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Preface

Why this book?

Designing integrated electronics has become a multidisciplinary enterprise that involves solving
problems from fields as disparate as
• Hardware architecture
• Software engineering
• Marketing and investment
• Solid-state physics
• Systems engineering
• Circuit design
• Discrete mathematics
• Electronic design automation
• Layout design
• Hardware test equipment and measurement techniques

Covering all these subjects is clearly beyond the scope of this text and also beyond the author’s
proficiency. Yet, I have made an attempt to collect material from the above fields that I have found
to be relevant for deciding whether or not to develop digital Very Large Scale Integration (VLSI)
circuits, for making major design decisions, and for carrying out the actual engineering work.

The present volume has been written with two audiences in mind. As a textbook, it wants to intro-
duce engineering students to the beauty and the challenges of digital VLSI design while preventing
them from repeating mistakes that others have made before. Practising electronics engineers should
find it appealing as a reference book because of its comprehensiveness and the many tables, check-
lists, diagrams, and case studies intended to help them not to overlook important action items and
alternative options when planning to develop their own hardware components.

What sets this book apart from others in the field is its top-down approach. Beginning with hardware
architectures, rather than with solid-state physics, naturally follows the normal VLSI design flow
and makes the material more accessible to readers with a background in systems engineering,
information technology, digital signal processing, or management.

Highlights

• Most aspects of digital VLSI design covered
• Top-down approach from algorithmic considerations to wafer processing
• Systematic overview on architecture optimization techniques
• Scalable concepts for simulation testbenches including code examples
• Emphasis on synchronous design and HDL code portability
• Comprehensive discussion of clocking disciplines
• Key concepts behind HDLs without too many syntactical details
• A clear focus on the predominant CMOS technology and static circuit style
• Just as much semiconductor physics as digital VLSI designers really need to know
• Models of industrial cooperation
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• What to watch out for when purchasing virtual components
• Cost and marketing issues of ASICs
• Avenues to low-volume fabrication
• Largely self-contained (required previous knowledge summarized in two appendices)
• Emphasis on knowledge likely to remain useful in the years to come
• Many illustrations that facilitate recognizing a problem and the options available
• Checklists, hints, and warnings for various situations
• A concept proven in classroom teaching and actual design projects

A note to instructors

Over the past decade, the capabilities of field-programmable logic devices, such as FPGAs and
CPLDs, have grown to a point where they have become invaluable ingredients of many electronic
products, especially of those designed and marketed by small and medium-sized enterprises. Beginn-
ing with the higher levels of abstraction enables instructors to focus on those topics that are equally
relevant irrespective of whether a design eventually gets implemented as a mask-programmed custom
chip or from components that are just configured electrically. This material is collected in chapters
1 to 5 of the book and best taught as part of the Bachelor degree for maximum dissemination. No
prior introduction to semiconductors is required. For audiences with little exposure to digital logic
and finite state machines, the material can always be complemented with appendices A and B.

Learning how to design mask-programmed VLSI chips is then open to Master students who elect
to specialize in the field. Designing electronic circuits down to that level of detail involves many
decisions related to electrical, physical, and technological issues. An abstraction to purely logical
models is no longer valid since side effects may cause an improperly designed circuit to behave
differently than anticipated from digital simulations. How to cope with clock skew, metastability,
layout parasitics, ground bounce, crosstalk, leakage, heat, electromigration, latch-up, electrostatic
discharge, and process variability in fact makes up much of the material from chapter 6 onwards.

Again, the top-down organization of the book leaves much freedom as to where to end a class. A
shorter course might skip chapter 8 as well as all material on detailed layout design that begins
with section 11.5 on the grounds that only few digital designers continue to address device-level
issues today. A similar argument also applies to the CMOS semiconductor technology introduced
in chapter 14. Chapter 13, on the other hand, should not be dropped because, by definition, there
are no engineering projects without economic issues playing a decisive role.

For those primarily interested in the business aspects of microelectronics, it is even possible to put
together a quick introductory tour from chapters 1, 13, and 15 leaving out all the technicalities
associated with actual chip design.

The figure below explains how digital VLSI is being taught by the author and his colleagues at
the ETH. Probably the best way of preparing for an engineering career in the electronics and
microelectronics industry is to complete a design project where circuits are not just being modeled
and simulated on a computer but actually fabricated. Provided they come up with a meaningful
project proposal, our students are indeed given this opportunity, typically working in teams of two.
Following tapeout at the end of the 7th term, chip fabrication via an external multi-project wafer
service takes roughly three months. Circuit samples then get systematically tested by their very
developers in their 8th and final term. Needless to say that students accepting this offer feel very
motivated and that industry highly values the practical experience of graduates formed in this way.
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The technical descriptions and procedures in this book have been developed with the greatest of
care; however, they are provided as is, without warranty of any kind. The author and editors of the
book make no warranties, expressed or implied, that the equations, programs, and procedures in
this book are free of error, or are consistent with any particular standard of merchantability, or will
meet your requirements for any particular application. They should not be relied upon for solving
a problem whose incorrect solution could result in injury to a person or loss of property.
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Dr. Lucas Heusler, Peter Lüthi, Dr. Chiara Martelli, Dieter Müller, Stephan Oetiker, Dr. David
Perels, Dr. Robert Rogenmoser, Andreas Romer, Dr. Fritz Rothacher, Dr. Thomas Röwer, Dr.
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Chapter 1

Introduction to Microelectronics

1.1 Economic impact

Let us begin by relating the worldwide sales of semiconductor products to the world’s gross domestic
product (GDP).1 In 2005, this proportion was 237 GUSD out of 44.4 TUSD (0.53%) and rising.

Assessing the significance of semiconductors on the basis of sales volume grossly underestimates their
impact on the world economy, however. This is because microelectronics is acting as a technology
driver that enables or expedites a range of other industrial, commercial, and service activities. Just
consider

• The computer and software industry,
• The telecommunications and media industry,
• Commerce, logistics, and transportation,
• Natural science and medicine,
• Power generation and distribution, and — last but not least —
• Finance and administration.

Microelectronics thus has an enormous economic leverage as any progress there spurs many, if not
most, innovations in “downstream” industries and services.

A popular example . . .

After a rapid growth during the last three decades, the electric and electronic content of passen-
ger cars nowadays makes up more than 15% of the total value in simpler cars and close to 30%
in well-equipped vehicles. What’s more, microelectronics is responsible for the vast majority of
improvements that we have witnessed. Just consider electronic ignition and injection that have
subsequently been combined and extended to become electronic engine management. Add to that
anti-lock brakes and anti-skid stability programs, trigger circuits for airbags, anti-theft equipment,

1 The GDP indicates the value of all goods and services sold during some specified year.
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EDA software &
virtual components

Semiconductor components
Electronic components

Electronic goods
(computers, mobile phones, 
home entertainment equipment, etc.)

Applications:
• Goods with embedded electronics
  (machines, cars, cameras, watches, etc.)
• Information technology services
  (corporate IT, Internet, music download, etc.)

World-wide gross domestic product 2005: 44.4.TUSD/y

2005: 237GUSD/y

Fig. 1.1 Economic leverage of microelectronics on “downstream” industries and services.

automatic air conditioning, instrument panels that include a travel computer, remote control of
locks, navigation aids, multiplexed busses, electronically controlled drive train and suspension,
audio/video information and entertainment, and upcoming night vision and collision avoidance
systems. And any future transition to propulsion by other forms of energy is bound to intensify the
importance of semiconductors in the automotive industry even further.

Forthcoming innovations include LED illumination and headlights, active “flywheels”, hybrid
propulsion, electronically driven valve trains, brake by wire, drive by wire, and, possibly, 42 V
power supply to support the extra electrical load.

. . . and its less evident face

Perhaps less obvious but as important are the many contributions of electronics to the processes
of development, manufacturing, and servicing. Innovations behind the scenes of the automotive
industry include computer-aided design (CAD) and finite element analysis, virtual crash tests,
computational fluid dynamics, computer numeric-controlled (CNC) machine tools, welding and as-
sembly robots, computer-integrated manufacturing (CIM), quality control and process monitoring,
order processing, supply chain management, and diagnostic procedures.

This almost total penetration has been made possible by a long-running drop of cost per func-
tion. Historically, costs have been dropping at a rate of 25% to 29% per year according to [1]. While
computing, telecommunication, and entertainment products existed before the advent of microelec-
tronics, today’s anywhere, anytime information and telecommunication society would not have been
possible without it; just compare the electronic devices in fig.1.2.

Observation 1.1. Microelectronics is the enabler of information technology.

On the positive side, microelectronics and information technology improve speed, efficiency, safety,
comfort, and pollution control of industrial products and commercial processes, thereby bringing
competitive advantages to those companies that take advantage of them.
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Fig. 1.2 Four electronic products that take advantage of microelectronics opposed to analogous products that

do not. The antiquated devices operate with vacuum tubes, discrete solid-state devices, and other electronic

components but include no large-scale integrated circuits. Also observe that, were it not for display size and

audio volume, one might replace all four devices with Apple’s iPhone that has brought seamless system

integration to even higher levels (photos courtesy of Alain Kaeslin).
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On the negative side, the rapid progress, most of which is ultimately fueled by advances in
semiconductor manufacturing technology, also implies a rapid obsoletion of hardware and software
products, services, know-how, and organizations. A highly cyclic economy is another unfortunate
trait of the semiconductor industry [2].

1.2 Concepts and terminology

An integrated circuit (IC) is an electronic component that incorporates and interconnects a
multitude of miniature electronic devices, mostly transistors, on a single piece of semiconductor
material, typically silicon.2 Many such circuits are jointly manufactured on a thin semiconductor
wafer with a diameter of 200 or 300 mm before they get cut apart to become (naked) dies. The
sizes of typical dies range between a pinhead and a large postage stamp. The vast majority of ICs,
or (micro)chips as they are colloquially referred to, gets individually encapsulated in a hermetic
package before being soldered onto printed circuit boards (PCB).

The rapid progress of semiconductor technology in conjunction with marketing activities of many
competing companies — notably trademark registration and eye catching — has led to a plethora
of terms and acronyms, the meaning of which is not consistently understood by all members of the
microelectronics community. This section introduces the most important terms, clarifies what they
mean, and so prepares the ground for more in-depth discussions.

Depending on perspective, microchips are classified according to different criteria.

1.2.1 The Guinness book of records point of view

In a world obsessed with records, a prominent question is “How large is that circuit?”

Die size is a poor metric for design complexity because the geometric dimensions of a circuit
greatly vary as a function of technology generation, fabrication depth, and design style.

Transistor count is a much better indication. Still, comparing across logic families is problematic
as the number of devices necessary to implement some given function varies.3

Gate equivalents attempt to capture a design’s hardware complexity independently from its ac-
tual circuit style and fabrication technology. One gate equivalent (GE) stands for a two-input
nand gate and corresponds to four MOSFETs in static CMOS; a flip-flop takes roughly
7 GEs. Memory circuits are rated according to storage capacity in bits. Gate equivalents and
memory capacities are at the basis of the naming convention below.

2 This is a note to non-Angloamerican readers made necessary by a tricky translation of the term silicon.
English German French Italian meaning

silicon Silizium silicium silicio Si, the chemical element with atomic number 14
silicone Silikon silicone silicone a broad family of polymers of Si with hydrocarbon groups

that comprises viscous liquids, greases, and rubber-like solids
3 Consistent with our top-down approach, there is no need to know the technicalities of CMOS, TTL, and other

logic families at this point. Interested readers will find a minimum of information in appendix 1.6.
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circuit complexity GEs of logic + bits of memory
small-scale integration (SSI) 1–10
medium-scale integration (MSI) 10–100
large-scale integration (LSI) 100–10 000
very-large-scale integration (VLSI) 10 000–1 000 000
ultra-large-scale integration (ULSI) 1 000 000 . . .

Clearly, this type of classification is a very arbitrary one in that it attempts to impose
boundaries where there are none. Also, it equates one storage bit to one gate equivalent.
While this is approximately correct when talking of static RAM (SRAM) with its four-
or six-transistor cells, the single-transistor cells found in dynamic RAMs (DRAMs) and in
ROMs cannot be likened to a two-input nand gate. A better idea is to state storage capacities
separately from logic complexity and along with the memory type concerned, e.g. 75 000 GE
of logic + 32 kibit SRAM + 512 bit flash ≈ 108 000 GE overall complexity.4

One should not forget that circuit complexity per se is of no merit. Rather than coming up with
inflated designs, engineers are challenged to find the most simple and elegant solutions that satisfy
the specifications given in an efficient and dependable way.

1.2.2 The marketing point of view

In this section, let us adopt a market-oriented perspective and ask
“How do functionality and target markets relate to each other?”

General-purpose ICs

The function of a general-purpose IC is either so simple or so generic that the component is being
used in a multitude of applications and typically sold in huge quantities. Examples include gates,
flip-flops, counters, and other components of the various 7400 families but also RAMs, ROMs,
microcomputers, and most digital signal processors (DSPs).

Application-specific integrated circuits

Application-specific integrated circuits (ASICs) are being specified and designed with a particular
purpose, equipment, or processing algorithm in mind. Initially, the term had been closely associated
with glue logic, that is with all those bus drivers, decoders, multiplexers, registers, interfaces, etc.
that exist in almost any system assembled from highly integrated parts. ASICs have evolved from
substituting a single package for many such ancillary functions that originally had to be dispersed
over several SSI/MSI circuits.

Today’s highly-integrated ASICs are much more complex and include powerful systems or
subsystems that implement highly specialized tasks in data and/or signal processing. The term

4 Kibi- (ki), mebi- (Mi), gibi- (Gi), and tebi- (Ti) are binary prefixes recommended by various standard bodies for
21 0 , 22 0 , 23 0 , and 24 0 respectively because the more common decimal SI prefixes kilo- (k), mega- (M), giga- (G)
and tera- (T) give rise to ambiguity as 21 0 �= 103 . As an example, 1 MiByte = 8 Mibit = 8 · 22 0 bit.
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system-on-a-chip (SoC) has been coined to reflect this development. Overall manufacturing costs,
performance, miniaturization, and energy efficiency are key reasons for opting for ASICs.

Still from a marketing point of view, ASICs are subdivided further into application-specific standard
products and user-specific ICs.

Application-specific standard product (ASSP). While designed and optimized for a highly
specific task, an application-specific standard product circuit is being sold to various cus-
tomers for incorporation into their own products. Examples include graphics accelerators,
multimedia chips, data compression circuits, forward error correction devices, ciphering/de-
ciphering circuits, smart card chips, chip sets for cellular radio, serial-ATA and Ethernet
interfaces, wireless LAN chips, and driver circuits for power semiconductor devices, to name
just a few.5

User-specific integrated circuit (USIC). As opposed to ASSPs, user-specific ICs are being de-
signed and produced for a single company that seeks a competitive advantage for their prod-
ucts; they are not intended to be marketed as such. Control of innovation and protection of
proprietary know-how are high-ranking motivations for designing circuits of this category.
Parts are often fabricated in relatively modest quantities.

counter
logic
gate

SSI MSI LSI VLSI ULSI

multiplier
parallel

complexity
hardware

. . . . "system on a chip (SoC) " . . . .

functionality

glue logic

mobile radio
base-band
processor

compressor
video data

digital
filter

error-correcting
encoder/decoder

transceiver
spatial diversity

. . . . memory [and still more memory] . . . .
. . . . program-controlled processor . . . .interface

computer

. . . . field-programmable logic devices  . . . .
(before getting programmed)

general
purpose

application-
specific

Fig. 1.3 ICs classified as a function of functionality and hardware complexity.

1.2.3 The fabrication point of view

Another natural question is
“To what extent is a circuit manufactured according to user specifications?”

5 Microprocessors that have their instruction sets, input/output capabilities, memory configurations, timers, and
other auxiliary features tailored to meet specific needs also belong to the ASSP category.



1.2 CONCEPTS AND TERMINOLOGY 7

Full-custom ICs

Integrated circuits are manufactured by patterning multiple layers of semiconductor materials, met-
als, and dielectrics. In a full-custom IC, all such layers are patterned according to user specifications.
Fabricating a particular design requires wafers to go through all processing steps under control of a
full set of lithographic photomasks all of which are made to order for this very design, see fig.1.4.
This is relevant from an economic point of view because mask manufacturing is a dominant con-
tribution to non-recurring VLSI fabrication costs. A very basic CMOS process featuring two layers
of metal requires some 10 to 12 fabrication masks, any additional metal layer requires two more
masks. At the time of writing (late 2007), one of the most advanced CMOS processes comprises 12
layers of metal and involves some 45 lithography cycles.

a)

unprocessed 
wafer

b)

most masks 
shared with 

other designs

few masks
made to order
for one design

all masks 
made to order
for one design

preprocessed
wafer

Fig. 1.4 Full-custom (a) and semi-custom (b) mask sets compared.

Semi-custom ICs

Only a small subset of fabrication layers is unique to each design. Customization starts from pre-
processed wafers that include large quantities of prefabricated but largely uncommitted primitive
items such as transistors or logic gates. These so-called master wafers then undergo a few more
processing steps during which those primitives get interconnected in such a way as to complete the
electrical and logic circuitry required for a particular design. As an example, fig.1.5 shows how a
logic gate is manufactured from a few pre-existing MOSFETs by etching open contact holes followed
by deposition and patterning of one metal layer.

In order to accommodate designs of different complexities, vendors make masters available in various
sizes ranging from a couple of thousands to millions of usable gate equivalents. Organization and
customization of semi-custom ICs have evolved over the years.
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b)

custom metallization

+

preprocessed master

a)

=

c)

customized circuit

=

not used

not used

Fig. 1.5 Customization of a gate array site (simplified). A six-pack of prefabricated MOS transistors (a), metal

pattern with contact openings (b), and finished 2-input nand gate (c).

Gate array, aka channeled gate array. Originally, sites of a few uncommitted transistors each were
arranged in long rows that extended across most of the die’s width. Metal lines were then used
to connect the prefabricated transistors into gates and the gates into circuits. The number of
custom photomasks was twice that of metal layers made to order. As long as no more than
two layers of metal were available, special routing channels had to be set aside in between to
accommodate the necessary intercell wiring, see fig.1.6a.

Sea-of-gates. When more metals became available in the early 1990s, those early components
got displaced by channelless sea-of-gate circuits because of their superior layout density. The
availability of higher-level metals allowed for routing over gates and bistables customized on
the layers underneath, so dispensing with the waste of routing channels, see fig.1.6b. More
metals further made it possible to insulate adjacent transistors electrically where needed,
doing away with periodic gaps in the layout. Sea-of-gates also afforded more flexibility for
accommodating highly repetitive structures such as RAMs and ROMs.
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Structured ASIC. A decade later, the number of metal layers had grown to a point where it
became uneconomical to customize them all. Instead, transistors are prefabricated and pre-
connected into small generic subcircuits such as nands, muxes, full-adders, and bistables
with the aid of the lower layers of metal. Customization is confined to interconnecting those
subcircuits on the top two to four metal layers. What’s more, the design process is accelerated
as supply and clock distribution networks are largely prefabricated.

Fabric. Exploding mask costs and the limitations of sub-wavelength lithography currently work
against many custom-made photomasks. The idea behind fabrics is to standardize the metal
layers as much as possible. A subset of them is patterned into fixed segments of predetermined
lengths which get pieced together by short metal straps, aka jumpers, on the next metal layer
below or above to obtain the desired wiring. Customization is via the vertical contact plugs,
called vias, that connect between two adjacent layers.

a)

predefined 
routing channel

b)

input/output
pad

routing channel
only where needed

unutilized areas

GA SOG

utilized devices

availability

metal layers
of multiple

row of prefabricated
transistor pairs

row of prefabricated
gate-array sites

Fig. 1.6 Floorplan of channeled gate-array (a) versus channelless semi-custom circuits (b).

Due to the small number of design-specific photomasks and processing steps, semi-custom manu-
facturing significantly reduces the non-recurring costs as well as the turnaround time.6 Conversely,
prefabrication necessarily results in non-optimal layouts. Note the unused transistor pair in fig.1.5,
for instance, or think of the extra parasitic capacitances and resistances caused by standardized
wiring. Prefabrication also implies a self-restraint to fixed transistor geometries, thereby further
limiting circuit density, speed, and energy efficiency. Lastly, not all semi-custom masters accommo-
date on-chip memories equally well.

6 Turnaround time denotes the time elapsed from coming up with a finalized set of design data until physical
samples become available for testing.
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Incidentally, be informed that the concept of metal customization is also applied to analog and
mixed-signal circuits. Prefabricated masters then essentially consist of uncommitted transistors
(MOSFETs and/or BJTs) and of passive devices.7

Field-programmable logic

Rather than manufacturing dedicated layout structures, a generic part is made to assume a user-
defined circuit configuration by purely electrical means. Field-programmable logic (FPL) devices are
best viewed as “soft hardware”. Unlike semi- or full-custom ASICs, FPL devices offer turnaround
times that range from a few seconds to a couple of minutes; many product families even allow for
in-system configuration (ISC).

The key to obtaining various gate-level networks from the same hardware resources is the inclusion
of electrical links that can be done — and in many cases also undone — long after a device has
left the factory. Four configuration technologies coexist today; they all have their roots in memory
technology (SRAM, PROM, flash/EEPROM, and EPROM). For the moment, you can think of a
programmable link as some kind of fuse.

A second dimension in which commercially available parts differ is the organization of on-chip
hardware resources. Field-programmable gate arrays (FPGAs), for instance, resemble mask-
programmed gate arrays (MPGAs) in that they are organized into a multitude of logic sites and
interconnect channels. In this text, we will be using the term field-programmable logic (FPL) as a
collective term for any kind of electrically configurable IC regardless of its capabilities, organization,
and configuration technology.8

FPL was initially confined to glue logic applications, but has become an extremely attractive propo-
sition for smaller volumes, for prototyping, when a short time to market is paramount, or when
frequent modifications ask for agility. Its growing market share affords FPL a more detailed dis-
cussion in section 1.4. What also contributed to the success of FPL is the fact that many issues
that must be addressed in great detail when designing a custom circuit are implicitly solved when
opting for configuring an FPL device instead, just consider testability, I/O subcircuits, clock and
power distribution, embedded memories, and the like.

Standard parts

By standard part, aka commercial off-the-shelf (COTS) component, we mean a catalog part with
no customization of the circuit hardware whatsoever.

1.2.4 The design engineer’s point of view

Hardware designers will want to know the answer to
“Which levels of detail are being addressed during a part’s design process?”

7 Microdul MD300 and Zetex 700 are just two examples.
8 Referring to all such parts as “field-configurable” would be preferable as this better reflects what actually happens.

This would also avoid confusion with program-controlled processors. Yet, the term “programmable” has gained
so much acceptance in acronyms such as PLA, PAL, CPLD, FPGA, etc. that we will stay with it.
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Hand layout

In this design style, an IC or some subblock thereof gets entered into the CAD database by delineat-
ing individual transistors, wires, and other circuit elements at the layout level. To that end, designers
use a layout editor, essentially a color graphics editing tool, to draw the desired geometric shapes
to scale, much as in the illustration of fig.1.5c. Any design so established must conform with the
layout rules imposed by the target process. Porting it to some other process requires the layout to be
redesigned unless the new set of rules is obtained from the previous one by simple scaling operations.
Editing geometric layout is slow, cumbersome, and prone to errors. Productivity is estimated to
lie somewhere between 5 and 10 devices drawn per day, including the indispensable verification,
correction, and documentation steps, which makes this approach prohibitively expensive.

Conversely, manual editing gives designers full control over their layouts when in search of maximum
density, performance, and/or electrical matching. Geometric layout, which in the early days had been
the only avenue to IC design, continues to play a dominant role in memory and analog circuit design.
In digital design, it is considered archaic, although a fully handcrafted circuit may outperform a
synthesis-based equivalent by a factor of three or more.

Cell-based design by means of schematic entry

Design capture here occurs by drawing circuit diagrams where subfunctions — mostly logic gates —
are instantiated and interconnected by wires as illustrated in fig.1.9c. All the details of those ele-
mentary subcircuits, aka cells, have been established before and are collected in cell libraries that
are made available to VLSI designers; see section 1.3.3 for more on this. For the sake of economy,
cell libraries are shared among numerous designs. A schematic editor differs from a standard
drawing tool in several ways.

• Circuit connectivity is maintained when components are being relocated.
• A schematic editor is capable of reading and writing both circuit diagrams and netlists.9

• It supports circuit concepts such as connectors, busses, node names, and instance identifiers.

The resulting circuits and netlists are then verified by simulation and other means. Compared
with manual layout entry, cell-based design represented a marked step towards abstracting from
process-dependent details.

Whether the circuit is eventually going to be fabricated as a full-custom IC or as a semi-custom IC
is, in principle, immaterial. In either case, physical design does not go beyond place and route
(P&R) where each cell is assigned a geometric location and connected to other cells by way of
metal lines. As this is done by automatic tools, the resulting layouts are almost always correct by
construction and design productivity is much better than for manual layout. Another advantage
is that any engineer familiar with electronics design can start to develop cell-based ASICs with little
extra training.

Library elements are differentiated into standard cells, macrocells, and megacells.

Standard cells are small but universal building blocks such as logic gates, latches, flip-flops,
multiplexers, adder slices, and the like with pre-established layouts and defined electrical

9 The difference between a netlist and a circuit diagram, aka schematic (drawing), is explained in section 1.7.
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Fig. 1.7 Views of a library cell or of any other subcircuit shown for a 3-input nor gate. Icon (a), simulation

model (b), test vector set (c), transistor-level schematic (d), detailed layout (e), and cell abstract (f)

(simplified).

characteristics.10 They are the preferred means for implementing random logic as there is
virtually no restriction on the functionality that can be assembled from them. Commercial
libraries include between 300 and 500 standard cells with logic complexities ranging from 1/2
to some 60 gate equivalents; the collection of datasheets pertaining thereto typically occupies
some 400 to 800 pages.

On the semiconductor die, standard cells get arranged in adjoining parallel rows with the
interconnecting wires running over the top of them. This so-called over-the-cell routing
style has been being practiced ever since three and more layers of metal became available.11

Megacells also come with a ready-to-use layout. What sets them apart from standard cells is their
larger size and complexity. Typical examples include microprocessor cores and peripherals
such as direct memory access controllers, various serial and parallel communication interfaces,
timers, A/D and D/A converters, and the like. Megacells are ideal for piecing together a
microcomputer or an ASIC with comparatively very little effort. Typical application areas
are in telecommunications equipment, automotive equipment, instrumentation, and control
systems.

1 0 Standard cells are also termed “books” (within IBM) and macros (in the context of semi-custom ICs).
1 1 Older processes did not afford that much routing resources and the wires had to be inserted between the rows

such as to form well-defined routing channels. The resulting separation between adjacent cell rows obviously
made a poor usage of silicon. In fact, it was not uncommon that routing channels occupied twice or even three
times as much area as the active cells themselves.
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Macrocells , in contrast, have their layout assembled on a per case basis according to designer
specifications. The software tool that does this is called a macrocell generator and is
also in charge of providing a simulation model, an icon, a datasheet, and other views of the
macrocell. For reasons of area and design efficiency, this approach is essentially limited to
a few common building blocks of medium complexity such as RAMs and ROMs. This is
because all such structures show fairly regular geometries that lend themselves well to being
put together from a limited collection of layout tiles. Those tiles are manually designed,
optimized, and verified before being stored as part of the generator package.

std
cell

std
cell

std
cell

std
cell

std
cell

standard cell row

with over-the-cell routing

megacell

macrocell

megacell

megacell

megacell

macrocell

Fig. 1.8 Typical cell mix in a full-custom IC.

As standard cells, macrocells, megacells, and hand layout all have their specific merits and draw-
backs, they are often combined in the design of full-custom ICs.12 The resulting mix of cells is
illustrated in fig.1.8. While design productivity in terms of transistors instantiated per day is clearly
higher for megacells and macrocells than for standard cells, expect an average of some 15 to 20 GEs
per day from cell-based design. Schematic entry at the gate level, and even more so at the transistor

1 2 In a microcomputer, for instance, the datapath might be implemented in hand layout, data RAM and pro-
gram ROM generated as macrocells, and the controller as a network of standard cells obtained from automatic
synthesis, while a serial interface from an earlier design might get reused as a megacell.
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level, should be confined to functions that are neither available as library items nor amenable to
automatic synthesis.

Automatic circuit synthesis

The entry level here is a formal description of an entire chip or of a major subblock therein. Most
such synthesis models are established using a text editor and look like software code. Yet, they
are typically written in a hardware description language (HDL) such as VHDL or Verilog; see
fig.1.9b. The output from the automatic synthesis procedure is a gate-level netlist. That netlist then
forms the starting point for place and route (P&R) or for preparing a bit stream that will eventually
serve to configure an FPL device.

Logic synthesis implies the generation of combinational networks and — as an extension — of
fairly simple finite state machines (FSMs). A synthesis tool accepts logic equations built from
operators such as not, and, or, xor, etc., truth tables, state graphs, and the like. Automatic
tools for logic synthesis and optimization have been in routine use for a long time; they have
been completely absorbed in more advanced EDA flows.

Register transfer level (RTL) synthesis goes one step further in that an entire circuit is viewed
as a network made up of storage elements — registers and possibly also RAMs — that are held
together by combinational building blocks, see fig.1.9a. Also, behavioral specifications are no
longer limited to simple logic operations but are allowed to include arithmetic functions (e.g.
comparison, addition, subtraction, multiplication), string operations (e.g. concatenation),
arrays, enumerated types, and other more powerful constructs.

The synthesis process essentially begins with the registers that are necessary to store the
circuit’s state. Next, the combinational networks required to process data words while they
are moving back and forth between those registers are generated and optimized. Command on
a circuit’s structure is otherwise left to the designer who has to decide himself on the number
of registers, on the concurrency of operations, on the necessary computational resources, etc.

RTL synthesis became very popular in the early 1990s with the advent of adequate HDLs
and computer tools. It dispenses with the need for manually assembling a given functional-
ity from primitive logic gates and, therefore, greatly facilitates design parametrization and
maintenance. Synthesis further enables engineers to render their work portable, that is to
capture all relevant characteristics of a circuit design in a form that is virtually technology-
independent. It so becomes possible to defer the commitment to a specific silicon foundry,
to a particular cell library, or to subordinate idiosyncrasies of some FPL family until late in
the design process. As fabrication processes are frequently being upgraded, making designs
portable and reusable is extremely valuable.

Architecture synthesis, which is also referred to as high-level synthesis in VLSI circles, starts
from a data or signal processing algorithm such as a C++ program or a Matlab model,
for instance. As opposed to an RTL model, the source description is purely behavioral and
includes no explicit indications for how to marshal data processing operations and the nec-
essary hardware resources. Rather, these elements must be obtained in an automatic process
that essentially works in five major phases.
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Fig. 1.9 Formats for capturing designs at intermediate levels of abstraction. RTL diagram (a), RTL synthesis

model (b), and gate-level schematic (c) (simplified, note that (a) and (b) refer to different circuits).

1. Identify the computational and storage requirements of the algorithm.
2. From a virtual library of common hardware building blocks, select a suitable item for each

kind of processing and storage operation.
3. Establish a cycle-based schedule for carrying out the algorithm with those resources.

Where there is a choice, indicate which building block is to process what data item.
4. Decide on a hardware organization able to execute the resulting work plan. Specify the ar-

chitecture in terms of combinational logic blocks, data registers, on- and off-chip memories,
busses, switches, signals, and finite state machines.

5. Keeping track of data moves and operations for each clock cycle, translate all this into
the necessary instructions for synthesis at the RTL level.

Generating a close-to-optimum architecture under performance, power, cost, and further
constraints represents a formidable optimization problem, especially if a tool is expected
to work well for arbitrary applications. To get an idea, consult the more detailed lists of
issues to be addressed in section 1.3.2. Apart from a couple of specialized areas, automatic
architecture synthesis does not — up to now — produce results comparable to those of
inspired and experienced engineers. Nonetheless architecture synthesis continues to be an
active field of research as VLSI design can no longer afford to deal with low-level details.
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Even an experienced RTL code writer cannot be expected to complete much more than 40 lines of
code per day. Estimates say that design productivity ranges from 20 to 400 GE per working day.13

Albeit quite impressive, these figures are actually insufficient to keep pace with the rapid advances
of fabrication technology.

Design with virtual components

In the late 1990s, synthesis technology together with HDL standardization opened the door for
an entirely new approach to designing digital VLSI circuits. A virtual component (VC)14 is
essentially a HDL synthesis package that is made available to others on a commercial basis for
incorporation into their own ICs. VLSI design teams across the electronics industry are thus put
in a position to purchase hardware designs for major subfunctions on the commercial market,
dispensing with the need to write too much HDL source code on their own. The licensees just
remain in charge of synthesis, place and route (P&R), and overall verification.

Though of highly specific nature, most VCs implement fairly common subfunctions; some degree of
parametrization is sought to cover more potential applications. Examples include, but are not limited
to, microprocessor and signal processor cores, all sorts of filters, audio and/or video en/decoders,
cipher functions, error correction en/decoders, USB, FireWire, and many other interfaces.

While hard modules such as standard cells, macrocells, and megacells had freed most IC designers
from addressing transistor-level issues and detailed layout by the mid 1980s, the soft VCs have
extended these benefits to higher levels of abstraction in a natural way. New business opportunities
have opened up and companies that specialize in marketing synthesis models have emerged. Yet, as
is to be explained in section 13.4, the concept has proved more difficult than anticipated for reasons
related to quality, adaptation, interfacing, licensing, and liability.

A classification scheme depicted in table 1.1 nicely complements the one of fig.1.3.

Electronic system-level (ESL) design automation

More recently, the competitive pressure towards shorter and leaner design cycles has incited the
industry to look at design productivity from a wider perspective. ESL is a collective term for efforts
that take inspirations from numerous ideas.

• Enforce a correct-by-construction methodology by supporting progressive refinement starting
with a virtual prototype of the system to be.

1 3 Be warned that design productivity is extremely dependent on circumstances.
• The effort per transistor is not the same for memories, logic, and mixed-signal designs.
• The more circuit blocks that have been validated before can be reused, the better.
• Skilled engineering teams not only work faster but also manage with fewer design iterations.
• Powerful EDA tools can work out many minor circuit and layout details automatically.
• The existence of an established and proven design flow benefits the design process.
• Tight timing, power, and layout density budgets ask for more human attention.
• Unstable specifications and rapidly changing teams are detrimental to productivity.

1 4 Virtual components are better known as intellectual property modules or IP modules for short. We prefer
the term “virtual component” because IP does not point to electronics in any way and because the acronym
might easily be misunderstood as “Internet protocol”. Other synonyms include “core” and “core ware”.
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Table 1.1 IC families as a function of fabrication depth and design abstraction level

Fabrication Electrical Semi-custom Full-custom
depth configuration fabrication fabrication

Design Cell-based as obtained from Hand layout
level ◦ synthesis with VCs in HDL form,

◦ synthesis from captive HDL code,
◦ schematic entry, or a mix of these

Product Field- Gate-array, Std. cell IC Full-custom IC
name programmable sea-of-gates, (with or w/o

logic device or structured macrocells and
(FPGA, CPLD) ASIC megacells)

• Resort to architecture synthesis to explore the solution space more systematically and more
rapidly than with conventional, e.g. RTL synthesis, methods.

• Support hardware–software co-design by making it possible to start software development
before hardware design is completed.

• Improve the coverage and efficiency of functional verification by dealing with system-level
transactions and by taking advantage of formal verification techniques where possible.

1.2.5 The business point of view

Our final question relates to business.
“How are the industrial activities shared between business partners?”

Integrated device manufacturer (IDM) is the name for a company that not only designs and
markets microchips but also operates its own wafer processing line, aka fab.
Examples: Intel, Samsung, Toshiba, ST-Microelectronics, Infineon, NXP Semiconductors.

Fabless vendor. A company that develops and markets proprietary semiconductor components
but has their manufacturing subcontracted to an independent silicon foundry rather than
operating any wafer processing facilities of its own.
Examples: Altera (FPL), Actel (FPL), Broadcom (networking components), Cirrus Logic-
Crystal (audio and video chips), Lattice Semiconductor (FPL), Nvidia (graphics accelera-
tors), PMC-Sierra (networking components), Qualcomm (CDMA wireless communication),
Ramtron (non-volatile memories), Sun Microystems (UltraSPARC processors), and Xilinx
(FPL). Please check [3] for a more complete picture.

Silicon foundry, albeit technically incorrect, has become the name for a company that operates
a complete wafer processing line and that offers its manufacturing services to others.
Examples: TSMC, UMC, etc.

Virtual component vendor. A fabless company that makes it a business to develop synthesis
packages and to license them to others for incorporation into their ICs.
Examples: ARM, Sci-worx, Synopsys (formerly InSilicon).
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Originally, all IC business had been confined to vertically integrated semiconductor companies that
designed and manufactured standard parts for the markets they perceived. Opening VLSI to other
companies was essential to instilling new and highly successful fabless business models. Three factors
came together in the 1980s to make this possible.

• Generous integration densities at low costs.
• Proliferation of high-performance engineering workstations and EDA software.
• Availability of know-how in VLSI design outside IC manufacturing companies.

This text is intended to contribute to the third item with a focus on synthesis-based design.

1.3 Design flow in digital VLSI

1.3.1 The Y-chart, a map of digital electronic systems

The Y-chart by Gajski is very convenient for situating the various stages of digital design and the
numerous attempts to automate them. Three axes stand for three different ways to look at a digital
system and concentric circles represent various levels of abstraction, see fig.1.10.
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Fig. 1.10 The Y-chart of digital electronic systems.
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From a behavioral perspective we are interested only in what a circuit or system does, not in how
it is actually built. Put differently, the design is viewed as a black box that processes information
by producing some output symbols in response to some input symbols. What matters most is the
dependency of the output from past and present inputs, but timing relationships between input
data, output data, and some clock signal are also of interest.

A structural way of looking at electronic circuits is concerned with connectivity, that is with
the building blocks from which a circuit is composed and with how they connect to each other.
Given some behavioral specification, it is almost always possible to come up with more than one
network for implementing it. Structural alternatives typically differ in terms of circuit complexity,
performance, energy efficiency, and in other characteristics of practical interest such as parts list,
fabrication technology, testability, etc.

What counts from a physical point of view is how the various hardware components and wires are
arranged in the space available in a cabinet, on a board, or on a semiconductor chip. Again, there
is a one-to-many relationship between structural description and physical arrangement.

Examples of circuits viewed at different levels of abstraction and from all three perspectives have
been given in figs.1.7 and 1.9. Figure 1.11 adds more illustrations not presented so far. In addi-
tion, table 1.2 lists the objects that are of interest for the individual views. It is interesting to
note that different time units are used depending on the abstraction level on which behavior is
described.

Table 1.2 Views and levels of abstraction in digital design.

level of concept
abstraction behavioral structural physical of time

system input/output system with chip, board, sequence,
relationship input/output or cabinet throughput

architecture bus functional organization partitioning, partial ordering
model (BFM) into subsystems floorplan relationships

register data transfers ALUs, muxes, placement and clock cycles
transfer and operations and registers routing (cycle true)
logic truth tables, gates, latches, standard cells events, delays,

state graphs and flip-flops or components timing parametersa

electrical transfer transistors, detailed layout, continuous
functions wires, R, L, C mask polygons

a Such as tp d , ts u , th o . Glitches are also accounted for at this level of abstraction.

1.3.2 Major stages in VLSI design

The development cycle of VLSI circuits comprises a multitude of steps that are going to be explained
in more detail next. The interplay of all such steps is illustrated by way of two drawings that partially
overlap. Figure 1.12 focusses on system-level issues and reduces all activities that are related to
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architecture seriesexpansion of cosine is
begin

process (theta) is

begin
sum := 1.0;

end process;
end architecture seriesexpansion;

end loop;
result <= sum;

variable sum, term : real;
variable n : natural;

term := 1.0;
n := 0;
while abs term > abs (sum / 1.0E6) loop

n := n+2;
term := (-term)*theta**2 / real(((n-1)*n));
sum <= sum+term;
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Fig. 1.11 More design views. Floorplan of a VLSI chip (a), software model (b), encapsulated chip (c),

graphical formalisms (d), transfer characteristic of an inverter (e), and block diagram (f) (simplified).

actual IC design to their simplest expression while fig.1.13 does the opposite. Again, figs.1.7, 1.9,
and 1.11 help to clarify what is meant. Also keep in mind that this text focuses on the design of
hardware modules in a system and ignores all steps towards implementing its software components.

System-level design. The decisions taken during this stage are most important as they determine
the final outcome more than anything else does.

• Specify the functionality, operating conditions, and desired characteristics
(in terms of performance, power, form factor, costs, etc.) of the system to be.

• Partition the system’s functionality into subtasks.
• Explore alternative hardware and software tradeoffs.
• Decide on make or buy for all major building blocks.
• Decide on interfaces and protocols for data exchange.
• Decide on data formats, operating modes, exception-handling procedures, and the like.
• Define, model, evaluate, and refine the various subtasks from a behavioral perspective.

It is a characteristic trait of this stage that acceptance criteria, design procedures, design
expertise, and the software tools that are being put to service vary greatly with the nature
of the overall application and of the subsystem currently being considered.
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Figure 1.12 exposes another difficulty of system-level design that has its roots in the highly
heterogeneous nature of electronic systems. At various points, some fairly abstract design
description must be propagated from one software tool to the next. Yet, there are no math-
ematical formalisms and agreed-on computer languages of sufficient scope to capture a suf-
ficient portion of a system, let alone a system as a whole. The practical consequences are
that some specifications need to be manually restated several times, that simulations do not
extend over the entire system, and that certain aspects are being lost in the process.

Algorithm design. The central theme is to meet the data and/or signal processing requirements
defined before with a series of computations that are streamlined in view of their implemen-
tation in hardware. The subsequent assignments are part of algorithm design.

• Coming up with a collection of suitable algorithms or computational paradigms.15

• Cut down computational burden and memory requirements.
• Find acceptable compromises between computational complexity and accuracy.
• Analyze and contain effects of finite word-length computation.
• Decide on number representation schemes.
• Evaluate alternatives and select the one best suited for the situation at hand.
• Quantify the minimum required computational resources (in terms of memory, word

widths, arithmetic and logic operations, and their frequencies of occurrence).

Algorithm design culminates in a bit-true software model which is indispensable for checking
figures of merit relevant for the application at hand, e.g. signal-to-noise ratio, coding gain,
data compression factor, error rate, and the like against specifications.

Architecture design. VLSI architects essentially decide on the necessary hardware resources and
organize their interplay in such a way as to implement a known computational algorithm
under the performance, cost, power, and other constraints imposed by the target application.
The hardware arrangement they have to come up with must capture the essential structural
characteristics of the future circuit but, at the same time, abstracts from implementation
details. Still, architecture design also implies selecting a target technology and taking into
account its possibilities and limitations.16

Architecture design starts from fairly abstract notions of a circuit’s functionality and gradu-
ally proceeds to more detailed representations. The process is understood to happen in two
substages, namely high-level architecture design and register transfer-level design. The former
involves the following.

1 5 The term “computational paradigm” has been chosen to include finite state machines, cellular automata, neural
networks, fuzzy logic, and other computational schemes that are not necessarily covered by the word “algorithm”
as it is normally understood in the context of software engineering.

1 6 Take this as an analogy from everyday life. Assume you were given the recipe for a fantastic cake by your
grandmother and you were now to make a business out of it by setting up a bakery to mass-produce the cake.
The recipe corresponds to the algorithm or software model that specifies how the various ingredients must
be processed in order to obtain the final product. Architecture design can then be likened to deciding on the
mixers, kneaders, ovens, and other machines for processing the ingredients, and to planning the material flow
in an industrial bakery. Observe that you will arrive at different factory layouts depending on the quantity of
cakes that you intend to produce and depending on the availability and costs of labor and equipment.
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• Partition a computational task in view of a hardware realization.
• Organize the interplay of the various subtasks.
• Decide on the hardware resources to allocate to each subtask (allocation).
• Define datapaths and controllers.17

• Decide between off-chip RAMs, on-chip RAMs, and registers.
• Decide on communication topologies and protocols (parallel, serial).
• Define how much parallelism to provide in hardware.
• Decide where to opt for pipelining and to what degree.
• Decide on a circuit style, fabrication technology, and manufacturing process.
• Decide what abstraction level to design at and what cell libraries to use, if any.
• Get a first estimate of the circuit’s size and cost.
• etc.

The result is captured in a high-level block diagram that includes datapaths, controllers,
memories, interfaces, and key signals. A preliminary floorplan is also being established. Veri-
fication of an architecture typically occurs by way of simulations, where each major building
block is represented by a behavioral model of its own.

The work is then carried down to the more detailed register transfer level (RTL) where
the circuit gets modelled as a collection of storage elements interconnected by purely combi-
national subcircuits. Relevant issues at this stage include

• How to implement arithmetic and logic units
(e.g. ripple-carry, carry-lookahead, carry-select).

• Whether to use hardwired logic or microcode to implement a controller.
• When to use a ROM rather than random logic.
• What operations to perform during which clock cycle (scheduling).
• What operations to carry out on which processing unit (binding).
• Where to insert pipelining and shimming registers.
• How to balance combinational depth between registers.
• What clocking discipline to adopt.
• What time interval to use as the basic clock period.
• Where to use a bidirectional or a unidirectional bus, and where to prefer three-state bus

drivers over multiplexers.
• By what test strategy is testability to be ensured.
• How to initialize the circuit.
• etc.

The outcome is a set of more detailed diagrams that include every single register, mem-
ory, and major block of combinational logic. As opposed to gate-level schematics, however,
combinational functions are specified in behavioral rather than structural terms. Simulations
are instrumental in debugging the RTL code. The floorplan is refined on the basis of the
more detailed data that are now available and compared against the die size and cost tar-
gets for the final product. This is also the point to decide on the most appropriate design
level — synthesis, schematic entry, hand layout — for each circuit block.

1 7 These and other circuit-related terms are explained in section 1.7.



24 Architectures of VLSI Circuits

Logic design. The translation into a gate-level netlist and its Boolean optimization are largely
automatic. The design is now definitively being committed to

• A fabrication depth (e.g. full-custom vs. semi-custom vs. FPL),
• One or more cell libraries (e.g. by Artisan vs. LSI Logic vs. Xilinx),
• A circuit style (e.g. static vs. dynamic CMOS logic),
• A fabrication technology (e.g. CMOS vs. BiCMOS), and
• A manufacturing process (e.g. L130 by UMC vs. HCMOS9gp by ST).

The delays and energy-dissipation figures associated with the various computational and
storage operations are being calculated. Subcircuits that are found to limit performance
during pre-layout analysis are identified and redesigned or reoptimized where possible. The
result is a complete set of gate-level schematics and/or netlists validated by electrical rule
check (ERC), logic simulation, timing verification, and power estimation.

Improvement of testability. A malfunctioning IC is the result of design flaws, fabrication de-
fects, or both. Special provisions are necessary to ascertain the correct operation of millions
of transistors enclosed in a package with a couple of hundred pins at most. Design for
test (DFT) implies improving the controllability and observability of inner circuit nodes by
adding auxiliary circuitry on top of the payload logic.18

In addition, a test vector set is generated for distinguishing faulty circuits from correct ones.
Such a vector set typically includes thousands or millions of stimuli and expected responses.
In a procedure referred to as fault grading, testability is rated by relating the number of
fabrication defects that can in fact be detected with a test vector set under consideration
to the total number of conceivable faults. Both the test circuitry and the test patterns are
iteratively refined until a satisfactory fault coverage is obtained.

Physical design. Physical design addresses all issues of arranging the multitude of subcircuits
and devices along with their interconnections on a piece of semiconductor material. Floor-
planning is concerned with organizing the major circuit blocks into a rectangular area as
small as possible while, at the same time, limiting the effects of interconnect delays on the
chip’s performance.19 Chip-level power and clock distribution are also to be dealt with. A
padframe must be generated to hold the bond pads and the top-level layout blocks. During
the subsequent place and route (P&R) steps, each cell gets assigned a specific location on
the die before the courses of myriads of metal wires that are to carry electrical signals between
those cells get defined. It is often necessary to reoptimize the circuit logic as a function of
the estimated interconnect delays that become available during the process. The final phase

1 8 Standard techniques include block isolation, scan testing, and BIST. Block isolation makes major circuit blocks
accessible from outside a chip with the aid of extra multiplexers so that stimuli can be applied and responses
evaluated via package pins while in test mode. Scan testing is to be outlined in section 6.2.2. The idea behind
built-in self-test (BIST) is to move stimuli generation and response checking onto the chip itself, and to essentially
output a “go/no go” result [4]. BIST and block isolation are popular for testing on-chip memories. As DFT,
test vector preparation, and automated test equipment (ATE) are not part of this text, the reader is referred
to the specialized literature such as [5], for instance.

1 9 Floorplanning makes part of physical design much as layout design does. What is the difference then? As an
analogy, floorplanning is concerned with the partitioning of a flat into rooms and hallways whereas layout design
deals with tiny geometric patterns on a carpet.
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where the global wires running between padframe and core get routed is also known as chip
assembly.

As the inner layout details of the cells do not really matter for floorplanning, place, and
route, cells are typically abstracted to their outlines up to this point. To prepare for IC
manufacturing, detailed layout data must be filled in for those abstract views. The outcome
is a huge set of polygons that involves all mask layers. Prior to fabrication, the complete
layout data need to be checked carefully to protect against fatal mishaps. Physical design
verification relies on a number of software tools.

• Layout rule check — better known as design rule check (DRC) — examines
conformity of layout with geometric rules imposed by the target process.

• Manufacturability analysis searches for layout patterns likely to be
detrimental to the fabrication yield.

• Layout extraction (re-)obtains the actual circuit netlist in preparation for
• layout versus schematic (LVS) where it gets compared against the desired one.
• Post-layout timing verification.
• Post-layout simulation.

Sign-off. By accepting a design for prototype fabrication, an IC vendor commits himself to deliv-
ering circuits that behave like the post-layout simulation model (identical functionality for
the test vector set provided by the customer, same or better speed, same or lower power).
As no customer is willing to pay for fabricated parts that do not conform with this require-
ment, the vendor wants to make sure the design is consistent with good engineering practice
and with company-specific guidelines before doing so. DRC, manufacturability, ERC, LVS,
post-layout simulation, and fault coverage are routinely examined. Inspection often extends
to timing verification, clocking discipline, power and clock distribution, circuit design style,
test structures, and more.

A couple of comments are due after this rather general overview.

� In reality, the separation into individual subtasks is not as nice and clear as in fig.1.13. Various
side effects of deep submicron technologies and the quest for optimum results make it necessary
for most software tools to work across several levels of abstraction. As an example, it is no
longer possible to place and route a gate-level netlist without adapting the circuit logic as a
function of the resulting layout parasitics and interconnect delays. In the drawing, this gets
reflected by the joint refinement of layout data and netlists.

� Only ideally does design occur as a linear sequence of steps. Some back and forth between the
various subtasks is inevitable to obtain a truly satisfactory result. Also, not all design stages
are explicitly covered in every IC development project. Depending on the circuit’s nature,
fabrication depth, and design level, some of the design stages are skipped or outsourced, i.e.
delegated to specialists at third-party companies.20

2 0 The design of a simple glue logic chip, for instance, begins at the logic level as there are no algorithmic or
architectural questions to deal with. Models of industrial collaboration are to be discussed in section 13.2.
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� Note the presence of angular and rounded boxes in fig.1.13. While angular boxes refer to
construction activities, the rounded ones stand for analysis and verification steps. A backward
arrow implies that any problem uncovered during such an analysis triggers corrective action
by the designer. The results from construction steps are subject to immediate verification,
which is typical for VLSI.

The reason is that correcting a mistake becomes more and more onerous the further the design
process has progressed. Correcting a minor functional bug after layout design, for instance,
would require redoing several design stages and would waste many hours of labor and computer
time. Also, a functional bug can be uncovered more effectively from a behavioral or RTL model
than from a post-layout transistor-level netlist because simulation speed is orders of magnitude
higher and because automatic response checking is much easier to implement for logic and
numeric data types than for analog waveforms.

� A critical point is reached when first silicon is going to be produced. While it is possible
to cut and add wires using advanced and expensive equipment such as focused ion-beam
(FIB) technology to patch a malfunctioning prototype, there is virtually no way to fix bugs
in volume production. Depending on the circuit’s size, fabrication depth, process, and manu-
facturer, expenses somewhere between 12 kUSD and 1 MUSD are involved with preparation
of photomasks, tooling, wafer processing, preparation of probe cards and evaluation of pre-
production samples. Any design flaw found after prototype fabrication thus implies the waste
of important sums of money.

To make things worse, with turnaround times ranging between two weeks and three months,
a product’s arrival on the market is delayed so much that the chip is likely to miss its window
of opportunity.

Observation 1.2. Redesigns are so devastating for the business that the entire semiconductor

industry has committed itself to “first-time-right” design as a guiding principle. To avoid them,

VLSI engineers typically spend much more time verifying a circuit than actually designing it.

� Figure 1.13 also includes a number of forward arrows that bypass one or two construction
steps. They suggest how electronic design automation, cell libraries, and purchased know-how
help speed up the design process. Keeping pace with the breathtaking progress of fabrication
technology is in fact one of the major challenges for today’s VLSI designers.

� While there is not too much of a difference in the front-end flow, back-end design for field-
programmable logic (FPL) differs somewhat from that depicted in fig.1.13. The preliminary
gate-level netlist obtained from HDL synthesis is mapped onto configurable blocks available
in the target FPGA or CPLD device. After the EDA software has decided how to run all
necessary interconnects using the wires, switches, and drivers available, the result is converted
into a configuration bit stream for download into the FPL device. As FPGAs and CPLDs
come with many diverse architectures, product-specific back-end tools made available by the
FPL vendor are used for this procedure.

Observation 1.3. Whoever has learned to design full-custom ICs is in an excellent position for

designing semi-custom ICs and to design with field-programmable logic, but not necessarily the other

way round.
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1.3.3 Cell libraries

Library development occurs quite separately from actual IC design as cell-based circuits largely
dominate VLSI.21 Cell libraries are typically licensed to IC developers by specialized library vendors
since silicon vendors have largely withdrawn from this business.
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Once the set of prospective library cells has been defined functionally, library development proceeds
in three major phases, see fig.1.14. Electrical design deals with implementing logic functions as
transistor-level networks and with sizing the individual devices such as to find an optimum trade-off
between performance, circuit complexity, and energy efficiency.

During the subsequent layout design, the locations and geometric shapes of individual devices are
defined along with the shapes of the wires running in between. The goal is to obtain leaf cells that
are compact, fast, energy-efficient, suitable for automatic place and route (P&R), and that can be
manufactured with maximum yield.

Verification includes the customary ERC, DRC, manufacturability analysis, extraction, and LVS
procedures. Next the electrical and timing parameters that are to be included in data sheets and
simulation models of the cells are determined. This library characterization step typically relies

2 1 Semi-custom ICs and FPL rely on prefabricated primitives anyway.
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on repeated continuous-time continuous-value simulations under varying load, ramp, and operating
conditions.22

Designing, characterizing, documenting, and maintaining a cell library is a considerable effort as
multiple design views must be prepared for each cell, including

• A datasheet with functional, electrical, and timing specifications.
• A graphical icon or symbol for inclusion into schematic drawings.
• An accurate behavioral model for simulation and timing analysis.
• A set of simulation and test vectors.
• A transistor-level netlist or schematic.
• A detailed layout.
• A simplified layout view showing cell outline and connector locations for the purpose of place

and route known as cell abstract, floorplanning abstract, or phantom cell.

Please refer back to fig.1.7 for illustrations.

In order to protect their investments, most library vendors consider their library cells to be propri-
etary and are not willing to disclose how they are constructed internally. They supply datasheets,
icons, simulation models, and abstracts, but no transistor-level schematics and no layouts. Under
this scheme, detailed layouts are to be substituted for all cell abstracts by the vendor before mask
preparation can begin. Note this extra step is reflected in fig.1.13.

1.3.4 Electronic design automation software

The VLSI industry long ago became entirely dependent on electronic design automation (EDA)
software. There is not one single step that could possibly be brought to an end without the assistance
of sophisticated computer programs. The sheer quantity of data necessary to describe a multi-million
transistor chip makes this impossible. The design flow outlined in the previous section gives a rough
idea of the variety of CAE/CAD programs that are required to pave the way for VLSI and FPL
design. Almost each box in fig.1.13 stands for yet another tool.

While a few vendors can take pride in offering a range of products that covers all stages from system-
level decision making down to physical layout, much of their effort tends to focus on relatively
small portions of the overall flow for reasons of market penetration and profitability. Frequent
mergers and acquisitions are another characteristic trait of the EDA industry. Truly integrated
design environments and seamless design flows are hardly available off the shelf.

Also, the idea of integrating numerous EDA tools over a common design database and with a
consistent user interface, once promoted as front-to-back environments, aka frameworks, has lost
momentum in the marketplace in favor of point tools and the “best in class” approach. Design
flows are typically pieced together from software components of various origins.23 The presence of
software tools, design kits, and cell libraries from multiple sources in conjunction with the absence of
agreed-on standards adds a lot of complexity to the maintainance of a coherent design environment.
Many of the practical difficulties with setting up efficient design flows are left to EDA customers

2 2 More details are to follow in section 12.7.
2 3 A very nice review of the evolution of the EDA industry is given in [6].
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and can sometimes become a real nightmare. It is to be hoped that this trend will be reversed one
day when customers are willing to pay more attention to design productivity than to layout density
and circuit performance.

1.4 Field-programmable logic

The general idea behind programmable logic has been introduced in section 1.2.3. The goal of this
section is to explain the major differences that separate distinct product families from each other.
Key properties of any FPL device are fixed by decisions along two dimensions taken at development
time. A first choice refers to how the device is being configured and how its configuration is stored
electrically while a second choice is concerned with the overall organization of the hardware resources
available to customers. Customers, in this case, are design engineers who want to implement their
own circuits in an FPL device.

1.4.1 Configuration technologies

Static memory. The key element here is an electronic switch — such as a transmission gate, a
pass transistor, or a three-state buffer — that gets turned “on” or “off” under control of
a configuration bit. Unlimited reprogrammability is obtained from storing the configuration
data in SRAM cells or in similar on-chip subcircuits built from two cross-coupled inverters,
see fig.1.15a. As a major drawback, the circuit must (re)obtain its entire configuration from
outside whenever it is being powered up. The problem is solved in one of three possible ways,
namely

(a) by reading from a dedicated bit-serial or bit-parallel off-chip ROM,
(b) by downloading a bit stream from a host computer, or
(c) by long-term battery backup.

Reconfigurability is very helpful for debugging. It permits one to probe inner nodes, to al-
ternate between normal operation and various diagnostic modes, and to patch a design once
a flaw has been located. Many RAM-based FPL devices further allow reconfiguring of their
inner logic during operation, a capability known as in-system configuration (ISC) that
opens a door towards configurable computing.

UV-erasable memory. Electrically programmable read-only memories (EPROM) rely on special
MOSFETs where a second gate electrode is sandwiched between the transistor’s bulk material
underneath and a control gate above, see fig.1.15b. The name floating gate captures the
fact that this gate is entirely surrounded by insulating silicon dioxide material. An electrical
charge trapped there determines whether the MOSFET, and hence the programmable link
too, is “on” or “off”.24

2 4 More precisely, the presence or absence of an electrical charge modifies the MOSFET’s threshold voltage and
so determines whether the transistor will conduct or not when a voltage is applied to its control gate during
memory readout operations.
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Charging occurs by way of hot electron injection from the channel. That is, a strong lateral
field applied between source and drain accelerates electrons to the point where they get
injected through the thin dielectric layer into the floating gate. The necessary programming
voltage in the order of 5 to 20 V is typically generated internally by an on-chip charge
pump.

Erasure of the charge is obtained by shining ultraviolet (UV) radiation on the chip, thereby
causing the charges to leak away from the floating gate. The necessary quartz window in the
plastic or ceramic package gives UV-erasable devices their unmistakable appearance but also
renders the package rather expensive.

UV-erasable devices are non-volatile and immediately live at power-up, thereby doing away
with the need for any kind of configuration-backup apparatus. Reprogramming necessitates
removing the component from the circuit board and placing it into a special UV eraser,
however, which is undesirable and often altogether impossible. This explains why EPROM-
based FPL devices — much like the memories themselves — have been superseded by parts
that are more convenient to reconfigure.

Electrically erasable memory. EEPROM technology borrows from UV-erasable memories. The
difference is that the electrons trapped on the floating gate are removed electrically by having
them tunnel through the oxide layer underneath the floating gate without exposure to ultra-
violet light, thereby making it possible to manufacture FPL devices that are non-volatile but
nevertheless reconfigurable through their package pins. The secret is a quantum-mechanical
effect known as Fowler–Nordheim tunneling that comes into play when a strong vertical field
(8–10 MV/cm or so) is applied across the gate oxide.
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Early electrically erasable devices were penalized by the fact that an EEPROM cell occupies
about twice as much area as its UV-erasable counterpart because each bit cell includes a select
transistor connected in series with the storage transistor. The flash memory technology
prevalent today manages with a single floating-gate transistor per bit. The fact that erasure
must occur in chunks, that is to say many bits at a time, is perfectly adequate in the context
of FPL. Data retention times vary between 10 and 40 years. Endurance of flash FPL is
typically specified with 100 to 1000 configure–erase cycles, which is much less than for flash
memory chips.

Fuse or antifuse. Fuses, which were used in earlier bipolar PROMs and SPLDs, are narrow bridges
of conducting material that blow in a controlled fashion when a programming current is
forced through. Antifuses, such as those employed in today’s FPGAs, are thin dielectrics
separating two conducting layers that are made to rupture upon applying a programming
voltage, thereby establishing a conductive path of low impedance.

In either case, programming is permanent. Whether this is desirable or not depends on the
application. Full factory testing prior to programming of one-time programmable links is
impossible for obvious reasons. Special circuitry is incorporated to test the logic devices and
routing tracks at the manufacturer before the unprogrammed devices are being shipped. On
the other hand, antifuses are only about the size of a contact or via and, therefore, allow for
higher densities than reprogrammable links, see fig.1.15c and d. Antifuse-based FPL is also
less sensitive to radiation effects, offers superior protection against unauthorized cloning, and
does not need to be configured following power-up.

Table 1.3 FPL configuration technologies and their key characteristics.

Non- Live at Reconfi- Unlimited Radiation Area Extra
Configuration vola- power- gurable endu- tolerance occupation fabr.
technology tile up rance of config. per link steps

SRAM no no in circuit yes poor large 0
EPROM yes yes out of no good small 3

circuit in array
Electr. erasable yes yes in circuit good >5

EEPROM no 2·EPROM
Flash memory no ≈EPROM

Antifuse PROM yes yes no n.a. best small 3

1.4.2 Organization of hardware resources

Simple programmable logic devices (SPLDs). Historically, FPL has evolved from purely com-
binational devices with just one or two programmable levels of logic such as ROMs, PALs,
and PLAs. Flip-flops and local feedback paths were added later to allow for the construction
of finite state machines, see fig.1.16a and b. Products of this kind continue to be commercially
available for glue logic applications. Classic SPLD examples include the 18P8 (combinational)
and the 22V10 (sequential).
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Fig. 1.16 General architecture of CPLDs (c) along with precursors (a,b).

The rigid two-level-logic-plus-register architecture in conjunction with the limited numbers of inputs,
outputs, product terms, and flip-flops always restricted SPLDs to small applications. More scalable
and flexible architectures had thus to be sought, and the spectacular progress of VLSI technology
has made their implementation economically feasible from the late 1980s onwards. Two broad classes
of hardware organization prevail today.

Complex programmable logic devices (CPLDs) expand the general idea behind SPLDs by
providing many of them on a single chip. Up to hundreds of identical subcircuits, each of which
conforms to a classic SPLD, are combined with a large programmable interconnect matrix or
network, see fig.1.16c. A difficulty with this type of organization is that a partitioning into a
bunch of cooperating SPLDs has to be imposed artificially on any given computational task,
which benefits neither hardware nor design efficiency.

Depending on the manufacturer, products are known as complex programmable logic device
(CPLD), programmable large-scale integration (PLSI), erasable programmable logic device
(EPLD), and the like in the commercial world.

Field-programmable gate arrays (FPGAs) have their overall organization patterned after that
of gate arrays. Many configurable logic cells are arranged in a two-dimensional array with
bundles of parallel wires in between. A switchbox is present wherever two wiring channels
intersect, see fig.1.17.25 Depending on the product, each logic cell can be configured so as
to carry out some not-too-complex combinational operation, to store a bit or two, or both.

2 5 While it is correct to think of alternating cells and wiring channels from a conceptual point of view, you
will hardly be able to discern them under a microscope. The reason is that logic and wiring resources are
superimposed for the sake of layout density in modern FPGA chips.
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As opposed to traditional gate arrays, it is the state of programmable links rather than
fabrication masks that decides on logic functions and signal routing.

Parts with this organization are being promoted under names such as field-programmable
gate array (FPGA), logic cell array (LCA), and programmable multilevel device (PMD).
The number of configurable logic cells greatly varies between products, with typical figures
ranging between a few dozens and hundreds of thousands.

FPGA architectures are differentiated further depending on the granularity and capabilities
of the configurable logic cells employed. One speaks of a fine-grained architecture when
those cells are so simple that they are capable of implementing no more than a few logic
gates and/or one bistable. In the example depicted in fig.1.18a, for instance, each logic cell
can be configured into a latch, or a flip-flop, or into almost any 3-input gate.

As opposed to this, cells that are designed to implement combinational functions of four
to six input variables and that are capable of storing two or more bits at a time are referred
to as coarse-grained. The logic cell of fig.1.18b has 16 inputs and 11 outputs, and includes
two programmable look-up tables (LUTs), two generic bistables that can be configured either
into a latch or a flip-flop, a bunch of configurable multiplexers, a fast carry chain, plus other
gates. Of course, the superior functional capabilities offered by a coarse-grained cell are
accompanied by a larger area occupation.26

The gate-level netlists produced by automatic synthesis map more naturally onto fine-grained
architectures. The fact that fine-grained FPGAs and semi-custom ICs provide similar primi-
tives further supports extensive reuse of design flows, HDL code, building blocks, and design

2 6 Incidentally note that FPL vendors refer to configurable logic cells by proprietary names. “Logic tile” is Actel’s
term for their fine-grained cells whereas Xilinx uses the name “configurable logic block” (CLB) for their coarse-
grained counterparts. Depending on the product family, one CLB consists of two or three LUTs plus two flip-flops
or of several “slices”, each of which includes one LUT and one bistable. “Module” and “eCell”are commercial
names used by other vendors.
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know-how. It thus becomes practical to move back and forth between field- and mask-
programmed circuits with little overhead and to postpone any final commitment until fairly
late in the design cycle. Conversely, fine-grained FPGAs tend to be more wasteful in terms
of configuration bits and routing resources.

Another reason that contributed to the popularity of coarse-grained FPGAs is that on-chip
RAMs come at little extra cost when that architectural concept is combined with configura-
tion from static memory. In fact, a reprogrammable LUT is nothing else than a tiny storage
array. It is thus possible to bind together multiple logic cells in such a way as to make them
act collectively like a larger RAM. As opposed to many other types of FPGAs, there is no
compelling need to set aside special die areas for embedded SRAMs. In the occurrence of
fig.1.18b, each of the two larger LUTs in each logic tile contributes another 16 bits of storage
capacity.

1.4.3 Commercial products

Table 1.4 classifies major CPLD and FPGA product families along the two dimensions configura-
tion technology and hardware organization. These are not the only features that distinguish the
numerous commercial products from each other, however. Most vendors combine field-programmable

Table 1.4 Commercial field-programmable logic device families.

overall organization of resources
configuration CPLD FPGA
technology coarse-grained fine-grained

static Xilinx Spartan, Virtex. Atmel AT6000,
memory Lattice SC, EC, ECP. AT40K.
(SRAM) Altera FLEX, APEX,

Stratix, Cyclone.
eASIC Nextreme SLa

UV-erasable Cypress MAX340b

(EPROM)
electrically Xilinx XC9500, Lattice XPc, Actel ProASIC
erasable CoolRunner-II. MACH XO. ProASICPLUS,
(flash) Altera MAX3000, 7000. Fusion,d

Lattice MACH 1,...,5. Igloo.
Cypress Delta39K,

Ultra37000.
antifuse QuickLogic Eclipse II, Actel MX,
(PROM) PolarPro. Axcelerator AX.

a Combines RAM-configurable LUTs with e-beam single via-layer customization for interconnect.
b Remaining inventory transferred to Arrow/Zeus Electronics in 2006.
c Combines on-chip flash memory with an SRAM-type configuration memory.
d Mixed-signal FPGAs with on-chip analog-to-digital converters and optional processor core.
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Fig. 1.18 Fine-grained vs. coarse-grained FPGAs. A small (Actel ProASIC) (a) and a large logic cell (Xilinx

Virtex-4, simplified) (b).
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logic with major hardwired subfunctions on a single die. SRAMs, FIFOs, phase-locked loops
(PLLs), processor cores (e.g. PowerPC, ARM), and standard interfaces (PCI, USB, FireWire,
Ethernet, WLAN, JTAG, LVDS, clock recovery circuits, etc.) are typical building blocks embedded
within FPGA chips. The intention behind all such extensions is to help customers reduce time to
market [7].

In addition to FPL, field-programmable analog arrays (FPAAs) began to appear on the market
in the late 1990s. The next logical step was the extension to mixed-signal applications. Advanced
products that combine configurable analog building blocks with a micro- or digital signal processor
and with analog-to-digital and digital-to-analog converters come quite close to the vision of field-
programmable systems on a chip. Vendors of field-programmable analog and mixed-signal arrays
include Anadigm, Actel, Cypress, Lattice, and Zetex FAS.

Technical details on commercial FPL devices are distributed over thousands of datasheets, [8] [9]
help to keep track of products and manufacturers. More condensed background information is
available from references such as [10] [11] [12].

Capacity figures of semi-custom ICs and FPL may be confusing. As opposed to full-custom ICs,
manufactured gates, usable gates, and actual gates are not the same. Manufactured gates indicate
the total number of GEs that are physically present on a silicon die. A substantial fraction thereof
is not usable in practice because the combinational functions in a given design do not fit into the
available look-up tables exactly, because an FPL device only rarely includes combinational and
storage resources with the desired proportions, and because of limited interconnect resources. The
percentage of usable gates thus depends on the application. The actual gate count, finally, tells
how many GEs are indeed put to service by a given design. The three figures frequently get muddled
up, all too often in a deliberate attempt to make one product look better than its competitors in
advertisements, product charts, and datasheets. Some FPL vendors prefer to specify the available
resources using their own proprietary capacity units rather than in gate equivalents.

Hint: It often pays to conduct benchmarks with a few representative designs before undertak-
ing serious cost calculations and making a misguided choice. This also helps to obtain realistic
timing figures that take into account interconnect delays.

1.5 Problems

1. Various examples of design views have been given in figs.1.7, 1.9, and 1.11. Locate them in
the Y-chart of fig.1.10.

2. Think of some industrial product family of your own liking (record player/MP3 player, mo-
bile phone, (digital) camera, TV set/video recorder; car, locomotive, airplane; computer, pho-
tocopier, building control equipment, etc.). Discuss what microelectronics has contributed
towards making these products possible in their present form. How has the microelectronic
content evolved over the years? Where do you see challenges for improving these products and
their microelectronic content?
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1.6 Appendix I: A brief glossary of logic families

A logic family is a collection of digital subfunctions that

• support the construction of arbitrary logic, arithmetic, and storage functions,
• are compatible among themselves electrically, and
• share a common fabrication technology.

A logic family must be available either as physical parts (SSI/MSI/LSI components for board design)
or in virtual form as a set of library cells to be instantiated and manufactured together on a die of
semiconductor material (for IC design).

Table 1.5 Major semiconductor technologies and logic families with their acronyms.

Acronym Meaning

MOS Metal Oxide Semiconductor.
FET Field Effect Transistor (either of n- or p-channel type).
BJT Bipolar Junction Transistor (either of npn or pnp type).

NMOS n-channel MOS (transistor, circuit style, or fabrication technology).
PMOS p-channel MOS (transistor, circuit style, or fabrication technology).
CMOS Complementary MOS (circuit style or fabrication technology) where

pairs of n- and p-channel MOSFETs cooperate in each logic gate;
features zero quiescent power dissipation, or almost so; supply
voltages have evolved from up to 15 V down to 1 V and less.

static CMOS circuit style that supports suspending all switching activities
indefinitely and in any state with no loss of state or data.

dynamic CMOS circuit style where data and/or state are kept as electrical charges
that need to be refreshed or computed anew at regular intervals
as data and/or state are otherwise lost.

TTL Transistor Transistor Logic, made up of BJTs and passive devices;
first logic family to gain wide-spread acceptance as SSI/MSI parts,
has evolved over many generations, all of which share a 5 V supply.

ECL Emitter-Coupled Logic, non-saturating current switching circuits
built on the basis of BJTs, provides complementary outputs with
a mere 0.5 V swing; exhibits prohibitive static power dissipation.

BiCMOS CMOS subcircuits combined with bipolar devices on a single chip.

Originally a low-power but slow alternative to TTL, CMOS has become the technology that almost
totally dominates VLSI today. This is essentially because layout density, operating speed, energy
efficiency, and manufacturing costs have benefited and continue to benefit from the geometric down-
scaling that comes with every process generation. In addition, the simplicity and comparatively low
power dissipation of CMOS circuits have allowed for integration densities not possible on the basis
of BJTs, also see fig.1.19.
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The focus of this text is on static circuits in CMOS technology. However, as designing digital VLSI
systems and developing with PLDs only loosely depend on technology, the discussion of further
details is postponed to forthcoming chapters, notably 8 and 14.

1.7 Appendix II: An illustrated glossary of circuit-related terms

Table 1.6 lists important terms from digital circuits, microelectronics, and electronic design automa-
tion (EDA). Two illustrations follow. Figure 1.20 identifies most of the underlying concepts by way
of a circuit diagram while fig.1.21 shows how they reflect in a hardware description language (HDL)
model. Although those concepts are applied throughout the EDA community, the terms being used
and their meanings vary from one company to the next.

Note the difference between a schematic and a netlist. Either one unambiguously specifies a circuit
as a collection of components with their interconnections. On top of this, schematic data include
information that indicate where and how to draw icons, wires, busses, and the like on a computer
screen or on a piece of paper. While totally irrelevant from an electrical or functional point of
view, the graphical arrangement matters when humans want to grasp a circuit’s organization and
understand its operation. A netlist is easily derived from a schematic, but the converse is not
obvious. Except for trivial examples, circuit diagrams obtained from netlists by automatic means
lack the clarity and expressiveness of human-made schematics.
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Fig. 1.20 Circuit-related terms illustrated by way of a schematic drawing. Make sure you understand why U2

and U3 relate to the same component but to distinct instances. Also note that “inv” and “xo2” are leaf cells

whereas “binaryenc” and “regwide2” are not.
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architecture structural of codeconverter is

-- list non-library components to be used
component binaryenc
 port ( INP1, INP2, INP3 : in std_logic;

     BITA, BITB : out std_logic );
end component;
component regwide2
 port ( CLK: in std_logic;

     Q : out std_logic_vector(1 downto 0 );
end component;

     D : in std_logic_vector(1 downto 0);

-- declare internal signals
signal N1, N2, N3, N4 : std_logic;

begin

reference
component

cell
instance

reference
leaf cell net

node or net

U1: binaryenc
 port map ( INP1=>DAT(2), INP2=>DAT(1), INP3=>DAT(0),

 BITA=>N2, BITB=>N1 );

-- instantiate components and interconnect them 

U2: inv
 port map ( A=>N1, Z=>N3 );

 port map ( A=>N2, Z=>N4 );
U3: inv

end structural;

U5: xo2
 port map ( A=>N3, B=>N4, Z=>ANTI );

 port map ( CLK=>CP, D(1)=>N3, D(0)=>N4,
U4: regwide2

 Q(1)=>CVD1, Q(0)=>CVD2 );

pin
instance connector

design
circuit model

clock
clock input entity codeconverter is

port (
CP : in std_logic;
DAT : in std_logic_vector(2 downto 0);
ANTI, CVD1, CVD2 : out std_logic );

end codeconverter;port
port or connector

bus
bus

library STDCELLS;
use STDCELLS.logicgates.all;

library IEEE;
use IEEE.std_logic_1164.all;

-----------------------------------------------------------

-----------------------------------------------------------

library
component library

library
program library

package
program package

Fig. 1.21 Circuit- and software-related terms in a structural VHDL model. Note that the only way to identify a

clock in a port clause is by way of its name. Similarly, the lexical name is the only way to distinguish between

leaf cells and other components in an architecture body.

Relating to information-processing hardware, datapath is a generic term for all those subcircuits
that manipulate payload data, see fig.1.22. That is, a datapath is not confined to arithmetic/logic
units (ALUs) that carry out operations on data words, but also includes short-term data storage
(accumulators, registers, FIFOs) plus the necessary data routing facilities (busses and switches).
Datapaths tend to be highly regular as similar functions are carried out on multiple bits at a time.

Datapath operation is governed by a control section that also coordinates activities with surrounding
circuits. The controller does so by interpreting various status signals and by piloting datapath
operation via control signals in response. A controller is implemented as a hardwired finite state
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Table 1.6 A glossary of terms from electronic design.

General term Synopsys Meaning
lingo

Circuit elements
circuit model design a description of an electronic circuit or subcircuit
component reference a self-contained subcircuit of well-defined functionality
component library library a named collection of components
(leaf) cell reference an atomic component typically available from a library

that cannot be decomposed into smaller components
instance cell one specific copy of a subcircuit that is being used

as part of a larger circuit
Interconnect

node aka net net an electrical node or — which is the same thing — a wire
that runs between two or more (instance) connectors

port aka terminal port a node that can be electrically contacted
aka connector from the next higher level of circuit hierarchy
instance connector pin a connector of an instance
clock input clock a connector explicitly defined as clock source
bus bus a named set of nodes with cardinality > 1
special net a net not shown but tacitly implied in schematics,

examples: ground and power
Circuit drawings

icon aka symbol symbol a graphical symbol for a component or a connector
schematic schematic a drawing of a (sub)circuit that is made up of icons and
diagram of wires where the latter are graphically shown as lines
netlist netlist a data structure that captures what instances make

up a (sub)circuit and how they are interconnected
breakout ripper a special icon that indicates where a net or a subbus

leaves or enters the graphical representation for a bus
Integrated circuits

die aka chip a fully processed but unencapsulated IC
package the encapsulation around a die
(package) pin a connector on the outside of an IC package
pad pad a connector on a die that is intended to be wired

or otherwise electrically connected to a package pin;
the term is often meant to include interface circuitry

HDL software
program package package a named collection of data types, subprograms, etc.
program library library a named repository for compiled program packages

Functional verification
model under test design . . . a circuit model subject to simulation
circuit under test a physical circuit, e.g. a chip, subject to testing



1.7 APPENDIX II: AN ILLUSTRATED GLOSSARY OF CIRCUIT-RELATED TERMS 43

Table 1.6 (Cont.)

General term Synopsys Meaning
lingo

testbench HDL code written for driving the simulation of a model
under test not meant to be turned into a physical circuit

Layout items
layout a 2D drawing that captures a component’s detailed

geometry layer by layer and that guides IC fabrication
(cell) row many standard cells arranged in a row such as to share

common ground lines, power lines, and wells
well a volume that accommodates MOSFETs of identical polarity;

doping is opposite to the source and drain islands embedded
row end cell a special cell void of functionality to be instantiated

at either end of a cell row to properly end the wells
filler cell a special cell void of functionality to be instantiated

between two regular cells to add decoupling capacitance
typically where dense wiring asks for extra room anyway

tie-off cell a special cell void of functionality to be instantiated
where a regular net must connect to ground or power

cell outline a simplified view where a cell’s layout is reduced to
aka abstract the outline and the locations of all of its connectors
routing channel space set aside between adjacent cell rows for wiring,

no longer needed with today’s multi-metal processes
contact a galvanic connection between a metal and a silicon layer
via a galvanic connection between two superimposed metal layers
bonding area a square opening in the protective overglass exposing a

die’s top-level metal for connecting to a package pin

machine (FSM), as a stored program (program counter plus microcoded instruction sequence), or
as a combination of the two. In a computer-type architecture, all facilities dedicated to the sole
purpose of address processing must be considered part of the controller, not of the datapath, even
if they are ALUs or registers by nature.

+/− RAM
data processing units,

data storage, and
data switches

ROM

finite state machines,
instruction sequences,
hardwired logic, or any
combination thereof

input data

output data

higher-level control

higher-level status

status signals

control signals

datapath section control section

FSM

ALU

MUX

Fig. 1.22 Interplay of datapath and controller in a typical information-processing circuit.



Chapter 2

From Algorithms to Architectures

2.1 The goals of architecture design

VLSI architecture design is concerned with deciding on the necessary hardware resources for solving
problems from data and/or signal processing and with organizing their interplay in such a way as
to meet target specifications defined by marketing.

The foremost concern is to get the desired functionality right. The second priority is to meet
some given performance target, often expressed in terms of data throughput or operation rate. A
third objective, of economic nature this time, is to minimize production costs. Assuming a given
fabrication process, this implies minimizing circuit size and maximizing fabrication yield so as to
obtain as many functioning parts per processed wafer as possible.1

Another general concern in VLSI design is energy efficiency. Battery-operated equipment, such as
hand-held cellular phones, laptop computers, digital hearing aids, etc., obviously imposes stringent
limits on the acceptable power consumption. It is perhaps less evident that energy efficiency is also
of interest when power gets supplied from the mains. The reason for this is the cost of removing
the heat generated by high-performance high-density ICs. While the VLSI designer is challenged to
meet a given performance figure at minimum power in the former case, maximizing performance
within a limited power budget is what is sought in the latter.

The ability to change from one mode of operation to another in very little time, and the flexibility
to accommodate evolving needs and/or to upgrade to future standards are other highly desirable
qualities and subsumed here under the term agility. Last but not least, two distinct architectures
are likely to differ in terms of the overall engineering effort required to work them out in full
detail and, hence also, in their respective times to market.

1 The problems and methods associated with making sure functionality is implemented correctly are addressed in
chapter 3. Yield and cost models are discussed in chapter 13 along with other business issues that relate to VLSI
design and manufacturing.
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2.1.1 Agenda

Driven by dissimilar applications and priorities, hardware engineers have, over the years, devised
a multitude of very diverse architectural concepts which we will try to put into perspective in this
chapter. Section 2.2 opposes program-controlled and hardwired hardware concepts before showing
how their respective strengths can be combined into one architecture. After the necessary ground-
work for architectural analysis has been laid in section 2.3, subsequent sections will then discuss how
to select, arrange, and improve the necessary hardware resources in an efficient way with a focus
on dedicated architectures. Section 2.4 is concerned with organizing computations of combinational
nature. Section 2.6 extends our analysis to nonrecursive sequential computations before timewise
recursive computations are addressed in section 2.7. Finally, section 2.8 generalizes our findings to
other than word-level computations on real numbers. Inserted in between is section 2.5 that discusses
the options available for temporarily storing data and their implications for architectural decisions.

2.2 The architectural antipodes

Given some computational task, one basically has the choice of writing program code and running
it on a program-controlled machine, such as a microprocessor or a digital signal processor (DSP), or
of coming up with a hardwired electronic circuit that carries out the necessary computation steps.
This fundamental dichotomy, which is described in more detail in table 2.1, implies that a systems
engineer has to make a choice:

a) Select a processor-type general-purpose architecture and write program code for it, or
b) Tailor a dedicated hardware architecture for the specific computational needs.

Deciding between a general-purpose processor and an architecture dedicated to the application at
hand is a major decision that has to be made before embarking on the design of a complex circuit.
A great advantage of commercial microprocessors is that developers can focus on higher-level issues
such as functionality and system-level architecture right away. There is no need for them to address
all those exacting chores that burden semi- and — even more so — full-custom design.2 In addition,
there is no need for custom fabrication masks.

Observation 2.1. Opting for commercial instruction-set processors and/or FPL sidesteps many

technical issues that absorb much attention when a custom IC is to be designed instead. Conversely, it

is precisely the focus on the payload computations, and the absence of programming and configuration

overhead together with the full control over every aspect of architecture, circuit, and layout design

that make it possible to optimize performance and energy efficiency.

Circuit examples where dedicated architectures outperform instruction set computers follow.

2 Such as power distribution, clock preparation and distribution, input/output design, physical design and verifi-
cation, signal integrity, electrical overstress protection, wafer testing, and package selection, all to be discussed
in forthcoming chapters. Setting up a working CAE/CAD design flow typically also is a ma jor stumbling block,
to say nothing of estimating sales volume, hitting a narrow window of opportunity, finding the right partners,
and providing the necessary resources, in-house expertise, and investments. Also note that field-programmable
logic (FPL) frees developers from dealing with many of these issues too.
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Table 2.1 The architectural antipodes compared.

Hardware architecture
General purpose Special purpose

Algorithm any, not known a priori fixed, must be known
Architecture instruction set processor, dedicated design,

von Neumann or Harvard style no single established pattern
Execution model fetch–load–execute–store cycle process data item and pass on

“instruction-oriented” “dataflow-oriented”
Datapath universal operations, specific operations only,

ALU(s) plus memory customized design
Controller with program microcode typically hardwired
Performance instructions per second, data throughput,
indicator run time of various can be anticipated

benchmark programs analytically

Paradigm from craftsman in his machine shop division of labor in a factory
manufacturing working according to set up for smooth production

different plans every day of a few closely related goods

Possible hardware standard µC|DSP components ASIC of dedicated architecture
implementations or ASIC with on-chip µC|DSP or FPL (FPGA|CPLD)
Engineering effort mostly software design mostly hardware design
Strengths highly flexible, room for max. performance,

immediately available, highly energy-efficient,
routine design flow, lean circuitry
low up-front costs

Upon closer inspection, one finds that dedicated architectures fare much better in terms of per-
formance and/or dissipated energy than even the best commercially available general-purpose pro-
cessors in some situations, whereas they prove a dreadful waste of both hardware and engineering
resources in others.

Algorithms that are very irregular, highly data-dependent, and memory-hungry are unsuitable for
dedicated architectures. Situations of this kind are found in electronic data processing such as
databank applications, accounting, and reactive systems3 like industrial control,4 user interfaces,

3 A system is said to be reactive if it interacts continuously with an environment, at a speed imposed by that
environment. The system deals with events and the mathematical formalisms for describing them aim at capturing
the complex ordering and causality relations between events that may occur at the inputs and the corresponding
reactions — events themselves — at the outputs. Examples: elevators, protocol handlers, anti-lock brakes, process
controllers, graphical user interfaces, operating systems.

As opposed to this, a transformatorial system accepts new input values — often at regular intervals —
uses them to compute output values, and then rests until the subsequent data items arrive. The system is
essentially concerned with arithmetic/logic processing of data values. Formalisms for describing transformatorial
systems capture the numerical dependencies between the various data items involved. Examples: filtering, data
compression, ciphering, pattern recognition, and other applications colloquially referred to as number crunching
but also compilers and payroll programs.

4 Control in the sense of the German “programmierte Steuerungen” not “Regelungstechnik”.
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Fig. 2.1 Program-controlled general-purpose processor (a) and dedicated (special-purpose) hardware structure

(b) as architectural antipodes.

and others. In search of optimal architectures for such applications, one will invariably arrive at
hardware structures patterned after instruction set processors. Writing code for a standard micro-
computer — either bought as a physical part or incorporated into an ASIC as a megacell or as a
virtual component — is more efficient and more economic in this case.

Situations where data streams are to be processed in fairly regular ways offer far more room for
coming up with dedicated architectures. Impressive gains in performance and energy efficiency over
solutions based on general-purpose parts can then be obtained, see tables 2.2, 2.3, 2.4, and 2.5
among other examples.

Generally speaking, situations that favor dedicated architectures are often found in real-time appli-
cations from digital signal processing and telecommunications such as

• Source coding (i.e. data, audio, and video (de)compression),
• (De)ciphering (primarily for secret key ciphers),
• Channel coding (i.e. error correction),
• Digital (de)modulation (for modems, wireless communication, and disk drives),
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Example

Table 2.2 Comparison of architectural alternatives for a Viterbi decoder (code rate 1
2 , constraint

length 7, soft decision decoding, Euclidean distance metric). DSPs are at their best for sustained
multiply–accumulate operations and offer word widths of 32 bit or so. However, as the Viterbi
algorithm can be arranged to make no use of multiplication and to make do with word widths of
6 bit or less, DSPs cannot take advantage of these resources. A pipeline of tailor-made stages
optimized for branch metric computation, path metric update, and survivor path traceback
operations, in contrast, makes it possible to exploit the parallelism inherent in the Viterbi
algorithm. Diverse throughput requirements can be accommodated by trading the number of
computational units in each stage for throughput. Sophisticated DSPs, such as the C6455, include
an extra coprocessor to accelerate path metric update and survivor traceback.

Architecture General purpose Special purpose
Key component DSP ASIC

TI TMS320C6455 sem03w6 sem05w1
without with ETH ETH
Viterbi coprocessor VCP2

Number of chips 1 1 1 1
CMOS process 90 nm 90 nm 250 nm 250 nm
Program code 187 kiByte 242 kiByte none none
Circuit size n.a. n.a. 73 kGE 46 kGE
Max. throughput 45 kbit/s 9 Mbit/s 310 Mbit/s 54 Mbit/s

@ clock 1 GHz 1 GHz 310 MHz 54 MHz
Power dissipation 2.1 W 2.1 W 1.9 W 50 mW
Year 2005 2005 2004 2006

�

Example

Table 2.3 Comparison of architectural alternatives for a secret-key block encryption/decryption
algorithm (IDEA cipher as shown in fig.2.14, block size 64 bit, key length 128 bit). The clear edge
of the VINCI ASIC is due to a high degree of parallelism in its datapath and, more particularly,
to the presence of four pipelined computational units for multiplication modulo (216 + 1) designed
in full-custom layout that operate concurrently and continuously. The more recent IDEA kernel
combines a deep submicron fabrication process with four highly optimized arithmetic units.
Full-custom layout was no longer needed to achieve superior performance.

Architecture General purpose Special purpose
Key component DSP RISC Workst. ASSP ASSP

Motorola 56001 Sun Ultra 10 VINCI [13] IDEA Kernel
Number of chips 1 + memory motherboard 1 1
CMOS process n.a. n.a. 1.2 µm 250 nm
Max. throughput 1.25 Mbit/s 13.1 Mbit/s 177 Mbit/s 700 Mbit/s

@ clock 40 MHz 333 MHz 25 MHz 100 MHz
Year 1995 1998 1992 1998

�
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Example

Table 2.4 Comparison of architectural alternatives for lossless data compression with the Lempel-
Ziv-77 algorithm that heavily relies on string matching operations [14]. The dedicated hard-
ware architecture is implemented on a reconfigurable coprocessor board built around four field-
programmable gate-array components. 512 special-purpose processing elements are made to carry
out string comparison subfunctions in parallel. The content-addressed symbol memory is essentially
organized as a shift register, thereby giving simultaneous access to all entries. Of course, the two
software implementations obtained from compiling C source code cannot nearly provide a similar
degree of concurrency.

Architecture General purpose Special purpose
Key component RISC Workst. CISC Workst. FPGA Xilinx

Sun Ultra II Intel Xeon XC4036XLA
Number of chips motherboard motherboard 4 + config.
CMOS process n.a. n.a. n.a.
Max. throughput 3.8 Mbit/s 5.2 Mbit/s 128 Mbit/s

@ clock 300 MHz 450 MHz 16 MHz
Year 1997 1999 1999

�

Example

Table 2.5 Comparison of architectural alternatives for a secret-key block encryption/decryption
algorithm (AES cipher, block size 128 bit, key length 128 bit). The Rijndael algorithm makes
extensive use of a so-called S-Box function and its inverse; the three hardware implementations
include multiple look-up tables (LUTs) for implementing that function. Also, (de)ciphering and
subkey preparation are carried out concurrently by separate hardware units. On that background,
the throughput of the assembly language program running on a Pentium III is indeed impressive.
This largely is because the Rijndael algorithm has been designed with the Pentium architecture
in mind (MMX instructions, LUTs that fit into cache memory, etc.). Power dissipation remains
daunting, though.

Architecture General purpose Special purpose
Key component RISC Proc. CISC Proc. FPGA ASIC ASIC

Embedded Pentium III Virtex-II CryptoFun core only
Sparc Amphion ETH UCLA [15]

Number of chips motherboard motherboard 1 + config. 1 1
Programming C Assembler none none none
Circuit size n.a. n.a. n.a. 76 kGE 173 kGE
CMOS process n.a. n.a. 150 nm 180 nm 180 nm
Max. throughput 133 kbit/s 648 Mbit/s 1.32 Gbit/s 2.00 Gbit/s 1.6 Gbit/s

@ clock 120 MHz 1.13 GHz n.a. 172 MHz 125 MHz
Power dissipation 120 mW 41.4 W 490 mW n.a. 56 mWa

@ supply 1.5 V 1.8 V 1.8 V
Year n.a. 2000 ≈2002 2007 2002

a Most likely specified for core logic alone, that is without I/O circuitry.
�
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• Adaptive channel equalization (after transmission over copper lines and optical fibers),
• Filtering (for noise cancellation, preprocessing, spectral shaping, etc.),
• Multipath combiners in broadband wireless access networks (RAKE, MIMO),
• Digital beamforming with phased-array antennas (Radar),
• Computer graphics and video rendering,
• Multimedia (e.g. MPEG, HDTV),
• Packet switching (e.g. ATM, IP),
• transcoding (e.g. between various multimedia formats),
• Medical signal processing,
• Pattern recognition, and more.

Observation 2.2. Processing algorithms and hardware architectures are intimately related. While

dedicated architectures outperform program-controlled processors by orders of magnitude in many

applications of predominantly transformatorial nature, they cannot rival the agility and economy of

processor-type designs in others of more reactive nature.

More precise criteria for finding out whether a dedicated architecture can be an option or not from
a purely technical point of view follow in section 2.2.1 while fig.2.2 puts various applications from
signal and data processing into perspective.5

2.2.1 What makes an algorithm suitable for a dedicated VLSI architecture?

Costs in hardware are not the same as those in software. As an example, permutations of bits within
a data word are time-consuming operations in software as they must be carried out sequentially.
In hardware, they reduce to simple wires that cross while running from one subcircuit to the next.
Look-up tables (LUTs) of almost arbitrary size, on the other hand, have become an abundant and
cheap resource in any microcomputer while large on-chip RAMs and ROMs tend to eat substantial
proportions of the timing and area budgets of ASIC designs.

In an attempt to provide some guidance, we have collected ten criteria that an information processing
algorithm should ideally meet in order to justify the design of a special-purpose VLSI architecture
and to take full advantage of the technology. Of course, very few real-world algorithms satisfy all of
the requirements listed. It is nevertheless safe to say that designing a dedicated architecture capable
of outperforming a general-purpose processor on the grounds of performance and costs will prove
difficult when too many of these criteria are violated. The list below begins with the most desirable
characteristics and then follows their relative significance.

1. Loose coupling between major processing tasks. The overall data processing lends itself
to being decomposed into tasks that interact in a simple and unmutable way. Whether those
tasks are to be carried out consecutively or concurrently is of secondary importance at this
point; what counts is to come up with a well-defined functional specification for each task
and with manageable interaction between them. Architecture design, functional verification,
optimization, and reuse otherwise become real nightmares.

2. Simple control flow. The computation’s control flow is simple. This key property can be
tracked down to two more basic considerations:

5 The discussion of management-level decision criteria is deferred to chapter 13.



2.2 THE ARCHITECTURAL ANTIPODES 51

U
M

T
S

: 3
.8

4M
ch

ip
/s

multiprocessor
systems

P
C

M
: 8

ks
am

pl
es

/s

C
D

: 4
4.

1k
sa

m
pl

es
/s

P
A

L:
 1

1M
pi

xe
l/s

H
D

T
V

: 5
5M

pi
xe

l/s

high-performance
microprocessors

low-cost
microprocessors

101 100 10k1k 100k 10M1M 100M 10G1G 100G

data rate

[items/s]

1

10

100

1k

10k

100k

1M

10M

100M

satellite communication

simple modem

WLAN
wireless

ATM

1Gops

1M
ops

1kops

Zilog Z80

Intel 80386

GSM
baseband

1G

MPEG-2
encoder

Sun SPARC (1987)

M
otorola 56000

TI 320C6201

Dolby AC-3
5.1 decoder

HDTV
encoder

1Eops

com
putation rate

[operations/s]

computational effort
per data item

Turbo

for UMTS
decoder

1Pops

NEC Earth Sim
ulator

(Supercom
puter 2003)

1Tops

Thinking M
achines CM

5

(Supercom
puter 1993)

multi-antenna (MIMO)
wireless receiver (4G)

signal processors
digital

dedicated
high-performance
VLSI architectures

towards
high 
data rates

low-cost
hardware

towards

applications
towards sophisticated

high audio & video quality,
(strong compression,

secure communication,
robust transmission)

BlueGene/L 

(Supercom
puter 2006)

Intel Xeon (2006)

[ops/
item]

technology
push

Fig. 2.2 Computational needs of various signal and data processing applications (grossly approximate figures,

exact meaning of operation and data item left unspecified; 16 bit-by-16 bit multiply–accumulate (MAC)

operations on 16 bit samples are often considered typical in a context of digital signal processing).

a) The course of operation does not depend too much on the data being processed;
for each loop the number of iterations is a priori known and constant.6

b) The application does not ask for computations to be carried out with overly many vari-
eties, modes of operations, data formats, distinct parameter settings, and the like.

The benefit of a simple control flow is twofold. For one thing, it is possible to anticipate the
datapath resources required to meet a given performance goal and to design the chip’s archi-
tecture accordingly. There is no need for statistical methods in estimating the computational
burden or in sizing data memories and the like. For another thing, datapath control can be

6 Put in different terms, the target algorithm is virtually free of branchings and loops such as if...then[...else],
while...do, and repeat...until that include data items in their condition clauses.
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handled by counters and by simple finite state machines (FSMs) that are small, fast, energy-
efficient and — most important — easy to verify.

An overly complicated course of operations, on the other hand, that involves much data-
dependent branching, multitasking, and the like, favors a processor-type architecture that
operates under control of stored microcode. Most control operations will then translate into
a sequence of machine instructions that take several clock cycles to execute.

3. Regular data flow. The flow of data is regular and their processing is based on a recurrence
of a fairly small number of identical operations; there are no computationally expensive
operations that are called only occasionally. Regularity opens a door for sharing hardware
resources in an efficient way by applying techniques such as iterative decomposition and time-
sharing, see subsections 2.4.2 and 2.4.5 respectively. Conversely, multiple data streams that
are to be processed in a uniform way lend themselves to concurrent processing by parallel
functional units. A regular data flow further helps to reduce communications overhead in
terms of both area and interconnect delay as the various functional units can be made to
exchange data over fixed local links. Last but not least, regularity facilitates reuse and reduces
design and verification effort.

As opposed to this, operations that are used infrequently either will have to be decomposed
into a series of substeps to be executed one after the other on a general-purpose datapath,
which is slow, or will necessitate dedicated functional units bound to sit idle for most of the
time, which inflates chip size. Irregular data flow requires long and flexible communication
busses which are at the expense of layout density, operating speed, and energy efficiency.

4. Reasonable storage requirements. Overall storage requirements are modest and have a
fixed upper bound.7 Memories that occupy an inordinate amount of chip area, say more than
half or so, cannot be incorporated into ASICs in an economic way and must, therefore, be
implemented off-chip from standard parts, see subsection 2.5. Massive storage requirements
in conjunction with moderate computational burdens tend to place dedicated architectures
at a disadvantage.

5. Compatible with finite precision arithmetics. The algorithm is insensitive to effects from
finite precision arithmetics. That is, there is no need for floating-point arithmetics; fairly
small word widths of, say, 16 bit or less suffice for the individual computation steps. Standard
microprocessors and DSPs come with datapaths of fixed and often generous width (24, 32,
64 bit, or even floating-point) at a given price. No extra costs arise unless the programmer
has to resort to multiple precision arithmetics.

As opposed to this, ASICs and FPL offer an opportunity to tune the word widths of
datapaths and on-chip memories to the local needs of computation. This is important because
circuit size, logic delay, interconnect length, parasitic capacitances, and energy dissipation of
addition, multiplication, and other operations all tend to grow with word width, combining
into a burden that multiplies at an overproportional rate.8

7 Which precludes the use of dynamic data structures.
8 Processor datapaths tend to be fast and area efficient because they are typically hand-optimized at the transistor

level (e.g. dynamic logic) and implemented in tiled layout rather than built from standard cells. These are only
rarely options for ASIC designers.
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6. Nonrecursive linear time-invariant computation. The processing algorithm describes a
nonrecursive linear time-invariant system over some algebraic field.9 Each of these prop-
erties opens a door to reorganizing the data processing in one way or another, see sections
2.4 through 2.9 for details and table 2.11 for an overview. High throughputs, in particular,
are much easier to obtain from nonrecursive computations as will become clear in section 2.7.

7. No transcendental functions. The algorithm does not make use of roots, logarithmic, ex-
ponential, or trigonometric functions, arbitrary coordinate conversions, translations between
incompatible number systems, and other transcendental functions as these must either be
stored in large look-up tables (LUT) or get calculated on-line in lengthy and often irregu-
lar computation sequences. Such functions can be implemented more economically provided
that modest accuracy requirements allow approximation by way of lookups from tables of
reasonable size, possibly followed by interpolation.

8. Extensive usage of data operations unavailable from standard instruction sets. Of
course, there exist many processing algorithms that cannot do without costly arithmetic/-
logic operations. It is often possible to outperform traditional program-controlled processors
in cases where such operations need to be assembled from multiple instructions. Dedicated
datapaths can then be designed to do the same computation in a more efficient way. Exam-
ples include complex-valued arithmetics, add–compare–select operations, and many ciphering
operations. It also helps when part of the arguments are constants because this makes it pos-
sible to apply some form of preprocessing. Multiplication by a variable is more onerous than
by a constant, for instance.10

9. Throughput rather than latency is what matters. This is a crucial prerequisite for
pipelined processing, see subsection 2.4.3.

10. No divisions and multiplications on very wide data words. Multiplications involving
wide arguments are not being used

The algorithm does not make extensive use of multiplications and even less so of divisions as
their VLSI implementation is much more expensive than that of addition/subtraction when
the data words involved are wide.

2.2.2 There is plenty of land between the architectural antipodes

Most markets ask for performance, agility, low power, and a modest design effort at the same time. In
the face of such contradictory requirements, it is highly desirable to combine the throughput and the

9 Recursiveness is to be defined in section 2.7. Linear is meant to imply the principle of superposition f (x(t) +
y (t)) ≡ f (x(t)) + f (y (t)) and f (c x(t)) ≡ cf (x(t)). Time-invariant means that the sole effect of delaying the
input is a delay of the output by the same amount of time: if z (t) = f (x(t)) is the response to x(t) then z (t − T )
is the response to x(t − T ). Fields and other algebraic structures are compared in section 2.11.

1 0 Dropping unit factors and/or zero sum terms (both at word and bit levels), substituting integer powers of 2 as
arguments in multiplications and divisions, omitting insignificant contributions, special number representation
schemes, taking advantage of symmetries, precomputed look-up tables, and distributed arithmetic, see subsection
2.8.3, are just a few popular measures that may help to lower the computational burden in situations where
parts of the arguments are known ahead of time.
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energy efficiency of a dedicated VLSI architecture for demanding but highly repetitive computations
with the convenience and flexibility of an instruction set processor for more control-oriented tasks.
The question is

“How can one blend the best of both worlds into a suitable architecture design?”

Five approaches for doing so are going to be presented in sections 2.2.3 through 2.2.7 with diagram-
matic illustrations in figs.2.3 to 2.6.

2.2.3 Assemblies of general-purpose and dedicated processing units

The observation below forms the starting point for the conceptually simplest approach.

Observation 2.3. It is often possible to segregate the needs for computational efficiency

from those for flexibility.

This is because those parts of a system that ask for maximum computation rate are not normally
those that are subject to change very often, and vice versa. Examples abound, see table 2.6. The
finding immediately suggests a setup where a software-controlled microcomputer cooperates with
one or more dedicated hardware units. Separating the quest for computational efficiency from that
for agility makes it possible to fully dedicate the various functional units to their respective tasks and
to optimize them accordingly. Numerous configurations are possible and the role of the instruction
set microcomputer varies accordingly.

Example

Table 2.6 Some digital systems and the computing requirements of major subfunctions thereof.

Subfunctions primarily characterized by
irregular control flow and/or repetitive control flow and

Application need for flexibility need for comput. efficiency

DVD player user interface, track seeking, 16-to-8 bit demodulation,
tray and spindle control, error correction,
processing of non-video data MPEG-2 decompression
(directory, title, author, (discrete cosine transform),
subtitles, region codes) video signal processing

Cellular phone user interface, SMS, intermediate frequency
directory management, filtering, (de)modulation,
battery monitoring, channel (de)coding,
communication protocol, error correction (de)coding,
channel allocation, (de)ciphering,
roaming, accounting speech (de)compression

Pattern recognition pattern classification, image stabilization,
(e.g. as part of a object tracking, redundancy reduction,
defensive missile) target acquisition, image segmentation,

triggering of actions feature extraction

�
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In fig.2.3a, three dedicated and one program-controlled processing units are arranged in a chain.
Each unit does its data processing job and passes the result to the downstream unit. While offer-
ing ample room for optimizing performance, this structure cannot accommodate much variation if
everything is hardwired and tailor-made. Making the specialized hardware units support a limited
degree of parametrization (e.g. wrt data word width, filter order, code rate, data exchange proto-
col, and the like) renders the overall architecture more versatile while, at the same time, keeping
the overhead in terms of circuit complexity and energy dissipation fairly low. The term weakly
programmable satellites has been coined to reflect the idea. An optional parametrization bus
suggests this extension of the original concept in fig.2.3a.
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Fig. 2.3 General-purpose processor and dedicated satellite units working in a chain (a), a host computer with

specialized coprocessors (b).

2.2.4 Coprocessors

Figure 2.3b is based on segregation too but differs in how the various components interact. All
specialized hardware units now operate under control of a software-programmable host. A bidirec-
tional bus gives the necessary liberty for transferring data and control words back and forth. Each
coprocessor, or helper engine as it is sometimes called, has a rather limited repertoire of instructions
that it can accept. It sits idle until it receives a set of input data along with a start command. As
an alternative, the data may be kept in the host’s own memory all the time but get accessed by
the coprocessor via direct memory access (DMA). Once local computation has come to an end, the
coprocessor sets a status flag and/or sends an interrupt signal to the host computer. The host then
accepts the processed data and takes care of further action.

2.2.5 Application-specific instruction set processors

Patterning the overall architecture after a program-controlled processor affords much more flexi-
bility. Application-specific features are largely confined to the data processing circuitry itself. That
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is, one or more datapaths are designed and hardwired so as to support specific data manipulations
while operating under control of a common microprogram. The number of ALUs, their instruction
sets, the data formats supported, the capacity of local storage, etc. are tailored to the computational
problems to be solved. What’s more, the various datapaths can be made to operate simultaneously
on different pieces of data, thereby providing a limited degree of concurrency. The resulting archi-
tecture is that of an application-specific instruction set processor (ASIP) [16], see fig.2.4a.
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Fig. 2.4 Application-specific instruction set processor (ASIP) (a), multiple cooperating ASIPs (b).

The hardware organization of an ASIP bears much resemblance to architectural concepts from
general-purpose computing. As more and more concurrent datapath units are added, what results
essentially is a very-long instruction word (VLIW) architecture. An open choice is that between
a multiple-instruction multiple-data (MIMD) machine, where an individual field in the overall
instruction word is set apart for each datapath unit, and a single-instruction multiple-data
(SIMD) model, where a bunch of identical datapaths works under control of a single instruction
word. Several data items can thus be made to undergo the same operation at the same time.11

1 1 In an effort to better serve high-throughput video and graphics applications, many vendors enhanced their
microprocessor families in the late 1990s by adding special instructions that provide some degree of concurrency.
During each such instruction, the processor’s datapath gets split up into several smaller subunits. A datapath
of 64 bit can be made to process four 16 bit data words at a time, for instance, provided the operation is the
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Example

Table 2.7 An ASIP implementation of the Rijndael algorithm, compare with table 2.5.

Architecture ASIP
Key component Cryptoprocessor

core UCLA [17]
Number of chips 1
Programming Assembler
Circuit size 73.2 kGE
CMOS process 180 nm 4Al2Cu
Throughput 3.43 Gbit/s

@ clock 295 MHz
Power dissip. 86 mWa

@ supply 1.8 V
Year 2004

a Estimate for core logic alone, that is without I/O circuitry, not a measurement.
�

While the mono-ASIP architecture of fig.2.4a affords flexibility, it does not provide the same degree
of concurrency and modularity as the multiple processing units of fig.2.3a and b do. A multiprocessor
system built from specialized ASIPs, as shown in fig.2.4b, is, therefore, an interesting extension. In
addition, this approach facilitates the design, interfacing, reuse, test, and on-going update of the
various building blocks involved.

However, always keep in mind that defining a proprietary instruction set makes it impossible to take
advantage of existing compilers, debugging aids, assembly language libraries, experienced program-
mers, and other resources that are routinely available for industry-standard processors. Industry
provides us with such a vast selection of micro- and signal processors that only very particular
requirements justify the design of a proprietary CPU.12

Example

While generally acknowledged to produce more realistic renderings of 3D scenes than industry-
standard raster graphics processors, ray tracing algorithms have long been out of reach for real-time
applications due to the myriad floating-point computations and the immense memory bandwidth
they require. Hardwired custom architectures do not qualify either as they cannot be programmed
and as ray tracing necessitates many data-dependent recursions and decisions.

same for all of them. The technique is best described as sub-word parallelism , but is better known under
various trademarks such as multimedia extensions (MMX), streaming SIMD extensions (SSE) (Pentium family),
Velocity Engine, AltiVec, and VMX (PowerPC family).

1 2 [18] reports on an interesting approach to expedite ASIP development whereby assembler, linker, simulator,
and RTL synthesis code are generated automatically by system-level software tools. Product designers can
thus essentially focus on defining the most appropriate instruction set for the processor in view of the target
application.
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Ray tracing may finally find more general adoption in multi-ASIP architectures that combine mul-
tiple ray processing units (RPUs) into one powerful rendering engine. Working under control of its
own program thread, each RPU operates as a SIMD processor that follows a subset of all rays in a
scene. The independence of light rays allows a welcome degree of scalability where frame rate can
be traded against circuit complexity. The authors of [19] have further paid attention to defining
an instruction set for their RPUs that is largely compatible with pre-existing industrial graphics
processors.
�

2.2.6 Configurable computing

Another crossbreed between dedicated and general-purpose architectures did not become viable
until the late 1990s but is now being promoted by FPL manufacturers and researchers [20] [21]. The
IEEE 1532 standard has also been created in this context. The idea is to reuse the same hardware
for implementing subfunctions that are mutually exclusive in time by reconfiguring FPL devices on
the fly.

As shown in fig.2.5, the general hardware arrangement bears some resemblance to the coprocessor
approach of fig.2.3b, yet in-system configurable (ISC) devices are being used instead of hardwired
logic. As a consequence, the course of operations is more sophisticated and requires special action
from the hardware architects. For each major subtask, the architects must ask themselves whether
the computations involved

• Qualify for being delegated to in-system configurable logic,
• Never occur at the same time — or can wait until the FPL device becomes free —, and
• Whether the time for having the FPL reconfigured in between is acceptable or not.

Typically this would be the case for repetitive computations that make use of sustained, highly
parallel, and deeply pipelined bit-level operations. When designers have identified some suitable
subfunction, they devise a hardware architecture that solves the particular computational problem
with the resources available in the target FPGA or CPLD, prepare a configuration file, and have
that stored in a configuration memory. In some sense, they create a large hardware procedure
instead of programming a software routine in the customary way.
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Fig. 2.5 General-purpose processor with juxtaposed reconfigurable coprocessor.

Whenever the host computer encounters a call to such a hardware procedure, it configures the FPL
accordingly by downloading the pertaining configuration file. From now on, all the host has to do
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is to feed the “new” coprocessor with input data and to wait until the computation is completed.
The host then fetches the results before proceeding with the next subtask.13

It thus becomes possible to support an assortment of data processing algorithms each with its
optimum architecture — or almost so — from a single hardware platform. What often penalizes
this approach in practice are the dead times incurred whenever a new configuration is being loaded.
Another price to pay is the extra memory capacity for storing the configuration bits for all operation
modes. Probably the most valuable benefit, however, is the possibility of being able to upgrade
information processing hardware to new standards and/or modes of operation even after the system
has been fielded.

Examples

Transcoding video streams in real time is a good candidate for reconfigurable computing because
of the many formats in existence such as DV, AVI, MPEG-2, DivX, and H.264. For each conversion
scheme, a configuration file is prepared and stored in local memory, from where it is transferred into
the reconfigurable coprocessor on demand. And should a video format or variation emerge that was
unknown or unpopular at the time when the system was being developed, extra configuration files
can be made available in a remote repository from where they can be fetched much like software
plug-ins get downloaded via the Internet.

The results from a comparison between Lempel–Ziv data compression with a reconfigurable copro-
cessor and with software execution on a processor [14] have been summarized in table 2.4. A related
application was to circumvent the comparatively slow PCI bus in a PC [23].
�

2.2.7 Extendable instruction set processors

This latest and most exotic approach pioneered by Stretch borrows from ASIPs and from con-
figurable computing. Both a program-controlled processor and electrically reconfigurable logic are
present on a common hardware platform, see fig.2.6.

The key innovation is a suite of proprietary EDA tools that allows system developers to focus on
writing their application program in C or C++ as if for a regular general purpose processor. Those
tools begin by profiling the software code in order to identify sequences of instructions that are
executed many times over. For each such sequence, reconfigurable logic is then synthesized into a
dedictated and massively parallel computation network that completes within one clock cycle —
ideally at least. Finally, each occurrence of the original computation sequence in the machine code
gets replaced by a simple function call that activates the custom-made datapath logic.

In essence, the base processor gets unburdened from lengthy code sequences by augmenting his
instruction set with a few essential additions that fit the application and that get tailor-made

1 3 As an extension to the general procedure described here, an extra optimization step can be inserted before the
coprocessor is configured [22]. During this stage, the host would adapt a predefined generic configuration to take
advantage of particular conditions of the specific situation at hand. Consider pattern recognition, for instance,
where the template remains unchanged for a prolonged lapse of time, or secret-key (de)ciphering, where the
same holds true for the key. As stated in subsection 2.2.1 item 1, it is often possible to simplify arithmetic and
logic hardware a lot provided that part of the operands have fixed values.
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Fig. 2.6 Extendable instruction set processor (simplified).

almost on the fly. Yet, the existence of reconfigurable logic and the business of coming up with a
suitable hardware architecture are hidden from the system developer. The fact that overall program
execution remains strictly sequential should further simplify the design process.

2.2.8 Digest

Program execution on a general-purpose processor and hardwired circuitry optimized for one specific
flow of computation are two architectural antipodes. Luckily, many useful compromises exist in
between, and this is reflected in figs.2.7 and 2.8. A general piece of advice is this:

Observation 2.4. Rely on dedicated hardware only for those subfunctions that are called many

times and are unlikely to change; keep the rest programmable via software, via reconfiguration, or

both.

Fig. 2.7 The architectural solution space viewed as a globe.

Figure 2.8 gives rise to an interesting observation. While there are many ways to trade agility for
computational efficiency and vice versa, the two seem to be mutually exclusive as we know of no
architecture that would meet both goals at the same time.

GP

SP

There is plenty of land
between the antipodes

general-purpose architectures

special-purpose architecturess
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Fig. 2.8 The key options of architecture design.

2.3 A transform approach to VLSI architecture design

Let us now turn our attention to the main topic of this chapter:

“How to decide on the necessary hardware resources for solving a given computational problem and
how to best organize them.”

Their conceptual differences notwithstanding, many techniques for obtaining high performance at
low cost are the same for general- and special-purpose architectures. As a consequence, much of
the material presented in this chapter applies to both of them. Yet, the emphasis is on dedicated
architectures as the a priori knowledge of a computational problems offers room for a number of
ideas that do not apply to instruction-set processor architectures.14

Observation 2.5. Most data and signal processing algorithms would lead to grossly inefficient

or even infeasible solutions if they were implemented in hardware as they are. Adapting processing

algorithms to the technical and economic conditions of large-scale integration is one of the intellectual

challenges in VLSI design.

Basically, there is room for remodelling in two distinct domains, namely in the algorithmic domain
and in the architectural domain.

1 4 There exists an excellent and comprehensive literature on general-purpose architectures including [24] [25]. The
historical evolution of the microprocessor is summarized in [26] [27] along with economic facts and trends. [28]
[29] [30] emphasize the impact of deep-submicron technology on high-performance microprocessor architectures.
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2.3.1 There is room for remodelling in the algorithmic domain . . .

In the algorithmic domain, the focus is on minimizing the number of computational operations
weighted by the estimated costs of such operations. A given processing algorithm thus gets replaced
by a different one better suited to hardware realization in VLSI. Data structures and number
representation schemes are also subject to optimizations such as subsampling and/or changing
from floating-point to fixed-point arithmetics. All this implies that alternative solutions are likely
to slightly differ in their functionality as expressed by their input-to-output relations.

Six examples

When designing a digital filter, one is often prepared to tolerate a somewhat lower stopband sup-
pression or a larger passband ripple in exchange for a reduced computational burden obtained,
for instance, from substituting a lower order filter and/or from filling in zeros for the smaller co-
efficients. Conversely, a filter structure that necessitates a higher number of computations may
sometimes prove acceptable in exchange for less stringent precision requirements imposed on the
individual arithmetic operations and, hence, for narrower data words.

In a decoder for digital error-correction, one may be willing to sacrifice 0.1 dB or so of coding gain
for the benefit of doing computations in a more economic way. Typical simplifications to the ideal
Viterbi algorithm include using an approximation formula for branch metric computation, truncat-
ing the dynamic range of path metrics, rescaling them when necessary, and restricting traceback
operations to some finite depth.

The autocorrelation function (ACF) has many applications in signal processing, yet it is not always
needed in the form mathematically defined.

ACFxx (k) = rxx (k) =
∞∑

n =−∞
x(n) · x(n + k) (2.1)

Many applications offer an opportunity to relax the effort for multiplications because one is inter-
ested in just a small fragment of the entire ACF, because one can take advantage of symmetry, or
because modest precision requirements allow for a rather coarse quantization of data values. It is
sometimes even possible to substitute the average magnitude difference function (AMDF) that does
away with costly multiplication altogether.

AMDFxx (k) = r′xx (k) =
N −1∑
n =0

|x(n) − x(n + k)| (2.2)

Code-excited linear predictive (CELP) coding is a powerful technique for compressing speech sig-
nals, yet it has long been left aside in favor of regular pulse excitation because of its prohibitive
computational burden. CELP requires that hundreds of candidate excitation sequences be passed
through a cascade of two or three filters and be evaluated in order to pick the one that fits best.
In addition, the process must be repeated every few milliseconds. Yet, experiments have revealed
that the usage of sparse (up to 95% of samples replaced with zeros), of ternary (+1, 0, −1), or
of overlapping excitation sequences has little negative impact on auditory perception while greatly
simplifying computations and reducing memory requirements [31].

In designing computational hardware that makes use of trigonometric functions, look-up tables
(LUTs) are likely to prove impractical because of size overruns. Executing a lengthy algorithm, on
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the other hand, may be just too slow, so a tradeoff among circuit size, speed, and precision must
be found. The CORDIC (coordinate rotation digital computer) family of algorithms is one such
compromise that was put to service in scientific pocket calculators in the 1960s and continues to
find applications in DSP [32] [33]. Note that CORDIC can be made to compute hyperbolic and
other transcendental functions too.

Computing the magnitude function m =
√

a2 + b2 is a rather costly proposition in terms of circuit
hardware. Luckily, there exist at least two fairly precise approximations based on add, shift, and
compare operations exclusively, see table 2.8 and problem 1. Better still, the performance of many
optimization algorithms used in the context of demodulation, error correction, and related applica-
tions does not suffer much when the computationally expensive �2 -norm gets replaced by the much
simpler �1 - or �∞-norm. See [34] for an example.
�

The common theme is that the most obvious formulation of a processing algorithm is not normally
the best starting point for VLSI design. Departures from some mathematically ideal algorithm are
almost always necessary to arrive at a solution that offers the throughput and energy efficiency
requested at economically feasible costs. Most algorithmic modifications alter the input-to-output
mapping and so imply an implementation loss, that is a minor cut-back in signal-to-noise ratio,
coding gain, bit-error-rate, mean time between errors, stopband suppression, passband ripple, phase
response, false-positive and false-negative rates, data compression factor, fidelity of reproduction,
total harmonic distortion, image and color definition, intelligibility of speech, or whatever figures
of merit are most important for the application.

Experience tells us that enormous improvements in terms of throughput, energy efficiency, circuit
size, design effort, and agility can be obtained by adapting an algorithm to the peculiarities and
cost factors of hardware. Optimizations in the algorithmic domain are thus concerned with

“How to tailor an algorithm such as to cut the computational burden, to trim down memory require-
ments, and/or to speed up calculations without incurring unacceptable implementation losses.”

What the trade-offs are and to what extent departures from the initial functionality are acceptable
depends very much on the application. It is, therefore, crucial to have a good command of the
theory and practice of the computational problems to be solved.

Observation 2.6. Digital signal processing programs often come with floating-point arithmetics.

Reimplementing them in fixed-point arithmetics, with limited computing resources, and with

Table 2.8 Approximations for computing magnitudes.

Name aka Formula
lesser �−∞-norm l = min(|a|, |b|)
sum �1 -norm s = |a| + |b|
magnitude (reference) �2 -norm m =

√
a2 + b2

greater �∞-norm g = max(|a|, |b|)
approximation 1 m ≈ m1 = 3

8 s + 5
8 g

approximation 2 [35] m ≈ m2 = max(g, 7
8 g + 1

2 l)
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minimum memory results in an implementation loss. The effort for finding a good compromise

between numerical accuracy and hardware efficiency is often underestimated.

The necessity to validate trimmed-down implementations for all numerical conditions that may
occur further adds to the effort. It is not uncommon to spend as much time on issues of numerical
precision as on all subsequent VLSI design phases together.

2.3.2 . . . and there is room in the architectural domain

In the architectural domain, the focus is on meeting given performance targets for a specific data
processing algorithm with a minimum of hardware resources. The key concern is

“How to organize datapaths, memories, controllers, and other hardware resources for implementing
some given computation flow such as to optimize throughput, energy efficiency, circuit size, design
effort, agility, overall costs, and similar figures of merit while leaving the original input-to-output
relationship unchanged except, possibly, for latency.”

As computations are just reorganized, not altered, there is no implementation loss at this point.

Given some data or signal processing algorithm, there exists a profusion of alternative architectures
although the number of fundamental options available for reformulating it is rather limited. This
is because each such option can be applied at various levels of detail and can be combined with
others in many different ways. Our approach is based on reformulating algorithms with the aid
of equivalence transforms. The remainder of this chapter gives a systematic view on all such
transforms and shows how they can be applied to optimize VLSI architectures for distinct size,
throughput, and energy targets.

2.3.3 Systems engineers and VLSI designers must collaborate

Systems theorists tend to think in purely mathematical terms, so a data or signal processing al-
gorithm is not much more than a set of equations to them. To meet pressing deadlines or just
for reasons of convenience, they tend to model signal processing algorithms in floating-point arith-
metics, even when a fairly limited numeric range would amply suffice for the application. This
is typically unacceptable in VLSI architecture design and establishing a lean bit-true software
model is a first step towards a cost-effective circuit.

Generally speaking, it is always necessary to balance many contradicting requirements to arrive at a
working and marketable embodiment of the mathematical or otherwise abstracted initial model of a
system. A compromise will have to be found between the theoretically desirable and the economically
feasible. So, there is more to VLSI design than just accepting a given algorithm and turning that
into gates with the aid of some HDL synthesis tool.

Algorithm design is typically carried out by systems engineers whereas VLSI architecture is more the
domain of hardware designers. The strong mutual interaction between algorithms and architectures
mandates a close and early collaboration between the two groups, see fig.2.9.

Observation 2.7. Finding a good tradeoff between the key characteristics of the final circuit and

implementation losses requires an on-going collaboration between systems engineers and VLSI ex-

perts during the phases of specification, algorithm development, and architecture design.
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Fig. 2.9 Models of collaboration between systems engineers and hardware designers. Sequential thinking

doomed to failure (a) versus a networked team more likely to come up with satisfactory results (b).

The fact that algorithm design is not covered in this text does not imply that it is of less importance
to VLSI than architecture design. The opposite is probably true. A comprehensive textbook that
covers the joint development of algorithms and architectures is [36]; anecdotal observations can be
found in [37].

2.3.4 A graph-based formalism for describing processing algorithms

We will often find it useful to capture a data processing algorithm in a data dependency graph
(DDG) as this graphical formalism is suggestive of possible hardware structures. A DDG is a
directed graph where vertices and edges have non-negative weights, see fig.2.10. A vertex stands
for a memoryless operation and its weight indicates the amount of time necessary to carry out that
operation. The precedence of one operation over another one is represented as a directed edge. The
weight of an edge indicates by how many computation cycles or sampling periods execution of the
first operation must precede that of the second one.15 Edge weight zero implies the two operations
are scheduled to happen within the same computation or sampling period — one after the other,
though. An edge may also be viewed as expressing the transport of data from one operation to
another and its weight as indicating the number of registers included in that transport path.

To warrant consistent outcomes from computation, circular paths of total edge weight zero are
disallowed in DDGs.16 Put differently, any feedback loop shall include one or more latency registers.

1 5 The term “computation cycle” is to be explained shortly in section 2.3.7.
1 6 A circular path is a closed walk in which no vertex, except the initial and final one, appears more than once

and that respects the orientation of all edges traversed. As the more customary terms “circuit” and “cycle” have



66 Architectures of VLSI Circuits

edge transport weight indicates latency in computation cycles

Definitions vertex operation
memoryless

fan out expressed as
"no operation" vertex

illegal!

0

Danger of race conditions

0

0

00

0

circular paths
of edge weight zero
are not admitted!

x(k)

time-varying data source
variable input expressed as

c

constant data source
constant input expressed as

y(k)

data sink
output expressed as

Shorthand notations

introduced for convenience
0   =

1   =

2   =

Fig. 2.10 Data dependency graph (DDG) notation.

2.3.5 The isomorphic architecture

No matter how one has arrived at some initial proposal, it always makes sense to search for a better
hardware arrangement. Inspired VLSI architects will let themselves be guided by intuition and ex-
perience to come up with one or more tentative designs before looking for beneficial reorganizations.
Yet, for the subsequent discussion and evaluation of the various equivalence transforms available, we
need something to compare with. A natural candidate is the isomorphic architecture, see fig.2.11e
for an example, where

• Each combinational operation in the DDG is carried out by a hardware unit of its own,
• Each hardware register stands for a latency of one in the DDG,
• There is no need for control because DDG and block diagram are isomorphic,17 and
• Clock rate and data input/output rate are the same.

other meanings in the context of hardware design, we prefer “circular path” in spite of its clumsiness. For the
same reason, let us use “vertex” when referring to graphs and “node” when referring to electrical networks.
A zero-weight circular path in a DDG implies immediate feedback and expresses a self-referencing combinational
function. Such zero-latency feedback loops are known to expose the pertaining electronic circuits to unpredictable
behavior and are, therefore, highly undesirable, see section 5.4.3 for details.

1 7 Two directed graphs are said to be isomorphic if there exists a one-to-one correspondence between their vertices
and between their edges such that all incidence relations and all edge orientations are preserved. More informally,
two isomorphic graphs become indistinguishable when the labels and weights are removed from their vertices
and edges. Remember that how a graph is drawn is of no importance for the theory of graphs.
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Fig. 2.11 Third order (N = 3) transversal filter expressed as a mathematical function (a), drawn as data

dependency graph (DDG) (b), and implemented with the isomorphic hardware architecture (d). Signal flow

graph shown for comparison (c).

�

An architecture design as naive as this obviously cannot be expected utilize hardware efficiently, but
it will serve as a reference for discussing both the welcome and the unfavorable effects of various
architectural reorganizations. You may also think of the isomorphic architecture as a hypotheti-
cal starting point from which any more sophisticated architecture can be obtained by applying a
sequence of equivalence transforms.18

2.3.6 Relative merits of architectural alternatives

Throughout our analysis, we will focus on the subsequent figures of merit.

Circuit size A. Depending on how actual hardware costs are best expressed, the designer is free
to interpret size as area occupation (in mm2 or lithographic squares F 2 for ASICs) or as
circuit complexity (in terms of GE for ASICs and FPL).

Cycles per data item Γ denotes the number of computation cycles that separates the releasing
of two consecutive data items, or — which is normally the same — the number of computation
cycles between accepting two subsequent data items.

1 8 See problem 2.10 for a more thorough exposure. Also observe that our transform approach to architecture design
bears some resemblance to the theory of evolution.
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Longest path delay tlp indicates the lapse of time required for data to propagate along the
longest combinational path through a given digital network. Path lengths are typically in-
dicated in ns. What makes the maximum path length so important is that it limits the
operating speed of a given architecture. For a circuit to function correctly, it must always be
allowed to settle to a — typically new — steady state within a single computation period
Tcp .19 We thus obtain the requirement tlp ≤ Tcp , where the exact meaning of computation
period is to be defined shortly in section 2.3.7.

Time per data item T indicates the time elapsed between releasing two subsequent data items.
Depending on the application, T might be stated in µs/sample, ms/frame, or s/calculation,
for instance. T = Γ · Tcp ≥ Γ · tlp holds with equality if the circuit gets clocked at the fastest
possible rate.

Data throughput Θ = 1
T is the most meaningful measure of overall circuit performance.

Throughput gets expressed in terms of data items processed per time unit; e.g. in pixel/s,
sample/s, frame/s, data record/s, FFT/s, matrix inversion/s, and the like.20 It is given by

Θ =
fcp

Γ
=

1
Γ · Tcp

≤ 1
Γ · tlp

(2.3)

for a circuit operated at computation rate fcp or, which is the same, with a computation
period Tcp .21 Again, we are most interested in the maximum throughput where Tcp = tlp .

Size–time product AT combines circuit size and computation time to indicate the hardware
resources spent to obtain a given throughput. This is simply because AT = A

Θ . The lower the
AT -product, the more hardware-efficient a circuit.

Latency L indicates the number of computation cycles from a data item being entered into a
circuit until the pertaining result becomes available at the output. Latency is zero when the
result appears within the same clock cycle as that during which the input datum was fed in.

Energy per data item E is meant to quantify the amount of energy dissipated in carrying out
some given computation on a data item. As examples consider indications in pJ/MAC,
nJ/sample, µJ/datablock or mWs/videoframe.

The same quantity can also be viewed as the quotient E = P
Θ that relates power dissipation

to throughput and is then be expressed in mW/Mbit
s , or W/GOPS (Giga operations per

second), for instance. Using inverse term such as MOPS/mW and GOPS/W is more popular
in the context of microprocessors.

Energy per data item is further related to the power–delay product (PDP) pdp = P · tlp ,
a quantity often used for comparing standard cells and other transistor-level circuits. The

1 9 We do not consider multicycle paths, wave-pipelined operation, or asynchronous circuits here.
2 0 Note that Mega Instructions Per Second (MIPS), a performance indicator most popular with IT specialists,

neither reflects data throughput nor applies to architectures other than program-controlled processors.
2 1 It is sometimes more adequate to express data throughput in terms of bits per time unit; (2.3) must then be

restated as Θ = w
f c p

Γ , where w indicates how many bits make up one data item.
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difference is that our definition explicitly accounts for multicycle computations and for longer-
than-necessary computation periods E = PT = P · Γ · Tcp ≥ P · Γ · tlp = Γ · pdp.

Example

In the occurrence of the architecture shown in fig.2.11e, one easily finds the quantities below

A = 3Areg + 4A∗ + 3A+ (2.4)

Γ = 1 (2.5)

tlp = treg + t∗ + 3t+ (2.6)

AT = (3Areg + 4A∗ + 3A+)(treg + t∗ + 3t+) (2.7)

L = 0 (2.8)

E = 3Ereg + 4E∗ + 3E+ (2.9)

where indices ∗, +, and reg refer to a multiplier, an adder, and a data register respectively.
�

A word of caution is due here. Our goal in using formulae to approximate architectural figures of
merit is not so much to obtain numerical values for them but to explain roughly how they are going
to be affected by the different equivalence transforms available to VLSI architects.22

2.3.7 Computation cycle versus clock period

So far, we have been using the term computation period without defining it. In synchronous digital
circuits, a calculation is broken down into a series of shorter computation cycles the rhythm of which
gets imposed by a periodic clock signal. During each computation cycle, fresh data emanate from
a register, and propagate through combinational circuitry where they undergo various arithmetic,
logic, and/or routing operations before the result gets stored in the next analogous register (same
clock, same active edge).

Definition 2.1. A computation period Tcp is the time span that separates two consecutive compu-

tation cycles.

For the moment being, it is safe to assume that computation cycle, computation period, clock cycle,
and clock period are all the same, Tcp = Tclk , which is indeed the case for all those circuits that
adhere to single-edge-triggered one-phase clocking.23 The inverse, that is the number of computation
cycles per second, is referred to as computation rate fcp = 1

Tc p
.

2 2 As an example, calculation of the long path delay tl p is grossly simplified in (2.6). For one thing, interconnect
delays are neglected which is an overly optimistic assumption. For another thing, the propagation delays of
the arithmetic operations are simply summed up which sometimes is a pessimistic assumption, particularly in
cascades of multiple ripple carry adders where all operands arrive simultaneously. Synthesis followed by place
and route often is the only way to determine overall path delays with sufficient accuracy.

2 3 As an exception, consider dual-edge-triggering where each clock period comprises two consecutive computation
periods so that Tc p = 1

2 Tc l k . Details are to follow in section 6.2.3.
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2.4 Equivalence transforms for combinational computations

A computation that depends on the present arguments exclusively is termed combinational. A
sufficient condition for combinational behavior is a DDG which is free of circular paths and where
all edge weights equal zero.

Consider some fixed but otherwise arbitrary combinational function y(k) = f (x(k)). The DDG in
fig.2.12a depicts such a situation. As suggested by the dashed edges, both input x(k) and output y(k)
can include several subvectors. No assumptions are made about the complexity of f which could
range from a two-bit addition, over an algebraic division, to the Fast Fourier Transform (FFT)
operation of a data block, and beyond. In practice, designers would primarily be concerned with
those operations that determine chip size, performance, power dissipation, etc. in some critical way.

f
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combinational
logic

no control
section

Fig. 2.12 DDG for some combinational function f (a). A symbolic representation of the reference hardware

configuration (b) with its key characteristics highlighted (c).

The isomorphic architecture simply amounts to a hardware unit that does nothing but evaluate
function f , a rather expensive proposal if f is complex such as in the FFT example. Three options
for reorganizing and improving this unsophisticated arrangement exist.24

1. Decomposing function f into a sequence of subfunctions that get executed
one after the other in order to reuse the same hardware as much as possible.

2. Pipelining of the functional unit for f to improve computation rate by cutting down combi-
national depth and by working on multiple consecutive data items simultaneously.

3. Replicating the functional unit for f and having all units work concurrently.

It is intuitively clear that replication and pipelining both trade circuit size for performance while
iterative decomposition does the opposite. This gives rise to questions such as

“Does it make sense to combine pipelining with iterative decomposition
in spite of their antagonistic effects?” and

“Are there situations where replication should be preferred over pipelining?”

which we will try to answer in the following subsections.

2 4 Of course, many circuit alternatives for implementing a given arithmetic or logic function also exist at the gate
level. However, within the general context of architecture design, we do not address the problem of developing
and evaluating such options as this involves lower-level considerations that strongly depend on the specific
operations and on the target library. The reader is referred to the specialized literature on computer arithmetics
and on logic design.
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2.4.1 Common assumptions

The architectural arrangement that will serve as a reference for comparing various alternative
designs is essentially identical to the isomorphic configuration of fig.2.12a with a register added
at the output to allow for the cascading of architectural chunks without their longest path delays
piling up. The characteristics of the reference architecture then are

A(0) = Af + Areg (2.10)

Γ(0) = 1 (2.11)

tlp (0) = tf + treg (2.12)

AT (0) = (Af + Areg )(tf + treg ) (2.13)

L(0) = 1 (2.14)

E(0) = Ef + Ereg (2.15)

where subscript f stands for the datapath hardware that computes some given combinational func-
tion f and where subscript reg denotes a data register. For the sake of simplicity the word width w

of the datapath is assumed to be constant throughout. For illustration purposes we use a graphical
representation that suggests hardware organization, circuit size, longest path length, data through-
put, and latency in a symbolic way, see figs.2.12b and c.

The quotient Af /Areg relates the size of the datapath hardware to that of a register, and tf /treg

does the same for their respective time requirements.25 Their product Af

Ar e g

tf

tr e g
thus reflects the

computational complexity of function f in some sense. (2.16) holds whenever logic function f is a
fairly substantial computational operation. We will consider this the typical, although not the only
possible, case.

Areg tr eg � Af tf (2.16)

Many of the architectural configurations to be discussed require extra circuitry for controlling
datapath operation and for routing data items. Two additive terms Actl and Ectl are introduced
to account for this where necessary. As it is very difficult to estimate the extra hardware without
detailed knowledge of the specific situation at hand, the only thing that can be said for sure is that
Actl is on the order of Areg or larger for most architectural transforms. Control overhead may in
fact become significant or even dominant when complex control schemes are brought to bear as a
result of combining multiple transforms.

As for energy, we will focus on the dynamic contribution that gets dissipated in charging and
discharing electrical circuit nodes as a consequence of fresh data propagating through gate-level
networks. Any dissipation due to static currents or due to idle switching is ignored, which is a
reasonable assumption for comparing low-leakage static CMOS circuits that are fairly active.26

Throughout our architectural comparisons, we further assume all electrical and technological condi-
tions to remain the same.27 A comparison of architectural alternatives on equal grounds is otherwise

2 5 Typical size A and delay figures t for a number of logic and arithmetic operations are given as illustrative
material in appendix 2.12.

2 6 Power dissipation, switching activities, leakage currents, and the like are the sub jects of chapter 9.
2 7 This includes supply voltage, cell library, transistor sizes, threshold voltages, fabrication process, and the gate-

level structure of arithmetic units.
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not possible as a shorter path delay or a lower energy figure would not necessarily point to a more
efficient design alternative.

2.4.2 Iterative decomposition

The idea behind iterative decomposition — or decomposition, for short — is nothing else than
resource sharing through step-by-step execution. The computation of function f is broken up
into a sequence of d subtasks which are carried out one after the other. From a dataflow point
of view, intermediate results are recycled until the final result becomes available at the output d

computation cycles later, thereby making it possible to reuse a single hardware unit several times
over. A configuration that reuses a multifunctional datapath in a time-multiplex fashion to carry
out f in d = 3 subsequent steps is symbolically shown in fig.2.13. Note the addition of a control
section that pilots the datapath on a per-cycle basis over a number of control lines.
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Fig. 2.13 Iterative decomposition. DDG (a) and hardware configuration for d = 3 (b).

Performance and cost analysis

Assumptions:

1. The total size requirement for implementing the various subfunctions into which f is decomposed
ranges between Af

d and Af .
2. The decomposition is lossless and balanced, i.e. it is always possible to break up f into d sub-

functions the computations of which require a uniform amount of time tf

d .

As a first-order approximation, iterative decomposition leads to the following figures of merit:

Af

d
+ Areg + Actl ≤ A(d) ≤ Af + Areg + Actl (2.17)

Γ(d) = d (2.18)

tlp (d) ≈
tf
d

+ treg (2.19)

d(Areg + Actl)treg + (Areg + Actl)tf + Af treg +
1
d
Af tf ≤ AT (d) ≤

d(Af + Areg + Actl)treg + (Af + Areg + Actl)tf (2.20)

L(d) = d (2.21)

E(d) ≷ Ef + Ereg (2.22)
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Let us confine our analysis to situations where the control overhead can be kept small so that
Areg ≈ Actl � Af and Ereg ≈ Ectl � Ef . A key issue in interpreting the above results is whether
size A(d) tends more towards its lower or more towards its upper bound in (2.17). While iterative
decomposition can, due to (2.16), significantly lower the AT -product in the former case, it does not
help in the latter.

The lower bounds hold in (2.17) and (2.20) when the chunk’s function f makes repetitive use
of a single subfunction because the necessary datapath is then essentially obtained from cutting
the one that computes f into d identical pieces only one of which is implemented in hardware. A
monofunctional processing unit suffices in this case.

At the opposite end are situations where computing f asks for very disparate subfunctions that
cannot be made to share much hardware resources in an efficient way. Iterative decomposition is
not an attractive option in this case, especially if register delay, control overhead, and the difficulty
of meeting assumption 2 are taken into consideration.

Operations that lend themselves well to being combined into a common computational unit include
addition and subtraction in either fixed-point or floating-point arithmetics, and various shift and
rotate operations. CORDIC units reuse essentially the same hardware for angle rotations and for
trigonometric and hyperbolic functions.

As for energy efficiency, there are two mechanisms that counteract each other. On the one hand,
iterative decomposition entails register activity not present in the original circuit. The extra control
and data recycling logic necessary to implement step-by-step execution further inflate dissipation.

On the other hand, we will later find that long register-to-register signal propagation paths
tend to foster transient node activities, aka glitches. Cutting such propagation paths often helps to
mitigate glitching activities and the associated energy losses.28 Such second-order effects are not
accounted for in the simplistic unit-wise additive model introduced in (2.15), however, making it
difficult to apprehend the impact of iterative decomposition on energy before specific circuit details
become available.

Example

A secret-key block cipher operated in electronic code book (ECB) mode is a highly expensive com-
binational function. ECB implies a memoryless mapping y(k) = c(x(k), u(k)) where x(k) denotes
the plaintext, y(k) the ciphertext, u(k) the key, and k the block number or time index. What most
block ciphers, such as the Data Encryption Standard (DES), the International Data Encryption
Algorithm (IDEA), and the Advanced Encryption Standard (AES) Rijndael have in common is a
cascade of several rounds, see fig.2.14 for the IDEA algorithm [38]. The only difference between the
otherwise identical rounds is in the values of the subkeys used that get derived from u(k). What is
referred to as output transform is nothing else than a subfunction of the previous rounds.

If we opt for iterative decomposition, a natural choice consists in designing a datapath for one
round and in recycling the data with changing subkeys until all rounds have been processed. As
control is very simple, the circuit’s overall size is likely to stay close to the lower bound in (2.17)
after this first step of decomposition. On continuing in the same direction, however, benefits will
diminish because the operations involved (bitwise addition modulo 2, addition modulo 216 , and

2 8 See chapter 9 for explanations.
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multiplication modulo (216 + 1)) are very disparate. In addition, the impact of control on the
overall circuit size would be felt.
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Fig. 2.14 DDG of the block cipher IDEA.

�
A more radical approach is to decompose arbitrary functions into sequences of arithmetic and/or
logic operations from a small but extremely versatile set and to provide a single ALU instead.
The datapath of any microprocessor is just a piece of universal hardware that arose from the
general idea of step-by-step computation, and the reduced instruction set computer (RISC)
can be viewed as yet another step in the same direction. While iterative decomposition together
with programmability and time sharing, see section 2.4.5, explains the outstanding flexibility and
hardware economy of this paradigm, it also accounts for its modest performance and poor energy
efficiency relative to more focussed architecture designs.

Examples

Examples of ASICs the throughputs of which exceeded that of contemporary high-end general-
purpose processors by orders of magnitude are given in sections 2.2 and 2.7.3.
�
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2.4.3 Pipelining

Pipelining aims at increasing throughput by cutting combinational depth into several separate stages
of approximately uniform computational delays by inserting registers in between.29 The combina-
tional logic between two subsequent pipeline registers is designed and optimized to compute one
specific subfunction. As an ensemble, the various stages cooperate like specialist workers on an
assembly line. Figure 2.15 sketches a functional unit for f subdivided into p = 3 pipeline stages by
p − 1 extra registers. Note the absence of any control hardware.
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Fig. 2.15 Pipelining. DDG (a) and hardware configuration for p = 3 (b).

Performance and cost analysis

Assumptions:

1. The combinational logic for implementing function f is not affected by the number of pipeline
stages introduced. Its overall size Af , therefore, remains constant.

2. The pipeline is lossless and balanced, i.e. similarly to decomposition it is always possible to
partition the logic into p stages such that all have identical delays tf

p .
3. The size penalty of pipelining can be expressed by an additive term Areg for each register

accounting for the silicon area occupied by storage elements.
4. At each pipeline stage a performance penalty results from introducing a register delay treg which

includes the delay caused by the storage element.

Pipelining changes performance and cost figures as follows:

A(p) = Af + pAreg (2.23)

Γ(p) = 1 (2.24)

tlp (p) ≈
tf
p

+ treg (2.25)

AT (p) ≈ pAreg treg + (Areg tf + Af treg ) +
1
p
Af tf (2.26)

L(p) = p (2.27)

E(p)
fine grain

≷
coarse grain

Ef + Ereg (2.28)

2 9 For a more formal discussion see subsection 2.6.1.
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Both performance and size grow monotonically with pipeline depth. The same holds true for latency.
What is more interesting is that a modest number of pipeline stages each of which has a substantial
depth dramatically lowers the AT -product due to (2.16). This regime is referred to as coarse grain
pipelining.

Example

Equation (2.25) relates combinational delay to register delay. Another popular way to quantify the
degree of pipelining is to express the delay on the longest path as a multiple of fanout-of-4 (FO4)
inverter delays.30

year clock freq. FO4 inverter delays
CPU [MHz] per pipeline stage
Intel 80386 1989 33 ≈80
Intel Pentium 4 2003 3200 12–16
IBM Cell Processor 2006 3200 11

�

Continuing along this line, one may want to insert more and more pipeline registers. However, (2.25)
reveals that the benefit fades when the combinational delay per stage tf

p approaches the register
delay treg . For large values of p the area–delay product is dominated by the register delay rather
than by the payload function. A natural question for this type of deep or fine grain pipelining is
to ask

“What is the maximum computation rate for which a pipeline can be built?”

The fastest logic gates from which useful data processing can be obtained are 2-input nand or nor

gates.31 Even if we are prepared to profoundly redesign a pipeline’s logic circuitry in an attempt to
minimize the longest path tlp , we must leave room for at least one such gate between two subsequent
registers. It thus is not possible to accelerate the computation rate beyond

Tcp ≥ min(tlp ) = min(tg a te ) + tr eg = min(tn an d , tn or ) + tsu ff + tpd ff (2.29)

which represents a lower bound for (2.25). Practical applications that come close to this theoretical
minimum are limited to tiny subcircuits, however, mainly because of the disproportionate number
of registers required, but also because meeting assumptions 1 and 2 is difficult with fine grained
pipelines. Even in high-performance datapath logic, economic reasons typically preclude pipelining
below 11 FO4 inverter delays per stage.

Equation (2.29) further indicates that register delay is critical in high speed design. In fact, a
typical relation is treg ≈ 3–5 min(tgate). As a consequence, it takes twenty or so levels of logic
between subsequent registers before flip-flop delays are relegated to insignificant proportions. A

3 0 Comparing circuit alternatives in terms of FO4 inverters makes sense because fanout-of-4 inverters are common-
place in buffer trees driving large loads and because the delays of other static CMOS gates have been found to
track well those of FO4 inverters.

3 1 This is because binary nand and nor operations (a) form a complete gate set each and (b) are efficiently
implemented from MOSFETs, see sections A.2.10 and 8.1 respectively.
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high-speed cell library must, therefore, not only include fast combinational gates but also provide
bistables with minimum insertion delays.32

Example

Plugging into (2.29) typical numbers for a 2-input nor gate and a D-type flip-flop with no reset from
a 130 nm CMOS standard cell library, one obtains Tcp ≥ tNOR2D1 + tDFFPB1 = 18 ps + 249 ps ≈
267 ps which corresponds to a maximum computation rate of about 3.7 GHz.
�

“How many stages yield optimum pipeline efficiency?”

Optimum hardware efficiency means minimum size–time product

AT (p) = min (2.30)

which is obtained for

p0 =

√
Af tf

Areg tr eg
(2.31)

Beyond this point, adding more pipeline registers causes the size–time product to deteriorate even
though performance is still pushed further. It also becomes evident from (2.31) that, in search of
an economic solution, the more complex a function, the more pipelining it supports. In practice,
efficiency is likely to degrade before p0 is reached because our initial assumptions 1 and 2 cannot be
entirely satisfied. [39] indicates the optimal depth is 6 to 8 FO4 inverter delays per pipeline stage.

“How does pipelining affect energy efficiency?”

The additional registers suggest that any pipelined datapath dissipates more energy than the ref-
erence architecture does. This is certainly true for fine grain pipelines where the energy wasted by
the switching of all those extra subcircuits becomes the dominant contribution.

For coarse grain designs, the situation is more fortunate. Experience shows that pipeline registers
tend to reduce the unproductive switching activity associated with glitching in deep combinational
networks, a beneficial side effect neglected in a simple additive model.

Interestingly, our finding that throughput is greatly increased makes it possible to take advantage
of coarse grain pipelining for improving energy efficiency, albeit indirectly. Recall that the improved
throughput is a result from cutting the longest path while preserving a processing rate of one
data item per computation cycle. The throughput of the isomorphic architecture is thus readily
matched by a pipelined datapath implemented in a slower yet more energy-efficient technology, e.g.
by operating CMOS logic from a lower supply voltage or by using mostly minimum-size transistors.
Our model cannot reflect this opportunity because we have decided to establish energy figures under
the assumption of identical operating conditions and cell libraries. Another highly welcome property
of pipelining is the absence of energy-dissipating control logic.

3 2 Function latches where bistables and combinational logic get merged into a single library cell in search of better
performance are to be discussed in sections 6.2.6 and 8.2.2.
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Pipelining in the presence of multiple feedforward paths

Although pipelining can be applied to arbitrary feedforward computations, there is a reservation
of economic nature when a DDG includes many parallel paths. In order to preserve overall func-
tionality, any latency introduced into one of the signal propagation paths must be balanced by
inserting an extra register into each of its parallel paths. Unless those shimming registers help
cut combinational depth there, they bring about substantial size and energy penalties, especially
for deep pipelines where p is large.
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Fig. 2.16 Involutory cipher algorithm. DDG before (a) and after pipelining (b).

Example

With simplifications, fig.2.16a reproduces the block cipher IDEA. Variable k stands for the block
index, l(k) and r(k) each denote half of a 64 bit plaintext block while v(k) and w(k) do the same for a
64 bit ciphertext block. u(k) and u′(k) stand for the keys used during enciphering and deciphering
operations respectively. Provided the two keys are the same, i.e. u′(k) = u(k), the net result is
l′(k) = l(k) and r′(k) = r(k), which implies that the plaintext is recovered after calling g twice.
Note that this involution property33 is totally independent of function c which, therefore, can be
designed so as to maximize cryptographic security.

Extensive pipelining seems a natural way to reconcile the computational complexity of c with
ambitious performance goals. Yet, as a consequence of the two paths bypassing c, every pipeline

3 3 A function g is said to be involutory iff g(g(x)) ≡ x, ∀ x. As trivial examples, consider multiplication by −1
in classic algebra where we have −(−x) ≡ x, the complement function in Boolean algebra where x ≡ x, or a
mirroring operation from geometry. Involution is a welcome property in cryptography since it makes it possible
to use exactly the same equipment for both enciphering and deciphering.
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register entails two shimming registers, effectively tripling the costs of pipelining, see fig.2.16b.
This is the reason why pipeline depth had to be limited to eight stages per round in a VLSI
implementation of the IDEA cipher in spite of stringent throughput requirements [40].

2.4.4 Replication

Replication is a brute-force approach to performance: If one functional unit does not suffice, allow
for several of them. Concurrency is obtained from providing q instances of identical functional units
for f and from having each of them process one out of q data items in a cyclic manner. To that
end, two synchronous q-way switches distribute and recollect data at the chunk’s input and output
respectively. An arrangement where q = 3 is shown in fig.2.17.34 Overall organization and operation
is reminiscent of a multi-piston pump.
�
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Fig. 2.17 Replication. DDG (a) and hardware configuration for q = 3 (b).

Performance and cost analysis

Assumptions:

1. Any size penalties associated with distributing data to replicated functional units
and with recollecting them are neglected.

2. Any energy dissipated in data distribution and recollection is ignored.

The above assumptions hold fairly well provided the circuitry for computing f is much larger than
that for data distribution and recollection. The key characteristics of replication then become

A(q) = q(Af + Areg ) + Actl (2.32)

Γ(q) =
1
q

(2.33)

tlp (q) ≈ tf + treg (2.34)

AT (q) ≈
(

Af + Areg +
1
q
Actl

)
(tf + treg ) ≈ (Af + Areg )(tf + treg ) (2.35)

L(q) = 1 (2.36)

E(q) ≈ Ef + Ereg + Ectl (2.37)

3 4 Multiple processing units that work in parallel are also found in situations where the application naturally
provides data in parallel streams, each of which is to undergo essentially the same processing. In spite of
the apparent similarity, this must not be considered as the result of replication, however, because DDG and
architecture are isomorphic. This is reflected by the fact that no data distribution and recollection mechanism
is required in this case. Please refer to section 2.4.5 for the processing of multiple data streams.
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As everyone would expect, replication essentially trades area for speed. Except for the control
overhead, the AT -product remains the same. Pipelining, therefore, is clearly more attractive than
replication as long as circuit size and performance do not become dominated by the pipeline registers,
see fig.2.18 for a comparison.

Example

Consider a simple network processor that handles a stream of incoming data packets and does
some address calculations before releasing the packets with a modified header. Let that processor
be characterized by the subsequent cost figures: Af = 60w GE, Areg = 6w GE, where w is an integer
relating to datapath width, tf = 12 ns, treg = 1.2 ns, and min(tgate) = 0.3 ns.
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Fig. 2.18 AT -characteristics of pipelining and replication compared. Simplified by assuming perfect balancing,

by not accounting for shimming registers in the occurrence of pipelining, and by abstracting from control, data

distribution, and recollection associated with replication.

�

Energywise, replication is indifferent except for the contributions for datapath control and data
distribution/recollection. Also note, by the way, that replication does not shorten the computation
period, which contrasts with iterative decomposition and pipelining.35

3 5 Observe that the entirety of functional units must be fed with q data items per computation cycle and that
processed data items emanate at the same rate. Only the data distribution and recollection subcircuits must
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A more accurate evaluation of replication versus pipelining would certainly require revision of some
of the assumptions made here and does depend to a large extent on the actual DDG and on
implementation details. Nevertheless, it is safe to conclude that neither fine grain pipelining nor
replication is as cost-effective as coarse grain pipelining.

Its penalizing impact on circuit size confines replication to rather exceptional situations in ASIC
design. A megacell available in layout form exclusively represents such a need because adding
pipeline registers to a finished layout would ask for a disproportionate effort. Replication is limited
to high-performance circuits and always combined with generous pipelining.

Superscalar and multicore microprocessors are two related ideas from computer architecture.36

Several factors have pushed the computer industry towards replication: CMOS technology offered
more room for increasing circuit complexity than for pushing clock frequencies higher. The faster
the clock, the smaller the region on a semiconductor die that can be reached within a single clock
period.37 Fine grain pipelines dissipate a lot of energy for relatively little computation. Reusing a
well-tried subsystem benefits design productivity and lowers risks. A multicore processor can still
be of commercial value even if one of its CPUs is found to be defective.

2.4.5 Time sharing

So far we have been concerned with the processing of a single data stream as depicted in fig.2.12.
Now consider a situation where a number of parallel data streams undergo processing as illustrated
in fig.2.19, for instance. Note that the processing functions f , g, and h may, but need not, be the
same. The isomorphic architecture calls for a separate functional unit for each of the three operations
in this case. This may be an option in applications such as image processing where a great number
of dedicated but comparatively simple processing units are repeated along one or two dimensions,
where data exchange is mainly local, and where performance requirements are very high.

More often, however, the costs of fully parallel processing are unaffordable and one seeks to cut
overall circuit size. A natural idea is to pool hardware by having a single functional unit process
the parallel data streams one after the other in a cyclic manner. Analogously to replication, a
synchronous s-way switch at the input of that unit collects the data streams while a second one
redistributes the processed data at the output. While the approach is known as time-sharing in
computing, it is more often referred to as multiplexing or as resource sharing in the context of
circuit design.38 What it requires is that the circuitries for computing the various functions involved
all be combined into a single datapath of possibly multifunctional nature. A student sharing his

time between various subjects might serve as an analogy from everyday life.

be made to operate at a rate q times higher than the computational instances themselves. High data rates are
obtained from configuring data distribution/recollection networks as heavily pipelined binary trees. Maximum
speed is, again, determined by (2.29). Yet, circumstances permitting, it may be possible to implement data dis-
tribution and recollection using a faster technology than the one being used in the body of the processing chunk
(superfast distribution and recollection). Also see [41] for further information on fast data distribution/recollec-
tion circuitry.

3 6 A superscalar processor combines multiple execution units, such as integer ALUs, FPUs, load/store units, and
the like, into one CPU so that superscalar CPU can fetch and process more than one instruction at a time.
Multicore architectures go one step further in that they replicate entire CPUs on a single chip and so enable
a processor to work on two or more threads of execution at a time.

3 7 For a rationale, refer to section 6.3 that discusses delay in interconnect lines without and with repeaters.
3 8 This is our second resource-sharing technique, after iterative decomposition introduced in section 2.4.2.



82 Architectures of VLSI Circuits

a)

hf g

b)

datapath
section hf g

collector

redistributor

output streams

input streams

f  g  h control
section

sharing
time

Fig. 2.19 Time sharing. DDG with parallel data streams (a) and hardware configuration for s = 3 (b).

Performance and cost analysis

Assumptions:

1. The size of a circuit capable of implementing functions f , g, and h with a single computational
unit ranges between max

f ,g ,h
(A) = max(Af , Ag , Ah ) and

∑
f ,g ,h A = (Af + Ag + Ah ).

2. The time for the combined computational unit to evaluate any of the functions f , g, and h has
a fixed value max

f ,g ,h
(t) = max(tf , tg , th ).

3. As for replication, any size and energy penalties associated with collecting and redistributing
data are neglected.

4. The energy spent for carrying out functions f , g, and h (all together) with one shared unit is
closer to s max

f ,g ,h
(E) = s max(Ef , Eg , Eh ) than to

∑
f ,g ,h E = Ef + Eg + Eh .

Time-sharing yields the following circuit characteristics:

max
f ,g ,h

(A) + Areg + Actl ≤ A(s) ≤
∑
f ,g ,h

A + Areg + Actl (2.38)

Γ(s) = s (2.39)

tlp (s) ≈ max
f ,g ,h

(t) + treg (2.40)

s(max
f ,g ,h

(A) + Areg + Actl)(max
f ,g ,h

(t) + treg ) ≤ AT (s) ≤

s


 ∑

f ,g ,h

A + Areg + Actl)(max
f ,g ,h

(t) + treg


 (2.41)

L(s) = s (2.42)

E(s) ≈ s max
f ,g ,h

(E) + Ereg + Ectl (2.43)

Similarly to what was found for iterative decomposition, whether size A(s) tends more towards its
lower or more towards its upper bound in (2.38) greatly depends on how similar or dissimilar the
individual processing tasks are.

The most favorable situation occurs when one monofunctional datapath proves sufficient because
all streams are to be processed in exactly the same way. In our example we then have f ≡g≡h

from which max
f ,g ,h

(A)=Af =Ag =Ah and max
f ,g ,h

(t)= tf = tg = th follow immediately. Apart from the

overhead for control and data routing, AT (s) equals the lower bound s(Af + Areg )(tf + treg ) which
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is identical to the isomorphic architecture with its s separate computational units. It is in this best
case exclusively that time-sharing leaves the size–time product unchanged and may, therefore, be
viewed as complementary to replication.

The contrary condition occurs when f , g, and h are very dissimilar so that no substantial
savings can be obtained from concentrating their processing into one multifunctional datapath.
Time-sharing will then just lower throughput by a factor of s, thereby rendering it an unattractive
option. Provided speed requirements are sufficiently low, a radical solution is to combine time-
sharing with iterative composition and to adopt a processor style as already mentioned in subsection
2.4.2.

The energy situation is very similar. If the processing functions are all alike and if the computation
rate is kept the same, then the energy spent for processing actual data also remains much the same.39

Extra energy is then spent only for controlling the datapath and for collecting and redistributing
data items. More energy is going to get dissipated in a combined datapath when the functions
markedly differ from each other. As time-sharing has no beneficial impact on glitching activity
either, we conclude that such an architecture necessarily dissipates more energy than a comparable
non-time-shared one.

By processing s data streams with a single computational unit, time-sharing deliberately refrains
from taking advantage of the parallelism inherent in the original problem. This is of little importance
as long as performance goals are met with a given technology. When in search of more performance,
however, a time-shared datapath will have to run at a much higher speed to rival the s concurrent
units of the isomorphic architecture, which implies that data propagation along the longest path
must be substantially accelerated. Most measures suitable to do so, such as higher supply voltage,
generous transistor sizing, usage of high-speed cells and devices, adoption of faster but also more
complex adder and multiplier schemes, etc., tend to augment the amount of energy spent for the
processing of one data item even further.

Example

The Fast Fourier Transform (FFT) is a rather expensive combinational function, see fig.2.20. Luck-
ily, due to its regularity, the FFT lends itself extremely well to various reorganizations that help
reduce hardware size. A first iterative decomposition step cuts the FFT into log2(n) rounds where
n stands for the number of points. When an in-place computation scheme is adopted, those rounds
become identical except for their coefficient values.40 Each round so obtained consists of n

2 parallel
computations referred to as butterflies because of their structure, see fig.2.20b. The idea of sharing

3 9 Consider (2.27) and note that the equation simplifies to sEf + Er e g + Ec t l when f , g , and h are the same.
The partial sum sEf + Er e g then becomes almost identical to s(Ef + Er e g ) of the reference architecture. The
apparent saving of (s − 1)Er e g obtained from making do with a single register does not materialize in practice
because of the necessity to store data items from all streams.

4 0 For a number of computational problems, it is a logical choice to have two memories that work in a ping-
pong fashion. At any moment of time, one memory provides the datapath with input data while the other
accommodates the partial results at present being computed. After the evaluation of one round is completed,
their roles are swapped. Simple as it is, this approach unfortunately requires twice as much memory as needed
to store one set of intermediate data. A more efficient technique is in-place computation, whereby some of the
input data are immediately overwritten by the freshly computed values. In-place computation may cause data
items to get scrambled in memory, though, which necessitates corrective action. Problems amenable to in-place
computation combined with memory unscrambling include the FFT and the Viterbi algorithm [42].
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Fig. 2.20 DDG of 8-point FFT (a) and of butterfly operator (b) (reduced for simplicity).

one or two computational units between the butterfly operations of the same round is very obvious
at this point.41

DDGs as regular as this offer ample room for devising a range of architectures that represent diverse
compromises between a single-ALU microprocessor and a hardwired data pipeline maximized for
throughput. Providing a limited degree of scalability to accommodate FFTs of various sizes is not
overly difficult either. Favorable conditions similar to these are found in many more applications
including, among others, transversal filters (repetitive multiply–accumulate operations), correlators
(idem), lattice filters (identical stages), and block ciphers (cascaded rounds).
�

So far, we have come up with four equivalence transforms, namely

• Iterative decomposition,
• Pipelining,
• Replication, and
• Time-sharing.

Figure 2.21 puts them into perspective in a grossly simplified but also very telling way. More
comments will follow in section 2.4.8.

4 1 Alternative butterfly circuits and architectures have been evaluated in [43] with emphasis on energy efficiency.
Also, in fig.2.20, we have assumed input samples to be available as eight concurrent data streams. FFT processors
often have to interface to one continuous word-serial stream, however. Architectures that optimize hardware
utilization for this situation are discussed in [44].
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Fig. 2.21 A roadmap illustrating the four universal transforms for tailoring combinational hardware. Only a

subset of all possible architectural configurations is shown, see problem 2.10. Greatly simplified by

• abstracting from register overhead (Areg = 0, tr eg = 0), which also implies

• not making any difference between RAMs and flip-flops (ARA M = Aff · #b its , tRA M = tff ),

• assuming ideal iterative decomposition and ideal time-sharing (lower bounds in (2.17) and (2.38)), and

• ignoring any overhead associated with control and/or data distribution and collection.
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2.4.6 Associativity transform

All four architectural transforms discussed so far have one thing in common. Whether and how to
apply them for maximum benefit can be decided from a DDG’s connectivity and weights alone,
no matter what operations the vertices stand for. In what follows, we will call any architectural
reorganization that exhibits this property a universal transform.

The practical consequence is that any computational flow qualifies for reorganization by way of uni-
versal transforms. This also implies that any two computations the DDGs of which are isomorphic
can be solved by the same architecture just with the vertices interpreted differently.

More on the negative side, universal transforms have a limited impact on the flow of computation
because the number and precedence of operations are left unchanged.42 As many computational
problems ask for more specific and more profound forms of reorganization in order to take full advan-
tage of the situation at hand, one cannot expect to get optimum results from universal transforms
alone. Rather, one needs to bring in knowledge on the particular functions involved and on their
algebraic properties. Architectural reorganizations that do so are referred to as operation-specific
or algebraic transforms.

Probably the most valuable algebraic property from an architectural point of view is the associative
law. Associativity can be capitalized on to

◦ Convert a chain structure into a tree or vice versa, see example below,
◦ Reorder operations so as to accommodate input data that arrive later than others do,
◦ Reverse the order of execution in a chain as demonstrated in section 2.6, or
◦ Relocate operations from within a recursive loop to outside the loop, see section 2.7.

This explains why the associativity transform is also known as operator reordering and as
chain/tree conversion.

Example

Consider the problem of finding the minimum among I input values

y(k) = min(xi (k)) where i = 0, 1, ..., (I − 1) (2.44)

Assuming the availability of 2-way minimum operators, this immediately suggests a chain structure
such as the one depicted in fig.2.22a for I = 8. The delay along the longest path is (I − 1)tmin and
increases linearly with the number of terms. As the 2-way minimum function is associative, the
DDG lends itself to being rearranged into a balanced tree as shown in fig.2.22b. The longest path
is thereby shortened from I − 1 to 	log2I
 operations, which makes the tree a much better choice,
especially for large values of I . The number of operations and the circuit’s size remain the same.

�

The conversion of a chain of operations into a tree, as in the above example, is specifically referred
to as tree-height minimization. As a side effect, this architectural transform often has a welcome
impact on energy efficiency. This is because glitches die out more rapidly and are more likely to

4 2 While it is true that the number of DDG vertices may change, this is merely a consequence of viewing the
original operations at a different level of detail.
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Fig. 2.22 8-way minimum function. Chain-type DDG (a), tree-type DDG (b).

neutralize when all data propagation paths are of similar lengths. In addition, we observe the same
indirect benefit as with pipelining, in that a shortened longest path makes it possible to use a slower
yet more energy-efficient circuit style or a reduced supply voltage if circumstances permit.

2.4.7 Other algebraic transforms

It goes without saying that many more algebraic laws can be put to use for improving dedicated
architectures. Distributivity helps to replace the computation of (a2 − 2ax + x2) by the more
economic form of (a − x)2 , for instance, and is instrumental in exploiting known symmetries in
coefficient sets. Together with commutativity, distributivity is also at the heart of distributed
arithmetic, see subsection 2.8.3. Horner’s scheme serves to evaluate polynomials with a mini-
mum number of multiplications, the principle of superposition holds in linear systems, the De
Morgan theorem helps in optimizing Boolean networks, and so on. See problem 5 for yet another
operation-specific alteration. As a rule, always ask yourself what situation-specific properties might
be capitalized on. The transforms discussed in this text just represent the more common ones and
are by no means exhaustive.

2.4.8 Digest
� Iterative decomposition, pipelining, replication, and time-sharing are based on the DDG as

a graph and make no assumptions on the nature of computations carried out in its vertices,
which is why they are qualified as universal. The associativity transform, in contrast, is said
to be an algebraic transform because it depends on the operations involved being identical
and associative.
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� Iterative decomposition, pipelining, replication, and a variety of algebraic transforms make
it possible to tailor combinational computations on a single data stream to given size and
performance constraints without affecting functionality. Time-sharing is another option in the
presence of inherently parallel data streams and operations.

� For iterative decomposition to be effective, complex functions must be amenable to being
broken into similar subfunctions so as to make it possible to reuse the same circuitry. Much
the same reasoning also holds for time-sharing in that parallel functions must not be too
diverse to share a single functional unit in a fairly efficient way.

� Pipelining is generally more efficient than replication, see fig.2.18. While coarse grain pipelin-
ing improves throughput dramatically, benefits decline as more and more stages are included.
When in search of utmost performance, begin by designing a pipeline the depth of which yields
close-to-optimum efficiency. Only then — if throughput is still insufficient — consider repli-
cating the pipelined functional unit a few times; see problem 2 for an example. This approach
also makes sense in view of design productivity because duplicating a moderately pipelined
unit may be easier and quicker than pushing pipelining to the extreme.

� A theoretical upper bound on throughput, expressed as data items per time unit, that holds
for any circuit technology and architecture is Θ ≤ 1

min(tg a t e )+tr e g
.43

� Pipelining and iterative decomposition are complementary in that both can contribute to
lowering the size–time product. While the former acts to improve performance, the latter cuts
circuit size by sharing resources. Combining them indeed makes sense, within certain bounds,
in order to obtain a high throughput from a small circuit.

� Starting from the isomorphic configuration, a great variety of architectures is obtained from
applying equivalence transforms in different orders. Combining several of them is typical for
VLSI architecture design. Figure 2.21 gives an idealized overview of the design space spanned
by the four universal transforms.44 Which configuration is best in practice cannot be decided
without fairly detailed knowledge of the application at hand, of the performance requirements,
and of the target cell library and technology.

� Program-controlled microprocessors follow an architectural concept that pushes iterative de-
composition and time-sharing to the extreme and that combines them with pipelining, and
often with replication too. Developers of general-purpose hardware cannot take advantage of
algebraic transforms as their application requires detailed knowledge about the data process-
ing algorithm.

� It can be observed from fig.2.21 that lowering the size–time product AT always implies cutting
down the longest path tlp in the circuit. This comes as no surprise as better hardware efficiency
can be obtained only from keeping most hardware busy for most of the time by means of a
higher computation rate fcp .

4 3 Further improvements are possible only by processing larger data chunks at a time i.e. by packing more bits,
pixels, samples, characters, or whatever into one data item. Note this is tantamount to opting for a larger w in
the sense of footnote 21.

4 4 As a more philosophical remark, observe from fig.2.21 that there exists no single transform that leads towards
optimum hardware efficiency. To move in that direction, designers always have to combine two or more transforms
much as a yachtsman must tack back and forth to progress windward with his sailboat.
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� Important power savings are obtained from operating CMOS logic with a supply voltage below
its nominal value. Clever architecture design must compensate for the loss of speed that is
due to the extended gate delays. Suggestions are given not only throughout this chapter, but
also in the forthcoming material on energy efficiency.45

2.5 Options for temporary storage of data

Except for trivial SSI/MSI circuits, any IC includes some form of memory. If the original data
processing algorithm is of sequential nature and, therefore, mandates the temporary storage of
data, we speak of functional memory. If storage gets introduced into a circuit as a consequence of
architectural transformations, the memory is sometimes said to be of nonfunctional nature.

The major options for temporary storage of data are as follows:

◦ On-chip registers built from individual bistables (flip-flops or latches),
◦ On-chip memory (embedded SRAM or — possibly — DRAM macrocell), or
◦ Off-chip memory (SRAM or DRAM catalog part).46

There are important differences from an implementation point of view that matter from an archi-
tectural perspective and that impact high-level design decisions.

2.5.1 Data access patterns

Standard single-port RAMs provide access to data words one after the other.47 This is fine in
sequential architectures as obtained from iterative decomposition and time-sharing that process
data in a step-by-step fashion. Program-controlled microprocessors with their “fetch, load, execute,
store” processing paradigm are a perfect match for RAMs.

Fast architectures obtained from pipelining, retiming, and loop unfolding,48 in contrast, keep
data moving in every computation cycle, which mandates the usage of registers as only those allow
for simultaneous access to all of the data words stored.

Incidentally, also keep in mind that the contents of DRAMs need to be periodically refreshed, which
dissipates electrical power even when no data accesses take place.

2.5.2 Available memory configurations and area occupation

Next compare how much die area gets occupied by registers and by on-chip RAMs. While register
files allow for any conceivable memory configuration in increments of one data word of depth and one
data bit of width, their area efficiency is rather poor. In the occurrence of fig.2.23, registers occupy
an order of magnitude more area than a single-port SRAM for capacities in excess of 5000 bits. This
is because registers get assembled from individual flip-flops or latches with no sharing of hardware
resources.

4 5 In chapter 9.
4 6 Please refer to section A.4 if totally unfamiliar with semiconductor memories.
4 7 Dual-port RAMs can access two data words at a time, multi-port RAMs are rather uncommon.
4 8 Retiming and loop unfolding are to be explained in sections 2.6 and 2.7 respectively.
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Due to their simple and extremely compact bit cells, RAMs make much better use of area in
spite of the shared auxiliary subcircuits they must accommodate. In a typical commodity DRAM,
for instance, roughly 60% of the die is occupied by storage cells, the rest by address decoders,
switches, precharge circuitry, sense amplifiers, internal sequencers, I/O buffers, and padframe. Yet,
such circuit overheads tend to make RAMs less attractive for storing smaller data quantities, which
is also evident from fig.2.23. A more serious limitation is that macrocells are available in a very
limited number of configurations only. Adding or dropping an address bit alters memory capacity
by a factor of two, and fractional cores are not always supported.

Always keep in mind that such effects have been ignored in the cost and performance analyses carried
out in sections 2.4.2 through 2.4.5 where Areg had been assumed to be fixed with no distinction
between registers and RAMs. More specifically, this also applies to fig.2.21.
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Fig. 2.23 Area occupation of registers and on-chip RAMs for a 130 nm CMOS technology.

2.5.3 Storage capacities

Embedded memories cannot rival the copious storage capacities offered by commodity RAMs. The
densest memory chips available are DRAMs built from one-transistor cells whereas the macro-
cells intended for being embedded within ASICs typically get assembled from six-transistor SRAM
storage cells, see table 2.9.49

The economic disparity between on-chip memories and cheap commodity DRAMs that are cost-
optimized, fabricated in large quantities, and — all too often — subject to ruinous competition has

4 9 DRAMs further take advantage of three-dimensional trench capacitors and other area-saving structures made
possible by dedicated fabrication steps and process options unavailable to macrocells that are to be compatible
with a baseline CMOS process. Also, processes for commodity memories are often ahead of ASIC processes in
terms of feature size. Finally, the layout of memory chips is highly optimized by hand.
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long discouraged the on-chip storage of very large amounts of data within ASICs. The design of true
“systems on a chip” requires this gap to be closed. In fact, some integrated VLSI manufacturers are
capable of embedding high-density DRAMs within their designs, but the approach has been slow
to catch on with the ASIC community and, more particularly, with the providers of ASIC design
kits.

Examples

Embedded DRAMs occupy a large part of the market for 3D graphics accelerator chips for laptops
because higher performance and lower power dissipation are key value propositions [45]. The so-
called “Emotion Engine” superscalar multimedia processor chip designed and produced by Toshiba
for Sony’s PlayStation 2 is another popular example.
�

2.5.4 Wiring and the costs of going off-chip

On the negative side, off-chip memories add to pin count, package count, and board space. Com-
municating with them involves a profusion of parasitic capacitances and delays that cause major
bottlenecks in view of operating speed, performance, and energy efficiency.

In addition, most commodity RAMs feature bidirectional data pins in an effort to keep costs and
pin counts as low as possible. They thus impose the adoption of a bidirectional bus on any IC that
is going to exchange data with them. Yet, note that bidirectional on-chip busses and even more so
bidirectional pads require special attention during circuit design and test.

• Not only stationary but even transient drive conflicts must be avoided because of the strong
drivers and important currents involved.

• Automated test equipment (ATE) must be made to alternate between read and write modes
with no physical access to any control signal within the chip.

• Test patterns must be prepared for verifying bidirectional operation and high-impedance states
during circuit simulation and testing.

• Electrical and timing measurements become more complicated.

2.5.5 Latency and timing

RAM-type memories further differ from registers in terms of latency, paging, and timing. Firstly,
some RAMs have latency while others do not. In a read operation, we speak of latency zero if the
content of a memory location becomes available at the RAM’s data output in the very clock cycle
during which its address has been applied to the RAM’s address port. This is also the behavior of
a register bank.

As opposed to this, we have a latency of one if the data word does not appear before an
active clock edge has been applied. Latency is even longer for memories that operate in a pipelined
manner internally. Latency may have a serious impact on architecture design and certainly affects
HDL coding.50

5 0 A trick that may help to conceal latency is to operate the RAM’s memory address register on the opposite clock
edge to the rest of the circuit. Note that this introduces extra timing conditions with respect to the supposedly
inactive clock edge that do not exist in a single-edge triggered circuit, however.
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Secondly, commodity DRAMs have their row and column addresses multiplexed over the same pins
to cut down package size and board-level wiring. Latency then depends on whether a memory
location shares the row address with the one accessed before, in which case the two are said to sit
on the same page, or not. Paged memories obviously affect architecture design.

Thirdly, address decoding, precharging, the driving of long word and bit lines, and other internal
suboperations inflate the access times of both SRAMs and DRAMs. RAMs thus impose a compar-
atively slow clock that encompasses many gate delays per computation period whereas registers are
compatible with much higher clock frequencies.51

2.5.6 Digest

Table 2.9 Key characteristics of register-based and RAM-based data storage compared.

architectural option o n - c h i p off-chip
bistables embedded commodity

flip-flop latch SRAM DRAM DRAM

fabrication process compatible with logic optimized
devices in each cell 20–30T 12–16T 6T|4T&2R 1T&1C 1T&1C
cell area per bit (F 2)a 1700–2800 1100–1800 135–170 18–30 6–8
extra circuit overhead none 1.3 ≤ factor ≤ 2 off-chip
memory refresh cycles n o n e y e s
extra package pins none none address & data bus
nature of wiring multitude of local lines on-chip busses package & board
bidirectional busses none optional mandatory
access to data words all at a time one at a time
available configurations any restricted
energy efficiency goodb fair poor very poor
latency and paging none no fixed rules yes
impact on clock period minor substantial severe

a Area of one bit cell in multiples of F 2 , where F 2 stands for the area of one lithographic square.
b Depending on the register access scheme, conditional clocking may be an option.

Observation 2.8. Most on-chip RAMs available for ASIC design

± are of static nature (SRAMs),

+ have their views obtained automatically using a macrocell generator,

− offer a limited choice of configurations (in terms of #words and wdata ),

+ occupy much less area than flip-flops,

− but do so only above some minimum storage capacity,

+ greatly improve speed and energy efficiency over off-chip RAMs,

5 1 It is sometimes possible to multiply maximum RAM access rate by resorting to memory interleaving, a
technique whereby several memories operate in a circular fashion in such a way as to emulate a single storage
array of shorter cycle time.
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− but cannot compete in terms of capacity,

− restrict data access to one read or write per cycle,

− impose rigid constraints on timing, minimum clock period, and latency.

Examples

Cu-11 is the name of an ASIC technology by IBM that has a drawn gate length — and hence also
a minimum feature size — of 110 nm and that operates at 1.2 V. The process combines copper
interconnect with low-k interlevel dielectric materials. As part of the Cu-11 design library, IBM offers
an SRAM macrocell generator for memories ranging from 128 bit to 1 Mibit as well as embedded
DRAM megacells of trench capacitor type with up to 16 Mibit. A 1 Mibit eDRAM has a cycle time
of 15 ns which is equivalent to 555 times the nominal delay of a 2-input nand gate. eDRAM bit cell
area is 0.31 µm2, which corresponds to 25.6F 2 . A 1 Mibit eDRAM occupies an area of 2.09 mm2

(with an overhead factor 1.84) and its 16 Mibit counterpart 14.1 mm2 (overhead factor 1.63).

Actel’s ProASICPLUS flash-based FPGA family makes embedded SRAMs available in chunks of
256× 9 bit. The APA1000 part includes 88 such blocks, which corresponds to 198 kibit of embedded
RAM if fully used.
�

Flash memories have not been addressed here as they do not qualify for short-time random-
access storage. This is primarily because data must be erased in larger chunks before it becomes
possible to rewrite individual words. The comparatively low speed and limited endurance are other
limitations that make flash more suitable for longer-term storage applications such as retaining FPL
configurations as explained in section 1.4.1.

Just for comparison, the physical bit cell area of flash technology is a mere 4 to 12F 2 and, hence,
comparable to DRAM rather than SRAM. What’s more, by using four voltage levels intead of
two, two bits can be stored per flash cell, bringing down the minimum area to just 2F 2 per bit.
Endurance is on the order of 100 000 write&erase cycles for flash cells that hold one bit (two states)
and 10 000 cycles for those that hold two bits (four states). Still higher numbers are made possible
by wear-leveling schemes implemented in special memory controllers.

As further details of the various memory technologies are of little importance here, the reader is
referred to the literature [46] [47] [48] [49]. An excellent introduction to flash memory technology
is given in [50] while [51] elaborates on improvements towards high-density storage and high-speed
programming. According to the top-down approach adopted in this text, transistor-level circuits for
bistables and RAMs will be discussed later, in sections 8.2 and 8.3 respectively.

2.6 Equivalence transforms for nonrecursive computations

Unlike combinational computations, the outcome of sequential computations depends not only on
present but also on past values of its arguments. Architectures for sequential computations must
therefore include memory. In the DDG this gets reflected by the presence of edges with weights
greater than zero. However, as nonrecursiveness implies the absence of feedback, the DDG remains
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free of circular paths. The storage capacity required by the isomorphic architecture is referred to as
memory bound because no other configuration exists that could do with less.52 Table 2.9 allows
approximate translation from memory bits to chip area.

2.6.1 Retiming

The presence of registers in a circuit suggests a new type of reorganization known as retiming or
as register balancing, whereby registers get relocated so as to allow for a higher computation rate
without affecting functionality [52] [53]. The goal is to equalize computational delays between any
two registers, thereby shortening the longest path that bounds the computation period from below.
Referring to a DDG one must therefore know.

“In what way is it possible to modify edge weights without altering the original functionality?”
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Fig. 2.24 Retiming. DDG (a) and a hardware configuration for l = 1 (b).

Let us follow an intuitive approach to find an answer.53 Consider a DDG and pick a vertex, say
h in fig.2.24, for instance. Now suppose the operation of vertex h is made to lag behind those
of all others by adding latency to every edge pointing towards that vertex, and by removing the
same amount of latency from every edge pointing away from that vertex. Conversely, any vertex
could be made to lead the others by transferring latency from its incoming to its outgoing edges.
Since any modifications made to the incoming edges are compensated for at the outgoing edges,
nothing changes when the DDG is viewed from outside. The retimed DDG is, therefore, functionally
equivalent to the initial one. As it is always possible (a) to think of an entire subgraph as one
supervertex, and (b) to repeat the operation with changing vertices and supervertices, the idea
paves the way for significant hardware reorganizations.

Not all DDGs obtained in this way are legal, though, because the general requirements for DDGs
stated in subsection 2.3.4 impose a number of restrictions on edge weights or — which is the same —
on latency registers. Any legal retiming must observe the rules below.

1. Neither data sinks (i.e. outputs) nor sources of time-varying data (i.e. variable inputs) may be
part of a supervertex that is to be retimed. Sources of constant data (i.e. fixed inputs) do not
change in any way when subjected to retiming.

2. When a vertex or a supervertex is assigned a lag (lead) by l computation cycles, the weights of
all its incoming edges are incremented (decremented) by l and the weights of all its outgoing
edges are decremented (incremented) by l.

5 2 For combinational computations, the memory bound is obviously zero.
5 3 A more formal treatise is given in [54].
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3. No edge weight may be changed to assume a negative value.
4. Any circular path must always include at least one edge of strictly positive weight.54

Interestingly, rule 4 does not need to be taken into consideration explicitly — provided it was
satisfied by the initial DDG — because the weight along a circular path will never change when
rule 2 is observed. The proof is trivial.

As a direct consequence of rule 1, retiming does not affect latency. Retiming necessitates neither
control logic nor extra data storage facilities but may alter the total number of registers in a circuit,
depending on the structure of the DDG being subjected to the transformation.55

Energywise, it is difficult to anticipate the overall impact of retiming as switching activities, fanouts,
and node capacitances all get altered. Yet, much as for pipelining, the reduced long path delay either
allows for compensating a lower supply voltage or can be invested in using a slower but more energy-
efficient circuit style or technology. The fact that retiming does not normally burden a circuit with
much overhead renders it particularly attractive.

2.6.2 Pipelining revisited

Recall from section 2.4.3 that pipelining introduces extra registers into a circuit and necessarily
increases its latency, which contrasts with what we have found for retiming. Pipelining can in fact
be interpreted as a transformation of edge weights that differs from retiming in that rule 1 is turned
into its opposite, namely

1. Any supervertex to be assigned a lag (lead) must include all data sinks (time-varying data
sources).

What retiming and pipelining have in common is that they allow a circuit to operate at a higher
computation rate. Most high-speed architectures therefore combine the two.

Example

Consider the problem of computing

y(k) =
N∑

n =0

h(cn , x(k − n)) (2.45)

i.e. a time-invariant N th-order correlation where h(c, x) stands for some unspecified — possibly
nonlinear — function. Think of h(c, x) as some distance metric between two DNA fragments c and
x, for instance, in which case y(k) stands for the overall dissimilarity between the DNA strings
(c0 , c1 , ..., cN ) and (x(k), x(k − 1), ..., x(k − N )) of length N .

5 4 Although irrelevant here due to the absence of circular paths, this stipulation does apply in the context of
recursive computations.

5 5 For many applications it is important that a sequential circuit assumes its operation from a well-defined start
state. (As a rule, initial state does matter for controllers but is often irrelevant for datapath circuitry.) If so, a
mechanism must be provided for forcing the circuit into that state. Finding the start state for a retimed circuit
is not always obvious. The problem of systematically computing the start state for retimed circuits is addressed
in [55].
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Fig. 2.25 Nonlinear time-invariant third-order correlator. Original DDG (a), with adder chain reversed by

associativity transform (b), after retiming (c), with pipelining added on top so as to obtain a systolic

architecture (d).

The DDG of a third-order correlator is shown in fig.2.25 together with its stepwise reorganization.
For the sake of concreteness, let us assume that a register delay is treg = 0.5 ns, that computing
one distance metric takes th = 3 ns, and that adding up two items costs t+ = 2 ns.

(a) Original DDG as obtained from straight interpretation of (2.45). The delay along the longest
path is stated in the table below, note that it grows with correlation order N . There is no
retiming that would relocate the existing registers in a useful way. Although the configuration
is amenable to pipelining, reformulating it first will eventually pay off.

(b) Same as (a) with the adder chain reversed by an associativity transform. Maximum delay and
register count remain unchanged, but the computation has now become suitable for retiming.
Also refer to problem 3.
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(c) Functional registers transferred into the adder chain by retiming of (b). The three vertices and
supervertices enclosed by dashed lines have been assigned leads of 1, 2, and 3 computation
cycles respectively. Long path delay is substantially reduced with no registers added. Also
notice that the maximum operating speed is no longer a function of correlation order N .

(d) Retiming complemented by pipelining. The supervertex enclosed by a dashed line, which
includes the data sink, has been assigned a lag of 1. The longest path is further shortened
at the price of extra registers and of an increased latency. Observe that it is not possible to
improve performance any further unless one is willing to intervene into the adders on a lower
level of circuit detail, also see section 2.8.1.

Architectural variant
Key characteristics (a) (b) (c) (d)

arithmetic units (N + 1)Ah + NA+ idem idem idem

functional registers NAreg idem idem idem

nonfunctional registers 0 idem idem (N + 1)Areg

cycles per data item Γ 1 idem idem idem

longest path delay tlp treg + th + N t+ idem treg + th + t+ treg + max(th , t+)
for N = 3 (ns) 9.5 idem 5.5 3.5
for N = 30 (ns) 63.5 idem 5.5 3.5

latency L 0 idem idem 1

�

Make sure you understand there is a fundamental difference between the architectural transforms
used in the above example. While retiming and pipelining are universal transforms that do not
depend on the operations involved, changing the order of execution in the algebraic transform
that leads from (a) to (b) insists on the operations concerned being identical and associative. The
practical significance is that the sequence of reorganizations that has served to optimize the nonlinear
correlator example also applies to transversal filters which are of linear nature, for instance, but not
to DDGs of similar structure where addition is replaced by some non-associative operation.

2.6.3 Systolic conversion

Both pipelining and retiming aim at increasing computation rate by resorting and by equalizing
register-to-register delays. For a given granularity, maximum speed is obtained when there is no
more than one combinational operation between any two registers. This is the basic idea behind
systolic computation.

A DDG is termed systolic if the edge weight between any two vertices is one or more. The ar-
chitecture depicted in fig.2.25d is in fact systolic, and the ultimate pipeline in the sense of (2.29)
is now also recognized as a circuit that is systolic at the gate level. Please refer to [56] for a more
comprehensive discussion of systolic computation and to [57] for details on systolic conversion, that
is on how to turn an arbitrary nonrecursive computation into a systolic one.
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2.6.4 Iterative decomposition and time-sharing revisited

Applying the ideas of decomposition and time-sharing to sequential computations is straightforward.
Clearly, only combinational circuitry can be multiplexed whereas functional memory requirements
remain the same as in the isomorphic architecture.

Example

In the isomorphic architecture of a transversal filter, see fig.2.11e, each filter tap is being processed
by its own multiplier. All calculations associated with one sample are thus carried out in parallel
and completed within a single computation cycle. Nevertheless, the architecture is slow because the
longest path traverses the entire adder chain, thereby mandating a long computation period. Also,
hardware costs are immoderate, at least for higher filter orders N .

A more economic alternative that handles one filter tap after the other follows naturally, see fig.2.26.
This architecture manages with a single multiplier that gets time-shared between taps. A single
adder iteratively sums up the partial products until all taps that belong to one sample have been
processed after N + 1 computation cycles. An accumulator stores the intermediate sums. Coeffi-
cients may be kept in a hardwired look-up table (LUT), in a ROM, or in some sort of writable
memory. Datapath control is fairly simple. An index register that counts n = N, N − 1, ..., 0 ad-
dresses one coefficient at any time. The very same register also selects the samples from the input
shift register, either by way of a multiplexer or a three-state bus, or by arranging the shift register
in circular fashion and by having data there make a full cycle between any two subsequent samples.
An output register maintains the end result while computation proceeds with the next sample.

For filters of higher order, one would want to substitute a RAM for the input shift register. While
this requires some extra circuitry for addressing, it does not fundamentally change the overall
architecture.

�

2.6.5 Replication revisited

The concept of replication introduced in section 2.4.4 cannot normally be applied to sequential
computations as the processing of one data item is dependent on previous data items. A notable
exception exists in the form of so-called multipath filters (aka N -path filters) designed to im-
plement sequential computations of linear time-invariant nature. With H1(z) denoting the transfer
function of a single path, all of which are identical, and with q as replication factor, a composite
transfer function

H(z) = H1 (zq ) (2.46)

is obtained [58], which implies that the elemental transfer function H1(z) is compressed and re-
peated along the frequency axis by a scaling factor of q. Due to the resulting extra passbands the
usefulness of this approach is very limited. An extended structure capable of implementing general
FIR and IIR56 transfer functions is proposed in [58] under the name of delayed multipath structures.
Regrettably, the number of necessary operations is found to grow with q2 .

5 6 FIR stands for finite impulse response, IIR for infinite impulse response.
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Fig. 2.26 Third-order transversal filter. Isomorphic architecture (a) and a more economic alternative obtained

by combining time-sharing with iterative decomposition (b) (simplified).

2.6.6 Digest
� The throughput of arbitrary feedforward computations can be improved by way of retiming,

by way of pipelining, and by combining the two. Replication is, in general, not a viable
alternative.

� The associative law is often helpful in rearranging a DDG prior to iterative decomposition,
pipelining, and especially retiming in order to take full advantage of these transforms.

� Much as for combinational computations, iterative decomposition and time-sharing are the
two options available for reducing circuit size for feedforward computations. Highly time-
multiplexed architectures are found to dissipate energy on a multitude of ancillary activities
that do not directly contribute to data computation, however.

