
Agile Data Warehousing for the Enterprise
A Guide for Solution Architects and Project Leaders

Agile Data Warehousing
for the Enterprise
A Guide for Solution Architects
and Project Leaders

Ralph Hughes, MA, PMP, CSM

AMSTERDAM � BOSTON � HEIDELBERG � LONDON � NEW YORK � OXFORD � PARIS

SAN DIEGO � SAN FRANCISCO � SINGAPORE � SYDNEY � TOKYO

Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Steve Elliot

Editorial Project Manager: Lindsay Lawrence

Project Manager: Priya Kumaraguruparan

Cover Designer: Mark Rogers

Morgan Kaufmann is an imprint of Elsevier

225 Wyman Street, Waltham, MA 02451, USA

Copyright r 2016 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording, or any information storage and retrieval system, without permission in writing from

the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our

arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be

found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than

as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,

changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,

methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own

safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury

and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation

of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-12-396464-9

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

For information on all Morgan Kaufmann publications

visit our website at www.mkp.com

http://www.elsevier.com/permissions
http://www.mkp.com

Advance Praise for Agile Data Warehousing
for the Enterprise

Agile Data Warehouse for the Enterprise is a must read for any data professional tasked with delivering enter-

prise reporting and analytics in the nimble, speed-to-value environment that we find ourselves in today. It marries

an agile methodology with data warehousing’s best practices to create a blueprint for delivering value fast.

� Nik Green, Director of Business Intelligence for a multi-billion dollar food retailer

This comprehensive guide provides a solid and complete foundation for agile EDW development including revolu-

tionary new paradigms. I especially like the ‘out of the box’ thinking, practicality of the techniques, and the

research and case studies backing up the validity of the proposed approaches. Recommend reading for all DW/BI

technical leaders.

� Len Silverston, CEO of Universal Data Models and author of the Data Model Resource Book series

Ralph’s book goes way beyond just agile programming—it illustrates an iterative approach to the full develop-

ment life cycle and is particularly relevant to issues of data quality that we focus on at DAMA. The hyper model-

ing techniques in particular will allow teams to avoid the death trap of producing big, risky application designs

up-front before a project’s requirements are fully known.

� Ken Dunn, President of DAMA’s Houston chapter

Ralph’s notion of “80/20 specifications” for data warehousing projects really worked, saving our business part-

ners the pain of doing an exhaustive requirements specification up-front. This approach got the team developing

the most important features first, letting the product owner fill in details on topics as each one came up later dur-

ing development.

� Naveen Thalanki, Project Manager for a Fortune 500 company

If you’re still programming data warehouses by hand, you’re wasting 90 percent of your time and money. Ralph’s

guide for project leaders not only outlines the automated, metadata-driven development we’ve been practicing for

years in the Netherlands, but also links that practice to agile requirements, coding, and quality assurance. It is a

unique book, a must read.

� Ronald Damhof, DW/BI Consultant to the Dutch Central Bank

The industry has struggled to bring the mechanics and benefits of Agile to the data warehousing and business

intelligence communities. Ralph’s work in this area is timely and important to assist in driving success within

your enterprise and project teams. Following the guidance found in this book will help you deliver value at a

rapid pace.

� Tom Hammergren, CTO of Cordata Healthcare Innovations and author of

Data Warehousing for Dummies

This book presents a thorough approach to building quality into enterprise data warehouses, mitigating risk by

applying proven models for testing, and detailing alternatives so that you can experiment to find the alternatives

that work best for your team. These aren’t mere off-the-cuff ideas, but proven techniques to overcoming the huge

challenges of EDW by applying agile principles, illustrated with stories from the trenches.

� Lisa Crispin, Co-Author of More Agile Testing: Learning Journeys for the Whole Team, and

Agile Testing: A Practical Guide for Testers and Agile Teams

Ralph has customized the agile development methodology for the unique needs of business intelligence. My project

teams were able to quickly understand and apply his approach without losing time to adapting generic Scrum

techniques to the rigors of data integration and analytics.

� Ron Lewis, program manager at a Fortune 1000 financial services company

Agile Data Warehousing for the Enterprise is a “how to” book with innovative method and process components

such as hyper data modeling and an iterative sub-release value cycle. Ralph provides a clear outline of the con-

cepts, methods, and frameworks you’ll need to assemble a world-class BI/DW program of your own.

� Hans Hultgren, author of Modeling the Agile Data Warehouse with Data Vault and BI/DW industry advisor

As a friend of Ralph and fellow Agile DW/BI author, I am very excited about this book. Ralph’s extensive research

into what works, his hands-on application of those techniques, and his well-organized method of presenting infor-

mation, are combined in this game-changing book for data warehouse practitioners seeking greater agility.

� Ken Collier PhD, author of Agile Analytics

Agile techniques and Ralph’s adaptations for enterprise data warehousing have dramatically improved our ability

to understand business needs and to then plan, track, and deliver upon those needs for large and small projects.

This book provides a thorough treatment of the vital leadership practices for agile projects including require-

ments, architecture, and quality assurance.

� Richard Tench, Manager, Information Delivery, major Canadian insurance company

List of Figures

Figure 1.1 The negative feedback loop present in most traditionally managed projects. 2
Figure 1.2 The five major components to agile enterprise data warehousing. 4
Figure 1.3 Agile EDW practices switch projects to a positive feedback loop. 4
Figure 1.4 How a team might acquire agile EDW techniques working from the inside out. 8
Figure 2.1 Mind map of generic iterative methods summarized in Chapters 2 and 3. 14
Figure 2.2 A family tree of methods and influences leading to the agile EDW method. 15
Figure 2.3 The traditional waterfall method. 17
Figure 2.4 The Agile manifesto cover page. 17
Figure 2.5 Values and principles of the agile manifesto and Extreme Programming. 18
Figure 2.6 The essence of the Scrum method. 21
Figure 2.7 Typical user story. 22
Figure 2.8 A sample Scrum task board as it would appear in mid-iteration. 24
Figure 2.9 A Scrum burndown chart as it would appear in mid-iteration. 25
Figure 3.1 Lean values, principles, and tools. 33
Figure 3.2 Value-stream analysis of development work for a challenged waterfall project. 34
Figure 3.3 Typical Kanban work board. 42
Figure 3.4 Kanban-style cumulative flow diagram. 43
Figure 3.5 Sample cycle time distribution analysis for a Kanban team. 44
Figure 3.6 Typical stages of “Scrumban”—the transition from Scrum to Kanban. 48
Figure 3.7 Two-tiered Scrumban task board. 48
Figure 3.8 Values and principles of the Rational Unified Process. 50
Figure 3.9 RUP Whale Chart. 51
Figure 3.10 Google Ngram of “Scrum” and “RUP” through 2008. 53
Figure 4.1 Business organizational terms used in this book. 64
Figure 4.2 Business conceptual model. 72
Figure 4.3 Logical data model. 72
Figure 4.4 Physical data model. 73
Figure 4.5 Sample enterprise data warehouse “reference architecture”. 75
Figure 4.6 Zachman framework adapted for an enterprise data warehousing program. 77
Figure 4.7 DAMA’s framework for data management functions. 78
Figure 4.8 Hammergren’s matrix for sequencing DW/BI development work. 79
Figure 5.1 Typical RUP-style whale chart for an agile EDW project. 91
Figure 5.2 Agile EDW user stories result in too many developer stories for one, short Iteration. 92
Figure 5.3 Deriving developer stories from user stories. 94
Figure 5.4 A “current estimate” for an agile data warehousing project. 96
Figure 5.5 Agile data warehousing requires pipelined work specialties. 99
Figure 5.6 Work packages tend to flow diagonally across technical specialties and iterations. 101
Figure 5.7 Cycle time distribution analysis for an agile data warehousing project. 103
Figure 5.8 A current estimate adjusted for observed delivery cycle times. 104
Figure 5.9 Success rates for agile data warehousing teams, by number of agile projects completed, compared

to traditional methods.
105

Figure 5.10 Agile’s impact upon key performance indicators for data warehousing development projects. 105
Figure 5.11 Agile data warehousing surveys indicate that practitioners have overcome some challenge areas. 107
Figure 6.1 Relative cost of correcting defects grows by 100 between requirements and promotion into production. 112
Figure 6.2 Incremental delivery mitigates risk by increasing the number of product check points. 113
Figure 6.3 The sources of EDW project risk mitigated with three types of iterations. 115
Figure 6.4 Relative timing for the three types of iterations that Agile EDW employs. 118
Figure 7.1 Mind map of topics addressed in Part III. 126
Figure 7.2 Sample EDW requirements expressed at three levels. 127
Figure 7.3 Waterfall-style requirements management. 131
Figure 7.4 Typical requirements work breakdown for a traditional project. 133

xvii

Figure 7.5 As-is business process diagram showing a sample work flow requiring re-engineering. 135
Figure 7.6 To-be business process re-engineered to use EDW to communicate between agents. 136
Figure 7.7 Accuracy vs. precision. 137
Figure 7.8 Standard risk analysis. 140
Figure 7.9 Standard analysis adjusted for dollar value of each type of risk. 141
Figure 7.10 Agile EDW’s requirements management benefits greatly from intersecting value chains. 146
Figure 7.11 Overall agile EDW requirements management plan. 148
Figure 7.12 Enterprise requirements management roles. 150
Figure 8.1 Big picture � decomposing epics into a backlog of stories. 152
Figure 8.2 Immediate business stakeholder formalizing all levels of stories by linking them to the hierarchy

among business stakeholders.
153

Figure 8.3 Primary technique for decomposing user stories into developers stories. Note the 25-to-1 multiplier for this
project’s user story.

158

Figure 8.4 INVEST and DILBERT’S test. 158
Figure 8.5 Big picture � recompling modules for perceived value. 160
Figure 8.6 Value build-up charts distingishing between delivery environments. 166
Figure 9.1 User modeling example. 171
Figure 9.2 Business intelligence user’s hierarchy of needs for the example project. 172
Figure 9.3 Mind map & fish bone diagrams. 175
Figure 9.4 Previous mind map re-drawn as a fishbone diagram. 175
Figure 9.5 Front and back of a project vision box. 177
Figure 9.6 Example of a project vision statement. 177
Figure 9.7 Product road map formatted for discussions with product owner. 178
Figure 9.8 Product road map formatted for presentation to conflicting stakeholders. 179
Figure 10.1 Three important dimensions to application requirements. 182
Figure 10.2 Streamlined template for a streamlined Sponsor’s Concept Briefing (SCB). 187
Figure 10.3 Streamlined template for a streamlined Stakeholder Request (SHR). 190
Figure 10.4 Template for a streamlined Vision Document (VDoc). 192
Figure 10.5 Sample vision document solution statements. 193
Figure 10.6 Sample vision document solution statements. 193
Figure 10.7 Defining a business solution. 194
Figure 10.8 Sample context diagram for a vision document. 195
Figure 10.9 Sample target business model for a vision document. 196
Figure 10.10 Sample high level architecture diagram for a vision document. 198
Figure 10.11 Target business model for a subrelease overview. 199
Figure 10.12 Subrelease scope drawn on a dimensions of value diagram. 201
Figure 10.13 Subrelease plan summary on a front-end dimensions of value diagram. 201
Figure 10.14 Template for a streamlined Subrelease Overview (SRO) 204
Figure 10.15 Use case model for a subrelease description. 205
Figure 10.16 Venn diagram for a subrelease description. 206
Figure 10.17 Data validation steps for a subrelease description. 206
Figure 10.18 Template for a streamlined Module Use Case (MUC). 210
Figure 10.19 Communicating the main flow of events with a level 2 data flow diagram. 211
Figure 10.20 Example of a source-to-target map. 213
Figure 11.1 Tracing requirements between value chains. 216
Figure 11.2 Corporate-level planning functions that generate architectural requirements. 218
Figure 11.3 Typical project release cycle used by large companies. 222
Figure 11.4 Fitting RM artifacts into the pre-development iterations. 223
Figure 11.5 Preparing the pre-development estimate for a new team. 224
Figure 11.6 Requirements management effort curves and timing of artifacts over length of a project (part I). 233
Figure 11.7 Requirements management effort curves and timing of artifacts over length of a project (part II). 234
Figure 11.8 The CRISP-DM process for data mining. 237
Figure 11.9 Interfacing agile EDW RM with project governance. 240
Figure 12.1 Basic EDW reference architecture with data paradigms listed. 250
Figure 12.2 Given the advent of hyper-modeled forms, EDW project leaders now have four data modeling paradigms to

choose from.
251

Figure 12.3 Examples of standard normal form data models of increasing complexity. 252
Figure 12.4 Examples of conformed dimensional form models of increasing complexity. 254
Figure 12.5 Example of a hyper normalized data model. 255
Figure 12.6 The main portion of a hyper generalized data model. 256
Figure 12.7 Data architectures, paradigms, and models. 257
Figure 12.8 Business, logical, and physical data models. 259
Figure 12.9 The update anomalies data normalization is designed to prevent. 261
Figure 12.10 Context diagram for the normalization example. 263

xviii List of Figures

Figure 12.11 Sample case’s data in its starting arrangement, i.e., zeroth nomal form. 264
Figure 12.12 Impact of a first normal form correction upon sample case’s data model. 265
Figure 12.13 Impact of a second normal form correction upon sample case’s data model. 266
Figure 12.14 Impact of a third normal form correction upon sample case’s data model. 267
Figure 12.15 Impact of a fourth normal form correction upon sample case’s data model. 269
Figure 12.16 Impact of a fifth normal form correction upon sample case’s data model. 273
Figure 12.17 Level zero data generalization. 275
Figure 12.18 Level one data generalization for the party model. 275
Figure 12.19 Level two data generalization for the party model. 276
Figure 12.20 Data generalization roll-up patterns. 276
Figure 12.21 Level three data generalization for the party model. 277
Figure 12.22 The hub & spoke conception of an enterprise data warehouse. 279
Figure 12.23 A schematic representation of a simple subject area in an EDW presentation layer. 280
Figure 12.24 Standard normal form models are brittle in the face of changing requirements. 283
Figure 12.25 Change Cases #3 and #4 for conformed dimensional form model. 290
Figure 13.1 A surface solution with architectural backfilling that leverages “Shadow IT”. 295
Figure 13.2 Basic data integration use case, delivered without data virtualization. 298
Figure 13.3 Basic data integration use case, delivered using a data virtualization server. 298
Figure 13.4 Data virtualization reduces the number of interfaces required for a given set of solutions. 301
Figure 13.5 General surface-solutions delivery pattern with data virtualization. 303
Figure 13.6 Dimensions-of-value analysis for surface solutions with data virtualization. 304
Figure 13.7 Data virtualization’s value proposition for agile EDW teams. 306
Figure 13.8 Surface solutions “channels” enabled by data virtualization. 307
Figure 13.9 Notable Apache Hadoop software components. 312
Figure 13.10 Processing pattern for a simple Map/Reduce join operation. 314
Figure 13.11 Sample Map/Reduce code for a simple two-table join. 315
Figure 13.12 Solution architecture for the Facebook Hive data warehousing example. 320
Figure 13.13 Cycle-time analysis for building the components of traditional and big-data DW/BI solutions. 322
Figure 13.14 Cycle-time analysis � cumulative time in learning cycles. Showing how time invested accumulates as learning

cycles are repeated.
324

Figure 13.15 Cycle-time analysis � cumulative time in usage cycles. Showing how time invested grows as application is
adapted by thousands of end users answering everyday business questions. Rapidly growing cost of HDFS in this
scenario should give pause to those considering routing all of an organizations information into a “data lake.”

324

Figure 13.16 Big data and traditional RDBMSs are converging. 325
Figure 13.17 A succession of surface solutions leveraging big data. 326
Figure 13.18 EDW reference architecture with surface solutions employing big data technology. 326
Figure 14.1 Ensemble data modeling. 330
Figure 14.2 Family tree of hyper normalized modeling approaches. 331
Figure 14.3 Hyper normalizing a 3NF data model � starting point. 332
Figure 14.4 Structures for the starting model (in 3rd normal form). 333
Figure 14.5 Hyper normalization Step 1 � declare business keys. 334
Figure 14.6 Structures for the hyper normalized model � business keys and their attributes. 335
Figure 14.7 Hyper normalization Step 2 � install many-to-many links between business keys. 336
Figure 14.8 Structures for the hyper normalized model � links and their attributes. 337
Figure 14.9 Hyper normalization Step 3 � split out all attributes to their own tables. 338
Figure 14.10 Hyper normalized model with abbreviated depiction of link and attribute entities. 338
Figure 14.11 Third normal form data warehouses are heavily impacted by new entities. 340
Figure 14.12 Linking tables in a hyper normalized data warehouse insulate existing tables against disruption when

new entities are added.
341

Figure 14.13 Data vault model excerpt showing business keys and linking entities with multiple attribute tables. 342
Figure 14.14 Anchor modeled equivalent of the HNF order model. 344
Figure 14.15 Only a few, parm-driven ETL modules are needed to load the bulk of the data warehouse. 346
Figure 14.16 Prototypes for reusable hyper normalized load modules. 347
Figure 14.17 Driver script employing reusable load modules. 348
Figure 14.18 Driver script employing reusable load modules 350
Figure 14.19 Prototypes of reusable test widgets and a driver script calling them. 351
Figure 14.20 SQL query demonstrating the correlated subqueries needed to retrieve information from hyper normalized

data warehouses.
355

Figure 14.21 Hyper normalized designs can require many correlated subqueries. 357
Figure 14.22 By using point-in-time tables where needed, we can simplify retrieval queries. 358
Figure 14.23 Data retrieval queries can be (a) simplified through table pruning and (b) generated from DBMS constraints. 359
Figure 14.24 Columns in the resulting bridge table. 360
Figure 14.25 EDW reference architecture adapted for a hyper normalized integration layer. 362
Figure 14.26 Four styles for distributing hyper normalized repositories across the EDW reference architecture. 363

List of Figures xix

Figure 14.27 Data models for Change Case #1 under hyper normalization. 366
Figure 14.28 Hyper normalized model needed to solve Change Case 2. 368
Figure 14.29 Joins of existing and new tables needed to feed load_link() for the Link_Party_Order_Installer table. 369
Figure 14.30 Joins of existing and new tables needed to feed load_link() for the Link_Party_Rollup table of dealership

relationships.
369

Figure 14.31 Surface solution patterns employing a hyper normalized integration layer. 370
Figure 15.1 Decomposing data into a hyper generalized data store and then projecting it to a star schema. 376
Figure 15.2 Hyper generalizing a HNF data model � starting point. 377
Figure 15.3 Hyper generalization Step 1 � add metadata tables. 378
Figure 15.4 Hyper generalization Step 2 � simplify to one table per function. 378
Figure 15.5 Hyper generalization Step 3 � “shred” attributes into name-value pairs. 379
Figure 15.6 Hyper generalization Step 4 � temporalize thing type relationships. 379
Figure 15.7 Hyper normalization Step 5 � temporalize the remaining entities. 380
Figure 15.8 Business models are machine readable. 382
Figure 15.9 Dimensional objects from the business model translated to records in the associative data model. 382
Figure 15.10 Sample records for things and links in the associative data store. 383
Figure 15.11 Shredding attributes into name-value pairs. 385
Figure 15.12 Pivoting shredded attributes back to their original format. 386
Figure 15.13 Data warehouse business model used for the change cases. 388
Figure 15.14 Example of how graphical model changes impact the associative data store. 389
Figure 15.15 Change Case 1’s data transform for dimensions before the business model is updated. 390
Figure 15.16 Starting data transform for the transaction data of Change Case 1. 392
Figure 15.17 Hyper generalized data warehouse automation systems can address the full EDW reference architecture. 393
Figure 15.18 Helper tables allow EDW admins to write queries against business objects. 394
Figure 15.19 Records impacted by flattening the hierarchy between Orders and eSegment 396
Figure 15.20 Steps to updating a hyper generalized EDW’s dimensional entities and their data. 397
Figure 15.21 Creating derived columns and master data elements using value-added loops. 398
Figure 15.22 Using the master data management utility of the data warehouse automation tool. 399
Figure 15.23 Sample workflow for master data processing, highlighting the role of the data stewards. 400
Figure 15.24 Master data management front end showing single-record correction screen. 401
Figure 15.25 EDW reference architecture updated to include master data management layers. 402
Figure 15.26 Hyper generalized data warehouse performance benchmarks. 403
Figure 15.27 Business model changes needed to accomplish Change Case 1. 404
Figure 15.28 Data transform needed for Change Case 1 after modifications are made. 405
Figure 15.29 Hyper generalized reporting can successfully span a change in business models 407
Figure 15.30 Business model changes needed to accomplish Change Case 2. 407
Figure 15.31 Pre-loading the Corporate Party objects for customers in Change Case 2. 408
Figure 15.32 Data transform needed for Change Case 2 after modifications are made. 409
Figure 15.33 HGF query writer automatically spans modeling changes. The data warehouse automation system provides

default supertype entity references for customer records that existed before the modeling change.
410

Figure 15.34 Business model update and resulting reporting for Change Case 4. 411
Figure 15.35 Dimensional data transform changes needed to accomplish Change Case 4. 412
Figure 15.36 Transaction data transform changes needed to accomplish Change Case 4. 413
Figure 15.37 Surface solution patterns employing a hyper generalized integration layer. 415
Figure 16.1 The level-of-effort needed to determine the root-cause of a defect increases exponentially with the

number of defects that exist.
427

Figure 16.2 Visualizing quality via the number of tests executing or passing by environment. 429
Figure 16.3 The optimal level of testing is a balance between two types of risks. 430
Figure 16.4 Steps in the test-led development approach. 432
Figure 16.5 Relationships between test terms as used in this book. 435
Figure 16.6 The difference between QC, QA, and QM. 437
Figure 16.7 Relationships between two testing dimensions and physical objects. 438
Figure 16.8 Using the agile 23 2 QA planning matrix to visualize a team’s choice of test types. 442
Figure 16.9 “Data corners” test technique for models in standard normal form and conformed dimensional form. 445
Figure 16.10 Typical situation requiring a team to use the “expected values” test technique. 447
Figure 16.11 Many unit tests roll forward into the applications integration test suite. 454
Figure 16.12 Overview of an agile QA planning approach. 455
Figure 17.1 V-Model showing quality assurance as the flip side of requirements work. 459
Figure 17.2 V-Model adapted for agile data warehousing and showing the authors and consumers of requirements and

specifications.
460

Figure 17.3 Using the 23 2 QA planning matrix updated to communicate test writing responsibilities. 461
Figure 17.4 Teams can avoid “over socializing” decisions by employing a “one-up, one-down” validation practice. 463
Figure 17.5 Sequencing QA work within an iteration. 464
Figure 17.6 Quality assurance work linked to the larger project cycles surrounding development iterations. 467

xx List of Figures

Figure 17.7 The 23 2 QA planning matrix updated to show when test cases will run. 468
Figure 17.8 Locating QA work among a data warehouse’s execution environments. 468
Figure 17.9 232 QA planning matrix updated to show where test cases should execute. 470
Figure 18.1 232 QA planning matrix communicating how team will execute test cases. 481
Figure 18.2 Full regression testing for an EDW requires many data sets. 484
Figure 18.3 Automated testing cycle for a single testing scenario. 489
Figure 18.4 Overview of automated testing by scenario for an EDW. 490
Figure 18.5 Relationship between test case, test assertions, and the data required for each. 492
Figure 18.6 Test case build-up chart for a single iteration. 492
Figure 18.7 Visualizing quality via summary test results by subject area and architectural layer. 493
Figure 18.8 A sample project quality dashboard showing four measures of quality achieved by a development team. 495
Figure 18.9 Supporting quality fulfillment documentation with an automated test engine. 497
Figure 19.1 Enterprise information management includes a business-led data governannce program and an IT-led information

management program.
506

Figure 19.2 Agile EDW project start-up aligns well with the data governance cycle. 507
Figure 19.3 Agile EDW subrelease cycle. 510
Figure 19.4 Agile EDW subrelease cycle showing support for data governance. 514
Figure 19.5 Agile EDW subrelease cycle showing support for quality assurance. 516

List of Figures xxi

List of Tables

Table 2.1 Agile Elements by Origin 16
Table 3.1 Some Commonly Cited Advantages of Kanban Over Scrum 46
Table 3.2 Some of the Templates Used with the Rational Unified Process (RUP) 52
Table 4.1 Formal Definitions of Core Data Warehousing Terms 62
Table 4.2 Key Terms and Their Synonyms Used in This Book 63
Table 4.3 Names for Different Groupings of Project Team Members 69
Table 5.1 Areas Where Generic Scrum is Particularly Challenged by Data Integration Work 86
Table 5.2 Factors Having the Greatest Impact for Those Agile DW/BI Practitioners Reporting Increased Costs 106
Table 6.1 Failure Rates for Traditionally Managed Software Development Projects 110
Table 6.2 Examples of Errors by Conceptual Level 115
Table 7.1 Traditional Requirements Analysis Process 132
Table 7.2 Standard Requirements Categories 134
Table 7.3 Comparison of Accuracy and Precision for an Agile Enterprise Data Warehousing Project 138
Table 7.4 Traditional Approaches to Requirements Performed Poorly in the Era Before Agile 139
Table 7.5 Agile Objectives for Requirements Management 145
Table 8.1 Example of How to Codify an Epic Stack for Agile EDW Teams 155
Table 8.2 Sample Epic Tree from the Revenue Assurance Example 157
Table 9.1 Generic Agile RM Techniques 170
Table 10.1 Contrast between Generic and Enterprise Requirements Management Value Chains 183
Table 10.2 Summary of the Artifacts Comprising the Enterprise Value Chain 184
Table 10.3 Fact-Qualifier Matrix for a Subrelease Description 203
Table 11.1 Hierarchy of Enterprise Data Warehouse Planning 220
Table 11.2 Risk Calculation Framework and Example 227
Table 11.3 Progressive Requirements Elaboration Pattern 231
Table 11.4 Steps of the CRISP-DM Process 238
Table 11.5 Assessment of Agile EDW Requirements Management Approach for Agility 243
Table 12.1 History of Data Normalization 262
Table 12.2 Insert Anomaly for the 3NF Sales Channel Table 268
Table 12.3 Sample Case’s Tables After 4NF Correction Applied 269
Table 12.4 Records Demonstrating a Fifth-Normal Form Violation 270
Table 12.5 Table Records After 5NF Correction Applied 272
Table 12.6 Realistic Level-of-Effort Per Table for Non-Trivial EDW Re-Engineering Assignments 285
Table 12.7 Summary of Re-Engineering Labor for Four Change Cases when Using a Traditionally Modeled

Modeling Paradigm
288

Table 13.1 Comparative Level of Effort for Engineered vs. Declared Objects 302
Table 13.2 Contrast between Surface Solutions Using Shadow IT Versus Data Virtualization Servers 305
Table 13.3 Contrasting the SQL and MapReduce Queries Used for the Two-Table Join Example 317
Table 13.4 Relative Strengths of Data Management Paradigms 318
Table 14.1 Nomenclature Differences between Data Vault and Anchor Modeling Standards 344
Table 14.2 Comparable Conversion Costs Per Table when Employing the Hyper Normalized Data Modeling Paradigm 353
Table 14.3 Hyper Normalization’s Impact Upon EDW Re-Engineering Change Cases 367
Table 15.1 Level-of-Effort Estimates for Four Change Cases 406
Table 15.2 Hyper Modeling Approaches Compared 414
Table 16.1 Partial List of Tests Types for EDW Teams to Choose From 434
Table 16.2 Number of Test Packages Needed to Test Everything in Every Way for a Medium-Sized Data Warehouse 435
Table 16.3 Validation Compared to Verification 441
Table 16.4 Simple Tests for a Given Data Warehouse Table 445
Table 16.5 The Combinatorial Reduction Test Case Writing Technique 448
Table 16.6 Combinatorial Reduction Example 449
Table 16.7 QA Planning Grid Showing Test Type by Target Column Type 451
Table 16.8 Sample Function Prototypes for Reusable Test Widgets 452
Table 17.1 Quality Assurance Responsibilities Documented by Roles and by Test Type 462

xxiii

Table 17.2 Quality Assurance Responsibilities by Key DW/BI Aspect 471
Table 17.3 Key Responsibilities for the Agile EDW System Tester Role 474
Table 17.4 Typical Tester-to-Programmer Ratios for Agile Enterprise Data Warehousing Projects 475
Table 18.1 Estimating the Number of Test Cases Needed for a Modest Level of EDW Testing 478
Table 18.2 Estimating the Number of Low-Level Test Case Executions for Four Subreleases 479
Table 18.3 Sample Source-to-Target Mapping Referencing Reusable Test Widgets 483
Table 18.4 Typical Test Data Sets for Agile EDW Projects 485
Table 18.5 Commonly Employed Testing Aspects 488
Table 18.6 Sample Test Source Data Structure 491

xxiv List of Tables

Abbreviations

These abbreviations are employed at times in text and diagrams of this book.

BI Business Intelligence

CIF Corporate Information Factory

EA Enterprise Architecture

EDW Enterprise Data Warehousing

DAMA Data Management Association

DBMS Database Management System

DW/BI Data warehousing/business intelligence

ERP Enterprise Resource Planning

IEEE Institute of Electrical and Electronics Engineers

IT Information Technology

OID Object Identifier

OLAP Online analytical processing (DW/BI applications)

OLTP Online Transaction Processing (transaction capture applications)

PMO Project or Program Management Office

RUP Rational Unified Process

SDLC Systems Development Lifecycle

SID Surrogate Identifier

SLA Service Level Agreement

TDWI The Data Warehousing Institute

XP Extreme Programming

DEVELOPMENT TEAM ROLES

DM Data Modeler

PA Project Architect

PO Product Owner

PPO Proxy Product Owner

SA Systems Analyst

SM Scrum Master

ST System Tester

xxv

Foreword

When my friend, Ralph Hughes, asked me to write the foreword to his book, I was thrilled. His deep knowledge of the

agile methodology plus his long history of building and maintaining business intelligence and data warehouse environ-

ments puts him in a unique position to marry these two critical initiatives together.

And so he has done in his latest book, Agile Data Warehousing for the Enterprise. The book builds upon the founda-

tion established in his previous books on agile data warehousing by setting forth an unambiguous and thorough body of

work defining a reliable set of “best practices” for such undertakings. Why are these necessary? Here is my take on it:

1. To eliminate risk. Best practices mean an agile data warehousing team can determine where gaps or missed opportu-

nities exist in their project activities. These can quickly destabilize forward progress and erode confidence in the

overall success of the project.

2. To bridge the gaps in traditional agile methodology for data warehousing. Ralph’s book promotes the agile princi-

ples useful for fast, rapid project development while ensuring the maintainability and long-term program aspects of

a complicated environment such as data warehousing.

3. To put agile requirements management in a practical light. Generic requirements management and enterprise-

capable requirements management are often at odds with each other. Both are mandatory for data warehousing. This

book spends significant time explaining these two and how to balance them before continuing the design process.

4. To explain why agile data models are mandatory and how to generate them. Traditional data modeling techniques

have their shortcomings. In this book, Ralph described two hyper modeling techniques and why they may be your

best alternative to modeling the incredible data complexity found in all mature data warehouses.

5. To engage alternative methods for creating a modern data warehouse environment. These include embracing an

organization’s “shadow IT” from the business, using data virtualization sensibly, and incorporating big data technol-

ogies gracefully.

6. To ensure all development bases are covered. These include mundane activities such as the agile approach to project

definition, coding techniques, data engineering, quality assurance and data governance, and appropriate release

cycles.

A most complete and thorough “how to” book on agile data warehousing if ever there was one.

Ralph’s clear and easy to understand writing style, substantial expertise in this area, and practical examples through-

out the book mean the reader will be fully prepared to undertake this complex initiative. Using the book as a guide all

but guarantees that the reader will have a much higher success rate in quickly and efficiently creating the most critical

components of a fact-based decision-making system.

Claudia Imhoff, Ph.D.

Author of Corporate Information Factory and

Mastering Data Warehouse Design

xxvii

Acknowledgments

Finding a means to quickly deliver and adapt enterprise data warehouses in small increments has been the most difficult

professional challenge I have tackled to date. This book took 15 years of experimentation and hard reflection, all of

which I could never have accomplished on my own. The people who helped me shape and evaluate the many ideas

contained in this book are too numerous to mention, but the contributions of some are so large I must take a moment to

acknowledge their input.

Claudia and Dave Imhoff, with the Boulder BI Brain Trust, provided a regular forum with the world’s best and most

innovative vendors in the enterprise data warehousing industry. These sessions not only supplied me with a steady

exposure to the business intelligence industry’s current state of the art but also introduced me to many other analysts

who offered me many demanding criteria for correct solutions and constantly pointed out where our profession’s best

practices still need further polishing.

During the years it took to write my three books, Tom Hammergren, who instinctively mastered incremental

delivery of data-driven applications long before the word “agile” was coined, supplied me with perennial feedback as

the topics for each of my chapters took shape. He also allowed me ample opportunities to learn and employ his

Consensus software for collaborative requirements management, which I believe provides large organizations one of

the best and fastest paths to well-governed data and truly insightful EDW prototypes.

Many other tools enriched my career along the path to publishing, and I thank their creators, such as my brother Lee

Hughes, the product manager for Zuzena, who allowed me an in-depth look at what automated testing for data ware-

houses should look like and a notion of what it takes to distill the requirements of many organization down to a single

product flexible enough to solve most of them.

Several professional organizations supplied me with strong communities for vetting new ideas. Almost everyone

I met at the Data Management Association provided valuable insights into solving the challenge of incremental data

engineering. I thank in particular Michael Brackett, former president of DAMA, who suffered through reading the early

drafts of two of my manuscripts. His many books are themselves testaments to hard work and the utmost in profession-

alism. They set for me a high bar for quality, and his input regarding the content and writing style of my books

improved the quality of the final product tremendously.

In this book, the new practices for data engineering represent incredibly iconoclastic material. Readers may not

gather from the text how much effort the DW/BI community’s thought leaders had to invest, a good percentage of it

unpaid, in order to discover, articulate, and codify the new techniques that many of us will undoubtedly rely on in the

near future. I would list the contributions of them all at once if it were possible, for each is a star in his or her own

right. With his series on Data Model Resource Books, Len Silverston brought a lingua franca to the practice of DW/BI

data modeling that has given everyone confronting a large data warehouse project a reliable place to start their designs.

During the many conversations I had with him, he opened my eyes to the notion of data generalization and how it

complements and constrains the practice of data normalization the rest of us obsess over. Daniel Linstedt has invested a

large share of his professional life to add data vaulting to our collective toolkits, and anyone who benefits in the future

from what I call “hyper normalization” owes him a debt of gratitude for pioneering such a completely new and produc-

tive way of building data repositories for decision support systems.

Within the data vaulting community, Tom Breur, Ronald Damhof, and Hans Hultgren graciously shared with me

their case histories and discoveries as they pioneered both data vaulting and anchor modeling. They could have stayed

silent about the power of hyper normalization, keeping it a trade secret, but instead they have enriched the public

domain with their findings so that the rest of us can draw upon those techniques in the many situations where they

make sense. Kent Graziano has been a good friend, tirelessly donating his time to the Oracle community that I belonged

to for many years and bolstering my thinking on data engineering with candid outlines of real data vaulting projects.

xxix

In fact, 20 years ago, he and Bonnie O’Neil inspired me to get up out of my seat at the conferences of the Rocky

Mountain Oracle User Group and start presenting, a decision that greatly improved my professional life.

My portfolio of data engineering tools and strategies would not be nearly as complete, however, if I had not been

fortunate enough to discuss data warehouse automation at length with the folks at Kalido (now Magnitude Software).

John Evans, Darren Peirce, Richard Pinos, and Michael Roberts were incredibly generous with their time, answering

the thousands of questions that I had to ask before I understood the simplicity and power of the strategy I have labeled

“hyper generalization” in this book. I thank Stephen Pace and Lorita Vannah in particular for reaching out to me at the

TDWI conference so many years ago to set off what has been a career-changing series of conversations.

Speaking of TDWI, during the past six years, this organization has provided me with numerous opportunities to

repeatedly present my ideas to rooms of 30, 100, sometimes as many as 600 technicians, managers, and executives in

the DW/BI industry. No other experience could have so quickly shown me the errors of my crazier ideas and the

strength of the good ones I was lucky to have. I thank in particular Paul Kautza, at the time Director of Education at

TDWI, for taking a chance on course after course that I authored. I also greatly appreciate David Stodder, TDWI’s

Director of Research for Business Intelligence, for helping me conduct multiple surveys of the 90,000 members and

contacts of TDWI regarding their implementations styles and success rates for agile projects, as experienced by data

warehousing departments the world over.

Other colleagues and friends provided inspiration and considerable time in helping make these books become real.

Ken Chomic and Sandy Schmidt illustrated with their careers how people who are dedicated to their craft, whether an

advanced technology such as in-memory analytics or a complex technique such as project management, can quickly

become leaders in their fields. They also proofread the first of my books, when there was no guarantee that the manu-

script would ever find its way onto a bookstore shelf. Their time, patience, and insights were a tremendous gift that

I will forever appreciate. Moreover, to all of the people kind enough to lend praise quotes, thank you for being such

valuable colleagues and for exploring the important topic of this book with me during the past several years.

Knowledge and experience serves no good purpose if it cannot be expressed intelligibly. For that reason, it has been

my honor and distinct advantage to work with René Selwyn Hughes, who, as an assiduous student of the English lan-

guage, proved to be the best copy editor I have ever worked with. My wife, Carole, tolerated me during the periods of

obsession and monomania that writing even one book requires. She stoically suffered and supported me as I wrote three

of them, and she should be nominated for sainthood.

The largest group of kind and generous people that I should acknowledge must unfortunately go only partially iden-

tified or even unmentioned by name. Companies these days rarely let their vendors and consultants explicitly reference

an organization, the projects undertaken, or the staff members involved. This lamentable practice not only hinders the

creation of a solid body of case histories but also prevents me from giving credit to hundreds of teammates who partici-

pated in the agile transitions and turnarounds that we performed for their EDW departments. The material in this book

would not exist if numerous directors of data warehousing and project leaders in banking, health care, insurance, tele-

communications, and discrete manufacturing had not taken the risk of trying a new approach. They gave me and my

consulting company the opportunity to prove out this crazy new strategy called “agile.” They also provided innumerable

suggestions on how to make the process plus its training and metrics far better than I would have formulated on my

own. Kind people such as Brian, Lynn, Rob, Chris, Laura, Diane, Xuhui, and Richard, I owe you and your teams a ton

of thanks, and although I cannot fully identify you here, I certainly hope you know how much you contributed to the

practice of agile data warehousing as it exists today.

—Ralph Hughes, MA, PMP, CSM

May 2015

xxx Acknowledgments

Chapter 1

Solving Enterprise Data Warehousing’s
“Fundamental Problem”

Let me open this book with an extraordinary claim: After 30 years, we have finally solved the fundamental problem of

enterprise data warehousing. This fundamental problem can be stated simply as “In theory, an enterprise data warehouse

can be extremely valuable to the sponsoring organization, but in practice one cannot be implemented quickly enough or

at a cost that company executives consider reasonable.” People like the idea of an enterprise data warehouse (EDW)—a

shared repository of standardized and trustworthy information on company events and circumstances, integrated across

the many business units within the corporation. What they do not like is that they must wait the better part of a year

and invest millions of dollars, only to receive a disappointing small subset of the capabilities they expected. When

pursued with a traditional software engineering approach, enterprise data warehouses simply take too long and cost too

much to build. With the agile techniques presented in this book, I believe that we have solved that problem.

