingwise.
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Table 4.1 | Languages commonly being used for modelling digital hardware.

Language | Originator/ | Key characteristics
Standard

VHDL DoD/ An HDL that supports not only structural and behavioral circuit
IEEE 1076 | models but also testbench models. A subset is synthesizable.
Syntactically similar to Ada, see table 4.2 for more details.
Verilog Gateway/ Conceptually very similar to VHDL, no type checking and

IEEE 1364 more limited capabilities for design abstraction, though.
Syntactically similar to C, see table 4.2 for more details.

System- | Accellera/ A superset of Verilog that includes many advanced features from
Verilog IEEE 1800 | VHDL and that may possibly supersede both of them. Supports
object-oriented programming, not supported for synthesis yet.

SystemC | OSCI/ Extends C++ with class libraries and a simulation kernel.
(origi- IEEE 1666 | Makes it possible to add clocking information to C functions
nally but does not support any timing finer than one clock cycle.
known Separates a block’s behavior from communication details,

as synthesis path is via translation to RTL VHDL or Verilog
Scenic) with the aid of automatic allocation, scheduling, and binding.

4.1.2 What are the alternatives to VHDL?

As becomes evident from tables 4.1 and 4.2, Verilog [96] [97] shares most key concepts with VHDL.
The same also applies to Verilog’s recent and more advanced offspring SystemVerilog, making the
differences between RTL synthesis models captured using those three languages largely a matter
of syntax and coding style. As opposed to these, SystemC is not so much an HDL but more of
a system description language targeted towards software/hardware co-design and co-simulation. It
does not qualify for gate-level simulation and timing verification.

Here is why we have elected to go for VHDL in this text:

e The dissemination in the industry of HDLs other than those of table 4.1 is far too limited.

e Only VHDL and Verilog are widely supported by automatic synthesis tools.

e Strong typing, strict scoping, and stringent event ordering make VHDL a safer instrument
than Verilog.

e VHDL has more sophisticated parametrization capabilities and is superior to Verilog when it
comes to more abstract ways of modelling.

4.1.3 What are the origins and aspirations of the IEEE 1076 standard?

Providing spare parts over many years for industrial products that include ASICs and other non-
standard state-of-the-art electronic components proves very difficult as technology evolves and as
companies restructure. In search of a standard format for documenting digital ICs and for ex-
changing design data other than layout polygons, the US Department of Defense (DoD) in 1983
commissioned IBM, Intermetrics, and Texas Instruments to define an HDL. Ada was taken as a
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Table 4.2 | Key features of VHDL and Verilog compared. See [98] for more.

‘ Feature H VHDL ‘ Verilog
Background and underlying concepts

Industry standard IEEE 1076 IEEE 1364
Initial acceptance / current revision 1987 / 2002 1995 / 2005
Roots Ada C
Overall character dependable, verbose | concise, cryptic
Concurrent processes yes yes
Event-based concept of time yes yes
Circuit hierarchy and structure (netlist) yes yes

Discretization of electrical signals

adjunct package

part of language

Logic system
Switch-level capability

9-valued IEEE 1164
no

4 states, 8 strengths
yes

Language features and software engineering

Interface declaration and implementation module separate no distinction made
Scoping consistent with module boundaries yes no

Strong typing yes no

Type conversion functions adjunct package none

Enumerated and other user-defined data types supported no

Data types acceptable at block boundaries any binary

Function arguments of variable word width supported no

Object classes with and without time attached

signals vs. variables

no distinction made

Timing and word size parametrization (“generics”) || yes yes
Conditional and repeated process generation yes since 2001
and component instantiation (“generate”)
Multiple models plus selection (“configuration”) yes since 2001
Simulation
Stringent order of events in the absence of delay yes (via ¢ delay) no

Event queue inspection (e.g. for timing checks)
Text and file I/O

part of language
adjunct package

via simulator calls
via simulator calls

Source code encryption mechanism no yes
Back-annotation from SDF files VITAL IEEE 1076.4 | yes
Acceleration of gate-level primitives VITAL IEEE 1076.4 | yes
Acceptance for sign-off simulation yes yes

Standard and macro cell models (for ASIC design)
3rd party components models (for PCB design)

commonly available
scarce

commonly available
commonly available

Synthesis

Amenable to hardware synthesis

Timing constraints

Other synthesis directives

Model precomputation vs. hardware description

subset only

not p.o.l. (SDF)

not part of language
no distinction made

subset only

not p.o.l. (SDF)

not part of language
no distinction made

Analog and mixed-signal extension

Designation

Industry standard

VHDL-AMS
IEEE 1076.1

Verilog-AMS
Accelera 2.2
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Fig. 4.1 VHDL and synthesis shown in the Y-chart.

starting point. As the project had originated from DoD’s Very High Speed Integrated Circuits
(VHSIC) program, the new language was given the acronym VHDL.