2.7 Equivalence transforms for recursive computations

A computation is said to be timewise recursive — or recursive for short — if it somehow depends
on an earlier outcome from that very computation itself, a circumstance that gets reflected in the
DDG by the presence of a feedback loop. Yet, recall that circular paths of weight zero have been
disallowed to exclude the risk of race conditions. Put differently, circular paths do exist but each of
them includes at least one latency register.
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This section examines equivalence transforms that apply specifically to recursive computations. We
will find that such transforms are not universal. This is why we address linear time-invariant, linear
time-variant, and nonlinear computations separately.

2.7.1 The feedback bottleneck

Consider a linear time-invariant first-order recursive function

y(k) = ay(k − 1) + x(k) (2.47)

which, in the z domain, corresponds to transfer function

H(z) =
Y (z)
X(z)

=
1

1 − az−1 (2.48)

The corresponding DDG is shown in fig.2.27a. Many examples for this and similar types of compu-
tations are found in IIR filters, DPCM57 data encoders, servo loops, etc.

a

x(k) y(k)

y(k-1)

a)

*

+

adder

multiplier
parallela

x(k)
y(k)

b)

Fig. 2.27 Linear time-invariant first-order feedback loop. DDG (a) and isomorphic architecture with longest

path highlighted (b).

Recursion demands that the result from the actual computation cycle be available no later than the
next input sample. The longest path defined by all computations that are part of the loop must,
therefore, not exceed one sampling interval. In the occurrence∑

loop

t = tr eg + t∗ + t+ = tlp ≤ Tcp (2.49)

As long as this iteration bound is satisfied by the isomorphic architecture of fig.2.27b implemented
using some available and affordable technology, there is no out-of-the-ordinary design problem. As
an example, we could easily provide a sustained computation rate of 100 MHz if the three delay
figures for the actual word width were of 0.5 ns, 5 ns, and 2 ns respectively.

When in search of some higher throughput, say 200 MHz, recursiveness becomes a real bottleneck
since there is no obvious way to make use of replication or to insert pipeline registers without altering
the overall transfer function and input-to-output mapping. Retiming does not help either as the
weight along a circular path is always preserved. So the problem is

“How to allow more time for those computations that are part of the recursion loop.”

5 7 DPCM is an acronym for differential pulse code modulation.
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2.7.2 Unfolding of first-order loops

The key idea is to relax the timing constraint by inserting additional latency registers into the
feedback loop while preserving the original transfer function. In other words, a tentative solution
for a first-order loop must look like

H(z) =
Y (z)
X(z)

=
N (z)

1 − ap z−p
(2.50)

where an unknown expression N (z) is here to compensate for the changes that are due to the new
denominator 1 − apz−p . Recalling the sum of geometric series we easily establish N (z) as

N (z) =
1 − ap z−p

1 − az−1 =
p−1∑
n =0

an z−n (2.51)

The new transfer function can then be completed to become

H(z) =
∑p−1

n =0 an z−n

1 − ap z−p
(2.52)

and the new recursion in the time domain follows as

y(k) = ap y(k − p) +
p−1∑
n =0

an x(k − n) (2.53)

The modified equations correspond to a cascade of two sections. A first section, represented by the
numerator of (2.52), is a DDG that includes feedforward branches only. This section is amenable
to pipelining as discussed in section 2.4.3. The denominator stands for the second section, a simple
feedback loop which has been widened to include p unit delays rather than one as in (2.47).

Using retiming, the corresponding latency registers can be redistributed into the combinational
logic for computing the loop operations so as to serve as pipeline registers there. Neglecting, for a
moment, the limitations to pipelining found in section 2.4.3, throughput can in fact be multiplied
by an arbitrary positive integer p through this unfolding technique, several variations of which are
dicussed in [59].

Unless p is prime, it is further possible to simplify the DDG — and hence the implementing cir-
cuit — by factoring the numerator into a product of simpler terms. Particularly elegant and efficient
solutions exist when p is an integer power of two because of the lemma

p−1∑
n =0

an z−n =
log2 p −1∏

m =0

(a2m

z−2m

+ 1) p = 2, 4, 8, 16, ... (2.54)

The feedforward section can then be realized by cascading log2 p subsections each of which consists
of just one multiplication and one addition.

Example

The linear time-invariant first-order recursive function (2.47) takes on the following form after
unfolding by a factor of p = 4:

y(k) = a4y(k − 4) + a3x(k − 3) + a2x(k − 2) + ax(k − 1) + x(k) (2.55)
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which corresponds to transfer function

H(z) =
1 + az−1 + a2z−2 + a3z−3

1 − a4z−4 (2.56)

Making use of (2.54), the numerator can be factorized to obtain

H(z) =
(1 + az−1 )(1 + a2z−2 )

1 − a4z−4 (2.57)

The DDG corresponding to this equation is shown in figure 2.28a. Note that the configuration
is not only simple but also highly regular. Further improvements are obtained from pipelining in
conjunction with retiming and shimming where necessary. The final architecture, shown in fig.2.28b,
is equivalent except for latency. Incidentally, also note that threefold instantiation of one pipelined
multiply–add building block favors further optimizations at lower levels of detail.
�

Performance and cost analysis

In the case of optimally efficient configurations, where p is an integer power of two, a lower bound
for total circuit size can be given as follows:

A(p) ≥ (log2 p + 1)Af + p(log2 p + 1)Areg (2.58)

In the above example, we count three times the orginal arithmetic logic plus 14 extra (nonfunctional)
registers. In return for an almost fourfold throughput, this is finally not too bad.

Analogously to what was found for pipelining in section 2.4.3, the speedup of loop unfolding tends
to diminish while the difficulties of balancing delays within the combinational logic tend to grow
when unfolding is pushed too far, p � 1.

A hidden cost factor associated with loop unfolding is due to finite precision arithmetics. For the
sake of economy, datapaths are designed to make do with minimum acceptable word widths, which
implies that output and intermediate results get rounded or truncated somewhere in the process. In
the above example, for instance, addition would typically handle only part of the bits that emanate
from multiplication. Now, the larger number of roundoff operations that participate in the unfolded
loop with respect to the initial configuration leads to more quantization errors, a handicap which
must be offset by using somewhat wider data words [60].

Loop unfolding greatly inflates the amount of energy dissipated in the processing of one data
item because of the extra feedforward computations and the many latency registers added to the
unfolded circuitry. More on the positive side, the shortened longest path may bring many recursive
computations into the reach of a relatively slow but power-efficient technology or may allow a lower
supply voltage.

The idea of loop unfolding demonstrated on a linear time-invariant first-order recursion can be
extended in various directions, and this is the subject of the forthcoming three subsections.
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2.7.3 Higher-order loops

Instead of unfolding loops of arbitrary order directly, we make use of a common technique from
digital filter design that consists in factoring a higher-order transfer function into a product of
second- and first-order terms. The resulting DDG takes the form of cascaded second- and first-order
sections. High-speed IIR filters of arbitrary order can be constructed by pipelining the cascade so
obtained. As an added benefit, cascade structures are known to be less sensitive to quantization of
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coefficients and signals than direct forms. We will, therefore, limit the discussion to second-order
recursive functions here,

y(k) = ay(k − 1) + by(k − 2) + x(k) (2.59)

which correspond to the DDG depicted in fig.2.29. The equivalent in the z domain is

H(z) =
Y (z)
X(z)

=
1

1 − az−1 − bz−2 (2.60)

After multiplying numerator and denominator by a factor of (1 + az−1 − bz−2) the transfer function
becomes

H(z) =
1 + az−1 − bz−2

1 − (a2 + 2b)z−2 + b2z−4 (2.61)

which matches the requirements for loop unfolding by a factor of p = 2.
Analogously we obtain for p = 4

H(z) =
(1 + az−1 − bz−2 )(1 + (a2 + 2b)z−2 + b2z−4 )

1 − ((a2 + 2b)2 − 2b2 )z−4 + b4z−8 (2.62)

Example

Figure 2.30 shows a DDG and a block diagram that implement the second-order recursion (2.62).
Except for finite precision effects, the transfer function remains exactly the same as in (2.59), but the
arithmetic operations inside the loop can now be carried out in four rather than one computation
periods. The same pipelined hardware block is instantiated three times.

A high-speed fourth-order ARMA58 filter chip that includes two sections similar to fig.2.30b has been
reported in [61]. Pipelined multiply–add units have been designed as combinations of consecutive
carry–save and carry–ripple adders. The circuit, fabricated in a standard 0.9 µm CMOS technology,
has been measured to run at a clock frequency of 85 MHz and spits out one sample per clock cycle,
so we have Γ = 1. Overall computation rate roughly is 1.5 GOPS59 , a performance that challenges
more costly semiconductor technologies such as GaAs — or at least did so when it appeared in 1992.
The authors write that one to two extra data bits had to be added in the unfolded datapath in order
to maintain similar roundoff and quantization characteristics to those in the initial configuration.
Circuit size is approximately 20 kGE, supply voltage 5 V, and power dissipation 2.2 W at full speed.
�

Performance and cost analysis

In comparison with the first-order case, the number of pipeline registers per subsection is doubled
while the other figures remain unchanged. Hence, size estimation yields

A(p) ≥ (log2 p + 1)Af + (2p(log2 p + 1))Areg (2.63)

5 8 ARMA is an acronym for “auto recursive moving average” used to characterize IIR filters that comprise both
recursive (AR) and nonrecursive computations (MA).

5 9 Multiply–add operations, in this case taking into account all of the filter’s AR and MA sections.
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high-performance architecture with pipelining and retiming on top (b).

2.7.4 Time-variant loops

Here, the feedback coefficient a is no longer constant but varies as a function of time a(k)

y(k) = a(k)y(k − 1) + x(k) (2.64)

The unfolded recursions are derived in the time domain. Substituting y(k − 1) into (2.64) yields

y(k) = a(k)a(k − 1)y(k − 2) + a(k)x(k − 1) + x(k) (2.65)

which computes y(k) from y(k − 2) directly, so the unfolding factor is p = 2. Repeating this opera-
tion leads to a configuration with p = 3 where

y(k) = a(k)a(k − 1)a(k − 2)y(k − 3) + a(k)a(k − 1)x(k − 2) + a(k)x(k − 1) + x(k) (2.66)

and once more to p = 4

y(k) = a(k)a(k − 1)a(k − 2)a(k − 3)y(k − 4)

+ a(k)a(k − 1)a(k − 2)x(k − 3) + a(k)a(k − 1)x(k − 2) + a(k)x(k − 1) + x(k) (2.67)
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As for the time-invariant case, the process of unfolding can be continued to widen the recursive
loop by an arbitrary positive integer p as expressed by

y(k) =

(
p−1∏
n =0

a(k − n)

)
· y(k − p) +

(
p−1∑
n =1

(
n−1∏
m =0

a(k − m)

)
· x(k − n)

)
+ x(k) (2.68)

However, because precomputation is not applicable here, all necessary coefficient terms must be cal-
culated on-line, which requires extra hardware. Depending on how the terms of (2.68) are combined,
various DDGs can be obtained. One of them derived from (2.67) is depicted in fig.2.31.

x(k) y(k)

a(k)
coefficient calculation

output computation

Fig. 2.31 Linear time-variant first-order feedback loop. DDG after unfolding by a factor of p = 4.

Performance and cost analysis

The count of adders and multipliers is proportional to the number of subsections p. Each subsection
requires approximately 2p pipeline registers as both multipliers must be pipelined. Together with
shimming registers, many of which are needed in this configuration due to the numerous parallel
branches, roughly 4p2 registers are needed.

2.7.5 Nonlinear or general loops

A nonlinear difference equation implies that the principle of superposition does not hold. The most
general case of a first-order recursion is described by

y(k) = f (y(k − 1), x(k)) (2.69)

and can be unfolded an arbitrary number of times. For sake of simplicity we will limit our discussion
to a single unfolding step, i.e. to p = 2 where

y(k) = f (f (y(k − 2), x(k − 1)), x(k)) (2.70)

The associated DDG of fig.2.32c shows that loop unfolding per se does not relax the original timing
constraint, the only difference is that one can afford two cycles for two operations f instead of one
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cycle for one operation. As confirmed by fig.2.32d, there is no room for any meaningful retiming in
this case.

Yet, the unfolded recursion can serve as a starting point for more useful reorganizations. Assume
function f is known to be associative. Following an associativity transform the DDG is redrawn as
shown in fig.2.32e. The computation so becomes amenable to pipelining and retiming, see fig.2.32f,
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which cuts the longest path in half when compared with the original architecture of fig.2.32b. Even
more speedup can be obtained from higher degrees of unfolding, the price to pay is multiplied circuit
size and extra latency, though. In summary, architecture, performance, and cost figures resemble
those found for linear computations.

The situation is definitely more difficult when f is not associative. Still, it is occasionally possible
to relax the loop constraint to some extent by playing a trick. Reconsider fig.2.32c and think of the
two occurrences of f being combined into an aggregate computation

y(k) = f”(y(k − 2), x(k − 1), x(k)) (2.71)

as sketched in fig.2.32g. If that aggregate computation can be made to require less than twice
as much time as the original computation, then the bottleneck gets somewhat alleviated. This is
because it should then be possible to insert a pipeline register into the datapath unit for f” so that
the maximum path length in either of the two stages becomes shorter than the longest delay in a
datapath that computes f alone.

tlp f ” = max(tlp f ”1 , tlp f ”2 ) < tlp f (2.72)

More methods for speeding up general time-variant first-order feedback loops are examined in [62].
One technique, referred to as expansion or look-ahead, is closely related to aggregate computa-
tion. The idea is to process two or more samples in each recursive step so that an integer multiple
of the sampling interval becomes available for carrying out the necessary computations. In other
terms, the recursive computation is carried out at a lower pace but on wider data words. This
approach should be considered when the combinational logic is not amenable to pipelining, for ex-
ample because it is implemented as table look-up in a ROM. The limiting factor is that the size of
the look-up table (LUT) tends to increase dramatically.

Yet another approach, termed concurrent block technique, groups the incoming data stream
into blocks of several samples and makes the processing of these blocks independent from each
other. While data processing within the blocks remains sequential, it so becomes possible to process
the different blocks concurrently.

The unified algebraic transformation approach promoted in [63] combines both universal and
algebraic transforms to make the longest path independent of problem size in computations such
as recursive filtering, recursive least squares algorithms, and singular value decomposition.

Any of the various architectural transforms that permit one to successfully introduce a higher degree
of parallel processing into recursive computations takes advantage of algorithmic properties such as
linearity, associativity, fixed coefficients, and limited word width, or of a small set of register states.
If none of these applies, we can’t help but agree with the authors of [62].

Observation 2.9. When the state size is large and the recurrence is not a closed-form function of

specific classes, our methods for generating a high degree of concurrency cannot be applied.

Example

Cryptology provides us with a vivid example for the implications of nonlinear nonanalytical feedback
loops. Consider a block cipher that works in electronic code book (ECB) mode as depicted
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in fig.2.34a. The algorithm implements a combinational function y(k) = c(x(k), u(k)), where u(k)
denotes the key and k the block number or time index. However complex function c, there is no
fundamental obstacle to pipelining or to replication in the datapath.

Unfortunately, ECB is cryptologically weak as two identical blocks of plaintext result in two identical
blocks of ciphertext because y(k) = y(m) if x(k) = x(m) and u(k) = u(m). If a plaintext to be
encrypted contains sufficient repetition, the ciphertext necessarily carries and betrays patterns from
the original plaintext. Figure 2.33 nicely illustrates this phenomenon.

Fig. 2.33 A computer graphics image in clear text, ciphered in ECB mode, and ciphered in CBC-1 mode (from

left to right, Tux by Larry Ewing).

To prevent this from happening, block ciphers are typically used with feedback. In cipher block
chaining (CBC) mode, the ciphertext gets added to the plaintext before encryption takes place,
see fig.2.34b. The improved cipher algorithm thus becomes y(k) = c( x(k) ⊕ y(k − 1), u(k)) and is
sometimes referred to as CBC-1 mode because y(k − 1) is being used for feedback.

From an architectural point of view, however, this first-order recursion is awkward because it offers
little room for reorganizing the computation. This is particularly true in ciphering applications
where the nonlinear functions involved are chosen to be complex, labyrinthine, and certainly not
analytical. The fact that word width (block size) is on the order of 64 or 128 bit makes everything
worse. Inserting pipeline registers into the computational unit for c does not help since this would
alter algorithm and ciphertext. Throughput in CBC mode is thus limited to a fraction of what is
obtained in ECB mode.60

2.7.6 Pipeline interleaving is not an equivalence transform

It has repeatedly been noted in this section that any attempt to insert an extra register into a
feedback loop with the idea of pipelining the datapath destroys the equivalence between original
and pipelined computations unless its effect is somehow compensated. After all, circuits c and b of
fig.2.34 behave differently. Although this may appear a futile question, let us ask

“What happens if we do just that to a first-order recursion?”

6 0 Higher data rates must then be bought by measures on lower levels of abstraction, that is by optimizing the
circuitry at the arithmetic/logic level, by resorting to transistor-level design in conjunction with full-custom
layout, and/or by adopting a faster target technology, all of which measures ask for extra effort and come at
extra cost. Only later have cryptologists come up with a better option known as counter mode (CTR) that
does without feedback and still avoids the leakage of plaintext into ciphertext that plagues ECB.
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inserted (a) and isomorphic architecture (b). Interpretation as two interleaved data streams each of which gets

processed exactly as specified by the original nonlinear first-order recursion of fig.2.32a (c,d).

Adding an extra latency register to (2.69) results in the DDG of fig.2.35a and yields

y(k) = f (y(k − 2), x(k)) (2.73)

Observe that all indices are even in this equation. As k increments with time k = 0, 1, 2, 3, ... indices
do in fact alternate between even and odd values. It thus becomes possible to restate the ensuing
input-to-output mapping as two separate recursions with no interaction between “even” data items
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x(k = 0, 2, 4, ..., 2n, ...) and “odd” items x(k = 1, 3, 5, ..., 2n + 1, ...).

y(2n) = f (y(2n − 2), x(2n)) (2.74)

y(2n + 1) = f (y(2n − 1), x(2n + 1)) (2.75)

This pair of equations says that the original data processing recursion of (2.69) now gets applied
to two separate data streams as depicted in fig.2.35c. From a more general perspective, it is indeed
possible to cut the combinational delay in any first-order feedback loop down to 1

p by inserting p − 1
pipelining registers, yet the computation then falls apart into the processing of p interleaved but
otherwise independent data streams. More often than not this is undesirable. However, practical
applications exist where it is possible to take advantage of this effect.

Examples

Cipher block chaining (CBC) implements the recursion y(k) = c( x(k) ⊕ y(k − 1), u(k)). What
counts from a cryptographic point of view is that patterns from the plaintext do not show up
in the ciphertext. Whether this is obtained from feeding back the immediately preceding block of
ciphertext y(k − 1) (CBC-1 mode) or some prior block y(k − p) where 2 ≤ p ∈ N (CBC-p mode)
is of minor importance. Some cryptochips, therefore, provide a fast but nonstandard CBC-8 mode
in addition to the regular CBC-1 mode, see fig.2.34c. In the case of the IDEA chip described in
[64], maximum throughout is 176 Mbit/s both in pipelined ECB mode and in pipeline-interleaved
CBC-8 mode as compared with just 22 Mbit/s in nonpipelined CBC-1.

For another example, take a subband coding or some other image processing algorithm where rows
of pixels are dealt with independently from each other. Rather than scanning the image row by
row, pixels from p successive rows are entered one by one in a cyclic manner before the process is
repeated with the next column, and so on. It so becomes possible to deal with a single pipelined
datapath of p stages [65].
�

Pipeline interleaving obviously does not qualify as an equivalence transform. Still, it yields useful
architectures for any recursive computation — including nonlinear ones — provided that data items
arrive as separate time-multiplexed streams that are to be processed independently from each other,
or can be arranged to do so. From this perspective, pipeline interleaving is easily recognized as a
clever and efficient combination of time-sharing with pipelining.

2.7.7 Digest
� When in search of high performance for recursive computations, reformulating a high-order

system as a cascade of smaller-order sections in order to make the system amenable to coarse
grain pipelining should be considered first. As a by-product, the reduced orders of the indi-
vidual recursion loops offer additional speedup potential.

� Throughput of low-order recursive computations can be significantly improved by loop un-
folding in combination with fine grain pipelining. This may bring computations into the reach
of static CMOS technology that would otherwise ask for faster but also more expensive alter-
natives such as SiGe, BiCMOS, or GaAs.
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� Whether the inflated latency is acceptable or not depends on the application. Also, the rapid
growth of overall circuit size tends to limit the economically practical number of degrees of
unfolding to fairly low values, say p = 2–8, especially when the system is a time-varying one.

� The larger number of roundoff operations resulting from loop unfolding must be compensated
for by using longer word widths, which increases the cost of loop unfolding beyond solely the
proliferation of computational units and intermediate registers.

� Nonlinear feedback loops are, in general, not amenable to throughput multiplication by ap-
plying unfolding techniques. A notable exception exists when the loop function is associative.

� Pipeline interleaving is highly efficient for accelerating recursive computations because it does
not depend on any specific properties of the operations involved. Yet, as it modifies the
input-to-output mapping, it is not an option unless the application admits that multiple data
streams undergo the same processing independently from each other.

2.8 Generalizations of the transform approach

2.8.1 Generalization to other levels of detail

As stated in section 2.3.4, DDGs are not concerned with the granularity of operations and data.
Recall, for instance, figs.2.14 and 2.34a that describe the same block cipher at different levels of
detail. As a consequence, the techniques of iterative decomposition, pipelining, replication, time-
sharing, algebraic transform, retiming, loop unfolding, and pipeline interleaving are not limited to
any specific level of abstraction although most examples so far have dealt with operations and data
at the word level, see table 2.10.

Table 2.10 An excerpt from the VLSI abstraction hierarchy.

Level Granularity Relevant items
of abstraction Operations Data
Architecture © subtasks, processes time series, pictures, blocks
Word ◦ arithmetic/logic operations words, samples, pixels
Bit · gate-level operations individual bits

Architecture level

Things are pretty obvious at this higher level where granularity is coarse. As an example, fig.2.36
gives a schematic overview of a visual pattern recognition algorithm. Four subtasks cooperate in a
cascade with no feedback, namely preprocessing, image segmentation, feature extraction, and object
classification.

In a real-time application, one would definitely begin by introducing pipelining because four pro-
cessing units are thereby made to work concurrently at negligible cost. In addition, each unit is thus
dedicated to a specific subtask and can be optimized accordingly.
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Fig. 2.36 Overall architectural alternatives for a pattern recognition system. Isomorphic architecture (a),

iteratively decomposed computation flow (b), and pipelined operation (c).

The option of replicating the entire datapath would most likely get discarded at this point be-
cause it cannot compete with pipelining in terms of hardware efficiency. Replication of selected
functional units could become an interesting alternative in later transforms, however, when the
actual performance bottlenecks are known.

Iterative decomposition would be considered only if the desired throughput were so modest that it
could be obtained from a single processing unit.

Bit level

Equivalence transformations can also be beneficial at low levels of abstraction. Take addition, for
instance, which is an atomic operation when considered at the word level, see fig.2.37a. When
viewed at the gate level, however, the same function appears as a composite operation that can
be implemented from bit-level operations in many ways, the most simple of which is a ripple-carry
adder shown in fig.2.37b. This detailed perspective clearly exposes the longest path and opens up
new opportunities for reorganizing the DDG that remain hidden from a word or higher level of
abstraction.

A gate-level pipelined version makes it possible to operate the circuit at a computation rate many
times higher than with word-level pipelining alone, see fig.2.37c. As this amounts to fine-grain
pipelining, the price to pay in terms of circuit size is likely to be excessive, however. In the above ex-
ample, better solutions are obtained from more sophisticated arithmetic schemes such as carry-save,
carry-select, or carry-lookahead adders [66] [67] [68] [69], possibly in combination with moderate
pipelining. Incidentally, note that modern synthesis tools support automatic retiming of gate-level
networks.

Conversely, the structure shown in fig.2.37d follows when the W -bit addition is decomposed into
one-bit suboperations. Computation starts with the LSB. A flip-flop withholds the carry-out bit for
the next computation period where it serves as carry-in to the next more significant bit. Obviously,
the flip-flop must be properly initialized in order to process the LSB and any potential carry input
in a correct way. Although this entails some extra control overhead, substantial hardware savings
may nevertheless result when the words being processed are sufficiently wide.

2.8.2 Bit-serial architectures

The idea underlying fig.2.37d gives rise to an entirely different family of architectures known as bit-
serial computation [70]. While most datapaths work in a bit-parallel fashion in that word-level
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Fig. 2.37 4-bit addition at the register transfer level (a), broken up into a ripple-carry adder (b) before being

pipelined (c) or iteratively decomposed (d).

operations are executed one after the other with all bits of a data word being processed simulta-
neously, organizing computations the other way round is also possible. Here, the overall structure
remains isomorphic with the DDG, but the various word-level operations are decomposed into steps
that are carried out one bit after the other.

Example

A bit-serial implementation of a third-order transversal filter is shown in fig.2.38, also see fig.2.11c
for the DDG. The w-bit wide input samples x(k) enter serially with the LSB first whereas coef-
ficients bn (k) must be applied in a parallel format. The circuit is operated at a computation rate
s times higher than the sampling frequency. Evaluation proceeds from the LSB to the MSB with
computation periods numbered w = s − 1, ..., 0.

The first computation period ingests the LSB of the actual input sample x(k), evaluates the LSBs
of all samples x(k), ..., x(k − 3), and sees the LSB of the result y(k) emerge at the output. The
second period then handles the next significant bit and so on.61 Shifts and carry-overs from one bit
to the next higher position are obtained by using latency registers. As these registers may contain
carries from previous additions after all W bits of the input have been processed, extra computation
periods are required to bring out the MSB of y(k), so that s > W .

6 1 DSP applications frequently deal with input data scaled such that |xk | < 1 and coded with a total of W bits
in 2’s-complement format, see (2.77). In this particular case, computation periods w = s − 1, ..., 1 process the
input bits of weight 2−w respectively, while the last computation period with w = 0 is in charge of the sign bit.



2.8 GENERALIZATIONS OF THE TRANSFORM APPROACH 115

Note that iterative decomposition has led to nonfunctional feedback loops in the architecture of a
transversal filter, although the DDG is free of circular paths by definition. As this kind of feedback is
confined to within the multiply and add units, the filter as a whole remains amenable to pipelining,
provided computations inside the loops are not affected.
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Fig. 2.38 Bit-serial implementation of a third-order transversal filter functionally equivalent to the bit-parallel

architecture of fig.2.26 (simplified).

�

Closer examination of bit-serial architectures reveals the following properties:

+ Control overhead is small when compared with bit-parallel alternatives because the isomor-
phism of DDG and architecture is maintained.

− As the DDG is hardwired into the datapath with no explicit control instance, changes to the
processing algorithm, switching between different modes of operation, and exception handling
are awkward to deal with.

+ The shallow combinational depth in conjunction with a high computation rate helps to keep
all computational units busy for most of the time.

+ All global data communication is via serial links that operate at close to the maximum rate
supported by the target technology, which cuts down on-chip wiring requirements.

+ Much of the data circulation is local, which contrasts favorably with the data items travelling
back and forth between datapath and storage in bit-parallel architectures.

+ As FPL devices provide only limited wiring resources, the two previous assets tend to favor
bit-serial architectures when designing for FPGAs or CPLDs.

− The word width must be the same throughout a serial architecture. Parts of the computation
that do not make use of the full precision typically cause the hardware to idle for a number
of computation periods.

+ Conversely, arbitrary precision can be accomodated with the same hardware when execution
time is allowed to grow with word length.

− Bit-serial computation is incompatible with the storing of data in word-oriented RAMs and
ROMs. Extra format conversion circuitry is required whenever such memories are preferred
for their high storage densities.



116 Architectures of VLSI Circuits

− Division, data-dependent decisions, and many other functions are ill-suited to bitwise iterative
decomposition and pipelining. While it is possible to incorporate bit-parallel functions, pro-
vided their interfaces are serialized and that they exhibit a fixed latency, the resulting hybrid
structures often prove unsatisfactory and inefficient.

− Some algorithms based on successive approximation naturally operate with the MSB first. It
is sometimes possible to reconcile LSB-first and MSB-first functions at the price of resorting
to redundant number representation schemes.

In summary, bit-serial architectures are at their best for unvaried real-time computations that
involve fixed and elementary operations such as addition and multiplication by a constant. The
reader is referred to the specialized literature [70] [71] for case studies and for further information
on bit-serial design techniques.

2.8.3 Distributed arithmetic

Bit-serial architectures have been obtained from breaking down costly word-level operations into bit-
level manipulations followed by universal transforms such as iterative decomposition and pipelining.
Another family of serial architectures results from making use of algebraic transforms at the bit
level too. Consider the calculation of the following inner product:

y =
K −1∑
k=0

ck xk (2.76)

where each ck is a fixed coefficient and where each xk stands for an input variable. Figure 2.39a shows
the architecture that follows from routinely applying decomposition at the word level. Computation
works by way of repeated multiply–accumulate operations, takes K computation periods per inner
product, and essentially requires a hardware multiplier plus a look-up table for the coefficients.

Now assume that the inputs are scaled such that |xk | < 1 and coded with a total of W bits in
2’s-complement format.62 We then have

xk = −xk ,0 +
W −1∑
w =1

xk ,w 2−w (2.77)

with xk,0 denoting the sign bit and with xk,w standing for the bit of weight 2−w in the input word
xk . By combining (2.76) and (2.77) the desired output y can be expressed as

y =
K −1∑
k=0

ck

(
−xk ,0 +

W −1∑
w =1

xk ,w 2−w

)
(2.78)

With the aid of the distributive law and the commutative law of addition, the computation now
gets reorganized into the equivalent form below where the order of summation is reversed:

y =
K −1∑
k=0

ck (−xk ,0 ) +
W −1∑
w =1

(
K −1∑
k=0

ck xk ,w

)
2−w (2.79)

6 2 This is by no means a necessity. We simply assume |xk | < 1 for the sake of convenience and 2’s-complement
format because it is the most common representation scheme for signed numbers in digital signal processing.
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The pivotal observation refers to the term in parentheses

K −1∑
k=0

ck xk ,w = p(w) (2.80)

For any given bit position w, calculating the sum of products takes one bit from each of the K

data words xk , which implies that the result p(w) can take on no more than 2K distinct values.
Now, as coefficients ck have been assumed to be constants, all those values can be precomputed and
kept in a look-up table (LUT) instead of being calculated from scratch whenever a new data set xk

arrives at the input. A ROM is typically used to store the table. It must be programmed in such
a way as to return the partial product p(w) when presented with the address w, i.e. with a vector
obtained from concatenating all bits of weight 2−w across all input variables xk . Playing this trick,
and noting that

∑K−1
k=0 ck (−xk,0) is nothing else than p(0) with the sign reversed, (2.79) takes on

the utterly simple form

y = −p(0) +
W −1∑
w =1

p(w) 2−w (2.81)

While the isomorphic architecture calls for W LUTs with identical contents, a much smaller archi-
tecture can be obtained from decomposing the evaluation of (2.81) into a series of W consecutive
steps. The new architecture manages with a single look-up table but requires a nonfunctional reg-
ister for accumulating the partial products, see fig.2.39b. Calculation proceeds one bit position at
a time, starting with the LSB in computation period w = W − 1 and processing the sign bit in the
final cycle where w = 0.

A minor complication comes from the fact that the term −p(0) has a sign opposite to all other
contributions to y. A simple solution consists of using an adder–subtractor working under control
of a “sign-bit cycle” signal from a modulo W counter that acts as a controller. The same counter is
also in charge of releasing the fully completed result and of clearing the accumulator at the end of
the last computation period (two details not shown in fig.2.39b). In addition, it guides the selection
of the appropriate input bits unless the xk s can be made to arrive in a bit-serial format LSB first.

The most striking difference between the two architectural alternatives of fig.2.39 is the absence
of any multiplier in the second design. Rather than being concentrated in a single hardware unit,
multiplication is spread over the circuit, which is why such architectures were given the name
distributed arithmetic.

A limitation of distributed arithmetic is that memory size is proportional to 2K , where K is the
order of the inner product to be computed. Although a more sophisticated coding scheme makes it
possible to introduce a symmetry into the look-up table which can then be exploited to halve its
size [72], the required storage capacity continues to grow exponentially with K . More impressive
memory savings are obtained from reformulating (2.80) in the following way:

K −1∑
k=0

ck xk ,w =
H −1∑
k=0

ck xk ,w +
K −1∑
k=H

ck xk ,w (2.82)

where 0 < H < K . Instead of having all K bits address a single ROM, they are split into two subsets
of H and K − H bits respectively, each of which drives its own LUT. The total storage requirement
is so reduced from 2K data words to 2H + 2K−H , which amounts to 2

K
2 +1 when input bits are
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Fig. 2.39 Architectures for computing a sum of products by way of repeated multiply–accumulate operations

(a) and with distributed arithmetic (b) (simplified).

split such that H = 1
2 K . The price to pay is an extra adder for combining the outputs from the two

tables. Clearly, the idea can be extended to more than two tables.

Memory requirements may sometimes be slashed further by taking advantage of properties of the
coefficient values at hand such as symmetries, repetitions, and relations between their binary codes,
also see problem 2.10. Memory size and circuit structure thereby become highly dependent on the
particular coefficient values, though, which makes it difficult to accomodate modifications.

In conclusion, distributed arithmetic should be considered when coefficients are fixed, when the
number of distinct coefficient values is fairly small, and when look-up tables (LUT) are available
at little cost compared with bit-parallel multipliers. This explains why this approach has recently
regained popularity in the context of DSP applications with LUT-based FPGAs [73] [74]. Please refer
to the literature for tutorials [72] and further VLSI circuit examples [75] if distributed arithmetic
appears to be an option for your filtering problem.

2.8.4 Generalization to other algebraic structures

So far we have mostly been dealing with the infinite field63(R, +, · ) formed by the set of all real
numbers together with addition and multiplication. Accordingly, most examples have been taken
from digital signal processing, where this type of computation is commonplace. Now, as all algebraic
fields share a common set of axioms, any algebraic transform that is valid for some computation in
(R, +, · ) must necessarily hold for any other field.64

6 3 See appendix 2.11 for a summary on algebraic structures.
6 4 Universal transforms remain valid anyway as they do not depend on algebraic properties.
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Finite fields

Galois fields65 such as GF(2), GF(p), and GF(pn ) have numerous applications in data compression
(source coding), error correction (channel coding), and information security (ciphering). Thus, when
designing high-speed telecommunications or computer equipment, it sometimes proves useful to
know that the loop unfolding techniques discussed for linear systems in (R, +, · ) directly apply to
any linear computation in any Galois or other finite field too.

Semirings

The analysis of recursive computations in section 2.7 has revealed that almost all successful and
efficient loop unfolding techniques are tied to linear systems over a field. That computation be
performed in a field is a sufficient but not a necessary condition, however, as will become clear
shortly. Recall how loop unfolding was derived for the time-variant linear case in (2.64) through
(2.68). Substituting the generic operator symbols � for + and � for · we can write

y(k) = a(k) � y(k − 1) � x(k) (2.83)

After the first unfolding step, i.e. for p = 2, one has

y(k) = a(k) � a(k − 1) � y(k − 2) � a(k) � x(k − 1) � x(k) (2.84)

and for arbitrary integer values of p ≥ 2

y(k) =

(
p−1∏
n =0

a(k − n)

)
� y(k − p) �

p−1∑
n =1

(
n−1∏
m =0

a(k − m)

)
� x(k − n) � x(k) (2.85)

where
∑

and
∏

refer to operators � and � respectively. The algebraic axioms necessary for that
derivation were closure under both operators, associativity of both operators, and the distributive
law of � over �. The existence of identity or inverse elements is not required. Also, we have never
made use of commutativity of operator �, which implies (a) that the result also holds for other
than commutative operators �, in which case (b) the above order of “multiplication” is indeed
mandatory. The algebraic structure defined by these axioms is referred to as a semiring.

The practical benefit is that recursive computations of seemingly nonlinear nature when formulated
in the field (R, +, · ) — or in some other field — become amenable to loop unfolding, provided it
is possible to restate them as linear computations in a ring or semiring [76]. A number of problems
related to finding specific paths through graphs are amenable to reformulation in this way. Suitable
algebraic systems that satisfy the axioms of a semiring are listed in [77] under the name of path
algebras and in appendix 2.11.

Example

Convolutional codes find applications in telecommunication systems for error recovery when data
gets transmitted over noisy channels. While a convolutional coder is simple, the computational effort
for decoding at the receiver end is much more substantial. The most popular decoding method is
the Viterbi algorithm [78], a particular case of dynamic programming for finding the shortest
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path through a trellis graph.65 Its sole recursive step includes an operation commonly referred to
as add–compare–select (ACS) and goes66

y1 (k) = min(a11 (k) + y1 (k − 1), a12 (k) + y2 (k − 1)) (2.86)

y2 (k) = min(a21 (k) + y1 (k − 1), a22 (k) + y2 (k − 1)) (2.87)

As all other computations are of feedforward nature, the maximum achievable throughput of the
decoding process is indeed limited by this nonlinear recursion in very high-speed applications, see
fig.2.40a.

reformulated
over semiring

min

1
y (k)

12
a (k)

a
11

(k)

(k-1)y
1

min

(k)y
2

21
a (k)

22
a (k)

(k-1)y
2

a)

loop
unfolding

nonlinear 
time-invariant 
first-order 
feedback loop 

1
y (k)

12
b (k+1)

b
11

(k+1)

(k-1)y
1

(k)y
2

21
b (k+1)

22
b (k+1)

(k-1)y
2

c)

min

min

22
b (k) (k-2)y

2

21
b (k) (k-2)y

1

12
b (k) 2(k-2)y

2

11
b (k) (k-2)y

1

1
y (k)

12
a (k)

a
11

(k)

(k-1)y
1

(k)y
2

21
a (k)

22
a (k)

(k-1)y
2

linear 
time-invariant 
first-order 
feedback loop 

loop unfolding

b)

Fig. 2.40 The add–compare–select recursion in the Viterbi algorithm before (a) and after being reformulated

over a semiring (b), and with loop unfolding on top (c) (simplified).

6 5 Dynamic programming encompasses a broad class of optimization algorithms that decompose the search for
a global optimum into a sequence of simpler decision problems at a local level. All decisions obey Bellman’s
principle of optimality, which states that the globally optimum solution includes no suboptimal local decisions.
This is a very welcome property because it permits one to prune inferior candidates early during the search
process. Dynamic programming finds applications in fields as diverse as telecommunications, speech processing,
video coding, watermark detection, flight tra jectory planning, and genome sequencing.

For an anecdotal introduction, think of the following situation. During the darkness of night, a group of four
has to cross a fragile suspension bridge that can carry no more than two persons at a time. The four persons
take 5, 10, 20 and 25 minutes respectively for traversing the bridge. A torch must be carried while on the bridge,
the torch available will last for exactly one hour. The problem is how to organize the operation. Draw a graph
where each state of affair gets represented by a vertex and each traversal of the bridge by an edge. By solving
this quiz in a systematic way, you are bound to discover the ideas behind dynamic programming yourself.

6 6 A 2-state convolutional code is assumed here. Codes with 32, 64, 128 or 256 states are more useful and hence
also more widely used, but their discussion would unnecessarily complicate the argument.
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Now consider a semiring where

• Set of elements: S = R ∪ {∞},
• Algebraic addition: � = min, and
• Algebraic multiplication: � = +.

The new and linear — in the semiring — formulation of the ACS operation goes

y1 (k) = a11 (k) � y1 (k − 1) � a12 (k) � y2 (k − 1) (2.88)

y2 (k) = a21 (k) � y1 (k − 1) � a22 (k) � y2 (k − 1) (2.89)

which, making use of vector and matrix notation, can be rewritten as

�y(k) = A(k) � �y(k − 1) (2.90)

By replacing �y(k − 1) in (2.90) one gets the unfolded recursion for p = 2

�y(k) = A(k) � A(k − 1) � �y(k − 2) (2.91)

To take advantage of this unfolded form, the product B(k) = A(k) � A(k − 1) must be computed
outside the loop. Resubstituting the original operators and scalar variables, we finally obtain the
recursion

y1 (k) = min(b11 (k) + y1 (k − 2), b12 (k) + y2 (k − 2)) (2.92)

y2 (k) = min(b21 (k) + y1 (k − 2), b22 (k) + y2 (k − 2)) (2.93)

which includes the same number and types of operations as the original formulation but allows for
twice as much time. The price to pay is the extra hardware required to perform the nonrecursive
computations below in a heavily pipelined way.

b11 (k) = min(a11 (k) + a11 (k − 1), a12 (k) + a21 (k − 1)) (2.94)

b12 (k) = min(a11 (k) + a12 (k − 1), a12 (k) + a22 (k − 1)) (2.95)

b21 (k) = min(a21 (k) + a11 (k − 1), a22 (k) + a21 (k − 1)) (2.96)

b22 (k) = min(a21 (k) + a12 (k − 1), a22 (k) + a22 (k − 1)) (2.97)

�

The remarkable hardware structure so obtained demonstrates that taking advantage of specific
properties of an algorithm and of algebraic transforms has more potential to offer than universal
transforms alone. Some computations can be accelerated by creating concurrencies that did not exist
in the original formulation, which opens a door to solutions that would otherwise have remained
off-limits.

2.8.5 Digest
� The transform approach to architecture design promoted in this text has been found to yield

useful solutions at any level of granularity. Some of the resulting architectures are truly sur-
prising.

� Both bit-serial architectures and distributed arithmetic follow quite naturally when arith-
metic/logic operations are dissected into bit-level manipulations before the various equivalence
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transforms are applied. It is worthwhile to consider them when fixed and data-independent
computations are to be carried out with limited hardware resources and moderate perfor-
mance. After having sunk into oblivion for many years, the two techniques have had a come-
back for filtering and other DSP applications with LUT-based FPGAs.

� All universal and algebraic transforms that apply to computations on the field of reals also
apply to computations on Galois fields, of course.

� While loop unfolding is applicable to any linear computation in the field of reals, this is
not a necessary condition. In case a recursion forms a bottleneck when in pursuit of higher
performance, check whether it is possible to restate or modify the computations within the
feedback loop in such a way as to make them linear over a semiring.

2.9 Conclusions

2.9.1 Summary

We began this chapter by comparing instruction set processors with dedicated architectures. It
was found that general-purpose computing asks for a high degree of flexibility that only program-
controlled processors can provide. However, the ability to execute an arbitrary sequence of instruc-
tions on an unknown range of data types brings about numerous inefficiencies and largely precludes
architectural optimizations. For well-defined computational tasks, much better performance and en-
ergy efficiency can be obtained from hardwired architectures with resources tailored to the specific
computational needs of the target application. Segregation, weakly-programmable satellites, ASIPs,
and configurable computing have been found to form useful compromises.

Next, we investigated a number of options for organizing datapath hardware. Our approach was
based on reformulating a given data processing algorithm in such a way as to preserve its input-
to-output relationship except, possibly, for latency, while improving on performance, circuit size,
energy efficiency, and the like. Findings on how best to rearrange combinational, nonrecursive, and
recursive computations were given in sections 2.4.8, 2.6.6, and 2.7.7 respectively. The approach was
then generalized in terms of granularity and algebraic structure with the results summarized in
section 2.8.5. The essence of these insights is collected in tables 2.12 and 2.11.

As energy efficiency depends on so many parameters, the pertaining entries of table 2.12 deserve
further clarification. Assuming fixed energy costs per operation and ignoring any static currents,
most architectural transforms discussed inflate the energy dissipated on a given calculation as
conveyed by table entries E and “Extra hardware overhead”. Put in other words, cutting circuit
size and boosting throughput typically are at the expense of energy efficiency.

The picture is more favorable when there is room for cutting the energy spent per computational
operation by playing with voltages, transistor sizes, circuit style, fabrication process, and the like.
The most effective way to do so in CMOS is to lower the supply voltage since the energy dissipated
per operation augments quadratically with voltage whereas a circuit’s operating speed does not.
The longer paths through a circuit are likely to become unacceptably slow, though. A suitable
architecture transform may then serve to trim these paths in such a way as to compensate for
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Table 2.11 Options available for reorganizing datapath architectures. Upper-case letters denote
transforms that are generally available whereas lower-case letters indicate some preconditions must
be satisfied by the application and/or type of computation to make this a viable option.

Type of computation
combinational sequential or memorizing
or memoryless nonrecursive recursive

Data flow feedforward feedforward feedback
Memory no yes yes
Data DAGa with DAG with Directed cyclic graph
dependency all edge some or all edge with no circular path
graph weights zero weights non-zero of weight zero
Response length M = 1 1 < M < ∞ M = ∞

Nature linear time-invariant D,P,Q,S,a D,P,q,S,a,R D,S,a,R,i,U
of linear time-variant D,P,Q,S,a D,P,S,a,R D,S,a,R,i,U
system nonlinear D,P,Q,S,a D,P,S,a,R D,S,a,R,i,u

Discussed in section 2.4 2.6 2.7

D : Iterative decomposition
P : Pipelining
Q : Replication
q : Multipath filtering as special case of replication

provided the resulting repetitive transfer function is acceptable
S : Time-sharing
a : Associativity transform provided operations are identical and associative
R : Retiming
i : Pipeline interleaving, i.e. pipelining in conjunction with time-sharing,

provided a number of data streams can be processed separately from each other
U : Loop unfolding
u : Loop unfolding provided computation is linear over a semiring

a DAG is an acronym for directed acyclic graph, i.e. for a directed graph with no circular path.

the loss of speed incurred by opting for a more energy-efficient, yet also slower alternative. The
attribute “Helpful for indirect energy saving” in table 2.12 refers to this option. Retiming, algebraic
transforms, and coarse grain pipelining are the most promising candidates as they entail no or very
little overhead. Whether such a potential for indirect energy optimization indeed materializes or
not must be examined in detail on a per case basis.
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2.9.2 The grand architectural alternatives from an energy point of view

Let us re-examine the fundamental architectural alternatives from an energy point of view. Program-
controlled processors heavily rely on subcircuits and activities such as

Table 2.12 Summary of the most important architectural transforms and their characteristics.

Impact on Architectural transform
figure of Decom- Pipe- Repli- Time- Associa- Retiming Loop
merit below position lining cation sharing tivity unfolding

A −... = = ...+ + −... = = = +
Γ + = − + = = =
tlp − − =, mux − = −...+ − −
T = Γ · tlp = − − + −...+ − −
AT −... = −... = = = ...+ −...+ − +
L + + =, mux + + = = +
E −...+ −...+ = = ...+ −...+ = +

Extra recy. distrib., collect., extra
hardware and none recoll., redist., none none word
overhead cntl. and cntl. and cntl. width
Helpful no coarse possibly no yes yes possibly
for indirect grain yes yes
energy saving yes
Compatible any register register any any register register
storage type
Universal yes yes yes yes no yes no
Discussed in 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.6.1 2.7.2
subsection[s] 2.6.4 2.6.2 2.6.4 2.7.2

A : circuit size
Γ : cycles per data item

tlp : longest path length
T : time per data item
L : latency in computation periods
E : energy per data item

= : approximately constant
+ : tends to increase
− : tends to decrease
... : in less favorable situations

auxiliary circuitry for
recy.: data recycling
cntl.: datapath control
dist.: data distribution
coll.: data collection

• General-purpose multi-operation ALUs,
• Generic register files of generous capacity,
• Multi-driver busses, bus switches, multiplexers, and the like,
• Program and data memories along with address generation,
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• Controllers or program sequencers,
• Instruction fetching and decoding,
• Stack operations and interrupt handling,
• Dynamic reordering of operations,
• Branch prediction and speculative execution,
• Data shuffling between main memory and multiple levels of cache, and
• Various mechanisms for maintaining cache and data consistency.

From a purely functional point of view, all of this is a tremendous waste of energy because none of
it contributes to payload data processing. The welcome agility of instruction set processors is thus
paid for with an overhead in terms of control operations and a formidable inflation of switching
activity.67

The isomorphic architecture, in contrast, does not carry out any computations or data transfers
unless mandated by the original data processing algorithm itself. There are no instructions to fetch
and decode. There is no addressing and no accessing of memories either as all data are kept in
registers. Data transfers are local, there is no data shuffling between registers, cache, and main
memory. There are no busses with their important load capacitances to drive.

“Does this imply the isomorphic architecture is the most energy-efficient option then?”

Somewhat surprisingly, this is not so. The reason is glitching, a phenomenon observed in digital
circuits that causes extra signal transients to occur on top of those stipulated by the computation
flow. Glitch-induced switching is particularly intense when data recombine in combinational logic
after having travelled along propagation paths of greatly disparate lengths because circuit nodes are
then likely to rock back and forth several times before settling.67 By cutting overlong propagation
paths, moderate pipelining and iterative decomposition tend to abate glitching and so help to
improve overall energy efficiency.

General-purpose processors further operate with data words of uniform and often oversized width
throughout an entire algorithm.68 As opposed to this, dedicated architectures make it possible to
fine-tune the number of bits in every register and logic block to individual requirements as there
is no compelling need to combine subfunctions with greatly different precision requirements into
a single datapath sized for worst-case requirements. The overriding concern is to avoid switching
activities that are not relevant to the final result. Turning off entire functional blocks whenever they
sit idle naturally follows from applying this idea to higher levels of granularity.

Last but not least, the impressive throughputs of modern uniprocessors have been bought at the
price of operating CMOS circuits under conditions that are far from optimal in view of energy
efficiency (extremely fast clock, small MOSFET threshold voltages, large overdrive factors, and
hence comparatively high supply voltage, significant leakage). An alternative design that takes
advantage of concurrent processing to arrive at more favorable operating conditions may prove
beneficial. Yet, as these issues are of electrical rather than architectural nature, their discussion will
have to wait until chapter 9.69

6 7 You may want to refer to appendix A.5 to learn more about the causes of glitching.
6 8 Only the so-called multimedia instructions can provide programmers with an opportunity to process fewer bits

per data item. Yet, not all instruction sets include them and not all algorithms lend themselves to taking
advantage of sub-word parallelism.

6 9 Which is also the place where a node’s switching activity will be formally defined.
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Energy considerations thus tend to give dedicated processing units new momentum over the unimag-
inative usage of general-purpose microcomputers. It is not unusual to find that a program-controlled
processor dissipates two or three orders of magnitude as much energy as an application-specific ar-
chitecture does for the same computation.70

Observation 2.10. A key challenge of low-power design is to minimize all redundant switching

activities by accommodating just as much flexibility as required by the application in an otherwise

dedicated processing unit.

2.9.3 A guide to evaluating architectural alternatives

In spite of our efforts to present a systematic overview on dedicated datapath architectures, we must
admit that architecture design is more art than science. Many practical constraints and technical
idiosyncrasies make it impossible to obtain a close-to-optimum solution by analytical means alone.
The common procedure, therefore, is to come up with a variety of alternative ideas, to devise the
corresponding architectures to a reasonable level of detail, and to evaluate their respective merits
and drawbacks before decisions are taken. This approach — which is typical for many engineering
activities — asks for creativity, methodology, and endeavor. It is nevertheless hoped that the ma-
terial in this chapter gives some insight into the options available and some directions on when to
prefer what option for tailoring VLSI architectures to specific technical requirements. What follows
are some practical guidelines.

1. Begin by analyzing the algorithm. Section by section, identify the data flow and the nature of
the essential computations. Estimate the necessary datapath resources by giving quantitative
indications for
• the word widths truly required (check [80] for references),
• the data rates between all major building blocks,
• the memory bounds, access rates, and access patterns in each building block, and
• the computation rates for all major arithmetic operations.71

2. Identify the controllers that are required to govern the flow of computation along with its
interplay with the external world. Analyze the control flow for data dependencies, overall
complexity, and flexibility requirements. Find out where to go for a hard-wired dedicated
architecture, where for a program-controlled processor, and where to look for a compromise.

3. Rather than starting from a hypothetical isomorphic architecture, let your intuition come up
with a number of preliminary architectural concepts. Establish a rough block diagram for
each of them. Make the boundaries between major subfunctions coincide with registers as you
would otherwise have to trace path delays across circuit blocks during timing verification and
optimization.

7 0 [79] estimates the gap to be up to four orders of magnitude over direct-mapped architectures and growing.
7 1 Watch out if you are given source code from some prior implementation, such as C code for a 32 bit DSP, for

instance. You are likely to find items solely mandated by the resources available there or by software engineering
considerations. Typical examples include operations related to (un)packing and (re)scaling, usage of computa-
tionally expensive data types, arithmetic operations substituted for bit-level manipulations, multitudes of nicely
named variables that unnecessarily occupy distinct memory locations, and more.
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4. It is always a good idea to prepare a comprehensive and, hence, fairly large table that opposes
the different architectures under serious consideration.

The rows serve to describe the hardware resources. Each major subfunction occupies a row of
its own. Each such subfunction is then hierarchically decomposed into ever smaller subcircuits
on a number of subsequent rows until it becomes possible to give numerical estimates for A

and tlp , and, possibly, for E as well. Once a subcircuit has been broken down to the RTL
level, one can take advantage of HDL synthesis to obtain those figures with a good degree of
precision. Finite state machines, in particular, are difficult to estimate otherwise.

For each architectural variant, a few adjacent columns are reserved to capture A, tlp , E and
Γ. An extra column is set aside for n, a natural number that indicates how many times
the hardware resource is meant to be instantiated for the architecture being considered. Γ
stands for the number of cycles required to obtain one processed data item with the hardware
resources available. Of course, this quantity tends to diminish with n but it is not possible to
state the exact dependency in general terms.

5. Estimating the overall circuit size, cycles per data item, latency, and dissipated energy for each
architecture now essentially becomes a matter of bookkeeping that can be carried out with the
aid of spreadsheet software. Path delays are more tricky to deal with as logic and interconnect
delays are subject to significant variation as a function of lower-level details.72 It is thus
quite common to code, synthesize, place, and route the most time-critical portions of a few
competing architectures merely for the purpose of evaluating max(tlp ) and of extrapolating
clock frequency, overall computation rate, and overall throughput.

6. Analysis of the figures so obtained will identify performance bottlenecks and inacceptably
burdensome subfunctions in need of more efficient implementations. This is the point where
the architecture transforms discussed in this chapter come into play.

7. Compare the competing architectural concepts against the requirements. Narrow down your
choice before proceeding to more detailed analyses and implementations.

Example

The table below shows results from exploring the design space for AES encryption with a key
length of 128 bit [81]. The available options for trading datapath resources for computation time
are evident. The narrower datapaths require extra circuitry for storing and routing intermediate
results, which inflates complexity and adds to path delays. What all variants have in common is that
the ten cipher rounds are carried out by a single datapath as a result from iterative decomposition of
the AES algorithm. Also, none of the architectures makes use of pipelining, which results in latency
and cycles per data item being the same. SubBytes refers to the cipher’s most costly operation
from a hardware point of view. While the figures include control logic and have been obtained from
actual synthesis, simplifications have been made to obtain reasonably accurate estimates for the
key figures of merit without having to establish the HDL code for each architectural alternative in
full detail.

7 2 Please refer to footnote 22 for a comment on the limitations of anticipating path delays.
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Datapath width (bit) 8 16 32 64 128

Parallel SubBytes units 1 2 4 8 16
Circuit complexity (GE) 5 052 6 281 7 155 11 628 20 410
Area A (normalized) 1 1.27 1.47 2.43 4.27
Cycles per data item Γ 160 80 40 20 10
Longest path delay tlp (normalized) 1.35 1.34 1.21 1.13 1
Time per data item T (normalized) 21.6 10.7 4.83 2.23 1
Size-time product AT 21.6 13.6 7.10 5.42 4.27

�

Designers of large VLSI chips running at elevated clock rates, such as high-performance uniproces-
sors, inevitably run into interconnect delay as another limiting factor. This is because it is no longer
possible to transmit data from one corner of a chip to the opposite one within a single clock cycle.
While this important aspect has been left aside in this chapter, more will be said in fig.6.18 and
section 15.5.2.

As a concluding remark, we would like to recall once more that good solutions call for analy-
sis and reorganization of data processing algorithms at all levels of details, including architecture
(process/block), register transfer (arithmetic/word), and logic (gate/bit) levels. It has been shown
on numerous occasions that viewing a problem from a totally different angle can pave the way to
unexpected architectural solutions that feature uncommon characteristics. Also, the possibilities for
replacing a given algorithm by a truly different suite of computations that is equivalent for any prac-
tical purpose of the application at hand, but better suited to VLSI, should always be investigated
first.

2.10 Problems

1. Computationally efficient approximations for the magnitude function
√

a2 + b2 have been
presented in table 2.8. (a) Show that approximation 2 remains within ±3% of the correct
result for any values of a and b. (b) Give three alternative architectures that implement the
algorithm and compare them in terms of datapath resources, cycles per data item, longest
path, and control overhead. Assume input data remain valid as long as you need them, but
plan for a registered output. Begin by drawing the DDG.

2. Discuss the idea of combining replication with pipelining. Using fig.2.18 and the numbers that
come along with it as a reference, take a pipelined datapath before duplicating it. Sketch
the result in the AT -plane for various pipeline depths, e.g. for p = 2, 3, 4, 5, 6, 8, 10. Compare
the results with those of competing architectures that achieve similar performance figures
(a) by replicating the isomorphic configuration and (b) by extending the pipeline approach
beyond the most efficient depth. How realistic are the various throughput figures when data
distribution/recollection is to be implemented using the same technology and cell library as
the datapath?
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3. Reconsider the third-order correlator of fig.2.25a. (a) To boost performance, try to retime and
pipeline the isomorphic architecture without prior reversal of the adder chain. How does the
circuit so obtained compare with fig.2.25d. Give estimates for datapath resources, cycles per
data item, longest path, latency, and control overhead. (b) Next assume your prime concern
is area occupation. What architectures qualify?

4. Figure 2.26 shows a viable architecture for a transversal filter. Before this architecture can
be coded using an HDL, one must work out the missing details about clocking, register clear,
register enable, and multiplexed control signals. Establish a schedule that lists clock cycle
by clock cycle what data items the various computational units are supposed to work on,
what data items or states the various registers are supposed to hold, and what logic values
the various control signals must assume to marshal the interplay of all those hardware items.
Samples are to be processed as specified by fig.2.11a.

5. Arithmetic mean x and standard deviation σ are defined as

x =
1
N

N∑
n =1

xn σ2 =
1

N − 1

N∑
n =1

(xn − x)2 (2.98)

Assume samples xn arrive sequentially one at a time. More specifically, each clock cycle sees
a new w-bit data item appear. Find a dedicated architecture that computes x and σ2 after N

clock cycles and where N is some integer power of two, say 32. Definitions in (2.98) suggest one
needs to store up to N − 1 past values of x. Can you make do with less? What mathematical
properties do you call on? What is the impact on datapath word width? This is actually an
old problem the solution of which has been made popular by early scientific pocket calculators
such as the HP-45, for instance. Yet, it nicely shows the difference between a crude and a more
elaborate way of organizing a computation.

6. Most locations in the map of fig.2.21 can be reached from the isomorphic configuration on
more than one route. Consider the location where A = 1/3 and T = 1, for instance. Possible
routes include
◦ (time share → decompose → pipeline) as shown on the map,
◦ (time share → pipeline → decompose),
◦ (pipeline → decompose → time share),
◦ (pipeline → time share → decompose), and
◦ (decompose → decompose).
Architectures obtained when following distinct routes typically differ. Figure 2.21 indicates
only one possible outcome per location and is, therefore, incomplete. Adding the missing
routes and datapath configurations is left as a pastime to the reader. Purely out of academic
interest, you may want to find out which transforms form commutative pairs.

7. Figure 2.21 shows a kind of compass that expresses the respective impact of iterative de-
composition, pipelining, replication, and time-sharing. Include the impact of the associativity
transform in a similar way.

8. Calculating the convolution of a two-dimensional array with a fixed two-dimensional operator
is a frequent problem from image processing. The operator cx,y is moved over the entire
original image p(x, y) and centered over one pixel after the other. For each position X, Y the
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pertaining pixel of the convoluted image q(x, y) is obtained from evaluating the inner product

q(X, Y ) =
+w∑

y =−w

+w∑
x=−w

cx,y p(X + x, Y + y) (2.99)

Consider an application where w = 2. All pixels that contribute to (2.99) are then confined
to a 5-by-5 square with the current location in its center. An uninspired implementation with
distributed arithmetics would thus call for a look-up table with 225 entries, which is exorbitant.
A case study by an FPGA manufacturer explains how it is possible to cut this requirement
down to one look-up table of a mere 16 words. Clearly, this remarkable achievement requires
a couple of extra adders and flip-flops and is dependent on the particular set of coefficients
given below. It combines putting together multiple occurrences of identical weights, splitting
of the look-up table, taking advantage of nonoverlapping 1s across two coefficients, and clever
usage of the carry input for the handling unit weights. Try to reconstruct the architecture.
How close can you come to the manufacturer’s result published in [73]?

cx,y x

−2 −1 0 1 2

2 −16 −7 −13 −7 −16
1 −7 −1 12 −1 −7

y 0 −13 12 160 12 −13
−1 −7 −1 12 −1 −7
−2 −16 −7 −13 −7 −16

2.11 Appendix I: A brief glossary of algebraic structures

Any algebraic structure is defined by a set of elements S and by one or more operations. The nature
of the operations involved determines which of the axioms below are satisfied.

Consider a first binary operation �

1. Closure wrt �: if a and b are in S then a � b is also in S.
2. Associative law wrt �: (a � b) � c = a � (b � c).
3. Identity element wrt �: There is a unique element e such that a � e = e � a = a for any a,

(e is often referred to as the “zero” element).
4. Inverse element wrt �: For every a in S there is an inverse −a such that a � −a = −a � a = e.
5. Commutative law wrt �: a � b = b � a.

Consider a second binary operation � that always takes precedence over operation �

6. Closure wrt �: if a and b are in S then a � b is also in S.
7. Associative law wrt �: (a � b) � c = a � (b � c).
8. Identity element wrt �: There is a unique element i such that a � i = i � a = a for any a,

(i is often referred to as “one” or the “unity” element).
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9. Inverse element wrt �: For every a in S there is an inverse a−1 such that a � a−1 = a−1 � a = i,
the only exception is e for which no inverse exists.

10. Commutative law wrt �: a � b = b � a.

11. Distributive law of � over �: a � (b � c) = a � b � a � c and (a � b) � c = a � c � b � c.
12. Distributive law of � over �: a � b � c = (a � b) � (a � c) and a � b � c = (a � c) � (b � c).
13. Complement: For every a in S there is a complement a such that a � a = i and a � a = e.

Name of Opera- Axioms satisfied
algebraic structure tions 1 2 3 4 5 6 7 8 9 10 11 12 13

Set
Semigroup � 1 2
Monoid � 1 2 3
Group � 1 2 3 4
Abelian or commutative group � 1 2 3 4 5
Abelian semigroup � 1 2 5
Abelian monoid � 1 2 3 5
Ring �� 1 2 3 4 5 6 7 11
Ring with unity �� 1 2 3 4 5 6 7 8 11
Division algebra aka skew field �� 1 2 3 4 5 6 7 8 9 11
Field �� 1 2 3 4 5 6 7 8 9 10 11
Commutative ring �� 1 2 3 4 5 6 7 10 11
Commutative ring with unity �� 1 2 3 4 5 6 7 8 10 11
Semiring �� 1 2 5 6 7 11
Commutative semiring �� 1 2 5 6 7 10 11
Boolean algebra �� 1 2 3 5 6 7 8 10 11 12 13

Examples

Consider the set SDNA of all possible DNA sequences of finite but non-zero length with charac-
ters taken from the alphabet {A, T, C, G}. This set together with the binary operation of string
concatenation denoted as �73 forms a semigroup (SDNA , � ).

A monoid (SDNA ∪ {ε}, � ) is obtained iff the empty sequence ε is also admitted.

All possible permutations of a given number of elements make up a group when combined with
binary composition of functions74 as sole operation. For a practical example, consider all six distinct
rearrangements of three elements, shown below, and let us refer to them as set S3 .

1. 2. 3. 1. 2. 3. 1. 2. 3. 1. 2. 3. 1. 2. 3. 1. 2. 3.
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1. 2. 3. 2. 3. 1. 3. 1. 2. 3. 2. 1. 1. 3. 2. 2. 1. 3.

7 3 Alternative symbols for the concatenation operator include . (mathematics) and & (computer science).
7 4 Binary composition of functions means that two functions are invoked one after the other (...) ◦ f ◦ g ≡ g(f (...)).

Also keep in mind that a permutation is just a particular kind of function.
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This set of permutations along with binary composition ◦ forms a group (S3 , ◦).

The set of all positive integers N+ = {1, 2, 3, ...} together with addition as sole operation constitutes
an infinite Abelian semigroup (N+ , +).

When supplemented with 0, the above structure turns into an Abelian monoid (N, +).

The set of all integers Z together with addition forms an infinite Abelian group (Z, +).

A commutative ring with unity (Z, +, · ) results when multiplication is added as a second
operation to the aforementioned Abelian group.

(N, +, · ), in contrast, is merely a commutative semiring because natural numbers have no
additive inverses. Yet, in addition to the necessary requirements for a semiring, identity elements
with respect to both operations also happen to exist in this example.

The set of all rational numbers Q together with addition as a first and multiplication as a second
operation forms the field75 (Q, +, · ). Other popular fields with infinitely many elements are (R,
+, · ) over the real numbers, and (C, +, · ) over the complex numbers.

The set of all quotients P (x)
Q(x) of two polynomials P (x) and Q(x) with real-valued coefficients together

with addition and multiplication makes up yet another infinite field.

Any subset of integers S = {0, 1, ..., p − 1} forms a field together with addition modulo p and mul-
tiplication modulo p iff p is a prime number. Any such finite field is called a Galois field GF(p).
The best-known finite field is the GF(2) ({0,1}, ⊕, ∧). Observe that the additive inverse in GF(2)
of a −a is a itself and that the multiplicative inverse of 1 1−1 is 1 while 0 has no multiplicative
inverse. As a second example, consider the GF(5) ({0, 1, 2, 3, 4}, + mod 5 , · mod 5 ).

Cardinalities of finite fields are not confined to prime numbers p but can take on any power pn

provided n ∈ N+ . A Galois field where n ≥ 2 is termed an extension field GF(pn ). All polynomials
of degree 0, 1, ..., n − 1 with coefficients from GF(p) make up the set of elements. The first operation
is addition modulo M (x) and the second one multiplication modulo M (x), where M (x) is an
irreducible polynomial of degree n with coefficients from GF(p). GF(32), for instance, is exemplified
by ({0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 2x + 2}, + mod (x2 + 1) , · mod (x2 + 1)).

For the set of all square matrices Mn×n with coefficients taken from a field, there exist identity
elements with respect to both addition and multiplication.76 There is also an additive inverse for
any element. As not every element has a multiplicative inverse, though, and as matrix multiplication
is not commutative, the algebraic structure is an infinite ring with unity.

The factors of 30 together with operations least common multiple (lcm) and greatest common
divisor (gcd) constitute a Boolean algebra of eight elements ({1, 2, 3, 5, 6, 10, 15, 30}, lcm, gcd).
It necessarily follows that taking the complement a is tantamount to computing 30

a for any a.

(S, ∪, ∩) is a Boolean algebra with union and intersection as binary operations iff S is a power
set P. Consider a set of three elements Ω = {a, b, c}, for instance. The set of all sets that can be

7 5 The German term for a field is “(Zahlen)körper”, the French “corps”, and the Italian “campo”.
7 6 Incidentally note that all concepts of linear algebra (matrices, inverses, determinants, etc.) apply to matrices

with coefficients from any field.
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composed from these three elements, that is { ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c} }, is
called the power set of Ω and denoted as P(Ω). (P(Ω), ∪, ∩) then forms a Boolean algebra. Two
particular elements of P(Ω), namely the empty set ∅ and the universal set Ω, act as identity elements
e and i for the first and the second operation respectively. Each structure element x ∈ P(Ω) has a
complement x = Ω − x.

The above structure is readily extended to an infinite Boolean algebra when elements and sets
are chosen such that |P(Ω)| = ∞, which, in turn, is obtained from making |Ω| = ∞. As an example,
assume Ω is made up of all DNA sequences of arbitrary length.

The well-known switching algebra ({0,1}, ∨, ∧) is a Boolean algebra with just two elements. The
complement of an element is its logic inverse and denoted with the negation operator ¬.

With no more than six axioms, the class of semirings is very broad. It includes but is not limited
to the embodiments tabulated below:

Constituent S � �
the commutative semiring of natural numbers N + ·
the commutative ring with unity of integers Z + ·
the “ordinary” fields Q + ·

R + ·
C + ·

all Galois fields, e.g. {0, 1} ⊕ ∧
all other fields, e.g. P (x)

Q(x) + ·
the switching algebra {0, 1} ∨ ∧
other finite Boolean algebras, e.g. {0, 1} ∧ ∨

or {1, 2, 3, 4, 6, 12} lcm gcd
all other Boolean algebras, e.g. P(Ω) ∪ ∩
the path algebras {0,1} max min

R ∪ {∞} min +
R ∪ {−∞} max +
{x ∈ R | 0 ≤ x ≤ 1} max ·
{x ∈ R | x ≥ 0} ∪ {∞} max min

the matrix algebras for every n ∈ N+ Mn×n + ·

2.12 Appendix II: Area and delay figures of VLSI subfunctions

This appendix lists real-world numbers for common subfunctions such as logic gates, bistables,
adders, and multipliers.77 All data refer to commercial cell libraries in static CMOS technology

7 7 Please refer back to section 2.5 for indications on the area occupation of register files and memories.
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under typical operating conditions.78 When talking about an individual cell, numbers relate to a
version with simple output strength (1x drive).

Process generations and figures of merit compared

Process M1 min. half-pitch Lithographic square Number Supply
generation F [nm] F 2 [nm2] of metals [V]
250 nm 320 102 400 5 2.5
180 nm 240 57 600 6 1.8
130 nm 190 36 100 up to 8 1.2
90 nm 120 14 400 up to 9 1.0

A states the area occupied by the circuitry required to implement the target functionality. Except
for individual standard cells, the intercell wiring has been completed and the associated overhead
included. No provisions were made for global routing and I/O pads.

Parameter tid denotes the insertion delay.79 When referring to an individual library cell, a (purely
capacitive) load of four standard inverters (FO4) is assumed. In the case of bistables, all delay
figures refer to the non-inverting output.

Bistable storage functions

Table 2.13 Selected flip-flops and latches (D flip-flops with no reset are found in pipelines).

D flip-flop A tid D scan flip-flop A tid
with no reset [µm2] [F 2 ] [ps] with async. reset [µm2] [F 2 ] [ps]
250 nm 97.9 956 267 250 nm 121.0 1181 279
180 nm 59.9 1040 203 180 nm 73.2 1271 202
130 nm 22.4 620 249 130 nm 30.2 837 257
90 nm 14.3 993 160 90 nm 19.8 1375 174

E (enable) flip-flop A tid (transparent) latch A tid
with async. reset [µm2] [F 2 ] [ps] with async. reset [µm2] [F 2 ] [ps]
250 nm 126.7 1238 267 250 nm 63.4 619 213
180 nm 76.5 1328 196 180 nm 36.6 635 151
130 nm 32.5 900 245 130 nm 15.7 435 119
90 nm n.a. 90 nm 11.0 764 251

7 8 As a consequence of changes in the industry, it has not been possible to compile the table from datasheets of any
single vendor; a horizontal line thus separates data from distinct companies. When comparing across process
generations, be cautioned that cells are bound to differ significantly in their transistor-level circuits, MOSFET
sizes, and threshold voltages due to divergent priorities (such as dense layout, high speed, low dynamic power,
or low leakage). The lack of a universal standard for library characterization further contributes to distinctions.

7 9 Insertion delay reflects the lapse of time that a subcircuit takes to pass on a data item from its input to
the output and is defined in section A.6. As a reminder, tc = ti d c = max(tp d c ) for combinational functions,
tff = ti d ff = ts u ff + tp d ff for flip-flops, and tl c = ti d l c = ts u l c + tp d l c for latches.
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Elementary logic functions

Table 2.14 Selected logic gates.

Inverter A tid Cinp Full adder A tid
[µm2] [F 2 ] [ps] [fF] [µm2] [F 2 ] [ps]

250 nm 11.5 113 69 5.6 250 nm 144.0 1410 230
180 nm 10.0 173 50 3.6 180 nm 76.5 1330 197
130 nm 3.4 93 17 1.9 130 nm 30.2 838 135
90 nm 3.3 229 18 2.2 90 nm 18.7 1300 92

2-input NAND A tid 2-input NOR A tid
[µm2] [F 2 ] [ps] [µm2] [F 2 ] [ps]

250 nm 17.3 169 64 250 nm 17.3 169 115
180 nm 10.0 173 63 180 nm 10.0 173 54
130 nm 4.5 124 25 130 nm 4.5 124 18
90 nm 4.4 305 34 90 nm 4.4 305 45

2-input XOR A tid 2-to-1 MUX A tid
[µm2] [F 2 ] [ps] [µm2] [F 2 ] [ps]

250 nm 51.8 506 214 250 nm 46.1 450 210
180 nm 26.6 462 178 180 nm 29.9 520 149
130 nm 10.1 279 50 130 nm 11.2 310 84
90 nm 8.8 610 61 90 nm 8.8 610 71

Arithmetic functions
Tables 2.15 and 2.16 refer to unpipelined adders and multipliers respectively. They include the ap-
proximate area for intercell wiring as estimated by Synopsys DesignCompiler. Synthesis results have
been obtained by instantiating the appropriate DesignWare component followed by optimization
with no timing constraint.

Table 2.15 2’s complement adders with carry-in and carry-out.

ripple-carry adder A tid carry-lookahead A tid
DW01 add [µm2] [F 2 ] [ps] DW01 addsub [µm2] [F 2 ] [ps]
90 nm 8 bit 149 10 400 720 90 nm 8 bit 237 16 500 800
90 nm 16 bit 299 20 700 1400 90 nm 16 bit 457 31 700 1480
90 nm 24 bit 448 31 100 2080 90 nm 24 bit 676 47 000 2150
90 nm 32 bit 598 41 500 2750 90 nm 32 bit 896 62 200 2830

Table 2.16 2’s complement multipliers.

carry-save multiplier A tid
DW02 mult [µm2] [F 2 ] [ps]
90 nm 8 bit × 8 bit 1 670 116 000 1350
90 nm 16 bit × 16 bit 5 670 394 000 2980
90 nm 24 bit × 24 bit 11 800 821 000 4200
90 nm 32 bit × 32 bit 20 530 1 430 000 5620



Chapter 3

Functional Verification

The ultimate goal of design verification is to avoid the manufacturing and deployment of flawed
designs. Large sums of money are wasted and precious time to market is lost when a microchip
does not perform as expected. Any design is, therefore, subject to detailed verification long before
manufacturing begins and to thorough testing following fabrication. One can distinguish three
motivations (after the late A. Richard Newton):

1. During specification: “Is what I am asking for what is really needed?”
2. During design: “Have I indeed designed what I have asked for?”
3. During testing: “Can I tell intact circuits from malfunctioning ones?”

In any of these cases, one can focus on different circuit properties.

Functionality describes what responses a system produces at the output when presented with
given stimuli at the input. In the context of digital ICs, we tend to think of logic networks and of
package pins but the concept of input-to-output mapping applies to information processing systems
in general. Functionality gets expressed in terms of mathematical concepts such as algorithms, equa-
tions, impulse responses, tolerance bands for numerical inaccuracies, finite state machines (FSM),
and the like, but often also informally.

Parametric properties, in contrast, relate to physical quantities measured in units such as Mbit/s,
ns, V, µA, mW, pF, etc. that serve to express electrical and timing-related characteristics of an
electronic circuit.

Observation 3.1. Experience has shown that a design’s functionality and its parametric

properties are best checked separately since goals, methods, and tools are quite different.

Our presentation is organized accordingly with section 3.1 discussing the options for specifying a
design’s functional behavior. Neither parametric issues nor the testing of physical parts will be
addressed in this chapter.1 After having exposed the puzzling limitations of functional verification

1 The checking of timing-related quantities will be discussed in chapter 12 along with the verification of a circuit’s
inner layout. The testing of physical circuits is not part of this text.
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in the first part of section 3.2, we will go on to suggest a couple of approaches that help to improve
the likelihood of finding design flaws. Testbench design and other practical issues of how to organize
simulation runs and simulation data are the subjects of section 3.3.

3.1 How to establish valid functional specifications

Specifications available at the outset of a project are almost always inaccurate and incomplete. While
parametric properties are relatively easy to state, expressing complex functionalities in precise yet
concise terms is much more difficult. Functional specifications are, therefore, often stated verbally
or graphically. There is a serious risk with doing so, however.

Warning example

An ASIC had to interface with an industry-standard microprocessor bus. Specifications made refer-
ence to official documents released by the CPU manufacturer, where bus read and write cycles were
described in great detail along with precise timing diagrams. Although the ASIC was designed and
tested with these requirements in mind, systems immediately crashed because of bus contentions
when first prototypes were plugged into the target board.

What had gone wrong? It was found that the ASIC worked fine as long as its chip select line was
active. When deselected, however, its pad drivers failed to release the bus by switching to a high-
impedance state. This obvious necessity had been omitted in the original specifications and, as a
consequence, also been ignored throughout the subsequent design and test phases.
�

In more general terms, the subsequent quote from [82] nicely summarizes an experience acquired
by most designers of complex technical systems.

Many computer systems fail in practice, not because they don’t meet their specifications,
but because the specifications left out some unanticipated circumstances or some unusual
combination of events, so that when the unexpected occurred, the system was not able to
deal with it. This is not necessarily due to sloppiness or stupidity on the part of the designer
or to inadequate design methodology; it is a fundamental characteristic of the design process.

This leaves us with three important issues:

“How to have customers, marketing and engineers share the same understanding”
“How to ascertain specifications are precise, correct, and complete”
“How to make sure specifications describe the functionality that is really wanted and needed”

As natural language and informal sketches have been found to be inadequate, let us next discuss
two approaches for arriving at more dependable specifications.
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3.1.1 Formal specification

Ideally, all requirements for a circuit or system could be cast into a set of formal specifications which
then would serve as a starting point for a rigorous mathematical proof of correctness. Over the
years, a broad variety of formalisms has been devised for capturing behavioral aspects of numerous
subsystems from many different fields, including truth tables, signal flow graphs, equations, state
graphs, statecharts, Petri nets, and signal transition graphs (STGs).

A difficulty is the limited scope of each such formalism. While signal flow graphs, for instance,
were developed for describing transformatorial systems, they are inadequate for modelling reactive
systems. Although Petri nets and finite state machines can, in theory, describe any kind of compu-
tation, they tend to become unmanageable when applied to more complex processing algorithms
due to combinatorial explosion. Yet, no real-world system of substantial size falls entirely into one
of the above two categories. Most VLSI circuits include a great variety of subsystems, some of which
are more of transformatorial nature (datapaths, look-up tables) and others more of reactive nature
(controllers, interfaces). Relying on a single formal method for specifying the desired functionality
of an entire chip or system is thus not normally practical.

A more mundane difficulty is that mathematical formalisms are unsuitable for communicating with
customers and management. Also from a practical perspective, there must exist a straightforward
and foolproof way to break down a system’s specifications into specs for its various components in
order to support collaborative development in a team, and to support products that comprise both
hardware and software.

3.1.2 Rapid prototyping

Prototyping often is the only viable compromise between strictly formal and totally informal spec-
ification. By rapid or virtual prototype we understand an algorithmic model that emulates the
functionality of the target circuit but not necessarily its architectural, electrical, and timing char-
acteristics. A virtual prototype can be implemented

◦ As software code that runs on a general-purpose computer, microprocessor or DSP,
◦ With the aid of generic software tools for system-level simulations,2 or
◦ By configuring FPGAs or other FPL devices.

The typical procedure goes

1. Apply formal methods (e.g. equations and statecharts) to capture specifications.
2. Use them as a starting point for developing a virtual prototype.
3. Make the prototype as widely available as possible for a thorough evaluation.
4. Refine specifications and prototype until satisfied before freezing them.

The pros and cons of rapid prototyping are as follows.

+ Demonstrations of the prospective functionality can be arranged at an early stage.
+ Shortcomings of the initial specifications are likely to get exposed in the process.

2 Such as Matlab/Simulink.
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− Performance of the prototype does not normally come close to that of the final VLSI chip.
+ It is possible to submit a functional prototype to project management and/or customers for

approval before investing time and money into actual hardware design.
+ The chances of discovering functional flaws early on are fairly good as functionality can be

verified on the basis of real-world data.3

− There is no guarantee that all critical cases get covered during prototype testing.
+ A functional prototype is amenable to peer review and code inspection.
+ Design iterations and fine tuning are not penalized by the long turnaround times associated

with IC design and manufacturing.
− Slips that are related to timing or electrical problems are unlikely to be found because they

are not rendered correctly by a purely functional model.

Observation 3.2. Rapid prototyping gives developers the opportunity to make and uncover more

mistakes earlier and so to save precious cost and time.

3.2 Developing an adequate simulation strategy

Following fabrication, every physical part is subject to thorough tests. Most of those tests have
automated test equipment (ATE) monitor the signal waveforms that result when predefined
electrical waveforms are being applied to the circuit under test (CUT) over many, many clock
cycles. Simulation essentially does the same, albeit with a virtual circuit model commonly referred
to as the model under test (MUT).4

Both simulation and testing are said to be dynamic verification techniques as opposed to code
inspection, formal verification, equivalence checking, timing analysis, and other static verification
techniques that do not depend on signals, clocks, waveforms, or test patterns in any way. Simulation
prevails when it comes to checking a design’s functional behavior. This is mainly because of the
limited capabilities of today’s formal verification methods. However, simulation and testing both
raise a couple of fundamental issues and bring about a variety of practical difficulties that we are
going to address in the remainder of this chapter.

3.2.1 What does it take to uncover a design flaw during simulation?

Example

Consider a multiplexer buried within a large circuit. Assume that its two control inputs have been
permuted by accident, see fig.3.1. A minor oversight during schematic entry or writing ... to ...
rather than ... downto ... in the VHDL code suffices for this kind of mishap.

3 It is even possible to operate a functional prototype within the target hardware environment, provided all
surrounding equipment can be made to operate at a (reduced) clock rate that is consistent with the prototype’s
execution speed. This approach is particularly helpful for locating interface problems.

4 A difference is that stimulation and observation of hardware are strictly confined to package pins, whereas all
nodes can — at least in principle — be observed and controlled during simulation.



140 Architectures of VLSI Circuits

flawed design

stimuli

0 instead of 1

actual
response

expected
responses

functional gauge

?
=

observe
and

compare

1

0

0

0
1
2
3

1
0

sensitize the bug

propagate the bugged reaction

two signals permuted
by mistake

1 instead of 0

10 instead of 01
X

Y

Z

0

1

1

1

1

1

0

0

1

0

0

1

.

.

.

.

.

.

.

.

.

.

.

.

1

.

.

B

C

A

arbitrary

logic
sequential

arbitrary

logic
sequential

Fig. 3.1 A typical design mistake and the preconditions necessary for uncovering it during simulation.

Three preconditions must hold for that design flaw to become manifest during simulation.

Bug sensitization. The stimuli must drive the permuted nodes to opposite logic values. The data
inputs to the multiplexer must further be adjusted such that a logic value opposed to the
correct one indeed appears at the multiplexer output.

Bug propagation. The stimuli must permit the erroneous condition to propagate to observable
nodes by causing a cascade of intermediate nodes to assume incorrect values.

Bug observation. The logic value observed on one or more of the nodes affected by the design
error must get checked against the logic value that a correct design is expected to produce.

Unless all three conditions are met, the design flaw will have no consequence whatsoever during
simulation, although circuits fabricated on the basis of the faulty netlist are almost sure to fail when
put into service.
�

The same reasoning essentially applies to any other bug that affects functional behavior.

3.2.2 Stimulation and response checking must occur automatically

In the context of simulation, bug observation means checking the MUT’s output. How to do so is
dictated by the volume of data. Even a fairly modest subcircuit asks for keeping track of hundreds
of waveforms over thousands of clock cycles. Digging through waveform plots, event lists, tabular
printouts of logic values, and similar records from simulation runs is not practical for efficiency
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reasons. It is also unacceptable from a quality point of view because some incorrect data value
hiding within myriads of correct items is very likely to be overlooked.

Observation 3.3. Purely visual inspection of simulation data is not acceptable in VLSI design.

Rather, designers must arrange for the simulator software to automatically check the actual responses

from the model under test against the correct ones and to report any differences.

The answer is to collect the expected responses along with the pertaining stimuli in a sequence
of data patterns that we call a functional gauge. In mechanical engineering, gauges serve to verify
the geometric conformity of manufactured parts so as to eliminate inaccurate parts before they are
put together with other components. In some sense, gauges are specifications that have materialized.
Similarly, a functional gauge serves to verify the functional correctness of some digital (sub)circuit.
In its most simple expression, a functional gauge is a set of binary vectors listed cycle by cycle that
specifies what kind of responses a correct design or circuit is supposed to provide when fed with
certain stimuli.

Table 3.1 Terms used in the context of dynamic verification.

In the physical reality world of simulation
a design exists as fabricated circuit HDL model or netlist
and is referred to as circuit under test (CUT). model under test (MUT).
As part of prototype testing functional verification
all those stimuli and expected responses,
collectively called functional gauge,
get administered by automated test equipment a software testbench
in search of potential design flaws.
As part of production testing fault simulation
all those stimuli and expected responses,
collectively called the test vector set,
get administered by automated test equipment a software testbench
in search of potential fabrication defects.

Test suite, test cases, and test patterns are often used as synonyms for functional gauge. The word
testbench is also used in this context, but we reserve it for a somewhat different concept. A
testbench is a piece of software used to pilot a simulation that provides the following services:

• Obtain stimuli vectors and apply them to the MUT at well-defined moments of time.
• Acquire the signal waveforms that emanate from the MUT as actual response vectors.
• Obtain expected response vectors and use them as a reference against which to compare.
• Establish a simulation report that points to problems (functional or timingwise), if any.
• Generate a periodic clock signal for driving simulation and clocked circuit models.

A testbench is to a MUT in the simulation world what ATE is to a fabricated circuit in the physical
reality, see table 3.1, whereas functional gauge is a collective term for all those pairs of stimuli and
expected responses being used to verify the functionality of a design, irrespective of whether that
design is available as virtual HDL model or as tangible circuit.
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Example

Consider a rising-edge-triggered Gray counter of word width w = 4 with enable and asynchronous
reset. A suitable functional gauge is shown in fig.3.2a. Note that the gauge includes one stimulus/
response pair per clock cycle and that both stimulus and response refer to the same cycle in each
pair. Also observe that nothing else than the input-to-output mapping matters for the gauge. How
states are being encoded inside the MUT and whether the counter is actually implemented as a
Medvedev or as a full Moore machine is of no importance.5
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Fig. 3.2 A functional gauge for a 4 bit Gray counter with enable and asynchronous reset (a). Three alternative

state encoding schemes (b).

�

The functional gauge shown in fig.3.2 is very primitive and does not extend easily to more general
situations, though. The concepts of functional gauge and testbench will thus have to be refined in
numerous ways in the sections to come to make them more practically useful.6 Let us begin with a
fundamental problem.

3.2.3 Exhaustive verification remains an elusive goal

An unfailing way — in fact the sole one — to safeguard against any possible design flaw is to verify
a design’s functional behavior in perfect detail.7 Let us see whether this is practical.

Exhaustive verification calls for traversing all edges in the design’s state graph by exercising it
with every possible input condition i ∈ I in every possible state s ∈ S.8 One might be tempted

5 The difference is that a Medvedev machine has no output logic whereas a full Moore machine includes a non-
trivial logic that translates each state into an output value. Refer to section B.1 for further explanations.

6 This section focusses on devising functional gauges, testbench design is the sub ject of sections 3.3 and 4.4.
7 Incidentally, note that the same argument also applies to the testing of physical parts for fabrication defects.
8 Parallel edges are likely to exist, yet exhaustiveness indeed calls for checking the circuit’s behavior for every

single edge, that is for every state/condition pair, unless the presence of Mealy-type outputs can be ruled out.
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to think that the product |I ||S| indicates the number of clock cycles cexh necessary for exhaustive
verification. In almost all practical applications, traversing every edge once will necessitate traversing
others twice or more, however,9 so that we must accept

cexh ≥ |I ||S| (3.1)

as a lower bound. Let wi , ws , and wo denote the numbers of bits in the input, state, and output
vectors respectively. The maximum number of possible input symbols |I | then is 2wi , which figure
must be discounted by the parasitic — i.e. unused — input codes. An analogous reasoning holds
for |S|. Although it is not possible to accurately state |I ||S| in the general case, an upper bound
can always be given as

cexh ≥ |I ||S| ≤ 2w i +w s (3.2)

The “less or equal” operator holds with equality in the absence of parasitic states and input symbols,
i.e. when every combination of bits is being used for encoding some legal state and some input symbol
respectively.

Let us plug in real figures to understand the practical significance. Consider the Intel 8080, an early
microprocessor released in 1974 with an 8 bit datapath and almost trivial by today’s standards.
Abstracting from further details we find the following word widths:

input ports 8 bit data, 3 bit control, 1 bit reset wi = 12
registers 8 bit: A,B,C,D,E,H,L,IR; 16 bit: PC,SP; flags: 5 ws = 101
output ports 8 bit data, 16 bit address, 6 bit status/control wo = 30

Assume there are no parasitic states and input symbols. The minimum number of clock cycles
required for exhaustive simulation then is 2113 ≈ 1034 . Using test hardware running at 100 MHz, the
process would run for more than 3 · 1018 years. Software simulation would take orders of magnitude
longer. To our regret, we must conclude that

Observation 3.4. Exhaustive verification is not practical, even for relatively modest functions.

Dynamic verification, therefore, almost always has to make do with a limited choice of test cases.

The problem is to come up with a functional gauge of practical size and sufficient coverage.

There is no cheap answer. We are thus going to discuss a number of more and less useful approaches
to this problem that plagues both circuit simulation and IC testing.

3.2.4 All partial verification techniques have their pitfalls

Testing distinct functional mechanisms separately

The problem of exhaustive verification is combinatorial explosion. Exhaustive verification starts
from a flat behavioral model obtained from combining the states of all data registers, counters,
state machines, and the like into a single composite state. In addition, each possible state gets
indiscriminately combined with each possible input. The Cartesian product so obtained describes
all situations the circuit might conceivably encounter but, at the same time, causes the number of

9 Fortunate exceptions are those cases where the state graph includes an Euler line. An (open) Euler line is a
walk through a graph that runs through every edge exactly once.
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test cases to explode as VLSI circuits actually include thousands of state registers and hundreds
of inputs. A more pragmatic idea is to identify distinct subcircuits with fewer internal states and
functional mechanisms, and to check them individually.

Example

Reconsider the Gray counter example. The functional gauge presented in fig.3.2 offers only partial
coverage because it includes 26 cycles whereas (3.2) tells us 64 cycles is a lower bound for exhaustive
verification.10 Why is this nevertheless a reasonable compromise between functional coverage and
verification costs?

Table 3.2 Truth table of a w-bit binary Gray counter with enable and asynchronous reset.

RST CLK ENA OUP

0 - - 00...0 reset
1 ↓ - OUP keep output unchanged
1 ↑ 0 OUP idem

1 ↑ 1 graycode((bincode(OUP) + 1) mod 2w ) increment Gray-coded output

Begin with truth table 3.2 that specifies the behavior of Gray counters in more general and
parametrized terms. Note that the desired functionality is made up of three mechanisms, namely
a reset mechanism, an enable/disable mechanism, and the actual counting mechanism, see fig.3.3.
The functional gauge of fig.3.2 addresses each of them separately.
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9 8

54121315
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11
parasitic state

regular state

ENA=0andRST=1
enable/disable
mechanism

RST=0
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mechanism

ENA=1andRST=1
counting
mechanism

not exercised by 
functional gauge

Fig. 3.3 The state graph of a 4 bit Gray counter with edges colored according to the functional mechanism

they implement.

More precisely, the reset mechanism is being verified in cycles 0, 1, and 2, and the enable/disable
mechanism in cycles 3, 4, and 5. The succession of output values is then being checked against
the 4 bit Gray code in cycles 4 through 20. Provided the mechanisms involved function indepen-
dently from each other, one can generalize from these partial checks and so obtain a high degree of

1 0 Finding the exact minimum is left to the reader as an exercise, see problem 1.
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confidence that the circuit will indeed work as intended. To be on the safe side, five extra vectors
have been added to address a few more — and maybe more general — cases.
�

Though a workable and adequate solution in the above example, partial verification suffers from
four limitations. Firstly, while refraining from traversing all edges (state transitions), the functional
gauge of fig.3.2a does visit all nodes (states). The problem of combinatorial explosion persists and
visiting all states rapidly becomes impractical on more substantial circuits.

Secondly, there exists a great variety of circuit models that comply with the gauge of fig.3.2a but,
at the same time, contravene the functional specification of truth table 3.2. In the occurrence, one
could easily come up with a modified design that allows counting to get disabled in some of the
states but not in others. The example gauge would fail to uncover such a fault.

Thirdly, verifying each mechanism and subcircuit separately holds the risk of missing those problems
that relate to the interaction of two (or more) of them.

Finally, identifying mechanisms and subcircuits for verification requires partial insight into its inner
organization and working.11

Observation 3.5. Unless functional coverage is exhaustive, a multitude of logic networks will

necessarily exist that satisfy all verification steps deemed necessary and still fall short of meeting

the original specifications for the overall circuit.

Any simulation or test run that lacks exhaustiveness is tantamount to spot checking and, as such,
perforce implies compromising among functional coverage, run time, and engineering effort. Ideally,
an engineer would begin by enumerating all slips that might possibly occur during the design process
before writing a functional gauge capable of sensitizing, propagating, and observing each of them.
This is not possible in practice, though, because the number of potential bugs is virtually unlimited
and our imagination insufficient to list them all.

Warning example

A tiny portion from an incorrect ASIC design is shown in fig.3.4. The designer’s intention was to
detect the zero state of a down counter by way of a 12-input nor function.12 Since no 12-input
gate was available, he decided to compose the function from an 8-input and a 4-input nor gate, but
mistakenly instantiated a nand gate during schematic entry. A simulation involving these four bits
would have exposed the problem, but no such check was undertaken because the functional gauge
never had the counter assume a state in excess of 18.

Why did the designer refrain from exercising the upper bits? Firstly, he wanted to keep simulation
runs short, and exhausting a 12 bit counter with enable and reset would have required 16 384 cycles.
More importantly, however, the designer was convinced that all input bits to a zero detector are

1 1 A situation of limited knowledge is termed gray box probing and as opposed to the black box approach
of exhaustive verification that makes no assumptions about the MUT whatsoever. A situation that assumes
perfect knowledge of a circuit’s inner details is referred to as clear box probing. The dilemma is this: Black
box probing takes many vectors for a low probability of finding a problem. Clear box probing enables a test
engineer to select such test cases as to address specific and likely problems, but may obstruct his view on other
potential issues by contaminating his understanding with preconceptions from the circuit’s design phase.

1 2 Using the counter’s carry/borrow bit instead would probably have been a more economic choice anyway.
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interchangeable. He concluded it was sufficient to check the subcircuit’s functioning by initializing
the counter to 18 — or some other fairly low number — followed by having it count back to zero.
Although he identified the end count mechanism and planned to check its functioning, the designer
was just not prepared for a problem that would challenge his preconceptions.
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Fig. 3.4 A silly little oversight that managed to slip through simulation unnoticed because of poor coverage.

�

What we learn from this example is that a critical difficulty of verification is to protect oneself
against the unthinkable. Most examples of circuits and systems that have failed when put to service
indeed confirm this.

Monitoring toggle counts is of limited use

A simple precautionary measure consists in collecting the toggle counts of all circuit nodes during
simulation. Any node that never changes its logic value points to a weakness in the test suites
chosen. In the example of fig.3.4, insisting on non-zero toggle counts would definitely have helped
to recognize the stimuli as being inadequate. Yet, in spite of its utility and popularity, monitoring
of node activities is far from solving all problems. A functional gauge may well toggle all nodes of
a logic netlist back and forth and still be insufficient, see problem 3. Also, the concept of a circuit
node is meaningless before a gate-level netlist has been established.

Observation 3.6. The toggling of all nodes must be considered a desirable

rather than a sufficient requirement for a good functional gauge.

Automatic test pattern generation does not help either

Automatic test pattern generation (ATPG) is a technique that helps to tell intact ICs from defective
ones following manufacturing. It is important to understand that ATPG does not normally help to
uncover design flaws in nonmaterial circuit models such as HDL code or gate-level netlists. This
is because ATPG starts from a presumably correct netlist and produces a set of test vectors for
checking for the presence of predefined fabrication defects.13

1 3 For the purpose of ATPG, fabrication defects are almost universally assumed to follow the so-called “single
stuck-at fault” model whereby one circuit node at a time is assumed to be shorted to either logic 0 or 1. ATPG
software attempts to cover close to 100% of all such faults with as few test vectors as possible.
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Functional verification, in contrast, questions the correctness of a circuit model by setting its logic
behavior against some kind of functional specification or reference model.

Monitoring code coverage is certainly useful but not sufficient

All decent HDL simulators can calculate code coverage figures by keeping track of how many times
the individual statements in a MUT’s source code are being exercised during a simulation run. 100%
code coverage implies all executable statements have been executed once or more.

Observation 3.7. However useful code coverage figures are, executing all statements in an RTL

or behavioral circuit model implies neither that all states and transitions have been traversed nor

that all conditions and subconditions for doing so have been checked.

Also, code coverage relates to bug sensitization but neither to bug propagation nor to bug observa-
tion. Executing a flawed statement does not imply the bug must necessarily become manifest at an
observable output. And whether it will be caught there or not depends on the expected responses,
not on the stimuli.

The subsequent case study shows that functional coverage problems can take on much more subtle
forms than in the above zero detector.

Warning example

Electronic dimmers for incandescent lamps work by varying the duty cycle of the load current. For
every half wave of the 50 or 60 Hz mains voltage, a Triac connected in series with the lamp is turned
on (“fired”) at a phase angle adjustable between 0◦ and 180◦ and stays in the conducting state
until the next zero crossing. A digital implementation is shown in fig.3.5.

The controller accepts commands from a touch key, converts the desired luminosity into a target
phase angle, and fires the Triac via an optical coupler. The trigger impulse is initiated by a compara-
tor when the actual phase angle matches the target value. The actual angle counter is clocked at
64 times the mains frequency so that in total 32 intensity levels are available. Synchronization with
the mains is obtained through a zero-crossing detector that resets all 5 bits of the counter whenever
a new half wave begins. Post-layout simulations and testing of fabricated samples on ATE confirmed
circuit operation. Yet, the design of fig.3.5 is flawed.

When the first prototype was plugged into the target board, the dimmer was found to function o.k.
except for a slight but disturbing oscillation of luminous intensity. The problem was quickly located
in the synchronization mechanism. Since only the actual angle counter is reset, the clock divider
proceeds from its current but otherwise indeterminate state whenever a new half wave begins. As a
consequence, the next increment impulse for the actual angle counter can arrive anytime between a
zero-crossing and 1

32 half waves later. This, together with the fact that a free-running clock oscillator
is being used, leads to a beat in firing angle and luminosity.

Why had this flaw passed unnoticed during circuit simulation and testing? The answer is that all
simulations were carried out with the clock frequency an integer multiple of the mains frequency. It
just never had occurred to the designers that non-integer frequency ratios might give rise to specific
behavioral phenomena.
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Fig. 3.5 Block diagram of flawed digital dimmer.

�

Routine is the dark side of experience

The above examples have demonstrated the perils of unconcious, unspoken, and unjustified as-
sumptions and misconceptions. We are now in a position to formulate what is considered to be the
fundamental problem of any dynamic system verification approach, independently of whether the
desired functionality is embodied in a piece of hardware, of software, or both.

Observation 3.8. The innate difficulty with selecting critical test cases for dynamic verification is

that human beings tend to check only for those problems that they expect.

It is absolutely essential to select test cases with a clear and open mind, and section 3.2.5 will suggest
how to get organized for this. Before doing so, however, let us point to another and particularly
treacherous preconception.

Warning example

On its maiden flight on June 4, 1996, the Ariane 5 rocket had to be neutralized by its built-in
self-destruct system at an altitude of 3500 m because excessive aerodynamic loads had ripped the
solid boosters off the rocket shell after more than 30 s of seemingly normal flight [83]. Analysis of
telemetry data revealed that there had been no structural failure but that the on-board computer
had commanded the booster nozzles to maximum deflection two seconds before self-destruction
occurred, and had so steered the rocket into an abnormal angle of attack.

Why did this happen? The flight control system of Ariane 5 depends on two computerized inertial
reference platforms, one active and one for backup, that provide the on-board computer with velocity
and attitude information. This flight control system was a proven design that had flown with Ariane
4 for years. On that fatal morning, however, both inertial reference platforms simultaneously ceased
to deliver meaningful flight data and presented the on-board computer with diagnostic bit patterns
instead. Misinterpreted as they were, these garbage data caused the on-board computer to initiate
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a sharp change in trajectory. The underlying reason was a numeric overflow that occurred when
a parameter of minor importance was converted from a 64 bit floating-point number to a 16 bit
signed integer combined with poor exception handling.

How was it possible for such a disastrous design flaw to remain undiscovered for so long? No numeric
overflow had ever occurred in an Ariane 4 flight. Yet, the Ariane 5 trajectory implied considerably
higher horizontal velocity values, which caused the critical parameter to accumulate beyond its
habitual range. Tests for making sure that the navigational system would operate as intended in the
new context had not been conducted. It was precisely the system’s excellent reliability record that
led the Ariane 5 design team to believe that everything worked fine and that no extra qualification
steps were necessary.
�

Observation 3.9. How a system responds to the things going wrong shows how good it really is

(quoted from Hans Stork, CTO of Texas Instruments).

The fact that a subsystem has performed as expected when subjected to certain data sets, operating
conditions, parameter configurations, and the like is no guarantee for its correct functioning in
similar situations.

Even real-world data sometimes prove too forgiving

It is often argued that the functional coverage problem is best dealt with by using genuine data
collected from real-world service instead of limiting dynamic verification to a small number of
artificially prepared test suites. A test with data from the anticipated flight time sequence of Ariane 5
injected into the data processing section of the inertial reference system would indeed have disclosed
its fatal limitation. Similarly, a software or a hardware prototype of the digital dimmer ASIC
embedded within the remainder of the circuitry and operated with real-world waveforms would
have led designers to recognize the oversight in their design.

Using actual data material is no panacea, however, because it may take an excessively large number
of cycles before genuine stimuli might activate some rare but critical set of circumstances whereby
a potential misbehavior of a design or its model could become apparent.

Warning example

A case that was given world-wide publicity in the fall of 1994 was the flaw in the floating-point
division unit of early Pentium microprocessors [84] [85]. Due to a software problem, 5 out of 1066
table entries had been omitted from a PLA look-up table employed in the radix-4 SRT division
algorithm.14 Whether results from floating-point division came out wrong or not depended on the
mantissa values involved. Intel scientists estimated the fraction of the total input number space that
is prone to failure to be 1.14 · 10−10 [86], which explains why it took several months before the user
community eventually became aware of the problem.
�

1 4 SRT stands for Sweeney, Robertson, and Tocher, who independently invented the method in the 1950s.
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Random testing is unbiased but also unfocussed

The basic idea behind random testing is to get rid of human preconceptions and misconceptions
by having an impartial random process select the test cases. Note that random testing does not
simply mean random vectors, though. In order to exercise much of a circuit’s state graph, it is the
higher-level transactions that are to be chosen randomly, not the gate-level bit patterns. Except for
simple combinational subcircuits, applying random bit patterns would be very inefficient.

3.2.5 Collecting test cases from multiple sources helps

We now know about the benefits and difficulties of simulation and testing. The trouble with dynamic
verification is indeed knowing how to select a compact set of test cases that makes a mistaken design
behave differently from a functionally correct one for any situation that might be relevant to the final
circuit’s operation. The fact that today’s VLSI circuits comprise entire systems only exacerbates
the problem. Some good advice is as follows.

Observation 3.10. Except for the simplest subsystems where exhaustive testing is feasible,

an acceptable selection of test cases shall comprise:

• A vast set of data that makes the MUT work in all regular regimes of operation,

that exercises every functional mechanism, and that strains array and memory bounds.

• Particular numeric data that are likely to cause uncommon arithmetic conditions, including

over-/underflow, division by small numbers, sign, carry, borrow, and not-a-number handling.

• Pathological cases that ask for exception handling and out-of-the-normal control flows.

• Genuine data sequences collected from real-world service.

• Randomly selected test cases.

3.2.6 Assertion-based verification helps

Assertions are small pieces of simulation code embedded within a MUT that do not affect func-
tionality. Instead, these Boolean tests are included solely to monitor the model’s operation and to
report any anomalous or unexpected condition that might occur, e.g.

• Memory addresses that point outside their legal range,
• State machines that assume parasitic, illegal or otherwise suspect states,
• Unforeseen input values and other out-of-the-ordinary conditions,
• Illegal instruction codes (opcodes) and unexpected status codes,
• Numeric over/underflows and other scaling problems,
• Event sequences unforeseen by the application or protocol,
• Resource conflicts and other situations of mutual lock-up,
• Excessive iteration counts or other unexpected state variables, and the like.

Assertions, aka in-code sanity checks, included in simulation models are effective at providing pro-
tection against design and coding errors. They nicely complement response checking because

• Feedback is immediate. There is no need for an abnormal condition to propagate to some
distant node placed under constant monitoring.
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• The link between a design flaw and its manifestation is short. There is no need for the engineer
to trace back an output mismatch in an attempt to locate its place of origin.

• Assertions are a long-lasting investment. There is no need to repeatedly adjust them when
submodels are being assembled to form larger design entities.

Especially the third feature is in sharp and welcome contrast to the stimulus/response pairs of a
prerecorded functional gauge that must be modified whenever latency changes. Many assertions
refer to the interface between a subcircuit and the embedding circuitry and between a subprogram
and the calling code, but they are not limited to this.

Hint: While writing code for a MUT, enter an assertion wherever you explicitly or implicitly
assume that a certain property would hold in real-life service.
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Fig. 3.6 Assertions resemble spies placed right into the MUT itself.

Assertions are not normally intended for synthesis. Unless they are ignored by synthesizers
anyway — as VHDL assert statements are — assertions must get commented out or otherwise
disabled prior to synthesis. As an alternative, a designer is free to implement part of the sanity
checks in his HDL code in such a manner as to synthesize them into extra surveillance circuitry. By
having that circuitry activate an alarm upon detection of an out-of-the-ordinary condition, he can
take advantage of assertions to add self-checking capabilities to physical parts.

3.2.7 Separating test development from circuit design helps

The idea is to safeguard a design against oversights, misconceptions, and poor functional coverage by
organizing manpower into two independent teams. A first team or person works towards designing
the circuit while a second one prepares the functional gauge. Their respective interpretations are
then crosschecked by verifying early behavioral models of the circuit against the gauge, see fig.3.7.
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The goal of the circuit designers is to come up with a model that is functionally correct whereas
the test engineers essentially try to prove them wrong.

The benefits and shortcomings of this healthy adversarial relationship are as follows.

+ Mistakes made by either team are likely to be uncovered by the crosschecking process.
+ The same holds for ambiguities in the initial specifications.
+ Having the design and the test teams work concurrently helps to cut down design time.
− A chance always remains that truly misleading specifications get interpreted in identical but

erroneous ways by both teams.
− The difficult task of finding test cases of adequate coverage is left to humans.
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1 5 Figures 3.7, 3.8, and 3.9 come as T-diagrams, a notation popular in the context of compiler engineering that
serves to plan the porting of programs from one machine to another [87]. As an extension to the established
T-diagram notation, two extra symbols have been added. One stands for a functional gauge and the other for
a piece of information-processing hardware, such as a digital ASIC or an FPL device. Also note that synthesis
tools are viewed here as compilers that turn behavioral models into gate-level netlists, and gate-level simulators
as interpreters that translate between netlists and executable code.
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3.2.8 Virtual prototypes help to generate expected responses

Rapid prototyping has been introduced in section 3.1.2. Once a virtual prototype has been throughly
certified in a multitude of test runs, it becomes a golden model which is assumed to be free of
functional errors for the purpose of the upcoming design steps. As illustrated in fig.3.8, golden
models come in handy for automatically computing expected responses from a selection of stimuli.
Yet, note that the problem of selecting a set of relevant test cases is not addressed by this technique.

3.3 Reusing the same functional gauge throughout the entire
design cycle

Over the last few decades, functional verification has become ever more onerous because the overall
set of potential circuit behaviors, correct and incorrect, has exploded with VLSI and ULSI circuit
complexities. The concern is best expressed by a quote (from Walden Rhines):

The question is whether the percentage for verification time tops out at 70%
[of the total engineering effort in VLSI design] or it goes to 95% in the future.

Industry just cannot afford to rewrite functional gauges and testbenches over and over again as a
design matures from a virtual prototype into synthesis code, a gate-level netlist, and — finally —
into a physical part. Moreover, it is absolutely essential that a MUT be checked against the same
specifications throughout the entire design cycle. Figure 3.9 again illustrates the design process
but differs from fig.1.13 in that it emphasizes the reuse of stimuli and expected responses. How to
do so is not immediately obvious because design views and tools greatly differ in their underlying
assumptions, see table 3.3.
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Table 3.3 Data, signal, and timing abstractions encountered during VLSI design and test.

relevant numerical modelling relevant timewise
level of data types precision of electrical time scale simulation
abstraction and structures phenomena for latency resolution

immaterial circuit models
algorithmic model abstract and essentially not an issue system-level not an issue

fairly free unlimited transaction
automata theory discr. symbols not an issue not an issue abstr. cycle clock cycle
RTL synthesis numbers, bits, finite optional clock cycle event
model (VHDL) enumer. types sequence
gate-level netlist bits finite logic values clock cycle circuit
post-layout netlist delays

physical hardware
autom. test equip. bits finite discr. volt. clock cycle discr. strobes
physical circuit cont. quant. continuous

The difficulty is in

“How to make sure the same stimuli and expected responses can be reused across the full VLSI
design cycle from purely algorithmic specifications to the testing of fabricated parts in spite of the
various pieces of software and hardware being involved”

This is more than just a matter of format conversion. Ideally, a single functional gauge is reused
with only minimal modifications to account for unavoidable differences in timewise and numerical
resolution. Having to rewrite or to reschedule test patterns at each development step must be
avoided for reasons of quality, trustworthiness, and engineering productivity.

From a hardware engineering point of view, a good simulation setup

• Is compatible with all formalisms and tools used during VLSI specification, design, and test
(such as automata theory, Matlab, HDLs, logic simulators, and ATE).

• Adheres to good software engineering practices (modular design, data abstraction, reuse, etc.).
• Translates stimuli and responses from bit-level manipulations to higher-level transactions.
• Consolidates simulation results in such a way a as to facilitate interpretation by humans.
• Is capable of handling situations where the timewise relationship between circuit input and

output is unknown or difficult to predict.
• Manages with reasonable run times.

Next, we are going to discuss six measures that greatly contribute towards these goals.

3.3.1 Alternative ways to handle stimuli and expected responses

There is much liberty regarding how to organize a testbench. Even after one has selected the stimuli
and response vectors that together form a functional gauge, there exist at least three conceptual
alternatives for handling them.
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Hardcoded testbench. Stimuli and expected responses are prepared before simulation begins
and are included in the source code of the testbench itself, e.g. with the aid of repetitive
instruction sequences, program loops, conditional branching, look-up tables, and the like.

File-based testbench. Stimuli and expected responses are prepared beforehand and are stored
on disk files from where they are retrieved at run time under control of the testbench.

Golden-model-based testbench. Stimuli are generated at run time, e.g. by having the testbench
invoke subprograms that act as test pattern generators. The expected responses are obtained
from feeding some previously certified golden model with the same stimuli.

With the exception of trivial subcircuits, the first approach is too limited and too rigid to be of
any practical value. We are thus going to elaborate on the latter two approaches, the most simple
embodiments of which are depicted in figs.3.10a and b respectively.

3.3.2 Modular testbench design

Checking a MUT against a golden model often comes in handy, all the more so as modern simulators
accept multilingual input.16 As an example, you may want to check a synthesis model written
in VHDL against a behavioral model developed earlier with SystemC. Yet, golden-model-based
simulation implies recomputing the same sequence of expected responses for every single run. If
debugging a MUT necessitates many iterations, a lot of computing resources get wasted in the
process, and much the same applies to run-time stimuli generation. A better idea then is to compute
stimulus/response pairs once and to store them on disk for subsequent file-based simulation runs
as illustrated in figs.3.10f, g, and h.

The engineering effort to satisfy many different needs easily gets out of hand, however, unless one
can identify a small number of versatile and reusable software modules from which all sorts of
simulation setups can be readily assembled. This has been done in fig.3.10, while fig.3.14 shows the
key modules in more detail. VHDL source code for a testbench that adheres to this concept will be
given elsewhere in this text.17

Observation 3.11. With testbenches being major pieces of software,

it pays to have a look at them from a software engineering perspective.

3.3.3 A well-defined schedule for stimuli and responses

Another important choice refers to the timewise sequence of key events that repeat within every
stimulus/response cycle, and to their relative timing. Poor timing may cause a gate-level model
to report hundreds of hold-time violations per clock cycle during a simulation run, for instance,
whereas a purely algorithmic model is simply not concerned with physical time. To complicate
things further, engineers are often required to co-simulate an extracted gate-level netlist for one
circuit block with a delayless model for some other part of the same design.

1 6 ModelSim by Mentor Graphics is one such product, for instance.
1 7 In section 4.9.4.
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Fig. 3.10 Software modules from which testbenches can be assembled to serve a variety of needs. A setup that

operates with a functional gauge previously stored on disk (a), a setup that generates stimuli and expected

responses at run time (b), and an arrangement suitable for designs that implement involutory mappings (c).

Alternatives for using a golden model as a reference (d,e); (e) addresses the special case where the stimuli exist

as a piece of source code for a program-controlled processor. Options for preparing stimulus/response pairs (f,g).

Observation 3.12. To be useful for comparing circuit models across multiple levels of abstraction,

a testbench must schedule all major events in such a way as to respect the limitations imposed by

all formalisms and tools involved in circuit specification, design, simulation, and test combined.

Formalisms and tools are meant to include automata theory, HDLs, RTL models, gate-level netlists
(whether delayless or backannotated with timing data), simulation software, and automated test
equipment (ATE). In their choice of a schedule, many circuit designers and test engineers tend to
be misled by the specific idiosyncrasies of one such instrument.

Key events

Consider some synchronous digital design.18 The most important events that repeat in every clock
cycle during both simulation and test then include

1 8 We assume the popular single-phase edge-triggered clocking discipline where there is no difference between clock
cycle and computation period, see section 6.2.2 for details.
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• The application of a new stimulus denoted as � (for Application),
• The acquisition and evaluation of the response denoted as � (for Test),
• The recording of a stimulus/response pair for further use denoted as � (for storage),
• The active clock edge symbolically denoted as ↑, and
• The passive clock edge denoted as ↓ (mandatory but of subordinate significance).

When these events are ordered in an ill-advised way, the resulting schedules most often turn out to
be incompatible. Exchanging functional gauges between software simulation and hardware testing
then becomes very painful, if not impossible. The existence of a problem is most evident when
supposedly identical simulation runs must be repeated many times over, fiddling around with the
order and timing of these events just to make the schedule fit with the automated test equipment
(ATE) at hand. A suspicion always remains that such belated manipulations of test vectors can-
not be trusted because any change to the sequence of events or to their timing raises the question
of whether the original and the modified simulation runs are equivalent, that is, whether they are
indeed capable of uncovering exactly the same set of functional flaws.

A coherent stimulus/response schedule

The schedule of fig.3.11 has been found to be portable across the entire VLSI design and test cycle.
Its formal derivation is postponed to section 3.7.

Observation 3.13. At the RTL and lower levels, any consistent testbench shall

• provide a clock signal even if the MUT is of purely combinational nature,

• log one stimulus/response pair per clock cycle, and

• have all clock edges, all stimulus applications, and all response acquisitions occur

in a strictly periodic fashion, symbolically denoted as � ↓ (� = �) ↑.

simulation time

via output function

via state transition function

cause observable effect observable effect

i(k) o(k) i(k+1) o(k+1)
s(k) s(k+1)

i(k+2)

cycle k with its vector set k+1cycle with its vector set k+2cyclek −1cycle

clock signalCLK

o(k −1)

Fig. 3.11 A coherent schedule for simulation and test events with cause/effect relationships and single-phase

edge-triggered clock signal waveform superimposed.

As becomes clear from fig.3.11, each computation period gets subdivided into four phases. A stan-
dard setup for a symmetric clock of 10 MHz is given below as an example. Of course, the numerical
figures must be adapted to the situation at hand.
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cycle events with times of occurrence [ns]
k � ↓ �� ↑
0 10 50 90 100
1 110 150 190 200
2 210 250 290 300
... ... ... ... ...

Observe that we have elected to assign the active clock edge to the end, rather than to the beginning,
of a cycle because a finite state machine originates in some state — termed start state s0 — without
any intervention of a clock.

It is important to know when and how the effects of a specific stimulus i(k) become observable.
Note from fig.3.11 that o(k) = g(i(k), s(k)) is visible in the response acquired after applying i(k),
while its effect on the state s(k) can be observed only in the response acquired one clock cycle later
and only indirectly as o(k + 1) = g(i(k + 1), f (i(k), s(k))).

3.3.4 Trimming run times by skipping redundant simulation sequences

Memories, counters, and state machines tend to inflate the number of stimulus/response pairs
necessary to verify functionality. This is because stereotypical activities eat a lot of computation
time without contributing much towards uncovering design flaws. Much of a simulation run then
just reiterates the same state transitions many times over without moving on to fresh states and
functional mechanisms for a long time. Examples are quite common in timers, filters, data acquisition
equipment, and data transfer protocols, but the situation is notorious in image processing and man–
machine interfaces.

For productivity reasons, designers seek to cut back cycles that feature little or highly recurrent
computational activities in a design. What follows are suggestions of what they can do.

• Take advantage of the scan path facility to skip uninteresting portions of a simulation.
• Include auxiliary logic in the MUT that trims lengthy counting or waiting sequences and

unacceptably large data quantities while in simulation mode.
• Do the same to synthesis models in view of the later testing of physical circuits.
• Model circuit operation on two different time scales (fine and coarse).

Example

Imagine you are designing a graphics accelerator chip. Instead of always simulating the processing
of full-screen frames of 1280 pixels × 1024 pixels, make your MUT code capable of handling smaller
graphics of, say, 40 pixels × 32 pixels as well. Use this thinned-out model for most of your simulation
runs, but do not forget to run a couple of full-size simulations before proceeding to back-end design
and prior to tapeout.
�
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3.3.5 Abstracting to higher-level transactions on higher-level data

Abridged simulation techniques notwithstanding, humans are easily overwhelmed by the volume of
bits and bytes when confronted with raw simulation data. Rather than drowning engineers with
tons of 0s and 1s, functional gauges can be made to work at higher levels of abstraction. Table 3.4
makes a distinction among four grades.

Table 3.4 Circuit models and testbenches can be made to cooperate in various ways.

Grade 0 1 2 3
Operation steps free style cycle per cycle word per word trans. per trans.

Theoretical underpinning none automata theory systems theory
Response checking visually by self-checking testbench
Reporting is in terms of waveforms bit errors word errors figures of merit
Typical data items bit string, sample, block, frame
packaged in VHDL as std logic and ... vector record
I/O data formats must match bit for bit translated by protocol adapters
High-level I/O processing none with Matlab or similar tool

Event sequence arbitrary periodic and locked to clock � ↓ (� = �) ↑
Simulation driven by signal changes clock signal transactions on

(VHDL events) high-level data
Clock generator none is part is part

(hardcoded) of testbench of MUT
Stimulus–response pair n.a. per clock per data word per transaction
Latency relationship n.a. must match adjusted by adjusted by
between MUT and cycle for cycle start and full handshake
expected responses compl. signals protocol

Overall quality chaotic and sound but offers welcome abstract,
much too low-level, isolation MUT to support
limited matches ATE from details handshaking

Best for nothing small larger circuits multi-clock
subfunctions and systems systems

The functional gauges presented so far have worked with bit vectors locked to predetermined clock
cycles. This straightforward concept is adequate for circuit blocks of modest complexity and will
be referred to as grade 1 simulation. A testbench organized in this way is shown in fig.3.14. As a
matter of fact, cycle-true binary stimuli and responses are the only way to go when it comes to the
testing of physical parts with automated test equipment (ATE).

Dealing with high-level stimuli and responses asks for protocol adapters

Grade 1 setups are inadequate for simulating larger circuits and systems. A first improvement is to
collect stimuli and responses in composite data types such as records, data packets, audio fragments,
or whatever is most appropriate for the application at hand.
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Example

JPEG image compression in essence accepts an image frame, subdivides it into square blocks, and
uses the Discrete Cosine Transform (DCT) to calculate a set of spectral coefficients for each block.
Those coefficients are then quantized or outright replaced by zero when their impact on the per-
ceived image quality is only minor. Image frames, blocks, and coefficient sets are the data items you
would want to deal with when comparing the behavior of a JPEG MUT against a golden model. You
would probably consider the compression of one block or, alternatively, of an entire frame to be a rel-
evant transaction. Details such as the reading in of pixels or the toggling of individual data bits would
just distract your attention (unless you were forced to debug a model at a very elementary level).
�

Observation 3.14. A testbench serves not only to drive the MUT, its more noble duties are to

translate stimuli and responses across levels of abstraction, and to consolidate simulation results so

as to render interpretation by humans as convenient as possible.

The difficulty is that the MUT — and possibly other system components as well — will undergo
profound changes during the development process. What begins as a purely behavioral model is
later refined into an RTL model, and ultimately becomes a gate-level netlist. The latter models
will necessarily operate in terms of bits and clock cycles, however, exactly like the physical circuits
they emulate. Any decent simulation setup must thus follow and support the process of successive
refinement. A helpful aid for doing so are protocol adapters, aka bus-functional models (BFM), that
translate stimuli and actual responses across levels of abstraction.

An input protocol adapter accepts a high-level stimulus (an image frame in the above example),
breaks it down into smaller data items (e.g. blocks and pixels), and feeds those to the MUT word
by word or bit by bit over a time span that may cover hundreds of clock cycles, see fig.3.12. Another
adapter located downstream of the MUT does the opposite to consolidate output bits into a higher-
level response (e.g. collecting bits into JPEG image data). The need to rework stimulus/response
pairs each time a modification is made to the MUT can thus be avoided. Any change just affects the
MUT itself and one or more of the protocol adapters but neither the testbench nor the functional
gauge, thereby greatly simplifying maintenance.
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Fig. 3.12 Protocol adapters fill the gap between high-level transactions and cycle-true bit-level models (RTL or

gate-level netlist).
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Math packages are a great help for processing high-level data

Rather than just report the number of bit-level mismatches found, a high-level simulation setup
ought to distill the essence of a simulation run into a few figures of merit relevant for the applica-
tion. In the occurrence of lossy image compression, the decompressed and the original image will
necessarily differ, and the system designer will be most interested in learning about the signal-
to-quantization-noise ratio (SQNR), the maximum perceived color deviation, and similar overall
ratings. It is a good idea to unburden the HDL testbench from such calculations by taking advan-
tage of some standard mathematics tool such as Matlab instead. Math packages not only provide
high-level functions for data and signal processing and for statistics, but also offer superior means
of visualization.

Simulation setups patterned after target system facilitate successive refinements

In practice, most simulation setups for large circuits follow the organization of the target system; see
fig.3.13 for an example from wireless telecommunications where multiple antennas are being used at
the transmitter and at the receiver end of a wireless channel to improve data rate and robustness.

In the setup of fig.3.13, a behavioral model is substituted for each RAM, IF (de)modulator, PCI
interface, and other subfunction that collaborates with the MUT. The various HDL models for
one design entity share the same interface so that they can serve as drop-in replacements for each
other during the development process. The preparation of stimuli and the evaluation of responses
is implemented in Matlab so that the HDL testbench code remains essentially limited to config-
uring, controlling, and monitoring the MUT via the PCI interface. Protocol adapters take care of

HSPDA = high-speed downlink packet access

MIMO = multiple-input multiple-output [or antennas] PCI = peripheral component interconnect

IF = intermediate frequency
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Fig. 3.13 Example of a sophisticated simulation setup patterned after a target system from wireless

telecommunication (simplified).
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translating where necessary. All this together greatly simplifies the process of successive refinement
and qualifies the setup as of grade 2.

3.3.6 Absorbing latency variations across multiple circuit models

Most RTL circuit models exhibit latencies not found in purely algorithmic models. This is a con-
sequence of various optimization steps that designs undergo as part of architecture design. The
necessity to accommodate RAM, parallel ↔ serial conversions, and specific input/output protocols
further contributes to latency in MUTs of actual circuits.

Example

From a mathematical point of view, JPEG decoding is a combinational function that can be com-
puted by a delayless model, that is, with latency zero. As opposed to this, typical image decoding
hardware ingests one set of quantized DCT coefficients at a time and takes many clock cycles before
spitting out the pixels of a block or of the assembled image.
�

The point is that most architectural decisions have a dramatic impact on latency. For certain
algorithms, the number of clock cycles required to complete a given computation may even depend
on numerical data values. Probably the utmost tolerance towards latency variations is required when
testing network processors because data packets do not necessarily emanate from such processors
in the same order as that in which they were fed in. We must accept that
• latency is subject to change many times during a typical design cycle and that
• MUT and golden model might not exhibit identical latencies.
Locking stimuli and responses to specific clock cycles, as in the grade 1 setup of fig.3.2, for instance,
does not offer the flexibility to handle such situations.

Observation 3.15. To be truly reusable, a testbench must be capable of handling models where the

timewise relationship between circuit input and output is unknown or difficult to predict.

In a grade 2 testbench, the comparison of responses and the calculation of high-level figures of
merit can be made to absorb latency variations by delegating the task of knowing when to request
and when to accept new data items to protocol adapters, see fig.3.15 for such a setup. Upstream
adapters are designed so as to feed the MUT on request and, analogously, downstream adapters
so as to wait for the next valid data item to emerge at the MUT’s output. To make data-driven
transfers a reality, each protocol adapter must either
◦ interprete status flags from the MUT (such as “ready/busy”) or, in the absence thereof,
◦ tacitly count clock cycles concurrently to the model’s internal operation;

emulating state machines that are part of the MUT may also be required.
While any substantial change to the MUT’s architecture is likely to necessitate adjustments to the
latency parameters coded into protocol adapters and co-models, the functional gauge, the testbench,
and the golden model can hence remain the same.

A more radical solution is to impose handshaking for all data transfers between all subsystems and
circuits involved. In a grade 3 simulation, self-timed I/O transfers are supported not only by the
testbench but also by the MUT and, hence, ultimately by the physical circuit itself. The MUT must
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implement a full handshake protocol and must provide the necessary control signals on its input
and output ports. The same applies to the golden model, if any. Clocking is viewed as a technicality
internal to the MUT that is essentially unrelated to the high-level transactions that matter from a
system perspective alone; see fig.3.16 for a sample setup.

An authoritative treatise on functional verification is [88]. Further ideas are discussed in [89] and
other papers in the same journal issue. [90] discusses testbench reuse while [91] shows how to
automate testbench generation with the e verification language.

3.4 Conclusions

� More often than not, what is available at the onset of a VLSI project are intentions rather
than specifications. Identifying the real needs and casting them into workable instructions
always is the first step and a primary occupation in the design process. Rapid prototyping
often is the only practical way to condense initial conceptions into detailed and unambiguous
specs.

� In the absence of a more integral alternative such as formal verification, simulation remains
the prevalent method for functional design verification. Being a dynamic technique, it gives
only limited coverage against design flaws. This finding, that applies to both VLSI design and
software engineering, reflects an unsolved puzzle of systems design in general.

� The challenge of dynamic verification is to safeguard oneself against all plausible design slips
without attempting exhaustive software simulation or hardware testing. Coming up with a
comprehensive collection of test cases simply requires foresight, care, precision, and a lot of
work at the detail level. Albeit very general, the rules below give some guidance.

- Cover all modes, situations, and conditions under which the system is to operate.
- Have the test suites address uncommon situations and exceptional, if not pathological,

inputs as well. To increase the likelihood of disclosing problems, blend genuine data with
tests that focus on anomalous input, unusual states, numerical corners, and other exceptional
conditions. Also consider adding test cases selected at random.

- Identify distinct subsystems and functional mechanisms. You may address them separately
provided they do indeed work independently from each other.

- Make sure you understand what potential design flaws might pass undetected whenever a
shortcut is taken.

- Generously include in-code sanity checks (assertions) into simulation models.

� While establishing a verification plan, beware of preconceptions from the design process as
to what situations and issues are to be considered uncritical. Insist on having persons other
than the IC designers or HDL code writers select, or at least review, the test cases.

� Making the same functional gauge work across the entire VLSI design and test cycle is a
necessity as functional consistency is otherwise lost. Doing so typically implies data abstraction
and latency absorption.

� The desirable characteristics for hardware testbenches include:
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- Testbench design can bank on a library of reusable software modules.
- Code writing is confined to application-specific items as much as possible.
- Alternating between file-based and golden-model-based simulations is painless.
- Events are ordered so as to conform with modelling at all levels of abstraction.

� While established software engineering practices such as modular design, reuse, and data
abstraction help to make testbench development more efficient, be prepared to spend more
time on verifying functionality than on designing the circuit that implements it.

� There are virtually no limits to making simulation setups more sophisticated.

3.5 Problems

1. Design a functional gauge for exhaustive verification of the Gray counter specified by truth
table 3.2. With how many clock cycles can you manage? Indicate the formula for w-bit counters
and the actual value for w = 4. How does this figure relate to the lower bound given in (3.2)?

2. Devise a functional gauge for a logic comparator function that tells whether two 6-bit vectors
are the same or not. Go for a set of vectors that you consider a reasonable compromise between
simulation time and functional coverage. Verify the VHDL architecture correct given below
or the gate-level circuit obtained after synthesis against that gauge. No inconsistency must
occur. Now check how your gauge performs on the flawed architectures given below. Note
that the mistaken circuits named flawedy and flawedu are authentic outcomes from efforts
by human designers who were using schematic entry tools. The deficiency of the fourth example
flawedz, in contrast, has been built in on purpose in order to demonstrate the impact of an
oversight during the editing of HDL code.

entity compara6 is

port (

INA: in Std_Logic_Vector (5 downto 0);

INB: in Std_Logic_Vector (5 downto 0);

EQ: out Std_Logic );

end compara6;

-------------------------------------------------------------------------

-- correct description of 6bit logic comparator function

architecture correct of compara6 is

begin

EQ <= ’1’ when INA=INB else ’0’;

end correct;

-------------------------------------------------------------------------

-- flawed as one of the two arguments has its bits misordered

-- note: a wrong ordering of INB in the port list has the same effect

architecture flawedy of compara6 is

signal INBM : Std_Logic_Vector (5 downto 0);
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begin

each_bit : for i in 5 downto 0 generate

INBM(i) <= INB(5-i);

end generate;

EQ <= ’1’ when INA=INBM else ’0’;

end flawedy;

-------------------------------------------------------------------------

-- mistaken translation of desired function into boolean operations

architecture flawedu of compara6 is

signal C1 : Std_Logic_Vector (5 downto 0);

signal C2 : Std_Logic_Vector (2 downto 0);

begin

first_level : for i in 5 downto 0 generate

C1(i) <= not (INA(i) xor INB(i));

end generate;

second_level : for i in 2 downto 0 generate

C2(i) <= not (C1(i) xor C1(i+3));

end generate;

EQ <= C2(2) xor C2(1) xor C2(0);

end flawedu;

-------------------------------------------------------------------------

-- corrupt due to a useless statement forgotten in the code

architecture flawedz of compara6 is

begin

process (INA ,INB)

begin

if INA=INB then EQ <= ’1’;

else EQ <= ’0’;

end if;

if INA="110011" then EQ <= INA (0);

end if;

end process;

end flawedz;

3. The purpose of this problem is to show that a functional gauge may ensure full toggling of all
nodes in a gate-level circuit and still be inadequate for functional verification. To that end,
find two combinational networks together with a (nonexhaustive) gauge such that
• all nodes get toggled back and forth,
• both networks comply with the functional gauge, and
• the two networks are functionally different.
What are the simplest two such circuits you can think of? Generalizing to combinational n-
input single-output functions, how does the number of test patterns necessary for full toggling
relate to that required for exhaustive verification?

4. Consider a digital circuit that connects to a microprocessor bus, a situation sketched in fig.8.42
that mandates the usage of bidirectional pads on the data bus. A state machine inside the
chip generates the enable signal for the pad drivers from its state and from WR/RD or some
similar signal available at one of the chip’s control pins. In order to stay clear of transient drive
conflicts, the bus must not be driven from externally before the on-chip drivers have actually
released the bus in reaction to the control pin asking them to do so. As a consequence, both
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a testbench and physical test equipment must observe a brief delay between updating the
control signal and imposing data on the bus. Extend the precedence graph and the schedule
of figs.3.17 and 3.11 accordingly.

3.6 Appendix I: Formal approaches to functional verification

Formal verification attempts to prove or disprove the correctness of some circuit representation by
purely analytical means, i.e. without simulating the circuit’s behavior over time. A successful proof
gives the designer the ultimate confidence that his design will indeed function as previously specified
at some higher level of abstraction, and this irrespective of the input as there is no need to apply
stimuli. Most formal verification algorithms work by converting a given design representation into a
state graph, an ordered binary decision diagram (OBDD), or some other graph-type data structure
before analyzing that structure and/or comparing it against similar design representations. There
are different degrees of ambition, though.

Equivalence checking

Verifying the functional equivalence between two gate-level netlists or between a netlist and a piece
of HDL code is not that difficult. Logic equations extracted from the gate-level netlist are compared
against the reference set of logic equations using theorems from switching algebra. Software tools
capable of doing so are typically used to check the consistency — in regular operation mode — of a
gate-level netlist with the original RTL synthesis model after test structures have been added. Other
relatively minor modifications such as clock tree insertion, logic reoptimization, and conditional
clocking are covered as well.

While combinational subfunctions make up much of an RTL model, there are severe limitations
when the checking is to be extended to sequential behavior. Automatic conformity checking of
circuit models that are supposed to have equivalent external behavior but that differ in the number
and/or location of registers, e.g. as a consequence of state reduction or architectural optimizations,
remains a challenging research topic [92].

Last but not least, equivalence checking always presupposes the availability of a golden model.

Model checking

As opposed to the above, model checking does not need any reference model, but aims at finding
out whether a circuit model satisfies under all circumstances a set of specified criteria that any
meaningful implementation must satisfy. A welcome property of model checking is that it provides
a counterexample when some specification is violated by a design. A serious problem is the combi-
natorial explosion that confines the approach to subsystems with a fairly limited number of states.
A detailed discussion is given in [93].

Deductive verification or model proving

Deductive verification is closely related to theorem proving. The goal is a mathematical proof that
a given circuit model or protocol does indeed conform with its formal specifications. The answer
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essentially is of type “true” or “false” and thus provides few clues to developers as to what is wrong
with their designs. Deductive verification further suffers from the problems mentioned in section
3.1.1, but remains an active research area. The reader is referred to [94] [95] for accounts on formal
verification technology.

3.7 Appendix II: Deriving a coherent schedule for simulation
and test

This section serves to confirm that the simulation schedule presented in section 3.3.3 is indeed a
well-founded one that conforms to the fundamental timing requirements of synchronous circuits
without being unnecessarily constrained further. In order to do so, we approximate timing to a
degree that makes it possible to describe how a circuit behaves when viewed from outside.19

External timing requirements imposed by a model under test (MUT)

Four sets of data propagation paths can be identified in any synchronous design that adheres to
single-phase edge-triggered clocking.20 These paths go
• from inputs to outputs with no intervening registers (i → o),
• from state-holding registers to outputs (s → o),
• from inputs to state-holding registers (i → s), and
• from state registers to state registers (s → s).

a)
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Fig. 3.17 Data propagation paths through single-phase edge-triggered synchronous circuits (a) along with the

pertaining precedence graph for simulation events (b,c).

1 9 We do not aim at modelling or even at understanding what exactly happens inside the circuit yet. A more
accurate analysis will become feasible on the basis of a detailed timing model to be introduced in section 6.2.2.

2 0 Any asynchronous reset input can be handled like an ordinary input in this context.
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Not surprisingly, we find the same four sets of paths in a Mealy automaton. This is simply because
the functionality of any synchronous circuit can be modelled as a Mealy-type state machine. In
response to a new input or state, a physical circuit finishes re-evaluating g and f after the fresh
data have propagated along all paths through the combinational logic. As input and state do not,
in general, switch simultaneously, four delay parameters need to be introduced, namely tio , tso , tis ,

and tss .21 Parameter tio , for instance, denotes the time required to compute a new output o after
input i has changed.

The necessary precedence relations for the circuit to settle to a stationary state are22

t�(k) ≥ max(t�(k) + tio , t↑(k − 1) + tso ) (3.3)

t↑(k) ≥ max(t�(k) + tis , t↑(k − 1) + tss ) (3.4)

Precedence relations captured in a constraint graph

The above precedence relations can be expressed by the constraint graph of fig.3.17b where each
node stands for a major event associated with clock period k. Note that there are two active clock
nodes, namely one for the clock event immediately before the clock period under consideration and
a second one for the clock event at its end. Each precedence relation is represented by a directed
edge that runs from the earlier event to the later one. The minimum time span called for by the
associated condition is indicated by the weight of that edge:

� Computational delays. The aforementioned data propagation paths tio , tso , tis , and tss map
to a first set of four edges.

� State register hold-time requirement. A fifth non-zero weight says that new stimuli must not
be applied earlier than tho after the previous active clock event. Ignoring this constraint is
likely to cause hold-time violations at some bistables or might otherwise interfere with the
precedent state transition.23

� Clock minimum pulse widths. Two more edges of small but non-zero weight are labeled
tclk hi min and tclk lo min and indicate the minimum time spans during which the driving
clock signal must remain stable.

� Securing coherent vector sets. There are also four edges of weight zero or close to zero. One of
them leads from � to ↑ and has an infinitesimally small weight ε. It reflects the requirement
that response acquisition must occur before the circuit gets any chance to change its state in
reaction to the next active clock event. Three more edges define the preconditions for recording
a consistent stimulus/response pair for the current clock cycle.

2 1 Most practical circuits have their set of input bits grouped into a number of vectors, each of which has its own
delay parameters, and similarly for outputs. Extending our approach to cover such situations as well is left to
the reader as an exercise, see problem 4.

2 2 Of course, precedence relations may be simpler in a given particular case, say for a combinational circuit
(automaton with no state where ts o , ti s , and ts s are not defined) or for a counter (Medvedev machine where
ti o is not defined and ts o = ts s ). However, by consistently sticking to a scheme that is suitable for the most
general case, we can avoid having to reorder events whenever we must move from one circuit type to another.

2 3 Note that ti s and ts s are meant to include the setup times of the registers. This explains why ts u does not
appear in the constraint graph, as opposed to th o , which cannot be subsumed anywhere else.
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Solving the constraint graph

Any desirable sequence must order the events in such a way as to satisfy the above precedence
relations for positive but otherwise arbitrary values of the seven timing parameters involved. All
solutions are obtained from topological sorting of the precedence graph.24 One such ordering is
indicated by the underlined numbers in fig.3.17c. It corresponds to a periodic repetition of stimulus
application, response acquisition, and clocking, and is symbolically denoted as �� ↑.

The precedence graph also indicates minor liberties. While it is true that the recording of a stim-
ulus/response pair may take place at any time between response acquisition and the subsequent
active clock edge, there is nothing to be gained from defining an extra point in time for doing so.
The events of response acquisition � and recording � may as well be tied together.

The passive clock edge, on the other hand, is free to float between two consecutive active edges as
long as the two constraints tclk hi min and tclk lo min are respected. As a final result, the event order
� ↓ (� = �) ↑ will almost always represent a workable solution. The recommended simulation
schedule is depicted in fig.3.11.

tio

tso

tis
tss

a)

response
acquisition stimulus

application

active clock edge

tio

tso
tis

tss

b)

response
acquisition

stimulus
application

active clock edge

Fig. 3.18 Anceau diagram for a Mealy-type circuit operated at moderate speed (a) and close to maximum

speed (b).

2 4 The nodes of a graph are said to be in topological order if they are assigned integer numbers such that every
edge leads from a smaller-numbered node to a larger-numbered one.
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Anceau diagrams help visualize periodic events and timing

The Anceau diagram is very convenient for visualizing events and timewise relationships that repeat
periodically. Each round trip corresponds to one clock cycle (or to one computation period). The
example of fig.3.18a illustrates the simulation schedule just found.

Each arrow stands for the delay along one of the four signal propagation paths in a Mealy machine.
The two short radial bars are just graphical representations of the max operators in (3.3) and
(3.4) respectively. The outer one indicates when the output has settled to a new value and becomes
available for acquisition. Similarly, the inner bar tells when the computation of the next state comes
to an end and so determines the earliest point in time when an active clock edge can be applied.

If the operating speed is to be increased, the clock period grows shorter while delays and timing
conditions remain the same. Beyond a certain point, stimuli must be applied earlier and/or responses
will have to be acquired later in the clock cycle. This is shown in fig.3.18b, which corresponds to a
circuit operating at close to its maximum speed.

Anceau diagrams come in handy for visualizing periodic event sequences and timing conditions. We
will make use of them in later chapters in the context of clocking and input/output timing.



Chapter 4

Modelling Hardware with VHDL

4.1 Motivation

4.1.1 Why hardware synthesis?

VLSI designers constantly find themselves in a difficult situation. On the one hand, buyers ask for
microelectronic products that integrate more and more functions on a single chip. Following Moore’s
law, fabrication technology has always supported this aspiration by quadrupling the achievable
circuit complexity every three years or so. Market pressure, on the other hand, vetoes a proportional
dilation of product development times. Worse than this, time to market is even supposed to shrink.
As a consequence, design productivity must constantly improve.

Hardware description languages (HDLs) and design automation come to the rescue in three ways:
they

• Exonerate designers from having to deal with low-level details by moving design entry to more
abstract levels,

• Allow designers to focus more strongly on functionality as synthesis tools construct the nec-
essary circuits along with their structural and physical views automatically, and

• Facilitate design reuse by capturing a circuit description in a parametrized technology- and
platform-independent form (as opposed to schematic diagrams, for instance).

Today, the transition from structural to physical is largely automated in digital VLSI design. The
transition from purely behavioral to structural has not yet reached the same maturity, but HDL
synthesis is routinely used for turning register transfer level (RTL) descriptions into gate-level
networks that are then processed further with the aid of cell-based design automation software. A
digital HDL essentially must be able to describe how subcircuits interconnect to form larger circuits
and how those individual subcircuits behave functionally and timingwise.
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Table 4.1 Languages commonly being used for modelling digital hardware.

Language Originator/ Key characteristics
Standard

VHDL DoD/ An HDL that supports not only structural and behavioral circuit
IEEE 1076 models but also testbench models. A subset is synthesizable.

Syntactically similar to Ada, see table 4.2 for more details.
Verilog Gateway/ Conceptually very similar to VHDL, no type checking and

IEEE 1364 more limited capabilities for design abstraction, though.
Syntactically similar to C, see table 4.2 for more details.

System- Accellera/ A superset of Verilog that includes many advanced features from
Verilog IEEE 1800 VHDL and that may possibly supersede both of them. Supports

object-oriented programming, not supported for synthesis yet.
SystemC OSCI/ Extends C++ with class libraries and a simulation kernel.
(origi- IEEE 1666 Makes it possible to add clocking information to C functions
nally but does not support any timing finer than one clock cycle.
known Separates a block’s behavior from communication details,
as synthesis path is via translation to RTL VHDL or Verilog
Scenic) with the aid of automatic allocation, scheduling, and binding.

4.1.2 What are the alternatives to VHDL?

As becomes evident from tables 4.1 and 4.2, Verilog [96] [97] shares most key concepts with VHDL.
The same also applies to Verilog’s recent and more advanced offspring SystemVerilog, making the
differences between RTL synthesis models captured using those three languages largely a matter
of syntax and coding style. As opposed to these, SystemC is not so much an HDL but more of
a system description language targeted towards software/hardware co-design and co-simulation. It
does not qualify for gate-level simulation and timing verification.

Here is why we have elected to go for VHDL in this text:

• The dissemination in the industry of HDLs other than those of table 4.1 is far too limited.
• Only VHDL and Verilog are widely supported by automatic synthesis tools.
• Strong typing, strict scoping, and stringent event ordering make VHDL a safer instrument

than Verilog.
• VHDL has more sophisticated parametrization capabilities and is superior to Verilog when it

comes to more abstract ways of modelling.

4.1.3 What are the origins and aspirations of the IEEE 1076 standard?

Providing spare parts over many years for industrial products that include ASICs and other non-
standard state-of-the-art electronic components proves very difficult as technology evolves and as
companies restructure. In search of a standard format for documenting digital ICs and for ex-
changing design data other than layout polygons, the US Department of Defense (DoD) in 1983
commissioned IBM, Intermetrics, and Texas Instruments to define an HDL. Ada was taken as a
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Table 4.2 Key features of VHDL and Verilog compared. See [98] for more.

Feature VHDL Verilog

Background and underlying concepts
Industry standard IEEE 1076 IEEE 1364
Initial acceptance / current revision 1987 / 2002 1995 / 2005
Roots Ada C
Overall character dependable, verbose concise, cryptic
Concurrent processes yes yes
Event-based concept of time yes yes
Circuit hierarchy and structure (netlist) yes yes
Discretization of electrical signals adjunct package part of language
Logic system 9-valued IEEE 1164 4 states, 8 strengths
Switch-level capability no yes

Language features and software engineering
Interface declaration and implementation module separate no distinction made
Scoping consistent with module boundaries yes no
Strong typing yes no
Type conversion functions adjunct package none
Enumerated and other user-defined data types supported no
Data types acceptable at block boundaries any binary
Function arguments of variable word width supported no
Object classes with and without time attached signals vs. variables no distinction made
Timing and word size parametrization (“generics”) yes yes
Conditional and repeated process generation yes since 2001

and component instantiation (“generate”)
Multiple models plus selection (“configuration”) yes since 2001

Simulation
Stringent order of events in the absence of delay yes (via δ delay) no
Event queue inspection (e.g. for timing checks) part of language via simulator calls
Text and file I/O adjunct package via simulator calls
Source code encryption mechanism no yes
Back-annotation from SDF files VITAL IEEE 1076.4 yes
Acceleration of gate-level primitives VITAL IEEE 1076.4 yes
Acceptance for sign-off simulation yes yes
Standard and macro cell models (for ASIC design) commonly available commonly available
3rd party components models (for PCB design) scarce commonly available

Synthesis
Amenable to hardware synthesis subset only subset only
Timing constraints not p.o.l. (SDF) not p.o.l. (SDF)
Other synthesis directives not part of language not part of language
Model precomputation vs. hardware description no distinction made no distinction made

Analog and mixed-signal extension
Designation VHDL-AMS Verilog-AMS
Industry standard IEEE 1076.1 Accelera 2.2
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Fig. 4.1 VHDL and synthesis shown in the Y-chart.

starting point. As the project had originated from DoD’s Very High Speed Integrated Circuits
(VHSIC) program, the new language was given the acronym VHDL.

After a number of revisions and after military restrictions had been lifted, the proposal was eventu-
ally accepted as IEEE 1076(-87) standard in 1987. IEEE bylaws require any standard to be revised
on a periodical basis and a first re-examination has led to the IEEE 1076-93 revision which has
found wide adoption. Approximately at the same time IEEE also passed the IEEE 1164 standard,
a nine-valued logic system used in conjunction with VHDL. Further re-examinations have been
limited to relatively minor improvements and clarifications. The latest release of the standard is
IEEE 1076-2002.

VHDL encompasses behavioral and structural views but not physical ones. The levels of abstraction
covered range from purely algorithmic descriptions down to logic design. The omission of formalisms
for describing time-continuous phenomena in terms of electrical quantities confines IEEE 1076 and
1164 to digital circuits. IEEE 1076.1, a more recent extension for analog and mixed-signal circuits,
will be briefly touched upon in section 4.8.2.

The first software tools built around VHDL were compilers and simulators. The fact that a standard
HDL did away with all those proprietary languages and products that had had a long tradition in
logic simulation was a strong point that contributed to the popularity of VHDL. Only later did
people want to come up with automatic synthesis tools that would accept behavioral specifications
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stated in VHDL and churn out gate-level netlists implementing them. As will become evident later
in this chapter, VHDL continues to suffer from the fact that synthesis issues were ignored when the
language was originally defined.

4.1.4 Why bother learning hardware description languages?

It seems a tempting idea to view HDLs as nothing more than intermediate formats for exchanging
data between electronic system-level (ESL) tools and VLSI CAE/CAD suites.

“Why not skip learning hardware description languages and have electronic system-level tools gen-
erate HDL code from specifications automatically?”

There indeed exists a variety of software packages that deal with system design at levels of ab-
straction well above those addressed during actual VLSI design, see fig.1.12. Many of them deal
with transformatorial systems as found in signal processing and telecommunications. With the aid
of a tool similar to a schematic editor, a system is put together from high-level library functions
such as oscillators, modulators, filters, phase shifters, delay lines, frequency dividers, phase locked
loops (PLL), synchronizers, and the like. System behavior is then analyzed and optimized using
specialized tools. Filter synthesis software capable of taking into account finite-word-length effects
is also included in such DSP-oriented packages.

Other high-level tools model system behavior on the basis of condition/action pairs captured
as state graphs, state charts, Petri nets, and the like. The graphical design capture and animation
facilities provided are intuitive and very helpful for defining, checking, debugging, and improving
the functionality of reactive systems.

More EDA packages are geared towards some field of application such as the analysis of com-
munication channels, source and channel coders, data transfer networks, image processing, and
optimization of instruction set computers.

The common theme is that EDA tools working above the HDL level tend to focus on fairly specific
problem classes. Though probably unavoidable, this fragmentation is unfortunate in the context
of VLSI design, where various building blocks of transformatorial and reactive nature coexist on a
single chip.

ESL tools typically include code generators that produce software code for popular microcomput-
ers or DSPs. Many of them are also capable of producing HDL code. All too often this code was
nothing else than a translation of the processor code in the past. While this may be acceptable for
simulation purposes under certain conditions, it is clearly not so for synthesis and the results so
obtained remain unsatisfactory.

More recently, high-level synthesis tools have been developed specifically with computational
hardware in mind. Most of them work on the basis of resource allocation, scheduling, and binding.1

Coming up with a good overall solution implies exploring an immense solution space that involves
both algorithmic and architectural issues. Yet, today’s tool suites have limited optimization capa-
bilities and are typically restricted to a few predefined hardware patterns.

1 The tools essentially accept an algorithmic description in C and a series of pragmas or other human input that
outlines the hardware resources to be made available. The output is RTL code that describes a VLIW ASIP op-
erating under control of either a stored microprogram or a hardwired finite state machine. Final implementation
is with FPGAs or as a cell-based ASIC. Catapult C by Mentor Graphics is a commercial example.
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In conclusion, it will take a couple of years before true system-level synthesis pervades the in-
dustrial production environment. What’s more, manual interventions in the source code are often
indispensable to parametrize, adapt, interface or optimize circuit models. Finally, HDLs form the
basis for virtual components used by many design tools and will, therefore, remain important for
the development of model libraries.

Observation 4.1. For the foreseeable future, hardware description languages such as VHDL, Ver-

ilog, and SystemVerilog are bound to remain prominent hubs for all digital design activities.

4.1.5 Agenda

Section 4.2 introduces the key concepts that set HDLs apart from a programming language one by
one. Sections 4.3 and 4.4 address issues specifically related to hardware synthesis (synthesis subset,
FSMs, macrocells, timing constraints) and simulation (testbenches) respectively. VHDL textbooks
and syntax descriptions are listed in appendix 4.7, language extensions in appendix 4.8. In addition
to all that background-type material, code examples of selected subcircuits and of a testbench are
given in appendix 4.9. Readers are strongly encouraged to go through that material to develop a
better understanding of VHDL coding styles.

4.2 Key concepts and constructs of VHDL

In this section, we shall give an overview on VHDL by asking ourselves

“What features are required to model digital electronic circuits for simulation and synthesis?”

In anticipation of our findings, we will identify a multitude of needs that can be collected into the
six broad categories listed below. The language concepts addressing those needs will be introduced
accordingly. As an exception, we have postponed the discussion of basic concepts that VHDL shares
with modern programming languages to the end of our presentation, on the assumption that readers
have had some exposure to software engineering.

Observation 4.2. In a nutshell, VHDL can be characterized as follows:

standard subsection

VHDL = structured programming language IEEE 1076 4.2.6
+ circuit hierarchy and connectivity idem 4.2.1
+ concurrent processes and process interaction idem 4.2.2
+ a discrete replacement for electrical signals IEEE 1164 4.2.3
+ an event-based concept of time IEEE 1076 4.2.4
+ model parametrization facilities idem 4.2.5

A few more remarks are due before we start with our analysis.

� The entire chapter puts emphasis on the concepts behind VHDL and on applying the language
to hardware modelling. There will be no comprehensive exposure to syntax or grammar.
To become proficient in writing circuit models of your own, you will need a more detailed
documentation on VHDL. An annotated bibliography is available in appendix 4.7.
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� Our introduction of important VHDL concepts is accompanied by a series of illustrations that
begins with fig.4.2 and ends with the full picture in fig.4.13. It might be a good idea to refer
back to these synoptical drawings when in danger of getting lost in minor details.

� VHDL listings for a variety of subcircuits have been collected in appendix 4.9. You may want
to refer to them while working through the more abstract material in this text. The same
examples should also prove helpful as starting points when preparing your own models.

� Further keep in mind that this text discusses VHDL as defined by various international stan-
dards. Be aware of the fact that commercial EDA tools occasionally deviate in terminology
and implementation.2

� Please observe the following linguistic ambiguity in the context of hardware modelling:
Meaning of “sequential” with reference to Synonym Antonyms
- program execution during simulation step-by-step concurrent, parallel
- nature of circuit being modelled memorizing combinational, memoryless

4.2.1 Circuit hierarchy and connectivity

The need for supporting modularity and hierarchical composition

Consider a motherboard from a personal computer, for instance. At the highest level of abstrac-
tion, you will discern a CPU chip, a graphics accelerator, all sorts of peripheral components, a
ROM or two, several memory modules that themselves hold multiple RAM chips, plus a variety of
passive components. When having a look into those ICs, you will discover datapaths, controllers,
storage arrays, and the like. Each such subsystem in turn consists of many thousands of logic gates
and bistables. Only at the bottom level of abstraction do we find transistor-level subcircuits that
implement elementary logic and storage functions.

Electronic circuits and systems are organized into multiple layers of hierarchy because it long ago
became entirely impractical to specify, understand, model, design, fabricate, test, and document
electronic circuits as flat collections of transistors. The constant push to ever larger systems with
hundreds of millions of gate equivalents has further accentuated this move.

Hierarchical composition essentially works by assembling larger entities from subordinate entities
and by interconnecting them with the aid of busses and individual wires. Only by taking advantage of
techniques such as abstraction, modular design, modular verification, and repetitive instantiation
does it become possible to arrive at manageable descriptions of an overall circuit or system, see
fig.4.2. Any HDL must, therefore, provide language elements for expressing hierarchical composition,
and VHDL is no exception.

Design entity

The VHDL term design entity — or entity for short — refers to some clear-cut circuit or subcircuit.
Clear-cut implies the (sub)circuit has not only an internal implementation but also an external
interface. The benefits of information hiding have incited the originators of the VHDL language

2 See footnotes 18, 21, 32, 33, 45, and appendix 4.8.7, for instance. Also see section 1.7 for a glossary of EDA
terms that also includes Synopsys’ vocabulary.
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Fig. 4.2 Circuit modelling with VHDL I: Hierarchical composition.

to make a strict distinction between a subcircuit’s external and internal views. The interface is
specified in the entity declaration whereas the details of its implementation are captured in a
language element referred to as the architecture body.

Entity declaration and ports

The entity declaration specifies the external interface of a design entity. VHDL requires an entity
declaration for every piece of hardware that is going to be described by a model of its own. The most
important part of an entity declaration is the port clause which lists all those nodes of the entity
that are visible from outside. Put differently, every signal that appears in a port clause corresponds
to a connector on the icon of that subcircuit as illustrated in fig.4.14. An example of an entity
declaration is given below.

-- entity declaration

entity lfsr4 is

port (

CLKxC : in Std_Logic;

RSTxRB : in Std_Logic;

ENAxS : in Std_Logic;

OUPxD : out Std_Logic );

end lfsr4;

Hint: Naming a signal or a port IN or OUT is all too tempting, yet these are reserved words in
VHDL. We recommend the use of INP and OUP instead.
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Architecture body (structural view)

An architecture body — colloquially often abbreviated architecture — is the place where the internal
technicalities of a design entity are being described. Any design entity is permitted to contain
instances of other design entities. A first code example is printed below. The circuit being modelled
is a linear feedback shift register (LFSR). Although you are probably not yet in a position to
understand everything, it should become clear that the circuit is composed of five logic gates and
four flip-flops. As an exercise, draw a schematic diagram for the circuit.

-- architecture body

architecture structural of lfsr4 is

-- component declarations

component GTECH_FD2 -- D-type flip -flop with reset

port (

D, CP, CD : in std_logic;

Q : out std_logic );

end component;

component GTECH_FD4 -- D-type flip -flop with set

port (

D, CP, SD : in std_logic;

Q : out std_logic );

end component;

component GTECH_MUX2 - - 2 -input multiplexer

port (

A, B, S : in std_logic;

Z : out std_logic );

end component;

component GTECH_XOR2 -- 2-input XOR gate

port (

A, B: in std_logic;

Z : out std_logic );

end component;

-- signal declarations of internal nodes

signal STATExDP : std_logic_vector (1 to 4);

signal n11 , n21 , n31 , n41 , n42 : std_logic;

begin

-- instantiate components and connect them by listing port maps

u10 : GTECH_FD2

port map( D => n11 , CP => CLK , CD => RSTxRB , Q => STATExDP (1) );

u20 : GTECH_FD2

port map( D => n21 , CP => CLK , CD => RSTxRB , Q => STATExDP (2) );

u30 : GTECH_FD2

port map( D => n31 , CP => CLK , CD => RSTxRB , Q => STATExDP (3) );

u40 : GTECH_FD4

port map( D => n41 , CP => CLK , SD => RSTxRB , Q => STATExDP (4) );

u11 : GTECH_MUX2

port map( A => STATExDP (1), B => n42 , S => ENAxS , Z => n11 );

u21 : GTECH_MUX2

port map( A => STATExDP (2), B => STATExDP (1), S => ENAxS , Z => n21 );

u31 : GTECH_MUX2

port map( A => STATExDP (3), B => STATExDP (2), S => ENAxS , Z => n31 );
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u41 : GTECH_MUX2

port map( A => STATExDP (4), B => STATExDP (3), S => ENAxS , Z => n41 );

u42 : GTECH_XOR2

port map( A => STATExDP (3), B => STATExDP (4), Z => n42 );

-- connect state bit of rightmost flip -flop to output port

OUPxD <= STATExDP (4);

end structural;

Component instantiation and port map

How do you proceed when asked to fit a circuit board with components? You think of the exact
name of a part required, go and fetch a copy of it, and solder the terminals of that one copy in a
well-defined manner to metal pads interconnected by narrow lines on a prefabricated circuit board.
The component instantiation statement of VHDL does exactly this, albeit with virtual components
and signals instead of physical parts and wires. How to connect instance terminals to circuit nodes
gets specified in the port map clause.

In the above code example, nine components get instantiated following the keyword begin. As
multiple copies of the same component must be told apart, each instance is assigned a unique
identifier; u10, u20, . . . , u42 in the occurrence. Further observe that the association operator => in
the port maps does not indicate any assignment. Rather, it stands for an electrical connection made
between the instance terminal to its left (formal part) and some node in the superordinate circuit
the signal name of which is indicated to the right (actual part).

Component declaration

Each of the first four statements in the lfsr4 architecture body specifies the name and the port
list of a subcircuit that is going to be instantiated. VHDL requires that the names and external
interfaces of all component models be known prior to instantiation.3

3 There are essentially two ways for declaring a subcircuit model, yet the difference is a subtlety that can be
skipped for a first reading. Assume you are describing a circuit by way of hierarchical composition in a top-down
fashion, that is, beginning with the top-level design entity. In doing so, you must anticipate what subcircuits
you will need. All that is really required for the moment are the complete port lists of those subcircuits-to-be
that you are going to instantiate. Their implementations can wait until work proceeds to the next lower level
of hierarchy. Declaring the external interfaces of such prospective subcircuits locally, that is within the current
architecture body, is exactly what the component declaration statement is intended for.

Now consider the opposite bottom-up approach. You begin with the lowest-level subcircuits by capturing the
interface in an entity declaration and the implementation in an architecture body for each subcircuit. These
models are then instantiated at the next-higher level of the design hierarchy, and so on. Instantiation always
refers to an existing design entity which explains why this type of instantiation is said to be direct. No component
declarations are required in this case, yet the component instantiation statement is complemented with the extra
keyword entity and with an optional architecture identifier as follows.

u6756 : entity lfsr4 (behavioral)

port map( CLKxC => n18, RSTxRB => n8, ENAxS => n199, OUPxD => n4 );

For direct instantiation to work, design entities must be made visible with a use work.all clause. Use clauses
and configuration specification statements are to be introduced in sections 4.2.6 and 4.2.5 respectively. Also
note that direct instantiation is supported since the IEEE 1076-93 standard only.
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VHDL further requires that the wires running back and forth between instances be declared.
Those connecting to the outside world are automatically known from the port clause and need
not be declared a second time. Internal nodes, in contrast, are defined in a series of supple-
mental signal declaration statements just before the keyword begin. More on signals is to follow
shortly.

Let us conclude this section with a more general comment.

Observation 4.3. VHDL can describe the hierarchical composition of a digital electronic circuit

by instantiating components or entities and by interconnecting them with the aid of signals.

A model that describes a (sub)circuit as a bunch of interconnected components is qualified as
structural. Structural HDL models essentially hold the same information as circuit netlists do.
Manually establishing entity declarations and structural architecture bodies in the style of the
lfsr4 example shown is not particularly attractive, though. Most structural models are in fact
obtained from register-transfer level (RTL) and similar models with the aid of automatic synthesis
software.

Still, situations exist where one needs to explicitly stipulate a circuit’s connectivity, just think of
how to embed a chip’s core into the chip’s padframe, for instance. In such a situation, the designer
can either manually write structural VHDL code, or enter a schematic diagram into his CAD suite
and have the schematic editor translate that into HDL code. Schematics have the advantage of
being more suggestive of the circuit described than code listings. As will be explained in section
4.3.5, they lack the flexibility of a parametrized code model, however.

4.2.2 Concurrent processes and process interaction

The need for modelling concurrent activities

While we have learned how to capture a circuit’s hierarchy in VHDL, our description remains
devoid of life up to this point as we have no means for expressing circuit behavior. This is not only
insufficient for simulating a circuit but also inadequate in view of dispensing designers from having
to specify a circuit’s composition in great detail. So there must be more to VHDL.

The most salient feature of any electronic system is the concurrent operation of its subcircuits;
just think of all those ICs on a typical circuit board and of the many thousands of logic gates and
storage devices within each such chip. This inherent parallelism contrasts sharply with the line-by-
line execution of program code on a computer. Another innate trait is the extensive communication
that permanently takes place between subcircuits and that is physically manifest in the multitude of
wires that run across chips and boards. This is necessary simply because there can be no cooperation
between multiple entities without on-going exchange of data.

Now assume you wanted to write a software model that imitates the behavior of a substantial piece
of electronic hardware using some traditional programming language such as Pascal or C. You would
soon get frustrated because of the absence of constructs and mechanisms to handle simultaneous
operation and interaction. Hardware description languages such as VHDL and Verilog extend the
expressive power of programming languages by supporting concurrent processes and means for
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Fig. 4.3 Circuit modelling with VHDL II: A refined model capturing behavior with the aid of concurrent
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definition.

exchanging information between them, see fig.4.3 for a first idea. As this bears some resemblance
to real-time languages, it comes as no surprise that Ada and its concept of concurrent tasks have
been taken as a starting point for defining VHDL.

Signal

The vehicle for exchanging dynamic information between concurrent processes is the signal, there
exists no other mechanism in VHDL for this purpose.4 “Dynamic” means that the data being
transferred as signals are free to evolve over time, that is to change their values during a simulation
run. Any signal declared within an architecture body is strictly confined to that body and remains
inaccessible from outside. A signal declaration must specify the name and the data type of the
signal; an optional argument can be used to assign an initial value.

Example of a signal declaration signal THISMONTH : month;

Second example signal ERROR, ACTUAL, WANTED : integer := 0;

Warning: An initial value assigned to a signal as part of its declaration is inadequate for
modelling a hardware reset and gets ignored during VHDL synthesis.5

4 The purpose of protected shared variables is a totally different one, see section 4.8.1 for explanations.
5 Detailed explanations are to follow in observation 4.18 and in section 4.3.3.
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Hint: VHDL code is easier to read when signals can be told from variables by their visual
appearance. We make it a habit to use upper- and mixed-case names for SIGNALS and lower-
case characters for variables.6

Concurrent processes (purpose)

Any of the four VHDL statements below provides us with the capability to alter signal values.

◦ Concurrent signal assignment (simplest).
◦ Selected signal assignment.
◦ Conditional signal assignment.
◦ Process statement (most powerful).

All four statements are subsumed as (concurrent) processes or as concurrent assignment statements,
two generic terms being used in this text, not actual VHDL language constructs.7 Unless the code
is actually running on a multiprocessor, concurrent processes must of course be invoked one after
the other during VHDL simulation but the observed effect is that they execute in parallel. How to
obtain this effect makes up the major part of section 4.2.4.

Concurrent signal assignment (construct)

This is the most simple language construct that permits one to update the value of a signal.
A concurrent signal assignment is used to describe a combinational operation with no need for
branching; basic arithmetic and logic operations are typical examples. Concurrent signal assignments
support function calls but no procedure calls.8 The assignment operator for signals is <=, which
choice is somewhat unfortunate because the same symbol also serves as relational operator (in lieu
of ≤).

Example of a concurrent signal assignment THISMONTH <= august;

Second example ERROR <= ACTUAL - WANTED;

Selected signal assignment

This is a more elaborate form of a concurrent signal assignment reminiscent of a multiplexer (MUX)
or data switch: One out of multiple possible values gets assigned to a signal under control of a
selecting expression. An example follows.

with THISMONTH select

QUARTER <= q1st when january | february | march ,

q2nd when april | may | june ,

q3rd when july | august | september ,

q4th when others;

6 An elaborate naming convention for signals will be presented in section 5.7.
7 The terms process, concurrent process, and parallel process are synonyms (in the sense of the German

“nebenläufiger Prozess”) whereas the term concurrent assignment statement stands for the subclass of active
processes capable of altering signals. We will later learn about passive processes that do not assign any value to
a signal. Also, do not equate the broad and conceptual notion of a process with the process statement, a VHDL
syntax item. A process statement is just one particular case of a concurrent process.

8 To be explained in section 4.2.6.
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Conditional signal assignment

This language construct is very similar to the selected signal assignment but a bit more liberal in
formulating the branching condition. An example follows.

SPRING <= true when (THISMONTH=march and THISDAY >=21) or

THISMONTH=april or THISMONTH=may or

(THISMONTH=june and THISDAY <20)

else false;

Process statement (construct)

The process statement is an even more powerful — but also more tricky and more verbose —
VHDL construct for expressing a concurrent process. What sets it apart from the signal assignment
statements discussed before are essentially

• Its capability to update two or more signals at a time,
• The fact that the instructions for doing so are captured in a sequence of statements

that are going to be carried out one after the other,
• The liberty to make use of variables for temporary storage, and
• A more detailed control over the conditions for activating the process.9

Process statements cannot be nested but may call subprograms. Conditional execution and branch-
ing are supported, of course. The process statement is best summed up as being concurrent outside
and sequential inside.10 The example given next is semantically and functionally identical to the
conditional signal assignment given before.

memless1: process (THISMONTH , THISDAY)

-- an event on any signal listed activates the process

begin

SPRING <= false; -- execution begins here

if THISMONTH=march and THISDAY >=21 then SPRING <= true; end if;

if THISMONTH=april then SPRING <= true; end if;

if THISMONTH=may then SPRING <= true; end if;

if THISMONTH=june and THISDAY <=20 then SPRING <= true; end if;

end process memless1; -- process suspends here

A process statement can be made to capture almost anything from a humble piece of wire up
to an entire image compression circuit, for instance. The decision is left to the discretion of the
VHDL programmer. More particularly, a process statement can model a combinational function, a
data storage operation, or any combination of the two. This depends on how the code is written;
guidelines are to follow in observation 4.14.

9 Several of these items will be clarified in section 4.2.4.
1 0 Make sure you understand that “sequential” refers to code execution during VHDL simulation here and not to

the nature of the hardware being modelled, which may be either combinational or sequential depending on how
the code is organized, see observation 4.14. After all, it is perfectly natural to fill the truth table of a complex
function by way of a sequential algorithm. Also note that the identifier memless1 in the code example is just an
optional free-choice label that has no impact on simulation and synthesis whatsoever.
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Hint: For the sake of modularity and legibility, do not cram too much functionality into a con-
current process. As a rule, concurrent, selected, and conditional signal assignment statements
serve to describe combinational operations whereas process statements are primarly used for
modelling all sorts of data storage registers.11

Architecture body (behavioral view)

Most architecture bodies include a collection of concurrent processes that together make up the
entity’s overall functionality. Such models are called behavioral because they specify how the
entity is to react in response to changing input signals. Potential reactions include the updating
of output signals, the updating of the entity’s current state, the checking of compliance with some
predefined timing conditions, or simply ignoring the new input.

The architecture body given below matches the entity declaration given in the previous section.
In fact, the functionality being modelled is again that of an LFSR of length four with enable and
asynchronous reset. Taking fig.4.3 as a pattern, make a small drawing that illustrates the processes
and the signals that are being exchanged. Find out what hardware item each concurrent process
stands for and compare the drawing with that established earlier. What liberties do you have in
coming up with a schematic diagram?

-- architecture body

architecture behavioral of lfsr4 is

signal STATExDP , STATExDN : std_logic_vector (1 to 4);

-- for present and next state respectively

begin

-- computation of next state

STATExDN <= (STATExDP (3) xor STATExDP (4)) & STATExDP (1 to 3);

-- updating of state

process (CLKxC ,RSTxRB)

begin

-- activities triggered by asynchronous reset

if RSTxRB=’0’ then

STATExDP <= "0001";

-- activities triggered by rising edge of clock

elsif CLKxC ’event and CLKxC=’1’ then

if ENAxS=’1’ then

STATExDP <= STATExDN;

end if;

end if;

end process;

-- updating of output

OUPxD <= STATExDP (4);

end behavioral;

Observation 4.4. In VHDL, the behavior of a digital electronic circuit typically gets described by

a collection of concurrent processes that execute simultaneously and that communicate via signals,

and where each such process represents some subfunction.

1 1 This is particularly true for RTL synthesis models. More detailed advice is to follow in section 4.3.
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VHDL supports a great variety of modelling styles

As we have learned so far, VHDL covers both behavioral and structural circuit descriptions, but no
physical ones. Within this limitation, VHDL supports a great variety of modelling styles.

A procedural model essentially describes functionality in a sequence of steps much as a piece
of conventional program code does. A design entity is captured in one process statement and its
behavior gets implemented with the aid of sequential statements there.12

A dataflow model describes the behavior as a collection of concurrent signal assignments the
respective operations of which get coordinated by the signals exchanged. As an extension thereof,
block statements might also be used.

A structural model describes the inner composition of a design entity as a set of instanti-
ated components together with their interconnections and is equivalent to a netlist. Component
declaration and instantiation statements are typical for structural models.

Listing 4.1 below juxtaposes three architecture bodies that describe the same function from all three
perspectives while fig.4.5 illustrates the differences and commonalities.13 Make sure you understand
the conceptual difference between the procedural and dataflow models in spite of the apparent
similarity of their codes, also problem 3.

Observation 4.5. VHDL allows procedural, dataflow, and structural modelling styles

to be freely combined in a single model.

Except for the most simple subcircuits, a typical VHDL model includes a mix of elements from
all three styles as suggested by fig.4.4.14 Experimental results on how VHDL coding style affects
simulation performance are reported in [99].
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use GDS II, CIF, or the like

Fig. 4.4 Modelling styles and their relationships to VHDL and other EDA languages.

1 2 The VHDL community, which has its own vocabulary, would typically call this a behavioral model. However, in
order to stay in accordance with the universally accepted Y-chart of fig.4.1, we prefer to use the more precise
designation procedural model and to reserve the term behavioral for the superclass of procedural and dataflow
models, see fig.4.4. Incidentally, note that behavioral, procedural, dataflow, and structural are not reserved
words of VHDL. These are just user-defined terms that serve to convey information about modelling style.

1 3 A full-adder has been chosen because of its simplicity and commonplace nature. Clearly, none of the three
architecture bodies reflects how one would normally model an adder as VHDL supports the arithmetic
operator +.

1 4 Independently from whether a VHDL model is of procedural, dataflow or structural nature, or mixes all of them,
some behavioral model must ultimately be given for every elemental component for simulation to work.
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Listing 4.1 Procedural, dataflow, and structural styles compared. Note: Adders are normally syn-
thesized from algebraic expressions, a full-adder has been chosen here for its simplicity.

entity fulladd is

port ( INPA , INPB , INPC : in std_logic;

OUPS , OUPC : out std_logic );

end fulladd;

-------------------------------------------------------------------------------

-- compute results in a series of sequential steps

architecture procedural1 of fulladd is

begin

process (INPA ,INPB ,INPC)

variable loc1 , loc3 , loc4 : std_logic;

begin

loc1 := INPA xor INPB;

OUPS <= INPC xor loc1;

loc3 := INPC nand loc1;

loc4 := INPA nand INPB;

OUPC <= loc3 nand loc4;

end process;

end procedural1;

-------------------------------------------------------------------------------

-- spawn a concurrent signal assignment for each logic gate

architecture dataflow1 of fulladd is

signal LOC1 , LOC3 , LOC4 : std_logic;

begin

LOC1 <= INPA xor INPB;

OUPS <= INPC xor LOC1;

LOC3 <= INPC nand LOC1;

LOC4 <= INPA nand INPB;

OUPC <= LOC3 nand LOC4;

end dataflow1;

-------------------------------------------------------------------------------

-- describe logic network as a bunch of interconnected logic gates

architecture structuralgtech of fulladd is

-- list cells from Synopsys ’ generic cell library to be used

component GTECH_XOR2

port ( A, B : in std_logic;

Z : out std_logic );

end component;

component GTECH_NAND2

port ( A, B : in std_logic;

Z : out std_logic );

end component;

-- declare internal signals

signal LOC1 , LOC3 , LOC4 : std_logic;

begin

-- instantiate cells and connect them by listing port maps

U1: GTECH_XOR2

port map ( A=>INPB , B=>INPA , Z=>LOC1 );

U2: GTECH_XOR2

port map ( A=>INPC , B=>LOC1 , Z=>OUPS );
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U3: GTECH_NAND2

port map ( A=>INPC , B=>LOC1 , Z=>LOC3 );

U4: GTECH_NAND2

port map ( A=>INPA , B=>INPB , Z=>LOC4 );

U5: GTECH_NAND2

port map ( A=>LOC3 , B=>LOC4 , Z=>OUPC );

end structuralgtech;
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Fig. 4.5 Procedural (a), dataflow (b), and structural (c) models of a full-adder function.

Another example where a memoryless input-to-output mapping function is captured in accordance
with very different coding styles is reproduced in appendix 4.9.1.

4.2.3 A discrete replacement for electrical signals

The need for representing multiple logic values

An innocent approach to hardware modelling would be to use one binary digit per circuit node.
VHDL actually provides two predefined data types for describing two-valued data:
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bit which can take on value 0 or 1.
boolean which can take on value false or true.

Yet, even digital hardware exhibits a number of characteristics and phenomena such as transients,
three-state outputs, multiple buffers driving a common node with an inherent potential for conflicts,
indeterminate circuit state following power-up, and the like. None of these circumstances can be
captured with a two-valued logic abstraction.

Observation 4.6. Distinguishing between logic 0 and 1 is inadequate for modelling the binary

signals found in digital electronic circuitry. A more elaborate multi-valued logic system must be

sought that is capable of capturing the effects of both node voltage and source impedance.

The idea behind a logic system is to discretize the continuous-valued node voltage and source
impedance separately. Voltage gets quantized into a number of logic states while the amount of
current that a subcircuit can sink or source is mapped onto discrete drive strengths, or strengths
for short. It thus becomes possible to condense the electrical condition of a circuit node into one
logic value at any time.

A standard multi-valued logic system

A fairly simple and universal logic system to be used in conjunction with VHDL is available from
a package named ieee.std logic 1164.15

The logic states implemented are:
low logic low, that is below Ul .
high logic high, that is above Uh .
unknown may be “low”, “high”, or anywhere in the forbidden interval

in between, e.g. as a result from a short between two conflicting drivers.

Note, by the way, that no distinction is made between a drive conflict, the outcome of which is truly
unknown, and a ramping node, the voltage of which is known to assume values between thresholds
Ul and Uh for some time. Either one is modelled as “unknown”.

The drive strengths being used are:
strong the low impedance value commonly exhibited by a driving output.
high-impedance the almost infinite impedance exhibited by a disabled three-state output.
weak an impedance somewhere between “strong” and “high-impedance”,

e.g. as exhibited by a passive pull-up/-down resistor or a snapper.

A regular matrix with nine logic values should result when three logic states are combined with
three drive strengths. The 1164 standard committee has, however, refrained from differentiating
between “charged high” and “charged low” by collapsing all high-impedance conditions to a single

1 5 The originators of VHDL have deliberately chosen not to incorporate any logic system into the IEEE 1076
standard itself as this would have biased the language towards some circuit technology such as CMOS, ECL or
GaAs, for instance, and would preclude its evolution towards unforeseen technologies in the future. Instead, a
logic system has been defined as separate standard IEEE 1164 and made available in the said package. It is thus
possible to replace it by some user-defined logic system at any time should the necessity occur.
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value of undetermined state. This conservative choice avoids the difficulties of fixing realistic charge
decay times.16

On the other hand, two extra values have been added, namely:
uninitialized has never been assigned any value, e.g. the internal state of a storage

element immediately after power-up, distinguished from “unknown”
as the latter can arise from causes other than failed initialization
(applicable to simulation only).

don’t care whether the node is “low” or “high” is considered immaterial,
used by designers to leave the choice to the logic optimization tool
(applicable to synthesis only).

The matrix of table 4.3 summarizes the IEEE 1164 standard 9-valued logic system which is some-
times also referred to as MVL-9 (multiple-value logic). The data type implementing this logic system
is called std ulogic.

Table 4.3 IEEE 1164 standard 9-valued logic system.

logic value → logic state acceptable for
↓ low unknown high simulation synthesis
uninitialized U U

strong 0 X 1 0 X 1 0 1

strength weak L W H L W H

high-impedance Z Z Z Z Z

don’t care - -

strong drive 

10

B

01

C

0

1
X

D

drive conflict 

Z−
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E

no drive, 
high-impedance 
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W

weak drive 

weak drive 
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H
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A
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at = 0 t input does 
not matter 

Fig. 4.6 The nine logic values of the IEEE 1164 standard illustrated.

1 6 Short-term charge retention on circuit nodes is a typical trait of CMOS not found in TTL or ECL circuits.
Another item that sets IEEE 1164 apart from other logic systems is the absence of an extra drive strength
“forced”, which is sometimes introduced to model a node driven with impedance zero or almost so, e.g. when
strapped to ground by some metal wire.



4.2 KEY CONCEPTS AND CONSTRUCTS OF VHDL 195

signal

concurrent
assignment
statement
(process)

variable

drivers
multiple

electrical
datatype

u82

u39

u18

u11

deemph filter

sobel filter

coeff comp

deemph filter

video processor u1

u101 line memory

port

entity
design

component
instantiated

(hierarchy)

Fig. 4.7 Circuit modelling with VHDL III: Refined model that uses special data types to model electrical

phenomena.

Modelling of three-state outputs and busses

Section 4.2.2 has tought us how to assign some value to a signal, but how do we tell we want a
node to be released or — which is the same — reverted to an undriven condition? With the aid of
the IEEE 1164 logic system, the answer is straightforward: just assign logic value Z.

Example OUP <= not INP when ENA=’1’ else ’Z’;

As illustrated in fig.4.7, many digital circuits include busses and other multi-driver nodes that
operate under control of multiple processes. How to model them is now obvious. In the code fragment
below, the common node COM is left floating, that is in a high-impedance condition, when neither
of the two drivers is enabled.

.....

COM <= not INPA when SELA=’1’ else ’Z’;

.....

COM <= not INPB when SELB=’1’ else ’Z’;

.....
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Multiple drivers and conflict resolution during simulation

Let us now find out how multi-driver signals are actually handled during simulation. What if a drive
conflict occurs?17 How is such an electrical issue modelled in VHDL? Built on top of std ulogic

sits a subtype called std logic that shares the same set of nine values. As shown in fig.4.8, the
difference matters in the presence of multiple drivers.

single-driver signals OUPA OUPBand 

no difference between
may assume distinct logic values,

and
then an error message gets issued

if multi-driver signal COM is of type

then the conflict is resolved to COM = 1

INPA
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Fig. 4.8 Handling of a multi-driver node with types std ulogic and std logic.

If the signal is of type std ulogic, some form of error message will be generated during compilation
or simulation.18 On a std logic type signal, in contrast, any conflict between diverging values
is tacitly solved at simulation time by calling a resolution function that determines the most
plausible outcome. One such function is part of the IEEE 1164 standard, its name is resolved.
This function defines, among many other things, that if an attempt is made to drive a node to Z,
W, and 0 at the same time, simulation is to continue with a 0, see listing 4.2.

Listing 4.2 IEEE 1164 standard resolution function.

-------------------------------------------------------------------

-- resolution function "resolved"

-------------------------------------------------------------------

constant resolution_table : stdlogic_table := (

-- ---------------------------------------------------------

-- | U X 0 1 Z W L H - | |

-- ---------------------------------------------------------

( ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’, ’U’ ), -- | U |

( ’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’ ), -- | X |

( ’U’, ’X’, ’0’, ’X’, ’0’, ’0’, ’0’, ’0’, ’X’ ), -- | 0 |

( ’U’, ’X’, ’X’, ’1’, ’1’, ’1’, ’1’, ’1’, ’X’ ), -- | 1 |

( ’U’, ’X’, ’0’, ’1’, ’Z’, ’W’, ’L’, ’H’, ’X’ ), -- | Z |

( ’U’, ’X’, ’0’, ’1’, ’W’, ’W’, ’W’, ’W’, ’X’ ), -- | W |

( ’U’, ’X’, ’0’, ’1’, ’L’, ’W’, ’L’, ’W’, ’X’ ), -- | L |

( ’U’, ’X’, ’0’, ’1’, ’H’, ’W’, ’W’, ’H’, ’X’ ), -- | H |

( ’U’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’, ’X’ ) -- | - |

);

1 7 A drive conflict implies that two or more processes attempt to drive a signal to incompatible logic values.
1 8 The details depend on the product being used. ModelSim categorically rejects any unresolved signals that are

driven from multiple processes whereas Synopsys accepts them with warnings issued at elaboration time.
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Observation 4.7. Signals of type std logic can accommodate multiple drivers whereas those of

type std ulogic cannot. In more general terms, a signal is allowed to be driven from multiple

processes iff a resolution function is defined that determines the outcome.

The IEEE 1076 standard insists that a resolution function be available for any signal that is being
driven from multiple sources but places the details under the designer’s control. Function resolved

is fine for fully complementary static CMOS logic. By programming his own resolution functions, the
designer can indicate how to solve driver conflicts in other situations.19 Make sure you understand
that there can be no such thing as a resolution function for variables. The same applies to bits, bit
vectors, integers, reals, and similar data types.

Collapsing of logic values for the purpose of synthesis

Not all nine values of the IEEE 1164 logic system make sense from a synthesis point of view. The
semantics of 0 and 1 are obvious. A don’t care symbol - on the right-hand side of an assignment
implies logic value is of no importance, in which case logic synthesis is allowed to select either a 0

or a 1 so as to minimize gate count. Z also has a well-defined meaning because it calls for a driver
with built-in three-state capability as discussed before.

Values U, X, and W, in contrast, capture specific situations that occur during simulation, but have
no sensible interpretation for synthesis. As far as L and H are concerned, one might imagine an
EDA tool that would insert pull-down/-up devices or otherwise play with weak drivers. However, as
this would entail static currents unpopular with CMOS circuit designers, L and H are not normally
honored by today’s synthesis software. Most synthesis tools collapse meaningless (to them) values
to more sensible ones, e.g. L to 0, H to 1, and X or W to -.

Hint: For the sake of clarity and portability, do not use logic values other than 0, 1, Z, and -

in VHDL source code that is intended for synthesis.

Data types for modelling of scalar (single-bit) signals

IEEE 1164 types std ulogic and std logic have been introduced to emulate the electrical behavior
of circuit nodes in a more realistic way than IEEE 1076 type bit does. Using them for simulation
purposes is not without cost, however. After all, multiple values occupy more storage capacity than
a two-valued data type does, and their processing asks for a higher computational effort. The latter
is particularly true when a resolution function is being called. Thus, before opting for a type for a
VHDL signal or variable, find out what features you need to model, and what effects you can afford
to neglect. Then refer to the selection guide below.

1 9 As an example, it thus becomes possible to handle open-collector outputs and open-drain when constructing
wired-and operations.



198 Architectures of VLSI Circuits

data type bit std ulogic std logic

defined in VHDL ieee.std logic 1164

for simulation purposes
modelling of power-up phase no yes yes
modelling of weakly driven nodes no yes yes
modelling of multi-driver nodes no yes yes
handling of drive conflicts n.a. reported resolved
storage requirements minimal substantial
computational effort minimal substantial

for synthesis purposes
three-state drivers no yes yes
don’t care conditions no yes yes

As an example, assume you want to synthesize a circuit node with a single driver. If the code is
intended for synthesis exclusively, type bit will do. If you further want to simulate your code, you
will want to learn whether the node has ever been initialized or not. Also, you will want to make
sure you get a message from the simulator, should a short circuit between this and some other node
inadvertently creep into your design. Type std ulogic would then be the safest choice, although
most designers tend to use std logic throughout.

Data types for modelling vectored (multi-bit) signals

Both std ulogic and std logic represent a single bit, whereas most digital circuits operate on
several bits at a time. One data type that gets coded using multiple bits in computers is integer.
There are limitations for describing circuit hardware at lower levels of detail using integers, though.
Word width is fixed — to 32 bit in the case of VHDL — and there is no way to access just a portion
of a data word. Integers also suffer from a lack of expressiveness for describing electrical phenomena
much as type bit does.

VHDL further supports the collection of multiple bits into a vector such as in bit vector,
std ulogic vector, and std logic vector, all of which imply a one-dimensional array built from
their scalar counterparts. The problem here is the absence of arithmetic operations for those data
types in the IEEE 1076 and 1164 standards.

As the existing standards offered no solution, two new packages were developed and accepted
as IEEE standard 1076.3 in 1997. Both packages define two extra data types called signed and
unsigned that are overloaded for standard VHDL arithmetic operators as much as possible. Objects
of type unsigned are interpreted as unsigned integer binary numbers, and objects of type signed

as signed integer binary numbers coded in 2’s complement (2’C) format. No provisions are made to
support other number representation schemes such as 1’s complement (1’C), sign-and-magnitude
(S&M), or any floating-point format.20 The programmer is free to specify how many bits shall be
set aside for coding an unsigned or a signed when declaring a constant, variable or signal.

2 0 A floating-point standard is currently in preparation. Please check section A.1.1 if you are not familiar with
binary number representation schemes.
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The difference between the two packages is that ieee.numeric bit is composed of bit type elements,
whereas ieee.numeric std operates on std logic elements. As they otherwise define identical data
types and functions, only one of the two packages can be used at a time. Clearly, what has been
said about the costs of simulating with multi-valued data types in the context of single-bit nodes
also applies to multi-bit nodes.

data type(s) integer, bit std logic signed, signed,

natural, vector vector unsigned unsigned

positive
defined in VHDL VHDL ieee.std ieee.nu- ieee.nu-

logic 1164 meric bit meric std

word width 32 bit at the programmer’s discretion
arithmetic operations yes no21 no21 yes yes
logic operations no yes yes yes yes
access to subwords or bits no yes yes yes yes
modelling of electrical effects no no yes no yes
simulation costs low moderate high moderate high

Orientation of binary vectors

Whenever a positional number system is used to encode a numeric value, there is a choice whether
to spell the data word with the MSB or the LSB first. In VHDL, this applies to data types signed,
unsigned, bit vector, std logic vector, and std ulogic vector. Any misinterpretation is likely
to cause serious problems for a circuit’s simulation and functioning.

Hint: Any vector that contains a data item coded in some positional number system should
consistently be declared as (iM SB downto iLSB ), where 2i is the weight of the binary digit
with index i. The MSB will thus have the highest index referring to it and will appear in the
customary leftmost position because iM SB ≥ iLSB .

Example signal HOUR : unsigned(4 downto 0) := "10111";

Most designers go for resolved data types

Simulating with unresolved std ulogic and std ulogic vector types is definitely more conserva-
tive than simulating with their resolved counterparts because an error message will tell you, should
any of those accidentally get involved in a drive or naming conflict. Yet, the IEEE 1164 standard rec-
ommends that “For scalar ports and signals, the developer may use either std ulogic or std logic

2 1 A historical note is due here. In anticipation of the IEEE 1076.3 standard, most vendors of VHDL software
tools had introduced extensions of their own, thereby turning a “no” into a “yes” where indicated. Yet, as all
such efforts were made on a proprietary basis, relying on them is detrimental to code portability. While the
interpretation of arithmetic operators was unlikely to differ, the names and coding schemes of the extra data
types were not always the same. Unofficial extensions, such as the former ieee.std logic arith package, must
be viewed as obsolete temporary fixes that must no longer be used, now that the numeric packages are available.
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type. For vector ports and signals, the developer should use std logic vector type.”22 In practice,
the types std logic and std logic vector prevail.

4.2.4 An event-based concept of time for governing simulation

The need for a mechanism that schedules process execution

It has been observed in section 4.2.2 that VHDL simulation is to yield the same result as if the many
processes present in a circuit model were operating simultaneously, although no more than a few
processors are normally available for running the simulation code. What is obviously required then
is a mechanism that schedules processes for sequential execution and that combines their effects so
as to perfectly mimic concurrency. This mechanism that always sits in the background of VHDL
models is the central theme of this section.
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Fig. 4.9 Circuit modelling with VHDL IV: Circuit model augmented with an event queue mechanism that

governs process activation.

2 2 Two reasons are given for this surprising advice: Concerns expressed by EDA vendors that they might not be
able to optimize simulator performance for both data types, and interoperability of circuit and testbench models
from different sources. It is in fact a bizarre quirk of VHDL that std logic is a subtype of std ulogic which
allows for cross assignments without type conversion, whereas std logic vector and std ulogic vector are two
distinct types and, hence, make type conversion compulsory when assigning one type to the other.
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Observation 4.8. A perfect comprehension of how a model’s concurrent processes are being sched-

uled during simulation is essential for hardware modelling. Understanding and writing code for

synthesis is no exception.

Simulation time versus execution time

First of all, we must distinguish between simulation time and execution time. Simulation time is
to a VHDL model what physical time is to the hardware described by that model. The simulator
software maintains a counter that is set to zero when a new simulation run begins and that registers
the progress of simulation time from then on. This counter can be likened to a stopwatch and any
event that occurs during simulation can be thought of as being stamped with the time currently
displayed by that clock.

Execution time, in contrast, refers to the time a computer takes to execute statements from the
VHDL code during simulation. It is of little interest to circuit designers as long as their simulation
runs do complete within an acceptable lapse of time.