I have been working in data warehousing since the early 1980s, in roles ranging from extract, transform, and load

(ETL) programmer to business intelligence (BI) developer, integration tester, lead designer, project manager, and, more

recently, program architect. During the first 15 years of my career, the EDW projects I joined or led were managed

using traditional project management techniques. Like many software efforts in that era, these data warehousing pro-

jects proved to be so protracted and stressful that they disappointed both the developers and the customers when many

of the promised features had to be dropped to meet time and budget constraints. Though my teammates suggested that

all large projects naturally experience such challenges, I wondered why we as an industry were not improving our per-

formance as the years went by. Project managers were certainly introducing far more monitoring and control into the

methods we employed, but if anything, the project outcomes were getting worse.

I started to see that the EDW development profession had fallen into a negative feedback loop, and that this downward

spiral was actually the cause of data warehousing’s fundamental problem. As shown in Figure 1.1, this feedback loop

begins with the perception that EDW applications are large, complex, and therefore risky to build. We fear failure, so we

adopt a plethora of extremely risk-adverse engineering and project management practices that make our developers’ task

lists considerably longer. The tasks themselves become more difficult to complete due to all the audits and reporting steps

that project management requires in order to know that the process is on track. Unfortunately, these longer task lists

make the EDW development project even more complex and all that more likely to fail. The higher price tag of the task

list and the increasing failure rates heighten the EDW’s perceived risk, driving everyone involved into another lap around

the fear circle. After a few cycles of this negative feedback, the development process has become so riddled with controls

and audits that one wonders how the programmers will be able to get any significant work completed at all.

THE AGILE SOLUTION IN A NUTSHELL

The agile software development movement that started in the early 2000s solved a very similar problem, though it was

geared toward the programming of transaction capture systems—that is, non-data warehousing applications. The high-

lights of the generic agile software development strategy consist of the following:

� Progressive decomposition of requirements to generate a simple list of the programming task
� Co-located, self-organized teams of developers
� Iterative programming techniques that deliver small slices of the application every couple of weeks
� Frequent review of those small slices by one or more members of the end-user community

1
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00001-1

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00001-1

Many data warehousing teams attempted to utilize this incremental delivery approach, but for a long time they strug-

gled to perform as well as agile developers building transaction-capture systems. This early difficulty was largely due

to the fact that data warehouses differ from transaction-capture applications in two crucial ways. First, they have data

architectures with two to four times as many layers as transaction systems, often with each layer requiring its own data

modeling strategy, a different flavor of data transforms, and even a unique development tool set. It turns out that

constructing a data warehouse is like building three to eight separate transaction systems at once.

Second, an EDW’s data repositories amass billions if not trillions of records. The initial data load required to put

the data warehouse into production usage often runs for many days or weeks. When the warehouse’s design must

change, the development team can be forced to scrap large portions of the data already captured and repeat the long ini-

tial data load. Moreover, if the source for that data is no longer available, the team must then invest hundreds of hours

writing, running, and validating conversion scripts that retrofit millions of data records to comply with the warehouse’s

new design. Evolving an existing data warehouse is like dragging a ball and chain through a swamp.

This double challenge of building and evolving a data warehouse lies at the heart of the fear-drive failure cycle in

our profession. Because a single oversight in requirements and design could invalidate months of programming or

require weeks of frantic data conversion, data warehousing professionals believed they can not employ agile’s itera-

tive and incremental approach. All requirements have to be identified before design work can begin, and the design

must be complete and bulletproof before programming can start. Without an incremental delivery strategy, the EDW

profession remained mired in the negative feedback loops that agile teams building transaction-capture systems

escaped long ago.

The solution to the data warehousing predicament emerged only in the past few years with the advent of incremental

data modeling techniques. This new approach to designing a warehouse’s data schemas allowed large data repositories

to be adapted for new designs after they are initially loaded—without requiring expensive reloads or conversion script-

ing. These new data modeling techniques worked from the inside out, to make the entirety of agile data warehousing

suddenly feasible. Once a team could economically evolve a data warehouse, it was then free to design incrementally,

and consequently its analysts could detail requirements a chunk at a time. The big, complete, and perfect specification

up-front was no longer necessary. Although a good overall vision for the project is still necessary, by and large data

warehousing teams can program and deliver an enterprise business intelligence application one piece at a time. They

“Enterprise data warehousing is
risky because it’s so complex,
expensive, and slow to deliver”

Then, finally,
project failure

“We’d better spec out
everything in detail before

we start programming”

Specifications get more
detailed, numerous,

complex, and costlier

Traditional methods’
Negative feedback loop

Fear elicits tighter project
controls, and therefore

increasing risks

FIGURE 1.1 The negative feedback loop present in most traditionally managed projects.

2 Chapter | 1 Solving Enterprise Data Warehousing’s “Fundamental Problem”

can readily steer their programming efforts to address many more of their customers’ short-term goals, making EDWs

far more responsive to business needs—making them, in fact, agile. Considerable thought and innovation are still

required to adapt all of the software engineering processes besides programming to the peculiarities of data warehous-

ing. However, that remaining work proves to be fairly straightforward now that the “data engineering” component has

been solved.

FIVE LEGS TO STAND UPON

In the past 15 years, I have worked with agile teams that have steadily adapted iterative, incremental development tech-

niques to meet the demands of large, data-driven applications such as enterprise data warehouses. These adapted agile

practices have certainly accelerated EDW delivery speeds, frequently by a factor of two or three. More importantly,

these new agile techniques for EDW have kept the business sponsors and project stakeholders solidly “in the loop,” pro-

viding frequent reviews of crucial design decisions as each new component is coded. Such frequent business reviews

regularly catch misconceptions regarding requirements and design, keeping the development effort intently focused on

the features essential for project success and eliminating ill-conceived programming objectives that would have only

wasted time and resources. By largely eliminating the risk within large EDW projects, the techniques remove the fear

that used to drive us to the specification- and process-heavy project management styles that formerly doomed our appli-

cations to failure.

Unfortunately, thousands of data warehousing programs throughout the world still suffer from the waste and frustra-

tion forced on them by the fear-driven death spirals. The mission of this book is to illustrate the alternative strategies and

techniques that agile enterprise data warehousing teams utilize for building large, data-driven applications. I hope that

with the agile EDW approach well documented sponsors, stakeholders, and development team leaders can successfully

advocate that their companies switch to an incremental, risk-mitigating approach for their next data warehousing project.

The full practice of agile enterprise data warehousing is a large assembly of principles and techniques. The practi-

tioners of agile enterprise data warehousing derived this collection over many years by borrowing pieces from four

different agile methods: Scrum, XP, Kanban, and RUP. We also incorporated a few old-school disciplines from

management information science, such as requirements management and quality assurance. By merging these multiple

influences and sharing our experiences with each other, our community of DW/BI professionals has arrived at what I

consider a baseline approach to enterprise agile data warehousing.

This baseline approach consists of five major elements, as illustrated by the mind map in Figure 1.2. These adapted

software engineering discipline represent the five “legs” that the full agile EDW method stands upon:

1. Iterative, incremental application coding (AC) techniques that provide not only faster delivery speeds but also

significant risk mitigation

2. Streamlined requirements management (RM) that makes the work of defining a project quick and focused

3. Adaptive data engineering (DE) skills that allow a warehouse’s data repository to be built incrementally, then

economically revised as requirements change, even after it has been loaded with data

4. Balanced quality assurance (QA) efforts that instill test-led development at all levels of project work

5. Several productivity tools organized into a repeatable “value cycle” (VC) for creating incremental subreleases that

amplifies the ability of the other four elements to accelerate deliveries and mitigate risk

This book steps the reader through each of these components and thus serves as a field manual for DW/BI develop-

ment teams, both those that are just getting started and those that are seeking ways to bring new life to a struggling

project. Putting these five legs to work gives even the largest enterprise data warehousing programs incredible traction

against the challenges they must conquer—challenges such as uninvolved business partners, incomplete and inconsistent

project definitions, rigid data models, and poorly coded application modules. Incorporating these five adapted disci-

plines allows agile EDW teams to steadily chip away at the unknowns in both business and technical requirements,

translate them into lists of actionable development tasks, and steadily deliver a growing collection of user-validated

features and performance capabilities.

These agile practices convert the entire EDW development experience into a far more understandable and

predictable process for everyone involved, including project sponsors and business stakeholders. The net result is a spiral

that operates in the reverse manner of the cycle diagrammed previously. As depicted with Figure 1.3, agile EDW project

experiences a positive feedback loop. The desired application is still large and complex, but instead of specifying every last

detail of the application before coding begins, the team decomposes the work into small increments that can be easily

Solving Enterprise Data Warehousing’s “Fundamental Problem” Chapter | 1 3

Agile data warehousing

requires five legs to stand upon

Iterative & incremental
application coding* (AC)

Streamlined requirements
management (RM)

Productivity-tool driven
value cycle (VC)

Part

6

Part

3

Part

2

* Discussed in detail in previous book, recapped in Part 2

Incremental & adaptive
data engineering (DE)

Part

4

Balanced, test-led
quality assurance (QA)

Part

5

FIGURE 1.2 The five major components to agile enterprise data warehousing.

“The EDW work before us still
seems too complex and risky”

Then, finally,
“This seems manageable.

Let’s get it done quick.”

We’d better plan on iterating
on a small scope and get

plenty of business validation

Specifications for the
iterations get smaller,

clearer, and less complex

Agile EDW’s
Positive feedback loop

Concern leads to smaller
work packages and thus

decreasing risks

FIGURE 1.3 Agile EDW practices switch projects to a positive feedback loop.

4 Chapter | 1 Solving Enterprise Data Warehousing’s “Fundamental Problem”

accomplished sequentially. As the team develops the modules for each increment, the business can validate both the new

features they offer and how they integrate into an overall system. The enormity of the project transforms into a list of com-

ponents that both the business and IT readily understand and that can be delivered one after the other without incurring

serious risk. With such clarity and low risk, sponsors and project managers can lighten up on the audits and process controls,

allowing the programmers to work far more quickly and judging the project’s progress by the working modules created.

THE AGILE EDW ALTERNATIVE IS READY TO DEPLOY

This book is designed with two audiences in mind: EDW sponsors and EDW project leaders. By “EDW sponsors,” I

mean the executives and the representatives of a company department that is funding the development of a data inte-

gration application, perhaps with a BI or data analytics front end. These folks on the business side of a project need to

realize that an agile alternative to traditional, failure-prone development methods exists. Understanding the nature

and advantages of the agile alternative will empower these sponsors to insist that the development teams and project

managers who work for them employ an incremental delivery approach.

When referring to “EDW team leaders,” I am thinking of the members of the development group other than the pro-

grammers who build the data integration and BI components. This group includes roles that go by many names, includ-

ing solutions architects, project architects, business analysts, data architects, data modelers, systems analysts, technical

leads, and system testers. People who fill these roles on a team are usually veteran DW/BI developers and have most

likely seen how EDW projects go wrong. Understanding the nature and advantages of the agile EDW method will

enable these team leaders to identify methodological problems as they occur within a project and to articulate effective

remedies, should they believe that their current project is slipping into a fear-driven death spiral.

For the EDW sponsors, the message in this book can be summarized as a warning:

The project managers working with the information technology (IT) department probably subscribe to an old-fashioned

approach to running programming projects. The method they are planning to use to build your enterprise data warehouse has

fundamentally misjudged the best way to mitigate the risk of large software development programs. Following their outdated

methods, these project managers will lead your development project into a swamp of details and wasted effort from which your

data warehousing program will never escape. Because their method is so risky and labor intensive, chances are you will never

see half of the EDW features you were promised. Even the minimal data warehouse they will eventually deliver will prove to

be impossible to adapt in a business-reasonable timeframe when new user requirements emerge.

To save your program, you must convince IT to employ an iterative delivery method, such as the one presented in this

book. By following agile enterprise data warehousing, your development team will be able to provide your company with

world-class business intelligence in a fraction of the time, money, and frustration that traditional methods involve. Moreover,

you will know throughout the project whether IT is truly achieving your goals. Agile EDW will rapidly provide the business

intelligence your company needs to compete and thrive, and it will deliver this capability with far less risk.

For EDW team leaders, the message of this book is an exhortation to see past the ossified software engineering

approach that most of us have followed blindly for years:

Try to see the risk of enterprise data warehousing from the project sponsors’ point of view, and realize that a delivery schedule

measured in years makes no sense for a business analytics development program. Your company has to adopt a faster DW/BI

delivery approach in order to compete effectively in the global marketplace and to survive. The risk mitigation strategies pre-

sented in this book are strategies rooted in new, agile approaches for requirements management, data modeling, and quality

assurance. This combined approach offers a new way to work that delivers DW/BI systems far faster and with more effective

safeguards against project failure. When your EDW sponsor says, “IT has got to start delivering faster, better, and cheaper,”

tell the sponsor that you now have a new, agile method for achieving exactly that goal.

DEFINING A BASELINE METHOD FOR AGILE EDW

As a further purpose for this book, I hope to contribute to the notion of what a “standard method” for agile data ware-

housing might be. During the past 15 years, the consultants in my company and I have encountered a wide variety of

iterative development practices that the people leading those efforts have all called “agile data warehousing,” even

though many of them were clearly ineffective. To help companies avoid false starts in the future, I believe the

Solving Enterprise Data Warehousing’s “Fundamental Problem” Chapter | 1 5

community of agile EDW practitioners should settle upon a constellation of practices that they consider generally

necessary and sufficient for a reliable incremental EDW development method. Such an outline of a “standard” agile

data warehousing method would enable an existing development team to easily spot the gaps and misinterpretations of

principles that undermine a team’s particular agile implementation. It would also sketch for a company wanting to “go

agile” a proper series of steps for such a transformation, since the complete collection of practices is too large and

involved for new teams to implement in a single pass.

The agile “methods” available today are not really methods but instead high-level collaboration models.

Accordingly, every agile EDW team that I have been asked to coach has derived its own, unique interpretation of itera-

tive development. Variety among agile implementations is a perfectly acceptable result, given that agile principles

encourage teams to self-organize and adapt the suggested techniques to meet their particular circumstances.

Unfortunately, many of the homegrown implementations I have encountered were incomplete, sometimes grievously

so. A good example is a telecommunications firm that invited me to help it because it realized it was practicing

“Scrum-But”—regular sprints, as suggested by the Scrum textbooks, but without story conferences, task planning,

product demonstrations, and iteration retrospectives.

After seeing many incomplete implementations, I realized that companies that desire to adopt a truly effective agile

practice need to do far more than just hire a Scrum master or Kanban coach for their projects. In order to succeed, agile

developers must certainly master iterative programming techniques, but that achievement will only be the first step in

their transformation to a high-performance team. A world-class agile development team must also develop or acquire

solid adaptations of the remaining disciplines listed previously. So that teams do not fall into the Scrum-But trap of pur-

suing large EDW programs with only small fractions of the necessary disciplines in place, those of us who write, speak,

and tweet about agile data warehousing could develop a shared notion of what a complete agile EDW implementation

includes and thoroughly embed that concept into the advice we provide.

My first two books focused mostly on just one of the five disciplines listed previously—the agile coding practices.

They touched lightly on the details of requirements management and quality assurance but left the high-level organiza-

tion of those disciplines unaddressed. They said little about adaptive data modeling and value-driven release cycles. This

current book fills those gaps by describing the adaptations that my colleagues and I have derived for the four disciplines

that should surround and support agile programming techniques. Because the agile community is constantly innovating,

I am sure that should a standard method for agile EDW someday emerge, it will be significantly broader and better

honed than the package of disciplines I have been able to present in my works. But I hope that my books will help the

EDW profession to begin deriving a baseline agile method for our craft so that in the future, new teams can quickly

arrive at development iterations that reliably achieve 90�95% of their objectives, month in and month out.

Agile concepts are already so numerous and large that even within the space of three books, I believe I have been able to

merely sketch the core practices that a DW/BI team would need. For the complete collection of practices, EDW leaders

should draw from several other agile data warehousing books, such as Agile Analytics by Ken Collier, Agile Data Warehouse

Design by Lawrence Corr, Agile Database Techniques by Scott Ambler, and Building the Agile Database by Larry Burns.

EDW leaders will benefit also from recommendations found in the seminal works addressing general agile topics, such as

Extreme Programming Explained by Kent Beck, Lean Software Development by Mary and Tom Poppendieck, Agile

Estimating and Planning by Mike Cohn, and Scaling Software Agility by Dean Leffingwell. The wisdom and details that

agile EDW team leaders need are already contained in these works. What I have tried to contribute with my work and this

book in particular is to sketch in a single place what the overall package of necessary skills looks like and how the pieces can

fit together, reinforcing each other and thereby yielding a sold, fault-tolerant, and extremely powerful approach.

Although the body of knowledge for agile EDW is so large that it can be intimidating, EDW leaders should rest

assured that it does not all have to be incorporated into a team’s practice at once. When my consultants and I start a

new agile EDW program from scratch, we ask a customer’s DW/BI teams to start with only two of the five disciplines.

Most of the teams focus on the agile coding method because it embodies many of the principles and philosophies that

must be instilled eventually in all of the disciplines. As a parallel effort, we steer the data architects toward learning

agile data modeling techniques so that the design undergirding the EDW program will allow frequent design revisions

and incremental learning. Once the team members are fluent in incremental coding practices, we turn their attention to

incremental requirements management because this discipline excels at defining small chunks of work that flow per-

fectly into an iterative programming process.

When the team is ready for another transition step, we typically introduce incremental quality assurance so that the

developers start receiving solid feedback on whether their agile requirements and coding are truly effective. We usually

reserve the adoption of productivity tools for last so that the team’s preferred method determines the tools utilized

rather than having the tools dictate how the team will work.

6 Chapter | 1 Solving Enterprise Data Warehousing’s “Fundamental Problem”

Many people challenge my company for including the notion productivity tools as part of a method, but my collea-

gues and I have seen the methods of many teams evolve considerably once a tool eliminates hours of work inherent in

a key development step. Whereas disciplines one through four listed previously can easily triple a team’s delivery pace,

employing the tools can offer a second tripling in velocity, so it would be negligent not to give tools a place in the base-

line agile data warehousing method. Readers will find that I treat the tools fairly generically in this book, so that the

discussion remains firmly focused on how tools must align with a team’s preferred development process rather than

sinking into a morass of details concerning how developers should employ the tools’ many features.

By combining the disciplines outlined in this book, the additional reading I have recommended, and a light consider-

ation of productivity tools, DW/BI team leaders should feel that they have a good baseline description of an agile

method that will enable them to both plan the broad arc of an agile transition for their companies and regularly assess

where methodological gaps and misinterpretations have hampered a current implementation.

PLENTY OF MOTIVATION TO “GO AGILE”

The motivation to switch a traditional DW/BI department team to iterative techniques is easy to articulate: “Agilizing”

a company’s approach to requirements, data modeling, and quality can improve by a factor of three an EDW program’s

delivery speed and development costs. Not coincidentally, agilizing will also drive the defect rate for DW/BI enhance-

ment toward zero, eliminating many risks and greatly increasing customer satisfaction. For teams that add the produc-

tivity tools now available, agile practices should allow EDW programs to deliver new business intelligence services

with an order of magnitude less labor and time than required by traditional project management and software engineer-

ing practices.

I provide evidence for this bold claim in the next few chapters, but first let us consider the impact that a significant

acceleration in delivery speed can have for an organization’s EDW program. To put it succinctly:

� Business intelligence contributes enormously to the fortunes of the companies we work for.
� Delivering effective business intelligence does not have to be slow, expensive, and prone to failure.
� Agile enterprise data warehousing offers an adaptable path to delivering quality business intelligence in one-tenth

the time and cost of traditional software development techniques, greatly reducing the risk inherent in EDW

programs.
� Businesses that can reliably build decision support systems to answer crucial business questions in one-tenth the time

will be the first companies to seize new business opportunities and will lead their industries’ cost curves downward.

This reasoning is why agile data warehousing matters tremendously, and why I have dedicated three books to present-

ing the approach.

STRUCTURE OF THE PRESENTATION AHEAD

Given the crucial importance of the five legs for agile DW/BI, this book dedicates a set of chapters to each of them in

the order listed in the mind map shown previously. Even at an introductory level, discussing methods and techniques

that simultaneously affect delivery speed, project cost, and application quality could become an unwieldy presentation.

Fortunately, one can understand the multiple components of an agile EDW approach by layering them inside out, much

in the pattern by which teams would learn and implement these elements. Figure 1.4 shows this layered approach, and

although this drawing depicts risk management as a separate component, in truth all the elements of the method reduce

project risk by making EDW development faster, better, and cheaper. For that reason, risk mitigation will serve as a

unifying theme that spans all the topics we touch upon.

Part I introduces the agile coding techniques that lie at the heart of agile enterprise data warehousing. The agile cod-

ing techniques that my colleagues and I have derived from Scrum and Kanban were covered in detail in my previous

two books, so this portion of the text will outline the topic only enough to allow readers who are new to iterative

methods to gain a basic familiarity with this foundational material.

Part II begins the discussion of how to employ agile techniques to reduce the risk of BI application projects, both large

and small. I summarize the major adaptations to generic agile development methods that DW/BI teams must make to (1)

accommodate the added complexity of multilayered data integration applications and (2) pursue the project with team-

mates who have several non-overlapping technical specialties. Embedded within that presentation are the definitions of

the many terms for both traditional and agile development concepts that I employ throughout the remaining chapters. This

Solving Enterprise Data Warehousing’s “Fundamental Problem” Chapter | 1 7

analysis also illustrates how serious conceptual errors originate from three separate levels in DW/BI projects, and it then

explains how agile thinking and iterative techniques drive those risks out of the projects that make up an EDW program.

Part III outlines agile EDW’s twin approaches to requirements management. First, it discusses the lightweight style

for requirements that is utilized by agile teams practicing methods such as Scrum and Kanban. This style serves as a

foundation for agile projects and works well for smaller, data mart projects. The text then introduces a flexible, yet far

more capable, requirements management system, which my company adapted from an older, more industrial-strength

iterative method known as the Rational Unified Process (RUP).

Part IV presents the new concept of “agile data engineering,” which incorporates hyper data modeling techniques.

These innovative data modeling techniques enable data warehousing teams to start with small data repositories and

evolve them later as requirements change, without incurring ruinously expensive re-engineering and data conversion

costs. After reviewing the role that data virtualization and big data technology can play in an agile EDW program, the

chapters in this part of the book present two styles of hyper modeling: hyper normalization and hyper generalization.

Since re-engineering costs represent an enormous portion of the EDW’s total cost of development and ownership, these

chapters compare the effort needed to re-engineer an EDW data schema using both traditional and hyper modeled

design techniques so that readers can appraise hyper modeling’s cost-reduction potential for themselves.

Part V focuses on planning an agile quality assurance effort for an enterprise data warehousing program. It first dis-

tinguishes between quality management, quality assurance, and quality control and then describes streamlined

approaches to all three. It illustrates the effort needed to achieve the extensive progression and regression testing that

fast-moving EDW programs absolutely require in order to deliver defect-free applications that delight their end users.

This portion of the book also discusses automating the deep execution cycles that full EDW regression testing demands.

Automating regression testing allows EDW teams to dedicate far more labor resources to adding new features to the BI

applications instead of exhausting themselves by constantly re-validating what they have already built.

Part VI unites the multiple components discussed previously into a single, eight-step value cycle for creating an

EDW subrelease. Subreleases form an important part of the agile EDW risk mitigation strategy. The value cycle

Subrelease value cycle

Adapted traditional IT disciplines

Data engineering
(uses “hyper modeling”)

Risk
management

(adapted from RUP)

Previous ADW
books

Extensions for
EDW (this book)

Legend

Adaptations for DW/BI
(including some from Kanban)

Incremental
coding techniques
(based on Scrum / XP)

Requirements
management

(adapted from RUP)

Quality assurance
(uses considerable automation)

Adapted agile techniques

FIGURE 1.4 How a team might acquire agile EDW techniques working from the inside out.

8 Chapter | 1 Solving Enterprise Data Warehousing’s “Fundamental Problem”

proposed for each subrelease will not only draw from the new techniques for requirements, design, and quality that are

offered in this book but will also illustrate how to support data governance goals and incorporate the latest crop of pro-

ductivity enhancement tools into a team’s iterative delivery approach.

Given the many aspects of agile EDW that are contained in this book, Part VI concludes with short statements that

both project sponsors and team leaders might employ to quickly orient everyone who is involved in these enormous

projects to the new realities that incremental delivery methods engender. The short statement for the project sponsor

manifests as an EDW Customer’s Bill of Rights, which distills what executives can expect from their DW/BI develop-

ment teams now that a comprehensive agile method for data warehousing projects exists. For EDW team leaders, the

short orientation statement I offer is an extension of the agile manifesto that includes the additional philosophies teams

will need in order to meet the high expectations that the Customer’s Bill of Rights will inspire.

Understanding agile techniques and using them to mitigate EDW program risk requires new thinking and ceaseless

efforts to control a project’s or program’s use of time, expenditure of funds, and the quality of its deliverables.

However, achieving 10-fold better utilization of company resources is a goal that makes the effort required to learn and

implement new ways to work well worth the investment. In the past, the high risk inherent to EDW applications forced

DW/BI departments to pursue their projects with extensive specifications up-front, despite the fact that such an

approach is slow and prone to failure. This book attempts to clearly articulate the agile alternative so that those decision

makers will have both the knowledge and the motivation to make a change for the better.

SUMMARY

Traditional enterprise data warehousing projects easily fall into a negative feedback loop where fear of failure drives

companies to instill so many checks and controls on the development process that delivery of value to business stake-

holders slows to a crawl. To some extent these process bottlenecks can be corrected by switching to generic incremental

programming methods such as Scrum and Kanban once those starter methods have been adapted for the additional com-

plexity that data integration adds to a software development project. In order to deliver at maximum speed and with

minimum risk, development teams will also need agile adaptations for the remaining components of the application

development life cycle that wrap around the work of programming data transforms and front-end modules. Whereas my

earlier books focused upon accelerating the work of programming business intelligence applications, this volume pro-

vides detailed guidance for fast and incremental approaches to the three remaining engineering disciplines that every

EDW team must master: requirements management, database design, and quality assurance. It also describes how the

latest productivity tools for data analytics, such as data virtualization, data warehouse automation, and big data manage-

ment system, offer teams a new type of application development value cycle that dramatically reduces the amount of

labor needed to design, build, and deploy each incremental version of an enterprise data warehouse. By following the

suggestions provided in the chapters ahead, EDW project leaders such as solution architects, data modelers, and system

testers can accelerate their team’s delivery pace by a factor of three. Moreover, by incorporating the new breeds of pro-

ductivity tools on top of those process improvements, EDW project leaders can triple again their team’s delivery speed.

Solving Enterprise Data Warehousing’s “Fundamental Problem” Chapter | 1 9

Chapter 2

Primer on Agile Development Methods

Agile enterprise data warehousing (EDW) is a software engineering approach for data analytic systems that borrows from

many techniques, old and new. At its core lie agile techniques for general programming that were borrowed from two

schools of incremental, iterative development. To make sense of agile programming for data warehousing, the reader will

need an overview of the general techniques taken from each of these schools. This chapter provides an introduction to the

first school, which consists of methods descending from the agile manifesto, most notably Scrum and Extreme

Programming (XP). Chapter 3 provides a quick look at the other school, namely lean software development and Kanban,

plus a distant ancestor to all iterative approaches used today, the Rational Unified Process (RUP). The mind map shown in

Figure 2.1 illustrates how the presentation of Scrum, XP, lean, Kanban, and RUP is divided between Chapters 2 and 3.

For those readers not yet acquainted with iterative and incremental programming techniques, the two chapters in this open-

ing section of the book should serve as primer on the main methods and practices that agile has to offer, providing the

background needed to understand the incremental approach to data warehouse development that will be presented later.

Because all of agile EDW’s ancestor methods have been well documented in other works, they are only summarized

here. A couple of graphics will make these summaries easier to read. First, Figure 2.2 shows the family tree of methods

and how they combined into the agile approach to data warehousing/business intelligence (DW/BI) proffered in this

book. Second, Table 2.1 lists the primary components employed in agile EDW and documents the ancestor method in

which they originated, although the exact origins of some were difficult to uncover completely.

DEFINING “AGILE”

Both traditional and agile approaches largely agree on the major steps and sequencing of activities that comprise disci-

plined software engineering: system requirements, application requirements, analysis, design, coding, testing, opera-

tions, and maintenance. Given the way manufacturing was organized in the mid-20th century, it was easy for project

management to think that the work for each step should be finished completely before the development team moved on

to the next, as if the project were simply a large automobile making its way along an assembly line. This traditional

approach was clearly articulated in 1970 in a paper by TRW’s Winston Royce titled “Managing the Development of

Large Software Systems.” It is often called the “waterfall method” because artifacts for each work step pool up until

that step is complete and then cascade down into the next engineering activity, as shown in Figure 2.3. To be fair,

Royce and other leading authors at the time were actually warning software developers against following this waterfall

approach, urging information technology (IT) managers to either prototype heavily before programming or simply plan

on throwing away the first version of an application:

If the computer program in question is being developed for the first time, arrange matters so that the version finally delivered to

the customer for operational deployment is actually the second version insofar as critical design/operations areas are concerned.

[Royce 1970]

Unfortunately, an approach exactly as depicted in Figure 2.3 was adopted into a 1985 U.S. military standard for

systems development and then soon disseminated into the software industry by the military’s systems integration

contractors [Department of Defense, 1985].

By the mid-1990s, however, a radical alternative to the traditional approach to software development was in the air. The

Standish Group had published two versions of its Chaos Report survey of 8380, development projects at 365 U.S. compa-

nies, revealing that the mainstream approach was failing more often than not to deliver projects on time, on budget, and

with all their promised features. The Standish Group’s analysis revealed that only projects with very small scopes were

achieving anything better than a 50% success rate [Standish Group 1995, 1999]. On a separate front, Japanese

13
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00002-3

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00002-3

manufacturers had recently turned many traditional product engineering concepts on their heads and were decisively

outcompeting their U.S. counterparts because they were able to introduce new products across a wide range of industries

without having to invest in lengthy product design efforts and large inventories.

As the Japanese business schools began publishing the revolutionary thinking that propelled their manufacturing compa-

nies into world dominance, it was natural for U.S. software developers to search for ways to apply those concepts to their

world of system design and programming. Moreover, the rise of the Internet and the dot-com boom offered great rewards to

those companies that could achieve high speed-to-market and quickly scale up their software systems. The advantages of

small work scopes indicated by the Standish Group’s Chaos Reports naturally led some developers to experiment with incre-

mental and iterative deliveries of software systems. By combining an iterative approach with new Japanese product develop-

ment techniques, software engineers in a wide range of industries began identifying radically new ways to build applications.

In 2001, 17 thought leaders who had been successfully experimenting and writing about “lightweight programming”

techniques met at a ski resort in Snowbird, Utah, to identify the common attributes of their widely varying methods.

The result was posted to the web as the “Agile Manifesto” (see http://www.agilemanifesto.org). As listed in Figure 2.4,

the cover page of the agile manifesto is a collection of four philosophies for a software development mindset that places

the customer first. More than a decade later, the agile software development movement that took root with this mani-

festo has blossomed into more than a dozen formally defined methods. These many methods exhibit great diversity in

techniques, making a single notion of “agile” challenging for many practitioners to define. Still, a solid definition of the

Chapter 2

Agile methods for general

application development
Lean software development

7 Principles and 22 tools

Rational unified process

Kanban method for
continuous-flow development

Tools for careful project
definition & risk management

Scrum’s five-step work
management cycle

Extreme programming (XP)
values and principles

Chapter 3

Agile manifesto family of
incremental delivery methods

FIGURE 2.1 Mind map of generic iterative methods summarized in Chapters 2 and 3.

14 PART | I Summaries of Generic Agile Development Methods

http://www.agilemanifesto.org

word will help people new to this style of software development keep the essential of the iterative approach firmly in

focus as they explore the many options available. Moreover, as they become practitioners, a strong definition of the

word will allow them to remain true to the concepts that have powered the agile movement’s early success.

Many writers today define agile as simply any method that adheres to the agile manifesto. This definition is a good

first try, but it does not describe succinctly what makes agile different from traditional methods. The authors of the

manifesto did provide 12 suggested principles that developers should follow throughout a project. The top half of

Figure 2.5 includes these principles, but even though well expressed, this simple list does not provide a capsule

summary of “agile” that team leaders can easily keep in mind. If possible to articulate, team leaders could really use a

single guiding concept to anchor their thinking as they redesign their group’s work habits.

Incremental

development methods

Other

contributors

Legend:

Direct
contribution

Continuous

flow Time-boxed

Agile data warehousing

(collaboration model)

Agile enterprise data warehousing

(complete approach)

RUP

Scrumban

Kanban

Lean software

development

Hyper-modeled

data schemas

21st C. DW/BI

productivity

tools

Agile manifesto

Object-oriented development
Toyota production system

(lean manufacturing)

Continuous flow wrapped around
time-boxed iterations

Agile DW/BI
Subrelease
Value Cycle

Work patterns
for programming

Agile data
engineering

E
arly architectural

elaboration

Spiral model

Full-lifecyle requirem
ents

tem
plates

Scrum/XP

E
m

phasis on risk
m

itigation

Influence

H
eavy approach needing

to be stream
lined

Stories, story
points, etc.

FIGURE 2.2 A family tree of methods and influences leading to the agile EDW method.

Primer on Agile Development Methods Chapter | 2 15

Alistair Cockburn, who participated in drafting the manifesto, offers a definition for agile that is more manageable

than a list of 12 principles:

A system of methods designed to maximize the alignment of the work done by the developers with the direction needed by the

business at the time, especially in a context where the business direction changes frequently, . . . [where] important facts

change, or where we are obliged to adapt to important uncontrolled factors.

[Cockburn 2008]

TABLE 2.1 Agile Elements by Origin

Element Scrum XP Kanban RUP
Standard
Proj. Mgt.

DW/BI
Adaptations

Iterative development Y Y Y Y

Time-boxed iterations Y

Product owner Y

Product backlog Y

Story conferences & task planning Y

Product demo days & retrospectives Y

Burndown charts Y

Daily stand-up meetings Y

Task board - status columns Y

Backlog grooming Y

Velocity (Y) Y

Continuous integration Y

Release planning Y

Story points Y

Test-led development Y

User stories Y

Continuous flow for supporting disciplines Y

Cumulative flow diagram Y

SLA calculations Y

Task board - engineering phase columns Y

Elevate risky elements Y

Full life cycle Y

Prove out the architecture Y

Release cycle Y

Requirements management templates Y

Use cases Y

Current estimates Y

Additional leadership roles Y

Developer stories Y

Reference architectures Y

16 PART | I Summaries of Generic Agile Development Methods

He provides further insight into the notion by describing what a non-agile method is:

One that optimizes toward a different priority [such as seeking] cost efficiency by anticipating, controlling, or eliminating vari-

ables so as to eliminate the need for changes and associated costs of changing.

[Cockburn 2008]

Scott Ambler, a methodologies expert who worked for a long time with IBM Rational, describes the non-agile, water-

fall approach as one that insists upon creating a “big model up front” before programming can begin [Ambler 2005]. In

fact, because it forces a team to sequentially articulate all requirements before design, spell out all design points

Work breakdown
structure

Definitive
estimate

Delivery schedule
& go-live date

System
requirements

Software
requirements

Analysis

Design

Coding

Testing

Operations

FIGURE 2.3 The traditional waterfall method. Source: Adapted from [Royce 1970].

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

FIGURE 2.4 The Agile manifesto cover page.

Primer on Agile Development Methods Chapter | 2 17

Agile manifesto

Philosophies

1 Value individuals and interactions over processes and tools.
2 Value working software over comprehensive documentation.
3 Value customer collaboration over contract negotiation.
4 Value responding to change over following a plan.

Principles

1 Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.
2

3 Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter timescale.
4 Business people and developers must work together daily throughout the project.
5 Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the job done.
6 The most efficient and effective method of conveying information to and within a development team is face-to-face conversation.
7 Working software is the primary measure of progress.
8

9 Continuous attention to technical excellence and good design enhances agility.
10 Simplicity—the art of maximizing the amount of work not done—is essential.
11 The best architectures, requirements, and designs emerge from self-organizing teams.
12 At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

www.agilemanifesto.org

Extreme programming (XP)

Values Primary practices Corollary practices

1 Communication 1 Sit together 1 Real customer involvement
2 Simplicity 2 Whole team 2 Incremental deployment
3 Feedback 3 Informative workspace 3 Team continuity
4 Courage 4 Energized work 4 Shrinking teams
5 Respect 5 Pair programming 5 Root-cause analysis

6 Stories 6 Shared code
Principles 7 Weekly cycle 7 Code and tests

1 Humanity 8 Quarterly cycle 8 Single code base
2 Economics 9 Slack 9 Daily deployment
3 Mutual benefit 10 Ten-minute build 10 Negotiated scope contract
4 Self-similarity 11 Continuous integration 11 Pay-per-use
5 Improvement 12 Test-first programming
6 Diversity 13 Incremental design
7 Reflection
8 Flow
9 Opportunity

10 Redundancy
11 Failure
12 Quality
13 Baby steps
14 Accepted responsibility

Welcome changing requirements, even late in development.
Agile processes harness change for the customer's competitive advantage.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able to maintain a constant pace indefinitely.

FIGURE 2.5 Values and principles of the agile manifesto and Extreme Programming. Source: [Beck 1999].

18 PART | I Summaries of Generic Agile Development Methods

before coding, and program all modules before system testing, the goal of a waterfall approach actually requires far

more than just a big model. It demands multiple “big specifications” up front.

Through his lectures and writings, Ken Collier, another author in the agile DW/BI space, has offered the following

definition, which I paraphrase from an opening paragraph of his book on agile analytics:

“Agile” is a reserve word meaning a collection of philosophies, practices, behaviors, and techniques that relies on discipline and

rigor, but is not heavyweight or overly ceremonious, falling instead in between just enough structure and just enough flexibility.

[Collier 2011]

After many years of working in this field, a more concise definition emerged from the many agile transition work-

shops that I have run for companies throughout the world:

“Agile” development methods emerge from iterative and incremental practices that constantly deliver quality-assured value to

the customer in a manner that steadily mitigates risks within a project and eliminates wasted efforts within the software engi-

neering process.

Although this definition touches upon the major elements that project leaders need to keep in mind, it is still a bit

long-winded. To trim it down to a definition that one can keep in one’s back pocket and therefore utilize for daily deci-

sion making within a project room, I usually abbreviate the previous notion to the following:

Agile is all about constantly delivering value to the customer.

We can add a quick tag to this statement to highlight agile’s contrast with a traditional development approach:

Waterfall methods are all about creating a big specification up front.

These pocket definitions have served the teams I have led very well. In nearly all cases, “constantly delivering value

to the customer” has been able to rapidly orient a team toward the true goal of incremental development, enabling it to

quickly arrive at the best answers to even the thorniest questions involving perennial challenges such as requirements

gathering, application design, work scheduling, scope creep, and system testing.

AGILE MANIFESTO VALUES AND PRINCIPLES

According to surveys of general application development teams, three-fourths of agile data warehousing teams today

employ a development process linked to the agile manifesto, making this family of methods the natural place to start in

our primer on iterative and incremental development techniques [Hughes & Stodder 2012]. Part of the attraction of this

family is certainly the manifesto’s clear and compact collection of values and principles as published in 2001.

Many of the agile manifesto thought leaders have emphasized in their writings the power of values and principles in

general. Certainly it is reasonable to think that a group of fast-moving developers, making crucial decisions regarding

design and quality under time pressure, would need strong general guidelines to keep their work coherent day after day.

The manifesto’s values and principles allow teams to move ahead quickly by enabling them to dependably make the

right choice without vetting all the alternatives with IT directors or program management.