After a number of revisions and after military restrictions had been lifted, the proposal was eventu-
ally accepted as IEEE 1076(-87) standard in 1987. IEEE bylaws require any standard to be revised
on a periodical basis and a first re-examination has led to the IEEE 1076-93 revision which has
found wide adoption. Approximately at the same time IEEE also passed the IEEE 1164 standard,
a nine-valued logic system used in conjunction with VHDL. Further re-examinations have been
limited to relatively minor improvements and clarifications. The latest release of the standard is
IEEE 1076-2002.

VHDL encompasses behavioral and structural views but not physical ones. The levels of abstraction
covered range from purely algorithmic descriptions down to logic design. The omission of formalisms
for describing time-continuous phenomena in terms of electrical quantities confines IEEE 1076 and
1164 to digital circuits. IEEE 1076.1, a more recent extension for analog and mixed-signal circuits,
will be briefly touched upon in section 4.8.2.

The first software tools built around VHDL were compilers and simulators. The fact that a standard
HDL did away with all those proprietary languages and products that had had a long tradition in
logic simulation was a strong point that contributed to the popularity of VHDL. Only later did
people want to come up with automatic synthesis tools that would accept behavioral specifications
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stated in VHDL and churn out gate-level netlists implementing them. As will become evident later
in this chapter, VHDL continues to suffer from the fact that synthesis issues were ignored when the
language was originally defined.

4.1.4 Why bother learning hardware description languages?

It seems a tempting idea to view HDLs as nothing more than intermediate formats for exchanging
data between electronic system-level (ESL) tools and VLSI CAE/CAD suites.

“Why not skip learning hardware description languages and have electronic system-level tools gen-
erate HDL code from specifications automatically?”

There indeed exists a variety of software packages that deal with system design at levels of ab-
straction well above those addressed during actual VLSI design, see fig.1.12. Many of them deal
with transformatorial systems as found in signal processing and telecommunications. With the aid

of a tool similar to a schematic editor, a system is put together from high-level library functions
such as oscillators, modulators, filters, phase shifters, delay lines, frequency dividers, phase locked
loops (PLL), synchronizers, and the like. System behavior is then analyzed and optimized using
specialized tools. Filter synthesis software capable of taking into account finite-word-length effects
is also included in such DSP-oriented packages.

Other high-level tools model system behavior on the basis of condition/action pairs captured
as state graphs, state charts, Petri nets, and the like. The graphical design capture and animation
facilities provided are intuitive and very helpful for defining, checking, debugging, and improving
the functionality of reactive systems.

More EDA packages are geared towards some field of application such as the analysis of com-

munication channels, source and channel coders, data transfer networks, image processing, and
optimization of instruction set computers.

The common theme is that EDA tools working above the HDL level tend to focus on fairly specific
problem classes. Though probably unavoidable, this fragmentation is unfortunate in the context
of VLSI design, where various building blocks of transformatorial and reactive nature coexist on a
single chip.

ESL tools typically include code generators that produce software code for popular microcomput-
ers or DSPs. Many of them are also capable of producing HDL code. All too often this code was
nothing else than a translation of the processor code in the past. While this may be acceptable for
simulation purposes under certain conditions, it is clearly not so for synthesis and the results so
obtained remain unsatisfactory.

More recently, high-level synthesis tools have been developed specifically with computational
hardware in mind. Most of them work on the basis of resource allocation, scheduling, and binding.1
Coming up with a good overall solution implies exploring an immense solution space that involves
both algorithmic and architectural issues. Yet, today’s tool suites have limited optimization capa-
bilities and are typically restricted to a few predefined hardware patterns.

! The tools essentially accept an algorithmic description in C and a series of pragmas or other human input that
outlines the hardware resources to be made available. The output is RTL code that describes a VLIW ASIP op-
erating under control of either a stored microprogram or a hardwired finite state machine. Final implementation
is with FPGAs or as a cell-based ASIC. Catapult C by Mentor Graphics is a commercial example.
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In conclusion, it will take a couple of years before true system-level synthesis pervades the in-
dustrial production environment. What’s more, manual interventions in the source code are often
indispensable to parametrize, adapt, interface or optimize circuit models. Finally, HDLs form the
basis for virtual components used by many design tools and will, therefore, remain important for
the development of model libraries.

Observation 4.1. For the foreseeable future, hardware description languages such as VHDL, Ver-
tlog, and SystemVerilog are bound to remain prominent hubs for all digital design activities.

4.1.5 Agenda

Section 4.2 introduces the key concepts that set HDLs apart from a programming language one by
one. Sections 4.3 and 4.4 address issues specifically related to hardware synthesis (synthesis subset,
FSMs, macrocells, timing constraints) and simulation (testbenches) respectively. VHDL textbooks
and syntax descriptions are listed in appendix 4.7, language extensions in appendix 4.8. In addition
to all that background-type material, code examples of selected subcircuits and of a testbench are
given in appendix 4.9. Readers are strongly encouraged to go through that material to develop a
better understanding of VHDL coding styles.

4.2 | Key concepts and constructs of VHDL

In this section, we shall give an overview on VHDL by asking ourselves
“What features are required to model digital electronic circuits for simulation and synthesis?”