The benefits of a discretized model of time

Assume you wanted to model a digital circuit using some conventional programming language.
Capturing the logic behavior of its gates and registers poses no major problem, but how about
taking into account their respective propagation delays? How would you organize a simulation run?
You would find that no computations are required unless a node switches. For the sake of efficiency,
you would thus decide to consider time as being discrete and would devise some data structure
that activates the relevant circuit models when they have to (re)evaluate their inputs. These are
precisely the ideas underlying event-driven simulation.

Observation 4.9. In VHDL simulation, the continuum of time gets subdivided by events each of

which occurs at a precise moment of simulation time. An event is said to happen whenever the

value of a signal changes.

Event-driven simulation

The key element that handles events and that invokes processes is called event queue and can be
thought of as a list where entries are arranged according to their time of occurrence, see fig.4.10.
An entry is referred to as a transaction.

Event-driven simulation works in cycles where three stages alternate:

1. Advance simulation time to the next transaction in the event queue, thereby making it the
current one.23

2. Set all signals that are to be updated at the present moment of time to the value associated with
the current transaction.

3. Invoke all processes that need to respond to the new situation and have them (re)evaluate their
inputs. Every signal assignment supposed to modify a signal’s value causes a transaction to be
entered into the event queue at that point in the future when the signal is anticipated to take

2 3 Multiple entries may be present for the same moment of time, but the general procedure remains the same.
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on its new value. This stage comes to an end when all processes invoked suspend after having
finished to schedule signal updates in response to their current input changes.

After completing the third stage, a new simulation cycle is started. Simulation stops when the event
queue becomes empty or when simulation time reaches some predefined final value.

As nothing happens between transactions, an event-driven simulator essentially skips from one trans-
action to the next. No computational resources are wasted while models sit idle. Parallel processes
and event queue together form a powerful mechanism for modelling the behavior of discrete-time
systems.24 Refer to fig.4.15 for a wider perspective on the simulation cycle.
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Fig. 4.10 Event-driven simulation. Interactions between the event queue and a VHDL process (a), actions that

repeat during every simulation cycle (b).

Transaction versus event

It is important to note that any signal update actually occurs in two steps. Execution of a signal
assignment causes a transaction to be entered into the event queue but has no immediate impact.
The update is to become effective only later when simulation time has reached the scheduled time
for that transaction.

By the same token, not every signal assignment that is being carried out necessarily causes a signal
to toggle. All too often, a process gets evaluated in response to some event on one of the wake-up
signals just to find out that the result is the same as before. Consider a four-input nand gate or
an E-type flip-flop, for instance. Also, the effect of a first transaction may get nullified by a second

2 4 Incidentally, note that the event queue mechanism is by no means confined to electronic hardware but is also
being used for simulating land, air, and data traffic, for evaluating communication protocols, for planning
fabrication and logistic processes, and in many other discrete-time applications.
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transaction inserted into the event queue afterwards. This is why transactions and events are not
the same. A transaction that does not alter the value of a signal is still a transaction but it does
not give rise to an event.25

Observation 4.10. Events are observable from the past evolution of a signal’s value up to the

present moment of simulation time whereas transactions merely reflect future plans that may, or

might not, materialize.

Delay modelling

The lapse of time between an event at the input of a process and the ensuing transaction at
its output reflects the delay of the piece of hardware being modelled. In VHDL, delay figures
are typically conveyed by the after clause which forms an optional part of the signal assignment
statement.26 The statement below, for instance, models the propagation delay of an adder by
scheduling a transaction on its output tpd after an event at either input.

Example OUP <= INA + INB after propdelay;

The δ delay

For obvious reasons, a process cannot be allowed to schedule signal updates for past or present
moments of time. It is, therefore, natural to ask

“What is the earliest point in time at which a new transaction can be entered into the queue?”

In the occurrence of VHDL, the answer is δ time later, where δ does not advance simulation time
but requires going through another simulation cycle. Put differently, δ can be thought of as an
infinitesimally small lapse of time greater than zero. This refinement to the basic event queue
mechanism serves to order transactions when the simulation involves models that are supposed
to respond with delay zero. Without the δ time step, there would be no way to order zero-delay
transactions and simulation could, therefore, not be guaranteed to yield consistent and reproducible
results. Although simulation time does not progress in regular intervals, δ may, in some sense, be
interpreted as the timewise resolution of the simulator.

“How does a simulator handle signal assignments with no after clause?”

The answer is that delay is assumed to be zero exactly as if the code read ... after 0 ns ... .
The transaction is then scheduled for the next simulation cycle or, which is the same, one δ delay

2 5 An event queue resembles very much an agenda in everyday life. Transactions are analogous to entries there.
Signals reflect the evolution of the state of our affairs such as current location and occupation, health condition,
social relations, material possessions, and much more. An entry in the agenda stands for some specific intention
as anticipated today. At any time, an event, such as a phone call, may force us to alter our plans, i.e. to add,
cancel or modify intended activities to adapt to a new situation. Some of our activities remain in vain and
do not advance the state of affairs, very much as some of the transactions do not turn into events. Finally, in
retrospect, an agenda also serves as a record of past events and bygone states.

2 6 Related language constructs that also express time intervals are wait for and reject. A wait for statement
causes a process to suspend for the time indicated before being reactivated. The reject clause, a feature added
in the 1993 standard update, helps to describe rejection phenomena on narrow pulses in a more concise way.
You may also want to refer to section 12.2.1 for a comment on how to model transients in VHDL more precisely.
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Fig. 4.11 The past, present, and future of VHDL variables and signals.

later. Omitting the after clauses is typical in RTL synthesis models because physically meaningful
delay data are unavailable at the time when such models are being established. Much the same
applies to behavioral models at the algorithmic level.

Hint: When simulating models with no delays other than infinitesimally small δ delays, it
becomes difficult to distinguish between cause and effect from graphical simulation output
because the pertaining events appear to coincide. It then helps to artificially postpone trans-
actions by a tiny amount of time in otherwise delayless signal assignments.

To allow for quick adjustments, a constant of type time is best declared in a package and
referenced throughout a model hierarchy. Note that the largest sum of fake delays must not
exceed one clock period, though.

Example OUP <= INA + INB after fakedelay;

Signal versus variable

We now are in a good position to understand those features that separate signals from variables.
While the difference in terms of scope has already been illustrated in fig.4.3, fig.4.11 exposes those
particularities that relate to time.

A variable has no time dimension attached, which is to say that it merely holds a present value.
Neither transactions nor events are involved. The effect of a variable assignment is thus felt imme-
diately, that is, in the next statement exactly as in any traditional programming language.
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A signal, in contrast, is a typical element of an HDL. It is defined over time, which implies that a
signal holds not only a present value, but also past values, plus those values that are anticipated
to become manifest in the future. The effect of a signal assignment is not felt before the delay
specified in the after clause has expired. The minimum delay, and default value in the absence of
an after clause, is δ. As another particularity, it is possible to schedule multiple transactions in a
single signal assignment statement.

Example THISMONTH <= august, september after 744 hr, october after 1464 hr;

Observation 4.11. VHDL signals convey time-varying information between processes via the event

queue. They are instrumental in process invocation, which is directed by the same mechanism. Vari-

ables, in contrast, are confined to within a process statement or subprogram and do not interact with

the event queue in any way.

Be sure to understand the observation below as ignoring it gives rise to frequent misconceptions.

Observation 4.12. A signal assignment (<=) does not become effective before the delay specified

in the after clause has expired. In the absence of an explicit indication, there is a delay of one

simulation cycle, so the effect can never be felt in the next statement. This sharply contrasts with

a variable assignment (:=), the effect of which is felt immediately, that is, in the next statement

exactly as in any programming language.

Concurrent processes (order of execution)

A process is either active or suspended at any time. Simulation time is stopped while the code of
the processes currently active is being carried out, which implies that
(a) all active processes are executed concurrently with respect to simulation time, and
(b) all sequential statements inside a process statement are executed in zero simulation time. The
order of process invocation with respect to execution time is undetermined.

Observation 4.13. As opposed to conventional programming languages where the thread of exe-

cution is strictly defined by the order of statements in the source code, there is no fixed ordering

for carrying out processes (including concurrent signal assignments and assertion statements) in

VHDL. When to invoke a process gets determined solely by events on the signals that run back and

forth between processes.

Sensitivity list

Each process has its own set of signals that cause it to get (re)activated whenever an event occurs on
one or more of them. The process is said to be sensitive to those signals. The entirety of such signals
are aptly qualified as its wake-up or trigger signals, although this is not official VHDL terminology.
What are the wake-up signals of a given process? The answer depends on the type of process.
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Concurrent, selected, and conditional signal assignments (activation)

Specifying wake-up signals is neither necessary nor legal as the process is simply sensitive to any
signal that appears anywhere on the right-hand side of the assignment operator <= . In the example
below, THISMONTH and THISDAY act as wake-up signals.

SPRING <= true when (THISMONTH=march and THISDAY >=21) or

THISMONTH=april or THISMONTH=may or

(THISMONTH=june and THISDAY <20)

else false;

Process statement (activation)

The process statement is much more liberal in that it provides a special clause, termed sensitivity list,
where all wake-up signals must be indicated explicitly. This feature gives the engineer more freedom
but also more responsibility. As we will see shortly, including or omitting a signal from a sensitivity
list profoundly modifies process behavior. Upon activation by a wake-up signal, instructions get
executed one after the other until the end process statement is reached. The process then reverts
to its suspended state.

The example below is semantically identical to the conditional signal assignment above. The sensi-
tivity list is included within parentheses to the right of the keyword process.

memless1: process (THISMONTH , THISDAY)

-- an event on any signal listed activates the process

begin

SPRING <= false; -- execution begins here

if THISMONTH=march and THISDAY >=21 then SPRING <= true; end if;

if THISMONTH=april then SPRING <= true; end if;

if THISMONTH=may then SPRING <= true; end if;

if THISMONTH=june and THISDAY <=20 then SPRING <= true; end if;

end process memless1; -- process suspends here

Wait statement

Another option for indicating where execution of a process statement is to suspend and when it is
to resume, is to include a wait statement. Note that the two forms are mutually exclusive. That is,
no process statement is allowed to include both a sensitivity list and waits.

As the name suggests, process execution suspends when it reaches a wait statement. It resumes
with the subsequent instruction as soon as a condition specified is met and continues until the next
wait is encountered, and so on. The wait statement comes in four flavors that differ in the nature
of the condition for process reactivation:

statement wake-up condition
wait on ... an event (signal change) on any of the signals listed here
wait until ... idem plus the logic conditions specified here
wait for ... a predetermined lapse of time as specified here
wait none, sleep forever as no wake-up condition is given
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The code below is functionally interchangeable with process memless1 shown above but uses a wait

on statement instead of a sensitivity list.

memless2: process -- no sensitivity list because a wait statement is used

begin

SPRING <= false; -- execution begins here

if THISMONTH=march and THISDAY >=21 then SPRING <= true end if;

if THISMONTH=april then SPRING <= true end if;

if THISMONTH=may then SPRING <= true end if;

if THISMONTH=june and THISDAY <=20 then SPRING <= true end if;

wait on THISMONTH , THISDAY; -- process suspends here until reactivated

-- by an event on any of these signals

end process memless2; -- execution continues with first statement

Note that process execution does not terminate with the end process statement but resumes at
the top of the process body. In a process statement with a single wait statement, execution thus
necessarily makes a full turn through the process code every time the process gets (re)activated.27

As opposed to this, only a fragment of the code gets executed in a process with multiple waits,
which also implies that there can be no equivalent process with a sensitivity list in this case.

A process statement may, but need not, exhibit sequential behavior

Reconsider process memless1 and imagine THISDAY is omitted from the process sensitivity list. What
does that change? Events on THISDAY are unable to activate the process and, hence, no longer update
signal SPRING. Only an event on signal THISMONTH causes the logic value of THISDAY to get (re)-
evaluated. The state of SPRING thus depends on past values of THISDAY, rather than just on the
present one, which implies memory and sequential behavior.

“What exactly is it that makes a process statement exhibit sequential behavior?”

The difference is in the organization of the source code and the criteria are as follows.

Observation 4.14. A process statement implies memory whenever one or more of the conditions

below apply. Conversely, memoryless behavior is being modeled iff none of them holds.

◦ The process statement includes multiple wait on or wait until statements.

◦ The process statement evaluates input signals that have no wake-up capability.

◦ The process statement includes variables that get assigned no value before being used.

◦ The process statement fails to assign a value to its output signals for every possible

combination of values of its inputs.

Process statements with multiple waits are not supported for synthesis. How to capture sequential
subcircuits in VHDL synthesis models will be the subject of section 4.3.3.

Observation 4.15. VHDL knows of no specific language construct that could distinguish a sequen-

tial model from a combinational one. Similarly, there are no reserved words to indicate whether

a piece of code is intended to model a synchronous or an asynchronous circuit, or whether a fi-

nite state machine is of Mealy, Moore or Medvedev type. What makes the difference is the detailed

construction of the source code.

2 7 The reason why the wait is placed at the end — rather than at the beginning — in the memless2 code is that
all processes get activated once until they suspend as part of the initialization phase at simulation time zero.
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Hint: As it is not immediately obvious whether a given process statement actually models
memorizing or memoryless behavior, it is a good idea to make this information explicit in
the source code, either by adding a comment or by choosing some meaningful name for the
optional process label.

This habit not only makes code easier to understand, but also helps to check the presence, nature,
and number of bistables that are obtained from synthesis against the code writer’s intentions.
This is important because a minor oversight during VHDL coding may turn a memoryless process
statement into a memorizing one, and hence the associated circuit as well.

The need for detecting events on certain signals

Many subcircuits respond to specific input waveforms, and so must their models. As an example,
a positive-edge-triggered register updates its state in response to a rising clock. An HDL must
therefore provide a language construct to detect signal transitions. In VHDL, this role is assumed
by the signal attribute ’event, a boolean that is true iff an event has occurred during the current
simulation cycle. It is frequently used in conjunction with an if clause to detect the completion of
a clock edge and to qualify the actions listed in the then clause. During automatic circuit synthesis,
an if FOO’event ... clause instructs the software to instantiate flip-flops triggered by events on
signal FOO when the netlist is being built.

Example of clock edge detection if CLK’event and CLK=’1’ then ... endif;

Alternatively, you may prefer to call upon function rising edge() defined in the IEEE 1164
standard along with its counterpart falling edge(). Both functions work for signals of type
std logic and std ulogic and make use of the ’event attribute internally.

Alternative form of edge detection if rising_edge(CLK) then ... endif;

Signal attributes

Broadly speaking, a signal attribute is a named characteristic of a signal. In addition to ’event,
VHDL knows of ’transaction, ’stable(), ’driving, ’last value, ’delayed(), and five more.
Users are free to declare their own signal attributes on top of those predefined by IEEE 1076.
Not all signal attributes are supported by synthesis, though; ’event in fact often is the only
one.

The need for monitoring signal waveforms

Latches, flip-flops, RAMs, and other subcircuits with memory impose specific timing requirements
such as setup and hold times on data, and minimum pulse widths on clock inputs. Should any of
these timing conditions get violated, their behavior becomes unpredictable. Checking for compliance
is thus absolutely essential for meaningful simulations.
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Observation 4.16. Any (sub)circuit’s simulation model is in charge of two things:

• Evaluate input data and (re)compute the model’s various equations to update its outputs and

— in the case of a memorizing subcircuit — also its state.

• Check whether input waveforms do indeed conform with the timing requirements imposed by the

subcircuit being modelled.

Actually, timing checks must be completed before logic evaluation can begin. They are essentially
carried out by having the simulator inspecting the event queue for events on the relevant signals.
A timing condition is considered as respected if no events are found within the time span during
which a given signal is required to remain stable. VHDL supports this idea with signal attributes
such as ’stable and with concurrent assertion statements.

Concurrent assertion statements

Above all, a concurrent assertion statement is a process that gets (re)activated by an event on any
signal present in the assert expression much like a concurrent signal assignment. The difference is
that a concurrent assertion statement is neither intended to schedule any new transaction nor capa-
ble of doing so. It is, therefore, qualified as a passive process as opposed to the process statement
and to concurrent/selected/conditional signal assignments that specifically serve to update signal
values. Passive processes are typically used to monitor user-defined conditions and for collecting
statistical data during simulation runs.

The assertion statement checks the value of a boolean expression and takes no further action if the
expression evaluates to true. If not so, the string following the keyword report is sent to the output
device. The severity level is reported to the simulator, which then decides on whether to proceed or
to abort the current simulation run. Though the example below works at the cell level, assertions
are allowed at any level of abstraction in a design hierarchy.

A D-type flip-flop model that includes setup and hold-time checks is shown next. In this example,
two concurrent assertion statements are placed between the keywords begin and end in the entity
declaration. Incidentally, note that the assertion statement is also available in a sequential form for
inclusion in process statements and subprograms, for instance.

entity setff is

.....

begin

assert (not (CLK ’event and CLK=’1’ and not INPD ’stable (1.09 ns)))

report "setup time violation" severity warning;

assert (not (INPD ’event and CLK=’1’ and not CLK ’stable (0.60 ns)))

report "hold time violation" severity warning;

end setff;

architecture behavioral of setff is

signal PREST : bit; -- state signal

begin

memzing: process (CLK ,RST)

begin

-- activities triggered by asynchronous active -low reset

if RST=’1’ then

PREST <= ’0’;
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-- activities triggered by rising edge of clock

elsif CLK ’event and CLK=’1’ then

PREST <= INPD;

end if;

end process memzing;

.....

end behavioral;
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check for no event on clock

if clock high

INPD

CLK

check for no event on data

INPD

CLK

setup time hold time

at rising clock edgeactive clock edge at data change

Fig. 4.12 Checking setup and hold conditions by searching the event queue for past events.28

Observation 4.17. Any inspection of the event queue for compliance with timing requirements

must necessarily look backward in time as forthcoming transactions might be added at any time and

change the anticipated future evolution of the signal being examined.

Initial values cannot replace a reset mechanism

As discussed earlier, the VHDL syntax supports assigning an initial value to a signal as part of the
signal’s declaration statement, and the same applies for variables.

Observation 4.18. The initial value given to a signal or variable defines the object’s state at t = 0,
just before the simulator enters the first simulation cycle. A hardware reset mechanism, in contrast,

remains ready to reconduct the circuit into a predetermined start state at any time t ≥ 0. Modelling

such a mechanism with an HDL requires the distribution of a special reset signal to all bistables

concerned.

Make sure you understand these are two totally different things. An initialized signal or variable
does not model a hardware reset facility and will, therefore, not synthesize into one. A working
example for a hardware reset mechanism has been given in the setff code above.

2 8 Setup and hold times are assumed to be positive in the figure. The modelling of sequential subcircuits that
feature a negative timing constraint becomes possible by adding fictitious input delays and by adjusting their
values such as to make both setup and hold times positive. In order to preserve the original delay figures, all
delays added at the input must be compensated for at the output. This is how negative timing constraints are
to be handled according to the VITAL standard, at any rate.
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4.2.5 Facilities for model parametrization

The need for supporting parametrized circuit models

Imagine you have devised a behavioral HDL model for some datapath unit that includes 16 data
registers and that is capable of carrying out seventeen distinct arithmetic and logic operations on
data words 32 bits wide. While continuing on your project, you find out that you need a similar
unit for address computations. There are significant differences, however. Addresses are just 24 bits
wide, no more than five registers are required, and a subset of eight ALU operations suffices for the
purpose. How do you handle such a situation?

It would be fairly easy to derive a separate model by pruning the existing code and by downsizing
certain index ranges there. But what if you later needed a third and a fourth model? What if new
requirements asked for substantial extensions to the existing model? The problem lies not so much
in the initial effort of creating yet another model. Rather, it is the maintenance of a multitude of
largely identical source codes that renders this approach so onerous.

A truly reusable model, in contrast, should be written in a parametrized form so as to accommo-
date distinct choices and parameter settings within a single piece of code. The most salient features
of VHDL for this goal are generic parameters, configurations, conditional spawning of processes,
and conditional instantiation, all of which items are going to be introduced in this section. Please
refer to fig.4.13 to see how these fit into the general picture.

Generics

As stated earlier, signals carry dynamic, i.e. time-varying, information between processes and in-
directly also between design entities. Generics, in contrast, serve to disseminate static, i.e. time-
invariant, indications, to design entities such as

◦ Word width,
◦ Active-low or -high signaling on inputs and outputs,
◦ Output drive capability,
◦ Functional options (e.g. details about an instruction set),
◦ Timing quantities (propagation and contamination delay, setup and hold time), and
◦ Capacitive load figures.

For a generic to become visible within a given entity, the generic’s name must be included in the
entity declaration in a so-called generic clause in much the same way as signals are made accessible
with a port clause. Yet, as opposed to ports, generics do not have any direct hardware counterpart.
Also, it is possible to indicate a default for the case that no value is specified when the component
gets instantiated. An example follows.

component parityoddw -- w-input odd parity gate

generic (

width : natural range 2 to 8; -- number of inputs with supported range

tpd : time := 1.0 ns ); -- propagation delay with default value

port (

INP : in std_logic_vector(width -1 downto 0);

OUP : out std_logic );

end component;
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Fig. 4.13 Circuit modelling with VHDL V: Final circuit model taking advantage of generics and conditional

items for parametrization.

Conditional spawning of processes with the generate statement

Situations exist where it is impossible to know and freeze the number of processes at the time when
the source code is being written. Cosider array-type circuits where some elemental subfunction is
repeated along one or more dimensions and where each subfunction interacts with its neighbors. As
it comes naturally to describe the behavior of each such subfunction in a concurrent process of its
own, the total number of processes is bound to vary with array size. Yet, writing a hardware model
that suits arbitrary array sizes is not possible with the customary computer language constructs
that govern code execution at run time.

With its generate statement, VHDL provides a mechanism for producing processes under control of
constants and generics. An example is given in the code fragment below that implements the Game
of Life.29

2 9 The Game of Life by John Horton Conway dates back to 1970. It is not really a game, in fact it is a 2-dimensional
cellular automaton where each cell has eight neighbors. Each cell is either dead or alive, and its birth, survival
or death depends on how many living neighbors the cell has. In the case of the Game of Life, the rule is often
abbreviated as “S23/B3”, which means that a living cell survives if it has two or three live neighbors, and that
a dead cell is turned into a living one if exactly three of its neighbors are alive.



4.2 KEY CONCEPTS AND CONSTRUCTS OF VHDL 213

.....

-- spawn a process for each cell in the array

row : for ih in height -1 downto 0 generate -- repetitive generation

cell : for iw in width -1 downto 0 generate -- repetitive generation

memzing: process(CLK)

subtype live_neighbors_type is integer range 0 to 8;

variable live_neighbors : live_neighbors_type;

begin

if CLK ’event and CLK=’1’ then

live_neighbors := live_neighbors_at(ih ,iw);

if PREST(ih ,iw)=’0’ and live_neighbors =3 then

PREST(ih ,iw) <= ’1’; -- birth

elsif PREST(ih ,iw)=’1’ and live_neighbors <=1 then

PREST(ih ,iw) <= ’0’; -- death from isolation

elsif PREST(ih ,iw)=’1’ and live_neighbors >=4 then

PREST(ih ,iw) <= ’0’; -- death from overcrowding

end if;

end process memzing;

end generate;

end generate;

.....

Incidentally, there exists not only a replicative form of the generate statement but also a conditional
form that is discussed next, along with a somewhat different usage of this statement.

Conditional instantiatiation with the generate statement

Many circuits are obtained by replicating subcircuits in a more or less regular way. It thus makes
sense to describe the repetitive subcircuits only once and to indicate how many times each is going
to be instantiated. Similarly, when writing parametrized netlist generators, one often finds that
circuit details depend on the exact word width, the actual bit position, or the like. Straight com-
ponent instantiation statements cannot cope with such situations, what is needed is a controllable
instantiation mechanism. As this bears much resemblance to the conditional spawning of processes
discussed before, it comes as no surprise that the generate statement is used to handle such tasks
as well.

Consider the source code below and note that the generate comes in two flavors. A replica-
tive for...generate serves to iteratively compose the circuit from bit slices whereas conditional
if...generate statements take care to implement different logic subcircuits depending on whether
the most significant bit or one of the other bits is being handled.

-- architecture body

architecture structural of binary2gray is

-- component declarations

component xnor2_gate

port (A1 , A2 : in bit;

ZN : out bit);

end component;

component inverter_gate

port (I : in bit;

ZN : out bit);
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end component;

-- signal declarations

signal INODE : bit_vector(width -1 downto 0);

begin

-- assemble logic network by instantiating and interconnecting components

any_slice : for i in 0 to width -1 generate -- repetitive generation

-- a row of eqvs except for the MSB which requires an inverter

less_significant : if i<width -1 generate -- conditional generation

uxn : xnor2_gate -- component instantiation

port map (A1=>INP(i), A2=>INP(i+1), ZN=>INODE(i));

end generate;

most_significant : if i=width -1 generate -- conditional generation

uin : inverter_gate -- component instantiation

port map (I=>INP(i), ZN=>INODE(i));

end generate;

-- a final row of inverters

uin : inverter_gate -- component instantiation

port map (I=>INODE(i), ZN=>OUP(i));

end generate;

end structural;

Observation 4.19. Generate statements get interpreted before actual circuit simulation and syn-

thesis can begin.30 Variables and signals are not acceptable as conditions or as loop boundaries since

they are subject to vary at run time, only constants and generics are.

The need for multiple architecture bodies

Consider the role of VHDL simulation in a typical VLSI design project. A first model established
early on in the design cycle serves to validate the intended functionality. Such an early model is
relatively compact because it can be written in a purely behavioral style with little attention paid
to architectural issues or to current limitations of synthesis technology.

Later in the design cycle, a more detailed model is written — probably at the RTL level —
as a starting point for synthesis. Here, simulation serves to make sure this second and much more
voluminous piece of code is correct before it gets implemented by myriads of gates.

A third simulation round is then carried out on the gate-level netlist obtained from synthesis. In
the end, three models of distinct levels of detail have been used to capture the same functionality.

A similar situation occurs when one wants to evaluate different approaches for implementing a given
functionality in hardware with respect to their relative merits for synthesis and simulation (gate
count, longest path delay, energy efficiency; run time, memory requirements, etc.).

VHDL accommodates multiple circuit models by allowing a design entity to have more than one
architecture body, see fig.4.14.

3 0 As part of the elaboration phase to be explained shortly.
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architecture behavioral of binary2gray is

begin

end behavioral;

OUP <= bintogray(INP) after tpd;

begin

if scrapa(i+1)=’1’ then

end if;

end bintogray;

variable scrapa : bit_vector(arg’length-1 downto 0);

end loop;

scrapa(i) := not scrapa(i);

for i in 0 to arg’length-2 loop
scrapa := arg;

function bintogray (arg : bit_vector) return bit_vector is

return scrapa;
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Fig. 4.14 Entity declaration versus architecture body and port versus generic.

Configuration specification and binding

In the presence of multiple architecture bodies for one entity declaration, designers must be given
an instrument to indicate which architecture to consider during simulation and synthesis. This
is the configuration specification statement. The mechanism is more general, however, in that it
makes it possible to specify a binding between any one instance of a component and some entity–
architecture pair. Put differently, a component instantiated under one name can be bound to an
entity with a different name, and this binding does not need to be the same for all instances drawn
from that component. Configuration specification statements must appear in the design unit where
the components concerned are being instantiated.

Prior to simulation and synthesis, the VHDL analyzer software must follow all the configuration
specification statements present in a circuit model and must then bring to bear the architecture
bodies indicated. This preparatory step is also referred to as binding.

The code fragment below specifies that instance u113 of entity or component binary2gray is to
be implemented by the architecture body behavioral of entity binary2gray whereas the body
structural is to be used for u188.
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.....

for u113: binary2gray use entity binary2gray(behavioral );

for u188: binary2gray use entity binary2gray(structural );

.....

The code fragment below specifies that all instances of eqv gates and inverters that have been
instantiated in the previous example are to be modelled by the respective entity–architecture pairs
indicated.

.....

for all: xnor2_gate use entity GTECH_XNOR2(behavioral );

for all: inverter_gate use entity GTECH_NOT(behavioral );

.....

Observation 4.20. VHDL provides a range of complementary constructs that are instrumental in

writing parametrized circuit models. More particularly, it is possible to establish a model without

committing the code to any specific number of processes and/or instantiated components.

Elaboration

The fact that the processes, and signals in a VHDL model are not a priori fixed but obtained under
control of the VHDL code itself necessitates a preparatory step before simulation or synthesis can
begin, see fig.4.15. During that phase, termed elaboration, multiple instantiations get expanded and
generate statements unrolled so that the final inventory of instances, processes and signals can be
established. No new instances, processes or signals can be created after elaboration is completed.

In preparation to simulating a design, all lowest-level design entities (leaf cells) must become avail-
able as behavioral models, either as part of the current VHDL design file itself or from a separate
components library. Once elaboration is completed, the memory space necessary to hold the entirety
of signals can be reserved. As processes work concurrently, memory space also needs to be set aside
for the variables associated with every single process.

In preparation to synthesizing a design, the software has to find out where to resort to actual
synthesis and where to simply assemble a netlist from library components. Any elemental compo-
nent instantiated as part of a structural model must be available from the cell library targeted. The
numbers of occurrences for all elemental and non-elemental components are frozen when elaboration
completes.

4.2.6 Concepts borrowed from programming languages

Structured flow control statements

Structured programming is universally accepted by the programming community. The IEEE 1076
standard defines a set of flow control statements that is consistent with this discipline and that
supports exception handling in nested loops. Constructs include if...then...else, case, loop,
exit, next the semantics of which are self-explanatory.
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Fig. 4.15 Major steps in VHDL simulation and synthesis (simplified).31 , 32

Object

A data object, or simply an object, is a constant, a variable, a signal, or a file.33

3 1 It may seem counterintuitive that stimuli and expected responses appear nowhere in the simulation part of the
drawing. The reason is that the testbench which feeds the event queue with the necessary transactions is itself
being described in VHDL and thus enters the processing chain from the left much as the source code of the
model under test (MUT) does.

3 2 Organization and vocabulary of commercial products may deviate considerably from our generic figure, take
DesignCompiler by Synopsys, for instance. While the “analyze” command does what its name suggests, the
subsequent “elaborate” encompasses elaboration, binding, parts of synthesis, plus a preliminary mapping to
logic gates from the GTECH generic library. Completing synthesis, timing-driven logic optimization, and tech-
nology mapping are then handled by another command named “compile”. Also, FSMs do not get processed and
optimized before logic synthesis occurs but are re-extracted later from the gate-level netlist where necessary.

3 3 Files were not considered as ob jects before the VHDL’93 standard update. In addition, file handling operations
differ between VHDL’87 and ’93, so porting legacy code that reads from or writes to files necessitates adaptations
of the source.
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Constant

A constant holds a fixed value that gets assigned where the constant is declared.

Example of a constant declaration constant Fermat_prime_4 : integer := 65537;

Variable

A variable holds a changeable value. The scope is limited to the subprogram or process where the
variable is declared; global variables do not exist.34 As an option, an initial value may be indicated
where the variable is declared. Variables declared in a subprogram are (re)initialized whenever the
subprogram is called, whereas variables declared in a process retain their value from one process
activation to the next, that is until they are assigned a new value. The assignment operator for
variables is := whereas <= must be used when assigning to a signal.35

Example of a variable declaration variable brd : real := 2.48678E5;

Example of a variable assignment brd := brd + ddr;

Data types

In VHDL, type is synonym for data type. Basically, a data type defines a set of values and a set of
operations that can be performed on them. VHDL is a strongly typed language, which implies that
every object has a type and that extensive type checking is performed. Types must be converted
before an assignment or a comparison becomes possible across distinct types, also see section 4.8.7
for conversion functions.

Users may declare their own data types or use predefined ones. The types real, integer, and
time are part of the IEEE 1076 standard. Enumerated types are also supported, and the predefined
types character, boolean, and bit are in fact such types. More data types added on top of the
VHDL language for the modelling of various electrical phenomena have been discussed in section
4.2.3.

Example of a type declaration type month is (january, february,..., december);

Subtypes

A subtype shares the operations with its parent type, but differs in that it takes on a subset of
data values only.36

Example of a subtype declaration subtype day is integer range 1 to 31;

3 4 So-called protected shared variables were added later, please refer to section 4.8.1 for their usage.
3 5 Further insight on how variables relate to signals and time can be obtained from section 4.2.4.
3 6 It is perfectly legal to declare a subtype with an improper subset, i.e. with a data set identical to that of its

parent type.
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Hint: It is good engineering practice to indicate an upper and a lower bound when using
integers for the purpose of hardware modelling. A simulation tool can then incorporate on-
line checks to ascertain that data values do indeed remain within their legal range, while
synthesis is put in a position to selectively cut down the number of hardware bits rather than
using the default word width of 32 bit.

Arrays and records

Scalar, i.e. atomic, data types can be lumped together to form composite data types. An array is a
collection of elements all of which are of the same type.

Example of an array type declaration type byte is bit_vector(7 downto 0);

As opposed to the homogeneous composition of an array, a record may be assembled from elements
of different types, which is why it is qualified as heterogeneous. Another difference is that each
element is identified by a name unique within the record. An example follows.

type date is record

date_year : integer;

date_month : month;

date_day : day;

end record;

Hint: Records come in handy when a set of signals connects to many entities or traverses
multiple levels of hierarchy. Keeping clock and reset out, use a record to collect the entire set
into one wholesale quantity that can be referenced as such. Adding or dropping an information
signal or changing the cardinality of a vector then becomes just a matter of modifying one
record declaration in one package. Designers can thus dispense with rewriting the port clauses
in all entity declarations.

Type attributes and array attributes

A type attribute is a named characteristic of a data type or data value. Type attributes make it
possible to recover information such as the range of a type or subtype, the position number, the
successor, or the predecessor of a given value in an enumerated type, and the like. An example for
the usage of type attributes ’left and ’right is given further down in function NextMonth.

Array attributes operate in a similar way on array types and array objects to obtain their bounds
and cardinalities. In the example below, dateandtime’range returns 0 to 5 whereas asking for
dateandtime’length yields a value of 6.

type sixtupel is array (0 to 5) of integer; -- type declaration

variable dateandtime : sixtupel; -- variable declaration

Subprogram, function, and procedure

A subprogram is either a function or a procedure. A function returns a value and has no side effects,
whereas the opposite is true for a procedure. Any subprogram is dynamic, which is to say that it
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does not persist beyond its current invocation. An example of a function, named NextMonth, is given
below as part of a package body.

Package

A package is a named collection of widely used constants, types, subprograms, and/or component
declarations that becomes visible within some other design unit when being referred to it in a
use clause. Packages make it possible to circumvent the waste and perils of repeating supposedly
identical declarations at multiple places. VHDL applies the principles of information hiding to
packages by separating package declaration from package body.37

-- package declaration

package calendar is

type month is (january , february , march , april , may , june , july ,

august , september , october , november , december );

subtype day is integer range 1 to 31;

function NextMonth (given_month : month) return month;

function NextDay (given_day : day) return day;

end calendar;

-- package body

package body calendar is

function NextMonth (given_month : month) return month is

begin

if given_month=month ’right then return month ’left;

else return month ’rightof(given_month );

end if;

end NextMonth;

function NextDay (given_day : day) return day is

.....

end NextDay;

end calendar;

Predefined package standard

All data types and subtypes of VHDL are actually defined in this package along with the pertaining
logic and arithmetic operations and a few more features. As a package standard comes with the
language, always gets precompiled into design library std, and is made available there by default;
users do not normally need to care much about it.

3 7 Information hiding is a well-established principle in software engineering whereby a piece of software is divided
into a declaration module or interface which must be made accessible to the caller, and a separate implementation
module or body which is deliberately withheld. It is based on the observation that the interactions between
software entities remain the same regardless of their implementation details, as long as their interfaces and
overall functionalities do not change. Note the similarity to the black box concept from electrical engineering.
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Predefined package textio

Type declarations and subprograms related to the reading and writing of ASCII files are collected
in a special package textio, which greatly facilitates the coding of testbenches and other programs
that do interface with text files. For obvious reasons, file I/O code is not intended for synthesis.
Package textio routinely gets precompiled into library std as well. Yet, to make its definitions
immediately available within a design unit, the pertaining source code must include the line use

std.textio.all;.

Design unit and design file

Incremental compilation is based on the separate processing of individual program modules. The
VHDL term for a language construct that is amenable to successful compilation38 independently
from others is design unit. VHDL provides five kinds of design units, namely

• Package declaration,
• Package body,
• Entity declaration (see section 4.2.2),
• Architecture body (see sections 4.2.2 and 4.2.1), and
• Configuration declaration (see section 4.2.5).

One or more design units are stored in a design file.39 VHDL compilers, aka VHDL analyzers, accept
one design file at a time and store the output in a design library, see fig.4.16.

Observation 4.21. VHDL supports information hiding and incremental compilation.

Design library

A design library is a named repository for a collection of design units after compilation on a host
computer, which has two major implications. Firstly a design library is normally not portable but
specific for a platform. That is, the result depends on the computer for which it has been compiled
and on the software tool being used (manufacturer, product, simulator or synthesizer). Secondly, a
design library can accommodate many design files and design units. As a consequence, a library is
typically referenced under a logical name that differs from the original name(s) of the design file(s)
included. Also note that a VHDL design library can hold a program library, a component library,
or both.

3 8 Compilation here loosely refers to the early processing steps that are necessary to simulate and/or synthesize
a circuit from VHDL source code, also see fig.4.15. More precisely, one can distinguish between four operating
principles in VHDL simulation. A first category translates the original VHDL source into some pseudo code
which then gets interpreted by a simulation kernel. A second category begins by translating VHDL into C. This
C code is then translated into the host’s machine code by the local C compiler before being linked with the
simulation kernel. Simulation is done by executing this machine code. The third category avoids the detour
and compiles from VHDL to machine code directly, which is why the approach is termed native compiled
code. All three operating principles can be found among commercial VHDL simulators; a discussion of their
relative merits is given in [100] [101]. Yet another approach is hardware acceleration by which a design gets
downloaded to multiple processors tailored to the purpose after elaboration. As we focus on the language itself,
we will not differentiate between such implementation alternatives in this text.

3 9 Incidentally, note that design file serves as start symbol in formal definitions of VHDL such as syntax diagrams
or the Extended Backus Naur Form (EBNF).
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Fig. 4.16 Organization of VHDL source code and intermediate data (simplified).

Library and use clauses

As most designs make use of VHDL code that is distributed over several design libraries, a mecha-
nism is needed for importing outside subprograms, types, entities, and components. This is exactly
the raison d’être behind the VHDL library and the use clause.

In the code fragment below, the first statement makes the design library testbench visible. That
is, subprogram PutSimulationReportLine from package graycnt tb, for instance, could then be
referenced as testbench.graycnt tb.PutSimulationReportLine, provided the package had previ-
ously been compiled into that very design library. Much the same holds for other items declared in
the package.

The subsequent use clause goes one step further in that it dispenses with the need to write the
full library and package names each time an item from package graycnt tb is being referenced.
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In the occurrence, a simple PutSimulationReportLine suffices.40 Another example is presented in
section 4.9.2; you may want to have a look at it.

-- library and use clauses

library testbench;

use testbench.graycnt_tb.all;

.....

Special libraries work and std

The design library named work differs from all other libraries in that VHDL compilers direct their
output to that particular library unless explicitly instructed to do otherwise. Another special library
termed std accommodates the compilation results from the two packages standard and textio

that come with VHDL. In addition, libraries work and std are universally visible because the two
statements below are tacitly included in any design unit.

library std , work;

use std.standard.all;

Note that standard is the only package that is immediately available by default; all others ask for
an explicit use clause. In the example of fig.4.16, the programmer has to include a statement such
as use work.grayconv.all; in the source code of graycnt in order to make the code of package
grayconv available for reference there.

4.3 Putting VHDL to service for hardware synthesis

4.3.1 Synthesis overview

Automatic synthesis aims at turning some sort of behavioral description (RTL or other) into a
gate-level netlist with as little human intervention as possible. Using the standard cells available
from a target library, VHDL synthesizers attempt to come up with a gate-level circuit that meets
all user-defined performance targets at the lowest possible hardware costs, see fig.4.17.

A basic overview of the synthesis process is available from fig.4.15 in section 4.2.5 where elaboration
and binding have been discussed. State reduction eliminates redundant states, if any, while state
encoding assigns a unique binary code to each state.41 The subsequent synthesis step builds all
necessary state registers and specifies the combinational subfunctions in between. The result is a
preliminary network described at an intermediate level of detail in terms of logic equations and
generic components rather than actual logic gates.

Boolean optimization attempts to rework the logic networks in such a way as to bring their
longest signal propagation paths below the relevant user-defined timing constraint while, at the

4 0 The improved convenience also opens the door for ambiguous references, however, if the same name happens to
exist more than once across the various design libraries being made visible in this way.

4 1 Please refer to appendix B for more details.



224 Architectures of VLSI Circuits

A
T

= const.

complexity
A

propagation delayT

user-defined
timing constraintslack

result from
constrained
optimization

result from
unconstrained
optimization

available
no solutions

available
solutions

fastest but largest unacceptable
solutions

smallest but slowest

most efficient

bound of acceptable solutions

bound of feasible solutions

memory bound of algorithm

AT producthyperbola of minimum

the constraint imposed
optimal solution under 

Pareto-optimal solution
suboptimal solution

Fig. 4.17 Tradeoffs between size and performance for a hypothetical circuit.

same time, minimizing hardware complexity. Finding an optimal or near-optimal circuit depends
on numerous characteristics of the library cells available, so simplifying and reorganizing logic
equations and networks is closely intertwined with the subsequent technology mapping [102]
phase where the generic gates in the netlist get replaced by components that are actually available
from the target library.42 More sophisticated tools also address energy efficiency.

As stated in section 4.1.3, VHDL was not originally intended for synthesis. Existing synthesis tools
handle only a subset of the VHDL grammar. Much of this section is devoted to discussing the
existing limitations and to presenting workable solutions for synthesis code.

Observation 4.22. While almost all VHDL simulators support the full IEEE 1076 standard, only a

subset of the legal language constructs is amenable to synthesis. As good VHDL code must be portable

across platforms and synthesis tools, model writers must confine themselves to safe, unambiguous,

and universally accepted constructs.

4.3.2 Data types

Only a subset of the VHDL types is amenable to hardware synthesis. Support covers
+ integer,
+ boolean and bit,
+ std logic and std ulogic (see section 4.2.3),
+ signed and unsigned (see section 4.2.3),
+ user-defined enumerated types,
along with the pertaining array and record data types. Unlike the above items,

4 2 Much of today’s logic optimization software descends from programs such as espresso (two-level logic) and MIS
(multilevel logic). A major challenge in coming up with adequate algorithms is to achieve a low asymptotic
complexity in order to cope with complex functions and large networks.
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− real,
− time,
− character, and
− file

are not normally supported.

4.3.3 Registers, finite state machines, and other sequential subcircuits

With respect to sequential subcircuits, an important limitation of synthesis technology is this.

Observation 4.23. While VHDL allows the modelling of arbitrary behavior (as long as it is causal,

discrete in value, and discrete in time), automatic synthesis supports synchronous clock-driven sub-

circuits and — at a higher level — conglomerates of such subcircuits.

Synchronous circuit operation means that state transitions are restricted to occuring exclusively at
precise moments of time as defined by a clock signal.43 Not all code that is syntactically correct
VHDL and that works during simulation is thus acceptable for synthesis. More particularly:

Observation 4.24. Synthesis tools do not support multiple waits in a process statement.

Only process statements with a sensitivity list or with a single wait are amenable to synthesis.
The reason is that each wait statement is allowed to carry its own condition as to when process
execution is to resume. Depending on the details postulated in those conditions, the source code
may imply synchronous or asynchronous behavior. While the former readily maps to a clock-driven
circuit assembled from flip-flops and combinational gates, the latter is likely to express a behavior
that depends on a haphazard collection of events on various signals in a delicate way. Coming up
with a physical circuit that is safe and functionally equivalent to the source code may then prove
extremely difficult, if not impossible.

How to model a register in VHDL

To make sure synthesis code will be met with universal acceptance, any process statement that
is supposed to exhibit sequential behavior should be written in such a way as to conform with
the skeleton shown in listing 4.3. A clock signal is mandatory. One optional signal is accepted for
implementing an asynchronous reset function on the state register. No other signals are permitted
to (re)activate the process. The reason for marking various items as disallowed is that their presence
in the code would render the model’s behavior inconsistent with a single-edge-triggered register

Listing 4.3 Skeleton of a process statement with memory that is safe and universally accepted for
synthesis.

---- updating of state

----------------------------------------------------------------------------

process (CLOCK ,RESET) <--------- sensitivity list , no more signals accepted!

begin

<--------- no other statement allowed here!

4 3 An in-depth discussion is to follow in section 5.2.1.
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-- activities triggered by asynchronous active -high reset

if RESET=’1’ then

PRESENTSTATE <= STARTSTATE;

.....

-- activities triggered by rising edge of clock

elsif CLOCK ’event and CLOCK=’1’ then <--------- no more term allowed here!

<--------- extra subconditions , if any , accepted here.

PRESENTSTATE <= NEXTSTATE;

.....

<--------- no further elsif or else clause allowed here!

end if;

<--------- no more statement allowed here!

end process;

Portability is not the only merit of this restricted coding scheme, it also ensures that subcircuits
so described behave safely and predictably. A process statement for a register is given in the code
example of listing 4.4.

Listing 4.4 Code example for a register that features an asynchronous reset, a synchronous load,
and an enable. Actual designs are unlikely to combine all three mechanisms in a single register, so
a subset of the clauses shown will typically do.

---- updating of state

----------------------------------------------------------------------------

p_memzing : process (CLKxC ,RSTxRB)

begin

-- activities triggered by asynchronous reset

if RSTxRB=’0’ then

STATEVECTORxDP <= (others => ’0’) -- shorthand for all zeros

-- activities triggered by rising edge of clock

elsif CLKxC ’event and CLKxC=’1’ then

-- when synchronous load is asserted

if LODxL=’1’ then

STATEVECTORxDP <= (others => ’1’) -- shorthand for all ones

-- else assume new value iff enable is asserted

elsif ENAxS=’1’ then

STATEVECTORxDP <= STATEVECTORxDN;

end if;

end if;

end process p_memzing;

Explicit versus implicit state models

These two classes are easily told apart by counting the wait statements per process statement.
In an explicit state model, there is no process statement with more than one wait on or wait

until; process statements with a sensitivity list (and hence no wait) are more typical, however. In
either case, program execution always returns to the same line of code and suspends there after
having completed one full turn. One or more VHDL signals — or variables — serve to preserve the
current state from one process activation to the next. Explicit state models come most naturally to
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Fig. 4.18 Three formalisms that affect the writing of software models for sequential behavior. Data

dependency graph (a), state chart (b), Nassi–Shneiderman diagram (c). Note that the programmable

divide-by-3/divide-by-4 counter chosen for illustration is a Medvedev machine.

hardware designers who are accustomed to thinking in terms of finite state machines (FSMs) along
with visual formalisms such as schematics, state graphs, and the like.

An implicit state model, in contrast, is immediately recognized by the presence of multiple waits
in process statements. Upon activation, the simulator executes instructions until the next wait
statement encountered causes it to suspend. Suspension may thus occur at distinct lines of code,
and each wait statement represents a specific state of the model. There is no tangible state variable.
Rather, it is the return address to the suspended process that assumes this role during simulation,
hence the name implicit state. Implicit state models resemble the way how software designers code
algorithms, and are related to Nassi–Shneiderman diagrams, aka structograms, and flowcharts. See
fig.4.18 and table 4.4 for a comparison.

Implicit state models occasionally find applications in the context of purely behavioral simulation,
that is above the RTL level in the abstraction hierarchy. They must be translated into an explicit
state model at the RTL level before synthesis can begin. Code examples in this text refer to explicit
state models exclusively.

How to capture a finite state machine in VHDL

The restriction to explicit state models notwithstanding, one still has the choice of putting an FSM
into one VHDL process statement or of distributing it over two or more concurrent processes.
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Table 4.4 Explicit and implicit state models compared.

modelling style explicit state implicit state
computed state enumerated state

inspired by data dependency graph state chart, state Nassi–Shneiderman
or schematic diagram graph, or state table diagram

synchronization sensitivity list or single wait statement multiple
mechanism (semantically equivalent) wait statements
state declared explicitly as signal or variable hidden in pointer
variable and thus of user-defined type to current statement
states (sub)range of integer range of multiple
captured by or of bit vector type enumerated type wait statements
state transitions arithmetic and/or one-to-one translation control flow
captured by logic operations from state table
output function arithmetic and/or one-to-one translation assignment
captured by logic operations from state table statements

immediate hard- yes depending on
ware equivalent wait conditions
synchronous yes idem

synthesizable yes no

Packing an entire FSM into a single process statement

The code is organized as illustrated by fig.4.19a through c for Mealy, Moore, and Medvedev automata
respectively.44 Evaluation begins with the asynchronous reset and clock inputs to find out whether
the machine’s state must be updated. The remaining inputs are processed further down in the
process statement. The state must be stored as a VHDL variable because any state change must
become visible to the output function within the same process activation. The process statement
must be made sensitive to events on clock and reset and, in the case of a Mealy machine, to events
on other input signals as well.

Although this coding style is legal VHDL and perfectly acceptable for simulation, its general adop-
tion is discouraged because it is not supported by many synthesis tools and because it may result
in inefficient gate-level networks.

Distributing an FSM over two (or more) concurrent processes

As depicted in fig.4.19d through f, a memorizing process is essentially in charge of maintaining the
current state from one activation to the next. A second process statement of memoryless nature
computes the next state and the present output value. This combinational part might just as well
be implemented using concurrent/selected/conditional signal assignments. Both present state and
next state are being modelled as VHDL signals that go back and forth between the two (or more)
processes involved.

4 4 The three classes of automata essentially differ in the nature of their output functions. Please refer to sections
B.1 and B.2 if you have doubts about the characteristics and equivalence relations among those classes.
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Fig. 4.19 Coding schemes for synchronous Mealy, Moore, and Medvedev machines. Note that nothing prevents

a designer from distributing the combinational operations subsumed here as “memoryless process” over two or

more concurrent processes in his code. Also, it is left to the discretion of the programmer whether to capture

them as concurrent signal assignments or with the aid of process statements.

Capturing sequential and combinational behavior in separate processes is universally accepted and
tends to lead to more economic circuit structures during synthesis. As an additional benefit, the type
of automaton (Mealy, Moore, Medvedev) can be changed at any time without having to reorganize
the source code too much.

Observation 4.25. For the sake of portability, VHDL code intended for synthesis shall

a) model circuits at the register transfer level (RTL) throughout,

b) collect combinational and sequential logic in separate processes, and

c) have all memorizing process statements conform with the skeleton of program 4.3.
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Hint: If a process statement is to model

◦ Combinational logic, exhaustively enumerate all inputs in the sensitivity list because any one of
them must act as a wake-up signal. Ensure that you assign a value to each output for all possible
combinations of input values.

◦ A flip-flop, register, counter, or a similar sequential subcircuit, include the driving clock plus
an optional asynchronous reset signal in the sensitivity list, but nothing else. Do not forget to
initialize all state-preserving objects in the reset clause, if any.

These are the only two code arrangements compatible with the synthesis of synchronous edge-
triggered circuits. Forgetting signals in sensitivity lists is a frequent mistake.45 Failure to assign a
don’t care to a signal — or to a variable declared within a process statement — in situations where
the object’s value does not seem to matter is another common oversight. Keep in mind that not
assigning anything means that the object’s present value shall be maintained and, as a consequence,
implies memory.

Hint: The emergence during synthesis of latches or other bistables that are unplanned for must
alert the VHDL designer that his code is badly wrong. For each subcircuit, check the number
of flip-flops and latches obtained from synthesis against your expectations. As a general rule,
do not ignore warnings and error messages from the synthesizer unless you understand what
they mean.

Hint: In applications where state transitions depend on an enable signal, you have two options:
Either include a subcondition in the memorizing process, as in listing 4.4, or add an extra
conditional branch in the memoryless process in charge of determining the next state. Though
the two approaches are functionally identical, we recommend the first because the synthesizer
may otherwise be unable to map to E-type flip-flops and, hence, to implement clock gating.

VHDL code examples for Mealy, Moore, and Medvedev machines amenable to synthesis are given
in appendix 4.9.2. Please note that the same examples also serve to illustrate how to model an
asynchronous reset, a synchronous clear, and an enable.

FSM optimization ignored in the language standard

Another concern arises when one wants to take advantage of automatic state reduction and/or
automatic state encoding in an FSM that uses an enumerated data type to capture its set of states.
Some FSM optimization tools have been designed to recognize automata from the code alone, others
need some form of guidance to identify the signals and/or variables that act as a repository for the
current state. The problem is that VHDL provides no such construct.

4 5 Incidentally, note that not all EDA tools handle sensitivity lists alike. DesignCompiler by Synopsys, for instance,
checks a sensitivity list for consistency with the process body, but essentially synthesizes from the sequential
statements in the process body alone. While this is no problem for correct models, a netlist obtained from an
RTL model with an incomplete sensitivity list may behave and simulate differently from the original model.
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Vendors of EDA tools have come up with proprietary extensions to fill the gap. Perhaps the most
elegant solution is the one adopted by Synopsys because it neatly extends the VHDL IEEE 1076
standard syntax by one user-defined attribute.

architecture enumerated_state of ..... is

type state is (st1 , st2 , ..... ); -- declaration of enumerated state type

signal PRESENTSTATE , NEXTSTATE : state; -- declaration of state signals

attribute state_vector : string; -- this attribute is not part of IEEE 1076

attribute state_vector of enumerated_state : architecture is "PRESENTSTATE";

.....

begin

.....

Please refer to section 4.9.3 for an unabridged example.

4.3.4 RAMs, ROMs, and other macrocells

On-chip RAMs are used to temporarily store all sorts of intermediate data whereas on-chip ROMs
serve as repositories for program code, look-up tables (LUT), and other permanent information.
This section will discuss how to incorporate RAM and ROM macrocells into VHDL models in a
way that is acceptable for synthesis.

The most innocent approach is to declare a storage array as if the code were intended for simulation
purposes and to assume the synthesizer will take care of all the rest with no human interaction. As
an example, consider a 4 bit-binary-to-seven-segment display decoder. The content of an adequate
LUT can be captured as an array of constants as shown below. While a workable solution, this piece
of code will not synthesize into a ROM, but into random logic as would any other RTL model of
combinational nature.

.....

-- address of array must be of type integer or natural

p_memless : process (BIN4xD)

variable address : natural range 0 to 15;

type array16by7 is array(0 to 15) of std_logic_vector (1 to 7)

constant segment_lookup_table : array16by7 := -- segments ordered a...g

("1111110","0110000","1101101","1111001", -- digits 0,1,2,3,

"0110011","1011011","0011111","1110000", -- 4,5,6,7,

"1111111","1110011","1110111","0011111", -- 8,9,A,b,

"1001110","0111101","1001111","1000111"); -- C,d,E,F;

begin

-- use binary input as index , look up in table , and assign to segment output

address := to_integer(unsigned(BIN4xD ));

SEG7xD <= segment_lookup_table(address );

end process p_memless;

.....

Trying to do the same in the case of a 64 byte RAM, for instance, would mean having to include
the code fragment below in the declaration section of the superordinate architecture body. Reading
and writing one byte at a time would involve assignment statements and an address pointer that
selects one out of the 64 storage vectors from the array of signals.
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.....

type array64by8 is array(0 to 63) of std_logic_vector (7 downto 0);

signal STORAGExD : array64by8;

.....

The idea is impractical, however, because the behavior so defined is a far cry from actual RAM
macrocells and their interface specifications. Worse than this, automated synthesis would hardly
churn out a safe and synchronous gate-level circuit either.

From a more general perspective, whether to implement a storage array in a RAM, from flip-flops
or otherwise is a decision that has far-reaching consequences for circuit architecture, performance,
energy efficiency, design effort, and tool costs.

Observation 4.26. Spontaneous incorporation of macrocells is neither a practical nor really a

desirable proposition for RTL synthesis because it would deprive designers of control over a circuit’s

architecture.

A more realistic approach would be to instantiate a RAM stating the macrocell generator to be
used and to pass on all further specifications in a generic map. With cmosram01 the name of some
fictive generator for clocked SRAMs, for instance, this would require a code fragment similar to the
one below.

u39: cmosram01

generic map ( number_of_words => 64, word_width => 8,

data_input_output_separate => false )

port map ( CLOCK => CLKxC , WRITE_ENABLE => RAMWRxS ,

ADDRESS => RAMADRxS , DATA_IO => RAMDATxD );

Regrettably, this approach is not currently feasible due to the lack of standardization and the
absence of interfaces between VHDL synthesis and all those proprietary macrocell generators in
existence. For the time being, a macrocell must get instantiated like any other component.

u39: myram64by8

port map ( CLOCK => CLKxC , WRITE_ENABLE => RAMWRxS ,

ADDRESS => RAMADRxS , DATA_IO => RAMDATxD );

Observation 4.27. The necessary design views of a macrocell (simulation model, schematic icon,

detailed layout, etc.) must all be obtained from outside the VHDL environment.

To that end, either the IC designer must gain access to the process-specific macrocell generator
software and run it with an appropriate parameter setting, or he must commission the silicon
foundry to do so for him. The choice is typically determined by commercial considerations.

Table 4.5 shows how a VHDL synthesis model must be organized in order to obtain various read-only
and read–write storage functions.46

4 6 Note that the market offers functional replacements for RAMs that are built on the basis of individual bistables.
Such models are amenable to VHDL synthesis in the normal way, that is they ultimately map to standard cells
much as does the designer’s own code. Of course, such cell-based implementations cannot compete with true
RAMs in terms of layout density. Also, many of them combine a mix of gates, latches, and flip-flops into a
circuit that does not adhere to a pure and unconditionally safe synchronous clocking discipline.
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Table 4.5 The desired circuit type determines how its synthesis model must be organized.

Look-up table (LUT) (memoryless)
desired hardware organization random logic ROM (tiled layout)
function must be modelled as an array-type constant by instantiating a ROM

or with logic equations macrocell as a component

Storage array (memorizing)
desired hardware organization register file built from RAM (tiled layout)

flip-flops or latches
function must be modelled as an array of (clocked) by instantiating a RAM

storage registers macrocell as a component

Common characteristics of implemented circuit
area-efficient when data quantity is small large
technology-specific software required no macrocell generator
VHDL code amenable to retargeting yes manual rework needed
pre-synthesis simulation works from RTL source code extra behavioral model
post-synthesis simulation works from gate-level model idem

4.3.5 Circuits that must be controlled at the netlist level

Arithmetic units and other parametrized structural synthesis models

Designers cannot always afford to leave decisions on a circuit’s organization to the discretion of
automatic synthesis, they sometimes need to exactingly control the outcome at the gate level.
As an example, assume you had to implement a high-performance multiplier for sign–magnitude
numbers, a format not really supported by VHDL synthesis tools. While schematic entry offers
full control over a circuit’s structure, it is always tied to specific components and to particular
circumstances in terms of word widths, pipeline depth, output format, and the like. The chance of
ever reusing such a rigid circuit model is extremely low.

HDLs make it possible to write synthesis models that are structural and parametrized at the same
time. These differ from captive structural models in that they make extensive use of generics and
of conditional component instantiation statements, see architecture structural of binary2gray in
section 4.2.5 for a simple example. The role of synthesis in the processing of VHDL source code of
this kind is essentially limited to elaboration, technology mapping, and timing optimization with
the overall organization of the original network being preserved. The procedure as a whole can be
viewed as HDL-controlled netlist generation.47

Clocks, synchronizers, scan paths, and the like

Every VLSI chip includes subcircuits that must conform to predefined structural patterns if the
circuit as a whole is to function as intended. Clock distribution networks, clock gating circuitry,

4 7 Predesigned, preverified, and optimized, yet configurable and technology-independent circuit models are being
marketed by Synopsys under the product name DesignWare. They range from fairly simple arithmetic units
and register files to an entire video decoder. VHDL models of adders, multipliers, dividers, and square root and
trigonometric functions are available from [68] along with extraordinarily vivid explanations.
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synchronizers, scan paths, and leakage suppression circuits are common examples. While their func-
tionality is trivial, their structural, electrical and/or timing characteristics must conform to precise
specifications. A loose collection of inverters is no valid substitute for a clock tree, for instance; nor
does a simple and operation qualify as a clock gate. Similarly, scan testing implies the presence
of a shift register in the actual circuit hardware as illustrated in fig.6.6, not just another way of
transiting from one state to the next.

Observation 4.28. Boolean optimization algorithms and general-purpose logic synthesis tools are

not designed to handle clock gates, synchronizers, clock distribution networks, scan paths, high-

performance arithmetic units, and other portions of a design that must comply with structural rather

than just with behavioral specifications.

Hint: Use dedicated tools or fall back on structural HDL code or on schematic entry wherever
tight control over a subcircuit’s gate-level netlist is sought. Take advantage of proven synthesis
models for arithmetic units (DesignWare). Do not reoptimize subcircuits so obtained as critical
properties may deteriorate. Most synthesis tools accept “don’t touch” commands to prevent
them from altering critical subcircuits while attempting to optimize the main body of a design.

Generating balanced clock trees, for instance, is typically postponed to the physical design phase
and handled by specialized EDA software there.

4.3.6 Timing constraints

Synthesis constraints are not part of the VHDL standard

The timing-related constructs in the IEEE 1076 standard have been defined exclusively with
simulation in mind. Inertial effects of physical circuits are typically modelled with after clauses,
sometimes with the help of extra reject clauses. These language constructs are meaningless in
the context of synthesis, however. After all, it is not possible to stipulate some arbitrary timing
data and then to come up with a circuit that exactly meets those predefined numbers.48 Synthesis
tools thus simply ignore after and reject clauses. The same applies to wait for statements and to
timing-related assertion statements.

Example of timing data being ignored by synthesis OUP <= INA + INB after 1.7 ns;

Observation 4.29. Timing-related VHDL constructs, such as after ... and wait for ..., are

for simulation purposes exclusively and get ignored during synthesis. They serve to model the be-

havior of existing circuits, not to impose target requirements for the synthesis process.

A more sensible goal is to define bounds that could guide synthesis and logic optimization by
telling apart acceptable from unacceptable timing characteristics. Such timing constraints have

4 8 This is because the exact timing of a circuit depends not only on the gate-level network, but also on load
capacitances, wiring parasitics, PTV and OCV, cross-coupling effects, and more. Also, the timing of library
cells is not continuously adjustable. In the case of a 2-input and function, the target library would provide a
few standard cells that differ in terms of transistor sizing, drive strength, and layout. Each such cell has its
proper delay vs. load characteristics. Synthesis software just picks one or the other depending on the current
requirements, but there is no sensible way to fashion an arbitrary delay at will.
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never been adopted in the IEEE 1076 language standard, though. VHDL is, therefore, not capable
of expressing any upper bound for a long path such as the one illustrated in fig.4.17.

Unsupported construct: OUP <= INA + INB with_propdelay_no_more_than 1.7 ns;

As a workaround, timing and other synthesis directives must be expressed with the aid of proprietary
language extensions or with scripting languages such as Tcl. Portable formulations are important
as the same timing constraints are to be reused during timing verification to check whether a design
does indeed meet its specifications before being sent for fabrication.

How to formulate timing constraints

In single-edge-triggered one-phase circuits, an upper bound for the delay from one register to the
next gets imposed by the clock period.49 Indicating a target clock period is thus mandatory and
straightforward, see fig.4.20a. Formulating constraints for input and output paths for commercial
synthesis and timing verification tools is more tricky because of ambiguous naming habits. In fact,
it is possible to define input/output timing from either of two perspectives:

◦ Indicate how much time is available to the circuit under construction.
◦ Quantify the amount of time that must be set aside for the surrounding circuitry.

As specifying the circuit under construction itself comes most naturally, the first perspective is
normally adopted in this text. Yet, most EDA tools adopt the second view because it permits one
to alter the target clock period without having to numerically readjust all I/O timing constraints.
Unfortunately, the names being used, input and output delay, give rise to confusion. The material
below, including table 4.6 and fig.4.20, attempts to reconcile the two views.

You will typically want to give upper bounds for the long path delays by specifying:

tide l m ax = tpd u pst = tpd ff u pst + tpd a − tdi ⇐ tpd b + tsu ff ≤ Tclk − tpd ff u pst − tpd a + tdi (4.1)

tode l m ax = tsu dn st = tpd e + tsu ff dn st + tdi ⇐ tpd ff + tpd d ≤ Tclk − tpd e − tsu ff dn st − tdi (4.2)

If you make no distinction between tidel max and tidel min , EDA tools will assume they are the
same, which implies that input data get updated once per clock period at time ©3 and then remain
valid for one entire period. If this is not so, the short path delay must be constrained as well. Use
a separate Tcl statement where you indicate a lower bound of

tide l m in = tcd u pst = tcd ff u pst + tcd a − tdi ⇐ tcd b − tho ff ≥ −tcd ff u pst − tcd a + tdi (4.3)

while observing that any physical circuit must satisfy

tide l m in < tide l m ax ⇐ tv a lid u pst = tpd u pst − tcd u pst = tide l m ax − tide l m in > 0 (4.4)

4 9 An in-depth analysis of the operation and timing of synchronous circuits is to follow in sections 6.2 and 6.4. You
may want to read through that material before coming back to this section when preparing timing constraints
for synthesis and/or timing verification.
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Table 4.6 Cross reference for input and output timing constraints.

Event Symbol Quantity Synopsys term

relating to the interface with the upstream circuitry
©3 tsu inp setup time

data valid ≤ Tclk − tpd upst of circuit under construction
window tpd upst = tidel max clock-to-output propagation delay maximum
begins of upstream circuitry input delay
©2 tho inp hold time

data valid ≤ tcd upst of circuit under construction
window tcd upst = tidel min clock-to-output contamination delay minimum

ends of upstream circuitry input delay

relating to the interface with the downstream circuitry
©4 tpd oup clock-to-output propagation delay

data call ≤ Tclk − tsu dnst of circuit under construction
window tsu dnst = todel max setup time maximum
begins of downstream circuitry output delay
©1 tcd oup clock-to-output contamination delay

data call ≥ tho dnst of circuit under construction
window tho dnst = −todel min hold time minus minimum

ends of downstream circuitry output delay

Similarly, if you do not distinguish between todel max and todel min , the synthesizer will try its best to
meet the setup condition of the downstream circuitry, but will do nothing particular about the hold
condition there. In the extreme case, a circuit that just flashes valid output data at time ©4 might
pass as acceptable because todel max = todel min is the same as tsu dnst = −tho dnst , which indeed
stands for a downstream circuit that is capable of picking up data in zero time. To prevent this
from happening, you can either bank on automatic hold-time fixing or you can explicitly constrain
the short path from below by specifying

tode l m in = −tho dn st = tcd e − tho ff dn st + tdi ⇐ tcd ff + tcd d ≥ tho ff dn st − tcd e − tdi (4.5)

while observing

tode l m in < tode l m ax ⇐ tca ll dn st = tsu dn st + tho dn st = tode l m ax − tode l m in > 0 (4.6)

Circuit partitioning in view of synthesis and optimization

Timing constraints on propagation paths that extend across multiple circuit blocks render synthesis
unnecessarily difficult and are likely to result in suboptimal circuits. This is because logic optimiza-
tion and technology mapping are carried out in chunks to avoid excessive computer run times and
memory requirements on large designs. Most tools accept proprietary directives for merging and
segregating circuit logic into synthesis chunks. However, the better the initial architecture and
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the various design entities in the VHDL source code reflect a sensible hardware organization, the
less effort will have to be wasted in repartitioning at synthesis time.

Hint: Synthesis and optimization work much better if a design is organized such that

• related or tightly connected subcircuits belong to the same design entity,
• all outputs from a synthesis chunk are registered, and
• critical paths are confined to within one synthesis chunk.

Registered outputs further preclude the unwanted emergence of zero-latency loops and hazards.

4.3.7 Limitations and caveats for synthesis

In conclusion, it is important to understand that only a subset of the VHDL language defined in
the IEEE 1076 standard is supported for synthesis and that subset is not exactly the same for all
commercial products. Also, tool builders have added proprietary directives, constraints, and even
extra data types to fill gaps that were left open when the VHDL standard was established. All
these factors are at the detriment expense of compatibility. In addition to this, there is a number of
language and circuit constructs that require special attention because unsafe or inefficient designs
may otherwise result from synthesis. Tables 4.7 and 4.8 attempt to collect the most severe limitations
and caveats.

4.3.8 How to establish a register transfer-level model step by step

While VHDL is perfectly suitable for coding a data processing algorithm, do not expect an EDA
tool to accept a purely behavioral model and to turn that into a circuit design of acceptable
performance, size, and energy efficiency. Exceptions are limited to circuits of fairly modest or fairly
specific functionality. Rather, the fun and the burden of architecture design rests with the hardware
developer. Only after an architecture has been worked out by human engineers does it make sense to
describe the hardware organization at an intermediate level of detail, typically RTL, and to submit
the HDL code so obtained to a synthesis tool.

RTL modelling is best carried out in a procedure of successive refinement:

1. Begin by drawing a fairly detailed block diagram of the architecture to be implemented.

2. Check where you can take advantage of off-the-shelf synthesis models (DesignWare).

3. Organize the circuit in such a way as confine critical propagation paths to within circuit
blocks. Make your design entities match with those circuit blocks.

4. Identify macrocells such as RAMs and ROMs and prepare for generating the necessary design
views outside the HDL environment.

5. Identify all registers (data, I/O, pipeline, address, control, status, mode, test etc.) and loosely
collect the combinational operations in between into clouds.

6. For each combinational cloud, specify the operations in mathematical terms (equations, truth
tables, structograms, pseudo code, etc.) and figure out how to compute the desired outputs
in an efficient and — where meaningful — also parametrizable way.
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Table 4.7 VHDL constructs that are unacceptable for synthesis.

item reason remedy

constructs that will never synthesize
text and file I/O no hardware equivalent do not use
access data type no hardware equivalent do not use
initialized variables hardware needs explicit reset mechanism do not use
after, reject, wait for no way to synthesize precise timings do not use
assert no hardware equivalent expect no effect
weakly driven nodes L, H resistors incompatible with CMOS do not use
capacitively charged nodes not modelled in IEEE 1164 do not use

constructs that should not be left to general VHDL synthesis
scan path needs specific network structure add after synthesis
clock distribution network needs specific network and exact timing add after synthesis
synchronizer asks for specific network structure structural code
clock gating perilous unless network and timing structural code

are tightly controlled or qualified tool
sleep mode asks for specific network structure add after synthesis
padframe purely structural structural code

constructs that are not (yet) synthesized (properly) today
process with multiple waits
(implicit state) reactivated by

- same event throughout not supported by all synthesizers use explicit state
- disparate events models asynchronous circuit behavior avoid anyway

macrocell (RAM, ROM) insufficient tool integration instantiate
transmission gate not a logic function instantiate
snapper not a logic function instantiate

7. Establish a schedule that specifies what is to happen during each clock cycle. This is a
table with one line per computation period and an entry for each relevant building block that
expresses the following items:
• ALU or arithmetic unit: operation being carried out, data set being processed.
• Other major combinational block: data set being processed.
• Finite state machine: present state, present output.
• Register: present datum, being cleared or not, being enabled or not.
• Important signal: present datum.
• Output pin or connector: present datum, being driven or not.
• Input pin or connector: datum that must be available.
• Bidirectional pin or on-chip bus: present datum, being driven or not.

8. Identify all finite state machines and find out what type is most appropriate.50

9. Capture each register in a memorizing process statement.

5 0 Table B.5 may help in doing so.
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Table 4.8 VHDL constructs that require particular attention if intended for synthesis.

item potential problem if neglected remedy

in general
δ delay in signal assignments unwanted behavior use variables
integer-type signals and variables inefficient circuit indicate ranges
circuit partitioning inefficient circuit and/or careful coding (or reparti-

excessive run times tioning at synthesis time)

in combinational functions
exhaustive specification unwanted sequential behavior careful coding
exclusive specification unexpected behavior careful coding
operator precedence unexpected behavior careful coding
hardware costs for the processing inefficient circuit adequate algorithm design

of arbitrary numbers (e.g. x : 2n or rejection
vs. x : y, same for · and mod)

hardware costs of operators inefficient circuit adequate algorithm and
(e.g. = vs. ≤,

√
x vs. x2) architecture design

reuse of hardware for related inefficient circuit apply algebraic transforms
operators (e.g. + and −) beforehand

alternative hardware structures inefficient circuit use specialized
for arithmetic operations (e.g. netlist generator
RCA, CLA, CSLA, or PPA-BK)a (e.g. DesignWare)

in sequential functions
code organization inefficient circuit comb. and seq. logic coded

in separate processes
location of output assignments unexpected type of automaton careful coding

in FSMs
parasitic inputs and states lock-up or unexpected behavior tie down
state reduction and state encoding inefficient circuit use directives and

explore alternatives

a The abbreviations stand for ripple–carry adder, carry–lookahead adder, carry–select adder, and parallel-prefix
algorithm Brent-Kung adder respectively [67].

10. For each combinational cloud, decide on the number of processes you want to use. Prefer
concurrent, selected, and conditional signal assignments for simpler operations; plan to use
process statements to capture lengthy computation sequences. Give a meaningful name to
each process.

11. Note that all data items that run back and forth between the various processes must be
declared as signals and decide on the most appropriate data type for each.

12. Only now begin with translating your draft into actual HDL code.
• Organize finite state machines as suggested by fig.4.19 and pattern the code of registers

after program 4.4. Be careful to handle special signals such as clock, asynchronous
reset, synchronous initialization, and enable properly.
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• Use the schedule previously established to obtain the various subfunctions in full detail.
• Specify don’t care entries wherever possible.
• For each memoryless process statement, do not forget to include all of its inputs

on the sensitivity list. If you make use of auxiliary variables, make sure they are assigned
a value before being used. Ensure that you assign a value to each output for all mathe-
matically possible combinations of input values; default assignments may help.

INP2
OUP2

INP1

OUP1

combinational
subfunction

concurrent
conditional
selected

or

signal
assignment

memoryless
process statement

f g
h

ij
ROM

macrocell

instatiation
component

statement
ROM

register

process
memorizing

statement

after skeleton
patterned

Fig. 4.21 Translating an RTL diagram into VHDL code.

Observation 4.30. Writing code for VHDL synthesis is not the same as writing software for a

program-controlled computer. Always think in terms of circuit blocks (i.e. entities) and concurrent

activities (i.e. processes) rather than in terms of instruction sequences.

Golden rule:
Establish a block diagram of your architecture first,
then code what you see!

Hint: Most EDA tool suites include a schematic editor that can translate back and forth
between a schematic diagram and structural VHDL code. Take advantage of schematic entry
to assist you in establishing the VHDL model of your architecture.
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4.4 Putting VHDL to service for hardware simulation

4.4.1 Ingredients of digital simulation

This section gives an example for a complete VHDL simulation setup that is based on the gen-
eral principles of functional verification and testbench design established earlier in this text.51 As
discussed there, digital circuit simulation essentially involves

• A model under test (MUT),
• Stimuli, i.e. signal waveforms coded as data vectors, for exercising the MUT,
• Expected responses that are presumed to be correct, and
• A testbench, that is a facility that applies stimuli, that acquires responses, and

that compares the actual against the expected responses.

The event queue mechanism of VHDL enables designers to specify stimuli of almost arbitrary
waveforms and to compress those waveforms into compact data vectors. The assertion statement
further makes it possible to compare responses and to generate error messages automatically. VHDL
can thus capture both circuit models and their testbenches, which dispenses with product-specific
simulation control languages. In addition, verification engineers are not restricted any particular
subset of the HDL as testbenches are not intended for synthesis.

Observation 4.31. As opposed to IC designers, who are concerned with circuit details down to

the RTL level and below, verification engineers must think in terms of behavior and functionality,

which requires a different mindset.

4.4.2 Anatomy of a generic testbench

Our focus here is on the overall setup for a grade 1 simulation.51 VHDL source code organized
along the lines shown in fig.3.14 can be found in appendix 4.9.4. Obtaining a good understanding
requires working through that code. The comments below are intended as a kind of travel guide
that points to major attractions there.

As a circuit example, we have chosen a simple shift-and-add multiplier for three reasons. Firstly,
its functionality is obvious enough not to distract the reader’s attention from testbench design.
Secondly, a number of clock cycles are required to process one set or arguments because calculation
occurs sequentially. Thirdly, with multiplication being a combinational function, this example offers
room for upgrading to a grade 2 testbench later.

All disk files handled by separate processes and stored in ASCII format

A simulation run involves files of different kinds to accommodate

• The stimuli (as they seldom get obtained entirely from a random generator),
◦ The expected responses (unless they get computed online by a golden model), and
• A simulation report (mandatory).

5 1 How to uncover design flaws with the aid of simulation is the sub ject of chapter 3 What is meant by a grade 1,
2 or 3 simulation is also explained there.
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For each file, there is one VHDL process that is in charge of opening, reading or writing, and closing
it. They get notified of the pending end of a simulation run via an auxiliary two-valued signal named
EndOfSimxS so that they can carry out the necessary activities.

ASCII text files are definitely preferred over binary data because the former are human-readable
and platform-independent, whereas the latter are not. What’s more, the usage of ASCII characters
makes it possible to take advantage of the full IEEE 1164 logic system for specifying stimuli and
expected responses. Designers are thereby put in a position to check for a high-impedance condition
by entering a Z as expected response, for instance, or to neutralize a response by entering a - (don’t
care) as reference value.

No provisions have been made to log stimulus/response pairs in view of the testing of physical parts
with ATE. As most simulators can be set up to carry out this function at user-defined points in
time (�), there is no need to burden the testbench code with that.

Separate processes for stimulus application and for response acquisition

The scheduling of the simulation events listed below has been identified as crucial.

• The application of a new stimulus denoted as � (for Application),
• The acquisition and evaluation of the response denoted as � (for Test),
• The two clock edges, symbolically denoted as ↑ and ↓.

It would be naive to include the time of occurrence of such key events hardcoded into a multitude
of wait for statements or after clauses dispersed throughout the testbench code. A much better
solution is to assign stimulus application and response acquisition to separate processes that get
periodically activated at times � and � respectively. All relevant timing parameters are expressed
as constants or as generics, thereby making it possible to adjust them from a single place in the
testbench code.

Testbench supports both file-based and golden-model-based simulation

The expected responses are either

◦ computed on the fly from the stimuli by a golden model of behavioral nature or
◦ read from a previously prepared file with the aid of a pickup process.

Basically, response acquisition and evaluation are the same no matter whether the expected re-
sponses are read from a file or calculated by a golden model. By designing MUT, golden model, and
reference pickup to share exactly the same interface and to be fully interchangeable, the response
acquisition process can be kept unchanged. Technically, switching from file-based to golden-model-
based simulation or back is just a matter of exchanging two architecture bodies in a configuration
statement.

An implication is that the reference pickup must turn the expected response read from disk into a
VHDL signal of the same type as the actual responses from the MUT. As an extra benefit, stimuli,
expected responses, and actual responses must be declared as top-level signals within the testbench
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entity. This in turn renders those key signals directly accessible and tends to facilitate monitoring
the course of action during a simulation run.

Stimuli and responses collected in records

As stated earlier, keeping the testbench code modular and reusable is highly desirable. Two measures
contribute towards rendering the VHDL processes that apply the stimuli and that acquire the
responses independent of the MUT.

a) All input signals are collected into one stimulus record and, analogously,
all output signals into one response record.52

b) The subsequent operations are delegated to specialized subprograms:

• All file read and write operations,
• Unstuffing of stimuli (if read from file),
• Preparation of stimuli (if generated at run time),
• Unstuffing of expected responses (if read from file),
• Stuffing of actual responses (if written to file),
• Response checking (actual against expected), and
• The compilation of a simulation report.

The main processes that constitute the testbench are thus put in a position to handle stimulus and
response records as wholesale quantities without having to know about their detailed composition.
The writing of custom code is hence confined to a handful of subprograms.53

Simulation to proceed even after expected responses have been exhausted

Occasionally, a designer may want to run a simulation before having prepared a complete set of
expected responses. There will be more stimuli vectors than expected responses in this situation. To
support this policy, the testbench has been designed so as to continue until the end of the stimuli
file, albeit with no automatic checking of responses. Simulation in the absence of any reference file
is not accepted, though.

Stoppable clock generator

A simulation run comes to its end when the processing of the last stimulus record has been completed
and the pertaining response record has been acquired. A mundane difficulty is to halt the VHDL
simulator. Basically, there exist three alternatives for doing so, namely

5 2 Bidirectional input/output signals must appear both as stimuli and as expected responses. Also note that an
asynchronous reset signal is treated as an ordinary input signal and thus included in the stimuli record.

5 3 As an example, the subprograms that check the responses against each other and that handle the reporting need
to be reworked when a MUT connector gets added, dropped or renamed. Ideally, one would prefer to do away
with this dependency by having those subprograms find out themselves how to handle the response records.
This is, unfortunately, not possible as VHDL lacks a mechanism for inquiring about a record’s composition at
run time in analogy to the array attributes ’left, ’right, ’range, and ’length.
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a) Have the simulator stop after a predetermined amount of time,
b) Cause a failure in an assert or report statement to abort the run, or
c) Starve the event queue, in which case simulation comes to a natural end (see section 4.2.4).

Alternative a) is as restrictive as b) is ugly, so c) is the choice to retain. A clock generator that
can be shut down is implemented as concurrent procedure call, essentially a shorthand notation
for a procedure call embedded in a VHDL process. The reason for using this construct rather than
a regular process statement is that the clock generator is reusable, and that we want to make it
available in a package. This is not otherwise possible, as the VHDL syntax does not allow a package
to include process statements.

Note: Make sure you understand that a clock signal is needed to drive simulation even if the circuit
being modelled is of purely combinational nature.

Reset considered an ordinary stimulus bit

Timingwise, the reset signal, whether synchronous or asynchronous, is handled like any other stim-
ulus bit and gets updated at time �.

Fake delays help visualize cause/effect relationship

Interpreting simulation waveforms is often confusing when too many signals get assigned new val-
ues with zero delay within a MUT or a golden model. Fake delays in otherwise delayless signal
assignments greatly help to make the cause → effect relationships evident.

4.4.3 Adapting to a design problem at hand

In the context of a specific design project, one has to write new or to adapt existing VHDL source
code for

• Declaring the data types involved in the various interfaces,
• Reading and writing those data types from and to files,
• Translating between those data types where necessary,
• Generating stimuli vectors (if working with random data), and
• Comparing the actual and expected responses against each other.

The rest of the testbench code and the general simulation setup given in fig.3.14 are reusable.

4.4.4 The VITAL modelling standard IEEE 1076.4

VITAL is an acronym for “VHDL initiative towards ASIC libraries”, a move borne jointly by
electronic design automation (EDA) vendors and the ASIC industry that aimed at making VHDL
simulation a viable option for sign-off. Sign-off quality simulation asks for accuracy, capacity, and
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speed.54 A working group established in 1992 came up with two VHDL packages that were accepted
as the IEEE 1076.4 standard in 1995 and revised in 2000.

Back-annotation

Back-annotation refers to the process of complementing or of adjusting HDL circuit models with
extraneous timing data illustrated in fig.4.15. VITAL provides the necessary hooks for doing so in
a package named ieee.Vital Timing that defines standard names and types for ports and also for
the generics that convey the pertaining timing parameters. Adhering to those naming conventions
enables a VITAL-compliant simulator to read numerical timing data from a special file established
in standard delay format (SDF) and to substitute them for the default values given in the entity
declaration of the VHDL model. Note that VITAL provides no particular construct for wires.
Instead, interconnect delays are lumped to the inputs of those gates that are being driven from a
wire.

Delay modelling, that is the problem of describing how the various timing parameters of gates
and interconnect depend on fanout, input ramps, layout parasitics, PTV conditions, and the like,
is outside the scope of VITAL. SDF files must be obtained from some extra delay calculator prior
to being transferred to the VHDL environment.

Acceleration

Making VHDL simulation comparable to logic simulation in terms of capacity and speed was another
key goal. It is addressed by imposing the usage of specific VITAL subprograms for the modelling
of gate-level subcircuits. Subprograms included in package ieee.Vital Timing have been prepared
to help with the modelling of delays and with the monitoring of timing conditions whereas others
included in ieee.Vital Primitives have been defined for the functional modelling of both combi-
national and sequential subcircuits. What they have in common is that the number of expensive
processes and signals is kept to a miminum. Also, the fact that such functions and procedures are
standardized permits further optimization such as assembly coding and inclusion in the simulator’s
kernel. VITAL-accelerated simulation has been reported to speed up program execution by a factor
of 25 over gate-level models written in plain VHDL.

A VHDL model is said to comply with VITAL level 1 if its entity declaration follows the VITAL
naming conventions and if its architecture body is built from VITAL functions and procedures
exclusively. If so, the model supports both back-annotation and acceleration. To be of any practical
value, VHDL models for gate-level library elements must be written according to VITAL level 1
and most cell libraries available today actually comprise compliant simulation models. About the
only persons concerned with writing such code are library developers.

A simulation model where VITAL compliance is limited to the entity declaration while the
architecture body follows some arbitrary VHDL coding style is said to comply with VITAL level 0.
As a consequence, such a piece of code can support back-annotation but no acceleration. VITAL

5 4 Accuracy is concerned with anticipating the timing characteristics of the fabricated parts from parameters that
are available during simulation. Capacity quantifies how large a network a simulator can reasonably handle with
a given amount of computer memory. Speed refers to the ratio between simulation time and execution time.
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level 0 models are appropriate for the behavioral models of larger building blocks that most electronic
engineers happen to write as part of the VLSI design cycle.

Memory modelling

A new package ieee.Vital Memory with types, constants, and subprograms for use in ROM and
SRAM memory models has been added in the 1076.4-2000 standard revision. A table-based mod-
elling style extends the benefits of VITAL level 1 to memories by encouraging more uniform coding
practices, by supporting back-annotation via the standard delay format (SDF), and by contributing
to better simulator performance.

4.5 Conclusions

� The practical benefits of using VHDL in digital hardware design are as follows.

- VHDL simulation supports a top-down design methodology of successive refinements
from behavioral level down to gate-level models using a single standard language.

- RTL synthesis makes it possible to do away with what used to be the two to four
bottom levels of schematic drawings in a typical VLSI design hierarchy.

- Automatic technology mapping makes it unnecessary to commit a VHDL-based design to
some specific cell library or fabrication process until late in the design cycle, even allowing
for retargetting between field- and mask-programmable ASICs.

- VHDL enables sharing, reusing, and porting of subfunctions and subcircuits
in a parametrized and therefore more useful form than traditional schematics.

- VHDL simulation also dispenses with proprietary simulation control languages.

� While the IEEE 1076 and 1164 standards are fully supported for simulation, only a subset of
VHDL is amenable to synthesis because the language was not originally developed with that
application in mind.

� The most important engineering decisions that set efficient designs apart from inefficient ones
do not relate to VHDL, but to architectural issues. Algorithmic and architectural questions
must be answered before the first line of synthesis code is written.

� The impact of coding style on random logic tends to be overstated. Also, do not expect timing-
wise synthesis constraints to do away with architectural bottlenecks. All too often, their effects
are limited to buying moderate performance gains at the expense of using substantially larger
circuits.

� For the time being, there remains a gap between system design, which focusses on over-
all circuit behavior, and actual hardware design, which involves many structural and
implementation-specific issues. The necessary manual translation from a purely behavioral
model to an RTL description amenable to synthesis and the ensuing re-entry of design data
tend to lead to errors and misinterpretations. Progress towards high-level synthesis is expected
to gradually narrow the gap.

� HDL synthesis does not do away with architecture design!
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4.6 Problems

1. Section 4.2.2 includes examples of conditional and non-conditional signal assignments. For
each such example, state the conditions that cause the code to get re-evaluated during simu-
lation.

2. Consider process statement memless1 from section 4.2.2 and note that signal SPRING is uncon-
ditionally set false before being assigned its actual value in a series of conditional statements.
That value will thus evolve from true to false and back again when the process is invoked
during springtime, e.g. at midnight of May 18. Do you think this trait will become visible as a
brief transient during VHDL simulation? Would a circuit synthesized from this model exhibit
a hazard? Explain your reasoning.

3. Listing 4.1 includes a procedural model, a dataflow model, and a structural model for a small
subcircuit.
(a) For each of the three architecture bodies, find out in what way it is possible to reorder
the VHDL statements without affecting the model’s functionality.
(b) Although the three bodies describe exactly the same functionality at exactly the same
level of abstraction, they greatly differ in the total count of signals, variables, design entities,
instances, processes, and statements involved. Determine the respective numbers.
(c) Establish three schedules that list what is happening simulation cycle after simulation
cycle in response to an event on any of the inputs. Think about the impact on computational
efficiency when the entity gets simulated.

4. Consider the VHDL source code given in appendix 4.9.1. Notice that the model assumes fixed
input and output widths of 4 and 3 bits respectively. Examine how the various architecture
bodies would scale if the model were to be parametrized in order to handle an arbitrary word
width at its input. Add the necessary generic interface constant(s) in the entity declaration
and rewrite a few architectures so as to obtain a scalable model. You may further want to
synthesize and to compare the resulting networks.

5. Explain the differences between the conditional constructs if ... then ... end if; and if

... generate ... end generate;. Are there any other VHDL statements that are related
to each other in the same way?

6. Write a VHDL model for a binary-coded-decimal (BCD) counter that is amenable to both
simulation and synthesis. A control input of two bits is to decide between count-up (01),
count-down (10), and hold (00) condition. Input-to-output latency shall not exceed one clock
cycle. Under no circumstance are hazards tolerated on any of the output signals. Also, do not
forget to address parasitic inputs and parasitic states.

7. Consider the code below, where the output of a linear feedback state register (LFSR) and of
a counter are combined into a four-bit random output. What’s wrong with this design? Hint:
Actually, there is one obvious and one more subtle problem. They are related to the same
clause in the process statement.
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entity partres is

port (

CLKxC : in std_logic;

RSTxRB : in std_logic;

OUPxD : out std_logic_vector (3 downto 0) );

end partres;

--------------------------------------------------------------------------

architecture behavioral of partres is

signal STATEAxDP , STATEAxDN : std_logic_vector (1 to 4);

signal STATEBxDP , STATEBxDN : unsigned (3 downto 0);

begin

-- computation of next state

STATEAxDN <= (STATEAxDP (3) xor STATEAxDP (4)) & STATEAxDP (1 to 3);

STATEBxDN <= STATEBxDP + "1001";

-- updating of state

process (CLKxC ,RSTxRB)

begin

-- activities triggered by asynchronous reset

if RSTxRB=’0’ then

STATEAxDP <= "0001";

-- activities triggered by rising edge of clock

elsif CLKxC ’event and CLKxC=’1’ then

STATEAxDP <= STATEAxDN;

STATEBxDP <= STATEBxDN;

end if;

end process;

-- updating of output

combine: for i in 3 downto 0 generate

OUPxD(i) <= STATEAxDP(4-i) xor STATEBxDP(i);

end generate combine;

end behavioral;

8. Consider a shaft equipped with an angle encoder that indicates the shaft’s current position
using a two-bit unit distance code, see fig.4.22. Design a state machine that accepts this
code and tells you whether the shaft is currently rotating clockwise or counterclockwise. The
former sense of rotation shall be indicated when the shaft is at a standstill. Establish a VHDL
synthesis model. You may want to extend the functionality in such a way as to indicate the
angular position of the shaft and the number of turns it has made since time zero.

00

01

10

11

Fig. 4.22 Unit distance encoding of shaft angle.
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4.7 Appendix I: Books and Web Pages on VHDL

Subjects covered
IEEE IEEE model- test- syn- Comments and

Reference Year 1076 1164 ling bench thesis special topics

Specifications of language and syntax
IEEE [103] ’02 -02 no no no no language reference manual
IEEE [104] ’94 -93 no no no no language reference manual
Zimmermann [105] ’02 .1 no no no no AMS syntax on www
Zimmermann [106] ’97 -93 no no no no syntax in EBNF on www
Bhasker [107] ’95 -93 no no no no syntax diagrams, +
Bergé et al. [108] ’93 -93 no (yes) no (yes) standard revision report

Textbooks
Volnei Pedroni [109] ’04 -93 yes yes no yes many examples, FPL
Molitor & Ritter [110] ’04 -93 yes yes yes (yes) examples, in German
Ashenden et al. [111] ’03 -93 yes yes yes no VHDL-AMS
Ashenden [112] ’02 -02 yes yes yes yes pointers, std versions, +
Yalamanchili [113] ’01 -93 yes yes (yes) yes FPGAs, memory model
Armstrong & Gray [114] ’00 -87 yes yes yes yes high-level synthesis
Heinkel [115] ’00 -93 yes yes (yes) yes VHDL-AMS
Zwolinski [116] ’00 -93 yes yes (yes) yes asychronous circuits
Chang [117] ’99 -93 no yes no yes based on [118], examples
Cohen [119] ’99 -93 yes yes yes yes coding style, testbenches
Ashenden [120] ’98 -93 yes yes (yes) no subset of full edition
Navabi [121] ’98 -93 yes yes yes (yes) small CPU example
Sjoholm & Lindh [122] ’97 -93 yes yes yes yes behavioral synthesis
Chang [118] ’97 -93 yes yes yes yes testbenches, project, +
Cohen [123] ’97 -93 yes yes yes yes coding style
Bhasker [124] ’96 -93 yes yes (yes) yes code to circuit mappings
Hsu et al. [125] ’95 -87 (yes) no (yes) yes numeric packages, +
Ott & Wilderotter [126] ’94 -87 (yes) (yes) yes yes management issues
Airiau et al. [127] ’94 -93 yes no no yes numeric packages, +
Bhasker [128] ’94 -93 no yes yes no -87 to -93 portability, +

References with a specific focus
Bergeron [88] ’00 -93 no yes yes no functional verification +
Bhatnagar [129] ’99 -93 no no no yes synthesis with Synopsys

Other resources
Hamburg Archive [130] ’06 n.a. free models, FAQ, links

( ) = light coverage only, + = personal preference.
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4.8 Appendix II: Related extensions and standards

4.8.1 Protected shared variables IEEE 1076a

The normal way of exchanging time-varying data between processes in VHDL is via signals. Signals
essentially stand for electrical wires running between subcircuits and the non-zero delays of those
subcircuits are expressed as part of signal assignment statements.

As opposed to this, shared variables are intended to support inter-process communication for
bookkeeping and supervision tasks during simulation runs, e.g. counting the number of process
invocations, keeping track of exceptions or other special events, coordinating activities among the
different processes in a testbench, or collecting statistical data. Zero-delay communication is fine
in this context. Were it not for shared variables, programmers would be forced to employ signals,
thereby obscuring their original intention and unnecessarily inflating execution time.

To stay clear of problems that might result from simultaneous read or write operations to a global
variable by distinct processes, the access must be controlled. Protected shared variables provide a
means for synchronization. Access to a protected shared variable is exclusive and must always be
made to occur by calling one of the functions or procedures written for that purpose. That is, when
a first process gains access to a protected variable by calling one such subprogram to work on it, any
further process attempting to read or modify the same variable by invoking the same or another
subprogram must wait until the current access has terminated.

Declaring a protected shared variable of an existing data type could hardly be simpler.

Example shared variable event_counter : shared_counter;

Obviously, the variable’s type is to be declared beforehand, along with all functions and/or pro-
cedures necessary for access. Consistently with VHDL’s guiding principles, the declaration of a
protected type is separated from its implementation as shown in the subsequent example [131].

-- protected type declaration

type shared_counter is protected

procedure : reset;

procedure : increment ( by : integer := 1 );

impure function value return integer;

end protected;

-- protected type body

type shared_counter is protected body

variable count : integer := 0;

procedure reset is

begin

count := 0;

end procedure reset;

procedure increment ( by : integer := 1 ) is
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begin

count := count+by;

end procedure increment;

impure function value return integer is

begin

return count;

end function value;

end protected body shared_counter;

Another code fragment shows that subprograms for reading or modifying a protected shared variable
get invoked by prefixing their names with that of the variable meant to be accessed.

...

event_counter.reset;

event_counter.increment (3);

assert event_counter.value > 0;

...

Protected variables are part of the 2002 revision of the IEEE 1076 standard. Shared but unprotected
variables had been introduced in VHDL’93 as a result of controversial debates in the standard
committee; using them is discouraged as no access control mechanism was provided.

4.8.2 The analog and mixed-signal extension IEEE 1076.1

This standard, which was accepted in 1999, is informally known as VHDL-AMS and aims at
augmenting the capabilities of the original language towards describing and simulating lumped
analog and mixed-signal circuits. It has been a guiding principle to augment the existing VHDL
constructs and to add new ones so as to make the new IEEE 1076.1 language a proper superset of
VHDL, which has obvious benefits.

To capture continuous quantities such as voltages, currents, and charges, a new kind of object has
been introduced that complements the constants, variables, and signals defined in the IEEE 1076
standard. This class is termed quantity and any object that belongs to it takes on floating-point
values exclusively.

The supplemented language supports the modelling of time-continuous behavior by accommodating
(possibly nonlinear) differential and algebraic equations in the time domain such as F (ẋ(t), x(t), t) =
0. So-called implicit quantities have been included to denote derivatives and integrals over time. If
x has been declared as a quantity, for instance, then x’dot automatically refers to d

dt x.

Elaboration of a VHDL-AMS model yields a digital part (made up of signals and processes) and
an analog part (consisting of quantities and differential algebraic equations). Simulation begins
with determining the model’s initial condition at time zero. The standard further defines how to
synchronize the traditional event-driven simulation cycle with a solver for a system of simultaneous
differential and algebraic equations.
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Observation 4.32. In a nutshell, VHDL’s analog and mixed-signal extensions are as follows:

standard

VHDL-AMS = VHDL IEEE 1076

+ continuous-value objects IEEE 1076.1

+ simultaneous differential algebraic equations idem

+ coupled continuous and discrete models of time idem

+ standard transistor models (planned)

It is worthwhile to note that VHDL-AMS extends the modelling capabilities in many ways. The
significance of nonlinear and/or differential and algebraic equations in stating the static and
continuous-time characteristics of electrical components and circuits is immediately evident. En-
tire subsystems from data transmission, signal processing, control systems, etc. can be condensed
into abstract high-level mathematical models.

What further sets VHDL-AMS apart from SPICE is the absence of built-in transistor models in
the simulator kernel. Model writers are no longer confined to a structural view that describes how
more complex (sub)circuits are pieced together from a few built-in primitives (such as resistors,
capacitors, and transistors). Rather, they are put in a position to describe opamps, active filters,
phase locked loops (PLLs), etc. from a purely behavioral perspective using mathematical equations
as building blocks and combining them with event-driven submodels where appropriate. This also
enables them to create their own primitive models and to include them in circuit simulation at any
time with no need for assistance from the software vendor.

Lastly, there is nothing that would limit quantities to being of electrical nature, which opens the
door for modelling thermal, micromechanical, optoelectronic, magnetic, and other effects. Yet, we
will not elaborate on VHDL-AMS as analog, mixed-signal, and multi-domain models are beyond
the scope of this text. Please refer to [132] [111] [133].

4.8.3 Mathematical packages for real and complex numbers IEEE 1076.2

While VHDL provides the floating-point data type real, it does not support operations other
than basic arithmetic operators.55 To overcome this limitation, two new packages were defined and
accepted as IEEE standard 1076.2 in 1996.

Package math real includes

• Definitions of constants including e and π.
• Sign, floor, ceiling, round, truncate, min, and max functions.
• Square root, cubic root, power (xy ), exponential (ex), and logarithm (ln(x)) functions.
• Trigonometric functions (sin, cos, tan, arcsin, etc.).
• Hyperbolic functions (sinh, cosh, tanh, arcsinh, etc.).
• A pseudo-random number generator for reals uniformly distributed in the interval [0, 1].

Package math complex includes

• Definitions of complex number types (in Cartesian and polar form).

5 5 Addition +, subtraction -, sign inversion -, multiplication *, division /, integer power (xn , n ∈ N) **, and absolute
value abs.
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• Absolute value, angle, (argument), negate, and conjugate functions.
• Square and exponential (ez ) functions.
• Overloaded versions of basic arithmetic operators (for Cartesian and polar operands).
• Type conversion functions.

Both packages have been added to the existing design library ieee. Clearly, they are intended for
modelling system behavior at higher levels of abstraction and for auxiliary functions in testbenches,
not for synthesis.

4.8.4 The arithmetic packages IEEE 1076.3

As no single IEEE 1076 or IEEE 1164 data type supports computer arithmetics with adequate pre-
cision and convenience, more data types were needed. The electronic design automation community
quickly filled the gap with add-on packages, but their proprietary nature jeopardized the portability
of VHDL models that made use of such unofficial extensions. As a consequence, two new packages
called numeric bit and numeric std were developed and accepted as IEEE standard 1076.3 early
in 1997. They include

• The definition of data types unsigned and signed (discussed in section 4.2.3)
for unsigned and 2’s-complement arithmetic respectively,

• Overloaded versions of IEEE 1076 arithmetic, logical, and relational operators.
• Arithmetic shift and rotate functions.
• Resizing functions with sign extension and reduction.
• Type conversion functions (see appendix 4.8.7).

In addition, the IEEE 1076.3 standard indicates how to interpret for the purpose of VHDL synthesis
logical values, such as “L”, “X”, and “U”, that have a physical meaning as outcomes from simulation
but not as specifications for a circuit to be. This is also why the two packages are sometimes referred
to as synthesis packages.

4.8.5 A language subset earmarked for synthesis IEEE 1076.6

Accepted as a standard in 2004 and superseding a 1999 edition, this standard defines a subset
of the IEEE 1076, 1076.3, and 1164 standards that is suitable for RTL synthesis. Constructs not
amenable to synthesis are identified. In addition, the semantics are unambiguously defined such
as to ensure uniformity accross synthesis tools. That is, given any RTL model strictly limited to
VHDL constructs from the subset defined, the functional characteristics of the circuits obtained
from synthesis must be the same for all VHDL synthesizers that comply with IEEE 1076.6.

4.8.6 The standard delay format (SDF) IEEE 1497

The SDF was originally developed by Open Verilog International (OVI) and later modified to
become SDF version 4.0, which was accepted as IEEE 1497 standard in 2001. SDF files are written
in ASCII-readable form and store timing data in a non-proprietary format for later use during the
VLSI design and verification process.

SDF makes it possible to share gate delays, timing conditions, and interconnect delays between cell
libraries, delay calculators, HDL simulators, and static timing analysis software. More particularly,
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SDF supports back-annotating existing netlists with numerical timing data obtained from layout
extraction as illustrated in figs.4.15 and 12.2.

The language also includes constructs for forward-annotation, that is for specifying timing con-
straints that are to guide the synthesis process of prospective circuits shown in figs.4.15 and 4.17.
Further provisions allow for documenting the PTV conditions for which the timing data stored in
an SDF file apply.

4.8.7 A handy compilation of type conversion functions

with contributions by R. Zimmermann

The table below summarizes type conversion functions between the most important VHDL data
types. Please note that proprietary types and functions render source code awkward to port from
one EDA platform to another. Proprietary packages should, therefore, be dismissed in favor of
vendor-independent international standards.

Table 4.9 Type conversion functions.
according to IEEE 1076
as defined in package std.standard

Conversion
real � integer integer(arg)
integer � real real(arg)

according to IEEE 1076.3 Synopsys proprietary
as defined in package ieee.numeric std ieee.std logic arith

Conversion
std logic vector � unsigned unsigned(arg) unsigned(arg)
std logic vector � signed signed(arg) signed(arg)
unsigned � std logic vector std logic vector(arg) std logic vector(arg)
signed � std logic vector std logic vector(arg) std logic vector(arg)
integer � unsigned to unsigned(arg,size) conv unsigned(arg,size)
integer � signed to signed(arg,size) conv signed(arg,size)
unsigned � integer to integer(arg) conv integer(arg)
signed � integer to integer(arg) conv integer(arg)
integer � std logic vector integer � unsigned|signed � std logic vector
std logic vector � integer std logic vector � unsigned|signed � integer

Resizing
unsigned resize(arg,size) conv unsigned(arg,size)
signed resize(arg,size) conv signed(arg,size)
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4.9 Appendix III: Examples of VHDL models

The subsequent pages include listings of VHDL code for a variety of applications. Albeit rather
small, these models complement the explanations of individual language features given in previous
sections with self-contained examples that are fully functional. They also provide material from
which newcomers can get inspiration when developing their own models.

To these ends, examples have been selected such as to

• Include both circuit and testbench models,
• Cover a variety of circuit features and coding styles,
• Address both combinational (memoryless) and sequential (memorizing) behavior,
• Illustrate numerous language constructs including text and file I/O, and to
• Show circuit models that are amenable to both simulation and synthesis.

All code examples mentioned below follow the naming convention to be presented in section 5.7
and are available for download from the author’s website
http://dz.ee.ethz.ch/support/ic/vhdl/vhdlexamples.en.html

4.9.1 Combinational circuit models

A logic network that tells how many of its inputs are at logic 1

-- Mission: Illustrate numerous ways for capturing combinational logic.

-- Example includes architecture bodies that follow behavioral , dataflow ,

-- and structural coding styles. In an attempt to demonstrate the richness

-- of VHDL , many diverse varieties coding styles have been covered. Note that

-- most of them are inappropriate if data word width were allowed to vary.

-- In fact , iterative* are the only architecture bodies that do scale well.

- - Y e t , i t i sinteresting to study the impact of coding style on the

-- network obtained from automatic synthesis.

-- Functionality: so -called (4,3)-counter , see below for a truth table.

-- Findings in terms of hardware costs after unconstrained optimization

-- for UMCL250 library with SynopsysDC:

-- architecture cells types nets area attr_setting version

-- selectassign 8 7 12 324 default 2004.12

-- concurassign 7 5 11 348 " "

-- caseselect 8 7 12 324 " "

-- ifelsifelse 8 7 12 324 " "

-- lookup 8 7 12 324 " "

-- iterativecount 8 7 12 324 " "

-- iterativelogic 7 5 11 348 " "

-- iterativepad 7 5 11 348 " "

-- dataflow 8 7 12 324 " "

-- generated 7 5 11 348 " "

-- structuralgtech 8 7 12 324 " "

-- Author: H.Kaeslin.

-------------------------------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;
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library gtech; -- generic component library by Synopsys

use gtech.gtech_components.all;

-------------------------------------------------------------------------------

entity onescnt is

port ( INAxDI : in std_logic_vector (3 downto 0);

CNTxDO : out std_logic_vector (2 downto 0) );

end onescnt;

-------------------------------------------------------------------------------

-- CNTxDO CNTxDO (2) CNTxDO (1) CNTxDO (0)

-- INAxDI (1:0) 00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10

-- INAxDI (3:2) 00 0 1 2 1 0 0 0 0 0 0 1 0 0 1 0 1

-- " " 01 1 2 3 2 0 0 0 0 0 1 1 1 1 0 1 0

-- " " 11 2 3 4 3 0 0 1 0 1 1 0 1 0 1 0 1

-- " " 10 1 2 3 2 0 0 0 0 0 1 1 1 1 0 1 0

-------------------------------------------------------------------------------

--=============================================================================

-- mapping specified by exhaustive enumeration in a selected signal assignment

architecture selectassign of onescnt is

begin

-- assign the output signal the values listed below

with INAxDI select

CNTxDO <= "000" when "0000",

"001" when "0001",

"001" when "0010",

"001" when "0100",

"001" when "1000",

"011" when "0111",

"011" when "1011",

"011" when "1101",

"011" when "1110",

"100" when "1111",

"010" when others;

end selectassign;

--=============================================================================

-- mapping specified by arithmetic computation in a concurrent signal assignment

architecture concurassign of onescnt is

begin

-- extend input bits to final word width before adding them

-- note: [type -] qualified expressions make it possible to interpret

-- the result of concatenation as unsigned without explicit conversion;

CNTxDO <= std_logic_vector( unsigned ’("00" & INAxDI (3)) +

unsigned ’("00" & INAxDI (2)) +

unsigned ’("00" & INAxDI (1)) +

unsigned ’("00" & INAxDI (0)) );

end concurassign;

--=============================================================================
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-- mapping specified by exhaustive enumeration in a process statement

architecture caseselect of onescnt is

begin

p_memless : process (INAxDI)

begin

-- assign the output signal the values listed below

case INAxDI is

when "0000" => CNTxDO <="000";

when "0001" => CNTxDO <="001";

when "0010" => CNTxDO <="001";

when "0011" => CNTxDO <="010";

when "0100" => CNTxDO <="001";

when "0101" => CNTxDO <="010";

when "0110" => CNTxDO <="010";

when "0111" => CNTxDO <="011";

when "1000" => CNTxDO <="001";

when "1001" => CNTxDO <="010";

when "1010" => CNTxDO <="010";

when "1011" => CNTxDO <="011";

when "1100" => CNTxDO <="010";

when "1101" => CNTxDO <="011";

when "1110" => CNTxDO <="011";

when "1111" => CNTxDO <="100";

when others => CNTxDO <="111"; -- SynopsysDC insists on this

end case;

end process p_memless;

end caseselect;

--=============================================================================

-- mapping specified by telescoped branching in a process statement

architecture ifelsifelse of onescnt is

begin

p_memless : process (INAxDI)

begin

-- assign the output signals the values listed below

if INAxDI="0000" then

CNTxDO <="000";

elsif (INAxDI="0001" or INAxDI="0010" or INAxDI="0100" or INAxDI="1000")

then

CNTxDO <="001";

elsif (INAxDI="0111" or INAxDI="1011" or INAxDI="1101" or INAxDI="1110")

then

CNTxDO <="011";

elsif INAxDI="1111" then

CNTxDO <="100";

else

CNTxDO <="010";

end if;

end process p_memless;

end ifelsifelse;

--=============================================================================

-- mapping specified by indexing a look -up table in a process statement

-- reminder: check when a ROM can be obtained via synthesizer directives
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architecture lookup of onescnt is

begin

-- address of array is requested to be of type integer or natural

p_memless : process (INAxDI)

variable num : natural range 0 to 4;

variable address : natural range 0 to 15;

type table_16 is array(0 to 15) of natural range 0 to 4;

constant LOOKUP_TABLE: table_16 := (0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4);

begin

-- use input as index , look up in table , and assign to output

address := to_integer(unsigned(INAxDI ));

num := LOOKUP_TABLE(address );

CNTxDO <= std_logic_vector(to_unsigned(num ,3));

end process p_memless;

end lookup;

--=============================================================================

-- mapping specified by iterative counting in a process statement

architecture iterativecount of onescnt is

begin

p_memless : process (INAxDI)

variable num : natural range 0 to 4;

begin

num := 0;

-- count those bits that equal one in a sequential loop

for idx in 0 to 3 loop

if INAxDI(idx)=’1’ then num := num+1; end if;

end loop;

-- convert the resulting number into a binary coded signal

CNTxDO <= std_logic_vector(to_unsigned(num ,3));

end process p_memless;

end iterativecount;

--=============================================================================

-- mapping specified by iterative logic operations in a process statement

-- after K.C. Chang , Digital Systems Design with VHDL and Synthesis , p121

architecture iterativelogic of onescnt is

begin

p_memless : process (INAxDI)

variable tmp : std_logic_vector (2 downto 0);

variable cin , cout : std_logic;

begin

tmp := "000";

-- increment binary sum bit by bit in a sequential loop

for idx in INAxDI ’reverse_range loop

if INAxDI(idx)=’1’ then

cin := ’1’;

-- propagate carries

for idk in tmp ’reverse_range loop

cout := tmp(idk) and cin;

tmp(idk) := tmp(idk) xor cin;

cin := cout;

end loop;

end if;
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end loop;

CNTxDO <= tmp;

end process p_memless;

end iterativelogic;

--=============================================================================

-- mapping specified by iterative arithmetic computation in a process statement

-- note: the basic approach is the same as in architecture body concurassign ,

-- yet the embodiment as a process permits the usage of an iterative loop

-- and of variables.

architecture iterativepad of onescnt is

begin

p_memless : process (INAxDI)

variable pad , sum : unsigned (2 downto 0);

begin

sum := (others => ’0’); -- with -independent shorthand

-- pad input bits with zeros before adding them in a sequential loop

for idx in INAxDI ’range loop

pad := "00" & INAxDI(idx);

sum := sum + pad;

end loop;

CNTxDO <= std_logic_vector(sum);

end process p_memless;

end iterativepad;

--=============================================================================

-- mapping specified by concurrent signal assignments at the Boolean level

architecture dataflow of onescnt is

signal ROW0xD , ROW3xD , ROW1OR2xD , COL3xD , COL1THRU3xD: std_logic;

begin

-- indicate a combinational function for each output bit

-- by exploiting the similarities of rows in the truth table

ROW0xD <= INAxDI (3) nor INAxDI (2);

ROW3xD <= INAxDI (3) and INAxDI (2);

ROW1OR2xD <= (not ROW0xD) and (not ROW3xD);

COL3xD <= INAxDI (1) and INAxDI (0);

COL1THRU3xD <= INAxDI (1) or INAxDI (0);

CNTxDO (2) <= ROW3xD and COL3xD;

CNTxDO (1) <= (ROW0xD and COL3xD) or (ROW3xD and (not COL3xD)) or

(ROW1OR2xD and COL1THRU3xD );

CNTxDO (0) <= INAxDI (3) xor INAxDI (2) xor INAxDI (1) xor INAxDI (0);

end dataflow;

--=============================================================================

-- mapping specified by arithmetic computation at the bit level and by

-- generating a series of cascaded concurrent signal assignments there

architecture generated of onescnt is

type support4x3 is array(1 to 4) of unsigned (2 downto 0);

signal INNERCNTxD : support4x3;

begin

-- pad input bits with zeros , embed additions between support nodes
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G1 : for i in 3 downto 1 generate

INNERCNTxD(i+1) <= INNERCNTxD(i) + ("00" & INAxDI(i));

end generate;

INNERCNTxD (1) <= "00" & INAxDI (0);

CNTxDO <= std_logic_vector(INNERCNTxD (4));

end generated;

--=============================================================================

-- logic network described as a bunch of interconnected logic gates

architecture structuralgtech of onescnt is

-- note: a list of explicit component declarations is redundant in this

-- context because the GTECH generic component library has been made

-- available by the library and use statements early in this program.

-- declare internal signals

signal ORANGExD , YELLOWxD , GREENxD , BLUExD , VIOLETxD: std_logic;

begin

-- instantiate components and connect them by listing port maps

U1 : gtech_OA21

port map ( A=>INAxDI(3), B=>BLUExD , C=>GREENxD , Z=>CNTxDO (0) );

U2 : gtech_NOR2

port map ( A=>GREENxD , B=>VIOLETxD , Z=>CNTxDO (2) );

U3 : gtech_XOR2

port map ( A=>INAxDI(1), B=>INAxDI(0), Z=>YELLOWxD );

U4 : gtech_XOR2

port map ( A=>YELLOWxD , B=>INAxDI(2), Z=>BLUExD );

U5 : gtech_XOR2

port map ( A=>GREENxD , B=>VIOLETxD , Z=>CNTxDO (1) );

U6 : gtech_NAND2

port map ( A=>INAxDI(3), B=>BLUExD , Z=>GREENxD );

U7 : gtech_AOI22

port map ( A=>INAxDI(0), B=>INAxDI(1), C=>YELLOWxD , D=>INAxDI(2),

Z=>VIOLETxD );

end structuralgtech;

4.9.2 Mealy, Moore, and Medvedev machines

What follows is an example for each of the three classes of finite state machines. Refer to section
4.3 and fig.4.19 if in doubt on how to cast finite state machines into VHDL processes.

A Mealy-type state machine

-- Mission: Illustrate how to model a Mealy machine with two processes.

-- Example designed to include an asynchronous reset , three -state outputs ,

-- self loops , symbolic encoding of states and outputs , plus handling of

-- parasitic states and inputs so as to eliminate any chance of lock -up.

-- Functionality: See state graph below.

-- Author: H.Kaeslin.
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-------------------------------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

-------------------------------------------------------------------------------

entity mealy5st is

port (CLKxCI : in std_logic;

RSTxRBI : in std_logic;

INPxDI : in std_logic_vector (1 downto 0);

OUPxDO : out std_logic_vector (1 downto 0) ); -- ternary , 11 not used

end mealy5st;

-------------------------------------------------------------------------------

-- INPxDI/OUPxDO (STATExDP)

--

-- 00/e 00/i 00/i 00/i 00/f

-- _ _ _ _ _

-- | | 01/i | | 01/i | | 01/i | | 01/f | |

-- ---> v / ------> v / ------> v / ------> v / ------> v / ----

-- 10/e | (0) (1) (2) (3) (4) | 01/f

-- ----- <-------- <-------- ^ <-------- <-------- <----

-- 10/e 10/i | 10/i 10/i

-- o

--

-------------------------------------------------------------------------------

architecture enumerated_state of mealy5st is

type state is (st0 , st1 , st2 , st3 , st4); -- enumerated state type

signal STATExDP , STATExDN : state; -- present state and next state

-- symbolic encodings of output

constant syme : std_logic_vector (1 downto 0) := "10"; -- empty

constant symi : std_logic_vector (1 downto 0) := "00"; -- in between

constant symf : std_logic_vector (1 downto 0) := "01"; -- full

constant symz : std_logic_vector (1 downto 0) := "ZZ"; -- high -impedance

begin

---- computation of next state and present outputs

---------------------------------------------------------------------------

p_memless : process (INPxDI , STATExDP)

begin

-- default assignments

STATExDN <= STATExDP; -- remain in present state

OUPxDO <= symi; -- output "in between"

-- nondefault transitions and outputs

case STATExDP is

when st0 => -- formulated by handling each input code separately

if INPxDI="00" then OUPxDO <= syme;

elsif INPxDI="10" then OUPxDO <= syme;

elsif INPxDI="01" then STATExDN <= st1;

else OUPxDO <= syme; -- parasitic input 11, treat as 00

end if;

when st1 =>

if INPxDI="00" then null; -- defaults suffice , may be omitted

elsif INPxDI="10" then OUPxDO <= syme; STATExDN <= st0;
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elsif INPxDI="01" then STATExDN <= st2;

else null; -- parasitic input 11, treat as 00

end if;

when st2 => -- adopting more concise formulations from now on

if INPxDI="10" then STATExDN <= st1;

elsif INPxDI="01" then STATExDN <= st3;

end if;

when st3 =>

if INPxDI="10" then STATExDN <= st2;

elsif INPxDI="01" then OUPxDO <= symf; STATExDN <= st4;

end if;

when st4 =>

if INPxDI="10" then STATExDN <= st3;

else OUPxDO <= symf; - - 0 1 , 0 0 or parasitic input 11

end if;

when others => -- tie up parasitic states for synthesis

OUPxDO <= symz; STATExDN <= st2;

end case;

end process p_memless;

---- updating of state

----------------------------------------------------------------------------

p_memzing : process (CLKxCI , RSTxRBI)

begin

-- activities triggered by asynchronous reset (active low)

if RSTxRBI = ’0’ then

STATExDP <= st2;

-- activities triggered by rising edge of clock

elsif CLKxCI ’event and CLKxCI = ’1’ then

STATExDP <= STATExDN;

end if;

end process p_memzing;

end enumerated_state;

A Moore-type state machine

-- Mission: Illustrate how to model a Moore machine with two processes. The

-- example , taken from the author ’s lecture notes "Finite State Machines",

-- includes a synchronous clear and also serves to demonstrate how to use

-- symbolic state names in conjunction with a specific state assignment.

-- Note: State encoding could just as well be controlled by synthesizer directives.

-- Functionality: See state table below.

-- Author: H.Kaeslin.

-------------------------------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

-------------------------------------------------------------------------------

entity moore6st is

port ( CLKxCI : in std_logic;

CLRxSI : in std_logic; -- synchronous clear

INPxDI : in std_logic; -- present input
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OUPxDO : out std_logic ); -- present output

end moore6st;

-------------------------------------------------------------------------------

-- present input

-- a b

-- present present next next

-- state output state state

-- start state stu 1 stz stw

-- stv 0 stz stw

-- stw 0 stx stu

-- stx 0 sty stx

-- sty 1 stv sty

-- stz 1 sty stx

-------------------------------------------------------------------------------

architecture symbolic_state of moore6st is

-- symbolic encodings of state

subtype state is std_logic_vector (5 downto 0); -- vector state type

constant stu : state := "000001"; -- force one -hot state assignment

constant stv : state := "000010";

constant stw : state := "000100";

constant stx : state := "001000";

constant sty : state := "010000";

constant stz : state := "100000";

signal STATExDP , STATExDN : state; -- present state and next state

-- symbolic encodings of input

constant syma : std_logic := ’0’;

constant symb : std_logic := ’1’;

begin

---- computation of next state and present outputs

----------------------------------------------------------------------------

p_memless : process (INPxDI ,STATExDP)

begin

-- default assignments

STATExDN <= stu; -- jump to start state

OUPxDO <= ’1’; -- output a logic 1

-- nondefault transitions and outputs

case STATExDP is

when stu =>

if INPxDI=syma then STATExDN <= stz; else STATExDN <= stw; end if;

when stv =>

if INPxDI=syma then STATExDN <= stz; else STATExDN <= stw; end if;

OUPxDO <= ’0’; -- output assignment placed outside input branching

when stw =>

if INPxDI=syma then STATExDN <= stx; end if;

OUPxDO <= ’0’;

when stx =>

OUPxDO <= ’0’; -- note that order of statements is immaterial

if INPxDI=syma then STATExDN <= sty; else STATExDN <= stx; end if;

when sty =>

if INPxDI=syma then STATExDN <= stv; else STATExDN <= sty; end if;

when stz =>
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if INPxDI=syma then STATExDN <= sty; else STATExDN <= stx; end if;

-- the remaining 58 cases need not be handled explicitly because

-- parasitic states are properly tied up by the default assignments

when others => null;

end case;

end process p_memless;

---- updating of state

----------------------------------------------------------------------------

p_memzing : process (CLKxCI)

begin

-- activities triggered by rising edge of clock

if CLKxCI ’event and CLKxCI=’1’ then

-- when synchronous clear is asserted

if CLRxSI=’1’ then

STATExDP <= stu;

-- otherwise

else

STATExDP <= STATExDN;

end if;

end if;

end process p_memzing;

end symbolic_state;

A Medvedev-type state machine

In this example, the source code has been distributed over two design units to illustrate the concept
of separate compilation and the usage of library and use statements. The first design unit describes
the circuit itself; the second one is a package of code conversion functions.

-- Mission: Illustrate how to model a Medvedev machine in two processes.

-- Also serves to study more subtle issues of type conversion.

-- Example designed to include an asynchronous reset ,

-- a subcondition in the clock clause , and a parametrized word width ,

-- and to make light usage of the IEEE numeric_std package.

-- Functionality: w-bit Gray counter with enable and asynchronous reset.

-- Author: H.Kaeslin.

-------------------------------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

use work.grayconv.all; -- my own set of Gray code converter functions

-------------------------------------------------------------------------------

entity graycnt is

generic (

width : integer := 5 ); -- default value for number of state bits

port (

CLKxCI : in std_logic;

RSTxRBI : in std_logic;

ENAxSI : in std_logic;

COUNTxDO : out std_logic_vector ((width -1) downto 0) );
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end graycnt;

-------------------------------------------------------------------------------

-- Approach is with double conversion: Gray ->binary , increment , binary ->Gray.

-- Note this is not necessarily the most economic or the fastest solution.

-- Declaring COUNTxD? of type unsigned would help to slightly simplify code

-- but requires overloading functions bintogray and graytobin for this type.

-------------------------------------------------------------------------------

architecture computed_state of graycnt is

-- present state and next state

signal COUNTxDP , COUNTxDN : std_logic_vector(width -1 downto 0);

begin

---- computation of next state

----------------------------------------------------------------------------

COUNTxDN <= bintogray(std_logic_vector(

unsigned(graytobin(COUNTxDP )) + 1 ));

---- updating of state

----------------------------------------------------------------------------

p_memzing : process (CLKxCI ,RSTxRBI)

begin

-- activities triggered by asynchronous reset

if RSTxRBI=’0’ then

COUNTxDP <= (others => ’0’); -- width -independent shorthand

-- activities triggered by rising edge of clock

elsif CLKxCI ’event and CLKxCI=’1’ then

-- proceed to next state only if enable is asserted

if ENAxSI=’1’ then

COUNTxDP <= COUNTxDN;

end if;

end if;

end process p_memzing;

---- assignment to output only signal

----------------------------------------------------------------------------

COUNTxDO <= COUNTxDP;

end computed_state;

-- Mission: illustrate the use of a package in VHDL.

-- Functionality: Gray code <-> binary code conversion functions.

-- Author: H.Kaeslin.

-------------------------------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

-------------------------------------------------------------------------------

-- package declaration

package grayconv is

function bintogray (arg : std_logic_vector) return std_logic_vector;
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function graytobin (arg : std_logic_vector) return std_logic_vector;

end grayconv;

-------------------------------------------------------------------------------

--

-- | | | | |

-- binary to Gray |--. |--. |--. |--. | # of X-ops on

-- conversion | ‘--X ‘--X ‘--X ‘--X longest paths

-- for width=5 | | | | | = 1

-- v v v v v

--

-- bit positions 4 3 2 1 0 X = XOR

--

-- | | | | |

-- Gray to binary | ,--X ,--X ,--X ,--X # of X-ops on

-- conversion |--’ |--’ |--’ |--’ | longest path

-- for width=5 | | | | | = width -1

-- v v v v v

--

-------------------------------------------------------------------------------

-- package body

package body grayconv is

-- purpose: converts binary code into Gray code

- - b y w a y o f i n -place computation on a scratchpad variable

function bintogray (arg : std_logic_vector) return std_logic_vector is

variable scrapa : std_logic_vector(arg ’length -1 downto 0);

begin

scrapa := arg;

for i in 0 to arg ’length -2 loop -- note MSB remains unchanged

if scrapa(i+1)=’1’ then

scrapa(i) := not scrapa(i);

end if;

end loop;

return scrapa;

end bintogray;

-- purpose: converts Gray code into binary code

- - b y w a y o f i n -place computation on a scratchpad variable

function graytobin (arg : std_logic_vector) return std_logic_vector is

variable scrapa : std_logic_vector(arg ’length -1 downto 0);

begin

scrapa := arg;

for i in arg ’length -2 downto 0 loop -- note MSB remains unchanged

if scrapa(i+1)=’1’ then

scrapa(i) := not scrapa(i);

end if;

end loop;

return scrapa;

end graytobin;

end grayconv;
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4.9.3 State reduction and state encoding

A state machine that features equivalent states

The state graphs before and after reduction are shown in figs.B.8 and B.9 respectively.

-- Mission: Demonstrate state reduction and state encoding techniques ,

-- serve as a benchmark for FSM optimization software ,

-- and show how to identify state vectors for Synopsys Design Compiler.

-- Functionality: fictive , 5 of the 11 states can be collapsed with others.

-- For state graph see chapter "Finite State Machines" in author ’s book.

-- Author: H.Kaeslin

-------------------------------------------------------------------------------

-- The state reduction can be performed with the following instructions

-- in Synopsys Design Compiler (version W -2004.12):

-- read_file -format vhdl {your_path/phantasy.vhd}

-- set_ultra_optimization true

-- set fsm_auto_inferring true

-- set fsm_enable_state_minimization true

-- set_fsm_encoding_style binary

-- compile

-- report_fsm

-------------------------------------------------------------------------------

library ieee;

use ieee.std_logic_1164.all;

-------------------------------------------------------------------------------

entity phantasy is

port (

CLKxCI : in std_logic;

RSTxRBI : in std_logic;

INPxDI : in std_logic_vector (1 downto 0);

OUPxDO : out std_logic );

end phantasy;

-------------------------------------------------------------------------------

architecture enumerated_state of phantasy is

type state is (st1 , st2 , st3 , st4 , st5 , st6 , st7 , st8 , st9 , st10 , st11);

signal STATExDP , STATExDN : state;

-- identify state vector for automatic state reduction

attribute state_vector : string; -- proprietary attribute of Synopsys

attribute state_vector of enumerated_state : architecture is "STATExDP";

begin

---- computation of next state and present outputs

----------------------------------------------------------------------------

p_memless: process (INPxDI , STATExDP)

begin

-- default assignments

STATExDN <= STATExDP; -- remain in present state

OUPxDO <= ’0’; -- output a logic 0

-- nondefault transitions and outputs
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case STATExDP is

when st1 =>

OUPxDO <= ’1’;

if INPxDI="00" then STATExDN <= st1;

elsif INPxDI="11" then STATExDN <= st2;

else STATExDN <= st1;

end if;

--

when st2 =>

if INPxDI="00" then STATExDN <= st2;

elsif INPxDI="11" then STATExDN <= st3;

else STATExDN <= st8;

end if;

when st3 =>

if INPxDI="00" then STATExDN <= st3;

elsif INPxDI="11" then STATExDN <= st4;

else STATExDN <= st5;

end if;

when st4 =>

if INPxDI="00" then STATExDN <= st4;

elsif INPxDI="11" then STATExDN <= st2;

else STATExDN <= st5;

end if;

--

when st5 =>

if INPxDI="00" then STATExDN <= st6;

elsif INPxDI="11" then STATExDN <= st9;

else STATExDN <= st5;

end if;

when st6 =>

if INPxDI="00" then STATExDN <= st7;

elsif INPxDI="11" then STATExDN <= st3;

else STATExDN <= st11;

end if;

when st7 =>

if INPxDI="00" then OUPxDO <= ’1’;

elsif INPxDI="11" then OUPxDO <= ’1’;

end if;

STATExDN <= st1;

--

when st8 =>

if INPxDI="00" then STATExDN <= st9;

elsif INPxDI="11" then STATExDN <= st6;

else STATExDN <= st8;

end if;

when st9 =>

if INPxDI="00" then STATExDN <= st10;

elsif INPxDI="11" then STATExDN <= st4;

else STATExDN <= st11;

end if;

when st10 =>

if INPxDI="00" then OUPxDO <= ’1’;

elsif INPxDI="11" then OUPxDO <= ’1’;

end if;

STATExDN <= st1;

--
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when st11 =>

STATExDN <= st1;

end case;

end process p_memless;

---- updating of state

----------------------------------------------------------------------------

p_memzing: process (CLKxCI , RSTxRBI)

begin

-- activities triggered by asynchronous reset

if RSTxRBI=’0’ then

STATExDP <= st1;

-- activities triggered by rising edge of clock

elsif CLKxCI ’event and CLKxCI=’1’ then

STATExDP <= STATExDN;

end if;

end process p_memzing;

end enumerated_state;

4.9.4 Simulation testbenches

The testbenches given below have been written along the lines discussed in section 4.4.2 and in
chapter 3. This implies, among many other things, that the events “� ↓ � ↑” repeat periodically.
The MUT is a sequential circuit that takes multiple clock cycles to carry out one unsigned n-by-n
multiplication. Simulation is a for a 4-by-4 bit configuration. Make sure you understand that none
of the code below is intended for synthesis.

Model-independent declarations and subprograms

simulstuff.vhd contains a collection of type declarations and subprograms that do not depend on
the MUT and can, therefore, be reused in almost any VHDL simulation. The package includes

• An adjustable clock generator.
• Procedures for file handling.
• Procedures for generating random stimuli.
• A procedure for checking actual against expected responses.
• Procedures for evaluating and reporting mismatches.
• Procedures for compiling a simulation report.

For sake of brevity, the code is not reprinted here but available for download.

A testbench of grade 1

In a grade 1 simulation, stimulus/response pairs are expressed as bits exclusively and locked to
predetermined clock cycles. Overall organization follows fig.3.14. Source code is distributed over
five design files.

• multtb1.vhd: Testbench including clock generator and two VHDL processes
for stimulus application and response acquisition.
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• multtb1pkg.vhd: A collection of model-specific declarations and subprograms.
• shiftaddmult.vhd: The MUT, a sequential shift-and-add multiplier.
• multref.vhd: An entity that reads the expected responses from a file.
• simulstuff.vhd: Same as always, see above.

-- Mission: Provide a code example for a file -based testbench.

-- Functionality: A simple testbench for a 4-bit shift add multiplier. The

-- source code of the multiplier is located in the file shiftaddmult.vhd.

-- The testbench reads stimuli and expected responses from separate

-- ASCII files and writes a simulation report to a third ASCII file.

-- The testbench applies stimuli and acquires actual responses every clock

-- cycle.

-- When stimuli vectors outnumber expected responses , the simulation run

-- continues with "don ’t cares".

-- Companion files: simulstuff.vhd , multtb1pkg.vhd , shiftaddmult.vhd ,

-- multref.vhd

-- Platform: This testbench was written and tested with Modelsim 6.0.

-- Company: Microelectronics Design Center , ETH Zurich.

-- Authors: Hubert Kaeslin , Thomas Kuch

-------------------------------------------------------------------------------

use std.textio.all;

library ieee;

use ieee.std_logic_textio.all; -- read and write overloaded for std_logic

use ieee.std_logic_1164.all;

use work.simulstuff.all;

use work.multTb1Pkg.all;

-------------------------------------------------------------------------------

entity MultTb1 is

-- a testbench does not connect to any higher level of hierarchy

end MultTb1;

-------------------------------------------------------------------------------

architecture Behavioral of MultTb1 is

-- declaration of model under test (MUT) and functional

-- reference (expected response pickup)

component ShiftAddMult is

generic (

width : natural );

port (

ClkxCI : in std_logic;

RstxRBI : in std_logic;

StartCalcxSI : in std_logic;

InputAxDI : in std_logic_vector(width -1 downto 0);

InputBxDI : in std_logic_vector(width -1 downto 0);

OutputxDO : out std_logic;

OutputValidxSO : out std_logic );

end component;

for RefInst : ShiftAddMult use entity work.ShiftAddMult(Pickup);

for MutInst : ShiftAddMult use entity work.ShiftAddMult(Behavioral );
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begin

-- instantiate MUT and functional reference and connect them to the

-- testbench signals

-- note: any bidirectional must connect to both stimuli and responses

-----------------------------------------------------------------------------

MutInst : ShiftAddMult

generic map (

width => 4 )

port map (

ClkxCI => ClkxC ,

RstxRBI => StimuliRecxD.RstxRB ,

StartCalcxSI => StimuliRecxD.StartCalcxS ,

InputAxDI => StimuliRecxD.InputAxD ,

InputBxDI => StimuliRecxD.InputBxD ,

OutputxDO => ActResponseRecxD.OutputxD ,

OutputValidxSO => ActResponseRecxD.OutputValidxS );

RefInst : ShiftAddMult

generic map (

width => 4 )

port map (

ClkxCI => ClkxC ,

RstxRBI => StimuliRecxD.RstxRB ,

StartCalcxSI => StimuliRecxD.StartCalcxS ,

InputAxDI => StimuliRecxD.InputAxD ,

InputBxDI => StimuliRecxD.InputBxD ,

OutputxDO => ExpResponseRecxD.OutputxD ,

OutputValidxSO => ExpResponseRecxD.OutputValidxS );

-- pausable clock generator with programmable mark and space widths

-----------------------------------------------------------------------------

-- The procedure ClockGenerator is defined in the package simulstuff.

-- This concurrent procedure call is a process that calls the procedure ,

-- with a syntax that looks like a "process instance ".

ClkGen : ClockGenerator(

ClkxC => ClkxC ,

clkphaselow => clk_phase_low ,

clkphasehigh => clk_phase_high );

-- obtain stimuli and apply it to MUT

-----------------------------------------------------------------------------

StimAppli : process

begin

AppliLoop : while not (endfile(stimulifile )) loop

wait until ClkxC ’event and ClkxC = ’1’;

-- wait until time has come for stimulus application

wait for stimuli_application_time;

-- apply stimulus to MUT
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StimuliRecxD <= GetStimuliRecord(stimulifile );

end loop AppliLoop;

-- tell clock generator to stop at the end of current cycle

-- because stimuli have been exhausted

EndOfSimxS <= true;

-- close the file

file_close(stimulifile );

wait;

end process StimAppli;

-- acquire actual response from MUT and have it checked

-----------------------------------------------------------------------------

RespAcqui : process

-- variables for accounting of mismatching responses

variable respmatch : respMatchArray;

variable respaccount : respaccounttype := (0, 0, 0, 0, 0, 0);

-- variable for counting the lines written to the simulation report

variable simRepLineCount : natural := 0;

begin

-- This wait statement is useful only if the stimuli file is empty. In that

-- case , EndOfSimxS gets true after one delta delay. Without the wait , the

-- exit statement below would be executed before EndOfSimxS gets true.

wait until ClkxC ’event and ClkxC = ’0’;

AcquiLoop : loop

-- leave the loop if there are no more stimuli left

exit AcquiLoop when EndOfSimxS = true;

wait until ClkxC ’event and ClkxC = ’1’;

-- wait until time has come for response acquisition

wait for response_acquisition_time;

-- compare the actual with the expected responses

CheckResponse(ActResponseRecxD , ExpResponseRecxD ,

respmatch , respaccount );

-- add a trace line to report file

PutSimulationReportTrace(simreptfile , StimuliRecxD , ActResponseRecxD ,

respmatch , respaccount , simRepLineCount );

-- add extra failure message to report file if necessary

PutSimulationReportFailure(simreptfile , ExpResponseRecxD , respmatch );

end loop AcquiLoop;

-- when the present clock cycle is the final one of this run

-- then establish a simulation report summary and write it to file

PutSimulationReportSummary(simreptfile , respaccount );

-- close the file

file_close(simreptfile );

report "Simulation run completed!";
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wait;

end process RespAcqui;

end architecture Behavioral; -- of MultTb1

-- Mission: See associated testbench file.

-- Functionality: This package contains type declarations , signals , and

-- constants for the testbench. It also contains some MUT -specific functions

-- and procedures.

-- Platform: Modelsim 6.0.

-- Company: Microelectronics Design Center , ETH Zurich.

-- Authors: Hubert Kaeslin , Thomas Kuch

-------------------------------------------------------------------------------

use std.textio.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_textio.all;

use work.simulstuff.all;

--=============================================================================

package multTb1Pkg is

-- declarations of all those signals that do connect to the MUT

-- most of them are collected in records to facilitate data handling

-- note: any bidirectional must be made part of both stimuli and responses

type stimuliRecordType is record

RstxRB : std_logic;

StartCalcxS : std_logic;

InputAxD : std_logic_vector (3 downto 0);

InputBxD : std_logic_vector (3 downto 0);

end record;

-- same for actual and expected response

type responseRecordType is record

OutputxD : std_logic;

OutputValidxS : std_logic;

end record;

-- as there are two elements in the response record , an array with two

-- elements of type respmatchtype is needed

type respMatchArray is array (1 to 2) of respmatchtype;

signal ClkxC : std_logic := ’1’; -- driving clock

signal StimuliRecxD : stimuliRecordType; -- record of stimuli

signal ActResponseRecxD : responseRecordType; -- record of actual responses

signal ExpResponseRecxD : responseRecordType; -- record of expected responses

-- timing of clock and simulation events

constant clk_phase_high : time := 50 ns;

constant clk_phase_low : time := 50 ns;

constant response_acquisition_time : time := 90 ns;

constant stimuli_application_time : time := 10 ns;
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-- declaration of stimuli , expected responses , and simulation report files

constant stimuli_filename : string := "../ simvectors/stimuli.asc";

constant expresp_filename : string := "../ simvectors/expresp.asc";

constant simrept_filename : string := "../ simvectors/simrept.asc";

-- the files are opened implicitly right here

file stimulifile : text open read_mode is stimuli_filename;

file simreptfile : text open write_mode is simrept_filename;

-------------------------------------------------------------------------------

-- function for reading stimuli data from the stimuli file

function GetStimuliRecord (file stimulifile : text)

return stimuliRecordType;

-- function for reading expected responses from the expected response file

function GetExpectedResponseRecord (file exprespfile : text)

return responseRecordType;

-- procedure for comparing actual and expected response

procedure CheckResponse

(actRespRecord : in responseRecordType;

expRespRecord : in responseRecordType;

respmatch : inout respMatchArray;

respaccount : inout respaccounttype );

-- procedure for writing stimuli and actual responses to the report file

procedure PutSimulationReportTrace

(file simreptfile : text;

stimuliRecord : in stimuliRecordType;

actRespRecord : in responseRecordType;

respmatch : in respMatchArray;

respaccount : in respaccounttype;

simRepLineCount : inout natural );

-- compose a failure message line and write it to the report file

procedure PutSimulationReportFailure

(file simreptfile : text;

expRespRecord : in responseRecordType;

respmatch : in respMatchArray );

end package MultTb1Pkg;

--=============================================================================

package body MultTb1Pkg is

-- purpose: get one record worth of stimuli from file.

function GetStimuliRecord

(file stimulifile : text)

return stimuliRecordType

is

variable in_line , in_line_tmp : line;

-- stimuli to default to unknown in case no value is obtained from file

variable stimulirecord : stimuliRecordType :=

(RstxRB => ’X’, StartCalcxS => ’X’,
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InputAxD => (others => ’X’), InputBxD => (others => ’X’) );

begin

-- read a line from the stimuli file

-- skipping any empty and comment lines encountered

loop

readline(stimulifile , in_line );

-- copy line read to enable meaningful error messages later

in_line_tmp := new string ’( in_line(in_line ’low to in_line ’high ));

if in_line_tmp ’length >= 1 then

exit when in_line_tmp (1) /= ’%’;

end if;

deallocate(in_line_tmp );

end loop;

-- extract all values of a record of stimuli

GetFileEntry(stimulirecord.RstxRB , in_line , in_line_tmp , stimuli_filename );

GetFileEntry(stimulirecord .StartCalcxS , in_line , in_line_tmp ,

stimuli_filename );

GetFileEntry(stimulirecord.InputAxD , in_line , in_line_tmp ,

stimuli_filename );

GetFileEntry(stimulirecord.InputBxD , in_line , in_line_tmp ,

stimuli_filename );

-- deallocate line copy now that all entries have been read

deallocate(in_line_tmp );

return stimulirecord;

end GetStimuliRecord;

-------------------------------------------------------------------------------

-- purpose: get one record worth of expected responses from file.

function GetExpectedResponseRecord (file exprespfile : text)

return responseRecordType

is

variable in_line , in_line_tmp : line;

-- expected responses to default to don ’t care

-- in case no value is obtained from file

variable expresprecord : responseRecordType :=

(OutputxD => ’-’, OutputValidxS => ’-’);

begin

-- read a line from the expected response file as long as there are any

-- skipping any empty and comment lines encountered

if not(endfile(exprespfile )) then

loop

readline(exprespfile , in_line );

-- copy line read to enable meaningful error messages later

in_line_tmp := new string ’( in_line(in_line ’low to in_line ’high ));

if in_line_tmp ’length >= 1 then

exit when in_line_tmp (1) /= ’%’;

end if;

deallocate(in_line_tmp );

end loop;

-- extract all values of a record of expected responses

GetFileEntry(expresprecord.OutputxD , in_line , in_line_tmp ,

expresp_filename );

GetFileEntry(expresprecord .OutputValidxS , in_line , in_line_tmp ,

expresp_filename );

-- deallocate line copy now that all entries have been read
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deallocate(in_line_tmp );

-- return default value in case EOF is overrun , no else clause needed

end if;

return expresprecord;

end GetExpectedResponseRecord;

-------------------------------------------------------------------------------

-- purpose: procedure for comparing actual and expected response

procedure CheckResponse

(actRespRecord : in responseRecordType;

expRespRecord : in responseRecordType;

respmatch : inout respMatchArray;

respaccount : inout respaccounttype)

is

begin

CheckValue(ActResponseRecxD.OutputxD , ExpResponseRecxD.OutputxD ,

respmatch (1), respaccount );

CheckValue(ActResponseRecxD.OutputValidxS , ExpResponseRecxD.OutputValidxS ,

respmatch (2), respaccount );

end CheckResponse;

-------------------------------------------------------------------------------

-- purpose: writing stimuli and actual responses to the report file.

procedure PutSimulationReportTrace

(file simreptfile : text;

stimuliRecord : in stimuliRecordType;

actRespRecord : in responseRecordType;

respmatch : in respMatchArray;

respaccount : in respaccounttype;

simRepLineCount : inout natural)

is

constant N : natural := 60;

variable out_line : line;

begin

-- every Nth line , (re)write the signal caption to the simulation report

if simRepLineCount mod N = 0 then

write(out_line ,

string ’(" "));

writeline(simreptfile , out_line );

write(out_line ,

string ’("Time RstxRB OutputxD"));

writeline(simreptfile , out_line );

write(out_line ,

string ’("| | StartCalcxSI | OutputValidxS"));

writeline(simreptfile , out_line );

write(out_line ,

string ’("| | | InputAxD | |"));

writeline(simreptfile , out_line );

write(out_line ,

string ’("| | | 3210 InputBxD | |"));

writeline(simreptfile , out_line );

write(out_line ,
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string ’("| | | | 3210 | |"));

writeline(simreptfile , out_line );

write(out_line ,

string ’("| | | | | | |"));

writeline(simreptfile , out_line );

end if;

simRepLineCount := simRepLineCount + 1;

-- begin with simulation time

write(out_line , string ’("at "));

write(out_line , now);

-- add stimuli

write(out_line , ht);

write(out_line , stimuliRecord.RstxRB);

write(out_line , string ’(" "));

write(out_line , stimuliRecord.StartCalcxS );

write(out_line , string ’(" "));

write(out_line , stimuliRecord.InputAxD );

write(out_line , string ’(" "));

write(out_line , stimuliRecord.InputBxD );

-- add actual response 1

write(out_line , string ’(" "));

write(out_line , actRespRecord.OutputxD );

case respmatch (1) is

when mok =>

-- if the actual response matches with the expected one , append nothing

write(out_line , string ’(" "));

when mne =>

-- if there was no expected response for the actual one , append a ’-’

write(out_line , string ’(" - "));

when mlf =>

-- if the actual response doesn ’t match logically , append an ’l’

write(out_line , string ’(" l "));

when msf =>

-- if the actual doesn ’t match in strength , append an ’s’

write(out_line , string ’(" s "));

when others => -- when mil

-- if the actual response is "don ’t care", append an ’i’

write(out_line , string ’(" i ")); --

end case;

-- add actual response 2

write(out_line , actRespRecord.OutputValidxS );

case respmatch (2) is

when mok => null;

when mne =>

write(out_line , string ’(" -"));

when mlf =>

write(out_line , string ’(" l"));

when msf =>

write(out_line , string ’(" s"));

when others => -- when mil

write(out_line , string ’(" i"));

end case;
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-- write the output line to the report file

writeline(simreptfile , out_line );

end PutSimulationReportTrace;

-------------------------------------------------------------------------------

-- purpose: compose a failure message line and write it to the report file.

procedure PutSimulationReportFailure

(file simreptfile : text;

expRespRecord : in responseRecordType;

respmatch : in respMatchArray)

is

variable out_line : line;

begin

-- if at least one actual doesn ’t match with its expected response

if (respmatch (1) /= mok and respmatch (1) /= mne) or

(respmatch (2) /= mok and respmatch (2) /= mne) then

write(out_line , string ’("^^ Failure! Expected was :"));

-- if actual response 1 doesn ’t match with its expected response

if respmatch (1) /= mok and respmatch (1) /= mne then

-- add expected response

write(out_line , string ’(" "));

write(out_line , expRespRecord.OutputxD );

else

write(out_line , string ’(" "));

end if;

-- if actual response 2 doesn ’t match with its expected response

if respmatch (2) /= mok and respmatch (2) /= mne then

-- add expected response

write(out_line , string ’(" "));

write(out_line , expRespRecord.OutputValidxS );

end if;

writeline(simreptfile , out_line );

end if;

end PutSimulationReportFailure;

end package body MultTb1Pkg;

-- Mission: See associated testbench file.

-- Functionality: The following architecture describes a shift add multiplier

-- for unsigned numbers. The multiplier takes two W-bit input values. The

-- 2W-bit wide result is put out serially (LSB first).

-- Platform: Modelsim 6.0

-- Company: Microelectronics Design Center , ETH Zurich

-- Author: Thomas Kuch

-------------------------------------------------------------------------------

library ieee;
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use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

-------------------------------------------------------------------------------

entity ShiftAddMult is

generic (

width : natural := 8 ); -- word width of the two inputs

port (

ClkxCI : in std_logic;

RstxRBI : in std_logic;

StartCalcxSI : in std_logic;

InputAxDI : in std_logic_vector(width -1 downto 0);

InputBxDI : in std_logic_vector(width -1 downto 0);

OutputxDO : out std_logic;

OutputValidxSO : out std_logic );

end ShiftAddMult;

-------------------------------------------------------------------------------

architecture Behavioral of ShiftAddMult is

signal ClearRegxS : std_logic;

signal InputRegEnxS : std_logic;

signal ShiftEnxS : std_logic;

signal InputAxDP : unsigned (2*width -1 downto 0);

signal InputBxDP : unsigned(width -1 downto 0);

signal Summand1xD : unsigned(width -1 downto 0);

signal Summand2xD : unsigned(width -1 downto 0);

signal SumxD : unsigned(width downto 0);

type statetype is (idle , newData , calculate );

signal StatexDP , StatexDN : statetype;

signal CounterxDP , CounterxDN : natural range 0 to 2* width -1;

begin -- Behavioral

-- Input registers

-----------------------------------------------------------------------------

-- Shift register for input A

InpAReg: process (ClkxCI , RstxRBI)

begin

if RstxRBI = ’0’ then -- asynchronous reset (active low)

InputAxDP <= (others => ’0’);

elsif ClkxCI ’event and ClkxCI = ’1’ then -- rising clock edge

if InputRegEnxS = ’1’ then

InputAxDP(width -1 downto 0) <= unsigned(InputAxDI );

elsif ClearRegxS = ’1’ then

InputAxDP <= (others => ’0’);

elsif ShiftEnxS = ’1’ then

InputAxDP <= InputAxDP srl 1; -- the MSB is padded with 0

end if;
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end if;

end process InpAReg;

-- Register for input B

InpBReg: process (ClkxCI , RstxRBI)

begin

if RstxRBI = ’0’ then -- asynchronous reset (active low)

InputBxDP <= (others => ’0’);

elsif ClkxCI ’event and ClkxCI = ’1’ then -- rising clock edge

if InputRegEnxS = ’1’ then

InputBxDP <= unsigned(InputBxDI );

elsif ClearRegxS = ’1’ then

InputBxDP <= (others => ’0’);

end if;

end if;

end process InpBReg;

-- Bitwise multiplication of one bit of input A with the whole input B

-----------------------------------------------------------------------------

AndGate: process (InputAxDP , InputBxDP)

begin

for i in width -1 downto 0 loop

Summand1xD(i) <= InputAxDP (0) and InputBxDP(i);

end loop;

end process AndGate;

-- Adder

-----------------------------------------------------------------------------

SumxD <= resize(Summand1xD , width +1) + resize(Summand2xD , width +1);

-- Register for summation

-----------------------------------------------------------------------------

SumReg: process (ClkxCI , RstxRBI)

begin

if RstxRBI = ’0’ then -- asynchronous reset (active low)

Summand2xD <= (others => ’0’);

elsif ClkxCI ’event and ClkxCI = ’1’ then -- rising clock edge

if ClearRegxS = ’1’ then

Summand2xD <= (others => ’0’);

else

Summand2xD <= SumxD(width downto 1);

end if;

end if;

end process SumReg;

-- Output assignment

-----------------------------------------------------------------------------

OutputxDO <= std_logic(SumxD (0));
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-- Controller FSM

-----------------------------------------------------------------------------

-- Combinational process

FSMcomb: process (StatexDP , StartCalcxSI , CounterxDP)

begin

-- default assignments

InputRegEnxS <= ’0’;

ShiftEnxS <= ’0’;

OutputValidxSO <= ’0’;

ClearRegxS <= ’0’;

StatexDN <= StatexDP;

CounterxDN <= CounterxDP;

-- nondefault transitions and assignments

case StatexDP is

when idle =>

ClearRegxS <= ’1’;

if StartCalcxSI = ’1’ then

StatexDN <= newData;

end if;

when newData =>

InputRegEnxS <= ’1’;

StatexDN <= calculate;

when calculate =>

ShiftEnxS <= ’1’;

OutputValidxSO <= ’1’;

if CounterxDP = 2* width - 1 then

CounterxDN <= 0;

StatexDN <= idle;

else

CounterxDN <= CounterxDP + 1;

end if;

when others =>

StatexDN <= idle;

end case;

end process FSMcomb;

-- State register

FSMseq: process (ClkxCI , RstxRBI)

begin

if RstxRBI = ’0’ then -- asynchronous reset (active low)

StatexDP <= idle;

CounterxDP <= 0;

elsif ClkxCI ’event and ClkxCI = ’1’ then -- rising clock edge

StatexDP <= StatexDN;

CounterxDP <= CounterxDN;

end if;

end process FSMseq;

end architecture Behavioral; -- of ShiftAddMult
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-- Mission: See associated testbench file.

-- Functionality: This entity contains the functional reference of the

-- testbench. The reference picks up expected responses from an ASCII file.

-- Platform: Modelsim 6.0

-- Company: Microelectronics Design Center , ETH Zurich.

-- Authors: Thomas Kuch

-------------------------------------------------------------------------------

use std.textio.all;

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_textio.all;

use ieee.numeric_std.all;

use work.simulstuff.all;

use work.multTb1Pkg.all;

-- This architecture picks up the expected responses from a file

-- (the architecture uses the same entity as the MUT)

-------------------------------------------------------------------------------

architecture Pickup of ShiftAddMult is

-- the file is opened implicitly right here

file exprespfile : text open read_mode is expresp_filename;

begin

ExpResPickup : process

variable ResponsexD : responseRecordType;

begin

PickupLoop : loop

wait until (ClkxCI ’event and ClkxCI = ’1’) or EndOfSimxS = true;

-- leave the loop if there are no more stimuli left

exit PickupLoop when EndOfSimxS = true;

-- update expected response from file

ResponsexD := GetExpectedResponseRecord(exprespfile );

OutputxDO <= ResponsexD.OutputxD;

OutputValidxSO <= ResponsexD.OutputValidxS;

end loop PickupLoop;

file_close(exprespfile ); -- close the file

wait;

end process ExpResPickup;

end architecture Pickup; -- of ShiftAddMult

Admittedly, the above testbench code is fairly large and complex for the modest MUT. This is
because the code has been designed to scale to more complex MUTs and because it includes all nec-
essary facilities for file handling, clocking, response checking, and error reporting, and for producing
a summary at the end of a simulation run.
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A testbench of grade 2

In a grade 2 simulation, the testbench includes extra protocol adapters to translate between word-
level stimulus/response pairs and cycle-true bit-level data. Overall organization follows fig.3.15.
Source code is distributed over six design files.

• multtb2.vhd: Testbench including two VHDL processes for stimulus application and
response acquisition; also configures simulation as file-based or golden-model-based.

• multtb2pkg.vhd: A collection of model-specific declarations and subprograms.
• protocoladapter.vhd: The two protocol adapters for the MUT.
• shiftaddmult.vhd: The MUT, a sequential shift-and-add multiplier

(same as for grade 1).
• mult.vhd: Three entities that respectively

- instantiate the MUT along with its two protocol adapters,
- serve as a golden model (of purely combinational nature!),
- read the expected responses from a file.

• simulstuff.vhd: Same as always, see above.

Again, the code is made available for download instead of being reprinted here.

4.9.5 Working with VHDL tools from different vendors

Making VHDL tools from different EDA vendors cooperate smoothly can be difficult because each
tool has its own preferences on where and in what format design data should be stored. A well-
defined directory organization greatly simplifies data management during design iterations, engi-
neering change orders, tapeout, backup, reuse, and the like.

Repositories for sourcecode, for simulation input data, for simulation output, for tool-specific
intermediate data, and for finished netlists are to be kept apart.

Fig.4.23 suggests a directory structure for those who want or need to use ModelSim for simulation
and Synopsys Design Compiler for synthesis.



Chapter 5

The Case for Synchronous Design

5.1 Introduction

Experience tells us that malfunctioning digital circuits and systems often suffer from timing prob-
lems. Symptoms include

• Bogus output data,
• Erratic operation, typically combined with a
• Pronounced sensitivity to all sorts of variabilities such as PTV and OCV.

Erratic operation often indicates that the circuit operates at the borderline of a timing violation.
Searching for the underlying causes not only is a nightmare to engineers but also causes delays in
delivery and undermines the manufacturer’s credibility.1

Observation 5.1. To warrant correct and strictly deterministic circuit operation, it is absolutely

essential that all signals have settled to a valid state before they are admitted into a storage element

(such as a flip-flop, latch or RAM).

This truism implies that all combinational operations and all propagation phenomena involved in
computing and transporting some data item must have come to an end before that data item is being
locked in a memory element. Data that are free to change theirs values at any time are dangerous
because they may give rise to bogus results and/or may violate timing requirements imposed by the
electronic components involved.2 Hence the need for regulating all state changes and data storage
operations.

1 Malfunctioning that occurs intermittently or that depends on minor variations of temperature, voltage, signal
waveforms, and similar circumstances makes debugging extremely painful. The fact that one can never be sure
whether simulation accuracy suffices to predict transient waveforms, a subcircuit’s reactions to a marginal
triggering condition, and other details with sufficient precision does not help either.

2 Timing requirements are meant to include setup and hold conditions, minimum clock high and low times, and
maximum clock rise and fall times. All these quantities are explained in section A.6.
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Fig. 5.1 Family tree of clocking disciplines (simplified). Underlined are those options that this author considers

to be safe and economically viable in the context of VLSI, provided they are implemented correctly.

Many schemes for doing so have been devised over the years, see fig.5.1. From a conceptual per-
spective, we must distinguish between two diametrically opposed alternatives, namely synchronous
clocking and self-timed operation. A third category that includes all unstructured ad hoc clocking
styles — occasionally referred to as “clock-as-clock-can” in this text — is not practical except for
the smallest subcircuits perhaps.

The present chapter first introduces and compares these approaches before commenting on why
synchronous clocking is considered to be the best choice for staying clear of timing problems in the
context of digital VLSI. Several general design rules are explained. Further details such as what
bistables to use, how to clock them, and how to distribute the clock signal(s) over a circuit (or a
clock domain) will be the subject of chapter 6.

5.2 The grand alternatives for regulating state changes

5.2.1 Synchronous clocking

Definition 5.1. A circuit or subcircuit is said to operate synchronously iff all data storage opera-

tions and, hence, all state transitions, are restricted to occurring periodically at precise moments of

time that are determined by a special signal referred to as the clock.
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A single clock that drives a set of flip-flops is the most straightforward pattern, but the above
definition is meant to include circuits where bistables are being driven by a pair of complementary
clock signals, e.g. CLK and CLK. The same also applies to multi-phase clocks and even to multiple
clocks of distinct frequencies, provided those subclocks are all locked to one primary clock signal.
State changes are effectively restricted to occurring synchronously to the primary clock as long as
all driving clocks maintain fixed frequency and phase relationships.3

Definition 5.2. A clock domain or, which is the same thing, a synchronous island is a (sub)circuit

where all clock signals maintain fixed frequency and phase relationships because they are derived from

a common source.

A clock domain may be confined to one subblock on a chip or may extend over several chips or
even printed circuit boards. Any line that separates two distinct clock domains is referred to as a
clock boundary. As stated before, most designs make do with a single clock signal per domain,
but there are exceptions to this rule.

5.2.2 Asynchronous clocking

Definition 5.3. A circuit or subcircuit works asynchronously when some or all of the memory

elements therein are permitted to change their states independently from a global reference.

Asynchronous circuits are easily identified by the presence of

• Unclocked bistables (SR-seesaw, Muller-C, MUTEX, etc.),
• Zero-latency feedback loops, e.g. as part of
• Asynchronous state machines (ASM),
• Logic gates other than buffers and inverters in clock nets,4

• Gated asynchronous (re)set signals,
• Logically redundant circuitry for hazard suppression,
• Imposed delays, ring oscillators,
• One-shots, pulse shapers, and similar subcircuits.

Examples of such constructs that never appear in synchronous designs are given in fig.5.2b and
discussed in more detail in section 5.4.3. A multitude of clock signals, clock domains, and clock
boundaries is another indication of asynchronous circuit operation.

5.2.3 Self-timed clocking

A more recent addition to the category of asynchronous circuits relies on self-timing throughout.

Definition 5.4. An asynchronous circuit or subcircuit is said to operate in a self-timed manner

when all state transitions get regulated by local start and completion events on a per case basis.

3 This is the case when some primary clock is being subdivided by way of some counter circuitry in order to derive
one or more slower clocks. The converse, that is clock frequency multiplication with the aid of a phase locked
loop (PLL), also results in multiple signals with fixed frequency and phase relationships.

4 Gated clocks are an exception, please refer to section 6.5 for advice.
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Fig. 5.2 Toy examples intended to give a flavor of the three grand alternatives for clocking. Synchronous

clocking (a), clock-as-clock-can (b), and self-timed clocking (c).
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The guiding principle is that no storage register is allowed to accept any new data from its predeces-
sor before its successor has safely acquired the data item currently stored in the register. Whether
the data items are subject to combinational operations while travelling from one register to the
next or not is immaterial.

As opposed to synchronous clocking, there is no global signal that would trigger operations, which
explains why this scheme is also known as clockless logic. Instead, the various building blocks in the
circuit coordinate their activities by way of handshake protocols, which necessitates an on-going
mutual exchange of status information. There is no way for an external observer to tell when a
given computational step or data transfer is to happen because everything occurs in an entirely
data-driven and, therefore, aperiodic way. The operation of a self-timed circuit proceeds at its own
speed and automatically adjusts to PTV conditions.

Self-timed schemes come in numerous varieties [134] [135] [136] that essentially differ in how status
information is actually communicated and in the assumptions on circuit delays that underlie protocol
and circuit design.

5.3 Why a rigorous approach to clocking is essential in VLSI

The propagation of new data values through a digital network gives rise to transient phenomena
within the network itself and at the output. Let us briefly review the impact of spurious events
on the functioning of digital circuits to prepare the ground for a subsequent discussion of clocking
schemes and circuit design styles.

5.3.1 The perils of hazards

Hazard and glitch are two names for unwanted transients on binary signals. How they originate is
examined in appendix A.5, key findings are as follows:

� Be prepared to observe glitching at the output of any combinational circuit with the sole
exception of fanout trees. This is because hazards can originate
(a) if two or more inputs change at the same time — or almost so —, or
(b) if the combinational logic includes reconvergent fanout paths.

� Glitches are difficult to predict as their manifestation — in terms of waveform, amplitude, and
duration — depends on many low-level details unknown at synthesis time, including place-
ment, wiring, detailed layout, gate and interconnect delays, crosstalk, PTV conditions, and
on-chip variations (OCVs). A minute departure may determine whether a hazard manifests
itself as a rail-to-rail excursion, becomes visible as a runt pulse, or results in no tangible
manifestation at all.

It is prudent to assume that any combinational network gives rise to hazards unless one has proof to
the contrary. To determine whether a network actually develops glitches or not requires a detailed
analysis of its transistor-level circuitry, timing parameters, layout parasitics, input waveforms, and
the like. Manual elimination of hazards is a painful and unprofitable exercise as only small networks
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are amenable to analysis. Imposing narrow delay bounds on signal propagation paths is not com-
patible with automated synthesis and place-and-route (P&R) of VLSI circuits where interconnect
delays often dominate over gate delays.

Observation 5.2. All clocks, all asynchronous reset and presets, all write lines of asynchronous

RAMs plus any other signal that might trigger a state transition in a memorizing subcircuit must

be kept free of hazards under all circumstances.5

There is an abundance of catastrophic failures that could result if this rule were violated:

• Unwanted state transitions in any kind of finite state machine.
• Multiple registration of a single event by a counter.
• Erroneous activation of an edge-triggered interrupt request line of a microprocessor.
• Unplanned-for return of a sequential (sub)circuit to its start state.
• Storage of bogus data in a register or a RAM.
• Data losses or duplications during data transfer operations.
• Deadlocks in asynchronous communication protocols (such as handshaking).
• Marginal triggering and, hence, metastable behavior of bistables.6

Data, address, status, control, and other signals not capable of sparking off a state change without
the intervention of a clock are not affected. Similarly, combinational subcircuits are not normally
sensitive to hazards because all transient effects are reversible and eventually die out.7 Glitches also
cause no problem when driving sluggish peripheral equipment such as indicator lamps, electrome-
chanical relays, teletypes, and the like.

5.3.2 The pros and cons of synchronous clocking

There are ten essential benefits that are shared by all synchronous clocking disciplines.

1. Hazards do not compromise functionality. Clock and asynchronous reset are the only two
signals that must be kept free of hazards under all circumstances. Doing so is easy, strictly
limiting distribution networks to fanout trees suffices.

2. As no timing violations ever occur within a properly designed synchronous circuit, there is no
chance for inconsistent data, marginal triggering, and metastability to develop.

3. Immunity to noise and coupling effects is maximum because all nodes are allowed to settle
before any storage operations and state changes occur.

5 Be warned that state-change-triggering inputs are not always identified as such in the documentation of com-
mercially available components or library elements. They sometimes hide under unconspicuous names such as
“chip enable” (CEB), “write enable” (WEB), “interrupt request” (IRQ), and “strobe”, to name just a few.

6 The term “metastability” refers to an unpredictable behavior of a memory element that may, or might not,
result from violating its timing conditions, see chapter 7 for details.

7 There are a few exceptions, however, where hazards are unacceptable in spite of the memoryless nature of the
subsystems involved. These include:
• Digital modulators and other circuits where signals are required to follow a well-defined waveform or spectrum.
• Output enable signals where hazards could occasion transient drive conflicts, thereby leading to exaggerated

crossover currents, needless power dissipation, and excessive ground bounce.
• Electronically controlled power drives and power converters where unforeseen current spikes are likely

to cause permanent damage.
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4. All timing constraints are one-sided. For a circuit to function correctly, any timing quantity
is bounded either from above (such as the longest propagation delay, for instance) or from
below (such as the contamination delays). Two-sided constraints do not exist.8

5. Together, the four above properties warrant deterministic behavior of circuits independently
from low-level details.9 Synchronous designs do not rely on delay tuning in any way, what
matters for functional correctness are the data operations at the RTL level exclusively. This
argument cannot be overestimated in view of

• Automatic placement, routing, and physical design verification,
• Automatic HDL synthesis, logic optimization, clock tree generation, and rebuffering,
• Automatic insertion of test structures,
• Reusing a HDL model or a netlist in multiple designs, and
• Retargetting a design from one cell library and/or fabrication process to another (e.g.

from FPL to a mask-programmed IC, or vice versa).

6. A systematic, modular, and efficient approach to design, test, and troubleshooting is impos-
sible unless history-dependent behavior is strictly confined to clocked storage elements. More
specifically, synchronous operation makes it possible to separate functional verification from
timing analysis and to take advantage of automata theory and related concepts.

7. There is no need for any redundant circuitry to suppress hazards. Standard synthesis tools
are geared towards minimizing circuit complexity while meeting performance constraints; they
are not concerned with transients and their elimination.

8. The operations that are to be carried out in each clock cycle can be stated and collected at
compile time, thereby opening a door for cycle-based simulation techniques that are more
efficient when circuits grow large. Asynchronous circuits, in contrast, are entirely dependent
on event-driven simulation.

9. Established methods for circuit testing (such as fault grading, test vector generation, and
the insertion of test structures) start from the assumption of synchronous operation. What’s
more, almost all test equipment is designed accordingly.

10. Synchronous clocking makes it possible to slow down and even to suspend circuit operation
in any state and for an arbitrary lapse of time,10 which greatly facilitates the tracing of state
transitions, data transfers, protocol sequences, and computation flow when a malfunction-
ing circuit must be debugged. The ability to operate synchronous circuits in speed-limited
environments is often welcome for prototyping purposes.

Undeniably, synchronous circuit operation also has its drawbacks.

1. Performance is determined by the worst rather than by the average delay over all data.11

8 With the exception of one-phase level-sensitive operation, which is considered impractical, see section 6.2.7.
9 This is to say that buffer sizing, library changes, parameter variations (PTV and OCV), physical arrange-

ment, layout parasitics, etc. are likely to impact maximum clock rate, I/O timing, power dissipation, and other
quantitative figures of merit, but not a circuit’s functionality.

1 0 Unless capacitive data storage is involved such as in DRAMs or in dynamic CMOS logic.
1 1 A workaround is to be presented in footnote 18.
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2. There may be unnecessary power dissipation because each register dissipates energy in each
clock cycle regardless of the extent of state change. Yet, there exists a broad variety of tech-
niques for lowering clock-induced power dissipation while maintaining overall synchronous
circuit operation.12

3. Synchronous operation causes periodic surges in supply currents. This not only strains the
power and ground nets but also entails electromagnetic radiation at the clock frequency and
at higher harmonics.

4. Synchronization problems are unavoidable at the interface between any two clock domains.13

However, similar problems arise wherever an asynchronous subsystem interfaces with a clock-
driven environment such as a sampled data source or data sink.

5. Most synchronous clocking disciplines insist on tightly controlled delays within the clock
distribution network. Special software tools that address this need during physical design
make up part of all major VLSI CAD suites.

5.3.3 Clock-as-clock-can is not an option in VLSI

Unsafe circuits often emanate from obsolete or perfunctory design methodologies. This is particu-
larly true for asynchronous circuits, the design of which is very demanding, both in terms of profound
understanding and in terms of engineering effort. Sporadic timing violations and a pronounced sen-
sitivity to delay variations are typical consequences. Although popular with digital pioneers, ad-hoc
clocking schemes have become unacceptable because VLSI technology has changed the picture in
the following way.

� Most asynchronous circuits must be considered fragile because their functional behavior crit-
ically depends on certain delay figures and, therefore, also on their layout arrangements. This
makes it difficult to anticipate whether fabricated circuits will indeed behave as simulated as
no simulation model is capable of rendering all effects that contribute to timing variations
with perfect precision.

� Finding and correcting timing problems is difficult enough on a board in spite of the fact that
designers have access to almost all circuit nodes and can add extra components for tuning
delays. It is next to impossible on a monolithic chip that offers no such possibilities.

� Historically, emphasis was on making do with as few SSI/MSI packages as possible. The prime
challenge today is first-time-right design, a few more logic gates do not normally matter.

� Early logic MOS and TTL devices were so slow that wiring-induced delays could be neglected
altogether. As opposed to this, interconnect delays due to wiring parasitics tend to dominate
over gate delays in VLSI, thereby making it impossible to predict delays from circuit diagrams.

� VLSI designers cannot afford delay tuning of a vast collection of signals. For the sake of
productivity, they must rely on design automation as much as possible for logic synthesis,
optimization, placement, routing, and verification. The higher productivity so obtained is at
the expense of control over most implementation details.

1 2 You may want to refer to sections 6.5, 8.2, and 9.2.2 for energy-conserving circuit design.
1 3 This is the sub ject of chapter 7.
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In conclusion, an industrial circuit designer concerned with design productivity, first-time-right
design, and fabrication yield is well advised to follow the recommendations below.

Observation 5.3. Ad-hoc approaches to clocking are no more than unfortunate leftovers from the

early days of digital design that are incompatible with the requirements of VLSI. Instead, strive

to make do with as few clock domains as possible and strictly adhere to one synchronous clocking

discipline within each such domain.

Let us bring this matter to an end with two quotes from experts

“Just say NO to asynchronous design!” [137]
“KISS those asynchronous-logic problems good-bye, Keep It Strictly Synchronous!”14 [138]

5.3.4 Fully self-timed clocking is not normally an option either

As opposed to unsophisticated asynchronous clocking schemes, self-timed clocking follows a strict
discipline, holds the promise of achieving better performance, and provides valuable hooks for im-
proving on energy efficiency [139]. In comparison with synchronous clocking schemes, the notorious
difficulty of domain-wide clock distribution is replaced by a multitude of local synchronization or
arbitration problems, which in turn calls for a specific design methodology.

In spite of its theoretical benefits,

• The hardware and energy overheads associated with implementing handshaking or related
request–acknowledge protocols all the way down to the level of logic gates,

• The difficulties of interfacing with clock-driven peripheries and test equipment,
• The absence of self-timed components in commercial cell libraries,15

• The shortage of adequate EDA support,
• The excruciating subtleties of the design process, and
• The lack of widespread know-how, together with
• The ensuing time-to-market penalty

have — so far — prevented fully self-timed logic from becoming a practical alternative.16

5.3.5 Hybrid approaches to system clocking

Current efforts are attempting to combine the best of both worlds into globally asynchronous
locally synchronous (GALS) circuits where synchronous islands communicate via self-timed data
exchange protocols. The usage of arbiters and pausable clocks is typical for GALS circuits. Such
heterochronous architectures are being investigated as an alternative to overly large synchronous
systems in search of improved energy efficiency, better performance, more manageable clock distri-
bution, and facilitated design reuse [141] [142].

1 4 K.I.S.S. originally was a slogan to improve the success rate of complex operations, “Keep It Simple, Stupid”.
1 5 Such as the Muller-C and the mutual exclusion elements (MUTEX) explained in appendix A.4. Dual-rail encod-

ing further necessitates special circuits for logic gates and bistables that are not found in regular cell libraries.
1 6 Industrial interest is documented by startups such as Theseus Logic Inc. and Handshake Solutions. The former

has patented NULL Convention Logic (NCL), which, however, is penalized by an important overhead factor of
2 to 2.5 over traditional synchronous logic [140].
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Table 5.1 The grand alternatives for clocking compared.

Clocking discipline
asynchronous synchronous

Desirable characteristics ad hoc self-timed

Fundamentals
Immune to hazards no yes except for yes except for

protocol signals clock and reset
No need for hazard-suppression logic no yes yes
One-sided timing constraints only no yes yes
No marginal triggering maybe, yes yes within
during circuit operation maybe not synchr. island
Avoids timing problems at interfaces no no no

Design process
No particular library cells needed yes no yes
Does without tightly controlled delays no yes except for yes except
in logic and interconnect local subcircuits for clocka

Circuit to function irrespective no yes yes
of logic and layout details
Functionality and timing separable no mostly yes yes
Systematic and modular design no yes yes
methodology, reuse facilitated
Matches with prevalent flows and tools no no yes
Arbitrarily slow operation supported no no yesb

for debugging purposes (step-by-step)

Periodicity of circuit operation
All signals to settle before clocking no no yes
Non-periodic “random” supply current more or less yes no
Supports cycle-based simulation no no yes
Works with existing test equipment no no yes

Figures of merit of final circuit
Good area efficiency sometimes yes, only if overhead yes

more often no remains modest
Better than worst-case performance more or less yes no
Good performance in practice in particular debatable yes

applications
Good energy efficiency in particular yes if overhead yes if designed

applications remains modest accordingly

a Skew-tolerant schemes are available, see section 6.2.
b Unless DRAMs or dynamic CMOS logic is being used.
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A different strategy termed mesochronous clocking is to distribute a global clock signal without
much concern for skew. Specially designed local synchronizer circuits are then used to sample data
at multiple points in time, to detect synchronization failures, and to retain valid data only [143]. A
related idea is to insert tunable delay lines within the clock distribution network and to calibrate
them automatically at startup time such as to make all blocks work synchronously together [144].

For the time being, most this must be considered research, however, as industry is reluctant to
embrace unproven concepts and design flows.

5.4 The dos and don’ts of synchronous circuit design

Synchronous operation essentially rests on the two guiding principles to be presented next.

5.4.1 First guiding principle: Dissociate signal classes!

While digital VLSI designers must devise circuits that function in a predictable and dependable
way, they cannot afford to study the transient behavior of every single circuit node in detail. What
is needed is a robust and well-understood clocking discipline that, when properly implemented,
warrants correct circuit timing under all operating conditions.

From the background of our findings on transients in digital circuits in section 5.3, there is a
fairly obvious solution. Rather than attempting to suppress hazards here and there — which is
symptomatic for clock-as-clock-can design — the set of acceptable circuit structures is voluntarily
and consistently restricted to those that
• do not let hazards originate in clock and in asynchronous (re)set nets, and that
• tolerate hazards on all other signals with no impact on functionality whatsoever.

The most efficient way to prevent dangerous hazards from coming into existence is to shut out
all signals that might possibly prompt a state change from participating in logic operations. Table
5.2 begins by distinguishing between hazard-sensitive and hazard-tolerant signals before classifying
signals further as a function of their respective roles in a circuit.

Reset signals cause a sequential circuit to fall into some predetermined start state without the
intervention of a clock. Their effect is immediate, unconditional, and always the same. Prac-
tically speaking, this includes all asynchronous reset and set inputs present on many
bistables, but none of the synchronous initialization signals.

Clock signals are in charge of sparking off all regular transitions of a sequential circuit from one
state to the next, but have no influence on what that next state will be.

Information signals is a collective term for all those signals that contribute to deciding what
state a circuit is to assume in response to an active clock edge and/or what output that
circuit shall produce.
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Table 5.2 Taxonomy of signals within a synchronous island. The bottom part suggests a naming
convention for signals in HDL models, schematics, and netlists detailed further in appendix 5.7.

E l e c t r i c a l s i g n a l s
Class Reset signal Clock signal(s) Information signals
determines when to when to move what state to enter next

(re)enter the from one state and/or
start state to the next what output to produce

Hazards inadmissible inadmissible harmless
Role during general model general model evaluated at model activation time,
simulation wake up wake up no wake up of memorizing models

Subclass — — Functional signals Test signals
implement improve ob-

serves to the desired servability and
functionality controllability

Members Asynchronous Clock(s) Status, Data, Block isolation,
(re)set control address scan path(s)

Switching is Examples and their identification by way of naming and color code
synchronous CLK many many TST,
to local clock — SCM, SCI, SCO
Class char C S D T

Color green blue black yellow
asynchronous RST, SET any input prior
to local clock — to synchronization
Class char R A A A

Color red orange orange orange

We further distinguish between functional signals and test signals, with the first subclass
largely outnumbering the second. Functional signals comprise data, address, control, and
status signals, which together implement the desired functionality. Test signals get added
on top during the design process to improve circuit testability. From this perspective, syn-
chronous clear and load inputs are nothing else than particular control signals.

We now stipulate

Observation 5.4. Synchronous circuits boast a clear-cut separation into signals that decide on

when state transitions and output changes are to take place, and others that determine what data

values to output and what state transitions to carry out, if any. As a consequence, (asynchronous)

reset signals, clock signals, and information signals never mix. Combinational operations (other

than unary negation) are strictly confined to information signals.
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5.4.2 Second guiding principle: Allow circuits to settle before clocking!

Another essential precondition for safe operation follows immediately from observation 5.1, which
implies that any combinational network shall be allowed to settle to its steady-state condition before
the emanating output signals are clocked into some memory device. In the context of a (sub)circuit
driven by a single clock, this amounts to the following requirement.

Observation 5.5. Synchronous designs must be operated with a clock period long enough to make

sure that all transient effects have died out before the next active clock edge instructs registers and

other storage devices to accept new data.17

While this indeed prevents hazards on information signals from having any effect on the circuit’s
(next) state, it comes at a cost. The length of the computation period, and hence also the clock
period, are bounded from below by the slowest signal that travels between any two consecutive
registers (longest propagation path, most penalizing set of data, slowest operating condition). The
clock rate must be chosen to be such as to conform with the worst-case timing, thereby denying the
possibility of taking advantage of more favorable situations, no matter how frequently these might
occur.18

5.4.3 Synchronous design rules at a more detailed level

In a certain sense, observations 5.4 and 5.5 form the “constitution” of synchronous circuit design
from which many “laws” of more specific nature can be easily derived given some particular situa-
tion. A couple of them will be explained and illustrated next, but we do not intend to present all
such rules here as many of them have a rather narrow focus.19

HDL synthesis has greatly simplified things in that designers no longer need to manually assemble
subfunctions from primitive gates and bistables. Yet, the responsibility for writing circuit models
that properly synthesize to robust synchronous circuits is still that of the engineer. To do so, he
must be capable of recognizing and correcting dangerous constructs.

Unclocked bistables prohibited

Observation 5.6. As opposed to flip-flops and latches, unclocked bistables such as seesaws, snap-

pers, and Muller-C elements do not qualify as storage elements in synchronous designs.

1 7 A more precise, quantitative formulation of this and other constraints will be given in section 6.2.
1 8 This is precisely the starting point for speculative completion that borrows from self-timed execution while

preserving strictly synchronous circuit operation. The idea is based on the statistical observation that only few
data vectors do indeed exercise the longest path in ripple-carry adders and related arithmetic circuits. The clock
frequency is chosen such that the worst-case delay fits into two clock periods instead of one. A fast auxiliary
circuit monitors carry generation and carry propagation signals in order to determine whether the current
calculation involves a short or a long ripple-carry path. System operation is made to continue immediately if
the adder is found to settle before the end of the first cycle. If not so, system operation is stalled for one extra
clock cycle. Please refer to [145] for a more detailed account of this out-of-the-ordinary technique.

1 9 More rules are included in appendix C. [146] is a valuable reference on safe digital design; the textbook gives
a list of nine detailed rules but implicitly excludes all clocking disciplines other than edge-triggered one-phase
clocking, which is overly restrictive.
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Fig. 5.3 Examples of bistables that do not qualify for data storage in synchronous designs. Seesaw (a), snapper

(b), and Muller-C element (c).

Unclocked bistables do not differentiate among reset, clock, and information signals, which renders
them vulnerable to hazards and is contrary to the postulates of observation 5.4. The usage of
naked SR-seesaws is strongly discouraged in spite of the fact that certain latch and flip-flop designs
include them as subcircuits.20 Snappers are not for storing data; their sole legal usage is to prevent
the voltage from drifting away while a three-state node waits in a high-impedance condition. The
Muller-C element is a building block of self-timed circuits.

Zero-latency loops prohibited

Zero-latency loop is just another name for a circular signal propagation path in a network of
combinational subcircuits, see fig.5.4 for examples. The problem with such circuits is that it is not
possible to determine a logic value for the output even if all input values are known. The underlying
reason is that some combinational function makes reference to its own result.
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Fig. 5.4 A few examples of undesirable zero-latency loops.

2 0 Refer to section 8.2 for detailed circuit diagrams.
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Variable N in fig.5.4a, for instance, can settle neither to 0 nor to 1 without causing a logic con-
tradiction. A physical circuit may then oscillate or assume a precarious equilibrium. The circuit of
fig.5.4b is free of contradictions and quickly locks into one of two stable states of equilibrium, but
there is no way to predict M without knowledge of its original value.

For a more substantial example consider the cross-coupled adders of fig.5.4e. Inputs A, B and
outputs X , Y all have the same word width w ≥ 2 (carry bits are left aside for simplicity).

X = B + Y Y = A + X (5.1)

Behavior depends on the input values applied. If A + B = 0, equations reduce to X = X and Y =
Y , which implies that X and Y preserve their values. Although built from combinational gates
exclusively, a physical circuit would lock into one of many possible states and remain there as long
as the inputs are kept the same. Yet, a circuit with memory but no distinction between when and
what signals does not conform with the dissociation principle of synchronous design.

Conversely, if A + B �= 0, one has X = (B + A) + X and Y = (A + B) + Y . A physical circuit
would be bound to add and switch at a frenzied pace forever. Failure to settle to a steady-state is
against the second guiding principle of synchronous operation, however. What’s more, none of the
circuits shown behaves as one would expect from logic and arithmetic subfunctions.

HDL code can include circular references without the author being aware of them. Examples often
involve a Mealy machine plus a datapath, glue logic, or some other surrounding circuitry, see fig.5.4g.
A feedback path in the logic can then combine with a through path in the finite state machine (FSM)
to form a circular signal propagation path. Note that not all FSM input and output bits need to be
part of the loop, one of each suffices. Another particularity is that such paths may open and close
as a function of state and input value.21 While this is likely to confine malfunction to just a few
situations, it also renders debugging particularly difficult.

Observation 5.7. By prohibiting zero-latency loops, gate-level circuits are effectively prevented

from oscillating, from locking into unwanted states, and from otherwise behaving in an unpredictable

way. In synchronous designs, each circular path must include one register at least.22

Monoflops, one-shots, edge detectors, and clock chopping prohibited

Monoflop, monostable multivibrator, one-shot, and edge detector are names for a variety of sub-
circuits that have one thing in common: they output multiple edges or even multiple pulses for a
single transition at their input. A clock chopper does the same with a clock signal. Any of these can
be built from a delay line in conjunction with reconvergent fanout, though other implementations
also exist. See fig.5.5 for an example and observe that the exact nature of the contraption gets
determined by the logic operation at the point of reconvergence.

2 1 A perfidious example is given in appendix B.2.3.
2 2 Exceptions exist as the absence of zero-latency loops is a sufficient but not a necessary condition for memoryless

behavior. A notable example of a circuit that settles to well-defined steady states for arbitrary stimuli in spite
of a zero-latency loop is the end-around-carry used in 1’s complement and sign–magnitude adders [66]. Proving
that a feedback circuit predictably exhibits combinational behavior under all circumstances may be a major
effort, though.
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Fig. 5.5 Clock chopper circuit (a) with waveforms (b).

Unwary designers are sometimes tempted to resort to clock chopping when they have to incorporate
blocks, e.g. unclocked RAMs, that impose timing constraints incompatible with normal synchronous
circuit operation. Frequency multiplication is another usage. Once again, the requirements of ob-
servation 5.4 are obviously violated. Major problems are testability, ill-defined pulse width, critical
place and route, timing verification, and vulnerability to delay variations.

Observation 5.8. Monoflops, one-shots, edge detectors, and especially clock choppers

are absolute no-nos in synchronous design.

Clock and reset signals to be distributed by fanout trees

Clock and asynchronous (re)set signals can trigger a state transition at any time. A hazard on a
signal of either of these two classes is, therefore, very likely to lead to catastrophic failure.

Observation 5.9. No clock and asynchronous (re)set signals shall ever participate in any logic

operation other than the unary operation of taking the complement. Instead, any signal capable of

inducing a state change must be distributed by a fanout tree exclusively.

This is because fanout trees are a priori known not to generate hazards.23 Binary logic operations
such as nor, and, and xor, are strictly prohibited. Buffers and inverters are the sole logic gates
that are acceptable in clock and in reset networks.

Beware of unsafe clock gates

Clock gating implies enabling and disabling state transitions by suppressing part of the clock edges
depending on the present value of some control signal. Doing so with the aid of an and or some
other simple gate spliced into the clock net as shown in fig.5.6 has always been a poor technique
because it is unsafe and against the principle of dissociation. However, as conditional clocking has
seen a renaissance and has indeed become a necessity in the context of low-power design, safer ways
of doing so will be studied in great detail in section 6.5.

No gating of reset signals

Very much like a gated clock, we speak of a gated reset when the asynchronous reset or preset
input of a latch, flip-flop, register, counter, or some other state-preserving subcircuit participated in

2 3 No hazard can arise in a single-input network that is free of reconvergence. Please refer back to section 5.3 or
see section A.5 for a more complete rationale.
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Fig. 5.6 Unsafe D-type flip-flop with enable resulting from malformed clock gating.

combinational operation with some other signal. This anachronistic practice of using a reset signal
for any other purpose than for overall circuit initialization is against the principles of synchronous
design and holds serious dangers.

Warning example

Specifications had asked for a modulo-15 counter, i.e. a counter that steps from state 0 to 14 before
returning to 0. Counter slices were available from the standard cell library. The designer elected to
start with a modulo-16 counter and to skip the unutilized state 15 by activating the asynchronous
reset mechanism whenever the counter would enter that state. He devised the circuit of fig.5.7a,
which behaved as expected during logic simulation. When the IC was put into service, however, the
circuit missed out state 14 and went from state 13 to 0 directly. Why?

What the designer had overlooked was the transient behavior of the decode logic he had created.
He implicitly started from the assumption that all inputs to the 4-input nand would switch at the
same time. In reality, all sorts of imbalances contributed to making them arrive staggered in time.
In the occurrence above, the LSB was slightly delayed with respect to the other bits, which made
the 4-input nand temporarily see a 1111 during the transition from 1101 to 1110, see fig.5.7b.24

Further note that other delay patterns could equally well have caused the counter to return to state
0 from states 7 or 11.

The design might have developed yet another failure because the intended clearing of the counter
slices in state 15 is by way of a feedback loop with latency zero. The reset condition comes to an
end whenever the output of the fastest slice begins to flip. There is no guarantee that the impulse
so generated is sufficiently long to clear all other bistables too. Some of the flip-flops might also be
subject to marginal triggering and eventually fall back to their previous states.

�

Observation 5.10. The sole purpose of asynchronous (re)set inputs is to bring an entire circuit

into its predefined start state. Do not gate them with information signals.

2 4 The phenomenon can be recognized as a function hazard.
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Fig. 5.7 Unsafe modulo-15 counter subcircuit. Schematic (a) and state graph (b).

It is interesting to study the motivations that lead people to expose themselves to the hazards of
unsafe circuits such as the ones of figs 5.6 and 5.7. Two rationales are often heard:

� Some desired functionality was unavailable in a synchronous implementation from the tar-
get cell library. In the case of the above modulo-15 counter, the designer flatly preferred to
misuse the asynchronous reset instead of figuring out how to add a synchronous clear/load
to an elementary D-type flip-flop. The need for an enable/disable mechanism, for conditional
clocking, and for data transfers across clock boundaries are further situations that tend to ex-
pose designers to the temptations of asynchronous design. HDL synthesis certainly has helped
designers to stay away from such practices.

� The asynchronous implementation was believed to result in a smaller circuit, faster speed,
and/or better energy efficiency than a synchronous alternative. While this may be true in
some cases, the contrary has been demonstrated in many others. Keep in mind that any
redundant circuitry necessary to generate multiple auxiliary clocks, to stretch impulses, to
suppress unwanted glitches, or to make sure local delay constraints are satisfied does not
come without its price either. In view of all the limitations cited in section 5.3.3, overall
cost-effectiveness remains questionable to say the least.25

Bistables with both asynchronous reset and preset inputs prohibited

Some component and cell libraries include flip-flops that feature both an asynchronous set and an
asynchronous reset. Synchronous design knows of no useful application for such subcircuits. Also,
behavior is unpredictable and resembles that of a seesaw when S and R are deasserted simultaneously.

2 5 You may want to consult section A.10, where more details on how to construct safe flip-flops with enable, with
synchronous clear, with scan facility, and the like are given.
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Reset signals to be properly conditioned

Please note, to begin with, that the total load controlled by the global reset is on the same order
of magnitude as that driven by the circuit’s clock signal. It typically takes a large buffer or a buffer
tree to drive that net with acceptable rise and fall times.
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Fig. 5.8 Conditioning of global asynchronous reset signal. Fully asynchronous (a), fully synchronized (b), and

unconditional application combined with synchronized removal (c).

A more specific peril associated with the usage of asynchronous (re)sets exists in applications with
a free-running clock, that is where a reset impulse may occur at any time with respect to the
driving clock, see fig.5.8a. If the circuit’s asynchronous reset input gets deactivated near the active
clock edge, then part of the bistables may be allowed to take up normal operation before the end of
one clock cycle while others would remain locked until early in the next cycle. Going through the
same efforts as with the clock distribution network to minimize reset skew, i.e. local differences in
delays within the reset distribution network, is a rather costly option.
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Incorporating the auxiliary subcircuit depicted in fig.5.8b solves the problem by synchronizing the
reset signal to the on-chip clock before it gets distributed to the functional bistables. All bistables
are thus guaranteed to get properly (re)set during the same clock cycle. Any transitions on the
internal reset occur shortly after the active clock edge, which leaves the designer with ample time,
i.e. almost one clock period, for distributing the signal across the chip. As a side effect, the circuit
responds to the external reset signal with a latency of one clock cycle.

Yet, a new difficulty has been introduced because the reset operation now depends on the func-
tioning of the clock subsystem. In the absence of a clock or in the presence of specific hardware
faults, the circuit would fail to settle to a defined start state. Drive conflicts, static power dissipa-
tion, inconsistent output data, destructive overwrite of nonvolatile memories, and other operating
conditions unsafe for the surrounding system may be the undesirable consequences. In the design of
fig.5.8c, a simple combinational bypass makes sure that a reset is immediately and unconditionally
brought to bear. Deactivation, in contrast, takes place at well-defined moments of time. An equiv-
alent circuit alternative does away with the and-gate by connecting the external reset input to a
synchronizer flip-flop with an asynchronous reset terminal.

Keep in mind that all three designs impose conditions on the relative timing of RSTxRB and CLKxC.
Violating them may cause marginal triggering in one or more of the flip-flops. Also remember that
asynchronous (re)set inputs are very sensitive to glitches and noise.

Pay attention to portable design

IC designers time and again face the problem of porting a design from one implementation platform
to another, e.g. when they

• Port a design from an FPGA to a cell-based ASIC, or vice versa,
• Upgrade to a more up-to-date target process or library,
• Incorporate a third-party circuit block into a larger design, or
• Accept a heritage design for integration.