A value is an ideal or quality that a group accepts as a normative criterion for its thinking and behavior. Kent Beck, one

of the creators of XP, defines values as “the large-scale criteria we use to judge what we see, think, and do” [Beck & Andres

2004]. In the realm of software development, the values espoused by various methods provide an avenue for understanding

how they fundamentally differ. As an example, one value integral to waterfall methods, frequently fired at me by traditionally

trained project managers, is “all work should be defined in detail before development begins, so that programming can be

controlled and measured.” When we examine how long it takes to define all the work of a project, this notion seems to ele-

vate command and control goals above placing new software capabilities in end users’ hands as early as possible, making

one wonder whose needs have determined the pattern of work to be followed—the project manager’s or the customer’s.

As revealing as they might be, values are too high-level and vague to help much with detailed programming deci-

sions under specific circumstances. Principles, however, make up the next level down in normative statements that

groups utilize to choose their actions. They contain more domain-specific policy information and come much closer to

indicating the practices that a team should follow.

The distinction between values and principles can be easily seen in pages of the agile manifesto’s web site. The four

values stated on its opening web page are compelling but undeniably too vague to infer any specific practices from. For

example, Principle 2’s suggestion that teams should “deliver working software frequently, from a couple of weeks to a

Primer on Agile Development Methods Chapter | 2 19

couple of months” seems far more actionable than the value of “emphasize working software over comprehensive docu-

mentation” that we find on the cover page.

Values and principles are very important for agile EDW leaders to keep clear as their teams develop their own

implementations of an agile method, because data warehousing places some extreme demands upon the generic iterative

methods that require us to bend some of the standard agile practices considerably. Teams that lose sight of the values or

principles behind the practices recommended by agile textbooks can easily adapt them in dysfunctional ways. For

example, Scrum textbooks specify a practice of demonstrating new features to the business users at the end of each

development iteration. This practice is nearly impossible for DW/BI teams pursuing any significant data integration

objectives because there is simply too much work required to take a new element from source systems all the way

through the extract, transform, and load (ETL) processing and place it on a business intelligence dashboard within two or

three short weeks. Many agile data warehousing teams therefore decide that they will still work in iterations but will for-

get about demonstrating new features at the end of each development cycle. Unfortunately, this adaptation leaves the

customers without any sense that progress is being made and denies them the ability to easily redirect the team as business

conditions change. More successful agile EDW teams keep the manifesto’s Principle 1 in mind and somehow find a way

to continuously deliver software to the customer throughout the project. They may have to reinterpret the notion of work-

ing software to mean landing newly enriched data closer to rather than onto the end user’s dashboard, but at least with

every iteration they create a new capability that the end users can validate at the conclusion of every iteration.

SCRUM IN A NUTSHELL

Agile values and principles can be readily seen at work in Scrum, the most popular method in the agile manifesto

school. During the early 1990s, Dr. Jeff Sutherland and Ken Schwaber were blending innovative object-oriented pro-

gramming techniques with concepts that they found in descriptions of the Japanese approach to product development.

They called their new approach “Scrum” after the ceremony in a rugby game in which players join together with their

arms around their teammates’ shoulders in order to get the ball back into play. Sutherland’s and Schwaber’s experience

of building applications with Scrum contributed much to the discussion when they attended the 2001 meeting in Utah

that gave rise to the agile manifesto.

Perhaps because it was so well defined at a very early point in agile’s history, Scrum has amassed the largest mind-

share of all the agile methods, serving as the method for more than half of all agile projects when measured recently

[VersionOne 2013]. When my colleagues and I were searching for a formal method to guide our initial incremental

delivery approach for data warehousing, we chose Scrum because it appeared to be the easiest method to learn, commu-

nicate, track, and customize. These attributes make Scrum a good place for software professionals who are new to itera-

tive development to start learning about the agile software engineering.

Figure 2.6 illustrates the essence of the Scrum approach. First and foremost, Scrum embeds a business partner with the

application development team. Naturally, this business partner must understand well the business need for new or enhanced

information systems because Scrum teams will take most of their direction from this individual. Because the resulting appli-

cation will directly reflect the decisions of the business partner, Scrum practitioners call him or her the product owner. The

team depends on the product owner to decide what features to build into the application and what order to add them. When

the product owner reviews the team’s deliveries at the end of each development iteration, he or she will also determine

whether to accept or reject those modules based on how well they meet the needs of the company. In short, Scrum’s notion

of a product owner puts the business customer into the project driver’s seat. If, upon delivery, the application disappoints

the organization that paid for its development due to missing or misconceived features, everyone on the team will have

failed, but that failure will have pivoted upon the directions and reviews provided by the team’s embedded business partner.

This arrangement makes the product owner one of the team’s primary leaders. It is crucial that he work very

closely with the developers during the creation of the software. Rather than participating from a distant office and

making the developers come to him, Scrum strongly urges the product owner to co-locate in the development room

for a good part of every working day so that he can answer the developers’ questions about requirements in real

time, eye-to-eye. For general software applications, co-locating in the project room also allows the product owner to

validate and accept the application components as soon as the developers finish each one. As will be discussed in

Part II, this instantaneous review of new modules is difficult to achieve for data warehousing projects because often

the data necessary to validate an ETL unit is not available right away. This situation is another example in which the

team leaders will have to keep agile values and principles in mind as they improvise on the techniques found in

generic Scrum textbooks.

20 PART | I Summaries of Generic Agile Development Methods

The only other role for an individual defined by Scrum is “scrum master”—everyone else on the project team is simply a

“developer.” The Scrum master role is not that of a project manager but is instead that of a facilitator, i.e., someone who

knows the Scrum steps and techniques well and can remind the team as needed which steps it should be pursuing on any given

day. Because the Scrum master is a facilitator rather than a manager, the role does not require a tremendous amount of time,

rarely more than half-time at first and then even less for a mature team. Because this role consumes so little time and requires

only a day or two of training, the developers often select one from their own ranks to perform the Scrum master duties.

I have often felt that the word “master” in the name of this role is too strong and improperly suggests that the person

in the role should begin dictating actions and controlling the work of the developers. Command and control is counter

to the agile principles and often undermines the performance of a team, so I typically suggest to the teams I coach to

use either the term Scrum facilitator or Scrum coach instead.

User Stories

In contrast to the waterfall strategy of a big specification up front, all the agile methods have switched to expressing a

project’s requirements in very small pieces that are defined continuously throughout a project. Many of these methods,

Scrum included, have the product owner express the features he or she wants added to the application by writing a very

lightweight artifact known as a “user story.”

A typical user story for an insurance policy analysis system is depicted in Figure 2.7. Note that the user story is a

short statement that does not describe the feature but instead illustrates how the end users will be able to use the appli-

cation once the necessary features are in place. A user story is usually a sentence or two, with three key components:

� Who: The stakeholder that the product owner envisions using the application for the given story
� What: The usage or work that this actor will want to accomplish while working with the application
� Why: The value or business benefit the actor and the organization will derive from that usage

Embedded

business

partner

Project

First day:

“iteration planning”

Story

conference

D
ev

elo
pm

ent

All o
th

er d
ays

U
ser dem

o

T
a
s
k

p
la

n
n

in
g

S
p

ri
n

t
re

tr
o

s
p

e
c
ti

v
e

L
a
s
t

d
a
y

backlog

Shippable application modules

FIGURE 2.6 The essence of the Scrum method.

Primer on Agile Development Methods Chapter | 2 21

The “who” is necessary because the product owner represents not just himself but also many stakeholders who will

be impacted by the new application. The product owner will author a set of cards for each type of actor that will utilize

the application. The “what” needs to be clear but also fairly small in scope so that the capability described can be built

during a short iteration of programming work. The “why” needs to be directly traceable to an information capability or

a competitive advantage that the business needs in order to thrive. Many teams add a fourth element, “validation,”

which captures ideas about how to prove that the story has been fulfilled once developers claim that the features needed

have been added to the application. User stories will be considered in greater depth during the discussion of require-

ments management found in Part III of this book.

In the simplest implementations of Scrum, product owners record their user stories on index cards called story

cards. For teams using an electronic agile project tracking system, these story cards will be stored not on paper

cards but, rather, in database records. The team does not pretend that these terse user stories are the project’s

requirements. Instead, the team considers the story cards to be only a reminder that it needs to have an in-depth

conversation with the product owner when the time comes to transform a given user story into working application

features.

When kept short as recommended, story cards give the team an extremely effective means of envisioning and man-

aging the project. A collection of 10�20 such story cards often captures the essence of a data mart project. A major

data warehouse subject area typically requires 40�80 stories to articulate well. When kept on index cards or printed out

from the electronic tracking system, the team can spread out a collection of stories on a large table and quickly reason

about the order in which they should be added to the application. The product owner will want to arrange the cards by

business priority, but as he or she sorts the cards, the developers can comment on how to sequence them in order to

minimize dependencies between the stories and thus lower overall project risk. Such a visual, collaborative planning

effort results in a project plan that both business and IT understand and support.

Short story cards also abet keeping project requirements aligned with changing business conditions. If new ideas or

needs arise during the project, the product owner can create additional story cards with only a moment’s effort per card.

In contrast, traditional methods depend upon voluminous requirements specifications documents, which make it difficult

for business partners to request new features, causing a project’s requirements to steadily grow out of date.

Similarly, story cards can be easily discarded, maintaining a high level of accuracy in an agile project require-

ment list. If at some point an existing story no longer seems necessary, the product owner simply tears up or

deletes the appropriate card. No one will weep over its loss because only a small amount of time had been invested

in writing it out in the first place. Waterfall teams, on the other hand, capture requirements in great detail before

they start coding, and they must therefore invest many hours into documenting their application’s objectives. When

the company’s situation changes and business partners want to drop requirements, traditional project teams often

resist large changes because the analysts rue having to throw away sections of documents they worked so hard to

create. All told, story cards can capture business needs quickly and can adapt easily, yielding a far more accurate

notion of what a software application should be.

User story: 213

Who: As a property policy rate analyst, I want to be able to…

What: …compare total exposure to policy values for our top 10% of losses, with drilldown by

product category, customer demographics, and geography…

Why: …so we can identify clusters of customers for whom we should stop discounting

property policies.

Test: Using the June 2014 data set, total exposure for powerboats over 750HP owned by

unmarried males living in zip code prefix 610* should exceed 130% of policy value

FIGURE 2.7 Typical user story.

22 PART | I Summaries of Generic Agile Development Methods

Scrum’s Five-Step Delivery Iteration

Once the team arrives at a prioritized collection of user stories, the story cards can be viewed as the list of requested program-

ming work that the product owner is waiting for. Appropriately, agile teams call this list the project’s backlog of features that

the developers owe to the product owner before the project can be considered done. Starting at the top of this backlog and

working toward the bottom, the team will steadily transform the user stories into working features using development

iterations (often called “sprints” by agile developers who practice only Scrum). At times, the team employs other types of

iterations, such as those that focus on setting up the programming environment or on polishing a set of modules for promo-

tion into production usage, but the majority of a Scrum team’s sprints are development iterations dedicated to programming.

In Scrum, the development iterations will have the same, fixed duration and are thus said to be time-boxed. Typically,

Scrum teams limit the length of their development iterations to time boxes of 2, 3, or 4 weeks. Figure 2.6 shows five steps

that Scrum includes in every development iteration. The first day of each time box is dedicated to iteration planning,

which involves first a story conference and then task planning. After that, all but the last day is dedicated to programming.

The final day of the iteration’s time box is spent (1) reviewing the new features of the application with the product owner

in a ceremony called the user demo and then (2) reflecting on how the team might improve its policies, practices, and

techniques during another ceremony called the iteration retrospective. A sketch of each of these steps follows.

Story Conference

Starting at the top of the project backlog, the team discusses at a medium level of detail the requirements implicit in the

user stories. The team discusses as many user stories as it thinks it can deliver within the iteration’s time box. Many

Scrum teams estimate the level of effort required to deliver a given user story using a unit of measure called a “story

point.” Story points are described more fully later, but for the moment we can think of them as a top-down tool for esti-

mating the “size” of a user story—that is, the amount of work it will take to deliver. Story points are derived using pair-

wise comparisons of the requested work to other modules that the team has already built and remembers quite well.

During a story conference, the teammates will be able to identify approximately the right amount of work for the

iteration because they have been tracking how many story points they successfully delivered during previous iterations.

In other words, by measuring the number of story points they deliver each iteration, the developers acquire a clear and

accurate notion of their team velocity.

During the story conference, the team discusses the details of user stories, sizing up each story using story points,

until team members have agreed to enough story points to match their delivery velocity. Usually, it will take only a few

stories before the team has identified an iteration’s worth of work. The handful of story cards selected for development

during the time box are transferred from the project backlog onto a candidate iteration backlog, and the next step in the

Scrum cycle can begin.

Many teams utilize an important variation on the pattern just described. They identify enough stories to match only

80% of their velocity. They reserve the remaining 20% of their bandwidth to work on aspects of the application that the

product owner will probably be unable to appreciate, such as writing reusable procedures, building test harnesses, or

preparing integration test sets. Because this 20% is often invested in improving the architecture of the applications,

teams often call this holdback their “architectural reserve.”

Task Planning

Once the story conference has identified a candidate iteration backlog of user stories, the developers will want to double-

check that they have identified the right amount of work for one time box. In order to validate their candidate iteration

backlog, they decompose each user story from the iteration backlog into the development tasks they will need to complete

to add the new features with the required capability to the application. In Scrum, all the phases of software engineering

are pursued in parallel, so development tasks include not only programming work but also requirements, analysis, design,

testing, and documentation—whatever is necessary to achieve new system capabilities with high-quality code.

Starting at the top of the candidate iteration backlog, the teammates estimate the labor hours for each story’s

required development tasks and maintain a running tally of the work identified for the iteration. When this labor hour

total matches the number of work hours they have available during the time box, the developers can declare the itera-

tion backlog filled. They should decline to add any further user stories to the iteration backlog without first removing

something from the list. If they did not stop adding stories at this point, they would be implicitly committing to working

nights and weekends during the coming few weeks in order to deliver the promised capabilities to the product owner.

Primer on Agile Development Methods Chapter | 2 23

When task planning reveals that the work represented by the candidate iteration backlog does not add up to the available

labor hours, the developers give the situation a second look. The discrepancy tells them that something is awry with their

estimate of either the story points or the labor hours. To resolve this discrepancy, they alternate between revisiting their

story points and their labor hour estimates until they get the two tallies to indicate the same amount of work. Only when the

story point and labor hour estimates indicate the same collection of stories for the iteration do the developers make a firm

commitment to the product owner as to what features will be added to the application by the end of the iteration.

The collection of stories accepted at the end of task planning becomes the true iteration backlog. Often, a team will

identify two or three additional stories that will serve as “stretch goals” for the iteration. The team will work on those

items only when some of the stories on the iteration backlog either become stalled due to external events or are com-

pleted much more quickly than anyone expected.

Development

After spending a day discussing the iteration’s user stories and programming tasks, the developers will understand quite

well the work they have committed to complete. Scrum asks them to then spend all but the last of the remaining days

in the time box transforming the iteration backlog’s user stories into working features that can be placed into production

usage the next time a build of the application is promoted into operation. During development, the team will draw upon

numerous agile techniques, such as those listed in Table 2.1. Some of the techniques are described later in this book,

but readers needing descriptions of the rest can consult my prior two books or textbooks on the methods listed.

To keep the team on track, the Scrum master usually provides the team with a task board, as shown in Figure 2.8. The

Scrum master also updates a “burndown chart” that shows the total hours remaining on the uncompleted tasks of the itera-

tion, as depicted in Figure 2.9. The task board is often a paper-based device created with masking tape and index cards

tacked to a large area on the wall of the project room. Electronic tracking systems provide a comparable display. The task

board has a horizontal swim lane dedicated to each user story on the iteration backlog in which the task cards can travel

to the right as developers steadily complete the work represented by the given story. True to the notion of self-organized

teams, as advocated by the agile manifesto’s principles, when a developer needs work, he scans the task board for the

next most important item he is qualified to perform and places his initials on the card to take ownership of it. The task

board has columns for each status a task card can experience, such as Task Defined, Tests Written, Under Development,

Waiting Validation, Ready to Demonstrate, and Done. Note that this ordering enforces the practice of test-led develop-

ment, as listed in Table 2.1. Test-led development is discussed in detail in Part V of this book.

At the conclusion of each workday, each developer updates her task cards under development by noting the number

of hours she believes she will need to complete the work. These updates, along with the original labor estimates on the

cards not yet under development, allow the Scrum master to prepare a daily tally of the work still undone. The Scrum

24 hr

12 hr

Code the...

Story by
priority

Tasks
waiting

#1

#2

#3

User needs to...
2 sp

User needs to...
8 sp

User needs to...
6 sp

List...
Tally...
Compare...

List...
Tally...
Compare...

List...
Tally...
Compare...

Tests
written

Under
development

Waiting
validation

Code the...
10 hr / 0

Code the...
8 hr / 4

Code the...
24 hr

Code the...
12 hr

Code the...
12 hr / 14

Developers keep updated
with “remaining labor hours”

Code the...
5 hr / 0

Ready to
demo

FIGURE 2.8 A sample Scrum task board as it would appear in mid-iteration.

24 PART | I Summaries of Generic Agile Development Methods

master illustrates the total remaining work for the team by drawing that total on the iteration’s burndown chart as a bar

for the next workday.

Whereas the task board provides detailed information about the status of an iteration, the burndown chart provides a

notion of team progress aggregated across all the developers. As shown in Figure 2.9, the Scrum master can draw a

trend line on this burndown chart to reveal whether the team is likely to work off all the tasks by demo day. Used this

way, the burndown chart usually provides all the incentive a Scrum team needs to increase its efforts as necessary to

meet its commitment to the product owner for the iteration.

User Demo

Scrum teams vary significantly in their use of the fourth step of the Scrum cycle, and the difference in objectives determines

whether they should call this step a “user demo” or an “iteration product review.” Scrum textbooks provide a baseline concept

of a user demo that works well for teams building general software applications or business intelligence front ends. In this con-

cept, the programmers will demonstrate new features to the product owner as they finish coding each module. By the end of

the development step, the product owner will be familiar with most of the team’s deliverables because he has been accepting

or rejecting completed features throughout the iteration. In this case, on the last day of the iteration, the product owner will be

able to demonstrate the new features to the business stakeholders of the project, showing them the new version of the applica-

tion that the programmers have been able to build under his direction. This presentation will provide the team with valuable

feedback on its work from the intended end users of the system, making this event appropriately called a “user demo.”

As will be discussed in Part II, data integration projects struggle to follow this model. Data for a seamless demon-

stration will not be available until the team stops programming the data transforms and spends a day or two populating

the target tables. In this case, the last day of the iteration will be the first moment the product owner will be able to real-

istically assess the new features. Typically, product owners prefer to conduct this first review with just the development

team present, without a room full of business stakeholders looking on, making this ceremony more of an “iteration

product review.” Data integration teams still call it a “user demo,” but they have clearly changed the notion of user to

mean just the product owner. Developers still need feedback from a larger collection of business stakeholders, so teams

following the iteration product review pattern will have to take extra steps to later demonstrate the new application ver-

sion to a representative group of end users.

Demo day

450

400

350

300

250

200

150

100

50

0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 D L1 L2 L3
�

FIGURE 2.9 A Scrum burndown chart as it would appear in mid-iteration.

Primer on Agile Development Methods Chapter | 2 25

With either approach, this last step of the Scrum cycle involves a review by business representatives of the current

application build with particular attention to the new features added during the iteration coming to an end. Module vali-

dation is best secured during this demo by allowing the product owner—and other stakeholders if they are present—to

test drive the new version of the application for themselves. During the test drive, the product owner will step through

the user stories in the order listed in the iteration backlog. If she can successfully complete that set of users stories, the

team has every reason to believe it has designed and programmed the new features well enough to solve the target

business problems.

For each user story considered during the test drive, the product owner will judge whether the team has delivered

the requested capability and then mark each story as either accepted or rejected. The code supporting the accepted stor-

ies can be slated for promotion toward production usage. Rejected stories will be placed back on the project backlog for

continued development during an upcoming iteration, should the product owner still desire that capability in the

application.

Scrum teams also vary in how often they promote new modules into production. Because the team has been building

the real modules of the application and not prototypes, the accepted stories are theoretically ready to deliver to the end

users. Many Scrum masters believe development teams should promote at the end of every iteration so that accepted

features constantly flow into the online instance of the system. This plan works for some transaction-oriented systems

and BI front-end projects, but data integration projects tend to follow a different pattern. When systems get large with

many dependencies between modules or when the cost of the promotion process is high, teams will place the accepted

stories into a release pool. They will promote the entire release pool into production every two to four iterations so that

the new online versions have a more complete set of interworking features and the team saves on promotion costs.

At the end of the demo ceremony, the team will calculate its delivery velocity in story points by giving itself credit

for each story accepted by the product owner. This newly derived measure of team velocity will be used during the

next story conference to determine how much work the developers can reasonably commit to finishing during the

upcoming iteration.

During the user demo, the product owner or the developers may find small flaws in some of the stories, either in

functionality or in other aspects such as module documentation or performance. If these flaws can be fixed with only a

few hours of additional work, the product owner can choose to accept the impacted story with the proviso that these

flaws will be corrected within the first few development days of the next iteration. Scrum teams call this collection of

quick-fix items the project’s tech debt list. During planning and development for the next iteration, the Scrum master

reminds the developers that they need to work off the items on their tech debt list first before starting on any new

features.

Iteration Retrospective

If the team were to start the next iteration immediately upon the conclusion of the user demo step, it might well

repeat many of the mistakes made during the prior iteration. To avoid this undesirable outcome, Scrum teams ask the

developers to use the last half-day of every iteration to reflect on their effectiveness as a team and to identify new

policies and behaviors that will allow the team to deliver more quickly and with higher quality during the next itera-

tion. The Scrum master records the new work patterns that the team agrees to follow but asks the other developers to

volunteer to ensure that those policies are honored. If the Scrum master were to himself demand compliance to the

new policies, he would become the team’s “enforcer” and revert into a project manager, undermining agile’s principle

of self-organization.

Given the quick sketch of Scrum offered here, it can be seen that this method clearly implements the values and

principles listed in the agile manifesto, such as early and continuous delivery, the collaboration of business partners and

developers, and continual process improvement. Although Scrum is very popular, it is only one of several agile

methods. Other agile methods provide alternative sets of important values, principles, and practices with which teams

embarking upon an agile transition should be familiar so that they have the widest possible set of alternatives

when they encounter each new challenge.

CONTRIBUTIONS FROM EXTREME PROGRAMMING

The previous summary of Scrum failed to mention that its creators borrowed heavily from another agile approach

called Extreme Programming, or simply “XP.” XP was created by three of the 17 original authors of the

manifesto—Kent Beck, Ron Jeffries, and Ward Cunningham. These thought leaders first described several of the key

26 PART | I Summaries of Generic Agile Development Methods

practices that are integral to Scrum as practiced today, such as user stories and story points. EDW team leaders who

want to deepen their understanding of Scrum should acquaint themselves with the origins of these notions, as con-

tained in the writings of the inventors of XP.

XP’s focus is on the small team, and it specifies many ways to streamline the programmer tasks required to build

working, validated software application. The creators of this method chose the “extreme” moniker because they ask

developers to “crank up all the knobs to 10” when it comes to common-sense coding practices such as testing and

review—and then leave out everything else [Beck 2001].

Kent Beck, who got Extreme Programming started while building a payroll system for Chrysler during the mid-

1990s, illustrates the extremity of his method in his book Extreme Programming Explained [Beck 1999]:

� If code reviews are good, we’ll review the code all the time (pair programming).
� If testing is good, everybody will test all the time (unit testing), even the customers (functional testing).
� If design is good, we’ll make it part of everybody’s daily business (refactoring).
� If simplicity is good, we’ll always leave the system with the simplest design that supports its current functionality

(the simplest thing that could possibly work).
� If architecture is important, everybody will work defining and refining the architecture all the time (metaphor).
� If integration testing is important, then we’ll integrate and test several times a day (continuous integration).
� If short iterations are good, we’ll make the iterations really, really short—seconds and minutes and hours, not weeks

and months and years (the Planning Game).

Scrum clearly incorporates the spirit of many of these principles, although it implements many of the practices

within the context of a 2- or 3-week iteration rather than “all the time.”

XP was formalized soon after Scrum was introduced, and its programming techniques complemented well Scrum’s

work-package management patterns. It was no surprise, then, that by the mid-2000s, the two methods were often being

taught as one. When most people say they practice Scrum today, they usually mean they are using “Scrum/XP.”

Although Scrum borrows heavily from XP, they are not synonymous, and EDW team leaders will be able to guide

their teams more clearly if they continue to distinguish the focus of each method. Reflecting upon the outline of Scrum

in the previous section, it is clear that Schwaber and Sutherland were focusing on how to marshal work onto a develo-

per’s workbench. XP focuses instead on how to actually write the code implicit in each story card. Ken Schwaber, one

of the creators of Scrum, once described the collaboration between the two methods as follows:

Scrum and extreme programming provide complementary practices and rules. They overlap at . . . [iteration] planning.. . . Both

encourage similar values, minimizing otherwise troublesome disconnects between management and developers. Combined,

they provide a structure within which a customer can evolve a software product that best meets his or her needs, and can

implement quality functionality incrementally to take advantage of business opportunities.

[Schwaber & Mar 2002]

Scrum’s original omission of programming steps was intentional because its creators were striving for an approach

that an organization could drape over its existing engineering practices with the least amount of disruption. This fact

suggests that if an existing team’s programming practices are already strong, the best agile transition might be to focus

most on Scrum’s work flow practices and downplay XP’s engineering practices. In circumstances in which the team’s

starting programming practices are weak, then EDW team leaders can be glad that Scrum/XP has engineering patterns

already built in.

Readers interested in the distinction between the various agile methods that my colleagues and I have blended as

we developed agile data warehousing can refer to Table 2.1. This table lists the component practices by the method

that first defined each, as best as I can discern from the agile literature, with the first two columns focusing on Scrum

and XP.

XP Values and Principles

In his books, Kent Beck offers a clear list of the values and principles he and his colleagues incorporated into XP and

which today undergird Scrum, which in turn lies at the heart of agile data warehousing. Familiarity with these XP

principles, then, will allow EDW team leaders to see more deeply into the textbook presentations of agile methods and

allow them to be far more innovative as they tailor an iterative method of their own. Indeed, some of the innovations

my colleagues and I added to agile data warehousing strike many Scrum masters as heretical. However, we can trace

the rationale for all of them to XP values such as simplicity and feedback or principles such as economics and flow.

Primer on Agile Development Methods Chapter | 2 27

Knowing those aspects of XP inspired and guided us in adapting Scrum when the textbook version of the method did

not fit a common DW/BI challenge. All EDW team leaders will need to position themselves to be equally innovative if

they wish to cultivate world-class DW/BI teams, so at least one reading of the following principles will be essential to

their success. Readers wanting more detailed discussion can consult the works mentioned previously by Cohn, Ambler,

and Leffingwell.

XP’s Values

Communication: When problems arise in development, someone on the team usually knows the solution. That

knowledge needs to move quickly to someone else who has the ability to make a change.

Simplicity: Critics of XP often misinterpret this maxim as suggesting that “all solutions should be simple.” The true

expression of this concept is that teams should always identify the simplest solution that could possibly work. This

tenet is XP’s version of Occam’s razor.

Feedback: In the heat of a development effort, the correct expression of requirements and the best design may be

very difficult to obtain. Teams need to establish strong and reliable feedback loops for all their activities so that

they can make steady improvements toward a goal rather than staking all effort on a single try.

Courage: All developers must summon the courage to speak the truth, whether the news is good or bad. Working

with the truth will allow the team to eventually uncover the best solutions and the project stakeholders to make the

necessary difficult decisions, all soon enough to maintain a positive project outcome.

Respect: This value underpins the other four. “If members of a team don’t care about each other and what they are

doing, . . . [or if] members of a team don’t care about a project, nothing can save it” [Beck & Andres 2004].

Beck emphasizes that XP’s five values need to be deployed as a balanced set, underscoring that any one of them

practiced in isolation could lead to rash or counterproductive results that the other values would have helped prevent.

The following are examples that he provides:

� Improving communication helps achieve simplicity by eliminating unneeded or deferrable requirements from

today’s concerns. Working the linkage in reverse, achieving simplicity gives you that much less to communicate

about.
� Courage alone is dangerous because doing something without regard for the consequences is not effective teamwork.

However, proposing a simple solution when the team has fixated on an overly complex approach is courage mixed

with communication, and it is often the one thing that can save a project’s budget and timeline.
� Simplicity rarely works well without the feedback that allows a team to measure the quality of a stripped-down

approach. “At the same time, the simpler the system, the easier it is to get feedback about it.”

Principles

When placed into practice, XP’s values quickly point to 14 principles that Beck recommends for guiding programmer

work habits in more detail. In order to present them in capsule form, I have paraphrased them considerably in the list

that follows and have added my own lessons learned to two of them (“flow” and “failure”). Because Beck’s actual treat-

ment of these principles is far more extensive and inspiring than the summaries presented here, folks wishing to practice

agile should take a moment to read the original formulations for themselves.

Humanity: People develop software. Methods that neither meet human needs nor honor human limitations cannot

succeed for long and thus cannot be considered good business sense.

Economics: Software costs an enormous amount of money to develop. Methods that do not honor the business’s

need to derive value quickly and avoid unnecessary financial risks will not meet IT’s needs for long.

Mutual benefit: Good solutions not only solve problems for IT and the customer at the same time but also balance

both parties’ present and future needs.

Self-similarity: Software designs turn out to be fractal with similar structures at every level of magnification.

Accordingly, practices that perform well at one level of abstraction should be considered at other levels, too. Beck’s

examples speak of using test-led development not only for coding application units but also for components, subsys-

tems, and entire systems.

Improvement: Rely on steadily improving a team’s approach and work product rather than striving for perfection

with the first attempt. “Best is the enemy of good enough,” and good enough places the team in a position to learn

fast through feedback.

28 PART | I Summaries of Generic Agile Development Methods

Diversity: Teams need a variety of skills and attitudes in order to have the multiple perspectives that are needed to

see all the problems and pitfalls confronting them.

Reflection: Good teams emerge from regularly considering the quality of their processes, discovering success from

the evidence provided by mistakes.

Flow: High performance arises out of small batches that lower risk and allow frequent reflection, so teams should

steadily move their processes in the direction of continuous flow. Note that this practice states only a directional

preference rather than a required goal. Accordingly, Scrum’s preference for structured, time-boxed development is

still acceptable as long as the iterations are as short as possible. Judgment will be required to determine if the time

box employed is short enough.

Opportunity: Teams need to reinterpret problems as opportunities. When whole-project plans seem impossible to

draft, the team can seize the opportunity to switch to iterative, quarterly plans instead. If a single programmer makes

too many mistakes, the situation is an opportunity to switch to paired programming. XP’s collection of coding prac-

tices became robust by innovating around the enduring problems of real people developing software in the face of

real adversity.

Redundancy: Teams should strive to solve the difficult problems of fast software delivery in multiple ways. This

policy might seem to increase project cost, but the expense of redundant solutions will pale in comparison to the

cost of plunging into disaster because all the possibilities were not understood first.

Failure: The fastest way to learn and become a high-performance team is to fail fast, fail cheap, and learn quickly.

The applications that emerge from a process replete with tiny failures are the ones that have the best chance of being

bulletproof when placed into production.

Quality: Projects do not go faster by accepting lower quality, nor do they go slower by demanding higher quality.

Pushing quality higher will meet the customer’s overall needs sooner, whereas lowering quality standards often

results in later, less predictable deliveries, or applications that are rejected by the end users completely.

Baby steps: “Momentous change taken all at once is dangerous.” When confronted with the need for serious inno-

vation, teams should instead identify the smallest change that would move them recognizably in the right direction.

Interestingly, this principle suggests a recursive application of iterative and incremental approaches to refining one’s

iterative and incremental software development method.

Accepted responsibility: Teams will perform better if they treat responsibility as something that can only be will-

ingly accepted by an individual rather than assigned to him or her. Teams should also be very clear on the full set of

responsibilities that an individual takes on when he or she accepts a given responsibility. For example, accepting

responsibility to code a task also means taking ownership of confirming the details of requirements, design, and test-

ing, not just rushing to churn out 1,000 lines of code.

SUMMARY

The iterative development techniques that we will soon see incorporated into agile data warehousing hail from two sep-

arate schools of incremental software engineering: those associated with the agile manifesto and those linked to lean

software development. This chapter introduced the agile manifesto school of methods, particularly Scrum and XP.

Although teams wanting to get started with agile development can learn just the practices of these methods, knowing

the values and principles behind each of them will allow teams to more easily innovate past challenges for which

ready-made practices do not exist. Knowing the methods’ underlying values and principles will enable EDW team

leaders to judge in each case whether the proposed change will still leave the resulting method truly “agile.”

Primer on Agile Development Methods Chapter | 2 29

Chapter 3

Introduction to Alternative Iterative
Methods

Scrum and XP, the methods from the agile manifesto school reviewed in Chapter 2, provide a solid foundation for iterative

development in general and for agile data warehousing in particular. The building blocks for adapting agile for enterprise-

scale projects will not be complete, however, without some elements from two additional methods and their philosophical

underpinnings. The major alternative to the agile manifesto is lean software development, and its showcase method is

Kanban. A second alternative to Scrum and XP is the Rational Unified Process (RUP), which actually predates all of the agile

methods discussed in this book. The agile enterprise data warehouse (EDW) method presented in this book borrows key ele-

ments from both Kanban and RUP. This chapter provides a quick introduction to both so that we can use their concepts later.

LEAN SOFTWARE DEVELOPMENT

The agile manifesto is a wonderfully concise and elegant expression of a novel approach to software development, and

the methods associated with it are certainly compelling in theory and successful in practice. Still, I would not want to

portray that family of methods as the entirety of the agile movement because that would omit the important contribution

that the lean software development school of iterative development has to offer. As depicted previously in Figure 2.2,

the lean school shares some of its origins with the agile manifesto group of methods, so understandably many practi-

tioners can borrow easily from both camps. That said, most agile projects draw upon only one school or the other. The

practitioners of these two schools seem to speak different languages and for a long time generally ignored one another.

Despite the gap between these two camps, lean is a valuable asset for agile EDW, underpinning some important adapta-

tions we have made to Scrum to answer the challenges posed by multilayered data integration projects. Given that lean soft-

ware development originates from a closer study of the revolutionary Japanese manufacturing practices of the late 20th

century, the literature for this camp also provides many valuable insights as to why the methods from the agile manifesto

school work so well in practice. Furthermore, lean practitioners also utilize several tools that the agile manifesto methods

have overlooked, and therefore offer some important assets for all agile teams to draw upon. More pointedly, lean principles

gave rise to a continuous flow method called Kanban, which agile EDW utilizes in two important ways: (1) better visualiza-

tion and management of the engineering steps that surround the programming phase of a project and (2) scaling up agile

methods to where they can manage large undertakings such as enterprise data warehousing program-level undertakings.

Lean Origins

Whereas Scrum originated from innovations in object-oriented programming with some influence from the Japanese

manufacturing revolution, lean software development derived from the reverse process: a close study of Japanese

manufacturing, especially the Toyota Production System, which was then applied to software engineering.

The translation of the Toyota production system into the lean application development principles started in the early

2000s with Mary and Tom Poppendieck. Mary had learned about the Toyota production system from 3M, her employer

at that time, which was actively researching why the Japanese video cassette manufacturers had suddenly been able to

sell their cassettes for half of 3M’s production costs [Poppendieck 2004]. Japanese manufacturing prowess had been

many decades in the making. Starting in the 1950s, Japanese companies switched to a strategy of increasing profitability

and market share by focusing on quality, as advocated by the American statistician Edward Deming, who had found

little interest among U.S. companies in his statistical process control techniques [McInnis 2011]. Steady innovation in

31
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00003-5

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00003-5

management attitudes and fabrication techniques culminated in the mid-1970s in the Toyota Production System, as

defined by several of Toyota’s engineers, including Taiichi Ohno. The approach taken by Ohno and colleagues served

as the basis for “lean manufacturing,” as popularized by James Womack and Daniel Jones in a series of U.S. books,

including Lean Thinking [Womack & Jones 2003]. These books are widely cited by lean software development advo-

cates including the Poppendiecks and David Anderson, the creator of the Kanban method.

Womak and Jones provided many examples of how lean manufacturing translated into advance market capabilities, such

as when Japanese carmakers were able to bring new vehicle models to market in the late 1980s in 75% less calendar time

and nearly half the labor hours as their U.S. competitors. Not surprisingly, U.S. companies began trying to catch up with the

Japanese during the early 1990s. Womack and Jones detail how Pratt & Whitney’s blade grinding operations for jet engines

were able to steadily identify and eliminate both waste and process interruptions using the techniques that Ohno had instilled

in the Toyota Production System. With those techniques, Pratt & Whitney was able to rapidly eliminate an $80 million back-

log of part shipments and cut its inventory levels and manufacturing costs in half while doubling labor productivity.

Given that both the lean school and the agile manifesto methods were influenced by the Toyota Production System, one

would think the two camps would seem very closely aligned. Unfortunately, a minor difference has led to a perceived chasm

between the schools in many people’s minds. Scrum, the method from the agile manifesto camp with the biggest mindshare,

utilizes time-boxed iterations of consistent lengths. Kanban, the most popular lean implementation for software, prefers a

continuous flow approach that relies on work-in-progress limits rather than time boxes to control the work. With this seem-

ingly minor difference in approach, the two camps have clearly diverged. Although they still share many of the same con-

cepts, artifacts, and techniques, the two schools began to hold separate conferences and mentioned each other only rarely.

Agile EDW team leaders will benefit tremendously if they can transcend the informal chasm between these two

camps and borrow techniques as needed from both lean and Scrum/XP. For example, the lean notion of waste and value

streams that is introduced later in this chapter helped my colleagues and I transcend the Scrum/XP’s near exclusive

focus on programming to see that we needed to apply agile thinking to the full arc of our software engineering process,

including requirements and quality assurance. In fact, as agile EDW developers acquire greater agile discipline, they

naturally tend to drift away from Scrum’s prescribed, time-boxed and ceremonial structure toward the continuous work

flow patterns of the lean-based method Kanban. As they draw nearer to Kanban, they spend progressively less time on

planning work batches and estimating level of effort, investing that time instead into creating even more new features

for their customers and acquiring even greater delivery speed.

Lean Methods as a Long-Term Destination

So why not just start a new agile program with lean principles or using Kanban? As I attempt to illustrate here, the reference

works for lean software development can read like the Tao Teh Ching for programmers. They provide a good collection of

incredibly insightful maxims but not a clear step-by-step approach to building an application. Kanban fills some of this gap by

providing a good collaboration model, offering in particular a much more powerful task board than that employed by Scrum/

XP. The fact that Kanban no longer relies on iterations also lets teams deliver software more quickly. But as practitioners who

tried to implement Scrum without XP found, a collaboration model is not enough. New agile teams in particular need an itera-

tive collaboration model with clear engineering steps imbedded within it before they will know where to start. In fact, when it

comes to many of its details, such as defining small work packets and regularly reviewing a team’s process, I have found that

Kanban practitioners quietly borrow concepts such as story cards, story points, and retrospectives from Scrum/XP.

My experience of transitioning waterfall-trained programmers into high-performance agile teams has revealed that

lean and Kanban requires teams to possess a fairly high level of agile experience and software engineering discipline

before they can smoothly switch to the continuous flow model. On the other hand, Scrum/XP, with its more rigid time

box, provides sufficiently detailed guidance on what teams should do and when, resulting in far less head scratching for

developers who are new to agile. In short, lean and Kanban are fantastic destinations for agile EDW teams when they

mature, but Scrum/XP is the approach that lets new teams best follow XP’s notion of baby steps.