In anticipation of our findings, we will identify a multitude of needs that can be collected into the
six broad categories listed below. The language concepts addressing those needs will be introduced
accordingly. As an exception, we have postponed the discussion of basic concepts that VHDL shares
with modern programming languages to the end of our presentation, on the assumption that readers
have had some exposure to software engineering.

Observation 4.2. In a nutshell, VHDL can be characterized as follows:

standard subsection
VHDL = structured programming language IEEFE 1076 4.2.6
+  circuit hierarchy and connectivity idem 4.2.1
+  concurrent processes and process interaction idem 4.2.2
+ a discrete replacement for electrical signals IFEEFE 1164 4.2.3
+ an event-based concept of time IEEE 1076 4.24
+  model parametrization facilities idem 4.2.5

A few more remarks are due before we start with our analysis.

® The entire chapter puts emphasis on the concepts behind VHDL and on applying the language
to hardware modelling. There will be no comprehensive exposure to syntax or grammar.
To become proficient in writing circuit models of your own, you will need a more detailed
documentation on VHDL. An annotated bibliography is available in appendix 4.7.
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® QOur introduction of important VHDL concepts is accompanied by a series of illustrations that
begins with fig.4.2 and ends with the full picture in fig.4.13. It might be a good idea to refer
back to these synoptical drawings when in danger of getting lost in minor details.

* VHDL listings for a variety of subcircuits have been collected in appendix 4.9. You may want
to refer to them while working through the more abstract material in this text. The same
examples should also prove helpful as starting points when preparing your own models.

® Further keep in mind that this text discusses VHDL as defined by various international stan-
dards. Be aware of the fact that commercial EDA tools occasionally deviate in terminology
and implementation.2

® Please observe the following linguistic ambiguity in the context of hardware modelling:

Meaning of “sequential” with reference to | Synonym Antonyms
- program execution during simulation step-by-step || concurrent, parallel
- nature of circuit being modelled memorizing combinational, memoryless

4.2.1 Circuit hierarchy and connectivity
The need for supporting modularity and hierarchical composition

Consider a motherboard from a personal computer, for instance. At the highest level of abstrac-
tion, you will discern a CPU chip, a graphics accelerator, all sorts of peripheral components, a
ROM or two, several memory modules that themselves hold multiple RAM chips, plus a variety of
passive components. When having a look into those ICs, you will discover datapaths, controllers,
storage arrays, and the like. Each such subsystem in turn consists of many thousands of logic gates
and bistables. Only at the bottom level of abstraction do we find transistor-level subcircuits that
implement elementary logic and storage functions.

Electronic circuits and systems are organized into multiple layers of hierarchy because it long ago
became entirely impractical to specify, understand, model, design, fabricate, test, and document
electronic circuits as flat collections of transistors. The constant push to ever larger systems with
hundreds of millions of gate equivalents has further accentuated this move.

Hierarchical composition essentially works by assembling larger entities from subordinate entities
and by interconnecting them with the aid of busses and individual wires. Only by taking advantage of
techniques such as abstraction, modular design, modular verification, and repetitive instantiation
does it become possible to arrive at manageable descriptions of an overall circuit or system, see
fig.4.2. Any HDL must, therefore, provide language elements for expressing hierarchical composition,
and VHDL is no exception.

Design entity

The VHDL term design entity — or entity for short — refers to some clear-cut circuit or subcircuit.
Clear-cut implies the (sub)circuit has not only an internal implementation but also an external
interface. The benefits of information hiding have incited the originators of the VHDL language

2 See footnotes 18, 21, 32, 33, 45, and appendix 4.8.7, for instance. Also see section 1.7 for a glossary of EDA

terms that also includes Synopsys’ vocabulary.
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Fig. 4.2 Circuit modelling with VHDL I: Hierarchical composition.

to make a strict distinction between a subcircuit’s external and internal views. The interface is
specified in the entity declaration whereas the details of its implementation are captured in a
language element referred to as the architecture body.

Entity declaration and ports

The entity declaration specifies the external interface of a design entity. VHDL requires an entity
declaration for every piece of hardware that is going to be described by a model of its own. The most
important part of an entity declaration is the port clause which lists all those nodes of the entity
that are visible from outside. Put differently, every signal that appears in a port clause corresponds
to a connector on the icon of that subcircuit as illustrated in fig.4.14. An example of an entity
declaration is given below.

-- entity declaration
entity lfsr4 is
port (

CLKxC : in Std_Logic;
RSTxRB : in Std_Logic;
ENAxS : in Std_Logic;
0UPxD : out Std_Logic );

end lfsr4d;

Hint: Naming a signal or a port IN or OUT is all too tempting, yet these are reserved words in
VHDL. We recommend the use of INP and OUP instead.
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Architecture body (structural view)

An architecture body — colloquially often abbreviated architecture — is the place where the internal
technicalities of a design entity are being described. Any design entity is permitted to contain
instances of other design entities. A first code example is printed below. The circuit being modelled
is a linear feedback shift register (LFSR). Although you are probably not yet in a position to
understand everything, it should become clear that the circuit is composed of five logic gates and
four flip-flops. As an exercise, draw a schematic diagram for the circuit.