While it is possible to fine-tune almost any design for some given technology, employing asyn-
chronous techniques can be disastrous when it comes to porting a design from one target platform
to another. Think ahead and design for portability in the first place.

Observation 5.11. Accept that almost all VLSI designs are subject to porting during their lifetime

and stick to the established rules of safe design and synchronous operation to render the porting

smooth and cost-effective.

Design rules other than those given in this chapter are to follow in sections 6.5, 8.5, and 13.4.2.

Conversely, when being proposed an existing design, do not accept it unseen. Be prepared to dis-
tillate the necessary functionality and reimplement it using a clocking discipline that is compatible
with VLSI or your target PLD. Heritage designs on the basis of standard parts such as micropro-
cessors and LSI/MSI circuits notoriously include the worst examples of asynchronous design tricks.
Also note that on-chip memories often are at the origin of portability problems because of the many
varieties being offered.
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5.5 Conclusions

� Among the three grand alternatives for clocking digital circuits, ad-hoc asynchronous opera-
tion has been found to be unsafe and inefficient in VLSI.

� While safe if implemented correctly, self-timed operation at the gate level entails an unac-
ceptable overhead in terms of hardware and energy, and necessitates out-of-the-normal design
methodologies, software tools, and library cells.

� Synchronous operation of large system chunks does away with almost all timing problems,
results in efficient circuits, and is compatible with today’s design automation flows and cell
libraries. There hardly is a better choice for VLSI, especially when there is high pressure on
tight schedules and high design productivity.

� Synchronous circuits exhibit a strict dissociation of signals into

◦ One clock signal (possibly more of fixed frequency and phase relationship),
◦ One asynchronous reset signal (optional),
◦ An arbitrary number of information signals.

� HDL synthesis does not relieve designers of deciding about clocking disciplines and clock
domains as it is possible to express any clocking discipline in an RTL circuit model.

5.6 Problems

1. Fig.5.4c and d depict two feedback circuits, each built from a few logic gates. Establish their
respective truth tables and discuss your findings.

2. The circuit of fig.5.4c behaves much like a latch where D acts as data input and E as enable
input. Explain why this construct does not qualify as a latch in synchronous designs.

3. Come up with a synchronous implementation for the modulo-15 counter of fig.5.7. Compare
the relative sizes of the two alternatives on the basis of the assumption that both counters are
built from D-type flip-flops.

4. FireWire is the name of a serial bus for interconnecting computer and multimedia equipment.
To facilitate the delimiting and recovering of individual bits from the data stream at the
receiver end, data get conveyed one bit after the other coded using two peer signals (the fact
that two differential signal pairs are actually being used does not matter in this context). The
first signal termed “data” simply corresponds to the incoming data whereas its “companion”
is to feature a transition at the boundary between any two adjacent bits iff the first signal does
not. Thus, at either end of a FireWire link, a modulator circuit in the transmitter converts
the incoming serial data stream into a data-plus-companion pair, while a demodulator on the
receiving side is in charge of recovering the initial data from that signal pair. Design both a
modulating and a demodulating circuit. What class is the automaton you must use?
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5.7 Appendix: On identifying signals

with contributions by N. Felber, R. Zimmermann, and M. Brändli

Many mistakes in hardware design can be traced down to minor oversights in specifications,
datasheets, truth tables, HDL code, schematics, and the like. Misinterpretations are particularly
likely to occur at the interfaces between different subsystems, subcircuits, and clock domains because
correct operation implies mutual agreement on the meaning behind data formats, signal waveforms,
and transmission protocols. A clear and unambiguous, yet simple, scheme for naming signals and
for drawing diagrams greatly helps to avoid such problems, especially when working in a team. To
be helpful, a notational convention must keep track of

• Signal class.
• Active level.
• Signaling waveform.
• Input, output or bidirectional.
• Present state vs. next state.
• Clock domain.

5.7.1 Signal class

A total of six signal subclasses have been identified in section 5.4 and catalogued in table 5.2. The
same table suggests appending one of the characters below to make a signal’s role evident from its
name. Please refer to section 5.7.7 for syntactical details.

◦ R asynchronous (re)set,
◦ A any other signal subject to asynchronous switching,
◦ C clock,
◦ S status or control,
◦ D data, address or the like,
◦ T test.

Colors in schematic diagrams and HDL source code

Wires colored in a meaningful way greatly expedite the understanding of large schematic diagrams
and render many potential problems immediately visible.26 Let us cite five examples on the basis
of the coloring scheme of table 5.2:

• Any clock signal (green) routed through a logic gate or other combinational subcircuit with
two or more inputs draws attention to a potentially unsafe clock gating practice.

2 6 The coloring scheme proposed in fig.5.2 is intended for usage in schematic diagrams that are drawn on light
backgrounds. On dark backgrounds, white must be substituted for black. Also, swapping blue and yellow re-
establishes the original idea of fading all test-related signals, since they tend to distract from a circuit’s func-
tionality.
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• A register with neither an asynchronous (re)set wire (red) nor a synchronous clear (blue)
attached indicates the subcircuit is in need of a special homing sequence for initialization.

• Any combinational logic that drives an asynchronous (re)set line (red) indicates (re)set inputs
are exposed to hazards as a consequence of their being misused for functional purposes.

• Any signal emanating from a foreign clock domain (orange) that drives combinational logic
points to a lack of synchronization.

• The absence of any test signals (yellow) makes it obvious that no test structures have been
incorporated in a functional block.

Coloring signal names in HDL source code facilitates the interpretation of hardware models in much
the same way as colored wires used to do in schematics. The Emacs editor has been extended by a
special VHDL mode that checks and supports syntactical correctness [147]. Automatic coloring of
signal names further assists authors and readers of code.

Clock symbols and clock domains in schematic diagrams

It is good engineering practice to identify the clock inputs by way of graphical symbols attached to
icons, see fig.5.9a, b, and c. Standard single-edge-triggering clocks are marked by a small triangle,
the more unusual double-edge-triggering clocks by two dovetailed triangles, and level-sensitive clocks
by a small rectangle. This rule is by no means restricted to gate-level diagrams as its application is
beneficial to the clarity of schematics at any level of hierarchy.

Any signal that crosses over from one clock domain to another deserves particular attention as it
may switch at any time irrespective of the receiver’s clock. Making clock domains explicit in block
diagrams and schematics is very important. All subcircuits that belong to one clock domain shall
be placed close together and all clock boundaries shall be made evident.

5.7.2 Active level

Naming of complementary signals

As active-high and active-low signals coexist within the same circuit, it is important to make it
clear in the identifier whether a given signal is to be understood in positive or in negative logic.
Overlining the name is how negated terms are identified in mathematics, e.g. if FOO stands for an
active-high signal, then its active-low counterpart is named FOO (pronounced “foo bar”).

Since this notation does not yield character strings acceptable for processing by computers, many
engineers prefix or postfix the original identifier, e.g. they might resort to something like ˜FOO, /FOO
or FOO$. However, the problem with most non-alphanumerical characters is that today’s EDA tools,
HDLs, and related standards disagree on which such symbols they support within node names and
on where they are allowed to occur in the name’s character string.

For reasons of cross-platform compatibility, we prefer to use the attribute B (for “bar”) in conjunction
with the syntactical conventions given in section 5.7.7. In the occurrence, we do write FOOxB, also
see fig.5.9d and e. The popular practice of appending a simple B or N is not recommended because
it may give rise to confusion in names such as SELB or OEN.

The same argument also holds for conditions and actions related to edges rather than to logic levels.
By default, the rising edges are considered to be the active ones for a non-inverted signal.
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Inversion symbols in schematic diagrams

Signal polarities must also become clear from schematics and icons. In fact, cell icons often include
small circles that are supposed to stand as a shorthand notation for regular gate-type inverter
symbols. One would thus naturally expect to find such an inversion circle wherever a signal gets
translated from active-high to active-low or vice versa, and wherever polarity changes from rising-
edge- to falling-edge-triggering or back. This is the mindset behind fig.5.9d.

CLKCLKxC

single-edge-
triggereda)

CLKxC CLK

double-edge-
triggeredb)

CLKPHIxC

level-
sensitivec)

in contradiction

D Q
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ENAxB
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Fig. 5.9 Notational conventions in schematic diagrams. Identification of clock inputs (a,b,c) and two

competing mindsets for reflecting signal polarities (d,e).

Most industrial cell libraries follow the notation depicted in fig.5.9e, though. Please observe that
signals RSTxB and CLKxB are not subject to any negation upon entering the flip-flop here; the small
circles just reconfirm that the cell’s inputs RST and CLK are active-low and falling-edge-triggered
respectively. Much the same observation applies to output Q. The reason for this departure from
mathematical rigor is that a cell can thus keep the same graphical icon independently from the
context, a quality not shared by the notational convention of fig.5.9d.

Hint: As there are no generally adhered-to standards, designers are well advised to double-
check the exact meaning of signal identifiers, terminal names, and inversion circles when
working with third-party components, cell libraries, or HDL code.

5.7.3 Signaling waveforms

In distinguishing between active-high and active-low signals, we have tacitly assumed that it was
a signal’s level that conveyed information from a transmitter to the receiver(s). While this is often
true, this is not the only way to code information into a signal waveform. Figure 5.10 shows a data
signal along with three different interpretations of its waveform.27

2 7 Three is by no means exhaustive. Calling upon pairs of complementary signals to improve on noise immunity
(differential signaling) comes as a natural extension. Other schemes map data onto waveforms in a more elaborate
way to allow safe recovery of individual bits from a serial data stream at the receiving end (self-clocking),
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Clock-qualified signaling means that the logic level, 1 or 0, of the signal at the instant of each
active clock edge is what matters. Key characteristics of this scheme are as follows.

• Qualifier-type signals are always meant relative to a specific clock.
• They must remain stable throughout the data-call window (i.e. setup/hold interval)

of the receiving circuit.
• Each timewise coincidence gets interpreted as a relevant event of its own

even if the signal does not change in between.
• Hazards between active clock edges have no effect.

Examples: The enable input of a synchronous counter, the write line of a clocked (syn-
chronous) RAM, the zero flag from an ALU when followed by a flip-flop.

Impulse signaling relies on the presence of an impulse, mark or pause, which implies that

• Each rising edge or, alternatively, each falling edge is counted as a relevant event.
• The signal must return to its initial, passive level before it can possibly become active

for a second time.
• The durations of marks and pauses are immaterial.
• Static and dynamic hazards are unacceptable as they would cause erroneous registration

of events where there are none.

Examples: Write line of an unclocked (asynchronous) RAM, request and acknowledge signals
in a four-phase handshake protocol.

Transition signaling does the signaling with the presence of an edge, which means that

• Each rising and falling edge is counted as a relevant event.
• The signal must not restore its initial value between two consecutive events.
• The durations of marks and pauses are immaterial.
• Static and dynamic hazards are unacceptable as they would cause erroneous registration

of events where there are none.

Example: Request and acknowledge signals in a two-phase handshake protocol.

Note from fig.5.10 that the number of relevant events and their respective instants of registration
are not the same. It is thus absolutely essential that transmitter and receiver agree on the signaling
waveform if a system is to function as intended. This is not normally a problem within a clock
domain where information signals are clock-qualified as a consequence of how they are implemented
in hardware. For the sake of simplicity, we can omit an attribute in this case. However, care must
be exercised where a signal traverses the boundary of a subsystem or clock domain. The signaling
waveform shall thus be stated as follows:

whereas yet others transmit two peer signals — neither of which can be interpreted as a clock — for the same
purpose (companion signaling). The FireWire bus, for instance, uses four wires and a waveform referred to
as non-return to zero with data strobe (NRZ-DS) which is a combination of differential with companion
signaling. We refrain from discussing such sophisticated signaling schemes here as they are mainly intended for
communication between more distant subsystems.
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Fig. 5.10 Three signaling waveforms in common use.

◦ Q clock-qualified signaling,
◦ M impulse signaling (for “mark”),
◦ G transition signaling (for “grade”).

5.7.4 Three-state capability

Signals with high-impedance capability shall be identified by a Z character. This is to remind
designers of the various issues associated with a three-state circuit node such as resolution function,
drive conflicts, floating potential, and testability.

5.7.5 Inputs, outputs, and bidirectional terminals

input

FOOxI

output

BARxO

bidirectional

SNAFUxIO

.

other

VDD

Fig. 5.11 Terminals in schematic diagrams.

HDL code is easier to understand when inputs and outputs are immediately discernible from an
appended I or O.28 IO then obviously stands for a bidirectional signal. The same information is
often conveyed by way of graphical symbols in schematic diagrams, see fig.5.11.

2 8 As an added benefit, this also circumvents a quirk of VHDL in that the language disallows reading back from
an output terminal. That is, an interface signal declared as out in the port clause of some entity declaration
is permitted neither on the right-hand side of a signal assignment in the pertaining architecture body nor in a
relation operation (such as =, /=, <, etc.). Distinguishing between two signals does away with the problem: while
FOOxD can be freely used within the architecture body, a copy named FOOxDO is to drive the output port.

Some programmers prefer to declare the port to be of mode inout instead, yet this is nothing else than a bad
habit. After all, what one wants to model from an electrical point of view is just an output, not a bidirectional.
No HDL language restriction should make us obscure our honest intentions.
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5.7.6 Present state vs. next state

Most synthesis models of finite state machines include two signals for capturing a state variable,
namely a first one that holds its present value and a second one that predicts the value it is going to
assume in response to the next active clock edge. It is imperative not only to identify such signals
as being closely related, but also to make it clear which is which.

While this is immediately obvious in schematics, identifiers are the sole means of conveying this
kind of information in HDL models. We therefore suggest using the same signal name but telling
present and next state apart with the aid of suffixes P and N.

5.7.7 Syntactical conventions

We have now compiled a number of attributes for making a signal’s nature evident. A practical
problem is how to permanently attach those attributes to a signal. About the only way that can be
expected to work across different EDA platforms consists in blending them right into the signal’s
identifier. A natural idea is to separate the name per se from its attributes by inserting some
non-alphanumerical character in between, i.e. to write FOO DB for an active-low data signal, for
instance. To make a long story short, there is no special character that would qualify for the job
without restrictions.29 As a workaround, we recommend using an x instead, possibly combined with
the popular mixed lower/upper-case style. We must admit, however, that parsing such identifiers
becomes difficult if they happen to get processed by some program that has the side effect of
mapping all lower-case letters to upper-case ones or vice versa.

signal_identifier ::= signal_name "x" signal_attributes

signal_name ::= signal_name_part { signal_name_part }

signal_name_part ::= upper_case_letter { letter | digit }

signal_attributes ::= class_char [ signal_waveform ] state_char

trist_mode active_low_char io_mode

class_char ::= "R" | "A" | "C" | "S" | "D" | "T"

signal_waveform ::= "Q" | "M" | "G"

state_char ::= "N" | "P" | ""

trist_mode ::= "Z" | ""

active_low_char ::= "B" | ""

io_mode ::= "I" | "O" | "IO" | ""

2 9 The underscore is about the only non-alphanumerical character tolerated in node names across many EDA
tools. The IEEE 1076.4 VITAL standard unfortunately reserves that very character as a delimiter in generics,
e.g. in an identifier such as tpd FOO BAR for the propagation delay from an input FOO to some output BAR. VITAL
models must not contain any underscore in an entity’s port declaration. This choice is all the more unfortunate
as the underscore is the one and only non-alphanumerical allowed within VHDL identifiers.

The situation is not too bad for the majority of people who are just simulating with VITAL models rather
than writing their own ones. This is because any underscore in a user-defined port name always appears in
the actual part of the port maps of VHDL component instantiation statements, and never in the formal part
sub ject to VITAL ruling. The aforementioned reservations relating to the underscore character do not apply in
this case.

Yet, beware of the one tool or netlist language that interprets the underscore as a hierarchy delimiter. For the
sake of unlimited cross-platform portability, we thus recommend spelling node names with no special characters.
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Note: In order to facilitate the decoding of signal names by human beings, no attribute character
has been assigned more than one interpretation. We nevertheless recommend ordering attribute
characters according to the syntax given above and, more particularly, always making the mandatory
class char come first in the signal attributes substring.

Examples

FOOxC identifies a clock signal.
BARxD indicates this is a regular data signal within some clock domain. As opposed to this, the

name BARxA refers to the same signal before its being synchronized to the local clock and,
hence, subject to toggle at any time.

SNAFUxRB refers to some asynchronous active-low reset signal.
ADDRCNTxSN and AddrCntxSN are legal names for the next state of an address counter as long as the

signal remains within the clock domain where it originates.
IRQxAMI identifies an interrupt request input that emanates from a foreign clock domain and that

is meant to be stored in a positive-edge-triggered flip-flop until it is serviced.
CarryxDB denotes an active-low carry signal that remains confined to within some VHDL architec-

ture. As explained earlier,28 a duplicate signal named CarryxDBO may be necessary for the
sole purpose of driving an output port of the entity.

GeigerCntxDZO reflects an output-only data signal with high-impedance capability.
ScanModexT stands for an active-high scan enable signal within some clock domain.

�

For any programmer, it comes most naturally that every variable in a software module must be
given its own unique identifier, and the same holds true for HDL code. It is important that the
same principle also be enforced in schematic drawings and netlists because two nodes that carry
identical names in the same circuit block are considered by EDA tools as connected by name,
i.e. as one and the same circuit node. Figure 8.18 nicely illustrates that connection by name often
helps to render schematic diagrams easier to read.

Hint: While you are encouraged to take advantage of connections by name to avoid cluttering
your schematic diagrams with clocks, resets, and other signals that connect to a multitude
of subcircuits, beware of shorts that will arise whenever a signal name gets reused for two
electrically distinct nodes. Inadvertently or consciously doing so (“. . . but logically they are
the same . . .”) is a typical beginner’s mistake.

5.7.8 A note on upper- and lower-case letters in VHDL

The case of letters is insignificant in VHDL, so identifiers FOOBARxDB, FooBarxDB, FOOBARXDB, and
foobarxdb are all the same. For the sake of legibility, we nevertheless encourage VHDL programmers
to write their source code in the following way:

◦ Reserved words: lower case throughout, e.g. signal, elsif.
◦ Subprograms, i.e. functions and procedures: mixed casing, e.g. FooBar.
◦ Constants and VHDL variables: lower case throughout, e.g. foobar.
◦ VHDL Signals: mixed casing, e.g. FooBarxDB, or pure upper casing, e.g. FOOBARxDB.
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5.7.9 A note on the portability of names across EDA platforms

Porting netlists and schematics from one EDA platform to another is often painful as each vendor
has his own syntax rules for the naming of circuit nodes. Translation steps are inevitable unless one
finds a common subset that is accepted by all tools involved. Here are a few items to watch out for.

First and last characters. Most tools have specific rules as to what non-alphanumerical charac-
ters they accept as part of a node name and in what position. Luckily, VHDL names tend to
be widely accepted as the syntax for signal identifiers is rather restrictive.

Busses. One finds brackets [ ], parentheses ( ), and curly brackets { } in combination with a colon
:, a to, or a downto for indicating the index range of a vector.

Hierarchy delimiters. Slash /, period mark ., and dollar sign $ are commonly used.

Aliases. Although typically legal, multiple names for the same node should be avoided because
many software tools are not able to handle them correctly and because of the confusion this
practice tends to create for humans.



Chapter 6

Clocking of Synchronous Circuits

6.1 What is the difficulty in clock distribution?

Up to this point, we have have ignored the difficulties of distributing a clock signal over a chip or
a major portion thereof. We were in good company as systems engineering, automata theory, and
other theoretical underpinnings of digital design assume simultaneous updating of state throughout
a circuit. Physical reality is different from such abstractions, though.

Consider a population of flip-flops or other clocked subcircuits that make part of one clock domain
in a synchronous design as shown in fig.6.1. A common clock tells them when to transit into the
next state. Ideally, all such bistables are supposed to react to the clock instantly and all at exactly
the same moment of time.

In practice, however, switching will be retarded due to many small delays inflicted by drivers and
wires in the clock distribution network. As most clock signals connect to a multitude of storage
elements spread out over an entire clock domain, individual switching times will differ because
delays along the various clock propagation paths are not quite the same. This scattering over time
is loosely referred to as clock skew. To make things worse, those delays will slightly vary from one
clock cycle to the next, thereby giving rise to clock jitter.

Many causes contribute to the timewise scattering of clocks:

• Unevenly distributed fanouts and load capacitances.
• Unequal numbers of buffers and/or inverters along different branches.
• Unlike drive strengths and timing characteristics of the clock buffers instantiated.
• Unbalanced interconnect delays due to dissimilar layout parasitics

(R: wire length and thickness, via count; C: plate, fringe, and lateral capacitance).
• Unequal switching thresholds of bistables (translate clock ramps into staggered switching).
• Process, temperature, voltage (PTV), and — more so — on-chip variations (OCVs).
• Supply noise as caused by ground bounce and supply droop.
• Crosstalk from switching activities in the surrounding circuitry.
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Fig. 6.1 Clock distribution. Clock domain with flip-flops, clock distribution network, and scan path shown (a),

relevant timing quantities (b).

It is evident that excessive scattering of switching events compromises the correct functioning of a
digital circuit. Design engineers thus try hard to eliminate any systematic disparities among clock ar-
rival times.1 However, depending on fabrication depth and design level (board, field-programmable
logic, semi-custom IC, full-custom IC, hand layout), they are never able to control all of the under-
lying phenomena, so that a certain amount of unevenness remains.

6.1.1 Agenda

Designing dependable circuits in spite of clock skew and jitter involves two issues, namely
(a) knowing and lowering the vulnerability of a design, and
(b) minimizing scattering by distributing clock signals over a domain in an adequate way.

The two issues will be discussed in sections 6.2 and 6.3 respectively. For simplicity, we will focus
on signals that circulate within one clock domain, thereby dropping any input and output signals
from our analysis of section 6.2. Synchronous I/O is addressed in section 6.4, whereas the problems

1 Experienced designers sometimes introduce clock skew on purpose either to accommodate RAMs and other
subcircuits with larger-than-normal setup/hold times or to allow for faster clocking by adapting to uneven path
delays. A better tolerance with respect to delay variations may also be sought in this way, see problem 2. The
process of tuning a clock distribution network to local timing requirements is termed clock skew scheduling.
Please refer to problem 8 and to the specialized literature [148] [149] [150] for more details on this optimization
technique.
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associated with assimilating data that arrive asynchronously are postponed to chapter 7. How to
safely implement clock gating is the subject of section 6.5.

6.1.2 Timing quantities related to clock distribution

In order to study the clock-related characteristics of synchronous circuits, we need to introduce
three timing parameters that specifically relate to clock distribution networks, see fig.6.1 for an
illustration.

tdi Clock distribution delay. The time lag measured from when a clock edge appears at
the clock source until a state transition actually takes place in response to that edge. When
referring to an IC, some package pin is normally meant to act as clock source.

tjt Clock jitter. The variability of consecutive clock edges arriving at the same location.

tsk Clock skew. The inaccuracy of the same clock edge arriving at different locations within
a given clock domain. There is a local and a more global view.

In a narrow sense, skew refers to the clock terminals of two subcircuits connected by some
signal propagation path. Skew is considered positive if the receiver is clocked after the trans-
mitter, and negative if it is clocked before, i.e. tsk = tdi rcv − tdi xmt .

2

From a wider perspective, one is interested in knowing the largest difference in clock arrival
times between any two clock terminals within a clock domain. The term clock skew then takes
on the meaning of overall skew and is defined as max|tsk | = max(tdi) − min(tdi).

6.2 How much skew and jitter does a circuit tolerate?

6.2.1 Basics

Numerous schemes for driving synchronous digital circuits have been devised over the years. Some
of them are more vulnerable to clock skew and jitter than others, some ask for more hardware
resources, some have a different impact on performance, and this section aims at comparing them.
Note that while selecting a clocking discipline typically amounts to finding an optimum choice
between conflicting goals, it is not concerned with functionality as any decent functionality can be
combined with any decent clocking scheme.

Before entering the discussion of individual clocking schemes, let us recall from observation 5.1 that
any digital signal must be allowed to settle to a valid state before it is accepted into a memorizing
subcircuit. Correct and dependable circuit operation is otherwise not possible.

The time interval during which data at the input of a flip-flop, latch, RAM or other sequential
subcircuit must remain valid is referred to as the data-call window, aka aperture time, and is
defined by the setup and hold times there. The term data-valid window designates the time

2 The sign of clock skew is controversial, some authors have elected to define clock skew the other way round as
ts k = td i x m t − td i r c v . We prefer to have data and clock delays share the same sense of counting.
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Fig. 6.2 Clocking in the absence of skew and jitter. Circuit (a) and Anceau diagram (b).

a) transmitter receiver

delay delay

skew

tdi xmt di rcvt<

skt 0<

b)

clock
active edge

at transmitter
skew

active edge
at receiver

setup
margin

inflated

time interval
during which
data at receiver

actually do remain stableare required to be stable
(data-call window) (data-valid window)

time

clock input CLK

→ mal-
function

consumed

margin
hold

Fig. 6.3 Impact of excessive positive clock skew. Circuit (a) and Anceau diagram (b).

interval during which data at the receiver actually do remain valid and is dependent on a circuit’s
propagation and contamination delays. As becomes immediately clear when comparing figs.6.2 and
6.3, the fundamental requirement simply is

Observation 6.1. Transferring data between two subcircuits requires that the data-call window of

the receiving subcircuit be fully encompassed by the transmitter’s data-valid window.
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In subsections 6.2.2 through 6.2.7, each clocking discipline will be introduced by outlining its op-
eration and elementary characteristics. Then follows a more detailed analysis which establishes
conditions for how much clock skew can be tolerated within a circuit without causing malfunction-
ing or undeterministic operation. The resulting inequalities will be termed skew margins and are
visualized in the Anceau diagram of fig.6.2. While noise margins delimit the safe operating range of
a digital circuit with respect to uncertainties in amplitude, skew margins do the same with respect
to timewise uncertainties.

Observation 6.2. A certain amount of clock scattering is unavoidable. What really counts is that

clocking discipline and clock distribution network are chosen such that the combined effects of skew

and jitter exceed the actual setup and hold margins

• nowhere within a clock domain, and

• under no operating condition.3

Although there are more clocking disciplines than those discussed here, it should be noted that any
other scheme can be analyzed along the same lines. Also, the study is easily extended to include
interconnect delays by adding appropriate terms to tcd c and tpd c .

6.2.2 Single-edge-triggered one-phase clocking

Hardware resources and operation principle

Single-edge-triggered one-phase clocking is the most natural approach from a background in au-
tomata theory or abstract systems design. Registers are implemented from flip-flops and all of them
get triggered by the same clock edge, henceforth termed the active edge. No bistables other than
ordinary single-edge-triggered flip-flops (SETFFs) are used.

Each computation cycle starts immediately after an active clock edge and ends with the subsequent
one so that Tcp = Tclk . All transient phenomena must die out before the active clock edge, that is
within one clock period. The exact moment of occurrence of the passive clock edge is immaterial as
long as the clock waveform meets the minimum pulse width requirements tclk hi min and tclk lo min

imposed by the flip-flops.

Detailed analysis

Starting from setup and hold requirements of flip-flops, let us now find out how much clock skew and
jitter can be tolerated without exposing a circuit to timing problems. The corresponding Anceau
diagram is shown in fig.6.5.

Setup condition

Consider a pair of flip-flops with a unidirectional data propagation path in between as shown in
fig.6.2. The setup condition of the receiving flip-flop is expressed as

tdi xm t + tpd ff xm t + tpd c ≤ Tclk + tdi r cv − tsu ff r cv (6.1)

3 Operating conditions are meant to include data patterns, loads (typically capacitive in CMOS), clock frequency,
PTV and on-chip variations (OCVs), ground bounce, supply droop, and crosstalk.
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to distinguish between timing quantities that relate to the setup condition and others that matter for the hold

condition.

which makes reference to timewise uncertainty of the clock after being recast into

tpd ff xm t + tpd c + tsu ff r cv ≤ Tclk + (tdi r cv − tdi xm t ) = Tclk + tsk (6.2)

In the absence of skew and jitter, the inequality stipulates a minimum clock period. It also appears
— in this limited context — that positive skew has a beneficial effect and negative skew a detrimental
one. This is because a lag of the receiver clock with respect to that of the transmitter facilitates
meeting the setup condition, while the opposite is true for a lead. Relation (6.2) thus effectively
imposes a lower — and typically negative — bound on clock skew, which becomes even more obvious
when the inequality is transformed into

tsk ≥ (tpd ff xm t + tpd c + tsu ff r cv ) − Tclk <
ty p .

0 (6.3)
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For the continuation of our analysis, we will work with the equivalent form

−tsk ≤ Tclk − (tpd ff xm t + tpd c + tsu ff r cv ) (6.4)

From a broader perspective, one has to consider the ensemble of all flip-flops in a circuit which calls
for a separate inequality for any two communicating bistables. A static timing analyzer essentially
is a software tool that takes a gate-level netlist, that checks whether inequalities (6.4) and (6.8) are
met, and that flags violations, if any. To that end, the software begins by calculating the numeric
delay figures along each signal propagation path in a circuit.4

Rather than checking thousands of mathematical relations, however, humans prefer to come up with
one simple worst-case condition which, when satisfied, guarantees that setup times are respected
throughout an entire clock domain. Skew plus jitter here appear as the maximum over all signal
propagation paths and as a magnitude max|tsk |. After all, a practical clocking scheme must accom-
modate data transfers between any two flip-flops, explicitly allowing for reciprocal data exchange,
which renders the distinction between positive and negative skew meaningless.

max|tsk | ≤ Tclk − max(tpd ff + tpd c + tsu ff ) = Tclk − tlp (6.5)

The expression max(tpd ff + tpd c + tsu ff ) reflects the delay along the longest signal propagation
path between any two adjacent flip-flops in the circuit. For sake of brevity, we will refer to this path
together with its delay tlp as the longest path.5

Inequality (6.5) indicates that longest path, clock skew, and jitter together bound the minimum
admissible clock period from below and so define how fast the circuit can be safely clocked. This
finding puts us in a position to estimate the performance of a given circuit more accurately than in
chapter 2 and gives rise to a first observation:

Tclk ≥ max(tpd ff + tpd c + tsu ff ) + max|tsk | = tlp + max|tsk |
≈ tid ff + max(tc ) + max|tsk | (6.6)

Observation 6.3. Clock skew is at the expense of maximum performance in circuits

that operate with edge-triggered one-phase clocking.

In a pipelined datapath, for instance, tff + max|tsk | is nothing else but time unavailable for payload
computations, which is why this quantity is often referred to as timing overhead. Any positive
difference between the left-hand and the right-hand side of (6.6) implies that the clock period is
not fully utilized by computations and timing overhead. This surplus amount of time is referred
to as slack and routinely computed during static timing analysis. While slack must always remain
positive, designers strive to minimize it when in search of maximum performance.

4 Please refer to section 12.1.2 for details.
5 The term critical path is often used as a synonym for longest path. We prefer to understand critical path as

a generic term for the longest and the shortest path, however, because meeting the timing conditions along the
shortest path is as important for the correct functioning of a circuit as meeting those along the longest path.
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Example

A Sun UltraSPARC-III CPU implemented in 250 nm 6M1P CMOS runs from a 600 MHz clock,
which amounts to Tclk = 1.67 ns. Some 70% of this time is available for combinational data pro-
cessing and suffices to accomodate approximately eight consecutive levels of logic, assuming that a
3-input nand with a fanout of three is representative for a typical gate delay. The rest is taken up
by the registers and the necessary allowance for clock skew and jitter [151].
�

Hold condition

Starting from the hold requirement for data travel between two flip-flops,

tdi xm t + tcd ff xm t + tcd c ≥ tdi r cv + tho ff r cv (6.7)

a second condition is obtained that bounds the acceptable skew and jitter from above, this time
because it is positive clock delay that puts the hold condition at risk.

tsk = (tdi r cv − tdi xm t ) ≤ tcd ff xm t + tcd c − tho ff r cv (6.8)

Again from a circuit perspective one finds

max|tsk | ≤ min(tcd ff + tcd c − tho ff ) = tsp (6.9)

Here the right-hand side min(tcd ff + tcd c − tho ff ) stands for the shortest path tsp through a
circuit, which is sometimes referred to as the race path. As opposed to the situation found for the
setup margin (6.5), the hold margin (6.9) either holds or doesn’t, no matter how much the clock
period is being stretched. As both conditions must be met, the latitude to clock skew does not
depend on the speed at which the circuit is operated. Another interesting observation is that any
combinational logic placed between two adjacent flip-flops facilitates meeting (6.9) because of its
inherent contamination delay. The same also applies for slow interconnect lines.

Implications

The most precarious circumstances occur when no combinational logic — and thus also no con-
tamination delay — is present between two consecutive flip-flops or other edge-triggered storage
elements. Consider a shift register, for instance. The skew margin then collapses to

max|tsk | ≤ min(tcd ff − tho ff ) (6.10)

which also indicates that there is no way to improve the situation by adjusting clock waveforms.
Whenever an IC suffers from insufficient hold margins, a painful and costly redesign is due.

In practice, there is a deplorable difficulty with giving numerical figures for the skew margins defined
by (6.9) and (6.10) because most datasheets lack indications on contamination delay.6 Yet, as the
inequality 0 ≤ tcd < tpd closely bounds it from both sides, it is safe to state that tcd ff − tho ff always
is a very small quantity. Since any differences in clock arrival times are at the expense of this tiny

6 The reasons for this are given in appendix A.6.
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Table 6.1 Timing problems and their remedies in edge-triggered one-phase circuits.

Remedies for if identified during if found once prototypes
timing problem(s) the design process have been manufactured

on long path(s) redesign circuit such as to extend clock period or
reduce its max. prop. delay renegotiate PTV conditions

(may be very hard) (most likely unacceptable)
on short path(s) insert delay buffers between adjusting clock waveform

consecutive flip-flops or PTV does not help
(comparatively easy) (fatal)

safety margin, edge-triggered one-phase systems must be considered inherently sensitive to clock
skew. Note that interconnect delay has a beneficial effect, however.

Example

Table 6.2 is an excerpt from the datasheet of a CMOS flip-flop.7 The maximum admissible clock
skew between any two such flip-flops where the Q output of one cell directly connects to the D input
of the next is 124 ps − (−14 ps) = 138 ps. Please keep in mind this is just an estimate that assumes
identical MOSFETs and PTV conditions throughout. The benefical impact of interconnect delay is
also ignored, on the other hand.

Table 6.2 Timing characteristics of a standard cell flip-flop in a 130 nm CMOS technology.

D Flip-flop with reset 1x drive Timing parameter Max. toggle
propagation delay for fanout 2 tpd ff tcd ff tsu ff tho ff frequency
@ typ. process, 25 ◦C, 2.5V/ 2.5V [ps] [ps] [ps] [ps] [GHz]

from a high-density library 160 124 70 −14 4.35

�

Observation 6.4. Matching of clock distribution delays and careful timing analysis are critical

when designing circuits and systems with edge-triggered one-phase clocking. Shift registers and scan

paths are especially vulnerable to (positive) clock skew.

The finding is all the more significant as most digital ICs indeed do include shift registers, be it
only implicitly as scan paths to ensure testability.

7 As the official datasheets give no indications for contamination delay, the number included in the table is an
educated guess obtained from the computer models prepared for simulation and timing analysis. The so-called
timing library format (TLF) describes a cell’s overall delay as a sum of an initial inertia followed by output
ramping. Both inertial delay and output ramp time are modelled as functions of switching direction (rise, fall),
capacitive load, and input ramp time. The contamination delay figure of table 6.2 is the minimum inertial delay
for a cell characterized with no external load attached and for clock ramp time zero, or almost so.
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Scan-type test structures

The goal of all design for test (DFT) techniques is to facilitate the search for fabrication defects in
manufactured circuits. Scan testing is particularly popular with VLSI designers due to its efficiency
and elegance. Every flip-flop gets replaced by an equivalent library cell that includes a multiplexer
in front of it, see fig.6.6b. While data are ingested from the regular data input D during normal
operation, the scan input SCI gets read instead when a global control signal SCM is active. As
depicted in fig.6.6c, these scan-type flip-flops are then chained together so as to form a shift register
when the circuit operates in scan test mode.8

A built-in scan path supports

• Checking the proper functioning of all flip-flops that make part of it,
• Serially reading out the circuit’s state at any time for inspection,
• Serially putting the circuit into a user-defined state during a test run, and
• Testing the combinational logic that sits between the flip-flops by combining the application

of test vectors prepared beforehand with serial write-in and read-out operations.

That a scan path cannot cross over from one clock domain to a second domain goes without saying,
so each clock domain needs its own scan path(s).9 Scan paths typically traverse many subcircuits

8 One speaks of full scan if all flip-flops in a circuit are part of the scan path and of partial scan otherwise.
Obtaining adequate test vectors for scan testing is a part of automatic test pattern generation (ATPG), a topic
beyond the scope of this text. Please refer to the specialized literature such as [5], for instance. Just note that
generating test vectors for full-scan circuits is essentially the same as for combinational logic because all inputs
and outputs can be observed and controlled via the scan facility, a boon not shared by partial-scan circuits.

9 There are exceptions, however, as clock domains that run asynchronously during normal operation are often
operated from the same clock during volume testing.
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and are, therefore, particularly exposed to clock skew at the boundaries. In the example of fig.6.1a,
hold-time violations are most likely to occur in the first flip-flop of subcircuit c.10

Mixing cells from logic families

Our previous estimates were based on numerical data from table 6.2. Yet, real circuits are assembled
from flip-flops of many different types, which further puts hold margins at risk.

A key idea behind the concept of a logic family — whether available as a cell library or as a set
of physical SSI/MSI components — is the ability to universally combine components with others
from the same family in spite of fabrication tolerances. Timing-wise, this implies that the shortest
contamination delay must be greater than or equal to the longest hold time over all edge-triggered
storage devices.

max(tho ff ) ≤ min(tcd ff ) (6.11)

Note that no margin whatsoever is left when this relation holds with equality. Only flip-flops with
zero hold time warrant free interchange, negative hold times are even better. High-quality stan-
dard cell libraries are usually designed along this line, yet beware of exceptions that do not meet
the requirement of (6.11).

Observation 6.5. Timing is particularly at risk when different logic families are mixed so that

signals travel from fast storage elements to slower ones.

Mixing logic families, which has long been standard practice at the board level, is gradually finding
its way into IC design when high-speed and low-power cells are being combined on a single chip
in search of the optimum performance–energy tradeoff. Also note that the timing parameters of
macrocells, such as on-chip RAMs, tend to differ significantly from those of simple and, hence,
much faster flip-flops and latches.

As edge-triggered one-phase-clocking is so vulnerable to clock skew and jitter, modern EDA tools
support automatic hold-time fixing, a technique whereby buffers get inserted into all signal prop-
agation paths found to provide insufficient hold margins until the extra contamination delay suffices
to compensate for the deficit. Extensive buffer chains not only inflate circuit size, however, but also
waste energy without contributing to computation.

Hint: Delay hold-time fixing until load capacitances and interconnect delays can be estimated
with good precision during the routing phase. Have the P&R tool or the timing verifier list the
shortest paths as a function of their respective hold margins. You are now in a good position
to find out where delay buffers must be inserted to ensure a reasonable minimum hold margin
in your design.

1 0 Scan flip-flops sometimes feature a separate scan-out terminal SCO that differs from the ordinary Q output by
virtue of passing through two extra inverters. We now understand why the dilated contamination delay tc d ff so
obtained is very welcome. Similarly, automatic scan insertion tools can splice in so-called lock-up latches at
the boundaries between major subcircuits to bolster up hold margin. We consider this option as a workaround,
however.
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For a concluding remark of more fundamental nature, reinspect inequalities (6.1) through (6.11).
Notice that there is a law that will be confirmed throughout our timing analyses.

Observation 6.6. Within timing conditions, quantities always combine as follows:

inequality critical path relevant timing parameters

setup condition longest propagation delays and setup time

hold condition shortest contamination delays and hold time

6.2.3 Dual-edge-triggered one-phase clocking

Hardware resources and operation principle

Dual-edge-triggered clocking was for a long time left aside before gaining acceptance along with the
buzzword double data rate (DDR) in the context of computer memory and mainboard design,
where it serves to increase memory bandwith while avoiding excessive clock frequencies. Conceptu-
ally, this technique is very similar to single-edge-triggered one-phase clocking but rests on special
storage elements that operate on both clock edges. As suggested in fig.6.7c, it is possible to con-
struct a dual-edge-triggered flip-flop (DETFF) from a pair of latches and a multiplexer; more
detailed circuit diagrams are to be presented in section 8.2.5.

Exactly as in single-edge clocking, each computation period gets bounded by two consecutive active
clock edges. Yet, the fact that either edge causes the state to get updated cuts the clock frequency
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in half for the same computation or memory access rate. The fundamental timing requirement thus
becomes Tcp = 1

2 Tclk ≥ tlp , see fig.6.7b.

Implications

As a DETFF is described by the same set of timing parameters as a SETFF, analysis yields much
the same findings, only the numerical values are bound to differ. The differences relate to clock
frequency and energy efficiency. In a single-edge-triggered circuit, the clock net toggles twice per
computation cycle. A DDR circuit carries out the same computation with a single clock edge, which
cuts the energy spent for charging and discharging that net in half, at least in theory. This explains
the name half-frequency clocking sometimes being used.

Unfortunately, the higher capacitive loads of a DETFF on clock and data inputs partially offset
this economy. The slightly more complex circuit does not help either. The economy may even turn
negative if the data input is subject to intense glitching [152]. Still, reductions on the order of 10%
to 20% of overall power over an equivalent single-edge-triggered design seem more typical.

While dual-edge-triggered clocking has gained acceptance with DDR RAM interfaces, it has yet to
make it into cell libraries and EDA tools, notably for synthesis and timing verification.11 As HDL
synthesizers do not currently accept dual-edge-triggered circuit models, one must model for single-
edge one-phase-triggering and replace every SETFF by an analogous DETFF following synthesis.

Another particularity is that dual-edge-triggered clocking assumes a strictly symmetrical clock
waveform that satisfies tclk lo = tclk hi = 1

2 Tclk . Put differently, the clock must be made to maintain
a duty cycle δclk of exactly 0.50 under all operating conditions.

6.2.4 Symmetric level-sensitive two-phase clocking

Hardware resources and operation principle

Circuits are latch-based, which is to say that no bistables other than level-sensitive latches are
being used. A subset of them is controlled by clock signal CLK1, the complementary set by CLK2.
Data flow occurs exclusively between the two subsets, there is no exchange within a subset. Put
differently, the latches together with the data propagation paths in between always form a bipartite
graph.12 Violating this rule might lead to unpredictable behavior as a consequence from zero-latency
loops that would inevitably form when the latches at either end of a combinational logic become
transparent at the same time.

Ignoring the setup times and propagation delays of the latches, for a moment, one finds the situation
shown in fig.6.8. The two clock signals subdivide the clock period Tclk into four intervals labeled T1

through T4 . During each computation period, data complete a full circle from latch set L1 through

1 1 One may consider using soft macros where qualified DETFF cells are unavailable. Internal wires shall then be
given so much weight that the cells involved always get placed next to each other. As opposed to SETFFs, the
output of a DETFF is not connected to a bistable’s output directly but passes through a multiplexer, that is
through a combinational network. Careless design or routing might thus engender hazards. It is imperative that
a highly consistent timing be guaranteed in spite of minor variations in the soft macro’s interconnect routing.
Also, any decent collection of DETFFs must be made to satisfy (6.11) to ensure interoperability.

1 2 A graph is said to be bipartite iff it is possible to decompose the set of its vertices into two disjoint subsets
such that every edge connects a vertex from one subset with a vertex from the other.
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logic C12 to latch set L2 and from there through logic C21 back to latch set L1 . The computation
period and clock period are the same, Tcp = Tclk .

The earliest moment combinational logic C21 can take up evaluating a new input is when latch set
L2 becomes transparent, provided logic C12 has completed its evaluation at that time. Otherwise
this point in time is delayed into clock interval T3 until C12 completes.

The last possible moment for C21 to complete its evaluation is right before latch set L1 stores the
result when switching to hold mode, i.e. at the end of T1 . One thus obtains

max(t21 ) ≤ T3 + T4 + T1 (6.12)

and analogously for combinational logic C12

max(t12 ) ≤ T1 + T2 + T3 (6.13)

The two inequalities seem to suggest that more than one clock period is available to accommodate
the cumulated evaluation times of both combinational blocks. Of course, this is not possible as C21

and C12 must work strictly one after the other to guarantee orderly circuit operation. This condition
of mutual exclusion is captured in a third constraint, which requires that

max(t12 + t21 ) = max(tpd fu ll−c ir c le ) ≤ Tclk = T1 + T2 + T3 + T4 (6.14)
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Note that there exists no dead clock interval during which neither C21 nor C12 is allowed to evaluate
new input data. Depending on the actual timing figures, any of the intervals T1 through T4 can
actually become productive. However, the absence of concurrency between C21 and C12 implies
that each stage in a pipeline must include both latch sets L1 and L2 . As a rule, two latches are
needed in a level-sensitive two-phase system where an edge-triggered system has one flip-flop.

Together (6.12), (6.13), and (6.14) confine the legal operating range with respect to timing as
depicted in fig.6.8. Full utilization of the clock cycle is achieved when (6.14) holds with equality,
i.e. when max(tpd full−circle) = Tclk . Further observe from fig.6.8 that symmetric level-sensitive
two-phase clocking offers the potential for trading evaluation time left unused by C12 against time
for C21 , and vice versa, without any modification to the clock phases. This somewhat surprising
characteristic is referred to as time borrowing.

The three characteristics found so far, namely mutual exclusion, alternation with no dead time, and
time borrowing, make a symmetric level-sensitive two-phase system resemble a relay race, during
which two runners alternate but can decide themselves — within certain bounds — where exactly
to hand over the baton.

Detailed analysis

Incorrect timing is likely to lead to corrupt circuit states when input data are not properly stored
by the target latches. This phenomenon, from which there is no recovery other than resetting the
entire circuit, is termed latch fall-through or latch race-through. The skew margins necessary to
stay clear of this problem are obtained from the setup and hold requirements of the two latch sets
L1 and L2 , also see figs.6.8 and 6.9.
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Setup condition

More precise formulations of equations (6.12) through (6.14) are obtained when the various delays
introduced by the latches themselves are also taken into consideration.

max|tsk | ≤ Tclk − T2 − max(tpd lc 2 + tpd 21 + tsu la 1 ) (6.15)

max|tsk | ≤ Tclk − T4 − max(tpd lc 1 + tpd 12 + tsu la 2 ) (6.16)

0 ≤ Tclk − max(tpd ld 1 + tpd 12 + tpd ld 2 + tpd 21 ) (6.17)

All three of these inequalities must hold in order to ensure correct operation. Whatever values the
various timing parameters may have, it is always possible to find a minimum for the clock period
Tclk that satisfies them all.

Hold condition

Correct timing at the inputs of L1 and L2 requires that

max|tsk | ≤ T2 + min(tcd lc 2 + tcd 21 − tho la 1 ) (6.18)

max|tsk | ≤ T4 + min(tcd lc 1 + tcd 12 − tho la 2 ) (6.19)

respectively. Like in edge-triggered circuits, the most critical situation occurs when no logic is
present. In contrast to the situation there, however, the margin against hold violations is largely
determined by the duration of the two non-overlap intervals T4 and T2 . This quality holds for skew
and jitter across a single clock distribution net as well as between the two nets.

Implications

The latitude for skew and jitter is largely determined by the waveforms of the clock signals. Room to
accommodate unknown or unpredictable timing variations can be designed into level-sensitive two-
phase systems just by sizing the non-overlap intervals accordingly. In principle, the most excessive
skew can be coped with even after circuits have been fabricated, provided it is possible to define the
two clock waveforms from outside the chip, e.g. by driving CLK1 and CLK2 from two separate pins.
As both non-overlap intervals are productive, this entails no loss of speed, only the time-borrowing
capability gets somewhat restricted.

This picture sharply contrasts with edge-triggered one-phase clocking, where the hold margin is
imposed by flip-flop parameters that cell-based designers are unable to control.

The price paid for this advantage lies in the routing overhead and in the extra design effort for
distributing two clock signals. In order to keep variations between the two clocks within reasonable
limits, the two nets should be made similar both geometrically and electrically, i.e. they should
run close together with similar loads attached at corresponding points. Area is another cost factor
because two latches occupy more die area than one flip-flop. Probably the most important handicap,
however, is the fact that it is not currently possible to obtain level-sensitive two-phase circuits from
HDL synthesis without rewriting the RTL source code.
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6.2.5 Unsymmetric level-sensitive two-phase clocking

Hardware resources and operation principle

Unsymmetric level-sensitive two-phase clocking is obtained from the symmetric scheme by transfer-
ring combinational logic C12 to the opposite side of latch set L2 and merging it into C21 , thereby
making intervals T3 , T4 , and T1 available for evaluating the combined function. Clock interval T2

becomes unproductive due to the absence of combinational logic between L1 and L2 . Most often,
T2 is shortened at the benefit of the other intervals to utilize the clock period as much as possible.

Detailed analysis

Setup condition

For latch set L1 and L2 respectively is

max |tsk | ≤ Tclk − T2 − max(tpd lc 2 + tpd 21 + tsu la 1 ) (6.20)

max |tsk | ≤ T2 + T3 − max(tpd ld 1 + tsu la 2 ) (6.21)

Observe that setup time for latch set L2 is minimal when L1 accepts fresh data at the very end of
T1 .13 Inequality relation (6.21) is uncritical for any case of practical interest and (6.20) can always
be met by selecting an adequate clock period.

1 3 The finding that (6.21) does not follow from (6.16) whereas (6.20) is identical to (6.15) is irritating at first sight.
The underlying reason is as follows.
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Hold condition

For latch set L1 and L2 respectively we find

max |tsk | ≤ T2 + min(tcd lc 2 + tcd 21 − tho la 1 ) (6.22)

max |tsk | ≤ T4 + min(tcd lc 1 − tho la 2 ) (6.23)

Either condition provides a non-overlap interval that offers protection in case of excessive skew and
jitter. Shortening the unproductive non-overlap interval T2 in search of maximum performance is
limited only by the quest for an adequate skew margin.

Implications

In summary, benefits and costs of unsymmetric level-sensitive two-phase clocking are almost iden-
tical to those of its symmetric counterpart. A difference is that wide skew margins are bought at
the expense of operating speed because non-overlap interval T2 is unproductive.

The starting point for formulating setup conditions in the symmetric case was that both C1 2 and C2 1 would
take up as much time as possible, i.e. they would start as soon as their input latches become transparent and end
just before their output latches switch to hold. As a consequence, (6.17) had to be added as a third condition
to make sure the clock period suffices to accommodate the cumulated delays of C1 2 and C2 1 .

As there is no C1 2 in the unsymmetric case, the above way of looking at the setup condition for L2 is
inappropriate. Instead, (6.21) is obtained from the assumption that C2 1 eats as much time as it can, thereby
leaving the bare minimum for the propagation path from L1 to L2 . As a side effect, a third condition is dispensed
with.
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Observation 6.7. What makes level-sensitive two-phase clocking disciplines more tolerant to clock

skew and jitter are their non-overlap intervals. Liberal skew margins can be designed into such

circuits by adjusting the waveforms of their clock signals.

Example

IBM’s patented level-sensitive scan design (LSSD) technique [154] [155] is a clever combination
of unsymmetric level-sensitive two-phase clocking with a scan-type test facility. Figure 6.12 shows
the key ideas behind it. The output Q of each LSSD storage element connects to an input labeled
SCI on a subsequent LSSD cell much as in an edge-triggered scan path design.

The three clock nets notwithstanding, LSSD follows a two-phase clocking scheme. During normal
operation, CLK1 and CLK2 exhibit non-overlapping pulses as in any other unsymmetric level-sensitive
two-phase clocking system. Terminal D of each LSSD storage element then acts as data input and
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Q as data output. Clock CLK0 is made to remain inactive at logic 0 by the clock generator, thereby
disabling all scan inputs SCI.

In scan mode, the waveforms of CLK0 and CLK1 are swapped, which causes all LSSD elements to
read data from their respective SCI terminals. Data at the D inputs are being ignored because CLK1

is shut down at 0. The LSSD storage elements together act as a long shift register, which makes it
possible to serially write out their state to pin SCO and to read in a new state from pin SCI.

Incidentally, observe that the power dissipated in driving the clock nets is roughly the same as for
a two-phase scheme because only two out of the three clock nets are active at any time.
�

Practically speaking, the relative robustness of the two level-sensitive clocking schemes discussed
in sections 6.2.4 and 6.2.5 implies that their clock distribution networks need not necessarily be
balanced to the same degree of perfection as in the case of edge-triggered circuits. Clock skew
even becomes close to harmless when circumstances permit one to drive a circuit from a slow clock
that affords ample non-overlap phases. Relaxed timing constraints are very welcome to experienced
designers, who take advantage of them for making do with less and lighter clock buffers in order to
improve on overall energy efficiency and on switching noise.

Distributing two or three clock signals is not always popular, however, because of the extra wiring
resources required, the inferior EDA support, the less intuitive circuit operation, and the more
complicated timing. Also note that considerable skew can build up between the various clock nets
if they are driven from distant buffers or if they significantly differ in their electrical or geometric
characteristics. Thus, one can’t help asking

“Is it possible to design latch-based circuits that are driven by a single clock signal,
and what characteristics would such circuits have?”

The answer is positive and two very different solutions are going to be examined next.

6.2.6 Single-wire level-sensitive two-phase clocking

Hardware resources and operation principle

Single-wire level-sensitive two-phase clocking comes in a symmetric and in an unsymmetric variation.
Either variation differs from its two-wire counterpart in that all latches are being driven from one
common clock signal. The usage of latches that pass and hold on opposite clock polarities does away
with the need for a second clock net.

As far as timing is concerned, this approach is equivalent to driving the two subsets of latches in
the original configuration of fig.6.8 with complementary signals or, which is the same thing, with
clock signals whose non-overlap intervals have been removed.

Detailed analysis

The critical hold margins are those of (6.18) and (6.19) with zero substituted for T2 and T4 .
Assuming identical timing figures for either latch bank, these two inequalities reduce to

max|tsk | ≤ min(tcd lc + tcd c − tho la ) (6.24)
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where min(tcd c) is a shorthand for min(tcd 21 , tcd 12).

max|tsk | ≤ min(tcd lc − tho la ) (6.25)

then holds in the absence of combinational logic between the latches. This constraint can be relaxed
only if the circuitry is organized in such a way as to never connect two latches directly with no logic
in between, inserting dummy buffers for their contamination delay where necessary.

Implications

With all non-overlap intervals that could protect against timewise variability gone, single-wire level-
sensitive two-phase clocking is essentially as exposed to skew and jitter as edge-triggered one-phase
clocking is. On the positive side, there is an unrestricted capability for time borrowing between C12

and C21 .

Yet, level-sensitive two-phase clocking offers another and less obvious opportunity for improving
circuit performance. Assume the data input of a latch is being driven from a non-inverting logic
gate, such as a 3-input and, for instance. We then have a cascade that consists of a 3-input nand, a
not, and the bistable’s own inverting input buffer. As shown in fig.8.21, the circuit can be improved
by merging the and operation into the bistable and by collapsing the cascaded inverters. The usage
of a “3-input and function latch”, as the combined cell is called, does away with two inverter delays,
or almost so.14 Energy efficiency also benefits from the circuit modification.

What sets symmetric level-sensitive two-phase clocking apart from other schemes is that it becomes
possible to play this trick twice per computation period by embedding logic in both of the two
latch subsets. Whether one or two nets are being used for clock distribution does not matter in this
context, so most of what has been said here applies to standard (two-wire) level-sensitive two-phase
clocking as discussed in section 6.2.4 too.

1 4 You may want to see sections 2.4.3 and 8.2.2 for more information on function latches.
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Example

Probably the most prominent VLSI circuits constructed along this line were among those of the
Alpha processor family introduced by the now defunct Digital Equipment Corp.15 Please refer to
section 6.3 for details on how the clock is distributed over each of those chips.
�

6.2.7 Level-sensitive one-phase clocking and wave pipelining

We will now turn our attention to a clocking discipline the characteristics of which sharply differ
from those discussed so far. In spite of advantages in performance and energy efficiency, level-
sensitive one-phase clocking cannot be recommended for ASICs, where limiting the design effort
and the design risk are paramount. The subsequent analysis will show why.

Hardware resources and operation principle

Level-sensitive one-phase clocking stores state in latches exclusively and uses a single clock to drive
them. The circuit arrangement corresponds to edge-triggered one-phase design with all flip-flops
replaced by latches, see fig.6.14a. The same arrangement is also obtained by bypassing all slave
latches in an unsymmetric level-sensitive two-phase design.

The fact that a latch must become transparent before it can accept a new data item for storage,
together with the simultaneous clocking of all bistables, implies that the combinational logic is fed
with new data (at the beginning of T1) before the previous results have been latched (which takes
place at the end of T1). As a consequence, the combinational network must assure that data at
its output remain unchanged while another wave of data has begun to propagate from the input
through that very network. Correct circuit operation rests on inertial effects as transient phenomena
are no longer allowed to die out before clocking occurs.

Spinning this idea further, one may want to arrange for two or more data waves to propagate
through the combinational logic at any time, a bit like a juggler who keeps several balls at a time

1 5 Depending on the authors, the clocking discipline used in the 21064 is referred to as “level-sensitive single phase
with no dead time” or as “single-wire two-phase clocking”.
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in the air. This bold approach is known as wave pipelining [156] [157] and attempts to break
the upper bound that normally limits throughput by accepting path delays in excess of the clock
period.16

Tcp = Tclk < tlp = tid la + max(tc ) Θ =
1

Tcp
=

1
Tclk

>
1
tlp

(6.26)

Detailed analysis

Setup condition

Combinational logic is fed with new data at the beginning of transparent interval T1 and must yield
a stable result no later than at the end of the subsequent transparent interval.

max|tsk | ≤ Tclk + T1 − max(tpd lc + tpd c + tsu la ) (6.27)

Once more, the setup condition is easily satisfied by acting on Tclk . Relation (6.27) exhibits a more
intriguing characteristic, however, especially when compared with (6.5) or (6.20). More than a full
clock period becomes available for the combinational logic, unless the cumulated latch delay, clock
skew, and jitter eat up more time than T1 provides. In other words, the circuit can be made to
operate in a wave pipelined regime as shown in fig.6.15.

1 6 While it is indeed possible to design feedforward wave pipelines that satisfy (6.26), recall from section 2.7 that
first-order feedback loops are not amenable to pipelining (but must be tackled with loop unfolding instead).
Since that finding does not depend on how the necessary latency is obtained, it applies to wave pipelining
too. Also note that the clock frequencies and throughputs made possible by wave pipelining will not exceed
those obtained from a register-based fine-grained pipeline because some minimum separation must always be
maintained between any two consecutive waves. Wave pipelining manages with far fewer registers, though.
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Hold condition

Data applied to latches at the beginning of transparent interval T1 must not change before the end
of this very transparent interval.

max|tsk | ≤ −T1 + min(tcd lc + tcd c − tho la ) (6.28)

In comparison with edge-triggered one-phase clocking, the meagre skew margin has been reduced
further by T1 and is almost certain to become negative in the absence of combinational logic. It
becomes clear now, at what expense the extra leeway in the setup condition has been bought.

Implications

Equation (6.28) imposes an upper bound for clock high phase T1 which contrasts with all other
clocking schemes analyzed so far. As any bistable comes with minimum clock width requirements,
the high phase gets bounded from below too. We thus end up with a two-sided constraint for T1 .

max(tc lk h i m in la ) ≤ T1 ≤ min(tcd lc + tcd c − tho la ) − |tsk | (6.29)

Whether there is a solution or not depends on the detailed timing figures of the cells being used.
Yet, in the absence of combinational logic and relevant interconnect delay, the remaining upper
bound min(tcd lc − tho la ) − |tsk | leaves very little room indeed for a comfortable clock high time.
The problem is further aggravated by the necessity to find a valid timing for a variety of latch types
and under all possible operating conditions.

As a consequence, it is impossible to build a shift register — or a scan path — in the normal way,
even if skew and jitter are optimistically assumed to be zero. For the circuit to work properly, delay
elements must be inserted into each overly short propagation path until (6.28) is safely satisfied.
Redundant gates have to be added for their contamination delay alone.

There is another peculiarity that it is worthwhile to note. Slowing down a circuit’s operation is often
helpful for locating problems. For all clocking disciplines discussed earlier, this could be achieved
simply by stretching the clock’s waveform. With (6.28) specifying an upper bound, this is no longer
possible. Slowing down a level-sensitive one-phase clocked circuit requires keeping one clock phase
constant (T1 in the occurrence of fig.6.14) while extending the other (T2).

From our analysis of level-sensitive one-phase clocking, we conclude:

+ When compared with two-phase designs, the number of latches and clock nets is cut in half.
+ In theory, and with the exception of computations organized as first-order feedback loops,

there is a potential for shortening the clock period to below the logic’s propagation delay.
− As a consequence of the feedback loop being closed during the transparent intervals, correct

operation critically depends on clock pulse width, gate delays, and interconnect delays.
− All library cells must be bindingly characterized for their contamination delays.
− Interconnect delays, and hence also layout parasitics, must be precisely controlled.
− Signals that arrive too early must be delayed artificially at extra costs in terms of area and

energy.
− Sufficient skew margins must also be bought with additional contamination delay.
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Delay tuning is a nice word for the process of adjusting circuit delays until a design appears
to work for a given set of timing parameters. This practice is not compatible with regular high-
productivity EDA design flows. While some HDL synthesizers and automatic place and route (P&R)
tools are capable of hold-time fixing, most EDA software is designed to meet long path constraints
at minimum hardware and energy costs. Also, contamination delays are neither guaranteed by man-
ufacturers nor normally indicated in library datasheets. Most simulation models do not accurately
reproduce contamination delay either.

Observation 6.8. Level-sensitive one-phase clocking critically depends on fine-tuning propagation

and contamination delays through both combinational logic and interconnect. This practice is in-

compatible with EDA design flows, with existing cell libraries, with reliable circuit operation, and

with the drive towards ever higher productivity in VLSI design and test.

However, note that level-sensitive one-phase clocking was applied successfully to supercomputers
such as the Amdahl 580 and the Cray-1 [158] at a time when circuits were assembled at the board
level from SSI/MSI parts. A milder form is also being discussed in problem 6.

6.3 How to keep clock skew within tight bounds

6.3.1 Clock waveforms

The main problem of clock distribution is to drive many thousands of clocked subcircuits, such as
latches, flip-flops, and RAMs, spread over a die, a board or a system while keeping the unavoidable
skew within narrow limits. Slow clock ramps are problematic for several reasons:

• As illustrated in fig.6.16, unavoidable disparities of the switching thresholds across clocked
cells translate ramp times into skew.

• The timing figures published in datasheets and stored in simulation models are obtained from
stimulating cells with fast clock ramps of 50 ps and less during library characterization. Setup
and hold times tend to grow when a cell is being clocked with slow ramps.

• Correct behavior and accurate timing of flip-flops, memories, and — to a somewhat lesser
extent — latches are put at risk.

As a consequence, clock signals must literally snap from 0 to 1 and back again.

Observation 6.9. Among all signals on a chip or in a system, clocks typically feature the largest

fanout, travel over the longest distance, and operate at the highest speed. Yet, their waveforms must

be kept particularly clean and sharp.

The most innocent idea for distributing a clock is to treat it like any other signal, i.e. to use a
standard minimum-width line to connect all clocked subcircuits to a common source. That such an
approach is not viable becomes immediately clear from a numerical example.



340 Design of VLSI Circuits

ssUUl = 0=

Uth min

Uth max

u(t)

switching thresholds
tolerance band for

ddUUh =

t

active clock edge

large contribution
to clock skew

slow rampfast ramp

small contribution
to clock skew !

Fig. 6.16 Sluggish clocks translate into extra skew.

Warning example

Consider a clock domain in a CMOS IC that includes a modest 500 flip-flops. Clock distribution is
via a metal line 130 nm wide that meanders through the chip’s core area much as in fig.6.17a. Sheet
resistance is 70 mΩ/�, a typical value for a second- or third-level metal. For simplicity, assume
that the flip-flops are connected to that wire at regular intervals, thereby forming an RC network
of ladder type with #sct = 500 identical sections of length 100 � and with a capacitance of 12 fF
each. The delay and the ramp time at the end of such a net in response to a step at the input then
roughly are [159]

tpd w ir e ≈ 0.4 Rsct Csct #2
sc t = 0.4 Rw ir e Cw ir e = 0.4 · 3500 Ω · 6 pF = 8.4 ns (6.30)

tr a w ir e ≈ Rsct Csct #2
sc t = Rw ir e Cw ir e = 3500 Ω · 6 pF = 21 ns (6.31)

where Rsct and Csct refer to the lumped resistance and capacitance respectively of one section as
illustrated in fig.6.18a.17 Obviously, such figures are totally inadmissible for a clock.
�

The above example suggests two starting points. Firstly, the clock net must be reshaped and resized
so as to cut down, control, and balance interconnect delays in a better way. Secondly, interconnect
lengths, capacitances, and resistances must be cut down by subdividing a chip-wide clock net into
many smaller nets, each with a driver of its own. These are indeed the basic ideas behind two
alternative approaches that we are going to discuss next.

6.3.2 Collective clock buffers

The collective approach has a single buffer that connects to all clocked cells directly via metal lines.
To handle the huge fanout, the buffer must be huge and consist of multiple stages of increasing
drive strengths. The idea failed in the above example because the clock net was shaped like a long,
narrow, and winding alpine road. The picture improves if length, width, and shape are chosen more
carefully. As the ensemble of clocked cells sets a lower bound for the load capacitance, it is the
resistance of the distribution network that must be kept low, while, at the same time, attempting
to make all interconnect delays about the same.

1 7 More interconnect models are to be presented in section 12.8.
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The following countermeasures all help to improve the situation:

• Keep clock wires as short as possible, place the driver close to the center of the circuit.
• Make clock distribution wires reasonably wide. Narrow wires yield a high resistance whereas

plate capacitance dominates in excessively wide wires.
• Use the upper metal layers as only they combine low resistance with low capacitance.
• Avoid unnecessary layer changes as contacts and vias contribute to resistance.
• Equalize delays by making all clock paths electrically and geometrically similar.

Three layout arrangements developed with these rules in mind are shown in figs.6.17b to d. Although
the recursive H-tree immediately strikes one as the optimal solution, it is difficult to implement in
practice unless clock loads are uniformly distributed and unless one is prepared to set aside one
metal layer for the sole purpose of clock distribution. Spine, comb, and grid topologies similar to
those adopted for power distribution purposes are or — rather — were more realistic. Yet, wide clock
lines unnecessarily inflate parasitic capacitance and, hence, power dissipation. Another difficulty is
that the important switching currents associated with driving large loads concentrate at a few points
in a chip’s floorplan.

Example

Consider a circuit with 10 000 bistables. Clocking is from a collective buffer with a voltage swing of
1.2 V. Let the aggregate load capacitance per bistable be the same as in the previous example since
the clock lines are shorter but also much wider this time. Further assume that the drive current
follows a triangular waveform during the signal’s ramp time of 100 ps. It then peaks out at

Îc lk ≈ 2
Cclk Udd

tr a c lk
= 2

10 000 · 12 fF · 1.2 V
100 ps

≈ 2.9 A (6.32)

At a clock frequency of 500 MHz, the final inverter stage driving the clock net dissipates

Pclk >
αclk

2
Cclk U 2

dd fc lk = 1 · 10 000 · 12 fF (1.2 V)2 500 MHz ≈ 86 mW (6.33)

�

Current spikes as strong as this necessitate special precautions. Older cell libraries used to provide
special clock drivers designed to fit into a chip’s padframe, where they were fed from dedicated
power and ground pads in order to avoid ground bounce problems.

Example

The original Alpha processor, the 21064, followed a collective driver approach in its purest form.
Total capacitive load of the clock node was 3.25 nF, requiring final driver transistors with Wn =
100 mm and Wp = 250 mm [161]. Power dissipation was 30 W from a 3.3 V supply at a clock
frequency of 200 MHz. Clock rise and fall times were 500 ps and a peak switching current of 43 A
had been measured. Clock distribution roughly followed fig.6.17d with the central driver extending
along more than half of the chip’s centerline. Transmitting a clock edge from the chip’s center to
a corner was found to take less than 300 ps, which compared favorably with the 5 ns clock period
and paved the way for single-wire level-sensitive two-phase clocking where there are no non-overlap
intervals that could provide extra room for skew.
�
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6.3.3 Distributed clock buffer trees

The concern for energy efficiency subsequently mandated the introduction of gated clocks and drove
designers away from the flat clock distribution schemes popular at the time when the Alpha 21064
was developed.

What’s more, observe from (6.30) that interconnect delay grows quadratically with line length l

because Rwire ∝ l, Cwire ∝ l, and #sct ∝ l. Let us examine what happens when a long line gets
turned into a repeated wire by subdividing it into #seg shorter segments separated by #seg − 1
inverting or non-inverting buffers in between as shown in fig.6.18b. To first order, overall propagation
delay then becomes

tpd r ep t ≈ #seg

(
tpd buf + 0.4 Rsct Csct

(
#sc t

#seg

)2
)

= #seg tpd buf +
0.4

#seg
Rw ir e Cw ir e (6.34)

which means that the overall delay can be made a linear function of line length just by chosing
#seg ∝ l. To minimize the overall delay, the propagation delay of each wire segment should be made
to match that of one repeater, in which case one speaks of an optimally repeated wire. In practice,
repeaters are typically spaced further apart so as not to unnecessarily inflate the overhead in terms
of area and power.

A distributed clock tree thus consists of a multitude of repeaters of moderate size physically located
close to the loads they drive and inserted into every major branch, see fig.6.17e. As opposed to the
collective approach, no large currents need to flow over large distances. Also, the power dissipated
for driving the clock net is distributed over the chip’s area. Conversely, a tree-like structure requires
careful delay matching. The goal is to equalize the delays along all branches in spite of unevenly
distributed loads and distances.

Techniques for equalizing branch delays include:

• Hierarchically partition the design in such a way as to balance clock loads to a reasonable
degree.

• Plan for local subtrees and size clock buffers as a function of the load they must drive.
• Prefer the upper metal layers for their lower resistance and capacitance.
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• Retard overly fast clock distribution paths by inserting extra buffers.
• For fine-tuning, consider adding dummy loads and detours to early branches.

One difficulty in implementing the distributed buffer approach is that accurate data on which to
base detailed delay calculations do not become available until late in the design cycle. Another
problem is that the clock tree must be readjusted whenever a design modification entails a minor
change in the loads to drive or in their geometric locations.

The EDA industry has come to the rescue by developing automatic software tools that are capable
of inserting balanced clock trees into circuits of substantial size, largely doing away with the need
for manual delay budgeting and iterative tuning. Such specialized clock tree generators are run
as part of physical design, e.g. between place and route, so as to base their calculation on fairly
accurate estimates for parasitic capacitances and interconnect delays. Such tools have significantly
contributed towards making clock distribution trees popular.

Hint: Excluding inverters from clock trees in favor of non-inverting repeaters does away with
any risk of ending up with branches that differ in the number of negations.

6.3.4 Hybrid clock distribution networks

Hybrid schemes have been devised in an attempt to combine the best of both worlds. Instead of
having the leaf cells of a distributed buffer tree drive the clocked cells directly, their outputs are
shorted together by a domain-wide metal grid as sketched in fig.6.17f. The grid minimizes local
skew by providing low-resistance current paths between nearby points. The fairly stiff and uniform
structure so obtained facilitates circuit design as timing does not depend too much on details of
cell placement. This approach results in a small distribution delay and acceptable power without
eating too much wiring resources [162] [155].

Examples

The utmost degree of sophistication has been achieved with Intel’s Itanium 2 9000, an impressive
dual-core design clocked at 1.6 GHz with 1.72 · 109 transistors manufactured in a 90 nm bulk
CMOS process with seven layers of Cu interconnect. The sub-100 nm technology, the huge die size
of 27.7 mm by 21.5 mm, and the maximum power dissipation of 104 W in conjunction with local hot
spots all contribute to important and unpredictable on-chip variations (OCVs). While an oversize
clock grid would have helped to contain skew, designers were afraid of the large equalizing currents
and of the power overhead this would have entailed [163]. Instead of contenting themselves with
statically balancing clock distribution delays at design time, their regional active deskew scheme
adaptively fine-tunes delays in the different clock tree branches at run time with the aid of multiple
phase comparators and adjustable delay lines.

A rather different concept has been pursued by Sun Microsystems in their Niagara processor that
includes 279 · 106 transistors manufactured on a die of 378 mm2 in 90 nm 9LM (Cu) bulk CMOS
technology. Maximum power is indicated as 63 W at 1.2 GHz and 1.2 V. By cleverly combining a
global H-tree with multiple regional clock-gated grids and with local subtrees, its designers were
able to keep clock skew below 50 ps without resorting to complex active deskewing circuitry [164].
While overall power density is comparable to the above example, the smaller die and the better
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Fig. 6.19 Clock skew map for a Cell processor chip measuring roughly 17.8 mm by 12.3 mm. Horizontal

dimensions are given in arbitrary units, skew is in picoseconds (photo copyright IEEE, reprinted from [165] with

permission).

spreading of heat afforded by the concurrent operation of eight relatively modest processor cores
were certainly helpful in avoiding inordinate delay variabilities. Another particularity is post-layout
hold-time fixing with the aid of metal-programmable delay buffers. Following static timing analysis,
delays get statically adjusted using a local metal with no impact on the previously frozen detailed
signal routing.
�

6.3.5 Clock skew analysis

Functional simulation is inadequate for uncovering clock skew problems. As exhaustive simulation
is not practical, it is very likely that not all critical patterns get applied and that some skew-related
timing problems pass unnoticed. The good news is that there is no need to simulate a circuit
functionally to find out whether timing conditions are met or not in synchronous designs. Timing
verification, aka static timing analysis, is much more appropriate as it

• Circumvents all coverage problems,
• Quantifies the timing margins on all signal propagation paths, both short and long,
• Locates slack, if any, and
• Entails a more reasonable computational effort.

Do not forget to include layout parasitics, to use adequate interconnect models, and to account for
crosstalk, PTV, and OCV variations during static timing verification.

Observation 6.10. While both collective clock buffers and distributed clock trees have been made to

work in commercial circuits, trees prevail because they support clock gating, help to keep distribution
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delay low, and tend to be less demanding in terms of routing resources, overall power, and cur-

rent crowding. In high-performance VLSI, there is a trend towards combining the efficiency of a

distributed clock tree with the robustness of a domain-wide metal grid. Careful design and timing

verification are critical in any case.

6.4 How to achieve friendly input/output timing

6.4.1 Friendly as opposed to unfriendly I/O timing

We now extend our discussion to the board-level interface of entire chips that are part of the same
clock domain, see fig.6.20a.18 The basic requirement of observation 6.1 that any data-call window
must be fully enclosed by the pertaining data-valid window remains exactly the same as for data
transfers between simple flip-flops within a chip.

Interfacing with outputs that provide valid data for most of a clock period is straightforward as
there is plenty of time for the receiving circuit to evaluate and store the acquired data. Similarly,
most of the clock period is available for the transmitting circuit to settle if the receiver calls for
stable data during a brief time slot just prior to the active clock edge. Note the ample setup and
hold margins in fig.6.20b.

As opposed to this, interfacing with a circuit that just flashes output data for a brief moment of
time is a real nuisance. Data are likely to settle too late or to vanish too early for the receiver
to get hold of them. Similarly, inputs that ask for stable data for an extended period leave little
time for output logic and interconnect delays. A long hold time proves especially awkward since it
obliges the transmitter to maintain its former output long after the active clock edge has sparked
off a transition to a new state. The two I/O timings shown in fig.6.20d are in effect incompatible:
It is impossible to transfer data if transmitter and receiver are to be driven from a common clock.
Engineers are then forced to resort to delay lines, stopover registers, adventurous clocking schemes,
and other makeshift improvisations.

The desiderata for friendly input–output timing are as follows.

I/O data-call inputs data-valid outputs
timing window tsu inp tho inp window tpd oup tcd oup

friendly narrow small close to zero or, wide small large, as close to
better, negative tpd oup as possible

unfriendly wide large large (positive) narrow large close to zero

How to express timing constraints for commercial synthesis and timing verification tools has been
the subject of section 4.3.6.

1 8 Note that much the same argument also applies to virtual components and other ma jor circuit blocks that
contain a clock distribution network of their own. How to synchronize data at the boundaries between distinct
clock domains is to be addressed in chapter 7.
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Fig. 6.20 Two VLSI chips with a data transfer path (a). Anceau diagrams for friendly (b), average (c), and

incompatible I/O timing characteristics (d). Any counterclockwise arrow implies a negative sign.

6.4.2 Impact of clock distribution delay on I/O timing

Driving the huge capacitances associated with clock nets necessitates large multi-stage drivers which
bring about important clock distribution delays. So far, we have not cared much about this effect
as only skew matters within a circuit. Yet, the impact of clock distribution delay on I/O timing is
twofold, just compare figs.6.21 and 6.22.

On outgoing signals, distribution delay simply adds to both propagation and contamination delays.
The resulting data lag remains largely uncritical unless a system is to operate at high clock fre-
quencies, in which case the prolonged propagation delay will be felt.

On incoming signals, distribution delay shortens setup and extends hold time. Even a moderate
distribution delay is likely to render setup time negative on those inputs that directly connect to a
register. More importantly, however, the same amount of delay will inflate hold time way beyond
any realistic value for a transmitter’s contamination delay.
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Fig. 6.22 Impact of excessive clock distribution delay. Circuit (a) and Anceau diagram (b).

For a quantitative analysis, assume the circuit operates with edge-triggered one-phase clocking. The
circuit’s input and output terminals then exhibit these timing parameters

tsu in p = max(tpd b + tsu ff ) − tdi (6.35)

tho in p = max(−tcd b + tho ff ) + tdi (6.36)

tpd ou p = max(tpd ff + tpd d ) + tdi (6.37)

tcd ou p = min(tcd ff + tcd d ) + tdi (6.38)
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In conclusion, distribution delay adds to input hold time and may thus easily turn a circuit with
perfect I/O timing characteristics into an unacceptable one. What’s more, within a population
of digital components, any differences between clock distribution delays translate into clock skew
unless they get counterbalanced within the board- or system-level clock distribution network.

Observation 6.11. While it is imperative to minimize clock skew, it is also important to keep

on-chip clock distribution delay within tight bounds to avoid the awkward timing characteristics at

the chip’s I/O interface that otherwise result.

Example

FPGAs of the Actel SX-A family include three dedicated low-skew clock networks. One of them
is referred to as hardwired, which is to say that there are no more than two programmable links
between the clock input and any on-chip flip-flop. This is done to minimize not only clock skew but
also distribution delay. The resulting skew is said to be as low as 0.1 ns and the pin-to-pin delay
from the clock input to any register output is specified as 5.3 ns (A54SX72A-3 under worst-case
commercial conditions).
�

6.4.3 Impact of PTV variations on I/O timing

Keeping a receiver’s data-call window within the transmitter’s data-valid window under all circum-
stances is particularly difficult at the interface between two components because

• I/O timing is subject to variation with the off-chips loads attached,
• I/O timing is affected by board-level interconnect delays,
• What matters is the difference between the distribution delays of receiver and transmitter,
• The PTV conditions of two chips are bound to differ, and
• PTV variations notoriously have a large impact on timing figures.19

While clock distribution delay is of little importance as long as all clocked subcircuits are affected
alike, it becomes highly critical at the interface between two components and at the interface
between two supply domains. It is not uncommon to find that maintaining all components properly
synchronized within a clock domain is impossible when those components are subject to moderate
but non-uniform PTV variations.

Observation 6.12. PTV variations put data transfers between ICs at risk. A healthy latitude to

timing variations is thus even more important at the I/O interfaces than within a chip itself.

Before discussing a more radical solution for all the above problems in section 6.4.8, let us suggest
a few countermeasures that alleviate the undesirable effects of clock distribution delay.

1 9 It is not exceptional to see timing quantities vary by a factor of three from the slowest to the fastest operating
conditions acceptable for some given CMOS technology. See chapter 12 for actual figures.
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6.4.4 Registered inputs and outputs

Output signals should not be made to propagate through deep combinational networks. Including
an output register right before the pad drivers maximizes the data-valid window and — as a
welcome side effect — also yields hazard-free signals. A price to pay is the extra latency. If needed,
the circuit’s contamination delay can be extended by driving the output register from a somewhat
delayed local clock.

Input registers, on the other hand, must not be allowed to suffer from substantial and/or vari-
able clock distribution delay as input hold time otherwise becomes unmanageable. The workarounds
to be presented next are, therefore, particularly important on the input side.

6.4.5 Adding artificial contamination delay to data inputs

As data lag compensates for clock distribution delay, any combinational network inserted between
the input pads and the first bistable helps because of its contamination delay. After all, it is the tim-
ing of the clock relative to the data signals that decides when exactly data voltages get interpreted,
also see problem 8.

Examples

Various Xilinx FPGA families include a user-configurable multiplexer in each I/O block that selects
or bypasses a delay line in the data input propagation path, see fig.6.23. Note that the data-call
window is being shifted and observe the impact on the FPGA’s hold-time requirement.

clock distribution network 

configuration bit

delay line

......

......

clock
input

data
input

FPGA

clocked
cells

to

Data input Input timing if
configured straight delayed

tsu inp tho inp tsu inp tho inp

Xilinx FPGA [ns] [ns] [ns] [ns]

XCS05-4 1.2 1.7 4.3 0.0
XCS40-4 0.4 3.5 5.3 0.0
XC2V40-6 0.84 −0.36 3.24 −2.04

Fig. 6.23 Compensating clock distribution delay with configurable delay lines on FPGA data inputs. Principle

(top) and excerpts from Xilinx data sheets (bottom).
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6.4.6 Driving input registers from an early clock

The interfacing of ICs or virtual components (VCs) that share a common clock would be easier if
their input registers — and possibly their output registers too — could be driven from a separate
clock that does not suffer from a distribution delay as important as that of the rest of the circuit.
This is indeed possible on the basis of the observation that I/O registers account for only a small
fraction of a circuit’s total clock load. An early clock is tapped from the main tree close to its root,
see fig.6.24. The resulting lead of the input registers must be taken into account when designing
the remainder of the circuit, however.

6.4.7 Tapping a domain’s clock from the slowest component therein

Complex circuits often feature comparatively long hold times, making it difficult to interface them
with smaller and faster components. This is mainly because clock distribution delay tends to grow
with circuit size and clock load. The practice of mixing high-density CMOS core functions with fast
SSI/MSI components — such as high-speed CMOS, bipolar or BiCMOS — for glue logic functions
on a circuit board exacerbates the problem.

A workaround exists provided that the component that exhibits the longest clock distribution delay
within the clock domain can be arranged to have a special output tapped from the clock distribution
network close to its leaves and brought to an extra package pin, see fig.6.24. The original clock is
then first fed into that slower part and redistributed from its clock tap to all faster components
within the same clock domain.
�

original clock ORICLK

to clocked core cells to clocked core cells

to input registers
system-level clock
SYSCLK

large IC or virtual component

..... .....

clock domain

.....

.....

to other circuits

Fig. 6.24 Two more options for compensating clock distribution delay (data I/O not shown.)
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Fig. 6.25 Using a PLL (a) or a DLL (b) to minimize and stabilize clock distribution delay.

6.4.8 “Zero-delay” clock distribution by way of a DLL or PLL

All problems of I/O timing would be gone if clock distribution delay could be made zero as the
events that trigger state changes and the external clock would then perfectly align. This is indeed
possible with an on-chip delay-locked loop (DLL) or phase-locked loop (PLL). Once locked,
both DLLs and PLLs act as a servo loop that keeps a local signal in phase with a reference signal
supplied from externally. The difference essentially relates to the actuator in the servo loop: PLLs
use a controlled oscillator whereas DLLs include an adjustable delay line or — which is the same —
a controlled phase shifter. In either case, the servo loop is made to compensate for the cumulated
propagation delays of clock buffers and interconnects, see fig.6.25. The overall circuit then behaves
like a distribution network with zero or close to zero insertion delay. Better still, PTV variations
are automatically compensated for.

As every overclocker knows, microprocessors typically operate at rates that are an integer multiple
of the clock frequency distributed over the motherboard. This is made possible by using a PLL
with a frequency divider inserted into the feedback loop as indicated in fig.6.25a. Both DLLs and
PLLs take a number of cycles to lock and have a limited lock range, which makes them intolerant
of abrupt frequency changes and vetoes single-cycle operation. Unless frequency multiplication is
truly required, DLLs are preferred for their unconditional stability, faster lock times, and low jitter.

DLL and PLL subcircuits are not yet routinely available as part of ASIC design libraries. They can
be designed either from voltage-controlled analog delay lines and oscillators or around a numerically
adjustable delay line. [481] is a reference on the design of integrated PLLs. Digitally controlled delay
lines with a resolution finer than one gate delay will be addressed in section 8.4.6. A particular
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difficulty with adjustable delay lines in the context of clocking applications is that the respective
propagation delays for rising and for falling edges must closely match.

Examples

The PowerPC 603 and 604 by Motorola were among those CPUs that combined an on-chip PLL
with an H-tree distribution network driven by a collective buffer [166]. Lock range was reported
to span from 6 to 175 MHz with lock times below 15 µs. Instead of driving thousands of leaf cells
directly, the H-tree was designed to distribute a low skew clock to 266 local clock regenerators, each
of which drives its share of clocked cells. With 80 fF load from each regenerator, the H-tree was
measured to cause a delay of 230 ps and a clock skew of 135 ps.

An analog and a mostly digital DLL circuit designed for clock alignment in the context of a memory
system have been compared in [167] and the results are summarized below. Both circuits have been
fabricated on the same chip with a 400 nm 3.3 V standard CMOS process. Nominal clock frequency
is 400 MHz, yet data are transferred on both edges of the clock so that the time interval is a mere
1.25 ns per bit. Also consider that the digital circuit takes less effort to design and is more easily
ported to a new process than the analog alternative.

DLL architecture analog digital
area 0.68 0.96 mm2

power dissipation 175 340 mW @ 3.3 V
maximum clock frequency 435 > 667 MHz
minimum supply voltage 2.1 1.7 V
lock time 2.0 2.9 µs
clock jitter 195 245 ps peak-to-peak

The clock distribution subsystem in Intel’s Itanium CPU is by itself very complex and organized
into global, regional, and local clock distribution. It makes use of one PLL at the global and of
30 (sic!) DLLs at the regional level. Implemented in 180 nm CMOS technology, the sophisticated
distribution scheme limits clock skew to 28 ps for a 1.25 ns (800 MHz) clock [168].

Actel’s ProASICPLUS FPGAs include two clock conditioning blocks, each of which consists of a
PLL, four programmable clock dividers, and a few delay lines. The output frequency range is 6
to 240 MHz with a maximum acquisition time of 20 µs. A lock signal indicates that the PLL has
locked onto the incoming clock signal. Delay lines are programmable in increments of 250 ps. Supply
voltage must be between 2.3 V and 2.7 V, nominal power dissipation is 10 mW.
�

6.5 How to implement clock gating properly

6.5.1 Traditional feedback-type registers with enable

In most designs, part of the flip-flops operate at a lower rate than others. Just compare a pipeline
register against a mode register that is to preserve its state for millions of consecutive clock cycles
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or even until power-down. Other registers occupy positions in between. This situation suggests the
usage of enable signals to control register operation as illustrated in the VHDL code fragment below.

.....

-- activities triggered by rising edge of clock

if CLK ’event and CLK=’1’ then

if ENA=’1’ then -- control signal to govern register update

PREST <= NEXST;

end if;

end if;

.....

When presented with such code, synthesizers call upon a multiplexer to close and open a feedback
loop around a basic D-type flip-flop under control of the enable signal as shown in the example of
fig.6.26b. As the resulting circuit is simple, robust, and compliant with the rules of synchronous
design,20 this is a safe and often also a reasonable choice. Some libraries indeed offer an E-type
flip-flop that combines a flip-flop and a mux in a single cell.

a)

CLK

D Q

ENA

Q

CLK

D Q

Q Q[w-1:0]

Q[w-1:0]
0

1

CLK

D[w-1:0]

ENA

b)

Fig. 6.26 Register with enable. Icon (a) and safe circuit built from D-type flip-flops and multiplexers (b) or,

which is the same, from E-type flip-flops.

On the negative side, this approach takes one fairly expensive multiplexer per bit and does not use
energy efficiently. This is because any toggling of the clock input of a disabled flip-flop amounts
to wasting energy in discharging and recharging the associated node capacitances for nothing. The
capacitance of the CLK input is not the only contribution as any clock edge causes further nodes to
toggle within the flip-flop itself. Most of that energy could be conserved by selectively turning off
the clock within those circuit regions that are currently disabled.21 Any such conditional clocking
or clock gating scheme must be implemented very carefully, however, as safe circuit operation is
otherwise compromised.

6.5.2 A crude and unsafe approach to clock gating

Using a simple and gate for the clock seems particulary tempting in positive-edge-triggered circuits,
but is also particulary dangerous, see fig.6.27a. This is because any glitch of the enable signal ENA
is passed on to the gated clock CKG while the clock input CLK is 1. All downstream bistables are
exposed to hazards during the clock’s first phase where hazards are particularly likely, jeopardizing

2 0 Notably with the dissociation principle presented in section 5.4.
2 1 Refer to [169] for a conceptually different approach to conditional clocking that does not depend on the presence

of a special enable signal but compares the data value at the input of a flip-flop against that stored.
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Fig. 6.27 Unsafe clock gating circuits (a,c) along with the waveforms they produce (b,d).

the correct functioning of the entire system. To make the circuit work, designers would have to
resort to extensive hazard control with all its undesirable implications.22

6.5.3 A simple clock gating scheme that may work under certain conditions

The circuit of fig.6.27c fares better because the not-nand gate in the clock net is transparent for
glitches during the second clock phase rather than during the first phase. This approach can be
made to operate safely provided

• The timewise position of the passive clock edge on clock CLK is always well defined,
• All transients on the enable signal ENA are guaranteed to die out before the end of the first

clock phase under any circumstance,
• The gated clock CKG is rechecked for hazards following layout, the enable signal ENA is checked

for hazard conditions during timing analysis, and
• The extra delay introduced by the gate is accounted for in the clock distribution network.

Making sure all of these requirements are consistently met complicates the design process, however.
On the positive side, this approach minimizes circuit overhead, clock load, and energy dissipation
during those periods when the clock remains disabled.

6.5.4 Safe clock gating schemes

More robust schemes are based on a special clock gate, a sequential subcircuit that accepts the
enable signal ENA plus the main clock CLK and that outputs an intermittent clock CKG which is to
toggle only when the enable asks it to do so. Here come the specifications for such a contraption in
the context of edge-triggered clocking:

2 2 Such as complicated timing analysis, redundant logic for hazard suppression, finicky delay tuning, layout de-
pendencies, difficult design verification, low design productivity, and all the other side effects of ad hoc (i.e.
non-self-timed) asynchronous operation.
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Table 6.3 Truth tables for safe conditional clocking in single-edge (left) and dual-edge triggered
circuits (right).

ENA CLK CKG ENA CLK CKG

1 ↑ ↑ forward active clock edge 1 ↑ CKG toggle output
- 0 0 clamp output to zero 1 ↓ CKG idem

↑ 1 CKG maintain output 0 - CKG maintain output
↓ 1 CKG idem ↑ - CKG idem

↓ - CKG idem

• No latency, that is the enable input must affect the next active clock edge.
• The gated clock output CKG must be free of hazards under all circumstances.
• The enable input ENA must be immune to hazards

(the absence of glitches from the input clock CLK is taken for granted).
• The only timing constraints imposed on the enable input ENA must be the observation of

reasonable setup and hold times (exactly as for an ordinary E-type flip-flop), any signal that
emerges from combinational logic must qualify as enable.

• The gated clock must have the same duty cycle as the input clock
(applies to single-edge-triggering exclusively).

• The propagation delay from CLK to CKG must be small and fixed.
• Overall power dissipation must be low, especially while the clock is disabled.
• The gated clock should come up with a predictable polarity after circuit reset.

The corresponding subcircuits are being shown in fig.6.28. Make sure you understand that all flip-
flops in a register — or in a larger storage array — are made to share one such clock gate. The
overall power dissipated for clocking a w-bit register will be much lower than if w individual E-type
flip-flops were being used as in fig.6.26. The more flip-flops are served by one clock gate, the more
important the economy.

It goes without saying that the propagation delay from CLK to CKG must be taken into account
during clock tree generation much as with any regular clock buffer. Substantial interconnect delays
between the bistable and the combinational gate may also put at risk the correct functioning of
the subcircuits of fig.6.28. A better approach than assembling them from standard cells is to add
them to a design library as elements in their own right. This is to say that compliance with the
original specifications must be checked and that numeric timing figures must be obtained by way
of transistor-level simulations exactly as for any other library cell.23

Table 6.4 compares all four options. The quest for optimum energy efficiency puts pressure on
designers to resort to a multitude of local clocks with a small fanout each and, as a consequence, to
prefer not-nand-type gates over latch-based clock gates. Keep in mind this is dangerous unless you
know exactly what you are doing. Further note that situations where a hierarchy of conditions is to

2 3 A soft macro shall be considered only as a workaround when clock gates are unavailable as library elements.
The internal wires must then be given so much weight that the cells involved get placed next to each other
such as to tightly control interconnect delays and their variations. Even more importantly, soft macros must be
prevented from being torn apart by later logic (re)optimization steps, see observation 4.28 for practical advice.
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exert control over local clocks require special attention, see problem 10. As a last word of caution,
recall that scan testing mandates that all flip-flops of a scan path be enabled during scan-in and
scan-out operations.

Hint: Before opting for a clock gating scheme, check what kind of subcircuits the EDA tool
suite available can handle properly during clock tree generation.

6.6 Summary

� The prime problem in clock engineering is not the lack of solutions but the plethora of divergent
alternatives, see table 6.5. Strictly adhering to a consistent clocking discipline throughout is
paramount to successfully designing large and dependable digital circuits.

- Edge-triggered clocking disciplines are most simple conceptually. However, their small lati-
tude with respect to clock skew and jitter requires careful balancing of the clock distribution
network all the way to physical design. Careful timing verification is crucial, hold-time fixing
may help.

2 4 Though unnecessary from a purely functional point of view, a reset facility serves to bring the subcircuit into a
predictable start state following power-up.
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Table 6.4 Conditional clocking techniques for single-edge-triggered clocking compared.

Enable/disable feedback and not-nand latch-based
mechanism via mux gate gate clock gate

Illustration fig.6.26b fig.6.27a fig.6.27c fig.6.28b
Robustness safe unsafe vulnerable safe
Circuit overhead for 1w ... 3wa 1.5 1.5 ≈4.5
a w-bit register [GE]
Energy balance wasteful if optimal optimal good if many

disabled most flip-flops get
of the time gated together

Impact on clock tree none must compen- must compen- must compen-
synthesis sate for skew sate for skew sate for skew
Design effort minimal, not an option recurring for one-time to

HDL only each clock net establish cell

a The lower bound refers to an E-type flip-flop library cell, the upper to a separate mux.

- Single-edge-triggered one-phase clocking is most popular with both ASIC designers and
EDA vendors.

- All latch-based clocking disciplines with non-overlapping clocks boast a large tolerance with
respect to skew and jitter. This is at the expense of performance in the unsymmetric case
only.

- Symmetric level-sensitive two-phase clocking provides much room for optimizing the clock
subsystem either for performance or for energy efficiency.

- Translating an edge-triggered one-phase design into an equivalent unsymmetric level-
sensitive two-phase design is straightforward, which greatly helps in designing circuits of
the latter category.

- Level-sensitive one-phase clocking is hardly applicable to ASICs due to its fatal dependency
on contamination and interconnect delays.

� Macrocells, megacells, and subcircuits synthesized from third-party HDL code tend to exhibit
unexpected, undesirable, and often undocumented timing features such as excessive hold times,
massive internal clock distribution delays, absence of adequate clock buffers, a mix of rising-
and falling-edge-triggered flip-flops, amalgams of level-sensitive and edge-triggered bistables,
and more. Watch out for such peculiarities.

� Experience tells us that any departure from a plain one-phase-edge-triggered-flip-flops-only
approach complicates the design process and asks for a more substantial engineering effort.
Just about everything from interface design down to timing verification and design for test
(DFT) tends to become more onerous to handle in the presence of

- Asychronous subcircuits and constructs,
- Hybrid clocking schemes (e.g. mixes of edge-triggered with level-sensitive bistables),
- Unclocked memories or other macrocells that have timing characteristics incompatible with

standard flip-flops,
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Table 6.5 Comparison of the most important clocking disciplines along with their compatibility
and usage with clock distribution schemes.

Synchronous clocking discipline
edge-triggered level-sensitive

single dual two-phase one-
edge edge sym- unsym- single phase

Characteristics metric metric wire

Bistables per computation stage SETFF DETFF two latches latch
Clock nets, wiring resources 1 1 2 2 1 1
Relative clock power (approx.)a 1 · 1 · 2 1 · 1.3 · 1 2 · 1

2 · 2 2 · 1
2 · 2 1 · 1 · 2 1 · 1

2 · 2
All timing constraints one-sided yes yes yes yes yes no
Relatively tolerant of skew no no yes yes no no
Allows for time-borrowing n.a. n.a. yes no no n.a.
Utilization of clock period ≤ 1 ≤ 1 ≤ 1 < 1 ≤ 1 > 1
Function latches [0,1] [0,1] [0,1,2] [0,1] [0,1,2] [0,1]
EDA support full limited limited limited limited poor
Key quality slim, slower highly easily high risky,

straight clock flexible derived perf. onerous

Applied in conjunction with past DEC not for
collective buffer ASICs Alpha ASICs
Applied in conjunction with most DDR some IBM not for
distributed tree ASICs circuits ASICs LSSDb ASICs

a expressed as # c l o c k n e t s · #FF l o a d c a p s p e r n e t · # e d g e s p e r c o m p u t a t i o n c y c l e .
b Three clock nets, two of which are active at any time.

- Multiple clock domains,
- Multi-cycle paths,25

- Conditional clocking, and — to a lesser extent — also
- Latch-based design, and
- Dual-edge triggering.

Especially in combination, such departures tend to strain EDA tools beyond what they have
been designed for.

� Ideally, one could think of a synthesis tool that accepts some functional model and that lets
the designer select among the more popular clocking disciplines before generating a circuit

2 5 A multi-cycle path is a signal propagation path that extends over more than one clock period (computation
period in the case of dual-edge triggering). Multi-cycle paths come into existence when VLSI architects decide
to have parts of a circuit run at a lower rate than others, or when they accept having to wait two — or more —
clock cycles for the results from certain combinational operations to appear at the output of the pertaining logic
in exchange for being allowed to clock the entire circuit at a faster rate than the longest path would normally
permit.
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netlist. Commercial HDL software does not work in this way, though, and designers have to
adjust their RTL source code whenever they opt for a different clocking discipline.

� A good clock distribution network exhibits

- Low clock skew and jitter,
- Fast clock slopes,
- Modest distribution delay, and
- A good tolerance towards PTV and OCV as well as towards diverse circuit arrangements

that emanate from automatic placement and routing (P&R).

While distributed trees and hybrid clock distribution networks prevail, careful design and
post-layout timing verification are critical in any case.

� Designing clock distribution networks must be considered part of back-end design. In the
case of distributed clock buffering, use a trustworthy clock tree generator to synthesize, place,
and route the clock distribution networks. Never entrust clock tree insertion to standard logic
synthesis tools as such products have not normally been designed to handle clock distribution.

� Circuit simulation does not suffice to detect skew-related problems. Rather, the circuit to-
gether with its clock distribution network must be subject to static timing verification. In
synchronous designs, this basically implies the checking of setup and hold conditions along all
signal propagation paths between any two bistables. Layout parasitics must be accounted for
by working from post-layout netlists as obtained from layout extraction. Software tools for
doing so are commonplace, see section 12.1.2 for details.

� Conditional clocking requires particular attention as it interferes with scan test, and as the
simplest and most efficient clock gates are highly exposed to malfunction. The presence of
logic gates other than buffers and inverters in clock distribution networks should always alert
the expert during a design review.

� Most cell libraries are written with no particular clocking discipline or clock distribution
scheme in mind. Thus, when evaluating a clocking strategy, do not let yourself be misguided
by some arbitrary feature of your design environment. Put your system requirements first.
That is, take into account

- The compatibility with other subsystems to be integrated on the same chip, if any,
- The library elements available such as flip-flops, latches, LSSD elements, memories, clock

drivers, clock gates, PLLs, etc. along with the timing data that go with them,
- The tools available for load estimation, layout extraction, circuit simulation, timing verifi-

cation, clock tree generation, and circuit synthesis in general,
- The accuracy of the timing model(s) being used,
- The available software tools for inserting test structures,
- The available EDA tools for generating and grading of test vectors,
- The hardware test equipment at your disposal, and, last but not least,
- Personal experience.

� Clock skew and jitter have become more acute with the ever shrinking feature sizes and clock
periods. Luckily, today’s semiconductor manufacturing processes provide many low-resistance
metal layers of which designers can take advantage for better clock distribution.
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6.7 Problems

1. For all clocking disciplines discussed in this chapter visualize the skew margins in their Anceau
diagrams. Use different colors for margins that (a) are a function of the operating speed of
the circuit, (b) vanish unless the components involved have non-zero delays, and (c) do not
depend on either one.

2. Old hands among IC designers have long known that edge-triggered shift registers are par-
ticularly in danger of malfunctioning. As a remedy, they used to oppose the flows of clock
and data during physical design, e.g. they had the clock wire run from right to left in a shift
register where data travel from left to right. Explain why this helped.

3. Reconsider the flip-flop timing data given in table 6.2. What do you think, is this a well-
behaved flip-flop or does it impose timing conditions that are awkward to meet?

4. Some designers like to combine rising-edge-triggered flip-flops with others that trigger on the
falling edge in the same clock domain. Analyze the timing characteristics of this scheme and
discuss its merits (wrt skew tolerance, performance, scan path insertion, energy efficiency,
design verification, engineering effort, etc.). Does it offer any advantage over the disciplines
discussed in this chapter?

5. Yet another approach to edge-triggered clocking uses flip-flops that are built from three latches
instead of two, see fig.6.29b. Consider a circuit where all standard flip-flops have been replaced
by such bistables and carry out the same analysis as before.

a)

D Q

CLK

b)

D                                                     Q

CLK

Fig. 6.29 Master–slave–slave flip-flop. Proposed icon (a) and logically equivalent circuit (b).

6. The circuit of fig.6.30 occupies a position somewhere between single-edge-triggered and level-
sensitive one-phase clocking. The motivation behind replacing part of the flip-flops by (pulse-
clocked) latches is the search for improved energy efficiency. Savings are expected from a
lighter clock load and from the reduced node count and switching activities in a latch when
compared with those in the more complex master–slave flip-flop. Substitution takes place
only where the combinational logic between two consecutive bistables can be demonstrated
to meet the setup- and hold-time conditions of the receiver due to the circuitry’s inherent
contamination delay alone, i.e. with no extra gates or wiring detours.

Draw the Anceau diagram assuming that clock frequency remains the same as in the original
circuit. Establish all relevant setup and hold margins. Formulate adequate replacement rules
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in a more formal way. Comment on the viability and effectiveness of this hybrid clocking
scheme.

a)

CLK

C

F

L

T2T1

pass
hold

Tclk

b)

CLK

time span
available for

combinational 
function C Tci Tci

Fig. 6.30 A hybrid clocking scheme that combines latches with flip-flops. Basic hardware organization (a) and

simplified timing diagram (b).

7. Reconsider the timing data in table 6.23 and calculate the length of the FPGA data-call
windows for the various situations. What do you observe? Do you have an explanation?

8. Assume you want to include an on-chip RAM in a clock domain to be designed from a standard
cell library. The edge-triggered synchronous RAM is to interface with a 14 bit address register
and two 24 bit data registers, one for reading and one for writing. For simplicity, let’s assume
all flip-flops are identical. Both RAM and flip-flops trigger on the rising edge; their timing
data are given next.

Cell Timing parameters
tpd tcd tsu tho

[ns] [ns] [ns] [ns]

Flip-flop 0.5 0.2 0.3 0.1
RAM macrocell 2.5 1.5 1.0 0.8

a) Assuming zero skew, estimate the setup and hold margins if the circuit is to run at a clock
frequency of 250 MHz. Where’s the difficulty?

b) Make several proposals for solving the problem and evaluate them!
c) Study the options of inserting some delay τ in the various input and output lines of the

RAM macrocell. Compile a table that lists the impact on the RAM’s apparent timing
figures if delay is inserted (α) in address and data inputs, (β) in the data outputs, and (γ)
in the clock input.

d) What is the result of deliberately designing the clock tree so as to slightly retard or advance
the clock signal to the RAM? Does one of these help?

e) Can you imagine situations where it makes sense to apply such tricks? Is it possible to
improve performance by designing a carefully imbalanced clock distribution network?
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CKG2 CLK’CLK’
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Fig. 6.31 Hierarchical clock gating and scan test.

9. A commercial synthesis tool from the 1990s claimed to construct FSMs with hazard-free
outputs by adding latches to all input and output lines of a Mealy-type automaton. These
extra latches were controlled by the same clock signal that drove the edge-triggered state
register so as to always have either the input latches transparent and the output latches
on hold, or vice versa. Find out when outputs are supposed to switch! As both latch sets
are not allowed to be transparent simultaneously, outputs were believed to be isolated from
asynchronous input changes. Show that this is not always true!

Note: If you find it hard to analyze this state machine, imagine the difficulty of designing a
larger circuit that mixes level-sensitive with edge-triggered clocking.

10. Figure 6.31 shows two clock distribution trees that make use of clock gating. Whether local
clocks CKG1, CKG2, CKG3, and CKG34 are to be active or not obviously depends on enable signals
ENA1 through ENA4 generated from within the circuit itself. Circuit testing is supposed to hap-
pen via a full scan path that gets turned on from the SCM scan mode terminal. Unfortunately,
though, fig.6.31a includes four oversights. Locate them and explain what’s wrong!



Chapter 7

Acquisition of Asynchronous Data

7.1 Motivation

Most digital systems that interact with the external world must handle asynchronous inputs because
events outside that system appear at random points in time with respect to the system’s internal
operation. As an example, a crankshaft angle sensor generates a pulse train regardless of the state
of operation of the electronic engine management unit that processes those pulses.

Synchronization problems are not confined to electromechanical interfaces. Much the same situation
occurs when electronic systems interact that are mutually independent, in spite — or precisely
because — of the fact that each of them is operating in a strictly synchronous way. Just think
of a workstation that exchanges data with a file server over a local area network (LAN), of audio
data that are being brought to a D/A converter for output, or of a data bus that traverses the
borderline from one clock domain to another. Obviously, the processing of asynchronous inputs is
more frequent in digital systems than one would like.

The following episode can teach us a lot about the difficulty of accommodating asynchronously
changing input signals. The account is due to the late Charles E. Molnar, who was honest enough
to tell us about all misconceptions he and his colleagues went through until the problems of syn-
chronization were fully understood.

Historical example

Back in 1963, a team of electronics engineers was designing a computer for biological researchers
that was to be used for collecting data from laboratory equipment. In order to influence program
execution from that apparatus, a mechanism was included to conditionally skip one instruction
depending on the binary status of some external signal. The basic idea behind that design, sketched
in fig.7.1a, was to increment the computer’s program counter one extra time via a common enable
input of its flip-flops iff the external signal was at logic 1.
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1

0

program counter

+2

computer !

Fig. 7.1 Control unit with conditional instruction skip mechanism (simplified). Original design without

synchronization (a), improved design with external signal synchronized (b).

When monitoring the computer’s operation, the engineering team observed that the next instruction
was occasionally being fetched from a bogus address after the external signal had been asserted,
thereby causing the computer to lose control over program execution. As an example, either of
0 1111 = 15 or 1 0000 = 16 is expected to follow after address 0 1110 = 14, depending on the ex-
ternal input. Instead, the program counter could be observed to enter a state such as 1 1101 = 29
or 0 0010 = 2. The team soon found out that such failures developed only if the external signal
happened to change just as the active clock edge was about to occur, causing the program counter
to end up with a wild mix of old and new bits.

The obvious solution was to insert a synchronization flip-flop so as to make a single decision as to
whether the external level was 0 or 1 at the time of clock. Although the improved design, sketched in
fig.7.1b, performed much better than the initial one, the team continued to observe sporadic jumps
to unexpected memory locations, a failure pattern for which it had no satisfactory explanation at
the time. It took almost a decade before Molnar and others who worked on high-speed interfaces1

dared publicly report on the anomalous behavior of synchronizers and before journals would accept
such reports that contrasted with general belief.
�

Two failure mechanisms are exposed by this case, namely data inconsistency and synchronizer
metastability, both of which will be discussed in this chapter together with advice on how to get
them under control.

1 What was considered high speed yesterday, no longer is high speed today. In the context of synchronization,
“high-speed” always refers to circuits that operate at clock frequencies and data rates approaching the limits of
the underlying technology.
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7.2 The data consistency problem of vectored acquisition

We speak of vectored acquisition when a clock boundary — the hypothetical line that separates
two clock domains — is being traversed by two or more electrical lines that together form a data,
control, or status word, or some other piece of information.

7.2.1 Plain bit-parallel synchronization

Consider the situation of fig.7.2 where data words traverse a clock boundary on w parallel lines
before being synchronized to the receiver clock CLKQ in a register of w flip-flops. Due to various
imperfections of practical nature,2 some of the bits will switch before others do whenever the bus
assumes a new value. If this happens near the active clock edge, the register is bound to store a
crossover pattern that mixes old and new bits in an arbitrary way.

delay

w
I

delay

.....

clock boundary 

synchronizer

CLKQ

.....
.....

CLKP

slow bit

fast bit

CLKQ

I

data get sampled
while inconsistent

Fig. 7.2 Non-simultaneous switching in a parallel bus may result in inconsistent data.

Depending on context, the impact of occasional crossovers on a circuit’s operation ranges between
benign malfunction and fatal disaster:

◦ Data error for one cycle before being overwritten with correct value.
◦ Episodic disturbance lasting for several clock cycles (e.g. in a filter).
◦ Value outside legal range (e.g. if item of data is a complementary pair,

follows one-hot encoding, or is coded in some other redundant format).
◦ Finite state machine (FSM) deflected to a state unplanned for.
◦ Finite state machine (FSM) trapped in a lock-up situation.
◦ An address counter pointing to mistaken memory locations.

Warning example

A stream of digital audio data available in a 16 bit parallel format is resynchronized to a 44.1 kHz
output clock before being fed to a D/A converter. As audio samples are coded in 2’s complement

2 Such as unmatched gate delays, unlike loads, distinct wire routes, unequal layout parasitics, clock skew, PTV
variations, OCV, and crosstalk.



7.2 THE DATA CONSISTENCY PROBLEM OF VECTORED ACQUISITION 367

format (2’C), their range covers the interval [−32′768, +32′767]. Only one sample will be affected
in the occurrence of a synchronization failure. Yet, to apprehend the impact of crossover, imagine
two consecutive samples of low amplitude end up intermingled as follows.

sample decimal relative 2’s complement code
s(t) (correct) +47 +0.0014 → 0000 0000 0010 1111

s(t + 1) (correct) −116 −0.0035 → 1111 1111 1000 1100

maximum mix +32 687 +0.9976 ← 0111 1111 1010 1111

random crossover +5 388 +0.1644 ← 0001 0101 0000 1100

minimum mix −32 756 −0.9997 ← 1000 0000 0000 1100

�

Observation 7.1. Data that cross a clock boundary on parallel lines cannot be synchronized with the

aid of parallel registers alone. Inconsistent patterns may otherwise develop from crossover between

individual data bits and upset the downstream data processing logic.

7.2.2 Unit-distance coding

We first observe that any crossover pattern from two data words necessarily matches either of the
two words iff their Hamming distance is one or less. The consistency problem can thus be solved
by adopting a unit-distance code3 provided data are known never to change by more than one step
at a time in either direction, a requirement that confines unit-distance coding to applications such
as the acquisition of position and angle encoder data.

unsigned binary Gray coding
clock count decimal code decimal code
c(t) +47 → 0010 1111 +47 → 0011 1000

c(t + 1) +48 → 0011 0000 +48 → 0010 1000

maximum mix +63 ← 0011 1111 +48 → 0010 1000

minimum mix +32 ← 0010 0000 +47 → 0011 1000

Example

A sampling rate converter IC for digital audio applications included a subfunction for tracking the
ratio of the two sampling frequencies in real time. The circuit was built on the basis of an all-digital
phase-locked loop (PLL) and asked for a counter clocked at frequency fp, the state of which had
to be read out periodically with frequency fq . The frequency ratio of the two clocks was known to
be contained in the interval [ 1

2 ...2] and to vary slowly. Experience had shown that any crossover in

3 Unit-distance codes have the particularity that any two adjacent numbers are assigned code words that
differ in a single bit. They include the well-known Gray code (2w ) and the Glixon, O’Brien, Tompkins,
and reflected excess-3 codes (binary coded decimal (BCD)). 4 bit Gray coding, for instance, goes as follows:

decimal Gray code decimal Gray code decimal Gray code decimal Gray code
15 1000 11 1110 7 0100 3 0010

14 1001 10 1111 6 0101 2 0011

13 1011 9 1101 5 0111 1 0001

12 1010 8 1100 4 0110 0 0000
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the clock count data would impair the final audio signal in a critical way, even if increment and
read-out operations happened to coincide only sporadically. An error-safe solution had thus to be
sought. Figure 7.3 shows the relevant hardware portion, which eliminated crossovers by having the
clock count data traverse the clock boundary as Gray code numbers.
�

clock boundaryCLKP

Gray coded 
clock count 

Gray counter

next
state
logic

D Q

CLKQ

Gray to
binary

mapping

synchronizer

D QD Q binary coded 
clock count 

±1

Fig. 7.3 Frequency ratio estimator with vectored synchronizer based on a unit-distance code (partial view).

7.2.3 Suppression of crossover patterns

The idea here is to detect and ignore transients by comparing subsequent data words at the receiver
end. If any mismatch is detected, data are declared corrupted and are discarded by having the
synchronizer output the same value as in the cycle before. A comparison over just two words as in
the circuit of fig.7.4 suffices, provided input data are guaranteed to settle within one clock period.
To avoid loss of data, any data item must get sampled correctly at least two times in a row, which
implies that up to three clock intervals may be necessary until a new item becomes visible at the
synchronizer output. A similar but more onerous proposition is to use error detection coding to find
out when a freshly acquired data word should be ignored.

clock boundary CLKQ

D Q

ENA

D Q D Q

=

0

1

data valid

synchronizer

CLKP

Fig. 7.4 A vectored synchronizer that detects and ignores inconsistent data.

Note that specialized hardware is not the only possible approach to reject crossover patterns. The
same idea can also be implemented in software provided data rate, data transition time, and sam-
pling rate can be arranged to be consistent with each other.4

4 Observe the resemblance to the debouncing of mechanical contacts to be discussed in section 8.5.5.
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7.2.4 Handshaking

This approach contrasts with the previous one in that it prevents inconsistent data from being
admitted into the receiving circuit. The key idea is to avoid sampling data vectors while they might
be changing. Instead, the updating and the sampling of the data get coordinated by a handshake
protocol that involves both the producing and the consuming subsystems. As will become clear
later in this section, handshake protocols also have other applications than just avoiding the emer-
gence of crossover patterns at clock boundaries. Full handshaking is essentially symmetrical and
requires two control lines, termed request REQ and acknowledge ACK respectively, that run in
opposite directions, see fig.7.5a.

Observation 7.2. The rules of full handshaking demand that any data transfer gets initiated by

some specific event on the request line and that it gets concluded by an analogous event on the

acknowledge line.

Handshake protocols come in many flavors, let us focus on a few important ones.5

Transition or two-phase handshake protocol

The waveforms and event sequences of figs.7.5b and c show a possible scenario. Let both control
lines be at logic 0 before the first data transfer begins. When the producer has finished preparing
a new data word, he stores it in his output register. By toggling the REQ line, he then informs the
consumer that the DATA vector has settled to a new valid state and requests it to ingest that data
item. He thereby becomes liable of maintaining this state until data reception is confirmed by the
consumer as the latter is free to accommodate and process the pending data item whenever he
wants to do so.

When, some time later, the consumer has safely got hold of that data item and when he is ready to
accept another one, he toggles the ACK line running back to the producer to make this manifest.6

Upon arrival of this confirmation, the producer no longer needs to hold the present data item but

5 What follow sare comments on further variations of the basic handshake protocol. Notice from fig.7.5 that the
request line has the same orientation as the data bus. This assumption, which we have made throughout our
discussion, is referred to as a push protocol because any data transfer gets initiated by the producer. The
data- valid message is transmitted over the request line, and the data-secured message over the acknowledge
line.

In a pull protocol everything is reversed. The request line runs in the opposite direction to the data bus,
transfers get initiated by the consumer, the request line carries the data-secured message (that prompts the
producer to deliver another data item), and the data-valid message is encoded on the acknowledge line. Yet,
it is important to understand that these designations relate to naming conventions only; by no means do they
imply that an active producer is driving a passive consumer, or vice versa.

Further observe in fig.7.5d that the data bus holds valid data for only half of the time. The precise name of
this scenario is “prolonged early push protocol”. The freedom in deciding when to withdraw or overwrite a data
vector, represented in fig.7.5d by the event labeled VAL-, suggests this is not the only option. You may want to
refer to [170] for an exhaustive discussion of handshake protocols and their terminology.

6 Note that this does not necessarily imply that the processing of the last data item is actually completed. A
pipeline, for instance, can accommodate new data as soon as the result from the processing of the previous item
by its first stage has been properly stored in the subsequent pipeline register. There is no need for this data
item to have finished traversing the second or any later stage. It should be obvious, however, that data must
have propagated through any combinational logic placed between the producer’s output register and the first
data register in the consumer before the acknowledge is asserted.
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Fig. 7.5 Full handshaking put to service for vectored synchronization. Circuit (a), waveforms for two-phase

protocol (b), signal transition graph (STG) (c), same for four-phase protocol (d,e).

becomes free to withdraw or to overwrite it at any time. When the first data transfer comes to an
end, both control lines are at 1, ready for a second transfer.

Notification occurs with transition signaling and each data transfer operation involves one event
on each of the two control lines. This explains why the two-phase protocol is also known as the
two-stroke, transition, or non-return-to-zero (NRZ) protocol. An implication is that it always takes
two consecutive data transfers before the control lines return to their initial logic values.

Level or four-phase handshake protocol

The alternative scenario depicted in fig.7.5d and e contrasts with the above in that the control
lines get restored to their initial values between any two consecutive transfer operations. This
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variation is based on level signaling and involves two extra events, hence the synonyms four-stroke,
level, and return-to-zero (RZ) protocol. Although the data rate is cut to half of what is achievable
with transition signaling at the same clock frequency, this approach is more common because the
hardware tends to be somewhat simpler and easier to understand.

With either signaling scheme, the handshake protocol makes sure that data vectors get sampled
only while the electrical lines are kept in a stable and consistent state. The need for synchronization
— together with the risk of metastability — is confined to two scalar control signals no matter how
wide the data word is. Two-stage synchronizers are typically being used.

Full handshaking works independently of the relative operating speeds of the subsystems involved.7

If, for instance, the producer were replaced by a much faster implementation, data transfers would
continue correctly with no change to the consumer or to the interface circuits. Although the producer
would spend much less time in preparing a new data item, the mutual exclusion principle inherent
in the full handshake protocol would take care that data items do not get produced at a rate that
is incompatible with the consumer.

Observation 7.3. The strict sequence of events imposed by a full handshake protocol precludes any

loss of data, confines synchronization problems to two control lines, and makes it possible to design

communicating subsystems largely independently from each other.

The last property greatly facilitates the modular design of complex systems as nothing prevents
VLSI designers from taking advantage of full handshaking to govern data transfer operations even
when all subsystems involved are part of the same clock domain. On the negative side, the symmetric
protocol requires that both subsystems involved be stallable. That is, they must be capable of
withholding their data production and consumption activities for an indeterminate amount of time
if necessary. This is not always possible, though.

7.2.5 Partial handshaking

Consider a digital data source (sink) operating with a fixed sampling rate. An example is given in
fig.7.6a (f) with an A/D (D/A) converter acting as producer (consumer) of audio samples. Such a
data source (sink) works spontaneously and neither needs nor cares about protocols. Input terminal
ACK (REQ) thus becomes meaningless and must be dropped, thereby rendering the circuit and the
protocol unsymmetrical.

More importantly, a fixed-rate producer (consumer) is not stallable. This is to say that it does
not wait, thereby forcing its counterpart to always complete the data processing in time before
the next data item becomes available (is needed). Data items may otherwise get lost (get read
multiple times). By making assumptions about the response time of the partners involved, partial
handshaking becomes exposed to failure when these assumptions change. In the example of fig.7.6c,
SEC+ must occur before VAL+ under any circumstance, which imposes restrictions on the mutual
relationship of producer and consumer clock rates and latencies.

It is important to understand that porting an existing design to a new technology, reusing part of
it in a different context, or applying dynamic voltage and/or frequency scaling is likely to challenge

7 A questionable implementation where this is not the case is discussed in problem 4 of section 7.6.



372 Design of VLSI Circuits

REQ

REQ2

a)

......

consumer, stallable subsystemproducer, spontaneous subsystem

DATA

clock boundaryCLKP CLKQ

ww
D Q

ENA

w
D Q

ENA

finite
state

machine

finite
state

machine

VAL+ = data valid

SEC+ = data secured

VAL- = data withdrawn (optional)

producer

consumer

push protocol: acknowledge
reception

request
reception

(optional)

synchronizer
subcircuit

scalar

ACK 

ACK2

f)

......

consumer, spontaneous subsystemproducer, stallable subsystem

DATA

clock boundaryCLKP CLKQ

ww
D Q

ENA

w
D Q

ENA

finite
state

machine

finite
state

machine

(optional)

synchronizer
subcircuit

scalar

D
A

D
A

REQ

CLKP

CLKQ

producer

consumer

b)

DATA

1st transfer 2nd transfer 3rd transfer c)

REQ+

VAL+

REQ2+

VAL+

SEC+

REQ- REQ2-

SEC+

odd transfer

even transfer

CLKP

CLKQ

producer

consumer

REQ

d)
 

DATA

1st transfer 2nd transfer e)

REQ+

VAL+

REQ2+

REQ- REQ2-

SEC+

transfer

no transfer
VAL-

!

!

Fig. 7.6 Partial handshaking in the case of a fixed-rate producer. Circuit (a), waveforms and STG for a

two-phase protocol (b,c), and the same for a four-phase protocol (d,e). Circuit in the case of a fixed-rate

consumer (f).



7.3 THE DATA CONSISTENCY PROBLEM OF SCALAR ACQUISITION 373

such assumptions. As opposed to this, full handshaking scales with frequency and operating speed
because no assumptions are made.

Observation 7.4. Partial handshake protocols cannot function properly unless the reaction times

of the communicating subsystems are known a priori and can firmly be guaranteed to respect specific

relationships under all operating conditions.

7.3 The data consistency problem of scalar acquisition

As the name suggests, scalar acquisition implies that a clock boundary is being traversed by just one
line. It may appear surprising that the acquisition of a single bit should give rise to any problem
that is worth mentioning, yet, there are a few subtle pitfalls. In order to better understand the
peculiarities, let us first examine how unsophisticated schemes fail in the presence of asynchronously
changing inputs before proceeding to more adequate approaches.

7.3.1 No synchronization whatsoever

In the circuit of fig.7.7a, a scalar input signal I is being fed into two combinational subcircuits g

and h that are part of a synchronous consumer circuit without any prior synchronization to the
local clock CLKQ. Two deficiencies are likely to lead to system failure.

Firstly, the outputs Cg and Ch emanating from g and h respectively will occasionally get sampled
during the time span between contamination and propagation delays when their values correspond
neither to the settled values from the past interval t nor to those for the upcoming interval t + 1.8

In the timing diagram of fig.7.7a such unfortunate circumstances apply to the central clock event.

Secondly, even though Cg and Ch may happen to be stable at sampling time, they may relate to
distinct time intervals if tcd g > tpd h . If so, an inconsistent set of data gets stored in the two registers
before it is passed on to the downstream circuitry for further processing. This undesirable situation
typically occurs when one of the paths includes combinational logic whereas the other does not. For
an example, check the rightmost clock event in fig.7.7a.

7.3.2 Synchronization at multiple places

Adding synchronization flip-flops in front of all combinational subcircuits as in fig.7.7b improves
the situation but does not suffice. This is because the flip-flops involved would sample the input
slightly offset in time as a consequence of unbalanced delays along the paths I → Ig and I → Ih,
clock skew, unlike switching thresholds, noise, etc. Every once in a while, input data would get
interpreted in contradicting ways as depicted in the timing diagram.

7.3.3 Synchronization at a single place

To stay clear of inconsistencies across multiple flip-flops, synchronization must be concentrated at a
single place before any data are distributed. This is the only way to make sure that all downstream
circuitry operates on consistent data sampled at a single point in time. It is, therefore, standard
practice to use synchronizers similar to those depicted in figs.7.7c and d.

8 Remember from section A.5 that combinational outputs do not necessarily transit from one stable value to the
next in a monotonic fashion, rather, they may temporarily assume arbitrary values due to hazards.
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Observation 7.5. Any scalar signal that travels from one clock domain to another must be synchro-

nized at one place by a single synchronization subcircuit driven from the receiving clock. Similarly,

when two complementary signals are required, it is best to transmit only one of them and to (re)obtain

the complement after synchronization.

7.3.4 Synchronization from a slow clock

A synchronizer clocked at rate fclkq is bound to miss part of the input data unless all data pulses are
guaranteed to last for at least Tclkq = 1/fclkq . Note the incongruity between data rate and sampling
rate in fig.7.7c and the ensuing data loss. Actually, the sampling period of the synchronizer must
provide sufficient leeway to accommodate setup and hold times as well as data transients. This
can be a problem when no clock of adequate frequency is available on the consumer side. Various
workarounds have been developed.

• Convert the data stream from its bit-serial into a bit-parallel format with the aid of a shift
register, thereby making it possible to transmit data at a much lower rate. Then use one of
the vectored acquisition schemes found to be safe.

• Use an analog phase-locked loop (PLL) to clock the synchronizer at a faster rate.
• Resort to dual-edge-triggered one-phase clocking if clocking the synchronizer at twice its

original frequency suffices.

Even with the best synchronization scheme, an active clock edge and an input transition will occa-
sionally coincide when signals get exchanged between two independent clock domains, see fig.7.7d.
For the system to function correctly, the synchronizer must then decide for either one of the two
valid outcomes as the downstream circuitry cannot handle ambiguous data. This is precisely the
subject of the next section.

7.4 Metastable synchronizer behavior

7.4.1 Marginal triggering and how it becomes manifest

Reconsider the various synchronization schemes discussed. What they all have in common is a flip-
flop — or a latch — the data input of which is connected to the incoming signal. As no fixed timing
relationship between data and clock can be guaranteed, the data signal will occasionally switch in
the immediate vicinity of a clock event, thereby ignoring the requirement that input data must
remain stable throughout a bistable’s data-call window.

“What happens when an input change violates a bistable’s setup or hold condition?”

Technically, this kind of incident is referred to as timing violation or marginal triggering.9

9 Please recall that clocked (sub)circuits impose not only
• minimum setup and hold times tsu and tho but also
• minimum clock pulse widths tclk lo min and tclk hi min ,
• maximum clock rise and fall times tclk ri max and tclk fa max , and
• absence of runt pulses and glitches on clock and asynchronous (re)set inputs.
Disregarding any such timing condition is likely to cause marginal triggering. The customary abstraction of
flip-flops, latches, and RAMs into bistable memory devices the behavior of which is entirely captured by way of
truth tables, logic equations, and the like then no longer holds.
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Until the mid 1970s, it was generally believed that the bistable would then decide for either of the
possible two outcomes right away and output either a 0 or a 1. As stated in the introduction to
this chapter, it took a long time until the design community began to understand that this was not
necessarily true.

UQ

QU
.

Fig. 7.8 Measured behavior of a CMOS latch in response to marginal triggering (photo reprinted from [171]

with permission).

What had been observed were intermediate voltages and excessive delays before the two comple-
mentary outputs of the bistable eventually settled to a normal steady-state condition in response to
marginal triggering. It was found that delays occasionally exceeded officially specified propagation
delay figures by orders of magnitude, which made it clear that a better understanding of the pro-
cess was imperative. We will, in the remainder of this chapter, summarize important results from
empirical measurements and theoretical analysis of this phenomenon.

Today’s digital subcircuits are inherently analog networks, and bistables are no exceptions. The
data-retention capability of latches, flip-flops, and SRAM cells is essentially obtained from closed
feedback loops built from two inverting amplifiers.10 Figure 7.9b shows the transfer chararacteristics
of two CMOS inverters where the output of either inverter drives the input of the other. Two stable
points of equilibrium reflect the binary states 0 and 1 respectively. A third and unstable point of
equilibrium exists in between. More precisely, the state space features two “valleys of attraction”
separated by a line of unstable equilibrium. Marginal triggering implies bringing a bistable very
close to that separation line before leaving it to recover. The bistable is then said to hang in an
evanescent metastable condition.11

Mathematical analyses of the metastable behavior of cross-coupled inverters can be found in the
literature such as in [172] [171] [47]. While correctly modelling the behavior of the feedback loop,
they do not necessarily describe the waveforms observable at the output terminals of actual latches
and flip-flops. Similiarly, node voltages half-way between zero and Udd , such as those depicted in
fig.7.8, are not normally visible at the outputs of a library cell or physical component. This is
because of the various auxiliary subcircuits inserted between the metastable memory loop itself and
the I/O terminals. Output buffers, for instance, tend to restore intermediate voltages to regular logic
0s and 1s. Device characteristics and physical layout also matter. Figure 7.10 shows how metastable
conditions normally become manifest in various bistables.

1 0 Transistor-level circuit diagrams are to be presented in sections 8.2 and 8.3.
1 1 A philosophical concept known as Buridan’s Principle states that a discrete decision based upon input having a

continuous range of values cannot be made within a bounded length of time. It is named after the fourteenth-
century philosopher Jean Buridan, who claimed that a donkey placed at the same distance from two bales of
hay would starve to death because it had no reasons to choose one bale over the other.
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Eventually the circuit returns to either of the two states of stable equilibrium. Yet, not only is the
outcome of the decision process unpredictable, but the time it takes to recover from a metastable
equilibrium condition necessarily exceeds the bistable’s customary propagation delay, see fig.7.11.
In fact, metastability resolution time has been reported to outrun propagation delay by orders
of magnitude on occasion, so that we must write tmr > tpd and sometimes even tmr � tpd . Most
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window (arbitrary numerical data).

alarming are the facts that it is not possible to guarantee any upper bound for the time a bistable
takes to recover and that the behavior of a physical part is no longer consistent with the one
published in the datasheet and captured in the simulation model.

Observation 7.6. Metastability is a problem because of unpredictable delay, not because of unpre-

dictable logic outcome.

While it is true that actual behavior greatly varies from one type of bistable to the next, it should
be understood that the phenomenon of metastability is a fundamental one observed independently
from circuit and fabrication technology. There are currently no flip-flops or latches that are free of
metastable behavior.

7.4.2 Repercussions on circuit functioning

As a consequence of a synchronizer hanging in the metastable condition,

◦ The downstream circuitry may process wrong data, or
◦ May be presented with voltages within the forbidden interval, or
◦ May find itself short of time for settling to a steady-state value

before the next clock event arrives, see fig.7.12.
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In the last two cases, some downstream storage elements will be subject to marginal triggering
themselves, thereby permitting metastability to spread further into the clock domain. In any of the
three cases, part of the system is likely to malfunction.

Warning example

The erratic behavior that Molnar and his colleagues had observed with their laboratory computer
even after they had added a flip-flop for synchronizing the external input was in fact the result
of metastability in the program counter. The problem was exacerbated by the slow germanium
transistors then available and the poorly designed flip-flop circuits. Yet, it is unfair to blame the
circuit designers for this as nobody was aware of metastability and of the importance of quick
recovery in synchronizers at the time.
�

Observation 7.7. Metastability together with its fatal consequences is completely banned from

within a clock domain iff care is taken to meet all timing requirements under all operating conditions.

As opposed to this, there is no way to truly exclude metastability from occurring at the boundaries

of independently clocked domains.

7.4.3 A statistical model for estimating synchronizer reliability

As metastability has been found to be unavoidable in synchronizers, it is essential to ask

“How serious is the metastability problem really?”

As illustrated by the two quotes below,12 even experts do not always agree.

1 2 By Peter Alfke and Bruce Nepple respectively.
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“Having spent untold hours at analyzing and measuring metastable behavior, I can assure
you that it is (today) a highly overrated problem. You can almost ignore it.”

“Having spent untold hours debugging digital designs, I can assure you that metastable be-
havior is a real problem, and every digital designer had better understand it.”

Within their respective contexts, both statements are correct, which indicates that we must develop
a more precise understanding of the phenomenon. Theoretical and experimental research has come
up with statistical models that can serve as a basis for estimating the probability of system failures
due to metastability. Consider a flip-flop driven by a clock of frequency fclk that is connected to
an asynchronous data signal with an average edge rate of fd . We will speak of a synchronization
failure whenever a metastable condition persists some time tal after the synchronizer has been
clocked, i.e. when tmr > tal . The mean time between errors (MTBE) for such an arrangement
has been found to obey the general law

tM T B E =
eK 2 ta l

K1 fclk fd
(7.1)

where parameters K1 and K2 together quantify the characteristics of the synchronizer flip-flop with
respect to marginal triggering and metastability resolution [172] [173]. K2 is an indication of the
gain–bandwidth product around the memory loop of its master latch. K1 represents a timewise
window of susceptibility for going metastable.

D

clock boundary CLKQ

K1 K2

.....

payload circuit

tsu ff dnsttpd c

synchronizer

Fig. 7.13 Circuit diagram of single-stage synchronizer.

Now consider a single-stage synchronizer like the one of fig.7.13 and ask yourself for how much time
the first flip-flop is allowed to rave in an out-of-the-normal condition for the downstream logic to stay
clear of trouble. The timewise allowance for resolving metastability tal is simply the clock period
Tclk diminished by the setup time of the downstream flip-flop(s) tsu ff dnst and the propagation
delay max(tpd c) along the longest path through any combinational circuitry inserted between the
flip-flops. You may want to refer back to fig.7.11 for an illustration.

ta l = Tclk − max(tpd c ) − tsu ff dn st with Tclk =
1

fclk
(7.2)

Example

The metastability characteristics of a flip-flop in an XC2VPro4 FPGA from the Xilinx Virtex II Pro
family are listed in table 7.1 for typical operating conditions. For fclk = 100 MHz, fd = 10 MHz,
tsu ff dnst = 0.5 ns and tpd c = 4 ns, the calculated MTBE exceeds the age of the universe. Just



7.4 METASTABLE SYNCHRONIZER BEHAVIOR 381

doubling the clock frequency reduces the MTBE to a mere 4 s, which demonstrates that the impact
of metastability is extremely dependent on a circuit’s operating speed. Whether the single-stage
synchronizer of fig.7.13 is acceptable thus turns out to be a quantitative question.
�

7.4.4 Plesiochronous interfaces

Being a statistical model, (7.1) assumes that there is no predictable relationship between the fre-
quencies and phases of the data and clock signals. This is does not always apply, though. A notable
exception is plesiochronous systems where data producer and consumer are clocked from separate
oscillators that operate at the same nominal frequency. Think of a local area network (LAN), for
instance. Once clock and data have aligned in an unfortunate way at the receiver end, successive
data updates are subject to occur during the the critical data-call window many times in a row,
thereby rendering the notion of MTBE meaningless.

Observation 7.8. Plesiochronous interfaces are exposed to burst-like error patterns and are not

amenable to analysis by simple statistical models that assume uncorrelated clocks.

Plesiochronous interfaces require some sort of self-regulating mechanism that avoids consecutive
timing violations and repeated misinterpretation of data. A tapped delay line may be used, from
which an adaptive circuit selects a tap in such a way as not to sample a data signal in the immediate
vicinity of a transient [174]. Two related ideas are adaptively shifting the data or the clock signal via
a digitally adjustable delay line [175], and oversampling the input data before discarding unsettled
and duplicate data samples. None of these approaches is free of occasional coincidences of clock
events and data changes, however. The problem is just transferred from the data-acquisition flip-
flop to the subcircuit that adaptively selects a tap or controls sampling time.

7.4.5 Containment of metastable behavior

Limiting the harmful effects of metastability is based on insight that directly follows from (7.1) and
(7.2). Keep the number of synchronization operations as small as possible and allow as much time
as practical for any metastable condition to resolve. More specific suggestions follow.

Estimate reliability at the system level

Having a fairly accurate idea of the expected system reliability is always a good starting point. It
makes no sense to try to improve synchronization reliability further when the MTBE already exceeds
the expected product lifetime. However, always remember that (7.1) and all further indications in
this text refer to one scalar synchronizer and that a system may include many of them. Also keep
in mind that statistical models do not apply to plesiochronous operation.

In practice, a frequent problem is that only few bistables come with datasheets that specify their
metastability resolution characteristics. Luckily, there exists a workaround.

Observation 7.9. As a rule of thumb, synchronization failure is highly infrequent if a flip-flop is

allowed three times its propagation delay or more to recover from a metastable condition.
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Table 7.1 Metastability resolution characteristics of various CMOS flip-flops. Note: The above
figures have been collected from distinct sources and do not necessarily relate to the same
operating conditions. Still, a massive improvement over the years is evident.

D-type flip-flop Metastability
reference or vendor cell type or name technology F K1 K2

[nm] [ps] [GHz]

Horstmann et al. [172] n.a. std cell 1500 47 600 3.23
VLSI Technology DFNTNS std cell 800 140 000 12.3
Ginosar [175] n.a. “conservative” std cell 180 50 100
Xilinx [173] XC2VPro4 CLB FPGA 130 ≈100 27.2
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Fig. 7.14 Two-stage synchronizers obtained from adding an extra flip-flop.

In the absence of numerical K1 and K2 values, refraining from detailed analysis is probably safe if
the application is not overly critical and if tal ≥ 3 tpd can be guaranteed throughout.

Select flip-flops with good metastability resolution

Flip-flops optimized for synchronizer applications feature a small K1 and, above all, a large K2 .
They shall be preferred over general-purpose flip-flops with inferior or unknown metastability re-
covery characteristics.13 Unfortunately, component manufacturers and library vendors continue to
be extremely reticent when it comes to disclosing quantitative metastability data.14

Remove combinational delays from synchronizers

Recall from (7.2) that any extra delay tpd c between two cascaded flip-flops is at the expense of
recovery time tal for the first bistable. As a consequence, the one-stage synchronizer circuit of
fig.7.13 is far from being optimal at high clock rates. When the MTBE proves insufficient, a better
solution must be sought.

1 3 [176] finds that static bistables should be preferred over their dynamic counterparts.
1 4 There are two reasons for this. For one thing, the issue is no longer perceived as urgent now that the speed and

metastability resolution characteristics of flip-flops have improved so much when compared with older fabrication
technologies. For another thing, it takes a considerable effort and degree of sophistication to properly determine
the K 1 and K 2 parameters for a cell library. The burden of doing so is thus left to VLSI designers in critical
high-speed applications, see [172] [173] for measurement setups. It is important that such characterizations be
carried out under operating conditions that are as identical as possible to those actually encountered by the
synchronizer when put into service in the target environment. Relevant conditions include capacitive load, layout
parasitics, clock slew rate, fabrication process, and, last but not least, PTV conditions.
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Two flip-flops cascaded with no combinational logic in between extend the time available for
metastability resolution to almost an entire clock period. The low error rates typically obtained
in this way have contributed to the popularity of two-stage synchronizers as shown in fig.7.14.
In case the additional cycle of latency resulting from the extra flip-flop proves unacceptable, try
to reshuffle the existing registers or check [177] for a proposal that operates multiple two-stage
synchronizers in parallel.

Drive synchronizers with fast-switching clock

Experience has shown that clocking synchronizers with fast slew rates tends to accelerate recovery
from a marginal triggering condition [172]. What’s more, overly slow clock ramps tend to dilate
setup and hold times beyond their nominal values as obtained from library characterization under
the assumption of a sharp clock edge with zero or close-to-zero ramp time. Yet, these are the figures
stored in simulation models and listed in datasheets on which design engineers necessarily base all
their reasoning.

Free synchronizers from unnecessary loads

Not surprisingly, capacitive loading has been found to slow down the metastability resolution process
in a bistable. It is therefore recommended to keep the loads on synchronizer outputs as small as
possible by using buffers and buffer trees where necessary.

Lower clock frequency at the consumer end

As a minor change of the clock frequency has a large impact on the MTBE, it is always worthwhile
to check whether it is not possible to operate the entire consumer from a somewhat slower clock.15

Use multi-stage synchronizers

In those — extremely infrequent — situations where a two-stage synchronizer does not leave enough
time for metastability to resolve, the available time span can be extended well beyond one clock
period by resorting to synchronizer circuits that make use of multiple flip-flops. Please refer to [178]
where the merits of cascaded and clock-divided synchronizers are evaluated.

Keep feedback path within synchronizers short

Digital VLSI designers normally work with predeveloped cell libraries. If you must design your own
synchronizers at the transistor level, consult the specialized literature on the subject [179] [180] [172]
[171] [178]. For the purpose of analysis, the two cross-coupled amplifiers can be replaced by a linear
model in the vicinity of the metastable point of equilibrium. As a rule, the internal feedback path
should be kept as fast as possible. A fast master latch is desirable because a high gain–bandwidth
product tends to improve recovery speed, K2 , and MTBE. This is also why a higher supply voltage
has been found to be beneficial.

1 5 A more exotic proposal is the concept of a pausable clock, where metastability is detected by way of analog
circuitry designed for that purpose, and where the consumer’s clock is frozen until it has been resolved [178].
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A variety of misguided approaches to synchronization, such as a “metastability blocker” and a
“pulse synchronizer”, for instance, are collected in [175].

7.5 Summary

� Asynchronous interfaces give rise to two problems, namely inconsistent data and metastability.
While it is always possible to avoid data inconsistencies altogether by making use of adequate
data-acquisition schemes and protocols, the metastability problems that follow from marginal
triggering can be tackled in a probabilistic fashion only.

� Metastability is often put forward as a welcome explanation for synchronization failures be-
cause of its unavoidable and unpredictable nature. Yet, we tend to believe that most practical
cases of malfunctioning circuits actually result from data consistency problems that have been
overlooked.

� Metastability becomes a threat to system reliability when synchronizers are being operated
close to their maximum clock and data frequencies, and/or when synchronizers are involved
in very large quantities. Circuits that can afford a few extra ns of clock period for the synchro-
nizers to recover should be safe, on the other hand. Two-stage synchronizers normally prove
more than adequate in such situations.

� To steer clear of the imponderabilities and the extra costs associated with synchronization,
implement the rules listed below.

- Eliminate uncontrolled asynchronous interfaces wherever possible,
that is partition a system into as few clock domains as technically feasible.

- If you must cross a clock boundary, do so where data bandwidth is smallest.
- Estimate error probability or mean time between errors at the system level.
- Whenever possible, set aside some extra time for synchronizers to settle.
- Within each clock domain, strictly adhere to a synchronous clocking discipline.
- Avoid (sub)circuits that tend to fail in a catastrophic manner

when presented with corrupted data.

7.6 Problems

1. What is wrong with the two-stage synchronizer circuit of fig.7.15?

D

clock boundary CLKQ

synchronizer

.....

payload circuit

w

Fig. 7.15 Bad synchronizer circuit.
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2. Reconsider Molnar’s original circuit of fig.7.1a and recall that the computer failed when its
program counter became filled with a bogus address as a consequence from a synchronization
failure. At first sight, it appears that only a scalar signal is being acquired from externally,
so that there should be no chance for an inconsistent address word to develop. Find out why
this is not so.

3. Establish detailed state diagrams for the two finite state machines in fig.7.5. Generate all
necessary control signals and try to keep latency small. Depending on how the interfaces with
the surrounding circuitry are defined, there may be more than one acceptable solution. Can
you design the models such as to minimize the differences in the HDL codes of two- and
four-phase protocols?

4. Figure 7.16 shows an arrangement that has a long tradition for carrying data vectors from one
clock domain to another. What sets it apart from the handshake circuit of fig.7.5 is a bistable
that sits right on the clock boundary. This has earned the circuit names such as “shared
flip-flop” or “signaling latch” synchronizer although an unclocked data-edge-triggered seesaw
is typically being used (a level-sensitive seesaw is sometimes also found). The shared bistable
functions as a flag, set by the producer and reset by the consumer, that instructs one partner
to carry out its duty and the other to wait. Much as in fig.7.5, each of the two control signals
gets accepted into the local clock domain by a standard two-stage synchronizer. Compare the
two circuits and their detailed operation.

The correct functioning of the circuit of fig.7.16 rests on an assumption that may or might
not hold in real-world applications, however. Find out what that assumption is. Establishing
a signal transition graph (STG) may help. Hint: Consider situations where the two clock
frequencies greatly differ from each other.
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Fig. 7.16 Vectored synchronization on the basis of a shared bistable.

5. In fig.7.11, three points are marked by empty circles or a propeller respectively. Explain what
the three points have in common. What sets the propeller apart from the other two marks?



Chapter 8

Gate- and Transistor-Level Design

The focus of attention in digital VLSI has moved away from low-level circuit details since the advent
of HDL synthesis and virtual components. Library developers are the only ones who face transistor-
level circuits on a daily basis. Yet, understanding how logic gates, bistables, memories, I/O circuits,
and other subcircuits are built and how they operate continues to be a valuable asset of any VLSI
engineer that helps him make better design decisions and imagine solutions otherwise unthought of.

Sections 8.1 through 8.4 attempt to explain just that for a variety of CMOS subcircuits. It is
also hoped that the richness and beauty of this subject become manifest. Any reader who is looking
for an in-depth exposure will have to consult more detailed and more comprehensive texts such
as [181] [182] [159] [183] [184]. More specifically, we have elected to skip all circuit styles that rely
on short-time charge retention.1 As an exception, section 8.3 not only discusses static memories
but also gives a glimpse on dynamic memories. Section 8.5, finally, serves to make digital designers
aware of a variety of pitfalls that are associated with certain (sub)circuits.

Before we can begin, we must know what transistors can do for us. A very basic thought model is
introduced next while a discussion of calculation and simulation models is available in appendix 8.7.

8.1 CMOS logic gates

CMOS logic is built from enhancement-type n- and p-channel MOSFETs. While the physics and
electrical characteristics of transistor devices are quite complex, simple abstractions generally suffice
to understand and draft digital subcircuits such as logic gates, bistables, and memories.

1 While dynamic CMOS logic [185] offers an advantage in terms of operating speed, designing and testing circuits
is definitely more laborious and error-prone than with static CMOS logic. Due to leakage and other undesirable
phenomena, electrical charge is bound to quickly disappear unless it gets refreshed on a periodical basis, which
imposes a lower bound on the admissible clock frequency and impedes conditional clocking. Sensitivity to
glitches, switching noise, and charge-sharing phenomena are three more difficulties of dynamic logic. All that,
together with the lack of appropriate cell libraries, puts this logic style off limits for typical ASIC pro jects and,
at the same time, explains its popularity in top-notch microprocessors and switching equipment.
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8.1.1 The MOSFET as a switch

A crude approximation for a MOSFET is a relay where a contact operates under control of a voltage
applied to the gate terminal so as to make or break the current path between the source and drain
terminals. In the case of the predominant enhancement devices, the contacts are open (transistor
“off”) when the gate is at the same potential as the source, and closed (“on”) when the full supply
voltage is being applied between those two terminals. To become truly useful, this primitive switch
model must be refined in two ways.
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Fig. 8.1 Enhancement-type n- and p-channel MOSFETs. Icons (a), DC transfer characteristics

Id = f (Ug s , Uds ) (b), and switch models (c).

Firstly, while the “off”-state conductance Goff of the device is extremely low, conductance is far
from infinite in the “on” condition. Gon actually is a function of transistor geometry and scales with
the width-to-length ratio W

L . Also, it is smaller for a p-channel transistor than for a same-sized n-
channel device by a factor of two or so. This gets reflected by the drain current plots of fig.8.1b and
is a consequence of unlike mobilities of electrons and holes.

Secondly, the input and output side of a MOSFET switch share the source terminal as a common
node, see fig.8.1c. This contrasts with an electromagnetic relay — where winding and contacts are
insulated from each other — and impairs the MOSFET’s use as a switch. As a net result, n-channel
devices perform well as current sinks (pull-down, low-side switch) but poorly as current sources
(pull-up, high-side switch), and vice versa for p-channel transistors.
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For an explanation, assume an n-channel MOSFET connected as high-side switch were to charge
a large capacitance from 0 to Udd . Initially, one would measure the full supply voltage between
gate and source Ugs = Udd which would drive the transistor into full conduction. As the charging
progresses, however, the gate–source voltage would gradually diminish, Ugs < Udd , thereby lessening
the current delivered to the load. Charging would become slower and slower and eventually come
to a standstill at an output voltage slightly below Udd .2

In a nutshell, a MOSFET operating as a switch can be summarized as follows.

enhancement-type MOSFET
electrical behavior n-channel device p-channel device

turns “on” when gate voltage is positive gate voltage is negative
relative to source relative to source

then acts as poor pull-up as good pull-up
but good pull-down but poor pull-down

with an “on”-state conductance Gon n ∝ W/L Gon p ∝ ≈ 1
2 W/L

8.1.2 The inverter

A static CMOS inverter is made up of two complementary MOSFETs. Not surprisingly, the n-
channel device acts as low-side switch while its p-channel counterpart operates as high-side switch,
see fig.8.2. Their gate terminals are tied together to form the logic gate’s input terminal. Most
often the body terminals are omitted from schematic drawings of digital circuits as they are almost
always tied to vss and vdd respectively.3
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Fig. 8.2 Static CMOS inverter. Icon (a), detailed schematic with MOSFET body terminals and counting

conventions (b), and simplified diagram as often used in digital design (c).

From the switch model, the circuit’s logic operation as a Boolean inverter is immediately obvious.
Before putting that model to service to study more complex subcircuits, however, we want to develop
a more detailed picture of the inverter’s electrical and timing characteristics.

2 In theory at Ud d − Ut h n , but subthreshold conduction tends to make the result less predictable. Also note that
another approach to explaining the above limitation is pursued in problem 1.

3 See section 11.6.3 for an explanation.
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With node vss acting as reference potential, we have the circuit equations

Ug s n = Uin p Ug s p = Uin p − Udd (8.1)

Uds n = Uoup Uds p = Uoup − Udd (8.2)

Counting currents in the conventional way one also obtains

Iou p = −Id n − Id p (8.3)

Static inverter behavior

Our analysis will be confined to situations with no resistive load connected to the inverter’s output
terminal. Static behavior implies the absence of transient currents. Even with a substantial capaci-
tive load attached, static analysis applies as long as voltage changes occur so slowly that [dis]charge
currents remain negligible, a regime which is termed pseudostatic. One then has

Id n = −Id p (8.4)

Incidentally, note that any current that flows from supply node vdd to ground node vss without
ever seeing the load will be referred to as crossover current Icr .

To understand how the circuit behaves, let us find out what happens when input voltage Uinp slowly
ramps from 0 to Udd . Most of our analysis will be based on the simple Sah model, to be more
thouroughly discussed in appendix 8.7.2. The Sah model distinguishes between the three operating
regions introduced in fig.8.1b and essentially uses a gain factor β and a threshold voltage Uth to
characterize any given MOSFET. The combined operation of two complementary devices in the
inverter then makes it necessary to discern five ranges labeled A to E. You may want to skip to
fig.8.4 for the overall results.

Operating range A 0 ≤ Uinp ≤ Uth n

The n-channel transistor is “off”, hence there can be no current flowing from vdd to vss. The
negative gate–source voltage being applied to the p-channel turns it “on”, thereby pulling the
inverter’s output terminal up towards the power rail. More precisely, the p-channel device operates
in its linear region because of the strongly negative gate voltage Ugs p ≈ −Udd and the zero drain–
source voltage Uds p = 0. The transistor’s equivalent conductance is

Glin p =
dId p

dUds p
≈ βp (Udd + Uth p ) (8.5)

and the inverter’s output voltage firmly rests at the maximum as defined by the power supply
Uoup = Udd .

Operating range B Uth n < Uinp < Uinv

The n-channel transistor enters the saturation region and begins to conduct, thereby causing a cross-
over current to flow from vdd to vss. The current through the n-channel device grows quadratically
with Uinp .

Id n =
βn

2
(Uin p − Uth n )2 (8.6)
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The p-channel transistor continues to operate in its linear region.

Id p = −βp

2
[ 2(Uin p − Udd − Uth p )(Uoup − Udd ) − (Uoup − Udd )2 ] (8.7)

Equating the two drain currents according to (8.4) and solving for the output voltage one obtains

Uoup = (Uin p − Uth p ) +

√
(Uin p − Udd − Uth p )2 − βn

βp
(Uin p − Uth n )2 (8.8)

The net result is that Uoup drops below Udd and that the diminution accelerates as Uinp grows.

Operating range C (basic model) Uinp = Uinv ≈ 1
2 Udd

Both devices operate in saturation. Their respective drain currents are given as

Id n =
βn

2
(Uin p − Uth n )2 Id p = −βp

2
(Uin p − Udd − Uth p )2 (8.9)

which, when substituted, yield

Uin p =
Udd + Uth p + Uth n

√
βn
βp

1 +
√

βn
βp

= Uin v (8.10)

This result indicates that the circuit functions in this regime for only one value of Uinp , which implies
that the operating range degenerates to a single point. That singular voltage is termed inverter
threshold Uinv . Assuming electrically symmetric transistors where βp = βn = β and −Uth p =
Uth n = Uth , one obtains Uinv = 1

2 Udd . Another finding is that the crossover current reaches its
maximum at this point. Back to the general case where devices are not necessarily symmetric,
current peaks at a value of

Id n =
βn

2


Udd + Uth p − Uth n

1 +
√

βn
βp




2

(8.11)

Equation (8.10) says nothing about Uoup , which means that the output voltage no longer depends on
the input voltage. In fact, differentiating (8.10) yields dUi n p

dUo u p
= 0, which suggests that the inverter’s

voltage amplification v is infinite at this point. For obvious reasons, the output voltage cannot grow
indefinitely, however. Bounds are imposed by the condition that both transistors stay saturated

Uth n ≤ Ug s n < Uds n + Uth n Uth p ≥ Ug s p > Uds p + Uth p (8.12)

Substituting (8.1) and (8.3) and combining the relevant terms one obtains

Uin p − Uth n < Uoup < Uin p − Uth p (8.13)

which condition is shown in fig.8.4a by a pair of parallel dashed lines. In conclusion, our calculations
tell us the output voltage is free to vary within this range as long as Uinp = Uinv .

The reason for this intriguing finding lies in the oversimplification of the Sah model that describes
a saturated MOSFET as an ideal current source. In the inverter circuit, there are two such ideal
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sources connected in series which results in an unstable behavior. Yet, what the simple model
describes correctly is that the transfer characteristic is very steep at this point.

Operating range C (improved model) Uinp = Uinv ≈ 1
2 Udd

For a more accurate analysis, we have to resort to the Shichman–Hodges model which is to
be introduced in appendix 8.7.3 along with its heuristic channel-length modulation factor λ. This
refinement leads to the equivalent circuit of fig.8.3.

oup ng
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Ugs n

gs pU

m ng

m pg

INP

ds pU

ds nU

Udd

VDD

VSS

OUP

Fig. 8.3 Equivalent circuit for a CMOS inverter operating in range C.

The voltage amplification for small signals is given as

v =
dUoup

dUin p
= − gm n + gm p

gou p n + gou p p
(8.14)

Transconductances gm are obtained from differentiating transistor equations wrt Ugs ,

gm n = βn (Ug s n − Uth n )(1 + λn Uds ) gm p = −βp (Ug s p − Uth p )(1 + λp Uds ) (8.15)

which, for a rough hand calculation, may be approximated by

gm n ≈ βn (Ug s n − Uth n ) gm p ≈ −βp (Ug s p − Uth p ) (8.16)

Output conductances goup follow from differentiating transistor equations wrt Uds this time.

gou p n =
βn

2
(Ug s n − Uth n )2λn gou p p = −βp

2
(Ug s p − Uth p )2λp (8.17)

As opposed to what was found for the Sah model, the voltage amplification for small signals obtained
with the Shichman–Hodges model is in fact finite. Assuming electrically symmetric transistors once
again, the small-signal amplification in range C can be estimated as

v ≈ − 4
λ(Udd − 2Uth )

(8.18)

Observe that none of the above equations includes transistor width W or length L. An IC designer
can thus influence voltage amplification only indirectly by lessening or by emphasizing channel-
length modulation because λ varies as a function of L. Typical values of v range between −10 for
short and −1000 for long transistors.
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Operating range D Uinv < Uinp < Udd + Uth p

When compared with range B, the two transistors have swapped their modes of operation. The
n-channel device enters the linear region whereas the p-type transistor operates in saturation.

Id n =
βn

2
[ 2(Uin p − Uth n )Uoup − U 2

ou p ] (8.19)

Id p = −βp

2
(Uin p − Udd − Uth p )2 (8.20)

which together yield an output voltage of

Uoup = (Uin p − Uth n ) −
√

(Uin p − Uth n )2 − βp

βn
(Uin p − Udd − Uth p )2 (8.21)

As Uinp grows, Uoup continues to diminish, albeit at a slower and slower rate, eventually converging
to 0 as Uinp approaches Udd + Uth p . The crossover current follows a similar pattern.

Operating range E Udd + Uth p ≤ Uinp ≤ Udd

Analogously to range A, there is no crossover current as the p-channel device is turned off this time.
The n-channel transistor behaves much like a linear conductance of

Glin n =
dId n

dUds n
≈ βn (Udd − Uth n ). (8.22)

that pulls the inverter’s output down to the ground potential Uoup = 0.
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The inverter as a binary discriminator

What we have found is that an inverter essentially acts as a voltage amplifier.4 Why, then, is it
possible to use it as a digital device that discriminates between logic 0 and 1? How are continuous
voltages mapped to discrete logic states?

Look at the inverter’s static transfer characteristic Uoup = f (Uinp ) in fig.8.4c and note the
presence of two points, one each in ranges B and D, where voltage amplification is unity. While
any voltage deflection between the two unity gain points gets amplified, those below Uil and above
Uih get attenuated. That is, any input voltage close to Uss results in an output even closer to
Udd , and vice versa. This property is called level restoration and supports defining a logic 0 as
0 ≤ Uinp ≤ Uil and a logic 1 as Uih ≤ Uinp ≤ Udd .5

The interval in between where Uil < Uinp < Uih acts as a “no man’s land” that separates logic 0

from 1. The logic value associated with any such voltage is said to be unknown and denoted with
an X in the IEEE 1164 standard. Albeit predictable electrically, the inverter’s output is considered
undefined from a digital or logic point of view.

Observation 8.1. A transfer characteristic that exhibits two flat tails separated by a steep crossover

band where |v| > 1 is a prerequisite for binary signal discrimination and restoration of logic levels

to proper voltages. This trait is shared by all static CMOS gates.6

The impact of transistor sizes

While the transfer characteristic of a CMOS inverter always looks the same qualitatively, the exact
run of the curve depends on the relative gain factor βn

βp
of the two MOSFETs involved.

βn

βp
=

β� n
W n
L n

β� p
W p

L p

(8.23)

Equation (8.10) indicates the inverter threshold voltage as a function of βn

βp
. Numerical figures

are given below under the assumption that −Uth p = Uth n = 1
5 Udd , that is for any inverter where

Udd = 3.3 V and Uth n = 0.66 V or where Udd = 2.5 V and Uth n=0.5 V, for instance.

βn

βp
100 10 5 3 2 1.5 1 0.67 0.5 0.33 0.2 0.1 0.01

Ui n v
Ud d

0.25 0.34 0.39 0.42 0.45 0.47 0.50 0.53 0.55 0.58 0.61 0.66 0.75

Sizing MOSFETs such that the n- and the p-channel transistor exhibit the same drive strength7 puts
the inverter threshold midway between power and ground potentials Uinv = 1

2 Udd and maximizes
the overall noise margin. Another argument in favor of doing so is that rise and fall times are made

4 Inverters are actually used as amplifiers in applications such as crystal oscillators, for instance, by biasing them
to the point of maximum gain with the aid of a high-ohmic resistor that runs between input and output.

5 It goes without saying that non-inverting gates restore inputs close to Us s to even closer to Us s , and those close
to Ud d to even closer to Ud d .

6 The transmission gate to be introduced in section 8.1.5 is an exception and not considered a logic gate.
7 That is, saturation currents of the same magnitude but opposed signs.
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equal in this way. All this is obtained from selecting βn

βp
= 1, which mandates a shape factor ratio of

W p

L p

W n
L n

=
β� n

β� p

(8.24)

With εox , tox , and L being identical for n- and p-channel transistors, the rule simplifies to

Wp

Wn
=

µn

µp
(8.25)

which means that the p-channel transistor ought to be roughly twice as wide as its n-channel
counterpart to fully compensate for the lower mobility of holes.

However, insisting on perfect electrical symmetry by beefing up the p-channel MOSFET in accor-
dance with (8.25) would unnecessarily inflate area occupation and parasitic capacitances, which is
also detrimental to both switching speed and energy efficiency. Gate performance has been found
[186] to be optimal when transistor widths comply with

Wp

Wn
=

√
µn

µp
(8.26)

Wp

Wn
ratios that range between 1.2 and 1.7 resulting in βn

βp
≈

√
2 or so are thus more typical. As

suggested by the above figures, noise margins do not suffer much from a minor imbalance.

Dynamic inverter behavior

The dynamic behavior refers to the time-dependent processes associated with (dis)charging the two
capacitances that are present in any inverter circuit, see fig.8.5a. Taking into consideration transient
currents, (8.3) becomes

0 = Il + Im + Id n + Id p = (Cl + Cm )
dUoup (t)

dt
− Cm

dUin p (t)
dt

+ Id n + Id p (8.27)
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Fig. 8.5 Static CMOS inverter circuit with load and Miller capacitances shown (a) and with Miller capacitance

transformed to the output node (b).

Load capacitance Cl has one end connected to ground and is meant to include parasitics from the
inverter itself.8 Further note the presence of a coupling capacitance between the input and the

8 A comprehensive list of contributions is given in section 9.1.1.
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output node that is commonly referred to as Miller capacitance Cm . For the purpose of delay
estimation, one would want to transform it to the inverter’s output by introducing a delay-equivalent
load Ck > Cl such as to restate the problem in a simplified form as

0 ≈ Ck
dUoup (t)

dt
+ Id n + Id p (8.28)

There is an important difference between load capacitance and Miller capacitance, however. While
Cl is being charged to Udd and discharged back to zero, the voltage across Cm changes from +Udd

to −Udd and back again, which means that the amplitude across Cm is twice that across Cl . As
this also doubles charge and discharge currents, we must account for the Miller capacitance with
two times its nominal value for the purpose of delay calculation.

Ck = Cl + 2Cm (8.29)

Given behavioral models for the two transistors and some input waveform Uinp (t), differential
equation (8.27) or (8.28) must be solved for the output voltage Uoup (t) as a function of time. Even
using the simple Sah MOSFET model, doing so analytically is impractical, however, because Id n

and Id p are themselves nonlinear functions of Uoup (t).

A precise output waveform is not always sought, a couple of numeric quantities often suffice to
characterize the timing of an inverter (or some other logic gate). The most interesting question is
how circuit performance depends on overall load capacitance, transistor sizes, supply voltage, and
MOSFET thresholds. As a first-order approximation, the rise and fall times of a CMOS inverter
can be obtained under the following set of simplifying assumptions [186].

• The input voltage does switch abruptly, that is tri inp = tf a inp = 0.
• Output rise and fall times are measured from 0 to 1

2 Udd and from Udd to 1
2 Udd respectively.

• The current-carrying MOSFET is operating in its saturation region throughout.
• A Sah model is a good enough approximation for the transistors.
• The p-channel (n-channel) device sources (sinks) a fixed current throughout.

The derivation then immediately follows as

tr i ou p ≈ −Ck Udd

2 Iou p
(8.30)

tf a ou p ≈ Ck Udd

2 Iou p
(8.31)

−Iou p ≈ Id on p =
βp

2
(Udd + Uth p )2 (8.32)

Iou p ≈ Id on n =
βn

2
(Udd − Uth n )2 (8.33)

tr i ou p ≈ Ck Udd

βp (Udd + Uth p )2 (8.34)

tf a ou p ≈ Ck Udd

βn (Udd − Uth n )2 (8.35)
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Though rather rudimentary, this approximation is often sufficient for manual calculations. Remark-
ably, the more general relation

tpd ∝ Ck Udd

(Udd − Uth )2 (8.36)

has been found to hold for numerous CMOS subcircuits fairly independently of the logic function
and circuit style (static vs. dynamic) involved. Yet, keep in mind that these approximations do not
cover subthreshold operation, that is they are invalid unless Udd > Uth .

Also, all of the above calculations apply to long transistors because they have been derived on the
basis of the Sah model that does not account for velocity saturation. For today’s short transistors,
(8.36) takes on the form of

tpd ∝ Ck Udd

(Udd − Uth )α
(8.37)

with α a function of L and Udd . Rough indications are as follows:

L [nm] 2000 1000 500 250 130
α ≈ 1.6 − 1.65 1.45 − 1.6 1.3 − 1.5 1.1 − 1.4 1.0 − 1.25

You may want to refer to sections 8.7.4 to 8.7.6 for further explanations on velocity saturation,
α, and on short-channel effects (SCE) in general. More sophisticated inverter models are being
proposed in [186] [187] [188].

8.1.3 Simple CMOS gates

In a CMOS inverter, we have two transistors that act as voltage-controlled switches. When the input
voltage is at a logic high level, the n-transistor is “on” and the p-transistor “off”, thereby establishing
a current path from the output terminal to ground. For a low input, one has the complementary
situation with the output high. A variety of logic gates is obtained from generalizing this concept
to circuits of four, six, and more transistors.

NAND gates

One obtains an i-input nand function from the inverter by replacing the single n-channel MOSFET
by a series network of i transistors and the single p-channel MOSFET by i transistors connected
in parallel. Consider a 2-input nand gate, for instance, that implements the logic equation OUP =
IN1 ∧ IN2.

2-input nand switch model
IN1 IN2 OUP N1 N2 P1 P2
0 0 1 off off on on
0 1 1 off on on off
1 0 1 on off off on
1 1 0 on on off off
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3-input nor

IN1 IN2 IN3 OUP

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0
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IN1
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c)

IN2IN1 OUP

VDD

VSS
b)

OUP

N1

P2

N2

P1IN1

IN2

VSS

VDD

Fig. 8.6 CMOS 2-input nand gate. Icon (a), circuit diagram (b), symbolic layout (c).9

NOR gates

nor gates result when the n-type pull-down network has its transistors connected in parallel and
vice versa for the p-type pull-up network. A 3-input nor gate implements the operation OUP =
IN1 ∨ IN2 ∨ IN3.

a)

IN1
OUPIN2

IN3

c)

IN2IN1 OUP

VDD

VSS

IN3

b)

VSS

OUP

VDD

IN1

IN2

IN3

Fig. 8.7 CMOS 3-input nor gate. Icon (a), circuit diagram (b), symbolic layout (c).

9 The stick-diagram notation shown in (c) is to be formally introduced in section 11.5.2.
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Underlying principles

A closer analysis of inverter, nand gate, and nor gate reveals the following:

• There is one n- and one p-channel MOSFET for every argument in the Boolean equation and
they both have their gates connected to the logic gate’s corresponding input terminal.

• For any combination of logic values at the input, there exists a conducting path from the
output terminal to either vss or vdd.

• The output is never left in a floating condition.
• The output voltage can swing from one supply rail to the opposite one.
• No input vector can establish a direct conducting path from vdd to vss.10

• Except for leakage currents, there is no power dissipation under steady-state conditions.

Definition 8.1. Fully complementary static CMOS means that a logic gate is composed from a pair

of n-channel pull-down and p-channel pull-up networks that turn on and off in a mutually exclusive

fashion for any binary vector that can possibly be applied to their input terminals.

Two such pull-down and pull-up networks are best characterized as an antagonistic pair. This
property also explains why fully complementary static CMOS logic is ratioless.11

Definition 8.2. A (sub)circuit is ratioless, if the geometric sizes and current drive capabilities of

its transistors do not affect its logic functionality as specified in a truth table, for instance.

Put differently, the impact of geometric modifications and fabrication tolerances is limited to elec-
trical and timing parameters such as switching thresholds and delay figures.

The antonym ratioed refers to (sub)circuits the logic behavior of which is dependent on the
relative transistor sizes. We will not get to know ratioed CMOS circuits until section 8.2. Because

OUPIN...

n-channel
pull-down
network

p-channel
pull-up
network

antagonistic

Fig. 8.8 General circuit structure of fully complementary static CMOS gates.

1 0 This property forms the basis of Id d q testing, a technique to tell apart defective circuits from intact ones
by comparing their supply currents in steady-state condition [189] [190]. A stimulus vector is applied to the
circuit under test (CUT) which is then given sufficient time to settle before the supply current gets measured.
The quiescent currents of a defect-free static CMOS circuit would in fact be zero were it not for leakage. The
operation is repeated many times with a series of vectors carefully selected so as to check for the most likely
faults. Any out-of-the-normal reading — non-zero or well above that of a leaky but intact reference circuit —
indicates a fabrication defect.

1 1 This is not so in NMOS, PMOS, and dynamic (precharge and evaluate) CMOS logic, where one of the two
networks is replaced by a simple pull device that does not operate under control from the gate’s inputs. CVSL
and CPL are other exceptions. None of these design styles is being addressed in this text, however.
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of their nonpermanent drive, logic gates with three-state outputs are another notable exception to
definition 8.1; they will be discussed shortly in section 8.1.5.

8.1.4 Composite or complex gates

AOI gates

In the aforementioned nand and nor gates, all MOSFETs of identical polarity did form a series
chain while their counterparts were connected in parallel. This property is overly restrictive, however,
as any pair of dual networks will do. Examples are given in fig.8.9.

Definition 8.3. Two transistor-level networks are dual iff there is a one-to-one correspondence

between their edges such that any terminal-to-terminal chain in one network cuts all terminal-to-

terminal chains in the other network.12

a)

OUP

OUP

OUP

OUP

b)

OUP

OUP

c)
OUP

OUP

e) f)

OUP

OUP

p-network

n-network

node transistor
pair

traversing
walk

box notation

node transistor

graph representation

orientation

d)

OUP

OUP

Fig. 8.9 A collection of dual graph pairs (top row) and their notation as stacked boxes (bottom row).13 The

associated CMOS gates are: Inverter (a), 2-input nand (b), 3-input nor (c), a 4-input AOI gate (d), a 5-input

AOI gate (e), and a 3-input minority gate (f).

1 2 The definition of duality in mathematical graph theory is more general: Two graphs are said to be dual if there is
a one-to-one correspondence between the edges of the two graphs such that any circuit in one graph corresponds
to a cut-set in the other graph [191]. This definition accomodates pendant vertices and self-loops that do not
exist in well-formed electrical circuits. Also, before the definition can be applied to circuit analysis, one fictive
edge must be added to each graph to interconnect its two terminal nodes.

1 3 The interpretation of the box notation and of the traversing walks therein is left to the reader as an exercise.
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This insight allows one to implement functions more general than nand and nor in a single gate.
The circuit of fig.8.10, for instance, conforms to fig.8.9d and implements

OUP = (IN1 ∧ IN2) ∨ (IN3 ∧ IN4) (8.38)

Any monotone decreasing logic function can be carried out in this way after having been recast into
a nested expression of and and or operations followed by one final negation at the outermost level.
This explains why composite gates are also known as and-or-invert (AOI) gates. That name is
understood to include OAI functions and similar functions with deeper nestings such as the AOAI
gate (8.39) of fig.8.11. Given some AOI-type logic equation, constructing the gate’s inner circuitry
is straightforward and follows a process of hierarchical composition.

OUP
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IN2

IN4

IN3
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c)

VSS

IN2IN1 OUP

VDD

IN3 IN4

b)

VSS

OUP

IN1

IN2 IN3

IN4

IN1

IN3

IN2

IN4

VDD

IN4

IN2

IN1

IN3

Fig. 8.10 A CMOS 4-input AOI gate. Icon (a), circuit diagram (b), symbolic layout (c).

Example

OUP = ((IN1 ∧ IN2) ∨ IN3) ∧ (IN4 ∨ IN5) (8.39)

�

Composite gates are typical CMOS subcircuits. They contribute to layout density by combining
two or more levels of logic operations in a single cell. The quest for high-speed operation limits the
size of composite gates, however, as more series transistors augment the resistance through which
the output node is being (dis)charged. In addition, node capacitances also tend to grow with cell
size. The following table indicates the number of logic gates that can be built without exceeding a
given number of transistors connected in series [192].
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maximum number of total number of
transistors in series AOI functions

1 1
2 7
3 87
4 3521
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Fig. 8.11 Stepwise construction of a CMOS 5-input AOI gate. Icon (a), successive refinement of circuit

diagram (b,c,d,e), symbolic layout (f).

Observation 8.2. Cumulated resistance and the back gate effect tend to make MOSFET stacks

slow. CMOS subcircuits such as logic gates and bistables are thus not normally designed with more

than three MOSFETs connected in series.

Complex combinational operations that would ask for more series transistors are broken down into
smaller subfunctions and implemented as cascades of simpler gates. This also applies to nand and
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nor gates with four inputs or more. Design rules for very-high-speed circuits even prescribe that
no more than two p-channel MOSFETs be connected in series.

The truth tables of 3-input majority and minority function are as follows.

3-input maj

IN1 IN2 IN3 OUP

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

3-input min

IN1 IN2 IN3 OUP

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0

The fact that the majority function is monotone increasing precludes it from being implemented
as an AOI gate and, instead, suggests a cascade of two subcircuits where an inverter follows the
monotone decreasing minority function

OUP = (IN1 ∧ IN2) ∨ (IN1 ∧ IN3) ∨ (IN2 ∧ IN3) (8.40)

which indeed has nice and surprising CMOS circuit realizations. For a first and somewhat uninspired
solution, consider the 6-input function

OUP = (IN1 ∧ IN2) ∨ (IN3 ∧ IN4) ∨ (IN5 ∧ IN6) (8.41)

and note that the desired minority function follows from tying together IN1 = IN4, IN2 = IN5, and
IN3 = IN6. This proposal results in an AOI gate that takes twelve transistors out of which up to
three connect in series, yet we can do better.

A gate with self-dual transistor networks

A remarkable circuit is shown in fig.8.12. The n- and p-channel networks both look like a bridge
circuit, making the ensemble match fig.8.9f. The two networks differ from the other examples pre-
sented so far in that they are identical, self-dual, and not amenable to series/parallel decomposition.
Taken as it is, the circuit computes the four-level-deep AOI function

OUP = (IN1 ∨ IN4) ∧ (IN2 ∨ IN5) ∧ (IN3 ∨ ((IN1 ∨ IN5) ∧ (IN2 ∨ IN4))) (8.42)

which seems of no practical interest. Only when one sets IN1 = IN5 and IN2 = IN4 can the circuit
be recognized as an elegant implementation of the 3-input minority function.

Gates with non-dual transistor networks

A third alternative shown in fig.8.13c follows from the AOI gate for (8.41) after a couple of equivalent
circuit transforms. The new circuit is an improvement over the original one because it makes do
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Fig. 8.12 3-input minority function. H-topology circuit with 5 inputs (a) and logic equivalent drawn from

nand and nor operators (b). Same circuit rewired as min function (c).

with a total of ten MOSFETs, no more than two of which ever connect in series. Observe that the
resulting pull-down and -up networks are antagonistic but no longer dual to each other!

Observation 8.3. Electrical antagonism between pull-down and pull-up networks is entirely suf-

ficient for a fully complementary static CMOS gate. Structural duality is a stronger criterion that

implies electrical antagonism.

Another variety of static CMOS gates that abandon duality of pull-down and pull-up networks
while maintaining electrical antagonism are known as branch-based logic. Both the n- and the
p-networks are made up of one or more branches that are connected in parallel where each branch
consists of one or more transistors connected in series. The converse of connecting clusters of parallel
transistors in series is disallowed.

Transistor count, cell area, capacitance, and dissipated energy are not normally minimal because of
the necessary duplications of controlled switches and the extra interconnections. These drawbacks
notwithstanding, advantages with respect to layout regularity, cell characterization, and other cri-
teria have sometimes sufficed to tip the balance in favor of this approach [193].

8.1.5 Gates with high-impedance capabilities

Transmission gates

T-gate and pass gate are synonyms for transmission gate.14 A transmission gate has two data
terminals interconnected by a pair of complementary MOSFETs, see fig.8.15a and b. Two signals

1 4 A single MOSFET, typically of n-type, being used for the same purpose is referred to as a pass transistor.
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Fig. 8.13 3-input minority function. Simplified circuit (c) obtained from the AOI gate for (8.41) with the aid of

equivalent circuit transforms (a,b).
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Fig. 8.14 The AOI gate of fig.8.10 reimplemented in branch-based logic. Circuit diagram (a), symbolic layout

alternatives (b,c).

of opposite voltages 0 ≤ Uena ≤ Udd and Udd − Uena are applied to the gate electrodes of those
MOSFETs and so steer the conductance of the electrical path between the data terminals. Note
that a T-gate has no ground and supply terminals and thus can provide neither voltage amplification
nor level restoration, which contrasts with all other logic gates presented so far.
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As the two data terminals are perfectly interchangeable, there is no input and no output either.
Put differently, it is not possible to establish a directed dependency, which also implies that there
is no way to capture the functionality of a pass gate in a logic function or a truth table.

Strictly speaking, a transmission gate must not be called a logic gate but rather resembles a contact
that makes and breaks a conducting path under the direction of a control voltage. As such, it is very
convenient and finds many applications in multiplexers, xor gates, adders, latches, and flip-flops,
for instance. The undirectedness also brings about numerous peculiarities and perils, however, that
will be discussed in section 8.5.2.

T-gate path between switch model
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0 break off off
1 make on on
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TRM1ENA TRM2
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TRM1 TRM2
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TRM1 TRM2

ENA

a)

include
control
inverter

Fig. 8.15 CMOS transmission gate. Icons (a,c), circuit diagrams (b,d), symbolic layout (e).

The circuit of fig.8.15c and d is just a minor extension that includes an ancillary inverter for
obtaining the drive voltage for the second longitudinal transistor when complementary signals are
unavailable from externally.

The controlled inverter and other gates with three-state outputs

As opposed to transmission gates, three-state gates do have a logic function and a truth table
associated with them. What sets them apart from regular gates is the extra control input that
enables or disables the output(s) as a function of the logic value applied. Three-state buffers and
three-state inverters are often used as bus drivers. Section 8.5.1 explains the difficulties that arise
from this practice and gives recommendations on how to avoid them.

An arbitrary logic gate is easily extended to include a three-state capability by inserting a T-gate
into its output as shown in fig.8.16b for an inverter. As a variation, it is always possible to omit the
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connection between the original gate’s n- and p-channel transistors as shown in fig.8.16c. Circuit
operation remains almost the same except for a minor difference in speed. This new circuit arrange-
ment is referred to as a controlled inverter or multiplexer arm. The term clocked inverter
applies to situations where two MOSFETs get controlled by a clock signal; examples will be shown
in section 8.2.

three-state inverter
ENA IN OUP

0 0 Z

0 1 Z

1 0 1

1 1 0
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ENA INP OUP
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OUPINP

ENA

c)

split
node

Fig. 8.16 CMOS three-state inverter. Icon (a), alternative circuits differing in the highlighted nodes (b,c), and

symbolic layout for the controlled inverter of circuit c (d).

8.1.6 Parity gates

XOR and EQV gates

The 2-input exclusive-or function OUP = IN1⊕ IN2 is also known as xor, eor, antivalence function,
or even parity.15 Exclusive-nor, xnor, eqv, and odd parity are synonyms for its counterpart, the
2-input equivalence function OUP = IN1⊕ IN2. Both functions are non-monotone and more costly
to implement than the monotone nand, nor, and AOI functions presented earlier in this chapter.
A couple of circuit alternatives are shown in fig.8.17.

Figure 8.17b makes use of 2-input nand gates exclusively and has the merit of being perfectly
symmetrical but is unattractive in terms of size, delay, and energy. The more economic solution of

1 5 The term parity is actually more general and extends to functions with more than two arguments. The attributes
“even” and “odd” refer to the total number of 1s in a data word composed from the original bits and the parity
bit. As an example, consider the data word 10110. The even parity is 1 so that 10110 1 includes a total of four
bits of logic value 1. Conversely, 10110 0 is said to be of odd parity.
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fig.8.17c is essentially built from two controlled inverters and acts as a multiplexer that selects the
inverted or the original input under control of the second input.

The circuits of fig.8.17d and e include one AOI gate each. The difference is that fig.8.17e takes
advantage of bubble pushing to save one more pair of transistors. This, together with the fact that
an inversion operation has been spared, makes it also more energy-efficient.

Figure 8.17f conditionally negates input IN2 by combining an inverter with a transmission gate
in an intricate way. While the schematic appears to do with six transistors, correcting the various
problems that are associated with T-gates will raise its overall transistor count to 10 or more. Please
refer to section 8.5.2 for details.
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Fig. 8.17 CMOS 2-input xor gate. Icon (a) and alternative circuit diagrams (b,...,f).

8.1.7 Adder slices

Mirror adder

Computing more than one output in a single cell often gives designers the opportunity to replace
individual subcircuits by one joint transistor network, thereby improving on overall transistor count,
parasitic capacitances, propagation delay, and/or energy efficiency. As a popular example, consider
the full-adder function that accepts three input bits and produces a sum and a carry bit.
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full adder
INA INB INC OUPC OUPS carry
0 0 0 0 0 absorb
0 0 1 0 1 idem

0 1 0 0 1 propagate
0 1 1 1 0 idem

1 0 0 0 1 idem

1 0 1 1 0 idem

1 1 0 1 0 generate
1 1 1 1 1 idem

The static CMOS circuit of fig.8.18 is very elegant indeed. It includes the minority gate of fig.8.13c
as a subcircuit to compute the more time-critical carry bit OUPC from the inputs directly. The sum
bit OUPS then gets derived from this intermediate result by a transistor network that combines
a controlled inverter with elements from branch-based logic in a clever way. Note that the carry
path has no more than two transistors in series. The perfect structural symmetry of this elegant
24-transistor circuit earned it the name “mirror adder”. Two inverting buffers drive the outputs
and compensate for logic inversions by the preceding circuitry.

c)

VSS

VDD

INA

INB

INC

INA

INC

INB

INC INAINB

INB INAINC

OUPS

OUPC

INA

INB

INA

INB

INB

INC

INB

INC

INA

INB

INC

OUPS

OUPC
INA
INB
INC

≥2

b)

28 transistors

a)

INA INB

OUPC

OUPS

INC

Fig. 8.18 Mirror adder. Icon (a), logic equivalent (b), and circuit diagram (c).

OUPC = (INA ∧ INB) ∨ (INA ∧ INC) ∨ (INB ∧ INC) (8.43)

OUPS = INPA⊕ INPB⊕ INPC =




0 if (INPA ∧ INPB ∧ INPC) = 1

1 if (INPA ∨ INPB ∨ INPC) = 0

OUPC otherwise
(8.44)

Observation 8.4. Inverting all three inputs of a full adder amounts to both outputs being inverted.

This follows immediately from the truth table or from the logic equations and suggests that there
is room for further improvements if one is willing to design an adder slice that processes more than
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one binary digit at a time. A full adder built from transmission gates is shown in fig.8.45, while
references such as [181] [186] [182] [194] [195] discuss many more transistor-level circuits.

Two-bit adder slices

Many commercial cell libraries include two-bit adder slices and fig.8.19 explains why. By cascading
w
2 such slices rather than w full adders, the time-critical carry chain in a ripple-carry adder can be
relieved of unnecessary inverters.

.....
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a)

inverters
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Fig. 8.19 Ripple-carry adder. Adder slice with inverting output buffers dropped (a), two equivalent views (b),

ripple-carry adder assembled from two-bit adder slices.

Cascading transmission gate adder slices with no level restoring results in energy-efficient albeit
very slow circuits [181] [196]. Hybrid solutions where a mirror adder is inserted after every two
or three transmission gate adders exhibit attractive delay and energy figures and make it possible
to find interesting tradeoffs [197]. Other full-adder circuits involve significant departures from the
static and fully complementary CMOS design style put forward in this text.16

Ripple-carry adders are the simplest and most area-efficient, but also the slowest adder struc-
tures. Today’s automatic synthesis tools select and adapt the circuit structures of adders and other
arithmetic units as a function of the timing constraints imposed before resorting to gate-level op-
timizations. As they typically find reasonable compromises among longest path delay, circuit area,
and energy efficiency, we do not want to go into computer arithmetics but refer the reader to the
specialized literature [199] [200] [68] [201] [66] [202] [85] [67] [145] [69].

8.2 CMOS bistables

A storage element is said to be static if it preserves its current state indefinitely provided the supply
voltage remains applied. With current electronic devices, any static memory circuit requires the

1 6 Either by resorting to dynamic logic (fast but energy-hungry) or by accepting threshold voltage losses [198].
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presence of a local feedback loop.17 This contrasts with a dynamic memory, where it is the
presence or absence of an electrical charge on a capacitance that reflects the current state. This
section is concerned with static latches and flip-flops exclusively; larger memory circuits (SRAMs
and DRAMs) are to be briefly touched upon in section 8.3.

8.2.1 Latches

Bistable circuit behavior is obtained from connecting two inverting gates so as to form a positive
feedback loop. The two stable states of equilibrium then naturally correspond to two memory
states.18 In order to admit a new data item, there must be some mechanism that temporarily
suspends or overrides feedback so that the present input can determine the states of all circuit
nodes along the loop. Let us study five approaches to doing so.

Switched memory loop

The idea behind the circuit of fig.8.20d is to interrupt feedback under control of the clock. Two
complementary transmission gates open the loop and admit the voltage at data terminal D into the
loop while CLK = 1. Conversely, the feedback loop is closed and the input locked out while CLK = 0.
The resulting behavior is indeed that of a (level-sensitive) latch. Minor variations of this highly
popular circuit are obtained from substituting clocked inverters for one or both of the inverter-
plus-T-gate pairs as demonstrated in fig.8.16. Another possible modification consists of duplicating
the forward inverter so as to have one instance drive the output and the other drive the backward
inverter [155].

Overruled memory loop

A more important departure is to dispense with the steering of the feedback path by dropping the
backward transmission gate, see fig.8.20e. Instead, transistors are resized in such a way as to make
the backward inverter so weak that it is easily overriden by the controlled buffer in the forward
path whenever a new data item is to be stored. This principle of operation strongly contrasts with
that of fig.8.20d and makes this circuit our first example of ratioed logic, also see observation 8.6.
The weak backward inverter is sometimes referred to as a trickle inverter. In comparison with to
fig.8.20d, overruling reduces transistor count and clock load. As will be made clear in observation
8.6, there are limitations to this approach, however.

Jamb latch

The circuit of fig.8.20f also works by overruling a memory loop of two cross-connected inverters to
bring in new data. This is achieved here by selectively pulling down one end or the other of the
loop while CLK = 1 with the aid of four n-channel MOSFETs. The circuit is clearly ratioed, yet the
fact that there are n-channel transistor networks with no p-channel counterparts is another striking
departure from the customary static CMOS design style.

1 7 A feedback loop is considered local if it remains confined to within the memory subcircuit itself. Non-local
feedback has been discussed in section 2.7 in the context of architecture design.

1 8 Two stable states of equilibrium imply the existence of a point of metastable equilibrium in between; please
refer to section 7.4 for more details.
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Power-cycled memory loops

The idea behind the next two circuits is to power down the memory loop to admit a new data item
and to power it up again when the latch is to maintain its state. Figure 8.20g resembles a jamb
latch where the cross-coupled inverters are cut from the ground potential under control of clock
input CLK while two pass transistors bring in the data being applied to input D.

Figure 8.20h essentially consists of three clocked inverters. Two of them are connected back to
back and share a pair of enable transistors. The output node Q′ is driven either from the input
inverter or from the memory loop at any time. Please note that no complementary node Q′ with
the same property exists in this circuit.

Seesaw with input gating

Instead of inverters, the memory loop of fig.8.20i uses cross-connected nand gates in a seesaw
configuration. There is no overruling as three more logic gates switch the seesaw back and forth
between the storage state and a “set” or “reset” condition under control of the clock input CLK. In
addition, they make sure that the seesaw is never presented with S = R = 0 as this would force it
to produce an illegal output where Q′ = Q′ = 1. When compared with the designs presented before,
this one gets penalized by its higher transistor count, larger parasitic capacitances, and inferior loop
gain, and thus also by its lower speed. It used to be popular in TTL circuits where T-gates and
clocked inverters were unavailable.

It is important to note that none of the above circuit structures can be used “as is” because all
of them are exposed to loss of memory under certain circumstances. The problem is that a brief
voltage impulse applied at either output terminal might cause the memory loop to flip from one
equilibrium state to the opposite one.19 Even long after the disturbance has gone away, the original
state will not get re-established. To protect the data stored from whatever might happen at the
output, the memory loop needs to be decoupled from the output terminals Q and Q by way of an
extra buffer stage such as the ones shown in fig.8.20b and c.

Observation 8.5. Memory loops are exposed to data losses from backward signal propagation.

Buffers must provide isolation from temporary disturbances that might occur at the output.

As a welcome side effect, delays at one output become independent of the load connected to the
complementary output. With some further precautions and refinements, the subcircuits shown are
being used as part of most latches and flip-flops found in ASIC cell libraries.20

8.2.2 Function latches

Consider fig.8.21a and observe that three gate delays cumulate as the and gate is perforce com-
posed from a nand and an inverter, which are then followed by the input inverter of the latch.
Embedding the nand operation into the latch does away with two inverters along with their node

1 9 Note that SRAMs — which are to be discussed in section 8.3.1 — take advantage of this property because read
and write operations occur over the same bit lines with no distinction between input and output.

2 0 More sophisticated circuit designs, both of static and dynamic nature, are being presented in [159] along with
a catalogue of possible failure modes. Not surprisingly, dynamic bistables are found to be much more exposed
to malfunction than their static counterparts.
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capacitances and crossover currents, which explains why the trick is occasionally being played in
the context of low-power design. The idea has a longer tradition in high-speed, circuits, where it
proves beneficial whenever a few gate delays can be collapsed into one which, while larger than the
individual contributions, is smaller than their sum.21

Taking advantage of these benefits in cell-based designs requires an extended cell library that
includes not only the regular bistables but also combined functions such as 2- and 3-input or-
latches, and-latches, an xor- and an eqv-latch, plus various AOI-latches.22

8.2.3 Single-edge-triggered flip-flops

Most flip-flops operate as single-edge-triggered bistables, a behavior that can be obtained in several
ways. The most popular approach cascades two (level-sensistive) latches and drives them from a
common clock such that one of them is in hold mode while the other is in pass mode and vice versa,
see fig.8.22. The up-stream latch reads from the input terminal and is referred to as master while
the down-stream latch termed slave drives the output, hence the name master–slave flip-flop
for this circuit arrangement. The two latches cooperate as follows.

flip-flop triggered on
rising edge falling edge

CLK master slave master slave
0 pass hold hold pass
1 hold pass pass hold

2 1 You may want to refer back to section 6.2.6 for information on how function latches relate to clocking disciplines.
Incidentally, note that embedding logic into a bistable seems particularly attractive in conjunction with dual-rail
high-speed logic because a total of four distinct operations can be obtained from a single nand-nor-latch simply
by crossing over the input and/or output lines.

2 2 It is obviously possible to play the same trick once again at a bistable’s output Q or Q by substituting a nand

or a nor gate for the inverter there [203]. As an ultimate consequence, this would ask for a cell library that
encompasses the Cartesian product of all input and output functions of up to three variables including, as an
example, the “3-input or latch nanded with a 2-input and latch”. It thus seems preferable to write a software
tool that assembles function latches on the fly from logic gates and basic memory loops with no input and
output buffers as the overall number of library cells might otherwise get out of hand.
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At the active clock edge, the master stores the data present at its input while the slave becomes
transparent. At the passive clock edge, it is the master that becomes transparent while the slave
holds the previous output. The transfer of data from the master to the slave is internal to the circuit
and cannot be observed from outside. Thus, the overall behavior is indeed that of a single-edge-
triggered flip-flop (SETFF). In the occurrence of fig.8.22b, the active edge is the rising or — which
is the same — the positive one. The opposite applies to fig.8.22d.
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Fig. 8.22 Single-edge-triggered D-type master–slave flip-flops. Icons (a,c) and general circuit arrangements

(b,d).