Scrum, with its five-step, rigidly time-boxed iterations, provides the initial structure needed for teams to acquaint

themselves with iterative delivery. Its regular user demos provide a repeated “moment of truth” that guarantees their

new work habits can fail only a little bit, wasting at most 2 or 3 weeks of effort. Scrum/XP provides a far easier means

for EDW team leaders to get their developers through the agile learning curve with far less confusion and many fewer

mistakes. My colleagues and I have obtained good results by starting programmers off with Scrum/XP’s structured

approach and then gradually refocusing them on the larger principles suggested by lean and Kanban, letting them

become steadily more self-organized as the iterations progress.

Because lean and Kanban are crucial, long-term resources for maturing agile teams, the reader will surely benefit

from a quick listing of the principles and tools championed by both. Figure 3.1 offers a summary listing of the values

32 PART | I Summaries of Generic Agile Development Methods

tools for lean software development. To provide depth beyond a simple listing, the following section presents capsule

summaries of the lean principles and tools that are derived mostly from the Poppendiecks’ seminal book Lean Software

Development: An Agile Toolkit [Poppendieck & Poppendieck 2003]. Following this discussion is an introduction to

Kanban so that readers can recognize the concepts when they appear in the presentation of agile EDW later in this

book. Even a quick glance at these materials will reveal that there is much explicit and implicit overlap with the philos-

ophies and principles advocated by the authors of the agile manifesto, a fact that will make it easier for team leaders to

introduce these concepts when needed by their development teams.

Lean Principles and Tools

The Poppendiecks’ Lean Software Development book translates the Toyota Production System to application program-

ming by presenting seven key principles with 22 “tools” (practices) distributed within them. This collection begins with

a powerful technique for anyone who wants to deliver faster and cheaper—eliminating waste.

Principle 1: Eliminate Waste

While deriving the Toyota Production System, Taiichi Ohno identified the following seven categories of waste, which

can be applied to software development with little or no modification:

Lean software development

Principles / tools

1 Eliminate waste 5 Empower the team

Tool 1: Seeing waste Tool 13: Self-determination

Tool 2: Value stream mapping Tool 14: Motivation

2 Amplify learning Tool 15: Leadership

Tool 3: Feedback Tool 16: Expertise

Tool 4: Iterations 6 Build integrity in

Tool 5: Synchronization Tool 17: Perceived integrity

Tool 6: Set-based development Tool 18: Conceptual integrity

3 Decide as late as possible Tool 19: Refactoring

Tool 7: Options thinking Tool 20: Testing

Tool 8: The last responsible moment 7 See the whole

Tool 9: Making decisions Tool 21: Measurements

4 Deliver as fast as possible Tool 22: Contracts

Tool 10: Pull systems

Tool 11: Queuing theory

Tool 12: Cost of delay

FIGURE 3.1 Lean values, principles, and tools. Source: [Poppendieck 2003].

Waste Found in Manufacturing As Interpreted for Software Development

Inventory Partially done work

Extra processing Large batch reviews, needless or poorly run meetings

Overproduction Extra features, thrown-away work, building the same thing twice

Transportation Task switching

Waiting Time lost in scheduling meetings to answer a question

Motion Time lost traveling or preparing a presentation to get an answer to a question

Defects Errors and omissions in requirements design and coding

Introduction to Alternative Iterative Methods Chapter | 3 33

The first item on the list, inventories, is important. Lean practitioners are adverse to inventories because they repre-

sent uncompleted work that can easily become waste should priorities change and the partially finished features are no

longer desired for the application. Inventories of incomplete features also become wasted effort when developers

struggle to remember where they left off when they later need to resume work on them. In this light, big specifications

up front represent a huge inventory for a project, an inventory that will immediately turn into waste when the specified

features are descoped. Details for features should be specified just before the necessary modules are programmed, so

that the team will be sure that all their careful analysis and design work gets included in the finished system.

The notion of inventory as waste lies behind the lean community’s criticisms of time-boxed agile methods such as

Scrum. From the lean perspective, Scrum’s iteration planning represents an interruption of a team’s effort in order to

build an inventory—even if it is fairly small—of requirements for the next programming iteration that will only have to

be reprocessed when it comes time to actually start programming a given user story. Moreover, without any further con-

trols, Scrum allows work teams to start on all the work tasks at once, which only leads to waste when the developers

begin switching between partially completed tasks. As discussed later, lean practitioners prefer to limit the amount of

work-in-process so that developers work on only one or two items at a time, thus eliminating task switching and inven-

tories of unprogrammed specifications.

Tool 1: Seeing Waste

Teams should regularly review their current work methods using the seven categories of waste listed previously in order

to identify nonproductive aspects of their current engineering process. They should pay particular attention to reducing

tracking and control systems because these do not add value to the software under development but instead consume

resources so that nonproductive roles such as project managers will know if corrective action is necessary. If teams

would instead re-dedicate the tracking and control efforts to just getting more done, the need for corrective action would

largely disappear.

Tool 2: Value Stream Mapping

Value stream mapping is a diagrammatic and analysis technique for envisioning a team’s current development process.

Figure 3.2 displays an example of a value stream map for a data warehousing team when it was following a waterfall

process, just before switching to agile. The horizontal dimension of a value stream map shows the movement of work

across functional and organizational boundaries. The vertical dimension displays where within each processing phase

team resources were invested in development and validation versus being wasted on waiting for the next person to take

up the work package.

Solution architecture

D
ata profiling

Integration
testing

Data modeling

Value
added

Review

Waiting

Rework

Missing

Coding User
acceptance
testing

Time

FIGURE 3.2 Value-stream analysis of development work for a challenged waterfall project.

34 PART | I Summaries of Generic Agile Development Methods

This particular diagram of value stream mapping has been adapted for data warehousing in two ways. First, agile is often

criticized for requiring rework to fix coding errors made during hasty programming. To address this concern, my colleagues

and I typically add a fourth stratum to our value stream maps to depict rework. As shown in the example, this waterfall team

was losing a significant amount of labor time to rework, despite the fact that traditional project management supposedly

minimizes coding errors. Second, we add a fifth stratum for work steps that the team realized were missing from their pro-

cess. We frequently perform assessments of traditionally managed projects before converting them to agile. This stratum

allows us to highlight the crucial programming disciplines that every application development effort should include regard-

less of the method employed and that a data warehousing/business intelligence (DW/BI) team has not yet adopted.

The process portrayed in the sample value stream map above reveals many important clues to why that particular

team is struggling to deliver at a reasonable pace. Solution architecture, data profiling, and system testing were all

missing from the process. The developers were losing more than half of their cycle time waiting to hand off a package

to the next party in the process. Moreover, rework was consuming more than one-third of their resources, despite the

fact that the requirements and design for all modules had supposedly been documented thoroughly ahead of time. By

offering an overall view of where effort is wasted, value maps enable the team to reason carefully about its current

process and identify the most important areas to improve upon next.

Principle 2: Amplify Learning

Lean programming practitioners assert that effective processes are rarely created with a single try. They also believe

that no matter how much a particular process has already been tuned, one can always look more closely and find still

more wasted effort to eliminate. Because effective work methods need to continually evolve, organizations that focus

on learning will improve the fastest.

Tool 3: Feedback

Increasing a team’s ability to perceive its effectiveness and adapt the policies controlling its activities is the single most

effective way to deal with troubled software development projects and environments. A team should build as many

channels for feedback into its process as possible, such as communicating with users via prototypes, proving out design

ideas with small portions of actual code, and running tests as soon as code is written. The goal of these efforts is feed-

back, not perfection.

Faster cycles will generally increase failure rates, and to a point higher failure rates are a desirable outcome.

Carefully crafted work that always passes evaluation only confirms the current thinking of a development team and its

business sponsors. Avoiding all failure during evaluations consumes tremendous effort and teaches a team very little

about where it can improve. To maximize learning, the team should speed up its cycle time until it achieves a reason-

able failure rate because failure reveals the misconceptions that always lie hidden within an application’s design.

Driving these misconceptions to the surface ultimately ensures a project’s success.

Tool 4: Iterations

Steady learning through small failures implies many attempts of small scope. In other words, continual learning requires

development iterations. Iterations are the universal starting point for all agile development methods because they

dramatically increase the feedback over single-pass methods. Whether a project’s iterations have a consistent duration

or are individually sized to deliver a predetermined increment of features depends on the style of agile that a team

employs. All agile methods prefer, however, short durations and correspondingly small scopes in order to increase the

number of iterations that can fit within a given calendar time. Frequent iterations greatly increase the number of options

and synchronization points that teams can consider throughout the length of a project, giving them more opportunities

to resolve requirement and design constraints, thus enabling them to generate better results.

Tool 5: Synchronization

Even with tightly scoped iterations, developers will need to program in multiple, parallel efforts. Hence, they will need

to regularly synchronize their efforts to avoid conflicts and miscommunication. For this reason, agile teams have

learned to regularly align or “synchronize” their efforts so that they have frequent opportunities to stabilize the overall

behavior of the application across its many components. They draw upon several techniques to keep the many, simulta-

neous efforts coherent, such as daily builds and smoke tests (which prove that an application can simply invoke all its

components without crashing).

Introduction to Alternative Iterative Methods Chapter | 3 35

For the more complex systems, teams often develop the interfaces between modules first—that is, start by program-

ming all the synchronization points—and then backfill functionality for the already integrated components. Another

strategy is to program a single-use case from front to back, creating a “steel thread” that exercises all layers of the

application’s architecture and proving that they all exist and work.

No matter which synchronization strategy a team employs, daily integration of the current build allows the team

to keep the application stable and limits the impact of any new defects in design or coding. This effort allows teams to

drive out communication and coordination errors early in the project and constrains the impact that coding flaws can

have in the later portions of a project when time is growing short.

Tool 6: Set-Based Development

Parallel development of coded units demands managing design and dependencies in detail. When tackling the design of

an entire system, developers might think it would be faster to jump straight to a tight specification for each module so

that programming can begin sooner. However, such an approach usually leads to wasted effort through suboptimal

design because a tight specification for one module forces design constraints on all the other modules in the system, rul-

ing out a large number of feature implementations. By focusing instead on the boundaries rather than the details of a

specification for a given module, developers will be able to consider the set of all design choices across all components

at once, giving themselves more overall possibilities from which to choose. By narrowing those boundaries gradually,

by one module and one reasonable step at a time, the team can consider the ramifications of each design choice on the

entire system, allowing the overall best design to emerge from this structured exploration.

Narrowing choices one small step at a time may seem more involved at first. The process may well require more

building of multiple prototypes or investigating multiple programming languages and productivity tools before making

a final choice. Ultimately, however, this approach demonstrates “going slow in order to go fast.” The time invested in

steadily narrowing the design choices across all the components of the system typically identifies far better designs.

Jumping too fast to a point solution for each module risks ruling out the best design prematurely, and nothing wastes

time as much as programming based on a poor design.

Principle 3: Decide as Late as Possible

Lean software development delays committing to design decisions as long as possible because it is easier to change a

decision that has not been made. Moreover, development teams should accept the inevitability of change for the

business and technology in which they are working and focus on identifying change-tolerant designs, structuring their

systems so that they can be readily adapted for the types of changes most likely to occur.

Tool 7: Options Thinking

Both customers and downstream developers should not be asked to make irrevocable decisions until uncertainty is

resolved:

Delaying irreversible decisions until uncertainty is reduced has economic value. It leads to better decisions, it limits risk, it

helps manage complexity, it reduces waste, and it makes customers happy.

[Poppendieck & Poppendieck 2003, p. 54]

Teams should develop designs based on options that customers can exercise at low cost once they learn more about

the software delivered and how it interacts with the business environment into which it is deployed. Options come at a

cost, so teams must add them thoughtfully. The best strategy is to actively identify aspects of design that are subject to

the greatest uncertainties and that will have major impacts should they be forced to change. Those aspects should be

isolated into separate modules and then programmed for flexibility in order to reduce impact of change and thus lower

the cost of adaptation.

Tool 8: The Last Responsible Moment

Lean thinking encourages teams to start development when only partial requirements are known—a strategy that calls

for developing in short iterations that provide the feedback needed for a team to steadily move toward increasingly solid

system designs. So as not to preclude important design decisions, lean teams delay commitments until the last responsi-

ble moment—that is, “the moment at which failing to make a decision eliminates an important alternative”

[Poppendieck & Poppendieck 2003, p. 57]. The last responsible moment occurs when it becomes clear that if a

36 PART | I Summaries of Generic Agile Development Methods

direction is not taken, a decision will be made by default and probably without the careful consideration required to

make a good choice. By waiting until that moment to decide, a team avoids imposing needless constraints on the system

that is taking shape.

Lean practices include several techniques that greatly increase a team’s ability to delay commitments, including the

following:

� Sharing partially complete design information with customers and validators
� Relying on face-to-face collaboration between workers
� Honing the developer’s sense of what is critically important within the problem domain
� Continual planning on how to absorb change

Lean theory also recommends several software engineering techniques that originate in object-oriented program-

ming, many of which will greatly assist a full life cycle approach for agile EDW:

� Designing in modules
� Encapsulating variation within modules
� Focusing on interfaces between modules and employing parameter-based invocations
� Trading off performance to achieve greater flexibility
� Emphasizing reuse over repetition of designs and coding
� Avoiding custom tool building
� Abstraction-based designs to maximize the problem domain addressed by each module
� Declarative programming tools such as SQL rather than procedural languages such as C
� Avoiding extra features and deferring future capabilities not absolutely needed now

Tool 9: Making Decisions

Lean practitioners advocate a particular style of decision making that allows teams to simultaneously work fast and

avoid major mistakes. This style consists of several problem-solving strategies, including the following:

� Approaching requirements and design breadth-first in order to avoid the uninformed constraints that come with

depth-first thinking
� Relying primarily on the intuition, pattern matching skills, and experience of the team’s developers
� Employing decomposition and detailed analysis only when teammates have insufficient background to make a

decision intuitively
� Articulating in advance and continually evolving a set of values and simple rules for resolving issues, especially

rules that emphasize flexibility, robustness, and self-organization

Principle 4: Deliver as Fast as Possible

Lean thinking calls for development teams to deliver as fast as possible in order to mitigate several major risks inherent

in software engineering, including the following:

� Amassing a large collection of work-in-process, all of which could be hiding defects
� Seeing a large inventory of requirements and designs grow obsolete when business conditions change
� Falling into engineering processes with long lead times that will require a team to make decisions at an early time

point rather than as late as possible

More important, however, is the fact that customers like faster results. Development teams that deliver in shorter

cycles give businesses recurring opportunities to learn how new software features can enable them to succeed in a

competitive marketplace. To discern ways to achieve a faster deliver pace, lean recommends three tools in particular:

pull systems, queuing theory, and proper evaluation of the cost of delays.

Tool 10: Pull-Based Systems

“Thrashing” occurs when developers must move between tasks without completing them, causing them to waste time

on multiple restarts and the errors that arise from fractured concentration. Processes that push large bundles of work

items onto an engineering team regularly instigate thrashing because they force developers to work on more than an

optimal number of items at once. A push-based approach also requires someone to organize, estimate, and prepare the

work bundles in advance, which results in an inventory of requirements and design—inventories that risk waste through

obsolescence when conditions and plans change.

Introduction to Alternative Iterative Methods Chapter | 3 37

In contrast, methods that allow developers to pull work onto their workbenches when ready for the next task demon-

strate many advantages:

� They avoid plan-driven approaches’ habit of “outdriving one’s headlights”—that is, trying to plan in detail for situa-

tions too far in the future to understand sufficiently today.
� They allow requirements and designs to continue evolving up to the moment development begins, keeping options

open and allowing set-based coordination of designs to occur.
� By delaying the moment of commitment, they allow developers to incorporate the current status of the development

efforts into their analysis and design, maximizing the impact of feedback.

Perhaps more important, the small batch sizes that arise from pull-based approaches allow teams to greatly localize

communication, decision making, and their commitment to success at the “point of attack”—that is, with the developers

who must create the software.

Tool 11: Queuing Theory

Customers want short delivery cycle times from their software providers so that they can better compete in the market-

place. Lean encourages teams to incorporate insights from the mathematical study of queuing theory to effectively

shorten their software engineering cycles. As revealed by queuing theory, delivery cycle times of any system increase

exponentially as the utilization rates of the underlying resources approach 100%. Accordingly, lean calls for develop-

ment teams to stop obsessing about the utilization rates of the individual developers on the teams and to focus instead

on the teams’ overall throughput:

Note that it doesn’t do any good to increase the utilization of non-bottleneck areas. It doesn’t matter how fast you develop soft-

ware if you can’t test it at the same rate. It doesn’t matter how fast you develop a system if you don’t have the people to deploy

it. So, move people to the bottleneck; don’t keep piling up work that can’t be used immediately.

[Poppendieck & Poppendieck 2003, p. 82]

Instead of utilization, then, teams should focus on the primary factors that determine the typical cycle time for build-

ing a module. Queuing theory asserts that the primary determinants of this cycle time are the average size of the work

batches and the variation in their size around that mean. Large work items drive utilization and thus cycle times

upwards. Work items of variable sizes and characteristics prevent a team from identifying its “sweet spot” of work

packages that it can most rapidly deliver en masse. To achieve the fastest throughput, then, teams should steadily reduce

batch sizes and define them so that they reliably contain the same amount of work.

Lean coaches also encourage their teams to study and optimize their processes as a whole system. A subset within

queuing theory, the theory of constraints, reveals that teams can steadily improve the overall throughput of their

processes by identifying and resolving the single biggest bottleneck at a given time and then repeating that effort for

the next largest constraint.

Finally, queuing theory advocates developing redundancy among a team’s resources so that packages that are surprisingly

large or difficult do not absorb the single instance of a given skill and thus block all other work from being completed.

Tool 12: Cost of Delay

Project decisions such as whether to add resources or acquire new tools should be based on the cost of delayed delivery

instead of simply the cost of the new assets, which will typically pale in comparison. For example, decisions on soft-

ware that will affect a company’s product offering should consider the impact of a permanent loss of market share and

the lower pricing that will result should the development project take longer than necessary. Similarly, decisions for

projects designed to improve internal operations should consider the compounded economic value of making the com-

pany’s functional groups more effective rather than just the cost of implementing the decision.

Principle 5: Empower the Team

When developers are programming quickly, they do not have the time to run every decision up and down the hierar-

chies that traditional, push-based project management approaches rely on. Moreover, long communication chains tend

to distort the situation each time information changes hands on its way to the top of the hierarchy and misinterpret the

decision made each time the message is relayed on the way back down.

In the late 20th century, the success of the Toyota Production System and experiments at Microsoft indicated that

local decision making greatly improves the quality of the decisions that control a project [Obara & Wilburn 2012,

38 PART | I Summaries of Generic Agile Development Methods

Chapter 12; Brooks 1995, Chapter 19]. Lean therefore advocates a nontraditional approach to managing programming

teams: Focus on overall throughput and learning effectively, and then empower the people who do the work to make

the right decisions in designing and executing the delivery process. Empowering the developers on a software project

will touch upon four lines of improvement: self-determination, motivation, leadership, and expertise.

Tool 13: Self-Determination

Information technology (IT) managers will unleash hidden potential in their development teams if, rather than telling

workers how to do their jobs, they make teammates accountable to each other and then focus on changing the parts of

the surrounding system that keep workers from being effective. Each team should design its own work procedures and

coordinate work standards with other teams doing similar work. Management’s new role should be to coach, train, and

clear obstacles for the teams in executing the procedures they design for themselves.

Tool 14: Motivation

Rather than providing teams with a list of tasks, software managers can achieve more by focusing on properly motivat-

ing their development teams. First, management needs to create an environment in which team members believe they

belong, are considered competent, can safely take risks, and are recognized for making progress. Within such an

environment, leadership can create a sense of purpose within a team by providing clear objectives for the project, ensur-

ing that those objectives are achievable, creating for the team access to customers and other subject matter experts,

clearing away organizational obstacles, and then charging the team with making its own commitments.

Tool 15: Leadership

Projects need strong leadership within the project room at two levels. First, they need a product champion who provides

a compelling vision of the product for the teammates to constantly draw upon. This product champion must intimately

understand the organization’s need for the new capabilities. Second, they need one or more master developers who can

take in customer requirements and articulate a solution, providing guidance on details in those areas in which the other

teammates come up short.

Tool 16: Expertise

In order to amplify the impact of the product champion and master developer, companies need to cultivate the expertise of all

members of development teams. In order to better disseminate skills, teams should utilize programming practices such as pair

programming and design reviews. Managers should encourage developers across teams to form communities of expertise in

which they can work and innovate in small groups, regularly circulating their ideas for peer review and widescale adoption.

Programming departments can maximize knowledge transfer by arranging for less experienced developers to work for a time

with the company’s master craftsmen in each technical domain. The knowledge that the less experienced developers gain

through this practice should be captured and distilled into development standards that can be widely shared across teams.

Principle 6: Build Integrity in

Lean software developers urge teams to concentrate on the integrity of their results. For these practitioners, “integrity” is an

expanded notion of quality that ensures that customer needs are heard and actually incorporated into the functional and perfor-

mance designs of the software. Integrity also means that all team members thoroughly communicate technical requirements

and constraints throughout the development effort so that no oversights or misinterpretations occur. Achieving such results

requires effort revolving about four distinct concepts: perceived integrity, conceptual integrity, refactoring, and testing.

Tool 17: Perceived Integrity

Because customers often prove unable to articulate the solution they desire for their business challenges, development

teams must assiduously manage requirements throughout the development process. A team can adopt several practices

to ensure that its customers will perceive the application as a direct solution to their business problem when delivered:

� Work in close contact with business staff and let them judge the end result
� Utilize a master developer who can bridge the gap between requirements and technical development activities
� Model in a language that both business and IT can understand
� Build out the solution in small increments that each receive in-depth validation from the business community

Introduction to Alternative Iterative Methods Chapter | 3 39

Tool 18: Conceptual Integrity

A system attains conceptual integrity when its central concepts work together as a smooth, cohesive whole, with a

mission-appropriate balance between end-user features and nonfunctional requirements such as maintainability and

performance. To achieve conceptual integrity, team members should do the following:

� Stay in constant contact with each other
� Incessantly pursue problem identification and resolution
� Release information in small batches to relevant stakeholders even in a preliminary format
� Ardently cultivate feedback from their peers

Tool 19: Refactoring

Refactoring is the practice of improving the quality of an application’s code without affecting its functionality. Good

designs for complex systems are not self-evident but instead emerge over time. High-performance teams attain

perceived integrity by providing frequent application increments for customer review but then constantly ramp up con-

ceptual integrity by constantly reworking the system’s internal quality to achieve a robust and efficient architecture. By

focusing on external acceptance first and refactoring second, the team avoids investing effort to achieve technical excel-

lence in features that do not get deployed. For this reason, refactoring should be viewed as a pattern for good, efficient

coding and not as rework caused by hurried, undisciplined development.

Tool 20: Testing

High-performance teams leverage frequent testing in multiple ways. First, they write a module’s tests before coding in

order to communicate how the application should work. Second, they execute tests after coding to confirm that the

frequent changes made during small iterations are additive rather than self-canceling in terms of product quality. Third,

they use integration testing as a scaffolding to enable reasoning about designs and for validating important design

changes throughout the application’s development history. Finally, once the application is in production, they use the

test collection to document how the system was built. Employed in this way, testing drives and accelerates the process

of requirements, design, coding, and maintenance. Test-driven teams achieve speed and responsiveness, thus furthering

their ability to delay key decisions until the last responsible moment.

Principle 7: See the Whole

A system is the product of the interactions of all its related parts. As a system grows in complexity, small changes to

inputs or design can manifest large, unanticipated consequences, sometimes after considerable delay. In order to antici-

pate and guard against unintended consequences, lean development cultivates systems-thinking techniques such as the

theory of constraints [Goldratt 1990], shifting the burden [Senge 1990, Appendix 2], and the “five whys” [Ohno 1988].

Systems thinking enables a team to envision the likely responses of its software to changing requirements and designs,

a capability that the practices of traditional methods (such as extensive documentation, code traces, and change control

boards) have proven unable to provide [Poppendieck & Poppendieck 2003, p. 154].

Tool 21: Measurements

Traditional teams attempt to decompose complex processes such as software development into atomic substeps and

measure the performance of each. Unfortunately, we rarely have the resources to measure every aspect of a software

development process, so we typically choose to measure instead the steps that we can quantify easily. The effect of this

practice causes the individuals within that system to shift their attention to optimizing the steps that are measured, intro-

ducing distortions to the overall process and harming its overall throughput rather than improving it.

Stepping back, we can see that measuring a handful of component steps is fundamentally misguided. Research by

the American mentors of the late 20th-century Japanese manufacturers revealed that only 20% of defects arise from

aspects under the direct control of individual workers. The bulk of defects arise from the larger process within which

the individuals work. Accordingly, lean teams focus on measuring performance one level up from where they suspect

process flaws are occurring so that they stay focused on the system and its overall throughput rather than on less impor-

tant actions of individuals.

40 PART | I Summaries of Generic Agile Development Methods

Tool 22: Contracts

Like measurements, the style of the contracts between the parties to a software development project can distort behaviors

and impair overall effectiveness. Instead of purely fixed-cost or time-and-materials formats that traditional projects

employ, lean encourages managers to include a few, alternative concepts in their contracts with service providers:

� Flexible project scopes
� Sequential delivery of system increments
� Fair sharing of impacts when actual costs deviate significantly in either direction from the project estimates

Adding these notions into a project’s contracts allows both customer and vendor to build a relationship based on

trust rather than control. Trust greatly increases the flexibility of the relationship and reduces the distraction and cost

that contracting can cause, enabling all parties, as an extended team, to respond more quickly and intelligently when

business conditions force the customer to update the project’s requirements and design.

KANBAN

Taken together, the principles and tools of lean software development summarized above provide only a set of concepts

and preferences for software teams to follow. Especially when first starting with incremental delivery, most teams will

need far more than such high-level guidance to create for themselves a detailed process for quickly delivering new soft-

ware. Fortunately, David Anderson pioneered a specific method based on lean concepts during the mid-2000s while man-

aging projects at Microsoft. The resulting method, called Kanban, implements lean’s preference for pull-based scheduling

in the extreme. Kanban emerged a decade or more after Scrum and has not yet garnered as much attention by agile teams,

but it has a growing community of practitioners. Although the Kanban advocates delineate the many distinctions between

Scrum and Kanban, the two are not that far apart. In fact, the most successful agile EDW teams find ways to blend the

two together as their developers grow more comfortable with agile concepts. For this reason, some familiarity with

Kanban is essential for teams wishing to build data warehouses using incremental delivery techniques.

Quick Sketch of the Kanban Method

David Anderson defined Kanban while focusing on two notions of lean thinking that were discussed in the previous

section on tools: the theory of constraints and pull-based systems. The theory of constraints led him to devise a work

board that highlights the bottlenecks in a team process. He tuned this work board to emphasize the continuous flow so

that teams can manage the movement of work to the developers via a small-batch, pull-based control system, doing

away with Scrum’s structured iterations.

Kanban’s primary work management artifact, the work board (or “card board”), reveals much about how the method

works. Although there is a great variety in Kanban work boards, Figure 3.3 depicts a typical approach, adapted from

Anderson [2010]. This example will quickly introduce the reader to the key elements of the method and the pull-based

philosophy that Kanban teams use to organize their work.

On the board are many cards representing work that needs to be done. These small markers are signals, or “kanbans”

in Japanese, for which the method is named. Each card represents a small amount of work that the team needs to

complete. These small work units could be user stories, as defined by Scrum, but typically they are even smaller—

equivalent to what Scrum would call developer tasks. The board has many columns, some of which are organized into

column sets. The vertical partitions represent the software engineering process the team currently utilizes. By watching

where cards tend to pile up, the team can see the bottlenecks in its system. The team can focus on solving the biggest

bottleneck at any given time, as the theory of constraints would instruct it to do.

In order to place cards on the work board, the team must first “groom” the work requested by the customer into

appropriately sized tasks. The team places the resulting task cards in the first column to the left, Groomed Requests.

The team then collectively decides how to advance the cards across the work board. On this board, each task first gets

specified and then developed. Next, it is moved into a system integration test environment, and then finally it is staged

for promotion into production. This example ends with a Production column, where cards for the delivered components

sit for 2 weeks while the team monitors the new system build for defects. This last column represents the “warranty

period” that the development team offers the organization on its programming. During this warranty period, the develo-

pers will directly resolve any defects in the new modules rather than leaving them to the operations team to manage.

Introduction to Alternative Iterative Methods Chapter | 3 41

The specification and development processes have two steps each: In Progress and Done. Each Done column serves

as output buffer for its column set, from which the team will pull a card when it needs a work item for an opening in

the next column set.

To maintain a steady flow of cards across the work board, Kanban teams place “work-in-progress” (WIP) limits on

selected columns or column sets. For our example, the first WIP limit of 7 on Specification reminds the team that it

will allow itself to keep only seven cards in this column set at any one time. For the Development phase, the team has

adopted WIP limits that are more granular: 10 for Development/In-Progress and 5 for Development/Done. There are no

WIP limits in the Production column because the point of the method is to get as many cards as possible into that

column. Once the features represented by the cards in the Production column have finished their warranty period, these

cards will be removed from the board entirely.

The arrows and letters in Figure 3.3 depict the team’s pull-based work management mechanism in action. An update

starts on the right side of the board and propagates card movements progressively to the left. The full update depicted

in this diagram requires six steps that occur in the following order:

1. The developers have just finished incorporating the newly coded module represented by Card A into the production envi-

ronment. They move that card into the Production column and will keep it there for the duration of the warranty period.

2. When Card A left the Staged column, it created an open slot within the six-card WIP limit reigning that column.

After some discussion, the team decided to finish the testing on Card B so that it could be moved into the Staged

column.

3. Card B’s movement opened up a slot within system integration testing’s (SIT) five-card WIP limit. The team

decided to fill this opening with Card C from Development/Done output buffer. The team will now start performing

integration testing on the coded module represented by that card.

4. The developers next finished coding for Card D, so it was advanced into the Development/Done column, opening a

spot for a new card to enter the Development/In Progress column.

5. The team decided to start coding the module represented by Card E, moving that card ahead one column, creating

an opening in the Specification column set.

6. The team decided to fill the Specification column back up to its WIP limit by pulling Card F into the engineering process.

This example makes it clear why agile practitioners call Kanban a “pull-based” or “continuous flow” work manage-

ment approach. In Scrum, the team took 2 days off every few weeks to prepare a batch of user stories for the next time

box. In Kanban, no such interruption takes place. Teammates working on the front columns of the work board

Groomed
requests

SIT Staged
Production
(warrantied)

Specification Development
In progress Done In progress Done

WIP 7 WIP 10 WIP 5 WIP 5 WIP 6

A

B

D

E

N
ew

 features
45%

M
aintenance

35%
External data
requests 20% C

F

FIGURE 3.3 Typical Kanban work board.

42 PART | I Summaries of Generic Agile Development Methods

continuously define new work. When developers working the rest of the board need something to do, they simply pull a

work card forward into the appropriate column set.

In addition to engineering steps running left to right, Kanban boards often have some organization in the vertical

dimension as well. The team owning the board in our example employs three swim lanes to help it balance different

types of work. Past conversations with the business revealed that, in the current business environment, the team needs

to emphasize new features slightly more than improving existing code (maintenance). In addition, the project sponsor

has budgeted only one-fifth of the team’s bandwidth to meeting ongoing data requests from external parties such as

vendors and marketing partners. So they can better visualize their current mix of effort, the developers have designated

a separate swim lane for each category of work. Each time they update the board, they will have to consider the total

estimated labor for the cards in each swim lane and make sure they have honored the agreed upon distribution between

the types of work.

Visualizing and Maintaining Continuous Flow

Figure 3.4 provides an example of the second most important artifact that Kanban teams employ to understand and

manage their workflow: the continuous flow diagram (CFD). As the developers complete work and move the appropri-

ate cards across the work board, they maintain a tally of the cards that have landed in each software engineering step,

as represented by columns on the work board. If work progresses steadily as planned, the bands on the CFD should

trend steadily upward, with the separation between bands equal to the WIP limits the team has set for each column set.

When a bottleneck occurs in a particular step of the process, the cards in the column for that step will stop moving. The

cards in downstream columns may well keep moving ahead, but the holes that they create as they move will not be

filled. If the team continues to prep work, then cards will begin to stack up on the left edge of the board. On the CFD, a

plateau will appear for the engineering step where the bottleneck has occurred and for all the upstream engineering that

also becomes blocked, much as our example shows for the user acceptance testing (UAT) step in the diagram starting

with Week 14.

When a bottleneck occurs, Kanban encourages the developers to “swarm” the problem and get it solved. They

should call an impromptu meeting, discuss the likely cause and remedy for the bottleneck, and then spontaneously

reallocate their efforts to resolve the challenge. If, for example, system testing is the bottleneck, then developers may

very well put down their programming work and all pitch in to validate the work items lingering in the SIT column so

that those cards start moving again. Similarly, if the specification step experiences a hold up, testers may redeploy their

hours to tasks such as data profiling and business rules documentation so the team can restore the flow of cards on the

leading column sets of the work board.

1
0

10

20

30

40

50

60

70

80

2 3 4

Backlog Specify Coding Validation Integration UAT

5 6 7 8 9 10 11 12 13 14 15 16 17 18

Lead time
Cycle time

Work in progress

Backlog

Undelivered

* Indicates a bottleneck

*

**

FIGURE 3.4 Kanban-style cumulative flow diagram.

Introduction to Alternative Iterative Methods Chapter | 3 43

The CFD enables a team to quickly appraise many other aspects of its overall process, including the following:

� The excess of requests over items being developed (the “backlog” arrow in Figure 3.4)
� The amount of time required to transform a request into features reviewable in the UAT environment (the “lead

time” arrow)
� The lag in transforming specified work into working code in UAT (the “cycle time” arrow)
� The overall quantity of requested work that the user is still waiting for (the “undelivered” arrow)

The combined effect of the Kanban work board and cumulative flow diagram makes the purpose of the WIP limits

readily understandable. Lean software development philosophies encourage teams to minimize multitasking in order to

stop losing time switching between tasks. In a perfect world, the WIP limits would be set to 1 on every stage of the

board. With that setting, the team would take a card from the groomed requests and swarm upon it. The team would

analyze, program, validate, and then promote the software feature represented by the card all in one continuous action.

Such single tasking would completely eliminate any time lost to setting aside partially completed development tasks

and reloading people’s minds with the details involved with other work items.

In the real world, not all tasks will yield to multiple programmers working them at one time. Many tasks are small and

linear enough that if two or more developers tried to work them, they would only get in each other’s way. If we restricted

the team to working just one item at a time, the analyst and testers would fall idle when the coding work began, because

they cannot participate in the programming. Moreover, teams get stalled for a short time on many development tasks, such

as when they need to clarify a business requirement and their subject matter expert is not immediately available. The whole

team would have nothing to do in this situation if the work board’s WIP limits were set to 1.

Real-world dynamics therefore require developers to raise the work board’s WIP limits slightly above 1 if they are

to keep everyone reasonably busy. By loosening up on the WIP limits a little, teams can let developers work in parallel

and allow them to stay productive when a task or two gets blocked. Through trial and error, every Kanban team identi-

fies the WIP limits that maximize the throughput of its software development process. Even after they identify an effec-

tive set of limits, the developers may have to adjust them later as their own skills and the nature of the work change.

The combined objective of Kanban’s work board, its WIP limits, and the cumulative flow diagram is to visualize the

work flow, spot bottlenecks, and keep the developers single tasking as much as possible.

Evidence-Based Service Levels

A third major artifact employed by Kanban teams enables them to accurately measure their actual cycle times, which

they can then share with stakeholders as a basis for realistic service-level agreements. Figure 3.5 shows the calculation

for one team. As the project weeks have transpired, this team has recorded the count of work items by the number of

days required to complete them. This analysis typically focuses on cycle time—that is, the number of days between

pulling a card out of the groomed items column and delivering the finished module into the column for user acceptance

testing. The team has summarized these counts by bands of days, starting at the bottom with counts for deliveries

requiring 2 days or less and then working upwards to those items requiring 19 days or more.

Easy calculations provide overall tallies and percentages to the right of the cycle time counts by week. The most

important portion of this table is the last column showing the cumulative percentages for each band of cycle times.

These values start at 33% at the bottom and increase to 95% by the time the tallies reach the 10- to 12-day bracket.

1 2 3 4 5 6 7 8 9 10
19+ 0 0.0% 100.0%

16 18 11 1.6% 100.0%
13 15 211 3.2% 98.4%
10 12 2 1 2 2 1 2 2 12 19.0% 95.2%

7 9 3 1 1 5 7.9% 76.2%
5 6 1 2 1 1 5 7.9% 68.3%
3 4 1 1 2 3 3 3 1 3 17 27.0% 60.3%
0 2 2 4 3 2 2 3 2 3 21 33.3% 33.3%

Totals 6 7 7 7 5 7 5 6 5 8 63

Days
worked

Project weeks
Count Tier % Percen�le

–
–
–
–
–
–
–

FIGURE 3.5 Sample cycle time distribution analysis for a Kanban team.

44 PART | I Summaries of Generic Agile Development Methods

With this analysis in hand, the team depicted here can reasonably promise its stakeholders that it will deliver on 95% of

user requests within 12 days and about two-thirds of them in half that time.

It must be emphasized that the service level commitments generated using this cumulative delivery analyses are

evidence-based, and thus represent a notable contrast between waterfall and agile project planning. Waterfall methods

build estimates based on a work breakdown structures that someone drafts at the beginning of a project before any

work has started and often before any programmers have been assigned. Although they represent pure speculation, the

delivery dates and project costs derived from these estimates become a rope wrapped around the development team’s

neck, forcing its teammates to work nights and weekends to make someone else’s poorly informed forecast come true.

Agile estimates, as demonstrated here for Kanban and later for ADW, are based on actual team performance. Whether

they express it as iteration velocity or average cycle time, agile teams simply report real development speeds to their

stakeholders, allowing sponsors and project management to calculate completion dates for themselves based on the

directly measured facts. Agile teams remeasure their delivery speeds regularly so that stakeholders can keep their

predictions updated and their expectations accurate.

Comparing Kanban to Scrum

Kanban clearly reflects its lean development roots in several ways. First, by letting the developers draw cards from the

backlog onto their workbench only when they need work to do, Kanban relies on a pull-based scheduling method, true

to Tool 10 in the list of lean techniques introduced previously. Scrum, on the other hand, requires a team to take time

out from development and define a small batch for the upcoming iteration. Although the developers directly participate

in sizing this batch, the commitment they make at the end of the iteration planning day still represents work being

pushed upon them, albeit work pushed by the developers themselves.

Second, Kanban’s work-in-progress limits reflect a deliberate attempt to maximize throughput by avoiding overload on

any one resource, true to the queuing theory of lean Tool 11. Third, the cumulative flow diagram provides the team with

constant and timely information on process bottlenecks, creating system feedback as prescribed by lean Tool 3. Because

the cumulative flow diagram depicts the overall software delivery process from groomed request to new software modules

humming in production, Kanban encourages system-level metrics as stipulated by lean Tool 21, Measurements.

Given that Schwaber and Sutherland introduced Scrum more than 10 years before Anderson published his first

book, Kanban advocates consider their method to be a “second-generation” agile method. They cite many advantages

they believe it offers over its time-boxed predecessor. Table 3.1 summarizes the most salient points of contrast

between the two methods that have come to my attention over the years. Whereas Scrum regularly interrupts develop-

ment for product demos and iteration planning, Kanban keeps the developers coding, saving between 5% and 20% of

a team’s project time. Kanban’s use of cumulative cycle times and evidence-based forecasting essentially eliminates

the need for developers to estimate projects or user stories, again eliminating a distraction that can consume valuable

project time.

However, Kanban is not a clearly superior choice for all projects. Teams building large applications with multiple

architectural layers often find that the predictable durations of Scrum’s iterations gives them a valuable, recurring

opportunity to reflect on the project as a whole. The user demo serves as an excuse to pull the many pieces of an appli-

cation together, essentially forcing teams to run an integration test. Given that data warehouse projects can have pro-

gramming occurring separately across eight or more data layers at the same time, opportunities to regularly prove that

the system integrates provide all stakeholders some welcomed reassurance.