-- architecture body

architecture structural of 1lfsr4 is

-- component declarations
component GTECH_FD2 -- D-type flip-flop with reset
port (
D, CP, CD : in std_logic;
Q : out std_logic );
end component;
component GTECH_FD4 -- D-type flip-flop with set
port (
D, CP, SD : in std_logic;
Q : out std_logic );
end component;
component GTECH_MUX2 - input multiplexer
port (
A, B, S : in std_logic;
Z : out std_logic )
end component;
component GTECH_XOR2 -- 2-input XOR gate
port (
A, B: in std_logic;
Z : out std_logic );

end component;

-- signal declarations of internal nodes
signal STATExDP : std_logic_vector (1l to 4);
signal ni11l, n21, n31, n41, n42 : std_logic;

begin

-- instantiate components and connect them by listing port maps
ul0 : GTECH_FD2
port map( D => n11l, CP => CLK, CD => RSTxRB, Q => STATExDP(1) );
u20 : GTECH_FD2
port map( D => n21, CP => CLK, CD => RSTxRB, Q => STATExDP(2) );
u30 : GTECH_FD2
port map( D => n31, CP => CLK, CD => RSTxRB, Q => STATExDP(3) );
u40 : GTECH_FD4
port map( D => n41, CP => CLK, SD => RSTxRB, Q => STATExDP(4) );
ull : GTECH_MUX2
port map( A => STATExDP(1), B => n42, S => ENAxS, Z => nll );
u21 : GTECH_MUX2
port map( A => STATExDP(2), B => STATExDP(1), S => ENAxS, Z => n21 );
u31l : GTECH_MUX2
port map( A => STATExDP(3), B => STATExDP(2), S => ENAxS, Z => n31 );
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u41l : GTECH_MUX2

port map( A => STATExDP(4), B => STATExDP(3), S => ENAxS, Z => n4l );
u42 : GTECH_XOR2

port map( A => STATExDP(3), B => STATExDP(4), Z => n42 );

-- connect state bit of rightmost flip-flop to output port
0UPxD <= STATExDP (4);

end structural;

Component instantiation and port map

How do you proceed when asked to fit a circuit board with components? You think of the exact
name of a part required, go and fetch a copy of it, and solder the terminals of that one copy in a
well-defined manner to metal pads interconnected by narrow lines on a prefabricated circuit board.
The component instantiation statement of VHDL does exactly this, albeit with virtual components
and signals instead of physical parts and wires. How to connect instance terminals to circuit nodes
gets specified in the port map clause.

In the above code example, nine components get instantiated following the keyword begin. As
multiple copies of the same component must be told apart, each instance is assigned a unique
identifier; u10, u20, ..., u42 in the occurrence. Further observe that the association operator => in
the port maps does not indicate any assignment. Rather, it stands for an electrical connection made
between the instance terminal to its left (formal part) and some node in the superordinate circuit
the signal name of which is indicated to the right (actual part).

Component declaration

Each of the first four statements in the 1fsr4 architecture body specifies the name and the port

list of a subcircuit that is going to be instantiated. VHDL requires that the names and external

interfaces of all component models be known prior to instantiation.?

3 There are essentially two ways for declaring a subcircuit model, yet the difference is a subtlety that can be
skipped for a first reading. Assume you are describing a circuit by way of hierarchical composition in a top-down
fashion, that is, beginning with the top-level design entity. In doing so, you must anticipate what subcircuits
you will need. All that is really required for the moment are the complete port lists of those subcircuits-to-be
that you are going to instantiate. Their implementations can wait until work proceeds to the next lower level
of hierarchy. Declaring the external interfaces of such prospective subcircuits locally, that is within the current

architecture body, is exactly what the component declaration statement is intended for.

Now consider the opposite bottom-up approach. You begin with the lowest-level subcircuits by capturing the
interface in an entity declaration and the implementation in an architecture body for each subcircuit. These
models are then instantiated at the next-higher level of the design hierarchy, and so on. Instantiation always
refers to an existing design entity which explains why this type of instantiation is said to be direct. No component
declarations are required in this case, yet the component instantiation statement is complemented with the extra
keyword entity and with an optional architecture identifier as follows.
u6756 : entity lfsr4 (behavioral)

port map( CLKxC => n18, RSTxRB => n8, ENAxS => n199, O0UPxD => n4 );
For direct instantiation to work, design entities must be made visible with a use work.all clause. Use clauses
and configuration specification statements are to be introduced in sections 4.2.6 and 4.2.5 respectively. Also

note that direct instantiation is supported since the IEEE 1076-93 standard only.
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VHDL further requires that the wires running back and forth between instances be declared.
Those connecting to the outside world are automatically known from the port clause and need
not be declared a second time. Internal nodes, in contrast, are defined in a series of supple-
mental signal declaration statements just before the keyword begin. More on signals is to follow
shortly.

Let us conclude this section with a more general comment.

Observation 4.3. VHDL can describe the hierarchical composition of a digital electronic circuit
by instantiating components or entities and by interconnecting them with the aid of signals.