Detailed schematics are readily obtained from assembling the necessary building blocks from fig.8.20.
This has been done in figs.8.23 and 8.47 for a D-type flip-flop equipped with an asychronous reset
mechanism. The table below summarizes the resulting transistor counts.

transistor count circuit design style
for a static CMOS switched over- jamb ground- clocked seesaw
master–slave memory ruled latch cycled inverters w. input
flip-flop loop loop loop gating

input buffer/inverter 2 2 2 2 0 2
master latch 8 6 8 8 6 16
slave latch 8 6 8 8 6 16
output buffers 4 4 4 4 4 4
clock preparation 4 4 4 4 8 2
async. reset facility 4 4 2 2 2 4
total 30 26 28 26 26 44
in gate equiv. [GE] 7.5 6.5 7 6.5 6.5 11
toggling with clock 12 8 8 12 8 10
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reset and complementary outputs).

The data transfers from master to slave need particular attention because of the absence of any
logic and, hence, contamination delay in between.23 In order to improve on the hold margin there,
the clock is often distributed in such a way as to introduce a small negative skew. That is, the
slave is clocked slightly before the master, e.g. by driving the master’s clocks from the slave’s via
(resistive) poly lines.

The oscillating clock and the toggling data input are responsible for almost all dynamic energy
that gets dissipated by a flip-flop; proportions vary as a function of data statistics and circuit
details. Techniques for trimming unnecessary activities of internal nodes are discussed in [204].
[205] compares nine flip-flop circuits in terms of energy efficiency and performance. One finding
is that differential or dual-rail circuits dissipate more energy than single-ended alternatives. Still,
differential latches are being used in commercial high-performance low-power microprocessors such
as the StrongARM. Also, semi-dynamic flip-flops built from a dynamic master and a static slave
have been found to combine better performance with an energy efficiency comparable to that of
fully static implementations. [206] evaluates D-type flip-flops in terms of circuit complexity, delay,
energy dissipation, and metastability resolution. A not-so-surprising finding is this:

Observation 8.6. The temporary contention that occurs while a memory loop is being forced into

a new state tends to inflate ramp times and dissipated energy. Overruling has also been found to

be detrimental to low-voltage operation (below 2.5 V or so) and to render bistables much more

susceptible to marginal triggering and metastability.

8.2.4 The mother of all flip-flops

The D-type flip-flop with asynchronous reset forms a fundamental building block from which any
other type of edge-triggered storage element can be derived with the aid of a few extra gates.
Examples of enable or E-type flip-flops, toggle or T-type flip-flops, scan flip-flops, and counter slices
are shown in fig.8.24.

For the sake of performance, layout density, and energy efficiency, library elements are always
designed and optimized at the transistor level, however. As an example, scan flip-flops have their

2 3 The situation can be viewed as a case of unsymmetric two-phase clocking, explained in section 6.2.5, where the
non-overlap time has been reduced to zero.
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input multiplexer blended into the master latch much as explained before in section 8.2.2. This is
done in an attempt to minimize the impact of scan testing on the computation rate of the final
circuit as a D to Q or Q delay is almost certain to be part of the longest path.

As opposed to this, E- and T-type flip-flops and counters are not normally found in cell libraries
but assembled from D-type flip-flops. With the advent of synthesis technology this is no longer done
by hand. Yet, keep in mind that well-formed HDL code must produce circuit structures equivalent
to those presented in fig.8.24.
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8.2.5 Dual-edge-triggered flip-flops

The DETFF has been introduced as a more energy-efficient alternative to the SETFF.24 As shown
in fig.8.25, there is no master and no slave. Instead, two latches connect to the input and alternate
in accepting and holding data; a clock-controlled multiplex function selects the datum currently
being held for output.

a)

b)

D

CLK

Q

dual-edge-triggered flip-flop

CLK

D Q

CLK

D Q

0

1

CLK

D Q

Q

Q

Fig. 8.25 Dual-edge-triggered D-type flip-flop. Icon (a) and circuit concept (b).

A remarkably slim circuit can be built from clocked inverters, see fig.8.26. However, note that the
clever economy of an actual multiplexer subcircuit renders this particular design more delicate than
others because of the undirectness of the two four-transistor memory loops. While the clock is
ramping up or down, the voltages in the cross-coupled inverter pair being powered up are in fact
biased from both sides at the same time. Conflicts are bound to occur. Careful transistor sizing
must ensure that the on-going memory loop indeed settles to the state determined by the input data
rather than by its off-going counterpart, making this circuit yet another example of ratioed logic.

transistor count circuit design style
for a static CMOS switched overruled clocked
dual-edge-triggered flip-flop memory loop memory loop inverters

inverting input buffer 2 2 0
low-transparent latch 8 6 6
high-transparent latch 8 6 6
output multiplexer 4 4 0
output buffers 4 4 4
clock preparation 4 4 8
async. reset facility 4 4 1
total 34 30 25
in gate equivalents [GE] 8.5 7.5 6.25
toggling with clock 16 12 8

2 4 Section 6.2.3 discusses its usage as a part of synchronous systems and its impact on energy efficiency. More
DETFF implementations are suggested in [207] [208] [152] [209] and other references.
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Fig. 8.26 A static CMOS dual-edge-triggered flip-flop (DETFF) circuit built from clocked inverters, with

asynchronous reset.

8.2.6 Digest

Observation 8.7. There is no such a thing as the optimum bistable design. Any choice is a com-

promise between conflicting requirements such as circuit size, speed, energy efficiency, supply voltage

range, cell inventory, overall design effort, testability, friendly timing, skew tolerance, compatibility

with clocking disciplines, and low susceptibility to marginal triggering.

Probably the most comprehensive evaluation of latch and flip-flop circuits can be found in [210] on a
background of advanced clocking disciplines while [211] extends the discussion to DETFFs. Before
you set out to design your own bistables (latches, flip-flops, counter slices, and the like), recall
the important desiderata related to timing, clocking, and metastability resolution made explicit
elsewhere in this text.25 Also, a word of caution on the usage of transmission gates will be given in
section 8.5.2.

8.3 CMOS on-chip memories

8.3.1 Static RAM

For economic reasons, minimizing the die area occupied per bit is imperative in memory de-
sign as the basic storage cell gets repeated over and over again. Figure 8.27 compares the

2 5 In sections 6.2.2 and 7.4.
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transistor-level circuits of a latch and a flip-flop with those of RAM cells. In a static RAM (SRAM),
each bit is stored as one of the two stable states that develop in a positive feedback loop built from
cross-coupled inverters, see fig. 8.27a.
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Fig. 8.27 CMOS one-bit storage cells compared. 6-transistor SRAM cell (a), 4-transistor SRAM cell (b), and

DRAM cell (c); latch (d) and master–slave flip-flop (e) shown for reference.

Figure 8.27b shows a variation where the p-channel MOSFETs have been replaced by passive pull-
ups. Dispensing with the complementary transistors along with the necessary separation between
their wells saves a substantial proportion of area. Drawbacks are static power dissipation, slower
readout due to an inferior current drive, and the extra fabrication steps required to manufacture
resistors of extremely high resistance, on the order of many GΩ, in a small area.
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As suggested in fig.8.28, many one-bit storage cells are arranged in a two-dimensional array so
that each memory location is uniquely defined by a row and a column address. Bundles of columns
often operate in parallel such as to store and retrieve an entire data word at a time. With wdata

denoting the data word width and waddr the address word width, the capacity of a standard26

RAM immediately follows as

#b its = #w or ds · wdata = 2w a d d r wda ta = #r ow s · #co lum n s = 2w r o w a d d r · 2w c o l a d d r wda ta (8.45)

where waddr = wrowaddr + wcoladdr . A preferred choice is #rows ≈ #columns ≈
√

#bits because
close-to-quadratic shapes of the cell array tend to minimize layout parasitics.
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Fig. 8.28 Organization of a RAM macrocell (32 words by 2 bits drawn, simplified).

Accessing a specific memory location

Provided the chip select line is active CS=1, part of the address bits are fed into the row address
decoder, where they get translated into a one-hot code. One out of the 2w rowaddr word lines WL is

2 6 Some macrocell generators are also capable of constructing memories with fractional cores where the word
count is not an integer power of two, #words < 2w addr . To better adapt to specific storage requirements, such
a generator might be used to construct a 1280 × 22 bit RAM, for instance, whereas a less sophisticated tool
would not be able to generate any configuration between 1024 × 22 bit and 2048 × 22 bit.
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so driven to logic 1. In the toy example of fig.8.28, where wrowaddr = 3, this would involve address
bits A2...A0. As becomes clear in the more detailed view of fig.8.29, the active word line brings all
n-channel access transistors attached into a low-impedance (“on”) condition. One memory cell in
each column is so coupled to the bit lines BL and BL via a pair of access transistors while all other
memory locations remain electrically isolated.

The remaining wcoladdr address bits A4 and A3 are decoded into column select signals SEL# that
turn on one pair of column switches while deactivating all others that belong to the same bundle of
columns. By the combined effects of row and column addressing, two electrically conducting paths,
involving BL and BL respectively, are established between the cross-connected inverters within the
cell currently being addressed and the associated read–write circuitry.

Data write operation

The write-in buffers are enabled in such a way as to have them control the bit lines. More precisely,
by setting WE=1, OE=0, PHIP=0, and PHIS=0, the data terminal D is made to drive one BL and the
conjugate BL line in direct and in complemented form respectively. Activating a word line causes
the cross-connected inverters in the selected cell to assume the condition imposed from externally.
After the cell has been deselected, the positive feedback mechanism maintains that state indefinitely
until the cell’s content is overwritten or the supply voltage gets turned off.

Data read operation

As opposed to the write operation, setting WE=0 disables the write-in buffers, thereby permitting
the memory cell selected to exert control over bit lines BL and BL. Further setting OE=1 propagates
the state stored in that cell to the data terminal D via the enabled output buffer.

While such a simple scheme can be made to work, two effects make it awfully slow. Firstly, the bit
lines are long and connect to hundreds of bit cells so that they represent heavy capacitive loads.
The driving transistors in each bit cell cannot be sized accordingly, however, but must be kept as
small as possible for reasons of economy. Secondly, the n-channel access transistors are not good
at pulling a bit line up. More sophisticated circuits have thus been devised to do away with these
limitations, see fig.8.30 for the waveforms.

1. After having selected one column, the two bit lines are first precharged to Udd by setting the
auxiliary signal PHIP=1.27 A third MOSFET that directly connects BL to BL helps establish a
perfect voltage equilibrium more rapidly.

2. The three precharge transistors are then turned off by switching to PHIP=0 just before one of
the word lines gets activated. As the one memory cell selected begins to act on the two bit
lines, the voltage of either BL or BL starts to decline so that an imbalance develops.

3. At that time, the sense amplifier is powered up by setting PHIS=1. Its inner four transistors
form a positive feedback loop that exhibits two stable states of equilibrium as shown in fig.7.9.
Working on the two conjugate bit lines, this differential contraption will intensify and accel-
erate any existing voltage disparities until BL and BL reach fully opposite voltage levels. The
short wait time before the sense amplifier gets turned on serves to avoid marginal triggering

2 7 Some RAMs have their bit lines precharged to a voltage closer to 1
2 Ud d , yet the concept remains the same.
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conditions. An amplifier with minimal offset, and perfect electrical and layout symmetry is
critical, however, as much as protecting the entire readout circuitry from ground bounce and
crosstalk.
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Fig. 8.30 Read signal waveforms with and without sense amplifier (simplified).

8.3.2 Dynamic RAM

The overall organization of a dynamic RAM as a two-dimensional array of memory cells is very
much the same as for an SRAM. The main difference is that each bit of information gets represented
by the presence or absence of an electric charge on a tiny capacitor in one of the many memory
cells, see fig.8.27c. While most economic, the concept of charge storage has a few peculiarities. Most
importantly, the tiny charge is exposed to all sorts of leakage effects and needs to be periodically
refreshed to prevent it from vanishing over time.

Data readout requires one such storage capacitor to be electrically connected to a bit line by its
associated access transistor. Yet, as the line’s capacitance is much larger, the original charge gets
lost in the ensuing charge-sharing process. One thus speaks of destructive readout, and the
information must be written back immediately.

Another consequence of the unfavorable capacitance ratio is that the voltage deflections observable
on the bit line are rather small. Also, the readout amplifier must essentially weigh the bit line signal
against the precharge voltage because DRAM storage cells are single-ended. Comparing against
a fixed reference, rather than against the counter-acting signal of a conjugate bit line, gives away
part of the speed and robustness of the differential readout scheme implemented in SRAMs.28

2 8 In search of maximum electrical and layout symmetry, DRAM designers have actually come up with sophisticated
schemes that combine single-ended bit cells with conjugate bit lines and differential amplifiers. Bit cells are
hooked up to BL and BL in an alternating pattern. While one line, say BL, is impinged upon by the access
transistors selected during some read operation and, hence, participates in the charge-sharing process, no access
transistor is allowed to turn on on its counterpart during the same read operation. The precharged BL line
can thus act as a reference for readout via BL, and vice versa for readout operations via BL. Another benefit
of this scheme is that the capacitive load attached to each bit line is cut in half over a fully one-sided circuit
arrangement.
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The fact that a sense amplifier has common terminals for input and output is particularly welcome
in DRAMs because the amplifier restores the small signal received to its full logic level before
reflecting it to the storage cell over the same bit line once it has snapped to one state or to the
other. Data write back so becomes an implicit part of every read operation, which has the extra
benefit of providing a nice hook for memory refresh. An array of DRAM cells essentially gets
refreshed by accessing each data word on a regular basis for a — silent — readout operation; a
counter that periodically sweeps the address range is sufficient to do so.29

The refresh operations are typically hidden from the outside world by having them take place
during idle time slots or within sections of the memory array that are not currently being accessed.
Still, depending on the application and on the refresh scheme, refresh operations can get in the
way of regular memory accesses and necessitate the introduction of wait cycles. Another major
disadvantage is the permanent drain of power associated with DRAM refresh.

More facts and figures about DRAMs:

• Key design goals are large capacitance in a small area and low leakage.
• Minimum storage capacitance is 25 to 35 fF per bit cell,

with 40 to 50 fF being more typical.
• Planar capacitor arrangements had been used until the 1 Mibit generation before special

process steps were introduced to fabricate trench or stack capacitors that can take advantage
of the third dimension to economize on silicon area.

• Charge retention times are specified to be on the order of 64 to 256 ms.
• A 10% loss of charge is considered a data failure.
• An entire refresh cycle typically takes 64 ms for a 64 Mibit DRAM.
• To minimize leakage, DRAM processes feature higher threshold voltages

than logic processes and make use of negative back-biasing.
• The ratio defined by the bit line capacitance to the storage capacitance

is no more than 15:1 and typically ranges between 5:1 and 10:1.

8.3.3 Other differences and commonalities

Storage density. To put things into perspective, fig.8.27 includes not only SRAM and DRAM
cells but also the core circuits of a latch and of a D-type flip-flop (both with a single output,
no reset, and no clock preparation circuitry). As everyone knows, it is in the DRAM that
the complexity of a 1-bit memory circuit is reduced to a minimum, with the SRAM far
behind. The fact that RAM storage arrays get assembled from abutting layout tiles30 further
contributes to their superior layout densities when compared with individual latches and flip-
flops. These findings substantiate the numbers that have been given earlier in the context of
architecture design in section 2.5 and notably in table 2.9 there.

Circuit overhead. The radical simplification of the storage cell in semiconductor memories
is bought at the price of substantial auxiliary peripheral circuitry for address decoding,
precharging, readout acceleration, internal sequencing, I/O interfaces, etc. invisible from

2 9 Most DRAMs have a one sense amplifier per memory column thereby making it possible to address one row
after the other and to refresh all cells of a row at a time.

3 0 The concept of tiled layout is to be explained in section 11.5.5 but also obvious from fig.11.26c.
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fig.8.27 but indicated in fig.8.28. DRAMs further call for on-chip provisions for memory
refresh and back-biasing. While these circuit overheads cause large RAM macrocells to oc-
cupy roughly 1.5 times as much area as the storage cell array alone, this factor may exceed
2 for smaller on-chip RAMs.

Memory clocking. RAMs come in clocked and unclocked varieties. Synchronous RAMs have
a clock input terminal that must be driven from a periodic signal. Write operations are to
be timed with reference to edges on the clock. An extra write input acts as enable. Timing
diagrams resemble those of a flip-flop. An analogous scheme often applies to read operations,
but there are exceptions where read transfers occur independently from the clock.

Asynchronous RAMs feature no clock input. Instead, address and data signals must
be applied with reference to the WR/RD input or to some address select inputs. Any such
input is sensitive to hazards as it combines the roles of a what signal and of a when signal.
Still, it cannot be driven from a system clock directly because read and write transfers
typically alternate in an irregular fashion. [212] suggests a number of safe driver circuits for
asynchronous RAMs.

ASIC developers do not normally design embedded memories from scratch, they either a use macro-
cell generator made available by a library provider or commission the silicon vendor to generate the
macrocell views for them. Our discussion of RAMs has, therefore, been limited to the very basics.
Please refer to the specialized literature for a more in-depth exposure to memory circuit and layout
design [213] [214] [215] [216] [46] [45] [217] [218] [219] [47] [220] [221]. A few examples of detailed
layouts are to follow in section 11.5.5.

8.4 Electrical CMOS contraptions

The building blocks collected in this section have one thing in common, they are being used in
digital circuits for their particular electrical characteristics rather than for some logic function.31

8.4.1 Snapper

A snapper essentially consists of a positive feedback loop implemented from two cross-coupled
inverters, see fig.8.31. The bistable nature of this mechanism attempts to maintain the sole terminal
TRM in its most recent state, that is either at logic 0 or at 1. As will be explained in section 8.5.1,
this opportunistic contraption may serve to prevent the voltage on a three-state node from drifting
away when the node is not being driven.

The drive strength of the snapper is chosen low enough that its output is easily overridden by any
other gate wanting to impose a new logic state. This is obtained by making the two MOSFETs
that are driving the terminal node significantly weaker — that is longer — than those found in the
output stage of any other cell, another occurrence of a ratioed circuit.

3 1 The transmission gate is not reiterated here because it has been introduced earlier to explain the construction
of three-state and parity gates, bistables, and the like. Please refer to section 8.1.5 for details.
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Fig. 8.31 Snapper. Icons (a) and circuit (b).

As it is impossible to indicate any dependency between an input and an output, no truth table can
be given. A snapper is not a logic gate but the simplest form of an unclocked bistable. Snappers
are also known as bus holders, holding amplifiers, and level retention devices.

Observation 8.8. Its bistable nature notwithstanding, a snapper is not intended for data storage.

Spurious signals such as glitches may cause a snapper to toggle at any time. Once driving of its

terminal node has ceased, any state previously assumed must be regarded as corrupted.

Much like any other bistable subcircuit, a snapper exhibits metastability when subjected to marginal
triggering. For the memory loop to reliably snap into a new state, any data transition must reach a
valid logic state and rest there for some minimum time. Timing conditions are, therefore, expressed
in terms of minimum low and high times for the snapper’s terminal.

8.4.2 Schmitt trigger

What sets Schmitt triggers apart from buffers and inverters is their hysteresis, see fig.8.32. As
opposed to ordinary gates, the output is logically defined for any input voltage with no indeterminate
or forbidden interval. Instead, distinct thresholds apply to rising and to falling input voltages, which
means that a Schmitt trigger’s output partly depends on past input.32

Uhy = Uih − Uil > 0 (8.46)

Hysteresis is desirable in certain situations to obtain ampler noise margins and/or better level
restoration than ordinary buffers or inverters would provide. External inputs, for instance, are often
passed through Schmitt triggers to filter out noise and to reshape waveforms. Three alternative
circuit diagrams are shown in fig.8.33. Observe that positive feedback is essential in obtaining
hysteresis and that its exact amount Uhy is a function of the transistor sizes involved. Figure 8.33b
makes use of weaker-than-normal MOSFETs to obtain a limited degree of feedback whereas c and
d can be designed to make do with minimum-length transistors.

3 2 The assignment of the mathematical symbols Ui h and Ui l to a Schmitt trigger’s pair of threshold voltages is
debatable. Some sources of information assign them the other way round so that Ui h < Ui l . With the definition
Uh y = Ui l − Ui h , a hysteresis of Uh y < 0 naturally follows for all regular gates and Uh y > 0 for Schmitt triggers.
While this is meaningful, we prefer the assignment of fig.8.32 because Ui l thus consistently defines the upper
bound below which all input voltages get interpreted as logic 0, and vice versa for Ui h .
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Fig. 8.32 Non-inverting Schmitt trigger. Static transfer characteristic (a) and switching levels (b), compare

with fig.8.4.
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Fig. 8.33 Non-inverting Schmitt trigger. Icon (a), circuit built around a snapper (b), circuit built from series

transistors (c), and alternative circuit with two transistors operating from reversed voltages so as to weaken

feedback further (d).

8.4.3 Tie-off cells

Even with today’s exuberant cell libraries, it is sometimes necessary to permanently tie a cell’s input
to logic 0 or 1. Imagine you specify a 3-to-1 multiplexer function in your HDL code. Very likely,
the synthesizer will then instantiate a 4-to-1 multiplexer from the library and connect the unused
input to ground. Yet, gate dielectrics have become so thin in deep submicron processes that even
a minor overvoltage might damage them. To prevent this from happening, manufacturers prohibit
low-ohmic connections from MOSFET gates to vss or vdd.

Instead, a tie-off cell such as those shown in fig.8.34 must be used. The RC-section formed by the
MOSFET’s “on” resistance together with the gate capacitance(s) attached suppresses fast transients
and so protects the vulnerable thin oxides from electrostatic discharge (ESD) and other transient
overvoltages. Please figure out yourself what the other transistors serve for.
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Fig. 8.34 Tie-off cells.

8.4.4 Filler cell or fillcap

To allow for signal routing in congested areas, it is sometimes necessary to provide extra room
between standard cells. From a signal integrity point of view, on the other hand, it is highly desirable
to intersperse bypass capacitors over the entire die area to momentarily supply the necessary energy
for local switching activities. Filler cells laid out such as to fit into standard cell rows and to abut
with other cells there serve both purposes.

In designing fillcaps, as filler cells are also called, the goal is is to obtain a useful amount of capac-
itance with a low (equivalent) series resistance (ESR) from a very limited area. The most effective
choice is to use the thin gate oxide layer as dielectric.33 The gate material constitutes the upper
capacitor plate while the inversion layer that forms underneath when properly biased acts as lower
plate. Nearby diffusion areas serve as bottom terminals. As shown in fig.8.35b, the arrangement may
be viewed as a MOSFET that is permanently turned on and that has its drain and source terminals
shorted together. The name MOSCAP has been coined for such structures. The nonlinearity of
its C(U ) characteristic does no harm for decoupling purposes.

To prevent damage from voltage spikes on the supply rails, the fragile gate dielectrics are protected
with the aid of small series resistors on the order of 100 Ω. An alternative arrangement depicted in
fig.8.35c avoids area-consuming resistors in much the same way as the tie-off cell discussed before.

on-chip
power

ground
on-chip

a) d)

VSS

VDD

VSS

VDD

c)b)

Fig. 8.35 A pair of MOSCAPs acting as on-chip bypass capacitor or fillcap. Equivalent circuit (a), two

implementations (b,c), and symbolic layout (d).

3 3 A single layer of poly (1P) is typical for purely digital CMOS fabrication processes. More sophisticated processes
targetted towards analog and mixed-signal circuits provide designers with an extra dielectric layer for obtaining
on-chip capacitors of better quality. Sandwiched either between two poly layers (2P) or between two metal
layers (MIM), a thin layer of dielectric material makes it possible to construct capacitors that are linear and
free-floating, that is, connected neither to the vss nor to the vdd node.
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8.4.5 Level shifters and input/output buffers

Level shifters translate logic signals at the interface of two subcircuits that operate at distinct
voltage levels. They have a long tradition in input and output buffers, e.g. to translate between
TTL and CMOS switching levels or when a chip’s core logic operates from a 1.2 V supply while
the surrounding board-level circuitry insists on 2.5 V swing. More and more, level shifters have also
appeared within cores to accommodate multiple supply voltages. They are further being used as
part of reduced-swing clock distribution networks [222].

The circuit of fig.8.36 functions much like a jamb latch that is permanently kept in pass mode. The
circuit has the nice property that the same general arrangement can be used for voltage step-up
and for voltage step-down. Better still, the circuit can handle variable supply voltages as transistors
need not be resized as a function of voltage ratio. Gate dielectric thicknesses and drain–source
separations must of course always be chosen such as to be commensurate with the maximum voltage
applied.

a)

OUPINP

common
ground

(input side)
first supply

(output side)
second supply

level shifter

b)

OUPINP

Fig. 8.36 Non-inverting level shifter. Icon (a) and circuit (b).

I/O buffers not only translate between distinct voltage levels, but also must provide good protection
against electrical overstress, acceptable crossover currents, and low leakage. They must further be
safe from latch-up in spite of the higher voltages typically used at the board level. While all these
issues are being addressed separately in this text, the reader is referred to the specialized literature
for an evaluation of mixed-voltage I/O buffer circuits [223] [224].

8.4.6 Digitally adjustable delay lines

There are situations where one needs to adjust the delay along some signal or clock propagation
path to adapt to conditions unknown at design time, e.g. to compensate for PTV variations or to
track a time-varying phase relationship. Just consider PLLs and DLLs, for instance.

Three digitally adjustable delay lines are shown in fig.8.37 and each of them functions according to a
different idea. The first one must be controlled with one-hot encoding and supports delay variations
in fixed increments of two inverter delays. The second one uses transmission gates to select among
two different load conditions for the inverter in each delay element. This approach allows for a finer
resolution as the delay increments get defined by MOSCAPs of graded sizes. A current-starved
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inverter is at the heart of a third adjustable delay element. Turning on and off transistors from a
bank of graded MOSFETs modulates a (static) control current Ic . That current gets mirrored into
a pair of n- and p-channel MOSFETs that limit the inverter’s maximum sink and source current
respectively and, hence, also its output slew rates.

Before preferring one circuit design over another, watch out for

• Adequate delay resolution,
• A good match between the respective propagation delays for rising and for falling edges,
• Monotonic speed-up and slow-down in response to a new digital delay setting, and
• The usual area and energy requirements.

Detailed accounts on how to design digitally adjustable delay lines with timing resolutions finer
than one gate delay can be found in [225] [226] [227].

8.5 Pitfalls

Certain subcircuits, such as three-state busses, transmission gates, bus interfaces, and mechanical
contacts, exhibit treacherous peculiarities. Being aware of the pitfalls continues to be important
because a piece of HDL code may cause a potentially unsafe circuit to be produced during synthesis
without the code’s author being aware of this.

8.5.1 Busses and three-state nodes

Designers frequently face the necessity to access data from multiple locations distributed over a
chip or system. They then essentially have three options:34

◦ Route a wire from data source to destination for each transfer path that might be
required.

◦ Use multiplexers to grant one source at a time access to one net that connects all locations.
◦ Have the data sources drive a common net as a function of need via three-state outputs.

The simplest example of a multi-driver node is a bidirectional line with a driver/receiver at each
end; a bus typically comprises multiple lines and multiple points of access, see fig.8.38. Having
multiple drivers alternate in driving a common circuit node avoids the wiring overhead that can
grow to become prohibitive with the other two options, but brings about a number of complications
that need special attention.

A drive conflict, aka bus contention, occurs when two or more drivers attempt to impose incom-
patible logic states — such as 0 and 1 — on a common multi-driver node. Drive conflicts are highly

3 4 A fourth technique can no longer be considered an option. An open-drain output consists of an n-channel
MOSFET with no p-channel counterpart. Two or more such outputs connect to a common pull-up node, thereby
resulting in an implicit wired-and operation. The idea was known as open-collector output and very common in
TTL technology, but the static currents render it unpopular in the context of CMOS circuits.
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Fig. 8.37 Digitally adjustable delay line. Icon (a), round-trip delay line (b), MOSCAP-loaded inverter chain (c),

and current-starved inverter (d) (simplified).

undesirable because the logic outcome is unpredictable, because a short-circuit current flows from
vdd to vss directly, and because unnecessary ground bounce is produced.35

3 5 More precisely, one must distinguish between stationary and transient conflicts. A drive conflict is said to be
stationary if the drivers continue to fight for control over a node even after the circuit has settled to its steady-
state condition. Stationary contentions always point to deficiencies in the logic circuits and/or protocols in charge
of controlling access to the bus. They often continue for a prolonged period of time and cause needless power
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Fig. 8.38 Three-state bus. Regular operation (a), drive conflict (b), and floating bus (c).

The converse situation where a node is left floating because none of the drivers attached gets
enabled is also undesirable. Any charge initially present on the node’s capacitance will fade over
time due to leakage, alpha particles, cosmic rays, and other unpredictable phenomena. A node
left undriven after charging may discharge, and vice versa. If its potential drifts towards the logic
family’s switching threshold, the receivers become susceptible to crosstalk from the nearby circuitry
and may start to develop undesirable crossover currents and/or oscillations.

Observation 8.9. Under no circumstance must a multi-driver node be driven by more than one

output at a time. Also, some mechanism must be provided to prevent a node from floating when it

is left undriven for a prolonged period of time.

Floating nodes also compromise the accuracy and dependability of simulation as there is no way for
a logic simulator to predict physical effects such as leakage, noise coupling, radiation, etc. with the
resulting charge decay times. Simulated waveforms may suggest a node continues to be charged to
its former logic value, while, in reality, its voltage has long since drifted away.36 Similarly, gate-level
simulation typically fails to correctly predict circuit behavior during drive conflicts.37

dissipation and local overheating. Permanent damage may result when maximum current density or temperature
ratings are exceeded.

As opposed to this, a transient conflict may develop in any bus circuit when one driver is turning on while
another is going off-line. While stationary contentions must absolutely be avoided, brief transient conflicts can
be tolerated because no out-of-the-normal currents flow, provided timewise overlaps do not exceed regular signal
transition times. After all, the crossover current in an inverter or any other static CMOS gate may be understood
as the result of a transient drive conflict between two antagonistic MOSFET networks. With today’s CMOS
technology, this means that transient conflicts must come to an end within less than a nanosecond.

3 6 A common stopgap is to set up simulation in such a way that any undriven node immediately assumes an
unknown logic state. Actually, this is the case in the IEEE 1164 standard where charged high, charged low,
and charged unknown are collapsed into a single logic value Z. While this is certainly prudent, it is an overly
conservative approximation for dynamic CMOS circuits.

3 7 In a fight between logic 0 and 1, logic simulation typically yields a logic X whereas the 0 would win in many
practical cases because most CMOS outputs can sink more current than they can source.
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Observation 8.10. In the presence of drive conflicts, floating nodes, or snappers, signal values

and waveforms predicted by logic simulation may significantly differ from physical reality.

As a consequence, and because of other issues related to timing, energy efficiency, and testing, VLSI
engineers generally prefer to stay away from multi-driver nodes whenever possible. Many companies
in fact veto the usage of on-chip three-state busses. Let us nevertheless examine circuit techniques
for staying clear of floating nodes and drive conflicts.

Passive pull-up or pull-down

The usage of pull-up or pull-down resistors to prevent an undriven node from floating around has
a long tradition in digital electronics. TTL inputs have a built-in pull-up characteristic, in MOS
technology weak transistors can be made to act as passive pull devices. Pulling towards some fixed
voltage is unpopular in VLSI, however, because of serious drawbacks:

• Pull devices dissipate static power when being overridden. The stronger the pull device, the
more power gets dissipated.

• Ramp times are relatively slow and difficult to control. The weaker the pull device, the longer
it takes for the node to transit across the forbidden voltage interval.

• The multi-driver node toggles more frequently than necessary, which translates into extra
dynamic energy dissipation and switching noise.

• Static currents compromise Iddq testing.

Active snapper

A snapper avoids both static power dissipation and unnecessary charge/discharge activities. Yet,
its bistable nature also brings about two minor difficulties of its own:

• Spurious signals such as glitches may cause a snapper to toggle at any time.
• Snappers are exposed to marginal triggering. A critical situation occurs when a three-state

driver is disabled while transiting the forbidden interval between 0 and 1.38

Centralized as opposed to distributed bus access control

Adding a snapper or a passive pull-up/down is not much more than treating the symptoms that
result from leaving a node undriven. More importantly, neither a snapper nor a pull-up/down helps
to avoid drive conflicts. A better approach is to organize bus access around a controller designed so
as to guarantee that exactly one driver gets enabled at any time.

Example

Consider a microcomputer I/O bus connected to a number of external interface circuits or other
hardware units. The existence of idle cycles during which no data transfer is scheduled to occur is
typical for such applications.

In fig.8.39a, each driver gets its enable signal from a local controller, all of which coordinate their
activities via some distributed bus access protocol. There is no hardware mechanism that could

3 8 Some bus systems have indeed been reported to suffer from this kind of complication [228].
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prevent drive conflicts should the protocol fail due to transmission errors, initialization failure,
defective parts, software bugs, hot plug-in/out operations, and the like. Similarly, the bus is left
undriven when none of the units has meaningful data to send, which calls for a pulling or snapping
device. Local control is typical for large systems with numerous units distributed over several boards.

In the centralized scheme, in contrast, one controller is in charge of producing the enable signals
for all drivers, see fig.8.39b. Clock cycle by clock cycle, some form of finite state machine (FSM)
generates the address of the one and only driver that is to be enabled. The address is then fed into
a decoder, thereby excluding the risk of stationary conflicts and minimizing overlap times. Still,
during idle cycles the address may assume a value not assigned to any hardware unit, e.g. address
code “00” points to an inexistent instance u02. A simple or function prevents the node from floating
and does away with the need for a snapper or pull-up/down. The data values put on the bus during
idle cycles are immaterial as they are ignored anyway.
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Fig. 8.39 Three-state bus access control schemes. Distributed (a) and centralized (b).
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Observation 8.11. On-chip multi-driver nodes complicate IC design and test, they should not

be adopted light-heartedly. If opting for a multi-driver bus, however, prefer central over distributed

access control whenever possible because it is simpler to implement and inherently safe.

Centralized bus control does, unfortunately, not scale very well to systems where the numbers of
hardware units are large and subject to variation. It is therefore, typically limited to smaller and
hardwired systems such as those confined to within one chip.

8.5.2 Transmission gates and other bidirectional components

Much like three-state drivers, poorly designed transmission gate circuits develop drive conflicts
and floating nodes. The 2-to-1 multiplexer of fig.8.40a, for instance, leads to a conflict when
SEL1 = SEL0 = 1 and INP1 �= INP0. Conversely, when SEL1 = SEL0 = 0, node OUP remains undriven.
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The design may, therefore, behave in an unpredictable way as long as control terminals SEL1 and
SEL0 are allowed to evolve independently from each other. Deciding whether it is actually safe or
not requires precise information about those combinations of input values that will occur and those
that won’t. A better circuit will be shown shortly in fig.8.41a.

The same network with inputs and outputs swapped is inherently unsafe, see fig.8.40b. As one or
more nodes always remain undriven except for SEL1 = SEL0 = 1, this design is no good as a 1-to-2
demultiplexer, or for any other purpose.
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Fig. 8.40 Unsafe circuits with transmission gates. Drive conflict and floating node problems (a,b). Low drive

capability because of accumulated “on”-state impedances (c). Vulnerability to backward signal propagation (d).

Transmission gates have no drive capability of their own. The current necessary for driving a load
attached to one data terminal has to come from the circuit that is driving the other data terminal.
When t-gates are cascaded, their “on”-state impedances accumulate, thereby lowering the drive
currents and slowing down the charging and discharging of load capacitances. The capacitor of
fig.8.40c, for instance, is charged through a total of six p-channel transistors connected in series. A
voltage drop would result in steady state if a resistive load were attached.

Transmission gates are also lacking the level restoration capability of other CMOS subcircuits.
Regenerating a logic signal with depressed voltage levels to its normal rail-to-rail swing requires a
steep and saturating voltage transfer characteristic that only an amplifier can provide.
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A particularly perfidious phenomenon is backward signal propagation. Consider fig.8.40d, where
a latch drives a substantial capacitive load over a t-gate multiplexer, and assume the following initial
situation. A logic 0 is latched, u8 is turned off, and the capacitance is charged high, i.e. CLK = 0,
D = −, Q = 0, SEL = 1, and L = 1. What happens when SEL goes low? First, u8 gets turned on. Due
to the important charge stored on node L the voltage there will not change immediately. Instead,
the transistors of u4 and u8 will form a voltage divider between power and ground. Depending on
whether the voltage at node Q exceeds the switching threshold of u4 or not, the latch may flip. Put in
other words, the output terminal of the latch might unexpectedly act as an input! A more subtle form
of backlash may be caused by the momentary low-resistance path that forms between the multiplexer
data inputs when P �= Q while SEL is slowly transiting from one state to the opposite one.39

Undirectness also complicates logic simulation. Both RTL and gate-level simulation essentially
work by re-evaluating the inputs to a subcircuit whenever one or more of them have changed and
by updating the subcircuit’s output values if necessary. Logic simulation, therefore, accommodates
directed subcircuits only. Undirected subcircuits must be simulated at the transistor level or at the
switch level. In either case, the computational burden is much higher than with logic simulation,
and no timing conditions are being checked.

Last but not least, it has been found that t-gate circuits give rise to more severe testability
problems than others. This is due to the t-gate’s undirectedness and to the innate redundancy of
having two transistors connected in parallel [229].40

Observation 8.12. A transmission gate is not a logic gate but the CMOS equivalent of a relay. De-

signing with transmission gates requires particular attention in order to avoid unpleasant surprises.

In addition, its built-in redundancy makes it next to impossible to test.

Warning example

In search of the reasons behind the malfunctioning of fabricated circuits, engineers of a major semi-
conductor company found that part of their on-chip shift registers were actually running backwards.
Closer investigation revealed that workload and information had been split among different parties
in an unfortunate way.

Under pressure to help minimize manufacturing costs and power dissipation, library developers
had devised a series of new flip-flops with (a) no inputs buffers, (b) no decoupling buffers at their
outputs, and (c) close-to-minimum-width transistors in both the feedforward and feedback gates.
Each such cell had been individually subject to SPICE-type simulations to verify its functioning
and to quantify its timing characteristics before eventually being included in the latest release of a
standard cell library. No time was left to confirm the cooperation of several such cells as parts of
larger subcircuits, however.

Consistent with its general objective of meeting given timing constraints at the lowest possible
circuit complexity, the VHDL synthesis tool had regularly preferred the “low-cost low-energy” flip-
flops over the safer but more onerous alternatives during the library mapping step.

The ASIC developers were concentrating on getting the functionality of their RTL code right. To
them, one flip-flop was as good as any other flip-flop. They were simply not aware of the existence of

3 9 Note the analogy with a make-before-break type switch.
4 0 See problems 11, 9, and 10 for this and further shortcomings of transmission gates.
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special trimmed-down bistables in the target library, let alone of their peculiarities and vulnerability
as, nothing in the documentation and simulation models indicated them.
�

It should be clear from the above accounts that great care must be taken when designing with
bidirectional primitives. A number of vendors assume a very conservative attitude by rejecting
transmission gates and other bidirectional constructs altogether.

A more liberal position disallows them as standard cells of their own, but, at the same time, tolerates
their usage when embedded into larger subcircuits in such a way that

• Bidirectionality remains invisible when the subcircuit is viewed from outside,
• No two drivers can ever enter into a conflict situation,
• There is no way for any node to float,
• Output levels are always properly restored,
• No unwanted repercussions on the subcircuit’s state are possible,
• It is possible to characterize the subcircuit by way of a truth table or a logic function,
• No more than three MOSFETs are connected in series.

Most standard cell libraries are in fact designed along these lines in order to take advantage of trans-
mission gates while protecting designers and automatic synthesis tools from the pitfalls associated
with free bidirectional primitives.

Examples

Figure 8.41a shows the 2-to-1 multiplexer of fig.8.40a redesigned to meet the above requirements.
The single control input in conjunction with inverter u3 guarantees SEL0 = SEL1, thereby doing
away with all unsafe combinations that might lead to a stationary drive conflict or a floating node
condition. Output inverter u2 provides the same low impedance drive capability that is found in
every other CMOS gate. Inverters u1 and u0 bring about several benefits. Firstly, they compensate
for the data inversion inflicted by u2. Secondly, the two buffers prevent the transmission gate
impedance from adding to that of the driving gate, which would make the multiplexer’s switching
speed and propagation delay depend on the context in which it is being used. Thirdly, they isolate
the inputs from any kind of backward signal propagation. Lastly, u1 and u0, together with u2, yield
a steep transfer characteristic.

For the sake of completeness, alternative solutions that make use of unidirectional gates exclusively
have also been included in fig.8.41b through d.

A flip-flop that makes extensive use of transmission gates has been shown earlier in fig.8.23. Please
check yourself how this design has been made to comply with the various safety rules.
�

8.5.3 What do we mean by safe design?

Our discussion of bus access protocols and the differences between poor and improved cell designs
boils down to one thing. A (sub)circuit is to be considered unsafe if its functional behavior may
depend on external circumstances. Deciding whether such a circuit will actually develop a problem
or not requires making assumptions about the surrounding circuitry, the signals being applied,
ambient conditions, and the like.
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Fig. 8.41 Safe 2-to-1 multiplexer circuit on the basis of transmission gates (a). Alternative solutions built from

three-state inverters (b), simple logic gates (c), and an AOI gate (d).

A safe (sub)circuit, in contrast, behaves as expected by virtue of its innate construction alone
and, therefore, stays clear of potential risks and side effects as much as possible.

This distinction is by no means restricted to busses and transmission gate circuits, but also applies
to clocking disciplines, PTV and OCV variations, clock gating, interface design, synchronization,
state machine design, and even software engineering.

Observation 8.13. A circuit that can be proven to consistently behave as specified and not to gen-

erate unexpected side effects from its schematics alone should always be preferred over an alternative

circuit that requires hypothesizing about the circumstances in which it is going to operate. This is

especially true when designing library cells.

Turning unsafe designs into safe ones often augments circuit complexity and energy dissipation,
though, which is not what is wanted. Minimizing those overheads or attempting to do without
them, on the other hand, typically mandates more substantial engineering and verification efforts.
The challenge consists in finding an optimum balance.

8.5.4 Microprocessor interface circuits

Assume you are given some microcomputer that will act as host computer in a system. It is your
job to design an IC that interfaces with the microcomputer over the customary address bus, data
bus, and control lines.41 Your circuit is thus to become one of the host’s peripheral devices. In

4 1 The reader is assumed to have a basic understanding of microcomputer organization and operation. A summary
of the three classic I/O transfer protocols — polling, interrupt-driven, and direct memory access (DMA) — is
available in appendix A.7.
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such a situation, it always pays to look at the host’s prospective I/O circuitry not only from the
IC designer’s point of view but also from the perspectives of a software programmer and of a test
engineer. What follows are some guidelines based on practical experience.

� Always keep configuration-related, event-related, and data-related bits in separate registers,
see fig.8.42. Lengthy instruction sequences are otherwise required to read, extract, process,
re-assemble, and write back a register’s content.

� Never design write-only registers. In an attempt to minimize the address space occupied by the
peripheral, certain designs from the pioneer days had the same address serve dual purposes. A
write operation would access a command register while a read would access a status register.
This kind of address multiplexing must be considered a bad habit, though, as it precludes
reading back the most recent command from the I/O port, which forces the programmer to
maintain an external copy of the register’s content.

� Always render the current state of data transfer operations observable from the outside world.
As a bad example, consider an IC that ingests and outputs 32 bit words in sets of four
subsequent bytes without making it possible for the host computer to infer whether the current
transfer refers to byte 0, 1, 2 or 3. This coerces programmers of software drivers — and test
engineers too — into resorting to off-chip shadow counters just to keep track of a circuit’s
internal operation. Also, a risk of losing synchronization always remains.
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status signals
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Fig. 8.42 A well-organized processor bus interface.

Example

Consider a controller for some optical disk drive. A variety of information gets exchanged between
the controller and its host. This information can be structured as follows.
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Type Information
Status transfer finished, data ready/needed for transfer,

disk at speed, disk write-protected, head over track #,
error flags, etc.

Command spin up!, spin down!, eject disk!, search track #!,
read sector!, write sector!, etc.

Data data word read from disk, data word to be written to disk.
Configuration number of tracks, number of sectors, recording format, etc.

Table entry “transfer finished” is an event that would typically be handled by an interrupt, in
the occurrence, whereas direct memory access (DMA) transfers are more appropriate to handle
“data ready/needed for transfer” requests since any reaction to such events must occur within a
few microseconds to prevent any data losses.
�

8.5.5 Mechanical contacts

Signals that emanate from mechanical contacts almost always exhibit spurious pulse trains instead
of clear-cut edges. This is because mechanical contacts tend to recoil a couple times before closing
for good. The process of breaking a contact is not clean either. Contact bouncing typically extends
over a period of 4 to 20 ms and calls for special precautions to suppress or neutralize unwanted
signal transitions.

The traditional approach to debouncing consisted in filtering out spurious signals by way of an
SR-seesaw in conjunction with a double-throw switch (with standard break-before-make contacts),
see fig.8.43a. The circuit works on the grounds that the memory loop preserves its previous state
whenever the contact is broken. This continues until the blade has travelled all the way to the
opposite side and has made a first — and most likely ephemeral — contact there, in which case the
output flips. Figures 8.43b and c show variations on the theme. Debouncing is indeed one of the
rare occasions where a zero-latency loop finds a safe and useful application.

The problem with all these approaches is that they are incompatible with the level shifters that are
normally inserted between a chip’s pads and its core circuitry. Figure 8.43d shows a totally different
solution that uses a Schmitt trigger and a very low sampling rate to suppress consecutive spurious
transitions. Note that it does not matter whether a signal in transit gets interpreted as logic 0 or
1. Another benefit over figs.8.43a and b is that this design makes do with a single-throw switch
and a simplified wiring. What’s more, this kind of debouncing lends itself well to implementation in
software, thereby doing away with the necessity for any special circuitry except for a static pull-up
and a level shifter, preferably with hysteresis.

8.5.6 Conclusions

What has contributed to the long-lasting popularity of CMOS is not only the scaling property of
MOS devices, but also the many benefits offered by a fully complementary static CMOS circuit style.
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Fig. 8.43 Auxiliary circuits for the debouncing of mechanical contacts.

• Simple and elegant (compare with TTL and ECL circuits),
• Robust (ratioless and insensitive to leakage currents),
• Operational over a wide range of supply voltages,
• Modest in terms of interconnect resources (single-rail signal, composite gates), and
• Energy-efficient (low activity when compared with dynamic CMOS logic).

May the many circuit variations and design tricks that have been presented in this chapter and that
are listed below serve as a source of inspiration for young designers.

• Antagonistic pull-down and pull-up networks,
• Composite gates (and-or-invert AOI, mirror adder),
• Transmission gates,
• Controlled, overruled, and power-cycled memory loops,
• Jamb latches,
• Function latches (storage and logic combined),
• One-transistor data storage cells,
• Differential readout combined with amplification,
• MOS capacitors,
• Digitally adjustable delays,
• Hysteresis and level shifting.
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8.6 Problems

1. The (poor) performance of an n-channel MOSFET as a high-side switch has been explained
in section 8.1.1 by studying how the gate–source voltage evolves while a capacitive load is
being charged. Visualize the process in fig.8.1 and compare it with a situation where the same
n-channel MOSFET is being put to service as a low-side switch.

2. Implement the logic function below with the most simple static CMOS circuit you can think
of. Also suggest a reasonable layout arrangement in gate-matrix style. Compare your solution
with an alternative that makes do with traditional 1- and 2-input gates.

OUP = IN1 ∨ (IN2 ∧ ((IN3 ∧ IN4) ∨ (IN5 ∧ IN6))) (8.47)

3. Consider the truth table below and assume all of x, y, z are available in complemented and
non-complemented form. Is it possible to implement this function in a single gate in static
CMOS technology?

yz

f 00 01 11 10

x 0 1 1 0 0

1 0 1 0 1

4. Have a closer look at the circuit of fig.8.44. Are the n- and p-transistor networks dual? What
is the circuit’s functionality? Explain the role of each circuit element shown. Do you see any
advantage?

OUP

INP

N1

U3

N2 P1

Fig. 8.44 Five-transistor CMOS circuit.

5. Figure 8.45 shows a full adder that greatly differs from the circuit of fig.8.18. Begin by trying
to understand its structure and operation. How many transistors does the circuit include? Do
you see any weaknesses? Can you find a remedy? How does the redesigned circuit compare in
terms of transistor count and energy efficiency?
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Fig. 8.45 Transmission gate adder circuit.

6. With no more than 12 transistors, the flip-flop proposed in fig.8.46 appears to be a very
attractive alternative to those discussed in section 8.2. Yet, the design is not acceptable as a
library component because it is exposed to failure. Find all potential problems, specify the
preconditions that would allow this circuit to operate as intended, and suggest improvements
that make it more robust.

Q
D

CLK

CLK

Q

Fig. 8.46 Unsafe flip-flop circuit.

7. Figure 8.47 shows a more complete flip-flop circuit. Analyze its organization and functioning.

8. The general idea behind LSSD has been introduced in section 6.2.5. The circuit of fig.8.48b
implements the functionality of an LSSD cell but is not optimal for CMOS.
(a) Design a static CMOS circuit at the transistor level. Decide yourself whether you prefer

to use switched or overruled memory loops.
(b) What characteristics are important to make a bistable safe, friendly, and fast?
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Fig. 8.48 LSSD storage element. Proposed icon (a) and logically equivalent circuit (b).

9. Assume the circuit of fig.8.40c were to drive the D-input of the latch subcircuit shown in
fig.8.40d. Do you see any problem with that? Formulate a rule for safe design.

10. Reconsider the circuit of fig.8.40d. Let CLK = 0, Q = 1, and D = 0. Further assume the output
of u1 undershoots heavily as a consequence of strong ground bounce. What might happen in
an extreme case?

11. Consider a digital IC that includes transmission gates such as those shown in fig.8.15. Assume
the p-channel MOSFET in one of them is stuck in a non-conducting state as a consequence
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of some local fabrication defect. Examine the impact on the circuit’s functioning and perfor-
mance. List all causes that may result in the MOSFET being stuck in (a) a non-conducting
and (b) a conducting condition irrespective of the t-gate’s control input. Which of the defects
listed must be assumed to be permanent and which are subject to change?

8.7 Appendix I: Summary on electrical MOSFET models

with contributions by C. Balmer

The electrical behavior of a MOSFET with its four terminals and various operating regimes is
quite intricate in itself, and the move towards ever smaller geometries has brought forth additional
phenomena. Technological variety, the desire to have computers simulate and optimize MOSFET
circuits, mathematical concerns, but also commercial interests have complicated things further. As a
result, a plethora of transistor models has been developed over the years. Emphasis in this overview
will be on first-order models amenable to hand calculations.

8.7.1 Naming and counting conventions

Trivial as it may appear, the naming of MOSFET terminals is controversial. Most integrated devices
exhibit no physical difference whatsoever between source and drain since the two are manufactured
in the same way and at the same time, see fig.8.49e. As a consequence, the two terminals are
electrically interchangeable and device characteristics are symmetrical with respect to drain and
source, e.g. Id(−Uds) ≡ −Id(Uds).

42 There are two alternative ways to cope with this property in
a transistor model.

1. The two terminals at either end of a MOSFET channel are labeled as source and as drain in
an arbitrary but immutable fashion. The model must then be devised in such a way as to produce
correct results both for forward operation where Uds is positive (negative) in the case of an n-
channel (p-channel) device, and for backward operation where Uds is of opposite sign. An example
is the EKV transistor model that consistently refers all voltages to the local substrate or, which is
the same, to the transistor body.

2. The labeling of source and drain is not permanent but made dependent on the voltages currently
present across the MOSFET channel. In the case of an n-channel (p-channel) device, the more
negative (positive) terminal is considered to be the source, and the more positive (negative) one
the drain at any time. The requirement of a symmetrical transistor model is so dispensed with
because equations need only cover forward operation and may safely reference all voltages to one
terminal, normally the source. On the other hand, one needs to find out which of the two possible
orientations applies before transistor equations can be evaluated.43 The counting of voltage and
currents then follows the orientations shown in fig.8.49d. A majority of models actually being used

4 2 This is why we prefer the symmetrical icons of fig.8.49a and b over the unsymmetrical ones of fig.8.49c.
4 3 Subcircuits where Ud s changes sign during operation exist, just consider the transmission gates in a bistable.
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Fig. 8.49 MOSFET conventions. Icons with body terminals drawn (a) and abstracted from (b,c), customary

orientations for voltage and current counting (d), layout and cross section (e).

in circuit simulator programs follow this approach, and so will the ones to be presented in sections
8.7.2 through 8.7.4.

Figure 8.49e illustrates how the geometric size of the MOSFET channel is defined. Note that chan-
nel length L is always measured in the direction of current flow and channel width W perpen-
dicular to it. For the sake of performance and layout density, L is typically chosen to be minimal
in digital design, so almost all transistors have W > L.

8.7.2 The Sah model

Transistor models are essential for circuit analysis, simulation, and optimization. They attempt
to approximate measured device characteristics with a set of mathematical equations, which is a
matter of finding workable tradeoffs between accuracy and tractability.

A simple approximation is the Sah model, aka Shockley model [230]. Its limited accuracy notwith-
standing, simplicity has made it the most common model for hand calculations. The Sah model
distinguishes between three operating regions that are termed subthreshold, saturation, and linear
region respectively, see fig.8.51. Within each such region, the MOSFET’s output characteristic gets
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captured by one equation.

subthreshold region : Id = 0 if Ug s − Uth ≤ 0 (8.48)

saturation region : Id = 1
2 β(Ug s − Uth )2 if 0 < Ug s − Uth ≤ Uds (8.49)

linear region : Id = 1
2 β[ 2(Ug s − Uth )Uds − U 2

ds ] if 0 < Uds < Ug s − Uth (8.50)

Linear region. The linear region is also called the resistive, ohmic, triodic, or nonsaturation region.
In fact, the attribute “linear” is somewhat idealized because Id is proportional to Uds only as
long as the quadratic term U 2

ds is very small, i.e. when 2(Ugs − Uth ) � Uds . The transistor
then effectively acts as a linear resistor the effective resistance of which gets controlled by
the voltage being applied between gate and source.

Saturation region. A saturated MOSFET is modelled as a current source that operates under
control of the gate–source voltage applied. A MOSFET is at the verge of saturation when
(Ugs − Uth ) = Uds , or, which is the same, when Ugd = Uth . The borderline between the linear
region and the saturation region is given by Id = 1

2 βU 2
ds , which function is plotted on top of

the device’s output characteristics in fig.8.51. The saturation region is sometimes referred to
as the pinch-off, pentodic, or active region.

Subthreshold region. For any gate–source voltage below a predefined threshold Uth , drain cur-
rent is assumed to be zero in this model, which explains why the subthreshold regime is often
called the cut-off region.
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Fig. 8.51 MOSFET transfer characteristic Id = f (Ug s , Uds ) as obtained with a Sah model.44

Equations (8.48) through (8.50) refer to n-channel devices. For p-channel devices, the right-hand
sides must be rewritten with a minus sign in front, and all condition operators must be reversed. This
is because currents and voltages are consistently oriented the other way round when compared with
n-channel transistors, refer to fig.8.49d. After all, power dissipation must never become negative for
either type of device. Incidentally, also note that it is always possible to discriminate between the
three operating regions by looking at the expression (Ugs − Uth ).

Further explanations on the underlying physical mechanisms that cause the semiconductor device
to change between various regimes of operation as a function of the electrical conditions will have
to wait until section 14.1.4. For the time being, it is sufficient to understand that conduction in
a MOSFET is obtained from attracting so many mobile minority carriers to the silicon volume
underneath its gate that a thin inversion layer forms between source and drain. The term channel
refers to this conducting layer and a MOSFET’s threshold voltage Uth is nothing else than
the voltage necessary for inversion to occur. Threshold voltage is largely, though not exclusively;
determined by the fabrication process; more details are to follow shortly in subsection 8.7.5.

An n-channel MOSFET with a positive threshold voltage Uth n > 0 is said to be of enhancement
type, and the same applies to a p-channel transistor with a negative threshold Uth p < 0; otherwise
one speaks of a depletion-type MOSFET. The key difference is that enhancement transistors do
not conduct when Ugs = 0 whereas it takes a negative (positive) gate voltage Ugs n < 0 (Ugs p > 0)
to turn an n-channel (p-channel) depletion device off. Digital CMOS circuits consist of enhancement
transistors exclusively, depletion devices are not used.45

4 4 The output characteristics of a MOSFET may remind you of those of a bipolar junction transistor (BJT) as they
indeed look quite similar, see fig.8.55. The fact that the designations “linear region” and “saturation region”
are permuted between the two can be confusing. Please refer to section 8.8 for explanations.

4 5 Icons of both enhancement and depletion devices are given below along with typical threshold voltages. In order
to give more room for circuit optimization, many CMOS fabrication processes make enhancement transistors
available with two or three distinct threshold voltages. We use special symbols to identify low-threshold devices in
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Quantity β is called the MOSFET gain factor and is a function of both process parameters and
layout geometry.

β =
µ εox

tox

W

L
= µ cox

W

L
= β�

W

L
(8.51)

where tox is the thickness of the insulating material underneath the gate and where εox = ε0 εr ox

denotes its permittivity. The two quantities are identical for n- and p-channel MOSFETs. µ is the
effective carrier mobility in the inversion layer that forms the channel. The mobility of electrons
varies between 400 and 700 cm2

V s while it is in the range of 100 and 300 cm2

V s for holes.46 This explains
the superior “on”-state conductance of n- over p-channel devices noted earlier.

µ, εox , and tox are often combined into a process gain factor β� that the IC designer must
accept as a process-specific constant; cox = εo x

to x
indicates the gate capacitance per unit area. Note

that channel width W and channel length L are the sole parameters IC designers can act upon,
subject to the condition that they are allowed to intervene at the layout level.

Practitioners often express a transistor’s strength with either one of the quantities below:

Id on = Id(Ugs =Uds =Udd), aka Id sat , states the maximum drive current (in the saturation region).

Gon = Id on/Udd indicates a MOSFET’s equivalent conductance when fully driven and saturated.

Id on/W , sometimes termed drivability, relates a transistor’s maximum drive current to
its channel width and is convenient for comparing devices across fabrication processes.

In summary, the Sah model substitutes simple electrical equivalents for the MOSFET in the fol-
lowing manner, also see fig.8.50c.

region equivalent circuit
subthreshold open circuit
saturation voltage-controlled current source
linear voltage-controlled resistance

schematics. The gray-shaded area is meant to be suggestive of their off-state leakage and their closer resemblance
to depletion-type transistors. Incidentally, note that with typical values on the order of Ut h n = 1.2–30 V the
threshold voltages of power MOSFETs are significantly higher than those found in CMOS logic.
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4 6 The above data taken from [231] apply to low doping concentrations and low fields. Please refer to the same
reference for an in-depth discussion of carrier mobility.
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8.7.3 The Shichman–Hodges model

A striking deficiency of the Sah model occurs in the saturation region where the drain current is
supposed to remain totally unaffected by the drain–source voltage being applied, which behavior
would correspond to an ideal source of constant current. In practice, channel length modulation, a
physical effect to be explained later in section 14.1.4, causes the Id(Uds) traces of real devices to
become slightly inclined as shown in fig.8.52. The Shichman–Hodges model [232] takes that into
account in a heuristic fashion by introducing a corrective term (1 + λUds):

subthreshold region : Id = 0 (8.52)

saturation region : Id = 1
2 β(Ug s − Uth )2 (1 + λUds ) (8.53)

linear region : Id = 1
2 β[ 2(Ug s − Uth )Uds − U 2

ds ] (1 + λUds ) (8.54)

The channel length modulation factor λ accounts for the variation of the effective channel
length. As variations have a relatively larger impact on short channels than on long channels, the
magnitude of λ decreases with channel length L. Note that λ has a positive value for n-channel
transistors and a negative value for their p-channel counterparts.47 In the equivalent circuit, the
corrective term manifests itself as a conductance connected in parallel to the voltage-controlled
current source of the Sah model, see fig.8.50d.

8.7.4 The alpha-power-law model

While the Sah and Shichman–Hodges models often suffice to approximate MOSFETs with long
channels, of say 2 µm and more, they fail to faithfully reproduce the static characteristics of submi-
cron transistors. The customary square law Id ∝ (Ugs − Uth )2 no longer holds for short channels.
Instead, the dependency becomes a subquadratic one for the following reasons.

Sah and Shichman–Hodges models assume fixed carrier mobilities in the inversion layer. While this
is fine at low electrical fields, it does not apply for the strong longitudinal fields found in today’s
MOSFETs. Above 0.7 V/µm or so, the average velocity of electrons that travel through p-type
silicon increases more slowly than the driving field and eventually saturates around 7 · 106 cm/s
[231] [187]. Holes in n-type silicon exhibit the same effect at fields beyond approximately 1.5 V/µm.
This phenomenon is called velocity saturation, aka mobility reduction or mobility degradation
of carriers. Another effect that contributes to mobility degradation emanates from the vertical field
in the channel because carriers attracted to the interface between bulk and gate dielectric material
tend to collide more often with lattice defects there.

Ultimately, Id becomes a linear function of (Ugs − Uth ). Figure 8.53 compares static MOSFET
characteristics obtained from the Sah model with and without a correction for reduced electron

4 7 Most authors state the corrective term as (1 + λ|Ud s |), which makes λ a positive number for both n- and p-
channel devices. Taking the magnitude is actually unnecessary for source-referenced transistor models because
in forward operation Ud s is positive for n-channel and negative for p-channel transistors by definition. Omitting
the superfluous magnitude operator has the extra benefit that algebraic manipulations of (8.53) and (8.54) are
facilitated. Clearly, model characteristics are not affected by this alteration. Note, however, that taking the
magnitude is indeed binding in those models that cover both forward and backward operation such as in the
original form of equations published by Shichman and Hodges [232].

Also, (8.54) is often quoted with no corrective term. We do not follow this mistaken omission because it
is contradictory to the authentic Shichman–Hodges model and because it gives rise to a discontinuity in the
Id (Ug s , Ud s ) function at the borderline between the linear and the saturation region.
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Fig. 8.52 Transfer characteristic as obtained with a Shichman–Hodges model.

mobility. The alpha-power law has been developed as a heuristic hand model that accounts for this
[233].

subthreshold region : Id = 0 if Ug s ≤ Uth (8.55)

saturation region : Id = Id on

(
U g s −U t h

U d d −U t h

)α

if Uds sa t ≤ Uds (8.56)

linear region : Id =
(
2 − U d s

U d s s a t

)
U d s

U d s s a t
Id on

(
U g s −U t h

U d d −U t h

)α

if Uds < Uds sa t (8.57)

where saturation voltage Uds sat depends on the gate–source voltage Ugs in the following way:

Uds sa t = Uds sa t on

(
Ug s − Uth

Udd − Uth

) α
2

(8.58)

The model has four parameters that must be adjusted in such a way as to obtain a good match
between the models’ characteristic curves and those of the actual device. Uth is the threshold voltage
introduced with earlier models. Id on is the maximum saturation current in full drive condition
(Uds = Ugs = Udd) while Uds sat on stands for the saturation voltage when the transistor’s gate
is fully driven (Ugs = Udd). α is termed the velocity saturation index and covers a range of
(full velocity saturation, i.e. short channel) 1 ≤ α ≤ 2 (unimpeded mobility, i.e. long channel). The
evolution of α over a couple of process generations has been documented in section 8.1.2.

Please keep in mind that the above equations refer to n-channel MOSFET; the sign and condition
operators need to be adapted for p-type transistors.



452 Design of VLSI Circuits

0.0 0.2 0.4 0.6 0.8 1.0
Uds/Udd

0.0

0.2

0.4

0.6

0.8

1.0

Id
/I

d_
on

Ugs/Udd = 0.2
Ugs/Udd = 0.4
Ugs/Udd = 0.6
Ugs/Udd = 0.8
Ugs/Udd = 1.0
Uds_sat
Sah with µ_nom
Sah with µ_eff

Fig. 8.53 Impact of mobility reduction on transfer characteristic.

In its present form, the alpha-power-law model does not account for channel length modulation,
making it inferior to the Shichman–Hodges model in that respect. As an extension, (8.56) and (8.57)
are sometimes made to include a corrective factor similar to those in (8.53) and (8.54).

8.7.5 Second-order effects

The simple hand models presented so far ignore many higher-order phenomena that also contribute
to MOSFET characteristics. Transistor models intended for computer simulations, aka compact
models, can be more accurate, of course. We briefly sketch the most important of those effects
before giving an overview of prominent simulation models in table 8.2.

Subthreshold conduction

Although very small, drain current is not zero in the subthreshold region but is found to grow
exponentially with (Ugs − Uth ) in physical devices.

Id = µcox
W

L
(m − 1) U 2

θ e
q e (U g s −U t h )

m k θ j (1 − e
− U d s

U θ ) if Ug s − Uth ≤ 0 (8.59)

where Uθ = kθj

qe
denotes the thermal voltage, k the Boltzmann constant, qe the electron charge, and

θj the absolute junction temperature. The so-called body effect coefficient m, aka body factor,
depends on the capacitances that exist above and below the inversion channel.

m =
cox + cdm

cox
= 1 +

cdm

cox
= 1 +

εSi

tdm

tox

εox
(8.60)
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Numerical examples

Table 8.1 Numerical data for enhancement-type MOSFETs in a 130 nm 1P6M triple-well poly-gate
CMOS process (for illustrative purpose only).

typical values for measurement
n-channel p-channel conditions

model parameter devices devices θj = 27 ◦C

Wmin [nm] 150 150
Lmin [nm] 130 130

Sah Uth [V]a 0.351 −0.300 W = 10 µm, L = Lmin

β� [µAV−2 ] 222 103 idem

Id on/W [µA/µm] 670 −320 idem

Ron [Ω] 179 375 idem

Shichman– λ [V−1 ] 0.145 −0.486 L = Lmin

Hodges λ [V−1 ] 0.125 −0.054 L = 20Lmin

Alpha- Uth [V] 0.34 −0.29 W = 10 µm, L = Lmin

power Uds sat on [V] 0.62 −1.10 idem

law Id on/W [µA/µm] 666 −312 idem

α 1.04 1.20 idem

a The manufacturing process provides MOSFETs with three distinct threshold voltage levels, all numbers given
here refer to the high-speed (i.e. low-threshold) variety. Nominal core supply voltage is Ud d = 1.2 V.

�

The gate dielectric of permittivity εox is tox thick and yields a unit capacitance of cox . Similarly,
εSi , tdm , and cdm refer to the capacitance formed by the channel and the bulk material where
the depletion layer underneath the inversion channel acts as dielectric. You may want to refer to
fig.14.10 for an illustration. Equations (8.59) and (8.60) are derived and explained in full detail in
[187], which further indicates that m typically varies between 1.1 and 1.4.

The error caused by dropping the rightmost factor from (8.59) is less than 5% if 3Uθ < Uds , which
is normally the case for CMOS inverters in steady-state condition. Focussing on those quantities
that circuit designers actually can control and changing exponentiation to basis 10, the equation
then simplifies to

Id ≈ β�
W

L
(m − 1) U 2

θ 10
q e (U g s −U t h )

m k θ j
log1 0 e ∝ W

L
10

U g s −U t h
S (8.61)

The extra MOSFET parameter S is termed subthreshold slope, aka subthreshold swing.

S =
∂ Ug s

∂(log10Id )
=

1
log10e

∂ Ug s

∂(lnId )
≈ ln 10

m k θj

qe
≈ 2.3 m Uθ (8.62)

A value of S = 90 mV, for instance, implies that the subthreshold current swells by one order of
magnitude for each 90 mV increase of Ugs and, analogously, for each 90 mV reduction of Uth . Note
that S is proportional to θj , which causes leakage to augment exponentially with absolute temper-
ature. Accounting for all sorts of conditions, 70–120 mV/decade can be considered a realistic range
in bulk CMOS. Figure 8.54 compares the subthreshold behaviors of different MOSFET models.



454 Design of VLSI Circuits

0.0 0.5 1.0 1.5 2.0
Ugs [V]

10
12

10
10

10
8

10
6

10
4

Id
 [

A
]

Sah
Level = 3
Philips Level 902

Fig. 8.54 Modelling of subthreshold conduction.

Short- and narrow-channel effects

Below a drain–source separation L of 500 nm and even more so below 250 nm, the observed thresh-
old voltage tends to fall off,48 causing the off-state leakage current Id off = Id(Ugs = 0) to augment
exponentially in accordance with (8.61). Several physical effects contribute to this undesirable phe-
nomenon. What they have in common is that the horizontal electrical fields of the source–body and
drain–body junctions interact with the vertical field from the gate and impact the flow of electrons
in the inversion layer.

Similarly, threshold voltage Uth is bound to vary as a function of transistor width as W approaches
the lower admissible bound. As a result of various counteracting phenomena, this dependency is
not necessarily monotonic, however.

Back gate effect

A MOSFET’s threshold voltage is further subject to variation when a voltage is applied between
body and source Ubs �= 0 which suggests that the field underneath the inversion channel acts like
a second gate. In an n-channel (p-channel) device one observes a shift of the threshold voltage
Uth towards more positive (negative) values when the source–body junction gets reverse-biased
more strongly, e.g. by making the body more negative (positive) than the source potential so that
Ubs n < 0 (Ubs p > 0). Reverse back biasing also takes place when the source potential gets lifted
(lowered) relative to that of the embedding well or substrate.

4 8 To be precise, Ut h becomes less positive for n-channel and less negative for p-channel devices.
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This indeed occurs in transmission gates and in the stacked transistors found in multi-input CMOS
gates. Depending on how a given transistor connects to the surrounding circuitry, Ubs may thus
remain fixed to zero or be subject to variation during circuit operation.

Incidentally, note that forward biasing may lead to loss of insulation and latch-up.

Table 8.2 Popular MOSFET compact models compared.

m o d e l l i n g b a s e d o n
threshold voltage inversion charge surface

potential
Physical effect Level1-3a BSIM3v3 MM9 EKV BSIM5 PSP

Channel length modulation yes yes yes yes yes yes
Mobility reduction no yes yes yes yes yes
Velocity saturation no yes yes yes yes yes
Drain-induced barrier lowering no yes yes yes yes yes
Impact ionization no yes yes yes yes yes
Poly depletion no yes no yes yes yes
Gate current no no no yes yes yes
Quantum-mechanical

effects on charges no no no yes yes yes
Bias-dependent

overlap capacitances no no no yes yes yes
Self-heating no no no no no yes

Gradual channel approximation yes yes yes yes yes no
Charge sheet model - - - yes yes yes
symmetrical - - - yes yes yes

a SPICE Level 1 essentially corresponds to the Shichman–Hodges model explained in section 8.7.3.

8.7.6 Effects not normally captured by transistor models

Even the most sophisticated MOSFET models have limitations as to what physical effects they do
account for. In fact, several phenomena do not come to bear as long as the transistor is operated
within its legal operating range.

� Gate dielectric breakdown refers to the permanent destruction of the thin oxide layer
underneath the gate electrode by an excessive vertical field.

� A MOSFET may enter an irregular conducting state when excessive voltages are applied
between drain and source. The gate electrode loses control over the current that flows through
the channel in this avalanche breakdown regime, aka punch-through.

� In the presence of overly strong fields, an electron can gain so much energy that it gets ejected
from the channel into the gate dielectric, where it may get trapped. Once the accumulated
charge becomes sufficiently important, it causes a shift of the built-in threshold voltage towards
higher values. This hot-electron degradation curtails currents in all MOSFET operating
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regions and is experienced as an increased gate delay in digital logic. Some simulation models
account for this long-term wearout effect by providing two parameter sets, one for pristine
MOSFET devices and one that is supposed to match their electrical characteristics after 10
years of operation.49

Manufacturers define absolute maximum ratings to make sure that circuits are safe from these
and other destructive effects. It is most important to respect them during both device operation
and handling. A group of effects totally unaccounted for by compact models is brought about by
the various parasitic devices that come along with the regular thin oxide MOSFETs,50 and that do
or do not become manifest depending on a circuit’s operating conditions.

� The MOSFETs drain–body junction and a source–body junction are reverse-biased
during normal operation. Their sole contribution then is of capacitive nature and included
in the drain and source capacitance respectively. Extra devices might be needed to model
forward operation should a device ever enter this regime in the application at hand.

� CMOS ICs further include field oxide MOSFETs and parasitic BJTs that are at the origin
of voltage clamping, abnormal current flow, and other effects. Standard MOSFET models do
not account for those devices, however, because they do not come to bear unless a circuit
is about to enter electrical overstress conditions. Circuit designers do everything possible to
prevent this from happening during normal operation.

Still, those parasitic devices must be modelled if one wants to study exceptional events that
approach or transgress a circuit’s regular range of operation such as latch-up or electrostatic
discharge (ESD). They must then be approximated either as separate networks of lumped
circuit elements or — more accurately — as spatially distributed semiconductor devices using
technology CAD (TCAD) simulation software.

8.7.7 Conclusions
� The observed behavior of semiconductor devices depends on many factors in a complex way.

Physical effects that contribute to electrical device characteristics can be classified into three
categories:

- First-order effects that are satisfyingly approximated by simple hand models,
- Second- and higher-order effects not easily amenable to hand calculation

but honored to various degrees by a multitude of established simulation models,
- Effects ignored by common models and thus confining their range of validity.

It is important to realize which effects matter for a given situation or application before opting
for some device model, equivalent circuit, or simulation tool.

� Careful calibration of transistor models over all operating conditions of interest may be oner-
ous, but is absolutely essential.

� Highly sophisticated models are a mixed blessing because of their many parameters that
must be obtained either from measurements or from device simulations. Physical reality and

4 9 p-channel MOSFETs are not as susceptible as their n-channel counterparts because hole mobility is inferior.
5 0 Please refer to sections 11.5.2, 11.6.3, and 11.6.2 for illustrations and details.
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simulation are likely to diverge unless all such parameters are available with good accuracy
and statistical relevance.

A more in-depth coverage of MOSFET operation and compact models can be found in numerous
textbooks such as [234] [231] [187] [235] [236], while [237] gives a thorough overview on the evolution
of compact models over the years.

8.8 Appendix II: The Bipolar Junction Transistor

BJTs are also known as bipolar transistors or simply as bipolars. While CMOS logic makes no use
of them functionally, they are present as parasitic devices in any CMOS circuit and participate in
ESD protection and in latch-up, two phenomena that are to be explained in sections 11.6.2 and
11.6.3 respectively. We will limit our discussion here to a brief comparison of BJTs with MOSFETs
to put the reader into a position to understand the respective roles played by BJTs in these two
phenomena.
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Fig. 8.55 Icons (a), DC transfer characteristics (b), and equivalent models (c).

� While a MOSFET can be approximated as a voltage-controlled current source (VCCS), a
BJT — to first order — acts like a current-controlled current source (CCCS). When viewed
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from a purely digital perspective, the MOSFET abstracts to a voltage-controlled switch and
the BJT to a current-controlled switch.

� A comparison of fig.8.55b and fig.8.1b reveals that the output characteristics of a BJT, Ic =
f (Ib , Uce), resemble those of a MOSFET, Id = f (Ugs , Uds). Yet, note that the designations
for the linear and saturation regions are permuted! In the case of a BJT, the name “linear”
refers to the proportional relationship between base and collector currents Ic = β · Ib whereas
for a MOSFET it alludes to the behavior as a linear resistor Uds = R · Id exhibited as long as
the drain-to-source voltage Uds remains small.

� As a consequence of the above, a BJT operated as a switch settles in saturation when fully
turned on whereas a MOSFET operates in the linear region in the same situation.

� Normally, BJTs are unsymmetric devices by construction with the emitter more strongly
doped than the collector.

� A typical current gain β = Ic
Ib

in the linear region is on the order of 100. The thinner the base
layer that separates the collector from the emitter, the higher a BJT’s current gain.



Chapter 9

Energy Efficiency and Heat Removal

Energy considerations are no longer confined to battery-operated circuits. Power dissipation of
high-performance CPU chips is on the order of 50 to 120 W, see table 9.1, roughly as much as a
craftsman’s soldering iron. Removing that much thermal power necessitates sophisticated packages,
heat sinks, heat pipes, forced ventilation, and other costly options. On the input side, fat supply rails
and elaborate multiphase step-down converters built from numerous and bulky power transistors,
inductors, and capacitors are required to handle massive supply currents without critical voltage
drops. Not only costs but also packing density suffers.

Observation 9.1. The problem in battery-operated circuits is where to get the energy from

whereas getting the heat out is a major problem in high-performance circuits.

The first section in this chapter analyzes what CMOS circuits spend energy for at a fairly detailed
level. Section 9.2 then gives practical guidelines for how to improve energy efficiency before section
9.3 summarizes the very basics of heat flow and heat removal.

9.1 What does energy get dissipated for in CMOS circuits?

Note, to begin with, that power is not an adequate yardstick when it comes to evaluating alternative
schemes for the processing of information because it does not relate to performance in any way. A
circuit’s efficiency is better defined as dissipated energy per computational operation or, which is
the same, as energy per processed data item.1 Our discussion will thus center around the amount
of energy Ecp expressed in [J] that gets dissipated in a given circuit during one computation cycle
rather than around power dissipation P in [W]. Obtaining one quantity from the other is trivial.

P = fcp Ecp Ecp = P Tcp (9.1)

1 The same quantity has been used for evaluating alternative architectures throughout chapter 2.
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Numerical examples

Table 9.1 Power figures of commercial VLSI chips.

litho- tran- power at
part graph. sistor die dissi- clock core supply power
name year size count size pation freq. voltage current density

[nm] [M] [mm2] [W] [MHz] [V] [A] [W/cm2]

Intel IA-32 (general purpose CISC; top performance, superscalar, superpipelined, 32/64 bit)
Pentium 1993 800 3.1 296 15 60 5.0 3 5

PentiumPro 1995 350 5.5 197 28 200 3.3 11 14
Pentium 4 2002 130 42 146 54 2000 1.5 36 37

Pentium 4 560 2004 90 125 112 115 3600 1.385 83 103
Core 2 Extreme 2006 65 291 143 75 2933 1.28 59 52

Sun UltraSPARC (RISC for servers; high performance, eight cores, 32 bit)
Niagara 2005 90 279 378 63 1200 1.2 52 17

Niagara II 2007 65 503 342 84 1400 1.1 76 25
ARM (general purpose RISC processor; performance-power tradeoff, no FPU, 32 bit)

XScale 2001 180 6.5 25 0.45 600 1.3 0.35 1.8
dspfactory (dedicated audio processor for digital hearing aids; locally optimized word widths)
Delta-2 2000 180 0.28 10 0.24m 1.34 1.2 0.2m 2.4m

For comparison: A typical kitchen hotplate has a diameter of 18 cm and dissipates 1800 W,
which results in a power density of 7 W/cm2. The current drawn from the 400 V mains is 4.5 A.

�

As defined earlier, a computation period Tcp is the time span that separates two consecutive compu-
tation cycles. Computation rate fcp denotes the inverse, that is the number of computation cycles
per second.2 Let us now study the four phenomena that dissipate energy in static CMOS circuits,
namely

• Charging/discharging of capacitive loads,
• Crossover currents,
• Driving of resistive loads, and
• Leakage currents.

9.1.1 Charging and discharging of capacitive loads

For a single node

We begin by quantifying the amount of energy Ef a that gets dissipated while the logic state of
some circuit node k changes from 1 to 0. Standard two-valued CMOS logic features rail-to-rail

2 In the occurrence of single-edge-triggered one-phase clocking, a computation period begins just after an active
clock edge and ends with the next. Computation cycle and clock cycle are the same so that fc p = fc l k . As opposed
to this, dual-edge-triggering fits two consecutive computation cycles into every clock period, which implies that
fc p = 2fc l k . See sections 2.3.7 and 6.2.3 for details.
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Fig. 9.1 Charge/discharge (a) and crossover currents (b) in a switching CMOS inverter.

outputs, which means that voltages swing back and forth between vdd and vss, see fig.9.1a. The
energy stored in the node’s capacitance Ck when fully charged to supply voltage Udd is

EC k =
1
2
Ck U 2

dd (9.2)

Energy conservation postulates that all this must get converted from electrical into thermal energy in
the resistive circuit elements, that is essentially in the n-channel MOSFET(s), when the capacitance
is discharged to voltage zero. We thus have Ef a k = ECk

. For reasons of symmetry, the same amount
of energy gets turned into heat in the p-channel transistor(s) during the process of charging the node,
hence Eri k = ECk

. The total energy that gets dissipated per charge–discharge cycle immediately
follows as

Ech cy c k = Eri k + Ef a k = Ck U 2
dd (9.3)

It is worthwhile to note that this quantity depends neither on the (dis)charging circuitry nor on
the signal waveforms involved. Except for their contributions to the overall node capacitance, the
exact electrical and geometrical properties of the MOSFETs do not matter.

Except for the minority of multi-driver nodes, an EDA tool typically approximates overall node
capacitance Ck as follows.3

Ck ≈ Cg ate k + Cw ir e k (9.4)

where

Cwire k The total interconnect or wiring capacitance of node k made up of
contributions from the wire to ground and from the wire to adjacent wires.

Cgate k An energy-equivalent capacitance that accounts not only for the output of the
gate that drives node k but also for all its inputs and inner capacitances
after they have been transformed to the output of that very gate.

Numerical values for Cgate are tabulated in datasheets and cell models, those for Cwire must be
obtained from layout extraction.4 They get consolidated into Ck values for every circuit node and

3 Please refer to appendix 9.4 for more details.
4 Incidentally, observe that Cgate scales with the geometric width — and length — of the MOSFETs whereas Cwire

does not. This difference notwithstanding, Cwire also tends to grow when many transistors are sized in a more
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included into a gate-level netlist during back-annotation, which is carried out as part of physical
design verification.

For a collection of nodes in a circuit

We now extend our analysis to an entire VLSI circuit. As not all nodes within a circuit change state
at the same rate, we introduce individual node activities, aka toggle rates.

Definition 9.1. A node’s activity αk indicates how many times per computation cycle node k

switches from one logic state to the opposite one when averaged over many computation cycles.

On average, some binary signal with activity αk takes 2
αk

computation cycles to complete one full
charge–discharge cycle.5 The average energy dissipated per computation cycle for node k immedi-
ately follows as

Ech k =
αk

2
Ech cy c k =

αk

2
Ck U 2

dd (9.9)

The energy dissipated for the charging and discharging of nodes across an entire digital circuit is
obtained by summing up (9.9) over all K nodes in that circuit.

Ech =
K∑

k=1

Ech k = U 2
dd

K∑
k=1

αk

2
Ck (9.10)

generous way because inflated cell areas also imply longer interconnect lines. A general oversizing of transistors
and gates does, therefore, no good to energy efficiency.

5 This simply is because the signal must switch forth and then back again. Numerical examples follow.
◦ Ungated clock in case of single-edge-triggered clocking: αk = 2 (toggles twice per computation cycle).
◦ Ungated clock in case of dual-edge-triggered clocking: αk = 1 (toggles once per computation cycle).
◦ Output of a T-type flip-flop that is permanently enabled: αk = 1.
◦ Output of a D-type flip-flop fed with random data: αk = 1

2 .
Next, we give some figures that refer to the ensemble of flip-flop outputs in various counting circuits.
All registers are assumed to be permanently enabled, next state logic is not included.
◦ Binary counter (w bit wide, 2w states):

w −1∑
k = 0

αk =

w −1∑
k = 0

(
1
2

)k
w →∞

= 2 (9.5)

◦ Gray counter (w bit wide, 2w states):

w −1∑
k = 0

αk = 1 (9.6)

◦ Shift register that is part of a binary pseudo-random sequence generator (w bit wide, 2w − 1 states):

w∑
k = 1

αk ≈
w∑

k = 1

1
2

=
1
2

w
w →∞

= ∞ (9.7)

◦ Moebius counter, aka twisted ring counter and Johnson counter (w bit wide, 2w states):

w∑
k = 1

αk = 1 (9.8)
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Again, this overall figure is meant per computation cycle and averaged over many cycles.

Equation (9.10) has two benefits. Firstly, it quantifies what almost always is the most significant
contribution to a VLSI circuit’s overall energy dissipation. Secondly, the few arguments on its right-
hand side are fairly straightforward to come up with. Remember that it has been obtained under
five simple assumptions:

• All node capacitance values Ck are fixed.
• The switching devices (MOSFETs) are of resistive nature when “on”.
• Supply voltage Udd is constant and the same throughout the (sub)circuit considered.
• Nodes are always fully charged and discharged (full swing from rail to rail).
• All activity numbers refer to the same computation cycle and clock signal.

Several observations about node activities are due.

1. A circuit node’s activity is not the same as the probability of finding that node in the opposite
logic state at the end of a computation period as digital circuits are subject to glitching.
Investigations on various adder structures fed with random numbers have resulted in activities
10% to 20% above what is anticipated with glitching ignored. While that much extra unrest is
typical for many circuits, data activities can even grow beyond the intuitive bound of αk ≤ 1.
Node activities in excess of 6 have been reported in circuits where signals propagate along
paths of markedly different depths before converging in combinational operations. Unbalanced
delays occur in multipliers and even more so in cascades of multipliers or other arithmetic
units with no registers in between. As an example, consider the isomorphic architecture of
a lattice filter in fig.9.2. How to mitigate this effect by way of delay balancing and signal
silencing will be a subject of section 9.2.2.
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Fig. 9.2 Inflation of node activities in a lattice filter (reprinted from [238]).

2. Node activities are statistical data. They are typically obtained during gate-level simulation
runs, see fig.9.3.6 For every circuit node, the toggle counts get collected over what is believed
to be a representative sequence of operation for the circuit being analyzed.

6 The alternative of probabilistic power estimation ignores glitching and is less accurate.
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Fig. 9.3 Simulation-based power/energy estimation.

3. Almost all circuits exhibit significant temporal (over time) and spatial (across signals and
bits) correlations among the toggling of their nodes. This is because most flip-flops are part
of registers and because many registers are updated on a regular basis. Also, activities may
greatly differ among the bits of a data word. Consider an accumulator, for instance, and
watch how bits evolve from one computation cycle to the next. LSBs will typically behave like
random variables whereas MSBs will be strongly correlated.

Numerical examples

Statistical data collected from the entire population of flip-flops in six benchmark circuits that have
been fed with representative stimuli.

Benchmark Average node activities
circuit D inputs Q outputs

ARES 0.178 0.066
Bongo 0.076 0.054
FIR 0.50 0.30
SST 0.40 0.11
Shiva 0.54 0.24
CCDChip 0.38 0.26

Figure 9.4 plots the average bitwise activities of a noisy speech signal quantized with 16 bit resolu-
tion, 16 kHz sampling rate, and SNR = 40 dB. Note the huge difference between MSB and LSB. Also
observe that 2’s complement (2’C) encoding entails higher node activities than sign-and-magnitude
(S&M) representation in signals such as speech that fluctuate around zero for much of the time
with modest amplitudes.

�

In more general terms, the finding is

Observation 9.2. Node activities are distributed very unevenly. Circuits typically include a number

of flip-flop outputs that toggle with αk ≈ 1
2 while most other circuit nodes exhibit significantly lower

activities. Nodes with an activity close to zero are also common.
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Fig. 9.4 Average activities in noisy speech signals (reprinted from [239]).

This is because most VLSI circuits contain numerous registers the contents of which change very
infrequently when compared with the busy datapath and pipeline registers. This includes registers
that hold configuration data, calibration parameters, mode or status information, or slowly-varying
coefficients. Most nodes that are part of register files or RAMs also exhibit low activities and the
same applies to exception-handling circuitry and human interfaces.

9.1.2 Crossover currents

As illustrated in fig.8.4b, both the n- and the p-channel transistor in a CMOS inverter are partially
conducting when the voltage at the input satisfies Uth n < Uinp < Udd + Uth p . This means that
charge is then allowed to flow from vdd to vss via the two MOSFETs without ever reaching the
load, see fig.9.1b. We will refer to this phenomenon as crossover current, but the reader is cautioned
that many synonyms exist.7

The energy dissipated by crossover currents per charge–discharge cycle depends on numerous factors.
The approximation

Ecr cy c k =
β

12
(Udd − 2Uth )3 tr a k (9.11)

was derived by the author of [219] under a number of simplifying assumptions:

• Analysis refers to CMOS inverters exclusively.
• Electrical symmetry is assumed, which is to say that gain factors and

threshold voltages are the same, i.e. β = βn = βp and Uth = Uth n = −Uth p .
• The output load is assumed to be zero.8

• The input voltage rises and falls linearly with ramp time tra k = tri k = tf a k .

7 Such as overlap current, short-circuit current, shootthrough current, rushthrough current, contention current,
Class A current, and even dynamic leakage current.

8 Any capacitance attached to the output slows down the build up of drain–source voltage across the off-going
MOSFET and so curbs the current that flows from vdd to vss directly. This effect effectively makes (9.11) an
upper bound for Ec r k , a finding confirmed in [240], where a much more detailed power model is presented.
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• A Sah model is a good enough approximation for the transistors.

As one naturally expects, losses augment with input ramp time and with transistor size because of
β = β�

W
L . This gives rise to a dilemma. The slower the input ramps to a gate, the more energy gets

wasted by crossover currents. Making transitions faster helps to cut dissipation in the gate being
driven, but the generous sizing of the MOSFETs in the driving gate necessary to do so inflates
the energy losses there. A compromise must be sought. As a general guideline, circuits should be
designed so as to

(a) make signal rise and fall times approximately the same, and
(b) make them comparable to the propagation delay of a typical gate

from the cell library being used [241].

Only drivers that handle very heavy loads such as off-chip loads, vast clock nets, or long busses
require a more sophisticated analysis to better balance area, delay, and dissipated energy.9 Other-
wise, any step taken in pursuit of a lower charge/discharge dissipation Ech — such as cutting down
Udd , αk , Ck , transistor sizes, and total node count K — at the same time also helps to abate the
energy losses Ecr that are due to crossover currents. The argument is in support of a rough but
popular approximation:

Ecr k =
αk

2
Ecr cy c k ≈ σk

αk

2
Ech cy c k = σk Ech k (9.12)

Edy n k = Ech k + Ecr k ≈ (1 + σk )Ech k = (1 + σk )
αk

2
Ck U 2

dd (9.13)

As a rule of thumb, σk is generally between 0.05 and 1.5 [241], with the larger numbers applicable
to those situations where (almost) no load is attached to the driving gate. The average value for
digital VLSI circuits with adequately sized buffers has been found to be σk ≈ 0.2 or less [182].
With supply voltages and overdrive factors being lowered from one process generation to the next,
crossover losses and hence also σk continue to diminish.

Observation 9.3. Crossover currents are not normally addressed in any specific way during digital

CMOS circuit design, apart from

a) keeping ramp times within reasonable bounds and

b) pad drivers that handle very heavy loads and more substantial voltages.

From a practical perspective, note that library vendors refrain from modelling capacitive and
crossover currents separately. Instead, they characterize each library cell with a single energy figure
Ψgate in their datasheets. This quantity is obtained by dividing the cell’s power dissipation Pgate

by the frequency foup of the signal at the output, which explains why it is expressed in µW/MHz
rather than in pJ.

Ψg a te =
Pg ate

fou p
≈ Edy n cy c g a te = (1 + σ)Cg ateU

2
dd ≈ 1.2 Cg ateU

2
dd (9.14)

Before comparing such numbers or calculating with them, it is extremely important to understand
a vendor’s tacit assumptions about output loads, ramp times, node activities, contributions from
input and clock activities (included or excluded), definition of toggle rate (equal to or two times
frequency), and static currents (neglected or included in Pgate).

9 It is needless to say that drive conflicts cause significant crossover currents, they should be avoided anyway.
Examples of soft-switching pad drivers are given in section 10.4.
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Examples

Ψgate figures disclosed by Alcatel Microelectronics state the overall energy spent on cycling the
output of a cell with no external load attached and seem to conform with (9.14).

Older datasheets issued by austriamicrosystems indicated 1.34 µW/MHz for an inverter with
1x drive strength operated at 3.3 V and fabricated in 600 nm CMOS technology. This figure is by
no means comparable to Edyn cyc gate , though, as all library cells were characterized for an assumed
output load of 100 fF and with input ramps of 1 ns. Also, input capacitances were not lumped to
the output. Chargµing and discharging a capacitance of 100 fF at a frequency of 1 MHz calls for
1.09 µW. As an inverter has no dependent inner nodes, the difference of 0.25 µW must get spent
in driving the gate’s own output and Miller capacitances and in crossover currents.

A product summary of IBM’s Cu-11 ASIC library for their 130 nm CMOS 8SF process char-
acterizes the typical power dissipation per logic gate as 0.005 µW/MHz. While not unlikely when
averaged over an entire chip, this indication is not directly comparable with Edyn cyc gate either as
it rests on an assumed output activity αoup = 0.1.
�

The charge/discharge and crossover currents of fig.9.1 have one thing in common: There is no
dissipation without switching. Most of the energy dissipated by past and present CMOS circuits is
in fact absorbed by these two dynamic phenomena. Yet, there also exist two dissipation mechanisms
of static nature.

9.1.3 Resistive loads

Static currents result from the presence of DC paths from vdd to vss, see fig.9.5a for an example.
In theory, the electrically dual transistor networks that are the trademark of CMOS logic offer no
such current paths, yet notorious exceptions exist. These involve

◦ Pseudo NMOS/PMOS subcircuits (included in many RAMs, ROMs, and PLAs),
◦ Any kind of amplifier (including read and regeneration amplifiers in memories),
◦ Current sources and current mirrors,
◦ Voltage dividers, voltage converters, and voltage regulators,
◦ Oscillators, clock generation and conditioning subcircuits, transceivers,
◦ Continuous servo loops (such as PLLs, DLLs, and other regulators),
◦ Low-swing current logic (sometimes found in RF prescalers and front ends),
◦ LVDS receivers/transmitters and other current-mode I/O subcircuits,
◦ Termination resistors (whether on-chip or not),
◦ On-chip loads of resistive nature (such as passive pull-up/downs),
◦ Off-chip loads (TTL, bipolars, LEDs, relays, etc.), and possibly also
◦ ESD protection structures.

Observation 9.4. Pure CMOS logic circuits provide no direct current paths from vdd to vss.

Departures abound, however.

When relating resistive dissipation to a single computation cycle, one obtains

Err k = Prr k Tcp =
U 2

dd

Rk
δk Tcp (9.15)
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Fig. 9.5 Resistive load current (a) and drain–source leakage (b) in a stationary CMOS inverter.

where Rk indicates the load resistance and δk the duty cycle, that is the average proportion of
time during which it is being energized. A pull-up resistor hooked up to some data signal that is
logic 1 for three quarters of the time, for instance, has a duty cycle δk of 0.25.

9.1.4 Leakage currents

Though normally minute, four phenomena contribute to leakage in a bulk CMOS process.

• Subthreshold conduction in MOSFET channels that are turned off, Ids off .
• Leakage currents through reverse-biased drain–bulk and source–bulk junctions, Idb rev .
• Leakage currents through reverse-biased well–well and/or well–substrate junctions, Ibb rev .
• Electron tunneling through the gate dielectric Ig tun , also known as gate leakage.

Ilk =
∑
ch ip

(Ids off + Idb r ev + Ibb r ev + Ig tun ) (9.16)

Leakage currents have always been critical in DRAMs and other dynamic circuits where charge re-
tention is absolutely essential. From a power perspective, however, leakage traditionally contributed
close to nothing to a chip’s overall energy dissipation as the other effects discussed in sections 9.1.1
through 9.1.3 used to predominate in almost all applications.

Elk = Plk Tcp = Udd Ilk Tcp � Ech + Ecr + Err (9.17)

Wristwatches have always been a notable exception since these must operate from a tiny battery
on the order of 25 or 30 mAh for a very long time, thereby mandating an average total power
dissipation below 1 µW. The picture has begun to change with the 250 nm and later technologies,
and leakage power has now become a widespread concern for several reasons.

For one thing, even minute leaks add up to a substantial stand-by current when zillions of MOSFETs
are involved. Note that off-state currents not only drain batteries and contribute to heat, but also
compromise Iddq testing.

For another thing, subthreshold current exponentially depends on the threshold voltage, and Uth =
Uth n = −Uth p has continually been lowered in search of better performance from lower supply
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Fig. 9.6 Leakage paths in a bulk CMOS inverter with output 0 (a) and output 1 (b).

voltages as will be explained shortly in section 9.1.6. Starting from (8.59) and assuming that all
transistors are of the same length L, we can estimate

Ilk ≈
G∑

g =1

Ids off g ≈ ∆Ids off

∆W

G∑
g =1

Wg ∝ 10
U g s off −U t h

S

G∑
g =1

Wg = 10
−U t h

S

G∑
g =1

Wg (9.18)

where Ids off g stands for the leakage current of gates g and G for the total number of gates in a

circuit. ∆Id s off

∆W essentially expresses a MOSFET’s leakage current per unit width, while Wg denotes
the width of a representative transistor in each logic gate and scales with the relative drive strength
of that gate.10 S is the subthreshold slope defined in (8.60). The final equality in (9.18) implies
Ugs off ≡0, which is indeed true for standard CMOS logic.11

For a third thing, subthreshold current Ids off strongly grows when a chip heats up during operation.
This is because S has been found to be proportional to the absolute temperature θj in (8.60). As an
example, the power wasted due to leakage in a 100 nm top-performance microprocessor operating
from a 0.7 V supply has been reported to grow from 6% or so to 127% of the (fixed) dynamic power
as junction temperature rises from 30 to 110 ◦C.

1 0 This is to say that a 4x drive gate leaks four times as much as a 1x gate, for instance. Interestingly, the leakage
current of a logic gate averaged over all possible input states is roughly the same as the subthreshold current of
one of its MOSFETs, which makes (9.18) workable as a first-order approximation. A mathematical model that
accounts for threshold variations across a die is proposed in [242].

1 1 But not necessarily for more sophisticated circuit structures; see fig.9.14 for a counterexample.
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Table 9.2 Typical subthreshold currents for two CMOS processes.

junction off-current ∆Id s off

∆W common
process temp. θj n-channel p-channel measurement
generation [◦C] [pA/µm] [pA/µm] conditions
250 nm 25 3 2 W = 10 µm, L = 240 nm

85 88 35 Uds = 2.5 V, Ugs = 0 V
125 420 190

130 nma 25 18 000 12 000 W = 10 µm, L = 130 nm
85 89 000 62 000 Uds =1.2 V, Ugs = 0 V
125 103 000 137 000

a The manufacturing process from which the data are taken provides MOSFETs with three distinct threshold
voltage levels, the numbers given refer to the high-speed (i.e. low-threshold) variety.

9.1.5 Total energy dissipation

We are now in a position to put together all four contributions that make up the total amount of
energy dissipated by a CMOS circuit during a computation cycle.

Ecp =
K∑

k=1

(Ech k + Ecr k + Err k ) + Elk ≈

U 2
dd (1 + σ)

K∑
k=1

αk

2
Ck + Tcp

(
U 2

dd

K∑
k=1

δk

Rk
+ Udd

∆Ids off

∆W

G∑
g =1

Wg

)
(9.19)

This finding tells us that the overall amount of energy that gets dissipated in carrying out some
given computation roughly grows with Udd squared, which gives rise to the subsequent observation.

Observation 9.5. The most important single factor that affects the energy efficiency

of full-swing CMOS circuits is supply voltage.

The other enemies of energy-efficient CMOS circuits are unproductive node activities, oversized
transistors or drive strengths, and excessive loads, both resistive and capactive.

Numerical example

Consider a CMOS IC of modest size, say of 50 000 gate equivalents, which is to be manufactured in
a 130 nm technology, operated at 1.2 V, and driven from a 100 MHz single-edge-triggered one-phase
clock. Overall node activity is α = 1

4 , which means that the average node charges and discharges
within eight clock cycles. Let each of the 100 000 or so internal nodes have a capacitance of 18 fF.
The circuit is to drive 16 off-chip loads of 25 pF and 3.3 kΩ each that toggle at the same rate as the
core nodes do. These 2.5 V outputs equally share their time between the “on” and “off” conditions.
Further assume that the MOSFET off-state current is on the order of 80 nA/µm at 70 ◦C junction
temperature with an average n-channel width of 1 µm.
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How much energy is being dissipated per computation cycle and what is it spent on?

Ecp ≈ U 2
dd (1 + σ)

K∑
k=1

αk on ch ip

2
Ck on ch ip + U 2

bb (1 + σ)
K∑

k=1

αk off ch ip

2
Ck off ch ip +

Tcp

(
U 2

bb

K∑
k=1

δk off ch ip

Rk off ch ip
+ Udd

∆Ids off

∆W

G∑
g =1

Wg

)
=

(1.2 V)2 (1 + 0.2)
100 000∑

k=1

1
4

2
18 fF + (2.5 V)2 (1 + 0.2)

16∑
k=1

1
4

2
25 pF +

10 ns

(
(2.5 V)2

16∑
k=1

1
2

3.3 kΩ
+ 1.2 V · 80

nA
µm

50 000∑
g =1

1 µm

)
=

389 pJ + 375 pJ + 152 pJ + 48 pJ = 964 pJ ≈ 0.96 nJ (9.20)

where the four terms stand for contributions due to on-chip capacitive loads, off-chip capacitive
loads, off-chip resistive loads, and leakage respectively. Note that the first two terms relating to
dynamic dissipation outweigh the two static ones for the computation rate assumed in this example.
Yet, this is not always so, as we will learn shortly.

What is the overall power consumption?

P = fcp Ecp ≈ 100 MHz · 0.96 nJ = 96 mW (9.21)

Observe that not all of this power is being dissipated within the chip as the resistive loads are
external. They do not, therefore, contribute to heating up the driving circuit directly, and there is
no need to account for them when selecting an adequate package and heat sink for the IC.12

�

Figure 9.7 shows the energy spent per computation cycle as measured on a microprocessor. The
anticipated impact of Udd on Ecp is clearly visible. Further observe that the energy per operation
— not to be confounded with power dissipation — decreases with clock frequency. While this may
appear unexpected at first sight, it is in fact easy to understand from the presence of the term Tcp in
(9.19) and (9.20). The dynamic energy always remains the same, but the longer a computation cycle,
the more static energy gets wasted on leakage currents and other unproductive DC contributions.

Observation 9.6. Quiescent currents most burden the energy balance of those electronic

appliances that operate in short bursts but do not allow for complete shut-down in between.

9.1.6 CMOS voltage scaling

While observation 9.5 is a compelling argument in favor of the lowermost voltage levels, the matter
is not quite as simple as it may appear.

The supply voltage of digital CMOS ICs has long been maintained at Udd = 5 V for compatibility
reasons and — in later years — also to maximize switching speed by operating the MOSFETs
with ever stronger fields. Beginning with the 350 nm process generation, ever thinner gate oxides

1 2 Heavy off-chip loads have an indirect impact, however, by inflating voltage drops and heat generation in the
driver circuits and by increasing the ambient temperature.
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Fig. 9.7 Energy per operation as a function of supply voltage and clock frequency for a StrongARM SA-1100

processor (photo copyright IEEE, reprinted with permission from [243] with permission).

have made it necessary to lower supply voltage accordingly in order to stay away from dielectric
breakdown.13 Constant-field scaling has since then been adopted by necessity.

The velocity saturation that also came to bear in deep submicron circuits was yet another argument
for moving in the same direction. Recall from (8.37) that CMOS gate delays are given by

tpd ∝ Ck Udd

(Udd − Uth )α
(9.22)

because a MOSFET’s maximum drain current grows with the difference Udd − Uth rather than with
the absolute voltage Udd . With carrier velocity saturated, that is with α ≈ 1 instead of the bygone
α ≈ 2, the accelerating effect of strong lateral fields is largely lost. The predominant effect of a strong
overdrive Uth � Udd is to inflate energy losses with just a minor gain in speed. Ideally, one would
want to scale supply and threshold voltages proportionally in order to maintain drive currents and
hence also switching speed. For the 65 nm CMOS generation, the overall power dissipation (dynamic
plus leakage) has been found to be minimal at a supply voltage of 0.5 V [247].

Unfortunate difficulties prevent industry from continuing along this path. As stated in (9.18), sub-
threshold current is exponentially dependent on threshold voltage Uth . Below a certain point, “off”-
currents literally explode. As a rule, applications where off-state currents are very critical mandate
threshold voltages of 0.6 V or more, while leakage tends to become generally unacceptable when
the thresholds fall below 0.3 V or so.

1 3 The dielectric strength of amorphous SiO2 is approximately 500 kV/mm. For comparison, dry air is considered
a safe insulator for 1 kV/mm while the Kapton and Teflon materials being used in high-voltage cables support
fields on the order of 10 kV/mm.
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Fig. 9.8 Evolution of CMOS supply and threshold voltages over the years.

With a more ample threshold voltage, on the other hand, switching speed rapidly deteriorates
when the supply voltage Udd is scaled to below 3Uth . Table 9.3 illustrates this dilemma from a
process developer’s view.

Table 9.3 Scaling options when moving from one CMOS process generation to the next.

Parameter Symbol Option 1 Option 2
gate dielectric thickness tox scaled down scaled down
supply voltage Udd scaled down scaled down
threshold voltage Uth scaled down constant
leakage current Ids off /W greatly inflated roughly as before
current drive Id0/W scaled down greatly reduced
voltage swing Uoh − Uol = Udd scaled down scaled down
operating speed tpd , tsu , etc. as beforea deteriorated

a Pessimistically assuming identical load capacitances.

To make things worse, the same exponential dependency renders “off”-currents extremely sensitive
to threshold voltage variations. Whether a fabricated part meets the specifications depends on
relatively minor and difficult-to-control processing tolerances, which puts yield at risk and ultimately
frustrates further voltage scaling.

Observation 9.7. Subthreshold conduction has become a major concern for CMOS circuits because

of the depressed MOSFETs threshold voltages along with their precarious variability.
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As a stopgap, today’s fabrication processes provide circuit designers with MOSFETs of two or even
three distinct threshold voltages to support optimum adaptation to a variety of needs, see fig.9.9.
Circuit techniques that take advantage of multiple threshold voltages to fight leakage will be the
topic of section 9.2.3. Voltage scaling is discussed in [496] while [246] is more concerned with the
limits of CMOS low-voltage operation.

9.2 How to improve energy efficiency

9.2.1 General guidelines

A good starting point for improving energy efficiency is (9.19). What follows is a compilation of
practical measures with the most effective steps listed first.

Power budgeting

Find out where energy goes in the target application. Take into account the various operating modes
along with their relative frequencies of occurrence. Make the individual contributions explicit and
decide where lowering dissipation pays most.

Example

Assume you are designing a baseband processor IC for a mobile phone. Before taking any major
design decisions, you would want to break up overall energy dissipation as follows.

• Hardware subsystems: radio frequency, intermediate frequency, baseband processing,
A/D and D/A conversion, audio section, display, backlighting.

• Baseband computation: speech processing, ciphering, channel coding, antenna combining.
• Operating modes: talk & transmit, receive & listen, standby = contacting base station at

regular intervals, off = timers continue to work.
• Subcircuits: on-chip RAMs, datapaths, controllers, clocking generation and distribution, out-

put drivers; clock and supply domains; random logic, bistables, interconnect.

�

Leakage is most pressing for those battery-operated circuits that sit idle for much of the time, and
to which we refer as low-activity circuits. This is the case when the clock period extends much
beyond the long path delay Tcp � tlp such as in a watch circuit, for instance. This is also the case
for appliances that operate with a low duty cycle because they are busy during occasional bursts
but require that most of their VLSI circuits remain powered up for prolonged periods of time in
between. While static currents may be acceptable during operation, they are tantamount to draining
batteries for nothing whenever the circuits idle in standby mode. With a cellular phone or a pager,
this is actually the case for most of the time.
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Fig. 9.9 Options and tradeoffs for selecting supply and threshold voltages.

Process and supply voltage selection

� Downscaled fabrication processes not only reduce parasitic capacitances in comparison with
older processes but typically also permit one to operate circuits from lower supply voltages.
Watch out for static leakage currents, though.

� Deciding on supply and threshold voltages for digital CMOS logic is always a compromise
between conflicting goals such as fast circuit operation, low energy losses per node toggling
(dynamic dissipation), low leakage current (static dissipation), low sensitivity to process vari-
ations, reliability, and electrical compatibility [490]. Before opting for specific supply and
threshold voltages, get the activity profile and other energywise boundary conditions of your
application straight, see fig. 9.9.

◦ High-speed design:
Ensure vigorous current drive by maintaining a healthy gate overdrive of 4Uth ≤ Udd .

◦ Low-power design:
Maximize efficiency by operating the circuit from a voltage no higher than what is nec-
essary to meet speed requirements. The optimum choice is where the increase in leakage
energy compensates for the savings in dynamic energy, and vice versa.

◦ Low-activity design:
Minimize the energy dissipated by static currents using high-threshold MOSFETs. Mak-
ing their channels somewhat longer than minimum reduces leakage further.

� Design for the lowest possible supply voltage compensating unacceptable losses of throughput
with a faster architecture and a better arithmetic/logic design. For an overview of the options
available, refer to sections 2.9 and 9.5.1.

� If the computational burden is subject to important variations over time, you may want to
opt for dynamic voltage and frequency scaling, a scheme whereby both supply voltage
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and clock frequency get adjusted as a function of the speed requirement at that time.14 See
fig.9.10 for a block diagram and note the added complexity.

In an open-loop approach, the controller uses some kind of predefined look-up table Udd =
f (fclk ) to match supply voltage and clock frequency. A safety margin ensures correct operation
in spite of process, temperature, and local variations.

Closed-loop operation, in contrast, admits and detects occasional timing violations and
uses them as error signals to adjust the supply voltage [246]. As an extra benefit, process and
temperature variations are inherently compensated for.
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Fig. 9.10 Dynamic voltage and frequency scaling (simplified).

9.2.2 How to reduce dynamic dissipation

Lowering dynamic dissipation remains a top concern in all high-speed and low-power designs. The
goal is to lower the sum over all node activities in a circuit weighted with the respective node
capacitance.

Reduce node activities at the algorithm and architecture levels

� Minimize the overall computational effort for the data processing required. Check to what
extent it is possible to relax the requirements on throughput, numerical precision, perceived
audio/picture/video quality, coding gain, response time, or whatever figure of merit is appli-
cable, in exchange for better energy efficiency.

� Check to what extent it is possible to confine flexibility requirements in exchange for better
energy efficiency. Program-controlled general purpose processors have been found to waste
orders of magnitude more energy than dedicated architectures.15 Try to find a good compro-
mise between the flexibility of a software-programmed processor and the more modest node
activities of a hardwired architecture.

1 4 Transmeta was first to implement this concept in its Crusoe processors under the name LongRun.
1 5 The reasons why have been explained in section 2.4.8, please see there for further details.
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� Prune or simplify all activities that do not directly contribute to data processing (e.g. control
flow, multiple modes of operation, instruction fetch and decode, address computation, caching,
multiplexing, branch prediction, speculative execution, concurrent testing).

� Carefully optimize all word widths and storage capacities involved (data widths, cofficients,
filter orders, addressing capabilities, ALUs, register banks, all sorts of busses, etc.). The goal is
to minimize overall switching energy as much as possible while keeping overall implementation
losses within acceptable bounds. Pay special attention to off-chip busses. Automatic rescaling
of data — periodic or demand-driven — helps to to manage with a narrower datapath in
certain applications.

� Avoid off-chip communication wherever possible, keep data exchange local instead. Use inter-
face protocols that entail as little activity overhead as possible.

� Put subcircuits that remain inactive for prolonged periods of time into a sleep mode by
temporarily disabling the clock and/or by selectively turning off the supply voltage. Note
that the former approach preserves circuit state while the latter does not. Consider a multi-
processor architecture where a low-power processor monitors low-rate protocol and interface
requests and selectively activates more specialized high-performance hardware units when
bulk data need to be processed.

� Stay away from DRAMs with their memory refresh cycles. Check RAMs and ROMs for their
dynamic and static currents.

� Evaluate the impact of splitting large memories into smaller chunks. While overall access rate
remains the same, the parasitic capacitances associated with reading and writing are bound
to grow with memory size.

� Check whether carrying out arithmetic operations on data encoded with a different number
representation scheme might help to lower the overall node activities (consider block-wise
floating point, canonic signed digit, sign-and-magnitude, etc.).16

Example

Figure 9.11 refers to a subsystem from telecommunications, more precisely to a channel estimator
for an IEEE 802.11a OFDM WLAN17 receiver. A method called “repeated interpolation” can be
employed to filter white Gaussian noise from estimates of the channel’s transfer function. The
main computational burden comes from repeated matrix–vector multiplications that ask for a large
number of concurrent multiply/accumulate units in hardware. Figure 9.11 plots the mean square
error (MSE) over a relevant range of signal to noise ratios (SNRs) for six channel estimates computed
with different levels of accuracy.

1 6 The ubiquitous 2’s complement (2’C) number representation scheme, for instance, has most bits of a data word
flip whenever the numerical value changes from positive to negative, or back. As audio and many other real-world
signals tend to vary around zero with small amplitudes for much of the time, this is clearly suboptimal from the
point of view of energy efficiency. Sign-and-magnitude (S&M) representation can cut overall dissipation by more
than 25% in transversal filter circuits [239], yet experience has also shown that too many conversions between
2’C and S&M formats tend to render this approach ineffective in other signal processing applications.

1 7 Orthogonal Frequency Division Multiplexing Wireless Local Area Network.
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The lowermost curve refers to noise filtering with full precision (using Matlab), the topmost curve
to unfiltered channel estimation. Intermediate curves visualize the impact of fixed-point arithmetics.
Whereas degradation is unacceptable when product terms are truncated from 19 to 7 bits, calcu-
lating with 10 bits yields almost the same result as the floating-point reference model. This finding
has not only permitted one to save 36% of the area for the matrix–vector multiplication circuitry,
but has also been shown to reduce dynamic power by one third when compared with an analogous
circuit that calculates with product terms of 19 bits [247].
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Fig. 9.11 Results from wordlength analysis of a OFDM channel estimator.

�

Be aware of the fact that much of the power dissipation of a VLSI circuit is committed by the time
the RTL design is finished; the beneficial impact of lower-level optimizations is relatively minor.
Please refer to section 2.3 et seqq. for more material on how high-level design decisions affect energy
efficiency.

Energy-efficient clocking

� Clocking a register dissipates energy regardless of the extent of state change because each clock
edge causes nodes within each bistable to toggle, even when the register is disabled or when
there are no fresh data to act upon. Energy thus gets wasted whenever substantial portions
of a design are characterized by low data activities in conjunction with an unnecessarily fast
clock. If so, consider the options below.

- Distribute computations more evenly over time, possibly combined with lowering the clock
frequency.

- Resort to clock gating for registers with enable.
- Use multiple clock frequencies. Derive all distinct frequencies from a common master clock,

however, in order to keep the various clock domains synchronized.
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- Asynchronous prescalers or clock dividers. Such departures from synchronous operation are
acceptable only if strictly confined to within a local and fairly simple subcircuit.18

� Referring to single-edge-triggered designs, note that power dissipation slightly varies with
the clock’s duty cycle in glitch-intensive circuits where many path delays come close to the
clock period at which the circuit is being operated. This is because part of the nodes within
each flip-flop are bound to toggle with the D input while the master latch sits in pass mode
during the second phase — the one that immediately precedes the active edge — in every
clock period. While the impact typically is just 1% or 2% of the overall power, one can easily
avoid unsymmetric clock waveforms that cause those nodes to toggle more than necessary as
a consequence of intense glitching in the upstream logic.

� As a more radical change, you may want to consider the selective replacement of master–slave
flip-flops by pulse-clocked latches where the situation permits.19

� Slow ramps are a side effect of operating circuits from very low voltages, yet sharp clock
waveforms have been found to be important in edge-triggered circuits because these are highly
vulnerable to clock skew.19 Unfortunately, generous clock buffering — in terms of both buffer
count and sizing — translates into extra energy dissipation. Level-sensitive two-phase clocking
schemes with non-overlapping phases are more forgiving. They can thus be made to work with
lighter clock buffering and still tolerate more skew and jitter. [248], which analyzes a RISC
processor design, reports significant energy savings over single-edge triggering. Also, clock
currents can be distributed better over a clock period. Do not exaggerate, however, as overly
slow clock ramps cause energy to be wasted in crossover currents. What’s more, datasheets
and simulation models of bistables do not normally account for excessively sluggish clock
waveforms.

� Dual-edge-triggered one-phase clocking is an option if much of the overall energy is spent for
clocking. How the flip-flops are constructed internally matters.

Reduce node activities at the register-transfer and logic levels

� Do not feed data that have propagated along paths of largely different delays into a combina-
tional subcircuit of substantial depth as this promotes intense glitching. Chains of multipliers
and/or adders are notorious examples, see fig.9.2. Try to rearrange circuits so as to prevent
nodes from unnecessarily switching back and forth by better delay balancing.20 The asso-
ciativity transform often helps.

� Consider a large multiplier or a cascade of combinational subcircuits as shown in fig.9.12a. Any
data change at any input causes a wave of toggling activities to propagate through the circuit

1 8 Such as a clock divider in a wristwatch or a prescaler in a PLL.
1 9 See problem 6 in section 6.7.
2 0 A related technique consists in reordering (data and control) inputs so as to confine the impact of glitches to

small portions of a circuit (largely stable inputs upstream, glitchy inputs downstream). With the same general
intention, [249] reports that power dissipation may be lowered by an average of 11% over normally optimized
logic networks by selectively adding redundant gates or redundant inputs to existing gates in logic circuits
following technology mapping. [250] proposes filtering out glitches before they cause energy to be lost on signal
ramping by deliberately downsizing the transistors of every logic gate as a function of the timewise offset present
at the input of that gate. Energy savings come at the cost of a longer path delay, however.
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before nodes settle to a new state. Unless the result is being stored in a register for further
processing in each and every clock cycle, unnecessary switching occurs and energy gets wasted.
This can be avoided by way of signal silencing, a technique whereby a circuit is isolated
from glitches and irrelevant transitions at the input until the downstream logic indeed accepts
a new data item. Silencing can be obtained with a bank of simple gates, of three-state gates,
or of latches, or by disabling existing upstream registers. The latter approach is combined
with delay balancing and clock gating in fig.9.12b. Similarly, prevent heavily loaded busses
from switching while they sit idle.
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Fig. 9.12 Cutting down excess node activities. Original (a) and improved circuit (b).

� Adopt suitable bus encoding schemes on busses that are wide, heavily loaded, and highly
active; I/O busses prove especially rewarding. Bus invert coding uses w + 1 electrical lines
to represent w bits of information. The extra bit always tells the receiver whether the original
bits are being transmitted in direct or in inverted format. For each clock cycle, the trans-
mitter calculates the Hamming distance between the past and the present data word and
selects either format such as to minimize the number of toggles on the bus. More sophis-
ticated bus invert coding schemes require no extra line but use the presence or absence of
an extra data toggle in the middle of the clock period to signal the present transmission
format [251].

In the case of an address bus, consider adding an increment bit to the bus. For consecutive
addresses, just assert the increment line and have the receiving end compute the new address
locally; use the parallel load facility only for non-consecutive addresses. This technique is more
energy efficient than even unit-distance coding, provided memory addressing predominantly
occurs in ascending order.21

� Select appropriate data and state encoding schemes. A general idea is to assign similar codes
to those subsets of states or numbers that alternate most frequently.

2 1 More sophisticated encoding schemes that further take advantage of correlations between consecutive patterns
are discussed in [252] [253]. Also note that low-activity bus encoding also benefits switching noise reduction.
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� If a wide datapath is indispensable but not being fully exploited throughout a computation
run, try to temporarily disable the operation of those bit slices that do not contribute signif-
icantly to certain intermediate results.

Cut down parasitic effects at the electrical and physical levels

� Again, avoid excessive capacitive loads by not going off-chip with highly active signals.

� Avoid resistive loads in bus systems, static pull devices, I/O pads, off-chip loads, RAMs,
ROMs, PLAs, PLLs, amplifiers, voltage converters, and the like.

� Avoid the general adoption of cells with overly strong outputs. Profile ramp times and use
the smallest acceptable drive strengths except where delay is critical.

� Where heavy buffers are unavoidable, that is primarily on output pads and clock drivers, use
break-before-make drivers to keep crossover currents small.

� Basically, the smaller the MOSFETs, the lower the gate and node capacitances and, hence,
the dynamic energy dissipated. So, if given the freedom to design subcircuits at the transistor
level, try to downsize MOSFETs wherever speed requirements permit. Size p-channels barely
wider than their n-channel counterparts and accept the sacrifice of electrical symmetry. Yet,
beware of short- and narrow-channel effects that tend to inflate leakage currents in minimum-
sized MOSFETs. Use simulation and calibrated transistor models to find a good compromise.

� Most ASIC designers work with cell libraries and are not given the freedom to opt for a circuit
style other than static CMOS. [254] has evaluated a total of 23 circuit styles and concluded
that static CMOS is a good choice for most applications — and so has the rest of the world.
Pure transmission gate logic makes sense only where delay is uncritical, but circuit styles
that combine t-gates with level-restoring gates may sometimes offer better tradeoffs between
performance and energy efficiency [255] [256].

� Prefer energy-efficient library cells where available, paying particular attention to latches or
flip-flops (depending on clocking discipline). The relative activities of data signals and (gated)
clock may influence your choice. Combine logic gates and bistables into function latches or
function flip-flops where possible.

� While half-voltage swing may be an option for clock nets, see section 9.5, stay clear of steady-
state crossover currents by fully driving normal CMOS inputs to vdd or vss.

� Try to trim node capacitances by better circuit and layout design. Clock nets deserve particular
attention because of their high node activities.

� Make adjacent metal layers run perpendicularly to each other so as to maximize the vertical
separation between any two parallel signal lines. To reduce lateral capacitances, you may want
to extend horizontal separations beyond the minima stipulated by layout rules. Allowing wires
to run at angles of 45◦ (Boston geometry) has been reported to reduce total wire length by
about 20%.

� Shuffling the wires in a long bus helps lower the maximum coupling capacitance between bits.
If bits are known to exhibit patterns of correlation, route strongly correlated bits next to each
other and do the exact opposite for strongly anticorrelated bits.

� Consider tiled layout as an alternative to cell-based synthesis for datapath circuits.
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9.2.3 How to counteract leakage

As found earlier, the growth of leakage currents from one process generation to the next is imposed
on us as by device physics as a consequence of constant-field scaling, so VLSI designers have begun
to look for alternatives at the architecture, arithmetic/logic, and circuit levels.22

Fast architectures built from low-leakage cells

As stated in (9.18), leakage current is exponentially dependent on threshold voltage Uth . Most
fabrication processes thus provide MOSFETs with two or even three distinct threshold voltages
to accommodate different needs. A secondary effect that allows one to trade current drive for low
leakage during library design is the fact that leakage diminishes with channel length L. Standard cells
typically come in two or more varieties. High-speed cells feature superior current drives but their
leakage suffers from the low threshold voltages and minimum length channels of their MOSFETs
while the opposite is true for low-leakage cells.

The simplest way to avoid excessive leakage is to use as few low-threshold MOSFETs as possible.
As an example, inserting pipeline registers into long signal progation paths can make it possible to
obtain the same throughput from slower cells, thereby lowering overall leakage in spite of a higher
transistor count. Similarly, leakage is likely to benefit from replacing a ripple-carry adder built from
high-speed cells by a faster structure built from low-leakage cells.

The countermeasures presented below are more demanding and should be considered only when
ambitious performance goals mandate a widespread adoption of low-threshold logic.

Variable-threshold CMOS (VTCMOS)

Reconsider fig.9.9 and observe that it would be highly desirable to alternate between two distinct
points, namely between a low-threshold regime while busy and near-perfect cutoff while at rest.
Variable-threshold CMOS does so by taking advantage of the body effect to adjust the effective
threshold voltage Uth (Ubs) on the fly as a function of the current mode of operation, see fig.9.13.
This explains why the technique is also known as dynamic back-biasing (DBB).

As an additional benefit, a self-adjusting servo loop can be designed to compensate for fabrication
tolerances of the thresholds that become particularly critical with today’s low voltage levels [257].
What’s more, VTCMOS can be combined with dynamic voltage and frequency scaling.

Example

VTCMOS was pioneered by Kuroda and his colleagues on a low-voltage low-power high-performance
Discrete Cosine Transform (DCT) circuit of 120 000 or so transistors [258]. Fabricated in 900 nm
2M CMOS technology, operated with a 150 MHz clock, and dissipating no more than 10 mW at

2 2 Fabricating ultra-thin-body or dual-gate MOSFETs in silicon-on-insulator (SOI) substrates are alternatives on
the grounds of fabrication technology and discussed elsewhere in this text.
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0.9 V, their design nicely demonstrated the effectiveness of DBB in bulk CMOS VLSI. The on-chip
back-biasing circuitry, which includes the charge pumps and current sources required to charge and
discharge the p- and n-well capacitors under control of leakage current monitors, occupied 0.19 mm2

of silicon, less than 5% of the data processing logic. The voltages and leakage currents in this design
are collected below.
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Udd Uth Ubs Ilk

condition [V] [V] [V]
nominal of process 3.3 0.15 ± 0.1 0 n.a.
effective while busy 0.9 0.27 ± 0.02 −0.5 ± 0.2 0.1 mA
effective in standby 0.9 > 0.5 −3.3 10 nA

�

A more typical application is in SRAMs to reduce leakage power while in sleep mode [259]. While
the body effect in bulk CMOS technology unfortunately becomes less effective with the on-going
down-scaling of device geometries [260], VTCMOS has been applied to circuits manufactured in
silicon-on-insulator (SOI) technology [261]. This rather unexpected achievement has been obtained
with the aid of an ultra-thin buried oxide (BOX) layer that separates the devices from more or
less conventional wells underneath that accept the bias voltage. According to the authors, a supply
voltage of 0.8 V should be safe with SRAMs in 65 nm technology.

Multi-threshold CMOS (MTCMOS)

A more popular alternative is to use MOSFETs with distinct threshold voltages Uth logic < Uth sleep .
Low-threshold transistors are used in all speed-critical subcircuits. Extra-high-threshold sleep tran-
sistors connected in series serve to cut the leakage paths while a (sub)circuit is in standby, see
fig.9.14a. Multiple thresholds can be obtained in various ways, namely
◦ from a true dual-threshold fabrication process where Uth logic �= Uth sleep comes naturally,
◦ from back-biasing sleep transistors with a fixed voltage Ubs sleep < 0, or
◦ by resorting to a special fabrication process and precharged floating gates.

You may want to refer to [262] for further details on dual-threshold logic. [263] devised an en-
hancement to make leakage currents more predictable. Each cell comes in two variations that differ
in terms of where the sleep transistor is placed: one variation has an n-channel footer, the other
a p-channel header. Technology mapping picks one or the other depending on whether the cell’s
output is mainly at logic 1 or 0 while the circuit waits in suspended state. The goal is to have two
or more series-connected MOSFETs in “off”-condition at any time with, in addition, one of them
being of low-leakage high-threshold type.

A limitation of MTCMOS is that the sleep transistors severely limit current drive with supplies
below 0.7 V or so because of the high threshold voltage necessary to obtain near-perfect cutoff.

Super cutoff CMOS (SCCMOS)

The circuit structure is the same as with MTCMOS but low-threshold MOSFETs are being used
throughout, see fig.9.14b. The leaking of the sleep transistors in standby mode is reduced to below
Ilk = Id(Ugs off = 0) by driving them into a super cutoff regime with the aid of a negative gate
voltage Ugs sleep < 0. This technique currently appears to have the most promising long-term per-
spectives because it does not suffer from excessive performance degradation at very low voltages
and because it is compatible with silicon-on-insulator (SOI) technology [264] [265].
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Example

Intel uses n-channel sleep transistors in SRAM cache memories to shut off subsections of the storage
array while not in use. A leakage reduction by a factor of three has been reported.
�

A general problem remains, however, as all bistables lose their state when cut from the supply
voltage during sleep mode. Five workarounds are known today:
◦ implement important registers from high-threshold MOSFETs and accept their poor speed,
◦ refrain from putting important registers into sleep mode and accept their leakage currents,
◦ temporarily store their state elsewhere (e.g. flash memory, disk) while in standby,
◦ augment each bistable with an auxiliary low-leakage bistable, similar to an SRAM cell

and often referred to as a balloon, that maintains its state while the principal bistable
is put to sleep [266] [267], or

◦ use specially designed low-leakage latches and flip-flops.

Triple-S logic

The astute circuit of fig.9.15 works much like any other super cutoff gate. What sets it apart is a
pair of additional high-threshold MOSFETs connected in parallel to the sleep transistors. These
bypass transistors ensure that the inverter remains operational even while in standby, albeit with
a far lower current drive. The inventors of this patented technique have coined the name triple-S
logic which stands for “smart series switch” [268].
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A state-preserving latch with hardly any leakage is shown in fig.9.16.23 Both the feedforward and
the feedback inverters are implemented as triple-S circuits. The input inverter is of symmetric super
cutoff design to avoid any leakage current across the subsequent transmission gate. Note the absence
of vdd to vss leakage paths while in sleep mode and observe that only low-threshold MOSFETs
participate in regular circuit operation. Variations where just the more time-critical forward inverter
is implemented in triple-S logic also exist in the literature [269].

[270] has analyzed various MTCMOS and SCCMOS latches and has compared them with conven-
tional CMOS. The authors concluded that (a) the threshold voltages of the low-threshold transistors
have to be very low to compensate for the speed that is lost due to the significant circuit overhead,
and (b) MTCMOS and SCCMOS are beneficial only when node activities are fairly low. Yet, re-
member these statements refer to latches, not to combinational logic.

Virtual power/ground rails clamp

The proposal of fig.9.17a combines dynamic back-biasing with cutoff transistors in an elegant way
[271]. The circuit remains powered while in sleep mode, albeit via two diodes connected in parallel
to the sleep transistors. While the voltage drops across the diodes cause a negative back bias in the
logic transistors, so quenching leakage, the remnant supply voltage is sufficient to let the bistables
maintain their states. For a 250 nm 2M CMOS circuit operated at 1 V, the authors report a leakage
reduction of 94% and a speed degradation of a mere 2%.

2 3 It goes without saying that observation 8.5 that postulates the insertion of output buffers applies.
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Self-reverse biasing

Two turned-off MOSFETs connected in series exhibit much less leakage than one transistor alone.
Consider a stack of two n-channel MOSFETs, for instance, but note that the same applies for p-
channel transistors. Any current flow will cause a voltage drop across the lower of the two and will
so inflict a negative bias on the upper transistor Ugs n < 0. As subthreshold current is exponentially
dependent on the gate–source voltage, a small bias suffices to quench leakage considerably. Self-
reverse biasing works even better with stacks of three or more “off”-state transistors but returns
diminish; [272] includes a nice illustration.

Figure 9.17b depicts yet another idea based on the same observation. The two extra leakage control
transistors (LECTOR) are in “on”-condition during transients only. Once a steady state is reached,
one or the other of them gets turned off, thereby reducing the direct current from supply to ground.
Leakage is not exactly zero as the two extra MOSFETs must be of low-threshold type, yet the
authors report reductions of 80% with an area overhead of 14% and no speed penalty [273].

For a more comprehensive account of low-power VLSI design in general you may want to consult
[241] [274] [275] [276] [277] while [249] [278] [279] discuss specific optimization techniques. The focus
in [280] is on reducing leakage with [272] specifically addressing SRAM cache memories. [281] [282]
[283] [242] [284] are of interest to those engineers who are given the liberty to redesign circuits at
the transistor level and to adjust MOSFET sizes and threshold voltages.
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9.3 Heat flow and heat removal

Heat is generated where electrical power gets converted into thermal power and flows from a zone of
higher temperature to a lower-temperature region. The mechanisms that participate in heat transfer
are conduction, convection, and radiation, although the latter plays a minor role in the context of
VLSI. A convenient way to model their combined effect is to map the thermal flow to an equivalent
electrical circuit, see fig.9.18.
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Fig. 9.18 Electrical equivalent circuit for thermal conditions (simplified).

P stands for the heat flow that emanates from a silicon die and is referred to as thermal design
power (TDP). Because of inertial effects associated with die, package, and heat sink, what is most
relevant for the thermal design engineer is the maximum sustained power dissipated by the chip,
and this may be less than the maximum short-time peak of electrical power absorbed. In fig.9.18,
the inertial effects are modelled with the aid of two thermal capacitances Cθ .

The temperatures of the junction,24 the case and the ambient medium — typically air — are
denoted θj , θc , and θa respectively. The quantities that impede the flow of heat are the thermal
resistances between junction and case Rθ jc and between case and ambient Rθ ca . Under steady-
state conditions, those quantities relate to each other as follows:

θj = θa + (Rθ j c + Rθ ca )P = θa + Rθ ja P (9.23)

For reasons of circuit lifetime and reliability, junction temperature must not exceed some max-
imum admissible value which typically lies in the range between 85 and 125 ◦C for VLSI chips for
information processing applications.25 The fact that the operating speed of CMOS circuits degrades
with temperature while leakage currents multiply further tends to limit the range of acceptable junc-
tion temperatures.

With θj fixed, an upper bound on the admissible thermal design power P gets imposed by the
overall thermal resistance Rθ ja along with the highest ambient temperature θa at which the
semiconductor device is required to operate. Conversely, if P is given, designers must provide a

2 4 For historical reasons, the semiconductor die is commonly referred to as junction in the context of thermal
engineering. A tacit assumption is that temperature is the same across an entire die.

2 5 Power ICs are typically specified with upper bounds between 125 and 150 ◦C while Si-based discretes can
withstand up to 150 to 170 ◦C junction temperature.
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thermally conducting path that satisfies

Rθ j c + Rθ ca = Rθ ja ≤ θj − θa

P
(9.24)

Rθ jc is mainly a function of die size and of a variety of package-related factors such as bonding
techniques (solder or epoxy resin compound; wire bonding or ball grid array), package geometry,
presence or absence of a heat spreader, encapsulating materials, and of number, geometry, and
material of package leads. Rθ ca is dependent on external circumstances such as air circulation,
package orientation, mounting technique (socketed or soldered), lead count, and board layout. After
all, heat is not only convected and radiated from the package surface but also flows to the board
via the package pins.

In still air, that is on the order of forced ventilation, the overall thermal resistance Rθ ja ranges
between 20 K/W for a 208-pin MQUAD package and 180 K/W for an 8-pin SSOP package, with
80 K/W a typical figure for a PQFP64 package.

By slashing thermal resistance between case and ambient air, a heat sink reduces the temperature
difference necessary to transfer a given thermal power. This is basically obtained by extending
the overall surface in contact with the air. Rθ ca reaches down to approximately 0.55 K/W for
generously-sized aluminum heat sinks and further down to 0.25 K/W when combined with intense
forced air cooling such as in top-performance desktop processors. As the best packages available
offer junction-to-case resistances Rθ jc of 0.3 K/W or so, the maximum practical power dissipation
currently is on the order of 125 to 150 W with forced air cooling.

Hint: When using a heat sink, make sure the fins are aligned with the direction of air flow,
whether natural or imposed.

Air flow is otherwise disturbed, which cuts back the active surface and makes the effective thermal
resistance significantly differ from published K/W figures. Heat sinks where fins are too closely
packed or that exhibit a cross-cut fin pattern also tend to obstruct (laminar) air flow.

A heat pipe essentially is an evacuated copper tube the inner walls of which are lined with a
wick. The tube is loaded with a small quantity of water or some other working fluid before being
sealed. Heating one end stimulates a circular process whereby liquid evaporates and travels to the
cooler end, where it condenses before being returned by the capillary forces developed in the wick.
Thermal conductivity is many times that of an equivalent massive piece of copper. Heat pipes work
best in upright position when heat is fed in at the bottom end because gravity then helps to return
the condensed fluid to the evaporator.

In any case, watch out for the thermal contact resistance Rθ cs that is being introduced between
the IC package and the heat sink’s surface accepting the thermal flow.

Rθ ca = Rθ cs + Rθ sa (9.25)

Rθ cs and hence also Rθ ca depend on whether the heat sink is mounted with or without electrical
insulation (such as a sheet of mica, Mylar or Kapton), on the mechanical pressure, and on the
presence or absence of a thermal interface material. The surfaces of dies, cases, and heat sinks are
never perfectly flat, so microscopic gaps form in between. With air being a poor thermal conductor,
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these gaps inflate Rθ cs . Either a heat-conducting compound — e.g. a paste of silicone grease
with silver oxide powder — or a graphite pad can serve to displace air and to fill those gaps with a
material of better thermal conductivity as expressed in W/K m.

Another common mistake is to underestimate the ambient temperature. θa refers to the air next
to the component and its heat sink under worst-case conditions. All too often, this reading is
significantly above the room temperature measured outside the equipment’s casing.

As a final remark, any lowering in overall thermal resistance is generally paid for with higher costs.

9.4 Appendix I: Contributions to node capacitance

Section 9.1.1 has introduced the concept of node capacitance. In this appendix, we examine in
more detail what capacitances are associated with some circuit node k for the purpose of energy
computations. Consider a typical digital CMOS subcircuit where Ik logic gates drive a total of Jk

logic gates. Figure 9.19a illustrates a case where Ik = 1 and Jk = 3. We then find:

Cmil i The Miller capacitance of gate i (drains or sources to gate electrodes)
transformed into an equivalent capacitance at the gate’s output node k.

Coup i The output-to-ground capacitance of the ith logic gate that drives node k,
that is the junction (drains to ground) and overlap capacitances there.

Cwire k The total interconnect or wiring capacitance of node k made up of
contributions from the wire to ground and from the wire to adjacent wires.

Cinp j The input-to-ground capacitance of the jth gate that is driven from node k

which is dominated by the thin-oxide areas (gate electrodes to ground) there.
Cdep j Extra capacitances internal to logic gate j that are due to logically dependent

inner nodes (drains or sources to ground plus overlaps).

gateC (i)
subcircuit being accounted for

kalong with node

subcircuit being accounted for
kalong with node and gate i

other connected circuitry

nodek
gatei

b)a)

wireC (k)

nodek
gatei

Coup(i)

inpC (j) Cdep(j)

wireC (k)

gatej

Cmil (i)

Fig. 9.19 A small excerpt from a larger logic network with the various contributions to node capacitance (a)

and with all contributions from a gate transformed to the output (b).

Cmil i and Cdep j are not part of the capacitance of node k itself but have been introduced to
account for (dis)charge processes that take place within gates i and j respectively as a consequence
of the switching of node k. Note that a Miller capacitance must get mapped to the output with
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almost four times its value to account for the fact that the voltage amplitude across is twice that
of a regular node-to-ground capacitance.26

Energywise, the total equivalent capacitance of circuit node k is obtained as

Ck =
Ik∑

i=1

(Cm il i + Coup i ) + Cw ir e k +
Jk∑

j=1

(Cin p j + Cdep j ) (9.26)

where Ik > 1 and Jk > 1 reflect multiple drivers and fanout respectively.

Many EDA tools use a simplified model, shown in fig.9.19b, whereby all capacitive contributions
from library cells are concentrated into the respective gate models instead of being attributed to
the nodes in between. The effects of Cmil , Coup , Cinp , and Cdep are hence being lumped into a
single quantity.

Cgate i An energy-equivalent capacitance that accounts not only for the output of the
ith gate that drives node k but also for all its inputs and inner capacitances
after they have been transformed to the output of that very gate.

Under this approximate model, (9.26) is replaced by

Ck ≈
Ik∑

i=1

Cg ate i + Cw ir e k (9.27)

which simplifies to (9.4) in the case of a single gate driving node k.

9.5 Appendix II: Unorthodox approaches

9.5.1 Subthreshold logic

Section 9.1.5 has identified voltage swing as a major cause of energy dissipation in CMOS circuits.
This immediately raises the question of the lowest possible supply voltage at which logic can be
made to operate. Eric Vittoz, one of the pioneers of subthreshold logic, has determined that CMOS
should work with supply voltages as low as 100 mV thanks to the MOSFET’s exponential current–
voltage characteristics in the weak inversion regime, thereby slashing dynamic energy by a factor
of 100 when compared with a 1 V supply [244].

Going that far is not easy, however. The same exponential dependency makes circuit operation
extremely sensitive to process variations and requires that the threshold voltages be adjusted by
a control loop similar to dynamic back-biasing (DBB). Also, the effective threshold voltages must
be chosen so low as to make leakage of the same order of magnitude as switching currents.27 The
important loss of switching speed is welcome in some sense as it helps to keep ground bounce and

2 6 A factor of 3.6 has been found to be more realistic than 4.0 [285]. The reason is that a fraction of the charge
initially stored on the Miller capacitance flows back into the power net during a brief overshoot phase at the very
beginning of each output transition. Another subtlety is that part of the energy from the Miller capacitance of
gate i, k is being dissipated in the logic gate itself and part in the gate that is driving it (not shown in fig.9.19).

2 7 Jokingly, one might speak of “Leakage Current Modulation Logic”.
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crosstalk in accordance with the depressed noise margins. Yet, compensating for the inferior speed
with many concurrent hardware units will not always prove economically feasible, and would inflate
leakage further. Less radical compromises are thus probably more practical.

Example

A microchip capable of carrying out 1024-point FFTs with a word width of 16 bit has been designed
using a standard 180 nm six-layer metal CMOS process [286]. Thresholds are fixed at 450 mV with
no biasing. Standard cells have been redesigned such as to exhibit dependable operation in spite
of process variations, parallel leakage paths, and transistor stacking. The circuit consists of 670 000
transistors placed on a die of 2.6 mm by 2.1 mm and is fully functional over a supply voltage
range from 180 to 900 mV. The minimum energy point occurs at 350 mV and is 155 nJ/FFT, 350
times less than a software implementation running on a low-power microprocessor. Maximum clock
frequencies are 164 Hz, 5.6 MHz, and 10 kHz respectively.
�

9.5.2 Voltage-swing-reduction techniques

Another idea is to reduce the voltage swing per bit. Multi-valued logic uses intermediate voltage
grades to encode multiple bits of data with a single signal. As an example, think of a four-valued logic
where two bits of information get represented by nominal voltages of 0, 1, 2, and 3 V respectively.
A one-bit increment would then materialize as a voltage step of 1

3 Udd .

While multi-valued circuits find applications in high-density flash memories [51], the concept is not
being adopted in random logic because the important circuit overhead required to discriminate
among multiple voltage grades tends to annihilate any improvements in energy efficiency. Repeated
reductions of supply voltage over the last process generations have not only rendered the handling
of intermediate voltages even more difficult, but also dramatically improved the energy efficiency
of two-valued CMOS logic.

Reduced voltage swing is more likely to pay off in nets where no more than two logic states must be
told apart and where node capacitance is huge. This holds true for clock nets [279] [222] and for bit
lines in large memory arrays [287]. The same applies to low-voltage differential signaling (LVDS),
a popular technique for input/output lines that run between chips. The fact that LVDS uses two
lines to encode one bit of information simplifies circuit design.

9.5.3 Adiabatic logic

Throughout our analysis, we have accepted as a fact that a fixed amount of energy defined by
Eri k = Ef a k = 1

2 CkU 2
dd gets dissipated in a logic gate’s MOSFETs whenever its output toggles,

and this irrespective of the waveforms and ramp times involved. That assumption, reflected by (9.3),
is indeed a valid one for level-restoring static CMOS logic that works from rail to rail.

In adiabatic logic, in contrast, switching is supposed to follow a different paradigm for which (9.3) no
longer holds. For simplicity, assume node capacitance Ck is being charged via some fixed resistance
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R so as to maintain a constant current throughout the process. It is easy to show that the energy
dissipated in the resistor then amounts to

Eri k =
RC2

k U 2
dd

tr i
(9.28)

What is most intriguing about this equation is the denominator. It implies that the electrical energy
lost to heat can be made arbitrarily small by allowing more time for the charging, and — by the
same argument — for the discharging as well. This is because a low current through the resistance
also minimizes the voltage drop across it and, hence, the overall energy dissipated.

a)
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recuperate

1

Fig. 9.20 Adiabatic switching. Operation during computation phase (a) and energy recuperation phase (b)

(greatly simplified).

The idea behind adiabatic logic is to take advantage of such energy-conserving charge and discharge
processes. In order to come close to constant current transients, the supply voltage must be allowed
to vary over time, a radical departure from standard CMOS operation.

The operation of all gates is carried out under control of a special periodic signal Udd(t) that
combines traits of supply and clock. Phases where energy is being fed into the logic to charge the
node capacitances there, and where it gets taken back into a suitably designed resonant tank circuit
alternate, see fig.9.20. This explains why adiabatic logic is also referred to as charge recovery and
energy-recycling logic. MOSFET switches are being used in lieu of fixed resistors but the small
drain–source voltages justify their approximation as linear resistances.

Observation 9.8. Adiabatic logic attempts to save energy over standard CMOS by recuperating

the electric charge made available for logic evaluation into some tank circuit after evaluation has

come to an end. The exchange of electric charge between supply-clock and logic circuitry is made

exceedingly slow to minimize the resistive losses in doing so.

The nice thing about adiabatic logic is that it permits one, at least in theory, to trade energy
for switching speed by reducing the supply-clock frequency, and this at any time during circuit
operation. Asymptotically, one could obtain a zero-energy infinite-time computation. This contrasts
with regular CMOS logic that essentially operates in a fixed-energy bounded-time regime as a result
of design decisions about supply voltage, circuit design style, transistor sizes, and node capacitances.
Note, however, that adiabatic logic cannot be expected to do better than regular CMOS logic if it
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is to operate at the full speed of the latter. If speed requirements are modest, on the other hand,
operating static CMOS from a lower voltage seems a more natural proposition.

It thus remains questionable whether the theoretical benefit of this unorthodox concept will ma-
terialize in practice because of all the overhead associated with more complicated circuitry, state
retention, multiphase operation, supply-clock generation, and others. Dynamic voltage and fre-
quency scaling, see fig.9.10, provides energy–speed tradeoffs at a much lower cost. Results from
actual circuit evaluations are rather pessimistic [288] [289] or have found no continuation [290].
Still, you may want to refer to [241] [291] for more comprehensive assessments of the promises and
limitations of adiabatic logic which, by the way, comes in many varieties such as split-level charge
recovery logic (SCRL), quasi-static energy recovery logic (QSERL) [292], efficient charge recovery
logic (ECRL) [293], and others [294] [295].

More on the positive side, significant power savings have been reported with resonant clocking
where a sinusoidal waveform obtained with a tank circuit is used to drive the clock net(s) in otherwise
static CMOS circuits [293] [296].



Chapter 10

Signal Integrity

10.1 Introduction

Noise generally refers to unpredictable short-term deviations of a signal from its nominal value.
Although noise is not nearly random in digital circuits, the same word is nevertheless used. To
comprehend the impact, noise generation as well as a circuit’s tolerance to noise must be studied.
This chapter aims at understanding potential failure mechanisms, at quantifying their repercussions,
and at learning how to keep switching noise below critical levels.

10.1.1 How does noise enter electronic circuits?

One can distinguish four mechanisms that convey noise from a source to a receptor, see fig.10.1.

Conductive coupling develops when a wire collects noise outside an electronic circuit and brings
it to sensitive nodes there. A power rail corrupted by spikes or ripple from a poorly filtered
power supply is a classic example. A data cable that picks up electromagnetic radiation from
a nearby motor, chopper circuit, or RF transmitter — effectively acting like an antenna —
also falls into this category.

Electromagnetic coupling occurs when noise sources impinge upon a circuit by the immediate
effects of the electromagnetic field. No external line acts as conveyor in this case, rather, the
receiving antenna is within the victim itself. The tiny dimensions of microelectronic circuits
tend to render them relatively immune to externally generated fields.

Crosstalk is a particular form of electromagnetic coupling. Polluter and victim sit close to each
other on the same die, package, or printed circuit board (PCB). Crosstalk effects are typically
modelled in terms of lumped elements such as coupling capacitances and mutual inductances.

Common impedance coupling requires that polluter and victim share common power and/or
ground (return) lines. The parasitic series impedances of those lines turn rapid supply current
variations into noise voltages that then propagate across a chip (or board).
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Fig. 10.1 Noise coupling via conductors (a), via electromagnetic fields (b), via crosstalk (c), and via common

supply lines (d).

As crosstalk and common impedance coupling have their roots in nearby switching activities, we
will occasionally use the term switching noise as a generic term for both.

10.1.2 How does noise affect digital circuits?

Noise impacts digital circuits both when settled in a steady state and while transiting from one
stable state to the next. Let us analyze those two situations separately.

Impact of noise on circuits under steady-state conditions

A two-valued circuit cannot work properly unless all of its logic gates

1. flawlessly keep apart the logic states 0 and 1 at the input, and
2. restore both logic states to proper electrical levels at the output.
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Excessive noise compromises these requirements. Consider the predominant single-rail logic where
data get transmitted over a single line, see fig.10.2.1

Let Uoh denote the lowest output voltage produced by a subcircuit when driving a logic 1 and,
analogously, Uol the uppermost voltage when at logic 0. Further let Uih indicate the lowest voltage
that gets safely interpreted as a 1 by the subcircuit driven, and Uil the highest voltage that gets
recognized as 0.2 Voltages between Uil and Uih could be interpreted as 0 by some subcircuits and
as 1 by others. They are, therefore, said to form a forbidden interval.

Uol ≤ Uil < Uih ≤ Uoh holds by necessity. Any non-zero difference between the respective output
and input thresholds provides welcome latitude for uncertainties and variations of signal voltage,
see (10.1) and (10.2). The lesser of the two differences, defined in (10.3), determines the maximum
noise that can safely be admitted without compromising the correct functioning of the circuit and
is, therefore, known as the static noise margin. As documented by table 10.1, noise margins have
shrunk a lot over the years because supply voltages have repeatedly been lowered.

ddUUh =

ssUUl = 0=
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nmhU
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ilU
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HIGH

invalid
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from driving cell

input voltages
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which signal levels

are required to remain to
get interpreted correcttly

oupU inpU

Fig. 10.2 Noise margins in two-valued digital circuits.

Un m l = Uil − Uol (10.1)

Un m h = Uoh − Uih (10.2)

Un m = min(Un m l , Un m h ) (10.3)

Impact of noise on signals in transit

Noise also affects the waveforms of transiting signals as any spurious voltage coupled into a circuit
node may either speed up or slow down an on-going signal transition, see fig.10.3. As a result, the vic-
tim signals are subject to jitter, that is to random timing variations. The impact is most severe when
the coupling from a polluting line occurs while the victim signal is traversing the high-amplification

1 The picture is different for dual-rail circuits that rely on complementary signaling and differential input stages,
such as the LVDS scheme to be discussed later in this chapter.

2 As explained in section 8.1.2, Ui h and Ui l are typically defined by the unity gain points in the subcircuit’s
transfer characteristic.
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Table 10.1 Standard switching thresholds for digital interfaces. Note that the labels CMOS and
TTL in this context refer to agreed-on voltage levels, not to fabrication technology. In fact, many
CMOS circuits have been designed to accept signals with TTL levels for reasons of compatibility.
For similar reasons, off- and on-chip voltage levels often differ.

Voltage levels Udd Uol Uil Uih Uoh Unm

CMOS 5 V ±10% 0.1 V 0.3Udd 0.7Udd Udd − 0.1 V 1.40 V
TTL 5 V ±10% 0.4 V 0.8 V 2.0 V 2.4 V 0.40 V
CMOS 3.3 V ±10% 0.1 V 0.2Udd 0.7Udd Udd − 0.1 V 0.56 V
TTL 3.3 V ±10% 0.4 V 0.8 V 2.0 V 2.4 V 0.40 V
CMOS 2.5 V ±0.2 V 0.2 V 0.35Udd 0.65Udd Udd − 0.2 V 0.68 V
CMOS 1.8 V ±0.15 V 0.2 V 0.35Udd 0.65Udd Udd − 0.2 V 0.43 V
HSTL Class Ia 1.5 V ±0.1 V 0.4 V 0.65 V 0.85 V 1.1 V 0.25 V
GTLb 1.2 V nominal 0.5 V 0.75 V 0.85 V 1.2 V 0.25 V
CMOSc 0.9 V nominal 0.1 V 0.35Udd 0.65Udd Udd − 0.1 V 0.22 V

a High-Speed Transceiver Logic, a technology-independent interface standard.
b Gunning Transceiver Logic, a low-swing interface standard for backplane busses on the basis of CMOS.
c No established standard yet, table entries based on extrapolation.

region of the receiving gate(s). Also note that noise and jitter not only affect the behavior of physical
circuits, but also add to the uncertainty of timing verification.
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Fig. 10.3 The effect of crosstalk when polluter and victim signals ramp in the same direction (a) and when

they ramp in opposite directions (b).

The signals most vulnerable to noise-induced jitter are

• Clock signals,
• Signals with a small setup margin (long paths, vulnerable to retardation), and
• Signals with a small hold margin (short paths, vulnerable to acceleration).
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Observation 10.1. Switching noise affects digital circuits in two ways:

• Settled nodes are immune to disturbances only as long as their noise margins are respected.

If not, circuit behavior may become entirely unpredictable.

• The data-dependent jitter inflicted on signals in transit renders timing data uncertain,

which is detrimental to performance as it eats away from timing budgets.

10.1.3 Agenda

A brief discussion of crosstalk follows next. Being predominant among the four perturbations,
common impedance coupling will be explained in more detail in section 10.3 before various coun-
termeasures against switching noise are presented in section 10.4.

10.2 Crosstalk

As a consequence from the evolution of the interconnect stack depicted in fig.12.7, unpredictable
timing variations due to crosstalk between adjacent signal lines have become a concern for digital
design with VLSI technologies of 180 nm and less.

While noise of sufficient amplitude on a clock or reset signal can cause a circuit to change state
erratically, their large node capacitances and strong drivers tend to make settled clock and reset nets
fairly robust against crosstalk from regular signal lines. Clocks and busses are important polluters,
however, because their fast ramps and long lines have them generously couple into many of the
other signals.

Countermeasures:

• Make lines on adjacent metal layers run perpendicularly to each other
in order to reduce coupling capacitances and mutual inductances.

• Keep more than minimum lateral spacing between critical victims and aggressive polluters.
• Minimize the separations between current paths and the pertaining return paths.
• Intersperse shield lines and, if need be, also shield layers around critical signals.
• Provide more ample setup and hold margins (often a costly proposition).
• Prefer processes that provide low-permittivity interlevel dielectrics.
• Use specialized EDA tools to carry out crosstalk analyses.

Please refer to [297] [298] [299] for a comprehensive discussion of crosstalk. [300] gives an analytical
formula for inductive coupling and compares different shield-line-insertion schemes.

10.3 Ground bounce and supply droop

10.3.1 Coupling mechanisms due to common series impedances

In any VLSI chip, thousands of logic gates are hooked to vss and vdd over the same interconnect
lines. Figure 10.4a depicts a situation where gates u1 and u3 share a piece of ground line with
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Fig. 10.4 Ground bounce. Basic coupling mechanism (a) and distorted switching levels (b,c).

parasitic self-inductance Lg . Depending on the number of gates driven (fanout), the transistor
sizes there, and the interconnect geometry, the capacitive load Cl gate u1 must handle may be
rather important. Assume gate u2 outputs a legal but not entirely perfect logic 1 so that gate u3
is presented with Uoh < Uinp u3 < Udd . Gate u3 then correctly recognizes the signal as logic 1 and
produces a legal 0 with 0 < Uoup u3 < Uol because of its inverting nature.

“What happens when gate u1 switches from logic 1 to logic 0?”

Look at u3’s input behavior first. Cl , previously charged to logic 1, is rapidly being discharged by
u1, resulting in a transient current to ground. This current causes a voltage drop over the ground
wire’s inductance Lg , which affects u3 as much as u1 due to their interconnected ground terminals.
The uplift of u3’s ground potential will raise its input thresholds to unknown values, see fig.10.4b.
If sufficiently strong, the unplanned rise of Uih and Uil may cause the input to get misinterpreted
as a logic 0 and, therefore, the output of u3 to temporarily change to 1. That unforeseen spike may
in turn incite u4 to glitch and so propagate into the downstream logic.

To make things worse, a second mechanism is at work at u3’s output that intensifies this phenomenon
or that may by itself provoke false switching of u4. This is because the uplift of u3’s ground terminal
directly impinges upon its output by displacing the voltage from below Uol to some higher value.
If the uplift consumes the noise margin, as shown in fig.10.4c, then gate u4 is likely to flip, thereby
temporarily producing an unexpected logic value at its output.

In either case, a transitory deviation of the reference potential jeopardizes the correct functioning of
logic gates by electrically coupling individual data signals in an undesirable way. The effect is nicely
termed ground bounce. Owing to the common series impedances present in the vdd network,
circuit operation is further affected by an analogous mechanism referred to as supply droop or as
power bounce. For the sake of simplicity, we usually make no distinction and subsume both effects
under the term ground bounce.

Under extreme conditions, the coupling of a subcircuit onto itself may grow so strong that the
circuit begins to oscillate in an uncontrollable way. Another potential threat from strong voltage
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over/undershoots is the loss of stored data. Excessive ground bounce thus causes a digital circuit’s
behavior to become unpredictable and so renders it useless as part of a system. Milder forms have
the circuit function correctly under optimum conditions but make it susceptible to external circum-
stances. It is, therefore, absolutely essential to keep ground bounce within the bounds circumscribed
by the noise margins of the technology.

10.3.2 Where do large switching currents originate?

In static CMOS circuits, the most important switching currents are typically drawn by output pad
drivers due to the important off-chip load capacitances they must handle and the extremely wide
transistors they include to do so. This explains why ground bounce is also known as simultaneous
switching output noise (SSO noise or SSN). di(t)/dt noise is yet another synonym, and we will
shortly see why.

Huge switching currents are by no means limited to pad drivers, since a thousand or so internal
nodes that switch at the same time can cause spikes of similar magnitude. A major contribution to
switching currents arises from clocking. Keep in mind that a clock event causes many circuit nodes
other than the clock net nodes to toggle too. In the case of the CPU 21064 by Digital Equipment
Corp., for instance, it was found that ground bounce was equivalent to a cumulated capacitance of
12.5 nF while the capacitance of the clock net alone was 3.2 nF.

Another important source of transient currents that is often overlooked stems from transitory buffer
contentions where the off-going three-state driver has not yet released a net before the on-going
driver starts to pull in the opposite direction. Although very short-lived in logically correct designs,
transient currents matter when strong buffers are involved.

10.3.3 How severe is the impact of ground bounce?

A rough first-order approximation

The subsequent table taken from [301] quantifies the parasitic elements for a few packages of different
construction including contributions from bond wires.

worst pin of
package type (64–68 pins) ceramic plastic pin grid chip

DIP DIP array carrier
series resistance [Ω] 1.1 0.1 0.2 0.2
parallel capacitance [pF] 7 4 2 2
series inductance [nH] 22 36 7 7

Numerical data of on-chip wiring parasitics are given next for two digital CMOS processes. A
generous power/ground line of fixed width and signal lines of minimum widths are compared across
all metal layers. Where two numbers are given, the first one refers to the bottom and the second
one to the top metal layer. Line lengths and line spacings are the same throughout.
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process A process B
line length 10 mm, spacing 1 µm 250 nm 5M1P Al 130 nm 8M1P Cu

supply signal supply signal
line width [nm] 50 000 320 to 420 50 000 160 to 400
series resistance [Ω] 11 to 7.2 1700 to 860 14 to 5.4 4400 to 680
capacitance to substrate [pF] 15 to 2.4 0.46 to 0.14 28 to 2.7 0.52 to 0.12
series inductance3 [nH] 3.8 8.2 to 8.0 3.8 8.8 to 8.0

Now consider an output pad driver as shown in fig.10.5. The series impedance Zg in the current path
to system ground is formed by on-chip interconnect lines, bond wire, and package lead. It includes a
resistive part Rg and an inductive part Lg . The ground bounce voltage, i.e. the difference between
on-chip and system ground potentials, is obtained as

ug (t) = Rg ig (t) + Lg
dig (t)

dt
(10.5)

where ig (t) is the superposition of the driver’s output current and the crossover current that flows
through the complementary MOSFETs while they are in the process of switching.
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Fig. 10.5 Equivalent circuit for a CMOS output that drives a capactive load.

3 According to [302], the line inductance was estimated as

L ≈ 200 · 10−9
l log

(
8

h

w
+ 4

w

h

)
(10.4)

where l denotes the length and w the width of the line. h indicates the distance that vertically separates the
metal line from the back metal surface carrying the chip. Quantities are expressed in [m] and [H] respectively;
the numeric figures given above were obtained for h = 500 µm.
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Example

Let an IC discharge a capacitance Cl of 20 pF from 2.5 V to zero within 5 ns. For simplicity, the
crossover current is neglected and the driver’s output current is assumed to follow a symmetric
triangular waveform. The switching current that flows to ground then linearly rises to 20 mA —
twice the value for a uniform discharge — within 2.5 ns before ramping back to zero in another
2.5 ns. Further assume Rg = 1 Ω and Lg = 10 nH. The maximum uplift is reached after 2.5 ns when
the ohmic loss Rg ig (t) peaks out at 20 mV while the inductive loss Lg dig (t)/dt reaches 80 mV. A
negative deflection of similar amplitude follows during the second half of the discharge process. The
switching of one output pin thus causes a 100 mV difference in reference potentials between chip
and system. Noise amplitude corresponds to 4% of Udd or to approximately 15% of Unm . Imagine
the impact when many outputs switch at a time.
�

A more accurate second-order approximation

Experience has shown that first-order approximations on the basis of (10.5) tend to overestimate
noise voltages in CMOS ICs because they do not account for the moderating influence of a series of
second-order phenomena. The most important single effect is that any ground uplift eats away from
the gate–source voltage of the discharging MOSFET. This negative feedback quenches the drain
and source currents and, hence, the excursions of the critical term dig (t)/dt. Note that the same
effect also degrades the driver’s switching speed, though.

Other beneficial circumstances include input waveforms with finite slopes and the combined effects of
various parasitic circuit elements. Quiet outputs with their load capacitances also exert a significant
stabilizing influence on the on-chip ground and power potentials unless all outputs switch in the
same direction simultaneously.

Ground bounce voltage ug (t) typically consists of an initial peak followed by a damped oscillation.
To estimate those waveforms, the authors of [303] have obtained an improved model under a number
of simplifying assumptions detailed in appendix 10.7. The model essentially boils down to

ûg ≈ Udd

tr
tr −t0

(K1s + 1
L g

K2s )
(10.6)

with

K1s = 1 +
m Cl

(tr − t0 ) n
Req and K2s =

(tr − t0 )
n

Req (10.7)

where

ûg is the peak voltage uplift due to ground bounce,
tr is the rise time from 0 to Udd of the driver’s input voltage ugs(t),
t0 is the time span until ugs(t) traverses Uth n , the on-going n-channel transistor’s threshold voltage,
n is the number of simultaneously switching output drivers, each loaded with Cl ,
m is the number of drivers connected to the same internal ground node that keep output quiet low,
Req = Ud d −Ut h

Id o n
.

Mutatis mutandis (10.6) and (10.7) also hold for supply droop, of course.
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Example

Let us reanalyze essentially the same situation as before, using the new noise model this time. The
values for tr and Req follow from the original postulate that the n-channel MOSFET is fully turned
on after 2.5 ns and capable of sinking a maximum current of 20 mA.

Req =
Udd − Uth

Id on
=

2.5 V − 0.5 V
20 mA

= 100 Ω (10.8)

We begin by considering one isolated output, n = 1 and m = 0, and so get

ûg ≈ Udd

5
4 + t r

L g
Req

=
2.5 V

5
4 + 2 .5 ns

10 nH 100 Ω
= 95 mV (10.9)

which comes close to the result obtained from (10.5). The situation is quite different, however, when
16 out of 16 drivers switch simultaneously because for n = 16 and m = 0 one has

ûg ≈ Udd

5
4 + t r

L g

R e q

n

=
2.5 V

5
4 + 2 .5 ns

10 nH
100 Ω

16

= 0.89 V (10.10)

While still exceeding the noise margin, this figure contrasts favorably with the 1.6 V estimate
obtained from the first-order model. The fact that growth is degressive with n is very welcome
indeed. As a last exercise, let us plug in the figures for n = 8 and m = 8, that is for a case where
half of the 16 outputs remain quiet low.

ûg ≈ Udd

5
4 + ( 25

16
m C l

tr
+ t r

L g
) R e q

n

=
2.5 V

5
4 + ( 25

16
8·20 pF
2 .5 ns + 2 .5 ns

10 nH ) 100 Ω
8

= 0.44 V (10.11)

�

In summary, a number of second-order effects render ground bounce not quite as immense as a crude
first-order approximation had suggested. Still, ground bounce is a real threat and the challenge is
becoming more demanding with each process generation because

• Supply voltages and noise margins continue to erode,
• Switching times accelerate,
• Designs tend to grow more complex, so that
• More output pins and other nodes switch at a time.

10.4 How to mitigate ground bounce

A first remedy is to keep the impedance of the power distribution networks low. What matters
is the source impedance seen by the load circuit over the entire frequency range where current
transients occur. Particular attention must be paid to inductive components and to impedances
shared between polluters and potential victims. Package selection, supply routing, and capacitive
decoupling are essential. Other countermeasures consist of limiting transient currents to a minimum,
e.g. by paying attention to ramp times. Practical guidelines derived from this general insight are
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going to be presented in the remainder of this chapter, some of them also benefit immunity from
crosstalk.4

10.4.1 Reduce effective series impedances

Ground and power pads

Include a sufficient number of pads and pins for current return in your designs as parallel conducting
paths lower overall impedance. The higher the switching currents, the more supply connectors will
be required. Return paths are often allocated more generously to vss than to vdd. Reasons for this
are the fact that ground acts as system reference, the usage of ground as a return for more than
one power supply, and — in many older designs — the narrower noise margin on the low side when
TTL logic levels were adopted.

Examples

Pin budgets of high-performance CPUs and their evolution over the years.

total power and pro-
Microprocessor pins ground pins portion
Motorola MC 68000 64 4 6%
Motorola MC 68020 101 22 22%
Motorola MC 68030 128 24 19%
Motorola MC 68040 179 67 37%
Motorola MC 68060 223 86 39%
Intel Pentium 273 99 36%
Intel Pentium Pro 387 177 46%
Intel Pentium 4 478 265 54%
Intel Core 2 Duo 775 523 67%

�

Observation 10.2. Before powering up a circuit, make sure you connect all vdd and vss pins

to power and ground respectively, be it on the printed circuit board or on a circuit tester. Always

ensure that you obtain solid low-impedance current paths when doing so.

Package choice

Select a package with low lead impedance. Prefer solder ball connections over bond wires for their
lower inductances (0.1 to 0.5 nH vs. 4 to 10 nH) [304]. Lower parasitics were a major driving
force behind the move from bulky dual-in-line packages (DIP) to ball grid arrays (BGA) and other
compact packages.5 Do not expect the reduction in ground bounce to be proportional to the lowering

4 Let us briefly review the impact of synchronous design. On the one hand, synchronous operation leads to an
undesirable concentration of switching activities in a short time interval that immediately follows the active
clock edge, thereby inflating peak current. On the other hand, synchronous design allows all nodes to settle
before clocking takes place and is, therefore, less vulnerable to transient phenomena than asynchronous circuits,
where data may be accepted by bistables and/or memories at any time.

5 More material on packaging is given in section 11.4.
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of package inductance, however. This is because — as observed earlier — ground bounce augments
with series inductance in a degressive way and because package leads are not the only contributions
to parasitic impedance. An experimental study found that ground bounce was lessened by a mere
35% when a package with approximately 20 nH was replaced by another one with 2 nH [305].

Examples

Pin parasitics of a few common packages for standard logic ICs.

pin self-inductance cap. to ground
pitch corners centers corners centers

package type [mm] [nH] [nH] [pF] [pF]

20 pin packages
dual-in-line (DIP) 2.54 13.7 3.4 1.49 0.53
small-outline (SOP) 1.27 5.8 3.0 0.85 0.45
shrink-small-outline (SSOP) 0.65 5.0 2.6 0.47 0.30
thin-shrink-small-outline (TSSOP) 0.65 3.3 1.8 0.40 0.21

48 pin packages
shrink-small-outline (SSOP) 0.635 7.2 3.3 0.74 0.28
thin-shrink-small-outline (TSSOP) 0.5 5.0 2.3 0.56 0.21

100 pin package
thin-quad-flat (TQFP) 0.5 6.1 4.8 0.33 0.23

�

Optimum pinout

For a given package, parasitic values vary considerably among pins because different leads take
distinct routes within the package. Reserve the low-inductance pins for ground and power, but do not
forget to account for routing on the printed circuit board (PCB) that will eventually accommodate
the chip. Note that many pin grid array (PGA) packages include a number of low-impedance leads
that are specifically optimized for ground and power distribution.

Further observe that the traditional diagonal configuration for dual-in-line (DIP) and small-outline
(SOP) packages, termed corner pinning, is the worst choice possible, which explains why it is
being displaced by the superior center pinning pattern in many products such as SRAMs and
high-speed logic components. See fig.10.6a and b for illustrations (the benefits of pinout patterns c
to f are to be discussed shortly).

Bypass capacitors

Bypass capacitors, aka decoupling capacitors, are connected between power and ground rails to
momentarily supply energy for switching activities. Transient currents hence do not have to travel
all the way from a distant power supply. Minimizing the impedance of the wiring between ICs and
nearby bypass capacitors is absolutely essential to contain noise.

Bypass capacitors placed in the immediate vicinity or underneath IC packages, see fig.10.8a, have
a long tradition in digital electronics. Each package must have its own bypass capacitor(s). It is
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Fig. 10.6 Various pinout and bonding patterns compared.

essential to select a mounting form with a high resonance frequency, that is with low equivalent
series inductance (ESL) and low equivalent series resistance (ESR). This is why leadless surface
mount devices (SMD) with specially constructed low-inductance plate connections long ago dis-
placed cylindrical forms with axial leads.

Choosing the capacitor’s value is a balancing act. On one hand, the value must be large enough
to provide the necessary transient energies without much impact on the voltage across the IC.
An overly large capacitance, on the other hand, merely lowers the resonance frequency (unless the
ESL and ESR values are improved accordingly). Beyond its resonance, a capacitor behaves like
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Fig. 10.7 Power distribution network with hierarchically arranged bypass capacitors.

an inductance and is no longer able to supply energy for fast transients. The task is thus divided
between small and low ESL capacitors placed as close to each package as possible, and larger but
also slower capacitors mounted nearby, see fig.10.7. Depending on the clock frequencies, slew rates,
and current levels involved, typical values for the former range between 100 pF and 10 nF while the
latter are sized to be many times larger.

A more innovative idea is to distribute bypass capacitance across the PCB itself by having power
and ground planes arranged next to each other with just a thin dielectric layer of high permittivity
in between [306].

Placing bypass capacitors within the package next to the die pushes resonance to still higher fre-
quencies. This is because self-inductance augments with the area enclosed by the current flowing in
the loop. Interconnection is either via a short bonding wire as illustrated in fig.10.8b or via short
metal lines if the die is flip-chip mounted on a laminate substrate as in fig.11.14.

die

cap

cavity

package

cavity

package

die
capdie

cavity

package

cap

VDD

VSS
pins

VDD

VSS
PCB traces

b)a) c)

Fig. 10.8 Recommended locations for bypass capacitors. Placed on the printed circuit board in the immediate

vicinity of the IC package (a), included within the package next to the die (b), and distributed across the die

itself (c).
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Observation 10.3. When selecting bypass capacitors, do not strive for maximum capacitance.

Instead, pay much attention to the resonance frequency of the loop formed by the IC, the capacitors,

and the wiring. Use low-ESL parts and keep all related interconnects as short as possible.

On-chip bypass capacitors

With ever higher switching speeds and bus widths, the usage of discrete capacitors alone proved
insufficient in high-performance designs, so additional decoupling capacitance had to be brought
even closer to the active circuitry. In fig.10.8c, thousands of filler cells, each containing a tiny
capacitor, are spread out over the entire core area to obtain an adequate overall capacitance and
low-impedance paths for switching currents.6 [307] have shown that on-chip decoupling helps a lot
to mitigate the effects of inductance in the power and ground nets and that the local distribution
of fillcaps should best follow the distribution of loads.

Example

The 21364 CPU of the Alpha processor family, implemented in a 180 nm 7M1P Cu CMOS tech-
nology, has a total bypass capacitance of 450 nF distributed over the chip. An extra 4000 µF is
included within the land grid array (LGA) package. For a low-inductance interconnect, the die is
flip-chip-connected to the package base board with 5904 bumps, of which 4962 are allocated to
power and ground [308].
�

It should be noted that switching pad drivers do not benefit from on-chip capacitors as much as
core activities do. This is because I/O charge and discharge currents continue to flow through
package-related series impedances. Also watch out for critical resonances that might develop.

Low-impedance supply routing

Minimize inductance and resistance of on-chip ground and power networks as follows:

• Run them on low-resistance metal layers throughout.
• Keep lines short while generously sizing their overall widths.
• Avoid unnecessary layer changes because of via and contact resistance.
• Connect multiple vias or contacts in parallel to lower resistance.
• Avoid convoluted inductor-like routing shapes.
• Minimize the area enclosed between power and ground current paths.

Due to their relative thickness and wide pitch, the uppermost metal layers are preferred for supply
routing.7 Several layout arrangements for power and ground distribution are shown in fig.10.9.
Good results are obtained from routing power and ground on adjacent parallel lines on a first layer
combined with an analogous grid on the next layer below that runs perpendicularly to the first,
and where the two grids are generously cross-connected with vias. Superimposing wide vdd and
vss lines minimizes inductance and contributes to on-chip decoupling capacitance but may stand
in the way of long signal wires assigned to the same metal layers for routing.

6 How to build CMOS fillcaps is explained in section 8.4.4.
7 See section 11.2 for a discussion of interconnect layers.
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Solid planes are not used in VLSI as they would create manufacturing problems and induce too much
mechanical stress due to diverging thermal expansion coefficients of metal, silicon, and dielectric
materials. Interdigitated combs that feed cell areas from just one side as shown in fig.10.9b and c
used to be popular at a time when very few metal layers were available.

Observe from fig.10.9e how pads generously placed on top of the active circuitry, rather than along
the die’s edges, help distribute supply currents and reduce the distances these have to flow on the
die. The larger the chip, the higher its speed and current drain, the more important the benefit.
Flip-chip packaging not only takes advantage of this but also does away with bond wires and their
inductance.

Further advice can be found in [304] [309], two textbooks entirely devoted to power distribution.

Example

Intel’s Itanium CPU contains 25.4 million transistors including L1 and L2 caches. Global power
distribution is with a mesh built from metal5 and metal6 lines with signal lines finely interspersed
for shielding. On-chip bypass capacitors are placed in the proximity of high-di(t)/dt subcircuits and
in routing channels. Total on-chip bypass capacitance is 800 nF in 180 nm CMOS technology [310].
In addition, extra decoupling capacitance has been included in the package.
�

Solid PCB ground and power connections

Series impedance is minimized by shaping ground and power distribution nets into solid planes
or — to a lesser degree — into meshes; the usage of comb-type layouts is discouraged in the context
of PCB design.8 Package or socket pins must always be soldered to the ground or power plane
directly; do not use wire-wrapping for supply connections!

Also, never forget that any (forward) current that flows out of a package pin gives rise to a return
current, and that loop inductance is proportional to the area enclosed by the current flow. The
absence of a low-impedance return path will force the return current to find its way through nearby
board traces and so generate unnecessary crosstalk. Digital board layouters benefit from looking
inside UHF radio or TV equipment. In fact, current spikes with rise and fall times on the order of
1 ns must be treated like GHz signals.

10.4.2 Separate polluters from potential victims

Physical segregation

Not all cells within an IC contribute equally to supply noise, nor are all signals equally susceptible
to it. As a rule, separate polluters from vulnerable subcircuits. Important sources of current spikes
include electrostatic discharge (ESD) protection circuitry, pad drivers, collective clock buffers, and
other drivers of heavy loads. These are typically placed in the padframe and fed via dedicated
supply lines, see fig.10.10 for a sketch of a typical CMOS I/O circuit.

8 [311] [312] [313] offer practical hints on grounding, shielding, termination, layout, etc. at the PCB level.
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Input buffers, on the other hand, are especially exposed to deviations between external and
internal reference potentials. They are, therefore, placed in the core and fed from the relatively
clean supply lines there.
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Fig. 10.10 Typical IC input/output circuit (simplified). Note that the figure combines an input on the

right-hand side with an output on the left in a single schematic drawing; only bidirectional pads include all items

shown.

Electrical decoupling of switching pads from non-switching ones

While the circuit of fig.10.10 nicely isolates the core logic from ground bounce and supply droop in
the padframe, stationary outputs continue to suffer from contamination with noise. The situation is
improved in fig.10.11. The idea is to provide separate current paths for switching and non-switching
outputs by introducing two final transistor pairs per output pad that get activated in an alternating
fashion. The first pair drives an output from logic 1 to 0 and vice versa whereas the second pair
merely serves to keep an output in its state once it has settled. The hefty transient currents from
the first pair are dumped on noisy supply rails while the stationary drivers connect to a second set
of rails without causing much noise there. This requires four electrically separate supply rings for
powering the padframe (in addition to those feeding the core):

• vdd frame st to provide a path to power for pads while stationary,
• vdd frame tr to source charge currents of pads during transients,
• vss frame tr to sink discharge currents of pads during transients, and
• vss frame st to provide a path to ground for pads while stationary.

Electrical decoupling of core and padframe

Minimizing the common series impedances of padframe supplies and core supplies greatly reduces
noise coupling. The routing of fig.10.9a is extremely unfortunate in this respect. Figure 10.9b per-
forms much better as currents from the padframe and from the core follow different paths except
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(simplified).

for very short segments next to the supply pads. On-chip coupling between core and padframe is
virtually eliminated by feeding them via separate pads as shown in fig.10.9c to e.

Note that applying the concept of split supplies at the package level implies a major risk. Different
parts of a circuit that are being fed from separate pins with no on-chip interconnection, see fig.10.6c,
may lead to destruction of the device if some of the pins remain unconnected when the device is
powered up in a test fixture or on the final board. A safer way is to double-bond supply pins
by providing two pad sites for one package pin, as shown in fig.10.6d, thereby eliminating noise
contributions caused by common bonding wires.

Specially designed lead frames are sometimes used — mainly in conjunction with corner pinning —
to minimize noise contributions from common package leads. Such split power lead frames
accommodate separate bonding wires for core and padframe but connect them to a single pin near
the edge of the package, see fig.10.6e.

Even with a moderate number of simultaneously switching outputs, feeding the padframe from a
single pair of supply pads and pins often proves insufficient. A better approach is to provide extra
ground and power pads at regular intervals and to group pad drivers around those pads in the
layout. This interspersed supplies approach illustrated in fig.10.6f further contributes to abating
cross-coupling effects between core and pad drivers and among outputs.

10.4.3 Avoid excessive switching currents

Driver sizing

Select pad and clock drivers carefully. Do not use stronger drivers than necessary since this would
further increase switching and crossover currents. Begin by estimating the loads the different outputs
will have to handle in the target system, including wiring parasitics. Also, do not forget that the
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specialized hardware test equipment that your IC will have to drive before being put to service may
load outputs more heavily than the final application does.

With respect to PTV variations, it is interesting to note that what are the best conditions speedwise
are the worst ones noisewise. Slow circuit samples exhibit long delays but produce little switching
noise, while the opposite is true for fast samples. This contention together with the importance of
PTV variations makes the sizing of large drivers a difficult compromise.

Slew-rate control

Oversizing buffers and transistors in an attempt to account for worst-case timing often leads to
unacceptable ground bounce, and vice versa. It is, therefore, necessary to render rise and fall times
less dependent on PTV conditions.

A simple solution is to subdivide driver transistors and to selectively disable sections thereof as
a function of the process conditions found when testing a circuit copy [314]. A second approach
compensates for process variations by controlling the switching currents from voltage reference
circuits the outputs of which depend on the process outcome, so as to maintain approximately
constant charge and discharge rates [316]. Yet another idea is to deliberately reduce the slew rate
by a negative feedback mechanism so as to make it less sensitive to PTV variations. Most modern
cell libraries include pad drivers that implement some kind of slew-rate control. Prefer such drivers
whenever performance specifications allow.

Soft switching drivers

Standard CMOS inverters and buffers would cause excessive crossover currents if they were sized
up to handle off-chip loads. Output pad drivers are thus typically designed so as to avoid crossover
currents by minimizing the simultaneous turn-on of n- and p-channel MOSFETs, see fig.10.12 for
an example. Similarly, the final transistors are sometimes made to turn off rapidly to minimize
crossover and to turn on gradually to contain di(t)/dt. Check your cell library for soft switching
drivers and see problem 2 for further suggestions in case you are given the opportunity to design
your own buffer circuits.

Staggered switching

When there are too many heavily loaded primary outputs, try to spread their switching over a short
lapse of time rather than let all of them change simultaneously. There are several ways to do so,
see fig.10.13.

◦ The most radical solution is to multiplex the output data in two — or more — groups over
the same pins and pad drivers (b). Besides alleviating the noise problem, this solution reduces
pin count and packaging costs at the expense of bandwidth.

◦ Stay with the full number of pins but withhold half of the output data for one clock cycle,
thereby effectively staggering the switching of the drivers (c). As with the former solution,
throughput is significantly reduced. The subsequent proposals eliminate that bottleneck by
reducing the staggering to less than one period of the system clock CLK.
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◦ Postpone the switching of the second half of the output register until the transient currents
from the first half have largely died out by driving it with the opposite edge of clock CLK.

◦ If this proves unacceptable, check whether a higher-frequency clock CLF is available, from
which an auxiliary clock CLD retarded by some smaller integer fraction of the system’s clock
period can be obtained (d, e).

◦ If no fast clock is available, consider using a carefully tuned delay line to derive the auxiliary
clock (f).9 Be aware that the usage of delay elements violates the rules of synchronous design
and is, therefore, more delicate.

The last approach can be understood as introducing clock skew on purpose. Note that it is by no
means limited to outputs, but can also serve to better distribute switching activities of the core
logic. The authors of [318] report typical peak current reductions of some 20% to 30% with this
technique.

Low-Voltage differential signaling

Low-voltage differential signaling (LVDS) was originally developed for interboard communication
at distances of up to 10 or 15 m for video and multimedia applications. LVDS, which was accepted
as IEEE standard 1596.3 in 1996, combines data rates up to 800 Mbit/s with low power, low noise,

9 Delays can be obtained from an inverter chain, from transmission gates, from extra load capacitances, and/or
from resistive interconnect lines. You may also want to consult section 8.4.6.
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and low cost. Communication is unidirectional over controlled differential impedance media such as
twisted pairs, twinax cables, ribbon cables, or matched PCB lines.

Auxiliary subcircuits not drawn in fig.10.14 serve to detect out-of-the-normal conditions such as
the absence of a driving signal and shorted or broken lines. The reduced voltage swing of some
350 mV limits static power dissipation to approximately 1.2 mW per link. For comparison, note
that traditional NRZ10 full-swing voltage signaling with 3.3 V absorbs just about the same amount
of power while driving a capacitive load of a mere 10 pF at a data rate of 400 Mbit/s.

1 0 NRZ is an acronym for “non return to zero”, a collective term for those waveforms that are obtained from
concatenating one bit to the next in the simplest possible way, that is with nothing in between.
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Fig. 10.14 Low-voltage differential signaling communication link (simplified).

The suppression of common-mode noise, the low power dissipation, the absence of current spikes
from the transmitter circuit, and the tolerance with respect to parameter variations make it possible
to achieve a data rate with one pair of lines that is more than double that of conventional single-rail
signals. Please refer to [159] [320] [321] for further discussions.

Examples

The PlayStation 3 board connections between CPU, memory, and graphics processor are imple-
mented with low-voltage differential signaling [318]. Similar techniques have been adopted in the
FireWire and Serial ATA (SATA) standards. The digital DVI and HDMI video links use LVDS
in conjunction with a standardized 8-to-10 bit encoding scheme to transmit the RGB components
with signal waveforms that minimize the number of transitions and that balance the average DC
level, hence the name transition-minimized differential signaling (TMDS).

�

10.4.4 Safeguard noise margins

Switching thresholds and input level shifters

Level shifters must be used on all primary inputs and wherever subcircuits that operate from two
different supply voltages exchange data, that is where Uol , Uil , Uih , and Uoh of transmitter and
receiver are incompatible. A level-shifter circuit is depicted in fig.8.36. Maximize noise margins by
preferring switching thresholds centered around 1

2 Udd (CMOS levels) over unsymmetric (TTL-style)
levels. Feed input level shifters from the core rather than from the padframe. The reason for this
becomes clear from fig.10.4 when g3 stands for a level shifter. Consider using level shifters with
Schmitt-trigger characteristics to restore poor input signals.
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Warning example

A digital IC was found to malfunction when driven from its on-chip oscillator whereas it worked
correctly from an external clock. This was because the slow ramps of the 32 kHz sine waveform from
the oscillator — a classical feedback loop built from a CMOS inverter and an off-chip crystal —
were corrupted by switching noise. The problem could have been avoided if a Schmitt trigger had
been used instead of a normal buffer to shape the signal from the oscillator.
�

Asynchronous resets and gated clocks deserve special attention

Noise is particularly critical on asynchronous reset signals because a spurious pulse could trigger
reset of a circuit — or of parts thereof — at any time. To prevent this from happening, the voltage
levels of reset signals are often made unsymmetric so as to maximize the noise margin for the reset’s
inactive state. This is why active-low resets in conjunction with unsymmetric TTL levels were gen-
erally preferred when supply voltage was 5 V. A similar reasoning applies to critical inputs subject
to impulse or transition signaling such as edge-triggered interrupt request lines and gated clocks.

Unused inputs

Do not leave any unused logic inputs open. Especially in MOS circuits, inputs may otherwise float
near the threshold voltage and unnecessarily draw DC. In addition, an open input may pick up AC
signals from a nearby source, switch in an unwanted way, draw even more supply current, and so
contribute to overall switching noise.

Mixed-signal design

Analog signals are exposed to interference from the switching activities in the digital circuit blocks
that coexist on the same die. While many of the countermeasures discussed so far — such as
geometric separation, distinct supply nets, and soft switching — help to fight noise injection, let us
see what else can be done on the digital side to minimize the impact.

Clocks have been found to be particularly pervasive polluters. The extremely fast clock ramps found
necessary to minimize skew in edge-triggered designs in section 6.3.1 result in strong harmonics.
Two-phase level-sensitive clocking offers an opportunity to relax slew rates because substantial
skew can be accommodated by generously sizing the non-overlap phases. This helps one not only
to manage with less aggressive clock waveforms, but also to get by with lighter clock buffers, and
to better distribute switching currents over the clock period.

Noise pollution from digital signals can further be reduced by resorting to CMOS current-mode
logic (CML) families that rely on current switching in conjunction with reduced voltage swings
[322][481]. Directing a constant current through either of two branches in a Y-topology network of
n-channel MOSFETs reduces current spikes by two orders of magnitude over conventional CMOS
[323], but brings about static power dissipation and extra routing overhead.

Common series impedance coupling and crosstalk are not the only conveyors of noise when digital
and analog subcircuits operate simultaneously on a common chip. Coupling also occurs via the
substrate as rapid voltage fluctuations from the digital part tend to modulate MOSFET threshold
voltages in the analog part via the body effect. The impact is highly dependent on the substrate
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being used (lightly vs. heavily doped; presence of an epitaxial layer; single, twin or triple wells).
Please refer to [324] [325] [326] for advice on how to minimize substrate coupling.

Adopting differential signaling on the analog side also helps because differential circuits see most
forms of interference as largely uncritical common mode noise signals.

Noise analysis

To compare ground bounce against noise margins, one can come up with a simplified noise-equivalent
circuit and carry out electrical simulations using a SPICE-type software tool there. The equivalent
circuit must include all significant polluters, the most vulnerable victims, plus the actual parasitics
as extracted from the circuit’s final layout. Estimating the combined effects of ground bounce
and crosstalk on signals in transit is much more demanding, though, as too many signals, layout
parasitics, and data patterns are involved. In practice, specialized software tools are being used for
the purposes of power grid analysis and crosstalk analysis, see sections 12.4.7 and 12.4.8.

10.5 Conclusions

� Many of the practical difficulties with ground bounce are due to

- Poorly sized or carelessly routed power supply current supply and/or return paths,
- Missing, inadequate, or too distant decoupling capacitors, and
- Oversized, and hence also overspeed, output pad drivers.11

� While it is true that ground bounce is critical in any digital VLSI chip or printed circuit board
of more than modest speed or size, a vast collection of countermeasures is available to keep
this undesirable phenomenon within safe limits.

� Working out the details of supply networks calls for schematic and layout drawings that
highlight power supplies, current return paths, decoupling capacitors, and connectors, along
with cross sections and layout parasitics. The customary gate-level diagrams do not suffice as
they do not indicate current flow.

� Data-dependent jitter caused by crosstalk is a concern for technologies below 250 nm.

� Detailed noise analysis is a must for all circuits of substantial size, speed, or output loading.
Take advantage of specialized signal integrity analysis tools.

10.6 Problems

1. Numbers for ground bounce in 2.5 V CMOS outputs have been given in section 10.3.3.
(a) Leaving the other quantities unchanged, repeat the calculation for a traditional process

1 1 Incidentally, observe that replacing one IC with another of significantly higher speed grade on the same circuit
board may also give rise to troubles.
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and packaging technology where Udd = 5 V and Lg = 20 nH, with rise and fall times of 5 ns
each. Compare the numbers and draw conclusions about the general trend.
(b) Using a graphing tool, plot (10.6) as a function of n when n out of n (i.e. all), when n out
of 16, when n out of 32, and when n out of 64 outputs switch at the same time.

2. Consider the tristate buffer circuit of fig.10.15.
(a) Replace the predriver circuitry by a gate-level equivalent.
(b) Compare the crossover currents in the final pair of MOSFETs when the output switches.
What is the benefit of the original circuit over its logic equivalent?
(c) Focus on the final stage now and devise a solution that combines gradual turn-on with
rapid turn-off. Hint: Subdividing very wide MOSFETs into a bunch of smaller transistors
connected in parallel comes very naturally in VLSI layout. Take advantage of this!

400/2

320/2

118/2 187/2

OUP_DATA

OUP_ENABLE

predriver circuitry

FINAL_P

FINAL_N

772/2.5

484/2.5

final stage

PAD

Fig. 10.15 Low-noise tristate pad driver circuit.

3. Think of a capacitor and qualitatively draw its equivalent circuit diagram. Which of the circuit
elements matter for the application as a bypass capacitor? Sketch the capacitor’s impedance
as a function of frequency.

4. Figure 10.16 shows three possible arrangements for metal lines on a board or in a VLSI chip.
Discuss their relative merits if those lines are to carry power and ground.

5. Assume you had found that the interconnect delay of some long signal line in your circuit
is on a critical path and exceeds the acceptable timing budget no matter how you size the

a) b) c) 

Fig. 10.16 Cross sections of power and ground lines.
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driving buffer. Do you see a way to speed up signal propagation with the help of crosstalk?
Hint: Reconsult fig.10.3. Do you see more options?

10.7 Appendix: Derivation of second-order approximation

This appendix serves to justify equations (10.6) and (10.7). The more onerous part of the derivation
has been done in [303], where a few mathematical models for estimating the maximum excursion of
the ground potential during the damped oscillations that follow simultaneous switching in a bank
of output drivers are proposed and evaluated.

Among those approximations, the one most appropriate for today’s short-channel transistors is
based on the alpha-power-law model12 and stated in equation (10.6). The approximation has been
obtained under a number of simplifying assumptions.

• Currents get limited by transistors (rather than by interconnect resistance).
• The on-going MOSFET operates in its saturation region throughout the input ramp time.
• Velocity saturation is complete (α = 1).

Still, the noise model has been found to be in good agreement with SPICE-type simulations by its
authors [303].