Kanban also performs best when the work can be broken down into small, consistent chunks. For many teams, these

work packages are equivalent to what Scrum teams use for their development tasks. When a large development package

gets pulled onto the work board, it tends to create a bottleneck all on its own. If two or three oversized tasks sneak onto

the board, no amount of adjusting WIP limits can smooth out the process until those tasks have been completed.

Scrum, on the other hand, seems to perform better at the level of user stories, which are much larger than develop-

ment tasks. Scrum also accommodates user stories that vary in size, as long as the total work for an iteration fits within

the team’s chosen time box.

For these reasons, the project managers in the consulting company for which I work deploy Scrum and Kanban

selectively, especially for large DW/BI programs involving multiple projects. We prefer Kanban for those aspects of a

program for which

� there is a lesser degree of unknowns that can create nasty surprises during programming
� work can be reasonably decomposed a priori into development tasks, especially using programming patterns

Introduction to Alternative Iterative Methods Chapter | 3 45

� developers will not need to collaborate extensively across disciplines
� the team is well staffed with experienced agile practitioners who instinctively know when special ceremonies such

as retrospectives and integration tests need to occur.

In particular, both the business intelligence front-end work and the ongoing maintenance of a data warehouse

tend to fit this profile well. With those two categories of work, developers can jump on the requirements, break them

down into a big stack of tasks, and let the already disciplined agile programmers start plowing through them without

requiring emergency team resynchronization efforts because their teammates instinctively continuously integrate new

modules into the application’s current build.

In contrast, we prefer Scrum (or the Scrum/Kanban hybrid discussed later) when

� the project involves some serious unknowns or architectural risks
� the team would waste much effort if it tried to break the work into small tasks prematurely

TABLE 3.1 Some Commonly Cited Advantages of Kanban Over Scrum

Scrum Kanban

Scrum's task board focuses upon status, obscuring where
bottlenecks appear.

Kanban's board depicts engineering phases, so inefficiencies in a team's
engineering practices become apparent.

Scrum delivers only at the end of a cycle, forcing customers to
wait, even for the most important items.

Kanban works continuously, so that delivery can take place as soon as each
component is completed. It can even designate one or two items as
"expedited" which causes the team to put aside all other work in order to get
those items developed immediately.

Scrum teams stop work to review their process, whether
there are any outstanding issues or not.

Kanban teams pool up items and hold retrospectives only when it's clearly
necessary, thereby minimizing the interruptions to development work.

Scrum teams often start programming way too many of their task
cards at once, forcing upon themselves the waste of multitasking.

Kanban's WIP limits keep a team's multitasking to a minimum, thus eliminate
the waste caused by switching between tasks.

Scrum forces iterations upon a new team, thus completely
disrupting the way they normally do work.

The steps on a Kanban work board match the way the team normally
works. WIP limits can be set high and tightened gradually, all requiring less
immediate change for an organization.

Without engineering steps on task board, Scrum requires teams
to internalize their work process, making it difficult to changes
team personnel.

Because the Kanban work board visualizes how the development should
proceed, it is far more tolerant of changing resources, allowing IT to allocate
personnel to agile teams as needed.

Scrum requires user stories sized so that a few of them can be
completed during one time-boxed iteration.

In theory, Kanban allows teams to size work as they see fit. In practice,
however, projects flow better with work broken down beyond user stories
into many similarly-sized tasks.

Scrum over-synchronizes the steps of defining work, coding
modules, and validating results, forcing them all to occur within
the tight span of one iteration.

Kanban decouples the specification, coding, and validation steps for any
given module, allowing each to occur when appropriate. Only the overall
flow is constrained in order to minimize multitasking.

In Scrum stand-ups, developers focus on the status of work, and
therefore end up with long discussions that greatly limit how large
a team can grow.

Kanban teams focus only upon the bottlenecks apparent in the work board
and cumulative flow diagram, thus a team can process the current state
more quickly, allowing teams to scale up.

Work board depicts engineering steps

Topic

Continuous Delivery

Retrospectives

Multitasking

Disruptive Transitions

Resource Flexibility

Work Sizing

Excess Coupling Between Phases

Stand-Up Meetings and Scaling

Advantages expressed from the perspective of a Kanban advocate. (The author considers the notions below worth considering but believes some are overstated.)

46 PART | I Summaries of Generic Agile Development Methods

� a more collaborative approach across data warehousing specialties will result in better designs
� the team is new to agile methods.

These conditions occur frequently for the data integration portions of a large DW/BI program, especially when the

poor quality of source data threatens to provide a long stream of nasty surprises.

Among lean practitioners, the discussion can take on a “us versus them” tone when they discuss the difference

between Kanban and Scrum, which is unnecessary because the two methods agree on so many principles and practices.

Kanban still needs to manage requirements once user requests land in the inbox of the development team. The Kanban

practitioners I encounter still manage requirements using the user stories, story points, and task cards that Scrum/XP

popularized years earlier. When I ask about quality assurance, Kanban advocates endorse test-led development “just

like Scrum teams practice.” I even hear of Kanban teams temporarily reintroducing time boxes with scripted user demos

when their applications are not integrating well. These teams switch back to continuous flow once the system stabilizes

and they no longer need regularly scheduled synchronization events.

On the other side, I find many Scrum teams add engineering steps and WIP limits to their task boards as their teams

mature. Obviously, much cross-fertilization continues to occur between these two agile camps. They both advocate

defining work so that it ties directly to value for the customer first before decomposing into actionable tasks for the pro-

grammers. They both support visualizing the work so that teams can self-organize a fast, dependable way to deliver

high-quality goods. With another 10 years or so of convergence, the choice for a new agile project may be no longer

“Shall we use Scrum or Kanban?” but instead “In which portions of this program should we use time boxes and where

should we employ continuous flow?” I believe that orientation is the future of agile DW/BI, so EDW team leaders will

do well to be familiar with both Scrum/XP and Kanban now.

THE HYBRID “SCRUMBAN” APPROACH

Interestingly, at approximately the time when the debate between Scrum and Kanban hit its highest boil, a hybrid

approach was quietly introduced. With the publication of Corey Ladas’ Scrumban in 2009, a middle path for

agile teams opened up, one in which “Scrum can be a useful scaffold to hold a team together while you erect a more

optimized solution in its place” [Ladas 2009]. Indeed, many practitioners find Scrum to be simply easier to explain,

train, monitor, and tune in organizations that are completely new to agile thinking, thus making it a better starting point.

Yet they want to drop the expensive, time-boxed ceremonies as soon as possible when their teams mature. They simply

need a set of waypoints to look for in their journey from Scrum toward lean software development.

Ladas describes Scrumban as a transitional process rather than a method. Teams start with Scrum—for whatever rea-

son—and then steadily move toward Kanban, usually touching upon some predictable milestones along the way. Figure 3.6

depicts these steps in the order that he suggests considering them. The first step can be a carefully defined Scrum process or

just a directive such as “See what you can demo to our project sponsor in two weeks.” Either way, the new project picks up

tremendous value from the simple agile principles that the Scrum imparts upon their teams, including close customer collab-

oration, co-located teammates, lightweight specifications, and test-led development. Even the task Scrum board provides

great benefits in terms of transparency and collaboration because it enables easy, visual control of the process.

As a second step in a Scrumban transition, the agile team should strive to decouple planning and release periods instead

of clinging to Scrum’s prescription of keeping each planning session linked to one batch of deliverables. Ladas explains that

Scrum teams soon realize that there may be a more convenient interval to get people together to plan, and similarly there

may be another, more convenient cadence for releasing new versions of the software [Ladas 2009]. Teams taking this step

add columns for story preparation to the front of their task board, and columns for system integration at the back, so that

they begin to visually manage the software engineering steps that wrap around programming in the same easy manner they

manage Scrum task cards. Scrum’s original set of columns for task status now lie in the middle under a collective banner

labeled “programming,” as shown in the sample Scrumban task board depicted in Figure 3.7.

As a third step, Scrum teams will realize that preparing a backlog for the whole project often involves defining stor-

ies far in advance of when they are needed or even understandable. As an alternative, teams can work on maintaining

just enough stories to keep the team productive. They switch to a buffer of well-defined, actionable stories, letting

teams pull work from this buffer whenever they need new items to program. The team leaders monitor this buffer as

work is taken from it and start the process of replenishing it with new, well-groomed stories whenever the number in

the buffer falls below a particular “order point.”

Introduction to Alternative Iterative Methods Chapter | 3 47

Requirements (WIP = 9)

Hi-level design (WIP = 6)

UAT
In

SIT DeployVerify
Code

(WIP=4)
Test
prep

Under
dev

Profile &
model

Bus.
rules

Requests

Programming (WIP = 3)

Waiting
SIT

Legend

Story cards Task cards

Kanban area

Kanban area

Scrum area

FIGURE 3.7 Two-tiered Scrumban task board.

Note how the work is defined in stories in both the leading and trailing columns, but decomposes into tasks as it enters the coding step in the

middle of the process.

2) Decouple planning

and release activities

1) Start with Scrum

3) Feed development from a

buffer of prepared work requests

4) Place work-in-progress

limits on task board

5) Add cumulative flow diagram

and calculate cycle times

6) Drop timeboxed iterations—

now practicing Kanban

FIGURE 3.6 Typical stages of “Scrumban”—the transition from Scrum to Kanban.

48 PART | I Summaries of Generic Agile Development Methods

Teams making this step often end up with a two-tiered work board that manages work as both stories and tasks, as

shown in Figure 3.7. In that example board, the team takes work on as stories, decomposes each of them into tasks for

coding, and then reassembles them as stories for validation and deployment. The columns for requests, specification,

and design all work with the dark cards, which represent user stories. These stories represent end-user functionality that

has been made as atomic as the team’s business partners can envision it.

Only when a story card progresses into the development columns do the developers decompose it into tasks so that

they can begin managing work that is atomic from a programmer’s point of view. After coding and verifying these

atomic programming units, the team reassembles the tasks back into user stories as they pull the cards into the columns

for SIT. At this point in the development life cycle, such reintegration into user stories makes sense because developers

validating and deploying new capabilities must reason and track work in the units of functionality that will be seen by

end users. Because the team has finished coding the modules, the programming tasks needed to implement the features

articulated by the users stories are now irrelevant details that no longer need to be managed separately.

As a fourth step in the journey in Scrumban, teams usually realize they have far too many tasks in flight during the

middle of an iteration. In order to tamp down on the wasted effort caused by that multitasking, teams add WIP limits

on the column or column sets of their task board. They begin the process of tuning those WIP limits so that their deliv-

ery performance improves as single-tasking begins to take hold.

Most of the WIP limits displayed in Figure 3.7 pertain to the user stories, and some of them span multiple columns.

Requirements, for example, is envisioned as an end-to-end activity that includes not only requests and business-rule

elaboration but also validation by end users that those requirements have been met. Accordingly, the WIP limit of nine

stories on Requirements applies to all columns from Requests to UAT. Only the coding step within the Programming

column set has a WIP limit expressed in tasks (to wit, four items). This limit was obviously designed to keep the

programmers from having too many modules checked out and changing at one time.

A fifth milestone in a team’s Scrumban evolution is to begin visualizing work with a cumulative flow diagram in

order to quote reliable service levels to the team’s stakeholders. With this additional practice, the emphasis slowly shifts

from the time boxes to honoring and improving upon the quoted cycle time. At this point, Scrum’s time box will appear

to be a needless vestige from the team’s early days, and it can be dropped with little impact on the team’s work patterns

or performance. The team now begins to demo work whenever the situation at hand seems to demand product owner

validation. It conducts retrospectives spontaneously when process improvements need to be made rather than waiting

for a magic day when the facilitator tells the team it should reflect on its effectiveness as a team.

Given the five steps outlined previously, an agile team starts with Scrum when it needs a fast introduction to agile devel-

opment, and then steadily evolves its practices until it arrives at Kanban. The pace of evolution should be appropriate to the

team, and the full transition may well take a couple of years. With each evolutionary step, the team’s growing discipline and

increasingly visual tools allow it to maintain and improve its process while conducting steadily fewer forced ceremonies.

Scrumban is the practice of undertaking the next transitional step in this plan only when the team is ready for each one. In

fact, some teams may only take a few steps and decide they have the hybrid method they need, whereas others will drive on

to eventually switch completely to pure Kanban. Given the availability of a Scrumban path, imposing Kanban upon a new

agile team from the start, as some lean practitioner advocate, seems arbitrary and risky. To let developers move toward a

leaner approach as they are ready for each step seems more congruous with the agile principle of self-organized teams.

RATIONAL UNIFIED PROCESS

The agile methods of Scrum/XP and lean/Kanban outlined so far provide many of the elements my colleagues and I

employed for an early version of agile data warehousing. Even with these three parent methods, however, our method still

lacked completely dependable mechanisms for managing the extensive requirements and serious risks that large, enter-

prise data integration projects entail. To lift the method to where it can address the needs of enterprise data warehousing,

we had to borrow a few elements from the granddaddy of all the agile methods—the Rational Unified Process (RUP).

RUP Overview

Rational Unified Process was one of the earliest iterative methods to be widely publicized and was defined a half

decade or more before the agile manifesto methods began to appear. What became RUP started with the merging of

innovative engineering practices and system modeling techniques created by several luminaries of the object-oriented

programming world—Booch, Jacobson, and Rumbaugh [Jacobson & Booch 1999]. In the mid-1990s, these

Introduction to Alternative Iterative Methods Chapter | 3 49

object-oriented practices were consolidated through purchases and hiring by the Rational Software Corporation, where

Kruchten began documenting an adaptable approach that would be called the Rational Unified Process [Kruchten

2003]. Rational created a set of engineering tools to facilitate and control the application of the method, and it offered

services to help companies adopt both the process and those tools. RUP spread rapidly, with 10,000 companies using it

as of 2003, the year Rational was acquired by IBM [Kroll & Kruchten 2003]. Although formal RUP is now a proprie-

tary IBM method, in 2006 the company placed into the public domain a streamlined version of it called OpenUP. There

are also several other, public-domain variants of the method available today.

RUP, as offered by IBM, is a very large method that can intimidate many project planners when they first encounter it.

Its documentation requires thousands of pages to detail all the roles, processes, and artifacts involved. The method also

includes the Unified Modeling Language (UML), a diagramming system that many traditional software engineers find diffi-

cult to adapt. IBM also provides a large set of productivity tools such as software modeling systems that can take an appli-

cation from the idea stage all the way to delivered code [Taft 2013].

RUP and its derivatives represent a very robust and disciplined approach to software engineering. Like the other

methods considered previously, RUP offers a set of philosophies, disciplines, and practices that provide the backbone

of the method, as listed in Figure 3.8. Perhaps the most important aspect distinguishing it from the other agile methods

Rational unified process

Tenets

1 Iterative
2 Risk-driven

Engineering disciplines Supporting disciplines

1 Business modeling 1 Configuration and change management
2 Requirements 2 Project management
3 Analysis and design 3 Environment
4 Implementation
5 Test
6 Deployment

Practices

1 Develop iteratively, with risk as the primary iteration driver

2

3

4

5

6

While it is best to know all requirements in advance, such clarity is usually impossible to achieve.

Manage requirements

Always keep in mind the requirements set by users.

Employ a component-based architecture

Many projects are created by many teams, sometimes in various locations and different platforms may be used.
As a result it is essential to make sure that changes made to a system are synchronized and verified constantly.

Breaking down an advanced project is not only suggested but in fact unavoidable. This promotes the ability to
test individual components before they are integrated into a larger system. Also, code reuse is a big plus and
can be accomplished more easily through the use of object-oriented programming.

Model software visually

Use diagrams to represent all major components, users, and their interaction. "UML", short for Unified Modeling
Language, is one tool that can be used to make this task more feasible.

Continuously verify quality

Always make testing a major part of the project at any point of time. Testing becomes heavier as the project
progresses but should be a constant factor in any software product creation.

Control changes

FIGURE 3.8 Values and principles of the Rational Unified Process. Source: [Rational 1998].

50 PART | I Summaries of Generic Agile Development Methods

is expressed in its first principle: Develop iteratively, with risk as the primary iteration driver. Outlines for the Scrum,

XP, and Kanban methods occasionally mention risk, but RUP employs risk analysis explicitly to sequence the project

work stream. As for the remaining RUP practices, they may have seemed heretical when first promoted during the

1990s, but today they are incorporated so deeply into agile development culture that they have been largely covered in

the previously discussed material.

RUP projects marshal their resources to eliminate risk, and I believe that this philosophy is the primary benefit that

RUP still has to offer methods from both the agile manifesto and lean development schools. Kroll and Kruchten,

popular RUP authors, published a book with a section title that sums up RUP’s outlook perfectly: “Attack Major Risks

Early and Continuously, or They Will Attack You” [Kroll & Kruchten 2003]. To address risk, RUP organizes a product

release into four phases: initiation, elaboration, construction, and transition. During initiation, project planners set the

initial scope and budget for the project. Construction is the phase in which the bulk of the application is programmed.

In the transition phase, responsibility for operations, maintenance, and support of a finished application is transferred to

the operations team.

RUP invests most deliberately in mitigating risk in phase 2, elaboration. During elaboration, the team identifies

where the major risks in requirements, scope, and design of the application could become project-threatening issues.

For the remainder of elaboration, the team pursues programming iterations intent on delivering the smallest possible set

of functionality that will confirm whether these major risks can be overcome [Aked 2003].

Another notable component of RUP is how it creates a resource planning matrix out of the previously mentioned four

phases of a project by intersecting them with nine software engineering disciplines. The result is the famous RUP “whale

chart,” so named because the shapes on it resembles whales swimming along the ocean surface as shown in Figure 3.9.

This chart naturally portrays requirements work preceding design and coding, as one would expect. However, this chart

struck an innovative note when first published because, unlike traditional, waterfall methods, it shows requirements and

design work continuing throughout the project. Moreover, RUP begins testing far earlier than most traditional methods,

and it stipulates that system validation will also be a persistent effort lasting the length of the project.

Finally, RUP assists teams in defining their projects so that risks can be readily identified. It provides a rich

set of templates for the many requirements, design, and planning artifacts that it strongly suggests developers

create so that they deeply understand the software system they are about to build. These templates are listed in

Table 3.2 in roughly the order they occur during a project. A small set of these templates have proven invaluable

for bringing disciplined requirements management to agile EDW projects. Five of those templates are considered

in depth later in this book.

Test

Implementation

Analysis & design

Requirements

Business modeling

Inception Elaboration Construction Transition

Deployment

Time

I1 E1 E2 C1 C2

Itera�ve development
Business value is delivered incrementally in

�me-boxed cross-discipline itera�ons.

C3 C4 T1 T2

FIGURE 3.9 RUP Whale Chart.

Introduction to Alternative Iterative Methods Chapter | 3 51

Why Not RUP for DW/BI?

Given its position as the first iterative method, the extensive documentation and templates it offers, and its installed base of

tens of thousands of practitioners, one would think RUP would be a popular method for software development programs as

complex and risky as data warehousing. However, in the surveys I conducted in collaboration with The Data Warehousing

Institute, Scrum, Kanban, and their hybrids have proven 20�30 times more popular than RUP, depending on whether a

team was building data integration or data analytic applications [Hughes & Stodder 2012]. Indeed, the Google Ngram

viewer (Figure 3.10) shows that interest in RUP peaked in approximately 2001 and has been on a steady decline since then,

whereas Scrum has been acquiring steadily more attention from those writing books on development methods.

Having worked in both Scrum and RUP environments for some very large companies, I can offer a perspective why

RUP has not held a greater mindshare among agile practitioners. RUP is now proprietary, and the version currently offered

by its vendor is huge and expensive. Project managers and IT directors often find its massive documentation and artifacts

daunting. RUP advocates are quick to mention that RUP is flexible, but flexibility atop a large, opaque process is even

more intimidating. Project planners considering RUP have commented to me that “sure you can adapt the method, but you

better know what you’re doing because there are a hundred other moving pieces all connected to the one you’re touching.”

TABLE 3.2 Some of the Templates Used with the Rational Unified

Process (RUP)

Business Modeling Management

Target-Organization Assessment Business Case

Business Architecture Document Iteration Plan

Business Glossary Iteration Assessment

Business Rules Measurement Plan

Business Vision Product Acceptance Plan

Business Use-Case Problem Resolution Plan

Business Use-Case Realization Quality Assurance Plan

Supplementary Business Specification Risk List

Risk Management Plan

Requirements Software Development Plan

Glossary Status Assessment

Requirements Management Plan

Vision Transition

Supplementary Specification Configuration Management Plan

Stakeholder Requests Deployment Plan

Use-Case Deployment Bill of Materials

Software Requirements Specification Deployment Release Notes

Integration Build Plan

Analysis & Design

Software Architecture Document Environment

Use-Case Realization Business Modeling Guidelines

Design Guidelines

Testing Development Case

Test Guidelines Development-Organization Assessment

Iteration or Master Test Plan Programming Guidelines

Quality Assurance Plan Use-Case Modeling Guidelines

Test Case
Test Evaluation Summary

Compiled from multiple sources including [dbViz 2002] and [University of Houston, Clear
Lake 2002].

52 PART | I Summaries of Generic Agile Development Methods

The newer, agile methods have many marketing advantages over RUP. They have highly intelligible task boards.

They employ user stories that are lightweight and still articulate compelling business value. RUP employs use cases that,

although they start in summary form, quickly become design heavy with detailed processing steps and alternative flows.

The newer agile methods allow a team to model in its preferred language rather than requiring it to switch to UML, and

they encourage people to start with paper-based project techniques tools rather than investing in a vendor’s complex soft-

ware suite.

In truth, nothing keeps a company from starting with a small subset of RUP and adding in the more complex pieces

as they make sense. That is exactly the spirit behind IBM’s OpenUP. Unfortunately for OpenUP advocates, this version

of RUP was placed in the public domain long after Scrum, XP, and Kanban were popularized. Scrum in particular

defines iterations so that they are immediately understandable, and it offers a facilitator—the Scrum master—who

promises to keep things simple and the team moving forward.

We should keep in mind that project planners who are switching to an incremental delivery approach have to choose a

method before they understand it completely. In deciding between RUP and agile methods, these planners can either (1)

invest time to strip RUP down to where it is something easy to start like Scrum or (2) begin with something easy like

Scrum and build it up by borrowing components from RUP. I believe that the agile methods now win more new converts

than RUP simply because starting with something that is easy, complete enough, and needing no immediate modification

makes sense to more people than field-amputating large portions of a gargantuan method until it’s small enough to seem

workable.

SUMMARY

The outline of the several methods in Chapters 2 and 3 reveals that the subject of iterative application development

methods represents a tremendous amount of material to learn. Given that this large subject cannot be mastered all at

once, EDW team leaders should view their agile transition as an extended journey. A company may adopt a particular

agile method with the belief that it will suffice for its programming needs, but if it is like most other organizations, its

developers will want to evolve that starter method as they learn more about which iterative techniques work and which

ones fail in their particular culture, industry, and time point. Accordingly, an organization’s software development

method must start and grow in much the same way that applications must evolve: iteratively with lots of feedback. Not

surprisingly, we can apply agile principles creating an agile software development method, namely take baby steps,

iterate, work with just-in-time requirements, hold retrospectives, and steadily improve.

FIGURE 3.10 Google Ngram of “Scrum” and “RUP” through 2008.

Introduction to Alternative Iterative Methods Chapter | 3 53

This incremental approach to building a method, to be applied to the world of data management and analytics, is the

theme of this book. The Scrum/XP hybrid method presented in Chapters 2 and 3 is a fantastic place to start building a

method for DW/BI. Once a company has mastered the art of incremental programming, however, the project team or

program planners will find themselves challenged by notions involving risk, requirements, data architecture, quality,

and scaling. The values and practices of the two additional, incremental delivery methods reviewed in this chapter,

namely Kanban and RUP, have answers for these challenges. Their elements can be added into the development

approach of new agile teams bit by bit as they are needed, bringing them up to world-class performance levels in a

manner consistent with agile’s values of self-organization and minimal wasted effort.

54 PART | I Summaries of Generic Agile Development Methods

Part I References

Chapter 2

Ambler, S., 2005. Big modeling up front (BMUF) anti-pattern. Agile

Modeling (website). ,http://www.agilemodeling.com/essays/bmuf.

htm. (accessed June 2010).

Beck, K., 1999. Extreme Programming Explained: Embrace Change.

Addison-Wesley, Boston.

Beck, K. 2001, March 23. Interview with Kent Beck and Martin Fowler.

InformIT (website). ,http://www.informit.com/articles/article.aspx?

p520972. (accessed March 2013).

Beck, K., Andres, C., 2004. Extreme Programming Explained: Embrace

change, second ed. Addison-Wesley, Boston.

Cockburn, A., 2008, January 2. Quoted in “Defining Agile Methodology.”

James Bach’s Blog. Eastsound, WA: Satisfice, ,http://www.satisfice.

com/blog/archives/45. (accessed January 2015).

Collier, K., 2001. Agile Analytics. Addison-Wesley, Boston, 2011.

Department of Defense, 1985. Military standard: Defense system, soft-

ware development, DOD-STD-2167. Washington, DC: Department

of Defense. ,http://www.everyspec.com. on 2011-09-07T13:00:23

(accessed September 2011).

Hughes, R., Stodder, D., 2012. Accelerating BI/DW value with agile

methods: an inside look at trends and best practices. Keynote presen-

tation at The Data Warehousing Institute’s September 2012 World

Conference, Boston.

Royce, W., 1970, August. Managing the development of large software

systems. Proceedings, IEEE WESCON. New York: Institute of

Electrical and Electronics Engineers.

Schwaber, K., Mar, K., 2002, March 22. Scrum with XP. InformIT

(website). ,http://www.informit.com/articles/article.aspx?p526057

&seqNum53. (accessed January 2015).

The Standish Group International, 1995. The chaos report. ,http://www.

standishgroup.com. (accessed April 2006).

The Standish Group International, 1999. Chaos: A recipe for success.

,http://www.standishgroup.com. (accessed April 2006).

VersionOne Software, 2013. 7th Annual state of agile development

survey. ,http://www.versionone.com/pdf/7th-Annual-State-of-Agile-

Development-Survey.pdf. (accessed January 2015).

Chapter 3
Aked, M., 2003, November 25. Risk reduction with the RUP phase plan.

IBM Developer Works (website). ,http://www.ibm.com/developer-

works/rational/library/1826.html. (accessed April 2014).

Anderson, D., 2010. Kanban: Successful Evolutionary Change for Your

Technology Business. Blue Hole Press, Sequim, WA.

Brooks Jr., F.P., 1995. The Mythical Man-Month: Essays on Software

Engineering. Addison-Wesley, Boston.

dbViz, 2002. RUP templates. dbViz Project Website (SourceForge).

,http://jdbv.sourceforge.net/RUP.html. (accessed September 2013).

Goldratt, E., 1990. What is this Thing Called Theory of Constraints and How

Should it be Implemented? North River Press, Great Barrington, MA.

Hughes, R., Stodder, D., 2012. Accelerating BI/DW value with agile

methods: an inside look at trends and best practices. Keynote presen-

tation at The Data Warehousing Institute’s September 2012 World

Conference, Boston.

Jacobson, I., Booch, G., 1999. The Unified Software Development

Process. Addison-Wesley, Boston.

Kroll, P., Kruchten, P., 2003. The Rational Unified Process Made Easy:

A Practitioner’s Guide to the RUP. Addison-Wesley, Boston.

Kruchten, P., 2003. The Rational Unified Process: An introduction, third

ed. Addison-Wesley Professional, Boston.

Ladas, C., 2009. Scrumban: Essays on Kanban Systems for Lean

Software Development. Modus Cooperandi Press.

McInnis, D., 2011. W. Edwards Deming of Powell, Wyo.: The man

who helped shape the world. wyohistory.org (website), Wyoming

State Historical Society. ,http://www.wyohistory.org/encyclopedia/

w-edwards-deming. (accessed January 2015).

Obara, S., Wilburn, D., 2012. Toyota by Toyota: Reflections from the

Inside Leaders on the Techniques that Revolutionized the Industry.

Productivity Press, Boca Raton, FL.

Ohno, T., 1988. Toyota Production System: Beyond Large-Scale

Production. Productivity Press, Boca Raton, FL.

Poppendieck, M., 2004, June 24. An introduction to lean software devel-

opment. The Lean Mindset (website). ,http://www.leanessays.com/

2004_06_01_archive.html. (accessed December 2014).

Poppendieck, M., Poppendieck, T., 2003. Lean Software Development:

An Agile Toolkit. Addison-Wesley, Boston.

Rational Software, 1998. Rational Unified Process: Best practices for soft-

ware development teams. ,www.ibm.com/developerworks/rational/

library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf.

(accessed August 2013).

Senge, P., 1990. The Fifth Discipline: The Art & Practice of the

Learning Organization. Doubleday, New York.

Taft, D., 2013, April 28. IBM gentrifies rational toolset with UrbanCode.

eWeek (website). ,http://www.eweek.com/developer/ibm-gentrifies-

rational-toolset-with-urbancode. (accessed May 2014).

University of Houston, Clear Lake, 2002. Microsoft Word templates.

Rational Unified Process: Overview. University of Houston, Clear

Lake (website). ,http://sce.uhcl.edu/helm/rationalunifiedprocess/

process/templates.htm. (accessed September 2013).

Womack, J.P., Jones, D.T., 2003. Lean Thinking: Banish Waste and

Create Wealth in Your Corporation, second ed. Productivity Press,

Boca Raton, FL.

55
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00024-2

© 2015 Elsevier Inc. All rights reserved.

http://www.agilemodeling.com/essays/bmuf.htm
http://www.agilemodeling.com/essays/bmuf.htm
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref1
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref1
http://www.informit.com/articles/article.aspx?p=20972
http://www.informit.com/articles/article.aspx?p=20972
http://www.informit.com/articles/article.aspx?p=20972
http://www.informit.com/articles/article.aspx?p=20972
http://www.informit.com/articles/article.aspx?p=20972
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref2
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref2
http://www.satisfice.com/blog/archives/45
http://www.satisfice.com/blog/archives/45
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref3
http://www.everyspec.com
http://www.informit.com/articles/article.aspx?p=26057&seqNum=3
http://www.informit.com/articles/article.aspx?p=26057&seqNum=3
http://www.informit.com/articles/article.aspx?p=26057&seqNum=3
http://www.informit.com/articles/article.aspx?p=26057&seqNum=3
http://www.informit.com/articles/article.aspx?p=26057&seqNum=3
http://www.informit.com/articles/article.aspx?p=26057&seqNum=3
http://www.informit.com/articles/article.aspx?p=26057&seqNum=3
http://www.informit.com/articles/article.aspx?p=26057&seqNum=3
http://www.standishgroup.com
http://www.standishgroup.com
http://www.standishgroup.com
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.versionone.com/pdf/7th-Annual-State-of-Agile-Development-Survey.pdf
http://www.ibm.com/developerworks/rational/library/1826.html
http://www.ibm.com/developerworks/rational/library/1826.html
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref4
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref4
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref5
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref5
http://jdbv.sourceforge.net/RUP.html
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref6
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref6
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref7
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref7
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref8
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref8
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref9
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref9
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref10
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref10
http://www.wyohistory.org
http://www.wyohistory.org/encyclopedia/w-edwards-deming
http://www.wyohistory.org/encyclopedia/w-edwards-deming
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref11
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref11
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref11
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref12
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref12
http://www.leanessays.com/2004_06_01_archive.html
http://www.leanessays.com/2004_06_01_archive.html
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref13
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref13
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref14
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref14
http://www.eweek.com/developer/ibm-gentrifies-rational-toolset-with-urbancode
http://www.eweek.com/developer/ibm-gentrifies-rational-toolset-with-urbancode
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/templates.htm
http://sce.uhcl.edu/helm/rationalunifiedprocess/process/templates.htm
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref15
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref15
http://refhub.elsevier.com/B978-0-12-396464-9.00024-2/sbref15
http://dx.doi.org/10.1016/B978-0-12-396464-9.00024-2

Chapter 4

Essential DW/BI Background
and Definitions

The agile project management techniques described in the previous chapters work well for building software applica-

tions in general. Unfortunately, data warehousing teams that have attempted to manage their data integration projects

using those generic methods have encountered tremendous difficulties in achieving the desired fast delivery pace. To

some extent, the challenge arose from trying to program an application that involves multiple layers of data transforma-

tions; however, these teams also discovered that incremental delivery of enterprise data warehouse (EDW) components

demands new approaches to the supporting software engineering disciplines of requirements, data modeling, and quality

assurance. Before we can explore how to adapt those supporting disciplines, this part of the book fills in two remaining

gaps. First, Chapter 4 establishes the vocabulary and concepts for data warehousing and business intelligence that the

rest of the book employs. Second, Chapter 5 summarizes the agile programming techniques that were covered in my

previous books. Chapter 6 draws upon both of these discussions to illustrate a final preparatory notion—a multi-tiered

subrelease cycle that will serve as an agile approach to minimizing the risk of large enterprise data warehousing pro-

jects. With that background in place, we will be ready to consider agile versions of the supporting software engineering

practices that will allow EDW team leaders to achieve early and continuous delivery of value to their business

customers.

As evident in the first few chapters, agile enterprise data warehousing is an enormously broad subject. Defining a

baseline approach for this field will touch upon several large topics in software engineering, such as iterative methods,

requirements management, data structures, and system validation. Therein lies a tough lexical challenge. Each of these

areas has been the focus of hundreds of books by numerous authors, with each of them employing his or her own

collection of concepts and vocabulary, which do not all align perfectly. Rather than switching terminologies as I touch

upon each information technology (IT) specialty, I employ instead a single set of terms throughout the book, as outlined

in this chapter.

Although many readers who have worked in the data warehousing and business intelligence (DW/BI) industry can

probably skip much of the details that follow, the major terms of our profession are presented from the ground up so

that people transitioning into agile and data warehousing will have an organized introduction to which they can refer

in the future. Because I have had to force-fit a few phrases and elevate a couple of jargon words in order to arrive at a

single set of terms, even veteran DW/BI professionals might benefit from a quick scan of the following entries:

� Baseline organizational structure (illustrated as part of basic business terms)
� Software engineering environments
� Planning and architectural frameworks
� Reference architectural layers
� Shadow IT
� Topic areas (as opposed to subject areas)

My definitions are admittedly calibrated to private, commercial businesses because most organizations fall within

that sector. It is hoped that the definitions provided here will position readers from other sectors to translate these terms

to their own particular contexts. Because this book focuses on DW/BI, that sub-industry of IT will determine the defini-

tions used. In the following narrative, I first identify my primary source for definitions from the DW/BI profession and

then list the basic terms that those sources employ when describing business users so that we will have a clear means

59
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00004-7

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00004-7

for discussing DW/BI’s primary customers. I then address basic notions of IT and conclude by identifying the common

data warehousing concepts that underlie the remaining chapters.

PRIMARY SOURCE FOR DW/BI STANDARDS

The basic terms and fundamental concepts of a technical industry can be incredibly difficult to define. Fortunately, data

warehousing professionals can draw upon the work of multiple organizations that have already published several glossa-

ries and guides to the concepts and techniques utilized by our industry. The most useful materials are published by the

Data Management Association (DAMA) and The Data Warehousing Institute (TDWI).

DAMA is the older of the two organizations. Starting with a single Los Angeles chapter in 1980, this not-for-profit,

international association of technical and business professionals has grown to 40 chapters in the United States and

another 20 abroad. Dedicated to advancing the concepts and practices of information resource management and data

resource management, DAMA provides a forum for vendor-independent analysis and standard definitions to promote

the practice of managing information and data as a key enterprise asset [DAMA 2013]. For IT professionals wishing to

formally establish their capabilities in the industry, DAMA offers two levels of certification—one for Certified Data

Management Professionals (CDMP) and the other for Data Governance and Stewardship Professionals (DGSP).

The other primary association for our industry is TDWI. This organization is a for-profit division of 1105 Media, an

integrated business-to-business information and media company that produces more than 10 trade magazines, 40 series

of professional conferences, and extensive digital offerings throughout the United States and Europe [TDWI 2013].

Founded in 1995, TDWI is the industry’s premier educational and networking organization, currently listing 19 chapters

in North America and another 7 overseas. The U.S. national organization of TDWI offers the Certified Business

Intelligence Professional (CBIP) certification program in addition to an extensive collection of reference materials,

course books, white papers, and blogs to support the professional development of DW/BI practitioners. TDWI also

offers five weeklong DW/BI conferences annually within the United States, in addition to other executive summits,

seminars, and on-site DW/BI education events.

Importantly, TDWI regularly surveys its considerable list of DW/BI contacts to assess current practices within EDW

and use of new technology in the field. I have been privileged to coauthor with TDWI more than one survey focusing

on the adoption of agile data warehousing practices. These surveys have revealed that iterative delivery practices have

greatly improved the success rates and key performance indicators for those organizations that try them [Hughes &

Stodder 2013].

Compared with one another, DAMA appears to be a self-organized network of committees for data professionals

interested in understanding and advancing their profession. TDWI serves as a commercially driven forum for the

authors and researchers who emerge from the profession, and it provides a dependable series of events that both begin-

ners and seasoned professionals can attend for fast acquisition of standard practices and new ideas. Together, DAMA

and TDWI provide a complementary system for deriving and evolving standards for the data management profession.

Regarding the definitions and concepts utilized in this book, both these organizations provide important resources.

DAMA offers both a dictionary of data management terms and a guide to the data management body of knowledge

(DMBOK) [Earley 2011, Mosley et al. 2009]. The dictionary provides 2000 terms defining a common data management

vocabulary for IT professionals, data stewards, and business leaders on more than 40 topics, including finance and

accounting, knowledge management, architecture, data modeling, XML, and analytics. Complementing the DAMA dic-

tionary is the Guide to the Data Management Body of Knowledge. Written by more than 120 data management practi-

tioners, the DMBOK compiles the industry’s commonly accepted principals and best practices. Beyond DW/BI, it

addresses other important data management topics, such as governance, architecture, security, and data quality. The

DMBOK provides data management and IT professionals, executives, knowledge workers, educators, and researchers

with a framework to manage their data and mature their information infrastructure through standard definitions of

important data management functions, deliverables, roles, and terminology.

One other source of definitions that deserves mentioning is the Software Body of Knowledge published by the

Institute of Electrical and Electronics Engineers (IEEE). The IEEE is a not-for-profit professional association dedicated

to advancing technological innovation and excellence. Founded in 1963, it currently has approximately 425,000

members, in approximately 160 countries, who provide important guidance and input to international standards-making

bodies. IEEE’s Software Engineering Body of Knowledge (SWEBOK) is in fact an international standard that presents

the approaches for developing quality software applications followed by companies and organizations throughout the

world.

60 PART | II Review of Fast EDW Coding and Risk Mitigation

In the narrative of basic business, IT, and data warehousing terms presented here, I draw mainly upon the DAMA

dictionary and DMBOK. Because readers can easily find a reference to those terms by simply searching for an appropri-

ate topic in those documents, I often forego formal citations to that material. Where I draw from TDWI, IEEE, or other

sources, I explicitly provide a reference. A few notions discussed in this chapter are based on my own professional

experience, and I indicate those terms clearly.

Defining Enterprise Data Warehousing

In Chapter 1, I provided a definition for the word “agile” but left the other components of the term agile enterprise

data warehousing undefined. It is best to address the data warehousing portion first and then add in the notion of an

enterprise.