A model that describes a (sub)circuit as a bunch of interconnected components is qualified as
structural. Structural HDL models essentially hold the same information as circuit netlists do.
Manually establishing entity declarations and structural architecture bodies in the style of the
1fsrd example shown is not particularly attractive, though. Most structural models are in fact
obtained from register-transfer level (RTL) and similar models with the aid of automatic synthesis
software.

Still, situations exist where one needs to explicitly stipulate a circuit’s connectivity, just think of
how to embed a chip’s core into the chip’s padframe, for instance. In such a situation, the designer
can either manually write structural VHDL code, or enter a schematic diagram into his CAD suite
and have the schematic editor translate that into HDL code. Schematics have the advantage of
being more suggestive of the circuit described than code listings. As will be explained in section
4.3.5, they lack the flexibility of a parametrized code model, however.

4.2.2 Concurrent processes and process interaction
The need for modelling concurrent activities

While we have learned how to capture a circuit’s hierarchy in VHDL, our description remains
devoid of life up to this point as we have no means for expressing circuit behavior. This is not only
insufficient for simulating a circuit but also inadequate in view of dispensing designers from having
to specify a circuit’s composition in great detail. So there must be more to VHDL.

The most salient feature of any electronic system is the concurrent operation of its subcircuits;
just think of all those ICs on a typical circuit board and of the many thousands of logic gates and
storage devices within each such chip. This inherent parallelism contrasts sharply with the line-by-
line execution of program code on a computer. Another innate trait is the extensive communication
that permanently takes place between subcircuits and that is physically manifest in the multitude of
wires that run across chips and boards. This is necessary simply because there can be no cooperation
between multiple entities without on-going exchange of data.

Now assume you wanted to write a software model that imitates the behavior of a substantial piece
of electronic hardware using some traditional programming language such as Pascal or C. You would
soon get frustrated because of the absence of constructs and mechanisms to handle simultaneous
operation and interaction. Hardware description languages such as VHDL and Verilog extend the
expressive power of programming languages by supporting concurrent processes and means for
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Fig. 4.3 Circuit modelling with VHDL Il: A refined model capturing behavior with the aid of concurrent
processes that communicate via signals. Also shown are variables that are confined to within processes by

definition.

exchanging information between them, see fig.4.3 for a first idea. As this bears some resemblance
to real-time languages, it comes as no surprise that Ada and its concept of concurrent tasks have
been taken as a starting point for defining VHDL.

Signal

The vehicle for exchanging dynamic information between concurrent processes is the signal, there
exists no other mechanism in VHDL for this purpose.* “Dynamic” means that the data being
transferred as signals are free to evolve over time, that is to change their values during a simulation
run. Any signal declared within an architecture body is strictly confined to that body and remains
inaccessible from outside. A signal declaration must specify the name and the data type of the

signal; an optional argument can be used to assign an initial value.

Example of a signal declaration signal THISMONTH : month;
Second example signal ERROR, ACTUAL, WANTED : integer := O;

Warning: An initial value assigned to a signal as part of its declaration is inadequate for
modelling a hardware reset and gets ignored during VHDL synthesis.?

1 The purpose of protected shared variables is a totally different one, see section 4.8.1 for explanations.
® Detailed explanations are to follow in observation 4.18 and in section 4.3.3.
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Hint: VHDL code is easier to read when signals can be told from variables by their visual
appearance. We make it a habit to use upper- and mixed-case names for SIGNALS and lower-

case characters for variables.’

Concurrent processes (purpose)
Any of the four VHDL statements below provides us with the capability to alter signal values.

o Concurrent signal assignment (simplest).

o Selected signal assignment.

o Conditional signal assignment.

o Process statement (most powerful).

All four statements are subsumed as (concurrent) processes or as concurrent assignment statements,
two generic terms being used in this text, not actual VHDL language constructs.” Unless the code
is actually running on a multiprocessor, concurrent processes must of course be invoked one after
the other during VHDL simulation but the observed effect is that they execute in parallel. How to
obtain this effect makes up the major part of section 4.2.4.

Concurrent signal assignment (construct)

This is the most simple language construct that permits one to update the value of a signal.
A concurrent signal assignment is used to describe a combinational operation with no need for
branching; basic arithmetic and logic operations are typical examples. Concurrent signal assignments
support function calls but no procedure calls.® The assignment operator for signals is <=, which
choice is somewhat unfortunate because the same symbol also serves as relational operator (in lieu
of <).

Example of a concurrent signal assignment THISMONTH <= august;
Second example ERROR <= ACTUAL - WANTED;

Selected signal assignment

This is a more elaborate form of a concurrent signal assignment reminiscent of a multiplexer (MUX)
or data switch: One out of multiple possible values gets assigned to a signal under control of a
selecting expression. An example follows.

with THISMONTH select
QUARTER <= qlst when january | february | march,
gq2nd when april | may | june,
q3rd when july | august | september,
q4th when others;

5 An elaborate naming convention for signals will be presented in section 5.7.

" The terms process, concurrent process, and parallel process are synonyms (in the sense of the German
“nebenlaufiger Prozess”) whereas the term concurrent assignment statement stands for the subclass of active
processes capable of altering signals. We will later learn about passive processes that do not assign any value to
a signal. Also, do not equate the broad and conceptual notion of a process with the process statement, a VHDL
syntax item. A process statement is just one particular case of a concurrent process.