The original approximation makes use of two coefficients,

K1s = 1 +
m Cl

(tr − t0 ) n

L

Pc W
and K2s =

(tr − t0 )
n

L

Pc W
(10.12)

where

Pc is an an empirical MOSFET parameter of the alpha-power-law model,
W is the effective channel width, and
L is the effective channel length.13

The problem with applying these two definitions in the context of cell-based design is that Pc , W,

and L are not normally known, so a more practically useful alternative is sought. We begin by
observing that the alpha-power-law model comes in many variations and that the authors of [303]
use a formulation where drain current is modelled as

Id = Pc
W

L
(Ug s − Uth )α (10.13)

instead of

Id = Id on

(
Ug s − Uth

Udd − Uth

)α

(10.14)

as in (8.56). By equating these two alternative formulations one finds

L

Pc W
=

(Udd − Uth )α

Id on
(10.15)

1 2 This and other MOSFET models are introduced in section 8.7.4.
1 3 The remaining model parameters have been explained in section 10.3.3.
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which simplifies to

L

Pc W
=

Udd − Uth

Id on
= Req (10.16)

when one sticks to the assumption of complete velocity saturation. Quantities Udd , Uth , and Id on

are indeed much easier to look up in library and technology manuals. Note that Req is not quite
the same as the MOSFET’s “on”-resistance Ron .



Chapter 11

Physical Design

11.1 Agenda

Physical design is concerned with turning circuit netlists into layout drawings that

• Are amenable to fabrication with some given target process,
• Logically function as expected in spite of numerous parasitic effects,
• Meet ambitious performance goals in spite of layout parasitics, and
• Keep fabrication costs down by minimizing die size and by maximizing yield.

The degree to which physical issues are placed under control of IC designers is highly dependent
upon fabrication depth and design level. While global interconnect must be planned for in every
design project — even when opting for field-programmable logic — few digital designers continue
to work with layout at the detail level today. This chapter is organized accordingly. Sections 11.2
through 11.4 cover issues that are relevant in any IC design, such as floorplanning and packaging,
while the material on detailed layout is postponed to section 11.5. Section 11.6, finally, collects
discussions of various destructive phenomena that must be contained.

11.2 Conducting layers and their characteristics

The layers made available by VLSI processes greatly differ in their geometric and electrical charac-
teristics. Let us begin by studying those properties and differences.

11.2.1 Geometric properties and layout rules

The transfer of layout patterns to the various layers of material on a semiconductor die is obtained
from photolithographic methods followed by selective removal of unwanted material. Numerous
effects concur to limit the achievable resolution:



524 Design of VLSI Circuits

• Tolerances and misalignments of photomasks,
• Wave diffraction and proximity effects,
• Uneven profile together with shallow depth of focus,
• Reflections from underlying layers,
• Tolerances in photoresist exposure,
• Etching along undesired dimensions,
• Lateral diffusion of dopants, and
• Spiking of aluminum.

To ensure reasonable fabrication yields in spite of such imprecisions, process engineers define a set
of layout rules1 that must be observed if a design is to be manufactured using their fabrication
process. Layout rules must be viewed as a compromise among layout density, yield, and desirable
electrical characteristics. A rule deck for a modern CMOS process includes hundreds of rules, and
increasing process complexity is driving increasingly complex rule decks.

Layout rules also provide a workable interface between design and manufacturing. While layout
designers must know and respect all geometric rules imposed by the target process, they are freed
from knowing the target process and its limitations and peculiarities in too much detail. To protect
themselves against incongruous designs and improper claims, silicon foundries invariably ask for a
proof of compliance with layout rules, termed design rule check (DRC), before accepting a design
for fabrication.2

Observation 11.1. A set of layout rules provides a clean separation between the responsibilities of

VLSI designers and manufacturers. A foundry typically rejects any design that cannot be demon-

strated to fully comply with all layout rules of the target process.

As current rule decks include so many rules, as those differ from process to process, and as numbers
change from one process generation to the next, it makes no sense to attempt to enumerate them
here. Instead, we will just explain the motivations behind key geometric restrictions. Most rules fall
into one of the categories illustrated in fig.11.1.3

Minimum width

A minimum size is stipulated for each physical layer essentially to prevent a structure from falling
into electrically disjoint pieces as shown in the example of fig.11.1a. Long and narrow lines with no
other structure nearby tend to be more susceptible to overetching than densely packed items of the
same width and are, therefore, sometimes required to be of larger width.

Minimum intralayer spacing

Minimum spacing constraints between layout structures on a single conducting layer serve to prevent
short circuits between adjacent items, see fig.11.1b. Minimum intralayer spacing is sometimes made
dependent on whether two structures are electrically connected or not. As an example, one 130 nm

1 Though dated and imprecise, the term “design rule” continues to be in common use.
2 Rule-based layout checking has its limitations, and these are to be discussed in section 12.4.2.
3 There is no universally agreed definition of the terms being introduced here. NXP Semiconductors, formerly part

of Philips, for instance, uses “space” for intralayer spacing, “separation” for interlayer spacing and “overlap”
for enclosure, whereas other sources interpret “extension” and “overlap” the other way round.
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Fig. 11.1 Minimum size rules (top row) and the likely consequences of violating them (bottom row).

process asks for a minimum well-to-well separation of 630 nm if wells are at the same potential, and
of 1000 nm otherwise.4

Minimum interlayer spacing

Minimum spacing constraints between layout structures on different layers are specified to exclude
undesired interactions. Consider a MOSFET, for instance. In the absence of sufficient lateral sep-
aration between the poly gate and a nearby source/drain contact, a leakage path might form. A
more subtle example also shown in fig.11.1c is a poly wire placed next to an unrelated diffusion
area. Zero spacing between the two would result in their edges lying flush on top of each other with
only thin oxide in between, thereby inflating mutual capacitance.

Minimum enclosure

Minimum enclosure constraints relate to layout structures on different layers and are uniform in all
directions, see fig.11.1d. In the case of a contact or a via, they make sure that the layers involved
connect properly in spite of minor misaligments of masks and tolerances of the etching process. More
such constraints are concerned with the embedding of diffusion areas within wells. Yet another
enclosure rule requires the top-level metal to extend underneath the overglass passivation layer
around all pad openings such as to obtain a hermetic seal.

Minimum extension

Much as for enclosures, minimum extension rules apply to overlaps between different layers, yet
they have an orientation instead of being uniform. Consider the MOSFET depicted in fig.11.1e,

4 The problem with voltage-dependent rules is that DRC essentially starts from geometric data. Some DRC tools
cannot anticipate electrical parameters of a circuit in operation. Others could, but the way the DRC has actually
been implemented in the foundry kit prevents them from doing so. Practical DRC runs thus often work from
the assumption that all wells of one type are at the same potential, which applies to standard digital circuitry,
but not necessarily to analog subcircuits, voltage converters, pad drivers, and the like.
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for example, where the polysilicon gate acts as a mask during implantation of source and drain. If
the poly were allowed to end flush with the diffusion areas, a narrow conducting diffusion channel
might form underneath the gate’s edge, thereby preventing the transistor from ever fully turning
off. A positive extension of the gate area perpendicular to the source–drain channel provides some
safety margin both against lateral diffusion and against misalignment of masks.

Maximum width

Much as in the examples presented so far, most design rules specify minimum dimensions. Maximum
width requirements also exist and typically refer to contact and via openings, see fig.11.2a. Contacts
and vias are fabricated by etching cuts into a dielectric layer and by filling them with tungsten plugs
before depositing the next metal layer on top, see fig.11.2b. A maximum opening is always prescribed
to warrant plugs of uniform quality and to favor a planar surface.5 Often the same number is also
specified as a minimum dimension, which implies that a contact/via can be manufactured to one
legal size only. Larger contacts and vias, as required on wide interconnect lines, must be broken up
into an array of smaller features, a technique which is known as stipple contact/via and shown
in fig.11.2a.

d)

b)

c)a) maximum width

W

almost planar surface

metal

metal

inter-level
dielectric

tungsten
plug

poor step coverage

metal

metal

inter-level
dielectric

Fig. 11.2 Maximum size rule for contacts and vias. Stipple contact/via versus an oversize single contact/via

(a). Cross section of a plugged via (b) and of a historical sink-in via (c). Electromigration-aware stipple

contact/via (d), to be explained in section 11.6.1.

Density rules

Planar density is defined as the area occupied by all structures on a layer within a given layout
region divided by the overall area of that region. Density rules specify lower and upper bounds
for occupancy. As an example, the metal layers could be asked to occupy, on the average, no less
than 20% and no more than 80% of each 1 mm by 1 mm region. A multitude of small unconnected

5 Traditional fabrication processes did without plugs. Instead, a contact/via was obtained by having the upper
metal sink into a cut previously etched into the intermetal dielectric underneath, see fig.11.2c. As the resulting
coating was thinner on sidewalls than on level surfaces, the resistance and maximum current density of such
a contact/via were largely determined by the circumference of the opening rather than by its area. Large
contacts/vias thus had to be stippled much as with modern plugs, although the reason was quite different.
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dummy patterns must be filled in where the payload structures do not occupy a region to a sufficient
degree. Density rules have been introduced along with chemical mechanical polishing (CMP) to
prevent unacceptable dishing of the softer material when two materials of different hardnesses, such
as copper and silicon dioxide, are subject to planarization.

Antenna rules

During manufacturing steps such as reactive ion etching, poly and metal structures collect the charge
carriers they get bombarded with, resulting in a build up of voltage. Due to their extremely thin
gate dielectrics, any MOSFETs connected to such an “antenna” become exposed to strong vertical
fields. While the accumulated charge gets reconducted to bulk via Fowler–Nordheim tunneling, the
gate oxide material suffers in the process. To prevent the dielectric from deteriorating to a point
where gate leakage, reliability, and threshold voltage shifts might become a problem, manufacturers
constrain the ratio of exposed conductor surface to the connected transistor gate area for each
layout structure.

11.2.2 Electrical properties

As the conducting layers are made of different materials and with different thicknesses, they nec-
essarily differ in their electrically characteristics, see tables 11.1 and 11.2 for actual numbers. An
overriding concern of interconnect design is to obtain low resistances and low parasitic capacitances
so as to minimize switching times and interconnect delays.

Conductivity

Observe the huge difference in sheet resistance between metal and silicon layers. Were it not for
silicidation, the contrast would be even more significant. In most fabrication processes, the conduc-
tivity of source, drain, and gate areas gets improved by depositing a metal silicide such as NiSi
or CoSi2 on top of the silicon material. The term polycide refers to a silicide layer placed over
polysilicon whereas silicide deposited on top of both poly and diffusion areas is known as salicide,
an acronym for self-aligned silicide.

Sustainable current density

Reliability concerns impose a limit on the amount of current a line can handle in practice. This is
because metal conductors tend to disintegrate to the point of rupture when subjected to excessive
current densities over prolonged periods of time. Section 11.6.1 is devoted to this undesirable phe-
nomenon known as electromigration. As a consequence, VLSI designers must plan interconnect
networks, particularly vdd and vss nets, not only as a function of resistance but also as a function
of current load.

11.2.3 Connecting between layers

The various layers and fabrication processes further differ in how layout structures on one layer can
be made to connect to layout structures on other conducting layers. Figure 11.3 shows a nice view
of an IC with five layers of metal.
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Examples

Table 11.1 Conducting layers of a 250 nm 2.5 V 5M1P twin-well poly-gate CMOS process. The
number of mask layers is 23.

metals (aluminum) poly diffusions wells
layer M5 M4...2 M1 P1 n+ p+ n− p−

thickness or depth [nm] 900 600 600 250 180 180 1800 n.a.
min. width [nm] 420 400 320 240 300 300 1200 1200
min. spacing [nm] 540 400 320 320 400 400 2000 2000
min. pitch [nm] 960 800 640 560 700 700 3200 3200
sheet resistance [Ω/�] 36m 53m 53m 2.5 2.5 2.0 400 n.a.
max. current density [mA/µm] 1.5 0.8 0.8 n.a. n.a. n.a. n.a. n.a.

Table 11.2 Conducting layers of a 130 nm 1.2 V 8M1P twin-well poly-gate CMOS process.
Current densities refer to junction temperature θj = 100 ◦C.

metals (copper) poly diffusions wells
layer M8/7 M6...2 M1 P1 n+ p+ n− p−

thickness or depth [nm] 800 320 320 180 120 190 1500 n.a.
min. width [nm] 400 200 160 120 160 160 630 630
min. spacing [nm] 400 200 160 300 200 200 1000 1000
min. pitch [nm] 800 400 320 320 360 360 1630 1630
sheet resistance [Ω/�] 27m 70m 70m 8.0 7.0 7.0 380 n.a.
max. current density [mA/µm] 8.0 2.56 2.56 n.a. n.a. n.a. n.a. n.a.

�

The conducting paths available in some given target process are best summarized in a graph where
a node stands for a conducting layer and where an edge expresses the fact that two overlapping
polygons connect.6 The absence of an edge between two nodes indicates that there is no way to
connect the two layers directly. Figure 11.5 shows an example for a baseline CMOS process. Observe
from the drawing that there is no way to connect polysilicon to diffusion by way of a simple contact;
two contacts and a piece of first-level metal must be used instead.7

While contact is the name for a connection between a metal and one of the silicon layers, a connec-
tion between two superimposed layers of metal is commonly termed a via. Placing a via on top of a
contact, or two vias on top of each other, always mandates a small piece of regular metal in between.
Such constructions are termed stacked contacts/vias or staggered contacts/vias depending
on whether the contacts/vias are aligned or offset laterally, see fig.11.4. Staggered contacts/vias
tend to be less area-efficient than stacks.

6 It goes without saying that two overlapping polygons on the same conducting layer are electrically connected
and thus form a single electrical node.

7 There are exceptions to this rule. Fabrication processes optimized for memory design support silicide straps
that connect poly to diffusion directly without involving metal1 or a contact plug, see fig. 11.23 for an example.
Also, many analog processes offer a second poly and special intermetal dielectrics as extensions of the baseline
process of fig.11.5 for constructing linear on-chip capacitors without occupying too much area.
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Fig. 11.3 Cross section of a 350 nm CMOS process with five layers of metal (from Jessi News April 1996,

cooperation of France Telecom CNET, SGS-Thomson, and Philips Semiconductors).
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metal2

metal3
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via2
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metal1
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metal3

Fig. 11.4 Stacked (a) versus staggered (b) contacts and vias.

Observation 11.2. Each layer of metal typically connects to the next metal layer above and the

next layer underneath; only the first-level metal can connect to the various silicon layers. Connecting

two non-adjacent wiring layers requires going through all layers in between.

11.2.4 Typical roles of conducting layers

We have, so far, discussed the various conducting layers provided by VLSI technology and have
learned how to capture their most essential characteristics in a few tables and graphs for any given
MOS process. Putting everything together, it is now possible to determine the preferred utilizations
for the various layers.

Almost all interconnect is done in metal. Poor conductivities discourage the usage of polysilicon and
diffusion layers for nets where low delay and/or low voltage drop are vital. Polysilicon and diffusion
are, therefore, confined to strictly local wiring. Metal layers are used as follows.
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Fig. 11.5 Conducting paths between conducting layers in some bulk CMOS twin-well p-substrate baseline

process (example reduced to 3M1P, higher-level metal layers not shown).

• The first-level metal is instrumental for intracell routing because it can freely traverse layout
items on any other conducting layer, can connect to all silicon layers with no detour, and acts
as gateway to all metal layers above.

• Intermediate-level metals are mostly used for general extracell signal interconnect.
• High-level metals are thicker, which lowers their sheet resistance and has them withstand

higher currents. This along with their coarser pitches makes them more suitable for distribut-
ing power, clock, and other critical nets over long distances.

With up to nine layers of metal, today’s CMOS processes provide generous interconnect resources,
and very little area is lost to wiring.8

8 This was not so with the single-metal processes of the pioneer days. All but the shortest wires had to be
implemented with metal and poly exclusively as no other layer of acceptable conductance was available. Rows of
standard cells had to alternate with routing channels that were to accomodate the interconnect lines. Standard
cells used to have their input and output connectors at their top and bottom edges, as shown in fig.11.20b, so
as to facilitate channel routing and cell traversal. With routing channels twice or even three times as high as
the cell rows, layout density was very poor, to say nothing of RC delays.

Processes with three layers of metal offered a major improvement as they were the first to allow for over-
the-cell routing, i.e. placing wires on top of the active cells. With polysilicon and metal1 handling the intracell
wiring, two metal layers became available for non-local routing with no obstacles in their way. Yet, three metal
layers were not enough to do away with routing channels completely, so more and more have been added. Even
with five or six metals, extra space occasionally needs to be set aside between adjacent cells or cell rows when
there are just too many nets to make all the wiring fit on top of the cells.
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11.3 Cell-based back-end design

11.3.1 Floorplanning

In analogy with the floorplan of a house, the floorplan of a chip indicates how the silicon die (the
construction volume) is going to be partitioned in order to accommodate the various building blocks
(the rooms), the busses in between (the hallways), the location of input and output pads (the doors),
as well as the distribution of power, clock, and other important nets (the plumbing). The floorplan
has a significant impact on performance and costs of the final product.

Floorplanning is the activity of organizing the physical aspects of a VLSI circuit and is a continu-
ous process that accompanies all steps of its conception.9 At any point in a design, the floorplan
documents the actual state of the planning process and keeps track of items such as

• Partitioning into major building blocks (datapaths, controllers, memories, megacells, etc.),
• Number and anticipated sizes, shapes, and placement of all such blocks,
• Package selection and pin/pad utilization,
• Wide busses and electrically critical signals,
• Clock domains (frequency, conditional vs. unconditional clocking),
• Voltage domains (power dissipation, power density, local current needs), and
• On-chip power and clock distribution schemes.

By contributing estimations about the physical characteristics of hypothetical circuit implementa-
tions, floorplanning helps VLSI designers make good decisions and so effectively guides their search
towards sound and economical solutions. Floorplanning eventually culminates in a fairly detailed
and precise final floorplan that then serves as target specifications during place and route (P&R)
and chip assembly.

Example step 0: Overall architecture

Floorplanning is primarily a matter of common sense and of sound engineering practices. In order to
illustrate the process, let us follow a circuit project, e.g. an add–drop switch for a proprietary packet-
based data exchange network. The circuit shall connect to up to four identical network branches.
Each port is bidirectional and comprises two pairs of differential signals.10 When the switch receives
a data packet, it analyzes the address header, determines the appropriate destination, does the
necessary processing of the header, and sends the packet off over the appropriate network branch.

The circuit shall further connect to a local host via a microcomputer interface. The switch accepts
data from that interface and translates them into the standard packet format before transmitting
them through the network (add). Conversely, whenever the circuit receives a network packet ad-
dressed to the local host, it strips the header off and delivers the payload data (drop). The evolution
of a floorplan for an ASIC for this hypothetical example is shown in a series of snapshots, see figs.11.6
through 11.10.

9 The various steps that make up back-end design are put into context in fig.13.15. You may want to consult that
figure during the subsequent discussion.

1 0 Much like a FireWire interface.
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Fig. 11.6 High-level block diagram of add-drop switch (simplified).

�

11.3.2 Identify major building blocks and clock domains

Partitioning means subdividing a system into blocks and subblocks and, if necessary, into several
chips. Most often this is a critical issue because total pin count dominates packaging, board, and
assembly costs. The large node capacitances found on a printed circuit board (PCB) also limit
performance and inflate power dissipation. While these arguments are in favor of integrating a
system on as few chips as possible, there are also reasons for not going that far.

Large standard RAMs and ROMs are typical examples as it makes little sense to incorporate
functions that are cheaply available as catalog parts, but that would take up a lot of die area when
implemented within an ASIC. Also, generic parts that mix and match with others in a modular
way tend to find wider markets than more complex and more specialized ones.11

1 1 Please refer to sections 11.4.7 and 13.8 for more thoughts on this.
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Example step 1: Circuit partitioning

In the case of the add–drop switch, a physical link interface (PHY) which combines modulator/de-
modulator with line drivers/receivers is required for each of the four network ports. We plan to reuse
a proven design which is available as a megacell (hard layout) from a previous project. Temporary
data buffering requires storage space as do look-up tables for holding routing information. We opt
for two identical on-chip SRAM macrocells in view of pin count and data bandwidth, and because
the required storage capacities are rather modest. The remaining portions of the packet switch are
to be captured as HDL code and shall be synthesized into standard cells. Because of its relative
simplicity, the project makes do with a single clock domain. It has been decided to use a tree for
distributing a one-phase clock.
�

11.3.3 Establish a pin budget

Deciding on the number of pins is a highly critical issue because the total pin count obviously
affects package selection and packaging costs. It also impacts the effective die size and — as a
consequence — fabrication costs per unit. In the case of wire bonding where pads are arranged at
the perimeter of the chip, two outcomes are possible when a padframe is being prepared for a
given core, see fig.11.7.

Corelimited design.
A large core is surrounded by relatively few pads. Overall die size is primarily determined by
core size and, hence, by circuit complexity. While porting the design to a denser target process
is bound to reduce core size, cost calculations are needed to find out whether this makes sense
economically.

Padlimited design.
A large number of pads encloses a comparatively small core. Their number defines the neces-
sary circumference and so imposes a minimum die size. Whether a denser or a not so dense
fabrication process is chosen has little impact on die size but is likely to change the picture in
terms of costs.

As an important proportion of die area is lost in highly padlimited situations, floorplanning is again
bound to impact architectural decisions at this point. Just consider system partitioning (e.g. on-
vs. off-chip memories), input/output communication scheme (e.g. parallel vs. serial, unidirectional
vs. bidirectional), and test strategy (e.g. block isolation vs. built-in self-test (BIST)).

As a secondary measure, pad geometry can be chosen in such a way as to minimize die size. Narrow
tall pads that get arranged perpendicularly to the chip’s perimeter are optimal for padlimited
designs. Corelimited situations, in contrast, are better served with wide flat pads placed along the
chip’s perimeter.12 Special corner pads, depicted in fig.11.7b, and staggered pads arranged in two
concentric circles as shown in fig.11.13 further help to reduce the chip’s circumference for a given

1 2 Most ASIC libraries include pads for padlimited situations exclusively, because situations where the application
asks for as many pads as possible tend to prevail with today’s extremely dense technologies.
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Fig. 11.7 A core- (a) versus a padlimited floorplan (b).

pad count. The more up-to-date option of covering the die with bumps instead of attaching bond
wires along its periphery will be discussed in section 11.4.

A good pinout accounts not only for on-chip interconnect but also for board-level wiring. Though
most details depend on the package type chosen, it always pays to

• Consciously plan the chip’s footprint and signal routing on the PCB,
• Provide power and ground in the package’s outermost circle of pins or balls,

where they can be made to connect to solid planes or wide lines,
• Arrange signals from the various power domains as contiguous blocks,
• Keep bus signals together and have them follow some logical ordering,
• Provide ample return paths for switching currents, and
• Make differential signals occupy adjacent pins.

11.3.4 Find a relative arrangement of all major building blocks

Local connections are always preferable for reasons of performance and of area efficiency. Conse-
quently, building blocks that exchange data at high bandwidths must be placed next to each other.
Ideally a VLSI architecture is designed already with floorplanning in mind.

What is sought at this point is a planar arrangement of building blocks that

• Respects clock and voltage domains (if there are several of them),
• Makes optimum use of die area by minimizing routing overhead, and that
• Minimizes overall delay on all performance-critical paths.

Many designs combine standard cells, macrocells, and megacells on a single die. A major difference
lies in a property that might be termed geometric plasticity. A building block assembled from
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Example step 2: Pin budget

Table 11.3 Directory of pins.

Function Pins Subtotal

clock and reset 2
boundary scan test 5

Basic equipment 7
network ports 4 · 4
µP port data bits 8
µP port address bits 4
µP port control lines 5

Functionality 33
core ground 4
core supply 3
padframe ground 7
padframe supply 7

Power 21
Spare 3

Total 64

�

standard cells can be made to assume almost any shape as long as there is sufficient space to
accommodate the cells along with their interconnect. Also, a standard cell block can always be
broken into more than one standard cell area. Conversely, several standard cell blocks can be
collected into a single area.

As opposed to this, megacells come with fixed dimensions and fixed connector locations. Flipping
and rotating are the only options for the floorplan. Much the same also applies to macrocells,
although many generators allow for two or three different aspect ratios for the same functionality.

11.3.5 Plan power, clock, and signal distribution

Interconnect planning essentially implies holding back five adverse effects listed in the table below
along with their relative importance for various types of nets.

power clock
and distri- signal

adverse effect ground bution wiring
resistive voltage losses high low low
ground bounce high low low
electromigration high low low
crosstalk low high high
interconnect delays low high high
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Example step 3: Arrangement of building blocks
Figure 11.8 sketches a first tentative floorplan. It has become clear at this point that the design
will be corelimited. Also, a decision has been made about the two macrocells’ aspect ratios.
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Fig. 11.8 Tentative arrangement of building blocks.

�

Designers and EDA tools are more or less free to choose

• The routes and shapes of the individual nets,
• The interconnect layers and the layer changes,
• The conductor widths.

The characteristics of the various interconnect layers have been discussed in section 11.2. Perfor-
mance, cost, and reliability concerns incite designers to make the most efficient possible usage of
the available resources. Allocation best follows a priority list that starts with long and critical nets,
such as supply and global clocks, and ends with uncritical local nets.
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Also, the locations of the connectors for power, clock, and critical signals are now chosen so as to
minimize congestion and layout parasitics. These prospective locations will guide the subsequent
place and route phase.

Example step 4: Target floorplan
A more detailed floorplan is depicted in fig.11.9. Specific positions have been assigned to all power
pads and to key I/O signals. Target regions have been earmarked for all major blocks.
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11.3.6 Place and route (P&R)

The floorplan serves as a target specification for the placement and routing of cells within each stan-
dard cell area. In order to account for unforeseen changes of layout parasitics, modern EDA suites
support the reoptimization and rebuffering of synthesized gate-level netlists after initial placement.
The dependency is most critical in the case of clock net(s), which is why clock tree generation is
postponed until this point in the design flow.

Back-end design remains a tedious exercise, especially when area and/or performance constraints
are very tight. Several iterations may be needed to obtain a satisfactory result. The fact that the
full set of physical design data must be handled during chip assembly does not help either.13 For
very large designs, good floorplans are structured rather than flat and tend to reflect functional
organization. This facilitates decomposition into pieces of manageable size that can be designed
and verified on their own by separate persons or teams.

Old hands among physical designers typically begin with those blocks that they expect to remain
stable. They often include a number of extra gates and flip-flops in blocks that they suspect will
need modifications or bug fixes at a later date. Such spare cells, jokingly referred to as a sewing
kit, make it possible to make last-minute changes without upsetting the floorplan too much. And
should a minor bug surface after prototypes have been manufactured, then chances are that it can
be fixed by redoing just a few metal and via masks.

Whenever a major building block has been worked out in detail and its actual characteristics can
be stated more precisely, the overall floorplan must be updated and refined accordingly. A major
revision of the initial floorplan may prove necessary if area, long path delay, power dissipation, or
other critical figures diverge too much from earlier estimates.

Good routing makes a difference in fabrication yield. At the interconnect level, yield enhancement
implies:

• Connecting multiple vias in parallel.
• Making the preferred orientations of wires on adjacent metal layers perpendicular to each

other to minimize the impact of crosstalk on path delays, both long and short.
• Spacing long lines further apart than required by the minimum separation rule to minimize

the chance of shorts and the severity of crosstalk.

1 3 There was a time when it was very painful to refine a finished design because automatic P&R tools tended to
exhibit erratic behavior on flat floorplans. A minor modification made to a netlist, such as resizing a buffer in
accordance with its actual load found during layout extraction, for instance, might have led to a totally different
arrangement of cells and wires. This, in turn, modified the capacitive load on most nodes, thereby causing rad-
ical alterations of path delays and ramp times. What had been a totally unobtrusive path prior to modification
all of a sudden became a crucial one, while the path for which the modification had been undertaken proved
largely uncritical afterwards. All too often, timing closure remained an elusive goal.

The situation has improved with the advent of EDA tools that do not re-place all cells and re-route all
wires after each and every design modification. Instead, the software saves and preserves the overall layout
arrangement and limits the impact to locally exchanging a few cells and/or re-routing a number of inter-
connect lines. Engineering change order (ECO) is a name for such belated but relatively minor design
changes.
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A layout drawing that includes angles of 90◦ exclusively is said to conform to Manhattan ge-
ometry, while Boston geometry implies that any angle is an integer multiple of 45◦. In spite of
its potential of shortening interconnect lengths significantly, Boston geometry is not (yet) regularly
applied to on-chip wiring.

Scan paths offer some potential for improvement too. It is typically possible to reorder bistables
and entire blocks in a scan chain in such a way as to make most scan connections local with no
cutback in observability or controllability. A similar reasoning applies to block isolation circuitry
and other test structures.

11.3.7 Chip assembly

Chip assembly is the final phase of physical design during which a design gets assembled from
building blocks the inner design of which has been completed beforehand. Chip assembly includes
the following steps.

• Place all top-level building blocks.
• Interconnect those blocks to obtain the chip’s core.
• Prepare the padframe required to electrically connect to the external world.
• Connect core and padframe to complete the chip’s design.

Input and output subcircuits are intimately related to critical issues such as ESD protection, latch-
up avoidance, ground bounce, and I/O timing. Rather than creating their own pads, drivers, and
level shifters, designers are well advised to use proven designs from a commercial library, the lay-
outs of which have been developed by experienced specialists with detailed process knowledge.
Also, do not assemble a padframe in such a way that MOSFETs of opposite polarities happen to
lie next to each other because this is detrimental to latch-up immunity, as will be explained in
section 11.6.3.

Example

The final result is summarized by fig.11.10. Observe the wide metal stripes that run perpendicularly
to the cell rows in order to attenutate the current densities and voltage drops on the narrow
horizontal supply lines there. Placing vdd and vss lines on top of each other contributes to on-chip
bypass capacitance.
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Example step 5: Chip assembly
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details are abstracted from.
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11.4 Packaging

In the early days of microelectronics, packaging was not much more than encapsulation. Under the
influence of ever augmenting pin counts, operating frequencies, power dissipations, and the like, it
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has evolved into a key element of electrical and thermal design. IC packages serve the following
roles.

• Protect semiconductor dies against mechanical stress and other environmental attacks.
• Expand connector geometry so that contacting becomes possible

at the next higher assembly level.
• Provide electrical connection with the surrounding circuitry,

with a particular emphasis on low impedance for power and ground nets.
• Facilitate the handling of parts during shipping and board assembly.
• Carry away the thermal power while keeping die at an acceptable temperature.

In order to meet divergent needs, a great variety of package types has been developed over the years
and table 11.4 attempts to summarize a few of their most essential characteristics. The reader is
referred to the specialized literature such as [483] [484] [485] [327] [328] [329] for more profound
information on packaging technology. Datasheets, selection guides, availability, and pricing data
must be obtained from industrial package suppliers.14

Table 11.4 An alphabet soup of popular package types, past and present (subset).

Package terminals
Package type mounta location typ. pitch [mm] typ. count

single in-line package (SIP) TH 1 edge 2.54 2–12
dual in-line package (DIP, DIL) TH 2 edges 2.54 6–40
pin grid array (PGA) TH surface 2.54, 1.27 72–478
small outline package (SOP, SOIC) SM 2 edges 1.27 8–44
thin SOP (TSOP) SM 2 edges 1.27, 0.8, 0.5 24–86
shrink SOP (SSOP) SM 2 edges 0.8, 0.65, 0.5 8–70
leadless chip carrier (LLCC, LCC) SM 4 edges 1.27 16–84
quad flat package (QFP, QFN) SM 4 edges 1.27, 0.8, 0.65 32 upwards
fine-pitch QFP (FQFP) SM 4 edges 0.5, 0.4, 0.3 up to 376
small outline J-leaded pack. (SOJ) SM 2 edges 1.27 24–44
leaded chip carrier (LDCC, JLCC) SM 4 edges 1.27 28–84
land grid array (LGA) SM surface 1.27, 1.0 48 upwards
fine-pitch land grid array (FLGA) SM surface 0.8, 0.5 up to 1933
ball grid array (BGA) SM surface 1.5, 1.27, 1.0 36 upwards
fine-pitch BGA (FBGA) SM surface 0.8, 0.65, 0.5, 0.4 up to 2577

a TH stands for through-hole and SM for surface mount.

Instead of going into more detail on individual packages, we will outline the packaging process,
advise prospective circuit designers on how to establish the necessary instructions for wire bonding,
and give decision criteria for selecting among competing packaging techniques.

Most VLSI chips continue to be packaged individually, that is encapsulation takes place before
interconnection with other electronic components does. Small outline packages (TSOP, SOJ) and

1 4 Such as Amkor, Fujitsu, Kyocera, NEC, NTK, Signetics Korea, and Tessera, to name just a few.
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ball grid arrays (BGA, FBGA) that are widely used in memory modules are prevalent today. To
gain an appreciation of the standard packaging process, let us follow a processed wafer until chips
are encapsulated in a quad flat package (QFP), see fig.11.11.
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11.4.1 Wafer sorting

The operation of any wafer processing line is constantly being monitored with the aid of generic
test structures that get added as part of mask preparation. These process control monitors
(PCMs) are evaluated after major fabrication steps and one more time before the finished wafers
are cleared for packaging. Any wafer found to suffer from fatal defects or from excessive parameter
variations is scrapped. PCMs typically get “hidden” in the narrow scribe lines, aka saw lanes, that
separate adjacent circuits from each other so as not to sacrifice more of the precious wafer area than
absolutely necessary.

11.4.2 Wafer testing

To avoid the costs of packaging defective parts, the prospective ICs are then subjected to a first
series of functional tests while still being part of the processed wafer, see fig.11.12. A set of ultrafine
needles, firmly held in place by a probe card, is lowered onto a wafer until all needles establish
electrical contact to the bonding pads of what eventually is to become an IC.15 Stimuli are applied
to the inputs and the actual responses from the outputs are checked against the expected ones.
The operation must not take more than a few seconds for reasons of cost and is repeated for all
circuits on a wafer. The outcome is kept on record electronically. Traditionally, defective circuits
were marked by a droplet of ink and this is reflected in fig.11.11 as wafer testing would otherwise
leave no perceptible trace in the drawing.

Fig. 11.12 A circuit under test contacted by a probe card (photo courtesy of Dr. Norbert Felber).

1 5 Observe that each design requires a probe card of its own unless the VLSI designers of a company are willing
to agree on a few standard padframes with predefined pad locations.
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11.4.3 Backgrinding and singulation

Standard wafers are between 720 µm and 770 µm thick. Not only ultraportable applications such
as smart cards and flash memory products but also advanced packaging techniques such as chip
stacking mandate that die be thinned. In an optional step, the wafer’s back surface is subjected
to grinding by disks with embedded diamond abrasives. Final thickness can be as low as 75 µm,
although most thin-wafer production averages 250 µm to stay clear of yield losses during grinding,
handling, and later packaging steps.

In preparation of the next move, the wafer is placed on a sheet of elastic and sticky material referred
to as blue film because of its original color.16 The wafer then gets sawn apart by two orthogonal
series of parallel cuts, each of which traverses the wafer from one rim to the opposite one. The
depth of the circular saw is adjusted so as to separate the dies without severing the film so that it
continues to keep the dies in place. Note that saw lanes continue to be designated by their historical
name scribe line.

11.4.4 Encapsulation

The blue film is then stretched to increase the separation between the individual dies. A vacuum
wand picks one good (non-inked) circuit after the other for encapsulation. In a step termed die
bonding, aka die attach, a good die is placed in the cavity of the package, where it is mechanically
fastened by means of solder or epoxy resin compound. The operation takes approximately one or
two seconds per chip on an automatic assembly line.

Next follows wire bonding, whereby electrical connections are established between bond pads on
the silicon die and their counterparts on the package leads, see fig.11.13. Thin gold or aluminum
wires with a diameter of 17, 20, 25 or 33 µm are typically employed. Bonding occurs by way of
pressure, ultrasonic energy, and/or heat.17 Automatic equipment operates at a rate in excess of six
wires per second. The minimum pitch imposed ranges between 40 µm and 110 µm. The narrower
the pitch, the thinner the bond wires that must be used, and the shorter the admissible wire length.
Narrow pitches also are detrimental to packaging yield and manufacturability. Finally, the package
cavity is sealed with a lid made of metal or ceramic material.

For plastic packages, the overall procedure is similar except that the die is bonded to a chip support
paddle in the center of the metal lead frame. Another major difference consists in the postmolding
process during which epoxy resins are molded around the lead-frame-and-chip assembly after wire
bonding. The leads are then trimmed and bent to their final shapes.

11.4.5 Final testing and binning

The packaged chips are subject to yet another series of functional “go/no go” tests. In addition,
electrical and timing parameters are measured to protect against process variations. Only parts
that fully qualify are stamped or marked with a laser. Processors, memories, and other catalog
parts are typically binned, that is classed and labeled with a speed and/or power grade. Finished
chips can hence be marketed at different prices as a function of the maximum clock rate they can

1 6 Blue film is also known as wafer tape and not necessarily of blue color.
1 7 [330] discusses the process and its impact on yield and reliability in great detail.
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Fig. 11.13 Bonding diagram with related terms and rules.

sustain or of the leakage current they drain, for instance. An individual supply voltage may further
be determined to allow running of each circuit at close to its optimum operating point.

11.4.6 Bonding diagram and bonding rules

Instructions on how to connect the pads on the die to the available package leads during wire bonding
are conveyed in a bonding diagram, see fig.11.13. Practical considerations severely limit the choice
of admissible bonding patterns. Intersecting wires, for instance, are disallowed. Concerns regarding
package selection, package pinout, floorplanning, and bonding rules thus combine in establishing a
valid bonding diagram. As actual bonding limitations differ from one manufacturer to the next, one
must always check for instructions.

Hint: The bonding rules given here do not relate to any specific manufacturer but represent
conservative choices that are widely accepted. More aggressive bonding patterns should be
adopted only if explicitly approved by the manufacturer.
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• Do not design dies with aspect ratios outside the interval [ 1
2 ...2].

• Allow for a minimum gap of 0.6 mm between cavity and die on all four sides.
• Make 25 µm bond wires no shorter than 1.0 mm and no longer than 3.5 mm.
• Avoid downbonds, groundbonds, and double bonds.
• Respect a minimum angle of 45◦ between bond wires and chip edge.
• Make all bond areas square with a minimum overglass opening of 75 µm by 75 µm.
• Respect a minimum pad pitch of 90 µm.

From an electrical perspective, recall that some package types provide special low-impedance leads
for power and ground. Also, some packages have the chip support internally connected to one of
their pins but most do not. If so, that pin must be clearly identified because it galvanically connects
to the substrate from the back side. Depending on whether an n- or a p-well process is being used,
it will typically have to get hooked to vss or to vdd respectively.

Warning: Be cautioned that the routing of package leads (from bond fingers to pins) need not
necessarily be the same for any two packages of the same type and pin count! The lack of a
standard for pin grid array (PGA) packages is notorious.

Unless this is checked beforehand, chips bonded in exactly the same way but mounted in packages
from two different vendors — and sometimes even from the same vendor — may end up with distinct
pinout patterns.

Hint: Components mounted out of position, i.e. mistakenly rotated by 90◦, 180◦ or 270◦, are
a frequent mishap, especially during prototype manufacturing. Make the desired orientation
immediately visible from the hardware itself, do not rely on accompanying documents that
are likely to get lost. This applies both to dies within cavities and to packages on printed
circuit boards.

11.4.7 Advanced packaging techniques

Diverse application requirements have led industry to develop a great variety of packaging techniques
that go well beyond the basic flow explained before.

High-performance packages

High-performance packages are driven by the need to accomodate ULSI chips that operate at GHz
frequencies and dissipate up to 150 W of power. Wire bonding is impractical in such situations.
On-chip power distribution would be very demanding indeed as external connections are confined
to the padframe around a chip’s periphery and severely limited in number. In addition, bond wires
and package lead fingers would excessively add to parasitic impedances.

Table 11.5 compares the key characteristics of on- and off-chip interconnects. Note the superior
conductivities offered by the comparatively thick copper sheets embedded in a laminate substrate.
This observation suggests a more sophisticated solution.

Instead of being surrounded by a padframe, the core area is covered with an array of bumps
deposited on small islands fabricated with the IC’s uppermost metal layer. This makes it possible
to connect to anywhere on the chip’s surface, even above active circuitry, and so greatly augments
the number of external connections. The bumps can be made of solder, gold, or even a conductive
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Table 11.5 On- and off-chip interconnect resources compared (approximate values).

conduct. min. thick- sheet insulating relative dielectric
material pitch ness resistance material constant

Location [µm] [µm] [mΩ/�] [ ]
on-chip upper metal Al, Cu 0.8 0.9–1.5 30–50 SiO2 3.9
ceramic substrate Ag 250 8–10 0.2 Al2O3 7–8
epoxy resin laminate Cu 70 17 0.01 FR4 ≈4

polymer to satisfy different requirements of the application with repect to pitch, costs, temperature
profile, mechanical stress, and reliability.

The die is then mounted on an epoxy resin laminate using flip chip attachement along with a
few local bypass capacitors. The reverse side of that high-density substrate is either equipped with
another set of larger bumps for soldering to a printed circuit board (PCB) as in the case of a ball grid
array (BGA) package, or designed to fit into a land grid array (LGA) socket with spring-loaded
contacts. Figure 11.14 shows a third and more onerous option whereby a mechanical interposer
carries pins so as to form a pin grid array (PGA) package.

silicon die

heat spreader

bumps

provides thermal conduction

provides low-resistance interconnectlaminate substrate

thermal flow

bottom surface
top surface

bumps

interposer provides mechanical stability

electrical currents

bypass capacitor

LGA

BGA

PGA

Fig. 11.14 Cross section through a high-performance package (not drawn to scale).

In any case, the six or so metal layers in the laminate serve to collect and redistribute ground, supply,
clock, and I/O nets. The laminate substrate is thus understood as an extension of the silicon chip
that makes available more metal layers of even lower sheet resistance. A heat spreader placed on
the back surface of the die increases the area in thermal contact with a copper or aluminum heat
sink that is to be pressed down onto the entire package assembly.

High-density packaging

High-density packaging uses similar techniques to mount and interconnect bare dies — and often
tiny SMD components as well — on a small substrate before encapsulating everything in a common
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package. Reduction in overall size and lower parasitics over individually packaged components are
obvious benefits, but others are even more important.

Many applications ask for a combination of diverse technologies in a single product. A consumer
good as common as a cellular phone, for instance, includes CMOS logic, multiple RAMs, flash
memory, RF-subcircuits, surface acoustic wave (SAW) filters, and most often also optoelectronics
for a camera. Even where this is technically feasible, combining many such features on a single
monolithic circuit implies a more complex fabrication process, more lithographic masks, yield issues,
difficult engineering tradeoffs, a mixed-everything design flow, costly test equipment, exposure to
undesirable interactions, and substantial overall risks.

The alternative is to have each subsystem manufactured with its respective optimal technology and
to have them tested separately before mounting them in a common package to obtain a multi-
chip module (MCM). The term system-in-package (SiP) has been coined for MCMs that integrate
passive and other discrete components too [327] [331]. A more ambitious goal is to combine bypass
capacitors, RF thin-film components such as inductors, resistors, filters, and antennas, sensor chips,
and possibly even optical waveguides, lenses, and mirrors, in novel composite substrates [332].

Package-on-package (PoP) is a more recent idea whereby individually encapsulated chips with con-
tacts on the bottom and top surface of the package get stacked to assemble larger subsystems.
Emerging JEDEC and other industry standards are expected to lead to a wider adoption of chip
stacking [333].

In comparison with a system-on-a-chip (SoC) approach, MCM, SiP, and PoP do not inflate up-front
costs too much and offer shorter turnaround times as integration happens at the package rather
than at the wafer level. Another advantage is the option to assemble multiple product configurations
from a limited inventory of monolithic ICs, thereby avoiding the fragmentation of fabrication volume
that otherwise results from overcustomized chips.

Example

Hirschmann Electronics had designed an ASIC capable of switching frequencies in the range from
900 MHz to 2.5 GHz between five inputs and four outputs. A new product was to extend these
capabilities to nine inputs and to include four digital controllers referred to as Digital Satellite
Equipment Control. Coming up with a second ASIC would have meant mixed-signal IC design,
expenses for another mask set, and many months of turnaround time. Figure 11.15 shows the
system-in-package developed instead. The laminate substrate measures 21 mm by 24 mm, includes
four layers, and also carries coupling capacitors, termination resistors, and a tiny glue logic chip [329].
The discretes are soldered whereas wire bonding is used to connect to the seven ICs. Connections
to a motherboard are with bumps placed on the reverse side.
�

Observation 11.3. While high-density packaging competes with monolithic integration to some

degree, it is best understood as a technology that complements and extends the benefits of VLSI to

products that sell in moderate quantities and/or multiple varieties.

Folded flexiprints

Folded flexiprints are particularly popular when a multi-chip circuit must fit into a small or irregular
volume. Chips are fabricated, packaged, and tested in the normal way before being surface-mounted
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Fig. 11.15 Seven dies mounted on a laminate substrate along with numerous discretes (source Elektronik

no.12 2004 p.24, reprinted with permission).

on a flexible film substrate. Discrete components, sensors, and the like can also be accommodated.
The flexiprint is then cut and folded before being fit into a medical device, a personal telecommu-
nication appliance, or some other space-constrained product.18

Chip stacking and cubing

Hearing aids, mobile phones, and flash memories such as USB memory sticks take advantage of the
third dimension by stacking two, three, or more dies on top of each other, see fig.11.16. A digital

Fig. 11.16 Three chips stacked and interconnected by wire bonding (photo copyright IEEE, reprinted from

[259] with permission).

1 8 As an example, folded flexiprints manufactured by Valtronic find applications in hearing aids.
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ASIC can thus be combined with an analog front end and a commodity RAM or a flash memory,
for instance. Resorting to wire bonding for the interconnections is cost effective but requires that
the individual dies be graded in footprint such as to form a pyramid where all bond pads lie open.

Cubing allows for still higher densities. Bare dies are stacked on top of each other before being inter-
connected on their outer rims to obtain a cube-like assembly. Burying the vertical interconnections
within the chip stack itself is an extra sophistication [334]. To that end, extra deep vias are formed
by way of plasma etching before being filled with copper. Cross sections can be as small as 1.2 µm
by 1.2 µm. The wafer, initially some 750 µm thick, is then ground down to a mere 13 µm so that
these vertical poles become exposed on its back. Multiple wafers are then aligned and bonded to-
gether with an unthinned wafer at the bottom providing mechanical support, see fig.11.17. Cubing
appears most promising for connecting repetitive functions, such as memory chips, to form larger
entities.

Fig. 11.17 Cross section through chip stack with in-silicon vertical interconnections (photo courtesy of

Tezzaron Semiconductor Corp.).

An alternative better suited to accommodate heterogeneous assemblies where dies differ in type
and shape first embeds each die in an epoxy resin compound, which is cut into tablets of identical
size after curing. Next, the tablets, each with a chip enclosed, are stacked on top of each other.
Conductive lines printed on the surface or embedded within the epoxy resin material bring the die’s
connectors to the desired locations on the cube’s outer faces for vertical interconnects.

A similar approach mounts each die on a flexiprint before stacking and molding with epoxy resin
takes place. The cube is then sawn so as to expose the flexiprint lines on its outer faces. Vertical
interconnection is by way of metal plating and laser cutting. The bottom of the cube is attached
to a leadframe or a pin grid array carrier, or equipped with bumps to establish electrical contacts
with the printed circuit board underneath.19

In any case, signal integrity requires that decoupling capacitors be incorporated into the stack
[335]. Heat evacuation, another notorious difficulty in three-dimensional VLSI assemblies, can be
improved by embedding copper plates that carry the heat from the chips to the sides of the stack.
Overviews on three-dimensional IC assembly techniques are given in [336] [337].

1 9 Manufacturers of chip stacks include companies such as Irvine Sensor and 3-D Plus Electronics.
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11.4.8 Selecting a packaging technique

Opting for an adequate package involves criteria of both technical and economical nature:

• Space available for encapsulated chip(s) on printed circuit board.
• Board mounting technique (surface mount, through-hole, chip-on-board, stacked, etc.).
• Number of pins required and closest number actually available.
• Cavity size along with the range of die sizes that a package can accommodate.
• Electrical characteristics, i.e. package parasitics.20

• Maximum power dissipation, ambient temperature, thermal resistance.21

• Resistance against mechanical, thermal, and environmental stress.
• Expected lifetime, aging, reliability.
• Graded product range from a limited inventory of parts.
• Required equipment for automatic packaging, testing, and mounting.
• Suitability for replacing a component and/or for repairing a board.
• Yield losses due to packaging and mounting operations.
• Packaging and mounting costs.

Observation 11.4. Chip, package, board-level wiring, signal integrity, and heat evacuation must

be understood together as critical design elements in any advanced electronic system.

[332] [259] [333] discuss the respective merits of monolithic integration and stacking techniques from
a systems perspective. [338] is primarily concerned with yield analysis of high-density packages.

11.5 Layout at the detail level

One might argue that layout is of negligible importance today and that any discussion of physical
design should be confined to higher-level issues such as floorplanning, place and route (P&R), and
chip assembly. Manual layout has, after all, become a highly specialized and secluded activity now
that cell libraries and P&R software are routinely available. Yet, there are good reasons for gaining
a basic understanding of layout design.

Firstly, most VLSI designers will want to know how all those operations that were initially
captured as abstract HDL statements eventually materialize in the semiconductor material.

Secondly, it is much easier to understand what floorplanning, P&R, and chip assembly are all
about when one has a general appreciation of logic gates along with their layout views.

Thirdly, actual VLSI circuits are exposed to undesirable parasitic effects such as interconnect
delay, crosstalk, electrical overstress, latch-up, on-chip variations (OCVs), and the like. Knowing
about physical construction helps in keeping those within acceptable bounds.

Finally, somebody has to come up with the layouts of library cells and memories.

2 0 The impact of package parasitics has been explained in section 10.3.
2 1 Thermal design issues are summarized in section 9.3.
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11.5.1 Objectives of manual layout design

Detailed layout design is concerned with constructing circuits on the level of fabrication masks. The
small polygons that make up transistors, wires, contacts/vias, capacitors, resistors, diodes, etc. are
drawn to scale with the aid of a layout editor, a specialized color graphics drawing tool. Layout
designers must know and respect all layout rules imposed by the target process. Of course, such an
activity — sometimes ironically dubbed “rectangle pushing” — is time consuming, cumbersome,
and prone to errors.

Observation 11.5. For economic reasons, manual layout design is not normally justified

except in a few particular situations such as

◦ very high production volumes,

◦ library development where cells are going to be reused in many designs,

◦ specific requirements that cannot be met by using library cells,22

◦ analog circuit parts,

◦ integrated sensors and actuators, or

◦ test structures for process monitoring and/or device characterization.

Recall that full-custom fabrication allows one to combine cell-based blocks with manually optimized
layout on the same chip. Situations exist where it makes sense to design critical parts by hand in
order to meet stringent density and/or performance goals that cannot be met otherwise. This
explains why high-end microprocessors, where performance is the ultimate differentiator and for
which fabrication quantities are large, continue to include a substantial proportion of hand-crafted
layout. Technically, the goals of layout design at the detail level include

• Minimum area or, which is the same thing, maximum layout density,
• Maximum performance, i.e. minimum transistor and interconnect delays,
• Maximum fabrication yield,
• Largely inoffensive parasitic effects, and
• All this with minimum design effort.

In search of better productivity and portability, procedural layout is often used to automate the
drawing of common layout items such as MOSFETs, capacitors, resistors, contacts/vias, and the
like. A small piece of software code, invoked from within a layout editor, generates the polygons on
the various mask layers for a given device. The designer’s involvement is hence limited to defining
device type, location, width, and length.

11.5.2 Layout design is no WYSIWYG business

The fact that wafer processing takes a flat layout drawing and translates that into a complex
multi-layer structure of multiple materials makes physical design a rather grotesque business.

• What the designer actually seeks to build is an electrical network.
• What he has to deliver to the foundry is a two-dimensional layout drawing.
• What he eventually gets from fabrication is a three-dimensional structure

that includes many unwanted parasitic elements.

2 2 Such as extremely high speed, very low power, non-standard voltages, radiation hardness, uncommon subcircuits
for self-timed operation, and the like.
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Taking an inverter as example, fig.11.18 opposes all three views. However, before we can develop an
understanding of the two latter views, we need to introduce an essential concept underlying solid-
state electronics. In any semiconductor device, a few volumes of different electrical characteristics are
made to interact locally. The various types of transistors and diodes differ in the relative arrangement
and electrical properties of those tiny volumes. Doping is the process whereby the characteristics of
silicon, or some other base semiconductor material, get adjusted by selectively incorporating atoms
of a different element. In drawings, doping is often identified by writing things like n+ or p−, where
n and p stand for an excess or a deficit of electrons respectively, while +, −, and −− refer to strong,
weak, and very weak doping concentrations. Doping will be a major subject of chapter 14.

Observation 11.6. Understanding layouts and cross sections of semiconductor devices does not

require all of the physics and manufacturing details. To gain a fairly useful — though merely quali-

tative — appreciation, it suffices to differentiate among

• (conductive) metals,

• (conductive) polysilicon,

• strongly n- and p-doped semiconductor materials,

• weakly n- and p- doped semiconductor materials, and

• (nonconductive) dielectrics.

Let us now identify the active semiconductor devices in fig.11.18.

MOSFET devices

An n-channel (p-channel) MOSFET forms wherever p− (n−) material is covered by a polysilicon
layer with a thin gate oxide layer acting as insulation between the two. The adjoining n+ (p+)
diffusion areas serve as source and drain respectively, the polysilicon structure acts as gate, and the
bulk material forms the body. Complementary MOSFETs are the active devices in inverters and
all other digital CMOS subcircuits. They are marked with (a) and (b) in fig.11.19.

A notable detail from CMOS fabrication is that diffusion regions get implanted after polysilicon
deposition with poly acting as a shield that prevents dopants from penetrating into the material
underneath.23 As a consequence, there can be no intersection of a polysilicon with a diffusion
structure in a layout drawing without a MOSFET emerging at that place. This is something to
keep in mind when establishing layout plans.

Observation 11.7. The fact that a MOSFET forms at any intersection of a diffusion line with a

polysilicon line restricts the utility of poly for interconnects and that of diffusion too.

Now compare figs.11.18b and e. The latter is a simplified view where the dimensions of items
are neglected while their topological arrangement is rendered correctly. Wells, body ties, parasitic
devices, and other physical details that have no relevance for the operation as a digital circuit are
also abstracted from. Such stick diagrams, aka symbolic layouts, were promoted in the 1980s
by Mead and Conway [339] to facilitate the transition between schematic diagrams and geometric
layout drawings, but have been met with little acceptance in industry.

2 3 How this happens is to be described in section 14.2. Incidentally, observe that the masks shown in fig.14.17 are
not quite the same as those on display in fig.11.18. This is because the chapter on CMOS technology refers to
the masks that are actually being used during wafer processing, whereas the p+ and n+ diffusion areas that
matter from a designer’s perspective are shown here. Appendix 11.9 indicates how to translate back and forth.
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Fig. 11.18 CMOS inverter. Schematics (a,d), geometric layout (b), cross section (c) and stick diagram (e)

(approximate, not drawn to scale, only first-level metal shown). The relative placement of the various items has

been straightened for demonstration purposes, more practical arrangements are to be discussed in section 11.5.3.
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Next, we would like to draw your attention to the presence of parasitic devices, that is of active
devices other than the gate oxide MOSFETs intentionally sought after to build logic gates and
bistables. The active devices that may potentially exist can, again, be visualized in a graph for any
given target process. Figure 11.19 provides us with such a graph too.
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(a) poly-thox-p− n.a. n-channel MOSFET
(b) poly-thox-n− n.a. p-channel MOSFET

(c) p+n+ zero diode, not normally used due to low breakdown voltage
(d) p+n− reverse diode, insulates p-MOSFET source or drain from body
(e) p−n+ reverse diode, insulates n-MOSFET source or drain from body
(f) p−n− reverse diode, insulates p- from n-channel MOSFETs
(g) p−−n− reverse idem

(h) poly-fox-n−− n.a. field oxide n-channel MOSFET (not shown)
(i) poly-fox-p−− n.a. field oxide p-channel MOSFET

Fig. 11.19 MOSFETs and diodes in a bulk CMOS silicon-gate twin-well p-substrate process. Please refer to

section 11.6.3 for explanations on parasitic bipolar devices.

pn-junctions

Out of the five pn-junction types available from a bulk CMOS fabrication process, four find appli-
cations as diodes, see fig.11.19.

Electrical separation of p- from n-channel MOSFETs is assured by the reverse-biased p−−n− junc-
tions that separate the n-wells from the p-type substrate (g) in conjunction with the reverse biased
p−n− junctions that form where p- and n-wells touch (f).
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The unsymmetric p+n−- and p−n+-type junctions are operated with a reverse bias to provide the
necessary insulation between MOSFET drain/source electrodes and the embedding bulk material
(d,e); only those that connect to vss or vdd carry no voltage (d’,e’). As will be explained in section
11.6.2, p+n−- and p−n+-type junctions are also used as clamping devices in electrostatic discharge
(ESD) protection networks.

Reverse biased p+n+-type junctions (c) are unsuitable for isolation purposes because of the ex-
tremely low breakdown voltage that results from the high doping concentrations on either side. In
fact, the depletion regions are so thin that strong tunneling may set in well below 1 V. Most process
manuals thus disallow p+n+-type diodes unless junctions are shorted together to form a pair of
butted contacts such as in fig.11.19.

Field oxide MOSFETs

Consider item (i) in fig.11.19 and note that the arrangement of layers is that of a MOSFET much
like (a) except that the polysilicon and bulk material are separated by the much thicker field oxide
here. As a consequence, this construct may indeed behave as a parasitic transistor. Luckily, its
process gain factor β� is much inferior to that of its gate oxide counterpart. To further prevent
such devices from interfering with regular circuit operation in an undesirable way, their threshold
voltages Uth are adjusted during fabrication so as to disable them as long as the circuit is being
operated with voltages approved by the manufacturer. Similarly to p+n− and p−n+ diodes, field
oxide MOSFETs find applications in protecting ICs from overvoltages.

Bipolar and thyristor devices

The graph of fig.11.19 further suggests the presence of n+p−n−, p+n−p−, and p+n−p−n+ devices
where layout structures on three or four conducting layers interact. These parasitic BJTs and
thyristors participate in latch-up, a catastrophic and potentially destructive effect. Section 11.6.3
is, therefore, entirely devoted to latch-up prevention.

11.5.3 Standard cell layout

The arrangement of fig.11.18 is not really representative for actual circuits as all layout items
have been lined up to make them visible in a single cross section. Actual library cells follow a
pattern referred to as gate-matrix layout where polysilicon lines traverse a pair of parallel n-
and p-diffusion stripes at regular intervals, see fig.11.20a. As a consequence from observation 11.7,
a MOSFET necessarily forms at each intersection. Power and ground run from left to right across
every cell so that supply rails automatically come into being when such cells are being abutted in
a row. Also, those supply rails can be shared between adjacent cell rows.

Figure 11.21b shows a 3-input nor in gate-matrix style in more detail. Observe that n- and p-
channel devices are arranged in two separate horizontal rows. There are several reasons for this.
Firstly, MOSFETs must be embedded in wells, and well-separation rules impose relatively large
distances. Collecting many transistors of identical polarity in a common well thus allows superior
layout density. Secondly, keeping n- and p-channel MOSFETs well apart from each other helps to
withhold latch-up. Latch-up prevention is also why a guard bar has been placed underneath each
supply rail. Thirdly, cells can thus be designed to differ solely in width depending on the number of
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Fig. 11.20 Layout styles compared for a 3-input nor gate.24 Gate-matrix topology (a) versus inept patterns

(b,c,d).

MOSFETs they must accommodate. Cell height always remains the same, which greatly facilitates
placement. The diffusion stripes feature a gap wherever it is necessary to electrically insulate one
transistor from its neighbor to the left or to the right in the layout. This is typically the case where
two cells adjoin, but also occurs within adders, latches, flip-flops, and other more complex gates.

The desired circuit is formed by connecting the various drain, source, and gate electrodes to vss, to
vdd, to the cell’s I/O terminals, or with one another. Metal1 is preferred for this intracell wiring
because it can freely cross over and connect to any other layer. Being an utterly simple cell, the 3-
input nor gate does not occupy all tracks available for intracell wiring. Wherever possible, contacts
are replicated to shunt the important resistance of the diffusion islands and to provide some degree
of welcome redundancy.

Inputand output terminals are those nodes of a cell that are accessible for extracell wiring on
metal2 and higher layers. While they are often arranged near the cell’s centerline as shown in
fig.11.21, note that modern routers and cell libraries allow connection to a terminal node anywhere
on the pertaining metal1 polygon, thereby dispensing with the need to identify specific connector
locations.25

Full-custom layout gives designers the freedom to specify an individual size for each transistor;
note the tapered chain of p-channel MOSFETs in fig.11.21b. In digital design, MOSFETs are
almost always drawn with the minimum admissible channel length to maximize layout density,
drive strength, and switching speed. Weak transistors, such as those found in snappers and other
bistables, are an exception to the rule. A transistor’s channel width is chosen so as to adjust its
current drive in search of an optimum compromise among switching threshold, operating speed, and
energy efficiency. p-channel MOSFETs are generally made somewhat wider than their n-channel
counterparts to compensate for their inferior carrier mobility.

2 4 More examples can be found in section 8.1.
2 5 Early standard cells prepared for single metal processes had the vertical polysilicon lines span the entire cell

height, making all input/output signals accessible at both the upper and the lower rim, which greatly facilitated
extracell wiring with the then-scarce routing resources.
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Fig. 11.21 Gate-matrix layout (approximate). General pattern in full-custom (a) versus semi-custom layout

(c). Standard cell implementation of a 3-input nor function (b) versus sea-of-gates macro (d).

While gate-matrix layout has a long tradition, minor variations have been developed over the years,
e.g. to accommodate the multiple metal layers that became available.

The layouts of fig.11.21b and d follow Manhattan geometry, although many library cells and RAM
tiles make use of angles of 45◦ to render them more compact. The limitations of Boston geometry for
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transistor-level layout are to be discussed shortly in section 11.5.6. The usage of arbitrary angles is
generally discouraged because most DRC programs do not properly handle such layouts, because the
preparation of photomasks gets more complicated, and because acute angles cause manufacturing
problems. Please note that this applies not only to circuit layout but also to texts, company logos,
and other on-chip artwork.

11.5.4 Sea-of-gates macro layout

As sea-of-gates masters come with prefabricated silicon layers, only the metal and contact/via
layers are available for customization. Sea-of-gates macros thus necessarily differ from standard
cells in terms of their layout design. Another difficulty arises from the necessity to electrically
insulate adjacent but otherwise unrelated source/drain nodes where two neighboring cells abut,
but also within complex cells such as adders, latches, and flip-flops. While it would be possible
to prefabricate diffusions with a gap after every fourth transistor or so, this would be inefficient
and highly inflexible. Instead, diffusion areas are prefabricated as long and contiguous stripes that
periodically intersect with poly lines so as to obtain long chains of MOSFETs. It is nevertheless
possible to obtain electrical insulation exactly where required.

The trick is to cut every polysilicon line near the cell’s centerline, see fig.11.21c. Where two adjacent
nodes need to be separated, i.e. where a diffusion stripe would be discontinued in a full-custom
layout, the prefabricated transistor in between is permanently turned off with the aid of a contact.
The n-channel poly segment is connected to vss and the p-channel segment to vdd respectively,
thereby insulating the source/drain to the left from that to the right. A pair of MOSFETs sacrificed
in this way is said to form a separation gate. Another price to pay are the gaps in the poly lines.
Most of these gaps are actually unnecessary and are bridged with the aid of a short metal strap to
obtain the customary complementary transistor pair from which CMOS gates are built. Fig.11.21d
includes three such straps and one separation gate.

Another handicap of semi-custom design is that transistors come with fixed geometries. Strong
transistors must thus be obtained from connecting two or more of them in parallel whereas building
weak transistors asks for connecting two or more devices in series.

11.5.5 SRAM cell layout

The circuit organization and operation of SRAMs have been discussed in section 8.3. In search of
maximum layout density and performance, many different layout topologies have been devised over
the years in close collaboration between process developers and layout designers. As their circuit
structures are highly regular, RAMs do not make use of as many metal layers as random logic does,
but strongly rely on tiling instead. Figure 11.22 shows five symbolic layouts for a 6-transistor cell.
Each cell occupies two metals, and is traversed horizontally by the word line and vertically by a
pair of complementary bit lines.

Long polysilicon lines, as found in layout topologies b, c, and e, are detrimental to switching speed
because of the material’s mediocre conductivity. This is why the word line has been doubled with a
metal bypass in d. A related approach would be to intersperse a tall narrow cell every eight columns
or so just to feed the world line from a copy running on a higher-level metal. Arrangement f has
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a metal word line and does not suffer from this problem. Like e, it makes use of silicide straps to
boost layout density.

A silicide strap electrically connects poly and difusion areas without the customary detour via
contact plugs and a metal wire. This is made possible by etching away the side-wall spacer that
normally covers the lateral rims of poly gates where indicated by an additional photomask. The
thin but conductive silicide film that is to form during salicidation wherever silicon is exposed will
thus extend over the side wall of the poly structure and so cover the vertical step that separates it
from an adjacent diffusion area. Also known as direct strap or local interconnect technology, this
process option is unavailable from baseline CMOS processes due to the extra overhead, but typical
for commodity RAMs and also found in microprocessors with large on-chip caches [343]. Figure
11.24 shows a photomicrograph of an SRAM cell similar to topology f that occupies 135F 2 .
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Fig. 11.24 6-transistor SRAM cell after patterning of the polysilicon layer. A third metal (not shown) is used

here for the horizontal word line. Cell area is 0.57 µm2 in 65 nm technology (photo copyright IEEE, reprinted

from [340] with permission).
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Fig. 11.25 Impact of layout style on geometric and, hence also, on electrical variability.

11.5.6 Lithography-friendly layouts help improve fabrication yield

Design for manufacturing (DFM) is the name for a collection of techniques that aim at enhancing
fabrication yield by maximizing process latitude. Layout patterns that are more likely to fail than
others or that unnecessarily contribute to geometrical variability are to be avoided. Geometrical
variability nurtures electrical and timing-wise variability, and so impacts yield. DFM has become
a necessity since the minimum feature size has grown smaller than the wavelength employed in
the photolithographic patterning process, see fig.14.22. Note that the measures listed below confine
admissible layout patterns further than traditional layout rules do.

• Restrict conductor widths and pitches to a few values known to print well in the lithographic
and patterning processes.

• Place narrow features such as MOSFET gates on a periodic grid to better control optical prox-
imity effects. What ultimately results are highly repetitive layouts much as in SRAM/DRAM
cores and sea-of-gates masters.

• Stick to a single orientation for MOSFET gate electrodes as distortions are unlikely to affect
horizontal and vertical lines in exactly the same way.

• Avoid bends in MOSFET gates as they do not print well and tend to make the final transistor
geometries and electrical characteristics difficult to predict.
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• Connect multiple contacts or vias in parallel as fabrication defects predominantly manifest
themselves as opens.

• Space long lines further apart than required by the minimum separation rule to minimize
the chance of shorts and the impact of crosstalk on path delays, both long and short. Take
advantage of symmetry to compensate for local process variations. Add dummy patterns next
to critical devices to compensate for edge effects.

11.5.7 The mesh, a highly efficient and popular layout arrangement

The floorplans of RAMs are just special cases of a more general concept that can be seen as an
extension of gate-matrix layout. The underlying idea is that wires carrying one set of signals cross
other wires that carry a set of functionally different signals on a second layout layer, and that the
signals interact in one way or another at their points of intersection.

Mesh-type arrangements not only find many applications in software-assembled macrocells, but also
prove most useful in manual layout design. Six examples where interactions at the crosspoints range
from simple galvanic connections to arithmetic/logic operations have been collected in fig.11.26a to
f. Observe that the notion of an orthogonal mesh occasionally needs a liberal interpretation.26

Books specializing on layout design include [341] [485] [486], for instance.

11.6 Preventing electrical overstress

In this section, we will discuss three electrical overstress conditions that lead to component failure
unless held back by proper layout design, namely electromigration, electrostatic discharge, and
latch-up.

11.6.1 Electromigration

Cause and effects

Electromigration is a wear-out phenomenon that affects metal conductors subject to excessive cur-
rent densities. The underlying mechanism is a combination of thermal and electrical effects [342].
In a thin metallic polycrystalline film, a growing proportion of thermally agitated metal ions does
exist at temperatures above one-half or so of the melting point of the material. In essence, such
agitated ions are free of the lattice and get pushed along by the impact of flowing electrons. Metal
is washed away and deposited downstream, thereby diminishing the cross section of the conductor
at some point.27 Those voids lead to a further increase in current density and the vicious cycle
accelerates until the wire eventually severs. Disintegration tends to follow lattice imperfections such
as dislocations, grain boundaries, and impurities.

The current-carrying capacity of a conductor is a function of material, shape, temperature, and
current waveform (continuous DC, pulsed DC, AC) [344]. The higher the operating temperature of

2 6 The regularity and periodicity of mesh-type layouts are also believed to be enablers for the fabrication of future
nanometer-scale circuits of crossbar logic that are to be introduced in section 15.2.2.

2 7 Please note that metal atoms are driven upstream wrt the conventional orientation of current flow.
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a chip, the more generously must the interconnect lines be sized to handle some given amount of
current. To give a rough idea, 5 to 10 mA/µm2 (= kA/mm2) is considered a sustainable current
density for the traditional aluminum alloys (Al with 0.5% to 4% Cu) being used for interconnects
in VLSI. Copper has a higher melting point and can withstand significantly more current, just
compare tables 11.1 and 11.2. Yet, keep in mind that safe current densities are also limited by
concerns relating to ohmic voltage drop and local overheating.
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Fig. 11.27 An aluminum line that exhibits severe voiding by electromigration (reprinted from [343] with

permission).

Numerical example

Consider a CMOS IC of modest size, say of 50 000 gate equivalents, to be manufactured in a 130 nm
technology, operated at 1.2 V, and driven from a 100 MHz single-edge-triggered one-phase clock.
Overall node activity is α = 1

4 , which means that the average node charges and discharges within
eight clock cycles. Let each of the 100 000 internal nodes have a capacitance of 18 fF. The average
current consumption of the circuit’s core then amounts to

Idd ≈ fclk Udd (1 + σ)
K∑

k=1

αk

2
Ck = 100 MHz 1.2 V (1 + 0.2) 100 000

1
4

2
18 fF ≈ 32 mA (11.1)

A current density of 3.2 mA/µm flows when the core of such an IC is being fed through on-chip
power and ground wires 10 µm wide. Relating that amount of current to the conductor’s cross
section based on a thickness of 320 nm — a realistic figure for lower-level metals in a 130 nm
technology — one obtains J = 10 mA/µm2 which makes it clear that even modest ICs lead to
critical current densities unless supply wires are adequately sized and layers are chosen correctly.

It is very instructive to compare the above figures with overhead power lines. An RMS current of
approximately 1500 A flows through each conductor when 1 GW of power is being transmitted over
a three-phased 380 kV line. The resulting current density in a round aluminum conductor with a
diameter of 50 mm is 0.75 A/mm2, i.e. roughly four orders of magnitude less than for IC technology.
�

Observation 11.8. As opposed to overhead lines and household wiring, the current densities found

in VLSI interconnects are so high that metal wear-out becomes a major concern.

Make sure you understand that electromigration is not the same as fusing. In a fuse, metal overheats
because of ohmic power losses in a tiny volume P

V = ρ( I
A )2 that cannot dissipate, locally reaches

its melting point, and breaks up. Depending on the overload factor, this is a matter of seconds
or milliseconds. Electromigration, in contrast, is a long-term wear-out process that develops at
temperatures way below the material’s melting point as a consequence of excessive current densities
J = I

A . Interestingly, it has been found that the resistance to electromigration improves when a
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wire is made narrower than the average grain size in the conductor material. This is because grain
boundaries then tend to orient themselves perpendicularly to current flow, suggesting a bamboo-like
structure [345].

Conclusions

The VLSI designer has no influence on the making of electromigration-resistant alloys nor does he
decide on the thickness of the various interconnect layers. To keep current densities within safe
limits, he must obtain adequate cross sections by making the lines sufficiently wide. In order to
carry a given amount of current with a narrower wire, he is also free to prefer the thicker upper-
level metals over the thinner lower-level metals. Specialized CAD tools that calculate the current
density in each leg of interconnect help identify those portions that are particularly at risk and that
need to be sized more generously. The same tools can also locate any unwanted layout constrictions
exposed to meltdown when subjected to surge currents.

Sharp bends and stipple contacts/vias are also exposed to electromigration because of the current
crowding that takes place on the path where ohmic resistance is lowest. Taking advantage of Boston
geometry makes it possible to distribute currents more evenly, see fig.11.2d.

Metal slotting whereby narrow longitudinal openings are carved into heavily loaded power and
ground lines may help by allowing for bamboo structures to form in between. In addition, slotting
also counteracts dishing.

11.6.2 Electrostatic discharge

Cause and effects

Electrostatic discharge (ESD) is a phenomenon of sudden charge redistribution between a semicon-
ductor component and automated equipment or a person handling that part. To give a rough idea,
walking across a synthetic carpet can generate voltages from 100 V up to 30 kV under worst-case
conditions. When discharged into an IC package, these voltages give rise to current peaks of several
amperes. An ESD event such as this is likely to have two destructive effects:

• Dielectric breakdown as a consequence of excessive fields.
• Local overheating often followed by melting as a consequence of excessive amounts

of energy being dissipated in a small volume over a short lapse of time.

Fig. 11.28 Damage from ESD. Melt filaments shorting a junction (a), evaporated metal lines (b), and broken

gate oxide (c) ((a) reprinted from [346] with permission, (b) courtesy of Dr. Andreas Stricker, (c) reprinted

from [347] with permission).
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Observation 11.9. The voltages that occur during ESD events are sufficient to force very high

currents through any semiconductor circuit. It is better that engineers decide on the paths these

currents shall take while they are designing the part.

As ESD events greatly vary depending on the exact circumstances, industry has come up with
standard models for studying their consequences and for assessing the effectiveness of protective
circuits [348]. The charged device model (CDM) and the very fast transmission line pulse model
(VF-TLP) put more emphasis on very short events that stress gate dielectrics while the human body
model (HBM) and the machine model (MM) primarily address slower failure mechanisms that are
due to excessive energy dissipation. A part’s tolerance with respect to ESD is typically stated as the
voltage endured without a change in the electrical characteristics in positive and negative discharge
events with a given ESD model, e.g. 500 V CDM, 2 kV HBM, and/or 200 V MM.

Component failures due to ESD must be addressed by a two-pronged approach.

Take handling precautions to reduce the extent of ESD events

Electrostatic charges that build up during the fabrication, handling, shipping, and assembly of
semiconductor components must be kept within uncritical limits. This is obtained by an array of
preventive measures at the organizational level such as

• Controlled air humidity (30% to 70%) and ionization,
• Floors, carpets, shoes, and clothing made from antistatic, dissipative or conductive

materials,
• Dissipative and grounded workbenches, equipment, wriststraps, etc,
• Dissipative bags, boxes, foams, tapes, reels, and other component carriers, and
• Trained workforce, process audits, etc.

Include on-chip ESD protection to make parts more robust

Handling precautions alone do not suffice. MOS circuits must further be protected by auxiliary
circuitry that clamps overvoltages and that dissipates undesirable energy without local overheating.
The most successful approach is to provide well-defined current paths between any two pins through
which ESD currents can safely discharge. Clearly, the impedance must be lower than along any
alternative path. A typical ESD protection network is outlined in fig.11.29a and described next.

Input protection. Inputs are kept safe by a Π network that brings down overvoltages in two
steps. The primary protection devices are in charge of absorbing — or of diverting — most
of the electrostatic energy while the secondary devices limit the voltage excursions across the
MOSFET’s fragile gate oxide to inoffensive values. A decoupling resistor placed in between
safeguards the secondary devices against overstress and, at the same time, provides sufficient
leeway for the primary devices to get activated. Typical values range between 200 Ω and 1 kΩ
but may be as low as 50 Ω on clock inputs to keep distribution delay small.

Output protection. Much as for an input, the protective network includes energy-absorbing or
-diverting devices along with a decoupling resistor. Yet, the range of acceptable values ends at
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50 Ω or so because any more substantial series resistance would seriously impair the output’s
current drive and ramp times.

Supply protection. The protection circuit clamps any potentially harmful voltages that might
develop between the two — or more — supply nodes when a power or a ground pin is
involved in an ESD event. It also comes into play when an input or output protection device
or a parasitic diode dumps excess charge from an ESD event into the supply net. Incidentally,
observe that the parasitic capacitance between the vdd and vss nodes assists in containing
fast voltage spikes and that on-chip bypass capacitors, if any, also help.

While the overall arrangement of ESD protection networks has more or less remained the same
over the years, the choice, doping, sizing, and shaping of the protective devices is constantly being
re-evaluated to account for the relentless evolution of semiconductor technology. The desiderata for
an ideal protection device are [349]:

• Zero on-state resistance.
• Clamp voltage just above the operating supply voltage of the part being protected.
• Instantaneous turn-on.
• Capable of absorbing infinite amounts of energy.
• Triggers only during ESD events, not during regular operation.
• No parasitics that could impair regular circuit operation or performance.
• Zero area requirement.
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ESD protection must typically make do with devices that come at little or no extra cost. Circuit
elements that enter into consideration as protection devices in CMOS ICs thus include

◦ pn-type diodes operated in forward mode,
◦ pn-type diodes operated in reverse mode,
◦ Regular (thin oxide) MOSFETs,
◦ Thick or field oxide MOSFETs, and
◦ Thyristors aka silicon-controlled rectifiers (SCR).

See fig.11.29b for illustrations.

Figure 11.31 shows an inverter fabricated in bulk CMOS technology.28 Note the presence of various
parasitic devices. The most remarkable item is the lateral npn transistor that hides in every n-
channel MOSFET. When the drain–source voltage is being increased beyond the MOSFET’s regular
operating range, an avalanche current begins to flow through the drain junction. Upon entering the
body volume, this current becomes the base current of a parasitic BJT and drives that bipolar
into conduction. What makes this tandem device so attractive for ESD protection is its snapback
I(U ) characteristic along with the resulting on-state resistance of just 2 Ω or so. This unusual trait,
sketched in fig.11.28, occurs because the avalanche current gets amplified by the gain of the bipolar
and has earned it the name avalanche-triggered snapback BJT.

This protection device is often used with its gate terminal grounded, in which case it is also referred
to as grounded-gate NMOS (ggNMOS). More sophisticated protection schemes have the gate
voltage driven by some active triggering circuit to better control the onset of the avalanche effect, an

2 8 Bulk technology makes up the vast ma jority of CMOS ICs fabricated. Both n- and p-channel MOSFETs are
implanted in a single piece of semiconductor material and are electrically insulated by way of reverse-biased
well junctions as depicted in fig.11.32a. This is not so in silicon-on-insulator (SOI) technologies, which are to be
explained in section 14.3.6.
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approach known as coupled-gate NMOS (cgNMOS). Make sure you understand that it is the same
device that changes from ordinary MOSFET operation to a bipolar regime under ESD conditions.29

Observation 11.10. ESD events tax devices far beyond their customary operating regimes. Be-

havior under ESD conditions must therefore be simulated either at the level of three-dimensional

device physics or with compact models specially designed and calibrated for that purpose. Simulation

models intended for regular circuit simulation do not suffice.

Another parasitic element that comes with each MOSFET manufactured in a bulk CMOS tech-
nology is a pn-diode. Note that a diode can serve a dual role. Forward-biased, it can be used to
divert or to distribute ESD currents. Reverse-biased, it may act like a Zener diode that clamps the
voltage across its terminals. ESD performance in reverse mode is inferior to that of a snapback
BJT, though, see fig.11.30.

In a CMOS circuit, two parasitic diodes come with each gate and provide some degree of self-
protection to the circuit’s output. There was a time when this was sufficient and only inputs required
separate protection circuits to be added. Subsequent technological improvements to CMOS such
as lithography shrinks, ever thinner oxides, source/drain extensions (LDD), and silicides all were

2 9 Whether the gate dielectric is made of thin oxide or of field oxide is of minor importance in this context. Its
counterpart, the tandem device that consists of a p-channel MOSFET along with a lateral pnp BJT, is not being
used as an ESD protection device due to its strongly inferior electrical characteristics.
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detrimental to self-protection, however. Table 11.6 is an attempt to summarize the evolution of ESD
protection over time.

Table 11.6 Evolution of ESD protection schemes (simplified, partly after [350]).

input protection supply output
timeframe primary secondary protection protection

1970s pn-diode(s) pn-diodes none none wide geometries
early 1980s fox MOSFET pn-diodes none none outputs self-protecting
late 1980s fox MOSFET snap BJT none snap BJT absorbs locally

1990s pn-diodes snap BJT snap BJT pn-diodes absorbs globally
early 2000s pn-diodes snap BJT active net pn-diodes absorbs globally

Placing strong energy-absorption devices locally at every single input pad and output pad is a costly
proposition, especially for today’s ICs with their high pin counts. A more area-efficient alternative
is to include two pn-diodes in every pad. These diodes divert ESD currents onto the supply rails,
where the energy gets absorbed by an active power clamp such as a thyristor or a dynamically
triggered snapback BJT. More recently, elaborate networks of actively triggered BJTs have been
being used as power clamps. A difficulty with all such approaches are the IR drops across long
supply lines. To ward off excessive voltage excursions, multiple supply protection devices are to be
distributed within a chip’s padframe [349].

Last but not least, particular attention must be paid to ESD robustness at the layout level. This
is because parasitic resistances with values in the range of ohms that hardly matter during normal
operation determine current and heat distribution in an ESD event. Current crowding in obtuse
angles or near contacts and vias must be avoided. Similarly, current filamentation in protection
devices is to be averted by distributing adequate series resistances over their entire layout width.
[183] gives much practical advice on input/output design.

Observation 11.11. When designing ESD protection circuitry, pay attention to ensuring that you

• keep voltages across critical structures to well below damage levels, and

• spread out ESD currents and hence also ohmic heating as much as possible.

Conclusions

Their exquisitely thin gate oxides and fine layout structures make modern MOS circuits partic-
ularly vulnerable to ESD. Handling precautions and built-in energy-absorption circuitry are thus
complementary to each other.

Designing effective ESD protection structures is a tricky task that must not be undertaken without
good knowledge of device physics, pertinent experience, access to detailed process data, device
simulation software, and specialized test equipment. Expert advice must be sought as none of
these is routinely available to digital VLSI designers. For those eager to learn more, recommended
literature includes [351] [183] [352] [349] [350] [353].
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11.6.3 Latch-up

Causes and effects

A particularity of bulk CMOS technologies is the presence of unwanted BJTs in supposedly pure
MOSFET circuits. Note the lateral npn- and the vertical pnp-transistor in fig.11.32a. What the
designer wants is the inverter circuit shown in fig.11.32b; what he gets on top of it is the parasitic
circuit depicted in fig.11.32c.
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The problem with those parasitic BJTs lies in the positive feedback nature of a loop where the
collector of one transistor provides the base current to the other. Imagine what happens when
one bipolar begins to conduct in a circuit with no protective measures. Currents through either
transistor increase until some innate resistance prevents them from growing any further, or until
the circuit or part of its bonding wires are destroyed. Even if the triggering disturbance was of
ephemeral nature and has long since gone away, the circuit will not recover by itself. In fact, the
pnpn-structure is a thyristor, aka silicon-controlled rectifier (SCR), and behaves as such.

Provided it has not been damaged, the IC must be temporarily disconnected from its power supply
to re-establish normal operating conditions. This situation where a short current path forms between
power and ground is termed latch-up and must absolutely be avoided.

Observation 11.12. Two preconditions must be met for a CMOS IC to enter latch-up:

• Parasitic bipolar transistors of opposite polarity must form a positive feedback loop and

• a disturbance must briefly bias them in such a way as to make the incremental current gain

of the loop exceed unity.
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Erratic currents in the well and/or in the substrate provide the mechanism by which a large enough
disturbance can bias a parasitic BJT to a critical point. Any of the disturbances below can cause
an undesirable displacement of electrons or holes.

• Voltage overshoot and/or undershoot of a drain node,
e.g. when an inductive load or a ringing line is attached to a chip’s output pin.

• ICs or boards being plugged into sockets under power (hot plug-in).
• Overly fast transients of supply voltage at power-up time.
• Excessive ground bounce or supply droop.
• Operating voltages or currents beyond absolute maximum ratings.
• Electrostatic discharge (ESD) phenomena.
• Ionizing radiation such as X-rays, alpha particles, and cosmic rays.
• Alternating magnetic fields from currents in on- or off-chip inductors.

CMOS circuits that operate from supply voltages of no more than 1.5 V are largely immune to latch-
up [219]. While this applies to the core logic in many modern ICs, beware of the higher voltages
that are likely to occur in their I/O circuitry.

Keeping out disturbances by refraining from hot plug-in maneuvers, by making use of clamping
devices, by adequate ESD protection circuitry, etc. is very important. A serious limitation of on-
chip protection devices is that the diodes and field oxide MOSFETs put to service to clamp the
overvoltages tend to inject charge carriers themselves when taxed.

Of course, process engineers do their best to safeguard CMOS structures against latch-up. Yet,
their main objectives of layout density and MOSFET performance tend to conflict with latch-up
avoidance. As a consequence, IC layouters are challenged to contribute towards latch-up protection
by observing a few simple precautions. Figure 11.33c shows the five starting points, namely Rs ,
Rw , Is , Iw , and βnpnβpnp . The discussion below follows the same order.

Provide guard structures to divert carriers from where they might harm

A highly effective way of preventing substrate or well currents from forward-biasing a parasitic BJT
is to provide a low-resistance bypass to the emitter or to some other node of suitable potential.
In the case of an inverter, this implies shortening the MOSFET bodies to their respective source
terminals as illustrated in fig.11.32b. Diffusion islands that share the polarity of the embedding
substrate or well are used to galvanically connect to vss or vdd respectively.30 Such features are
referred to as body ties with substrate|well|body plugs|contacts|taps and diffusion pickups being
used as synonyms.

Body ties are generously distributed over the chip, not a single well must be left floating!31 Body
ties are placed close to the parasitic bipolars. The smaller the bypass resistances Rs and Rw are
made, the more current can safely be absorbed without having the base–emitter drop exceed the
critical threshold of 0.6 V or so at which BJTs begin to conduct.

3 0 As remains to be seen in section 14.1.3, the highly doped p+ and n+ islands are necessary to avoid the Schottky
junction that would form if metal were allowed to connect to lightly doped p− and n− regions directly.

3 1 Floating wells and/or a floating substrate not only render a chip vulnerable to latch-up, but also open the door
to undesirable current leaks, capacitive coupling phenomena, and MOSFET back gate effects.
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A popular layout arrangement termed butted contacts is shown in fig.11.32a. A p+ (n+) island
is made to abut with the n+ (p+) source region of an n-channel (p-channel) MOSFET. The two
are then connected with a short metal strap and tied to vss (vdd). Larger body ties shaped
into elongated stripes help to lower base-to-emitter resistances further by sidestepping the poor
conductivity of the lightly doped well and substrate materials. This type of protective structure is
referred to as a guard bar; an example has been given in fig.11.21. Even more effective are guard
rings, where a p+ diffusion stripe fully encloses n-type MOSFETs, and vice versa. Low resistance
requires guard structures to be contacted from metal at regular intervals; connecting via diffusion
or poly lines must be avoided because of their mediocre conductance.

Body ties aim at protecting parasitic BJTs from majority carriers. That is, the p+ island next
to the n-channel MOSFET collects holes that reach the p− base region of the parasitic npn-bipolar
and provides a safe current path to ground. The opposite is true in the n− well.

Provide guard rings to absorb carriers where they might go astray

A reciprocal approach consists in collecting unwanted carriers close to their place of origin before
they could possibly find their way to some vulnerable BJT. The goal is to absorb stray currents so
as to keep Is and Iw small.

To attract unwanted electrons, an n+ implant is placed around those devices from which dangerous
carriers might emanate and connected to vdd, see fig.11.33. The converse applies to holes. Another
way of looking at such structures is to consider them as extra collectors added to the parasitic
bipolars in order to divert most of their undesirable collector currents to vdd and vss respectively.
The necessary layout structures look very much like guard rings and are in fact subsumed under
this more general term, yet they do attract minority carriers.

In order to collect carriers that have managed to penetrate deeper into the substrate, minority
guards are often prolonged vertically by implanting a well of identical polarity underneath. This
is shown as an option on the left-hand side of fig.11.33b. An extra diffusion ring running along
the circumference of a chip and contacted from metal at regular intervals further helps to lower
overall substrate resistance and to provide maximum dispersal of substrate currents.32 Such a ring
is particularly important when no backside die contact is being used.

Frustrate amplification in the feedback loop

Keeping current amplification βnpnβpnp in the feedback loop as low as possible also helps. Recall
that the current gain β of a BJT is inversely related to the width of its base region. While the current
gain of the vertical bipolars is essentially fixed by the fabrication process, it is possible to spoil the
lateral bipolars by keeping n- and p-type MOSFETs well apart from each other in the layout. Any
arrangement that clusters transistors of the same polarity in a common well thus fares much better
than a layout that intertwines n- and p-channel transistors in a random or checkerboard fashion.

A related idea is to more firmly bias the BJTs into “off” condition by applying a negative (positive)
back bias voltage to the p-type (n-type) bodies. It then takes larger stray currents through the

3 2 From the process engineering side, epi substrates, high-dose buried layers (HDBL), and retrograde wells are
latch-up prevention measures that follow the same general idea of attracting unwanted currents away from
active devices.
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Fig. 11.33 A pad driver in bulk CMOS technology with typical latch-up protection structures (simplified, not

drawn to scale). Geometric layout (a) and approximate cross section with parasitic bipolars shown (b). Note

that (a) is drawn using a single metal layer.

p-substrate (n-well) before parasitic bipolars can get to a point where their joint current amplifica-
tion βnpnβpnp exceeds unity.

Conclusions

Though few digital VLSI designers will be concerned with latch-up prevention at the layout level,
they may find the subsequent information helpful for assessing the quality of library cells.
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Observation 11.13. This is what any layout designer should contribute to preventing latch-up:

• Provide body ties in generous numbers and place them next to MOSFET sources.

• Shape body ties as closed rings or as peripheral bars where possible.

• Place n- and p-channel MOSFETs clearly apart from each other.

• Provide extra minority guards in areas particulary exposed to external disturbances.

Roughly speaking, current industrial practice is as follows.

Core cells. The term is meant to include standard cells designed to be placed in the core area of
a chip and that do not connect to input or output pads directly, i.e. all bistables and regular
logic gates. These are usually protected by pairs of majority carrier guards only.

Most cell libraries include body ties in every cell, even the most humble inverter is designed
to feature one pair, larger cells comprise several pairs. The layout of those body ties often
takes on the shape of guard bars that run along a cell’s perimeter in close proximity to source
areas and supply rails as shown in figs.11.21b and d. Input buffers and level-shifters that do
connect to I/O pads warrant special attention.

Other library vendors leave out body ties from all standard cells and commit their customers
to add them during back-end design instead. A typical rule of thumb would require that each
diffusion area electrically connects to a body tie no further away than 20 µm. Modern place
and route (P&R) tools can indeed be instructed to intersperse special body tie cells into
standard cell areas at regular intervals. Yet, this approach unnecessarily burdens back-end
designers with another chore and opens a door for mistakes.

Output pads. Note, to begin with, that both input and output cells are particularly exposed to
voltage over/undershoot and ESD. Also, these cells continue to operate on supply voltages
of 3.3 V or 2.5 V while core voltages have dropped to the vicinity of 1 V. Pad drivers are
typically protected by a total of four guard rings, see fig.11.33. The n-channel MOSFETs
are enclosed in a p+ majority carrier guard which is itself surrounded by a-n+ -type minority
carrier guard. Two more guard rings of opposite polarities are placed around the p-type
MOSFETs. In addition, n- and p-type transistors are set 100 µm or so apart from each other
with the gap in between put to service to accommodate the bonding area. Last but not least,
adjacent I/O pads are arranged so as to avoid placing transistors of opposite types next to
each other during chip assembly, see fig.11.7.

Input pads. Although not susceptible to latch-up themselves, the ESD clamping devices of input
pads typically feature the same four-ring protective structures as pad drivers do. This helps
catch injected carriers and saves design time by reusing part of the layout.

The focus here has been on what circuit designers can do about latch-up; for a more global discussion
the reader is referred to the specialized literature such as [354] [355].

11.7 Problems

1. Reconsider table 11.1 and note that a via manufactured with the same fabrication process
has a resistance of 3.5 Ω. From a resistance point of view, what is the minimum distance for
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which it makes sense to bring an interconnect line up from metal4 to metal5? What about
metal3 or metal2? Do stippled vias change the picture?

2. Develop a standard cell for the logic function OUP = (IN1 ∧ IN2) ∨ (IN3 ∧ IN4 ∧ IN5), where
p-channnel MOSFETs are 1.5 times as wide as their n-channel counterparts. Deliverables
include a schematic, a sticks diagram, and a gate-matrix layout with all details.

11.8 Appendix I: Geometric quantities advertized in VLSI

The gate length L of a MOSFET is quantified in either of two ways. Ldrawn refers to the size
of the gate electrode as found in layout drawings whereas Leff is the channel length that becomes
electrically effective during circuit operation. Two effects contribute towards making Leff < Ldrawn .
Firstly, doping atoms laterally diffuse underneath the gate during the thermal processing steps that
wafers undergo as part of fabrication. Secondly, the charge depletion regions that form around the
source and junctions eat away from the channel’s length.

The minimum feature size M indicates the smallest object or interstice that can reliably be
manufactured with a given fabrication process and appears in the set of layout rules as the smallest
value specified for any width or spacing. All MOS fabrication processes allow for the drawing of gate
length to minimum dimensions min(Ldrawn ) = M .33 As illustrated in fig.11.34, where min(Wpoly ),
min(WM1), min(Wcontact), and min(Scontact↔poly ) are all equal, most fabrication processes support
the patterning of more layout features down to the same size M, but there are exceptions to this
rule.

lithographic
square

F

FF2

Ldrawn

Leff

gate length

minimum
feature
size M

Λgrid size

enclosure E

extension X

pitch P
stagger-

contacted
pitch

contacted
pitch
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spacing S

stagger-
contacted

pitch

Fstagger-contacted half pitchhalf pitch H

Fig. 11.34 Geometric quantities used in layout design.

3 3 This is because shorter gates increase drivability and accelerate switching.
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Pitch often is a more meaningful quantity than width or spacing because pitch accounts both for
layout objects and for gaps. Stating the half pitch H = 1

2 (W + S) makes the numerical value
immediately comparable to feature size. In an attempt to give a number that is representative for
the layout capabilities of a technology generation, the ITRS roadmap states the minimum half pitch
of two lines on the lowest layer of metal (metal1, M1) that carry staggered contacts. Let us use the
symbol F = 1

2 ( 1
2 min(WM1) + min(SM1) + min(EM1↔contact) + 1

2 min(Wcontact)) for that quantity.

F 2 is called a lithographic square and is typically used as a reference for comparing the area
occupancy of a transistor, a memory cell, a logic gate, or some other layout item across different
fabrication processes.

Lambda Λ is a fictive length unit not directly present in the layout. Its numerical value is chosen
such that all layout rules are expressed as integer multiples of that basic unit. Any layout can so be
drawn on a virtual grid of mesh size Λ.34 In fig.11.34, min(EM1)↔contact = 1Λ, min(WM1) = 2Λ,
min(SM1) = 3Λ, min(HM1) = 2.5Λ (sic!), M = 2Λ, and F = 3Λ.

“Now, what does a vendor mean when he advertizes an x nm yMzP CMOS process?”

yMzP is just a shorthand notation that indicates the number of interconnect layers and stands for
“y layers of metal plus z layers of polysilicon”. Two layers of polysilicon are desirable in analog and
memory design.

There is no rule as to what dimension x must refer to. Many foundries indicate the minimum half
pitch (x = min(H), without contacts) of either poly or metal1 while others imply minimum feature
size (x = M ). Mainly for promotional reasons, some vendors prefer to put forward effective gate
length so that a 180 nm process (x = min(Ldrawn )) passes for 150 nm (x = min(Leff )), for instance.
In conclusion, note that any of the above quantities just gives an approximate indication for the
achievable layout density because other factors such as the total number of interconnect layers y + z

also matter.

11.9 Appendix II: On coding diffusion areas in layout drawings

Not all authors, foundries, and EDA vendors follow the same notation and terminology with respect
to diffusion areas. At least three coding styles coexist.

Physical doping (p+& n+). Diffusion areas are named p+ and n+ after their doping type and
concentration, and so are the pertaining areas in the layout, see fig.11.35a. This is the coding
style used throughout this text. Before wafer processing can begin, the thin-oxide definition
and doping selector masks “thox” and “sel” must be obtained from the p+ and n+ layout
areas in a separate postprocessing step.

3 4 There was a time when layout rules typically shrank in a proportional fashion from one process generation to
the next. Using relative dimensions expressed in Λ, termed lambda rules, then allowed rescaling of layouts by
a simple change of the basic unit, say from Λ = 175 nm to 125 nm. Yet, the concept is no longer in use because
consistent linear scaling has become an exception rather than the rule.
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Fig. 11.35 Alternative layout coding styles. Stating final diffusion dopings p+ and n+ (a), electrical functions

“trans” and “guard” (b), or fabrication masks “thox” and “psel” (c).

Electrical function (trans&guard). Diffusion areas are named “trans” and “guard” after their
roles as MOSFET sources/drains, or as guard/tie structures in the semiconductor device,
see fig.11.35b. The doping type of these areas follows from the type of the embedding well
or substrate material: opposite for “trans”, identical for “guard”. Again, postprocessing of
layout data is necessary prior to manufacturing.

Fabrication masks (thox&psel/nsel). Diffusion areas are described in terms of a thin-oxide def-
inition mask “thox” and of a doping selector mask, which choice most closely reflects the
mask set actually used during wafer processing.35 The selector mask may be defined either

3 5 Refer to section 14.2 for more information.
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to indicate p- or n-type doping and is, therefore, labeled “psel” or “nsel” respectively. Fig-
ure 11.35c depicts a situation where the selector mask indicates p-type doping (thox&psel).
Further observe from the drawing that the layout is unnecessarily cluttered with edges not
relevant to the final result because the selector mask becomes effective solely where placed
on top of the thin-oxide layer. This implies that the exact locations of its edges are uncritical
except where they separate n+ from p+ doping.

It is always possible to translate layout data between the above coding styles on the basis of standard
Boolean and resizing operations on polygons. Conversion between p+& n+ and trans&guard styles
is given by

p+ := (trans ∩ pwell) ∪ (guard ∩ pwell) = (trans ∩ nwell) ∪ (guard ∩ nwell) (11.3)

n+ := (trans ∩ pwell) ∪ (guard ∩ pwell) = (trans ∩ nwell) ∪ (guard ∩ nwell) (11.4)

trans := (p+ ∩ pwell) ∪ (n+ ∩ pwell) = (p+ ∩ nwell) ∪ (n+ ∩ nwell) (11.5)

guard := (p+ ∩ pwell) ∪ (n+ ∩ pwell) = (p+ ∩ nwell) ∪ (n+ ∩ nwell) (11.6)

while translation between p+& n+ and thox&psel/nsel styles follows the rules

p+ := thox ∩ psel = thox ∩ nsel (11.7)

n+ := thox ∩ psel = thox ∩ nsel (11.8)

thox := p+ ∪ n+ (11.9)

psel := bloat(p+ − bloat(n+ )) (11.10)

nsel := psel (11.11)

where “bloat” stands for a geometric operation that expands a polygon by a small quantity along all
dimensions. As mentioned before, the exact amount of oversizing is not critical in this application
because it affects the position of uncritical edges only. Note, however, that layout features smaller
than the oversizing quantity are lost in the process.

Things are further complicated by the fact that many different terms are being used in the industry
for what we have denoted p+ , n+ , “trans”, “guard”, “thox”, “psel”, and “nsel” in this text. Thus,
before drawing or interpreting detailed layout, make sure you understand what a given layer really
stands for and how geometric layout data are being postprocessed as part of mask preparation
in the foundry’s mask shop. Also beware of ambiguous or meaningless names such as “diffusion”,
“implant”, and “well”.

11.10 Appendix III: Sheet resistance

The resistance of a conductor with rectangular cross section A = wh and length l is given by

R = ρ
l

A
=

ρ

h

l

w
(11.12)
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where ρ indicates the specific resistance of the conducting material used and has dimension Ω m.

As the conducting material and its thickness h are determined by the fabrication process, l and w

are the only parameters placed under control of the layout person in VLSI design. A conductive layer
is, therefore, best characterized by its sheet resistance R� = ρ

h , from which the actual resistance
of any line of rectangular layout is obtained by multiplication by the conductor’s shape factor l

w :

R = R�
l

w
(11.13)

Further observe from fig.11.36b that the shape factor and, hence, the resistance of a line of constant
width are easily obtained from the layout by counting the number of squares that fit into the line’s
geometric shape. This is why sheet resistance is commonly expressed in terms of Ω/� rather than
just Ω.

l

w
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ρ

current
flow
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1❑ 1❑

6❑ 3❑ 2❑b)

1/2❑

Fig. 11.36 Sheet resistance. Conductor of rectangular cross section (a) and top view of lines of various shapes

along with their respective resistance values (b).

Practical sheet resistance measurements typically involve a symmetric layout known as a Van der
Pauw structure and a probe with four contact tips.



Chapter 12

Design Verification

While much engineering effort in a VLSI design project goes into checking whether the HDL models
developed do indeed capture the desired functionality, this does not suffice to make sure the design
data submitted to fabrication are correct. Design flaws may also creep in during netlist synthesis
and layout preparation. The extra checks required to uncover such problems and the EDA tools
available to do so are the subject of this chapter. Section 12.1 is concerned with locating timing
problems while section 12.2 analyzes the accuracy of the timing models being used. Electrical rule
check (ERC) and other static design verification techniques are the subject of section 12.3. Section
12.4, finally, addresses post-layout design verification.

12.1 Uncovering timing problems

As underlined in earlier chapters of this text, getting the timing right is vital for making VLSI
circuits work as intended; catching potential timing problems is thus very important indeed. One is
easily tempted to accept an error-free simulation run as a proof for a workable design, yet this is not
so. We will first demonstrate why before introducing a more effective approach in section 12.1.2.

12.1.1 What does simulation tell us about timing problems?

Abstracting from the fine points that make up the differences between the various clocking disci-
plines, almost all timing-related difficulties that may occur in a synchronous (sub)system can be
attributed to one or more of the causes listed below.

• Inadequate clock waveform (e.g. glitches, sluggish ramps, overly short phases).
• Insufficient setup margin because longest path delay is incommensurate with clock period.
• Insufficient hold margin because shortest path delay does not compensate for hold times of

flip-flops, latches, RAMs, etc.
• Excessive clock skew or clock distribution delay.
• Poor synchronization of asynchronous signals from externally.
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While uncritical from a functional point of view, overly slow ramps on information signals are
undesirable too because they inflate energy losses due to crossover currents.

How timing violations are detected and reported

As explained in section 4.2.4, the search for timing problems during event-driven simulation essen-
tially works by inspecting the simulator’s event queue, also see fig.12.1. A message in textual format
gets produced whenever a switching event is found to infringe upon setup time tsu , hold time tho , or
minimum clock pulse widths tclk hi min and tclk lo min . As each flip-flop, latch, RAM, etc. imposes
its own set of timing requirements, it follows naturally that

Observation 12.1. The checking of timing conditions is not performed by the simulator itself but

is delegated to the circuit models being invoked by its built-in event queue mechanism.

As a consequence, there can be no reporting of timing violations unless the circuit models are
designed to do so. Almost all simulation models found in commercial cell libraries do indeed carry
out the necessary timing checks, yet there are two caveats.1

Observation 12.2. Whatever your preferred HDL is, do not forget to include all necessary checks

(setup, hold, pulse width, etc.) when writing behavioral models of your own. Please note that this

applies to sequential (sub)circuits of any size, not just to flip-flops and latches.
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Fig. 12.1 The responses of a clocked subcircuit to correct and incorrect timing (a) and the pertaining reports

as obtained from simulating at different levels of abstraction (b).

1 Actually, there is a third caveat as there can be no reporting of timing problems when memorizing behavior is
obtained from a zero-latency feedback loop, which is yet another argument for keeping away from this practice.
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Transistor-level circuit simulators2 use analytical equations to model the electrical characteristics
of MOSFETs and other circuit elements. It is, therefore, generally accepted that the continuous
waveforms they produce are more accurate than the discrete results obtained from gate-level sim-
ulation. Yet, neither timing checks nor an event queue constitute part of such simulations because
these are digital rather than electrical concepts. If timing problems become manifest at all, they do
so by producing waveforms that deviate from the expected ones to a more or less evident degree.
Transistor-level simulation is inadequate — and also much too slow — when digital circuits of more
than trivial size are to be verified.

Observation 12.3. Transistor-level — and switch-level — simulations are not in a position to

uncover timing violations as such and to report them by way of meaningful error messages.

Unsettled nodes and their reporting

Even if timing checks are rigorously enforced in all simulation models, timing problems may pass
simulation undetected. Such a situation is depicted in fig.12.1 for the third data-call window. Sup-
pose the inputs to a combinational network of substantial size have changed in response to the last
active clock edge. Further assume that the next active clock event arrives before all circuit nodes
have settled to a new steady state. Depending on the exact delay parameters, the logic value at
the D input of a subsequent flip-flop may then well remain constant throughout the brief data-call
window defined by tsu and tho only to switch shortly thereafter. The flip-flop then stores a bogus
value, but no timing violation will occur and no report will tell of it.

As a remedy, simulations are often set up such that the event queue gets inspected once per com-
putation period immediately before the setup interval begins. Any forthcoming transaction that
relates to a signal other than the clock then indicates that that signal has not reached its steady
state, and points to an overly long signal propagation path. There is no consensus in the industry
on what to call this instrument, unsettled node reporting and design stability checking are just
two of the more common terms.3

What if the critical paths are never exercised?

As shown by the next two examples, dynamic verification continues to suffer from dangerous loop-
holes even when automatic response checking, timing checks, and unsettled node reporting are
combined.

Warning example

An electronics engineer was given a 16 bit arithmetic comparator, i.e. a circuit that determines
whether A<B, A=B or A>B, along with the assignment to develop test vectors suitable for finding its
maximum operating speed. Consistently with the standard practice of black box probing, he was
given a functional description but no details about its inner organization.

2 Such as SPICE, Spectre, ASX, and the like.
3 The pertaining ModelSim command is check stable on. Incidentally, note that setting up simulation for the

reporting of unsettled nodes is much more complicated in the presence of multiple clocks and clock frequencies,
to say nothing about asynchronous designs.



584 Design of VLSI Circuits

He knew that the three output bits from arithmetic comparison were straightforward to derive
from the “carry” and “zero” flags of subtraction, and figured out that the comparator would work
that way. By toggling the two least significant input bits, he made sure that carries would propagate
all the way from the LSB to the MSB, so exercising the longest path through a subtractor. He thus
found he could make do with just four stimuli–response vectors:

stimuli expected responses
A B A<B A=B A>B

11...1110 11...1101 1 0 0

11...1110 11...1110 0 1 0

11...1110 11...1111 0 0 1

11...1110 11...1101 1 0 0

Measurements confirmed that actual and expected responses matched up to 50 MHz (20 ns), the
maximum clock frequency supported by the hardware test equipment available. As specifications
had asked for a data rate in excess of 37 MHz (27 ns), the engineer concluded that the circuit
performed as requested. Only after circuits had been put into operation on real-world data did it
become apparent that the comparator failed for rates beyond some 29 MHz (34 ns).

What had gone wrong? The entire reasoning rested on the assumption that the circuit was
patterned after a subtractor. In reality, however, the circuit was organized as an iterative comparator
where the ith bit slice evaluates its inputs and delegates the decision to the next lower slice whenever
it finds that Ai=Bi . Rippling is from the MSB to the LSB so that stimulating the longest path would
have asked for vectors entirely different from the ones employed.
�

In the above example, no simulator could possibly report any timing problem even if a register
were added right after the comparator because no timing violation and no unsettled node condition
would ever occur. The fact that circuit delay and clock rate do not fit together would pass unnoticed
as the longest path is never brought to bear with the skimpy set of test vectors.

Observation 12.4. The absence of timing violations, of unsettled nodes, and of departures from

the expected responses during simulation is no guarantee that a circuit is free of timing problems.

Similarly to what has been found for functional flaws, there is a coverage problem.

Warning example

A gate-level netlist was obtained from synthesis after the RTL model had undergone extensive
functional simulations. A scan-path and the clock distribution tree were then added by automatic
means before physical design was undertaken. Eventually, the extracted netlist was verified reusing
the logic gauge previously established during RTL simulations. When prototypes were tested, it
was quickly found that they functioned as expected in normal operation mode, but failed to work
in scan mode more often than not.

What had happened? The fact that the clock distribution network had been synthesized before
physical layout and not readjusted afterwards had led to moderate clock skew. In normal operation,
the contamination delays of the combinational logic present in between the flip-flops proved suffi-
cient to compensate for that amount of skew. In scan mode, in contrast, the first of two adjoining
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flip-flops somewhere in the scan chain got clocked with enough positive skew (i.e. before the subse-
quent one) to cause repeated hold violations in the second flip-flop. Regrettably, the scan mechanism
had never been exercised during post-layout simulations as a consequence of reusing the test vectors
from RTL simulations where test structures were not yet present.
�

Very much as in the example before, dynamic verification missed a timing problem because a critical
case was not covered in the test suite. A major difference is that simulation failed to activate the
shortest path this time. We can also learn from this example that test structures bring about extra
hardware with new failure modes.

In conclusion, whether a timing problem gets detected during circuit simulation or not depends on
several preconditions. For a synchronous design, these include:

1. Simulations must be carried out at the gate level (rather than transistor or switch level).
2. The models of all subcircuits used must be coded to report all conceivable timing violations.
3. Zero-latency circular paths through combinational subcircuits are disallowed.
4. The simulator must be properly set up to report unsettled nodes, if any.
5. The longest and the shortest delay must be exercised along every signal propagation path.

Simulation further provides no mechanism that would point to excessively slow clock and signal
transitions explicitly. Rather, slow nodes have to be located indirectly from manifestations such as
overly long paths, excessive skew, or inadequate waveforms. Attempting to address on-chip varia-
tions (OCVs) and crosstalk by way of exhaustive simulations is also impractical.

12.1.2 How does timing verification help?

Our discussion has revealed that simulation alone is not normally sufficient to identify timing
problems in a digital design. A much better instrument is static timing analysis (STA) or timing
verification for short. This analytical technique essentially works by mapping the gate-level circuit
onto a constraint graph followed by comparing the maximum and the minimum delays along all
signal propagation paths in the graph, see figs.12.2 and 12.3.

For each setup or hold condition, the timewise margin is being obtained as the difference of the
respective delays along two distinct signal propagation paths. To that end each component must
be characterized with both propagation delay tpd and contamination delay tcd . A negative result
typically indicates a timing violation whereas any positive result is a sign of slack.

Interpretation is actually not quite as simple as not every case of negative slack flagged during
static analysis necessarily implies that timing violations will indeed develop when the circuit is
put to service. This is because certain gate-level circuits include signal propagation paths that are
impossible to activate from the inputs [356]. That such false paths do not affect the maximum
admissible clock rate should be obvious. Similarly, data ranges and formats are sometimes restricted
such that not each and every signal propagation path present in a circuit can get exercised in real
operation. Designers collect such situations in lists which they feed back into their STA tool in order
to exempt false paths from further analysis.
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Fig. 12.2 Major steps of static timing analysis along with their context (simplified).

Much like formal verification, timing verification is a purely static technique that works without
stimuli and expected responses, so there is no coverage problem. The slacks and other figures
obtained do not depend on whether some critical case is being exercised or not, they simply reflect
the timings along all paths through a digital circuit.

The results depend on how accurately wiring parasitics are known at the moment of analysis,
however. One can distinguish three situations where the parasitics are being

◦ Eestimated from a gate-level netlist in conjunction with statistical wire load models,
◦ Estimated from a gate-level netlist complemented by floorplan information, or
◦ Extracted from actual geometry data (post-layout).

With the data from post-layout timing analysis, it becomes fairly straightforward to check for most
of the problems mentioned in section 12.1.1. Better still, error reporting is by directly pointing to
those nodes, paths or cells that need to be improved in one way or another. There is no need to dig
through interminable vector lists or to analyze lengthy waveform plots.
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Fig. 12.3 Static timing analysis (simplified). Circuit example (a), constraint graph (b).

12.2 How accurate are timing data?

The necessity to calculate or estimate delays arises at numerous points in the VLSI design flow, e.g.
during gate-level simulation, timing analysis, floorplanning, logic optimization, technology mapping,
and place and route (P&R). Entrusting a single piece of software with all delay calculations on the
basis of a common timing model saves one from duplicate efforts and ensures consistency across all
tools. Most EDA vendors endeavor to implement the idea of central delay calculation. The difficulty
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in coming up with precise timing figures is that they depend on numerous conditions under which
the hardware operates. The most significant effects are discussed below along with explanations on
how they are normally taken into account.

12.2.1 Cell delays

Accounting for different input-to-output paths and drive capabilities

It is standard practice to use a pin-to-pin delay model whereby each input-to-output path is
characterized individually and with separate figures for rising and falling edges to account for
unsymmetrical current source and sink capabilities. Recall that CMOS loads are purely capacitive
and that (dis)charging a capacitance with some given current takes non-zero time.

Modelling of transients

With voltage discretized to just a few logic states by the IEEE 1164 standard, there is no way to
render signal ramps during VHDL simulation. The best approximation is to schedule two transac-
tions per signal assignment. A first transaction turns the signal to “unknown” X when the end of
the contamination interval tcd indicates that the previous logic value no longer holds. A subsequent
second transaction makes the signal assume its final value, typically one out of 0, 1, and Z, when
the propagation delay tpd expires. For an illustration refer to fig.A.25.

VHDL code example OUP <= ’X’ after contdelay, INA + INB after propdelay;

Simulation models do not normally support such two-step schemes, though. Instead, they have
the cell output switch from its previous logic value to the new one in zero time at the end of the
propagation delay, which implies that tcd is crudely replaced by tpd and that output ramping is not
being modelled.

Load dependencies

The traditional prop/ramp model describes propagation delay as a sum of two terms.

tpd = tit + rcap Cext (12.1)

tcd = tit (12.2)

The product term reflects the time span necessary to charge or discharge the external load capac-
itance Cext with a finite current. The name for rcap is load factor and its measurement unit is
ps
pF = Ω. The delay contribution from the cell’s own output capacitance Coup is included in the
cell’s intrinsic delay tit , a fixed quantity that does not depend on the surrounding circuitry. The
prop/ramp model used to be adequate before the 500 nm process generation.

Waveform dependencies

A cell’s timing also varies with the input waveforms as a consequence of finite voltage amplification
and crossover currents in logic gates. The effect is evident in a zero-load condition where input and
output voltage “ride” the gate’s static transfer function. It has become more pronounced with the
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advent of deep submicron technologies because channel length modulation and low supply voltages
are detrimental to voltage amplification.

The prop/ramp model has thus been supplanted by a more sophisticated input slope model that
estimates a cell’s delay(s) and output ramp time(s) as a function not only of drive strength and
load capacitance but also of the ramp times at the input.
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Fig. 12.4 Delay and slope modelling via table lookup.

There is no generally agreed upon analytical model for capturing waveform dependency, but table
lookup from 5-by-5 tables with subsequent spline interpolation is a popular procedure, see fig.12.4.
Multiple tables are used to account for distinct signal propagation paths, for rising vs. falling
ramps, and for the various timing quantities to be modelled. A limitation of this approach is that
calculations tend to become inaccurate when excessive load capacitances or overly slow ramps force
the delay calculator to extrapolate data far outside the look-up table. Another approach is to extend
(12.1) into

tpd = tit + sra in p tr a in p + rcap Cext (12.3)

with a dimensionless slope sensivity factor sra inp as an extra parameter. Values for all three
model parameters are then to be given for each input-to-output path and output ramp orientation.
The waveform dependencies of setup and hold times are captured as linear functions of clock and
data ramp times in much the same way.

State dependencies

The delay on some given path through a cell further is a function of the voltages or logic states
currently applied to the other inputs of that cell, which is why timing is said to be state-dependent.
The effect is indeed significant [182] and many modern input slope models use even more look-up
tables or parameter sets to account for that.
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Statistical variations

Statistical process variations (P), junction temperature (T), and supply voltage (V) all impact a
MOSFET’s drain current and, hence also, the timing characteristics of CMOS circuits. In digital
design, it is standard practice to model such PTV variations by applying three corrective factors
that account for deviations between the actual and the nominal situations.

tder a ted = tn om in a l · KP Kθ KV (12.4)

Functions KP (fast, typical, slow), Kθ (θj ), and KV (Udd) are referred to as derating curves.

Numerical example

The figures below belong to a 130 nm CMOS process. Observe that PTV contributes to an overall
variation by a factor of almost three between the fastest and the slowest case!

Process Derating
outcome factor

KP

fast 0.792
typical 1.000
slow 1.341

Junction Derating
temp. factor
[◦C] Kθ

125 1.139
75 1.070
25 1.000
0 0.962
−25 0.924

Supply Derating
voltage factor for
[V/V] KV

1.08/1.20 1.201
1.20/1.20 1.000
1.32/1.20 0.867

Overall situation Derating
factor

name PTV condition KP KθKV

best case fast, −25 ◦C, 1.32 V 0.63
nominal case typical, 25 ◦C, 1.20 V 1.00
worst case slow, 125 ◦C, 1.08 V 1.83

�

Derating implicitly assumes that all devices on a die are equally affected by PTV conditions. Un-
fortunately, this is no longer valid for technologies smaller than 130 nm or so. All sorts of disparities
between devices on the same die are subsumed as on-chip variations (OCVs).

• Mistracking threshold voltages (especially when multiple thresholds are involved)
• Local tolerances of channel width and channel length due to imperfect lithography and etching

steps
• Individual gate oxide thickness variations
• Hot-electron degradation and other long-term wearout effects
• Local mechanical stress (affects carrier mobilities)
• Atomistic variability

Characterization of on-chip variability with statistical models currently is a hot research topic in
view of yield enhancement and design for manufacturing (DFM).
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Trip points and other assumptions underlying library characterization

Once analog circuit simulations — or actual measurements — have produced signal waveforms such
as those shown in fig.12.5, a much more mundane question pops up:

“What is the exact lapse of time that shall be promulgated as propagation delay?”
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Fig. 12.5 The impact of trip voltages on the timing figures obtained. Different definitions of propagation delay

and ramp time (a), low pass effect due to heavy load (b). The drawing refers to a non-inverting signal

propagation path through a combinational circuit.

The common practice is to identify tpd with the timewise difference between two crossings of pre-
determined voltages referred to as trip points, see fig.12.5a. Quantities tcd , tri oup , and tf a oup are
determined in a similar manner. As opposed to the load conditions, input waveforms, and other
operating conditions discussed before, those trip points do not affect the actual behavior of the
(sub)circuit being modelled in any way. Their choice is nevertheless important because they affect
the timing figures disclosed in circuit models and datasheets, and so impact the results of timing
verification, gate-level simulation, and synthesis.

An extremely conservative attitude is to start counting when the input signal traverses 10% of the
voltage swing on a rising edge (90% on a falling edge) and to stop when the output signal settles
to 90% (10% respectively). The time span so obtained is referred to as tpd 0.1/0.9 (tpd 0.9/0.1). The
opposite attitude has all trip points sit halfway along the voltage swing and states tpd 0.5/0.5 . This
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practice must be considered very optimistic for two reasons. Firstly, there exists no logic family that
features identical and perfectly symmetric switching thresholds across all of its members. Secondly,
designers are misled into believing that their circuits should work at higher frequencies than those
at which they actually will.4 A more realistic compromise is to indicate tpd 0.5/0.65 (tpd 0.5/0.35).

Observation 12.5. Vendors of physical components and of design libraries are free to define trip

voltages at their own liking, and they often tend to adopt highly aggressive values when under

competitive pressure.

There is no consensus on how exactly to quantify rise and fall times either. Some companies indicate
1

0.8 tri 0.1/0.9 , whereas others consider tri 0.2/0.8 to be realistic enough. A majority specifies tri 0.1/0.9 .
As stated in footnote 12, the timing-wise characterization of flip-flops, registers, and other sequential
subcircuits introduces even more degrees of freedom.

Example
Table 12.1 shows how the conditions for characterizing cell libraries and for establishing datasheets
have evolved over the years.5 While downscaling has led to very impressive speed improvements
indeed, it should be understood that nominal, i.e. underated, timing figures in datasheets and
simulation models suggest extra speed-ups not justified on the grounds of actual technological
progress alone, and unlikely to apply in practice.

Table 12.1 How conditions for library characterization have evolved over the years.

Year of Process Process Junction Supply Trip points Clock and
initial gene- outcome tempe- actual/ input � output input
release ration rature nominal (rise/fall) ramp time

[ ◦C] [V/V] relative to Udd [ps]
1988 2000 nm slow 85 4.5/5.0 0.5 � 0.7/0.3 1000
1991 1200 nm slow 70 4.75/5.0 0.5 � 0.65/0.35 500
1994 600 nm typical 25 5.0/5.0 0.5 � 0.65/0.35 300
1998 250 nm typical 25 2.5/2.5 0.5 � 0.5/0.5 50
2000 180 nm typical 25 1.8/1.8 0.5 � 0.5/0.5 24
2004 130 nm typical 25 1.2/1.2 0.5 � 0.5/0.5 28.4
2005 90 nm typical 25 1.0/1.0 0.4/0.6 � 0.4/0.6 modelled

�

Yet another variability comes from the extra parasitic capacitances due to over-the-cell routing. To
stay on the safe side, library cells should be characterized with a fully populated routing grid on

4 This is because one naturally expects a buffer with a propagation delay tpd to transmit waveforms with a period
as short as Tmin = 2tpd . While this is true on the basis of tpd 0 . 1 / 0 . 9 , it is not necessarily so for tp d 0 . 5 / 0 . 5 where
the ramp time is not accounted for, see fig.12.5b. Note that pad drivers and other heavily loaded nets are
particularly exposed to this kind of misguided conclusion.

5 All data are from commercial standard cell libraries. As a consequence of mergers and acquisitions, it has not
been possible to compile the table from datasheets of any single vendor; a horizontal line thus separates data
from distinct companies. Yet, the trend from extremely conservative to more accurate but also overly optimistic
characterization is a universal one.



12.2 HOW ACCURATE ARE TIMING DATA? 593

the next two metal layers above. The crosstalk effects due to over-the-cell routing are more difficult
to anticipate.

Observation 12.6. Timing data always refer to those specific circumstances under which they have

been obtained. As there is no universally agreed-on standard for measurements and characterizations,

make sure you account for diverging conditions when interpreting datasheets.

Timing data with no indications about the conditions under which they apply are useless.

12.2.2 Interconnect delays and layout parasitics

There was a time when node capacitance was dominated by MOSFET gate capacitances and metal
resistance had a negligible impact on interconnect delay, see fig.12.6. As a result, it was perfectly
acceptable to take the cumulated cell delays along a signal propagation path as overall delay.
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Fig. 12.6 The spreading out of delay figures and the underlying causes of variability (numbers strongly

dependent on assumptions made).

With today’s deep submicron technologies, however, interconnect lines have become narrower, rel-
atively thicker, and also more tightly packed, see fig.12.7. Yet, die sizes and wire lengths have not
shrunk much as a consequence of today’s lavish levels of integration. Conversely, gate capacitances
have diminished as a consequence from geometric scaling. As a net effect, wire delays prevail over
gate delays and predictions on the basis of gate delay models alone have long become unacceptably
inaccurate. Interconnect modelling is mandatory.

Wire models

As for any approximation, the results obtained are only as close to reality as the model is. You may
want to see appendix 12.8 for an overview on popular wire models. A reasonable compromise must
be found among precision, the effort for finding the numerical values for a model’s parameters, and
the computational burden of evaluating that model during simulation and timing analysis.
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Fig. 12.8 A net (a) and its lumped RC network model (b).

In the lumped RC network model, each net is decomposed into multiple sections of uniform
electrical characteristics, or very nearly so. Each section is then replaced by a resistance–capacitance
pair as shown in fig.12.8. A leg in the layout typically becomes a section in the wire model as the
line’s electrical characteristics are likely to change at each turn, fork, via, contact, or change of
width. Lumped RC models have a long tradition in the context of VLSI timing analysis, and many
commercial software tools operate on the basis of such models.6

6 The Pearl timing verifier by Cadence calculates interconnect delays as follows. To begin with, the driving gate
is being modelled as a controlled voltage source with a series resistance (Thévenin model). The interconnect is
then globally replaced by a Π-model and the waveform at the gate’s output connector is determined for that
load, see fig.12.15g. Next, the delays along all signal propagation paths are calculated from a second interconnect
model, of lumped RC type this time, with the aid of Elmore’s approximation formula [53] before one RC pair
of identical delay is substituted for each such path. Lastly, each RC pair is being driven with a copy of the
previously determined gate output waveform to estimate the waveform at the gate input being driven.



12.2 HOW ACCURATE ARE TIMING DATA? 595

As opposed to this, lumping the total capacitance to the driving cell’s output is inadequate unless
the net being modelled is so short that its series impedance can safely be neglected when compared
with that of the driver. Also, obtaining good estimates for the capacitances and resistances in each
section is essential.

Parasitic resistances

To calculate the parasitic resistance of a line, the line is geometrically decomposed into a series of
legs of rectangular shape. The resistance of leg k, for instance, is then defined by the leg’s geometry
l(k) and w(k) and by R�(k), the sheet resistance of the material.

Rk = R�
lk
wk

+
1

m(k)
Rplu g i,j (12.5)

As each contact or via plug between layers i and j has its own resistance Rplug i,j , we must add an
extra contribution wherever two adjacent legs meet on distinct layers so that i �= j. m(k) indicates
the number of parallel plugs that together make up the contact or via placed at the end of leg k or,
which is the same, between legs k and k + 1.

A new source of variability has become manifest at the 90 nm technology node. Sheet resistance
and plate capacitance data are subject to important variations as chemical mechanical polishing
(CMP) no longer produces layers of reasonably uniform thickness across a die.

Parasitic capacitances

The external load capacitance attached to an output is

Cext =
J∑

j=1

Cin p (j) + Clin e (12.6)

where J indicates the number of cells being driven (fanout) and Cinp (j) the input capacitance of the
jth such cell. As becomes clear from fig.12.9, a line’s overall capacitance consists of contributions
from plate, fringe, and lateral fields.

Clin e =
∑

Cpla te +
∑

Cf r in g e +
∑

Cla ter a l ≈∑
n ,m

(Aov er la p n ,m cp la te n ,m + lr im n ,m cf r in g e n ,m + lsidew a ll n ,n cla ter a l n ,n ) (12.7)

Aoverlap n,m denotes the area where layout patterns n and m overlap with no other conductive layer
in between and cplate n,m the plate capacitance per unit area between the two layers. Similarly,
lrim n,m stands for the circumference of pattern n that runs immediately on top or below m while
cf ringe n,m indicates the capacitive contribution per unit length of the fringe field between the two
layers. Finally, lsidewall n,n stands for the length where the edges of two unconnected polygons
on layer n face each other at minimum distance as specified by the pertaining layout rule; the
capacitance per unit length between two such polygons is clateral n,n .
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Fig. 12.9 Contributions to parasitic capacitance. Plate (a), fringe (c), and lateral capacitances (e) each with

one instance highlighted versus the most relevant dimension in the layout (b, d, and f respectively).

Given a solitary line of width w and length l � w that runs on metal1, the overall parasitic capac-
itance to bulk is then obtained as

Clin e ≈ l (w cpla te M 1 ,bu lk + 2 cf r in g e M 1 ,bu lk ) (12.8)

Pattern dependencies

So far, each parasitic capacitance has been viewed as just another contribution to a node’s total
capacitance that must be (dis)charged whenever that node switches. The line under consideration
was in fact considered the only switching node. This is obviously not so in a real circuit where
multiple nodes toggle at the same time. As explained in chapter 10, crosstalk, ground bounce, and
supply droop may significantly distort signal waveforms.

Delay figures are thus dependent not only on layout geometry but also on data patterns, which
compromises the accuracy of static timing analysis further. To make things worse, coupling between
adjacent signal lines becomes more important when dimensions shrink. Starting approximately with
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the 130 nm process generation, lateral capacitances between adjacent signal lines have in fact begun
to supersede plate capacitances.

12.2.3 Making realistic assumptions is the point

From the above, we must admit that there are practical limits to the accuracy of static timing
analysis and simulation because important electrical parameters are subject to all sorts of variations
and conditions.

Observation 12.7. In spite of sophisticated software tools, timing data warrant a fair portion of

prudence and disbelief.

As a rough indication, interconnect delay and noise coupling are estimated to contribute an average
of 36% or so to overall stage delay in 250 nm CMOS designs [357], and even more so in denser
technologies. This figure does not provide any latitude for sloppiness on the part of the designers
but presumes correctly calibrated technology files, transistor models, library cells, and interconnect
models as well as correct usage of CAD software.

What’s more, a simulation run or a static timing analysis covers a single operating point whereas
physical circuits are bound to operate under various operating conditions. As it is next to impossible
to carry out analyses for all situations found in real-world operation, one must find a different
solution.

Min/max timing analysis is a technique whereby the occurrence of an event is not described as
a single moment of time but as a time span. The boundaries of that interval are obtained as the
earliest and as the latest possible event times respectively that result from combining assumptions
at either extreme of speed. This approach tends to give overly pessimistic results, however. After all,
two signal propagation paths may exhibit a fair degree of on-chip variation (OCV) and be subject to
severe crosstalk from other signals but will nevertheless operate under similar process, temperature,
and voltage (PTV) conditions.

A more pragmatic approach is to predict all variations for which an accurate and efficient model
exists and to add an approximate allowance on top for those that are impossible to anticipate with
reasonable computational effort. Consider OCV, for instance. Any two signal propagation paths
are compared under the assumption that their respective delay figures may deviate in either way
but by no more than by some fixed factor of, say, 1.25 from their respective calculated values. In
essence, this amounts to asking for more ample margins during timing analysis without overdoing
it to handle situations that are extremely unlikely to occur in practice.

The burden of deciding on what is realistic and what not rests with the IC designer. Many default
PTV settings from data sheets and simulation models are likely to prove overly optimistic because
industry has gradually moved away from conservative characterization conditions to more aggressive
ones under the pressure of competition in the marketplace, see table 12.1. Note, in particular, that
junction temperatures of 25 ◦C are unrealistic even if one calls for massive forced cooling. At room
temperature, the air contained in any kind of enclosure must be expected to warm up well above
25 ◦C and the heat-generating chips even more. Similarly, supply voltage must be expected to fall
below its nominal value as a consequence of series impedances in power and ground nets.
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As a more general conclusion, a broad tolerance with respect to parameter variations must be
designed into electronic hardware.7

Observation 12.8. While a design’s maximum clock rate necessarily depends on numerous data-

dependent, process-induced, and environmental uncertainties, its qualitative functioning must not.

12.3 More static verification techniques

12.3.1 Electrical rule check

Experience has led designers to recognize certain circuit structures as safe and others as prone to
failure. Over the years, engineers have come up with a number of rules as to what good circuits must
look like and as to what structures must be avoided. What exactly is to be considered perilous to
safe operation depends — to some extent — on the technology, the circuit design style, the clocking
discipline, the surrounding circuitry, and other circumstances. A few truly unacceptable anomalies
are given below, a more complete list is available from table 12.2.

• Power and ground fragmented into unconnected segments.
• Shorted power and ground nodes.
• Missing drivers on output pads.
• Permanent drive conflicts.
• Cell inputs left open.
• MOSFET terminals left unconnected or shorted together.

Any such oddity points to a problem that is very likely to prevent a design from operating as
intended. Worse than this, fabricated circuits might even behave differently from simulations.

Most structural flaws can be found by careful inspection of the circuit with no need for a simulator
and stimuli waveforms. Software tools have thus been developed that accept a gate- or transistor-
level netlist and that scrutinize it for violations of integrity rules. Such tools are commonly known
as electrical rule checkers (ERCs) or netlist screeners. What makes them so valuable is that they
indicate the existence of potential design problems irrespective of functionality and test patterns,
much like static timing analysis (STA).

Example

The problem of using simulation to locate design flaws has been discussed in an earlier chapter of
this text; an example where inputs to a multiplexer are permuted by mistake has been given in
fig.3.1. As swapping two signals does not violate any integrity rule, no ERC could possibly uncover
a problem of this kind. The mistake simply leads to a functionality that deviates from the intended
one, uncovering it thus entirely depends on functional verification.

7 It is interesting to note that while fully self-timed operation maximizes the latitude towards uncertain or chang-
ing timing parameters, the opposite holds true for clock-as-clock-can asynchronous design styles, with strictly
synchronous clocking disciplines occupying reasonable positions in between.
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Now consider a case where two wires have inadvertently been shorted together rather than permuted.
A node controlled by more than one permanent-drive output is against established principles of logic
design unless the two driving gates are connected in parallel and of identical type. Any decent ERC
will report this oddity and indicate the shorted drivers whereas tracing the problem back from a
few bits of simulation output that do not match their expected values may prove to be an exacting
exercise.
�

Observation 12.9. Most problems uncovered by ERC can also be found by way of simulations,

yet ERC has two important benefits. Firstly, ERC being a static technique, there is no coverage

problem. An ERC run necessarily uncovers all violations of the integrity rules examined. Secondly,

ERC reports are much easier to interpret than simulation outputs, which is why netlists should

always be screened prior to simulation.

In comparison with the early days of VLSI design, ERC has lost part of its former significance as
automatic synthesis dispenses with the hand-editing of gate- and transistor-level schematics and so
prevents a variety of problems from coming into existence. Also, industrial cell libraries are normally
free of structural problems. With the shift to more abstract levels of design entry, static verification
techniques had to move upwards as well.

12.3.2 Code inspection

Most design failures today have their roots in mistaken RTL models. While it is true that all
simulation and synthesis tools do a thorough syntax checking on the HDL input code, this is by
no means sufficient to obtain circuits that are safe, efficient, and functionally correct. Examples of
problems that typically slip through syntax checking are given below.

• Naming conflicts in the HDL code that may cause nodes to become short-circuited.
• Reversed, empty, excess or otherwise inconsistent index and/or address ranges.
• Mismatches between endian types (especially when subwords are involved).
• Stationary driver conflicts due to flawed bus access protocols.
• A clocking scheme that does not comply with any of the established disciplines.
• Zero-latency loops through datapaths and their controlling state machines.
• Chip-wide busses and other high-fanout high-load circuit structures.
• Large central multiplexers and other high-fan-in circuit structures.
• Large centralized control circuitry difficult to optimize, maintain, and modify.

Thorough examination of HDL source code prior to synthesis is thus highly desirable to avoid
unnecessary and time-consuming design iterations. It is also highly beneficial because decisions at
the architecture and RTL level have a much more significant impact on circuit complexity, timing
closure, and energy efficiency than gate-level optimizations have.

Code inspection largely relies on human expertise but software aids have also begun to appear. Note
that no single code checker searches for all conceivable problems. Few commercial tools consistently
check for compliance with synchronous design guidelines, for instance. Always find out what tests
are included and which are not when evaluating a new verification product.



600 Design of VLSI Circuits

Table 12.2 Various design problems and the verification tools supposed to uncover them.

Technique dynamic static
gate-level code electr. timing
simula- inspec- rule verifi-

tion tion check cation
Design flaw (ERC) (STA)

No or inadequate reset mechanism if covered yes
Inconsistent index or address range if covered yes
Mismatches between endian types if covered yes
Unwanted latch in supposedly combinat. logica if covered yes
Driver conflict due to flawed bus access protocol if covered yes
Node left undriven for a prolonged time maybeb yes
Signal nodes shorted togetherc if covered yes yes
Misuse of async. reset for functional purposes yes
One-shot, clock chopper, hazard suppressor, etc. yes
Cross-coupled gates or other zero-latency loop yes yes
Careless clock gating (comb. gate in clock net) yes maybe
Lack of synchronization between clock domains yes maybe
Excess ramp times on clock or other signal yes
Excess clock skew maybed yes
Long- or short- path probleme maybed yes
Unfriendly external timing maybed yes
Missing level shifter on input pad yes
Missing driver on output pad yes yes
Lack of driver on test padf maybe yesg

Cell input left open if covered yes
Cell output shorted to power or ground yes
Redundant cell (no output connected) yes
MOSFET terminal left unconnected yes
MOSFET terminals shorted together yes
Floating well due to missing body tie yes
Short between power and ground yes
Broken supply line yes
Missing power or ground pad yes

a Gets reported also during synthesis.
b Provided the simulator is set up to model charge decay correctly.
c Due to a naming conflict in the HDL code (or to badly drawn schematics).
d Provided netlist is properly back-annotated and problem gets covered by test vector set.
e Setup violations/unsettled nodes or hold-time violations respectively.
f Capable of handling the load of a probe.
g Provided all tests pad get adequately loaded for STA.
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12.4 Post-layout design verification

The final layout obtained with the aid of automatic place and route (P&R) tools ideally

• Matches the original netlist,
• Conforms with all layout rules of the target process,
• Remains within the specified delay and energy budgets, and
• Does not overtax any interconnect lines, contacts or vias electrically.

Incorrect or inadequate layouts occasionally result as a consequence of software bugs, flawed cell
libraries, inconsistent design kits, misinterpretations, routing congestions, suboptimal algorithms,
misguided manual interventions, and the like. In addition, many designs include portions layouted
by hand. Delaying the uncovering of problems until first silicon becomes available would cause
enormous cost and time overruns, hence the need to double check whether the above four conditions
are indeed satisfied before proceeding to mask preparation.

As shown in fig.12.10, physical verification can be carried out either before or after the detailed
layout patterns have been filled in for the cell abstracts. Checking the layout at the detail level
offers better protection and is, therefore, a mandatory part of any sign-off procedure. However,
enabling ASIC designers to do so requires the library vendor to disclose his own layout drawings
in full detail to his customer, which proposition is unpopular in a competitive context. Also, the
amount of data to be processed is greatly inflated.

Checking at the abstract level, in contrast, implies that each cell is epitomized to a box of
true size and shape with the connectors correctly located, but with hardly any inner details.8 Such
a simplified view is normally sufficient for place and route (P&R) but perforce confines physical
verification to the interconnect layers. Uncovering flaws within library cells and extracting layout
parasitics with good precision are not possible in this way.

In order to maximize protection against software bugs, the entire verification process relies on soft-
ware code other than that included in the EDA tools that serve to establish layout data. Experience
has shown that commercially available design kits are not always free of inconsistencies between the
various technology files (for synthesis, P&R, DRC, layout extraction, timing verification, etc.) and
the documentation for the user. Sorting out such issues is very time-consuming or altogether im-
possible without detail-level layouts and generates a lot of back and forth between circuit designers,
library vendor, and silicon vendor.

Hint: Always complete a full design cycle on a benchmark design
before adopting a hitherto unproven design kit for a commercial project.

Next, we will examine what the various software tools contribute to physical design verification
and where they fit into the process before summarizing our findings in table 12.3. For illustration,
numerous layout flaws have been collected in figs.12.11 and 12.12.

8 The exceptions are called blockages and designate areas unavailable to over-the-cell routing on some specified
low-level metal layer because of obstructions within the cell itself.
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Fig. 12.10 Back-end VLSI design flow (simplified).

12.4.1 Design rule check

A design rule checker (DRC) is a piece of EDA software that verifies whether or not a given design
complies with the geometric rules imposed by a target process. DRC software accepts layout data
plus a set of layout rules, aka rule deck, and returns a listing of all violations found, if any. Locating
DRC violations is greatly facilitated if the software also generates an error file that can be read
into a graphical layout editor, where it is overlaid over the flawed layout for inspection. Examples
of layout problems include items (d), (h), and (i) in fig.12.11c.

DRC is always carried out before the other physical verification steps because it makes no sense to
subject incorrect layouts to further analysis as they are not going to serve for fabrication anyway.
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Also, invalid layout data are likely to fool circuit netlist extraction and other downstream verification
programs.

Most DRC rule decks have been established for detail-level DRC, which is to say that they not only
cover, but also require, the full set of layout data as input. While it is true that physical design of
cell-based circuits is largely confined to intercell wiring using metal2 and higher layers, the layers
below such as wells, diffusions, polysilicon, and metal1 are also affected, albeit indirectly. One can
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Fig. 12.12 Various layout flaws shown on the add–drop switch example from fig.11.10.

never be 100% sure about geometric correctness unless a layout has indeed been verified on all
layers. The process is thus complicated when a third-party library vendor refuses to make detailed
cell layouts available to VLSI designers. Having the silicon vendor carry out detail-level DRC runs
on behalf of his customer instead significantly inflates turnaround times.

12.4.2 Manufacturability analysis

As stated in observation 11.1, geometric layout rules and traditional DRC have long supported an
utterly simple and effective model of collaboration and responsibilities between circuit designers and
manufacturers. This proven procedure is unfortunately running out of steam due to the complexities
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of subwavelength lithography and of sub-100 nm fabrication processes. On a background of yield
enhancement and design for manufacturing (DFM), the sharp distinctions among layout design,
mask preparation, and wafer processing are blurring [358]. One option, introduced in section 11.5.6,
is to restrict the admissible layouts to compositions of a few patterns known to be lithography-
friendly.

A complementary idea is to replace the traditional DRC procedure along with its simplistic rules
and hard “go/no go” decisions by more elaborate computational models able to predict a design’s
manufacturability. Lithography compliance checking requires a software tool that accepts layout
data plus a sophisticated mathematical model as inputs for simulating the subwavelength lithogra-
phy process and for approximating the geometric distortions to be expected [359]. The geometry
so obtained is then compared against the designer’s intentions as reflected by the undistorted lay-
out drawings and target netlists. Problem areas, such as likely shorts and breaks, but also critical
dimensions subject to significant variability, are flagged.

Lithography compliance checking can further help to automatically make minor adjustments to
electrically uncritical layout patterns so as to improve a design’s latitude towards uncontrollable
variations, e.g. by slightly relocating existing edges in the layout and/or by adding and optimizing
serifs, hammerheads, and other geometric features of purely lithographic purpose illustrated in
fig.14.24.

12.4.3 Layout extraction

Layout extraction accepts layout data and returns the corresponding netlist. In addition to the
geometrical layout, the extractor software asks for technology files that define all layers and that
specify the active and passive devices to look for (e.g. MOSFETs, capacitors, resistors, etc.) along
with their electrical characteristics (e.g. sheet resistances, plate and fringe capacitances, process
gain factors, MOSFET threshold voltages, etc.).

Depending on whether the input was a detailed or an abstract-level layout, the extracted netlist
is either a transistor-level or a gate-level netlist. What sets the extracted netlist apart from the
original one are the more accurate numerical figures for layout parasitics.

Also note that layout extraction per se does not normally uncover or report any design problems.
Extraction just undoes physical design and so serves as a preparatory step for the subsequent
scrutiny of a design’s true netlist.

12.4.4 Layout versus schematic

Layout versus schematic searches for disparities between two circuit netlists and is typically being
used to compare the extracted netlist against the original netlist, hence the name LVS. This powerful
instrument is capable of locating a multitude of problems such as:

1. The two netlists do not match in terms of number and/or naming of terminals.
2. There exist circuit entities in one netlist for which no equivalent counterpart can be identified

in the other netlist.9

9 The word circuit entity here refers to any kind of subcircuit or electronic device such as a building block, a logic
gate, or a MOSFET.
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3. Entities match but their connectivities have been found to differ between the two netlists.
4. Entities match but their geometric size or electrical parameters differ more

than some predefined tolerance margin permits.

Examples are shown in fig.12.11c. Items (b), (a), and (f) all cause a mismatch in the circuit’s
structure while (c) preserves connectivity but causes the electrical characteristics to deviate in an
unforseen way.

LVS correctly detects inadvertent shorts and opens in a layout, but cannot normally point to their
exact locations. In the occurrence of problem (v) in fig.12.12, for instance, LVS would just flag
the names of the two nets being shorted together and would highlight all their polygons in the
layout. Identifying the exact place and cause of the short is left to humans, which may take some
investigative efforts when the nets concerned are spread out over long distances and when no layout
rules are violated.

12.4.5 Equivalence checking

LVS has a strong tradition in VLSI, but its application has become increasingly difficult. This is
because today’s designs undergo a series of optimization steps such as rebuffering, input reordering,
logic reoptimization, scan reordering, and clock tree generation as part of physical design. LVS
cannot work properly unless all such changes are propagated back into the original netlist. This
is why the extracted netlist is more and more compared against the synthesis model rather than
against some intermediate netlist.

Formal verification techniques essentially identify subcircuits, reconstruct their behavior at the RTL
level capturing all combinational subcircuits as logic equations, and check for equivalence with the
original HDL description. As an extra benefit, any functional flaw that might have crept in during
some front-end design step, such as pipelining, retiming, conditional clocking, or the insertion of
test structures, is very likely to be found as well.

12.4.6 Post-layout timing verification

As both interconnect and cell delays are functions of layout parasitics, the placement of cells and
the routing of wires established during physical design affect a circuit’s timing to an extent that
is significant, yet difficult to predict. Unexpected deviations from the expected may give rise to all
sorts of timing problems and even cause the finished layout to behave quite differently from the
original netlist. Every design is, therefore, subject to timing verification on the basis of delay data
calculated from the geometries in the finished layout as explained in sections 12.1.2 and 12.2.2.
The timing data so obtained are back-annotated into the gate-level netlist, that is, they are to
overwrite the pre-layout data there.

Hint: Make it a habit to double check the numerical data that participate in back-annotation
and that emanate from post-layout simulation and timing verification.

Warning example

In a particular project, it was discovered that timing analyses were carried out with a fixed
propagation delay of 1 ns for all full-adder cells instantiated. Closer inspection revealed that the
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back-annotation process had failed to become fully effective because of inconsistent namings in the
VITAL cell models. While all parameters got assigned correct data from the standard delay format
(SDF) files, some assignments actually remained ineffective as the names used in the cell models
and those constructed from the cell’s terminal names — and hence referenced in the SDF — did
not match. As a consequence, a number of timing quantities simply kept their default value of 1 ns.
No warning or error message was produced that could have hinted at the problem. To make things
worse, with 1 ns being roughly four times the actual delay of a full adder in the target technology,
the overall delay reported was well beyond any acceptable tolerance, but not totally implausible. It
took the attention of an experienced supervisor and the comparison with a Verilog model to become
aware of the problem.
�

12.4.7 Power grid analysis

To locate inadequately sized supply lines, contacts, and vias, specialized EDA tools accept layout
geometries, extracted layout parasitics, and node activity data as obtained from simulation runs or
from statistical power estimation tools. For each power and ground line they accumulate the DC
values before calculating current density and ohmic voltage drop. Output typically is via color maps
superimposed on the chip’s floorplan.

12.4.8 Signal integrity analysis

Signal integrity analysis begins by calculating ramp times from the current sink and source ca-
pabilities of all cell outputs and from the respective loads attached. Starting from the parasitic
capacitance, resistance, and inductance values obtained from layout extraction, a software tool
then estimates the impact of signal transitions on one line (the polluter) on the waveforms on other
nearby lines (the victims) that result from ground bounce and/or crosstalk. Nets found to be at
risk get flagged.10

12.4.9 Post-layout simulations

Yet another verification technique popular with VLSI designers is post-layout simulations. Such
simulations are mainly sought for personal reassurance, however, as they are largely redundant
provided meticulous pre-layout simulations have been carried out and provided LVS and equivalence
checking have confirmed that pre- and post-layout models are indeed equivalent. Be assured that it
is much easier to uncover and locate layout problems from an LVS report than from the output of
a post-layout simulation run.

12.4.10 The overall picture

Of all design flaws listed in table 12.3, (e) is very likely to pass unnoticed because it does not violate
any layout rule, does not alter the circuit’s netlist or functionality, has a minor impact on timing,
and does not result in an out-of-the-normal current density or waveform. Contact replication is
indeed mostly a matter of yield enhancement.

1 0 Commercial EDA tools include PrimeTime-SI by Synopsys and CeltIC by Cadence.
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Table 12.3 Various layout problems and the verification tools supposed to uncover them.

design layout layout equi- post- grid/
rule ex- versus valence layout signal

check trac- schematic check timing integr.
Design flaw (DRC) tion (LVS) verif. analysis

(d) insuff. poly width (gate length) yes tolerancea

(h) insufficient metal spacing yes
(i) insufficient poly extension yes
(b) missing gate (p-channel device) counterp. yes
(a) absence of body tie (n-well) yesb connectiv.
(f) missing poly contact connectiv. yes
(g) misaligned diffusion contacts yesc connectiv. yes
(v) lines intersecting on same layer connectiv. yes
(c) mismatch of gate length tolerancea

(x) excessive interconn. resistance yes
(y) excessive interconn. capacitance yes
(u) constriction in supply line power
(z) excessive supply line inductance signal
(w) excessive crosstalk signal
(e) lack of contact replication

a Provided the original netlist correctly specifies a target value.
b Provided the DRC cares about dangling contacts.
c Provided a layout rule gets violated as in fig.12.11b.

12.5 Conclusions

� Code inspection, functional verification — which essentially relies on simulation —, static
timing analysis, and electrical rule checking complement one another. As becomes clear from
table 12.2, all methods must be combined to maximize the likelihood of finding flaws in HDL
models and gate-level netlists.

� No timing figures must be taken for granted before it is made sure that actual operating
conditions and those assumed for the purpose of timing analysis are in good agreement.

� No single EDA tool is capable of detecting all potential layout problems, so physical verification
is not complete before the subsequent steps have been carried out:

1. Design rule check and/or manufacturability analysis.
2. Layout extraction.
3. Layout versus schematic and/or equivalence checking.
4. Post-layout static timing analysis.
5. Power grid analysis.
6. Signal integrity analysis.
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12.6 Problems

1. Section 12.1.1 has reported a misguided attempt to measure the propagation delay of a 16 bit
arithmetic comparator that failed because the test vectors turned out to be inadequate. Can
you provide a better set?

2. Figure 12.13 shows a Braun-type array multiplier for unsigned numbers.
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Fig. 12.13 Bit-level DDG of a 6-by-6 bit Braun multiplier.

For the sake of simplicity, let us make a couple of simplifying assumptions:

• Interconnect delays are negligible.
• Routing capacitances are the same for all local wires.
• Load capacitances are the same for all array outputs.
• Delays from local multiplication and local addition are additive.
• Delay of addition is the same for both sum and carry.
• Identical operations have identical delays as given below.

tpd mu tcd mu tpd ha tcd ha tpd f a tcd f a

1×1 bit [ps] [ps] half [ps] [ps] full [ps] [ps]
multiplier 60 20 adder 80 40 adder 100 50
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a) Find the critical paths, long and short.
b) What are the propagation and the contamination delays of the multiplier?
c) Allow for arbitrary word widths wmd ≥ 2 and wmr ≥ 2 of multiplicand MD and multiplier

MR respectively. Express the overall delays for the MSB and the LSB of the product PR

as a function of wmd and wmr .
d) Now suppose the multiplier is sandwiched between registers the flip-flops of which feature

the timing data tabulated below. Indicate the highest clock frequency at which the circuit
can operate.

e) Add a scan path to the circuit. Recalculate the maxmimum clock frequency when the
timing of a 2-to-1 multiplexer is as follows on all input-to-output paths.

tpd ff tcd ff tsu ff tho ff tpd mx tcd mx

[ps] [ps] [ps] [ps] 2-to-1 [ns] [ns]
flip-flop 250 200 110 60 multiplexer 40 10

3. Reconsider the array multiplier of fig.12.13 but assume circuits have been fabricated with
wmd = 8 and wmr = 8 this time. Find a suitable set of stimuli and expected responses for
measuring the overall propagation delay.

4. (True story) You are employed by an ASIC vendor and in charge of the sign-off process for an
LSI design submitted by one of your company’s customers. The anticipated sales volume is
substantial. Circuits are to be fabricated with a mature and inexpensive single-metal CMOS
technology. The major findings of your design review are as follows.

� The design makes use of multiple clocks. At several places, two or more signals combine
in a combinational gate to act upon a subordinate clock.

� Logic gates are found in asynchronous reset nets too.

� Extensive pre- and post-layout simulations have been carried out to protect against all
sorts of design flaws. No DRC or LVS errors got reported.

� The standard cell library employed had originally been developed and characterized for
a similar process by one of your competitors. As management did not grant them the
time necessary to redo library characterization, your customer’s design engineers have
decided to carry out all simulations using a switch-level simulator.

� They did their best to calibrate the switch models to the new target process and to the
various MOSFET geometries found in the detailed layout.

Do you accept or reject the design for fabrication? Why?

5. There follows a list of design problems:
(a) Feedback loop within a network of combinational gates.
(b) Stationary bus driver conflict.
(c) Transitory bus driver conflict.
(d) Logic gate with input left unconnected.
(e) MOSFET with drain and source electrodes shorted.
(f) Overly slow signal ramps.
(g) Excessive clock skew.
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(h) Erratic hold-time violation.
(i) Poor performance as a consequence of excessive path delay.
(j) Insufficient extension of metal1 layer around contact openings.
(k) Two interconnect lines shorted together by mistake.
(l) Well with no body tie.
(m) Severe constriction in on-chip power line.
For each of the above flaws, indicate those design verification tools that are most appropriate
to locate the problem.

12.7 Appendix I: Cell and library characterization

Digital designers take it for granted that they can get accurate simulation models, timing models,
and datasheets for the many standard cells and macrocells that make up a VLSI design environment.
This section briefly describes how the various parameters that capture a (sub)circuit’s timewise
behavior are calibrated.

Characterization relies on analog simulations once a (sub)circuit’s physical layout has been com-
pleted.11 The process is carried out with the aid of SPICE, Spectre, ASX or some other transistor-
level circuit simulator and starts from an extracted netlist that includes actual layout parasitics.
Time-continuous signals are used to stimulate all input-to-output paths.
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Fig. 12.14 Basic setup for cell characterization (simplified).

Propagation and contamination delays are essentially obtained from applying a pulse at some input
and from interpreting the waveform(s) at the output(s). Characterizing for an input slope model
makes it necessary to systematically vary the input’s ramp times over a predetermined sweep range.
In addition, each input to the cell is subject to waveforms with rising and with falling edges, and

1 1 The alternative of measuring the actual waveforms on a fabricated part with the aid of an oscilloscope is neither
very practical nor efficient in the context of cell and library characterization for VLSI.
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each output to a variety of load conditions selected to cover the cell’s legal range of operating
conditions. Figure 12.4 illustrates a typical result.

Setup time, hold time, minimum pulse widths, and the like are somewhat more complicated to
determine as two input waveforms are involved.12 This makes it necessary to sweep relative timewise
offsets, further adding to the number of simulation runs.

All or some of such simulation runs are then repeated for different process, temperature, and
voltage conditions to obtain the PTV derating curves. Due to combinatorial explosion, the overall
computation necessary to characterize an entire cell library may take a couple of days.

12.8 Appendix II: Equivalent circuits for interconnect modelling

This appendix shows a number of abstract models used for describing, analyzing, and simulating
on-chip interconnect lines, see fig.12.15b through h.

Series resistance R, series inductance L, parallel capacitance C , and parallel conductance G together
capture a wire’s electrical characteristics. While the significance of the former three quantities is
pretty obvious, the latter essentially accounts for dielectric losses. In a physical wire, these parasitic
elements are not lumped into a single place but distributed along the wire’s length and are, therefore,
indicated per unit length, that is in Ω/m, nH/m, pF/m, and S/m respectively. This explains why
a transmission line model, depicted in fig.12.15f, most closely reproduces reality. Yet, the relevant
question is

“Do we need transmission line models for on-chip interconnects?”

As a rule of thumb, a piece of interconnect should be studied on the basis of a transmission line
model when a signal ramp extends over a distance that approaches the length of a leg of that net,
or that is even shorter than that [360]. A leg refers to a piece of interconnect of uniform electrical
characteristics that gets mapped into one section in a lumped network model. With lra denoting
the spatial and tra the timewise extension of a signal ramp, we are safe as long as

lleg � lr a = c tr a where c =
1√
εµ

=
c0√
εr µr

=
c0

n
(12.9)

ε = ε0εr is the permittivity and µ = µ0µr the permeability of the medium. c0 stands for the speed of
light in vacuum of approximately 300 Mm/s. When related to the time spans of interest in electronic
circuits, this impressive figure collapses to a bare 30 cm/ns = 0.3 mm/ps. As any medium other than
vacuum has an index of refraction n =

√
εrµr > 1, propagation is even slower there. The velocity c

on actual interconnect lines found in VLSI chips and circuit boards is more like 15 cm/ns.

1 2 A flip-flop’s setup time, for instance, gets determined by repeatedly applying a ramp to the data input under
control of the evaluation module in the characterization setup of fig.12.14. The exact switching time, initially
well ahead of the active clock edge, is gradually adjusted so as to bring it closer and closer to the clock edge
while monitoring whether the circuit continues to behave as expected. Any excessive settling time or out-of-
the-normal waveform indicates that the lead time of the ramp on the data input has grown too small, and that
the previous reading was in fact the setup time sought. You may want to see fig.7.11 for an illustration. Please
note there is a considerable degree of freedom concerning what to regard as out-of-the-normal behavior and in
trading setup time for propagation delay when interpreting the output waveform.



12.8 APPENDIX II: EQUIVALENT CIRCUITS FOR INTERCONNECT MODELLING 613

original net

lumped capacitance model

Π-model

lumped RC network model

transmission line model
(distributed)

a)

b)

c)

d)

f)

e)

via

leg1

leg2

leg3 leg5

leg4 leg6

lumped RLC network model

infinitesimal section

δR δL

δC δG

δl

Cadence RSPF model +
--

+
--

1:1

1:1

g)

h)

wire delay

wire delaydelayless
operation

delayless
operation

delayless
operation

VITAL abstract model

wire delays lumped to the inputs 
of the gates driven from that wire gate delay

fork

turn

turn

section1

section2

section3 section5

section4 section6

section1

section2

section3 section5

section4

Fig. 12.15 A net (a) and various models used for capturing its delay characteristics (b,...,h).
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Numerical example

A signal ramp of 20 ps that propagates on a wire embedded in silicon dioxide extends over

lr a =
c0√
εr µr

tr a ≈ 300 Mm/s√
3.9 · 1

20 ps ≈ 3 mm (12.10)

�

The above figure is only a rough estimate for a signal travelling on a metal wire within an IC
because silicon, air, and further materials with other permittivities also surround the wire. Still, the
result supports the subsequent conclusion.

Observation 12.10. Transmission line models are not at present required to model on-chip nets

provided no section in a lumped wire model is allowed to extend further than a fraction of a mil-

limeter. They become a necessity at the board level when high frequencies are involved.

Various wire models and their respective limitations are discussed in [159] [53] while [361] [362]
study the increasing importance of parasitic inductance on interconnect delay, delay uncertainty,
dissipated energy, and crosstalk. An analytical model for signal propagation on lossy transmission
lines can be found in [363].



Chapter 13

VLSI Economics and Project
Management

13.1 Agenda

Over the last few decades, we have witnessed dramatic evolution and changes in electronics.
Figure 13.1 outlines these changes by illustrating

• The displacement of the key driving markets,
• The rise and demise of electronic devices and implementation technologies, and
• The shift of focus from device-level circuit design and physical construction to defining and

verifying the functionality that sells best.1

As a result, engineers and project managers have never before been presented with so many
alternative choices for implementing their circuits and systems. This holds true in spite of the
fact that fabrication technology has narrowed down to CMOS in almost all digital applications.
Abstracting from lower-level options and commercial products, table 13.1 shows the fundamental
options in a highly condensed form.

While there was a time when components used to be very basic and available with a limited choice,
today’s integration densities have led to a diversification into an almost astronomical number of
powerful and highly specialized components. ICs have grown very complex and many of them
implement entire systems. It is not exceptional to find that the “datasheet” of a key component
such as a CPU, an FPGA, or an ASSP comprises a thousand pages, or almost so.

The emergence of new business models such as virtual components (VCs) has further complicated
the process of finding the best approach to implementing an electronic product or system. Making
decisions is not just a matter of the technical characteristics evident from the final product, but

1 One reason for this last shift are the design techniques and engineering aids that have evolved from paper
and pencil to sophisticated, yet also very complex, electronic design automation (EDA) suites. More from a
historical point of view, you may want to refer to [364] [365] for accounts of the genesis of microelectronics and
for biographies of the scientists involved. [366] describes the Japanese contributions.
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Table 13.1 Options available for implementing a digital circuit (greatly simplified).

Nonpro- Micro- Field- Semi- Full-
grammable or program- custom custom
standard digital mable ASIC ASIC

parts signal logic cell- hand
exclusively processor (FPL) based layout

when introduced early early late early early
1960s 1970s 1980s 1980s 1980s

significance today low high medium medium medium low
future prospects none steady rising steady steady declining

also of industrial cooperation, EDA infrastructure, design flow, responsiveness to changing require-
ments, return on investment, risk, logistics, and other issues of financial and organizational nature.
Emphasis in this chapter is on the latter issues.

Section 13.2 reviews the models of cooperation between industrial partners for all six options of
table 13.1 before section 13.3 elaborates on ASIC projects. Section 13.4 is concerned with virtual
components. Sections 13.5 through 13.7 address economic and market issues of ASICs with section
13.6 specifically devoted to parts being sold in smaller quantities. Criteria that should help to make
reasonable management decisions are found in sections 13.8 and 13.9.
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13.2 Models of industrial cooperation

The implementation alternatives of table 13.1 greatly differ in terms of design depth, engineering
effort, and necessary know-how. At one extreme of the spectrum are the microprocessors and signal
processors that present themselves to the programmer as virtual machines. What it takes to tailor
such a generic platform to a specific application is essentially an algorithm formulated in some
high-level programming language and a compiler for the target instruction set.

At the other end, we find full-custom ASICs where everything from the overall architecture down
to layout details is specifically designed for one application. Of course, the better a solution needs
to be optimized to the situation at hand, the more design effort will have to be put in at all levels
of detail. Semi-custom ICs and library-based designs occupy positions somewhere in between.

To begin with, we would like to ask

“What business partners must be involved and what do they contribute to success?”

Answers are sketched in subsections 13.2.1 through 13.2.5. Each section is devoted to one implemen-
tation avenue and a diagram shows the essential activities and requisites for a design implemented
with the technique being considered. The drawings also suggest a typical repartition of tasks, al-
though other meaningful models of cooperation are likely to exist.2

Watch how control over the final product augments and how unit costs tend to diminish when going
from subsection 13.2.1 to 13.2.5. Also observe that this is often bought at the expense of a more
onerous development process, a more complex scheme of collaboration, and more varied risk factors.

13.2.1 Systems assembled from standard parts exclusively

The term standard part refers to catalog SSI, MSI, LSI, and ASSP components. What we have in
mind here are systems that get designed from such parts with no customization: neither is much
software being written specifically for the final product nor are any field-programmable parts being
configured.

This time-honored approach gives the system designer much freedom to pick, mix, and match any
commercially available components he likes, but also makes him largely dependent on IC vendors for
innovation. His opportunitities are essentially limited to assembling from standard parts whatever
functionality he wants to incorporate into his products. Conversely, he is not required to have a
serious understanding of microelectronics, VLSI design, or HDLs.

By opting for ASSP components, a system designer is even freed to a large extent from de-
veloping algorithms and hardware architectures. This is because he obtains almost all relevant

2 More particularly, note that the dashed columns in figs.13.2 through 13.6 do not imply that the respective tasks
must necessarily be carried out in distinct companies. The “design house” functions, for instance, are often
carried out by a team within the “system house” company. Similarly, many “ASIC manufacturers” also carry
out “design house” functions. Further keep in mind that the situation grows more complicated when elements
from two or more implementation avenues get combined in one design, which is often the case in practice. Just
consider mixed-signal circuits and combinations of microprocessors and custom logic.
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Fig. 13.2 Contributions and responsibilities when electronic circuits are just assembled from standard parts

(simplified).

application-specific know-how from the IC vendor shut into the physical parts he buys. His role
then essentially becomes that of a system integrator.

Hardware products assembled from standard parts with no significant customization — in terms of
software content, FPL configuration, or both — have sunk almost into insignificance over the years
because

• It is difficult to make one product stand out from others as
• All design know-how is exposed to competitors,
• System houses largely depend on IC vendors for innovation,
• Integration density is typically not as good as it could be,
• which tends to inflate manufacturing costs per unit,
• Hard-wired circuits are too rigid when requirements change, and
• board-level parasitics stand in the way of maximum performance and energy efficiency.

13.2.2 Systems built around program-controlled processors

This class includes all circuits and systems designed around a microprocessor, a digital signal proces-
sor (DSP), or some other central system component that sequentially executes program instructions.

Much of the design scope and of the added value is in software development. The software is what
sets one product apart from other products competing in the marketplace. A prime advantage of
this approach is the virtually unlimited agility.

Hardware architecture is largely defined by the central processing unit (CPU) being used. Hardware
decisions are thus typically limited to the selection of peripheral devices and to minor details of
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Fig. 13.3 Contributions and responsibilities in electronic design with program-controlled processors (simplified).

memory organization and glue logic. Again, the system house does not need much know-how relating
to IC design.

Example

The PC business provides us with a telling example. Much of a PC vendor’s activities revolves
around marketing, branding, industrial design, supply chain management, sales, and services. Not
only does he bank on third parties for the operating system and the application software, he also
is at the mercy of the VLSI industry and of the manufacturers of peripherals, such as displays and
storage media, for hardware innovation. Cost pressure has become so acute that more and more
PC vendors have outsourced the assembly process to specialized electronic manufacturing service
(EMS) providers in order to take advantage of competition and economies of scale. Others ended
up selling their PC businesses.
�

13.2.3 Systems designed on the basis of field-programmable logic

The term field-programmable logic (FPL) encompasses any electrically configurable logic hardware
such as field-programmable gate arrays (FPGAs), complex programmable logic devices (CPLDs),
and the much more limited simple programmable logic devices (SPLDs).

The absence of a time-consuming manufacturing cycle is what sets FPL apart from mask-
programmed custom ICs. Also welcome is the fact that some FPL devices can be ordered with
standard subfunctions hardwired and placed on the same die next to the programmable logic.
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Fig. 13.4 Contributions and responsibilities in electronic design with field-programmable logic (simplified).3

Another major benefit is that the cooperation essentially involves just two partners. Not only do
FPGA and CPLD vendors make EDA tools available for back-end design with their devices, they
also make firm recommendations as to what front-end tools they support. Some of them even
integrate standard synthesis and/or simulation tools with their own software so that customers
can expect to get a fairly coherent EDA package. Also, in an effort to promote their devices, FPL
vendors typically keep up-front charges for such packages at very reasonable levels.

On the negative side, most FPGA and CPLD families provide specific features and impose peculiar
architectural constraints. Just consider the limited routing resources, the comparatively slow inter-
connect, the predetermined logic-to-storage ratio, and the limited selection of packages and device
sizes. The costs of large on-chip memories and the lack of fast carry chains also pose problems with
some devices. As virtual components (VCs) prepared by independent IP vendors and intended for
general consumption do not normally take into account such idiosyncrasies, results are likely to
be suboptimal. Addressing low-level design issues thus becomes inevitable whenever performance
and/or density are critical.

13.2.4 Systems designed on the basis of semi-custom ASICs

This class includes those ASICs where only a small subset of all layers is custom-made, i.e. mask-
programmed structured ASICs, sea-of-gates circuits, and gate-arrays.

3 The box that stands for board manufacturing and mounting in figs.13.2 and 13.3 has been omitted in the drawing
as a single package now aggregates the functionality previously distributed over several components. Note that
a PCB, albeit much simpler, continues to be required in order to accommodate that package in a system.
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Fig. 13.5 Contributions and responsibilities in electronic design with semi-custom ASICs (simplified).

In comparison with the implementation avenues presented so far, the development process is more
challenging because many more aspects must be addressed and because turnaround time is on the
order of weeks or months rather than hours or days.4 As a design cycle encompasses many steps
from functional specification down to physical design verification, it is typically subdivided between
two or three entities specializing in their fields such as a system house, a design house, and an ASIC
manufacturer. Sign-off is essentially confined to gate-level issues.

The necessary macros — such as logic gates, bistables, and memories — are developed by the IC
manufacturer and organized into a cell library. Depending on the circumstances, part of the logic
will be synthesized from virtual components, i.e. from synthesis-ready HDL models purchased from
an IP vendor or placed in the public domain by their authors.5

Something that is often underestimated is the effort required to get in place all the necessary con-
tracts and agreements with the various business partners. Also expect a good deal of imponderables
in aligning the priorities and delivery schedules.

4 Turnaround is meant here in a wider sense that encompasses everything from locating a design flaw, fixing it,
obtaining new circuit samples, testing them, qualifying the revised part, to the updating of software drivers,
documentation, and other related material.

5 A more detailed discussion of the VC business is to follow in section 13.4.
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13.2.5 Systems designed on the basis of full-custom ASICs

The term full-custom ASIC is understood to include ASICs where all layers are custom-made.
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Fig. 13.6 Contributions and responsibilities in electronic design with cell-based full-custom ASICs (simplified).

Much as for semi-custom ICs, a chip design results from a close cooperation of highly specialized
partners. Front-end design and back-end design need not necessarily be carried out within the same
business unit. What eventually gets transmitted to the IC manufacturer for fabrication are layout
data (more details on this are to follow shortly).

Cell libraries were originally made available by the silicon vendors as part of their foundry kits.
Yet, the general trend towards focussing on the core business brought about independent library
vendors that specialize in offering cell libraries for a variety of fabrication processes and silicon
foundries. While the same largely applies to macrocell generators too, some ASIC manufacturers
generate RAMs, ROMs, and other macrocells on demand and charge that service to their customers.
This procedure tends to slow down the design process in an undesirable way, however.

Another difficulty is the quality of the design kits and technology files. The complexity of the
interfaces and the rapid progression of technology often prevent them from reaching maturity before
becoming obsolete.6

6 There is a saying that every wedding is a victory of hope over experience. Seasoned VLSI designers will agree
that all too often the same also applies to the adoption of a new design flow.



13.3 INTERFACING WITHIN THE ASIC INDUSTRY 623

13.3 Interfacing within the ASIC industry

When going for a mask-programmed ASIC, important choices relating to cooperation remain.

13.3.1 Handoff points for IC design data

A system house must decide what parts of the design process to commission to its business part-
ner(s) along with the pertaining responsibilities. Alternative points for transferring design data to
a specialized partner are evident from fig.13.7.

1. Full layout handoff
The system house is in charge of organizing both front-end and back-end design. Sign-off takes
place at the very end of the design cycle. The transfer of layout data, which continues to be
called tapeout although tapes are no longer used, is via an industry-standard format such as
GDS II.

While predominant in the early days of microelectronics, this approach has become unpopular
with companies that need USICs on an irregular basis. Back-end IC design calls for onerous
tools, highly specialized expertise, and frequent training, three items that are not only ex-
pensive but also subject to rapid obsoletion in a time of relentless technological progress. Full
layout handoff today remains confined to larger companies that design many VLSI circuits a
year and that have them produced in large quantities.

2. Netlist handoff
The sign-off procedure revolves around a certified netlist, i.e. the customer focusses on front-
end design while the ASIC manufacturer is in charge of back-end design. Along with a gate-
level netlist, the latter also accepts complementary specifications that relate to timing, elec-
trical characteristics, package, pinout, and the like. As a variation, back-end design is often
commissioned to an independent design house that specializes in this kind of activities and
that acts as a go-between.

Netlist handoff used to be the approach of choice for semi-custom ICs and was also standard
practice with cell-based full-custom ICs. It became increasingly difficult, however, when in-
terconnect delays started to dominate over gate delays. Still, the model should remain viable
for not-so-critical designs and FPL.

3. Floorplan handoff
This is a compromise between full layout and netlist handoff. The customer does a limited
degree of floorplanning before handing over an initial cell placement, directions for critical
nets, clock domains, power domains, and the like along with a gate-level netlist. These data
then serve to guide clock tree insertion, detailed place and route (P&R), and post-layout
timing verification by back-end specialists. The fact that feedback on wire lengths, congested
areas, and realistic interconnect delays becomes available to front-end designers greatly helps
to achieve timing closure.
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4. Architecture or register-transfer-level handoff
The customer provides HDL models at the architecture or RTL level, which obliges him to
decide not only on a circuit’s functionality but also on the hardware resources necessary to
implement that functionality. The ASIC manufacturer or an independent design house does
the synthesis and all subsequent front- and back-end design steps.

This paradigm has quickly become popular in the USIC industry because

• It allows companies to keep focussed on their respective core competences,
• Know-how is better invested and preserved in HDL models than in netlists or layouts,
• There is no need for excessive tool-related expenditures on the customer’s side,
• Deep submicron issues are addressed by experts with specialized tools while
• The customer keeps some approximate control over hardware organization and costs.

5. Behavioral model handoff
The customer essentially delivers a software model along with performance targets before
commissioning one or more contractors to do all the rest for him. While he remains in charge
of verifying model behavior, he does not care much about architecture design and even less
so about HDL synthesis. The collaboration of an independent design house is almost always
sought to bridge the gap between abstract behavioral modelling and physical design. Finding
a workable compromise between hardware and software, another key issue in system design,
is also left to the design house.

Although a company could — at least in theory — confine its contribution to establishing the
specs for the desired USIC and outsource all the rest, this is not common practice. Most firms
that successfully take advantage of USICs in their products do address high-level architecture
design, HDL modelling, and the verification of such behavioral models themselves. There are
good reasons for this:

• Establishing the functionality at the detail level and making sure it conforms to market
needs is vital for the success of the final product.

• Deciding on overall system organization calls for profound knowledge in the pertaining
domain of application. This represents a core competence of the system house that is not
normally available in VLSI design houses.

• Processing algorithms and VLSI architectures should always be developed together.7

• HDL models provide an unambiguous interface to the subsequent design steps.
• CAE tools for HDL-level design are not that onerous to buy and operate.

SystemC has recently gained significant interest as an entry point to hardware design simply
because the C++ programming language is much more popular with systems people and
programmers than hardware description languages such as VHDL and Verilog. Maybe this is
the wave of the future.

13.3.2 Scopes of IC manufacturing services

ASIC customers must also decide how to have their design manufactured. Various options exist
because VLSI fabrication not only consists of wafer processing but also includes activities such as

7 The reasons for this are given in sections 2.2.1 and 2.3.
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chip finishing, mask preparation, volume testing, and packaging. How these are being handled bears
upon business and liability issues.

1. ASIC manufacturing service
In addition to manufacturing, the vendor does the testing of the ASICs on behalf of the cus-
tomer and typically delivers packaged components ready to go. He sorts out the defective parts
and makes the customer pay only for those ICs that conform with functional and electrical
specifications. The functional specs are embodied in a set of test vectors to be supplied by the
circuit designer. The risk of poor yield and, hence, also the incentive for yield enhancement
rest entirely with the manufacturer. This practice, depicted in fig.13.6, represents the standard
business model for many commercial full- and semi-custom ASICs.

For obvious reasons, the ASIC manufacturer wants to make sure a design is safe before com-
mitting himself to such a venture. Design data and test vectors are, therefore, subject to a
series of thorough checks before sign-off, i.e. before the design is accepted for manufacturing.
As an extra benefit, design flaws and manufacturability problems are more likely to get un-
covered when designs get scrutinized by two independent parties. Similarly, a manufacturer
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encourages his customers to rely on design kits and cell libraries that meet his own quality
standards and that have won his approval.

The ASIC manufacturer is basically free to recover his costs by charging a one-time payment
or by adding a small fee to the sales price of each chip he delivers. His attitude is likely to
depend on the anticipated IC manufacturing business, but design kits are quite often delivered
free — or almost so — in order to attract fabrication business.

2. Foundry service
According to the alternative foundry service model, testing at the manufacturing site is essen-
tially limited to process-control monitors (PCMs). Provided PCM measurements indicate that
process outcome is within normal tolerances, wafers or dies are delivered with nothing but
visual inspection. The customer is then in charge of organizing the testing and the packaging
of his circuits.

More importantly, the customer not only assumes the risks of design flaws, but also of substan-
dard manufacturability,8 of mask defects, of inadequate die handling, and of an unsatisfactory
packaging process, all of which are detrimental to overall yield. By the same token, the foundry
declines any liability for imperfect library cells. In return, foundry service is cheaper and re-
view of incoming design data by the manufacturer is mild when compared with the ASIC
manufacturer model. As a consequence, this division of workload and accountability is most
appropriate for prototype fabrication.

3. Customer-owned tooling (COT)
COT goes one step further in that the manufacturer focusses on pushing wafer lots through his
fabrication line on order, followed by evaluating PCM data. Everything else, including mask
preparation and supply chain management, falls within the responsibility of the customer.
This modus operandi is gaining acceptance with customers that order ASICs in very large
quantities because they are thus put in a position to negotiate optimum conditions with
separate contractors for licensing of cell libraries, mask preparation, wafer processing, testing,
packaging, and the like. Also, the indispensable involvement with design for manufacturing
(DFM) gives them more control over yield and other key cost factors.

However, COT is also the most demanding business model in terms of expertise required from
customers. Luckily, a number of companies have begun to offer all test and assembly services
that come after wafer processing, including supply chain management.9

Observation 13.1. The standard industrial practice is to order fully qualified parts from an ASIC

manufacturer. Foundry services appeal to research-type activities that combine it with “home test-

ing” and to large-volume manufacturing. Experienced customers can take advantage of COT in

conjunction with extensive subcontracting and supply chain management.

8 Such as a poor compliance with the lithographic process, an excessive sensitivity to all sorts of parameter
variations, and other issues related to design for manufacturing (DFM).

9 Amkor, ASE, and STATSChipPac are just three examples.
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13.4 Virtual components

Like megacells, virtual components (VC)10 are higher-level design objects meant to be sold to
companies that use them as building blocks for creating their VLSI designs. The difference is that
VCs are made available as HDL models for synthesis by customers (soft module) rather than as
gate-level netlists (firm module) or as polygon layouts (hard module). This is to warrant portability
across fabrication processes and to avoid rapid obsoletion.

A VC must be substantial enough to boost productivity but also general enough to work in many
environments. Virtual components work best for standard subfunctions of medium complexity, such
as filters, modems, video en/decoders, cipher engines, 3D-graphic accelerators, processor cores, and
all sorts of interfaces. Market forecasts had anticipated a rapidly developing business, yet putting
virtual components into practical service requires particular attention.

13.4.1 Copyright protection vs. customer information

Assembling systems from purchased components has a long and highly successful tradition in elec-
tronics, and designing with VCs seems to be simple extension of this proven approach. Yet, this
is unfortunately not so as VCs bring about their own peculiarities. A board designer who buys a
physical part does not need to know how that component works internally as long as it behaves
as specified. The same holds true when a programmer calls a procedure or takes advantage of a
software module from a commercial library.

A VC licensee, in contrast, must complete a design process that others have begun because synthesis
code is not a self-sufficient end product but just the entry point for synthesis, place and route (P&R),
verification, manufacturing, and production testing. He takes on the responsibility for making a VC
work exactly as intended by its original authors, even if he would never have it implemented in
the way they have. The result of his efforts is going to be profoundly affected by all sorts of
choices about transfer protocols, interface timing, target process, target library, macrocells (if any),
synthesis procedure, buffer sizing, clock distribution, layout parasitics, test strategy, and the like.
Not only the circuit’s performance and timing, but possibly also its functioning are at stake. With
the associated risks and liabilities on his side, the licensee acts more like a subcontractor of the VC
vendor than as a paying customer.

What if the VC makes use of unsafe design styles that render the circuit susceptible to hazards?
What if it imposes awkward timing constraints that are difficult to meet with the target library?
What if vital preconditions for correct functioning remain tacitly hidden somewhere in the source
code without being mentioned by the vendor? What if the final circuit turns out to be impossible
to test? What if fabrication yield is unexpectedly low? Who is to blame if something goes wrong,
who pays for redesigns, delays, and lost market opportunities? Most such issues are likely to remain
invisible until the process of integrating a purchased VC is well under way.

1 0 As stated earlier in this text, we prefer the term “virtual component” over the more popular names “intellectual
property module” and “IP module”.
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Making a qualified decision on whether it is worthwhile to purchase some VC for incorporation into
an ASIC requires in-depth information that goes well beyond the functional features advertized by
VC vendors. All too often, a licensee is forced to extract what he needs to know from the source
code in a painful exercise of reverse engineering. In addition, once he has paid for it, a licensee will
find it difficult to dismiss a VC even if he finds it inadequate from a purely technical point of view.
The question of

“How to render an HDL model amenable to inspection, simulation, and synthesis while, at the same
time, protecting it from being copied illegally”

is indeed a major problem of commercial VC licensing. Code encryption fails to address inspection
by the licensee for the purposes of evaluation, understanding, debugging, adaptation, and further
development. In order to embed a VC into an IC and to make it fly with a reasonable chance
of success, the circuit’s designers occasionally need access to the source code and other detailed
information. A workable balance between the legitimate interests of the various parties involved
must thus be sought with the aid of non-disclosure and other legal agreements.

13.4.2 Design reuse demands better quality and more thorough verification

The safe design practices that are being taught throughout this text are even more important when
a design is supposed to be reusable. More specifically, things to avoid in VCs include

• Asynchronous, careless, complicated or impure clocking schemes,
• Zero-latency loops (almost always unwanted),
• Incomplete sensitivity lists (always unwanted),
• Multi-driver signals (complicate design and test),
• Non-local timing constraints and multi-cycle paths (complicate design),
• Unportable or inconsistent FSM constructs,
• Components (gates, bistables, macrocells) instantiated from a specific cell library,
• Inconsistent naming of signals, instances, types, parameters, etc.,
• HDL constructs and other idiosyncrasies linked to some specific EDA environment,
• Technology-dependent synthesis constraints,
• Inadequate test structures,
• Functional gauges with insufficient coverage, and
• Poor documentation.

Advice for making HDL code reusable can be found in [367], for instance, but most of it is part of
good design practice anyway. A more difficult issue stems from the fact that many VCs are strongly
parametrized in order to generate revenues from as many applications as possible. Yet, writing
HDL code for multiple configurations is not sufficient as every meaningful configuration also needs
to be verified! With exhaustive verification being impractical, checking and ensuring a VC’s correct
functioning in all of its possible configurations is a major undertaking, and often neglected. Many
VCs are thoroughly verified for one or two base configurations only, which practice is an invitation
for troubles.

Hint: As a licensee, make sure you obtain a set of simulation vectors that cover all configura-
tions that are of interest to you. If no such vectors are available, prepare to work them out
yourself and prepare to find bugs.
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A prudent attitude is to plan for rigorous bottom-up validation of all submodels from the very
beginning of a project, which calls for established quality assurance procedures on a solid industrial
background. VLSI companies where first-time-right design is part of the corporate culture and is
endorsed by management are better prepared than software startups.

From all the above, it should be clear that developing a trustworthy VC requires much more re-
sources than designing the same functionality for one-time usage. Salvaging a piece of RTL code
written in the context of a particular VLSI design project under pressure of meeting the deadlines
there does not qualify as VC design. A rule of thumb is this:

“If it takes a certain effort to develop a design,
allocate three times that effort to make it reusable in another design,
and nine times that effort to make it generally available as a virtual component.”

Management is very unlikely to accept that much overhead as part of regular ASIC design cycles.
Moing business with VCs requires a specific organization with engineering teams that focus on VC
library development, quality assurance, and pre- and post-sales user support.

13.4.3 Many existing virtual components need to be reworked

Most VCs require moderate to extensive changes before they can possibly fit into a given context.
One reason is that functional specifications, timing, and power requirements tend to differ from
one application to the next. Another reason that makes it difficult for vendors to provide turnkey
VCs is the lack of universally accepted interface standards between building blocks.11 Only truly
universal items such as standard cells, memories, and largely self-contained processor cores tend to
escape from this rule.

Making modifications to a VC requires permission by its vendor, access to the source code, and a
reverse engineering effort. Also, even minor changes commit one to full verification. The current
situation is best summed up by a quote from [368]. Talking about the customers of his company, a
major ASIC design house and manufacturer, the author observes

“They usually bring in a shoe box full of intellectual property, dump it on a desk, and say:
‘I want to connect this to that — you know how to do that, right?’ ”

VC customers typically face the choice between wasting much of their time to come up with ugly
glue logic between incompatible components and reworking significant parts of the purchased HDL
code, test data, synthesis scripts, and software drivers. As neither option is particularly attractive,
VLSI designers often prefer to (re)implement the desired functionality from scratch.

13.4.4 Virtual components require follow-up services

As with any purchased piece of hardware or software, there is a possibility of an error in the VC. If
the licensee finds a problem, he will face the following difficulties (partly after [369]). He will need
to

1 1 Please refer to section 15.5 for suggestions.
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1. Isolate the problem to the VC without being intimately familiar with its design.
2. Convince the vendor that the problem is in the VC rather than in the way it is being used.
3. Find a workaround for the problem until the vendor releases a fix.

Handling such a situation successfully requires excellent on-going arrangements among licensee,
vendor, and authors. Direct communication and efficient exchange of both design and simulation
data between the engineers of the licensee and those of the VC vendor are absolutely essential.

Warning example

As our first venture into the field, we purchased a VC for the Universal Serial Bus (USB) in 1997
from a vendor that was promoting the USB standard and that was commercializing the pertaining
serial interface engine as a VC. The module was generously offered as VHDL source code. However,
closer investigation of the code delivered revealed that

• No testbench for making sure that a circuit would indeed work as expected was included,
• The code showed its age by ignoring more recent extensions of the VHDL standard,
• The code included two fairly obvious semantic errors, and, last but not least,
• There was a hidden functional fault that surfaced under specific circumstances.

Upon request, the VC vendor bluntly informed his licensee that

“There is no later revision of the code or any other support including no test code of any kind.
None that could review the changes mentioned is around any longer.”
�

This is an attitude that one would expect from a cottage industry, not from a serious VC vendor. The
necessity for detailed information and for follow-up services together with the difficulty of providing
turnkey VCs mentioned earlier suggests that a VC vendor should best be made to operate as an
extension of the licensee’s ASIC design team.

Hint: Do not place any purchase order for virtual components before the terms under which
the vendor is going to support you and to cooperate with you have been agreed on.

13.4.5 Indemnification provisions

In spite of their shared responsibility for technical success, no licensor wants to get involved in legal
litigation with his licensees. A typical VC license agreement thus includes indemnification clauses
that oblige the licensee to hold the licensor blameless regarding product liability disputes, patent
infringements, and other legal claims.

13.4.6 Deliverables of a comprehensive VC package

• A circuit model in one or more formats amenable to synthesis (VHDL, Verilog).
• A computationally efficient behavioral model for system simulation purposes.
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• An evaluation platform for studying the VC’s behavior in greater detail.
• An architecture overview that demarcates the various clock domains and that identifies asyn-

chronous subcircuits, if any.
• Information on the clocking discipline adopted and on acceptable clock frequencies.
• Details on parametrization, operation modes, numerical precision, I/O protocols,

data formats, endian type, timings, naming conventions, etc.
• A commitment to safe and thus largely delay-tolerant circuit techniques.
• Reports from automatic coding guidelines checking (linting).
• Prerequisites on target technology and cell libraries (macrocells, worst-case timing, etc.).
• Information on the synthesis platforms supported.
• Synthesis scripts and synthesis constraints

(critical paths, I/O timing, clock(s), arithmetic options, macrocells, etc.).
• A list of false paths and multicycle paths for post-synthesis timing analysis.
• A test strategy, test or built-in self-test (BIST) circuits, and scripts for inserting them.
• Testbenches and test vectors along with code coverage and expected fault coverage

figures.
• Drivers and other software items that are necessary to operate and check the circuit.
• Limitations of any kind (parametrization, functional verification, testability, etc.).
• A well-defined contractual commitment to provide support and accept liabilities.
• An acceptable business model and a successful track record.
• A precise description of each of the above items and a schedule for delivery.

Not all VC vendors are in a position to provide all of the above items, some are even unaware of
their significance in the ASIC design flow. Luckily for customers, tools are available on the market
that help to assess the quality and completeness of VC packages and synthesis code.12

13.4.7 Business models

Multiple sources of intellectual property are common at the hardware level where physical com-
ponents are being purchased in exchange for money, but they are new for subsystem-type library
elements. This gives rise to specific questions such as:

“Who (author, vendor, or licensee) owns what rights in a virtual component?”
“How can one make sure expenditures, proceeds, and risks are shared correctly?”

Special business models are required for ownership and licensing of VCs. Two common but anti-
thetical approaches go as follows (partly after [369]).

1. For unlimited usage
The virtual component gets licensed with the rights for unlimited usage. This approach is easy
to implement as there is a single exchange of money against a technology transfer between
licensee and vendor. It will result in a high buyout fee, however, because the vendor must
recover all VC development costs from a very limited number of sales. Also, the licensee

1 2 HDL Designer by Mentor Graphics, for instance.
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assumes the entire risk of never recovering his up-front investment if the overall sales volume
falls short of his initial expectations.

Companies selling many products in large quantities are in a better position to amortize the
purchase of a module until its impact on final product cost becomes almost negligible. Small
companies with few and lower-volume products, on the other hand, are penalized because
buyout fees are more likely to inflate product costs in a significant way.

2. Per unit delivered
The VC gets licensed per unit sold, that is the licensee is bound by contract to pay a small
royalty fee to the vendor for each unit delivered. The marketing risk is thus effectively shared
between licensee and VC vendor, and all products contribute to development proportionally to
their respective sales volume. Many companies shy away from this approach, however, because
a fixed per-unit fee seriously restricts the licensee’s liberty to price his products. As a remedy,
partners may agree on a degressive royalty fee or renegotiate the royalty once a predefined
amount has been paid.

These characteristics resemble the traditional trade of ICs and other hardware components,
but there is an important difference. All accounting must be accomplished by the licensee
who — like any other commercial operation — may be unwilling to disclose details relating
to his sales volumes and customers. An audit to convince the VC vendor that he is not being
cheated is difficult to implement since hard evidence is not readily available.

In practice, paying an up-front fee is more popular than paying royalties. As an intermediate
position, it is also possible to license a VC with the rights for unlimited quantities of one de-
sign. Licensee and VC vendor are hence obliged to negotiate the transfer of rights for every
new IC.

Observation 13.2. The virtual component business does not function like the traditional vendor

� buyer model for physical semiconductor parts. A working relationship requires a mutual under-

standing more like a joint venture where products are being co-developed.

13.5 The costs of integrated circuits

Let us begin by asking

“What makes up the overall costs of a microelectronic subsystem or component?”

As for any industrial product, expenses fall into either of two categories.

Non-recurring costs, aka fixed costs, cover everything that must be paid for before volume
production can begin. With reference to microelectronic parts, this includes

• Project management, including negotiations with business partners,
• Circuit specification,
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• Purchase and assimilation of virtual components, if any,13

• Circuit design,
• Design verification at all levels (functional, timing, electrical, and physical),
• preparation of test vectors and testbenches for simulation,
• CAE/CAD related expenses (in-house equipment, renting, or usage of walk-in facilities),
• Sign-off procedure,14

• Preparation of fabrication masks,14

• Preparation of probe cards,14

• Setting up of fabrication and testing facilities,14

• Prototype fabrication and testing,
• Redesigns, if any,
• Preparation of test vectors and test equipment for volume production,
• Product qualification (life-cycle tests, burn-in, reliability tests, compliance with JEDEC and

other industry standards; requires multiple fabrication lots, very time-consuming).

Recurring costs, in contrast, do depend on the quantity produced, which explains why the term
variable costs is used as a synonym. For our application, recurring costs include

• Supply chain management,
• raw semiconductor wafers,
• wafer processing,
• volume testing (wafer testing, final testing, and binning),
• process monitoring and yield enhancement measures,
• packaging (including package, lead inspection, stamping, etc.)
• royalties for virtual components, if any,13

• board or other substrate space,
• external catalog parts, if any,
• component mounting.

Let c0 stand for the sum over all non-recurring expenses. Further assume that recurring costs depend
linearly on the quantity and that the cost increment per unit produced is c1 . The total costs per
unit from a production run that yields n working circuits then are

c =
c0

n
+ c1 (13.1)

13.5.1 The impact of circuit size

Putting aside testing and packaging, the expenses for manufacturing one functional integrated
circuit cf can be expressed as the costs for purchasing a raw wafer cwr and for processing that
wafer cwp divided by the number nf of defect-free dies obtained from the wafer.

cf =
cw r + cw p

nf
(13.2)

1 3 It is a matter of negotiations how a licensee pays for the third-party virtual components he incorporates into
his designs, see section 13.4 for alternative compensation schemes.