Achieving clarity on “data warehousing” is a bit of a challenge because industry practitioners tend to use these

words loosely, employing many terms to express concepts that are similar but not identical. Adding to the confusion is

the closely related term “business intelligence.” Many DW/BI professionals will assert that “data warehousing” involves

back-end processes that prepare data for analysis, leaving “business intelligence” to signify the data visualizations and

other front-end applications employed by end users to actually uncover business insights. This dichotomy certainly

aligns with the tool set available from commercial vendors, and we can find formal definitions that support this particu-

lar division of labor between the terms. Tools marketed for “data warehousing” seem to support extract, transformation,

and loading activities that can all be driven by a company’s job scheduler. Indeed, the classic definition of a “data

warehouse” is a subject-oriented, integrated, time variant, and nonvolatile collection of detailed and summary data used

to support strategic decision making within a corporation [Inmon 1995, emphasis mine]. In contrast, vendors advertise

“business intelligence” products that enable developers to build end-user interfaces that take data from a warehouse and

place it into graphs, pivot tables, and enterprise reporting portals for direct use by a company’s business staff. Gartner

defines business intelligence to include applications, infrastructure, and tools that enable access to and analysis of infor-

mation to improve and optimize decisions and performance [Gartner 2013].

In practice, however, these terms are often used synonymously. When needing new insights to understand an

operational problem, business staff members often say they will get the information from “the data warehouse.”

When proposing a new means for summarizing information across business units, IT architects and analysts will

often state the company needs a better “business intelligence” application. A minority of data management projects

do deliver data warehouses without any front-end applications, and at the other end of the spectrum a few business-

analysis projects are lucky enough to have a complete source of cleansed and integrated data to start from. For the

bulk of projects in the middle, however, investing in a large data-integration project without providing some

end-user access would be pointless, and the crucial data analysis applications that the typical company envisions will

definitely require some data preparation.

Thus, as actually used in corporations today, data warehousing and business intelligence are joined at the hip.

The proper choice in terminology for any given discussion will depend on the emphasis the speaker wishes to make.

“DW/BI” is a handy way to speak of both front-end and back-end aspects of an application. The terms “data ware-

housing” or “data integration” highlight the back-end activities involving extraction, cleansing, transformation, and

integration work that a complete DW/BI solution requires. “Business intelligence” indicates that the speaker is think-

ing more about the front-end application supporting the desired experience that end users will have with the data

once it is ready for analysis. However, in the common parlance of our profession, neither “data warehousing” nor

“business intelligence” excludes the presence of the other. In this book, I will use these terms with this common

overlap in mind.

Table 4.1 provides formal definitions for the terms comprising DW/BI, in addition to definitions for a few of other

terms that will be needed in the following chapters, such as “data management” and “data governance.” The DW/BI

industry employs several other terms that also tend to blend together, such as “information delivery,” “data manage-

ment,” and “data analytics.” Table 4.2 groups these terms together so that readers will know whether I use them to

emphasize the front end, the back end, or the entirety of an information system.

With the terms agile and data warehousing now clarified, we need to package them together so that the notion of

“agile enterprise data warehousing” or “agile EDW” will be clear. Adding the word “enterprise” expands the notion of

data warehousing to include the needs of large corporations and even the data management challenges faced by smaller

companies as they enter periods of rapid growth. These challenges begin when a company acquires a variety of opera-

tional systems, because each one creates a separate pool of information. These multiple data sources invariably have

separate owners and distinct stakeholder groups within the company, with each of these groups possessing a unique

Essential DW/BI Background and Definitions Chapter | 4 61

perspective on the company’s operations, constraints, and desirable future. These contrasting viewpoints on what the

company does and how it should be run frequently affect the foundations of the operational systems that each business

group uses, making their data structures and data definitions incompatible and thus requiring DW/BI projects to invest

heavily in data harmonization and integration.

Enterprise data warehousing (EDW), then, is the art of integrating information derived from frequently uncoopera-

tive stakeholder groups and unaligned data pools into a single information asset that is then used constructively by the

general business departments to generate accurate business insights, empowering better business decisions and corporate

performance. Some people believe the term EDW means only the back end of an enterprise data analytics system, but I

stand with others who employ the expression to signify the full, end-to-end delivery of business insights.

TABLE 4.1 Formal Definitions of Core Data Warehousing Terms

Term

Source Definition

Business Intelligence

DAMA A set of concepts, methods, and processes to improve business decision-making using any information from multiple sources that could affect the business, and
applying experiences and assumptions to deliver accurate perspectives of business dynamics [Brackett 2011].

TDWI Business intelligence (BI) unites data, technology, analytics, and human knowledge to optimize business decisions and ultimately drive an enterprise’s success. BI
programs usually combine an enterprise data warehouse and a BI platform or tool set to transform data into usable, actionable business information.
(http://tdwi.org/portals/)

Data Warehouse

DAMA An integrated, centralized decision support database and the related software programs used to collect, cleanse, transform, and store data from a variety of
operational sources to support Business Intelligence. A Data Warehouse may also include dependent data marts [DMBOK, pg. 197].

TDWI 1. A subject oriented, integrated, time variant, and non-volatile collection of summary and detailed historical data used to support the strategic decision-making
processes for the corporation ("What is a Data Warehouse?" W.H. Inmon, Prism, Volume 1, Number 1, 1995).
2. A copy of transaction data specifically structured for query and analysis (Ralph Kimball, The Data Warehouse Toolkit, pg. 310).
3. The foundation for a successful BI program (http://tdwi.org/portals/data-warehousing.aspx).

Data Warehousing

DAMA 1. The operational extract, cleansing, transformation, and load processes, and associated control processes, that maintain the data contained within a Data
Warehouse. 2. The storage of evaluation data for the analysis of trends and patterns in the business [Brackett 2011].

TDWI 1. Data warehousing incorporates data stores and conceptual, logical, and physical models to support business goals and end-user information needs
(http://tdwi.org/portals/data-warehousing.aspx).
2. At the highest level, designing a data warehouse involves creating, manipulating, and mapping models. These models are conceptual, logical, and physical
(data) representations of the business and end-user information needs. Some models already exist in source systems and must be reverse engineered. Other
models, such as those defining the data warehouse, are created from scratch. Creating a data warehouse requires designers to map data between source and
target models, capturing the details of the transformation in a metadata repository. Tools that support these various modeling, mapping, and documentation
activities are known as data warehouse design tools [TDWI 2011].

Data Integration

TDWI Data integration (DI) is a family of techniques and best practices that repurpose data by transforming it as it’s moved. ETL (extract, transform, and load) is the most
common form of DI found in data warehousing. There are other techniques, including data federation, database replication, data synchronization, and so on.
Solutions based on these techniques may be hand coded, based on a vendor’s tool, or a mix of both. DI breaks into two broad practice areas. Analytic DI
supports business intelligence (BI) and data warehousing (DW), and operational DI is applied outside BI/DW to the migration, consolidation, and synchronization
of operational databases, as well as in exchanging data in a business-to-business context [TDWI 2011].

Data Management

DAMA The business function that develops and executes plans, policies, practices, and projects that acquire, control, protect, deliver, and enhance the value of data
[DMDict].

TDWI Data management (DM) and information management, a synonym, are broad terms that encompass several data-oriented technical disciplines, such as data
integration, data quality, master data management, data architecture, database administration, metadata management, and so on. DM may also include practices
that rely heavily on DM, such as business intelligence, data warehousing, and data governance. By extension, enterprise data management (EDM) is a high-
level practice that seeks to coordinate DM disciplines, align them with business-oriented goals, and give them consistency and quality through shared data
standards and policies for data usage. Synonyms for EDM include unified data management (UDM) and enterprise information management (EIM) [TDWI 2011].

Data Governance

DAMA The exercise of authority, control, and shared decision-making (planning, monitoring, and enforcement) over the management of data assets [DMDict].
TDWI Data governance is usually manifested as an executive-level data governance board, committee, or other organizational structure that creates and enforces

policies and procedures for the business use and technical management of data across the organization. Common goals of data governance are to improve data’s
quality; remediate its inconsistencies; share it broadly; leverage its aggregate for competitive advantage; manage change relative to data usage; and comply with
internal and external regulations and standards for data usage. In a nutshell, data governance is an organizational structure that oversees the broad use and
usability of data as an enterprise asset [TDWI 2011].

62 PART | II Review of Fast EDW Coding and Risk Mitigation

BASIC BUSINESS TERMS

The chapters that follow discuss gathering business requirements, modeling business entities, and validating that DW/BI

applications meet the needs of business users. For this reason, I take a moment to outline the terms used when discussing

the customer side of a DW/BI project. Businesses throughout the world are organized in a wide variety of patterns. This sec-

tion provides a baseline concept to support further discussion of data warehousing customers and beneficiaries. Figure 4.1

places these terms into a more or less “vanilla” organizational structure to provide clarity for the terms defined here.

Enterprise

We should first consider the business definition of “enterprise.” Closely following DAMA’s definition for this word, I

use “enterprise” to mean the integrated set of activities and concerns that an organization employs to define itself based

on a self-perceived purpose or point of view. When an IT project is scoped for the enterprise, the term indicates that

key activities such as requirements gathering and design cannot myopically focus on a single business unit or an iso-

lated business function. DAMA adds that an enterprise “may be a business, not-for-profit, government agency, or edu-

cational institution” [DAMA 2013]. Beyond a large set of purposes, goals, and objectives, enterprise also suggests

complex sociotechnical systems including people, information, and technologies [Giachetti 2010]. Large IT projects

such as DW/BI do well to keep in mind that an enterprise also has governance hierarchies that include an ownership

structure and often incurs regulatory oversight even when situated in the for-profit sector. For readability, this book also

at times uses the terms “the company,” “the corporation,” and even “the organization” to indicate that a particular

concept or technique must address an enterprise-wide scope.

Business Unit

Large, diversified companies organize themselves into business units in order to segment the management of the company

into smaller, organizationally cohesive parts. An example is a national insurance company that has created one business

unit for property and casualty products and another unit for life and health policies, with an executive vice president at the

helm of each. Although they receive resources and strategic direction from corporate headquarters, business units fre-

quently draft and execute their own competitive plans and maintain their own profit and loss statements. Business units

TABLE 4.2 Key Terms and Their Synonyms Used in This

Book

Front-End Applications

Business intelligence
Business analytics
Data visualization
Information delivery
Reporting
Dashboarding
User experience (UX)

Back-End Applications

Data warehousing
Data integration
Data transformation
Data management

DW/BI (front-end and back-ends combined)

Data analytics
Decision support systems
Executive information systems
Enterprise data warehousing*
Online analytical processing (OLAP)

* Too big a concept to rule out either front-end or back-end applications; see
text.

Essential DW/BI Background and Definitions Chapter | 4 63

are sometimes large enough to have their own internal business services departments, such as marketing, sales, finance,

and even IT and project management. Indeed, major corporations can have business units so large and independent that

the notions and practices documented in this book for the “enterprise” can frequently apply to them as well. Terms closely

related to “business unit” are “subsidiary” and “division,” both of which often signify a large business unit associated with

a major brand of products within a conglomerate, operating under a separate corporate name and having even greater mis-

sion independence. For example, Mack Trucks is a wholly owned subsidiary of Volvo, and Mack de Venezuela C.A. is a

division of Mack Trucks that performs final assembly and sales of Mack trucks in South America.

Business Department

A corporation and its major business units contain several functional groupings of staff members, called departments.

Departments can be customer-facing, such as departments of marketing, sales, service, and support. Alternatively, they

can be internal business services departments, such as departments of finance, accounting, inventory, human resources,

and facilities. Many of the customer-facing departments are revenue generating, whereas the business services depart-

ments are generally considered cost centers.

Technically, IT and the project management office (PMO) are business services departments, often replicated for each

business unit in larger corporations. This book discusses how IT and the PMO can better service their customers, which con-

sist of the company’s other business services departments along with the externally facing departments. To keep things clear,

then, I use “the business departments” or “the business” to mean all the business departments other than IT and the PMO.

Executive, Director, and Manager

These terms refer to business professionals who possess the authority to manage and make spending decisions within a

specified boundary, such as a given business unit or business department. Executives provide leadership to the internal

staff members who make up an organization’s governance structure. In the nongovernment sectors, “senior executive”

Enterprise

Customer-facing
business departments

Vice president

Director

Managers

Analyst

Executives
Staff

Internal-facing
business services

departments

Senior vice president Senior vice president

Business unit Division

Departments

SVP

Organizational units Employment position

Legend

FIGURE 4.1 Business organizational terms used in this book.

64 PART | II Review of Fast EDW Coding and Risk Mitigation

refers to an officer of the corporation—that is, a person appointed by the board of directors of a firm, such as a presi-

dent, chief executive officer, or vice president (VP).

Data warehouses largely support knowledge workers who are organized into hierarchies that report upward to the

executives. Accordingly, I use the following general abstraction when discussing the office staffing (from top to bot-

tom) under the aegis of a senior VP: analysts, managers, directors, and VP.

� senior VPs (of various ranks) are responsible for entire business units;
� major business departments, such as “marketing,” are managed by VPs, with directors in charge of subspecialties

under that department, such as “wholesale marketing”; and
� smaller departments, such as “product management,” are overseen by directors, with managers supervising analysts

organized by specialty within them, such as “high-speed Internet products.”

For easy referencing, the term “staff” refers to the analysts and managers, and “executives” means directors and

VPs, as illustrated in Figure 4.1. Because EDW projects typically require millions of dollars to complete, I often assume

in this book that the EDW sponsor is a VP of the corporation, although in truth these projects are usually anchored

even higher in the organization, such as with a senior or executive VP.

Business Rules

Business rules are the constraints that a company believes should govern the characteristics or behavior of objects or

data entities within the enterprise. Business rules describe the desired relationships between the company’s physical

objects and informational entities. They provide the staff with control points for managing the complexity of activities

within the enterprise. For topics pertaining to data quality, business rules describe the constraints that the staff can use

to validate the company’s information. Business rules also address data characteristics such as optionality, dependen-

cies, valid encodings, and other allowed values.

DATA AND INFORMATION TERMS

Discussions in this book will at times pivot on the distinction between data and information. “Data” is the more funda-

mental word and applies to facts in the shape of raw material for an information system. A typical datum is simply the

value “42%.” Data may be text, numbers, images, or recorded sound, but without greater context, data hold little mean-

ing by themselves.

“Information” is data with context so that it has meaning. To build on our example, “Manufacturer X’s 2010 share

of the California Blu-Ray DVD recorder market is 42%” provides an idea of how that datum acquires meaning when

placed in context. According to the DMBOK entry on “information,” some of the context elements that lend data mean-

ing include a business definition, the format in which data is represented, the time frame to which it applies, and the

scope of relevance that it has within its designated area of usage.

Understanding data so that it can become information requires “metadata,” which is often defined as “data about

data.” DAMA describes several types of metadata that are discussed later in this book:

� Business: Names and business definition of data elements
� Format: Guidelines on how metadata must be displayed to make sense to the consumer
� Technical: Information regarding how the data is physically stored by the database management system, including

field name, data type, length, and precision
� Structural: How atomic-level data items roll up into larger assemblies, such as the way that area code, prefix, and

line number combine into a 10-digit phone number

DAMA also lumps several items into “administrative metadata”, including the following:

� Data lineage: Where did the facts in a repository come from and how were they validated and combined into their

final form within the warehouse?
� Versioning: What point in time or location within a changing series does a given value represent?
� Processing: When was this value acquired or derived?
� Quality: How accurate is the value, even in terms of a plus-or-minus error bar?
� Security: Who owns the information, in terms of both getting bad values corrected and obtaining permission to grant

access to another party?

Essential DW/BI Background and Definitions Chapter | 4 65

INFORMATION SERVICES TERMS

Information Technology (IT)

IT is typically the department within the enterprise that deals with computer hardware, software applications and sys-

tems, the computer-based data of the organizations, and data communications. Companies also name their IT depart-

ments as “(management) information services” in the United States or “information, communications, and technology”

in the United Kingdom.

For this book, IT for a sizable company can be a large department, with thousands of staff members and often con-

suming 1% or 2% of corporate revenues. In that capacity, IT must maintain command of a wide range of technologies

and the people who understand them. Not surprisingly, the staff for these large IT departments will have formal and

very specific training in these technologies, as well as some long-established work processes. Currently, these training

and established processes are the “traditional practices” that favor waterfall methods and against which agile will have

to compete when a development project team wishes to switch to an incremental delivery approach.

Software and Applications

Software denotes computer programs, including operating systems, utilities, tools, database management systems, and

programs for end users. Software supporting one or more related business processes is frequently called a “business

application.” Software implements the company’s business rules in the logic of its applications and therefore imposes

semantic meaning on input from humans and devices. Applications purchased ready to operate from the outside are

called “commercial, off-the-shelf software” (COTS).

Aside from COTS and “open-source software” (OSS), all other software in the company must be developed in a pro-

cess often called “computer programming” that many people say results in a “computer program.” Unfortunately, “pro-

gram” is a reserved word for project managers also—a fact that can create much confusion in a book such as this one

that discusses software development project management. To avoid this confusion, I generally avoid away from using

the term “computer programs” and often refer to software development as “encoding” the company’s business rules

using a computer language, or more succinctly, “application coding.”

End Users

An end user is a person or role recognized and authorized to access a particular software application. When important,

I will be careful to distinguish between the different roles end users can take, such as knowledge worker, data producer,

data consumer, or analyst.

Operational and Analytical Systems

A “system” is an interacting and interdependent group of component items forming a unified whole to achieve a com-

mon purpose. A software system consists of multiple software applications. A company’s “operational systems” are

those systems needed to execute the company’s daily commercial transactions and all subsequent data processing

needed to complete business obligations. These systems are often called the company’s “transaction capture” systems

and also “online transaction processing” (OLTP) applications.

The other broad category of software within the company is “analytical systems” or “online analytical processing”

(OLAP) applications. The analytical systems are those assemblies of applications that are needed to track and under-

stand the business operations across the enterprise business units and departments, as well as across time. Data ware-

housing and business intelligence applications fall under this category.

One collection of software that provides much of the information for a company’s analytic systems is “accounting

systems,” which include business applications such as accounts receivable, accounts payable, fixed assets, and general

ledger. In larger corporations, a primary source of DW/BI data is also the “enterprise resource planning” (ERP) system,

which contains many applications within it, such as materials planning, vendor management, purchasing, and fulfill-

ment, in addition to processes for transferring data to the accounting system.

IT Service Groups

IT departments within most companies organize themselves into service groups for specialties such as desktop technol-

ogy, application development, networking, infrastructure, information security, and data communications (networking).

IT also frequently creates a dedicated service group for each major business system such as billing and ERP.

66 PART | II Review of Fast EDW Coding and Risk Mitigation

Companies follow many patterns when it comes to concentrating these IT groups at the corporate level or distributing

them across the business units.

DW/BI is often a separate service group that must collaborate with several other IT groups to get the company’s

analytical applications implemented. One group with which DW/BI must work is the database administrators (DBAs),

IT staff who manage the physical aspects of the company’s data resources. Another important group for DW/BI is

“operations,” the team of computer operators that runs applications on data processing equipment in the company’s

data center, or “machine room.” Operations must monitor the automated processing of the data warehouse applications

and restore their proper function after they unexpectedly crash.

DW/BI must frequently collaborate also with an enterprise architecture group, a collection of experienced systems

and data designers who provide cross-application guidance regarding the company’s information strategy, high-level

application design, and interdepartmental processing requirements. Because IT service groups such as enterprise archi-

tecture, operations, and DBAs must often review and approve the chartering, architecture, detailed designs, and con-

struction of an enterprise data warehouse, the DW/BI service group should make an effort to clearly understand the

expectations and requirements that each of these groups will impose.

Shadow IT

Within many large companies, the business units and service departments have become frustrated with the slow pace

and high expense of IT’s formal application implementation processes. As a consequence, business departments find

ways to fund information system development and implementation directly so that IT spending is increasingly occurring

outside of the control of the IT department. According to a survey by the Gartner Group, chief marketing officers will

be spending more on information systems than on IT by 2017 [Nelson 2013].

“Shadow IT” broadly refers to information processing and application development introduced into an enterprise

without IT’s assistance. Shadow IT teams often create data marts and even multisubject area data warehouses without

coordinating or even informing IT. Often, these projects start innocently enough with power users who begin managing

information in spreadsheets and desktop database applications, creating what observers such as TDWI call spreadmarts

(data marts based on spreadsheets). Over time, these spreadmarts and shadow IT data warehouses grow so large and

numerous that they hold a significant and valuable portion of the company’s information assets. Shadow IT applications

do allow business departments to accomplish their goals faster than IT can support, but on the downside, many uncoor-

dinated development projects waste effort. More important, poor decisions get made when the spreadmarts and isolated

data marts provide conflicting and inaccurate business information to executives who must collaborate on a single,

company-wide initiative. One advantage to the agile enterprise data warehousing approach promoted by this book is

that it includes several mechanisms for incorporating shadow IT groups into the development of the EDW, transforming

them into collaborators or “buddy IT” rather than competitors of the corporate IT department.

Competency Centers

According to Gartner, a competency center is an organizational structure used to coordinate IT skills with an enterprise:

“Competency centers provide expertise for project or program support, acting both as repositories of knowledge and

resource pools for multiple business areas” [Gartner 2013].

Competency centers can range widely in their formality and, for software matters, can be created around topics such

as systems engineering, requirements management, configuration or release management, quality assurance, and regula-

tory compliance. Companies draw upon competency centers to provide a centralized source of expertise to business

departments, project teams, and even shadow IT. These centers thus provide an indirect means of standardizing the

company’s approach to common challenges involving application designs, information analysis, and data integration.

SOFTWARE ENGINEERING TERMS

Software Development Life Cycle (SDLC)

The software development life cycle (SDLC) includes the phases and activities common to software development

efforts. Figure 2.3 depicted a traditional, waterfall SDLC. It contains phases (or “steps”) for the major development

activities of system requirements, software requirements analysis, design, coding, testing, and operations. Rational

Unified Process (RUP)’s more recent formulation moves many of these phases to “disciplines” that can be prac-

ticed in parallel, leaving the SDLC with phases for only inception, elaboration, construction, and transition. The

Essential DW/BI Background and Definitions Chapter | 4 67

RUP phases were introduced in Chapter 2, and fortunately their names do not collide with any of the phases from

the traditional approach, so it will be clear from the terminology which SDLC a particular discussion has in mind.

To be thorough, I provide here a quick definition of the traditional SDLC phases, although readers will find a far

more careful presentation in the DAMA dictionary and IEEE’s SWEBOK [Abran et al. 2005, Earley 2011]. In the fol-

lowing definitions, each phase implicitly includes (1) validating the information provided by the preceding phase and

(2) preparing the knowledge needed for the succeeding life cycle step. I have set the goal for each phase as “to the

extent appropriate” so that these definitions will be workable for either traditional or agile contexts:

Requirements: Achieving the appropriate level of clarity regarding the user’s needs for functional and performance

services from the software, in addition to the company’s need for integration between applications.

Analysis: Generating the appropriate detail regarding application inputs, processes, outputs, and interfaces. DW/BI

projects would include assessing the quality and appropriateness of source data in this step.

Design: Specifying as appropriate the physical characteristics of the application, including major subsystems and

their inputs and outputs. This specification will include the application’s top-level architecture, including hardware,

software, and manual operations. Subsystems are partitioned into one or more design units or modules, and detailed

logic specifications are then prepared for each. Design includes clarifying both the nature of an application’s user

interface at the desktop layer and the structures for the application’s data storage.

Coding (“programming”): Translating the detailed specifications produced during the design step into

executable systems of software, hardware, and communications. If the software is not acquired, it must be pro-

grammed, either at a low level if using a procedural language such as C or at a high level if using a scripting lan-

guage. The modules or units of the application need to be unit tested, integrated, and retested in a systematic

manner. Hardware and communications capabilities must be configured and unit tested also.

Testing: The company assures itself that the application coding is complete and correct and therefore safe to deploy

into production usage. Beyond validating the components of a system, testing consists of three major substeps,

which are alluded to throughout this book:

1. Integration testing, where the various components of the application are fully assembled to ensure they interact

as a coherent system as planned

2. System testing, which validates that the application will perform properly in the machine room as a component

of the company’s overall IT ecosystem

3. User acceptance testing, during which the user communities examine the running application to ensure that it

meets functional and performance requirements

Testing will need to be performed in two styles, which are also mentioned in the following chapters:

1. Progression testing: Confirming that a development team has delivered new modules that are complete and correct

2. Regression testing: Confirming that the features previously delivered have not been adversely impacted by any

new programming.

Operations: The system is available for business users as envisioned during the requirements phase. Often, IT pro-

fessionals refer to the transition of applications to an operational status as “promotion into production usage,” so we

often refer to a new application’s ultimate destination as simply “production.”

Developers and Programmers

Reflecting on the software development life cycle, one can see that providing a new application for end users requires

far more than just encoding a design into a software language. A software project will need business experts, architects,

analysts, and data modelers to identify requirements and draft the application’s design, as well as testers to validate

everyone’s work. This book describes many ways for different combinations of these individuals to interact. To make

those discussions clear, Table 4.3 outlines the grouping of team members I have in mind. Some readers may be sur-

prised that the system testers are included among the team leaders. As discussed later in this book, agile data warehous-

ing expands the duties of this role so that a team’s system tester provides all other teammates with a strong sense of

direction and an opinion as to when the the team’s quality assurance work is sufficiently completed.

Software Engineering

According to the Association for Computing Machinery (ACM), software engineering is concerned with developing and

maintaining software systems that behave reliably and efficiently, are affordable to develop and maintain, and satisfy all

the requirements that customers have defined for them [ACM 2006]. IEEE defines software engineering more succinctly as

68 PART | II Review of Fast EDW Coding and Risk Mitigation

“a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software.” In this

book, I use the term to emphasize that DW/BI application development is more than programming—that it requires pur-

poseful, well-sequenced, and skillful efforts in the realms of requirements, analysis, design, coding, and testing. Throughout

my years in DW/BI, I have found that when “programmers” make the effort to acquire “software engineering skills,” they

often transform themselves from journeyman developers into technical leads and even software architects. For this reason,

software engineering should also mean “executing the company’s software development life cycle with discipline.”

Units and Components

The software engineering discipline provides a careful notion of how the elements of a software application should be

assembled. From the bottom up, programmers build units and then components and configuration items. They then

assemble configuration items together into systems. The distinction between these divisions of a system is often impre-

cise and context based, but software engineering instructs us to at least try to define these notions for each application

with care because they each require a different form of collaboration and validation.

Units can be more precisely described as the most atomic collection of application code that can be designed, pro-

grammed, and managed as a whole, usually by one programmer at a time. Units are often the processes included on the

lowest level of a data flow diagram and are frequently managed individually using one text file, resulting in one source

code repository object.

Components are the first-level assemblies of coding units, typically still small enough to be managed and worked on

by a single programmer but large enough to be commonly referenced and reused by others within the development team.

Configuration items are collections of components that have attained enough size and scope of impact that usually

multiple programmers are involved in their design, coding, and management. Configuration items are also the highest

TABLE 4.3 Names for Different Groupings of Project Team Members

Term Meaning

Programmers Project members coding in a computer language or configuring a DW/BI tool to
transform a design into a software application.

Product Owner The embedded business staff member who works daily with the agile development
team, providing it with requirements and validating results. Considered part of the
team, in fact part of the team leadership.

Team Leaders

Developers

Subject Matter Experts

Development Team

Stakeholders

Close Stakeholders

Project members who provide the requirements, guidances, and designs that
programmers will code into an application. Includes the product owner and IT roles
such as solution architect, IT analyst, data modeler, and application designer, plus
the system tester who validates the application once coded.

Project members from the business staff that provide business requirements to the
developers. For agile projects, this group includes the business person embedded
with the agile team (the “product owner”) and other business experts who work with
the developers, sometimes intermittently.

All project members working extensively to create an application design or
programming the application's components. Usually excludes subject matter experts
and even staff in supporting IT service groups unless the members of this latter
group are regularly spending large portions of their time with the project team.

Individuals outside the team and perhaps outside the company who can affect or will
be affected by the outcome of the project.

Business staff who actively work with the development team to identify requirements
and validate IT’s deliverables. For agile teams, exclude the product owner, who is
involved with the team far more than the people falling into this category.

Project members performing technical work to create the application, i.e., the team's
technical leaders and programmers. This term excludes teammates who are business
staff members, for whom the developers are working.

Essential DW/BI Background and Definitions Chapter | 4 69

level items that the team places on its list of the pieces that should be integrated together into a new version of the

application, which must be promoted into the testing and later the production environments.

Module serves as a convenient collective noun for all the above and thus means an application component that

performs a specific role in the system being developed.

Configuration Management and Application Builds

As applications grow larger, development teams need to exercise configuration management—that is, a set of activities for

defining how the many pieces of an application fit together into an executable whole and for controlling that assembly pro-

cess. Each time the application is assembled with a given version of the pieces, that particular combination is considered a

unique “application build” and given a “build number.” Configuration management typically relies on a “version control”

utility that holds a copy of each instance of the application modules plus the metadata needed to identify each one. Version

control enables the team to (1) know exactly which instances of the modules compose a given build and (2) perfectly assem-

ble any arbitrary build of the application by drawing the right module instances from the version control repository.

Environments

In general, environments are the conditions surrounding data, such as databases, data formats, servers, network, and any

other components that affect the data. DW/BI departments typically maintain a set of named environments that closely

align with the major steps in the SDLC that they follow. Creating, validating, and deploying an application requires

steadily “promoting” a given application from one environment to the next, as will be clear in the following ordered list

of environments that I employ for the discussions in this book:

Sandbox: A workspace into which a developer can copy the necessary portions of an application in order to perform

unit and component programming.

Development (DEV): An environment in which the developers can assemble and test run a build of the application.

System Integration Test (SIT): An environment to which the team’s system testers can promote a given build for

independent validation. When a build passes SIT testing, the team can optionally decide to begin the process of

releasing it to end users. With this decision, the build becomes a “release candidate.”

User Acceptance Testing (ACC): An environment to which the team will promote a release candidate for thorough

validation by representatives from the end-user community.

Production (PROD): The environment in which the application will run in order to provide information services to

the end users. When placed in PROD, the build is considered a “release” and given a version number.

BASIC ARCHITECTURAL CONCEPTS

In software engineering, architecture is a high-level design process that yields an organized arrangement of components

intended to optimize the function, performance, feasibility, cost, and usability of a complex application. Data ware-

houses require architectural reasoning at many levels, including systems, data, and enterprise perspectives. This section

names and defines these many levels, as they will be frequently utilized in the chapters that follow.

System Architecture

Software applications for the enterprise must constructively participate in the company’s overall data processing ecosys-

tem. An application’s system architecture defines the technical niche that an application will occupy in that ecosystem

and the behavior required of it by the surrounding applications. For drafting system architectures, my company has

enjoyed reliable success by following an international standard called the Reference Model for Open Distributed

Processing (RM-ODP), which defines the scope and high-level structural organization that an application’s systems

architectural description should communicate. RM-ODP defines five essential viewpoints for modeling systems archi-

tecture that provide a solid, stereoscopic perspective on a proposed application [Malveau & Mowbray 2003]. These five

viewpoints reliably guide teams in drafting easily intelligible architectural descriptions with full breadth and an appro-

priate level of detail, leaving little possibility for any serious gaps in the development team’s analysis. RM-ODP speci-

fies that these five viewpoints be addressed, but it does not specify the particular format or conclusions each viewpoint

should take. In practice, development teams document these viewpoints using their preferred set of diagrams and

70 PART | II Review of Fast EDW Coding and Risk Mitigation

written artifacts, although it pays for companies to standardize on the format for architectural descriptions so that the

resulting documents are comparable between applications.

RM-ODP’s five viewpoints are as follows:

Enterprise viewpoint: A business model of the application, which will allow IT to validate its understanding and

intentions with the end users.

Information viewpoint: A model of the information of existing and planned data assets and how these assets are

processed and manipulated.

Computational viewpoint: A plan for partitioning the application into software configuration items and compo-

nents that are capable of supporting data processing, including the necessary distribution of components across the

company’s telecommunications network. This viewpoint should also address components that are developed versus

those that will be acquired and configured. The computation view allows all stakeholders to understand and validate

the complexity of the proposed application and thus judge the design’s impact on important nonfunctional require-

ments, such as manageability, extensibility, and adaptability.

Engineering viewpoint: The distributed processing plan for the application, including coordination of its compo-

nents, given the way in which they will be physically separated as documented in the computational viewpoint. For

data warehousing in particular, this viewpoint includes the acquisition of data from source systems, whether it be

via direct data connections, messaging, or file transfers. It also addresses how the warehouse will communicate out-

wardly to other systems that need status messages or data extracts of their own.

Technology viewpoint: A mapping between all objects identified in the other viewpoints and the standards and

technologies available. This viewpoint focuses on the specifications for a system’s hardware and enabling software,

such as operating systems, data communication utilities, and data storage subsystems. Data conversion libraries and

low-level source data translators such as XSLT packages would be included in this architectural viewpoint as well.

Data Architecture

The data warehousing community typically refers to RM-ODP’s information viewpoint as an application’s “data archi-

tecture.” Both DAMA and TDWI offer extensive guidance on how project teams should derive and articulate a data

architecture. Because these recommendations are explored in depth when we discuss agile data engineering, only the

major components are identified here. A warehouse’s data architecture is the result of activities related to identifying,

naming, defining, structuring, and documenting the application as a data resource. It also includes specifying how the

integrity, accuracy, and effectiveness of the application’s information will be ensured, especially when that information

is integrated from sources spread throughout the many business units and departments of the enterprise. With good data

architecture, the warehouse’s design and construction will be business driven, based on real-world subjects perceived

by the enterprise, so that it contains information that is easily identifiable, readily available, high quality, and consistent

across the company’s organizational boundaries [Brackett 2005].

Development teams record the intended and actual structure of a data warehouse’s information repository by maintaining

multiple data models within the application’s data architectural description. These models incorporate diagrams and textual

information. The diagrams have varying formats depending on whether they express a business conceptual, logical, or physical

viewpoint.

Business Conceptual Model

IT frequently needs to communicate an application’s requirements and design concepts to business partners who have

no technical training. Business conceptual models are a good place to start given that they are a depiction of only the

business-visible elements within a subject area, displaying the business-intelligible entities known to exist and the rela-

tionships between them. Details concerning the entities’ attributes are omitted completely, making this model an easy

first step toward understanding the high-level contents and purposes of any data collection. As an example, Figure 4.2

provides an excerpt from a business conceptual model.

Conceptual models that focus on business concepts are frequently called “business conceptual models” or simply “busi-

ness model,” the term I will usually employ. While interacting with sponsors, end users, and other business stakeholders in

the early phases of a project, data warehousing development teams rely on business models to validate their understanding

about business requirements and to communicate their high-level plans for a DW/BI application. They often build business

models for the source systems that will supply a warehouse with data and build another set for the “target” data reposi-

tory—that is, for the proposed data warehouse as it will appear to the business user.

Essential DW/BI Background and Definitions Chapter | 4 71

Logical Data Model

Whereas business models provide a high-level view of a data collection’s contents, logical models express greater detail

about how that collection is structured for a more technical audience. After using business models to establish the

important entities for which an application must plan, development teams use a logical data model (LDM) to document

in detail how data should appear to the end users and applications that must work with the information it contains.

The purpose of an LDM is to document the logic that governs the information within a data resource, focusing on what

data items it contains, what those elements mean, and how they can be used. Like business models, LDMs provide

business-centric descriptions of entities and the relationships between them, but they also describe the entities’ attributes

and the data integrity rules controlling the information stored within them. Figure 4.3 reveals a logical model that might

be derived from the business model excerpt shown previously. For clarity, it only names the attributes, but some logical

models document data types and lengths as well.

LDMs abstract out any notion of how the data is actually structured within its repository, leaving that topic to the

next model type. For DW/BI, LDMs provide an implementation-independent and application-neutral depiction of either

the sources from which the warehouse will pull information or the target repository within which it will store data.

Physical Data Model

Often, the reality of how the data is physically stored on disk is vastly different from how the database management

system will make it appear to the end users when accessed. DBAs frequently reconceptualize the entities and attributes

for efficiency, performance, and manageability before they create the actual storage structures for the data. They also

Buyer companies

Business locations

Vendor companies

Conglomerates

: A many-to-one relationship, specifically “zero to many” on the
many side, and “one and only one” on the one side

FIGURE 4.2 Business conceptual model.

Buyer companies

Vendor companies

Buyer name
Parent company

Vendor name
Parent company

Latitude
Longitude
County
Core business statistical area

State

State name
State code

Address

Street prefix
Street number
Street name
Unit label
Street suffix
City quadrant
City
Zip-10

Company location

FIGURE 4.3 Logical data model.

72 PART | II Review of Fast EDW Coding and Risk Mitigation

rename the entities and their attributes to meet their own set of standards. Whereas logical models communicate what a

data resource contains, a physical data model (PDM) documents technical details regarding how that information is

physically arranged and constrained within the actual structures of its repository. Instead of entities, attributes, and

rules, a PDM documents tables, columns, and constraints. Figure 4.4 contains an example of how the data depicted

Intg_Strt_ID Big_Int Non-null

Intg_Strt

Strt_Name Char(16) Non-null

Intg_Strt_ID Big_Int Non-null
Strt_Prfx Char(16)
Strt_Nbr Char(16)
Unit_Lbl Char(16)
Strt_Sfx Char(16)
City_Qdrnt Char(16)

Intg_Addrs

Intg_Strt_ID Big_Int Non-null

Intg_Pstl_Cd_Mn_ID Big_Int Non-null

Intg_Pstl_Cd_Mn

Pstl_Cd_Mn Char(16)

Intg_Pstl_Cd_Scnd_ID Big_Int Non-null

Intg_Pstl_Cd_Scnd

Pstl_Cd_Scnd Char(16)

Party_Nm Char(16) Non-null

Intg_Party

Intg_Party_ID Big_Int Non-null

Party_Role_Nm Char(16) Non-null

Intg_Party_Role

Intg_Party_Role_ID Big_Int Non-null

Party_Role_Nm Char(16) Non-null

Intg_Party_Role_Typ

Intg_Party_Role_Typ_ID Big_Int Non-null

Parent_Role_ID Big_Int Non-null
Child_Role_ID Big_Int

Intg_Party_Rollup

Intg_Party_Rollup_ID Big_Int Non-null

Location_Nm Char(16) Non-null
Effctv_From_Dt Date Non-null
Effctv_Till_Dt Date Non-null

Intg_Party_Role_Loc

Intg_Party_Role_Loc_ID Big_Int Non-null

Intg_State_ID Big_Int Non-null
Muncplty_Name Char(32) Non-null

Intg_Muncplty

Intg_Muncplty_ID Big_Int Non-null

State_Name Char(32) Non-null
State_Cd Char(8) Non-null

Intg_State

Intg_State_ID Big_Int Non-null

FIGURE 4.4 Physical data model.

Essential DW/BI Background and Definitions Chapter | 4 73

in the previous LDM might appear in a physical data model, after the data’s entities have been consolidated by the

physical data designer into tables.

Reference Architecture

The DW/BI department of any sizable company will pursue multiple business intelligence projects over time. The

department’s managers will be strongly motivated to impart a shared technical approach and a common high-level

design on these many applications so that the resulting EDW will be generally intelligible and maintainable, in addition

to meeting other nonfunctional requirements such as adaptability, security, and high performance. To this end, DW/BI

departments commonly adopt what many people call a reference architecture to guide all of their development teams

so that the multiple projects will construct EDW components that more or less comply with a single notion of how data

warehouse applications should be built.

A software reference architecture is a generic architecture for a class of information systems that is used as a foun-

dation for the design of concrete solutions within this class [Angelov et al. 2012]. To date, the meaning of “reference

architecture” has not been standardized within IT, so there is no single notion of its purposes and proper levels of detail

or abstraction. However, the Department of Defense suggests that reference architectures should be structured so that

they can be readily used for “comparison and alignment purposes” between projects [Department of Defense 2010].