8 To be explained in section 4.2.6.
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Conditional signal assignment

This language construct is very similar to the selected signal assignment but a bit more liberal in
formulating the branching condition. An example follows.

SPRING <= true when (THISMONTH=march and THISDAY>=21) or
THISMONTH=april or THISMONTH=may or
(THISMONTH=june and THISDAY<20)
else false;

Process statement (construct)

The process statement is an even more powerful — but also more tricky and more verbose —
VHDL construct for expressing a concurrent process. What sets it apart from the signal assignment
statements discussed before are essentially

Its capability to update two or more signals at a time,

e The fact that the instructions for doing so are captured in a sequence of statements
that are going to be carried out one after the other,

e The liberty to make use of variables for temporary storage, and

e A more detailed control over the conditions for activating the process.9

Process statements cannot be nested but may call subprograms. Conditional execution and branch-
ing are supported, of course. The process statement is best summed up as being concurrent outside
and sequential inside.!” The example given next is semantically and functionally identical to the
conditional signal assignment given before.

memlessl: process (THISMONTH, THISDAY)

-- an event on any signal listed activates the process

begin
SPRING <= false; -- execution begins here
if THISMONTH=march and THISDAY>=21 then SPRING <= true; end if;
if THISMONTH=april then SPRING <= true; end if;
if THISMONTH=may then SPRING <= true; end if;
if THISMONTH=june and THISDAY<=20 then SPRING <= true; end if;
end process memlessl; -- process suspends here

A process statement can be made to capture almost anything from a humble piece of wire up
to an entire image compression circuit, for instance. The decision is left to the discretion of the
VHDL programmer. More particularly, a process statement can model a combinational function, a
data storage operation, or any combination of the two. This depends on how the code is written;
guidelines are to follow in observation 4.14.

 Several of these items will be clarified in section 4.2.4.

10 Make sure you understand that “sequential” refers to code execution during VHDL simulation here and not to
the nature of the hardware being modelled, which may be either combinational or sequential depending on how
the code is organized, see observation 4.14. After all, it is perfectly natural to fill the truth table of a complex
function by way of a sequential algorithm. Also note that the identifier memless1 in the code example is just an

optional free-choice label that has no impact on simulation and synthesis whatsoever.
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Hint: For the sake of modularity and legibility, do not cram too much functionality into a con-
current process. As a rule, concurrent, selected, and conditional signal assignment statements
serve to describe combinational operations whereas process statements are primarly used for

modelling all sorts of data storage mgisters.11

Architecture body (behavioral view)

Most architecture bodies include a collection of concurrent processes that together make up the
entity’s overall functionality. Such models are called behavioral because they specify how the
entity is to react in response to changing input signals. Potential reactions include the updating
of output signals, the updating of the entity’s current state, the checking of compliance with some
predefined timing conditions, or simply ignoring the new input.

The architecture body given below matches the entity declaration given in the previous section.
In fact, the functionality being modelled is again that of an LFSR of length four with enable and
asynchronous reset. Taking fig.4.3 as a pattern, make a small drawing that illustrates the processes
and the signals that are being exchanged. Find out what hardware item each concurrent process
stands for and compare the drawing with that established earlier. What liberties do you have in
coming up with a schematic diagram?

-- architecture body

architecture behavioral of 1lfsr4 is
signal STATExDP, STATExDN : std_logic_vector (1l to 4);
-- for present and next state respectively

begin

-- computation of next state
STATExDN <= (STATExDP(3) xor STATExDP(4)) & STATExDP(1 to 3);

-- updating of state
process (CLKxC,RSTxRB)
begin
-- activities triggered by asynchronous reset
if RSTxRB=’0’ then
STATExDP <= "0001";
-- activities triggered by rising edge of clock
elsif CLKxC’event and CLKxC=’1’ then
if ENAxS=’1’ then
STATExDP <= STATExDN;
end if;
end if;

end process;

-- updating of output
0UPxD <= STATExDP (4);

end behavioral;

Observation 4.4. In VHDL, the behavior of a digital electronic circuit typically gets described by
a collection of concurrent processes that execute simultaneously and that communicate via signals,
and where each such process represents some subfunction.

' This is particularly true for RTL synthesis models. More detailed advice is to follow in section 4.3.
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VHDL supports a great variety of modelling styles

As we have learned so far, VHDL covers both behavioral and structural circuit descriptions, but no
physical ones. Within this limitation, VHDL supports a great variety of modelling styles.

A procedural model essentially describes functionality in a sequence of steps much as a piece
of conventional program code does. A design entity is captured in one process statement and its
behavior gets implemented with the aid of sequential statements there.'?

A dataflow model describes the behavior as a collection of concurrent signal assignments the
respective operations of which get coordinated by the signals exchanged. As an extension thereof,
block statements might also be used.