1 4 These expenses are billed by IC manufacturers and test houses to customers under the conventional term non-
recurring engineering (NRE) costs. Make sure you understand that these production-related NRE costs are
just a subset of the non-recurring costs associated with putting an ASIC solution into service.
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With Ad indicating the total area occupied by one die on a wafer, including the allowance necessary
to cut the wafer and to dissociate the individual dies, one may be tempted to think that process-
ing costs would grow linearly with die size cf ∝ Ad . Two effects make this an overly optimistic
interpretation.

Packing square cookies into a round box

Wafers are round whereas the dies manufactured thereon are of rectangular shape. As there is no
way to exactly cover a circular area with rectangles, some silicon is necessarily wasted near the
circumference of the wafer. A simplified formula for estimating the number of manufactured dies
available from a wafer of diameter dw is

nm ≈ π

Ad

(
dw

2
−

√
Ad

)2

(13.3)

This approximation diminishes the diameter of the wafer to account for the area near the edge that
is unavailable for full reproduction of square tiles. The aspect ratio of the layout and the exact
location of the individual circuits are not accounted for. Yet, it becomes clear that relatively more
and more wafer area is lost due to the edge effect as die size increases.

Functional defects and fabrication yield

Fabrication yield yf denotes the proportion of functional circuits obtained from a batch of man-
ufactured circuits. Wafers typically have a number of defects more or less randomly distributed
over their surface. As a design gets larger, the probability of finding a defect within a given circuit
increases, thereby lowering fabrication yield. Yield is also a function of the complexity of the fabrica-
tion process because the chance of finding a defect on a given circuit increases with each additional
processing step. Yield models must further account for those wafers that get scrapped as part
of wafer sorting. A practical but purely empirical yield model is widely known as the negative
binomial model and describes fabrication yield as

yf =
nf

nm
≈

(
1 +

DAc

α

)−α

(13.4)

where D is called the defect density while the clustering factor α reflects the fact that most
defects do not distribute evenly over the wafer surface.15 Smaller values of α imply a higher degree
of clustering. Both parameters are best viewed as fitting parameters of a statistical model with no
immediate physical interpretation, however. D improves with the maturity of the manufacturing
process; a value of 0.004 mm−2 was typical for the 90 nm generation in the year 2006 [24]. α tends to
grow with manufacturing complexity and the number of lithographic patterning steps. For CMOS
processes with multiple layers of metal, α used to be less than 3.0 ten years ago, but 4.0 is now
more adequate [24].

Observe the presence of critical area Ac which stands for the die area that is occupied by actual
layout structures, discounting unused spaces such as scribe lines and any other empty areas. Yield

1 5 As a limitation, the simple model of (13.4) cannot easily be made to account for extensive contact replication
whereby multiple contacts or vias are systematically connected in parallel to provide redundancy against defects.
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Fig. 13.8 Manufacturing costs per working die as a function of die size and fabrication yield (testing and

packaging not included, approximate numbers).

is a function of Ac < Ad rather than of Ad because defects that remain confined to unused silicon
areas have no impact on the functioning of a circuit. The difference is particularly significant for
pad-limited designs. Depending on circuit size, fabrication technology, maturity of the product, and
market pressure, a fabrication yield of 50% to 95% is deemed acceptable.

Putting edge effect and fabrication yield together, the expenses for manufacturing one working die
are obtained as

cf =
cw r + cw p

nf
=

cw r + cw p

nm yf
≈ (cw r + cw p )(1 +

DAc

α
)α Ad

π( dw
2 −

√
Ad )2

(13.5)

This function is plotted in the graph of fig.13.8 for various parameter values.

Observation 13.3. Only for small circuits where the edge effect is of little importance and where the

yield remains high do fabrication costs grow roughly proportionally with die size. For truly complex

circuits, in contrast, expenses increase in a highly progressive way.

Circuit complexity indeed becomes a critical factor in estimating the recurring costs of an integrated
circuit once the expenditures for manufacturing exceed those for packaging and for component
mounting. Further note from fig.13.8 to what extend defect density D determines the largest die that
can be manufactured at some given cost; the clustering factor α is of relatively minor importance.16

1 6 High-capacity RAMs often exhibit disproportionate die sizes, yet defect densities are basically the same as for
logic chips. This is made possible by extra subcircuits that get selectively switched-in after fabrication in lieu
of malfunctioning addresses. Though no more than a few percent of the overall die area is typically being set
aside for these spare memory banks, yields close to zero would otherwise result. It is a paradoxical benefit of
hardware redundancy that it curbs overall fabrication costs in spite of extra silicon occupancy.
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13.5.2 The impact of the fabrication process

Impact on non-recurring costs

The growing sophistication and number of photolithographic masks makes their costs explode, see
table 13.2. Although mask sets tend to benefit from cost reductions once a process generation
reaches maturity, costs continue to escalate. Mask preparation becomes particularly onerous when
phase shift masks (PSM) and optical proximity correction (OPC) get involved in the search for
sub-wavelength resolution.17 The geometrically most critical layers such as polysilicon, low-level
metals, and contacts are the first to be concerned, but the proliferation of metal layers and extra
process options, such as flash memory and silicide straps also take their toll.

Table 13.2 Mask costs for baseline CMOS fabrication processes (approximate numbers).

year of process metal ranse of costs
intro- generation levels for a mask set

duction [nm] [USD]
1995 350 4 50k to 60k
1997 250 5 90k to 110k
1999 180 6 250k to 300k
2001 130 7 500k to 700k
2004 90 8 800k to 1.1M
2007 65 9 1.2M to 1.5M
2010 45 10 1.6M to 2M

Impact on recurring costs

The variable costs for obtaining one defect-free but untested and unpackaged die are

cf =
cw r + cw p

nf
≈

cw r +
∑P

p=1 cls (p)
nm yf

(13.6)

where P indicates the number of lithographic patterning steps and cls(p) reflects the cost for that
part of wafer processing that comes with the pth such step.

The numbers for P and cls(p) differ from process to process as they depend on wafer diameter,
minimum feature size, the number of interconnect layers, the materials used, and — more generally
speaking — the degree of sophistication of a fabrication process. Not only technical differences
matter, though. Economic factors such as the invested capital, interest rates, the payback period
planned for along with the current degree of amortization, operating costs, plant utilization, market
conditions, and competition are even more significant.

1 7 The reasons are as follows. As opposed to wafer processing, mask manufacturing cannot tolerate a single fatal
defect. Yield for a mask is either one or zero. Mask preparation thus involves painstaking inspection and repair
procedures. Also, long write times on expensive equipment make costs a function of shot count, that is of the
number of geometric features to be exposed. PSM and OPC introduce extra features that make shot counts
soar. You may want to refer to section 14.2 for accounts on lithography and on CMOS wafer processing.
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Observation 13.4. Industry typically moves over to the next process generation when the savings

from fabricating a given circuit in a more advanced and, hence, denser process compensate for the

more expensive masks and wafer processing.

To be sure, the fact that yield is lower initially is taken into account.
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Fig. 13.9 Cost breakdown for 300 mm wafers in 65 nm 1P9M Cu CMOS technology processed by a

Taiwan-based fab for 2007 (numbers courtesy of IC Knowledge LLC, a company that offers and regularly

updates cost models for various IC product groups).

Figure 13.9 gives a typical cost breakdown for processed wafers. Note the relative importance of

• Capital expenses (tool depreciation + facilities),
• Operating costs (tool maintenance + monitor wafers),
• Cost of materials (raw wafers) and consumables, and
• Labor costs (direct labor + indirect labor).

Observation 13.5. The high proportion of capital expenses renders processing costs highly depen-

dent on a wafer fab’s utilization, and the same applies to profitability.

Parametric variations and fabrication yield

Beginning approximately with the 90 nm generation, yield and manufacturability are limited not
only by fabrication defects, but also by unpredictable parameter variations. As an example, chemical
mechanical polishing (CMP) may cause significant thickness variations of metals that in turn affect
interconnect delays. Similarly, random variations of oxide thickness and the number of dopant
atoms impact key MOSFET characteristics such as threshold voltage, current drive, and leakage
currents. Although they essentially perform the intended function, fabricated parts may have to
be rejected as parametric failures because they do not meet specifications in terms of operating
speed, I/O timing, standby power, or the like. None of these effects is accounted for in (13.4) and
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(13.5) because the author knows of no uncomplicated mathematical model for them. [490] discusses
yield optimization in the presence of leakage.

13.5.3 The impact of volume

Recall (13.1) and let production quantity n be very important indeed. Unit cost c and, hence,
the profitable sales price is going to be dominated by the recurring expenses c1 . Lowering them
will typically pay off, even if this inflates the initial costs c0 quite a bit. The higher expenses for
labor and more elaborate software tools notwithstanding, extensive optimization at all levels of
detail (architecture, logic, circuit, layout) tends to be worthwhile in such a situation. Other steps
in this direction are adopting more economical packaging techniques, moving to larger wafers or to
a denser and hence more cost-effective fabrication process, trimming test structures, speeding up
volume testing, and the like. Die size is a prime concern that often determines the overall profitability
of the entire operation. It comes as no surprise that complex general-purpose VLSI parts such as
microprocessors and memories are designed along these lines.

Conversely, non-recurring costs prevail in products where manufacturing is limited to relatively
few wafers per design. While commodity RAMs exhibit mask usage figures in excess of 5000, 500
wafers per mask set are more typical in the USIC business. It then makes no economic sense to
put in extra effort to make the IC smaller or otherwise cheaper to manufacture by getting involved
with low-level details during the design process. Instead, the goal is to minimize the total of all
non-recurring expenses by relying on well-established, safe, and highly automated design methods
and by taking advantage of design reuse as much as possible. Fabrication avenues that involve lower
NRE costs are also very welcome in this situation, see section 13.6. Another idea is to avoid using
individual mask sets for similar products.

Observation 13.6. While die size, along with package costs, indeed remains a critical parameter

for large chips that are produced in huge quantities, cutting non-recurring expenses is much more

important for small to moderate fabrication volumes.

Numerical example

Consider a full-custom IC measuring 4 mm by 4 mm that is being fabricated on wafers with a
diameter of 300 mm. Cutting wafers into dies asks for an allowance of approximately 60 µm on all
four sides, so that cost calculations must be based on a square of 4.12 mm by 4.12 mm. The number
of dies manufactured on each wafer then is nm ≈ 3938. Assuming a yield of 82%, an average of
nf ≈ 3229 functioning dies are obtained per wafer.

In the year 2007, total expenditures for one 300 mm wafer processed in a 90 nm CMOS technology
with 28 mask layers were on the order of 2650 USD, namely 350 USD for the wafer plus 2300 USD for
its processing. Package, encapsulation, and volume testing were estimated to add another 1.48 USD
so that manufacturing cost is about 2.30 USD per functioning unit.

Further assume that non-recurring expenses amount to 7 · 106 USD. Half of this is to pay for 17 or
so man years of management, marketing, design, and verification efforts combined. One production
mask set and the EDA infrastructure cost on the order of 1 · 106 USD each. The rest is to pay for
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virtual components, cell libraries, probe cards, training, sign-off, and setting up fabrication and test
facilities for a full-custom IC.

The resulting overall costs per unit are given below as a function of production volume. Note that
it takes more than three million units to balance recurring and non-recurring expenditures in this
example!

production volume n

costs per unit [USD] 1k 10k 100k 1M 10M 100M
non-recurring c0 7000 700 70 7.00 0.70 0.07
recurring c1 2.30 2.30 2.30 2.30 2.30 2.30
overall c 7002 702 72.30 9.30 3.00 2.37

mission-critical design effort manufacturing costs

�

Observation 13.7. Massive non-recurring and low recurring costs are typical for full-custom ICs.

This fact favors large-volume fabrication but, at the same time, also puts at a disadvantage products

that sell in minor quantities.

Yet another effect that works in favor of mass products is the volume discounts that may be obtained
from vendors and foundries against placing large orders.

13.5.4 The impact of configurability

Many applications that mandated a custom ASIC just a few years ago fit into a single field-pro-
grammable logic (FPL) device today. This trend is to carry on as a consequence of technological
progress and continued price reductions. As a consequence of soaring mask and development costs,
the sales volume necessary to justify custom parts is gradually moving up. Also, built-in memories,
processor cores, interfaces, and other standard functions greatly help to accelerate the FPL design
cycle when compared with a custom design where the same functionality must be obtained from
macrocells and virtual components.

Yet, unless there is an unforeseen technological breakthrough, field-programmable logic is unlikely
to rival hardwired logic on the grounds of integration density and recurring costs. This is because —
using essentially the same semiconductor technology — FPL must accommodate extra transistors,
antifuses, interconnect lines, vias, lithographic masks, and wafer processing steps to provide for
configurability. Also, the required and the prefabricated hardware resources never quite match,
leaving part of the manufactured gates unused. This is particularly so when the application asks
for large and varied on-chip memories as not all FPL families support the construction of RAMs
and ROMs efficiently. Storage must then be pieced together from multiple logic cells or from small
configuration memories distributed over the FPGA’s core, further tying up hardware resources.

In fact, FPGAs are a factor of 10 to 35 times inferior in terms of density to mask-programmed
equivalents manufactured with a similar technology. This explains why large FPGAs continue to
be rather expensive, even when bought in substantial quantities. Comparing SRAM-based FPGAs
against cell-based ASICs in 90 nm CMOS technology, [370] reports an area overhead of 35, a timing



640 Design of VLSI Circuits

slowdown factor between 3.4 and 4.6, and a dynamic power ratio of 14. Opting for a reconfigurable
FPGA, rather than for a mask-programmed ASIC, is thus likely to inflate the AT -product by more
than two orders of magnitude. While hardwired multipliers and antifuse technology improve the
situation, a significant penalty remains.

Observation 13.8. In products where recurring costs, energy efficiency, or operating speed are

critical, it is a good idea to confine configurable logic to those circuit parts that are truly specific for

the application or that are subject to frequent changes.

13.5.5 Digest

Figure 13.10 compares the recurring and non-recurring costs of various ASIC implementation tech-
niques. As numbers greatly vary from one situation to another, this is no more than a general
picture. Also, the drawing is not meant to imply that photomasks alone make up the differences
in non-recurring costs among FPL, semi-custom, and full-custom ICs. The extent of reuse and the
level of detail at which a design is conducted are as important.

overall costs

production
volume

100 1k 10k 100k 1M 10M

full-custom
IC

limited back-end design,
 partial mask set

semi-custom
IC

non-recurring
contributions

field-programmable
logic

(FPGA or CPLD)

full-depth design cycle,
full mask set

no lithographic masks
 no back-end design,

much silicon area 
spent for configurabilty 

optimum usage 
of silicon area 

suboptimal usage 
of silicon area 

recurring
contributions

100M

the lowest possible
towards

unit costs

acceptable
towards

up-front costs

Fig. 13.10 Overall costs as a function of fabrication depth and volume (simplified).

Sophisticated IC size and cost calculators have been developed by industry and are continu-
ally being kept up-to-date. Yet, most of them are company confidential, only a few are available
commercially. A few tools open to the general public are listed in section 13.10.4.
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In practice, it is often difficult to draw a clear line between those expenditures that are directly
related to a specific project and those that are not. VLSI design expertise, CAE/CAD training,
computing and laboratory equipment, software license fees, etc. must all be acquired and paid for
by a company, but can hardly be attributed to a single circuit.18

More importantly, selecting an implementation technique and a fabrication avenue is not merely a
matter of accountancy. The choices made at this point also affect time to market, agility, and risks,
all of which strongly impact on the overall profitability of a product. Thus, when it comes to making
decisions for some given product, other than purely financial arguments are likely to prevail. In fact,
hitting a window of opportunity in the marketplace always is among the highest ranking concerns.
A more complete list of criteria will be given in section 13.8.

Figure 13.11 gives an overall picture of the ASIC techniques that summarizes our discussion
of technical and pricing issues so far. We would like to emphasize that this is a simplified
overview and that numbers are quoted for illustrative purpose only. It should nevertheless be-
come clear that each ASIC implementation technique has its particular niche where it is a good
compromise.

circuit
size

full-custom
IC

production
volume

semi-custom
IC

filed-programmable
logic

(FPGA or CPLD)

SSI MSI LSI VLSI ULSI

10 100 1k 10k 100k 1M1 [GE]10M 100M 1G

100

1k

10k

100k

1M

10M

technology
push

towards highly

(asks for committment)
optimized implementation

towards highly

(implies circuit and
agile implementation

energy overheads)

two-level logic

field-

logic based on

(SPLD)

programmable

Fig. 13.11 Typical scopes of various ASIC implementation techniques (simplified).

Observation 13.9. Performance, energy efficiency, and costs of an ASIC are largely determined by

functional specifications, architecture design, and fabrication avenue. The impact of the subsequent

logic and physical design phases is relatively minor.

1 8 Note that leasing of hardware equipment and software tools is an interesting alternative to buying, especially
for smaller companies that could not use them to full capacity over a prolonged period of time. As a second
benefit, it thereby becomes possible to ascribe expenses to individual pro jects in a more ob jective way.
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13.6 Fabrication avenues for small quantities

The initial costs associated with IC manufacturing discourage the design of USICs for products with
low to moderate sales volumes. Also, most silicon foundries would not accept orders below 1000
wafers per year. While field-programmable logic (FPL) nicely fills the gap, there are limitations
that sometimes justify the search for other options.

• Most FPL devices provide no support for analog circuit blocks.
• FPL devices typically come with a very limited selection of packages.
• FPL is often inferior in terms of energy efficiency.

13.6.1 Multi-project wafers

A multi-project wafer (MPW) accommodates several designs, thereby making it possible to have
them processed together in a single fabrication run. This contrasts with the standard practice from
volume production where a single design is repeated many times over the entire wafer surface, see
fig.13.12a and b. The intention behind MPWs is to share the massive costs for an entire set of
fabrication masks among different projects. MPWs primarily serve for prototype fabrication.19
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Fig. 13.12 Sharing of mask costs among several designs. Regular single-project wafer (a) versus multi-project

wafer (b), arrangement of multiple layout layers on a multilevel mask (c).

Foundries and fabless vendors specializing in this kind of business provide MPW runs on a regular
basis, say between 3 and 8 times a year for a given process. Some 6 to 12 designs are combined
on a wafer, which explains why some companies refer to MPWs as “shuttle” service. Customers
typically receive an engineering lot of 10 or 20 packaged but untested circuits (blind assembly),
with an option to order another 20 to 50 dies if testing proves the design correct. Billing normally

1 9 There have been attempts to put MPWs to service for low-volume production to promote the application of
microelectronics in small and medium-size enterprises (SME), but these were met with limited success.
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is per area with a minimum charge that corresponds to a few square millimeters. NRE charges are
very low or zero, which implies that they are included in the area charges.

13.6.2 Multi-layer reticles

Here, multiple fabrication layers are made to share one photomask or reticle. The available optical
field — currently up to 25 mm by 25 mm or so — is typically subdivided into four quadrants,
each of which is made to accommodate a different layer, see fig.13.12c. Ideally, overall mask count
is thereby reduced by a factor of four. By adapting the lithographic procedure, each mask is reused
four times, bringing into play a different quadrant each time. As opposed to MPWs, fabrication
runs are not tied to a fixed schedule and the intellectual property of each customer is kept on a
separate mask set.

A related idea is to minimize the optical field and, hence, reticle costs by placing a lower number of
dies on a reticle than technically feasible. While this is detrimental to wafer through put because of
the more frequent step-and-repeat operations and the longer wafer exposure times, it contributes
to a more favorable cost structure for low-volume ASIC manufacturing [482]. The same reference
also suggests selectively simplifying optical proximity correction (OPC) patterns for cutting overall
lithography costs.

13.6.3 Electron beam lithography

The general idea is to avoid costly masks by using an electron beam for drawing layout patterns
directly into the photoresist. The fact that layout patterns have to be redrawn on each single
die limits throughput, however, and would confine electron beam direct-write lithography
to engineering lots and very small production quantities. The technology is thus typically used to
pattern the metal layers of otherwise prefabricated sea-of-gates masters.

Example

IMS Chips in Stuttgart offers direct-write lithography for the personalization of mixed-signal gate-
arrays with up to 100 000 GEs manufactured in 0.8 µm CMOS technology (0.5 µm was in prepara-
tion at the time of writing (early 2006)). Electron beam lithography is being used for volumes from
1 to 100 wafers per year. To accommodate products that sell in larger quantities, the company also
provides a smooth transition path to photolithographic customization with just two or four masks.
�

13.6.4 Laser programming

Laser structuring also does without custom masks. The additive makelink approach promoted by
LaserLink Technology starts from specially designed and fully processed wafers that share common
traits with those of antifuse FPGAs. The difference is that a laser beam gets focussed on annular
layout structures to fuse the two superposed metal layers where required. Connections are formed
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at a rate of roughly 20 000 links per second. Incidentally, note that the same technology is also being
used to switch in redundant columns to improve the fabrication yield of RAMs.20

13.6.5 Hardwired FPGAs and structured ASICs

In an attempt to attract business away from traditional ASIC manufacturers, FPL vendors offer
mask-programmable semi-custom parts as a pin-compatible but more economic replacement for
their electrically programmable components to customers that are ready to order more substantial
quantities. Actel, Altera, Xilinx, and others accept a netlist established by the customer for one
of their popular FPGA families and retarget the design for their own masters. Depending on the
order, this service is provided at little or no cost.21

From a customization point of view, hardwired FPGAs are much the same as structured ASICs
as only the upper two, three or four metal layers are made to order, thereby limiting the number
of application-specific masks to four, six or eight. The difference is that the hardware resources
available on the prefabricated masters follow their electrically programmable counterparts.

Observation 13.10. The exploding cost of a full mask set currently observed works in favor of

techniques that achieve customization from a small subset of masks or with no masks at all.

Example

eASIC is a vendor that supplies parts with no up-front charges by minimizing the number of
photomasks necessary to customize the prefabricated masters of their Nextreme SL products. Com-
binational logic and bistables are built from SRAM-configurable logic cells similar to those found
in traditional coarse-grained FPGAs. On the masters, those cells are preconnected using segmented
lines running on metal layers 1 through 6. Customization occurs through a single via layer (via6)
with e-beam lithography before metal7 gets deposited and patterned using a standard mask. Con-
fining e-beam patterning to one layer that, in addition, features a relatively low density, avoids a
bottleneck with throughput. Also, there is the option of substituting a custom mask, once sales
are known to grow to higher volumes. Similarly, the LUTs can be frozen using a second custom
mask for the via1 layer, thereby saving the recurring expenses for an external storage device. eASIC
supports this transition with their Nextreme VL fabrics.
�

13.6.6 Cost trading

More on the grounds of their pricing policy, some ASIC manufacturers are willing to waive part of
the NRE charges provided the customer commits himself to purchasing a predetermined quantity

2 0 The earlier subtractive laser-programmable gate arrays (LPGA) technique worked exactly the other way
round. Starting from specifically designed gate-array-type masters that carried all possible metal connections,
a laser micromachine was employed to selectively cut the unwanted ones. Early promoters had abandoned
LPGAs both for technology and for business reasons by 2004, however. Selectively ablating metal using a laser
beam became increasingly difficult as the track widths grew smaller relative to the laser’s wavelength and as
the number of metal layers increased. More importantly, the low throughput restricted laser programming to
prototyping, a business that did not offer a significant potential for growth.

2 1 Marketed as “HardCopy” by Altera and “HardWire” by Xilinx, for instance. “EasyPath” by Xilinx shares the
ob jectives of fast turnaround and low up-front costs but follows a somewhat different approach.
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over a certain timeframe. Others prefer to trade off NRE charges in exchange for slightly higher
unit costs.

Observation 13.11. FPL and semi-custom ICs are the natural choices for having ASICs produced

in smaller quantities. In addition, a handful of companies specializing in the business offer full-

custom fabrication with more favorable NRE charges. Maskless customization techniques further

make it possible for some of them to operate with short turnaround times.

What matters in the end is that the overall cost structure fits the market. As commercial quotes
and prices are extremely short-lived items, the reader is referred to small-volume price estimation
forms made available by specialized vendors on their webpages, see section 13.10.3.

13.7 The market side

13.7.1 Ingredients of commercial success

Let the following truism begin our discussion of some marketing aspects of microelectronics.

Observation 13.12. Price and cost are unrelated. Price is determined by what the market will

bear. Cost depends on how smart a company is at manufacturing a product. It is the difference

between the two that determines the profit.

The list below, attributed to Matti Otala, states the desirable properties of an invention from the
perspective of an existing industrial company.

Observation 13.13. A good invention

• pops up just in time,

• is an improvement rather than revolutionary,

• fits into the company’s product portfolio,

• fits into the company’s manufacturing strategy, and — above all —

• reduces costs.

Examples and counterexamples

Electronic calculators were extremely successful from the onset because they not only offered su-
perior performance, precision, and ease of use but, at the same time, also could be manufactured
and sold at more affordable prices than their mechanical predecessors, especially once sales volume
took off. With their then revolutionary LSI circuits radically departing from precision mechanics,
electronic calculators were a sharp mismatch with the competences of established manufacturers,
and none of them has made it into the age of microelectronics.

More recently, manufacturers of photographic films and cameras such as Agfa, Fuji, Kodak, Polaroid,
and Konica-Minolta have lived through a similar landslide towards digital imaging. Not all of them
have made a successful transition, some have turned to other business activities. The same applies
to traditional processing laboratories too.
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An on-going struggle is that of light emitting diodes (LED) versus incandescent lamps. Their poor
luminous output had long confined LEDs to indicators and small alphanumeric displays. Beginning
around 1997, authorities started to convert red and orange traffic lights to LEDs; green was to
follow a few years later. Yet, the slow adoption in other applications indicates that better efficiency,
longevity, graceful degradation, and lower maintenance costs do not suffice to displace incandescent
lamps as long as initial costs are not at par, or almost so.

The transition from cathode ray tubes (CRT) to liquid crystal displays (LCD) illustrates a positive
feedback effect of market forces. For decades, the CRT was fine as a display device in TV sets,
computers, point-of-sale terminals, information panels, and other applications. Large flat-panel color
displays remained a distant vision unable to spur significant demand or industrial interest. It was
the laptop computer that imposed the need for a reasonably-priced light-weight display and that
created a credible market for it. For many other purposes, however, LCDs began to supplant CRTs
only years later when their prices had become roughly the same.

Magnetic levitation trains, though highly innovative and addressing an obvious gap between air-
planes and track-and-wheel trains on mid-range distances, are unlikely to meet broad success. This
is because their deployment requires substantially higher investments while the public is unlikely to
accept prices much beyond the level established by competing means of transportation. The elec-
trical vehicle seems locked in a similar situation until energy prices, tax policies, and/or emission
control laws change in a dramatic way.

The development of X-ray photolithography had begun in the late 1970s when everyone believed
optical lithography would soon come to an end. So far, with optical lithography still being prevalent
thanks to a multitude of improvements and with other alternatives being investigated for the time
after, the huge investments into X-ray lithography have not been recovered. Inventions that are too
much ahead of their time do not pay off either.
�

Neither technical novelty nor competence alone warrants economic success. Costs, pricing, and
timing are even more important. A quote from [371], a book worth reading on surviving in dynamic
industries, aptly describes reality.

As disconcerting as this may be, it is important to realize that there is no safe and permanent
success in technological or business matters. Success is only the opportunity to compete in
the next round.

Observation 13.13 also helps us to understand why startup companies tend to be much more inno-
vative than well-established large corporations, a subject addressed in more detail in [372].

13.7.2 Commercialization stages and market priorities

Market expectations are liable to evolve as a product or a service approaches maturity. Consider
cellular phones, for instance. Early customers such as doctors, field staff, express mail services, and
the like, were perfectly willing to accept bulky equipment, high battery drain, and limited speech
quality.22 They were even prepared to pay substantial prices for all that if only they had access to a

2 2 You might be too young to remember that the first cellular phone to be commercialized in 1983 was the Motorola
DynaTAC 8000X. It was 33 cm tall, weighed 800 g for a standby time of 8 h and sold for 3995 USD.
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Fig. 13.13 A state model for commercialization stages annotated with past and present examples (drawing

adapted from [373] with permission; the four stages of commercialization go back to research by Ralph Gomory,

William Howard, and Bruce Guile [371] while the criteria for competitiveness have been defined by Rosabeth

Kanter).

telephone wherever they needed to go, simply because this greatly contributed to their professional
efficiency.

Attitude and user profile have changed a lot since that. Although much more sophisticated techno-
logically, mobile phones today are just another consumer good, which implies that profit margins
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are small and that esthetic design, brand name, gizmos for entertainment, and intangible lifestyle
attributes are as important as ruggedness, user interface, battery type, and other factual character-
istics.

In general terms, fig.13.13 shows four typical commercialization stages that apply to most industrial
goods. As a consequence, one must understand what characteristics of a product or a service rep-
resent the highest-ranking values in the eyes of the customers before committing oneself to major
product and business decisions.

Observation 13.14. Always ask yourself whether the key priorities of the markets are

◦ technical innovation,

◦ time to market,

◦ total conformity with customer preferences,

◦ low costs, or

◦ overall balance.

As for the costs, it is important to know whether customers primarily decide on the basis of purchase
price, operating costs, total cost of ownership, or cost/benefit ratio.

Example

Albeit eventually successful, the Swiss watch industry had been in great difficulty in the 1970s,
struggling to reorient itself towards the development, manufacturing, and marketing of electronic
watches. Remember that first-generation electronic wristwatches were equipped with LED displays
that offered poor contrast, consumed a lot of batteries and, therefore, required the user to push
a button to read the hour. This, together with poorly engineered user interfaces and unesthetic
designs, led the traditional watchmakers to underestimate the potential of the new technology,
which attitude delayed their reaction in a dangerous way.
�

Example

Only a few of the manufacturers that once dominated the computer business with mainframes
and minicomputers continue to be major players in today’s networked computing markets. Until
1990 or so, high-performance computers were built on the basis of the fastest-switching semicon-
ductor devices then available, and the comparatively slow MOS microprocessors were believed to
remain confined to not-so-demanding low-cost applications such as embedded microcontrollers and
home computers. This was when Seymour Cray and his fellow engineers excelled in designing great
supercomputers from fast ECL and GaAs components.

With the advent of VLSI, MOSFETs fabricated in large quantities on a monolithic piece of silicon
began to offset the handicap of their lower transit frequency by slashing wire lengths, layout para-
sitics, and interconnect delays. Their abundant availability made it possible to come up with novel
and highly parallel architecture designs. Even more importantly, the costs for a given performance
level had gradually but irrevocably tipped in favor of CMOS microprocessors and personal comput-
ing, radically shaking up the business.
�
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Observation 13.15. Several different stages of commercialization may arise during the life of a

product, but they need not all occur within the same company or region of the world.

Adapted from [373]. In fact, many industrial products transit from technology-driven commercial-
ization to end-game commercialization within just a few years. Things that once seemed miraculous
soon become mundane commodities. Just consider wireless LANs, flat panel displays, notebook
computers, mobile phones, digital high-definition TV, a pocketable jukebox, the Internet, anti-skid
brakes, laser diodes, chess computers, scientific pocket calculators, and ball bearings, for instance.

However, intense price competition can also be understood as a sign of absence of smart innovations
in the marketplace and as an incentive to identify hidden or untapped potential for new value crea-
tion [493]. In fact, several companies have repeatedly managed to protect their products from falling
prey to lower-price competition by combining technical innovation, ease of use, fascinating design,
and clever branding. Examples from industry include Apple, Bang & Olufsen, Dyson, Hilti and Sony.

13.7.3 Service versus product

Observation 13.16. Marketing the same technology as a service or as a product can make the

difference. Developing adequate business models is as important as commanding the technology.

This is because the technical involvement and financial investments that are required from the
customer’s side to obtain the benefits he seeks from some given technology may totally differ.23

Example

ChipX, which was formerly known as Chip Express Corporation, is an ASIC company that em-
phasizes time to market. Throughout the 1990s, short turnaround times were obtained from a
subtractive approach to manufacturing whereby prefabricated wafers got customized by cutting
unwanted metal interconnections with a laser.

A similar technology had been developed and put to service by Lasarray in Switzerland as early
as 1983. As opposed to ChipX who owned the equipment and offered manufacturing as a service,
Lasarray focussed on selling the equipment for laser customization to companies that would develop
and/or use USICs as part of their products, a strategy that was met with limited commercial success
and ultimately drove the company out of business.

It is interesting to note that the founders of ChipX had initially planned to adopt the same approach
until they were advised by venture capitalists to convert their business plan into a service operation
instead. In retrospect, the CEO of ChipX attributed much of the company’s success to this early
strategy change [375]. Even though the technology was ultimately abandoned,24 it was a solid
contributor to the company’s overall business for more than a decade.
�

Example

Advanced RISC Machines (ARM) today is a leading provider of embedded RISC processor cores.
Their microprocessors are found in products as diverse as mobile phones, car electronics, handheld

2 3 Albeit exaggerated, an advertisement found on some website hits the mark by asking “Why buy the cow if you
can download the milk for free?”

2 4 See section 13.6.4 for details.



650 Design of VLSI Circuits

MP3 players, digital still cameras, and Nintendo games. The company started in 1990 as a joint
venture of Apple, VLSI Technology, and Acorn, a moderately successful British manufacturer of
early low-cost personal computers. Developing and advancing a CPU along with its own RISC
instruction set for those computers, Acorn’s engineers had gained expertise in designing efficient
hardware. Yet, there was no clear idea about how to exploit that technology commercially at the
time. An early ARM product was the ARM 610 that powered Apple’s Newton personal digital
assistant (PDA).

The company rose to its strength precisely because it did not attempt to compete head-on with
established vendors such as Intel, Motorola, Texas Instruments, and the like. Instead of manufac-
turing CPUs and selling them as packaged chips, ARM developed the idea of marketing them as
virtual components. This implied that the company could not afford to focus on engineering alone,
but also had to pioneer new business models for licensing, copyright protection, co-development,
support and training in close collaboration with their customers. This fresh approach opened the
door to emerging markets such as embedded computing and systems-on-a-chip (SoC) and eventu-
ally turned out to be as important as, if not more so than, the CPU’s architecture and instruction
set.
�

Many manufacturers of telecommunications, multimedia, and building control equipment, to name
just a few, do not confine themselves to one-time sales of hardware systems but generate on-going
revenues from service agreements with their customers. They essentially contribute to keeping their
customers’ equipment up to date by delivering updates to support new data formats, transfer
protocols, signal processing algorithms, and the like on the existing hardware. Remote installation
is also part of their responsibilities in some cases.

This business model is patterned after the software industry. Adapting it to microelectronic circuits
and systems asks for early and far-reaching decisions. Hardware must be designed as a platform
with a significant proportion of program-controlled processors and/or FPL as it is not otherwise
possible to accommodate updates in the form of software downloads and/or revised configuration
files.

13.7.4 Product grading

Consumers differ in terms of the number and kind of features they are willing to pay for. While
some are prepared to shell out money for a product with more features than they will ever learn to
use, others are content with the most basic functionality. Rather than develop a product for each
such clientele anew, industry is keen to serve them all with one graded range of products that can
be sold at markedly different price tags.

The cost structure of mask-programmed ASICs does not, unfortunately, justify a multitude of
versions as a slightly smaller die obtained from dropping a few ancillary features does not pay for
an extra mask set unless really large sales volumes are involved. Ideally, one would have a single
platform on which one can add or remove features depending on the product. A common practice
is to reuse a chip designed to more demanding specifications throughout a product family and to
downgrade simpler models via firmware or software. Structured ASICs and one-mask customization
are other options.
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Example

Consider a family of small-office/home-office (SOHO) document processing devices.

Supported functionality (incremental)
color photo scan telefax network

Required features printer printer & copy function capability
USB interface yes yes yes yes yes
color space transform yes yes yes yes yes
4-color print engine control yes
LED & pushbutton MMI yes yes yes
6-color print engine control yes yes yes yes
JPEG decoding yes yes yes yes
Picture bridge interface yes yes yes yes
Flash card interface yes yes yes yes
Scan engine control yes yes yes
JPEG encoding yes yes yes
Telephone modem yes yes
LCD & keypad MMI yes yes
Ethernet interface yes

The overall architecture will always revolve around a microprocessor core with on-chip memories
as most variations relate to peripheral interfaces. Yet, deciding on how many ASICs to develop and
to put into production so as to manufacture the entire range of devices in the most economical way
remains a tough problem with many unknowns.
�

Observation 13.17. The dilemma of addressing different markets with one family of graded prod-

ucts is to under-perform in the high end or to over-cost in the low end, or both.

13.8 Making a choice

13.8.1 ASICs yes or no?

Although there are many commonalities between ASSPs and USICs, this section will primarily
be concerned with the latter because many companies in the electronics industry face the decision
between assembling a product from standard parts — often in conjunction with field-programmable
logic — and designing a user-specific IC instead.

ASICs offer many advantages over circuits assembled from catalog parts:

+ Reduced parts count.
+ Reduced assembly costs.
+ Improved reliability.
+ Reduced space requirements.
+ Full control over the package and all associated issues.
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+ Superior performance for applications that warrant a dedicated hardware architecture.
+ The freedom to optimize inter-chip data exchange channels for speed, energy efficiency, and

noise immunity by adopting signaling conventions tailored to a specific situation.
+ Tight control over parasitic circuit elements

(important in high-speed logic and analog design).
+ Improved energy efficiency.
+ An opportunity to command innovation and to make products stand out from others’.
+ Better protection of proprietary know-how.
+ Excellent protection against unauthorized manipulations (tamper-proof).
+ An opportunity for implementing a consistent test strategy.

There are also handicaps associated with incorporating USICs into a product:

− Little flexibility for accommodating indeterminate and changing specifications.
− The long turnaround times of mask-programmed ICs when compared with FPL.
− A cost structure that favors large-volume fabrication but, at the same time, penalizes products

that sell in smaller quantities.
− Mask-programmed ICs offer little support for product grading.
− The technical compromises that typically result from the integration of distinct subsystems

or of technologically different devices on a single die.25

− The need for highly specialized design engineers that sharply contrasts with programming,
where software developers need not know much of the underlying hardware and can work with
standard languages and compilers, and with widely available software libraries.

− A need for a stable environment where ICs are being designed on a regular basis.
− The multiple parties being involved in design, fabrication, and testing.
− Usually one single source and high dependency on one business partner.
− Stronger technical challenges and financial risks, hence more demanding at all levels (market-

ing, specification, engineering, management, business partners).

In industrial practice, it is normally found that these arguments boil down to two typical situations
that are in favor of having recourse to ASICs.

� Advanced products that are impossible to manufacture without customized microelectronic
circuits because of demanding requirements with respect to performance, space, energy effi-
ciency, integrated sensors, reliability, and the like.
Examples:
- Hand-held cellular phones (GSM, UMTS).
- Truly digital hearing-aids (signal processing, remote control).
- Switching equipment for digital high-speed communication.
- Spread-spectrum systems on the basis of code-division multiple access (CDMA).
- Spatial diversity receivers with their adaptive or “smart” antenna arrays.
- Real-time video (de)compression and (de)coding equipment.

2 5 Consider mixed-signal circuits, for instance, where digital and analog circuits must be made to coexist. An-
other example is BiCMOS technology, where BJTs are fabricated alongside MOSFETs. While very valuable in
certain applications, these bipolars cannot compete with optimized discrete devices in terms of their electrical
characteristics.
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The design of this kind of ASICs typically implies an engineering challenge associated with a
certain risk of not meeting the initial specifications and deadlines, which makes them inap-
propriate as entry-level projects. However, as no alternative solutions exist in this situation,
the key decision is about finding suitable ASSPs, going for USICs, or forgetting about the
product altogether.

� Cost reduction where the prime motivation for utilizing ASICs is to lower the recurring
costs in comparison with alternative solutions.

Examples:
- Networked room controller as part of air conditioning and building control systems.
- Remote control transmitter/receiver for light dimmers.
- Demodulation, error correction, and audio processing in a compact disk (CD) player.
- Networked fire and smoke detector with programmable alarm criteria.
- Electronic ballasts for fluorescent lamps.
- Scan conversion (100 Hz) and video quality enhancement for home television sets.
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Fig. 13.14 ASIC solutions versus processor-based alternatives as a function of performance requirements and

fabrication volume (simplified).

Case study

Adapted from [376]. Pen-size dispensers enable diabetic people to give insulin themselves injections
wherever they are. Such dispensers were produced by Disetronic Medical Systems until 2003, when
this business was transferred to the newly-founded Ypsomed. Dosing accuracy and fool-proof op-
eration are absolutely essential as the blood-sugar level must be kept within tight limits to avoid
long-term damage. Experience with an earlier purely mechanical model had made it clear that op-
erating tiny knobs and reading small scales was asking too much of customers most of whom are in
their senior years.
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Disetronic thus opted for the following features: simple push-button operation, numerical indication
of the selected dose on a comparatively large display, automatic battery monitoring, and self-
deactivation at the end of a predetermined lifetime. After a transitory phase with a low-voltage
gate-array, the actual product was built around a full-custom IC of 11.6 mm2 fabricated using
a low-voltage CMOS technology. The naked die was mounted directly onto a tiny printed circuit
board (chip-on-board). The board also carried a few external components, the most important of
which were a two-digit LCD and a small watch crystal for the oscillator. Power was supplied by
a 1.5 V silver oxide battery. The current drawn was a mere 5 µA during operation and 1 µA in
standby mode.

The decision for a USIC was a fairly logical consequence from the experience with the mechanical
device and from the restrictions of the pen format. Chip design was contracted to an external design
house and took nine months. Disetronic estimates to have invested 300 000 CHF in non-recurring
expenses for the project. Some 200 000 electronic insulin dispensers had been produced in 1993,
which represented an eightfold increase over its mechanical predecessor.
�

Case study

Adapted from [377]. VingCard, a Norwegian company, produces recodable lock systems for hotels
and cruise ships that are based on magnetic cards. Compared with purely mechanical locks, an
electronic solution provides many benefits in terms of comfort and security. Guests and employees
may be selectively granted access to a single room, to some specific set of rooms, to recreational
facilities, or to an entire zone. Any key can be made to expire at a predetermined date and the
activities of all locks can be logged. Lost keys can be rendered inoperative at any time and at no
extra cost.

VingCard’s door lock is battery-powered, communicates with a central service terminal at the
reception desk, periodically monitors battery condition, and includes a magnetic card reader, motor
drives, and a calendar/timer function. Until 1995 the lock control electronics was made of standard
components, the most important of which were a microcomputer with an 8 bit A/D converter,
amplifiers, and filters for processing the signals from the magnetic head, motor drive electronics,
and a UART, plus additional functions for saving power during standby operation.

Preserving the well-proven functionality, a USIC now integrates most electronic circuits and compo-
nents on a single chip. Only motor drivers have been left out because of the high currents involved.
The microprocessor core used is functionally compatible with the old version so that the software
code can be reused. An on-chip PLL makes it possible to operate the circuit at 10 MHz from a
cheap 32 kHz watch crystal. For the sake of battery conservation, the clock frequency gets reduced
to 32 kHz whenever the lock is in standby mode.

The prime motivation for going for a USIC was cost reduction with respect to the traditional version
then being produced. As a matter of fact, the total expense for components was cut by more than
50% by adopting the USIC solution, so that development costs were recovered within 8 months
(pay-back period). As an extra benefit, the size of the circuit board and that of the lock were cut
in half.
�
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Observation 13.18. ASICs are essentially designed either

◦ because demanding requirements cannot be met otherwise or

◦ for lowering costs with respect to alternative solutions in stable products.

13.8.2 Which implementation technique should one adopt?

While any approach to designing and fabricating electronic hardware necessarily is a compromise
between conflicting goals, some options are more adequate than others in a given situation. There
can be no general answer as the “best” choice depends on many factors. The subsequent checklist
of criteria may help you not to overlook important issues.

Characteristics of the final product

• Performance as characterized by throughput or operating speed
• Energy efficiency
• Package count
• System partitioning
• Board space requirements
• Electromagnetic compatibility (emission and vulnerability)
• Acceptable operating conditions
• Tolerance with respect to all kinds of parameter variations
• Reliability (related to total package and pin counts)
• Maintainability (e.g. diagnosing, repair, and updating, possibly from remote)
• Compliance with existing or future industry standards and government regulations

Product development issues

• Overall circuit complexity
• The option of including analog subcircuits, on-chip sensors, etc.
• Availability of subfunctions on the market (as physical parts, VCs, or software)
• Reusability of design data from former projects and for future ones
• Aptitude for hardware and software co-design
• Modifiability (in terms of effort, costs, and turnaround time)
• Turnaround time (from design data sign-off to first prototype delivered)
• Testability
• Design effort
• Design risk
• The limited lifetime of fabrication processes and the impact

of future advances in semiconductor technology26

2 6 The lifetime of IC fabrication processes is typically limited to five to six years. For an ASIC, this means that
the design needs to be ported to a more modern process after that time. Most often, however, a redesign will
allow one to upgrade a circuit’s functionality while, at the same time, taking advantage of recent improvements
of fabrication technology with respect to performance, integration density, energy efficiency, etc. In either case
the burden of a redesign or shrinking operation is essentially placed onto the customer, possibly with assistance
from the manufacturer. In contrast to this, performance and pricing of microprocessors, memories, and other
well-established standard parts automatically benefit from advances in semiconductor technology because it is
their manufacturer who takes care of porting the device to an up-to-date process.
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• Protection of know-how against unauthorized copying
(from the final product or from subcontracted design data)

• Availability of adequate CAE/CAD tools and support
• Availability of adequate cell libraries and cell generators
• Present in-house expertise and any need to acquire more know-how
• Investments into equipment and personnel
• In-house design vs. subcontracting

Production and supply chain management

• Overall sales volume
• Number of parts per fabrication lot
• Fabrication time for one lot
• Dependability of delivery dates agreed
• Second sourcing
• Availability of components or fabrication processes over the product’s lifetime27

• Portability of design data to new fabrication processes, FPL devices, or microprocessors
• Potential export restrictions on components manufactured abroad
• Size, handling, and costs of parts inventory
• Potential for reuse of unsold fabricated parts
• Hazards for personnel and environment

Marketing aspects

• Time to market
• Acceptance by market, predictability of sales volume
• Importance of features that depend on a specific way of implementation
• Agility with respect to changing requirements

Investment

• Recurring and non-recurring costs (see section 13.5)
• Overall investment
• Return on investment, payback period, net present value, etc.
• Financial risks of going for a project and also of abandoning it

Similarly, deciding on the most appropriate degree of integration for an electronic system is an act
of balancing

• Overall space and power requirements (obviously decreasing with integration degree),
• ASIC manufacturing costs (progressively increasing with integration degree),
• Overall mounting and testing costs (decreasing with integration degree),

2 7 Swift obsoletion is by no means limited to semiconductor technology. Highly specialized catalog parts, such as
ASSPs or microcomputers that exhibit not-so-popular features, for instance, are often replaced by more up-
to-date but not truly compatible parts at a rapid pace. Worse than this, a manufacturer is free to discontinue
products at any time should their sales volumes and/or revenues fall short of expectations.
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• Overall development costs and risks (both tend to increase with integration degree),
• Sales potential for ASICs (more specific functionality tends to imply narrower markets),
• Flexibility (higher integration degree often implies more specific functionality),
• Potential for migrating to future components and/or fabrication processes, and
• Recurring vs. non-recurring costs.

High-density packaging often is a better option than full system-level integration.28

13.8.3 What if nothing is known for sure?

As established in subsection 13.5, production volume is crucial for deciding on how to obtain the
lowest price per part. However, it is not uncommon in industrial practice that sales prospects of a
product are virtually unknown, and its specifications have not been settled in detail, yet the product
should hit the market as soon as possible.

A wise approach in such a situation is to begin with a first implementation based on field-
programmable logic, general purpose microprocessors or signal processors, or both. Produced in
modest quantities, this first version will serve to test the market and to verify the functionality at
low risks and at reasonable initial costs. The inherent agility will also permit one to respond to
change and enhancement requests almost instantaneously.

Only then, as annual sales volume can be anticipated better and as specifications have been firmly
established, can a truly informed decision on the best implementation avenue be made. A semi- or
full-custom version marketed somewhat later serves to reduce package count, increase performance,
improve battery runtime, etc., while, at the same time, lowering costs per part due to volume
production.

Observation 13.19. A preliminary implementation on the basis of FPL and/or microcomputers

often provides a good starting point for making sound design and business decisions.

In a move to better support this strategy, several vendors have made migrating to mask-programmed
semi-custom ASICs easier by offering function-compatible hardwired counterparts for popular FP-
GAs, see section 13.6.5. Drop-in replacement parts that maintain pin compatibility are of course
even more desirable but not always available.

A difficulty in high-performance applications is that it may be impossible or uneconomical to get
the necessary operating speed from an FPGA, CPLD, or instruction-set processor.29 Tight space
or power constraints may also preclude non-ASIC prototypes. In such a situation, relying on high-
level synthesis and reuse as much as possible may help to reduce design time and design expenses
for a first version. Critical parts may later be refined at lower levels of detail. Compared with a
field-programmable prototype, much of the flexibility is lost, however.

2 8 Refer to section 11.4.7 for details.
2 9 A potential workaround consists in making the surrounding equipment run at a reduced clock frequency or speed.

This is often impractical, however, when real-time processes such as disk drives, video equipment, communication
channels, control loops, physical processes, and the like are involved.
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13.8.4 Can system houses afford to ignore microelectronics?

Many system houses design their products from standard semiconductor components such as
program-controlled processors, memories, ASSPs, and FPGAs. They do not feel pressed to design
their own VLSI chips because this cannot be justified on short-time economics grounds. Though
much of the expertise of these companies resides in system integration,30 they also generate essen-
tial know-how in the areas of proprietary data or signal processing algorithms — or in fine-tuned
implementations of published algorithms — hardware architecture, circuit and board design, and
software engineering.

As ever larger subsystems move onto chips, the traditional arena of semiconductor companies, the
system houses may feel intimidated by the resources needed for VLSI or may dismiss the ASIC
option on the basis of negative experience from the past. However, a failure to tap the potential
of microelectronics in one way or another is likely to expose a system house to being hollowed out
by any semiconductor vendor who is willing to move up the ladder of value [378]. Superior quality
alone is unlikely to protect a traditional implementation once an integrated alternative becomes
available at a fraction of the cost, space, and power.

Warning examples

• Ciphering: Dedicated chips are not only faster than software but also more tamper-proof.
• Viterbi decoders: Convolutional decoding algorithms once were at the forefront of telecom-

munication. Today, extremely powerful and energy-efficient Viterbi decoders are available as
ready-to-go microchips.

• Audio sampling rate conversion: same as above.
• xDSL equipment: Higher integration degree lowers manufacturing costs.
• Image capture: Traditional film has lost to integrated electronics. Some companies have made

the transition, others sticking to photochemicals face difficult times.

A particularly telling example is best captured by a quote from Federico Faggin, one of the key
designers of the first microprocessor, the Intel 4004, aka MCS-4.

I vividly remember a trip to Europe to visit customers with Hank. This trip occurred in
the late summer of 1971, a few months before the MCS-4 introduction. I found out that
the more computer literate the customer, the more resistant he was to consider using the
microprocessor. The worst meeting was at Nixdorf Computer where they nearly ridiculed us
for the poor architecture of our machines. Some of their criticism was valid, to be sure, but
the level of hostility was only justified by the more or less conscious awareness that a turf
war was beginning with the semiconductor guys. Well, we know who is left standing 30 years
later!

�

3 0 System integration is meant to include answering market needs, establishing complex specifications, system
partitioning, overall architecture design, finding good hardware vs. software tradeoffs, manufacturing hardware
equipment or commissioning that to outside partners, ongoing customer support, offering after-sales services
such as running or maintaining installations on behalf of customers, and the like. System houses are neither
component manufacturers nor software houses or service companies but combine some elements of each.
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Many results of system-level research and development will be met with far more success on the
marketplace if made available as VLSI chips or as virtual components (VCs) rather than as slow
software executables or as bulky and costly board assemblies. The entire personal communication
industry is built upon this experience, for instance.

Observation 13.20. A system house must not spend resources creating components (hard and

soft) that the company could have acquired elsewhere. Conversely, having developed a solution for

a problem of fairly broad appeal, a company must capitalize on the investment by marketing that

intellectual property, even if this ultimately implies going for silicon.

A system house that competes with semiconductor or VC vendors on the open market — or that
is subject to being exposed to such competition in the near future — basically can choose among
seven alternative strategies for what to do with the know-how acquired internally.

1. Design VLSI circuits and market know-how in the form of ASSPs under their own brand, thus
effectively becoming a fabless vendor.

2. Team up with a semiconductor vendor for designing, fabricating, and marketing ASSPs.
3. Market know-how in the form of virtual components, preferably in collaboration with an estab-

lished VC vendor.
4. Protect know-how by patents, be prepared to defend intellectual property by legal means, and

license to selected semiconductor and/or VC vendors.
5. Protect know-how by patents and deny the market to semiconductor and VC companies.
6. Take advantage of in-depth system expertise to always stay ahead of ASSPs and VCs in terms

of performance, quality, and — most likely impossible — costs.
7. Withdraw from certain business areas in favor of higher-level system design and prepare to rely

more heavily on subfunctions purchased from the semiconductor or VC industry.

As stated before, only subfunctions of fairly broad interest for which a market exists or can be
created are likely to elicit the attention of the semiconductor industry and/or of VC developers.
Much as for ASSPs, merchant markets for VCs remain confined to functions that find fairly wide
applications such as microprocessor cores and peripherals, popular interfaces, and all sorts of stan-
dardized functions from data and signal processing, telecommunication, networking, audio, video,
and multimedia [379].

Algorithmic expertise beyond such “mainstream” applications is not exposed to the same extent.
The challenge for system companies operating in niche markets is to take their existing in-house
know-how, to turn it into a product by whatever is the most appropriate means of implementation,
and to make such an operation profitable [380].

Examples

Qualcomm develops, markets, and promotes new wireless telecommunication algorithms and stan-
dards. What makes them special, however, is that they not only license this expertise but also sell
it encapsulated into ASSPs of their own design.

Phonak, a highly innovative manufacturer of hearing aids located in Switzerland, holds important
expertise in signal processing for noise cancellation, for beam forming, for compensating for aural
impairments, and for adjusting hearing aids. Rather than extending its activities into the unfamiliar
realms of VLSI, Phonak stayed focussed on improving the signal processing chain under the tight
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limitations imposed by hearing aid electronics. An external company was commissioned to develop
an architecture that combines analog and digital subsystems and to integrate all that into silicon.
CSEM was selected because of its experience with low-power microelectronics. It is safe to guess
that this approach was much faster and more cost-effective than if Phonak had attempted to solve
everything internally.
�

13.9 Keys to successful VLSI design

13.9.1 Project definition and marketing
� Develop a good idea about what products and features customers are willing to pay for and

not just what they mark as desirable when presented with a marketing questionnaire.

� Try to anticipate sales volume, product lifetime, and future change requirements. This is not
only instrumental in selecting an implementation avenue but also helps to prioritize between
minimizing one-time investments and per-unit costs of manufacturing.

� Let the people involved in project definition understand all options for doing business in a
given application area (marketing systems, equipment, or components; ASSPs, USICs, or VCs;
hardware, software, or services). Check how these options match with market needs and with
your company’s potential.31 Try to think ahead.

� Evaluate all implementation alternatives available (program-controlled processors, field-
programmable logic (FPL), semi- or full-custom IC) with great care. Estimate costs and risks
for all scenarios. Before opting for a mask-programmed approach, make sure this is indeed the
most appropriate choice in the actual situation and the foreseeable future.32

� Carefully select design house, silicon vendor, IP vendor, and any further business partners.33

Make sure they share the same long-term interests as you do. Decide on the fabrication process
and business model together with them.

� Fight for stable specifications. Once actual VLSI design has begun, each modification means
shifting plans in midstream, redoing existing HDL code, schematics, layout, test vectors, etc.
and jeopardizing integrity of the design. A system the specifications of which cannot be frozen
at some point is not suitable for a hardwired circuit implementation.

� Elaborate on specifications until they are unmistakable and as complete as possible. It is
always a good idea to start with some sort of behavioral model or functional prototype.34

Also keep in mind that it is a human deficiency to expand upon known needs in great detail,
while, at the same time, glossing over unknown or difficult but all the more critical matters
in a few words.

3 1 See sections 13.2, 13.4, and 13.7.
3 2 See section 13.8.
3 3 Detailed checklists can be found in section 13.10.1.
3 4 See section 3.1.2.
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� If you are designing digital circuits for some given DSP application, do not underestimate
the effort for finding a good compromise between numerical accuracy and the word widths,
number representation formats, calculation schemes, and other computational resources that
significantly impact hardware costs and energy efficiency.

� Resist the temptation of featuritus, the symptoms of which are an overloaded wish list, overly
many modes of operation, countless interface protocols, oversized memory capacities and — in
more general terms — the quest for a universal circuit. If specifications ask for all-embracing
hardware there is something wrong with them, most likely because the target application and
the circuit’s embedding are not sufficiently clear. After all, lean development also implies lean
specifications.

13.9.2 Technical management
� Have systems engineers and VLSI designers closely collaborate from the onset of a project.

Processing algorithms typically need extensive reworking to find a balance between the theo-
retically desirable and the economically feasible in terms of hardware.35

� Carefully evaluate the respective benefits and limitations of general- and special-purpose ar-
chitectures.35 Be prepared to move the borderline between hardware and software from where
you initially anticipated it would be.

� Establish bit-true software models and insist on thorough functional testing.

� Contract to external partners those activities that they do better or more efficiently than can
be done in-house. Set aside sufficient time for negotiating all the details.36

� Always draw high-level block diagrams of the entire chip and the surrounding system. Clearly
identify clock domains and all signals traversing the boundaries between them. If you plan to
use multiple supply voltages or to temporarily power down part of the circuit, do the same
for the voltage domains.

� Follow a design methodology that makes best use of design automation software, cell libraries,
virtual components (VC), and available expertise:
- Work on the highest level of abstraction compatible with technical and economical

needs. Please note this is not normally the most abstract level in absolute terms.
- Reuse proven components as much as possible (e.g. HDL libraries from previous

designs, from commercial sources, and from within the current project itself).
- Know the preconditions for and the limitations of using a given instrument,

be it an EDA tool, a library element, or any other subcircuit about to be used.

� Implement a formal version control mechanism to make sure design data are kept consistent
by all members of the team at any time. It is a good idea to transfer the final design data to
a special repository for tapeout and later use.

� Use a coherent CAE/CAD environment. Do not explore any new design flow (design method-
ology, tool suite, design kit, cell library) or any new fabrication avenue (process, silicon vendor,
foundry) on a critical project. Do so with fairly modest test vehicles first.

3 5 See sections 2.3 and 2.2 respectively.
3 6 See sections 13.2 and 13.4 and refer to figs.13.15 and 13.16.



662 Design of VLSI Circuits

� Organize design reviews at critical milestones of the project, e.g.
- to agree on final specifications,
- to approve the system architecture being proposed,
- to locate deficiencies in the HDL code established,
- to assess the functional coverage of the simulations being carried out,
- once gate-level netlists are available following RTL synthesis,
- before submitting design data to fabrication, and
- after prototypes have been tested and measured.

� Make sure a circuit’s design team remains available for the project until prototypes have been
manufactured, tested, and debugged.

� Do everything possible to avoid redesigns, but prepare for them.

13.9.3 Engineering
� Plan to use powerful yet simple interfaces. Avoid the need for shadow registers and/or lengthy

instruction sequences just for handling data transfer protocols.

� It always pays to view hardware from a programmer’s perspective too. Do not compromise
on the performance and dependability of software drivers just to save a couple of logic gates
in an interface. Keep user interfaces simple and manageable.

� Resort to rapid prototyping to check circuit operation within the target context.

� Similarly, make sure interfacing to your design is safe and easy timing-wise.37

� Consider floorplanning issues early on in the design process.38 In particular, estimate chip
size, pin count, power dissipation, and package early on in the project and update the figures
whenever a major design step is completed.

� For large chips to be fabricated with advanced processes, do not underestimate the domina-
tion of interconnect delay over gate delay. Make the planning of signal distribution part of
architecture design.

� Be fluent in digital circuit design. System-wide synchronous operation avoids most timing
problems and permits one to separate functionality from timing to a limited but helpful
extent.

� Adhere to one of the well-known clocking disciplines, refrain from mixing them.39

� Include a reset mechanism that unconditionally puts all bistables into a known state.

� Design for test. Economizing on test structures may be found very expensive later.

� Control parasitic effects which could make a circuit behave differently from anticipations,
namely

3 7 See chapter 7.
3 8 See section 11.3.1.
3 9 See section 6.2.
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- switching noise (from ground bounce and crosstalk),
- clock skew (on-chip and particularly between chips),
- PTV variations (particularly between chips) and on-chip variations (OCVs),
- layout parasitics (especially in power and clock distribution),
- latch-up of CMOS structures,
- electrostatic discharge (ESD),
- electromigration, and
- radiation effects.
Most parasitic effects are not or not sufficiently taken into consideration by standard CAE/
CAD tools. Specific modelling techniques may be necessary, e.g. noise analysis at the electrical
network level, skew analysis of clock distribution network, device simulation for latch-up and
ESD analysis.

� Keep design iteration loops short and tight, do not put off verification steps.

13.9.4 Verification
� Have all parties involved (customers, marketing, front-end designers, back-end designers,

foundry and test engineers) agree on the test cases relevant for the acceptance of the hardware.
Use this as a starting point for elaborating a verification plan.

� Beware of having preconceptions from the design and/or programming phases of a system
creep into the phases of functional verification and test. Have different persons or teams
handle the two in an independent way.

� Be as thorough as possible in your simulations. Try to cover all operating modes the circuit may
encounter, do not fail to verify any functions just because they appear to be straightforward.
Experience shows that a design is likely to fail in those situations that have not been sufficiently
addressed during functional verification.40

� Simulation is not good at detecting problems that occur where a design must cooperate with
the outside world. Use FPGA-based prototypes as a complement where possible.

� Carry out static timing analysis on top of functional verification.41

� Prepare production test vectors as part of the design process, do not postpone this until first
silicon arrives.

13.9.5 Myths

HDLs have made hardware and software design become the same

The idea that today’s hardware description languages have eliminated the traditional barriers
between hardware and software development is often advanced to imply that automatic synthesis
puts any software person in a position to design VLSI circuits. As a matter of fact, the arrival of
HDLs has led to significant commonalities between hardware and software design:

4 0 See chapter 3 for more detailed advice.
4 1 See chapter 12.
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+ Design entry is by way of formal languages.
+ Typical software development tools are being used

(e.g. text editors, compilers, code analyzers, debuggers).
+ Established principles from software engineering must be observed (modularity, hierarchy,

parametrization, information hiding, version control, documentation, code reviews, etc.).

These apparent similarities notwithstanding, several factors remain that set the two disciplines well
apart from each other.

− Hardware design must address behavioral, structural, and physical issues, whereas software
design is confined to a purely behavioral view.

− A variety of parasitic effects must be contained to make circuits behave as modelled (i.e.
specified and simulated) in abstract and purely logical terms.

− Defects from manufacturing necessitate the incorporation of test structures into hardware.
− Economics and cost metrics are totally different. Fabrication costs and hence also die size are

much more critical to VLSI than code size is to software.
− The turnaround times and financial losses associated with fixing errors in VLSI circuits ne-

cessitate total commitment to first-time-right design.

In conclusion, the advent of HDLs means that the VLSI designer has to become familiar with
software engineering, but it does not do away with the need to master typical hardware design
practices at multiple levels of abstraction. Hardware designs starts with a behavioral model; that is
exactly where software design ends.

There is no such thing as digital design

As voltages and currents are continuous quantities in today’s electronic circuits, it is sometimes
argued that education and experience in analog design would form the optimal background for
digital VLSI design as well. There are important technical and cultural differences, however.

Analog IC designers must and do have detailed knowledge about the electrical characteristics of
transistors, conducting materials, dielectrics, and parasitics. They also know about limitations of
transistor models and about imperfections of fabrication processes. Their main preoccupations are
to ensure linearity, to minimize noise, to maximize dynamic ranges, to control fringe effects, to
match transistor, resistor, and capacitor pairs, to compensate for PTV and on-chip variations, to
maximize layout density, and the like. In order to do so, they need to care about every single device
and every single node in great detail.

Digital VLSI designers are not normally allowed to do so. Their prime concerns are first-time-
right design, time to market, yield, and overall costs in the face of highly complex circuits. For
the sake of productivity, they must take full advantage of design automation tools, work at higher
levels of abstraction, and reuse as many subcircuits as possible. Digital designers must refrain
from using tricks that would compromise the validity of the assumptions and simplifications that
implicitly underlie their models and tools. The key idea is not to get involved with low-level details
unless absolutely necessary. This is achieved by following design practices that are dependable,
robust, and independent of a specific technology, a given electrical context, or some particular layout
arrangement. Relevant techniques such as synchronous operation, safe clocking disciplines, HDL
synthesis, separation of functional verification from timing verification, self-checking testbenches,
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design for test (DFT), tolerance against PTV and on-chip variations, safe design practices, noise
control, and more have been discussed throughout this text.

Clearly, being knowledgeable in analog circuit design and device physics always is a great asset,
especially with deep submicron technologies where many second-order phenomena begin to be felt
in digital circuits. Our point is that tackling digital VLSI with standard approaches from analog
design seldom yields satisfactory results.

13.10 Appendix: Doing business in microelectronics

13.10.1 Checklists for evaluating business partners and design kits

Silicon vendor

• Company name, ownership, geographic location, and webpages.
• Management-level, commercial, and technical contact persons.
• Strategic importance and long-term commitment accorded to the ASIC business.
• Financial health (in view of remaining in business, staying independent, and investing in future

technologies).
• Track record (with respect to quality, timely delivery, customer support, etc.).
• Fabrication avenues and design flows supported.
• EDA tool suites supported for use by external customers versus tools used in-house.
• Competence, availability, and manpower of application support.
• Non-disclosure of design data and of business information.
• Assistance with back-end design (place and route, layout verification, etc.).
• Assistance with test vector generation.
• Details on sign-off procedure (data formats, back-annotation, “golden simulator”, etc.).
• Availability of engineering samples and/or of a multi-project wafer service.
• Production testing (ASIC manufacturing service vs. foundry service).
• Packaging service with package types supported.
• Export restrictions, terms of delivery and of payment.

Design house

Many of the above criteria also apply to design houses, but there exist some more specific require-
ments on top of those:

• Critical mass, multiple carriers of know-how.
• Expertise in the ASIC’s field of application, general system-level know-how.
• Potential entry levels (informal specifications, software model, HDL model, etc.).
• Expertise in digital, analog, RF, and mixed-signal design.
• Know-how in the specific design niche (high-speed, low-power, full-custom, etc.).
• HDLs being supported.
• Close and preferential links to silicon foundries (privileged access to information, involvement

in library and process deployment).
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• Adequate cell libraries, macrocell (generators), virtual components, and the like.
• Compatibility between available libraries and the EDA tools in routine use.
• Design steps covered in-house versus tasks being subcontracted.
• Expertise in design for test and in test vector generation.
• Coherence of and experience with the design flow planned for.
• Help with package selection and packaging.
• On-going peer review of design quality and test structures.
• Formal design reviews at critical milestones.
• Quality of functional, parametric, and physical verification.
• Competence in prototype testing and debugging.
• Technical and financial participation in case of malfunctioning, redesign or yield problems.
• Timelines, charges, payement schemes, sharing of commercial risk and benefit.

Fabrication process

• Minimum feature size, number of poly and metal layers.
• Bulk or SOI process, in the former case also n-well, p-well or twin wells.
• Process options (Flash, silicide straps BiCMOS, SiGe, etc.).
• Pitch, material, and electrical characteristics of each interconnect layer.
• Supply voltage range for core and I/O, interfacing with other voltages.
• n- and p-channel drivabilities, subthreshold slopes, and leakage currents.
• PTV variations, admissible temperature range.
• Yield model.
• Maturity and expected lifetime of process.
• Location of fabrication line, export restrictions if any.
• Second source.
• Minimum order and turnaround time.
• Detailed quotation with NRE charges and fabrication costs.

Design kits and cell libraries

• Fabrication depth (semi- vs. full-custom ICs).
• Top priorities (layout density, speed, energy efficiency, safeness, and testability).
• Propagation delays and switching energies of important library elements.
• Conditions assumed for library characterization (PTV, load, trip points, ramp time).
• PTV derating curves.
• Design flows, CAE/CAD tool suites, and tool versions being supported.
• Computing environment assumed (operating system, shell, scripting language, batch queues),
• Available support (hotline, bug fixing, adaptations, etc.).
• Compatibility with your EDA environment and in-house expertise.

In order to operate a design kit you will need to procure:
• Cell models for simulation and synthesis (VHDL, VITAL, Verilog, Synopsys, etc.).
• Technology files (layout rules, transistor models, layout parasitics).
• Digital cell library (logic gates, bistables, adder slices, etc.).
• Pad library (in/out/bidirectional, voltage levels, sink/source currents, ESD protection, etc.).
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• Macrocells (SRAM, DRAM, ROM, multiplier, datapath, etc.).
• Megacells (microprocessor cores and peripherals, filters, etc.).
• Analog cell library (opamps, comparators, D/A- and A/D-converters, etc.).

13.10.2 Virtual component providers

Vendors range from large companies with products of wide interest to smaller companies that focus
on very specific needs and applications. As frequent business changes would rapidly render a printed
list obsolete, we limit ourselves to information hubs that have been around for many years.

• Design and Reuse, http://www.design-reuse.com
• Opencores.org, http://www.opencores.org

A list of VC deliverables has been given in section 13.4.6.

13.10.3 Selected low-volume providers

The companies and institutions listed below accept orders for ICs in small or moderate quantities
because they offer structured ASICs or because they run multi-project wafer (MPW) services.

• Altera, http://www.altera.com
• AMI Semiconductor, http://www.amis.com
• ChipX Corp., http://www.chipx.com
• Circuits Multi-Projets (CMP), F-38031 Grenoble, http://cmp.imag.fr
• DELTA Electronics Testing, DK-2970 Hørsholm, http://www.delta.dk
• eASIC Corp., http://www.easic.com
• Europractice IC Manufacturing (ICMS), IMEC, B-3001 Leuven, http://www.europractice-

ic.com
• Faraday Technology, http://www.faraday-tech.com
• Fraunhofer-Institut für Festkörpertechnologie (FhG-IFT), D-80686 München.
• Fraunhofer-Institut für Integrierte Schaltungen (FhG-IIS), D-91058 Erlangen.
• Fujitsu Microelectronics, http://www.fma.fujitsu.com
• Institut für Mikroelektronik Stuttgart (IMS), D-70569 Stuttgart, http://www.ims-chips.de
• Leopard Logic, http://www.leopard-logic.com
• Light Speed Semiconductor, http://www.lightspeed.com
• Microdul AG, CH-8045 Zürich, http://www.microdul.com
• MOSIS, http://www.mosis.org
• NEC Electronics, http://www.necel.com
• ViASIC, http://www.viasic.com
• Xilinx Inc, http://www.xilinx.com

13.10.4 Cost estimation helps

• Die size estimation, http://eproject.umc.com/dse
• Wafer cost calculator, http://www.sematech.org/ismi/modeling/wfrcalculator.htm
• Size, power, leakage, yield, and cost calculator, http://www.chipestimate.com
• Manufacturing cost estimator, http://www.icknowledge.com/our products/cost model.html
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• Project cost estimation spreadsheet, http://dz.ee.ethz.ch/support/ic/asiccostestimator.en.html
• FPGA vs. ASIC project cost calculator, http://www.altera.com/products/devices/cost/cst-

cost step1.jsp
• Small-volume price estimation, http://www.iis.fraunhofer.de/EN/bf/ic/smallrol/preis-jsp
• Price quotes for DRAMs and flash memories, http://www.dramexchange.com
• Standard component price tracker, http://www.isupply.com/catalog/L2 prtr.asp



Chapter 14

A Primer on CMOS Technology

The prime objective of this chapter is to put VLSI design and test engineers in a position to under-
stand how MOSFETs, diodes, and contacts operate as part of digital circuits. Readers shall also be
enabled to study, understand, and sketch layout drawings and circuit cross sections. Neither a com-
prehensive insight into solid-state physics nor overly detailed information on a specific fabrication
process is necessary for doing so. It generally proves sufficient to distinguish between a handful of
materials and to know in what order these are being manufactured and patterned. This is precisely
what the present text attempts to convey.

14.1 The essence of MOS device physics

14.1.1 Energy bands and electrical conduction

All solids have energy bands which indicate at what levels of energy electrons can exist. Only the
conduction band, the uppermost, and the valence band, the next one beneath, are relevant
here, see fig.14.1. Their separation, that is the amount of energy necessary to transfer an electron
from the valence band to the conduction band, is known as the bandgap. The relative locations of
valence and conduction bands largely determine a material’s electrical characteristics.

Insulators. The valence band is fully occupied whereas the conduction band is empty; an im-
portant bandgap of typically more than 5 eV separates the two. The valence electrons form
strong bonds between adjacent atoms. As these bonds are difficult to break, there are no
free electrons that could float around and participate in electrical conduction. Resistivity ρ

is 108 Ω m or more.

Metals. The valence band is only partially filled, so the electrons are free to move through the
material. Some metals actually have the valence band and the conduction band overlap with
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Fig. 14.1 Energy band configurations of insulators (a), semiconductors (b) and metals (c,d) (simplified).

no gap in between, but the effect on conduction is essentially the same. Resistivity ρ is
10−6 Ω m or less.

Semiconductors. The conduction and valence bands are separated by a bandgap, yet, 1 eV being a
typical value, the difference in energy is not as large as for insulators.1 Electrons cannot jump
the gap easily at low temperatures. At higher temperatures, however, more of the valence
electrons do traverse the gap and the semiconductor’s conductivity augments accordingly. At
room temperature, resistivity ρ is on the order of 103 Ω m.

14.1.2 Doping of semiconductor materials

What makes semiconductors technically interesting is that their electrical properties can be pro-
foundly modified by doping them. The term doping refers to “impurities” that are selectively
incorporated into the crystal lattice of the base material in order to control its local electrical
characteristics.

Consider silicon — the predominant base material today — and recall from fig.14.2 that its atoms
have four electrons in the outer shell. In a crystal of pure silicon, electrons from adjacent atoms form
covalent binding pairs, see fig.14.3b. Though somewhat augmenting with temperature, electrical
conductivity remains very limited because of a considerable bandgap.

Extra electrons that come as part of impurity atoms that count five electrons in their outer shells
cannot be accommodated in the regular bonding structure of the crystal lattice, see fig.14.3a. The
amount of energy required to remove such an excess electron from the lattice and to lift it into
the conduction band is therefore much lower. As a result, conductivity increases with doping con-
centration. Impurities are said to act as donors of free electrons or as n-type dopants in this case.

Conversely, p-type dopants have only three electrons in the outer shells, which makes them act
as acceptors for free electrons. Each dopant atom is then said to create a hole, that is a vacant
electron position or — which is the same — a positive unit charge, see fig.14.3c. Observe that the
presence of holes in the crystal lattice makes it possible for electrons to jump into vacant positions,
leaving fresh holes behind. If the process is kept going by an electrical field, the effect can be viewed
as a current of (positive) holes that has the same magnitude but flows in the opposite direction to
that in which the (negative) electrons do.

1 Appendix D.3 lists the bandgap energies of selected materials and also discusses carbon allotropes.
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Observation 14.1. Both holes and excess electrons contribute to electrical conductivity,

what really matters for electrical conductivity is their imbalance.

Doping essentially provides the crystal with mobile charge carriers. A semiconductor where holes
and excess electrons exactly compensate has the electrical properties of an undoped material. The
stronger the concentration of mobile carriers, the higher the material’s conductivity. There is a
difference, however, in that it takes less energy to move an electron through the crystal lattice than
to move a hole. Electrons are thus said to have a higher carrier mobility.2

2 A classical analogy is that of a banquet table where a seat stands for a place in the crystal lattice and a guest
for an electron. There is little social interaction as long as the numbers of seats and people match, but an excess
of seats encourages people to drift around. An excess of guests engenders even more agitation.
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The manufacturing of semiconductor devices necessitates a set of doping steps to obtain volumes
of well-defined electrical characteristics and shapes. Technologists capture a material’s doping in a
shorthand notation by writing things like n+ or p−, where n and p stand for the doping type while
+, −, and −− refer to strong, weak, and very weak doping concentrations respectively.3

A particular material that is worth mentioning is polysilicon, or poly for short, a polycrystalline
or amorphous silicon material typically deposited on a wafer’s surface from a gas. Depending on
the nature and concentration of its doping, a polysilicon film can be made into a conductive layer,
a resistive layer, or a semiconductor. CMOS VLSI circuits include one or sometimes two polysilicon
layers that are made conductive by generous addition of dopants.

14.1.3 Junctions, contacts, and diodes

All semiconductor devices include both junctions and contacts, so developing a basic understanding
of their construction and electrical properties is essential.

pn-Junction. A pn-junction is obtained by implanting p-type dopants into some n-type base ma-
terial, or vice versa, as shown in figs.14.4 and 14.5. The term metallurgical junction refers
to the borderline that separates the p-type from the n-type region where the concentrations
of donors and acceptors balance.

When the junction is in thermal equilibrium, i.e. with no voltage applied and with no light
shining on it, a region depleted of mobile carriers forms on either side of the metallurgical
junction, see fig.14.4a. This is because charge carriers tend to diffuse from regions of high
concentration to regions of lower concentration. Free electrons from the n-region thus diffuse

Fig. 14.4 The pn-junction in thermal equilibrium with customary orientation of voltage counting (a), in

backward-biased (b), and in forward-biased condition (c) (not drawn to scale). See color plate section.

3 [381] proposes a notation that distinguishes among five levels of doping:
very weak (denoted n−− [p−−]) if the concentration of dopant atoms is ND [A ] < 101 4 cm−3 ,
weak (n−[p−]) if ND [A ] is 101 4 –101 6 cm−3 , moderate (n [p]) if ND [A ] is 101 6 –101 8 cm−3 ,
strong (n+ [p+ ]) if ND [A ] is 101 8 –102 0 cm−3 , very strong (n+ + [p+ + ]) if ND [A ] > 102 0 cm−3 .
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towards the p-region, and vice versa. When they meet, an electron can drop into a hole,
causing both to vanish in an event called recombination.

What they leave behind is a depletion region, aka space-charge region, where the immobile
dopant atoms are ionized. The number of ionized donors on the n-side equals the number
of ionized acceptors on the p-side. An equilibrium point is reached when the electric field
created by those ionized impurities causes carriers to drift back at the same rate as they
diffuse away. The potential difference across the junction present under thermal equilibrium
conditions is called built-in voltage Ubi , is always negative, and is on the order of −0.7 V
for a typical silicon pn-junction.4

Observation 14.2. In a semiconductor, one observes two antagonistic currents

that compensate when in thermal equilibrium:

cause primary effect secondary effect

nonuniform carrier concentration diffusion current builds up potential difference

electric field drift current attenuates potential difference

A pn-junction is said to be reverse biased when an external voltage Upn < 0 gets applied,
see fig.14.4b. The depletion region widens because the voltage draws electrons and holes away
from each other. This explains why (almost) no current flows in a reverse-biased condition
Ir ≈ 0. The junction then electrically resembles a small capacitor with the depletion regions
acting as a dielectric.5 ,6

4 Diode voltages and currents are counted as positive when the device is in forward-biased condition. It is unfor-
tunately not possible to measure the built-in voltage by connecting a voltmeter to the diode’s terminals because
the various contact potentials in a closed loop cancel out. See [234] for a more complete rationale.

5 As the negative bias is increased, the depletion regions extend, thereby widening the gap that separates the two
imaginary capacitor plates, and the effective capacitance value diminishes. This is how varicap diodes work.

6 Any junction will fail when a sufficient reverse voltage is applied. Here is why: A few thermally generated
electrons and holes always exist in the depletion region. At higher voltages, these will get accelerated to a point
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A forward bias, on the other hand, pushes electrons in the n-doped material and holes in
the p-side towards the metallurgical junction, thereby compressing the depletion region. The
layer devoid of mobile carriers vanishes when the forward voltage applied from externally
more than compensates for the junction’s negative built-in voltage, see fig.14.4c. Electrons
and holes then combine at the junction to form a continuous current. For a significant forward
current to flow If > 0; we thus have the condition Upn + Ubi > 0. In more practical terms,
one must accept a voltage drop of Uf > −Ubi ≈ 0.7 V for a typical silicon diode to conduct.

Observation 14.3. The most prominent property of a junction is that electrical current is allowed

to flow from the p-doped anode to the n-doped cathode, but not in the opposite direction.

Schottky junction. Metal deposited on lightly- or moderately-doped semiconductor material ex-
hibits electrical characteristics that are similar to those of a pn-junction (with the metal
acting as anode when adjoined to a n− material and as cathode when adjoined to p− ma-
terial). The most notable difference is the low built-in voltage of a mere −0.3 V or so. The
popular name “Schottky contact” for this arrangement is misleading because a diode charac-
teristic is definitely not what one expects from a contact. Schottky junctions find applications
in power electronics and fast TTL logic families.

Ohmic contact. Ohmic contacts between metals and semiconductors are obtained by heavily
doping the semiconductor material where it adjoins the metal. Connecting to lightly-doped
n− material, for instance, requires that a heavily-doped n+ zone be sandwiched between the
metal and the n− volume. This is shown at the bottom of figs 14.5a and b that clarify the
construction of a rectifier and of a Schottky diode respectively.

14.1.4 MOSFETs

Construction

Field effect transistors (FETs) exploit the fact that the current through a thin layer of semicon-
ductor material can be modulated by the electrostatic field originating from an electrode placed
in the immediate proximity. The controlling electrode is called the gate. As opposed to junction
FETs (JFETs), MOS field effect transistors (MOSFETs) have their gate electrode electrically
insulated from the conducting channel by a thin dielectric layer known as gate oxide, thin oxide,
or — more generally — gate dielectric. The acronym MOS refers to the materials in the gate
stack, that is, in the sandwich structure at the heart of these devices:

• Metal for the gate electrode,
• Oxide (traditionally SiO2) for the gate dielectric, and the
• Semiconductor material (Si) underneath in which the conducting channel forms.

where they create new electron–hole pairs when they collide with atoms of the semiconductor lattice. The diode
enters avalanche breakdown when the carriers brought forth by this impact ionization process cause a
chain reaction that floods the depletion region. The depletion region then literally collapses and the junction
loses its ability to block current. Breakdown per se is not necessarily destructive, yet the heat generated can
cause damage unless reverse currents are limited to uncritical levels. Both avalanche and Zener diodes take
advantage of breakdown effects. The difference is a fine point that we abstract from here, all the more as the
two terms are often used interchangeably.
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Fig. 14.6 Cross sections of bulk MOSFETs. n-channel (a) and p-channel (b) device (not drawn to scale). See

color plate section.

Note that the acronym has become a misnomer because the MOSFETs found in almost all VLSI
chips today have their gate electrodes made of polysilicon rather than metal.7 Also, traditional
silicon dioxide gate dielectrics are more and more being displaced by materials with higher relative
permittivities.

With some simplifications, fig.14.6 shows the cross sections through complementary MOSFETs
fabricated in a bulk process. The source and drain electrodes at the ends of the channel consist of
two identical diffusion islands embedded in a substrate material of opposite doping. A third diffusion
island doped like the substrate but with a higher concentration serves to electrically contact the
transistor’s body volume, aka bulk.

Operation

To gain insight into the functioning of MOSFETs, let us watch where and why charge carriers
concentrate and flow in such devices under a variety of electrical conditions. More specifically, the
subsequent discussion refers to an enhancement-type n-channel MOSFET with no substrate bias
Ubs = 0. That is, we will assume source and body terminals to be electrically connected as is the
case in inverters, for instance. Analysis of a p-channel device is analogous but with dopings, charge
carriers, currents, and voltages reversed.

Thermal equilibrium. As shown in fig.14.7, depletion regions form around the metallurgical
junction of the source and of the drain islands. Drain and source are electrically insulated
from each other by two zero-biased junctions connected back to back.

7 Aluminum gates were being used in the venerable CD4000/MC14000 logic family and in NMOS parts before
being abandonded in favor of poly gates in the 74C00 and other CMOS families. A first reason was the smaller
work function of polysilicon, which contributed to lower MOSFET threshold voltages. It thus became possible
to reduce the operating voltage (CD4000: 3–18 V, 74C00: 2–6 V) and to improve on energy efficiency without
inflating delays. Perhaps even more importantly, the adoption of self-aligned gates simplified the fabrication
process but mandated a gate material that can withstand the high-temperature processing associated with
the implantation of dopants and with annealing, a requirement not met by aluminum. This is because the
manufacturing of self-aligned gates implies that gate electrodes be patterned before source/drain doping occurs,
see section 14.2.2. Interestingly, metal gates are to reappear with the 45 nm generation in order to do away with
undesirable phenomena that are associated with polysilicon as a gate material, see section 14.3.5.
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Fig. 14.7 n-channel device in thermal equilibrium. See color plate section.

Fig. 14.8 n-channel device in cutoff condition (the ⊕ mark identifies an operating point). See color plate

section.

Cutoff. Enhancement-type n-channel MOSFETs exhibit positive threshold voltages 0 < Uth . At
gate voltage zero, 0 = Ugs , such a device operates well within the subthreshold region
as defined by (Ugs − Uth ) ≤ 0. Upon applying a positive drain voltage, the drain junction
gets reverse-biased and essentially no current flow takes place between drain and source,
Id(0 = Ugs , 0 < Uds) ≈ 0. Ideally, the only effect is that the depletion region around the
drain electrode grows wider than that around the source as shown in fig.14.8.

In real devices, perfect cutoff is frustrated by subthreshold conduction, a phenomenon
due to free electrons that always exist in the bulk material. Only a small fraction has enough
thermal energy to traverse the barrier of the reverse-biased drain junction. Still, such electrons
make up a minute drain-to-body current Id(0 = Ugs , 0 < Uds) > 0 referred to as subthreshold
or channel leakage current that augments with temperature.

Weak inversion. A positive voltage gets applied to the gate. Yet, it is so small that the transistor
remains in the subthreshold region because (Ugs − Uth ) ≤ 0 continues to hold. The main
difference is that the holes in the p− body material underneath the gate are being repelled
from the surface by the slightly positive gate 0 < Ugs ≤ Uth . The negatively charged acceptor
atoms that are left behind form a depletion layer, see fig.14.9.8

Strong inversion. A larger positive gate voltage Uth < Ugs attracts so many electrons to the
silicon surface underneath that a thin layer gets flooded with negative mobile carriers. The
material there, originally manufactured with a gentle p− doping, therefore behaves much like

8 Were it not for subthreshold conduction, drain current would remain zero even if a substantial voltage were
applied between drain and source such as in fig.14.8.
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Fig. 14.9 n-channel device in weak inversion. See color plate section.

Fig. 14.10 n-channel device in strong inversion. See color plate section.

n+ material, and the name “strong inversion” aptly describes its situation. As net result, a
conducting inversion channel bridges the gap between source and drain, see fig.14.10. The
MOSFET essentially behaves like a (linear) resistor the conductance of which is controlled
by playing on the voltage (Ugs − Uth ) to vary the thickness of the inversion layer. Yet, no
current flows in the absence of a driving voltage Id(0 = Uds) = 0.

Note that the device can be viewed as a capacitor the upper plate of which is the gate
electrode and where the inversion layer forms the lower plate. Not surprisingly, a transistor
operated in this way is referred to as a MOSCAP.

Observation 14.4. The conducting channel that comes into existence in p-doped bulk material is

of n-type, and vice versa, as a consequence of field-induced inversion.

Linear regime. What’s new compared with the previous situation is a drain–source voltage that
propels free electrons through the resistive inversion layer. Current flows from drain to source
Id(Uth < Ugs , 0 < Uds) > 0. There is a side effect, however, because the voltage between gate
and drain is less than that between gate and source. The vertical field thus tapers off towards
the drain and so does the thickness of the inversion layer, see fig.14.11. The linear region is
defined by 0 < Uds < (Ugs − Uth ). Also observe that electrical linearity suffers towards the
borderline of the region as a consequence of the inversion channel becoming more and more
distorted.
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Fig. 14.11 n-channel device in linear regime. See color plate section.

Fig. 14.12 n-channel device at pinch off. See color plate section.

Pinch off. When the voltage drop along the channel is augmented to a point where Uth = Ugd ,
the channel becomes pinched off next to the drain because the vertical field no longer suffices
to obtain strong inversion there, see fig.14.12. Note that Uth = Ugd is synonymous with
Uds = (Ugs − Uth ) simply because Ugd = Ugs − Uds . That condition defines the borderline
between the linear and the saturation region.

Saturation. Increasing drain-to-source voltage further so that Uth > Ugd , a continuous channel
ceases to exist, and one would expect current flow to come to a standstill. Somewhat sur-
prisingly, though, charge transport continues. This is because the lateral field in the narrow
pinched-off gap becomes so intense that the few electrons present there get so strongly accel-
erated towards the drain that they tunnel through the gap. As shown in fig.14.13, a further
increase of the drain-to-source voltage justs widens the gap and makes the two effects cancel
out. Ideally, current should saturate at a maximum value Id = Id sat .

In reality, however, one finds that drain current continues to grow with drain voltage, although
only to a minor degree. The reason is that a higher voltage not only expands the pinched
off gap but at the same time also widens the depletion region around the drain, thereby
eating away from the effective channel length. A slightly shorter channel exhibits a lower
resistance which, in turn, allows for more current. The effect is known as channel length
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Fig. 14.13 n-channel device in saturated condition. See color plate section.

Fig. 14.14 n-channel device in super-cutoff condition. See color plate section.

modulation in the context of MOSFET devices but is sometimes also the referred to as
Early effect, a term originally created to describe a similar dependence of collector current
on the widening of depletion regions in BJTs. The saturation region as a whole is defined by
0 < (Ugs − Uth ) ≤ Uds .

Super cutoff. As opposed to regular cutoff, a small negative bias is applied to the gate Ugs < 0,
thereby attracting holes to the silicon surface as illustrated in fig.14.14. Because of the reverse-
biased drain junction, this accumulation effect has little impact. More importantly, any
thermal electrons present in the body volume between drain and source get swamped by
the reverse field. The fact that subthreshold current exponentially depends on the gate–
source voltage makes underdriving the gate a highly effective countermeasure against channel
leakage. In fact, subthreshold current grows (lessens) by a factor of 10 to 15 for each 100 mV
increase (decrease) of (Ugs − Uth ).

Observation 14.5. The voltage applied to the gate electrode of a MOSFET controls the presence of

mobile carriers in the channel area underneath, thereby varying conductivity and current flow in the

drain–source channel by several orders of magnitude. Also, the close-to-perfect insulation between

gate and channel makes the MOSFET appear as a capacitive load.
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Fig. 14.15 3D view of the situations illustrated in figs.14.16 through 14.19. See color plate section.

Detailed discussions of MOSFET physics are available from textbooks and webpages specializing
in this field including [231] [382] [236] [220] [383] [384]. [234], in particular, not only gives a very
thorough analysis, but also provides the reader with a vivid analogy from fluid dynamics for a
MOSFET’s regimes of operation. A real pleasure is [385] because it illustrates the operation of
various semiconductor devices with the aid of interactive animations.

14.2 Basic CMOS fabrication flow

14.2.1 Key characteristics of CMOS technology

The acronym CMOS stands for “complementary metal oxide semiconductor”. The technology is
termed complementary because both n- and p-channel MOSFETs are being manufactured side
by side in a common silicon substrate and because they closely cooperate in each logic gate. This
contrasts with the PMOS and NMOS technologies from the pioneer days of microelectronics that
were limited to either p- or n-channel devices.

CMOS has long been and continues to be the technology that dominates VLSI and this section
describes the major steps in CMOS wafer processing. Illustrations and explanations refer to a
hypothetical fabrication process that exhibits the features listed below and is representative of the
250 nm to 130 nm generations.

• A bulk process (as opposed to a silicon-on-insulator (SOI) technology).
• Twin wells (as opposed to single or triple wells).
• Shallow trench isolation (STI) (as a replacement

for the obsolete local oxide isolation (LOCOS) technology).
• Planarization by way of chemical mechanical polishing (CMP).
• Poly(silicon) gate material (as opposed to metal gates).
• Lightly-doped source/drain extensions.
• Salicided gate, drain, and source areas.
• Contacts and vias fabricated with tungsten plugs (as opposed to sunk-in aluminum).
• Subtractive metallization (as opposed to (dual) damascene metallization).
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Fig. 14.16 CMOS fabrication steps. Well preparation (greatly simplified, not drawn to scale.). See color plate

section.

Many technical details have been abstracted from. In reality, layout geometries are transferred
onto silicon in a series of steps such as coating a wafer with a photoresist material, baking, pho-
tographic exposure through a photomask or reticle and selective removal of either the exposed or
the unexposed portions of the resist.9 Also, certain doping steps comprise a thermal drive-in of the
dopants previously implanted and/or some form of annealing to remove the damage caused by ion
implantation. For the sake of conciseness, all such substeps have been collapsed in the illustrations
and in most of the accompanying text.10

Illustrations show an inverter that includes the mandatory body ties, one power line, a few signal
lines, and a small pad opening just wide enough to accommodate a probe. Each processing step is
documented with a cross section and the name and geometry of the pertaining fabrication mask.
Figures 14.16 and 14.17 are concerned with the so-called front-end-of-line (FEOL) processing where
the transistors are being formed in the silicon material, whereas figs.14.18 and 14.19 relate to the
back-end-of-line (BEOL) steps during which those devices get interconnected with the aid of metal

9 For positive photoresists, those zones that have received a sufficient dose of light become completely soluble in
the developer while unexposed areas essentially remain intact. The opposite applies for negative photoresists.
Further observe that some process steps necessitate auxiliary oxide or nitride layers into which the mask pattern
is etched before being copied into the material underneath in a subsequent processing step.

1 0 Further details abstracted from include wafer preparation and preprocessing, epitaxial layers, lateral diffusion
phenomena, channel stops, liners, and dual-doped poly (n+ vs. p+ ). The omission of multiple threshold voltages
(to allow compromising between current drive and gate leakage), of threshold adjustment steps, and of gate
dielectrics with multiple thicknesses (to make I/O circuitry withstand higher voltages than the core logic) are
further simplifications.
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f)
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Fig. 14.17 CMOS fabrication steps. Transistor formation (greatly simplified, not drawn to scale.). See color

plate section.
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Fig. 14.18 CMOS fabrication steps. Lower metal interconnects (greatly simplified, not drawn to scale.). See

color plate section.

lines. For the sake of clarity, the number of metal layers has been confined to three in the drawings
although six to eight metals are more standard for 180 nm processes.

14.2.2 Front-end-of-line fabrication steps

a) Initial wafer. Processing is assumed to start from a p-type wafer (roughly 0.72 mm to 0.77 mm
thick and with a diameter of either 200 or 300 mm) that carries an epitaxial layer (a few
µm thick) of very gentle p-type doping. All subsequent fabrication steps are going to happen
within and above this epi layer.

b) n-well formation. The first mask being used is nwell. It defines the geometry of the n-wells
that will later accommodate the p-channel MOSFETs. Donor atoms are implanted (down to
a depth of 1.8 µm or so) where indicated by that mask.

c) p-well formation. The p-wells are obtained as geometric complements of their n-type coun-
terparts. To this end, the nwell mask is reused in a second lithographic step in conjunction
with a photoresist of opposite polarity. The cross section shows the outcome after dopant
implantation and a subsequent thermal drive-in step.
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Fig. 14.19 CMOS fabrication steps. Upper metal interconnects (greatly simplified, not drawn to scale.). See

color plate section.
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d) Active area definition. The subsequent mask thox essentially defines those areas that are to
become MOSFETs, body ties, or other diffusion areas. Silicon nitride is deposited on top of a
thin buffer oxide layer. Both layers are initially made to cover the entire surface before being
etched away except where indicated by the mask.

e) Shallow trench isolation (STI). Next, trenches (approximately 300 to 400 nm deep) are cut
into the bulk material with the nitride layer protecting the silicon underneath from etching.
In a series of substeps, the open trenches are then lined and filled with an oxide material
before the wafer surface is planarized by way of chemical mechanical polishing. Obtaining
a perfectly flat surface is crucial for the subsequent photolithography steps. CMP combines a
chemical reaction with mechanical abrasion to produce the most planar surface of any known
technique.11 The protective sheets of nitride and buffer oxide are also removed in the process,
which results in the cross section shown.

f ) Gate dielectric formation. The wafers are subjected to a delicate oxidation step which pro-
duces an extremely thin oxide layer (2 to 5 nm) wherever the bare silicon lies open.

g) Polysilicon deposition and patterning. The entire surface is covered with a polysilicon film
(of roughly 200 nm) which is then patterned after the poly mask. The field-controlled chan-
nel areas will later form in the bulk material wherever it is separated from a polysilicon
structure by a layer of gate dielectric.

h) n-channel source/drain extensions. Basically, the wafer is now ready for the n+ and p+

implantation steps because all areas that are occupied neither by polysilicon nor by STI at
this point are destined to become MOSFET sources, drains, or body ties. Were it not for the
source/drain extensions, processing could immediately continue with step j).

These lightly doped protractions serve to avoid excessive lateral fields and to better control
short-channel effects (SCE) that would otherwise occur in submicron devices. During implan-
tation, those regions that are to be bombarded with donors are defined by photomask psel

in clear form. Note that the polysilicon gate acts as a shield that keeps dopant atoms out of
the channel area. The edges of the future source and drain areas are thus automatically kept
in perfect alignment with the gate electrode above, which benefit has earned poly-gate MOS
processes the attribute self-aligned gate.

i) p-channel source/drain extensions. Essentially the same as before with opposite photoresist
and opposite doping. By being used in clear and then in dark form, photomask psel effectively
defines the boundary between n+-doped areas and p+-doped ones.

j) Side-wall or oxide spacers. An oxide layer is deposited and etched away so as to leave an
insulating wall on either face of the poly gate.

1 1 Broadly speaking, the chemicals soften up the film to be removed and the slurry particles then carry away the
softened material. The advantage of CMP over purely mechanical polishing is that the chemicals can be chosen
such as to attack specific materials while sparing others.
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k) n-type doping. Now follows a heavier and deeper implant (roughly 180 to 200 nm) that brings
forth the drains and sources of the n-channel MOSFETs and the body ties for the n-wells.
The side-wall spacers prevent doping atoms from penetrating into the bulk material and so
preserve the lightly doped implants next to the channel areas. The n-channel MOSFETs with
their source/drain extensions are now complete. Recall that a junction is obtained where an
n+ area is implanted into p− material whereas an ohmic contact results when an n+ island
is embedded within n− material.

l) p-type doping. The same as before but with everything reversed.

m) Salicidation. This step serves to lower the electrical resistivity of the source, drain, and gate
regions by covering them with a thin but highly conductive silicide film. The so-called salicide
approach — an abbreviation for self-aligned silicide — is particularly attractive because no
masking step is required and because diffusion and poly get silicided at the same time. The
process involves depositing a thin Ni, Co or Ti film and uses a metal reaction with silicon
followed by a selective etch that removes all unreacted metal.

14.2.3 Back-end-of-line fabrication steps

n) First interlevel dielectric. A generous layer of silicon dioxide gets deposited with no inter-
vention from any mask. Following another CMP planarization step, this insulating material
is to become the first interlevel dielectric (ILD) providing electrical separation between the
bulk structures and the first layer of metal.

o) Contact plug formation. Mask contact defines those locations where metal1 shall connect
to a diffusion or polysilicon region underneath. Cuts are anisotropically etched open where
indicated before tungsten is deposited to form plugs. The excess tungsten is then removed
and the surface planarized to prepare for the subsequent metallization step.

p) Deposition and patterning of first metal layer. A metal layer (300 nm or thicker) is de-
posited over the entire surface. Much of this layer is then selectively removed so as to leave
behind those parts that are defined by the metal1 mask, which explains why this step is
qualified as subtractive metallization. More precisely, metal deposition includes a series
of substeps to form a metal stack where aluminum, copper or tungsten is sandwiched between
thin liners of metal nitrides or other materials that improve adhesion, abate the formation
of hillocks, act as diffusion barriers, or otherwise help suppress undesirable phenomena. Such
details are abstracted from in the figure.

q) Second interlevel dielectric. The second interlevel dielectric is deposited and planarized.

r) Via plug formation. Mask via1 defines those locations where a first-layer-metal structure
shall connect to the next metal above. Much as for contact formation, a cut is etched open,
then filled with tungsten, and the excess material is removed and the surface planarized.

s) Deposition and patterning of second metal layer. The second layer of metal is obtained
by way of subtractive metallization.
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t) Third interlevel dielectric followed by via plug formation. From this point on, the steps
of dielectric deposition, planarization, plug formation, metal deposition, and metal patterning
alternate for each additional metal layer. Note that two masks are required per metal layer.
The figure shows the situation after the via2 plugs have been formed.

u) Deposition and patterning of third metal layer. The third metal layer — which is the
topmost one in the case shown — is now complete. As a rule, higher-level metals are fatter
(up to 1 µm) and must respect more important minimum widths and spacings than their
lower-level counterparts.

v) Overglass and bond pad openings. The entire wafer surface is covered by depositing a final
layer of silica. The overglass is complemented by a final passivation layer placed on top to
better protect the stack from environmental attacks such as humidity, chemical agents, and
scratching. To allow bonding and probing of the chip, generous openings get etched into the
protective layers where indicated by the pad mask. Note that only the topmost metal can be
contacted in this way.

Please keep in mind that there exist many variations to the basic CMOS process described in
the above series of drawings. Most likely, the reader will have to make adaptations to account for
departures in a specific fabrication process at hand. Comprehensive and authoritative references
on VLSI technology include [386] [387] [381] [388] [389]. What sets [219] apart from others is a
comparison of CMOS and BiCMOS. Photographs and/or computer animation are available from
websites such as [385].

14.2.4 Process monitoring

Between processing steps, wafers are subject to optical inspection and electrical tests. The electrical
characteristics of MOSFETs of different sizes are measured and kept on record, and the same
applies for an assortment of pn-junctions. Capacitance–voltage characteristics are obtained from
MOSCAPs. Van der Pauw structures serve to determine the resistivities of all conductive layers
while various shapes of capacitors are included to monitor the dielectric layers. Long interdigitated
serpentines and chains of many series-connected contacts or vias help to check for electrical shorts
and continuity. Such elementary test structures are collected into process control monitors
(PCMs) along with inverters and ring oscillators.

Wafers that are found to suffer from fatal defects or from excessive parameter variations are sorted
out. Even more importantly, the data gathered are used to constantly monitor fabrication equipment
and procedures.

14.2.5 Photolithography

The manufacturing process illustrated in figs.14.17 through 14.19 heavily relies on the ability to
transfer layout patterns from a photomask or a reticle12 onto a semiconductor wafer. Any pho-
tolithographic apparatus comprises four major parts, see fig.14.20:

1 2 A photomask is meant to carry the layout patterns for an entire wafer whereas patterns from a reticle are to
be stepped and repeated many times over the wafer’s surface. As this is of little importance to IC designers, we
will indiscriminately speak of masks, although reticles prevail today.
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Fig. 14.20 Apparatus for optical lithography (greatly simplified).

• An illumination source.
• A mask either the same size as chip patterns (1×) or magnified by some factor (4× or 5×).
• An exposure subsystem in charge of geometric reproduction.
• Photoresist materials, typically organic polymers.

Traditional optical lithography has had a long history in VLSI. It implies projection printing
with image-reducing refractive optics (mostly lenses) from a mercury (Hg) arc lamp. Emission
occurs at the following wavelengths:

546 nm E-line.
436 nm G-line, used between 1980 and 1990 or so.
405 nm H-line.
364 nm I-line, used between 1989 and 1998 or so.

Deep UV lithography carries the principles of projection printing with image-reducing refractive
optics to shorter wavelengths obtained from an excimer laser [390], namely

248 nm (KrF6), in production for 250, 180, and 130 nm processes.
193 nm (ArF6), in production for 90 and 65 nm, probably workable

for the manufacturing of devices as small as 32 nm or even 22 nm.
157 nm (F2), laser sources demonstrated, no longer under consideration.
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Fig. 14.21 Spectrum of light with wavelengths relevant to VLSI lithography.

Shorter wavelengths get strongly absorbed and poorly reflected by most materials, see fig.14.21.
The quartz and fused silica materials from which lenses, beamsplitters, prisms, and masks are
traditionally manufactured are opaque below 190 nm or so. For some time, calcium fluoride CaF2

had been considered for optical components at a wavelength of 157 nm but the material is soft,
hygroscopic, prone to chipping, and features a thermal expansion 36 times greater than that of
fused silica. Currently, 157 nm lithography is no longer seen as a solution [1].

Resolution enhancement techniques

Pushing lithographic resolution further ran into severe limitations when layout dimensions had
shrunk to become approximately the same as the optical wavelength being used, see fig.14.22.
The term resolution enhancement techniques (RETs) refers to a variety of approaches that aim at
obtaining a higher resolution from a given wavelength.

Phase shift masks

Light that shines through adjacent apertures separated by a narrow bridge tends to diffract, thereby
illuminating the supposedly shaded area from both sides. Diffraction thus compromises the repro-
duction of narrowly spaced features, see fig.14.23.13 An extremely shallow depth of focus is another
problem. Phase shift masks (PSMs) aim at improving line separation by making light waves cancel
out by destructive interference where they shine through nearby mask apertures. Illumination must
be from a (partially) coherent source. The necessary selective 180◦ phase shifts are obtained from
partial coating with a thin transparent film or from local etching. In either case, this explains the
technique’s name alternating aperture phase shift mask.

1 3 Note the analogy between diffractive spillover in photolithography and intersymbol interference in data trans-
mission.
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Fig. 14.22 Evolution of VLSI lithography.

Alternating aperture PSM is best suited for the periodic layout patterns that are typical in mem-
ory circuits. More sophisticated techniques, known as multi-phase, rim-shifting, attenuated-phase,
half-toned, and double-exposure PSM have been developed to improve resolution further and to
accommodate the irregular patterns found in logic circuitry.

Off-axis illumination (OAI)

Much like PSM, off-axis illumination (OAI) takes advantage of destructive interference to improve
line separation. Yet, there is no extra phase shift coat or etch. The basic idea is to slightly tilt the
illumination axis instead so that light shining through adjacent openings reaches the photoresist
with a phase shift of 180◦. As this cannot work for masks with arbitrary openings, layout patterns
are confined to predefined pitches. Also, more sophisticated illumination schemes are adopted to
make the idea work along two orthogonal dimensions [391].
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Fig. 14.23 Pattern transfer from mask to photoresist in sub-wavelength lithography with traditional binary

mask (a) and with an alternating aperture phase shift mask (b,c) (simplified).

Optical proximity correction

Transferred patterns suffer from severe low-pass-type distortions from the original mask geometries.
What appears as a sharp corner in the layout ends up as a washed-out curve; overly small features are
absorbed altogether. Optical proximity correction (OPC) applies an inverse distortion to the mask
patterns to precompensate for such imperfections of the lithographic steps [392]. Overaccentuated
corners, referred to as serifs and hammerheads, are typical for OPC, see fig.14.24. Sub-resolution
assist features (SRAFs), narrow lines that diffract light but do not print, are also common.

Computerized resolution enhancement

During the 1990s, PSM and OPC mask patterns essentially had to be optimized by trial and error
thereby confining these techniques to high-volume products with highly repetitive layout patterns
such as RAMs. In what must be considered a major breakthrough, it has since become possible to
combine PSM and OPC in a systematic way.14

Immersion lithography

Filling the space between lens and object slide with oil has a long tradition in microscopy. This is
because an optical medium with a refraction index larger than that of air makes it possible to push
back the total reflectance, thereby augmenting the numerical aperture and improving resolution. A
medium suitable for VLSI lithography must be not only transparent at the projection wavelength,

1 4 A key element of sub-wavelength lithography is an image processing program that computes the necessary
corrections to each mask layer prior to mask preparation. The algorithm solves the problem of going from a
desired geometry on a wafer to a — rather different looking — pattern on the mask such that the end result
conforms to the original layout by compensating for the distorting effects of the optical pro jection system.
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Fig. 14.24 Mask geometry vs. fabricated patterns in sub-wavelength lithography with traditional conformal

mask (top row) and with optical proximity correction (bottom row) (reprinted from [393] with permission).

but also uniform, non-contaminating, and compatible with photoresists and the quartz material of
the projection lens. The usage of ultrapure water (nH2 O ≈ 1.44) is currently being put to service
to extend optical lithography at 193 nm wavelength down to a linewidth of 45 nm. The search for
fluids, lens materials, and photoresists with refraction indices on the order of 1.6 to 1.9 is on.

Submerging the entire lithographic apparatus in a pool turned out to be impractical mostly because
the liquid quickly suffers from contamination. Instead, a small puddle of liquid is dispensed between
the lens and the wafer, and sucked back before the wafer steps to a new position for exposing the
next chip.

Post-optical lithography

Transiting towards post-optical lithography, aka next-generation lithography, will become inevitable.
Why industry spares no effort to postpone that day and to buy optical lithography a new lease of
life becomes clear when considering the options.
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Extreme UV lithography

EUV lithography, aka soft X-ray lithography, may be viewed as a natural extension of optical
projection printing to a wavelength of 13.4 nm, yet the differences are dramatic, see fig.14.25.
Reflective optics (mirrors) must be used since no transparent materials exist from which refractive
optics (lenses) could be built for such short wavelengths. Reflection of EUV waves is obtained from
multilayer Bragg interference. Mirrors are to be made of 80 or so alternating layers of silicon and
molybdenum separated by a quarter wavelength and smoothed to single-atom tolerances, and the
same holds for the reticle or photomask too.

wafer coated
with photoresist

step and repeat
operations

multilayer reflective coating
absorber

opaque substrate phase shift etch

b)

a)

reflective reticle
carrying layout patterns

multilayer mirrors
image-reducing

laser source

Xenon jet

one selected wavelength
condenser reflects

towards the reticle

EUV beam

plasma
emits radiation

collector mirror

Fig. 14.25 Apparatus for EUV lithography (a) and cross section through a reflective mask (b), mirrors are the

same with no absorbing coating (greatly simplifed).

While the wavelength of 13.4 nm has been chosen because this is where Mo–Si multilayer mirrors
exhibit peak reflectivity, the reflectance of an individual mirror is just 70% [394]. As the optical
path comprises a total of ten mirrors or so, a highly intense source of light must compensate for
those losses. One way to obtain a plasma source is from a laser beam aimed at a jet either of xenon
gas or of tin droplets while a competing approach uses electrical discharge to produce the plasma.
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Holding the 220 000 K plasma together by magnetic fields is a related option. In any case, spectral
density is poor and radiation occurs in all directions. Plasma radiation is collected by condenser
mirrors and spectrally purified before being projected onto the reflective 4× mask, from where it
gets cast onto wafer and photoresist by a cascade of mirrors.

An electrical input of 100 kW is likely to be required for 100 W of optical power [395] and experts
currently worry that 100 W might not suffice to meet commercial throughput requirements. The
heat that develops in the optical path as a consequence of the enormous power losses makes it
extremely difficult to ensure mechanical and optical precision. Further note that everything must
be carried out under high vacuum because even air is opaque for EUV radiation. To make things
worse, it takes several days to re-establish the vacuum condition following repair or servicing.

Electron beam direct-write lithography (EBDW)

is also known as maskless lithography. Layout patterns get written into the photoresist layer by
an electron beam, which technique offers the possibility of higher resolution than UV lithography
because of the small wavelength of less than 0.1 nm of electrons at 10 to 50 keV. Resolution is not
limited by diffraction but by electron scattering in the target materials and by aberrations in the
electron optics. While EBDW lithography finds applications in prototype manufacturing, scanning
a single beam over a wafer’s surface is much too slow for volume production. Writing with multiple
parallel beams is being investigated as an alternative especially for chips that do not sell in huge
quantities.

The usage of electron beams in conjunction with masks is no longer considered a potential solution
for post-optical lithography [1].

Nano imprint lithography

Instead of using optical imaging to project mask patterns onto a photoresist, nano imprint lithogra-
phy transfers patterns into a polymer coating previously applied on the wafer’s surface by pressing
a stencil into the soft polymer. The absence of optical size reduction necessitates a stencil of the
same size and resolution as the circuit itself. Throughput being largely uncritical, the nickel, quartz
or silicon material of the stencil is patterned by way of electron beam lithography.

There are two options for the polymer. Photochemical nano imprint lithography (P-NIL) uses a flash
of UV light to cure the highly viscous polymer film immediately after patterning. Thermoplastic
nano imprint lithography (T-NIL) starts from a solid polymer that is made moldable by warming
to 150 to 180 ◦C prior to patterning.

Current belief is that nano imprint lithography should allow resolutions down to 5 nm. Yet, the
defect densities of the two patterning steps — wafer and stencil — are unacceptable today and the
endurance of a stencil is not yet sufficient for mass production.

At the time of writing (late 2007), EUV appears to be the most promising candidate for next-
generation lithography but still is several years away from maturity as industry struggles to produce
sources of sufficient optical output and to develop more sensitive photoresists. Please refer to [396]
[488] [397] [398] [1] [399] [400] [391] for more detailed accounts on lithography.



14.3 VARIATIONS ON THE THEME 697

14.3 Variations on the theme

14.3.1 Copper has replaced aluminum as interconnect material

For more than 30 years, aluminum had remained the predominant interconnect material for
microelectronic circuits while SiO2 served as dielectric material. The picture began to change with
the 180 nm process generation or so. The reason is that lines become more resistive and exhibit
larger coupling capacitances as the geometric scaling associated with moving from one process
generation to the next makes them narrower and brings them closer together, see fig.12.7. Local
wires, such as those running within a cell or between a few adjacent cells, scale down in length,
which partly compensates for this.

Global wires, on the other hand, do not scale in length because packing more functionality into a
chip prevents die size from shrinking proportionally. Expressed in lithographic squares, global wires
are even bound to grow in length. Had industry continued with the traditional materials, their RC
delays would have grown dramatically in comparison with gate delay, see fig.14.26.

delay

a typical gate

2000 1500 1000 650 500 350 [nm]

minimum
half pitch

250 180 130 90 65

speed up due to 
new materials 

a long wire

Cu & ε  = 2r 

Cu & ε  = 1r

Al & SiO2

ideal 

Fig. 14.26 Gate and interconnect delays compared for different conductor and dielectric materials (overall

trend).

Observation 14.6. Line resistance and line capacitances of long wires have become highly critical

with the advent of ULSI cross sections and integration densities.

The search for a lower-resistivity conductor and a lower-permittivity interlevel dielectric has
prompted industry to replace Al and SiO2 with new materials, also see tables D.3 and D.4. Second
only to silver in conductivity, copper has displaced aluminum as interconnect material in high-
performance logic circuits.

As Cu easily diffuses through SiO2 and Si, though, the trenches etched into the dielectric must
be sealed with an extra liner acting as diffusion barrier before they can accommodate the copper
conductor. Another major obstacle was vulnerability to corrosion because Cu does not possess a
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tight self-passivating oxide as Al does, which calls for a special passivation layer. At the time of
introduction, measurements indicated that the effective resistance of Cu interconnect was 30% to
45% lower than that of traditional Al alloys. Cu also supports significantly higher current densities.
In electromigration tests conducted by IBM, reliability was found to improve by more than two
orders of magnitude.

Example

Among the first fabrication processes to abandon aluminum (Al) was CMOS 7S, a 180 nm CMOS
process put into volume production by IBM in 1999. The upper six metal layers are made of copper
(Cu) while tungsten (W) is used for local interconnects in the bottom layer, see fig.14.27. TaN linings
approximately 30 nm thick act as diffusion barriers. The overall process comprised approximately
26 masks.

Fig. 14.27 Cross section of CMOS 7S interconnect stack (source IBM, reprinted with permission).

�

14.3.2 Low-permittivity interlevel dielectrics are replacing silicon dioxide

Interlevel dielectric (ILD) materials must combine low permittivity with good mechanical strength
to withstand the stresses that occur during CMP and wire bonding. Process compatibility, thermal
stability, and low moisture absorption are other desirable qualities. More and more, organosilicate
glasses and organic synthetics are replacing silica (εr = 3.9) as ILD.15

Another noteworthy approach is to include nanoscale closed bubbles into a base material. As the
permittivity of air is only marginally larger than that of vacuum (εr ≈ 1.000 55 versus εr = 1),
the more porous the material, the lower its overall permittivity. Many nanoporous materials being
marketed as aerogels, xerogels, nanoglasses, and airgap materials come with adjustable permittiv-
ities. A limitation is that mechanical strength and surface smoothness tend to deteriorate with
porosity.

1 5 Although the customary symbol for permittivity is ε, low-permittivity (high-permittivity) materials are collo-
quially referred to as low-k (high-k) dielectrics.
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Example

Intel’s 65 nm process presented at IEDM 2004 combined up to eight levels of copper interconnect
with a low-permittivity carbon-doped oxide (CDO) ILD (εr = 2.9). Tungsten plugs are used for
contacts to poly and diffusion. Metal pitches increase gradually from bottom to top for optimum
density vs. performance.

Fig. 14.28 Cross section of an interconnect stack that combines Cu lines with carbon-doped oxide (CDO)

interlevel dielectric layers. Note graduated metal pitches and thicknesses (source Intel, reprinted with

permission).

�

For all the enthusiasm about superior metals and dielectrics, note that copper combined with vac-
uum — the lowest-possible-permittivity material — can provide, at best, a signal delay improve-
ment by a factor of 6. A more realistic scenario where εr ≈ 2 leads to a one-time improvement of
approximately 3. The overall trend of global interconnect delays outrunning gate delays remains
unbroken.16 Also, the long term perspectives for copper as interconnect material are not entirely
clear as any kind of lining is at the expense of the conductor’s effective cross section. The relative
proportion occupied by liners are unfortunately bound to grow as line width shrinks.

14.3.3 High-permittivity gate dielectrics to replace silicon dioxide

For SiO2 layers below 3 or 2 nm, electrons begin to tunnel through the gate dielectric.17 Tunneling
current through a 1.5 nm sheet of SiO2 is on the order of 0.1 A

mm2 at 1 V [401] and increases
exponentially when thickness is shrunk further. Tunneling, quantum mechanical effects, and relia-
bility concerns thus preclude silicon dioxide dielectrics thinner than 0.7 to 1.2 nm [402]. A better
gate dielectric material must feature a larger permittivity than that of SiO2. This is because the

1 6 Please refer to section 12.8 for the fundamental bound on interconnect delay.
1 7 Incidentally, notice that two effects overlap. Tunneling-in occurs from the drain to the gate electrode. In addition

to this, there is tunneling-out from gate to source. As the two leakage phenomena compensate at some gate
potential roughly half-way between source and drain, the net gate current becomes zero at that point.
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depressed MOSFET gain factor incurred with a more generous thickness tox gets compensated by
a higher permittivity εox .

β = β�
W

L
=

µ εox

tox

W

L
=

µ εr ε0

tox

W

L
(14.1)

A gate dielectric with an εox twice that of SiO2 can be made twice as thick as a silicon dioxide film
and still offer the same degree of control over the inversion channel. Any gate oxide thinner than
this improves channel control thereby relieving the threshold voltages from the pressure towards
proportional downscaling with each new process generation.

Example

Intel reports that 45 nm MOSFETs with a Hafnium-based oxide provide either a 25% increase in
driveability at the same subthreshold conduction or more than fivefold reduction in leakage for the
same drive current when compared to 65 nm transistors with their traditional gate stacks [492]. At
the same time, gate oxide tunneling has been reduced by more than a factor of ten.

�

Incidentally, note that semiconductor physicists often operate with the equivalent oxide thick-
ness (EOT) for an assumed SiO2 dielectric instead of the physical tox so as to facilitate comparisons
and calculations across various materials. For some gate dielectric material “ox”, the equivalent ox-
ide thickness is obtained as EOT = tox

εS iO 2
εo x

.

Table 14.1 Selected candidates for gate dielectric materials, most numbers from [401] [403] [404]
[491]. Mitrovica, I. Z., et al. Electrical and structural properties of hafnium silicate thin films.
Microelectronics Reliability, 47(4–5): 645–648. April–May 2007.

relative
material permittivity εr

silicon dioxide SiO2 3.9 traditional
nitrided silicon oxide aka oxynitride SiOxNy ≈5.1
silicon nitride Si3N4 7.5
aluminum oxide Al2O3 8–11.5
hafnium silicon oxynitride HfSiON ≈9–11
hafnium silicate (HfO2)x(SiO2)1−x ≈12 for x = 0.6–0.7
hafnium aluminum oxynitride HfAlON ≈18
hafnium oxide HfO2 ≈21
zirconium oxide ZrO2 22–28 Intel “TeraHertz”
lanthanum aluminum oxide LaAlO3 25.1
tantalum pentoxide Ta2O5 27
titanium dioxide (rutile) TiO2 >25
barium strontium nitrate Ba|Sr(NO3)2 >25
strontium titanatea SrTiO3 ≈200 ceramic capacitors, DRAMs

a Strontium titanate belongs to the family of perovskite ceramics and is given here for reference.

While silicon dioxide was the sole dielectric available in the past, other materials optimized for their
respective roles are now being introduced.
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Observation 14.7. A material of low permittivity is desirable for interlevel dielectrics where the

lowest possible parasitic capacitances are being sought. Exactly the opposite is true for the gate

dielectric in order to minimize gate leakage while maximizing MOSFET drivability and, hence, the

switching speed of logic circuits.

14.3.4 Strained silicon and SiGe technology

Electron mobility in Si augments when the crystal lattice is subjected to tensile stress, whereas
compressive stress tends to improve hole mobility [405]. Stress can be applied mechanically as
part of the packaging process. Stress can also be built right into the semiconductor crystal by
incorporating comparatively large Ge atoms into the narrower Si lattice or by combining two layers
of materials with distinct lattice spacings. Straining is entirely different from doping and works
because of the different lattice constants. The proportion x of Ge in a strained Si1−xGex crystal is
on the order of 15% to 90%.

Example

Intel’s 65 nm process that went into mass production in early 2006 with the Core Duo processor
implements strained MOSFET channels. n-channels are put under tensile stress with the aid of a
SiN capping film while p-channels are compressed by using epitaxial SiGe films for the adjacent
source and drain areas [340]. The table below lists key transistor characteristics.

typical values for measurement
n-channel p-channel conditions

parameter devices devices

effective channel length Leff [nm] 35 35
drivability Id on/W [µA/µm] 1460 −880 Udd = 1.2 V

@ leakage Id off /W [nA/µm] 100 −100 low thresholdsa

drivability Id on/W [µA/µm] 1040 −630 Udd = 1.2 V
@ leakage Id off /W [nA/µm] 1 −1 higher thresholdsa

strain-induced improvement 18% 50%
subthreshold slope S [mV/decade] ≈100

a Not numerically specified.
�

SiGe technologies further make it possible to combine heterobipolar junction transistors (HBT) for
analog and RF front-end circuits with standard CMOS logic on a single die by growing an epitaxial
layer of SiGe on a silicon wafer after device isolation has been completed.

Example

austriamicrosystems (AMS) started to offer a SiGe option for its 800 nm BiCMOS process family
in the year 2000. The maximum transit frequency fT went from 12 GHz for a Si BJT (process
BYE) to 35 GHz for a SiGe HBT (process BYS). This improvement gives room for handling higher
frequencies or for lowering collector currents and hence power dissipation.
�
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Fig. 14.29 Cross section of a MOSFET with strained silicon (source Intel, reprinted with permission).

14.3.5 Metal gates bound to come back

A number of undesirable phenomena are associated with polysilicon as a gate material [406]. Firstly,
thin gate dielectric layers cannot always prevent boron penetration from p+ polysilicon into the
material underneath, where boron can alter the device’s threshold voltage. Secondly, when a voltage
is applied to a MOSFET gate electrode, we find not only an inversion channel that forms in the bulk
material underneath but also a space-charge region that comes into existence within the gate itself.
This depletion effect is more acute in polysilicon than in metals because the carrier concentration
remains inferior even when the material is heavily doped. The depleted layer of approximately 0.4 nm
makes the device behave as if its gate dielectric were thicker than it physically is. Most important,
however, are the difficulties of combining poly gates with high-permittivity gate dielectrics. A 40% to
50% reduction in electron mobility has been reported for poly-Si/HfO2/Si gate stacks, for instance.

As metal gates do away with these problems, they are to reappear along with high-permittivity
gate dielectrics such as HfO2 [407]. Metal gates bring their own difficulties, however. A MOSFET’s
threshold voltage gets determined by the work function of the gate material, and that work function
is fixed by the choice of the metal.18 As opposed to the case with polysilicon, there is no way to
adjust the threshold voltages of n- and p-channel transistors separately by doping their gate ma-
terials. Unless a way is found to adjust a metal’s work function, one will have to use two different
metals, which complicates fabrication [408].19 Also, self-alignment of gate electrodes with the per-
taining source/drain regions is not possible unless all materials in the gate stack can withstand the
temperatures associated with the drive-in of dopants and with subsequent annealing steps.

Example

In January 2007, Intel announced that their forthcoming 45 nm process would combine a
hafnium-based gate dielectric with metal gates of two different but undisclosed compositions.

1 8 The term work function denotes the energy needed to remove an electron from the Fermi level in a metal to
a point outside at infinite distance. The German term “Austrittsarbeit” nicely reflects that notion.

1 9 Candidate materials for the gates of n-channel MOSFETs include TiN, Ti, Ta, Zr, Hf, and IrO2 /Hf while TaN,
WN, Mo, Pt, Ir, Ni, and IrO2 are being investigated for p-channel gates [406] [409] [407].
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Fig. 14.30 Traditional poly-Si/SiO2/Si stack (90 nm, left) versus prospective metal/HfO2/strained-Si stack

(45 nm, right) (source Intel, reprinted with permission).

Incompatibilities between the high-permittivity dielectric material and polysilicon seem to have
incited the company to make both changes at the same time.
�

14.3.6 Silicon-on-insulator (SOI) technology

Rather than implanting source and drain islands into a wafer’s base material as in traditional bulk
processes, SOI wafer processing occurs within a thin layer of silicon — less than 200 nm thick —
that rests on top of an insulating material such as silicon dioxide or sapphire, see fig.14.31.20 The
n- and p-channel MOSFETs then get separated from each other by etching away the silicon film in
between before replacing it by a nonconductive oxide.

Fig. 14.31 Cross section through an SOI circuit (source IBM, reprinted with permission).

2 0 A thin, yet perfectly crystalline silicon layer is essential. Various techniques for fabricating SOI wafers compete
[410]. The UNIBOND process takes two silicon wafers and grows an oxide layer on each of them before bonding
the wafers together without using any intermediate glueing layer so as to obtain a silicon–oxide–silicon sandwich.
The one side later to accept the circuit is then ground and polished down to a thickness of one µm or less [411].
The SIMOX process starts from a regular silicon wafer and its full name “separation by implantation of oxygen”
largely explains the rest. Ultra-thin silicon (UTSi) is a modern implementation of silicon-on-sapphire (SOS)
technology whereby a thin film of silicon is deposited onto a wafer of synthetic sapphire Al2 O3 . The film is then
recrystallized in a solid-phase epitaxy step.
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Fig. 14.32 Bulk devices (a) and ultra-thin-body SOI devices (b) compared (not drawn to scale).

In the past, SOI circuits had found only niche applications such as radiation-hard devices and high-
temperature electronics, but this is about to change. SOI CMOS technology has many beneficial
properties likely to offset the higher wafer costs in demanding applications.

+ The inherent electrical insulation of MOSFETs does away with the need for wells.
+ No parasitic BJTs and, hence, no exposure to latch-up.
+ No need for body ties and, hence, superior layout density.
+ Reduced sensitivity to radiation effects and higher operating temperatures.
− The poor thermal conductivity of the insulating layer impedes heat removal.

The omission of wells and body ties also entails a difficulty, however, because charges trapped
in a MOSFET’s body underneath the inversion channel cannot drain into vss or vdd. Any such
charge thus acts like a back gate and influences the transistor’s transfer characteristic in a history-
dependent way, an undesirable phenomenon known as the floating body effect. The absence of
body ties further makes it more difficult to firmly shut off the parasitic BJT that comes along with
the MOSFET and that is implicitly connected in parallel.

Making the silicon layer extremely thin — on the order of 5 to 25 nm — minimizes those problems.
This variation of SOI technology is known as ultra-thin-body (UTB) SOI or as depleted substrate
transistors (DSTs). Another benefit is that leakage through reverse-biased drain and source junctions
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is greatly reduced [408]. Compare the junctions of a bulk device with an SOI device in fig.14.32.
Note that ultra-thin-body technology does away with the entire bottom surface and so eliminates
much of the subsurface current that would otherwise flow from or to the drain through the depths
of the bulk material underneath. At room temperature, the subthreshold slope S is down to a mere
65 mV/decade from the 90 mV/decade more typical for bulk CMOS, which supports lower threshold
voltages for the same amount of leakage.

From an electrical perspective, the ultra-shallow sheets that make up the drain and source greatly
inflate the parasitic series resistance of each MOSFET. To partially compensate for this, the source
and drain islands can be been made to protrude above their initial thickness by way of epitaxial
growth as shown in fig.14.32b. This technique, promoted as raised source and drain, is reported
to provide some 30% of extra current drive over a comparable flat arrangement [412]. On top of the
benefits of SOI, ultra-thin-body technology thus provides:

+ Reduced floating body effect
+ Lower parasitic source and drain capacitances due to smaller junction surfaces and

thicker buried oxide dielectric instead of the thin depletion layers.
+ No junction surface at the bottom, hence reduced leakage.
+ Steeper subthreshold slope (smaller S) and, hence, much lower subthreshold conduction.
+ Faster operation and/or better energy efficiency.
− Larger source and drain series resistance as raised sources and drains only partially offset the

higher sheet resistance.

Example

The Cell processor co-developed by IBM, Sony, and Toshiba for gaming, multimedia, and server
applications combines strained silicon on SOI wafers, low-permittivity ILD, and one layer of local
interconnect plus eight additional levels of copper in a 90 nm CMOS technology. The circuit pre-
sented in 2005 is scheduled to enter mass production with Sony’s PlayStation 3.
�



Chapter 15

Outlook

The driving force behind the rapid expansion of the microelectronics industry is its aspiration to
offer ever more powerful circuits at lower unit prices. From different perspectives, sections 15.1
through 15.4 attempt to find out how and for how long this trend may be expected to continue into
the future. The impact of the galloping progress of semiconductor fabrication technology on VLSI
design practices is discussed in section 15.5.

15.1 Evolution paths for CMOS technology

During the past decades, microelectronics has continuously and rapidly evolved according to the
motto “smaller, faster, cheaper”.1 The reason why this has been possible is the scaling property
of CMOS technology first stated by Robert Dennard and his colleagues in 1972 [414]. They ob-
served that MOSFETs would continue to behave largely in the same way provided their geometric
dimensions and voltage levels could be made to shrink in a linear fashion so as to maintain constant
electric fields, see fig.15.1. Better still, they predicted that key figures of merit like gate delay and
energy efficiency would greatly benefit from downscaling. The question is

“For how long can CMOS scaling continue and where does this trend lead to?”

15.1.1 Classic device scaling

The driving force behind moving from one process generation to the next is to lower fabrication
costs per device and per circuit by shrinking geometries so as to obtain more paying circuits from
a wafer of some given diameter. Other key objectives include:

1 The aircraft industry offers an intriguing analogy. For many decades, new planes had been developed to go
“higher, farther, faster” than their predecessors. Since the late 1960s, however, the top speeds and ceilings
of both commercial and military aircraft have essentially remained the same. Although going faster would be
possible technically, this makes little sense economically, and the priorities have changed to operating costs,
payload, reliability, pollution control, etc.
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• Smaller gate delays tpd ∝ Ck Ud d
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Fig. 15.1 Cross section of an n-channel MOSFET with quantities subject to classic scaling.

Downsizing layout geometry and supply voltage does not suffice, though, and other device parame-
ters must be adjusted to preserve decent transistor characteristics and reliability figures. Table 15.1
shows the tradeoffs.

• Junction depths xj must be reduced to mitigate short-channel effects (SCEs).
• Substrate doping concentrations Na and Nd must be increased in the channel region

to scale the depth of the depletion layer that forms underneath.
• Gate dielectrics must be made even thinner to maximize control of channel conductivity.
• Due to subthreshold leakage, threshold voltages Uth n and Uth p cannot be lowered propor-

tionally with supply voltage Udd as they ideally would.
• Doping profiles must become still more abrupt.

Numerical example

To get a better appreciation of the road ahead, let us do some back-of-the-envelope calculations for
the prospective end-of-scaling transistor from table 15.1. For that purpose, we assume Ldrawn =
22 nm > 10 nm = Lg and W = 3Ldrawn .

1) Number of molecular “layers” in an assumed gate dielectric of SiO2:

nl =
tox

tSiO 2

≈ 0.5 nm
0.25 nm

= 2 (15.1)

2 The limiting effect of ohmic source and drain resistance is neglected here.
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if we assume a thickness of 0.25 nm per layer as device physicists typically do.3 It has been found
that silicon dioxide remains a reliable dielectric down to 1.2 nm, which corresponds to 5 layers.
Beyond that, a different gate dielectric material must be sought.

2) Number of extra electron charges on a gate electrode when fully turned “on”:

ne =
Qg

qe
= Cg

Udd

qe
≥ εr ε0

W Lg

tox

Udd

qe
≈ 3.9 · 8.85 pF/m

3 · 22 nm · 10 nm
0.5 nm

0.6 V
0.16 aC

≈ 170 (15.2)

which number suggests that quantum effects will impact electrical characteristics. 3) Number of
doping atoms in the silicon volume underneath the MOSFET’s gate dielectric:

nd = V Na ≈ W Lg xj Na = 3 · 22 nm · 10 nm · 5 nm · 1019/cm3 ≈ 33 (15.3)

which indicates that it will no longer be possible to adjust threshold voltages by locally doping the
body material underneath the gate as statistical fluctuations would otherwise grow to unacceptable
heights. Instead, threshold voltages will have to be defined by selecting a gate material with an
appropriate work function.
�

Current expectations are that field effect devices should continue to behave essentially like present-
day MOSFETs down to a channel length of 10 nm or so. Yet, the above calculations underline that
the traditional gate stack of horizontal layers of salicided polysilicon, SiO2, and silicon is running
out of steam. Figure 15.2 nicely summarizes the situation while the significance of new interconnect,
dielectric, and gate materials has been discussed in section 14.3.

Observation 15.1. Classic device scaling, that was limited to proportional resizing of a few geo-

metric and electric parameters, is no longer sufficient to provide the progress that the public expects

from semiconductors. Only the adoption of new materials within the basic CMOS fabrication flow

has made it possible to continue the historical trend.

The upcoming sections attempt to explore more profound changes that lie ahead.

3 One can estimate the thickness of one molecular layer of silicon dioxide in either of two ways.
a) Assuming a perfect tetrahedral crystalline structure (quartz):

tS iO 2 = 0.185 nm (15.4)

is obtained from the three-dimensional geometry of the crystal lattice [415].
b) Assuming a totally amorphous material (silica):

tS iO 2 ≈ 3
√

VS iO 2 = 0.356 nm (15.5)

because

VS iO 2 =
m S i + 2mO

�S iO 2 NA v o

=
28 g

m o l + 2 · 16 g
m o l

2.21 g
c m 3 · 6.022 · 102 3 1

m o l

≈ 4.51 · 10−2 9 m3 (15.6)

where V , m , and NA v o stand for molecular volume, atomic mass, and Avogadro’s number respectively. The
density �S iO 2 is 2.21 g

c m 3 for amorphous silica as compared with 2.65 g
c m 3 for quartz. Though the gate oxide

gets thermally grown and annealed to become largely crystalline, rough interfaces obviate a perfect lattice,
thereby casting doubt on the concept of molecular layers; see fig.14.30 for an illustration. Still, our simplistic
calculations support the assumption 0.185 nm < tS iO 2 ≈ 0.25 nm < 0.356 nm.
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Table 15.1 Summary of general MOSFET scaling trends.

technology parameter subject to scaling
equiv. gate supply thre- junction substrate/

gate oxide thick- voltage shold depth well doping
length ness (EOT) voltage concentr.

Lg tox Udd Uth xj Na , Nd

[nm] [nm] [V] [V] [nm] [cm−3 ]

desirable property advocated direction of scaling
small gate delaya ↓ ↓ ↑ ↓
low switching energy ↑ ↓
low leakage ↑ ↑ ↑
overall scaling trend ↓ ↓ ↓ ↓ ↓ ↑
prime improve maintain avoid gate maintain suppress scale
motivations layout current dielectric current short- depth of

density, drive breakdown, drive channel depletion
drive and improve effects layer
and gain energy (SCEs)

speed factor efficiency
limiting litho- gate threshold off- series loss of
factors graphy, dielectric voltage, state resis- source

SCE, tunneling, ramp leakage tance and
power reliability times, drain
dissip. prop. isolation
density delays

year approximate numerical indications
≈ 1974 6000 100 5 0.8 800 1016

≈ 1997 250 5 2.5 0.55 190 4 · 1017

≈ 2004 100 3 1.5 0.4 40 1018

≈ 2007 70 1.5 0.9 0.25 30 1018

far future 10 0.5 0.6 0.2 5 1019

a In full-swing CMOS, gate delay tp d is essentially minimized by maximizing current drive Id s o n .

15.1.2 The search for new device topologies

Mitigating the short-channel effects in MOSFETs necessitates improving the influence of the gate
voltage on the channel current. Various concepts are being studied to do so.

In a planar double-gate device (DG-MOSFET), a horizontal inversion channel is sandwiched
between a pair of electrically connected gate electrodes in such a way as to steer the channel from
both sides at the same time, see fig.15.3b. The main difficulty with this approach is to manufacture
a bottom gate underneath the channel and to align it to the top gate [416].

In a fin-FET, a tiny vertical fin of silicon carries a gate electrode much as a horse carries a yoke
[408] [417], see fig.15.3c. The electrical field emanating from the gate impinges on the channel from



710 Technology of VLSI Circuits

?

Cu interconnect

low-ε interlevel dielectric

strained silicon

silicon-on-insulator (SOI)

fin-FET

cla
ss

ic 
devic

e sc
alin

g (a
 happy t

im
e)

20151975 1980 1985 1990 1995 2000 2005 2010 [A.D.]

calender
year

2020

many n
ew m

ateria
ls 

get in
tro

duce
d

scaling alone

high-ε gate dielectric

..................... metal gates
new

gate stack

layout density
throughput

energy efficiency

more and more
layers of metal

Al interconnect

2 / Sipoly-Si / SiO
gate stack and

traditional

CMP and STI

investments

Fig. 15.2 The past and future evolution of CMOS technology (simplified). Note that not all semiconductor

manufacturers necessarily introduce innovations at the same time and in the same order.

three sides, which justifies the synonym tri-gate device used by Intel, for instance. The fin’s narrow
width, which can be as small as 10 nm, results in an ultra-thin MOSFET body thickness while the
fin’s height of order 50 nm becomes the channel width; the channel length is defined by the yoke’s
thickness on the order of 20 nm.

The presumed gate-all-around, aka surround gate transistor and pillar FET, of fig.15.3d, finally,
features a vertical channel fully enclosed by an annular gate electrode [418].

Currently, the most promising of these topologies seems to be the fin, several of which can be
connected in parallel to obtain the equivalent of a wider FET with a better current drive, see
fig.15.4. At the end of 2006, Infineon reported having successfully manufactured a circuit that
includes more than 3000 multi-gate fin-FETs in 65 nm technology [419]. Quiescent currents were
measured to be one order of magnitude below those of comparable planar single-gate devices. [420]
observes that the ultra-thin body proper to the fin-FET provides gate control superior to that in a
classical device. He further suggests avoiding the problem of random doping variations by leaving
the body undoped and by using a single near-midgap metal as gate material for both n- and p-
channel devices. From technology CAD (TCAD) and other analyses, he concludes that such devices
should scale down to below 10 nm.

An argument that can hardly be overestimated is that all three topologies rely on much the same
materials, fabrication procedures, and facilities as conventional CMOS, which makes it possible to
leverage the present experience and equipment.
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Fig. 15.4 Two multi-gate fin-FETs connected in series (source Infineon, reprinted with permission).

15.1.3 Vertical integration

Taking advantage of the third dimension holds the promise of increasing density much beyond
what device scaling alone would permit. Yet, be cautioned that heat evacuation severely limits the
amount of power that can possibly be dissipated in a truly three-dimensional volume.
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Stacking one layer of MOSFETs on top of a layer underneath is essentially achieved by making the
wafer surface perfectly flat by way of chemical mechanical polishing (CMP) before depositing and
patterning another set of silicon, poly, and interlevel dielectric layers to form the next upper layer
of devices. Making sure that the thin films of silicon deposited are monocrystalline and of good
quality is a critical element of the process [421].

3D integration is more likely to be adopted for memories than for random logic because their tiled
layouts does not ask for too much routing resources and because layout density remains an extremely
strong competitive advantage.4 Also, only parts sold in very high quantities can compensate for the
larger mask count associated with vertical integration. At the time of writing (2007), antifuse-based
PROMs are expected to hit the market soon. Prototypes of SRAMs where MOSFETs are stacked
three levels high and interconnected using contact plugs and short metal straps have also been
fabricated [422]. The 6-transistor bit cell is reported to occupy a mere 25F 2 . Others suggest using
germanium-on-insulator (GOI) FETs with metal gates as a second layer of devices [409].

Alternative techniques that tap the third dimension essentially by stacking ordinary microchips are
discussed in section 11.4.7 in the context of packaging.

15.1.4 The search for better semiconductor materials

High-mobility semiconductors

A MOSFET’s gain factor and, hence, a CMOS circuit’s operating speed directly depend on carrier
mobility µ. Although strained silicon offers a substantial benefit over plain silicon, the search for
semiconductor materials with still higher carrier mobilities continues.5

Germanium, from which early BJTs had been manufactured in the 1950s, features electron and hole
mobilities more than twice as high as in silicon. What had led to the demise of Ge in favor of Si as
base material for transistors and ICs were the lack of a stable oxide and significant leakage currents
as a consequence of a narrower bandgap. Now that the traditional SiO2 oxides are bound to be
replaced anyway, Ge may, or might not, reappear along with high-permittivity gate dielectrics and
metal gates, all the more so, as its lower processing temperatures tend to make it compatible with a
wider range of materials. The usage of germanium-on-insulator (GOI) wafers is currently being
investigated for the 45 nm and later generations with the idea of getting a grip on subthreshold
leakage by slashing junction areas much as in ultra-thin-body SOI technology, see fig.14.32. A
limiting factor is the comparatively low electrical field that Ge is able to sustain.

Even higher electron mobilities are observed in compound semiconductors such as gallium ar-
senide (GaAs, III–V) and indium phosphide (InP, III–V). Devices such as hetero FETs (HFET)
and heterobipolar junction transistors (HBT) fabricated from these materials have been demon-
strated to exhibit much higher transit frequencies than their silicon counterparts do. However, the
fact that Si logic reaches a point where wiring rather than gate delay dominates a circuit’s operating

4 Three-dimensional structures have in fact been well established in DRAMs ever since buried trench capacitors
made their appearance in the 1 Mibit generation. Manufacturing the access transistor vertically along the wall
of the capacitor or on top of it appears a natural extension to further squeeze the bit cell.

5 Key physical characteristics of semiconductor materials are listed in appendix D.3 while strained silicon and
SiGe are discussed in section 14.3.4.
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speed makes a transition fruitless and unlikely in the context of digital VLSI. Notable exceptions
are physically small subcircuits such as prescalers, phase locked loops (PLL), voltage-controlled
oscillators (VCOs), low-noise amplifiers (LNA), radio-frequency (RF) mixers, and the like.

The main impediment for all exotic base materials is that they sacrifice much of the investment
and know-how in current silicon preparation and processing. Silicon germanium (SiGe) is a less
disruptive alternative that combines improved mobilities with the manufacturability and economy
of Si. As opposed to III–V and II–VI compounds, SiGe (IV–IV) capitalizes on the abundance of
large wafers, mature production facilities, and low defect densities of silicon [423].

Metallic materials

A material that exhibits an extremely small overlap between valence and conductance band is
graphene, essentially a planar monocrystalline graphitic sheet. The authors of [424] were the first
to build FETs from this material that had long been believed to be unstable in favor of soot,
fullerenes, and carbon nanotabes (CNTs). At room temperature, experiments revealed ambipolar
behavior6 with carrier mobilities up to 10 000 cm2/V s, more than six times as much as for silicon.
Due to a thick SiO2 gate dielectric of 300 nm, gate voltages were on the order of an impractical
100 V. More recent measurements on graphene FETs with a top gate electrode and a SiO2 dielectric
of 20 nm have brought down gate voltages to below 7 V while confirming better carrier mobilities
than in ultra-thin-body (UTB) SOI MOSFETs [425].

Wide-bandgap semiconductors

As an outgrowth of their large bandgaps in excess of 3 eV, both gallium nitride (GaN) and
silicon carbide (SiC) can withstand much stronger electrical fields than Si and Ge. Another prime
advantage of silicon carbide is that it can endure temperatures up to 600 ◦C. The first SiC devices
to enter mass production were blue light emitting diodes (LEDs), to be displaced later by InGaN
LEDs solely because of their superior efficiency. The most important application of SiC today are
Schottky diodes capable of sustaining reverse voltages up to 1200 V; switching transistors and other
power devices are expected to follow. SiC further is a promising material for automotive sensors.
Current expectations are that SiC will remain confined to niche applications in power circuits
and harsh environments, though. This is because SiC cannot be grown by conventional crystal
pulling techniques as the material sublimes instead of melting at reasonable pressures. Also, its
extraordinary hardness renders sawing and polishing difficult.

GaN has superior RF characteristics and is expected to compete with GaAs for applications such
as microwave power amplifiers in radars and base stations for cellular telephony [426]. In either
case, crystal growth and wafer processing technology are not mature yet for cost-effective mass
fabrication of ICs. Also, GaN and SiC field effect transistors are built as metal–semiconductor
field effect transistors (MESFETs), which implies that they come as depletion types. As opposed
to silicon CMOS, complementary n- and p-channel FETs are not available so far. Though a few

6 This is to say that electrons and holes act as mobile charge carriers depending on the electrical field applied.
The conductivity of an ambipolar device is minimal for intermediate gate voltages and augments towards
both larger and smaller values.
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NMOS-style SSI circuits have been demonstrated, fabrication technology lags many years behind
and neither material is likely to displace silicon anytime soon.

Polymer semiconductors

A couple of organic polymers, such as pentacene, have been found to have an electronic structure
that makes it easy for charge carriers to move through them. The idea behind integrated plastic
circuits (IPC) is to create layered circuits similar to those of traditional silicon ICs by using such
organic materials in conjunction with printing techniques instead of costly photolithography and
wafer processing under clean room conditions, high temperatures, and vacuum. With minimum
feature sizes of 10 µm or more and carrier mobilities on the order of 0.5 cm2/V s,7 plastic thin-film
transistors will hardly displace silicon microelectronics but will have to target new fields.

Opportunities for polymer semiconductors exist in macroelectronics where a large active area is
essential such as in flat panel displays, in organic light emitting diode (OLED) panels for lighting
purposes, in photoelectric panels, and in certain sensor applications. This is because manufacturing
costs per area are much lower than for silicon, while the opposite is true when costs are related
to transistor count. Prospective applications also extend to cheap mass products, notably radio-
frequency identification (RFID) tags for everyday goods such as clothing and luggage, parcels,
documents, letters, tickets, price and inventory tags, and the like. The adoption of molecular self-
assembled monolayers (SAMs) as gate dielectric has recently lowered the operating voltage to 1.5
to 3 V [427].

Challenges include the disparity of carrier mobilities in n- and p-type materials, gate delays on
the order of 2 ms, and the rapid degradation when exposed to oxygen, humidity, electrical stress,
or intense sunlight. It will be difficult to manufacture large polymer circuits that are light-weight,
flexible, and do not break as long as they need to be protected with sheets of glass. Also, toxicity
may stand in the way of adopting disposable electronics on a larger scale.

A novel material that might come to the rescue are thin films made of randomly arranged carbon
nanotubes (CNTs) similar in structure to felt and other nonwoven textiles. Such films have been
found to combine good conductivity, high carrier mobility, flexibility, mechanical and chemical
robustness, and even optical transparency. Reports on the current state of polymer electronics and
of carbon nanotube films are available in [428] and [489] respectively.

15.2 Is there life after CMOS?

A variety of radically new technological concepts for information storage and processing have been
proposed; some of them are briefly touched on below. Note, in particular, that a fast, non-volatile,
energy-efficient, and cost-effective memory technology would allow computer architects to greatly
simplify the present memory hierarchy and to do away with a lot of current drain.

7 While mobilities in excess of 2 cm2 /V s have been reported in the research literature, these refer to vacuum
deposition, not to low-cost solution-based printing techniques.
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15.2.1 Non-CMOS data storage

Phase-change RAM (PRAM)
Certain alloys such as Sb2Te3 (antimony telluride), Ge2Sb2Te5 (another chalcogenide), and GeSb
(germanium antimony) exhibit rapid and reversible transitions between two stable phases with
widely different optical and electrical properties. Electrical conductivity and optical reflectivity are
good in the polycrystalline state while the opposite holds for the amorphous condition. Today’s
rewritable CDs and DVDs use lasers to store and to recover information in films of chalcogenide
material by optical means. The phase-change memories currently under development take advantage
of changes in conductivity. Phase transitions are induced by electrical heating with the orientation
of the transition being controlled by applying distinct temperature vs. time profiles.

A PRAM is built from zillions of tiny volumes that can be addressed randomly with the aid of
one access transistor per such volume. Two forms of implementation are being researched. In the
so-called line-cell memories the chalcogenide material forms a narrow bridge that spans the short
gap between two metal contacts (much like a PROM fuse that gets recrystallized but never blown)
whereas a vertical arrangement is adopted in ovonic unified memories (OUM). Intel and Samsung
have announced 128 Mibit and 512 Mibit PRAMs respectively as replacements for flash memories
for the 2007/2008 timeframe.

Ferroelectric RAM (FeRAM)
A ferroelectric material behaves analogously to the magnetic behavior of iron. That is, one observes
spatial domains inside which all electric dipole moments get aligned in the same direction. An
FeRAM maps a logic 0 or 1 onto the opposing directions of polarization of one such domain.
The construction of an FeRAM requires a dielectric material with strong remanent electrostatic
polarization that is compatible with CMOS silicon processing. Candidates include lead zirconium
titanate PbZrxTi1−xO3 (PZT) and compounds of strontium, bismuth, and tantalum (SBT).8 The
smallest storage cells are obtained from combining one access transistor with a capacitor built
around a dielectric of ferroelectric material. Data readout is destructive, but data storage is non-
volatile with expected retention times of ten years and more [429]. Ramtron has announced a 4 Mibit
FeRAM would become available in 2007.

Magnetic RAM (MRAM)
Several approaches to MRAM design are competing. What they have in common is that a bit
of information is stored into some storage device by applying a magnetic field and retrieved by
measuring its resistance.9 MRAM designs differ in the exact nature of the physical effect they take
advantage of for storage and in how the storage devices are accessed. A first effect is called giant
magnetoresistance (GMR) [430]; ∆R

R0
ratios on the order of 0.3 have been reported. Tunneling

magnetoresistance (TMR) forms the basis for other MRAM designs where each cell is built around
a magnetic tunnel junction (MTJ) device [431]. The individual storage devices are arranged as a
matrix and addressed with the aid of one or two access transistors [432] [433] much like conventional
RAM cells. The inherently non-volatile cells hold the promise of fast operation, good layout density,

8 PZT, as well as strontium titanate and barium titanate, are perovskite ceramics, a class of crystalline ox-
ide materials that share a common lattice structure. Depending on the specific atomic elements incorporated,
perovskites exhibit unique properties such as high permittivity and even ferroelectricity.

9 As opposed to this, readout of the bygone magnetic core memories was destructive because it worked by having
the cell remagnetized by another magnetic field and by measuring the transient current induced.
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and unlimited cycling [434]. Industrial production has commenced in 2006 with a 4 Mibit MRAM
by Freescale that works with MTJs.

Table 15.2 Competing memory technologies.

C M O S e x t e n s i o n s
Desiderata DRAM SRAM Flash PRAM FeRAM MRAM

small bit cell, high density yes no yes yes yes yes
fast read/write operations almost yes no unclear unclear yes
non-volatile no no yes yes yes yes
static storage with no refresh no yes yes yes yes yes
low standby power no partly yes yes yes yes
non-destructive readout no yes yes yes no yes
unlimited endurance yes yes no almost almost yes
truly random access yes yes no yes yes yes
number of extra masksa 6–8 0–2 6–8 3–4 2 3–4
ready for mass production yes yes yes no yes yes
cost-efficient yes no yes unclear not yet not yet

a Numbers are from [259] and refer to the masks required on top of a CMOS high-performance logic process.

15.2.2 Non-CMOS data processing

Carbon nanotubes
Untreated carbon nanotubes (CNTs) electrically resemble p-type material with bandgap varying
from zero (metallic) to narrow (semiconducting) depending on tube diameter and exact structure.
Much like in a MOSFET channel, the voltage applied to an insulated electrode placed nearby can
be made to modulate the current through a semiconducting CNT [435].

Logic gates combining field-controlled nanotubes with off-chip pull-down resistors on the order of
100 MΩ were manufactured for the first time in 2001 [436]. Each p-channel-like device consisted of
a single nanotube deposited on top of an aluminum strip that would later act as gate electrode. The
native Al2O3 layer formed a dielectric a few nanometers thick. Measured device characteristics were
Ids max ≈ −100 nA and Rds on ≈ 26 MΩ with an on/off ratio of at least 105 . Logic gates, bistable
feedback loops, and even a ring oscillator have been built.

In the same year, IBM researchers selectively doped a nanotube with potassium (K) to obtain
the equivalent of an n-channel transistor, thereby paving the way for complementary logic. They
successfully fabricated a CMOS-like inverter in which the customary MOSFETs were replaced by
a carbon nanotube, one section of which was doped with potassium while the second remained
untreated. The inverter operated from a 4 V supply and, with a measured value of −1.6, was found
to indeed exhibit a voltage amplification greater than unity.

In 2005, it was discovered that a Y-shaped multi-walled carbon nanotube (MWCNT) exhibits
abrupt current switching characteristics similar to those of an and gate [437]. This remarkable find-
ing might open the path to nanoelectronics where entire logic operations are built from nanotubes



15.2 IS THERE LIFE AFTER CMOS? 717

with multiple taps rather than by substituting field-controlled nanotubes for Si-based MOSFETs in
otherwise conventional MOS subcircuits. Future research will be needed to obtain a better under-
standing of the physical mechanisms involved, to obtain sufficient amplification in nanotube logic
networks, and to intentionally modify the electronic properties of nanotubes.

Nanojunctions
Devices made of crossed nanowires are reminiscent of bipolar design. Nanowires of p-type Si and
n-type GaN materials with diameters on the order of 10 to 30 nm can be made to form pn-junctions
at their intersections. The successful manufacturing of diodes, of field-effect transistors, and of a
few logic gates was also reported in 2001 [438].

Molecular electronics
[439] have built small combinational functions by placing carbon monoxide molecules in atomically
precise configurations with the aid of a scanning tunneling microscope. The “circuits” that operate
at a temperature of 5 K are orders of magnitude smaller than their silicon equivalents, but are also
exceedingly slow.

While all these results are very exciting indeed, many hurdles remain before nanodevices can pos-
sibly match up with CMOS VLSI. These include the ability to deposit or grow nanotubes, cus-
tom molecules, or other nanodevices at specific locations, shrinking interconnects to the same
scale as the devices, and increasing both fabrication yields and operating frequencies by or-
ders of magnitude. Computing with molecule-size devices implies operating close to the ther-
mal limit where computation becomes probabilistic, and will be subject to unprecedented lev-
els of variability and unreliability. Replacing current architectures with new ones that permit
one to build dependable systems from highly unreliable devices is an open issue for nano-scale
computing.

Crossbar logic
Manufacturing layout details to individual specifications is a major obstacle to shrinking memory
and logic circuits down to the scale of a few nanometers. Electrically programming prefabricated
circuits of highly regular, periodic layout instead would clearly help by easing the requirements
put on lithography. In addition, generous logic redundancy can be made to cope with a substantial
amount of fabrication defects and variability. It is because of these two properties that crossbar-type
arrangements — reminiscent of PLAs — are currently believed to be among the most promising
candidates for going beyond transistor-based microelectronics.

Crossbar structures comprise two orthogonal layers of nanowires separated by a monolayer of
molecules. Molecular connections on the basis of modified rotaxanes have been developed that
can be switched electrically between a low- and a high-resistance state and that retain their state
for three years or longer [440]. Certain material stacks exhibit uncommon current–voltage charac-
teristics with an 8-shaped hysteresis. In 2004, [441] of Hewlett-Packard showed that it is possible
to construct a bistable device from two such stacks, provided their switching thresholds can be
adjusted to differ from each other in a controlled way. With its data storage, logic inversion, and
level-restoration capabilities, such a device could be combined with molecular-scale resistor- or
junction-type connections to form arbitrary logic arranged into crossbar-type architectures. This
has earned it the name “crossbar latch”, although the bistable is strictly unclocked. While the
circuits operate at room temperature, they are, at present, of µm rather than nm size, operate at
audio frequencies, and have limited lifetime.
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Magnetic flux quantum device
Magnetic flux quantum devices rely on the quantum nature of magnetic flux in a superconducting
circuit to represent a binary datum. Three-layer Josephson junction structures that operate at a
temperature of approximately 4 K are being used for both data storage and data processing. The
rapid single flux quantum (RSFQ) logic being investigated today is built around the voltage
pulses that occur each time a magnetic flux quantum enters or leaves the superconducting loop.
With a mere 6 eV or so dissipated to cycle one bit, energy efficiency is three to four orders of
magnitude better than that of CMOS in spite of higher clock frequencies. Circuits of substantial
size have already been fabricated [442], such as a high-resolution A/D converter that comprises
3000 Josephson junctions over an active area of 2 mm by 7 mm and that runs at 12.8 GHz.
Another achievement is a 16 kibit cryogenic RAM with 400 ps access and 100 ps cycle time [443].
Superconducting RSFQ logic is likely to enter the hardware scene as one of the enabling technologies
for future supercomputers [444].

Quantum cellular arrays
A QCA cell is constructed by arranging four quantum dots in a square. Two extra mobile electrons
are allowed to tunnel between neighboring sites. As a consequence of Coulomb forces, the two
electrons must occupy one out of two diagonal patterns at any time. In an isolated cell, the choice
between these two states is arbitrary. For a larger array of cells, however, the state of each cell is
determined by its interaction with neighboring cells through Coulomb forces. Although experimental
verification is, at present, limited to a simple signal propagation path (wire), plans do exist for forks
(fanout), inverters, and majority gates [445].

Quantum devices
Other quantum devices currently being investigated include

• single-electron transistors (SETs) and single-electron memories,
• resonant tunneling devices (RTDs), and
• quantum dots and quantum wires.

All quantum approaches suffer from shortcomings such as limited on/off ratio, lack of current
drive capability, undesirable interaction with the environment, and critical noise margins. Extensive
research is under way. So far, quantum devices have been commercially successful only where silicon
could not do the job such as in emitting light (LEDs, laser diodes).

In any case, the key question is whether prospective alternative forms of logic can be smaller,
cheaper, and faster, and dissipate less energy than future CMOS circuits. The authors of [446]
conclude that there are several viable emerging memory technologies, but no alternative supe-
rior to CMOS in terms of density, speed, and energy. Revolutionary concepts are thus quite un-
likely to take over before the progress of CMOS and its extensions slows down or comes to a
standstill.

Fundamental bounds imposed by quantum physics, materials, switching devices, etc. are discussed
in [447], while [487] [448] [449] focus on CMOS technology and practical limitations. Starting from
conventional CMOS devices, [409] and [450] propose and evaluate various extensions for logic and
memory applications whereas [451] expects silicon technology to come to a standstill in the year
2013.
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15.3 Technology push

15.3.1 The so-called industry “laws” and the forces behind them

What pushes the industry forward is the search for competitive advantages. The net result for
semiconductor memories has been captured in Moore’s legendary (first) “law”.

Moore’s law: The capacity of DRAMs quadruples approximately every three years.

Back in 1965, Gordon Moore — who was later to co-found Intel — had observed that memory
capacity would double every year. This initial observation had remained valid until the late 1970s
when the doubling period slowed down to 18 months, but the exponential growth remained. Keeping
this stunning progress alive for four decades would not have been possible without ever heavier
investments in fabrication equipment and in R&D. In fact, there is a second “law”by Moore which
is as important, but not as popular as his first.

Moore’s second law: The capital requirements for a DRAM fab (construction and equipment)
grow by a factor of 1.8 over the three years that separate one memory generation from the
next.

While the value of 1.8 is debatable, the continuous growth of the sums to be invested is not.

It is extremely important to note that none of the above is a law of science or nature. Rather, these
are empirical estimations on the dynamics of the semiconductor industry that rest on observations
from the past. Extrapolations into a distant future are likely to be misleading as such “predic-
tions” do not account for changes in technology, consumer markets, and corporate finance that we
must expect to see when the semiconductor industry approaches a point where progress becomes
increasingly difficult and expensive.

An observation made by John Sturtevant and illustrated by the graph in fig.15.5 vividly documents
the difficulties of predicting the future in high-tech industries.

Sturtevant’s law: According to experts in the field, optical lithography has always been antici-
pated to come to an end six or seven years in the future.

Many times over, unforeseen innovations, including the various resolution enhancement techniques
(RETs) discussed in section 14.2.5, have been able to extend the lifetime of this technology.

Back to Moore’s (first) law, we are thus likely to witness one of three possible outcomes within our
lifetime.

◦ Moore’s law will slow down and eventually come to a standstill by the time atomic
and quantum scales are approached.

◦ Moore’s law will remain in place, but only by shifting over to some radically different kind of
device technology (please refer to section 15.2 for potential contenders).
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Fig. 15.5 The anticipated end of optical lithography over time (after John Sturtevant).

◦ Moore’s law will remain in place, but only by interpreting it at the system level, rather than at
the device scale, with high-density packaging, 3D-integration technologies, and new assembly
procedures and materials gradually gaining in importance.

That the future evolution of microelectronics technology must be consistent with the laws of physics
goes without saying. Yet, any kind of industrial activity is governed by the laws of economics, and
hence also depends on markets and capital. More specifically, there is a need to recover current
investments before committing oneself to new ones. And if Moore’s law is to live on, the challenge
will be to maintain the decreasing cost per function that has always been the virtue of CMOS
scaling.

Price competition forces semiconductor manufacturers to lower their unit costs. The fiercest com-
petition is for commodity chips, that is for VLSI circuits of highly standardized functionality
that get produced in very large quantities (primarily RAMs, but also microprocessors and many
ASSPs). Lower unit price together with other benefits obtained from downscaling are the driving
forces behind the relentless race towards new materials, next-generation lithography, more metal
layers, larger wafers, and better yield. All this gave rise to Moore’s first law and continues to support
the general trend but says nothing on whether the actual doubling period is 12, 18 or 24 months.

The downside of this technological progress is an expanding capital need of the semiconductor
industry as captured by Moore’s second law. By 2005, construction and equipment of a state-of-
the-art fabrication plant together ask for an investment between 2 and 5 GUSD. The sales volume
required to make such an investment profitable is on the order of 5 GUSD/a, which corresponds to
at least 5 million wafer starts per year [452].10

1 0 For comparison, the capital requirements of a few large industrial and national undertakings are stated below.
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Also note that expenses for fab construction and manufacturing equipment must be amortized over
a period of four years or less in the semiconductor industry.

Examples

IBM operates a state-of-the-art 300 mm wafer processing facility in East Fishkill (NY) for circuits
in silicon-on-insulator (SOI) CMOS technology with dual damascene additive copper metallization.
For the 130 nm technology generation, investments in the manufacturing plant were on the order
of 3 GUSD. 3.2 GUSD is the budget for the new fab AMD plans to erect in Malta (NY). Intel’s
current projections for a 450 mm fab are of 5 GUSD or more.
�

Sturtevant’s law notwithstanding, optical lithography (with refractive optics) will come to an end
one day. Important investments are currently being made to develop new light sources, new pho-
toresists, new masking techniques, new optics, new processes, and a new metrology. Post-optical
lithography is, therefore, likely to require considerably longer pay-back periods. Cutting feature size
in two, which currently takes place within six years, may then ask for ten years or more. Already
today, industry is struggling to reuse equipment and skills at the present rate of introduction of
new process flows, materials, and tools.

Observation 15.2. Ever heavier investments tend to impose standardization of fabrication pro-

cesses, global alliances, contract manufacturing, joint ventures, and accelerated concentration in the

semiconductor industry.

15.3.2 Industrial roadmaps

The most authoritative document on the plans of the semiconductor industry is the International
Technology Roadmap for Semiconductors (ITRS), the result of a world-wide consensus-
building process that attempts to look 15 years into the future and that gets completely revised
every two years. An excerpt of the edition finalized late in 2005 [1] is given in table 15.3. Do not
misinterpret the ITRS as predictions of the future. Rather, the roadmap identifies those technical
capabilities that have to be developed so that industry can essentially stay on Moore’s law and can
continue to lower cost per function by 29% a year as it has done in the past.

• The budget for the Large Hadron Collider, a particle accelerator built from superconducting magnets to be
installed in CERN’s existing 27 km circular tunnel near Geneva, amounts to 4.7 GCHF = 3.8 GUSD.

• A terrestrial link across the Øresund connecting Malmö and Copenhagen via a suspension bridge, a tunnel,
an artificial island, and a series of dams was opened in the year 2000. Closing the 16 km gap in the European
traffic system is estimated to have cost some 2.6 GUSD.

• The Human Genome Pro ject (HGP) carried out by a coalition of a dozen or so research institutions got
funded by the US government with a budget of 3 GUSD.

• In 2001, a new trunk line for high-speed trains (TGV) was inaugurated in the Rhône valley from Lyon to
Marseille and Nı̂mes. Total pro ject costs for the 250 km stretch including bridges, tunnels, and new railway
stations were 24.2 GFFR = 3.15 GUSD.

• 4.5 GUSD were spent on constructing the USS “Harry S. Truman”, the world’s largest aircraft carrier that
was put into service in 1998.

• Developing the Airbus A380 high-capacity passenger aircraft has called for investments on the order of
12 GEUR.
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Table 15.3 Targets for the overall technology characteristics, excerpt from the 2005 International
Technology Roadmap for Semiconductors. In spite of minor inconsistencies, pre-2007 figures were
kept for comparison. Storage capacities, overall transistor counts, and die sizes refer to volume
production as opposed to the introduction of engineering samples. Also, where the Roadmap
distinguishes between high performance, low operating power, and low standby power circuits, the
figures for the first category are given unless stated otherwise.

semiconductor technology in general
min. me- gate thre- power FET FET in- litho- wafer
half tal oxide shold supply dissi- curr. leakage verter graph. dia-
pitch level thick.a voltage voltage pationb drivec curr.d delaye field meter

year [nm] [nm] [mV] [V] [W] [A/m] [A/m] [ps] [mm2] [cm]

2002 130 7 1.5 1.1–1.2 2.4–130 900 0.01 7.6 800 30
2004 90 10 1.2 200–500 0.9–1.2 2.2–158 1110 0.05 2.85 704 30
2007 65 11 1.1 165–524 0.8–1.2 3.0–189 1200 0.20 1.92 858 30
2010 45 12 0.7 151–502 0.7–1.1 3.0–198 2050 0.28 1.20 858 30
2013 32 13 0.6 167–483 0.6–1.0 3.0–198 2220 0.29 0.75 858 45
2016 22 13 0.5 195–487 0.5–1.0 3.0–198 2713 0.11 0.45 858 45
2019 16 14 0.5 205–488 0.5–1.0 3.0–198 2744 0.11 0.30 858 45

a Physical to x of SiO2 or equivalent oxide thickness (EOT) in the case of a different material.
b Lower bound applies to battery-operated CPU, upper bound to high-performance CPU with forced cooling.
c Nominal n-channel “on”-state current Id s o n n at 25 ◦C junction temperature. Id s o n p ≈ −(0.4 to 0.5) Id s o n n .
d Maximum “off ”-state drain-to-source current |Id s off | at 25 ◦C junction temperature and nominal Ud d .
e Inverter delay tp d i n v ≈ 3 Cn Ud d /Id s o n n , that is three times the intrinsic NMOS delay given in the roadmap.

DRAMs microprocessors ASICs
bit storage tran- local tran-
cell rel. die capa- die sistor clock total sistor rel. total
area cell size city size count freq.a pins or density trans. pins or

year [µm2] areab [mm2] [bit] [mm2] [M] [MHz] ballsc [M/mm2] aread ballse

2002 0.130 8 127 512Mi 310 276 1684 0.89 66
2004 0.065 8 110 1Gi 310 553 4171 1.78 69
2007 0.0324 8 110 2Gi 310 1106 9285 1088 3.57 68 3371
2010 0.0122 6 93 4Gi 310 2212 15 079 1450 7.14 69 4015
2013 0.0061 6 93 8Gi 310 4424 22 980 1930 14.3 68 4736
2016 0.0038 6 93 16Gi 310 8848 39 683 2568 28.5 72 5483
2019 0.0015 6 93 32Gi 310 17 696 62 443 3418 57.1 68 6347

a Local on-chip clock, peripheral I/O clock is slower.
b Area of one bit cell in multiples of F 2 , where F 2 stands for the area of one lithographic square.
c 1/3 for I/O signals, 2/3 for power and ground.
d Average area per transistor in multiples of F 2 , where F 2 stands for the area of one lithographic square.
e 1/2 for I/O signals, 1/2 for power and ground.
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15.4 Market pull

The formidable projected growth of integration density strains the imagination of all involved in
the microelectronics industry and business, but the most essential questions are

“How much computing and communication does the world really need?” and consequently
“How much is it prepared to pay for that?”

Throughout the past fifty years, the thirst for computing power, memory capacity, and data rate
has escalated in pace with the progress of microelectronics. Will this continue for future ULSI
technologies even after today’s market drivers (such as personal computing, personal and global
communication, Internet services, multimedia, smartcards, and automotive components) are firmly
in place? What kind of applications will ask and pay for 32 Gibit DRAMs and for 62 GHz CPUs
in large quantities by the year 2019 so as to justify the necessary investments?

High tech per se is of little value for society. Demand in microelectronics is about the uses and the
usefulness of information technology. All perceivable needs of the general public seem to fall into
one of the categories below:

◦ Telecommunication (e.g. telephone, messaging, Internet, videoconferencing, and the like).
◦ Entertainment (e.g. radio, TV, audio, video, multimedia, Internet, games).
◦ Personal computing (e.g. document processing, spreadsheets, presentations, archiving).
◦ Business and administration (e.g. databases, billing, accounting, inventory management).
◦ Electronic payment systems (e.g. debit and credit cards, transaction processing).
◦ Automation and energy management (e.g. process control, building control).
◦ Transportation equipment (e.g. vehicle electronics, traffic control, logistics).
◦ Health care and medicine (e.g. diagnosis and therapy, pacemakers, hearing aids).
◦ Security and privacy (e.g. alarm systems, ciphering, personal identification).
◦ Rights management (e.g. software licensing, watermarking).
◦ Learning, information processing, and knowledge management in general.

At some point in the future, it may well be that many of these needs will be largely satisfied
by the technology then available [453]. Customers for top-notch microelectronics might more
and more become confined to a few companies and agencies that notoriously find themselves in
bad need of supercomputing capabilities, e.g. for simulation of fluid dynamics and aerodynamics,
weather forecasting and climate modelling, nuclear physics, pattern recognition, missile guidance,
cryptanalysis, vehicle crash simulation, movie animation, ray tracing and wave propagation
analysis, financial and economic forecasts, DNA and genome analysis, drug and materials research,
and — ironically — semiconductor device and process simulation at the nanotechnology scale.

Observation 15.3. For humans to develop any broader interest in a new technology, a product

or service must ease their daily lives, offer them improved safety and comfort, provide them with

economic advantages, improve their social status, or bring fun and entertainment.

Examples and counterexamples

The reason why the CD has displaced the vinyl record was not just the better sound quality but also
the smaller format, absence of wearout, and easier handling (troublefree loading, relative robustness,
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random access, program information). The fact that industry had agreed on one common standard
reassured customers. Much the same story was later repeated with the DVD versus the VHS cassette.

Cellular phones (e.g. GSM) have been an immediate success in spite of their mediocre audio quality
and higher charges when compared with the conventional telephone network. What the general
public valued most were mobility, convenience, and a spontaneous lifestyle made possible thereby.

The wireless application protocol (WAP), in contrast, was a complete failure because the idea of
handling complex transactions from a hand-held device with its tiny display, a down-sized keyboard,
and slow data transmission made no sense to customers.

High-definition television (HDTV) still is slow to catch on (in Europe). Both consumers and broad-
casters have little incentive to invest heavily in new equipment when they feel traditional analog-
transmission TV is good enough to meet their expectations.
�

On more technical grounds, the non-recurring costs of IC manufacturing grow with each process
generation. Ever more complex wafer manufacturing processes, below-wavelength lithography, and
a generous number of metal layers all take their toll. Post-optical lithography is bound to further in-
flate up-front costs. This trend is becoming prohibitive for certain IC categories, such as USICs, and
the gap is being filled by field-programmable logic (FPL) and software-controlled microprocessors
or signal processors wherever possible.

15.5 Evolution paths for design methodology

15.5.1 The productivity problem

Semiconductor fabrication technology outstrips our capabilities to design, verify, and test VLSI
circuits. For microprocessors, the 2005 ITRS roadmap postulates that the maximum transistor
count grows by a factor of 32 over fifteen years (i.e. by a factor of two every three years). To match
this rate, design productivity must improve by 26% per year or close to 2% a month.

Example

Early microprocessors were designed by a handful of people in a couple of months. In spite of
generous EDA resources, the design of a top-performance microprocessor today takes more than
five years and involves up to a thousand people in its final phase. Nevertheless, processors reach
market with dozens of bugs as do other VLSI chips.
�

Much of the microelectronics industry is subject to consumerization, which is to say that the
traditional separation between high-tech computer and telecommunication equipment on the one
hand and low-cost consumer products on the other has largely gone. Most of today’s electronic
goods are both high-tech and low-cost, just consider the PC, DVD, HDTV, ADSL, GSM, UMTS,
and other multimedia platforms.

In this situation, a key question for the entire ASIC industry is that of



15.5 EVOLUTION PATHS FOR DESIGN METHODOLOGY 725

“How to design and test ever more complex circuits with less effort”.

Excessive design efforts not only compromise the timely market introduction of new products, but
also inflate up-front costs, shifting the break-even point of microelectronic circuits to still higher
sales volumes.

Improving current design practices

Focussing human attention on higher levels of abstraction and having design automation software
take care of all lower-level details is a strategy with a long and highly successful tradition in digital
VLSI design.11 Forthcoming extensions of this strategy are expected to work from largely behavioral
system models like Matlab/Simulink and other visual formalisms such as statecharts and flow
graphs that are more concise and intuitive than RTL HDL code.

A totally contrarian tendency is to hold VLSI designers responsible for all sorts of nasty details
that are not really their core business.

� Standard cell libraries are on the market with no built-in body ties. Burdening digital designers
with adding separate body tie cells as part of cell placement unnecessarily inflates the number
of physical design iterations and holds a risk of mistaken choices.

� There is a trend towards asking circuit designers to include phase shift mask (PSM) and optical
proximity correction (OPC) features in their layout drawings. Such details should definitely
be confined to specialists such as library developers or, better still, to EDA tools capable of
adjusting and fine-tuning layout data in an automatic post-processing step.

� Much the same also holds for protection against process-induced damage associated with
reactive-ion etching, time-dependent dielectric breakdown (TDDB), and antenna rules.

� Most design flows require that DRC and LVS be carried out over the full set of layers. In
cell-based design where designers do the metal routing but neither draw nor can control the
layouts of the silicon layers underneath, this is a waste of effort as designers are unnecessarily
forced to procure and process layout data at the full-detail level. By respecting a number
of restrictions on cell layouts — which sub-wavelength lithography will impose anyway — it
should be possible to isolate them from details and to draw a line of separation between their
responsibilities and those of library developers.

Tool integration can still be improved. An obstacle that needs to be removed are the distinct
specification languages and design representations currently being used by software and hardware
engineers. Merging these two “ladders” into one will help to better support architectural decisions

1 1 Just recall ma jor milestones from the past:
• Mask generation from computer data,
• Automatic design rule check (DRC),
• Schematic entry (SPICE-type simulation),
• Automatic physical design (cell-based design, automatic place and route (P&R), macrocell generation)
• Logic synthesis (including automatic test pattern generation),
• HDLs and synthesis from RTL models, and the adoption of
• Virtual components (VC).
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[454]. Architecture design might eventually be carried out with little human intervention by future
electronic system-level (ESL) synthesis tools.

A successful concept is design reuse. Purchasing/licensing of entire subsystems is highly popular,
and both the technical and business implications of VCs have been discussed in section 13.4. Another
approach to design reuse is incremental design, aka model year development, whereby only part
of a ULSI circuit is re-engineered from one product generation to the next. Incremental design is
standard practice for PCs, GSM chipsets, and automotive electronics, to name just a few.

Among others things, VCs are hampered by the lack of standard interfaces. Ideally, connecting dig-
ital subsystems should be as convenient as connecting analog audio equipment. Absolute minimum
requirements for a standard interface include

a) agreed-on data and message formats,
b) agreed-on mechanisms for exception handling,
c) agreed-on data transfer protocols, and
d) flawless timing.

Note that globally asynchronous locally synchronous (GALS) system operation addresses c) and
d). Standardization efforts are undertaken and coordinated by the Virtual Socket Interface Alliance
(VSIA). On-chip bus and interface standards such as the AMBA (Advanced Microprocessor Bus
Architecture) family clearly help. The absence of industry-wide naming conventions for signals is a
similar, yet much more mundane, impediment.

More than ever, we are designing circuits beyond our capabilities of verification. In spite of oc-
cupying an unreasonable proportion of the overall development effort, design verification can-
not guarantee the absence of functional or electrical flaws. Simulation alone is clearly insuffi-
cient as too many ASICs and virtual components (VC) fail when put into service in a real
environment. Formal methods are only slowly coming to help. Problems in need of major
improvements include verification at the system level, executable specifications, and variation
modelling.

Pushing integration density to the max does not always make sense

The idea behind the buzzword system-on-a-chip (SoC) is to integrate a complex system on a
single die. While appealing in theory, there are a number of practical problems associated with
developing, manufacturing, and marketing highly complex and highly specific ASICs.

• Design and verification take a lot of time and effort.
• Yields are likely to suffer as die sizes grow large.
• High power densities call for expensive cooling.
• Products cannot be scaled up and down to meet a variety of needs.
• Highly selective and narrow markets imply smaller sales volumes.
• All this boils down to high up-front costs and a high risk.

The problem becomes even more serious in true systems that ask for largely different circuit tech-
nologies, such as flash memory, optoelectronics, and bipolar RF circuits, to be integrated on the
same die as the digital subsystem. As explained in section 11.4.7, a high-density package that
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combines a couple of dies with the necessary discrete components is more appropriate whenever a
technologically heterogeneous product is to be manufactured in not-so-large quantities.

15.5.2 Fresh approaches to architecture design

What to do with so many devices?

The bottom line of table 15.3 refers to the year 2019. It predicts semiconductor technology will be
capable of fabricating memories with more than 32 · 109 transistors and top-end microprocessors
with 17 · 109 or so transistors on a single chip.

“What is the best use industry can make of this rich proliferation of devices?”

Field-programmable logic (FPL) provides us with a vivid example of how an abundant and cheap
resource, namely transistors, is turned into qualities that are valued much higher in the marketplace,
namely agility and short turnaround times. Also, a fair amount of programmability and configura-
bility is about the only way to successfully market highly complex parts. The alternative of putting
more and more transistors into service to implement ever more specialized functions tends to narrow
the application range and to reduce sales volume.

Instruction set processors go one step further in that they are not only highly flexible and universal
but also provide an abstract machine, a simple mental model that serves as the starting point for
software design and compilation. Application developers are thus freed from having to bother about
hardware details and become free to focus on functional issues. Many transistors and much circuit
acitivity are “wasted” in making this possible, though. Still, for the sake of productivity, standard
processor cores plus on-chip firmware are likely to replace dedicated architectures in many ASICs
where throughput and heat removal are not of foremost concern.

Another quality highly sought-after in the marketplace is energy efficiency. The question is how
more transistors can possibly be put to service to lower static and dynamic power significantly and
at the same time. In the 1980s, CMOS logic had displaced TTL and ECL in spite of its inferior
switching speed because only CMOS circuits proved to be amenable to truly large-scale integration.
This would have been impossible, had the much better energy efficiency of CMOS not allowed for
more than compensating the loss in throughput from the slower devices with more sophisticated and
more complex architectures. Equally important was the fact that VLSI slashed node capacitances,
interconnect delays, and – above all — manufacturing costs. CMOS scaling further provided a
perspective for future development. [455] thinks it should be possible to repeat this exploit by
combining ultra-low-voltage operation with 3D integration.

As observed in [456], circuits with many billions of devices just give rise to other concerns:

“It is unlikely that all of these devices will work as anticipated by the designer.”
“Nobody will be able to functionally test such a circuit to a reasonable degree.”

Reliability and fault tolerance may be achieved by pursuing error correction, built-in self-test
(BIST), self-diagnosis, redundant hardware, and possibly even self-repair. However, while these
approaches can protect against fabrication defects and failures that occur during circuit operation,
they fail to address faults or omissions made as part of the design process. Only the future will
tell whether more utopian ideas such as self-programming and self-replication are technically and
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economically viable approaches for being embodied in semiconductor circuits, or whether they will
remain confined to biological creatures [457] [458].

In view of engineering efficiency, future gigachips must be based on regular arrays of regularly
connected circuits, or it is unlikely that their design and test will ever be completed. In addition,
the circuits and connections will have to be (re)configurable to solve any problems from locally
malfunctioning devices and interconnect [459]. Memory chips have long been designed along these
principles but it is unclear how to apply them to information processing circuits.

Clock frequencies, core sizes, and thermal power cannot grow indefinitely

The domination of interconnect delay impacts architecture design because rapid interaction over
chip-size distances has become impractical. Thermal and energy efficiency considerations further
limit node activity budgets. As a result, CPU architecture design has moved towards multiprocessors
since 2005 after a frenzied race towards multi-GHz clock rates and ever more complex uniprocessors.
Fresh approaches are sought; others known for years may see a revival:

• Moving clock distribution from the chip to the package level where RC delays are much smaller
as explained in section 11.4.7.12

• Combining fast local clocks (determined by a few gate delays) with a slower global clock
(bounded by the longest global interconnect).

• Extensive clustering whereby an architecture is broken down into subsystems or clusters that
operate concurrently with as little inter-cluster communication as possible [28]; [460] fore-
sees a maximum cluster size of 50–100 kGE.13 The approach can be complemented with
programmable interconnect between clusters.

• Processing-in-memory (PiM) architectures attempt to do away with the memory bottleneck of
traditional CPUs and cache hierarchies by combining many data processing units and memory
sections on a single chip.14

• Globally asynchronous locally synchronous (GALS) and similar concepts where stallable sub-
systems exchange data via latency-insensitive communication protocols [461].

• Data flow architectures where execution is driven by the availability of operands.
• Networks on chip (NoC) whereby major subsystems exchange data via packet switching.
• Logic gates as repeaters (LGR) is a concept whereby cells from a design’s regular netlist are

extensively inserted into long wires in lieu of the extra inverters or buffers normally used as
repeaters. Put differently, the functional logic gets distributed into the interconnect [462]. The
goal is to minimize the longest path delay without the waste of area and energy incurred with
pipelined interconnect.

• Systolic arrays and cellular automata with signals propagating as wavefronts.
• Neural-network-style architectures, aka biologically inspired computing or amorphous com-

puting, where a multitude of primitive and initially identical cells self-organize into a more
powerful network of a specific functionality.

1 2 Remember that flip-chip techniques can connect to anywhere on a die, not just to the periphery.
1 3 Not only the Cell microprocessor jointly developed by Sony, Toshiba, and IBM, but also Sun’s Niagara CPU

can be viewed as steps in this direction.
1 4 The strict separation into a general-purpose CPU and a large memory system is a characteristic trait of the von

Neumann and Harvard computer architectures and not normally found in the dedicated hardware architectures
presented in chapter 2.
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Observation 15.4. Deep submicron architecture design and floorplanning essentially follow the

motto “Plan signal distribution first, only then fill in the local processing circuitry!”

The term wire planning describes an approach that begins by determining an optimal plan for
global wiring that distributes the acceptable delays over functional blocks and their interconnects.
Logic synthesis, and place and route, are then commissioned to work out the details taking advantage
of timing slacks [463]. Wave steering is a related effort that integrates logic synthesis for pass
transistor logic (PTL) with layout design [464].

Circuit style

As stated at the beginning of this chapter, it is the search for improvements in

+ layout density,
+ operating frequency, and
+ energy efficiency

that is driving the rush to ever smaller geometries. Yet, various electrical characteristics are bound
to deteriorate as a consequence of shrinking device dimensions. These include

− “off”-state leakage current (drain to source),
− gate dielectric tunneling (gate to channel),
− drain junction tunneling (drain to bulk),
− “on”-to-“off”-state conductance ratio,
− parameter variations and device matching,
− transfer characteristic and voltage amplification of logic gates,
− cross-coupling effects,
− noise margins, and the
− susceptibility to all kinds of disturbances.15

While DRAMs are highly sensitive to leakage, static CMOS logic is less so. Fully complementary
CMOS subcircuits are ratioless and level-restoring, two properties that render static CMOS logic
fairly tolerant with respect to both systematic deterioration and random variability of device pa-
rameters. However, as the search for power efficiency mandates modest voltage swings and as supply
voltages are expected to drop well below 1 V for technology reasons, differential signaling is bound
to become more pervasive in order to maintain adequate noise margins.

15.6 Summary

� What has fueled the spectacular evolution of CMOS into a high-density, high-performance,
low-cost technology essentially was its scaling property. This trend will continue into the future

1 5 Such as ground bounce, crosstalk, radiation, ESD, PTV, and OCV variations. On the positive side, latch-up
will no longer be a problem with core and I/O voltages below 1.5 V or with the transition to SOI technology.
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at the price of admitting new materials into the fabrication process (gate stacks, interlevel
dielectrics, magnetoresistive or chalcogenide layers, etc.).

� The cost structure of VLSI has always favored high fabrication volumes and — at the same
time — penalized products that sell in small quantities. The move to more sophisticated
fabrication processes is going to further accentuate this trait because better lithographic reso-
lution, new materials, more interconnect layers, more lithographic steps, larger wafers, better
but more expensive process equipment, more complex circuits, more sophisticated engineering
software, the purchase of VCs, and more onerous test equipment all contribute to inflating
NRE costs. As a consequence, ASIC vendors are becoming more selective in accepting low-
volume business; FPL and program-controlled processors fill the gap.

15.7 Six grand challenges

As a final note, let us summarize what we consider the most challenging problems that the semicon-
ductor industry as a whole currently faces. Note that addressing those problems involves rethinking
across many levels: devices, circuits, architectures, operating system, application software, design
methodology, EDA, testing, manufacturing, and business models.

1. How to make VLSI systems more energy-efficient in terms of both dynamic and
static losses.

2. How to have design productivity keep pace with manufacturing capabilities.
3. How to verify (test) highly complex and/or heterogenous designs (circuits).
4. How to cope with increasing device and interconnect variabilities.
5. How to survive the upcoming transitions to post-optical lithography, 450 mm wafers,

new device topologies, new materials, and nanotechnologies.
6. How to accommodate products that do not sell in huge quantities with more reasonable

cost structures.
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15.8 Appendix: Non-semiconductor storage technologies for
comparison

Storage densities

storage technology approximate density comment

Magnetic recording
longitudinal recording 100 Gbit/inch2 ≈ 0.0065 µm2/bit 2005 production
perpendicular recording 130 Gbit/inch2 ≈ 0.0050 µm2/bit 2006 production

230 Gbit/inch2 ≈ 0.0028 µm2/bit 2005 laboratory

Storage capacities

approx.
storage medium capacity typical information content

Optical disks (single-sided single-layered, laser wavelength)
compact disk (CD), 6.3 Gbit 74 min uncompressed audio or

780 nm (extreme red) 93 500 pages of text
digital versatile disk (DVD), 38 Gbit 133 min MPEG-2 compressed video or

650 nm (red) 564 000 pages of text
“blu-ray” disk (DVR), 216 Gbit 12.5 h MPEG-2 compressed video or

405 nm (blue–violet) 2 h HDTV video

Magnetic disks
high-end personal computer 6 Tbit operating system, application software

3.5 inch hard disk (2006) and user data

DNA sequencesa

Mycobacterium tuberculosis 8.8 Mbit 4 411 529 base pairs
H37Rv of raw genome data

Homo sapiens 6 Gbit approx. 3 G base pairs organized into
35 000 or so genes and distributed
over 23 pairs of chromosomes

Human brain
permanent memory 1.8 Gbit knowledge and recollection
life-long speed reading 260 Gbit printed text read at 5 letters/word,

1 kword/min, 8 h/d, 7 d/w for 60 a

a Keep in mind that the entire genome is repeated in every cell throughout an organism.
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Elementary Digital Electronics

A.1 Introduction

Working with electronic design automation (EDA) tools requires a good understanding of a multi-
tude of terms and concepts from elementary digital electronics. The material in this chapter aims
at explaining them, but makes no attempt to truly cover switching algebra or logic optimzation as
gate-level synthesis is fully automated today. Readers in search of a more formal or more compre-
hensive treatise are referred to specialized textbooks and tutorials such as [465] [466] [25] [467] and
the seminal but now somewhat dated [468].1 Textbooks that address digital design more from a
practical perspective include [146] [469] [470] [471].

Combinational functions are discussed in sections A.2 and A.3 with a focus on fundamental prop-
erties and on circuit organization respectively before section A.4 gives an overview on common and
not so common bistable memory devices. Section A.5 is concerned with transient behavior, which
then gets distilled into a few timing quantities in section A.6. At a much higher level of abstraction,
section A.7 finally sums up the basic microprocessor data transfer protocols.

A.1.1 Common number representation schemes

Our familiar decimal number system is called a positional number system because each digit
in a number contributes to the overall value with a weight that depends on its position (this was
not so with the ancient Roman numbers, for instance). In a positional number system, there is a
natural number B≥2 that serves as a base, e.g. B =10 for decimal and B =2 for binary numbers.
Each digit position i is assigned a weight Bi so that when a non-negative number gets expressed

1 Those with a special interest in mathematics may want to refer to appendix 2.11 where switching algebra is put
into perspective with fields and other algebraic structures.
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with a total of w digits, the value follows as a weighted sum

(al , al−1 , ..., ar+1 , ar )B =
l∑

i= r

aiB
i (A.1)

where l ≥ r and w = l − r + 1. A decimal point is used to separate the integer part made up of
all digits with index i ≥ 0 from the fractional part that consists of those with index i ≤ −1. When
writing down an integer, we normally assume r = 0. As an example, 17310 stands for 1 · 102 +
7 · 101 + 3 · 100 (w=3, l=2, r=0). Similarly, the binary number 101.012 stands for 1 · 22 + 0 ·
101 + 1 · 100 + 0 · 10−1 + 1 · 10−2 = 5.2510 (l=2, r=−2, w=5). The leftmost digit position has
the largest weight Bl while the rightmost digit has the smallest weight Br . In the context of binary
numbers, these two positions are referred to as the most (MSB) and as the least significant bit
(LSB) respectively.

Table A.1 Representations of signed and unsigned integers with four bits.

bit pattern interpreted i n t e r p r e t e d a s s i g n e d
msb lsb as unsigned offset-binary 2’s complem. 1’s complem. sign & magn.
a3 a2 a1 a0 . O-B 2’C 1’C S&M

1111. 15 7 −1 (−) 0 −7
1110. 14 6 −2 −1 −6
1101. 13 5 −3 −2 −5
1100. 12 4 −4 −3 −4
1011. 11 3 −5 −4 −3
1010. 10 2 −6 −5 −2
1001. 9 1 −7 −6 −1
1000. 8 0 −8a −7 (−) 0
0111. 7 −1 7 7 7
0110. 6 −2 6 6 6
0101. 5 −3 5 5 5
0100. 4 −4 4 4 4
0011. 3 −5 3 3 3
0010. 2 −6 2 2 2
0001. 1 −7 1 1 1
0000. 0 −8a 0 0 0

bit weights 23 22 21 20 . same − 23 −23 22 21 20 . −(23−1) 22 21 20 . ±(22 21 20).
sign inversion n.a. (a3 a2 a1 a0) + 1 a3 a2 a1 a0 a3 a2 a1 a0

VHDL type unsigned n.a. signed n.a. n.a.

a Has no positive counterpart, sign-inversion rule does not apply.