The Department of Defense also stipulates that a reference architecture should contain four major elements:

� High-level statements of the rules, culture, and values that drive its directives
� Desired relationships between a solution’s elements and artifacts
� Technical standards for the design and documentation of any solution
� Standard acronyms, terms, and definitions

Most EDW departments in the larger companies with which I have worked have established reference architectures

that achieve these elements. Whereas DAMA and TDWI frequently suggest design patterns to address commonly

encountered DW/BI challenges, data analysts address such a variety of business challenges that they cannot issue a

single high-level design and claim that all data warehouses should be structurally similar. For that reason, each com-

pany needs to devise on its own a reference architecture for its EDW.

Conceivably, a company could draft one representation of its reference architecture for every ODP-RM viewpoint

listed previously. In practice, the informational viewpoint is the reference architecture diagram that DW/BI develop-

ment teams refer to most. Documenting the reference architecture from the enterprise point of view seems out of scope

for most DW/BI departments. The patterns for computational viewpoints are generally determined by the data architec-

ture and are therefore wasteful to document independently. The features of the engineering and technology viewpoints

affect items at too low a level of abstraction to affect most aspects of DW/BI application design.

When reference architectures are mentioned in later chapters, I am thinking mostly of the data viewpoint and assume

the one illustrated in Figure 4.5 unless otherwise indicated. This figure provides an example for the data side of an EDW,

as is fairly typical of the many such standards I have encountered at large companies throughout the years, although cer-

tainly many variations exist. Note that the reference architecture in the diagram is organized by abstraction layers that

compartmentalize the objectives of the data warehouse into separate data areas, thus isolating the issues that each layer

must contend with. Each abstraction layer has a specific purpose and therefore typically requires its own mini-

environment of data structures, data transform programming, and even dedicated DW/BI tools. For clarity, I have placed

what appears to be a separate data repository into each layer shown in this diagram. Because abstraction layers tend to

have their own database schemas, they are often referred to as the “data layers” of the warehouse. In practice, how the

physical repositories for these layers are distributed or combined across DW/BI hosts varies widely between companies.

In general, data enters the data warehouse from the left of Figure 4.5 and steadily progresses to the right, layer by

layer, as follows:

� Landing: A layer where extract programs can place raw data taken or received from a source application.
� Data cleansing: A layer for executing whatever data cleansing can be achieved before data is integrated with infor-

mation from other sources.
� Integration: A layer for making data consistent across the organizational boundaries of the enterprise. This layer

represents the company’s “single version of the truth.” As described in the chapters on data engineering, the struc-

tures of this data layer are usually “normalized” to at least third normal form, which drives out the redundancy

within the information. Unfortunately, normalized data is very difficult for end-user staff to work with.

74 PART | II Review of Fast EDW Coding and Risk Mitigation

� Presentation: A layer for “de-normalizing” and reorganizing data so that end-user staff members can readily under-

stand it and bring it into their business analyses. Although reorganized for business user purposes, DW/BI depart-

ments want this layer to reflect a single approach to the company’s information, so data in the presentation layer

cannot always be made application specific.
� Semantics: A layer allowing presentation data to be re-projected to better support specific end-user applications.

Objects in these re-projections often receive considerable grooming and renaming so that end users will readily

understand the “semantics” (meaning) of the information it provides. This layer is typically composed of virtual

rather than persisted data resources (see Chapter 13).
� End-user BI applications: The collection of business intelligence applications that visualize data warehouse informa-

tion for business analysis. Like the semantic layer, this portion of the reference architecture can include many virtual

data resources as well as analytical applications that are widely distributed across end-user desktops and mobile

devices.

Enterprise Architecture

Although the complexity of a data warehouse tempts one to plan solely within the boundaries of his or her current project,

the needs of the enterprise will soon impinge on a project so narrowly defined. Data analytics projects are so expensive and

their potential value so great that large corporations must inevitably manage them as a strategic asset, one that serves many

parties across the company’s organizational boundaries and integrates with many other applications in order to leverage

existing analytic applications. For this reason, EDW team leaders need to plan on collaborating with the company’s enter-

prise architects, who inevitably must approve of many data warehousing requirements and design elements.

Enterprise architecture (EA) is a discipline with a much larger scope than data warehousing. EA provides strategic

plans for standardizing, integrating, and optimizing the company’s overall processes for delivering goods and services

to customers. The enterprise architects of a company maintain a list of prioritized, aligned initiatives and road maps

defining the present and future of the company:

[EA presents] business and IT leaders with signature-ready recommendations for adjusting policies and projects to achieve

target business outcomes . . . [and] steer[s] decision making toward the evolution of the [desired] future state architecture.

[Gartner 2013]

An EA is typically a large body of work, with many company-wide specifications with which teams building both

manual and automated systems within the organization must align. Its artifacts include as-is and to-be versions of the

following [Earley 2001]:

� Business goals for the company
� Organizational business architecture
� Comprehensive business process model
� Information value chains
� Corporate data models
� Data integration standards
� Application component architecture
� Standard infrastructure technologies

Semantic
layer

(reporting universes)

End-user

applications
(reports & dashboards)

Source
systems

Landing
layer

Data
cleansing

Integration
layer

(standard
normal form)

Presentation
layer

(conformed
dimensional form)

E
T

L

E
T

L

E
T

L

E
T

L Logical
projection

FIGURE 4.5 Sample enterprise data warehouse “reference architecture”.

Essential DW/BI Background and Definitions Chapter | 4 75

Many of the goals on EA’s list of initiatives will require world-class business intelligence, thus explicitly making the

data warehouse a key component in the enterprise architect’s plans for the corporation. Consequentially, data warehousing

teams must support EA goals in their project requirements and designs, and EDW team leaders will need to vet their

high-level designs with the enterprise architects. Unfortunately, the enterprise architectural plans can be challenging to

support should the EA group be actively updating its artifacts while the warehouse is undergoing design and construction.

ARCHITECTURAL FRAMEWORKS

Because of their scope and the speed with which business conditions change, enterprise data architectures are difficult

to draft and maintain. To make such efforts easier to plan and complete, enterprise architects rely on architectural

frameworks, which are defined as classification schemes that enable analysts to better understand an area of study.

Frameworks often include a repeatable analytical approach with recommendations on how to use the classification tool

effectively. Although their scope is only a subset of EA, DW/BI programs face many of the same planning issues as

EA, and thus architectural frameworks represent a valuable tool set that EDW team leaders should be ready to use, both

for their own projects and for communicating with enterprise architects.

Three frameworks that data warehouse teams will find particularly useful are the Zachman EA framework, the

DAMA functional framework, and the Hammergren planning framework.

Zachman Enterprise Architectural Framework

When formalizing his approach to enterprise architecture in the late 1960s, John Zachman created an analytical matrix by

intersecting the six fundamental interrogatives (who, what, when, where, why, and how) with the five levels of modeling

regularly employed for computer system design: context, concepts, logical, physical, and detailed specification.

As can be seen from Figure 4.6, this framework enumerates a rich set of artifacts for fully describing an existing or

a desired information system within an enterprise computing environment [Sessions 2007].

For enterprise data warehousing projects, I have employed the earlier 2001 version of the framework where the

“what” column translated to data concepts [Zachman 2011].

The bottom half of the figure shows a streamlined version of this older framework, which my project teams have

used to great effect as we planned out the multi-departmental aspects of our data warehousing applications.

Consider, for example, how Cell C1R2 calls for the team leaders to consider “what” (entities) from the perspective

of all relevant data owners throughout the organization.

To achieve this objective, they will have to examine multiple sources and many consumers when identifying busi-

ness entities to include in the application’s architecture, eventually organizing the important data items into a business

conceptual model and documenting the relationships between them.

Later in the project, the data definition catalog specified in Cell C1R5 will require them to revisit key components

of “what” at the specification level, prompting these team leads to translate the business conceptual model into entity

names and definitions acceptable to all the stakeholder business groups.

Similarly, the business process model called for in Cell C2R2 will guide them into considering the “how” (pro-

cesses) as it will manifest at the conceptual level, so the EDW team will have to think through the ways the data ware-

house should connect to the company’s wider ecosystem of operational systems, even coordinating these plans with the

other DW/BI application teams.

By forcing systems planners to look across the organization from many viewpoints and at several different levels of

detail, this framework leads to reliably comprehensive designs.

My adapted version of the framework is surely not as powerful or as complete as the current offering from Zachman

International, but it works well for DW/BI solution architects, keeping them from overlooking any important system

requirements as they elaborate upon the enterprise nature of their data warehousing applications.

DAMA Functional Framework

The DAMA functional framework offers a comprehensive and widely accepted approach to planning a company’s data

management function and a standard set of activities for completing that plan [Mosley et al. 2009, p. 12]. Whereas the

Zachman framework’s intent is to generate a series of models describing how a general application will fit within the

enterprise information ecosystem, the DAMA framework focuses more narrowly on planning the implementation of

76 PART | II Review of Fast EDW Coding and Risk Mitigation

data management systems in particular. Figure 4.7 illustrates how this framework intersects a particular model of an

organizational environment (the columns) with a list of common data management functions (the rows). For example,

to complete the planning goals stipulated by the shaded portion of this grid, one would have to articulate roles and

responsibilities and also the technologies that the DW/BI department will use (columns D and E) for managing data

security, master data, and the data warehouse itself (rows 5�7).

As with the Zachman approach, only a subset of the framework will apply strongly to any given DW/BI project.

However, DW/BI teams protect themselves from serious oversights by considering the entire planning grid, at least at a

high level, during their initial project planning. They also benefit greatly by occasionally reviewing it throughout a

project as a dependable way to detect whether their project has changed significantly, necessitating further architectural

planning. The DAMA functional framework is discussed later in the book when we include it in an enterprise-capable

approach to requirements management.

Hammergren DW Planning Matrix

As we narrow our analytical scope further, we arrive at the Hammergren DW planning matrix, which provides a

straightforward means for EDW teams to systematically analyze the requirements, design, and implementation of a data

management application. Tom Hammergren started his career as a data warehousing methods planner with Sybase

FIGURE 4.6 Zachman framework adapted for an enterprise data warehousing program. Adapted from the Zachman Framework, 2001 version, as

presented in [DMDict] and [Session 2007].

77

Essential DW/BI Background and Definitions Chapter | 4 77

during the 1990s. He authored several books on data analytic system development and later published Consensus, an

important productivity tool for EDW requirements gathering [Balanced Insight 2014]. His planning framework provides

a streamlined approach to deriving well-grounded DW/BI system designs and high-level implementation plans, an

approach that has been utilized by TDWI in several of its webinars.

Figure 4.8 shows the summary grid from Hammergren’s overall design approach. This grid intersects six steps from

the software development life cycle (the rows) with the functional layers at work within a finished data analytics project

(the columns). Teams that pursue their research and design efforts in the order suggested in the diagram will arrive at a

business-centric architecture for their application that not only supports the user’s functional requirements but also bal-

ances them reasonably with the major nonfunctional requirements that determine how extensively end users will adopt

the system. On the right of this diagram, notes identify the objectives that teams should strive for while working

through the analysis for each SDLC step. The matrix from Hammergren’s original representation has been transposed

so that his functional layers are aligned with the data layers in DW/BI reference architecture introduced previously in

this chapter. Agile EDW team leaders should keep Hammergren’s matrix close by because it serves as a guide to the

detailed steps that developers should execute for several of the column sets during a project that many teams place on

their Kanban-style work boards, such as “analyze” and “design.”

Combining all three of these frameworks provides a robust analytical approach for answering the demands arising

from three different levels within the corporation: end users, IT management, and enterprise architecture. A develop-

ment team can begin with Hammergren’s planning matrix and quickly arrive at a workable design for the team’s appli-

cation as a solution to specific business users. At this point, project leads can refer to the DAMA functional framework

Environmental
elements �

A B C D E F G

Data governance 1

Data architecture 2

Data development 3

Data operations 4

Data security 5

Reference &
master data 6

Data warehousing 7

Business
intelligence 8

Documents &
content 9

Metadata 10

Data quality 11

Organization &
 cultureFunctions requiring
management ��

Goals &
 principles

Activities

Deliverables

Roles &
 responsibilities

Technology

Practices &
techniques

FIGURE 4.7 DAMA’s framework for data management functions. Source: Adapted from DAMA DMBOK Functional FrameworkVersion 3.02.

78 PART | II Review of Fast EDW Coding and Risk Mitigation

to evaluate where they need to invest additional thinking in order to transform their application design into a fully con-

ceptualized DW/BI system with low total cost of ownership. Finally, the project architect can then review the Zachman

EA framework to better anticipate the company-wide requirements that the enterprise architecture group will need the

new application to support.

ADDITIONAL DATA WAREHOUSING CONCEPTS

Data analytics involves a few additional terms that will cause confusion later in the book if left undefined.

Database Management System

A database is an organized collection of data stored in a structured way that enables rapid search and retrieval by a

computer. The database management system (DBMS) is a multi-user, fault-tolerant application used to hold, manipu-

late, and answer queries upon one or more databases. Data warehouses are typically implemented using some of the

world’s best databases, such as Oracle, Microsoft’s SQL Server, and IBM’s DB2. As a core capability, all of these pro-

ducts support relational databases in which information is stored in tables each of which is dedicated to a specific

information entity. These tables are organized very much like a spreadsheet, with the rows being called records. Each

of these records represent a given instance of the entity that the table was modeled to support. In turn, these records

contain columns, each one dedicated to a specific attribute of the focal entity. Each column has a data type and other

constraints to ensure that information is properly constructed when loaded into a record. Users or applications insert,

update, query, and delete the database records using the DBMS’s data manipulation language. For the commercial

DBMSs listed previously, data manipulation commands are written in an international standardized syntax known as

Structured Query Language (SQL).

ETL/ELT

In general, information must be taken from a source and then placed into each successive layer of a data warehouse’s

reference architecture. There are two patterns utilized for this work:

1. Extract the data from sources, transform it as needed, and then load it into the target database belonging to the data

layer being populated.

Data analytics

functional layers

(Hammergren)

Source

data

Target

data

Reference architecture
layers (hughes)

Source

systems

Data

quality
Integration Presentation Semantics Applications

Software engineering

steps
Row objectives

Requirements What do the users want?

Analysis
Do we already have it? If not, how
hard to obtain?

Design
What's the best way to design the
solution, based upon user needs?

Coding
What's the best way to build the solution
and integrate it with other systems?

Testing
How do we verify that the solution built
is complete and correct?

Deployment
How should we roll out the solution and
gain rapid adoption?

Data movement

& quality

User

access

Logical sequencing

FIGURE 4.8 Hammergren’s matrix for sequencing DW/BI development work.

Essential DW/BI Background and Definitions Chapter | 4 79

2. Extract the data, load it in the target with as little manipulation as possible, and then transform it within the target

database to generate additional columns of data.

The first is called extract, transform, and load (ETL), and the second is known as extract, load, and transform

(ELT). ETL was the predominant approach during the 1990s and therefore is often used as the generic term referring to

both patterns. ELT is becoming more prominent, especially with the advent of data warehouse appliances (discussed

later).

Data Loads

When the ETL places information into physical tables, this activity is said to load records into the data warehouse.

Depending on the size of the information being managed, these loads can take days and even weeks. Loads come in

two major varieties, initial and incremental. An initial load places data into the table for the first time. Usually it

involves most or all the records from historical data stores and therefore can require a considerable amount of proces-

sing. Incremental loads utilize only those records from a source application that have been changed or added since the

last load. They are usually smaller than initial loads, but when taken together, the incremental loads from all the source

tables for a data warehouse can still require many hours to complete.

Primary and Foreign Keys

Typically, the desired relationships between tables within a data warehouse are implemented by primary and foreign

keys. The primary key of a table consists of one or more columns whose values can uniquely identify a record within

that table. Naturally, each value in the primary key of a table must occur only once in the table. A foreign key within a

table is a column or set of columns whose values can be found in the primary key of another table. Foreign key values

can occur many times in a given table and once for every record that should link to the primary key in another table.

Therefore, a properly coordinated primary key/foreign key pair physically implements a one-to-many relationship

within a database. The table with the primary key is typically referred to as the parent table and the table with the

foreign key as the child.

Natural and Surrogate Keys

The tables in the source systems have primary keys for uniquely identifying their records. Data warehouses build a his-

tory of the changes to the records in a source system and can therefore acquire multiple images of any given identifier

in the source data. For that reason, DW/BI teams cannot use the source system’s primary keys as primary keys in the

data warehouse tables. So that DW/BI applications can still uniquely identify every instance of records in a table that

tracks source information history, the data warehouse often assigns its own unique serial number as it creates records in

its data tables. The columns holding these new identifiers are called surrogate primary keys or simply “surrogate keys.”

The original primary key values from the source tables, such as “order number,” are often of great interest to the data

warehouse users, so DW/BI teams include them in the target tables alongside the surrogate keys, labeling them as the

source’s natural keys.

Indexes

DBAs typically maintain indexes on database tables of any appreciable size. An index is a data structure that cross

references a set of values from a given domain to the places (records or rows) where each value appears, generally

within a single table. Indexes must be refreshed each time a table is loaded.

Indexes facilitate the joins between database tables, especially between primary and foreign keys. Thus, indexes can

greatly accelerate data retrieval for queries that follow the anticipated path that the indexes were designed to support.

Often, designers anticipate that users will pull data from the database via many different retrieval paths, and they may

well specify a set of indexes to support each one. If they follow this strategy to an extreme, a data warehouse can end

up with so many indexes that the indexes absorb more disk space than the base data tables. When the collection of

indexes approaches such a size, the time required to build or refresh a warehouse’s indexes can start to rival the time

needed to load the data tables.

80 PART | II Review of Fast EDW Coding and Risk Mitigation

Constraints and Referential Integrity

DBAs also configure databases with constraints, which are machine-applied rules governing the values that can be placed

in the data tables. Some constraints, such as UNIQUE or NOT-NULL, operate on a single record. Other constraints are

checks on values between tables. A common example of a multi-table constraint is a foreign key constraint, which ensures

that a record will not be loaded in a table if the values in the foreign key column(s) cannot be found in the primary key

column(s) of the parent table.

DBMS-enforced constraints consume processing power and therefore can slow down warehouse data loads consider-

ably. For this reason, many DW/BI teams do not employ DBMS-enforced constraints in their databases, relying instead

on the ETL to ensure that child records are not inserted without corresponding parent records. When the records in a

database completely agree with the mandatory primary/foreign key constraints specified by the data modeler, the

tables are said to have referential integrity.

Views and Data Virtualization

A pre-declared join between two or more tables is called a database view. End users and applications can retrieve

records from a view by referencing it by name. They do not have to specify the join logic because that logic was estab-

lished by the database administrator when he or she created the view.

Typically, views can be defined without special configuration by the DBAs only across the tables of a single data-

base. However, the past few years have seen marked improvements in data virtualization servers, which allow develo-

pers to easily create views that bridge together separate data warehouses, multiple databases of the same vendor, and

multiple databases from different vendors. They can also draw from data stores in desktop repositories, spreadsheets,

and unstructured data sources including XML messages and email.

Data Schema

The data schema for a database defines the structure of the tables held within that database, along with some additional

objects, such as indexes and views, that are needed for performance and convenience during data retrieval. Data ware-

house designers use data schemas to impart a high level of organization to their databases. Often, the data layers of the

reference architecture are implemented in separate data schemas so that they can be managed separately and even dis-

tributed independently across multiple hosts. Data schemas for end users can sometimes contain mostly views that pull

data from tables in yet another schema, which resides deeper in the data warehouse’s reference architecture.

Subject and Topic Areas

A subject area is a collection of related data warehouse entities or tables logically grouped for presentation and analysis

together. Some subject areas are defined by the end user perspective they support, such as marketing, sales, and finance. Other

subject areas represent a fundamental data resource within a data warehouse, such as customer, product, and organization.

Subject areas can be large, involving scores of tables. Often, development teams must focus their design and loading

efforts on a subset of the tables composing a subject area. I call these subsets within a subject area topic areas.

Examples are the address tables within a customer subject area, or the product hierarchy tables within a product

subject area.

Data Dictionary

To make sense of the data stored in a DBMS, companies usually maintain one or more data dictionaries, which store

business and/or technical terms and definitions for the elements within the database, including tables and views. In gen-

eral, data dictionaries should document the data schemas used to organize the data warehouse and should make clear

the database objects available within each. They should also provide guidance regarding the subject and topic areas of

the data warehouse.

Normalized Data Model

A normalized data model subdivides a data schema into many single-themed tables so that the database will not be sub-

ject to undesirable deletions or duplications of information during data manipulation actions. Thorough normalization

often breaks tables that represent a particular business entity into many smaller tables, resulting in a very complex data

model that few business users can understand. In general, the process of normalization requires up to six steps, each

one requiring a significant investment of effort and resulting in a specific “normal form.” The integration layer is

Essential DW/BI Background and Definitions Chapter | 4 81

frequently modeled using at least “third normal form” and is therefore often labeled “3NF” on diagrams. Queries

against normalized tables effectively “de-normalize” the data—that is, they logically join the normalized tables so that

the output once again resembles a single table.

Dimensional Data Model

A dimensional data model organizes the information in a database so that it is highly intelligible to business users and

so that the DBMS can answer queries very quickly. In general, the data is structured into fact tables that are dedicated

to events, transactions, and other time-based metrics. These metrics are connected to dimension tables that hold the qua-

lifiers needed to analyze the metrics stored in the fact tables. Users analyzing a fact table commonly start with a display

of an aggregate of its metrics and then decompose those values by constraining the query to certain values of the associ-

ated dimensions—a process frequently called “slice and dice” when DW/BI professionals are speaking informally.

Data Marts

A data mart is a business intelligence or data analytics application that focuses on a limited subject area and uses a

dimensional data model design. Typically, a data mart belongs to the departments most closely associated with its focal

subject area, such as “Marketing,” and acquires much of its information from the company’s EDW.

Data Warehouse Appliance

Although there are many architectures for these devices, in general a data warehouse appliance is a system that contains

hardware and software optimized for servicing data warehouse queries. Often, a data warehouse appliance restructures

the data behind the scenes in order to reduce DW/BI query response times by one or more orders of magnitude.

Corporate Information Factory

The corporate information factory (CIF) is an enterprise data warehouse that follows a high-level data flow architecture

advocated by Bill Inmon and Claudia Imhoff [Inmon & Imhoff 2001]. As popularly understood, a CIF gathers data

from sources and transforms it into a repository in the integration layer of the reference architecture. From there, the

information is subsetted out to departmental data marts, delivering the specific columns and rows needed by each one.

In the CIF model, the data stored in the integration layer should be a “single version of the truth” within the company.

Because most DW/BI designers suspect that duplicate information stored within a database inevitably allows data dis-

crepancies to occur, most CIF integration layers are highly normalized because the normalization process leads to

tables that make such redundancy impossible. The data in the integration layer is then de-normalized into a dimensiona-

lized model and stored in an enterprise presentation layer of the warehouse. Data is later subsetted into small dimen-

sional models as needed for specific users and is often structured to specifically support the needs of a particular class

of data analysis, such as sales volumes and profitability.

Enterprise Data Bus

The enterprise data bus (EDB), as championed by Ralph Kimball, is widely considered an alternative to building a cor-

porate information factory [Kimball & Ross 2013]. The EDB loads staged source data directly into the denormalized

tables in the presentation layer of the reference architecture. For that reason, an EDB data warehouse generally does not

need the normalized data tables of an integration layer. Because they avoid the effort of careful data normalization,

EDB warehouses are considered by many DW/BI professionals to save time and money. However, the dimensional

tables in an EDB must be “conformed”—that is, they must be defined and structured so that it can be re-used by many

fact tables. An example is a conformed dimension for company store locations that can be used by the fact tables in the

marketing, sales, and service subject areas. Conforming dimensions can require considerable design time and extra ETL

programming, so the time and cost savings of the EDB can be less than one might expect.

TRADITIONAL PROJECT MANAGEMENT TERMS

Building an EDW involves many intersections between the disciplines of IT and project management. Given that agile

greatly changes the way that teams pursue defining, executing, and validating their work, the remaining chapters

82 PART | II Review of Fast EDW Coding and Risk Mitigation

frequently use the project management terms highlighted in this section. Unless otherwise noted, the following defini-

tions quote or paraphrase terms found in the Project Management Institute’s Project Management Body of Knowledge

[Project Management Institute 2013].

Project

A project is a temporary endeavor undertaken to create a unique product, service, or result. Good project managers

require projects to have a defined purpose, a beginning, and an end, in addition to an explicit means of determining suc-

cess. In this book, projects are also assumed to have financial sponsors and a governance body that has final say over

the features that will be included in the software applications that they create.

Stakeholder

A project stakeholder is any party involved in the endeavor that could be significantly impacted by the outcome of the

work. Not all stakeholders actively participate in a project nor even realize ahead of time that they will be impacted, so

good project managers actively search for and communicate with potential stakeholders. In particular, this book uses

stakeholder to collectively refer to people on both the business and IT sides who will care about what a project

achieves. On the business side, this group includes a project’s sponsors, end users, and the departmental staff involved

in the business process that a DW/BI application will affect, as well as the customers and vendors who will see the

project change the company’s performance. This group also includes the project’s “close stakeholders”—that is, the

business staff (other than the team’s product owner) who actively work with the development team to identify

requirements and validate IT’s deliverables. On the IT side, stakeholders include the developers, any supporting IT

groups such as DBAs, and the managers who will be held accountable if a project fails.

Programs

A program is a group of related projects and activities, managed in a coordinated way to obtain benefits not available

from managing them individually. Commonly, executive sponsors actually fund an IT program, and a program manager

distributes those funds to the component application development projects.

Companies frequently have little choice but to manage enterprise data warehousing efforts as programs, for the

following chain of reasoning: Creating or changing a data warehouse impacts more than just the warehouse that

the development team is working on. The operational systems supplying data will have to be altered in order to create

the access points or the data extracts through which the data warehouse will receive source information. Applications

depending on data transfers from the warehouse may well have to be altered, too, when the data offered to them

expands, disappears, or changes definitions and formats. For each impacted system, upstream or downstream, a separate

project with a dedicated team and project manager needs to be created. For the most part, executives will be uninter-

ested in the upstream and downstream chaining of systems. Because business sponsors simply want the new analytical

capability, IT will have proposed a total cost figure for the warehouse and all attendant work. These executives will

award that funding, and IT will need to split it among the separate teams that will work on each impacted system, mak-

ing the entire effort a program of multiple projects. As work progresses, the business sponsors will require status

updates, change the requested capabilities, and alter the program funding. The program manager will combine the infor-

mation from all the project activities so that it appears to the executives as a single effort.

Portfolios

A portfolio is a roll-up of programs and represents the collection of project work under management for an entire

company, for one particular sponsor, or for a given program manager. Project portfolio management is the practice of

taking an integrated and top-down approach to optimizing the project work and resources within the company.

Companies practicing portfolio management typically profile proposed and ongoing programs in terms of cost, potential

benefits, risks, and alignment with company strategic objectives. They regularly compare the profiles of the programs

within the portfolio in order to more effectively decide which projects to maintain, expand, and discontinue. DW/BI

departments will need to depict proposed projects in a common format so that such comparisons will be straightforward

and accurate.

Essential DW/BI Background and Definitions Chapter | 4 83

Program Management Office

A project management office (PMO) is a group or department within a company that defines and maintains standards

for the management of projects, programs, and portfolios within the organization. For companies utilizing program

management, such as described previously, this group is often called the “program management office.” PMOs strive to

standardize and introduce economies of repetition into the execution of projects and therefore frequently provide tem-

plates for project artifacts, guidance on practices, and definitions for metrics that measure project performance. The

staff members of PMOs are typically schooled in only traditional, plan-driven project management techniques and

therefore can be extremely resistant to agile approaches.

Project Charter

Traditional project management stipulates that projects should begin with a project charter—that is, a short document

that states the key parameters defining a project, such as the sponsor, the project manager, an outline of the desired

product, assumptions and constraints, the approximate funding, the time frame for delivery, and the means to measure

success.

Project and Program Manager

Project and program managers are professionals charged with coordinating the resources, communications, and work

steps involved in successfully completing the project charter. Agile methods offload much of the personnel management

functions that many project managers normally perform during IT development projects. Even so, project managers

will be required to secure resources such as facilities, equipment, and staffing. They also serve as the interface between

the team and formal project governance structures within the company, shepherding requested changes in requirements

or designs through a change control board. Large companies sometimes provision important projects with two project

managers, one of whom represents the business and the project sponsors and the other of whom represents IT and the

development team.

SUMMARY

The scope of agile enterprise data warehousing presents a challenge in terminology because the multiple IT disciplines

involved, including requirements management, data modeling, quality assurance, and project management, do not share

a single vocabulary. This chapter presents a set of terms standardized across these disciplines that will allow the follow-

ing chapters to avoid switching lexicons each time the discussion touches upon a different software engineering disci-

pline. This single vocabulary draws from definitions provided by professional organizations such as DAMA, TDWI,

and IEEE. It covers topics such as basic business terms, data and information, information services, software engineer-

ing, data architecture, enterprise data warehousing, business intelligence, and project management. The reader should

be particularly aware that the agile data warehousing method utilizes a few terms that do not represent standard defini-

tions for the DW/BI profession, including reference architecture, shadow IT, and topic areas.

84 PART | II Review of Fast EDW Coding and Risk Mitigation

Chapter 5

Recap of Agile DW/BI Coding Practices

Although iterative coding is only one of several disciplines for robust software engineering, it is a foundational compo-

nent of agile enterprise data warehousing (EDW) for two reasons. First, programming is the activity in which someone

with his or her fingers on a keyboard actually creates new capabilities for the organization. The other disciplines, which

focus on requirements, data modeling, and quality assurance, can be seen as supporting activities that simply “pave the

road” so that the value-creating work of programming can roll ahead unimpeded. Second, the iterative nature of agile

programming sets the tenor for the entire project. The philosophies and principles embodied within the supporting activ-

ities had better harmonize with the programming style or they will only undermine that value-creating work. Given that

iterative programming is foundational, this chapter provides a summary of the agile coding techniques for data ware-

housing described in my previous works so that we can then craft versions of the remaining software engineering

disciplines that effectively support agile’s high-speed delivery approach.

ITERATIVE CODING ALONE SIGNIFICANTLY IMPROVES BI PROJECTS

Although generic agile methods leave many portions of the full software life cycle unaddressed, they can still dramati-

cally change the economics of an EDW program or department all on their own. My colleagues and I first tried iterative

delivery in 1998 while building a system for a large department of the U.S. government. We took over after a large sys-

tems integrator that had worked on the requested application for 10 years and billed more than $400 million without

providing a single working version of the application. Although the term “agile” had not been coined yet, our iterative

approach had all the key elements of Scrum: We co-located our developers and built the application in small incre-

ments, using eye-to-eye conversations with key users for business departments. We collected new versions of the soft-

ware in an integration environment where stakeholders could continuously evaluate the evolving solution. Every couple

of months or so, when the current build in the acceptance environment had acquired enough new features to justify the

expense of promotion, we pushed a new version into production. Even without the benefit of the fast requirements tem-

plates, adaptable data models, and automated test engines that I describe later in this book, we were able to put the

application online in 6 months, spending only $10 million including hardware. Admittedly, the particularly dysfunc-

tional nature of the starting situation made it easy to achieve dramatic improvements in this case. Still, the iterative,

results-oriented approach at the heart of Scrum cuts through the red tape and confusion of a large government program

to deliver a 20-to-1 acceleration in delivery speed and 40-to-1 improvement in costs, clearly demonstrating the power

of agile philosophies and principles.

Given the success of our first iterative project, my colleagues and I understandably advocated a similar approach for

all our projects thereon. The agile manifesto, posted to the Internet a few years later, revealed to us a group of authors

whose materials gave us a much clearer set of guidelines for further evolving our techniques. Ken Schwaber’s 2004

book on Scrum gave our approach a name and some much needed structure for each coding iteration. Scrum’s simplic-

ity matched well that which had worked so well on our first iterative project, and Scrum’s five-step iteration cycle

offered the ceremonies, terminology, and objectives needed to make that success a repeatable process.

Yet Data Integration Remains a Challenge

Although Scrum greatly improves data warehousing/business intelligence (DW/BI) projects, new practitioners often

note that front-end and back-end programmers have very different experiences with the method. Whereas BI developers

on a team can usually find the means to push new features to the front-end applications every couple of weeks, the

extract, transform, and load (ETL) programmers typically struggle to complete just a few pieces of their user stories,

85
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00005-9

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00005-9

even with 4-week time boxes. Some of this contrast can be attributed to the different tools each type of programmer

uses. Compared to the clunky ETL packages that our profession has for building the data integration modules, the BI

tools seemed absolutely spry in delivering new features for end users. However, the problem runs deeper than tools, as

a good look at the reference architecture introduced in the previous chapter can make clear.

The BI developers have only one or two architectural layers to worry about: semantics and dashboards. The data

presented by the semantic layer is already clean, organized, and stored for the BI tools to draw upon. The ETL develo-

pers, on the other hand, must build modules within several of the most difficult layers of the entire data warehouse

architecture. Their objectives are tantamount to trying to build four or five complicated applications at once. Table 5.1

lists several of the challenges that confronted the data integration specialists on project after project during the early

days of agile data warehousing. The table also lists the adaptations that we eventually identified for Scrum to make it

support data integration work smoothly. The reader will find summaries of many of these adaptations in the following

sections. The fact that these adaptations are necessary makes an important conclusion very clear: Scrum as learned

from certification classes and textbooks is simply “generic Scrum” and not yet ready for back-end data warehousing

applications. When DW/BI teams add to Scrum the adaptations listed in this chapter, they begin to practice not generic

iterative development but, instead, agile data warehousing.

NEW ROLES FOR DW/BI PROJECTS

Generic Scrum is very sparing on the roles it defines for a team. The textbook version of the method states that a team

needs only a business partner to act as “product owner” in addition to another teammate to serve as “Scrum master”

and facilitate the process. Everyone else is simply a “developer.” When the programming begins, Scrum envisions that

the team will self-organize into specific roles and define the handoffs of work that should occur between them.

Unfortunately, this self-organization process never proved easy during the early years when our DW/BI projects

included much data integration work. Arriving at the correct structure for the team could sometimes take a half-dozen

iterations and include a few disastrous user demos before the right organization for our developers became clear.

Because the teams we coached always seemed to arrive at the same general collection of roles, my company decided to

recommend that new teams start with this pattern and evolve from there if further adjustments are necessary.

TABLE 5.1 Areas Where Generic Scrum is Particularly Challenged by Data Integration Work

Challenge Adaptation
1 Data integration stories are far too large for developers to complete in

only one or two weeks
Decompose the users stories one step further into "developer stories" that
each pertain to just one layer of the warehouse's reference architecture

2 The many skills the team needed were not shared widely enough for
developers to swarm the issues as they appeared

1) Define some DW/BI specific roles for the team and clearly articulate the
artifacts and support they will provide the remaining developers, 2) add
columns to the task board for these roles, so that their work is highly
visible

3 Customers demanded to know when we would deliver certain
features and how much they would cost

Take a half-day during Iteration 3 or so to bracket the full backlog by the
current velocity of the team, and then publish an update to this "current
estimate" at the conclusion of all future iterations

4 No single business partner stayed with the project long enough to
become a true product owner

Create a project architect role for one of the developers to drive
requirements and design, so that the team has someone who
understands the whole and stays with the project

5 Developers demanded more detailed guidance than iteration
planning provided before they would start programming a module

Create a system analyst role for one of the developers to provide
source-to-target mappings, but only require them to be 80%
complete before coding begins

6 Even the analysis and design portion of each story could require
more than one iteration

Set up a "pipeline" of work, so that the analysis and design specialties
work one iteration ahead of the developers

7 Developers tended to start far too many tasks at once, making daily
dependency analysis difficult

Add Kanban-style work-in-progress limits to the task board, so that the
team maintains a steady flow of work through the entire development
process

86 PART | II Review of Fast EDW Coding and Risk Mitigation

The following set of roles has proven to be a good initial organization for a DW/BI team. Because these additional

roles provide several dimensions of key decision making, they can be referred to collectively as the team leads in the

project room. The role summaries presented here anticipate the involvement that these team leaders will have in the full

software engineering process presented later. Detailed responsibilities for these roles can be found in my previous

books. Readers considering agile for a small team should keep in mind that the following suggestions are roles and that

each role does not have to be a separate individual. On small teams in particular, people must fill multiple roles. We do

not experience any problems with overloading individuals in this way as long as everyone keeps in mind the role a

particular person is filling at any given moment.

Project Architect

Data warehouses are incredibly expensive undertakings that can squander crucial business opportunities if they do not

perform as needed when placed into production. Given this large risk, the business side of the company should demand

that a single person in information technology (IT) be able to articulate, whenever needed, the reasons why the design

and construction of the warehouse is correct. I call that person the project architect (PA), although I have worked with

companies that call this role the “solution architect” or the “system engineer” instead. All three titles designate someone

who possesses a whole-project view of the undertaking and who has the skills and authority to steer the design as neces-

sary to better meet functional and performance needs.

Given this authority, the PA is in a position in which he or she must certify the DW/BI solution. When the ware-

house is still just a design, the PA certifies to the sponsors that the envisioned application will solve the designated

business problems. When the warehouse enters into production, the PA certifies that those business problems have been

solved.

In order to be able to convincingly assert that the warehouse is a worthwhile solution, the PA will need the authority

to perform three primary duties:

1. Drive requirements

2. Drive design

3. Drive quality assurance

Later, I suggest that the PA also drive recurring project estimates. The word “drive” is a deliberate choice. The PA does

not need to actually perform the work implied by these bullets, but he or she needs to ensure throughout the project that

someone is attending to them effectively.

Of these three duties, driving requirements is the area in which the PA typically invests the greatest measure of

direct, “hands-on” time. This concentration derives from two important considerations. First, during the initiation phase

(to use the Rational Unified Process terminology), someone must provide enough definition of the desired applications

to get the rest of the development process funded, staffed, and moving forward. Thus, for the opening stretch, the PA

will be working alone, with no other teammate to whom to delegate the work. Once the project outlines are established

and a development team assembled, the PA will feel the need to continue leading the work on requirements in order to

keep subsequent decisions aligned with the vision of the project that the sponsor chose to fund.

Second, the PA must certify the solution, both during construction and once delivered. Understanding in detail what

the business requested is the core information that the PA will need in order to perform this certification. One can delegate

authority but not responsibility. If sponsors and stakeholders decide that the application addresses the wrong business

problem or is missing the features needed to allow it to succeed, only the PA will be held accountable. For that reason,

PAs naturally choose to stay closer to the requirements management process than any other aspect of the project. In a later

portion of this book, we examine in detail the means by which the PA can manage enterprise DW/BI requirements.

The second PA duty, drive design, also derives from the project architect’s responsibility to certify the solution. To

assure customers that the application will solve the business problem, the PA must understand what operational data

the warehouse will acquire, how it will be transformed, and how it will then appear to the end users. These are the

major elements of a DW/BI application’s design. Given the deeper understanding of requirements that her early work

on the project provides, the PA usually provides the team members with their first vision of the application’s design,

mapping the list of high-level features to the major requirements. From there on, the PA needs to understand the mid-

level design decisions, constantly tracing them back to the application’s guiding vision. When we discuss requirements

management in greater detail, I suggest an agile set of design artifacts that will equip the PA to pursue this duty. The

data engineering section of this book then describes the major elements that the PA should request that his team incor-

porate into the application’s design.

Recap of Agile DW/BI Coding Practices Chapter | 5 87

Finally, the PA must drive quality assurance in order to certify that the application is a correct and dependable solu-

tion. Although she can ask others to run the necessary tests, she must understand enough about the team’s validation

efforts to assure the stakeholders that the application was tested sufficiently at all levels. The PA’s role in driving this

function emerges when the team realizes that it does not have the funds to test every conceivable aspect of the system.