A structural model describes the inner composition of a design entity as a set of instanti-
ated components together with their interconnections and is equivalent to a netlist. Component
declaration and instantiation statements are typical for structural models.

Listing 4.1 below juxtaposes three architecture bodies that describe the same function from all three
perspectives while fig.4.5 illustrates the differences and commonalities.!®> Make sure you understand
the conceptual difference between the procedural and dataflow models in spite of the apparent
similarity of their codes, also problem 3.

Observation 4.5. VHDL allows procedural, dataflow, and structural modelling styles
to be freely combined in a single model.

Except for the most simple subcircuits, a typical VHDL model includes a mix of elements from
all three styles as suggested by ﬁg.4.4.14 Experimental results on how VHDL coding style affects
simulation performance are reported in [99].

design view
behavioral structural
interconnected
components
procedural dataflow (netlist)
sequence concurrent ‘ ‘
of instructions processes | |
. | |
ey | e Y
vvy not captured by VHDL
may all be combined in a VHDL model use GDS Il, CIF, or the like

Fig. 4.4 Modelling styles and their relationships to VHDL and other EDA languages.

12 The VHDL community, which has its own vocabulary, would typically call this a behavioral model. However, in
order to stay in accordance with the universally accepted Y-chart of fig.4.1, we prefer to use the more precise
designation procedural model and to reserve the term behavioral for the superclass of procedural and dataflow
models, see fig.4.4. Incidentally, note that behavioral, procedural, dataflow, and structural are not reserved
words of VHDL. These are just user-defined terms that serve to convey information about modelling style.

A full-adder has been chosen because of its simplicity and commonplace nature. Clearly, none of the three
architecture bodies reflects how one would normally model an adder as VHDL supports the arithmetic
operator +.

Independently from whether a VHDL model is of procedural, dataflow or structural nature, or mixes all of them,

some behavioral model must ultimately be given for every elemental component for simulation to work.
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Listing 4.1 | Procedural, dataflow, and structural styles compared. Note: Adders are normally syn-
thesized from algebraic expressions, a full-adder has been chosen here for its simplicity.

entity fulladd is
port ( INPA, INPB, INPC : in std_logic;
0UPS, OUPC : out std_logic );
end fulladd;
-- compute results in a series of sequential steps
architecture procedurall of fulladd is
begin
process (INPA,INPB,INPC)
variable locl, loc3, loc4 : std_logic;

begin
locl := INPA xor INPB;
0UPS <= INPC xor locl;
loc3 := INPC nand locil;
loc4 := INPA nand INPB;

OUPC <= loc3 nand loc4d;

end process;
end procedurall;
-- spawn a concurrent signal assignment for each logic gate
architecture dataflowl of fulladd is

signal LOC1, LOC3, LOC4 : std_logic;
begin

L0OC1 <= INPA xor INPB;

O0UPS <= INPC xor LOC1;

LOC3 <= INPC nand LOC1;

L0C4 <= INPA nand INPB;

OUPC <= LOC3 nand LOC4;
end dataflowl;
-- describe logic network as a bunch of interconnected logic gates
architecture structuralgtech of fulladd is

-- list cells from Synopsys’ generic cell library to be used
component GTECH_XOR2
port ( A, B : in std_logic;
Z : out std_logic );
end component;
component GTECH_NAND2
port ( A, B : in std_logic;
Z : out std_logic );

end component;

-- declare internal signals
signal LOC1, LOC3, LOC4 : std_logic;

begin
-- instantiate cells and connect them by listing port maps
Ul: GTECH_XOR2
port map ( A=>INPB, B=>INPA, Z=>L0OC1 );
U2: GTECH_XOR2
port map ( A=>INPC, B=>L0C1, Z=>0UPS );
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U3: GTECH_NAND2

port map ( A=>INPC, B=>L0OC1, Z=>L0C3 );
U4: GTECH_NAND2

port map ( A=>INPA, B=>INPB, Z=>L0C4 );
U5: GTECH_NAND2

port map ( A=>L0C3, B=>L0C4, Z=>0UPC );

end structuralgtech;
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Fig. 4.5 Procedural (a), dataflow (b), and structural (c) models of a full-adder function.

Another example where a memoryless input-to-output mapping function is captured in accordance
with very different coding styles is reproduced in appendix 4.9.1.

4.2.3 A discrete replacement for electrical signals
The need for representing multiple logic values

An innocent approach to hardware modelling would be to use one binary digit per circuit node.
VHDL actually provides two predefined data types for describing two-valued data:
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bit which can take on value 0 or 1.
boolean which can take on value false or true.

Yet, even digital hardware exhibits a number of characteristics and phenomena such as transients,
three-state outputs, multiple buffers driving a common node with an inherent potential for conflicts,
indeterminate circuit state following power-up, and the like. None of these circumstances can be
captured with a two-valued logic abstraction.

Observation 4.6. Distinguishing between logic 0 and 1 is inadequate for modelling the binary
signals found in digital electronic circuitry. A more elaborate multi-valued logic system must be
sought that is capable of capturing the effects of both node voltage and source impedance.