As for signed numbers, several schemes have been developed to handle them in digital circuits
and computers. Table A.1 illustrates how the more common ones map between bit patterns and
numbers. For the sake of conciseness, integers of only four bits are considered in the examples.
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The leftmost bit always indicates whether a number is positive or negative. Except for that one bit,
offset-binary and 2’s complement encodings are the same. What they further have in common is that
the most negative number has no positive counterpart (with the same number of bits). Conversely,
two patterns for zero exist in 1’s complement and in sign-and-magnitude representation, which
complicates the design of arithmetic units such as adders, subtractors, and comparators. What
makes the 2’s complement format so popular is the fact that any adder circuit can be used for
subtraction if arguments and result are coded in this way.

Observation A.1. Digital hardware deals with bits exclusively. What gives a bit pattern a meaning

as a character, as signed or unsigned, as an integer or fractional number, as a fixed-point or floating-

point number, etc., essentially is the interpretation by humans, or by human-made software.

A bit pattern remains absolutely devoid of meaning unless the pertaining number representation
scheme is known.2 Hardware description languages (HDL) provide digital designers with various
data types and with index ranges to assist them in keeping track of number formats.

A.1.2 Notational conventions for two-valued logic

The restriction to two-valued or bivalent logic3 seems to suggest that the two symbols 0 and 1 from
switching algebra should suffice as a basis for mathematical analysis. This is not so, however, and
two more logic values are needed so that we end up with a total of four symbols.4

0 stands for a logic zero.
1 stands for a logic one.
X denotes a situation where a signal’s logic state as 0 or 1 remains unknown after analysis.
- implies that the logic state is left open in the specifications because it does not matter for the

correct functioning of a circuit. One is thus free to substitute either a 0 or a 1 during circuit
design, which explains why this condition is known as don’t care.

The mathematical convention for identifying the logic inverse, aka Boolean complement, of a term
is by overlining it, and we will adhere to that convention throughout this chapter. That is, if a is a
variable, then its complement shall be denoted a.5 Most obviously, one has 0 = 1, 1 = 0, and a = a.

2 As an analogy, a pocket calculator handles only numbers and does not know about any physical unit involved,
e.g. [m], [kg], [s], [µA], [kΩ] and [EUR]. It is up to the user to enter arguments in correct units and to know how
to read the results. Incidentally, note that we do not want to go into floating-point numbers here as floating-point
arithmetics is not very common in ASICs. A 32 bit and a 64 bit format are defined in the IEEE 754 standard,
handy converters are available on the Internet.

3 Note that binary is almost always used instead of bivalent. This is sometimes misleading as the same term also
serves to indicate that a function takes two arguments. The German language, in contrast, makes a distinction
between “zweiwertig” (bivalent) and “zweistellig” (takes two arguments).

4 Actually, this is still insufficient for practical purposes of circuit design. A more adequate set of nine logic values
has been defined in the IEEE 1164 standard and is discussed in full detail in section 4.2.3; what we present here
is just a subset.

5 Unfortunately, this practice is not viable in the context of EDA software because there is no way to overline
identifiers with ASCII characters. A more practical and more comprehensive naming scheme is proposed in
section 5.7. Taking the complement is expressed by appending the suffix xB to the original name so that the
Boolean complement of A is denoted as AxB (for “A bar”).
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A.2 Theoretical background of combinational logic

A digital circuit is qualified as combinational, if its present output gets determined by its present
input exclusively when in steady-state condition. This contrasts with sequential logic, the output of
which depends not only on present but also on past input values. Sequential circuits must, therefore,
necessarily keep their state in some kind of storage elements whereas combinational ones have no
state. This is why the former are also referred to as state-holding or as memorizing, and the latter
as state-less or as memoryless.

In this section, we confine our discussion to combinational functions and begin by asking

“How can we state a combinational function and how do the various formalisms differ?”

A.2.1 Truth table

Probably the most popular way to capture a combinational function is to come up with a truth
table, that is with a list that indicates the desired output for each input.

Table A.2 A truth table of three variables that includes don’t care entries.

x y z g

0 0 0 1

0 0 1 1

0 1 0 -

0 1 1 -

1 0 0 1

1 0 1 0

1 1 0 -

1 1 1 0

Let us calculate the number of possible logic functions of n variables. Observe that a truth table
comprises 2n fields, each of which must be filled either with a 0 or a 1 (don’t care conditions do
not contribute any extra functions). So there are 22n

different ways to complete a truth table and,
hence, 22n

distinct logic functions.

n functions
1 4
2 16 as listed in table A.4
3 256
4 65 536
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A.2.2 The n-cube

A geometric representation is obtained by mapping a logic function of n variables onto the n-
dimensional unit cube. This requires a total of 2n nodes, one for each input value. Edges connect
all node pairs that differ in a single variable. A drawing of the n-cube for truth table A.2 appears
in fig.A.1. Note that the concept of n-cubes can be extended to arbitrary numbers of dimensions,
although representing them graphically becomes increasingly difficult.

x

y

z

g(x,y,z)

1(000)

1(001)

- (011)

- (010)

1(100)

0(101)

0(111)

- (110)

Fig. A.1 3-cube equivalent to table A.2.

A.2.3 Karnaugh map

The Karnaugh map, an example of which is shown in table A.3, is another tabular format where
each field stands for one of the 2n input values. The fields are arranged so as to preserve adjacency
relations from the n-cube when the map is thought to be inscribed on a torus. Although extensions
for five and six variables have been proposed, the merit of easy visualization which makes Karnaugh
maps so popular tends to get lost beyond four variables.

Table A.3 Karnaugh map equivalent to table A.2.

yz

g 00 01 11 10

x 0 1 1 - -

1 1 0 0 -

A.2.4 Program code and other formal languages

Logic operations can further be described by way of a formal language, a medium that has become
a focus of attention with the advent of automatic simulation and synthesis tools. A specification
on the basis of VHDL is depicted in prog.A.1. Note that, while the function described continues
to be combinational, its description is procedural in the sense that the processing of the associated
program code must occur step by step.
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Program A.1 A piece of behavioral VHDL code that is equivalent to table A.2

entity gfunction is

port (

X : in Std_Logic;

Y : in Std_Logic;

Z : in Std_Logic;

G : out Std_Logic );

end gfunction;

architecture procedural of gfunction is

begin

process (X,Y,Z)

variable temp: Std_Logic;

begin

temp := ’-’;

if Y=’0’ then temp := ’1’; end if;

if X=’1’ and Z=’1’ then temp := ’0’; end if;

G <= temp;

end process;

end procedural;

A.2.5 Logic equations

What truth tables, Karnaugh maps, n-cubes, and the VHDL code example shown in prog.A.1 have
in common, is that they specify — essentially by enumeration — input-to-output mappings. Put
differently, they all define a logic function in purely behavioral terms.

Logic equations, in contrast, also imply the operations to use and in what order to apply them.
Each such equation suggests a distinct gate-level circuit and, therefore, also conveys information
of structural nature. Even in the absence of don’t care conditions, a great variety of logically
equivalent equations exist that implement a given truth table. Since, in addition, it is always possible
to expand a logic equation into a more complex one, we note

Observation A.2. For any given logic function, there exist infinitely many logic equations

and gate-level circuits that implement it.

buffer

inverter

2-input AND 2-input OR

2-input NAND 2-input NOR

ground
connection

logic 0

1logic

power
connection 2-input XOR

2-input EQV

≥2

3-input MAJ

3-input MIN

≥2

1

0

2-way MUX
AB

CI
S

CO

full adder

AB

S
CO

half adder

Fig. A.2 Schematic icons of common combinational functions.

Figure A.2 illustrates the symbols used in schematic diagrams to denote the subcircuits that carry
out simple combinational operations. Albeit fully exchangeable from a purely functional point of
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view, two equations and their associated gate-level networks may significantly differ in terms of
circuit size, operating speed, energy dissipation, and manufacturing expenses. Such differences often
matter from the perspectives of engineering and economy.

Example

The Karnaugh map below defines a combinational function of three variables. Equations (A.2)
through (A.11) all implement that very function. Each such equation stands for one specific gate-
level circuit and three of them are depicted next. They belong to equations (A.5), (A.10), and (A.11)
respectively. More circuit alternatives are shown in fig.A.4.

yz

f 00 01 11 10

x 0 1 1 0 0

1 0 1 0 1

a)

x

y

z

f

b)

x

y

z

f

y

z

x

c) f

Fig. A.3 A selection of three circuit alternatives for the same logic function.

�

A.2.6 Two-level logic

Sum-of-products

Any switching function can be described as a sum-of-products (SoP), where sum and product
refer to logic or and and operations respectively, see equations (A.2) and (A.3), for instance.6

6 We will denote the sum and product operators from switching algebra as ∨ and ∧ respectively to minimize the
risk of confusion with the conventional arithmetic operators + and · . However, for the sake of brevity, we will
frequently drop the ∧ symbol from product terms and write xyz when we mean x ∧ y ∧ z . In doing so, we imply
that ∧ takes precedence over ∨.
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Disjunctive form is synonymous for sum-of-products. A product term that includes the full set of
variables is called a minterm or a fundamental product. The name canonical sum stands for a
sum-of-products expression that consists of minterms exclusively. The right-hand side of (A.2) is a
canonical sum whereas that of (A.3) is not.

f = x y z ∨ x y z ∨ x y z ∨ x y z (A.2)

f = x y ∨ y z ∨ x y z (A.3)

Product-of-sums

As the name suggests, product-of-sums (PoS) formulations are dual to SoP formulations. Not sur-
prisingly, the concepts of conjunctive form, maxterm, fundamental sum, and canonical product
are defined analogously to their SoP counterparts. Two PoS examples are given in (A.4) and (A.5);
you may want to add the canonical product form yourself.

f = (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y) (x ∨ y) (x ∨ y ∨ z) (A.4)

f = (x ∨ y ∨ z) (y ∨ z) (x ∨ y) (A.5)

Other two-level logic forms

SoP and PoS forms are subsumed as two-level logic, aka two-stage logic, because they both make
use of two consecutive levels of or and and operations. Any inverters required to provide signals in
their complemented form are ignored as double-rail logic is assumed.7 As a consequence, not only
(A.2) through (A.5), but also (A.6) and (A.7) qualify as two-level logic.

f = (x y) (y z) (x y z) (A.6)

f = x y z ∨ y z ∨ x y (A.7)

Incidentally, observe that (A.6) describes a circuit that consists of nand gates and inverters exclu-
sively. As illustrated in fig.A.4, this formulation is easily obtained from (A.3) by applying the De
Morgan theorem8 followed by bubble pushing, that is by relocating the negation operators from
all inputs of the second-level gates to the outputs of the first-level gates.

Observation A.3. It is always possible to implement an arbitrary logic function

with no more than two consecutive levels of logic operations.

This is why two-level logic is said to be universal. The availability of manual minimization methods,
such as the Karnaugh or the Quine–McCluskey method [468], the multitude of circuit alternatives
to be presented in sections A.3.1 through A.3.3, and the — now largely obsolete — belief that
propagation delay directly relates to the number of stages have further contributed to the popularity
of two-level logic since the early days of digital electronics.

7 The term double-rail logic refers to logic families where each variable is being represented by a pair of signals
a and a that are of opposite value at any time (e.g. in CVSL). Every logic gate has two complementary outputs
and pairwise differential inputs. Taking the complement of a variable is tantamount to swapping the two signal
wires and requires no extra hardware.

This situation contrasts with single-rail logic, where every variable is being transmitted over a single wire
(e.g. in standard CMOS and TTL). A complement must be obtained explicitly by means of an extra inverter.

8 The De Morgan theorem of switching algebra states x ∨ y = x y (= x ∧ y ) and (x ∧ y =) x y = x ∨ y .
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Fig. A.4 Translating an SoP logic (a) into a nand-nand circuit (c) or back.

A.2.7 Multilevel logic

Multilevel logic, aka multi-stage logic, differs from two-level logic in that logic equations extend
beyond two consecutive levels of or and and operations. Examples include (A.8) and (A.9) where
three stages of ors and ands alternate; (A.10) with the same operations nested four levels deep
also belongs to this class.

f = (x ∨ z) y ∨ x (y z) (A.8)

f = (x z ∨ y) (x ∨ y ∨ z) (A.9)

f = x y ∨ x (yz ∨ yz) (A.10)

Equation (A.11) below appears to have logic operations nested no more than two levels deep as
well, yet the inclusion of an exclusive-or function9 makes it multilevel logic. This is because the xor

function is more onerous to implement than an or or an and and because substituting those for
the xor results in a total of three consecutive levels of logic operations.

f = x z ⊕ y (A.11)

The circuits that correspond to (A.10) and (A.11) are depicted in fig.A.3b and c respectively.
Drawing the remaining two schematics is left to the reader as an exercise.

Originally somewhat left aside due to the lack of systematic and affordable procedures for its
minimization, multilevel logic has become popular with the advent of adequate computer tools.
VLSI also destroyed the traditional preconception that fewer logic levels would automatically bring
about shorter propagation delays.

9 The exclusive-or xor is also known as the antivalence operation, and its negated counterpart as the equivalence
operation eqv or xnor. Please further note that or and and operations take precedence over xor and eqv.
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A.2.8 Symmetric and monotone functions

A logic function is said to be totally symmetric iff it remains unchanged for any permutation
of its variables; partial symmetry exists when just a subset of the variables can be permuted
without altering the function. A logic function is characterized as being monotone or unate iff it
is possible to rewrite it as a sum-of-products expression where each variable appears either in true
or in complemented form exclusively. If all variables are present in true form in the SoP, then the
function is called monotone increasing, and conversely monotone decreasing if all variables
appear in their complemented form.

Examples

c = xy ∨ xz ∨ yz (A.12)

s = xyz ∨ x y z ∨ x y z ∨ x y z (A.13)

h = x ∨ y z = xy ∨ xz (A.14)

m = xz ∨ yz (A.15)

n = xy ∨ xz (A.16)

o = wx ∨ yz = w y ∨ w z ∨ x y ∨ x z (A.17)

function name symmetric monotone
c (A.12) 3-input majority (maj) totally increasing
s (A.13) 3-input exclusive or (xor) totally no
h (A.14) anonymous partially increasing
m (A.15) 2-way multiplexer (mux) no no
n (A.16) anonymous no yes
o (A.17) anonymous partially decreasing

�

A.2.9 Threshold functions

Many combinational functions can be thought to work by counting the number of variables that
are at logic 1 and by producing either a 0 or a 1 at the output depending on whether that figure
exceeds some fixed number or not.10 Perforce, all such threshold functions are totally symmetric
and monotone. Examples include or and and functions along with their inverses.

Probably more interesting are the majority function (maj) and its inverse the minority function
(min) that find applications in adders and as part of the Muller-C element. maj and min gates
always have an odd number of inputs of three or more. This is because majority and minority
are mathematically undefined for even numbers of arguments and are of no practical interest for a
single variable. In the case of a 3-input maj gate (A.12), the condition for a logic 1 at the output
is #1s ≥ 2 as reflected by its icon in fig.A.6c.

1 0 Incidentally, observe the relation to artificial neural networks that make use of similar threshold functions.
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A.2.10 Complete gate sets

A set of logic operators is termed a (functionally) complete gate set if it is possible to implement
arbitrary combinational logic functions from an unlimited supply of its elements.

Examples and counterexamples

Complete gate sets include but are not limited to the following sets of operations: {and, or, not},
{and, not}, {or, not}, {nand}, {nor}, {xor, and}, {maj, not}, {min}, {mux}, and {inh}. As
opposed to these, none of the sets {and, or}, {xor, eqv}, and {maj} is functionally complete.9

�

Though any complete gate set would suffice from a theoretical point of view, actual component and
cell libraries include a great variety of logic gates that implement up to one hundred or so distinct
logic operations to better support the quest for density, speed, and energy efficiency.

Observe that several complete gate sets have cardinality one, which means that a single operator
suffices to construct arbitrary combinational functions. One such gate that deserves special attention
is the 4-way mux. It is in fact possible to build any combinational operation with two arguments
from a single such mux without rewiring. Consider the circuit of fig.A.5, where the two operands
are connected to the multiplexer’s select inputs. For each 4-bit value that gets applied to data lines
p3 through p0 , the multiplexer then implements one out of the 16 possible switching functions listed
in table A.4. The 4-way mux thus effectively acts as a 2-input gate the functionality of which is
freely programmable from externally.

Table A.4 The 16 truth tables and switching functions implemented by the circuit of fig.A.5.

assignment function implemented assignment function implemented
p3 p2 p1 p0 p3 p2 p1 p0

x 1 1 0 0 x 1 1 0 0

y 1 0 1 0 y 1 0 1 0

p setting q = name p setting q = name
0 0 0 0 0 0 null, never 15 1 1 1 1 1 unity, always
1 0 0 0 1 x ∨ y nor, Pierce 14 1 1 1 0 x ∨ y or, sum
2 0 0 1 0 x y inh x, inhibit 13 1 1 0 1 x ∨ y y implies x

4 0 1 0 0 x y inh y, inhibit 11 1 0 1 1 x ∨ y x implies y

3 0 0 1 1 x not x 12 1 1 0 0 x pass x

5 0 1 0 1 y not y 10 1 0 1 0 y pass y

6 0 1 1 0 x ⊕ y xor, antival. 9 1 0 0 1 x ⊕ y eqv, equival.
7 0 1 1 1 x y nand, Sheffer 8 1 0 0 0 x y and, product

A.2.11 Multi-output functions

All examples presented so far were single-output functions. We speak of a multi-output function
when a vector of several bits is produced rather than just a scalar signal of cardinality one.
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Fig. A.5 A programmable logic gate. 4-way multiplexer (d) with the necessary settings for making it work as

an inverter (a), a 2-input nand gate (b), and as an xor gate (c).

Example

The full adder is a simple multi-output function of fundamental importance. It adds two binary
digits and a carry input to obtain a sum bit along with a carry output. With x, y, and z denoting
the three input bits, (A.12) and (A.13) together describe the logic functions for the carry-out bit c

and for the sum bit s respectively.
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Fig. A.6 Full adder. Icon (a), Karnaugh maps (b), and two circuit examples (c,d). More sophisticated circuit

examples are discussed in section 8.1.7

�

A.2.12 Logic minimization

Given the infinitely many solutions, we must decide

“How to select an appropriate set of logic equations for some given combinational function”

Metrics for logic complexity and implementation costs

The goal of logic minimization is to find the most economic circuit for a given logic function under
some speed and energy constraints. The criterion for economy depends on the technology targetted.
Minimum package count used to be a prime objective at a time when electronics engineers were
assembling digital systems from SSI/MSI components. Today, it is the silicon area occupied by gates



744 Fundamentals

and wiring together that counts for full-custom ICs. The number of gate equivalents (GEs) is more
popular in the context of field-programmable logic (FPL) and semi-custom ICs.

From a mathematical point of view, the number of literals is typically considered as the criterion
for logic minimization. By literal we refer to an appearance of a logic variable or of its complement.
As an example, the right-hand side of (A.3) consists of seven literals that make up three composite
terms although just three variables are involved.

An expression is said to contain a redundant literal if the literal can be eliminated from the
expression without altering the truth table. Equation (A.18), the Karnaugh map of which is shown in
fig.A.7a, contains several redundant literals. In contrast, none of the eleven literals can be eliminated
from the right-hand side of (A.19), as illustrated by the Karnaugh map of fig.A.7b. The concept of
redundancy applies not only to literals but also to composite terms.

Redundant terms and literals result in redundant gates and gate inputs in the logic network. They
are undesirable due to their impact on circuit size, load capacitances, performance, and energy
dissipation. What’s more, redundant logic causes severe problems with testability, essentially
because there is no way to tell whether a redundant gate or gate input is working or not by
observing a circuit’s behavior from its connectors to the outside world.

Minimal versus unredundant expressions

Unredundant and minimal are not the same. This is illustrated by (A.20), an equivalent but more
economical replacement for (A.19) which gets along with just eight literals. Its Karnaugh map is
shown in fig.A.7c.

Observation A.4. While a minimal expression is unredundant by definition,

the converse is not necessarily true.

e = x y z t ∨ x z t ∨ x y z t ∨ xz ∨ x y z (A.18)

e = x y z ∨ x z t ∨ yzt ∨ xz (A.19)

e = x y z ∨ x y t ∨ xz (A.20)
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Fig. A.7 Three Karnaugh maps for the same logic function. Redundant form as stated in logic equation (A.18)

(a), unredundant form as in (A.19) (b), and minimal form as in (A.20) (c).

Note that for obtaining the minimal expression (A.20) from the unredundant one (A.19), a detour
via the canonical expression is required, during which product terms are first expanded and then
regrouped and simplified in a different manner. Thus, there is more to logic minimization than
eliminating redundancy.



A.2 THEORETICAL BACKGROUND OF COMBINATIONAL LOGIC 745

Next consider function d tabulated in fig.A.8. There are two possible sum-of-products expressions
shown in equations (A.21) and (A.22), both of which are minimal and use six literals. The minimal
product-of-sums form of (A.23) also includes six literals. We conclude

Observation A.5. A minimal expression is not always unique.

d = x y ∨ xz ∨ y z (A.21)

d = xy ∨ x z ∨ y z (A.22)

d = (x ∨ y ∨ z)(x ∨ y ∨ z) (A.23)
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Fig. A.8 Karnaugh maps for equations (A.21) through (A.23), all of which implement the same function with

the same number of literals.

Multilevel versus two-level logic

Observation A.6. While it is possible to rewrite any logic equation as a sum of products and as

a product of sums, the number of literals required to do so grows exponentially with the number of

input variables for certain logic functions.

The 3-input xor function (A.13), for instance, includes 12 literals. Adding one more argument t

asks for 8 minterms, each of which takes 4 literals to specify, thereby resulting in a total of 32
literals. In general, an n-input parity function takes 2(n−1) · n literals when written in two-level
logic form. Asymptotic complexity is not the only concern, however. Multilevel circuits are often
faster and more energy-efficient than their two-level counterparts.

The process of converting a two-level into an equivalent multilevel logic equation is referred to as
factoring, aka structuring, and the converse as flattening.

x y z ∨ x y z ∨ x y z ∨ x y z
factoring

�
flatten ing

x y (z ∨ z) ∨ x (yz ∨ yz) (A.24)

Multi-output versus single-output minimization

Probably the most important finding on multi-output functions is

Observation A.7. Minimizing a vectored function for each of its output variables separately does

not, in general, lead to the most economical solution for the overall network.

This is nicely illustrated by the example of fig.A.9. Solution (a), which is obtained from applying the
Karnaugh method one output bit at a time, requires a total of 15 literals (and 7 composite terms).
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By reusing conjunctive terms for two or more bits, solution (b) makes do with only 9 literals (and
7 composite terms). In terms of gate equivalents, overall circuit complexity amounts to 12.5 and
9.5 GEs if all ors and ands get remapped to nand gates by way of bubble pushing.
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Fig. A.9 A multi-output function minimized in two different ways.

Manual versus automated logic optimization

Observation A.8. Manual logic optimization is not practical in VLSI design.

For real-world multi-output multilevel networks, the solution space of this multi-objective opti-
mization problem (area, delay, energy) is way too large to be explored by hand. Also, solutions are
highly dependent on nasty details (external loads, wiring parasitics, cell characteristics, etc.) that
are difficult to anticipate during logic design. Logic minimization on the basis of and and or gates
with unit delays is a totally unacceptable oversimplification.
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A.3 Circuit alternatives for implementing combinational logic

A.3.1 Random logic

The term is misleading in that there is nothing undeterministic to it. Rather, random logic refers
to networks built from logic gates the arrangement and wiring of which may appear arbitrary at
first sight. Examples have been given earlier, see fig.A.9 for instance. Standard cells and gate arrays
are typical vehicles for implementing random logic in VLSI.

As opposed to random logic, tiled logic exhibits a regularity immediately visible from the layout
because subcircuits get assembled from a small number of abutting layout tiles. As tiling combines
logic, circuit, and layout design in an elegant and efficient way, we will present the most popular
tiled building blocks.

A.3.2 Programmable logic array (PLA)

A PLA starts from two-level logic and packs all operations into two adjacent rectangular areas
referred to as and- and or-plane respectively. Each input variable traverses the entire and-plane
both in its true and in its complemented form, see fig.A.10. A product term is formed by placing or
by omitting transistors that act on a common perpendicular line. Each input variable participates
in a product in one of three ways:

true 1

complemented 0

not at all -

Parallel product lines bring the intermediate terms to the or-plane where they cross the output
lines. The sums are then obtained very much like the products, the only difference being that
products are not available in complemented form, so that any product enters a sum in either of two
ways, namely

true 1

not at all 0

The general arrangement as two pairs of interacting meshes yields a very compact layout. What’s
more, a PLA is readily assembled from a small set of predefined layout tiles for any logic function.
The criteria for logic minimization are not the same as for random logic. The PLA’s width being
fixed by the number of input and output variables, PLA minimization software11 must act on the
number of conjunctive terms to minimize layout height.

Example

Figure A.10 shows a PLA-style circuit that implements the logic function of fig.A.9c. For the
sake of simplicity, switches and resistors have been substituted for the MOSFETs of an actual

1 1 Such as the seminal espresso [472], which also introduced the above notation for capturing PLA codings.
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circuit.12 When comparing this with the random logic of fig.A.9d, keep in mind that a PLA gets
penalized on such a small function by the overhead associated with complementing all inputs,
distributing signals over both planes, and restoring voltages to proper levels.

0

OR-plane

1

tile

tiletile tile

tile
tile

u v w

programmable
interaction

product
line

PLA

AND-plane

tile

tile

tx zy

tiletile tile tile
input lines

0

-

1

Fig. A.10 The circuit organization of a nand-nand-type PLA drawn with switches and resistors instead of

transistors. The function implemented is the same as in fig.A.9.

Using the notation introduced before, the PLA’s configuration and programming are expressed in
a concise manner as follows.

and-plane or-plane
x y z t u v w

1 1 1 - 1 0 1

0 1 - 1 0 1 1

0 0 0 - 1 1 1

�

Owing to their superior layout densities, PLAs used to be popular building blocks for combinational
functions with many inputs and outputs. They lost momentum when automatic synthesis of random
logic and multiple metal layers became available, but the underlying concepts continue to play an
important role in field-programmable logic (FPL).

1 2 In fig.A.10, the switches in both planes work against static pull-up loads, which circuit style is a departure from
the truly complementary CMOS style presented in section 8.1. Transistor networks trimmed down in this or a
similar fashion are typical for PLAs.
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A.3.3 Read-only memory (ROM)

While both and- and or-planes are configurable in a PLA, programming of a ROM is confined
to the or-plane.13 The role of the fixed and-plane is assumed by a built-in address decoder that
computes all possible minterms from the input variables, see fig.A.11. A ROM is an attractive option
when full decoding of inputs is indeed required, but otherwise remains of limited appeal because its
size doubles for each extra input or address bit.

programmable OR-plane

data D2 D1 0D

ROM

ad
dr

es
s 

de
co

de
r

1 
ou

t o
f 8

ad
dr

es
s A0

A2

1A

word line

bit line BL

WL

fixed AND-plane

output
buffers

programmable
interaction

Fig. A.11 General ROM arrangement (8 words by 3 bits, grossly simplified).

A.3.4 Array multiplier

Two-level logic is extremely uneconomic for addition, multiplication, and other functions where the
SoP includes many minterms that cannot be merged. Early IC designers have thus extended the
tiling approach to multilevel logic and specifically to various forms of multipliers.

Circuit organization is patterned after the classic procedure tought at elementary school whereby
multiplier and multiplicand are placed on two orthogonal sets of parallel lines, with a 1-digit by
1-digit multiplication being carried out at every intersection. Addition is distributed over the grid
by including an adder at every intersection and by having each multiply–add operation propagate
its sum and carry to two out of the four adjacent tiles for further processing: the sum towards the
bottom and the carry towards the left. The entire multiplier thus consists of largely identical tiles
arranged as a two-dimensional array. Communication within the array remains strictly local, which
minimizes parasitic capacitances and interconnect delays.

1 3 Make sure you understand that, in spite of its name, a ROM is a purely combinational function or — which is
the same thing — a memoryless subcircuit unable to hold a state. Further note that the term programmable
array logic (PAL) denotes a third breed of tiled two-level logic where the and-plane is programmable and the
or-plane is predefined.
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This is where the commonalities between the various types of array multiplier end. Popular exam-
ples include the Braun multiplier for unsigned and the Bough–Wooley multiplier for signed
numbers. Booth-recoded multipliers have also been constructed along these lines. While tiled
multipliers have fallen behind much as PLAs have, their basic circuit organization lives on in random
logic implementations.

A.3.5 Digest

Figure A.12 summarizes the circuit options for implementing a combinational function. Tiled logic
does not waste nearly as much resources for wiring as cell-based random logic does because signals
are brought from one layout tile to the next directly. Another benefit of ROMs and PLAs is that any
reprogramming is limited to minor modifications to one metal mask or two (as long as the array’s
overall capacity is not exceeded), whereas any modification to random logic necessitates redoing
several, if not all, mask levels and is bound to affect the subcircuit’s footprint.

Conversely, the area overhead associated with auxiliary circuits (such as input and output circuitry,
decoders, and pull-ups) makes ROMs and PLAs uneconomical for small subfunctions. Developing a
layout generator also represents an important investment, part of which must be renewed with each
process generation. Only ROMs continue to be routinely supported as combinational macrocells
today (together with RAMs for memory functions).

One reason is that the availability of multiple metal layers has narrowed down the difference between
cell-based and tiled logic in terms of layout density. Probably the most important argument in favor
of random logic is the fact that automatic HDL synthesis and multilevel logic optimization during
the 1990s matured into powerful and comprehensive software tools that cover not only combinational
but also sequential circuits.

Assembling look-up tables, arithmetic logic units, and the alike from abutting layout tiles is no
longer an option unless the word widths involved are very large and unless maximum density,
performance, and/or energy efficiency are sought in spite of limited wiring resources.

single-output function

multi-output function

two-level
logic

multilevel
logic

AND-plane

OR-plane

both planes

programmable

programmable

programmable

PAL

PLA

ROM

array-style
computational

unit

e.g. parallel
multiplier

random
logic

of no
prac-
tical

impor-
tance

cell-based tiled layout
design design

Fig. A.12 Design space for implementing combinational functions.
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A.4 Bistables and other memory circuits

Bistable subcircuits are essential building blocks of sequential circuits. What they all have in com-
mon is the ability to store one bit of information by assuming either of two stable states. An almost
infinite variety of circuit implementations has been developed over the years using various design
styles and fabrication technologies. As a consequence, designations for bistables proliferate, which
continues to generate confusion today. Yet, this is totally unnecessary.

Observation A.9. From the perspectives of architecture and logic design, it suffices to consider a

bistable’s behavior and to ignore everything about its internal structure and operation.

We are going to present a simple taxonomy that rests on behavioral criteria exclusively before
deriving a coherent and unambiguous naming convention from that.

Clocked storage elements clearly distinguish between input terminals that determine what state
transitions shall take place and others which determine when such transitions must occur.
Any terminal that belongs to the latter category is referred to as a clock input.14

Unclocked storage elements, in contrast, do not evidence such a separation.

Table A.5 Taxonomy of bistables as a function of their behavior.

B i s t a b l e
clocked unclocked

Behavior edge-triggered level-sensitive
Data inputs at any active while clock is at any time
get evaluated clock edge at active level

Name flip-flop latch no single name
Examples D-flip-flop D-latch SR-seesaw

E-flip-flop Muller-C
T-flip-flop MUTEX
JK-flip-flop snappera

Clock terminal identified by ∧ identified by � none

a Discussed in section 8.4.1.

Clocked bistables must be subdivided further into edge-triggered and level-sensitive ones. In any
edge-triggered bistable, it is a transition of the clock signal that causes the data present at the
input terminal to be admitted into the circuit and to be stored there.

1 4 Most clocked bistables are driven from a single clock. Although not really popular with circuit designers, some
bistables require a double-rail clock of two signals CLK and CLK driven by complementary waveforms. We are not
concerned with this subordinate detail here.
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The behavior of level-sensitive memory circuits is slightly more complex in that such circuits may
be in pass or in hold mode depending on the logic value of the clock. In pass mode, data are simply
propagated from the input to the output, which is why this mode is also termed transparent mode.
In hold mode, output data are kept frozen and input data are being ignored, which explains why
the device is sometimes said to be opaque.

Throughout this text, we will consistently refer to a bistable that is both clocked and edge-triggered
as a flip-flop. Conversely, we reserve the word latch for any bistable that is clocked and level-
sensitive. The phrase clocked bistable is used as a generic term for both.15

Table A.5 puts the names and behaviors of all popular bistables into perspective.

A.4.1 Flip-flops or edge-triggered bistables

The data or D-type flip-flop

The D-type flip-flop exhibits the simplest behavior an edge-triggered bistable can have. Most engi-
neers find it easiest to think in terms of D-flip-flops and to convert their designs into other forms,
if necessary.

The basic D-flip-flop has a clock terminal CLK and a data input D. The output datum is available
in true form Q, in complemented form Q, or both. Similarly, the clock can induce a state transition
either on its rising or on its falling edge, referred to as active edge.16 Please see fig.A.13 for
the truth table of a basic rising-edge-triggered D-type flip-flop. Icon and signal waveforms are also
shown along with the causality relation.

CLK D Q Q

0 - Q Q keep state unchanged
1 - Q Q idem

↓ - Q Q idem

↑ 0 0 1 adopt D as new state
↑ 1 1 0 idem

positive-edge-
triggered

a)

CLK

D Q

b)

CLK

D

Q

Fig. A.13 Rising-edge-triggered D-flip-flop. Truth table (left), icon (a), and waveforms (b).

A vast collection of more elaborate flip-flop variations is obtained from the basic D-type by extending
its functionality in numerous directions and by combining these new features.

Initialization facilities

An extra input found on most flip-flops makes it possible to put the circuit into some predefined
start state. Such initialization mechanisms come in two flavors.

1 5 Be warned that many sources use either word indiscriminatly for any kind of bistable. The term latch, in
particular, is often meant to include some forms of unclocked bistables, see footnote 23. Also, the fact that
latches have a pass mode is sometimes emphasized by calling them transparent latches, although this property
is shared by all latches. For the sake of clarity and simplicity, we refrain from such practices.

1 6 As shown in section 8.2.5, flip-flops that trigger on either edge exist, but these are not widely used.
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Both synchronous clear CLR and synchronous load LOD inputs affect flip-flop operation solely on
the active clock edge. As the names say, the former imposes logic state 0 while the latter brings the
flip-flop into state 1. Either one can be considered as just another data input that masks the regular
data input D, see table A.6. Any basic D-type flip-flop is easily upgraded to include a synchronous
clear or load by adding one or two gates in front of it.

The asynchronous reset RST and the asynchronous set SET, in contrast, have an immediate effect
on the flip-flop’s operation because they directly act on the state-preserving memory loop with
no intervention from the clock, see table A.6.17 This also explains why the asynchronous (re)set
mechanism must be incorporated into the elementary flip-flop circuit itself, there is no way to add
it later. We therefore conclude

Observation A.10. A D-type flip-flop with an asynchronous reset input forms a fundamental

building block from which any more sophisticated flip-flop, counter slice, or other edge-triggered

bistable can be assembled with the aid of a few extra logic gates.18

Table A.6 Truth tables of rising-edge-triggered D-type flip-flops with synchronous clear (left)
and with active-low asynchronous reset (right).

CLK CLR D Q Q RST CLK D Q Q

0 - - Q Q keep state unchanged 0 - - 0 1 enter state 0
1 - - Q Q idem 1 0 - Q Q keep state unchanged
↓ - - Q Q idem 1 1 - Q Q idem

↑ 1 - 0 1 enter state 0 1 ↓ - Q Q idem

↑ 0 0 0 1 adopt D as new state 1 ↑ 0 0 1 adopt D as new state
↑ 0 1 1 0 idem 1 ↑ 1 1 0 idem

If a bistable is equipped with two conflicting initialization inputs, i.e. with CLR and LOD or with RST

and SET, it must be specified which of the two takes precedence over the other.19 Although flip-flops
with both asynchronous reset and asynchronous set inputs exist, there is no meaningful application
for them in synchronous designs.

Scan facility

An effective and popular way to ensure the testability of sequential logic is to replace all ordinary
D-type flip-flops with special scan flip-flops and to connect them in such a way as to make them
cooperate like a shift-register while in scan test mode. A scan flip-flop essentially includes a select
function at the input. Depending on the logic value present at the scan mode control terminal SCM,

1 7 Incidentally, note that asynchronous (re)set signals often are of active-low polarity for better protection against
noise and other fugitive events. See section 10.4.4 for more details.

1 8 Examples of how this can be done are given in section 8.2.4 of the main text.
1 9 Simultaneous activation of asynchronous set and reset inputs of equal precedence levels is disallowed as this

could lead to irregular behavior — similarly to that observed when a seesaw is forced into the forbidden state —
and/or to anomalous static power dissipation.
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the data admitted into the flip-flop are taken either from the data input D (during normal operation)
or from the scan input SCI (during scan test), see table A.7.20

Table A.7 Truth table of a rising-edge-triggered scan flip-flop.

CLK SCM SCI D Q Q

0 - - - Q Q keep state unchanged
1 - - - Q Q idem

↓ - - - Q Q idem

↑ 0 - 0 0 1 adopt D as new state, “normal operation mode”
↑ 0 - 1 1 0 idem

↑ 1 0 - 0 1 adopt SCI as new state, “scan mode”
↑ 1 1 - 1 0 idem

Enable/disable facility

Not all flip-flops in a circuit need to be updated at every active clock edge; many of them must
conserve their state for many consecutive clock cycles. This requires that flip-flops be equipped with
a mechanism to enable or disable state transitions via a special control input ENA, see table A.8.
A data flip-flop is readily extended to become a so-called enable or E-type flip-flop; it suffices to
add a multiplexer in front of its data input that feeds the uncomplemented output back as long as
the enable signal remains inactive, see fig.6.26 for an illustration.

Table A.8 Truth table of a rising-edge-triggered E-type flip-flop.

CLK ENA D Q Q

0 - - Q Q keep state unchanged
1 - - Q Q idem

↓ - - Q Q idem

↑ 0 - Q Q idem

↑ 1 0 0 1 adopt D as new state
↑ 1 1 1 0 idem

The toggle or T-type flip-flop

A toggle flip-flop is a bistable that changes state at every active clock edge, see table A.9. It is
obtained from a D-flip-flop by providing an inverting feedback from the true output back to the
data input. Similarly to the D-type, the T-flip-flop is easily upgraded to include an enable input,
in which case toggling takes place only if the enable is active at the active clock edge.

The nostalgia or JK-type flip-flop

In lieu of a single data input D, the JK-flip-flop has two inputs labeled J and K that, together,
determine the state the bistable is going to enter at the next active clock edge, see table A.10. The

2 0 Please refer to fig.6.6 in the main text for a schematic and the very basics of scan path testing.
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Table A.9 Truth table of a rising-edge-triggered T-type flip-flop.

CLK Q Q

0 Q Q keep state unchanged
1 Q Q idem

↓ Q Q idem

↑ Q Q change state, “toggle”

JK-flip-flop is essentially a leftover from the days of SSI that is kept in today’s cell libraries mainly
for reasons of compatibility. What made it popular is its versatility. Permanently tying J and K

to logic 1 results in a T-type flip-flop. A toggle flip-flop with enable is obtained when J and K are
connected to form a common input. D-type behavior asks for K to be the inverse of J, which then
serves as data input D.

Table A.10 Truth table of a rising-edge-triggered JK-type flip-flop.

CLK J K Q Q

0 - - Q Q keep state unchanged
1 - - Q Q idem

↓ - - Q Q idem

↑ 0 0 Q Q idem

↑ 0 1 0 1 adopt J = K as new state
↑ 1 0 1 0 idem

↑ 1 1 Q Q change state, “toggle”

A.4.2 Latches or level-sensitive bistables

The data or D-type latch

Very much like a basic flip-flop, a basic latch features just a data input D and a clock input CLK.
Please note the latter terminal is often referred to as “enable” E or G in datasheets and icons.
However, as this input carries the only signal that defines when the latch is to leave its present state
and when it is to enter a new one, it clearly must be understood and handled as a clock.

CLK D Q Q

0 - Q Q hold output
1 0 0 1 pass D

1 1 1 0 idem

a)

passes while high
holds while low

CLK

D Q

b)

CLK

D

Q

pass
hold

CLK Qto D Qto D Qto

Fig. A.14 D-latch transparent on logic 1. Truth table (left), Icon (a), and waveforms (b).
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D-type latches find applications not only as subcircuits of flip-flops but also as bistable memory
devices in their own right when used in conjunction with a level-sensitive clocking scheme.21

A.4.3 Unclocked bistables

Unclocked bistables differ from their clocked counterparts in that there is no clock terminal that
might trigger a state transition without, at the same time, also contributing towards defining the
next state. Put in simple words, there is no distinction between when and what inputs.

Observation A.11. Any information stored in an unclocked bistable is vulnerable to spurious

events such as glitches, runt pulses, and other noise on the inputs.

This is because the absence of a dedicated clock input implies that a transition at some data or
control terminal may spark off a state change at any time. The situation sharply contrasts with
clocked bistables, where there exists no input other than the clock and an optional asynchronous
(re)set that can possibly cause the state to flip.

The SR-seesaw

Any two inverting gates interconnected in such a way as to form a loop exhibit bistable behavior
because there is positive feedback and zero latency. Let us begin by analyzing two cross-coupled
nor gates. The truth table of the circuit shown in fig.A.15 exposes two alarming peculiarities.

Firstly, the input vector S = R = 1 causes the two output terminals to assume identical values,
thereby violating the rule that outputs Q and Q must always assume complementary values. The
situation is often referred to as the forbidden state.

Secondly, the outcome is unpredictable when the circuit is switched from the forbidden state to
the data storage condition. In the occurrence, when inputs S and R simultaneously change from 1

back to 0, nodes Q and Q will eventually reassume complementary values, but there is no way to tell
whether they will settle to 01 or to 10 after abandoning the forbidden 00 state.22

S R Q Q

0 0 Q Q maintain output, data storage condition
0 1 0 1 enter state 0, “reset”
1 0 1 0 enter state 1, “set”
1 1 0 0 noncomplementary output, “forbidden state” R

S

Q

Q

Fig. A.15 Seesaw built from nor gates. Truth table (left), circuit example (right).

2 1 See sections 8.2.1, 6.2.4, and 6.2.5 which corroborate the notion of terminal CLK as a clock rather than as an
enable input.

2 2 This is because the two stable states are separated by a thin line of metastable equilibrium. Any bistable that is
brought close to that line must revert to one stable state or the other before normal operation resumes. However,
as explained in section 7.4, the course is undeterministic and the time it takes is unbounded.
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An alternative circuit is obtained from nand gates, fig.A.16, yet analysis yields analogous results.
As both circuits exhibit bistable behavior but operate with no intervention from a clock, we refer
to them as level-sensitive SR-type seesaws or simply as seesaws.23

R S Q Q

0 0 1 1 noncomplementary output, “forbidden state”
0 1 0 1 enter state 0, “reset”
1 0 1 0 enter state 1, “set”
1 1 Q Q maintain output, data storage condition

Q
S

R
Q

Fig. A.16 Seesaw built from nand gates. Truth table (left), circuit example (right).

Although seesaws are at the heart of many latch and flip-flop circuits, naked zero-latency feedback
loops are unsuitable for data storage in synchronous designs because of numerous shortcomings they
suffer from.24 Safe and useful applications of seesaws are very limited and include the generation
of non-overlapping clock signals and the debouncing of mechanical contacts.

The edge-triggered SR-seesaw

As opposed to the seesaws of figs.A.15 and A.16, the set and reset inputs are edge-triggered rather
than level-sensitive. As a consequence, there is no such thing as a forbidden state with noncomple-
mentary output values. Still, the outcome remains unpredictable when both inputs transit from 0

to 1 in overly rapid succession. Also, with two flip-flops, the circuit of fig.A.17b is more costly in
terms of transistor count than any other bistable discussed in this section.

The Muller-C element

The Muller-C element is a bistable with one output and two interchangeable inputs. The output
immediately assumes whatever value the two inputs agree on, but preserves its past value when the
two input values differ. The behavior can be likened to hysteresis or to a majority seesaw. The idea

2 3 SR is just an acronym for set–reset. We have coined the name seesaw to avoid the confusion that arises when
the more popular terms (asynchronous) SR-flip-flop, SR-latch, S R-latch, and nor|nand-latch are being used. As
shown in table A.5, we make it a habit to distinguish among latches, flip-flops, and unclocked bistables.

2 4 As will be explained in section 5.4, synchronous circuits boast a clear and consistent separation into signals
that trigger state changes and others that determine the sequence of states. This separation is not supported
by unclocked bistables, which makes them vulnerable to hazards and may render their behavior unpredictable.

2 5 Signal transition graphs (STGs) are extremely helpful for describing the behavior of asychronous circuits and
controllers. Each node stands for an event such as a signal transition. A rising edge is identified by an appended
+ and a falling edge by a -. The updating of data and the withdrawal of data — returning to a high-impedance
condition, for instance — are also considered to be events. Each solid edge captures a cause/effect relationship
implemented within the subcircuit being modelled while a dashed edge indicates the waiting for a condition to
be satisfied by the surrounding circuitry. The position of all marks reflects the present state of the circuit. STGs
belong to a subclass of Petri nets known as “marked graphs” and obey the same rules: For an event to take
place, each incoming edge must carry a mark. When the transition actually fires, those marks get absorbed and
a new mark is placed on every outgoing edge. The number of marks does not, therefore, necessarily remain the
same.



758 Fundamentals

S R Q Q

0 0 Q Q keep state unchanged
0 1 Q Q idem

1 0 Q Q idem

1 1 Q Q idem

↑ - 1 0 enter state 1, “set”
- ↑ 0 1 enter state 0, “reset”

a)

S Q

RQ

c)

S−

S+ Q+

R+Q−

R−

b)

D Q

Q

CLK

RST

S

DQ

Q

RST

CLK R

P

QQ

Fig. A.17 Edge-triggered seesaw. Truth table (left), icon (a), circuit example (b), and signal transition graph

(STG) (c).25

is easily generalized to more than two inputs. One may also observe that the Muller-C behaves like
an and-gate while the output is low, and like an or-gate while the output is high.

Table A.11 Truth table of Muller-C element.

standard form with B inverted
A B C A B C

0 0 0 enter state 0, “reset” 0 0 C maintain output
0 1 C maintain output 0 1 0 enter state 0, “reset”
1 0 C maintain output 1 0 1 enter state 1, “set”
1 1 1 enter state 1, “set” 1 1 C maintain output

Some circuit implementations combine logic gates into a zero-latency feedback loop, the most elegant
solution being with a 3-input majority gate as shown in fig.A.18c. Other circuits use a memory
element of four transistors reminiscent of a snapper, see fig.A.18d.26

Similarly to seesaws, the Muller-C must not be used as part of synchronous designs because of
the absence of a clock input. It finds useful applications for the processing of handshake signals in
self-timed systems, however [474] [134].

The mutual exclusion element

Also known as interlock element, the mutual exclusion element — or MUTEX for short — features
two symmetric inputs R1 and R2 that are associated with outputs G1 and G2 respectively. The
two outputs are never active at the same time, see table A.12. At rest, both inputs are inactive,
R1 = R2 = 0, and so are the outputs. When a positive impulse arrives on either input, it immediately

2 6 [473] compares four alternative circuits and concludes that the majority gate implementation is superior to the
weak feedback approach in terms of delay and, above all, energy efficiency.
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Fig. A.18 Muller-C element. Icon (a), alternative circuit examples (c,d), and signal transition graph (STG) (e).

Icon for a Muller-C with one inverting input (b).

gets propagated to the pertaining output. Should a second impulse arrive on the other input later,
it will not get passed on until the first impulse has come to an end. Impulses are thus propagated on
a “first come, first served” basis unless two of them arrive simultaneously, in which case the circuit
arbitrarily selects one to pass through and withholds the other.27

Table A.12 Truth table of the mutual exclusion element.

R1 R2 G1 G2

0 0 0 0 wait
0 1 0 1 let R2 pass
1 0 1 0 let R1 pass
1 1 G1 G2 let the earlier impulse pass, resolve conflict in case of simultaneous arrival

A look back tells us that the seesaw already had the capability of discriminating between two events
on the basis of their order of arrival. A comparison of the MUTEX truth table with those of figs.A.16
and A.15 reveals that they are in fact the same (except for swapped and inverted output or input
terminals respectively). Not surprisingly, one finds a level-sensitive seesaw in the mutual exclusion
circuit, see fig.A.19b for an example. What, then, are the four extra transistors good for?

Note, to begin with, that the seesaw waits in the forbidden state while R1 = R2 = 0. It then enters
either the set or the reset state depending on which input switches from 0 to 1 first. If both inputs
go high at the same time, or nearly so, the seesaw is subject to marginal triggering. The circuit
then lingers in a state of metastable equilibrium before eventually returning to a stable state and
letting one input through.28 From a practical point of view, it is important to make sure that the
output signals G1 and G2 remain logically unambiguous, free of glitches, and consistent with the
truth table in spite of the seesaw hovering in an irregular condition.

2 7 Note the analogy with two persons simultaneously arriving at the door of a closet or phone booth.
2 8 See footnote 22.
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Fig. A.19 Mutual exclusion element. Icon (a) and circuit example (b).

The four transistors must, therefore, be understood to form some kind of filter that defers the
circuit’s response until the seesaw has recovered. An observation made in [141], namely that the
closer in time a pair of rising transitions arrives on the inputs, the longer the MUTEX takes to
decide which of them to propagate, comes as no surprise from this perspective.

The mutual exclusion element plays a key role in a subcircuit known as an arbiter and is instrumental
in self-timed circuits.

A.4.4 Random access memories (RAMs)

As everyone knows, random access memories serve as short-term repositories for large quantities
of data. A RAM essentially consists of a large array of elementary binary storage cells that share
a common input/output or data port D, see fig.A.20. Any access has to occur one data word at a
time and the address A serves to identify the data word currently being accessed. As an example,
a 1 Mi × 4 bit RAM accepts and returns data as 4-bit quantities and requires a 20 bit address to
select one out of the 220 = 1 048 576 memory locations available.29

The overall organization bears many common traits with ROMs in that both the bit cell array and
the address decoder are assembled from a few layout tiles. What sets a RAM apart from a ROM
are bistable storage cells the state of which can be changed from the data port in very little time.
A write enable input WR/RD that controls the operation of the bidirectional input/output buffers for
write and read operation is another important departure.

Two techniques for implementing two-valued memory cells prevail today. In a static RAM
(SRAM), each bit of data is stored with the aid of two cross-coupled inverters that form a positive
feedback loop. The two stable points of equilibrium so obtained are identified with logic 0 and 1

respectively.
As opposed to this, it is the presence or absence of an electrical charge on a small capacitor

that reflects the binary information in a dynamic RAM (DRAM). The elementary bit cell is ut-
terly simple and small, thereby maximizing the memory capacity available from some given piece of

2 9 Kibi- (ki), mebi- (Mi), gibi- (Gi), and tebi- (Ti) are binary prefixes recommended by various standard bodies
for 21 0 , 22 0 , 23 0 , and 24 0 respectively because the more common decimal SI prefixes kilo- (k), mega- (M), giga-
(G), and tera- (T) give rise to ambiguity as 21 0 �= 103 . As an example, 1 MiByte = 8 Mibit = 8 · 22 0 bit.
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Fig. A.20 General RAM arrangement (8 words by 3 bits, grossly simplified).

silicon.30 The ensuing low costs per storage bit are the main reason why DRAMs dominate the
mass market for computer main memory in spite of their longer access times.

In either case, data storage is volatile exactly as for latches and flip-flops, which is to say that the
information is lost upon disruption of the supply voltage.

To save on the overall pin count, the address is typically time-multiplexed over a single address port
in commodity DRAM components, e.g. 20 bit as a pair of two 10 bit chunks. Some memories handle
write and read transfers over separate input and output ports. Also available are dual-port RAMs
that feature two independent I/O ports and that allow for two concurrent read/write transfers.

A.5 Transient behavior of logic circuits

Our discussion of logic circuits has, so far, been concerned with steady-state conditions and with
the end points of switching processes exclusively. As a consequence from delays and inertial effects,
circuits assembled from transistors, wires, and other real-world components exhibit various transient
phenomena, though. A key question is

“How do the outputs of digital (sub)circuits evolve from one value to the next?”

3 0 Schematic diagrams are given in section 8.3 along with further details.
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Let us first be concerned with transient waveforms as witnessed on an oscilloscope hooked to the
output of a combinational circuit before turning our attention to the underlying mechanisms that
cause them.

A.5.1 Glitches, a phenomenological perspective

One might naively expect that binary signals progress from one value to the next in monotonic
ramps. Experiments with real circuits reveal that this is not always the case, though. Any kind of
fugitive or nonmonotonic event on a binary signal is termed a glitch or a hazard.31 Transients are
sometimes catalogued from a purely phenomenological point of view, i.e. as a function of the signal
waveform observed.

steady state
before transition

steady state
after transition

transition
interval

runt pulses

fast edge

slow ramp
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any of these

common notation
unknown validdata valid
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in 0

in 1

static hazards

on rise

on fall

dynamic hazards

switching threshold

switching threshold

Fig. A.21 Transients classified according to their waveforms.

A static hazard manifests itself as a temporary deviation from its steady-state logic value that
occurs in response to some other signal change. If a signal moves back and forth before eventually
settling to a logic value opposite to the initial one, we speak of a dynamic hazard. As illustrated
in fig.A.21, both static and dynamic hazards may be classified in further detail.

The voltage excursion during a glitch does not necessarily make a full swing, stunted pulses being
observed as well. They occur when a signal has begun to change (order) just before an antagonistic
effect (counterorder) sets in, thereby preventing the first transition from completing. Such spurious
events, termed runt pulses, may render circuit operation unpredictable and irreproducible if they
reverse direction in the vicinity of the logic family’s switching threshold or if they cut across it for
a very short lapse of time before turning back.
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A.5.2 Function hazards, a circuit-independent mechanism

This first mechanism can be understood from the logic function alone and does not depend on any
specific circuit implementation. Consider the Karnaugh map in table A.13, for instance. When the
input vector xyz changes from 001 to 011, then the output h switches from 1 to 0. Conversely, the
output stays 1 when the input goes from 001 to 000.

Table A.13 A Karnaugh map that may give rise to function hazards.

yz

h 00 01 11 10

x 0 1 1 0 0

1 0 1 1 0

What happens when two or more inputs change at a time? As before, the final output value is
found in the appropriate field. The intermediate steps leading to that result will, however, depend
on the actual sequence of events at the input. Assume input vector xyz is to change from 001 to
111. Depending on whether variable x or y is switching first, the intermediate input is 101 or 011.
While in the first case output h remains at 1 throughout, it temporarily assumes value 0 in the
latter case and so gives rise to a static hazard on 1.

Similarly, three inputs that change shortly one after the other may give rise to a dynamic hazard,
e.g. when input xyz goes from 001 to 011 followed by 111 before settling on 110.

This type of transient output in response to two or more input transitions is termed function
hazard since it depends on the logic function exclusively. Whether the resulting hazards are of
static or of dynamic nature is immaterial in this context. Even the most humble binary functions,
such as and and or, exhibit function hazards for an appropriate sequence of input transitions.
n-cubes are most convenient for tracing function hazards, see fig.A.22.
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0(110)

x

y

z

g(x,y,z)

Fig. A.22 3-cube equivalent to table A.13.

One might argue that no intermediate steps and, therefore, also no function hazards would arise
if the switching of the inputs were to occur simultaneously and instantaneously. However, due to
dissimilar propagation delays along interconnect lines and within the logic circuitry itself, the result
is very much the same as if inputs had switched with a timewise offset.
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In practice, the waveforms that result from function hazards range from barely noticeable runt
pulses to multiple full-blown glitches, depending on how much the input signals are skewed and
depending on the logic and interconnect delays involved. Please note that the existence of a hazard
can also pass totally unnoticed from the output waveform, a situation which is sometimes referred
to as near hazard.31

A.5.3 Logic hazards, a circuit-dependent mechanism

The second mechanism differs from the first in that the switching of a single input variable suffices
to generate unwanted transients. Also, the emergence of transients cannot be explained from the
function alone but is related to a particular gate-level circuit structure. As an example, consider
fig.A.23, a circuit implementing the Karnaugh map of table A.13.

s 11 0

h

t 10 1

x

y

z

reconvergencefan-out

Fig. A.23 A simple combinational network exposed to logic hazards.

Let’s assume that input vector xyz changes from 101 to 001. The fact that the combinational
function maps either input to logic 1 may lead us to believe that the output would steadily remain
at that value. Yet, unequal propagation delays will cause the switching of inner nodes to be slightly
skewed. In the occurrence, the additional inverter in the upper path might be responsible for delaying
the switching of s with respect to t. Vector st then changes from 10 via 11 to 01 and output h switches
from 1 via 0 back to 1, which amounts to a static hazard. This behavior, which cannot be explained
as a function hazard because initial and final node are adjacent in the n-cube, is referred to as a
logic hazard.

Note, by the way, that the inverse input change, i.e. xyz from 001 to 101, produces no glitch since
vector st goes from 01 via 00 to 10, three values all of which result in a 1 at the output. This is not
a general characteristic of logic hazards, however.

From a more detailed point of view, logic hazards can be traced back to a combination of reconver-
gent fanout and a function hazard. Let us view the logic circuit of fig.A.23 as being composed of

3 1 Strictly speaking, the term glitch refers to visible waveforms while hazard should be used when relating to
the mechanisms that may, or might not, cause some combinational circuit to develop nonmonotonic transients.
This distinction is not always maintained, though, as the term hazard is often meant to include the observable
phenomena as well. Incidentally, note that a glitch can also have causes other than hazards such as ground
bounce, crosstalk, or electrostatic discharge (ESD), for instance.

There is an analogy with medicine in that the clinical picture with its observable symptoms (phenotype) is what
matters from a therapeutic and personal point of view. A more profound analysis, in contrast, is concerned
with why some living creatures have a higher predisposition to being struck by certain diseases than others do
(genotype). Whether the illness actually manifests itself in a given individual or not is of little interest from this
epidemiologic perspective.
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two subcircuits. For certain inputs yz, the subcircuit to the left will broadcast a change of variable
x to both of its output nodes s and t. The subcircuit to the right where these two signals recombine
is then confronted with multiple changing inputs, and output h may, or might not, develop a glitch,
depending on the circuit’s detailed timing characteristics.

j
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t

r

reconvergencefanout

x

y

z

Fig. A.24 Same circuit as in fig.A.23 with logic hazards suppressed.

Reconvergent fanout is a necessary but not a sufficient condition for logic hazards. This is docu-
mented by the circuit of fig.A.24, a modification of fig.A.23 obtained from adding two gates. When
xyz changes from 101 to 001 the new node r stays 0, thereby preventing output j from moving
away from its steady-state value. Both the original and the modified circuits contain reconvergent
fanout, but only the original one is glitching in response to a single input change. Exact conditions
for the existence of logic hazards are being given in [468]. As a rule, multilevel networks tend to
glitch more intensively than two-level networks because multiple paths of different lengths are more
likely to coexist. Similarly to what was found for function hazards, the waveforms caused by logic
hazards depend on timing and other circuit details.

The suppression of hazards in fig.A.24 has been bought at the expense of introducing redundant
hardware. In fact, the added gates — represented by two extra literals in the logic equation — do not
affect the logic function of the network and are, therefore, redundant. As redundant logic is almost
impossible to test and entails superfluous switching activity, this approach is not recommended in
the context of VLSI design.

A.5.4 Digest

Our findings on transient phenomena in combinational logic are best summed up as follows.

Observation A.12. Hazards may, or might not, bring forth glitches, extra signal events unwanted

and unaccounted for on the logic and higher levels of abstraction.

Whether a hazard actually materializes as a rail-to-rail pulse, as a runt pulse, or not at all depends
on circuit structure, gate and interconnect delays, load conditions, wiring parasitics, layout arrange-
ment, operating conditions (PTV), on-chip variations (OCVs), and other implementation details of
relatively minor importance.
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Observation A.13. A combinational circuit is susceptible to developing hazards

◦ if two or more input variables change at a time,32 or

◦ if the circuit includes reconvergent fanout and if one or more inputs change at a time.

In conclusion, all logic networks able to carry out some form of computation may give rise to hazards
and glitches. Needless to say, this includes almost all digital circuits of technical interest.33

A.6 Timing quantities

We have now learned about transient events that are associated with the working of combinational
logic. Next we want to abstract all relevant inertial effects of digital components and subcircuits to
a small set of quantities. Essentially, we want to unambiguously state when a signal is valid, when
it is liable to evolve, and when it is safe to update it without worrying about inner details of the
circuits concerned.

A.6.1 Delay quantities apply to combinational and sequential circuits

Note from fig.A.25 that it takes a pair of delay parameters to adequately describe how long transient
phenomena persist at the output of a digital circuit in response to a change at one of the circuit’s
inputs. One of these two timing quantities is very popular, while the other is not.

tpd Propagation delay.34 The time required to process new input from applying a stable
logic value at a (data or clock) input terminal until the output has settled on its final value,
i.e. until all transients in response to that input change have died out.

tcd Contamination delay, aka (output) retain delay and retain time.35 The inertial time
from altering the logic value at a (data or clock) input until a first change of value occurs at
the output results, i.e. until transients start in response to that input change. By definition,
0 ≤ tcd < tpd must hold for any physical component or (sub)circuit.

Contamination delay figures are rarely published in datasheets, though.36 As a stopgap, safety-
minded engineers often substitute the lower bound for the missing parameters by admitting
tcd ≡ 0. In doing so, causal behavior is taken for granted but any inertial effects are ignored.

3 2 “At a time” here means before all transients in response to the earlier input change have died out.
3 3 How to design safe circuits in spite of hazards is a ma jor topic of section 5.3.
3 4 Also referred to as “settling time” or “maximum delay” by some authors.
3 5 The terms “internal delay”, “output hold time”, and “minimum (propagation) delay” are synonyms found in

the literature. We do not support their usage as they lend themselves to confusions, however.
3 6 There are various reasons for this. For one thing, the concept of contamination delay is virtually unknown

to most practitioners and textbooks in digital electronics. For another thing, manufacturers are reluctant to
commit themselves to minimum values for any delay parameter because they reserve the right to upgrade their
fabrication processes at any time in search of better performance or lower manufacturing costs. Also, there is a
common industry practice known as down-binning, which implies shipping a faster device against an order for
a slower part. Because of its superior speed, a faster device is bound to exhibit a shorter contamination delay
than the original part.
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Fig. A.25 Transients revisited.

While this is a viable workaround in many cases, contamination delay is an essential quality
of any flip-flop.37

Observation A.14. Signal propagation along some path through a digital network is captured by a

pair of timing parameters termed contamination and propagation delay respectively. Their numeric

figures are chosen so as to enclose all transient phenomena (such as ramps, hazards, glitches and

runt pulses) that might occur at the output in response to some input change.

What does this mean for a digital circuit that features multiple input and/or output terminals,
a very commonplace situation? If the propagation delay of such a circuit is to be characterized
by a single quantity, it is obviously necessary to consider all of the terminals. Propagation delay
of vectored inputs and outputs is, therefore, determined by whichever signal takes the uppermost

3 7 Equating all contamination delays with zero is an inadmissible oversimplification that makes it impossible to
gain a more profound understanding of how clocked circuits operate. The functioning of a simple shift register,
for instance, cannot be explained under that assumption. Refer to section 6.2.2 for an in-depth analysis.
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amount of time to traverse a circuit (longest path). Conversely, it is the quickest travel time through
a logic network that determines the contamination delay of a circuit (shortest path).
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Fig. A.26 Timing characteristics of combinational subcircuits and of clocked bistables.

In the occurrence of a [level-sensitive] latch, the point of time when output data become valid
depends on the data input in some situations and on the clock input in others. Two propagation
delays are thus required to characterize the timing of a latch. tpd ld indicates the data-to-output
delay (from input D to output Q) while tpd lc states the clock-to-output delay (from CLK to Q).
The same argument obviously also applies to the contamination delay.

A.6.2 Timing conditions apply to sequential circuits only

The orderly functioning of sequential (sub)circuits such as flip-flops, latches, and memories requires
that they be driven by a clock of clear-cut waveform. Ambiguous voltages, glitches, sluggish ramps,
and stunted waveforms are unacceptable. Clocked circuits further impose dead times during which
the clock must remain stable before it may be allowed to toggle again. Two pairs of timing conditions
have been defined to capture the characteristics of an acceptable clock. Note that all four parameters
relate to no other signal than to the clock itself.

tpu clk min Clock minimum pulse width. The time span during which the clock signal
must firmly be kept either low or high before it is permitted to swing back to the opposite
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state. Shorter clock pulses must be avoided as a bistable is otherwise likely to behave in an
unpredictable way. In practice, it is often necessary to distinguish between

tlo clk min clock minimum pulse width low (MPWL), which refers to logic 0 (pause), and
thi clk min clock minimum pulse width high (MPWH), which refers to logic 1 (mark).

They combine into tpu clk min = max(tlo clk min , thi clk min ).

tra clk max Clock maximum ramp time. The timewise allowance for the clock to ramp from
one logic state to the opposite one. Driving a bistable with overly slow waveforms may cause
inner nodes to float or to be placed under control of conflicting drivers, which may lead to an
irrecoverable loss of data. To prevent this from happening, a pair of maximum transition or
ramp times is imposed on the clock.38

tri clk max clock maximum rise time refers to the transition from 0 to 1 while
tfa clk max clock maximum fall time is concerned with the inverse transition.

They combine into tra clk max = min(tri clk max , tfa clk max).

Any clocked (sub)circuit further imposes requirements on the timewise relationship between any of
its data inputs and the clock that is driving that (sub)circuit.

tsu Setup time. The lapse of time immediately before the active clock edge during which
an input is required to assume a fixed logic value of either 0 or 1 at the input of a clocked
(sub)circuit. The setup condition is here to make sure all inner nodes have settled to values
determined by new input data before the (sub)circuit locks into the corresponding state in
response to the subsequent active clock edge. Violating the setup requiremetn must be avoided
under any circumstance because bistables are otherwise likely to behave in an unpredictable
way.

tho Hold time. The lapse of time immediately after the active clock edge during which
data are required to remain logically unchanged at the input of a clocked (sub)circuit. The
hold condition assures that all inner nodes have properly settled so that the new state is
maintained even when the stimuli that caused the transitions in the first place have been
removed. Violating the hold requirement must be avoided for the reasons explained before.
Although either the setup or the hold time may assume a negative value for certain components
or (sub)circuits,39 tsu + tho > 0 always holds.

Observation A.15. Setup time and hold time together demarcate a brief lapse of time in the

immediate vicinity of the active clock edge. Their numerical values are chosen so as to guarantee

that data get stored and/or processed as intended under all circumstances.

3 8 There is another reason for doing so. Timing data of clocked subcircuits vary with the waveform of the driving
clock. Yet, for reasons of economy, it is common industrial practice to characterize flip-flops, latches, RAMs,
and the like for one typical clock ramp time, e.g. for tc l k r a = tc l k r i = tc l k f a = 50 ps. Driving them with a
clock waveform that exhibits much slower ramps will cause the actual parameter values of tp d , tc d , ts u , and th o

to significantly deviate from the figures published in datasheets and simulation models.
3 9 A negative hold time means that a data input is not required to preserve its value until after the active clock

edge for being properly stored in the (sub)circuit, but is free to resume new transient activities before that time.
Similarly, a negative setup time means that the input is allowed to switch until after the active clock edge.
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Any ambiguous or changing input during the aperture so defined is likely to expose any bistable
or other clocked (sub)circuit to marginal triggering and to cause it to fail in an unexpected and
unpredictable way.40 To prevent this from happening, the logic value must be kept constant and
logically well-defined throughout. In the case of a circuit with multiple input bits, such as a register,
every bit must remain stable either at 0 or at 1 throughout.

Bistables with extra control inputs and/or with multiple clocks impose additional timing conditions.
More specifically, asynchronous set and reset signals must not be released in the immediate vicinity
of an active clock edge otherwise exposing the bistable to marginal triggering.

tsu rst Recovery time, aka release time. Indicates by how much time the deactivation of an
asynchronous (re)set input must precede the active clock edge so as to allow a bistable to
unlock properly before taking up normal operation.

tho rst Home time is more suggestive than the popular synonym removal time. Indicates for
how much time an asynchronous (re)set input must remain activated following the active clock
edge in order to safely bring a bistable home into its reset state. If the asynchronous (re)set
is released too early, then chances are that the bistable will fall into some undetermined state
or a metastable condition.

Some datasheets explicitly specify recovery and home times while others refer to these quantities
as particular cases of setup and hold times.41

A.6.3 Secondary timing quantities

The timing quantities introduced so far suffice for modelling digital circuits. Yet, it is sometimes
convenient to define parameters that are derived from those primary quantities.

tcw Data-call window, aka aperture time, setup-and-hold window, and sampling time. The
overall time span during which data must maintain a constant and well-defined value at the
input of a memorizing (sub)circuit tcw = tsu + tho > 0.

tid Insertion delay. As the name suggests, this term denotes the extra delay that is inflicted
on a signal when a given (sub)circuit is being inserted into a signal’s propagation path. In the
case of a combinational circuit, insertion delay is the same as the propagation delay on the
longest path, that is tid c = max(tpd c) = tc .

For flip-flops, one has tid ff = tsu ff + tpd ff = tff (where tpd ff refers to the non-inverting out-
put unless indicated otherwise) because this is the minimum lapse of time an edge-triggered
bistable takes to store and propagate a data item provided the active clock edge is optimally
timed.

4 0 You may want to consult section 7.4.1 for more information on what exactly happens with a bistable circuit in
this case. How to determine the setup and hold time figures of a given bistable is also explained there.

4 1 The difference is that an asynchronous control signal must subsequently retain its passive value indefinitely
unless the circuit is to be reinitialized to its start state, whereas any ordinary (synchronous) control signal is
essentially free to switch after the hold time has expired. Using separate terms thus seems justified, but we will
not insist on this.
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fto ff max Maximum toggling rate. No flip-flop can be made to operate faster than its
insertion delay and its minimum clock pulse widths permit. The utmost clock frequency thus
is fto ff max = 1

Tt o ff m i n
, where Tto ff min = max(tid ff , thi clk min ff + tlo clk min ff ). Although

this quantity is given much publicity in advertisements, it remains of little practical interest
as it leaves no room for any data processing activity.

rsl Slew rate. The average velocity of voltage change during a logic transition, that is rsl =
∆u
∆t . The quantity is positive for rising edges, rsl ri = Uh −Ul

tr i
, and negative for falling ones,

rsl f a = Ul −Uh
tf a

.

δ Duty cycle. The average proportion of time during which a signal is active or a load is
energized. For an active-high signal of period T , one has δ = th i

T = th i
th i +tl o

if the switching is
so fast that ramp times can be ignored. 0 ≤ δ ≤ 1 holds by definition.

A.6.4 Timing constraints address synthesis needs

Timing constraints differ from delays and timing conditions in that they do not describe the timewise
behavior of an existing component or design for the purposes of analysis and simulation, but serve
to capture target characteristics of a circuit-to-be for the purposes of design and synthesis. As
illustrated in fig.4.17, most timing constraints in practice specify an upper bound for some propa-
gation delay, yet, asking for a minimum contamination delay sometimes also makes sense.

A.7 Microprocessor input/output transfer protocols

While microcomputer architectures are beyond the scope of this text, we briefly review the three
fundamentally different I/O transfer protocols because many ASICs are to interface with a micro-
processor bus system. You may find this information useful as a preparation for reading section
8.5.4.

A peripheral device that wishes to deliver data to a microcomputer has to ask for an input transfer
operation. Conversely, an output transfer is solicited when the peripheral needs to obtain data. In
either case, the peripheral sets a service request flag. Three conceptually different ways exist for
notifying the microcomputer about such an event and for handling the subsequent data transfer,
see fig.A.27.

1. Polling. In this scheme, the CPU actively waits for service requests to arrive. The peripheral
is wired to some port on a peripheral interface adapter (PIA) so that the CPU can examine
its status by way of read operations on the pertaining PIA address. Whenever the operating
system expects a peripheral device to ask for I/O operations in the near future, it enters
a program loop which makes it periodically read that port and check the appropriate bit
position there to find out whether a service request is pending or not.

If so, the program branches to a service routine which tells the CPU how many data words
to transfer, where to get them from, how to process them, and where to deliver them to. It
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service requests

idlingI/O handling backgroundCPU activity:

Polling I/O

active wait data transfer
by service routine

Interrupt-driven I/O

data transfer
by interrupt

service routine

Direct memory access

preparation final inspectiondata transfer
by cycle stealing

delayed response

Fig. A.27 The three basic data transfer protocols for microcomputer input/output.

must also be made sure that the service request flag gets set back to its inactive state once
the peripheral has been serviced.

If not so, the CPU proceeds with executing the loop’s code, which makes it repeat read-
and-check operations until the expected service request finally arrives.

Designing the polling loop always is a compromise, see fig.A.27. A tight loop ensures a fast
response but leaves little room for doing anything useful while waiting, whereas an ampler
loop provides room to carry out computations in the background, but results in prolonged
response times as the request bit perforce gets examined less frequently.

2. Interrupt-driven. As opposed to polling, the CPU is not locked in a loop but is free to execute
code in a background process. In order to make this possible, the request flag is brought out
to a line that connects to a special input of the CPU termed interrupt request. Activation
of this line diverts program execution to an interrupt service routine once execution of the
current instruction has been completed. The routine first causes the CPU to properly suspend
the current process by saving the contents of critical registers in memory or on a special stack.
The remainder of the I/O operation occurs in much the same way as for polling. After having
completed the interrupt service routine, the CPU resumes the suspended process.

Processor instruction sets typically include a pair of special instructions that allow program-
mers to temporarily suspend the interrupt mechanism in order to bring critical code sequences
to an end without having their execution delayed or broken up. Withholding interrupt re-
quests in this way is often referred to as interrupt masking.

3. Direct memory access (DMA). The CPU is freed from most of the burden associated with
I/O transfers by delegating them to a special hardware unit termed a DMA controller that
is hooked to the service request line in lieu of the CPU. Before a series of I/O operations
can begin, the CPU in a preparatory step instructs the DMA controller how many data
words to transfer and indicates their destination and/or source addresses. The CPU itself
is not involved in the subsequent transfer operations, which contrasts sharply with polling
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and interrupt-driven I/O. Instead, the DMA controller handles the actual data moves by
stealing memory cycles from the CPU for its own memory accesses whenever notified by the
peripheral that a data item is waiting to be accepted or delivered.

At the end of the commissioned series of transfers, the DMA controller typically informs the
CPU by way of an interrupt. As part of the pertaining service routine, the CPU does then
inspect some status register in the DMA controller to find out whether the transfer has been
successfully completed or prematurely aborted.

Table A.14 The basic I/O transfer protocols compared.

Input/Output Data Transfer Scheme
Polling Interrupt-driven DMA

Hardware overhead close to none, small, moderate,
PIA port bit interrupt mechanism DMA controller

CPU burden high as CPU has moderate, minimal,
to idle in a loop once per data item once per data series

Response time unpredictable, a few instruction almost immediate,
depends on loop cycles unless masked a few clock cycles

Transfer rate moderate fair high

As an improvement to polling, it is possible to combine most of its simplicity with the efficiency
of interrupt-driven I/O by having a timer periodically trigger the interrupt line. In the interrupt
service routine, the CPU then polls one peripheral device after the other and branches to a service
routine for those which have a request pending.

A.8 Summary

� Digital hardware deals with bit patterns rather than with numbers. These patterns assume a
meaning as numbers only when interpreted according to the specific number representation
scheme that the designers had in mind.

� As zero-latency loops may give rise to unpredictable behavior, it is best to avoid them.

� Be prepared to observe unexpected transient pulses at the output of any combinational logic
unless you have proof to the contrary.

� While all datasheets and textbooks mention setup time, hold time, and propagation delay,
it is not possible to understand how a simple shift register works without introducing the
concept of contamination delay.

� Any bistable is either an

- Edge-triggered flip-flop, a
- Level-sensitive latch, or an
- Unclocked bistable.
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It is most important to keep those apart technically and linguistically.

� Before starting up any kind of electronic design automation tool, it is important to

- Know what its optimization criteria and limitations are,
- Find out whether it does indeed apply to the problem at hand, and
- Develop an understanding of the available options and controls so as to
- Set all options and control knobs to suitable values.

� Three basic protocols are available for organizing the transfer of data between a peripheral
device and a microcomputer:

- Periodically polling the peripheral for service requests in a program loop.
- Having a special signal from the peripheral interrupt regular program execution.
- By bypassing the CPU with the aid of an extra direct memory access controller.



Appendix B

Finite State Machines

This chapter is divided into two major sections. Section B.1 reviews the classes of finite state
machines used in electronics design and their equivalence relationships. Although this material is
strongly related to automata theory — or actually part of it — no attempt is made to cover the
theory since there are excellent and comprehensive textbooks on the subject. Rather, the emphasis
is on a number of mathematical facts relevant to hardware design that are not normally found in
such references. Section B.2 then looks at finite state machines more from an implementation point
of view, yet without committing one to any specific technology.

B.1 Abstract automata

Automata theory is a mathematical discipline concerned with fundamental issues of discrete com-
putation such as formal languages and grammars, parsing, decidability, and computability. The
underlying formal models are crude abstractions that essentially simplify computing equipment to
transducers that, while changing from state to state, convert a given input string into some output
string. Most issues relevant to digital design such as hardware architecture, computer arithmetics,
parasitic states, state encoding, transient effects, delays, synchronization, etc. are neglected, which
raises the question

“Why study the abstract subject of automata theory in the context of electronics design?”

The motivation is threefold:

Functional specification. Describing what a digital system has to do is not always easy. Au-
tomata theory often helps to specify the relationship between a circuit’s inputs and outputs
in a more formal way, especially for control- and protocol-oriented tasks.

Modelling and verification. When viewed from outside, the behavior of an entire system can
be modelled as a single finite state machine. While usually not a very efficient approach
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to constructing a circuit, this abstraction proves useful for verifying a system’s behavior by
simulation and testing.

Synthesis. Almost any practical system is composed of a number of cooperating subsystems, each
of which can in turn be modelled as a finite state machine. At a certain level of detail, any
synchronous circuit is patterned after a specific type of automaton.

“What do we mean by finite state machine then?”

Definition B.1. A deterministic automaton is a system, which at discrete moments of time

t = 0, T, 2T, 3T, . . . , kT, (k + 1)T, . . . satisfies the following conditions:

1. At any of these moments of time, the input to the system can be chosen from a set

of possible stimuli I.

2. At each of these moments of time, the system subjected to an input i can be in just one

of a set of possible states S and outputs one out of a set of possible responses O.

3. At any of these moments of time, the state of the system and the input to it uniquely define

the state which the system is going to assume in the next such moment of time.

Throughout this text, we will stay within the framework of discrete and deterministic automata
so defined. We will further limit our discussion to finite state machines (FSMs) where each of
the three sets I , S, and O is restricted to a finite number of elements. Please note that, in general,
I , S, and O do not have the same cardinality, although they may happen to do so.

B.1.1 Mealy machine

There is more than one way to model and to implement the behavior of systems that meet the criteria
of finite state machines stated in the previous section. A first approach consists in describing such
a system by way of two equations

o(k) = g(i(k), s(k)) (B.1)

s(k + 1) = f (i(k), s(k)) (B.2)

where i ∈ I , s ∈ S, and o ∈ O. g is termed output function and f transition function or next
state function. In addition, at k = 0 the automaton is assumed to be in a special state s0 ∈ S which
is called start state.

Equations (B.1) and (B.2) together form a Mealy model. More precisely, we speak of a Mealy
automaton if the present output depends on the present input. Many real-world examples are of
more simple nature, which gets reflected by the absence of one or more terms from (B.1) and (B.2).
See section B.1.5 for a detailed classification scheme.

Instead of stating transition function f and output function g as equations, any finite state machine
can be completely described by listing next state and output values for any combination of present
state and input. Such a list is termed a state table, see fig.B.1 for an example.

The well-known state graph, aka state transition diagram, is nothing else than a pictorial repre-
sentation of a state table. Each state is represented by a vertex and each transition by a directed
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edge. A short arrow identifies the start state. Where an input symbol causes a state to persist, i.e.
to fall back on itself, a loop is drawn.

So far, we have been concerned with FSM behavior exclusively, but we should also ask for a hard-
ware structure that behaves accordingly. The result from expressing output function and transition
function with a data dependency graph (DDG) is shown in fig.B.2 for a Mealy machine. As will be
shown in section B.2.5, this straightforward solution is not necessarily also the most efficient one,
however.

Example

I = {a,b}, S = {p,q,r,t}, and O = {0,1}.

i(k) a b a b
s(k) o(k) s(k + 1)
p 1 0 r t
q 0 1 p q
r 1 0 q r
t 0 1 r p

a/0

b/0

a/1

b/1

a/0b/1

b/0

a/1
p

q

t

r

Fig. B.1 Mealy machine with four states. State table (left) and state graph (right).

�

g o(k)

s(k+1)s(k)

i(k)
f

Fig. B.2 DDG of a Mealy automaton.

B.1.2 Moore machine

The Moore model differs from the Mealy model in that the present output depends on the present
state exclusively; there is no input literal i(k) in output function g. As a consequence, the output
is allowed to change only as a result of a state transition.1

o(k) = g(s(k)) (B.3)

s(k + 1) = f (i(k), s(k)) (B.4)

1 Because state transitions are restricted to discrete moments of time kT , the Moore model is sometimes said to
have a synchronous output. This interpretation commonly found in texts on automata theory abstracts from
propagation delay. In practice, a Moore output will settle to its final value a couple of gate delays after the
active clock edge and remain constant until the next active clock edge.
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As shown below, the more restrictive formulation for the output function (B.3) gets reflected by
omissions in the network structure, state table, and state graph of Moore automata.

o(k)

s(k+1)s(k)

i(k)
f

g

Fig. B.3 DDG of a Moore automaton.

Example

I = {a,b}, S = {u,v,w,x,y,z}, and O = {0,1}.

i(k) a b
s(k) o(k) s(k + 1)
u 1 z w
v 0 z w
w 0 x u
x 0 y x
y 1 v y
z 1 y x

u

v

w

x

y

z

a

b

a                                         b

a

b

a

b

b

a
b

1

0

1 0

1

0

a

Fig. B.4 Moore machine with six states. State table (left) and state graph (right).

�

Both Mealy and Moore automata are pervasive in electronics circuits, primarily in controllers that
govern sequential data processing and data exchange operations.

B.1.3 Medvedev machine

Some particular situations in electronic hardware design obviate logic operations in the output
function.2 Medvedev automata are a subclass of Moore machines where the output function g has
essentially degenerated to the identity function.

o(k) = s(k) (B.5)

s(k + 1) = f (i(k), s(k))

Medvedev automata are also known as finite acceptors or as automata without output because
studying state transitions alone is sufficient for many problems from automata and formal language

2 E.g. because of the delays and transients associated with combinational networks, see section B.2.4. Also, the
direct observability and controllability of Medvedev outputs via scan-path-type test structures is welcome in
many controller applications.
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theory. Most counters are practical examples of Medvedev automata, see fig.B.5 for a hardware
structure.

o(k)

s(k+1)s(k)

i(k)
f

Fig. B.5 DDG of a Medvedev automaton.

B.1.4 Relationships between finite state machine models

Two questions of both theoretical and practical importance are

“Under what conditions is it possible to replace a finite state machine by another one?” and
“How do the various classes of automata relate to each another?”

Since finite state machines can be viewed as transducers that convert some input string into some
output string, the most natural way of defining functional equivalence is as follows.

Definition B.2. Two automata are considered equivalent if they always yield identical strings of

output symbols for any identical strings of input symbols.

It is important to understand that the state graphs of equivalent automata need not be isomorphic.
This is because the above definition refers to input and output quantities only. Put in other words,
automata are abstracted to black boxes in the context of equivalence. Figures B.8 and B.9, for
instance, show a pair of Mealy machines that are equivalent but not isomorphic.

Equivalence of Mealy and Moore machines in the context

of automata theory

While the above definition of equivalence works fine when comparing Mealy automata with Mealy
automata or Moore automata with Moore automata, there is a technical problem when comparing
machines across the two classes. A Mealy machine can respond to an input change at any time
whereas the response of a Moore machine is necessarily deferred to after the next active clock edge.
Put differently, Moore outputs have latency 1 and Mealy outputs latency 0. No matter what the first
input i(0) looks like, the first symbol in the output string from a Moore machine is o(0) = g(s0); only
later can the input affect the output. This implies that Moore automata take n + 1 computation
periods to process a total of n consecutive input symbols whereas Mealy automata require only n

periods. The numbers of output symbols released from the two models differ accordingly.

As a workaround, the requirement for equivalence is relaxed as follows in the context of automata
theory because that theory is primarily concerned with the mapping between symbol strings.

Definition B.3. A Mealy and a Moore automaton are considered equivalent if they always yield

identical strings of output symbols for any identical string of input symbols when the first output
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symbol — which is associated with the start state — is deleted from the output string of the Moore

automaton.

This somewhat academic understanding gives rise to a well-known result

Theorem B.1. For any Mealy automaton there exists an equivalent Moore automaton in the broad

sense of definition B.3, and vice versa.

At first sight this may seem surprising because the output function of the Mealy model is more
general than that of the Moore model. We will sketch a constructive proof, i.e. two algorithms for
converting a Moore machine into an equivalent Mealy machine, and vice versa. More details can be
obtained from [475], an excellent textbook on abstract automata and formal languages.

Converting a Moore machine into an equivalent Mealy model is very easy. For every vertex of the
state graph delete the output symbol associated with the vertex and attach it to all edges that enter
that vertex. Clearly, the procedure will leave the number of states unchanged.

Coming up with a Moore model for a Mealy machine cannot simply follow the inverse procedure
because any attempt to assign to a vertex the output symbol associated with its incoming edges
must lead to a conflict unless all incoming edges agree in their outputs. Thus, whenever a conflict
arises, the vertex is split into as many copies as there are distinct output symbols attached to its
incoming edges. All output symbols can so be transferred from the incoming edges to their respective
copy of the vertex. Each copy keeps the full set of outgoing edges attached to the original vertex.
The process is repeated for the successor nodes until all vertices have been visited. Please note that
the number of states may — and often will — increase dramatically when going from a Mealy to a
Moore machine.

Incidentally, we conclude from the two conversion procedures that (a) for any Moore automaton
there exists an equivalent Mealy automaton with a smaller or equal number of states, and (b)
the above Moore-to-Mealy conversion algorithm does not, in general, lead to a solution with the
minimum possible number of states.

Example

In the broad sense of automata theory, the two state machines described in figs.B.1 and B.4 are
actually equivalent. Their respective output strings are opposed in table B.1 for two input strings
chosen at random.

Equivalence of Mealy and Moore machines in the context

of hardware design

From an engineering point of view, the extra output symbol o(0) and the timewise offset of all
subsequent symbols cannot be abstracted from. After all, few applications will tolerate replacing a
finite state machine by another one the output of which lags or leads by a full clock cycle. Unless
latency is indeed uncritical for the application at hand, equivalence must, therefore, be understood
in the stricter sense of its original definition, which implies that
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Table B.1 Output strings of equivalent Mealy and Moore automata compared.

k 0 1 2 3 4 7 8
automaton output

input a b b
Mealy 1 0 0
Moore [1] 1 0 0

input b b a a b a
Mealy 0 1 1 1 1 0
Moore [1] 0 1 1 1 1 0

�

Theorem B.2. A Mealy automaton and a Moore automaton can never be equivalent in the more

narrow sense of definition B.2.

Equivalence of Moore and Medvedev machines

Theorem B.3. For any Moore automaton there exists an equivalent Medvedev automaton in the

more narrow sense of definition B.2, and vice versa.

The proof is by showing how to build an equivalent Medvedev automaton from a Moore automaton.3

The problem with designing a Medvedev automaton is that |O| = |S| while, in general, this is not
the case for Moore automata, where |O| ≤ |S|. To get around this difficulty, we allow the state
symbol to be composed of two parts, namely a left part, which we will also use as output symbol,
and a right part, that will remain hidden from the outside world. In any case their concatenation
must yield a unique state symbol. Note that this trick does not introduce actual logic operations
into the output function and is, therefore, consistent with our definition of Medvedev automata.
However, it breaks the constraint that forced O = S.

The conversion algorithm works as follows. Consider the state graph of the Moore automaton.
Assign every state its output symbol as left part of its state symbol. If all states are uniquely
labeled, the right parts remain empty and conversion is completed since the automaton had already
followed the Medvedev model in the first place. Otherwise, assign each state a right part so as to
make it unique. The easiest way to do so is simply to copy the state symbols from the initial Moore
automaton. When fed with the same stimuli, the resulting automaton will always output the same
responses as the Moore automaton.

Perhaps a more intuitive conversion procedure is given in fig.B.6.

The number of states of a Medvedev automaton so obtained is always equal to that of the original
Moore model. It takes more bits to encode the wider Medvedev state symbols, though.

3 The inverse transform is trivial since any Medvedev automaton is a Moore automaton by definition.
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o(k)

s"(k+1)s"(k)

i(k)
f "

o(k)

s"(k+1)s"(k)

i(k)

s(k+1)s(k)

s’(k+1)s’(k)
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s(k+1)s(k)

i(k)

g
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s(k+1)s(k)
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s(k+1)s(k)

duplication of state register
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f

g

f
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Fig. B.6 Turning a Moore machine into an equivalent Medvedev machine.

Example

The Medvedev automaton shown in fig.B.7 has been obtained from the Moore automaton of fig.B.4
by way of the constructive algorithm stated above.

I = {a, b}, S = {0c, 0d, 0e, 1c, 1d, 1e}, and O = {0, 1}.

i(k) a b
s(k) o(k) s(k + 1)
1c 1 1e 0d
0c 0 1e 0d
0d 0 0e 1c
0e 0 1d 0e
1d 1 0c 1d
1e 1 1d 0e a

b

a b

a

b

a

b

a
b

a
b

1c

0c

1d

0d

1e

0e

Fig. B.7 Medvedev machine with six states. State table (left) and state graph (right).

�

B.1.5 Taxonomy of finite state machines

The table below, which is patterned after a Karnaugh map, classifies deterministic automata ac-
cording to what actually determines their next state and their output.
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Table B.2 Taxonomy of finite state machines.

output function g depends on
input input

— and
state state

transition — † § § C
function state † ‡ A ‡

f input and state † ‡ O Y ‡
depends on input † ‡ D ‡

Moore model Mealy model

Several subclasses, the fields of which are marked with special characters in table B.2, make no
sense from a technical point of view. Here are the reasons why:

† Unobservable automata are useless in engineering applications.
‡ There is no point in controlling a state that exerts no influence on the output.
§ Having the output depend on a fixed and thus effectively inexistent state makes no sense.

Other subclasses have been given a name because they find widespread applications as digital
function blocks. They are identified by capital letters as listed below.

Subclass Example
Y Full Mealy automaton4 Controller
O Full Moore automaton4 Controller, cell of cellular automaton
A Autonomous automaton Clock generator, pseudo-random-number generator
D Delay automaton Pipeline stage (combinational logic plus register)
C Combinational logic Full adder, unpipelined multiplier

B.1.6 State reduction

Consider the state table of some finite state machine and assume that two states have exactly the
same entries in their present output fields and also in their next state fields. As an example, this
applies to states “7” and “10” in fig.B.8. From a graph point of view, this means their outgoing
edges are labeled in exactly the same way and point to exactly the same vertices. It is intuitively
clear that any two such states must appear to be the same when nothing but the machine’s inputs
and outputs are observed.

Definition B.4. Two states of a finite state machine are considered indistinguishable if the machine

can be placed in either of the two and responds with identical strings of output symbols to any string

of input symbols.

Indistinguishable states are also known as equivalent states and as redundant states. Merging
them has no effect on a machine’s behavior. The new automaton so obtained will necessarily be
equivalent to the original one, but simpler to implement. State reduction is the process of collapsing

4 The word “full” is meant to imply that no term has been dropped from the general equations (B.1) (B.2) and
(B.3) (B.4) respectively.
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redundant states until no equivalent state machine with a smaller number of states exists. Collapsing
all states that have identical state table entries does not suffice, however, as two states can have
distinct next state fields and still be perfectly indistinguishable.

Theorem B.4. Two states of a finite state machine are indistinguishable iff they have (a) identical

outputs and (b) go to indistinguishable successor states for any possible input symbol.

The difficulty with applying this theorem to state reduction directly lies in its recursiveness. A
more practical approach is the implication chart algorithm due to Paull and Unger and nicely
described in [476], for instance. Luckily, there is no need for designers do that manually as automatic
state reduction is part of HDL synthesis. We thus refrain from presenting algorithmic details and
are content to show an FSM before and after state reduction.

Example

The state graph depicted in fig.B.8 has been chosen for demonstration purposes with no particular
application in mind.

i(k) 00 01 10 11 00 01 10 11
s(k) o(k) s(k + 1)

1 1 1 1 1 1 1 1 2
2 0 0 0 0 2 8 8 3
3 0 0 0 0 3 5 5 4
4 0 0 0 0 4 5 5 2
5 0 0 0 0 6 5 5 9
6 0 0 0 0 7 11 11 3
7 1 0 0 1 1 1 1 1
8 0 0 0 0 9 8 8 6
9 0 0 0 0 10 11 11 4
10 1 0 0 1 1 1 1 1
11 0 0 0 0 1 1 1 1

5

9

1011

8

2

4

3

6

7

1
00/1

11/1

01/1
10/1

00/0

01/0
10/011/0

00/0

01/0
10/0

11/0

00/0

11/0

01/0
10/0

00/0

01/0
10/0 11/0

00/0

01/0
10/011/0

01/0

10/0

11/0

01/0

10/0

11/0

00/0
01/0

10/0 00/0

11/1
00/1

11/0
10/0

01/0
11/1
00/1

00/0
10/0
01/0

Fig. B.8 Original state machine. State table (left) and state graph (right).

Systematic state reduction not only confirms (7, 10) as indistinguishable states, but also reveals
equivalences for (2, 3, 4), (5, 8), and (6, 9). While the new state machine shown in fig.B.9 preserves
the input-to-output relationship, the number of states has dropped from 11 to 6.



B.2 PRACTICAL ASPECTS AND IMPLEMENTATION ISSUES 785

i(k) 00 01 10 11 00 01 10 11
s(k) o(k) s(k + 1)
1 1 1 1 1 1 1 1 2
2 0 0 0 0 2 5 5 2
5 0 0 0 0 6 5 5 6
6 0 0 0 0 7 11 11 2
7 1 0 0 1 1 1 1 1
11 0 0 0 0 1 1 1 1

5

11

2

6

7

1
00/1

11/1

01/1
10/1

00/0

01/0
10/0

11/0

00/0

01/0
10/0

11/0
01/0

10/0 00/0

11/0
10/0

01/0
11/1
00/1

00/0
10/0
01/0

11/0

Fig. B.9 Reduced state machine. State table (left) and state graph (right).

�

B.2 Practical aspects and implementation issues

How to turn finite state machines into electronic hardware is discussed in the main text. Yet, several
practical problems can be understood from a mathematical background alone.

B.2.1 Parasitic states and symbols

Input symbols, states, and output symbols must ultimately be encoded as binary vectors. As it takes
wx ≥ 	log2 |X |
 bits to uniquely encode the |X | elements of a set X , the code vector may assume
2wx distinct values. This implies that 2wx − |X | ≥ 0 code values exist that do not correspond to
any element x ∈ X . Such unused values that result as a side effect from binary coding are termed
parasitic or residual.

As a consequence, any finite state machine implemented with two-valued electronics will thus exhibit
parasitic input symbols unless 2wi = |I |, parasitic states unless 2ws = |S|, and parasitic output
symbols unless 2wo = |O|. Being careful engineers, we ask ourselves

“What happens if, by accident, a finite state machine falls into some parasitic state
or when it is presented with some parasitic input symbol?”5

From a mathematical perspective, neither transition function f nor output function g is defined. In
practice, the circuit logic will generate some outputs in a deterministic but unspecified way. Thus,
while the designer’s intention is to build a state graph of |S| vertices each of which has an out-degree

5 Such unforeseen situations may occur as a consequence from interference, transmission errors, switching noise,
poor synchronization, ionizing radiation, hot plug-in, or temporary sagging of power.



786 Fundamentals

|I |, the actual result is a supergraph of 2ws vertices with out-degree 2wi that includes the original
graph as a subgraph. Figure B.10 illustrates this by way of a Medvedev automaton that implements
a controllable up/down counting function modulo 5.

Depending on the exact characteristics of the supergraph, a physical automaton may react in various
ways in response to a parasitic input symbol: The automaton may show no discernible reaction, may
produce just one mistaken output symbol, may move to some regular state via a transition that was
unplanned for, or may fall into a parasitic state. In the last case, two different outcomes are possible:
The state machine may either return to the regular subgraph after a number of clocks, or get trapped
in a dead state or in a circular path forever, a dramatic situation known as lock-up condition.
Figure B.10a shows all shades of how a physical circuit can fail in response to a parasitic input.

Example

I = {h, u, d}, S = {0, 1, 2, 3, 4}, and O = {0, 1, 2, 3, 4}.
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Fig. B.10 State graph of a modulo 5 up/down counter with parasitic states and input symbols left loose (a)

compared with a safer version (b). Note that (b) leaves room for further improvement.

�

Observation B.1. In the presence of irregular conditions, parasitic states and symbols left undealt

with hold the dangers of serious circuit malfunctioning and of permanent lock-up.

“What can the digital designer do about parasitic finite state machine behavior?”

Broadly speaking, fault tolerance and graceful degradation are the goals of any engineering
activity. They imply that a system confronted with irregular input data or some other form of
disturbance shall

• absorb it with as little impact on its internal functioning as possible,
• continue to produce the most meaningful and/or least offensive output, and
• confine the consequences of any temporary failure to the shortest possible time span.
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In the context of finite state machines, five measures must contribute towards these goals.

1. Collapse all parasitic input symbols to carefully selected regular ones.
2. Make sure that all parasitic states reconverge to the original subgraph. The standard practice

is to explicitly indicate a regular successor state for each parasitic state before logic synthesis
is undertaken.

3. Assign inoffensive output symbols to all parasitic states.
4. Provide some means for forcing the automaton into start state s0 from any other state by

adding an extra reset mechanism.

Finite state machines that adhere to these guidelines are sometimes qualified as fail safe. Note
that, from a mathematical point of view, measures 1 and 2 extend the domain of f and g to
include all parasitic values of i and s, whereas measure 4 depends on an ancillary mechanism that
is independent of f and g. In the occurrence of the above example, a safer version of the modulo
5 up/down counter is shown in fig.B.10b. Albeit at a somewhat different level of abstraction, the
measure below is as important as the ones mentioned before.

5. Notify the next higher level in the system hierarchy, e.g. by way of an error signal or message,
whenever a parasitic state or input symbol has been detected. This avoids any innocent
interpretation of corrupted FSM output and makes it possible for the superordinate system
levels to decide on corrective action.

B.2.2 Mealy-, Moore-, Medvedev-type, and combinational output bits

The fact that output symbols get encoded as binary vectors gives rise to another subtlety. Consider
an automaton where a subset of the output bits depends on the present state exclusively, that is,
where some of the bits do not get affected by the present input. In analogy to the classification
scheme for automata, such outputs are termed Moore-type outputs, with “decoded Moore-type
outputs” and “unconditional outputs” being synonyms.

Clearly, the state machine as a whole remains a Mealy automaton as long as there exist other output
bits — called Mealy-type outputs, aka “conditional outputs” — that actually are functions of
the present input as well.

Similarly, a Mealy or a Moore machine may but need not include Medvedev-type outputs, aka
“undecoded Moore-type outputs” and “direct outputs”. As the name suggests, such output lines
are nothing else than bits tapped from the state register either in direct or in complemented form.
Their switching occurs essentially aligned to the clock.

Last but not least, an FSM may but need not feature combinational outputs, i.e. bits that depend
on the present input exclusively. Combinational and Mealy-type outputs are sometimes subsumed
as through paths; only Mealy machines can sport them.

Being knowledgeable about output types has been found to be useful not only during circuit design,
but also during logic simulation, timing analysis, and prototype testing. An example is to follow soon.

B.2.3 Through paths and logic instability

The presence of a through path in a Mealy machine holds a serious danger. Any external circuitry
that uses the FSM’s present output to determine the FSM’s present input may give rise to logic
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Fig. B.11 Finite state machine with output bits broken into four subsets. Each subset depends on i(k) and

s(k) in a different way and is labeled accordingly.

contradictions. Uncontrolled oscillations may then develop because Mealy and combinational out-
puts instantly respond to new input. What makes the problem particularly treacherous is that
contradictions and oscillations may actually occur for a limited subset of states and input values
exclusively, while the design behaves in a totally inconspicuous way in all other situations.

Example

Consider the control loop below, where act, ini, and dcr are integer variables and ... stands for
some unspecified data manipulations.

...

act := ini

repeat

...

act := act - dcr

until act < 0

...

A possible hardware structure is depicted in fig.B.12a. A finite state machine interprets the car-
ry/borrow bit from the ALU and controls ALU operation and data transport paths. Figure B.12b
shows the tiny portion of a Mealy-type state graph relevant to the above loop computations. The
intention is to subtract dcr from act until the ALU produces a borrow. Everything works fine
as long as act≥dcr. When this relation ceases to hold, however, the circuit enters an oscillatory
regime caused by the mutual and contradictory dependency of op2 and borrow in a feedback loop
that encompasses the ALU, the controller, and the leftmost multiplexer. This unstable condition is
made at all possible by the attempt to carry out subtraction and decision making in a single clock
cycle, which concept differs from how a microprocessor would evaluate the above piece of code.

Observation B.2. Instability may but need not develop in Mealy machines if the surrounding logic

provides immediate feedback from the output to the input of the same machine. The existence of a
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Fig. B.12 Instability in a Mealy-type controller subject to combinational feedback. Block diagram (a), portion

of controller state graph (b).

�

zero-latency feedback path from one or more output bits of a through path to one or more input bits

of the same through path is a necessary precondition for this to happen.

Basically there are four options for staying clear of instability in automata:

◦ Select an automaton with non-zero latency, see table B.5.
◦ Include latency by making feedback paths start from Moore or Medvedev bits exclusively.
◦ Add a latency register to the surrounding circuitry.
◦ Formally prove that no logic instability exists in spite of the zero-latency loop.

B.2.4 Switching hazards

From our discussion of transient effects in digital circuitry, we know that almost any combina-
tional network has the potential of developing brief unwanted pulses known as hazards. As the
output function g of an FSM is no exception, both Mealy and Moore automata must be suspected
to generate hazards unless one has proof to the contrary. Medvedev machines, in contrast, can-
not give rise to hazards because they lack a combinational network between state register and
output.

Signals from any automaton can be made hazard-free by adding extra flip-flops at the output to
align their switching to the clock if need be. The term registered outputs is often used to discern
those bits that pass through such a resynchronization register from the normal ones that are
taken from the output logic directly.

Practically speaking, when hazard-free outputs are to be combined with minimum latency, one can
either add a resynchronization register to a Mealy automaton or build a Medvedev machine by
encoding its state such that the output bits can be tapped from the state register directly; the
conversion procedure of fig.B.6 should help. Either option also eliminates the risk of instability, see
table B.5 for an overview.
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B.2.5 Hardware costs

The costs of an FSM are given by the ws bistables that maintain its state, the logic gates for
computing transition function f and output function g, plus the necessary wiring. Note that f and
g share part of the logic gates in typical hardware implementations. Although the costs of these
resources in a full-custom IC are not the same as those in field-programmable logic (FPL), a number
of observations can be made.

Concurrency, hierarchy, and modularity are key to efficiency

Classical state graphs tend to explode in size even when systems of very moderate complexity are
being described.6 The reasons are as follows.

• State graphs are flat with no levels of abstraction, they lack any notion of hierarchy.
• State graphs lack modularity, they do not distinguish between mechanisms.
• State graphs cannot model concurrent activities other than by a single global state.

More importantly, combinatorial explosion is also a problem for electronic hardware if a circuit is
organized as one finite state machine. Beyond a certain complexity, it is much more efficient to
partition the desired functionality into a bunch of smaller cooperating automata, a pattern which
is sometimes also referred to as linked state machines (LSMs). This not only permits one to
compose state and complex behavior from many simple models, but also makes it possible to use
specialized and highly efficient subcircuits for implementing subfunctions such as counters, look-up
tables (LUTs), en/decoders, etc.

Observation B.3. While it is always possible to model a clocked sequential system as one Mealy-

type automaton, a cluster of cooperating smaller automata (including counters, shift registers, etc.)

is a much more efficient model for designing and verifying digital circuits.

Example

A synchronous circuit is to generate a binary pseudo-random sequence of length 15 at a rate of 1/4
of its clock. Conceptually, what we need is an autonomous automaton with 60 states. There are
two basic options. The entire functionality is either packed into a single FSM, or decomposed into a
divide-by-4 counter plus a 4 bit linear feedback shift register (LFSR) working under control of that
counter. Table B.3 shows the hardware costs. The structured approach saves 4/5 of the area when
compared with a flat machine the states of which are randomly encoded.

6 A more succinct visual formalism are the statecharts proposed by David Harel [477] [478]. In a nutshell

statecharts = state graphs + hierarchy + concurrency + interprocess communication

Statecharts help a lot to expose orthogonalities in behavioral models. CAE tools for editing and simulating state-
charts are commercially available. Most of them are capable of generating program code for microprocessors,
some of them also generate HDL code for further processing by synthesis tools. Yet, competition seems to
disallow companies giving credit to Harel for proposing the statechart formalism that all their tools have in
common.
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Table B.3 Hardware costs of a pseudo-random sequence generator organized in various ways.

state flip- std nets size area
structure assignment flops cells [GE] [Mλ2 ]

counter & LFSR native 6 9 13 60 0.15
flat Moore FSM adjacent 6 26 33 90 0.23
” ” random (typ.) 6 102 107 261 0.76
” ” one hot 60 69 130 488 1.16

�

State reduction

State reduction, see section B.1.6, always has the benefit of eliminating unnecessary clutter from
state tables and state graphs. In most cases, state reduction also pays off in terms of circuit complex-
ity and performance because it introduces new don’t care conditions, gives more room for finding a
better state encoding, and, thereby, leads to a more economical solution.

Example

Table B.4 juxtaposes two standard cell implementations of the FSM specified earlier in figs.B.8
(unreduced) and B.9 (reduced). The relevant cost factor is the total area occupied after routing.
Although the example is an artificial one, the figures indicate that the benefit from state reduction
is mainly due to the simplification of the combinational network and not so much a matter of doing
away with a flip-flop or two.

Table B.4 Impact of state reduction on hardware costs for the finite state machine of fig.B.8.

number state flip- std nets size area
of states assignment flops cells [GE] [Mλ2 ]

11 adjacent 4 35 38 94 0.26
6 adjacent 3 14 20 44 0.12

�

Observation B.4. It normally pays to eliminate redundant states from a state graph or state table

prior to translating it into hardware.

This need not always be true, however, since using fewer bits for storing a machine’s state can
sometimes increase the number of terms and literals in transition and/or output functions, inflate
combinational circuitry, and offset the savings obtained from using fewer bistables.

State encoding

State encoding, aka state assignment, is the process of deciding on how the various states are going
to be mapped onto vectors of binary digits. An obvious requirement is that each state is assigned



792 Fundamentals

a unique bit vector. The number of bits required for uniquely encoding |S| states is

ws ≥ 	 log2 |S| 
 (B.6)

where 	x
 denotes the least integer not smaller than x. We speak of minimum bit encoding when
(B.6) is made to hold with equality because the number of bistables is then minimal.

From a purely functional point of view, state encoding is immaterial because any unique state
assignment necessarily leads to a correct circuit that is equivalent to those resulting from all other
mappings.7

From an efficiency point of view, some state encodings will yield smaller and faster circuits than
others. Energy dissipation and testability are also likely to differ. As the implications from the
subsequent steps in the design process — logic synthesis, placement, and routing — are difficult to
anticipate, one might be tempted to complete the design and to evaluate different schemes on the
grounds of the final result. The number ns of truly distinct state assignments, i.e. those that cannot
be derived from others simply by permuting and/or complementing state bits, has been known since
the late 1950s [479] and is given in (B.7). Numeric evaluation quickly tells us that, even for small
automata, it is not computationally feasible to find the best state assignment using an enumerative
approach.

ns =
(2w s − 1)!

(2w s − |S|)!ws !
(B.7)

From an engineering point of view, we are not so much interested in the absolute optimum but in
finding a good state assignment that results in a near-minimal hardware solution with reasonable
effort. A variety of heuristic approaches have been devised, all of which attempt to carry out state
encoding so as to minimize the number of literals in the FSM’s logic equations in some way or
another. The techniques differ in whether they target two-level or multilevel logic equations and in
how they resolve conflicts between contradicting requirements.

Adjacent state assignment is the name for a class of heuristics that assumes two-level logic
in sum-of-products form. The idea behind all such heuristics essentially is to lower the number
of product terms and the number of literals by assigning states that have similar entries in the
state table codes that differ in a single bit. Put differently, they make similar states adjacent in the
Karnaugh map. Somewhat surprisingly, this approach has been found to have beneficial effects on
multilevel logic implementations too and is, therefore, quite popular.

As the name suggests, one-hot state encoding uses a binary vector of length |S| and assigns each
state a code where a single digit is logic 1 and all others are 0.8 When compared with minimum-bit
state encoding, one-hot encoding typically results in many more bistables but, at the same time, also
in a less combinational logic. Whether this pays off or not depends on the application; it certainly
did not in the example of table B.3. In FPL devices with limited routing resources it sometimes is
the only way to implement substantial finite state machines. On the negative side, one-hot encoding

7 Designers typically leave state assignment to a synthesis tool and often ignore the actual binary codes selected.
However, testing and debugging will involve gaining access to state registers, e.g. by way of a scan path or by
physical probing. Interpreting those binary codes then requires knowledge of the state encoding chosen.

8 Please make sure you understand that one-hot state encoding is not in contradiction to state reduction.
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brings about a huge number of parasitic states, namely 2|S | − |S|. Making all of them reconverge
to the main subgraph as described in section B.2.1 often proves unwieldy.

B.3 Summary

� The key characteristics of the most common automata are collected below. Observe that re-
sponding to a new input within the on-going computation period (latency 0) and unconditional
stability (no through path) are mutually exclusive.

Table B.5 Six types of automata and their key characteristics.

resynchronization class of automaton
register Mealy Moore Medvedev

no latency 0 latency 1 latency 1
possibly unstable stable stable

hazards likely hazards likely hazard-free
yes latency 1 latency 2 latency 2

stable stable stable
hazard-free hazard-free hazard-free

� Designing with finite state machines involves the following steps:

1. Partitioning the desired functionality into a cluster of cooperating automata
whenever this is advantageous from an economy or modularity point of view.

2. Selecting the appropriate type of automaton and the types for its outputs.
3. Detailed specification and verification of statechart, state graph, or state table.
4. State reduction.
5. Deciding on how to safely handle parasitic inputs and states, if any.
6. State assignment.
7. Minimization of combinational functions.
8. Designing the circuit logic from the components or library cells available.

Today’s electronic design automation packages routinely cover steps 4 and 6 through 8. Also
available are software tools for the editing of state graphs and for visualizing inputs, state
transitions, and outputs at a behavioral level.



Appendix C

VLSI Designer’s Checklist

C.1 Design data sanity

� Are design data fully consistent? Have all design modifications always been propagated? Has
the design data base never been tampered with (e.g. using a text or stream editor)?

� Are you sure that no source data such as HDL specifications, schematics, netlists, macrocell
generator instructions, and the like have been modified after physical design was begun?

� Have all verification steps (simulation, ERC, timing verification, DRC, LVS, etc.) been carried
out on the most recent version of the design?

� Do the cell libraries and/or transistor models being used indeed apply to the fabrication
process and the operating conditions targetted?

� Have all library elements been fully characterized? Beware of “0” or other default entries
sometimes entered by library developers for properties (such as area, propagation delay, power
dissipation, etc.) the numerical values of which have not yet been established.

C.2 Pre-synthesis design verification

� Is a bit-true and cycle-true behavioral model available (in HDL, C, or Matlab)? Has this
circuit model been thoroughly tested in system-level simulations? Have the system designers
checked and accepted the results so obtained?

� Do the logic gauges used in simulating a behavioral model systematically cover all modes and
conditions under which the circuit is going to operate?
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� Do the logic gauges also address uncommon situations, such as exceptional control flows, cor-
rupt input data, numeric exceptions (e.g. divide by zero), overflows and underflows, truncation
and rounding, data values outside of their habitual range, non-rational frequency ratios, and
the like?

C.3 Clocking

� Is a consistent clocking discipline being used? Which one?

� Are all bistables either edge-triggered (flip-flops) or level-sensitive (latches) throughout?
Do not forget to check synthesizer-generated blocks (e.g. datapaths, finite state machines,
boundary-scan logic), macrocells (e.g. register files, pipelined datapaths), and megacells (e.g.
microprocessor cores, communication interfaces).

� Are there absolutely no violations of the dissociation principle of synchronous design? Trace
all clock distribution paths and check all cells and terminals that depend on or interact with
a clock signal.

� Do(es) the clock tree(s) exclusively end at clock inputs of
 flip-flops, or
 latches, and possibly also
 safe clock gating subcircuits?

� Is the circuit free of botches from asynchronous design such as
 cross-coupled gates (e.g. nand- or nor-type SR-seesaw),
 other combinational networks featuring a zero-latency feedback loop,
 one-shots and monoflops,
 clock choppers and other ad hoc frequency-multiplication subcircuits,

(other than a clean PLL design operating on the main clock),
 crude clock gates (rather than safe clock gating subcircuits),
 delay lines,
 ring oscillators,
 hazard suppression networks (redundant logic, low pass filters, etc.)?

� Are all clock signals free of hazards under all circumstances?

� In single-edge-triggered one-phase designs, do all bistables operate on the same edge?

� If there are any edge-triggered macrocells, such as RAMs or megacells, do they operate on
the same edge as well?

� In level-sensitive two-phase designs, do all logic paths begin at a latch driven by a first clock
signal and end at a latch driven by the second clock?

� Do all driving clocks feature sufficiently short rise and fall times?

� Has the entire clock distribution network been balanced with respect to delay?
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� Have rise time, fall time, and clock skew been (re)checked after layout?

� If an on-chip clock oscillator is being provided, is there an external clock input that bypasses
it for testing?

� Is the circuit a true static CMOS network throughout? Do not forget to check synthesizer-
generated blocks, macrocells, and megacells too.

� If dynamic logic is being used, what is the lowest admissible clock frequency at which the
circuit will operate? How was that operating limit determined? Have charge retention, charge
sharing, and charge decay been modelled properly?

C.4 Gate-level considerations

� Is there a global reset? Does it operate synchronously or asynchronously? Do not forget to
check macrocells, megacells, and virtual components too.

� Are all bistables connected to a reset pin? If not, how many clock cycles does it take to
bring them all into a known state (homing sequence)? Counters, finite state machines, and
bistables that are part of feedback loops require special attention. Multiple clock domains
further complicate the issue.

� If there is a global asynchronous reset facility, is the user free to apply and release the reset
signal at any time without risking timing violations or causing the circuit to come up in an
inconsistent state? If there are constraints, are they acceptable?

� Are asynchronous (re)set inputs nowhere being misused for anything else than overall initial-
ization? Is there no combinational logic acting on them? Trace all reset distribution paths and
check all cells and terminals that depend on or interact with a reset signal.

� Compare the leaf cells of the reset tree with those of the clock distribution tree. They should
essentially be the same. If exceptions exist, are they understood?

� If some asynchronous (re)set input depends on a signal other than the global reset, can that
local reset be guaranteed to be free of hazard under any circumstance?

� Is the circuit free of zero-latency loops (combinational feedback)? If not, can race conditions
be excluded under any circumstances? Note that Mealy machines connected to zero-latency
logic networks need particular attention.

� Is the longest path known? Is its delay acceptable for the slowest PTV condition and the
highest clock frequency with which the circuit will have to operate?

� Is the shortest path known? Is its delay acceptable for all PTV conditions under which the
circuit will have to operate?

� Setup time, hold time, contamination delay, and propagation delay define the I/O timing.
 Are all four parameters known for all primary inputs and outputs?
 Do they provide reasonable data-valid windows for the external circuitry?
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 Does the resulting data-call window impose reasonable timing conditions?
 How are data-valid and data-call intervals affected by PTV variations?

� Were there any warnings or error messages from the HDL analyzer, synthesizer, logic opti-
mizer, or technology mapper? If so, are they fully understood?

� Do the nature and the number of bistables obtained from synthesis match your expectations?
The presence of a latch in what is supposed to be an edge-triggered design points to a prob-
lem. The same applies to flip-flops with asynchronous set and reset inputs in synchronous
designs.

� If snappers are being included, have you made sure they are never used for the purpose of
data storage?

C.5 Design for test

� Is there a built-in self-test of sufficient coverage?

� If not, are controllability and observability guaranteed by test structures such as scan path(s),
block isolation, and boundary scan? Are there no large subcircuits being shadowed by on-chip
RAMs and other poorly accessible circuit items?

� Are there any wide counters or accumulators that might ask for excessively many test vectors
to reach some critical state (e.g. overflow)? If so, are they presettable from the primary inputs
or via the scan path?

� Are all bistables part of a scan path (full scan)?

� If not, have test vectors been obtained before sending the design to fabrication? Has fault
coverage been determined and is it satisfactory? Do test vectors allow one to locate faults
with satisfactory resolution? Is the number of test vectors required acceptable?

� If partial scan is being used, do all unscanned storage elements (flip-flops, counters, RAMs,
etc.) get disabled in scan mode?

� Does no bistable in a scan path act on the asynchronous (re)set of some other sequential
subcircuit?

� Do all flip-flops that make part of one scan path get triggered by the same clock edge?

� Is all clock gating neutralized while in scan mode?

� Have skew margins also been verified in test mode? Remember that scan paths are particularly
vulnerable to clock skew.

� Is one-at-a-time access to multi-driver nodes not only guaranteed during regular circuit oper-
ation, but in test mode as well? Recall that scanning in and scanning out may lead to states
that are never reached during normal circuit operation.

� Has the design been resimulated after scan insertion and physical design? Do such simulations
include scan-in and scan-out sequences?
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� Are there any inputs of gates or cells that are permanently tied to 0 or 1? If so, have they
been made controllable in test mode?

C.6 Electrical considerations

� Is there no CMOS gate input or MOSFET gate electrode left open?

� Are all drivers sized to handle their loads? Are there no nodes with excessive rise and fall
times? What about the reset distribution network?

� Are there pad drivers on all primary outputs? Have they been sized to provide adequate, but
not excessive, driving capabilities for the off-chip loads under the given timing requirements?
Can the core logic handle the load imposed by the pad drivers?

� If extra test pads are provided for probing, has each such pad been electrically decoupled from
the core logic by way of an adequate drivers?

� Is there a level shifter at every point where a logic signal passes from one voltage domain to a
second one? Have the level shifters on the primary inputs been chosen to correctly translate
from off-chip to on-chip logic levels?

� Is the number of ground and power pads commensurate with switching currents? Remember
clocking and simultaneously switching primary outputs contribute heavily to surge currents
and to ground bounce.

� Have ground and power nets of padframe and core logic been decoupled from each other as
much as possible?

� Does the chip include any analog subcircuits that need particular protection from noise cou-
pling?

� Has a noise analysis (ground bounce and crosstalk) been carried out? Do noise margins and
setup/hold margins provide sufficient headroom? Have layout and package parasitics been
taken into account in these analyses?

� Does the circuit include multi-driver nodes, i.e. nodes that are driven by three-state outputs? If
so, does the control logic exclude conflicts under all circumstances? In case multi-driver nodes
are left undriven for a prolonged period of time (say more than a few hundred nanoseconds,
for instance), are there pull-ups/downs or snappers preventing them from drifting away?

� Does the circuit make use of transmission gates? If so, are all of them electrically embedded so
as to exclude unpleasant surprises such as conflicting drivers, floating nodes, poor signal levels,
overly slow rise and fall times, backward signal propagation, charge sharing, and simulation
results that are not consistent with reality?

� Are all pads equipped with protection networks against damage from electrostatic discharge
(ESD)? Have the pads been qualified with respect to their ESD protection and latch-up
avoidance characteristics? Is ESD resistance adequate for the anticipated storage, transport,
handling, and operation conditions?
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C.7 Pre-layout design verification

� Have static verification techniques (code inspection, netlist screening, electrical rule check)
been used to make sure that all netlists conform to standard integrity rules? Were there no
error messages? Are the causes of all warnings reported fully understood, if there were any?

� Do the logic gauges used in simulating a netlist systematically cover all modes and conditions
under which the circuit is going to operate?

� In addition to the coverage issues considered during pre-synthesis verification, detecting vari-
ous lower-level weaknesses may require extra simulation vectors. Do simulations also address
marginal timing conditions, imperfect signal waveforms (as a consequence from noise, jitter,
poor edges, glitches, reflections, etc.), and the like?

� Is simulation output systematically verified by having the simulator compare actual against
expected responses, or is this done by visual inspection only?

� Is the simulation period organized according to the standard four-phase scheme � ↓ � ↑
(stimulus application, passive clock edge, response acquisition, active clock edge)? If so, have
you made sure there are no unwitting inconsistencies? If not, are the vectors obtained from
simulation independent of speed and truly portable?

� If the design includes three-state nodes or dynamic logic, has charge decay been modelled
during simulations? Have realistic decay times been used?

� Were all simulations carried out with models that consistently check and report timing vio-
lations? Remember that SPICE-type models have no such capabilities. Have there been any
reports of setup violations, hold violations, or other timing problems?

� Were all simulations carried out with the reporting of unsettled nodes being enabled and
properly set up? Did any nodes get reported as unsettled immediately before the active clock
edge or before output data being sampled?

� Have ramp times, shortest and longest path lengths, skew margins, and I/O timings been
anticipated with the aid of static timing verification?

� If not, have simulation runs at least been carried out with distinct clock frequencies?

� For a library-based design, did all timing-related analyses refer to realistic PTV conditions?
Beware of libraries characterized by their vendors with a derating factor of 1 (nominal) for a
junction temperature of 25 ◦C or so, and/or for a typical process outcome.

� For a transistor-level design, do the timing-related analyses consider distinct process out-
comes for n- and p-channel transistors (e.g. typical/typical, slow/slow, fast/fast, slow/fast,
and fast/slow)? Did they also cover the relevant range of temperature and supply voltage
conditions?

� In the final netlist, have you rechecked the presence of test structures such as scan paths,
extra logic for the generation of auxiliary test signals, and other non-functional structures
after logic optimization?
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C.8 Physical considerations

� Have you traced all ground, power, clock, and global reset nets? Are there no shorts? Are
there no accidental discontinuities? Do not forget to check the padframe too.

� Are all supply lines routed on thick high-level metals as much as possible? Are they free of
unnecessary contacts, vias, and geometric constrictions?

� Has the overall power distribution network been found to be adequate in view of
 current densities (electromigration),
 parasitic resistance (ohmic losses), and
 parasitic inductance (ground bounce).

� Are clock lines and long or critical signal lines routed in metal throughout?

� Have all heavily loaded lines been sized accordingly? Remember a central clock driver imposes
a heavier burden on the clock distribution network than a clock tree does.

� If vias and/or contacts must be used on critical and, therefore, wide wires, are they adequately
sized and stippled?

� Have all regular pads been instantiated from the appropriate library? Recall that only the
uppermost metal is accessible for bonding, which makes the correct choice of pads depend on
the metal options of the target process being used.

� If extra test pads are to be provided for probing, are all such pads made of the uppermost
metal? Are there openings in the overglass layer? Is there a sufficient overlap between overglass
and top-level metal to produce a hermetic seal?

� Are all wells properly tied to vss (p-well) or vdd (n-well)? Do all library cells used include
body ties (well and substrate contacts)? If not, is the density of body ties adequate? Do they
provide the low-resistance paths required to prevent latch-up?

� Are n- and p-channel MOSFETs consistently separated in the layout so as to spoil the lateral
BJTs?

� Does the layout include any structures that violate layout rules or that might overtax pho-
tographic equipment for mask making (e.g. curved lines and arbitrary angles)? What about
texts and company logos?

� Is the bonding pattern consistent with manufacturing rules?

C.9 Post-layout design verification

� Have all of the following verification steps been carried out?
 Layout rule check (DRC).
 Layout extraction (extract).
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 Comparison of layout netlist versus schematic netlist (LVS).
 Post-layout timing verification (ramp times, clock skew, critical paths, I/O timing).
 Post-layout simulation.

� Have layout parasitics, process, temperature and voltage (PTV) variations, on-chip variations
(OCVs), and noise-induced jitter been taken into account?

� Are you sure that all delay and energy parameters have been assigned their best possible
estimates during back-annotation? Mismatches between the names of formal and actual pa-
rameters have been reported to cause back-annotation to go astray.

� If any warnings or errors have been reported, are the underlying causes fully understood and
can they safely be considered to have no impact on the correct functioning of the circuit and
on its fabrication yield?

� Have you carried out sufficient random inspections and verifying calculations to protect your-
self against things that go wrong without producing any message?

� Is there any area that has been excluded from layout rule checking or from layout extraction
by way of some pseudolayer? If so, have you made sure the layout exempted from verification
is indeed correct?

� If hand-crafted layout is being used, is there a schematic for each cell against which to compare
the netlist obtained from layout extraction?

C.10 Preparation for testing of fabricated prototypes

� Have the test vectors intended for prototype verification been obtained from functional sim-
ulation runs and have the following points been observed in those simulations?
 Standard four-phase scheme, possibly with a longer clock period,

e.g. � @ 10 ns ↓ @ 50 ns � @ 90 ns ↑ @ 100 ns.
 Is the homing sequence limited to a few clock cycles?
 Are there no internal nodes that have been forced, charged, or otherwise initialized

to known states by way of simulator commands?
 If multi-driver nodes are included, have simulations been carried out

with charge decay time zero?
 If snappers are being used, have they been disconnected for simulation purposes?
 Do all primary inputs show relevant activity during simulation?
 Does every primary output toggle at least once?
 Do all primary inputs, all primary outputs, all three-state control signals, and

all direction control signals appear in the trace file?
Note that driver controls must be observed independently from whether they are
internal or external to the chip.

 Were all signals in the trace file acquired at the correct time e.g. at (90 ns + k · 100 ns)?
 Does the trace file format adhere to the ATE1 file format?

1 ATE is an acronym for automatic test equipment.
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� Are there waveform plots from simulation that cover the initialization phase for comparison
with measured signals?

� Have you documented for each primary output in what way it depends on the primary inputs
and/or on the circuit’s logic state, i.e. whether it behaves as a Mealy, a Moore, or a Medvedev
output?

C.11 Thermal considerations

� Has overall power dissipation been estimated? Have the contributions from off-chip loads been
included in this analysis?

� What temperature range is anticipated for a die under all expected operating conditions with
the bonding method, package type, and cooling system used?

� Does die temperature stay within bounds that are acceptable for the semiconductor technol-
ogy, the cell libraries, the package, and the mounting techniques being used?

� What impact do these temperature variations have on chip performance? If there are analog
subcircuits on the same chip, how are they going to be affected?

C.12 Board-level operation and testing

� Is the pinout scheme (pin1) clearly identified on the IC package and on the PCB board
(datasheets and other extra documents will inevitably get lost)?

� Is there a decoupling capacitor for each IC? Does it have a sufficiently high resonance fre-
quency? Is it wired in such a way as to provide a low inductance path?

� Are all ground and power pins connected to vss and vdd respectively?

� Are noise voltages on ground and power nets acceptable?

� Are there any board-level lines that need termination?

� Have you checked signal integrity using an oscilloscope before moving to a logic analyzer for
troubleshooting? Logic analyzers and other binary-valued instruments are inadequate for de-
tecting and locating electrical problems such as overload, slow edges, noise, ringing, reflections,
jitter, driver conflicts, mestastability, floating nodes, clock skew, and the like.

C.13 Documentation

� Is there a datasheet which provides all information needed by the user to put the chip into
operation? An adequate datasheet includes
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 A functional description (behavior, input-to-output relationship).
 A block diagram (high-level structure).
 A description of internal registers, data formats, data flow, state diagrams, and the like.
 A declaration of all unsupported situations at control and data inputs

(illegal combinations of modes, parasitic values, limitations of numeric range, etc.).
 A declaration of all supported situations at control and data outputs.
 A pad/pin list with signal name, signal type (in/out/bidir/three-state), signal polarity

(active high/low level or rising/falling/either edge), and signal function.
 Input and output voltage levels, drive capabilities, and pull-up/down resistors.
 Preliminary signal timing information including waveform plots that do state on which

basis they have been obtained (from worst/typical/best-case simulation or from
actual measurements; if so, from how many parts and under what PTV conditions).

 Absolute maximum ratings (voltages, temperature, resistance to ESD, etc.).

� Is there a record of all data possibly required by peer engineers for review, testing, qualifying,
bug fixing, modification, and reuse of the design? An adequate documentation includes
 Information on the fabrication process and the cell library used, if any.
 A reference to the transistor and/or cell models used.
 A cell hierarchy diagram that comprises information on

- whether a cell is memorizing or memoryless,
- the type of the cell (standard cell, macrocell, megacell, compound),
- how it has been obtained (synthesis, schematic entry, hand layout),
- the clocking scheme used, and
- the test structures incorporated.

 All schematic diagrams and HDL source files.
 The logic gauges, testbenches, etc. that have been used and are available for functional
simulation, fault simulation, and test.



Appendix D

Symbols and constants

D.1 Mathematical symbols used

Quantity Unit Explanation
α 1 MOSFET velocity saturation index
α 1 defect clustering factor
αk 1 node activity
β 1 BJT current gain
β A/V2 MOSFET gain factor
β� A/V2 process gain factor
Γ 1 cycles per data item
δ 1 duty cycle
ε0 A s/V m permittivity of vacuum, also known as electric constant
εr 1 relative permittivity, also known as dielectric constant
θa,c,j K or ◦C temperature (of ambient air, case, and junction respectively)
Θ s−1 data throughput
λ 1 MOSFET channel length modulation factor
Λ m pitch of virtual layout grid
µ m2/Vs carrier mobility
µ0 V s/A m permeability of vacuum, also known as magnetic constant
µr 1 relative permeability
� kg/m3 density
ρ Ω m resistivity
σk 1 crossover energy factor
Ψ W/Hz = J dissipated power per switching rate
A m2 area or, as a generalization, circuit size in gate equivalents [GEs]
AT m2 s size–time product, alternatively in [GEs]
B 1 base in a positional number system
c USD cost, occasionally in [EUR] or [CHF]
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c m/s speed of light in a medium
c0 m/s speed of light in vacuum
cox F/m2 gate capacitance per area

C F capacitance
d 1 iterative decomposition factor
d m diameter
D m−2 defect density
E m enclosure of one layout structure around another
E J energy, occasionally in [eV]
Ech J energy dissipated for charging and discharging
Ecr J energy dissipated because of crossover currents
Egap J or eV bandgap energy
Elk J energy dissipated because of leakage
Err J energy dissipated because of resistive loads
E V/m electric field strength
fclk Hz clock frequency
fcp Hz computation rate
fd Hz edge rate
fto ff Hz flip-flop toggling rate
F m minimum pitch of a line with staggered contacts
F V/m electric field strength
G 1 total gate count
G, g S conductance
h m geometric height, thickness
H m half pitch
i 1 input symbol for a finite state machine
I 1 set of input symbols for a finite state machine
I , i A current
Id A MOSFET drain current
If A forward current
Ioup A output current
Ir A reverse current
Is A MOSFET source current
J A/m2 current density
k J/K or eV/K Boltzmann constant
KP, θ,V 1 derating factor (for process, temperature, and voltage respectively)
K1 s metastability parameter of a bistable
K2 Hz metastability parameter of a bistable
l m geometric length
L 1 latency in computation periods
L H inductance
L m length of MOSFET gate
Leff m effective MOSFET gate length
Ldrawn m drawn MOSFET gate length
m 1 MOSFET body effect coefficient
mchem . El. g/mole atomic mass
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M m minimum feature size
n 1 number of chips
n 1 index of refraction
NA,D m−3 doping concentration (of acceptors and donors respectively)
NAvo mole−1 Avogadro’s number
o 1 output symbol from a finite state machine
O 1 set of output symbols from a finite state machine
p 1 pipelining factor, loop unfolding factor
P 1 number of lithographic patterning steps
P W power
q 1 replication factor
qe C elementary charge
Q C charge
rcap s/F = Ω load factor
rsl V/s slew rate
R Ω (electrical) resistance
R� Ω sheet resistance
Rθ K/W thermal resistance
s 1 time-sharing factor
s 1 state of a finite state machine
s0 1 start state of a finite state machine
sra 1 slope sensitivity factor
S 1 set of states of a finite state machine
S m spacing between two layout structures
S V MOSFET subthreshold slope
tal s time allowed to recover from metastability
tcd s contamination delay
tdi s clock distribution delay
tfa s fall time
thi s high time
tho s hold time
tid s insertion delay
tit s intrinsic delay
tjt s clock jitter
tlo s low time
tlp s longest path delay
tmr s metastability resolution time
tM T BE s mean time between errors
tox m gate dielectric thickness
tpd s propagation delay
tpu s pulse width

tra s ramp width
tri s rise time
tsk s clock skew
tsp s shortest path delay
tsu s setup time
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T s time per data item, period
Tclk s clock period
Tcp s computation period
U , u V voltage1

Uθ V thermal voltage
Ubi V junction built-in voltage
Ubs V MOSFET body-to-source voltage
Udd V supply voltage
Uds V MOSFET drain-to-source voltage
Uf V forward voltage
Ugs V MOSFET gate-to-source voltage
Uih V input high voltage
Uil V input low voltage
Uinp V input voltage
Uinv V inverter threshold voltage
Unm V noise margin
Uoh V output high voltage
Uol V output low voltage
Uoup V output voltage
Upn V junction anode-to-cathode voltage
Ur V reverse voltage
Uth V MOSFET threshold voltage
Utrip V trip voltage
v 1 voltage amplification
V m3 volume
wi,o,s 1 word width (for input, output, and state respectively)
w m geometric width
W m width of MOSFET gate or other layout structure
X m extension of one layout structure beyond another
y 1 fabrication yield
#items 1 number of items

D.2 Abbreviations

aka also known as
ckt circuit
iff if and only if
wrt with respect to

For technical and scientific acronyms please check the Index.

1 American writers usually write V for the quantity voltage and V for the unit volts. In accordance with rec-
ommendations by the International Electrotechnical Commission (IEC) and the Système International d’Unités
(SI), we use U as quantity symbol for voltage and V as unit symbol for volt to clearly distinguish the two.
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D.3 Physical and material constants

Table D.1 Selected physical constants.

Avogadro’s number NAvo 6.022 · 1023/mole
Boltzmann constant k 13.81 · 10−24 J/K = 86.17 · 10−6 eV/K
Planck constant � = h

2π 0.1055 · 10−33 J s = 0.6582 · 10−15 eV s
absolute zero 0 K = −273.15 ◦C
elementary or electron charge qe 0.1602 · 10−18 C
permittivity of vacuum ε0 8.854 · 10−12 A s/V m (= F/m)
permeability of vacuum µ0 4π · 10−7 V s/A m = 1.257 · 10−6 V s/A m (= H/m)
speed of light in vacuum c0 299.8 · 106 m/s

thermal voltage Uθ = kθj

qe
25.9 mV @ 300 K junction temperature

Note: The properties of thin films may considerably differ from those of bulk materials.

Table D.2 Key properties of selected materials (mostly after [385] and [426]).

semimetal semiconductors
material C2 Ge Si InP GaAs
crystallographic varietya G D D Z Z
bandgap energy Egap at 300 K [eV] ≈0 0.66 1.12 1.35 1.42
relative permittivity εr 16.0 11.9 12.4 13.1
approx. breakdown field [ kV

mm ] 10 30 50 40
electron mobility µe at 300 K [ cm2

Vs ] ≤10 000 3900 1500 4600 8500
hole mobility µh at 300 K [ cm2

Vs ] 1900 450 400
saturated electron velocity [106 cm

s ] 10 10 13

2 What makes carbon, C, so special is that it comes in many allotropic variations. Diamond forms a tetrahedral
crystal lattice where carbon atoms sit in the corners and are held together by covalent bonds exactly as in
monocrystalline silicon. This spatial arrangement with four strong bonds oriented around each nucleus renders
diamond extremely hard and durable. The large bandgap of about 5.5 eV makes it an electrical insulator and
optically transparent.

Graphene is the name given to a single layer of carbon atoms where each nucleus sits in the corner of a
hexagon and is covalently bonded to three neighbors in such a way as to form a planar lattice reminiscent of
chicken wire [480]. Graphite is a three-dimensional structure where many such sheets are held together by
much weaker Van der Waals forces, which explains why graphite appears soft and slick. The bandgap is almost
zero, which means that valence and conduction bands barely touch. As a consequence, graphite has a mediocre
electrical conductivity and is sometimes termed a semimetal or metalloid.

Carbon nanotubes (CNTs) can be thought of as graphene sheets that have rolled up. They exist as multi-
walled and as single-walled hollow cylinders, straight or twisted. Diameter is a little over 1 nm for a single-walled
nanotube, and up to 50 nm for multi-walled nanotubes. CNTs of different sizes can have bandgaps as low as zero
(as metal), as high as that of silicon, and almost anywhere in between. Fullerenes are spherical macromolecules
that resemble soccer balls. Carbon nanotubes and fullerenes share an extraordinary strength and stability.

The soot and lampblack deposits that form when organic fuels are burned with a lack of sufficient oxygen
largely consist of amorphous carbon with no long-range pattern of atomic positions.
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Table D.2 (cont.)

atomic mass m [ g
mole ] 72.64 28.09 145.79 144.63

density � [ g
cm3 ] 5.327 2.328 4.787 5.320

lattice spacing [nm] 0.564 61 0.543 09 0.586 87 0.565 33
melting point [◦C] 937 1415 1057 1238
thermal conductivity [ W

cm K ] 0.6 1.5 0.7 0.46

wide-gap semiconductors insulator
material SiC SiC GaN C2 SiO2

crystallographic variety 6H 4H D amorph.
bandgap energy Egap at 300 K [eV] 3.03 3.26 3.49 5.47 8–9
relative permittivity εr 9.66 9.7 9.0 5.68 ≈3.9
approx. breakdown field [ kV

mm ] 300 300 300 1000 500–1000
electron mobility µe at 300 K [ cm2

Vs ] b 700 <2000 4500
saturated electron velocity [106 cm

s ] 20 20 13 27
atomic mass m [ g

mole ] 40.10 40.10 83.73 12.01 60.08
density � [ g

cm3 ] 3.2 3.2 6.1 3.520 2.27
lattice spacing [nm] 0.308 0.308 0.356 68
melting point [◦C] 2830 2830 600 3800 ≈1700
thermal conductivity [ W

cm K ] 5 5 >1.5 20 0.014

a D = Diamond, Z = Zincblende, G = graphene (planar monocrystalline sheet).
b Highly anisotropic.

Table D.3 Selected conductor materials.

material resistivity ρ melting temp.
[10−9 Ω m] [ ◦C]

W 56.5 3410 used in contact/via plugs
Al 26.5 660 pure metal

Al 0.5% Cu ≈30 n.a. used for interconnect lines
Cu 16.7 1083 ”
Ti 420 1668 given for comparison
Ta 125 2996 ”
Mo 52 2610 ”
Au 23.5 1063 ”
Ag 15.9 961 ”
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Table D.4 Selected dielectric materials.

material relative permittivity εr

ceramic Al2O3 7–8 used for packages
epoxy resins ≈4.2 ” and circuit boards
silicate glass SiO2 1.8 (@ 75% porosity) to 3.9 inorganic ILD
fluorinated silicate glass (FSG) SiOF 3.0–3.7 ”
hydrogen silsesquioxane (HSQ) 3.0–2.7 ”
carbon-doped oxide (CDO) SiOC ≈2.4 (nanoporous) to 3.3
organosilicate glass (SiCOH) ≈1.8 (nanoporous) to 2.9
polyimides 3.0–3.6 organic ILD
parylene 2.6 ”
benzocyclobutane 2.6 ”
TeflonTM family ≤2.0 ”
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∆I noise, see ground bounce
Λ rules, 577
Π network, 566
δ delay

VHDL, 203
�, see response acquisition �
�, see stimulus application �
di(t)/dt noise, see ground bounce
1’s complement (1’C), 198, 300, 732

2’s complement (2’C), 198, 367, 464,
477, 732

3D integration, see vertical
integration

7400 family, 5, 677

ground bounce, 423

Abelian [semi]group, 131, 132
absolute maximum rating, 456, 572
abstract, see cell abstract
abstract-level verification, 601
acceptor, 672
access transistor, 712, 715
accumulation, 681
acknowledge line, 369
active area, 687
active edge, 319, 326, 361, 505, 752
active-low, 753
activity, see node activity
activity reduction, 476
actual responses, 141
Ada, 177, 186
adaptive computing, see

reconfigurable processing unit
add-compare-select, 120
adder, 240, 298, 407, 479, 482, 734

ripple carry, 69, 409
address bus, 480
adiabatic logic, 492
adjacent state assignment, 792
adjustable delay line, 344
after clause

VHDL, 203, 234
aggregate computation, 108
agility, 10, 44, 657, 727
algebraic structure, 130

algebraic transform, 86, 108, 118
algorithm, 46
algorithm transform, 62
allocation, 23
Alpha processor, 336, 342
Alpha-power law model, 450, 521
alphanumerical character, 312
aluminum (Al), 677, 697
ambient temperature, 488
ambipolar device, 713
amplification, 404
Anceau diagram, 173, 319
and-or-invert (AOI) gate, see

composite gate
AND-plane, 747
antagonistic, 398, 403
antenna rule, 527, 725
antifuse, 32, 640, 643
antistatic material, 566
antivalence function, see XOR gate
aperture time, see data call window
application-specific instruction set

processor (ASIP), 55
application-specific integrated

circuits (ASIC), 5
architecture, 46

parallel, 648
architecture body

VHDL, 183, 189, 214
architecture synthesis, 14
architecture transform, 64
area efficiency, 89
area occupation, 743
Ariane 5, 148
arithmetic package

VHDL, 254
arithmetic unit, 409
arithmetic/logic unit (ALU), 41
arrangement

physical, 19
array

VHDL, 219
array attribute

VHDL, 219, 244
ASIC manufacturer, 617, 623
ASIC manufacturing service, 625

ASIC on demand, see architecture
agility

aspect ratio, 535, 546
assertion statement

VHDL, 209, 234
assertion-based verification, 150
associativity transform, 86, 96, 107,

123, 479
asynchronous clocking, 288, 293
asynchronous reset, see reset
asynchronous state machine (ASM),

288
AT -plane, 80, 224
AT -product, 68, 73, 76, 80, 88, 640

attribute
VHDL array, 219, 244
VHDL signal, 208

autocorrelation function, 62
automated test equipment (ATE),

24, 91, 139, 141, 158, 160
automatic test pattern generation

(ATPG), 146, 324
automaton, see finite state machine

(FSM)
automaton without output, 778
avalanche breakdown, 455, 676
avalanche current, 568
avalanche-triggered snapback BJT,

568
average magnitude difference

function (AMDF), 62

back bias, 454
back gate, 572, 704
back gate effect, 401, 454

back-annotation, 255, 462, 606

VITAL, 246
backgrinding, 544, 550
backward signal propagation, 436
balloon, 485
bamboo wire structure, 565
bandgap, 671, 672, 713, 808, 809
bare die, 547
behavioral, 737
behavioral model, 189, 190, 630
behavioral model handoff, 624



INDEX 833

behavioral view, 19
best in class tool, 29
BiCMOS, 38

bidirectional
gate, see transmission gate
line, 430
pad, 91, 169, 512

binary, 734
binary signal discrimination, 393
binding, 23

VHDL, 215, 223
binning, 544, 633
bipartite graph, 327
bistable, 409–418, 750–760
bit line, 421

reduced-swing, 492
bit-serial architecture, 113
bit-true model, 22, 64, 661
bivalent, 734
BJT, 38, 456, 457, 556, 568, 571,

681, 704
black box, 19, 220
black box probing, 145, 583
blind assembly, 642
block diagram, 23, 126, 238
block isolation, 24
blockage, 601
blue film, 544
body, 388, 445, 553, 677
body effect, 482, 518

coefficient, 452
body tie, 572, 600, 688, 704
body tie cell, 575, 725
bond wire, 502, 546
bonding diagram, 545
book, 12
Boolean algebra, 131, 132
Boolean complement, see logic

inverse
Boolean optimization, 223
boron penetration, 702
Boston geometry, 481, 539, 558, 565
bottom-up, 184
Bough-Wooley multiplier, 750
branch-based logic, 403
Braun multiplier, 609, 750
breakout, 43
bubble pushing, 407, 739, 746
buffer contention, 501
built-in self test (BIST), 24, 631
built-in voltage, 675, 676

bulk CMOS, 453, 568, 571, 677
bulk process, 682, 703
bump, 534, 546
bus, 43, 125, 195, 430, 437
bus contention, see drive conflict
bus control

centralized, 433
distributed, 433

bus encoding, 480
bus holder, see snapper
bus invert coding, 480
business model, 631, 650
butted contacts, 556, 573

butterfly, 83
buyout fee, 631
bypass capacitor, 506, 547, 567

on-chip, 428, 509

C language, 177, 185
capacitance

coupling, 495, 499
capacitive load, 211
capacitor

on-chip, 528
carbon, 808

carbon nanotube (CNT), 716, 808

carbon-doped oxide (CDO), 699, 810
carrier concentration, 674, 702
carrier mobility, 387, 449, 450, 557,

590, 673, 701, 702, 712–714, 809
carry

end-around, 300
cell, 43
cell abstract, 29

cell characterization, see library
characterization

cell library, 11, 325, 621, 622, 626
textit, 28

cell outline, see cell abstract
Cell processor, 345, 705
cell-based design, 11
cellular phone, 474, 646
center pinning, 506
central processing unit (CPU), 618
chain/tree conversion, see

associativity transform
channel, 448
channel area, 687
channel leakage, 678
channel length, 387, 446, 449, 482,

557, 708

channel length modulation, 450,
452, 589, 681

factor, 391, 450, 453
channel width, 387, 446, 449, 557
charge decay, 194, 432, 600
charge recovery logic, see adiabatic

logic
charge sharing, 386, 423
chemical mechanical polishing

(CMP), 527, 595, 637, 687, 712
chip, 4
chip assembly, 25, 539
chip stacking, 549
cipher block chaining (CBC), 109,

111
circuit size, 4, 44, 67, 533
circuit under test (CUT), 139, 141,

398
circular path, 65
clamping device, 556
clear

synchronous, 226, 265, 297, 753

clear box probing, 145
clock, 69, 141, 287, 296, 518, 768

distribution network, 233
clock boundary, 288, 366, 373
clock chopping, 300
clock distribution, 294, 339–346

delay, 317, 347–353
network, 315, 334
reduced-swing, 429, 492

clock domain, 288, 315–317, 346,
366, 374, 379

clock driver, 342
clock duty cycle, 479
clock frequency, 81, 386
clock gating, 233, 301, 343, 353–360,

363, 386, 438, 478, 480, 518
clock input, 751
clock jitter, see jitter
clock maximum ramp time, 769

clock minimum pulse width, 768

clock period, 69, 235, 319
clock ramp time, 339, 383
clock skew, 317, 515, 581

analysis, 345
scheduling, 316

clock tree generation, 344, 356, 360,
538, 606

clock-to-output delay, 768
clocked bistable, 752
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clocked circuit, 374
clocked inverter, 406, 410, 412, 417
clocked RAM, see synchronous

RAM
clocked storage element (CSE), see

clocked bistable
clocking, 425, 478, 501

discipline, 287, 296, 317–339
clocking discipline, 438
clockless logic, see self-timed

clocking
CMOS

acronym, 682
dynamic, 38, 52, 292, 386, 409
fabrication flow, 682–689
logic family, 38
static, 38, 197, 386, 398, 440, 729,

748
voltage levels, 498, 517

coarse-grained FPGA, 34
code coverage, 147
code encryption, 628
code inspection, 139, 599
collective clock buffer, 340
column address, 420
combinational

circuit behavior, 181, 207, 735

VHDL circuit model, 256
combinational computation, 70, 123
combinational feedback loop, see

zero-latency loop
combinational output, 787
combinatorial explosion, 143
commercial off-the-shelf (COTS)

component, see standard part
commodity chip, 720
commodity RAM, 89, 638
common impedance coupling, see

ground bounce
commutativity, 87
compact model, 452, 569
comparator

arithmetic, 583
iterative, 584

complementary, 682
complementary pair, 366
complete gate set, 76, 742

complex gate, see composite gate
component, 43
component declaration

VHDL, 184

component failure, 566
component instantiation

VHDL, 184
composite gate, 399
compound semiconductor, 712
computation cycle, see computation

period
computation period, 69, 460, 583
computation rate, 68, 69, 460
computer arithmetics, 409
concurrency, 181, 185, 200, 205
concurrent procedure call

VHDL, 245
concurrent signal assignment

VHDL, 187, 206
conditional clocking, see clock

gating
conditional instantiatiation, 213
conditional output, see Mealy-type

output
conditional process

VHDL, 212
conditional signal assignment

VHDL, 188
conduction band, 671
conductive coupling, 495
conductor sizing, 536, 565
configurable computing, 58
configurable logic cell, 33
configuration bit stream, 27
configuration specification

VHDL, 215
conflict, see drive conflict
conflict resolution, 196
connected by name, 313
connectivity, 19
connector, 43
constant

VHDL, 218
constant-field scaling, 482
constraint graph, see timing graph
consumerization, 724
contact, 528
contact bounce, see mechanical

contact
contact plug, 688
contact replication, 538, 557, 562,

607, 634
contamination delay, 211, 325, 350,

585, 588, 766

contention, see drive conflict

control flow, 50, 126
control overhead, 125
control signal, 41, 297
controlled inverter, 406–408
controller, 13, 41, 46, 778
convolutional code, 119
coordinate rotation digital computer

(CORDIC), 63, 73
copper (Cu), 697, 699
coprocessor, 55, 59
core, 539
corelimited, 533
corner pinning, 506
cost calculator, 640, 669
cost per function, 2, 720
costs

non-recurring, 632, 636, 638
recurring, 633, 635, 636, 638

counter, 779
binary, 462
Gray, 462
Moebius, 462
slice, 415

counter mode cipher (CTR), 109
coupled-gate MOSFET (cgNMOS),

see avalanche-triggered
snapback BJT

coverage
functional, 142–153

critical path, 238, 321
crossbar logic, 562, 717
crossover current, 291, 389, 429, 432,

465, 502, 503, 588
crossover pattern, 366–369
crosstalk, 315, 423, 432, 495, 499,

510, 518, 521, 535, 538, 562,
585, 593, 596, 607, 764

cryogenic RAM, 718
cubing, see chip stacking, 549
current amplification, 573
current density, 528, 562, 607
current drive, 475, 482, 557, 607,

637, 705
current filamentation, 570
current return path, 499, 505, 510,

534
current-mode logic, 518
current-starved inverter, 430
customer-owned tooling (COT), 626
cutoff region, see subthreshold

region
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cycle-based simulation, 292
cycles per data item, 67, 97

damascene metallization, 682
data call window, 236, 317, 374, 583,

770

data dependency graph (DDG), 65,
777

data flow, 52, 126
data loss, 501
data retention time, 715
data type

VHDL, 218, 224
data valid window, 236, 317
data-to-output delay, see insertion

delay, 768
dataflow model, 190
datapath, 13, 41, 46, 56
datasheet, 29, 322, 339, 378, 383,

592
De Morgan’s theorem, 739

dead state, see lockup
debouncing, 440
decoupling capacitor, see bypass

capacitor
dedicated architecture, 45, 124
deep UV lithography, 690
defect, 634
delay balancing, 463, 479
delay buffer, 345
delay calculation, 606

central, 587
delay line, 346, 381, 515

adjustable, 352, 429

delay locked loop (DLL), 352, 429,
467

delay modelling, 203, 246
delay tuning, 292, 293, 339
Delta delay

VHDL, 203
density rule, 526
depleted substrate transistor (DST),

see ultra-thin-body SOI
depletion region, 576, 675, 677
depletion-type MOSFET, 448
derating curve, 590, 612
design entity, 238

VHDL, 181
design file

VHDL, 221
design flaw, 30, 140–142

design flow, 29
design for manufacturing (DFM),

see also yield enhancement,
544, 561, 590, 605, 626

design for test (DFT), 24, 324, 358
design house, 617
design kit, 601, 626
design library

VHDL, 221
design reuse, 294, 726
design review, 360, 662, 794–803
design rule check (DRC), 25, 524,

559, 602, 725
design stability checking, see

unsettled node reporting
design unit

VHDL, 221
design view, 29
DesignWare, 233
destructive readout, 423, 715
detail-level verification, 601
deterministic automaton, 776
device simulation, 456
device under test (DUT), see circuit

under test (CUT)
diamond, 808, 809
die, 4
die bonding/attach, 544
die size, 4, 489, 533

estimation, 669
dielectric constant, see permittivity
differential and algebraic equation,

252
differential signaling, 519, 729
diffusion, 674
diffusion area, 577
digital signal processing, 47
digital signal processor (DSP), see

microprocessor
diode, 568, 676
direct instantiation

VHDL, 184
direct memory access (DMA), 55,

440, 772

direct output, see Medvedev-type
output

directed acyclic graph (DAG), 123
Discrete Cosine Transform (DCT),

161
dishing, 527, 565
dissociation of signal classes

textit, 296
distributed arithmetic, 116, 117
distributed clock buffers, 343
distribution delay, 581
distributivity, 87
division algebra, 131
don’t care “-”, 194, 243, 734, 791
donor, 672
dopant, 553, 672, 683
doping, 553, 672, 676, 688, 702

concentration, 449, 672, 674
double data rate (DDR), 326
double-bond, 513
double-gate MOSFET

(DG-MOSFET), 709
double-rail, 739, 751
down-binning, 766
drain, 445, 553, 677, 688
DRAM, 5, 89, 292, 423, 468, 760

price, 670
drift, 675
drive capability, 435
drive conflict, 91, 169, 193, 196, 291,

415, 430, 434, 598
drive strength, 193, 393, 425
drivability, see MOSFET drivability
driver sizing, 513
drop-in replacement, 657
dual networks, 399
dual-edge-triggered flip-flop

(DETFF), 326, 417
dual-edge-triggered one-phase

clocking, 326, 374, 479
dual-threshold logic, see

multi-threshold CMOS
(MTCMOS)

duty cycle, 147, 327, 356, 468, 474,
771

dynamic back-biasing (DBB), see

variable-threshold CMOS
(VTCMOS), 482, 491

dynamic frequency scaling, 475, 482
dynamic hazard, 762
dynamic logic, see CMOS, dynamic
dynamic memory, 410
dynamic programming, 120
dynamic RAM, see DRAM
dynamic voltage scaling, 475, 482

Early effect, see channel length
modulation
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ECL, 38, 194, 648
edge detector, 300
edge effect, 634, 670
edge-triggered bistable, 751
effective channel length, 450, 680
EKV transistor model, 445
elaboration

VHDL, 216, 223
electric field, 675
electrical conductivity, 672, 673
electrical overstress, 429, 456
electrical rule check (ERC), 24, 598
electrically erasable memory, 31
electromagnetic coupling, 495
electromigration, 527, 535, 562

electron, 449, 671
excess, 672
vacant, 672

Electron beam direct write
lithography (EBDW), 696

electron beam lithography, 643
electronic code book (ECB), 73,

108

electronic design automation (EDA),
29, 40, 615

electronic manufacturing service
(EMS), 619

electronic system level (ESL), 16,
179, 726

electrostatic discharge (ESD), 427,
456, 556, 565, 572, 764

emitter, 572
enable, 226, 354, 754, 755
encapsulation, 544
endurance, 32, 93, 716
energy efficiency, 44, 86, 122–126,

224, 294, 325, 327, 334, 343,
356, 361, 475, 492, 705, 718, 727

energy level, 671
energy per data item, 68
energy per operation, 459
energy recycling logic, see adiabatic

logic
engineering change order (ECO),

538
engineering effort, 44
enhancement-type MOSFET, 387,

448, 678
entity declaration

VHDL, 182, 184
equivalence

functional, see functional
equivalence

equivalence checking, 606
equivalence function, see EQV gate
equivalence transform, 64, 67
equivalent oxide thickness (EOT),

700
equivalent series inductance (ESL),

507
equivalent series resistance (ESR),

428, 507
equivalent states, see redundant

states
EQV gate, 406
erratic operation, 286
ESD protection, 539
Euler line, 143
event

key of simulation/test, 157, 172
VHDL, 201–203

event queue, 201, 209, 582, 583
event-driven simulation, 201, 292
execution time, 201
exhaustive verification, 142
expected responses, 141
explicit state model, 226
Extendable instruction set

processors, 59
extension field, 132
external timing, see I/O timing
extracell wiring, 557
extreme UV lithography, 695

F 2 , see lithographic square
fab, 17
fabless vendor, 17
fabric, 9, 644
fabrication defect, 324, 445
fabrication process, 6, 636
fabrication yield, 524, see yield
factoring, 745
fail safe, 787
fake delay, 245
fall time, see ramp time
false path, 585
fanout, 340
fanout tree, 290, 301
Fast Fourier Transform (FFT), 83
fault coverage, 24, 146
fault grading, 24
fault model, 146

fault tolerance, 786
feedback bottleneck, 100
feedback loop

architecture-level functional, 99
architecture-level nonfunctional,

115
circuit-level, see memory loop

FET, 38, 676
field

algebraic, 131, 132
field oxide, 556
field oxide MOSFET, 456, 556
field-programmable analog array

(FPAA), 37
field-programmable gate array

(FPGA), 138
field-programmable logic (FPL), 10,

27, 30–37, 45, 138, 619, 639,
642, 724, 727, 748

file
VHDL, 217

fillcap, see filler cell
filler cell, 428, 509
fin-FET, 709
final testing, 544, 633
fine-grained FPGA, 34
finite acceptor, 778
finite field, see Galois field
finite precision arithmetics, 52, 102
finite state machine (FSM), 14, 43,

52, 136, 227, 366, 434, 438,
776–793

VHDL, 261–270
FireWire, 310, 517
first-time-right design, 27
flash memory, 32, 93, 492, 544, 636

price, 670
flat-panel display, 646
flattening, 745
flexiprint, 548
flip chip, 510, 547
flip-flop, 4, 376, 413–418, 443, 751

D-type, 414, 752

E-type, 354, 415, 754

JK-type, 754

scan-type, 324, 325, 415, 753

T-type, 415, 754

floating body effect, 704
floating gate, 30
floating node, 432, 434
floating well, 600
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floating-point arithmetics, 52, 64,
734

floorplan, 531, 586
floorplan handoff, 623
floorplanning, 24, 531, 623
flow control statement, 216
flowchart, 227
FO4 inverter delay, 76
focussed ion-beam (FIB), 27
forbidden interval, 193, 426, 433, 497

forbidden state, 756, 759
forced air cooling, 489
formal specification, 138
forward bias, 676
forward-annotation, 255
foundry service, 626
Fowler-Nordheim tunneling, 31, 527
fractional core, 90, 420
free-running clock, 304
frequency divider, 352
front-to-back environment, 29
full adder, 407, 442, 743
full handshaking, 369, 371
full layout handoff, 623
full scan, 324
full swing, 461, 463
full-custom IC, 7, 622
function

VHDL, 219
function hazard, 302, 763
function latch, 335, 412, 481
functional equivalence, 779–782

functional gauge, 141–153, 155
functionality, 44, 136
fuse, 32, 564

gain factor
MOSFET, 449, 453, 700
process, 449, 556

gain-bandwidth product, 380
gallium arsenide (GaAs), 648, 712
gallium nitride (GaN), 713
Galois field, 119, 132
gate

FET terminal, 388, 553
logic, 388, 426

gate array, 8
gate delay, 254, 697, 765
gate dielectric, 428, 448, 527, 676,

687, 701

gate dielectric breakdown, 455, 472

gate electrode, 676
gate equivalent (GE), 4, 37, 39, 639,

744
gate leakage, 468, 527, 701
gate length, 576
gate oxide, 553, see gate dielectric
gate stack, 676, 708
gate-matrix layout, 556
gate-to-channel capacitor, see

bypass capacitor
gated reset, 288, 301
general-purpose architecture, 45, 124
general-purpose IC, 5
generate statement

VHDL, 212–213
generic

VHDL, 211
generic clause

VHDL, 211
geometric layout, 11
Germanium on insulator (GOI), 712
glitch, 73, 77, 83, 86, 125, 290, 386,

463, 479, 480, 500, 756, 762–766
globally asynchronous locally

synchronous (GALS), 294, 726
glue logic, 5, 10, 25
golden model, 153, 156, 170, 243
graceful degradation, 786
graded products, 551
graphene, 713, 808

Gray code, see unit-distance code
greatest common divisor (gcd), 132
grey box probing, 145
ground bounce, 291, 315, 431, 444,

495, 499–521, 535, 539, 572,
596, 607, 764

ground plane, 510
grounded-gate MOSFET

(ggNMOS), see avalanche-
triggered snapback BJT

group
algebraic, 131

guard bar/ring, 556, 573

half pitch, 577
half-frequency clocking, 327
Hamming distance, 480
hand layout, 11
handshake protocol, 164, 310,

368–373
hardware acceleration, 221

hardware description language
(HDL), 14, 40, 734

hardware procedure, 58
hardware redundancy, 635
hardwired FPGAs, 644
hazard, 238, 290, 762–766, 789
heat pipe, 489
heat removal, 488, 711
heat sink, 471, 489
heat spreader, 489, 547
heat-conducting compound, 490
heritage design, 305
hidden refresh, 424
hierarchical composition, 181
high temperature electronics, 704
high-density packaging, 547, 720
high-impedance “Z”, 194
high-level synthesis, see architecture

synthesis
high-side switch, 388, 442
hold margin, 498, 585
hold mode, 752
hold time, 211, 317, 339, 374, 383,

769

negative, 325
hold time fixing, 236, 325, 339, 345
holding amplifier, see snapper
hole, 449, 672

home time, 770
Horner’s scheme, 87
host computer, 55, 438
hot electron degradation, 455, 590
hot electron injection, 31
hot plug-in, 572, 785
hybrid clock distribution, 344
hysteresis, 426, 757

I/O circuitry, 683
I/O timing, 346–353, 539
IC tester, see automated test

equipment (ATE)
Iddq testing, 398, 433
IEEE 1076, 176, 180, 193, 252
IEEE 1076.1, 252
IEEE 1076.2, 253
IEEE 1076.3, 254
IEEE 1076.4, 245
IEEE 1076.6, 254
IEEE 1076a, 251
IEEE 1164, 193, 208, 393, 588
IEEE 1497, 254
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IEEE 1532, 58
immersion lithography, 693
impact ionization, 676
implementation loss, 63, 477
implication chart algorithm, 784
implicit state model, 227
impurity, 672
in-circuit programming, see

in-system programming
in-place computation, 83
in-system configuration (ISC), 10,

30, 58
incremental design, 726
indemnification, 630
indistiguishable states, see

redundant states
indium phosphide (InP), 712
inductance

line, 502
loop, 510
mutual, 495, 499
self, 500, 508

inductive coupling, see inductance
mutual

industrial control, 46
infinite field, 118
information hiding, 220
information signal, 296
input delay

timing constraint, 236
input register, see registered input
input slope model, 589, 611
input-to-output mapping, 142
input/output buffer, 429, 501, 514,

520
input/output line, 492
insertion delay, 770

instance, 43
instruction set, 46, 53, 56, 57
insulator, 671
integrated circuit (IC), 4
integrated device manufacturer

(IDM), 17
integrated plastic circuits (IPC), 714
integrity rule, 598
intellectual property (IP) module,

see virtual component (VC)
interconnect, 502, 526, 529, 539
interconnect delay, 254, 340, 343,

535, 623, 637, 765
interconnect material, 697

interconnect modelling, 612
interlevel dielectric (ILD), 688, 698,

701
interrupt, 440, 772

interspersed supplies, 513
intracell wiring, 557
intrinsic delay, 588
inversion layer, 428, 448, 449
inverter, 376, 388–396
involutory, 78
IP module, see virtual component
isomorphic architecture, 66, 94, 125,

126, 463
isomorphic graphs, 66, 779
iteration bound, 100
iterative decomposition, 72, 98, 123
ITRS roadmap, 577, 721

jamb latch, 410, 429
jitter, 317, 352, 497
Josephson junction, 718
junction, see pn-junction
junction temperature, 452, 469, 488,

590

Karnaugh map, 736

kibit/kiByte, 5

lambda rules, 577
laminate substrate, 508, 546, 548
land grid array, 509
large-scale integration (LSI), 5
laser programming, 643
latch, 376, 410–413, 751

D-type, 755
latch fall-through, 329
latch-based circuit, 327, 334, 336
latch-up, 429, 456, 539, 556, 571,

704, 729
latency, 68, 91, 95, 97, 779, 780
lateral diffusion, 576
layout density, 424, 524, 556, 559,

577, 704
layout design, 24, 28, 551–562
layout editor, 11, 552, 602
layout extraction, 25, 360, 461, 605
layout parasitics, 605, 611
layout rule, 11, 524, 552, 561, 576,

577, 601, 602
layout rule check, see design rule

check (DRC)

layout versus schematic (LVS), 25,
605, 725

leaf cell, 43
leakage, 386, 398, 423, 488, 669, 701,

704
leakage current, 429, 454, 468, 481,

572, 637
leakage suppression, 234, 482–487
least common multiple (lcm), 132
least significant bit (LSB), 733
LECTOR, 487
level discrimination, 496
level restoration, 393, 404, 426, 435,

496, 729
level retention device, see snapper
level shifter, 429, 440, 517
level signaling, 371
level-sensitive bistable, 752
level-sensitive one-phase clocking,

336
level-sensitive scan design (LSSD),

333
level-sensitive two-phase clocking,

327, 479
library, 43

VHDL, 222
library characterization, 28, 134,

339, 383, 591, 592, 611

library design, 482
library vendor, 28, 622
light emitting diode (LED), 646,

713
lightly-doped drain (LDD), see

source/drain extension
line-cell memory, 715
linear feedback shift register

(LFSR), 183, 790
linear region, 447, 679
linear system, 53
liner, 697
linked state machines, 790
liquid crystal display (LCD), 646
lithographic mask, see photomask
lithographic square, 92, 577, 697,

722
lithography, 523, 689–696, 717, 719

post-optical, 694, 721
subwavelength, 561, 605, 693

lithography compliance check, 605
load

synchronous, see clear
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load factor, 588
local interconnect, see silicide strap
local substrate, see body
lockup, 786
lockup latch, 325
lockup situation, 366
logic equation, 737

logic family, 325
logic gates as repeaters (LGR), 728
logic hazard, 764
logic inverse, 133, 734

logic minimization, 743
logic one “1”, 194, 734
logic reoptimization, 606
logic state, 193, 393, 588
logic system, 193
logic value, 193, 734
logic zero “0”, 194, 734
longest path, 68, 95, 100, 223, 298,

321, 474, 482, 584, 768

longest path delay, 76, 97, 235, 337,
416, 581, 728

look-up table (LUT), 34, 35, 53,
108, 117

look-up table (LUTs), 50
loop unfolding, 101, 123
low voltage differential signaling

(LVDS), 492
low-activity circuit, 474
low-side switch, 388, 442
low-threshold device, 448
low-voltage differential signaling

(LVDS), 515

macro, 12, 559
macrocell, 12, 534, 562

generator, 13
magnetic flux quantum device, 718
magnetoresistance, 715
mainframe, 648
maintenance, 211
majority carrier, 573

guard, 575
majority function, 402, 741
majority gate, 758
makelink, 643
Manhattan geometry, 539, 558
manufacturability analysis, 25,

604
marginal triggering, 302, 374–381,

415, 426, 433, 759, 770

marketing, 5, 619, 645–650, 660
mask, see photomask
mask usage, 638
mask-programmed gate array

(MPGA), see semi-custom IC
master latch, 380, 413
master wafer, 7
master-slave flip-flop, 413
mathematical package

VHDL, 253
Matlab, 14, 162, 725
Mealy machine, 300, 776

VHDL, 261
Mealy-type output, 142, 787
mean time between error (MTBE),

380
mechanical contact, 440
mechanical stress, 510
medium-scale integration (MSI), 5
Medvedev machine, 778

VHDL, 265
Medvedev-type output, 787
megacell, 12, 534
memorizing, see sequential circuit

behavior, 735

memory, 52, 89, 231, 639
memory bound, 94, 126
memory configuration, 89
memory interleaving, 92
memory loop, 376, 410–412, 753
memory model, 231, 247
memory refresh, 89, 423, 424
memory wait cycle, 424
memoryless, see combinational

circuit behavior, 735

metal, 671
metal deposition, 688
metal gate, 677, 702, 710
metallurgical junction, 674
metastability, 291, 376, 415, 756, 759

resolution time, 377
Mibit/MiByte, 5
microprocessor, 37, 74, 88, 618, 648
microprocessor interface, 438–440
Miller capacitance, 395, 490
min/max timing analysis, 597
minicomputer, 648
minimum bit encoding, 792
minimum feature size, 576
minority carrier, 573

guard, 575

minority function, 402, 741
mirror adder, 407
mixed-signal design, 37, 518
mixed-signal model, see

VHDL-AMS
mobility, see carrier mobility
mobility degradation, see velocity

saturation
mobility reduction, see velocity

saturation
model under test (MUT), 139, 141,

153–168
VHDL, 242–245

modularity, 181
monoflop, 300
monoid, 131
monotone, 400, 402, 406, 741

Moore machine, 777

VHDL, 263
Moore’s law, 175, 719

Moore-type output, 787
MOS, 38, 648, 676
MOSCAP, 428, 429, 679, 689
MOSFET, 38, 553, 676, 688, 716

driveability, 449, 701
equivalent conductance, 449
model, 387, 445–457

operation, 676–682

most significant bit (LSB), 733
Muller-C, 294, 751, 757

multi domain model, 253
multi-chip module (MCM), see

high-density packaging
multi-driver node, 195, 196, 430, 461
multi-layer reticles, 643
multi-project wafer (MPW), 642,

669
multi-stage logic, see multilevel logic
multi-threshold CMOS (MTCMOS),

484
multi-value system, see logic system
multi-valued logic, 93, 492
multicore, 81
multicycle path, 359, 631
multilevel logic, 740

multimedia extension (MMX), 57
multipath filter, 98
multiple-instruction multiple-data

(MIMD), 56
multiplexer (MUX), 187, 354, 430,

437, 742
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multiplexer arm, see controlled
inverter

multiplexing, 81
multiplier, 463, 479

array, 749
multiply-accumulate (MAC), 51
mutual exclusion element

(MUTEX), 294, 758

n+ , see doping
n-cube, 736, 764
NAND gate, 4, 39, 396
Nano imprint lithography, 696
nanocircuits, 562
nanodevice, 717
narrow-channel effects (NCE), 454,

481
Nassi-Shneiderman diagram, 227
native compiled code, 221
near hazard, 764
negative back bias, 573
negative timing constraint, 210
net, 43
netlist, 11, 40, 601

extracted, 605
netlist handoff, 623
netlist screening, see electrical rule

check (ERC)
network on chip (NoC), 728
network processor, 164
next state function, see transition

function
NMOS, 38, 467, 682
node, 43
node activity, 125, 433, 462–465
node capacitance, 432, 490
noise coupling, 495
noise margin, 319, 393, 426, 497, 519
non-disclosure agreement, 628
non-monotone, 406
non-recurring costs, 9, 633
non-recurring engineering (NRE)

costs, 633, 643
non-volatile, 31, 716
nonlinear loop, 106
nonrecursive computation, 93, 123
NOR gate, 397
not-a-number (NaN), 150
number representation scheme, 477,

732
numeric overflow, 149

object
VHDL, 217, 252

off state, 387
off-axis illumination (OAI), 692
off-chip communication, 477
offset-binary (O-B), 732
ohmic contact, 676
on state, 387
on-chip memory, 89
on-chip variations (OCV), 315, 344,

438, 585, 590, 597, 765
one-hot encoding, 366, 429, 792
one-mask customization, 650
one-shot, 300
open collector, see open drain
open drain, 197, 430
operating conditions, 382
operating temperature, 562
operator reordering, see

associativity transform
optical proximity correction (OPC),

636, 693, 725
or-and-invert (OAI) gate, see

composite gate
OR-plane, 747
organic semiconductors, see

integrated plastic circuits (IPC)
orientation of binary vectors, 199
oscillation, 432
output conductance, 391
output delay

timing constraint, 236
output function, 776

output register, 238, see registered
output

over-the cell routing, 592
over-the-cell routing, 12, 530, 601
overdrive, 466, 472
overglass, 689
overhead power line, 564
overruled memory loop, 410, 415
ovonic unified memory (OUM), 715

p+ , see doping
package

encapsulation, 43, 489, 540–551,
626, 633

VHDL, 43, 220
package lead finger, 546
package-on-package (PoP), 548
pad, 43

pad driver, see input/output buffer,
592

pad opening, 689
padframe, 533, 539
padlimited, 533
PAL, 749
parallel, see concurrency
parametric failure, 637
parametrized circuit model, 211
parasitic device, 456, 457, 555, 568
parasitic diode, 569
parasitic state, 785
Pareto-optimal, 224
parity gate, 406
partial handshaking, 371
partial scan, 324
partial verification, 143
partitioning, 236
pass gate, see transmission gate
pass mode, 429, 752
pass transistor, 30, 403
passivation layer, 698
passive process

VHDL, 209
passive pull-up/-down, 193
path algebra, 119, 133
pausable clock, 383
periodic layout, 561, 717
periodic table, 673
permittivity, 449, 612, 701, 810
perovskite, 700, 715
personal digital assistant (PDA),

650
Petri net, 138, 179, 757
phantom cell, see cell abstract
phase locked loop (PLL), 37, 253,

352, 367, 374, 429, 467
phase shift masks (PSM), 636, 691,

725
photolithography, see lithography
photomask, 7, 559, 636, 643, 683,

689, 695
preparation, 543, 579, 626

photoresist, 683, 690
physical design verification, 25, 462
physical view, 19
pin, 43, 547
pin count, 533
pin-to-pin delay, 588
pinch off, 680
ping-pong, 83
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pinout, 506, 534
pipeline interleaving, 109, 123
pipeline register, 75, 482
pipelined interconnect, 728
pipelining, 75, 81, 95, 111, 123

coarse grain, 76
fine grain, 76, 337

pitch, see half pitch
PLA, 747
place and route (P&R), 11, 24, 538,

575, 601
plane, 747
plesiochronous interface, 381
PMOS, 38, 467, 682
pn-junction, 555, 674, 704
polling, 771
poly, see polysilicon
poly depletion, 702
polycide, 527
polymer electronics, see integrated

plastic circuits (IPC)
polysilicon, 559, 674, 687
polysilicon gate, 677, 687, 702
port, 43

VHDL, 182, 211
port clause

VHDL, 182
port map

VHDL, 184
portable design, 305
positional number system, 199,

732

positive feedback, 426
post-layout, 25, 586, 606
power budgeting, 474
power dissipation, 459
power distribution, 546
power estimation, 24, 669
power-delay product (PDP), 68

precedence, 130, 740
precharge, 421
printed circuit board (PCB), 4, 547
probe card, 543, 633
procedural layout, 552
procedural model, 190
procedure

VHDL, 219
process

VHDL, 187–189, 205
process control monitor (PCM), 626,

689

process control monitor (PCMs),
543

process monitoring, 689
process option, 560, 636
process selection, 475
process statement

VHDL, 187, 188, 206
process variation, 543, 544, 590, 637,

689
product

industrial, 632, 649
product grading, 650, 652
product-of-sums (PoS), 739

productivity, 11, 16
programmable array logic, see PAL
programmable logic array, see PLA
prop/ramp model, 588
propagation delay, 211, 585, 588,

766

protocol adapter, 161
prototype fabrication, 642
pseudo code, 221
pseudo random sequence generator,

462
pseudostatic, 389
PTV condition, 255, 323, 382
PTV variations, 315, 349, 429, 438,

514, 590

pull protocol, 369
pull-up/down

network, 397, 398, 403
passive, 419, 433, 467

pulse-clocked latch, 361, 479
punch-through, see avalanche

breakdown
push protocol, 369

quantity
VHDL-AMS, 252

quartz, 708

race path, see shortest path
radiation, 32, 572
radiation-hard device, 704
raised source and drain, 705
RAM, 231, 418–425, 760

asynchronous, 425
dual-port, 761
embedded, 89, 425
ferroelectric (FeRAM), 715
magnetic (MRAM), 715

phase-change (PRAM), 715
synchronous, 425

ramp time, 340, 393, 433, 465, 481,
518, 589, 614, 769

random access memory, see RAM
random logic, 492, 747

random testing, 150
rapid prototyping, 138, 153
Rapid Single Flux Quantum

(RSFQ), 718
ratioed logic, 398, 410, 417, 425
ratioless logic, 398, 729
ray tracing, 57
reactive system, 46, 138, 179
read amplifier, see sense amplifier,

467
read-only memory, see ROM
real-world data, 149
rebuffering, 606
recombination, 675
reconfigurable coprocessor, see

reconfigurable computing
reconvergent fanout, 290, 300, 764

record
VHDL, 219

recovery time, 770
recursive computation, 99, 123
reduced instruction set computer

(RISC), 74
redundant logic, 744, 765
redundant states, 783
register, 89, 126, 226
register balancing, see retiming
register transfer level (RTL), 23,

175, 238, 241
registered input, 350
registered output, 350, 789
reject clause

VHDL, 203, 234
release time, see recovery time
removal time, see home time
repeated wire, 343, 728
repeater, 343
replication, 79, 98, 123
request line, 369
rescaling, 477
reset, 296, 302

asynchronous, 226, 263, 296, 301,
303, 518, 753

mechanism, 210, 414, 787
signal, 244, 304
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reset (cont.)
skew, 304
VHDL, 210, 225

resistive load, 467
resistivity, 809
resistor, 679
resolution enhancement techniques

(RET), 691, 719
resonance frequency, 507
resonant clocking, 494
resource sharing, 72, 81
response acquisition �, 158, 174, 243
resynchronization register, 789
retain delay, see contamination

delay
reticle, 689
retiming, 94, 123
reuse, see design reuse
reverse bias, 675
reverse body biasing (RBB), see

variable-threshold CMOS
(VTCMOS)

ring, 131
commutative with unity, 132
with unity, 132

ringing, 572
ripper, see break out
rise time, see ramp time
rising edge()

VHDL function, 208
ROM, 5, 231, 749
routing, 35
routing channel, 8, 12, 530
row, see cell row
row address, 420
royalty fee, 632
RTL model handoff, 624
RTL synthesis, 14
rule deck, see layout rule
runt pulse, 756, 762, 764, 765

safe circuit, 438
Sah model, 389, 390, 446
sales volume, 639
salicide, 527, 688
sampling time, see data call window
saturation region, 447, 680, 681
scalar acquisition, 373
scaling, 38, 593

constant-field, 472
scaling property, 440, 706

scan flip-flop, see flip-flop scan-type
scan insertion, 325, 539
scan path, 24, 159, 234, 324, 333,

363, 778
scan reordering, 606
scan test, 324, 357, 753
schedule, 129, 239
scheduling, 23
schematic diagram, 40, 185
schematic entry/editor, 11, 241
Schmitt trigger, 426, 440
Schottky junction, 572, 676
scribe line, 544
sea-of-gates, 8, 559
seesaw, 299, 303, 385, 412, 751,

756

selected signal assignment
VHDL, 187

self-aligned gate, 677, 687, 702
self-checking, 151
self-dual, 402
self-protection, 569
self-referencing function, see

zero-latency loop
self-reverse biasing, 487
self-timed, 298, 758, 760
self-timed clocking, 288, 294
semi-custom IC, 7, 34, 620
semiconductor, 672
semigroup, 131
semiring, 119, 131, 133

commutative, 132
sense amplifier, 421
sensitivity list

VHDL, 205
separation gate, 559
sequential

circuit behavior, 181, 207, 225,
735

code execution, 181, 188, 200
VHDL circuit model, 261

Serial ATA (SATA), 517
service, 649
set

asynchronous, see reset
set-up margin, 498, 585
set-up time, 211, 317, 339, 374, 383,

769

set-up-and-hold window, see data
call window

sewing kit, 538

shallow trench isolation (STI), 682,
687

shared variable
VHDL, 251

sheet resistance, 527, 528, 580,
595

Shichman-Hodges model, 391, 450
shimming register, 78
Shockley model, see Sah model
short-channel effects (SCE), 396,

454, 481, 687
short-channel effects (SCEs), 707
shortest path, 321, 322, 585, 768

shortest path delay, 235, 581
shuttle, see multi project wafer

(MPW)
side-wall spacer, 687
sign-and-magnitude (S&M), 198,

300, 464, 477, 732

sign-off, 601, 610, 621, 623, 625
signal

VHDL, 186, 204, 217
signal silencing, 480
signal transition graph (STG), 370,

757

signal transition graphs (STG), 138
signed

VHDL data type, 198
signed number, 733
silica, 708
silicide, 527, 569, 688
silicide strap, 528
silicon, 4, 672

silicon carbide (SiC), 713
silicon dioxide (SiO2 ), 697, 699, 707,

810
silicon foundry, 17
silicon-controlled rectifier (SCR), see

thyristor
silicon-germanium (SiGe), 713
silicon-on-insulator (SOI), 484, 703,

721
silicone, 4
SIMOX, 703
simulation

logic, 24, 201, 242–248, 436
post-layout, 607

simulation model, 339, 383
bistable, 378

simulation report, 141
simulation time, 201
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simultaneous switching output
(SSO) noise, see ground bounce

single-edge-triggered flip-flop
(SETFF), 319, 413

single-edge-triggered one-phase
clocking, 69, 319

single-instruction multiple-data
(SIMD), 56

single-rail, 739

single-wire level-sensitive two-phase
clocking, 334

singulation, 544
size-time product, see AT -product
skew margin, 319–339, 597
slack, 321, 345, 585
slack graph, see timing graph
slave latch, 413
sleep mode, 477
sleep transistor, 484
slew rate, 430, 508, 518, 771

clock, 383
slew rate control, 514
slope sensivity factor, 589
slotting, 565
small-scale integration (SSI), 5
snapback characteristic, 568
snapper, 193, 299, 425, 433, 751,

758
soft switching, 514
soft X-ray lithography, see extreme

UV (EUV) lithography
software engineering, 155, 438, 666
solid-state device, 671–682
source, 445, 553, 677, 688
source/drain extension, 569, 687
space-charge region, see depletion

region
special-purpose architecture, see

dedicated architecture
speculative completion, 298
split power lead frame, 513
split supplies, 513
SR-latch or SR-flip-flop, see seesaw
SRAM, 5, 89, 418, 484, 487, 712, 760

cell, 376, 559
stacked contact, 528
staggered contact, 528, 577
staggered pad, 533
staggered switching, 514
stallable, 371, 728
stand-by current, 468

standard

VHDL package, 220
standard cell, 11, 534, 556, 575
standard delay format (SDF), 246,

254, 586, 607
standard part, 10, 617
start state, 95, 776

state assignment, see state encoding
state chart, 179
state encoding, 223, 230, 268, 480,

791
state graph, 138, 170, 179, 776

state reduction, 223, 230, 268,
783–784, 791

state table, 776

state transition, 297
state transition diagram, see state

graph
state-dependent delay, 589
statechart, 138, 790
static hazard, 762
static logic, see CMOS, static
static memory, 30, 409, 639
static RAM, see SRAM
static timing analysis (STA), see

timing verification
status signal, 41, 297
std

VHDL library, 223
std logic

VHDL data type, 196, 199
std ulogic

VHDL data type, 194, 199
steady-state, 431, 496
stick diagram, 553
stimuli, 141
stimulus application �, 158, 174,

243
stipple contact, 526, 565
stopover register, 346
storage capacity, 477
storage requirements, 52
stored program, 43
strained silicon, 701, 712
strong inversion, 678
structogram, see Nassi-Shneiderman

diagram
structural, 737
structural model, 185, 190
structural view, 19
structured ASIC, 9, 644, 650, 669

structuring, see factoring
sub-word parallelism, 57, 125
subprogram

VHDL, 219
substrate coupling, 518
subthreshold current, 452, 468, 472,

678, 681
subthreshold logic, 491
subthreshold region, 447, 678, 681
subthreshold slope, 453, 469, 701,

705
subtractive metallization, 688
subtractor, 584, 734
subtype

VHDL, 218
sum-of-products (SoP), 738

super cutoff CMOS (SCCMOS),
484, 681

superfast distribution/recollection,
81

superposition, 87
superscalar, 81
supply chain management, 626, 633
supply droop, see ground bounce,

596
supply voltage, 89, 383, 466, 492,

590
surface acoustic wave (SAW) filter,

548
surface mount device (SMD), 507
switch model, 387, 458
switching activity, 361, see node

activity
switching algebra, 133, 734
switching noise, 334, 386, 480, 496,

785
switching threshold, 339, 432, 517
symbol, see icon
symbolic layout, see stick diagram
symmetric level-sensitive two-phase

clocking, 327
symmetry

electrical, 423
in coefficient set, 87
of logic function, 741

synchronization, 363–384, 438
failure, 380

synchronization failure, 785
synchronizer, 234, 581

shared flip-flop, 385
two-stage, 371, 383
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synchronous clear, see clear
synchronous clocking, 287, 291
synchronous design

guiding principles, 296–298
synchronous island, see clock

domain
synchronous output, 777
synthesis

circuit, 14
VHDL, 223

synthesis chunk, 236
synthesis constraint, 234
synthesis model, 14
synthesis package

VHDL, 254
synthesis subset

VHDL, 254
synthesis tool, 292
system house, 617
system-in-a-cube, see chip stacking
system-in-package (SiP), see

high-density packaging
system-on-a-chip (SoC), 6, 548, 650,

726
SystemC, 176
SystemVerilog, 176
systolic conversion, 97

T-diagram, 152
T-gate, see transmission gate
tape out, 623
target process, 528, 533, 555
Tcl, 235
technology CAD (TCAD), 456, 710
technology mapping, 224
terminal, 43
termination resistor, 467
test cases, see functional gauge
test patterns, see functional gauge
test signal, 297
test suite, see functional gauge
test vector

set, 24, 141, 146, 625
testability, 436
testbench, 141, 155, 161

design, 153–168
VHDL, 242–245, 270

text editor, 14
textio

VHDL package, 221
thermal design power (TDP), 488

thermal equilibrium, 674, 677
thermal resistance, 488, 704
thermal voltage, 452, 808
thinoxide, see gate dielectric
three-state node, 425, 430
three-state output, 195, 399, 405
threshold adjustment, 702
threshold function, 741
threshold voltage

inverter, 390
MOSFET, 30, 424, 448, 453, 454,

468, 482, 491, 518, 527, 590,
637, 705, 708

through path, 300, 787
throughput, 44, 68

thyristor, 568, 571
tie-off cell, 427
tiled layout, 52, 424, 562, 747, 750,

760
time borrowing, 329, 335
time per data item, 68
time sharing, 81, 98, 111
time to market, 10, 44, 136, 641
time-invariant, 53
time-sharing, 123
timing

memory, 91
timing check, 209, 436
timing closure, 538, 599
timing condition, 208, 254, 374,

768

timing constraint, 223, 234–238,
409, 771

timing library format (TLF), 323
timing overhead, 321
timing problem, 286, 581, 582, 606
timing verification, 24, 235, 321,

323, 345, 358, 360, 498,
585–586, 591, 606

timing violation, see marginal
triggering, 585

toggle count, 146
toggling rate

maximum, 771

of a node, see node activity
top-down, 184
topological order, 173
transaction

higher-level, 17, 150, 155, 160

VHDL, 201–203, 583
transconductance, 391

transfer characteristic
inverter, 393
MOSFET, 387, 446–452

transformatorial system, 46, 138,
179

transients
modelling of, 588

transistor count, 4
transistor model, 253
transistor strength, 449
transit frequency, 712
transition function, 776

transition signaling, 370
transition-minimized differential

signaling (TMDS), 517
Transmeta, 476
transmission gate, 30, 393, 403, 429,

434–437, 445, 455
transmission gate adder, 443
transmission line, 612
tree-height minimization, see

associativity transform
trench capacitor, 712
tri-gate device, see fin-FET
Triac, 147
trickle inverter, 410
trip point/voltage, 591
triple-S logic, 485
truth table, 138, 735

TTL, 38, 194, 676
voltage levels, 498, 517

turnaround time, 9, 139, 548, 621,
727

two-level logic, 738

two-phase level-sensitive clocking,
518

two-stage logic, see two-level logic
type, see data type
type attribute

VHDL, 219
type conversion

VHDL, 255

ultra thin body (UTB), 704, 710
ultra-large-scale integration (ULSI),

5
ultra-thin-body (UTB), 713
unate, see monotone
unclocked bistable, 298, 426
unclocked RAM, see asynchronous

RAM
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unconditional output, see

Moore-type output
uncontrolled oscillation, 500
undecoded Moore type output, see

Medvedev-type output
underdrive, see super cutoff
UNIBOND, 703
uninitialized “U”, 194
unit distance code, 367
unit-distance code, 480
unity gain point, 497
universal transform, 86
unknown “X”, 194, 393, 734
unsafe circuit, 437
unsettled node reporting, 583
unsigned

VHDL data type, 198
unsigned number, 733
unused input, 518
use clause

VHDL, 222
user interface, 46
UTSi, 703
UV-erasable memory, 30

vacancy, see hole
valence band, 671
Van der Pauw structure, 580, 689
variable

VHDL, 204, 218
variable-threshold CMOS

(VTCMOS), 482
varicap, 675
vectored acquisition, 365
velocity saturation, 396, 450, 472

index, 451, 453

ventilation, see forced air cooling
verification

dynamic, 139
static, 139

Verilog, 14, 176, 185
vertical integration, 711
very-large-scale integration (VLSI),

5
very-long instruction word (VLIW),

56
VHDL, 14, 176–255, 736

code examples, 256–285
VHDL-AMS, 252
via, 9, 528
virtual component (VC), 16, 351,

615, 621, 627–632, 650, 726
virtual prototype, 16, 138
VITAL, 245, 607, 613
Viterbi algorithm, 62, 119
volatile, 716, 761
voltage amplification, 390, 391, 393,

588
voltage drop, 607, 676
voltage swing reduction, 492

wafer, 4, 689
processing, 7, 552, 577, 624, 633,

636, 682–689

sorting, 543, 634
tape, see blue film
testing, 543, 633

wafer thinning, see backgrinding
wait statement

VHDL, 203, 206, 225, 234
wake-up signal, 202, 205, 207, 297
wave pipelining, 337

waveform
clock, 322, 327, 330, 338, 339, 383,

581
signal, 291

weak inversion, 491, 678
weak transistor, 410, 433, 557
weakly programmable satellite, 55
well, 685, 704
wire bonding, 533, 544, 546, 548,

550
wire load model, 586
wire planning, 729
wired-AND, 197, 430
wiring parasitics, 586
word line, 420

word width, 52, 125, 126, 211, 477
work

VHDL library, 223
work function, 677, 702, 708
wristwatch, 468
write back, 424

XNOR gate, see EQV gate
XOR gate, 132, 406, 740

Y-chart, 18
yield, 524, 544, 625, 634, 637, 644,

669
model, 634

yield enhancement, 538, 561, 625

Zener diode, 569, 676
zero-delay clock distribution, 352
zero-latency loop, 66, 238, 299,

302, 327, 440, 582, 757, 758,
789
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Figure 14.9 n-channel device in weak inversion.
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Figure 14.10 n-channel device in strong inversion.
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Figure 14.11 n-channel device in linear regime.
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Figure 14.12 n-channel device at pinch off.
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Figure 14.13 n-channel device in saturated condition.
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Figure 14.15 3D view of the situations illustrated in figs.16 through 19.
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