The idea behind a logic system is to discretize the continuous-valued node voltage and source
impedance separately. Voltage gets quantized into a number of logic states while the amount of
current that a subcircuit can sink or source is mapped onto discrete drive strengths, or strengths
for short. It thus becomes possible to condense the electrical condition of a circuit node into one
logic value at any time.

A standard multi-valued logic system

A fairly simple and universal logic system to be used in conjunction with VHDL is available from
a package named ieee.std,log:'Lc,1164.15

The logic states implemented are:

low logic low, that is below Uj.
high logic high, that is above Uy,.
unknown may be “low”, “high”, or anywhere in the forbidden interval

in between, e.g. as a result from a short between two conflicting drivers.

Note, by the way, that no distinction is made between a drive conflict, the outcome of which is truly
unknown, and a ramping node, the voltage of which is known to assume values between thresholds
U; and U}, for some time. Either one is modelled as “unknown”.

The drive strengths being used are:

strong the low impedance value commonly exhibited by a driving output.
high-impedance the almost infinite impedance exhibited by a disabled three-state output.
weak an impedance somewhere between “strong” and “high-impedance”,

e.g. as exhibited by a passive pull-up/-down resistor or a snapper.

A regular matrix with nine logic values should result when three logic states are combined with
three drive strengths. The 1164 standard committee has, however, refrained from differentiating
between “charged high” and “charged low” by collapsing all high-impedance conditions to a single

15 The originators of VHDL have deliberately chosen not to incorporate any logic system into the IEEE 1076
standard itself as this would have biased the language towards some circuit technology such as CMOS, ECL or
GaAs, for instance, and would preclude its evolution towards unforeseen technologies in the future. Instead, a
logic system has been defined as separate standard IEEE 1164 and made available in the said package. It is thus

possible to replace it by some user-defined logic system at any time should the necessity occur.
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value of undetermined state. This conservative choice avoids the difficulties of fixing realistic charge

decay times.

On the other hand, two extra values have been added, namely:

16

uninitialized

don’t care

has never been assigned any value, e.g. the internal state of a storage

element immediately after power-up, distinguished from “unknown”

as the latter can arise from causes other than failed initialization

(applicable to simulation only).

whether the node is “low” or “high” is considered immaterial,

used by designers to leave the choice to the logic optimization tool

(applicable to synthesis only).

The matrix of table 4.3 summarizes the IEEE 1164 standard 9-valued logic system which is some-
times also referred to as MVL-9 (multiple-value logic). The data type implementing this logic system

is called std_ulogic.

drive
H

Table 4.3 | IEEE 1164 standard 9-valued logic system.
logic value — logic state acceptable for
l low unknown high simulation | synthesis
uninitialized U Y
strong 0 X 1 0 X 1 0 1
strength  weak L W H L W H
high-impedance Z Z Z Z Z
don’t care - -
A
U D U - z
at 1=0 input does no drive,
D not matter high- |mpedance
5 o ,
B X L weak
0 1 F o ’
strong drive drive conflict @—W+
C

T 1

Fig. 4.6 The nine logic values of the IEEE 1164 standard illustrated.

weak drive

16 Short-term charge retention on circuit nodes is a typical trait of CMOS not found in TTL or ECL circuits.

Another item that sets IEEE 1164 apart from other logic systems is the absence of an extra drive strength

“forced”

strapped to ground by some metal wire.

, which is sometimes introduced to model a node driven with impedance zero or almost so, e.g. when
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Fig. 4.7 Circuit modelling with VHDL Ill: Refined model that uses special data types to model electrical

phenomena.

Modelling of three-state outputs and busses

Section 4.2.2 has tought us how to assign some value to a signal, but how do we tell we want a
node to be released or — which is the same — reverted to an undriven condition? With the aid of
the IEEE 1164 logic system, the answer is straightforward: just assign logic value Z.

Example OUP <= not INP when ENA=’1’ else ’Z’;

As illustrated in fig.4.7, many digital circuits include busses and other multi-driver nodes that
operate under control of multiple processes. How to model them is now obvious. In the code fragment
below, the common node COM is left floating, that is in a high-impedance condition, when neither
of the two drivers is enabled.

COM <= not INPA when SELA=’1’ else ’Z7;

COM <= not INPB when SELB=’1’ else ’Z7;
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Multiple drivers and conflict resolution during simulation

Let us now find out how multi-driver signals are actually handled during simulation. What if a drive

conflict occurs?!’” How is such an electrical issue modelled in VHDL? Built on top of std_ulogic
sits a subtype called std_logic that shares the same set of nine values. As shown in fig.4.8, the

difference matters in the presence of multiple drivers.

SELA SELA
OUPA
1 1
0 1 0
INPA ’ INPA
COM
[ INPB [ INPB
Z X X
0 0
OUPB
SELB SELB
single-driver signals OUPA and OUPB if multi-driver signal COM is of type
may assume distinct logic values, std_ulogic then an error message gets issued
no difference between std ulogic and std_logic std_logic then the conflict is resolved