Given that she will be held accountable if the resulting application is not a dependable solution, the PA naturally must

make the ultimate decision as to how to concentrate the testing that will occur. We consider later in this book what

constitutes sufficient quality assurance for DW/BI projects.

Given the responsibilities listed previously, the PA is the linchpin of the development team. If a talented person has

been engaged for this role and understands its duties, the rest of the team will have the leadership it needs and, given

the power of the agile approach, will surely succeed to deliver a system of considerable value in a business-acceptable

time frame.

Data Modeler

As discussed in the introductory chapters, DW/BI applications are complex data repositories with multiple architectural

layers, each of which has a specific purpose. The team will require at least a logical and physical model for each data

layer. The programmers will need a data dictionary documenting the tables, columns, and constraints within each

schema, along with the database management system (DBMS) views or virtualization objects involved. Drafting these

artifacts is the primary duty of the team’s data modeler (DM).

The combination of layers and artifact types creates a long list of work for the DM. Harking back to the reference

architecture discussed in Chapter 4, at least four data layers will require artifacts: landing, data quality, integration, and

presentation. Three artifacts for four layers results in a work list with 12 major deliverables for the DM. The reference

architecture for some large EDWs can have another four abstraction layers or so, making the DM’s list of project

deliverables even longer.

In addition to producing these artifacts, the DM will have coordination and review responsibilities. First, the DM

will have to collaborate with the project’s architect and analysts to ensure that the columns in the tables of each data

schema are appropriate given the data available from the source systems. Second, the DW/BI project may fall within a

larger ecosystem of corporate applications and thus be subject to technical requirements issued by the enterprise data

architecture and data governance groups. In this event, the DM must adapt all of his project deliverables to this over-

arching set of requirements.

Third, the DM will need to validate the work of the other developers on the team. Following the agile principles of

self-organization and deferring decisions to the last responsible moment, detailed decisions regarding data elements

occur when the developers begin working with the product owner on a user story. The DM will have set some bound-

aries on those decisions in advance; however, he will have to participate in design sessions and later code walkthroughs

in order to ensure that those boundaries were observed.

Finally, because the DM will understand the intent of each data schema better than any other teammate, he will

need collaboration on validating the results of data loads once the ETL has been run. The collaborative effort will

include checking the referential integrity of the loaded data, especially if the team has chosen to maintain integrity

using ETL-coded business rules rather than DBMS-implemented constraints.

Systems Analyst

The systems analyst (SA) is another role that goes by many names. Calling this position a business analyst, process

architect, or the team’s technical lead does somewhat change the function of the role, but a core set of duties always

remains. Whereas the DM supplies the design of the warehouse’s data structures, the SA provides the design of the

transformation processing that will populate those structures with information. This responsibility naturally imparts to

the SA four subsequent duties that greatly assist developers when it comes time to code data transforms:

1. Maintain the application’s upper-level data flow diagrams

2. Standardize the design patterns and technical requirements for the ETL modules

3. Author the source-to-target mappings that the ETL modules will implement (using the 80/20 specs described later)

4. Profile the source data

As with the PA role, the SA can delegate portions of the work to the other developers on the team but in the end

must be able to certify the results and thus cannot escape overall responsibility for these duties.

88 PART | II Review of Fast EDW Coding and Risk Mitigation

The agile manifesto claims that the best designs arise out of self-organized teams. In practice, however, the project

will move faster and achieve a more coherent result if the SA takes the lead on authoring level 0 and level 1 data flow

diagrams. Similarly, for the sake of intelligibility and maintainability, all warehouse modules should follow a single set

of design patterns, and DW/BI teams save time if the SA will take ownership of authoring and validating these patterns

as well.

Although teams gather incredible speed and quality when ETL developers work eye-to-eye with the customer to

derive source-to-target logic, this happy arrangement is unfortunately a very rare occurrence. The analysis required to

plan the transforms is frequently just outside the skill set of the average ETL coder, and so most programmers are nei-

ther willing nor competent to perform this work. When the data transforms become complex and intertwined enough,

most ETL developers will insist that team leaders provide at least draft specifications for them to follow while

programming.

Because they are charged with drafting source-to-target maps, SAs often inherit the duty of profiling source data.

One cannot draft source-to-target logics without understanding the source data, which must be explored and documen-

ted, either with a software utility or by hand. Identifying relationships and data quality problems within operational sys-

tems is also outside the interest and skills of typical ETL developers, so the SA addresses these objectives as well while

profiling source data.

System Tester

Project planners can reasonably expect the developers on their warehouse teams to perform unit and component testing.

However, proving that all the components assemble together as planned is a responsibility that is difficult for multiple

people to fulfill reliably. For that reason, teams need to designate a system tester (ST), whose primary responsibilities

are as follows:

1. To create a repeatable integration test that provides both full progression and full regression testing

2. To coach the developers on unit testing and later validate their results

3. To certify to the project architect and eventually the operations group that the application is worthy to be promoted

into production

4. To certify to the project architect and the business stakeholders that the data in the warehouse is complete and

correct

System integration testing must ensure that the application can run as a complete and coherent assembly of compo-

nents. This objective requires validation of the new features (progression testing) and the previously developed features

that should not have been adversely impacted by the new increments of code (regression testing). Because integration

testing becomes extremely demanding as the warehouse grows, the ST must devise a way to accurately execute a pleth-

ora of test scenarios in a way that remains economical. This goal is usually achieved through automated integration test-

ing, which is addressed in the quality assurance portion of this book.

The ST is also the best choice of role for coaching the developers on unit testing techniques. This work will position

the ST to review the developers’ results, allowing him to assure the PA that the team is achieving the desired level of

test coverage and thoroughness. With detailed knowledge of testing activities at all levels—from unit validation through

integration review—the ST is the best candidate to regularly compile and report data quality metrics to business stake-

holders and the development team.

Proxy Product Owner

Lack of business involvement has from the earliest days of the IT profession been one of the most frequent complaints

of both online transaction processing (OLTP) and online analytical processing development teams. EDW programs suf-

fer from the additional challenge of having to build an application that is so large and complex that often no single

business person is knowledgeable enough to guide the developers across all the subject areas they will have to address.

Consequently, DW/BI projects must often contend with a new face in the product owner’s chair as the focus of the proj-

ect addresses each new business area. Often, these temporary product owners are not particularly enthused or qualified

for the large role that they have taken on. This steady stream of less-than-perfect product owners can seriously compro-

mise the quality of direction that the development team receives.

To stay true to Scrum’s emphasis on business alignment, an agile DW/BI team must both keep the product owner as

its guiding force and also backfill the position when the product owner proves to be inattentive, misguided, or

Recap of Agile DW/BI Coding Practices Chapter | 5 89

underqualified for the role. To meet this challenge, many teams resort to a “proxy product owner” (PPO)—an IT person

who understands the business well enough to both ensure that the current product owner is performing her role

adequately and provide the missing information and decisions that the team needs to keep moving forward.

The most frequent choice for PPO is the team’s project architect because, due to the fact that he is already driving

requirements, he is the best informed about the needs and wants of the business. The degree to which the PA actually

performs PPO duties will wax and wane over the course of a project as the competency of the product owner role fluc-

tuates. If the project truly has the support and attention of the business, the PPO role will stay small, perhaps necessary

only when business is swapping out product owners.

Whenever the PPO role is active, project risk is naturally increased because the project has become essentially

driven by IT. When the team is fortunate to have a business partner who is proficient and mentally engaged, the PA

should drop back into strictly project architecture work and stay ready to resume product owner activities when another

lapse in input from the business becomes apparent.

Scrum Master

The duties of the new roles for Scrum listed are simply an average of what I have witnessed teams devise when working

DW/BI projects that have heavy data integration requirements. The disadvantage of defining new roles is that it increases

the number of interfaces between parties that a team must plan out. Thus, the Scrum master in the typical data analytics

projects takes on an additional responsibility besides reminding the team of the upcoming steps in the iteration cycle. He

or she must also monitor the performance of these new roles and the quality of communications between them.

Every team will arrive at a different pattern for these roles and their intercommunications, so the first step for a

Scrum master may well be to simply articulate the current responsibilities for each role, displaying them on a poster on

the project room wall if necessary. These responsibility outlines will need to be updated as the team’s method evolves,

and the Scrum master can certainly assist this process by calling attention to moments when the demands on a role

seem to have changed, prompting the team to restate how it prefers to collaborate going forward.

Including the New Roles on the Team’s Whale Chart

One handy way to make the roles explicit is for the Scrum master to build a diagram of effort-by-role over the life of a

project. A sample of one I have used with my teams is shown in Figure 5.1. Such a diagram echoes a RUP whale chart,

although the horizontal bands will represent roles rather than software engineering disciplines.

On the sample chart, one can see that the project architect gets started early, followed by the data modeler and sys-

tem analyst. It also shows the proxy product owner’s activity peaking as product owners trade off. Moreover, it shows

the system tester activity occurring steadily throughout the project, with peaks just before demos when integration test-

ing work runs high, and in the middle of iterations when full volume testing occurs (described later).

80/20 SPECIFICATIONS

Throughout the software engineering process, agile gains flexibility by waiting until the last responsible moment to

decide on specifics. Such a practice is consistent with lean software development principles listed in Chapter 2.

That practice unfortunately leaves new teams wondering exactly how detailed to make their requirements, analysis,

and design specifications as they prepare for an upcoming iteration. Once we added the formal roles listed

previously to generic Scrum, my colleagues and I could no longer delay providing our developers some guidance

on this crucial point. After considerable experimentation, we decided the best advice is, “Start with 80/20 specs

and adjust from there.”

One can conceptually order the new roles listed previously in the logical sequence that they touch a user story as it

works its way to a developer’s workbench: product owner, project architect, data modeler, and system analyst. To pre-

pare an 80/20 specification, each role would surmise the level of detail and amount of time that would have been

invested for a given story while following a waterfall method. Under agile, then, they would plan to invest only 20% of

that effort and focus on the most important 80% of the issues. The remaining 20% on any given specification will be

details—details that the product owner and developers can work out if and when they start coding that particular story.

Delaying detailed consideration of the last 20% works out well, in fact, because it is in this “tail block” of details that

90 PART | II Review of Fast EDW Coding and Risk Mitigation

P
roject architect

D
ata m

odeler
P

roduct ow
ner

P
ro xy

P
O

S
ystem

 analyst
C

od ers
S

ystem
 tester

Inception Elaboration Construction Transition
–1 0 1 2 3 4 5 6 7 8

Subrelease 1

FIGURE 5.1 Typical RUP-style whale chart for an agile EDW project.

Recap of Agile DW/BI Coding Practices Chapter | 5 91

the most mistakes occur. By leaving the last 20% unstated until multiple people can collaborate on it from multiple per-

spectives, with their minds fully engaged because it is the very next item that the team plans to build, the team tackles

this tail block of details with the resources needed to finish the specification with a minimum risk of error.

DEVELOPER STORIES

The new roles I have suggested for agile DW/BI projects provide a tremendous amount of support for the programmers

on a data integration project. The programmers will have teammates providing them data models, source-to-target map-

pings, and testing plans at a substantial (but not excessive) level of detail. Even with that level of preparation, however,

user stories typically entail too much programming to be completed within the few short weeks of a Scrum iteration. To

overcome this challenge, teams naturally begin to decompose their stories further. Among the many decomposition

strategies our teams experimented with, the notion of “developer stories” proved the one that worked best.

DW/BI User Stories Hide Much of the Data Integration Work

Product owners cannot imagine at first how much work a simple user story can be for developers. For one team I coached

in the insurance industry, the very first user story was the request used as an example in Figure 2.7:

As a property policy rate analyst, I want to be able to compare total exposure to policy values for our top 10% of loss inci-

dents, with drilldown by product category, customer demographics, and geography, so that we can identify clusters of custo-

mers for whom we should stop discounting property policies.

As summarized in Figure 5.2, this request implied a tremendous number of target tables for the team to build and

populate in the multiple layers of the reference architecture. The team’s DM stated that this story would require 6

Policy

Claims
Xacts

Master
Geo

Master
Cust

Product

Total
Exposure

PolicyP&C PolicyP&C policy

ClaimsClaims

ActuarialActuarial

Master
geo

Master
cust

Product

Dim_Customer

Dim_Product

Dim_Geography

Exposure
dashboard

Fact_Exposure

Fact_Policy

Fact_Losses

Total
exposure

Claims
Xacts

8 tables

5 tables

7 tables

6 tables

5 tables

9 tables

14 tables

5 tables

11 tables

6 tables26 tables14 tables30 tables

Semantic
layer

(reporting
universes)

End-user applications
(reports & dashboards)

Staging
layer

Data
quality
layer

Integration
layer

(standard
normal form)

Presentation
layer

(conformed
dimensional form)

Source
systems

FIGURE 5.2 Agile EDW user stories result in too many developer stories for one, short Iteration.

92 PART | II Review of Fast EDW Coding and Risk Mitigation

tables in the presentation layer: three fact tables for policy, exposure, and losses, and three dimension tables for cus-

tomer, products, and geographies. She then estimated that those presentation tables would have to be populated from

approximately 26 tables in the integration layer and 14 tables in the data quality layer. The PA and SA examined the

three separate transaction systems that would serve as a source for the integration layer and calculated that the team

would have to build extracts for nearly 30 tables from the operational systems.

As depicted schematically in Figure 5.2, the decomposition of a single user story resulted in 30 landing routines and

46 data transform modules for the data integration portion of the project. The ETL coders would have to program and

execute both the initial and the incremental load for these tables before the BI developer could put even the first ele-

ment on a dashboard. The work was clearly far more than the team could code in a couple of months, let alone a few

weeks. Such an explosion of work occurs in the first few stories of every significant data warehousing subject area.

After a few months, the team will have delivered many of the landing dimensions tables so that the multiplier between

user stories and the number of development modules still needing to be built diminishes somewhat.

The major lesson that new agile DW/BI teams should learn from Figure 5.2 is that the number of required tables in

the depths of the reference architecture remains an unknown if they try to manage their project requirements at the user

story level. It takes time for the team leaders, such as the PA, DM, and SA, to reflect and analyze the situation before

estimating the number of landing, data quality, and integration tables a particular user story will require. This work can-

not be accomplished with any accuracy on the fly during a story conference. If this work is not performed before each

iteration begins, the multiplier between user stories and data transforms required will become a hidden landmine wait-

ing to explode beneath the team when the team begins coding each product owner request. In my experience in rescuing

dozens of new agile programs during the past couple of decades, this hidden multiplier is the primary reason that teams

dabbling with agile data warehousing tend to fail miserably on their first incremental delivery project.

One solution is for the project architect to work with the product owner to further break down each user story. For

our example, the product owner could translate the request into three user stories, which can be summarized as follows:

� Policies by customer, product, and geography
� Exposure by customer, product, and geography
� Losses by customer, product, and geography

However, even decomposing the original request down to just “exposure by customer for data from the actuarial

system” will still require building and populating 17 tables, as can be deduced from Figure 5.2. This is still far too

much work for the team to accomplish in the few short weeks allowed by a Scrum iteration.

Developer Stories Make DW/BI Work More Manageable

The solution to this challenging multiplier effect is the developer story. Developer stories result when a team intersects

Scrum’s notion of a user story with the layers of the data warehouse’s reference architecture. The easiest way to iden-

tify these developer stories is to take a moment before each story conference to stretch a given user story across the

data analytic application’s reference architecture, as shown in Figure 5.3. At each point where the user story touches a

layer of the reference architecture, the team can enumerate one or more target tables that developers will have to load

before the ETL of the next layer will have the inputs it requires. With this step, a user story such as “replace the Sales

Order Customer Number on our Customer Churn analyses with a company-standard customer identifier” gives rise to

multiple developer stories, such as the following:

� Land customer extracts for three source systems.
� Load the landed customer data into the Party tables within the integration layer.
� Populate the Corporate Customer dimension table in the presentation layer from the Party tables.
� Add the Corporate Customer dimension to the BI tool’s universe.
� Replace the Sales Order Customer Number field with Corporate Customer ID on the six Customer Churn pivot tables.

Teams decide on a case-by-case basis whether to write a developer story for each table that needs to be loaded in a

given data layer, or whether they can clump a few tables together into one developer story. Clump too many

tables together and the developer story becomes difficult for developers to complete in one iteration. On the other hand,

writing a developer story for every little table needing ETL can make the backlog cluttered and unintelligible to the

product owner. Either way, when agile DW/BI teams begin defining their backlogs with developer stories, they quickly

discover how much work used to be hidden within user stories. Suddenly, everyone can see why their early attempts

deliver a complete user story within a short Scrum time box were next to impossible.

Recap of Agile DW/BI Coding Practices Chapter | 5 93

The term “developer story” is a deliberate hybrid of user story and developer task. The term is an appropriate com-

bination given the developer story’s role in bridging these two types of work items that generic Scrum defines. “Story”

communicates to the team that these work items are meant to be clearly understandable to the product owner, just like

user stories, so the team had better be able to articulate the business value toward which each one is driving.

“Developer” acknowledges that the developers must take the lead in defining these work items because the product

owner, a member of the business and not entirely fluent with the application’s reference architecture, would never have

been able to author them independently.

Developer Stories Require a Deeper Understanding of Value

Readers should be aware that developer stories are typically considered an anathema by most agile practitioners who do

not work on data analytics projects. Generic agile purists will immediately point out that a given developer story does

not deliver value to the customer. Technically, I suppose this criticism is correct. However, on an agile project, there is

considerable wiggle room with regard to terms such as “value” and “customer,” and a DW/BI team has to draw on

these nuances to make agile work for data integration project. True, the product owner is a member of the larger com-

munity of end users, so developers will want to keep the backlog business intelligible and value driven, but the product

owner is also a member of the team. By being on the team, the product owner soon learns that data must take a few

intermediate forms before it can appear on a dashboard. With that fact established, value starts to come in many forms.

Some forms of value can be appreciated by all business users of the application. Other forms, only the product owner

can understand.

Consider, for example, the Fortune 50 aerospace company where my teams first started experimenting with devel-

oper stories. The company was halfway through a 5-year enterprise resource planning (ERP) customization effort when

it realized that the ERP package would provide too little operational reporting to maintain normal company operations.

The executives turned to the DW/BI department in a panic, asking if the department could replace the company’s opera-

tional reporting system in the span of 2 years. DW/BI started working through the assignment incrementally, but the

first iteration revealed a serious obstacle. The 1000-plus tables and their columns in this particular ERP package had all

been named using German words that had been abbreviated to four characters. No one in this U.S. company could

make sense of the source application’s data model. The company’s information seemed to be locked away so that build-

ing any reporting or analysis would be impossible.

Fortunately, the vendor of the ETL tool we were using had a bolt-on product designed for that exact ERP system

with views that made the source data model intelligible to English speakers. We crafted our first few developer stories

to simply land the purchase orders and vendors from the new source system. On demo day, we let our product owner

test drive just three landed tables after we had joined them together using only natural keys. She stood up smiling, half-

way through the test drive, and left to make a phone call to the vice president sponsoring the project. “We’ve been able

Semantic
layer

(reporting universes)

Staging
layer

Data
quality
layer

Integration
layer

(standard
normal form)

Presentation
layer

(conformed
dimensional form)

User story

Developer
stories

Developer
stories

Developer
stories

Developer
stories

Developer
stories

Developer
stories

End-user
applications

(reports & dashboards)

FIGURE 5.3 Deriving developer stories from user stories.

94 PART | II Review of Fast EDW Coding and Risk Mitigation

to access the ERP data,” she told him, “There’s hope for this project after all.” Did that quick look at nothing more

than landed data have any value to the product owner and her sponsor? Certainly it did, even though finished fact and

dimension tables were nowhere close to being displayed on a dashboard. Did it have any discernible value to the other

stakeholders who would someday use the BI application we were planning to build? Not really, but at least it had value

to a couple of key stakeholders. The same could be said of the next round of developer stories we delivered that nudged

the operational data steadily closer to the dashboard.

The conclusion we drew from this early experience with developer stories has proven true in all the agile DW/BI

projects that my company supported from then on: Once the product owner, sponsors, and even the near stakeholders

realize how complex a DW/BI project truly is, they begin to see value each time data is advanced to another abstraction

layer of the reference architecture—because these small steps steadily reduce the risk that the enormous project they

have undertaken might fail.

Developer stories are a compromise between full value to the business community and an accomplishment only IT

can appreciate. As such, they need to be managed carefully. As long as the product owner understands from his busi-

ness perspective the incremental risk reduction that each item represents—and can brag to the sponsors about what his

team has accomplished—developer stories will function in a project in the same way that user stories support generic

Scrum. Developer stories allow the work of DW/BI user stories to be decomposed into iteration-sized chunks, and they

trace directly back to a user story that the wider business community can appreciate, keeping IT aligned with the needs

of the company.

CURRENT ESTIMATES

Developer stories allow DW/BI projects to be decomposed into small work bundles that are actionable by the program-

mers but still of recognizable value to the product owner. Accordingly, they become the “stories” that are assembled

into backlogs, especially for the data integration aspects of an agile business intelligence project. The developer stories

are estimated in story points and later decomposed into technical tasks for completion during a development iteration.

The fact that developer stories can be estimated in story points also makes them the foundation for forecasting the level

of effort that a particular DW/BI release or even an entire project will entail. Armed with a backlog of developer stories

estimated in story points, a development team can provide stakeholders in both the business and IT with an extremely

valuable approximation of the remaining work—a forecast called a “current estimate.”

Many Scrum teams working on OLTP applications are strongly averse to estimating the size of a project. To make

sense of this aversion, one should first understand that the stories on a project backlog are not all of equal quality. In gen-

eral, the stories prioritized at the top are usually kept “crisp” by the development teams—that is, they are well articulated

and intelligible to both business and IT. The team wants these stories to be atomic, estimatable, and testable because such

qualities make them actionable, and being at the top of the backlog, the team will be programming them someday very

soon. On the other hand, teams usually leave the stories farther down the backlog purposely vague, which makes sense

following lean software development’s aversion to amassing large inventories of unfinished work. If they were to keep all

the stories on the backlog equally well-defined, they would pay a heavy price in wasted effort when business conditions

change and the product owner decides to start dropping stories from the project backlog.

With this context, many agile teams also view estimating an entire project backlog as potentially wasteful.

Moreover, they dread estimating the whole project out of fear that the customer may well treat the result as a commit-

ment, a painful circumstance that they remember all too well from their prior waterfall projects. If they were to forecast

labor for the vague stories at the middle and bottom of the backlog, they would probably underestimate them signifi-

cantly due to the hidden details affecting each one.

For all these reasons, I have heard Scrum masters flatly refuse to provide a whole-project estimate, telling their product

owner to settle instead for a generic agile approach: “Simply fund the team for an iteration, and if you like what we

deliver, give us the money to run another iteration. We’ll keep programming new features as long as you fund the team.”

Such an incremental planning approach may work well for transaction-capture systems in which most iterations result in

changes immediately visible on an end user’s interface. Unfortunately, data integration projects must populate

tables buried deep in the DW/BI reference architecture so that it takes multiple iterations to deliver new results all the

way from source data to the dashboard. Add the fact that everyone instinctively knows data warehousing projects are large

and risky, and most DW/BI program sponsors will not accept a “take it as it comes” approach to funding their projects.

Accordingly, agile DW/BI teams must embrace whole-project estimating. Veteran Scrum masters perform release

planning, in which the user stories that will go into the next release are estimated en masse in order to create a

Recap of Agile DW/BI Coding Practices Chapter | 5 95

burndown chart in story points that indicates whether all the development will be done by a given calendar day. Agile

data warehousing teams need to extend this technique to cover all the known developer stories on the project backlog.

Not only does this allow a full project burndown chart, useful in and of itself, but also, more important, it positions the

team to calculate the currently perceived, full-project cost and duration.

At approximately Iteration 3 or 4 of a new project, an agile EDW team takes a day away from programming to derive

story point estimates for the remaining developer stories on the entire project backlog. The team then brackets that list

using its current velocity to yield a “current estimate” of the project, as shown in Figure 5.4. In this example, the team has

used its velocity of 16 story points delivered per iteration to identify that the remaining backlog will take nine more devel-

opment iterations to complete. Using this technique, the team can state when particular features will be delivered,

given the

� current velocity;
� current collection of stories; and

Story
Business

value Priority
Story
points Iteration

Iteration
points

Subrelease

Operations analyst wants call rates so that.... 1000 1 3 1

Finance analyst wants margins so that.... 948 2 8 1

Sales analyst wants close rate so that.... 895 3 1 1

Marketing analyst wants lead conversions so that.... 805 4 3 1

Operations manager wants call rates so that.... 779 5 5 2

Finance director wants close rate so that.... 724 6 3 2

Operations analyst wants margins so that.... 687 8 8 2

Operations analyst wants close rate so that.... 699 7 13 3

Marketing manager wants close rate so that.... 672 9 3 3

Sales manager wants close rate so that.... 669 10 3 4

Marketing director wants call rates so that.... 659 11 8 4

Operations manager wants lead conversions so that.... 644 12 5 4

Marketing manager wants margins so that.... 634 13 8 5

Marketing analyst wants close rate so that.... 602 14 5 5

Sales manager wants lead conversions so that.... 583 15 3 5

Sales analyst wants margins so that.... 525 16 5 6

Marketing manager wants call rates so that.... 513 18 3 6

Sale director wants call rates so that.... 512 19 8 6

Marketing director wants lead conversions so that.... 515 17 13 7

Marketing director wants margins so that.... 511 20 2 7

Operations director wants close rate so that.... 497 21 5 8

Finance director wants margins so that.... 496 22 2 8

Sales manager wants call rates so that.... 492 23 5 8

Finance analyst wants lead conversions so that.... 469 24 3 8

Operations analyst wants lead conversions so that.... 461 25 8 9

Operations manager wants margins so that.... 433 26 5 9

Marketing analyst wants margins so that.... 412 27 3 9

1

2

3

15

16

16

15

16

16

16

16

15

FIGURE 5.4 A “current estimate” for an agile data warehousing project.

96 PART | II Review of Fast EDW Coding and Risk Mitigation

� current story point estimates on the stories farther down the backlog (which may change when the stories are later

groomed).

By counting up the total number of iterations projected and multiplying first by the length of an iteration and second

by the personnel and other costs of running an iteration, the team can forecast the total duration and development

expense of the project—assuming that the velocity and backlog remain the same.

Because velocities and backlogs change, agile DW/BI teams inform all stakeholders that the current estimate will be

revisited at the end of each development iteration, when a new value for the team velocity will be measured. With every

iteration, teams consider the current collection of developer stories, rebracket the list by the velocity just observed, and

recalculate the implied duration and project cost. Unlike waterfall teams, agile DW/BI developers regularly update their

project estimates, empowering their business partners to make evidence-based decisions regarding project scope and

resources should the latest forecast reveal that the project will require more or less money and time to complete than

previously expected.

This pattern of continually updating the whole-project estimate causes many people to state, “Agile DW/BI will

never work, at least not at my company. We have to know exactly what a project is going to cost before we can get

started.” This conclusion is unfortunate because they are saying that they are willing to forego the tripling of delivery

speed that agile programming offers because their stakeholders insist on one and only one estimate for a project,

derived at the start of a project, when the team’s ignorance of requirements, design, and source data is greatest. When

they refuse the continually refreshed projections of total duration and cost that agile offers, these companies decide to

manage their projects with a single target date and set themselves up for a nasty surprise when the assumptions embed-

ded in that original estimate diverge from reality. Such a preference is like choosing a car that only has an idiot light

for a fuel gauge. Instead of warning the driver that the vehicle is running low on gas, the single-estimate approach con-

demns everyone in the car to a long walk home when suddenly the tank is empty.

Given the importance of whole-project estimates in managing agile DW/BI programs, development teams are wise

to treat seriously the matter of refreshing their current estimates. Arriving at an accurate forecast involves managing

well the components that go into that calculation—the developer stories, story point estimates, and current team veloc-

ity. With the current estimate essential for matching actual results to sponsor expectations, the responsibility of manag-

ing the components and their assembly into a forecast at the end of every iteration often falls to the project architect,

who is already the key leadership role on the team.

The one nuance to agile DW/BI’s approach of continually refreshing current estimates is that in order to forecast

total cost and duration, new teams must complete a couple of iterations before they will have a dependable measure of

their velocity. After establishing a velocity and getting some feedback on the accuracy of the developers’ story points,

the project architect should be able to provide a reliable count of iterations-to-go. In contrast, established teams do not

need to wait a few iterations before providing a current estimate. Assuming that their next project employs the same ref-

erence architecture and draws from a similar selection of operational systems, an experienced team can build a first cur-

rent estimate by identifying and assigning story points to the new developers’ stories the same way it did for the project

it just completed. The team can then apply the story-point velocity measured from the last iteration on the previous

project.

Guiding management to update its mindset to work with a constantly evolving estimate may take some convincing.

I have found this transition challenging but not daunting. Even traditional project managers realize by the fourth or fifth

iteration that an agile team’s current estimate is far more accurate than the forecasts that traditional methods provide at

the beginning of a project. Once convinced that the agile approach makes the project’s trajectory much easier to track,

project managers frequently become strong advocates for redefining project governance to allow iterative current

estimates.

ADDING TECHNIQUES FROM KANBAN

My colleagues and I found that agile data warehousing teams became much easier to manage once we adapted Scrum

by adding new roles, developer stories, 80/20 specifications, and current estimates. These techniques ensure that a team

has the skills it needs, that right-sized requests make up the backlog, that developers have enough direction to begin

coding, and that high-level stakeholders receive usable appraisal of whole-project cost and duration. Still, the work

within the project room did not proceed smoothly until we also introduced “pipelined” engineering steps, which

required adding a couple of techniques from Kanban. The result was a hybrid method along the lines of Scrumban, as

described in Chapter 3, with a distinct data warehousing flavor.

Recap of Agile DW/BI Coding Practices Chapter | 5 97

Pipelined Delivery

Developer stories helped rightsize the work for the project backlog, but when teams further decomposed them into tech-

nical tasks to put on the task board, the sequence of work was still very difficult to complete within a single iteration.

Even a developer story as simple as “load the landed customer data into the Party tables within the integration layer”

generates a long list of tasks, such as the following:

� Profile the landed source data.
� Draft the source-to-target map.
� Perform the detailed design.
� Design the data tables and get them built in the database.
� Prepare the test data.
� Code the initial and incremental load logic.
� Perform unit and component testing.
� Add the module to the integration test suite.
� Draft updates for the install guide, operations manual, and user guide.
� Resolve integration testing issues.
� Script the high points for the user demo.

Such a list immediately confronts the agile DW/BI team with two challenges:

1. This list is simply too much work to finish in a few short weeks.

2. These tasks require very different skills that must be applied sequentially.

New Scrum teams will typically just place all this work on the task board and leave it for the group to self-organize

a solution to these challenges. What they typically experience is that the systems analyst needs a few days to perform

the analysis and produce the mapping specifications. The data modeler then needs a few days to structure and vet the

tables to be loaded. Combined, these tasks that must precede the ETL programming will consume 4�8 days, which

represents a major portion of a development iteration. The team must also subtract out a few days at the end of the iter-

ation for integration testing and loading the demonstration data. Even with a 4-week sprint, which many practitioners

consider too long, the programmers will have only approximately 9 days to complete all the coding required once they

have made time for the necessary preparation and wrap-up activities.

The disadvantage of sprints that last 4 weeks or longer is that the team goes too long without review from the product

owner, which (1) allows major mistakes to occur and (2) leaves the product owner with too little involvement to remain

an integral part of the team. Even if a longer iteration were feasible, note that while the systems analyst and data modeler

are busy preparing the specifications for the iteration’s backlog of stories, all other members of the team have no work to

do. Trying to organize a Scrum sprint with 3 days of analysis, 3 days of modeling, 9 days of coding, and then 3 days of

testing is like trying to complete a waterfall inside a Scrum iteration, and it has been labeled “water-Scrum-fall” or

“WaterScrum” by the agile community [Malik 2007]. As noted, WaterScrum makes it very difficult to utilize a team’s

resources to the fullest. Moreover, it leads to very bad interpersonal dynamics between the roles on the team. The

programmers will spend the first week of the iteration harping on their analysis and design teammates, urging them to

finish. Later, the system tester will be exasperated when coding runs long, leaving her only 30 minutes before the user

demo to validate an entire build.

Faced with these frustrations, every DW/BI team I have ever worked with eventually decided to make the same

adaptation to Scrum, one that works very well. During the retrospective for Iteration 3 or 4, the ETL developers would

turn to their analysis and design teammates and ask “Can’t you just work one iteration ahead of us?” Because a team’s

project backlog makes it fairly easy to predict which stories the programmers will work on during the next few sprints,

the architect, data modeler, and analyst usually agreed with this request. Going forward, they decide to invest the extra

effort needed to finish the specifications for a few stories by the time each story conference arrived so that these work

items would be ready for immediate programming.

A similar realization invariably occurred to system tester role, too. “I’m so tired of getting only a half hour to

perform integration testing on each build,” the system tester would tell the developers. “Why don’t you guys just take

the whole iteration for programming—that’s essentially what you’re doing now. I’ll run the exhaustive validation on

each build one iteration behind you.” By pushing analysis and design to one iteration before coding, and system

testing to one iteration afterward, agile DW/BI teams self-organize their work into a three-stage pipeline, as shown in

Figure 5.5.

98 PART | II Review of Fast EDW Coding and Risk Mitigation

On first look, some people claim that this approach is essentially a return to waterfall, but that criticism misses several

important points. The intent of a pipelined development approach is still to code fast and continuously deliver value to

the customer. The roles that work both ends of the pipeline, such as architects, analysis, designers, and testers, still

remain in the project room, ready to answer programmers’ questions and collaborate with them eye-to-eye in real time.

Only when the developers have what they need to move forward do the team’s technical leaders then turn back to their

preparation or validation work, focusing on it until the developers need further support.

Pipelining restores healthy team dynamics and leads to much better resource utilization, but it can have an inverse

impact on the Scrum task board that needs to be resolved. When developers first begin to pipeline their work, they tend

to create task cards for the analysis, design, and testing work, placing them on the task board and reviewing them with

the entire team during the daily stand-up meetings, as if they were just another iteration task. Unfortunately, this prac-

tice makes the task board extremely difficult to understand because suddenly cards for three iterations of work have

appeared, including

� tasks for stories undergoing analysis and design for the next iteration;
� tasks for stories being coded during the current iteration; and
� tasks for stories from the prior iteration now undergoing integration testing.

On large projects, the resulting clutter made the task board unintelligible to programmers to the point that they could

not easily find their own work, seriously undermining the smooth functioning of the self-organized teams. Teams can

solve this challenge with a technique from Kanban. As mentioned in Chapter 2, the columns of a Kanban work board

represent software engineering steps rather than the status of a task card. Many teams extend their Scrum task boards

with Kanban-style columns, as shown in Figure 3.7, in which columns for analysis and design work were added to the

front and columns for advanced testing activities were placed at the end. This adaptation moves nonprogramming work

to the edges of the board, leaving the coding task as an uncluttered collection in the middle. Note that the cards change

granularity as they move from left to right. They first appear in the requirements columns as user stories, decompose

into developer stories when they enter the high-level design columns, and then break down further into task cards as

they enter the Scrum task board embedded in the middle of this artifact. When the programming is complete, the team

may very well assemble all the tasks back into developer stories for integration testing and naturally also transfer the

developer stories back into user stories for end-user acceptance testing.

Interestingly, introducing the Scrumban task board will further change the manner in which many of the nonpro-

gramming teammates organize their work. At first, the analysis and design roles, for example, will strive to time box

their specification efforts, just as they worked when the team had only a Scrum task board. Soon, however, they will

perceive that the developers needed only a certain number of story points of work prepared for them each iteration.

Analysis &
design

Development System
testing

Release pool

Functional demo
using small,

managed data

Repeated demo
with full volume load

of live data

Product owner

Release backlog
(project requirements)

FIGURE 5.5 Agile data warehousing requires pipelined work specialties.

Recap of Agile DW/BI Coding Practices Chapter | 5 99

They will realize that rather than time boxing their work—which has ceremonial overhead—they can be just as effec-

tive by simply keeping a certain amount of story points of developer stories ready to develop at any one time. They

will switch from organizing their work by time box to simply keeping a buffer full of defined work. When the coders

pull work from this buffer, creating a hole, the analysis and design teammates will put down whatever else they are

doing and focus on refilling their team’s “ready to program” buffer. They will have switched from Scrum’s time-boxed

approach to Kanban’s pull-based system.

Similarly, system testers quickly realize that the ETL developers working upstream complete only a certain number

of story points each iteration. The testers’ objectives will also evolve to where they add enough staff for quality assur-

ance to sustain integration testing for slightly more than the average number of story points completed each iteration by

the developers. They will then pull work from the “Waiting SIT” column into “In SIT” and use the next column, user

acceptance testing (UAT), as their output buffer.

Work-in-Progress Limits for Developers

Switching to a two-tiered task board makes it easy to incorporate another Kanban technique—work-in-progress (WIP)

limits—for those teams that need it. Approximately half the teams I have coached throughout the years have had trouble

staying focused on a few tasks at a time. When an iteration commenced for these teams, far too many tasks would

appear in the programmers’ “under development” column at once. Having that many open tasks indicated that the pro-

grammers were multitasking considerably and therefore losing velocity in switching between tasks. To slightly tamp

down on this frenetic activity, we placed WIP limits on the columns, as seen in Figure 3.7. By limiting the number of

stories that could enter programming and even the number of tasks that developers could start coding, team members

would force themselves to finish work very soon after it was started, greatly reducing multitasking.

The WIP limits also forced some cross-training, an important long-term goal of DW/BI management. For example,

when the Under Dev column fell empty of stories because cards were stuck in Profile and Model, an ETL developer

and the system tester would volunteer to perform some of the data profiling work and help the systems analyst refill the

Programming section of the board. By getting teammates to move between roles in order to resolve bottlenecks, the

developers learned new tools and the DW/BI department began to see benefits from having developers with a widening

set of skills.

Iteration �1 and 0

Pipelining the development will change the way a team prepares a project for development. From its earliest days,

Scrum has advocated an “Iteration 0,” which gives a team time to prepare for the development sprints that will begin

with Iteration 1. Pipelined development makes it clear that a further prep step before Iteration 0 will be necessary.

By laying out the package of stores that will be developed with each iterations as shown in Figure 5.6, it can be

seen that developers will program the stories in Package A during Iteration 1, then the stories in Package B during

Iteration 2, and so on. With pipelining, analysis and design roles need to work on a given package one iteration before

the developers start coding it. Accordingly, the figure shows that Package A must receive analysis and design work dur-

ing Iteration 0 so that it will be ready for coding during Iteration 1.

The analysis and design teammates will in turn need some details regarding the business requirements and the appli-

cation vision before they can draft 80/20 specs for a given package. They must get these details from the project archi-

tect. Consequently, the project architect will need to derive the vision for Package A during an Iteration �1 so that the

analysis and design teammates can add their details during Iteration 0 in preparation for programming the package in

Iteration 1. Combining these on the grid in Figure 5.6, it can be seen that every package of work takes a predictable,

diagonal path as it moves between stations in the pipeline and across time. System testing logically occurs after coding.

As can be seen in the diagram, Package A receives system testing during Iteration 2.

The plus sign marked on Package A for Iteration �1 and 0 is an important detail in Figure 5.6. Because Package A

is the first set of stories that will be coded, the programming solutions utilized by these developers will set in motion

the patterns to be used for the entire project. If the developers programmed the stories of Package A thinking only of

the functionality needed for the first demo, they could easily establish some regrettable coding patterns and make some

poor architectural decisions that would be very difficult to correct in the future. For that reason, the project architect

and the analysis and design teammates should invest more in their lead-off packages in order to provide the program-

mers with a “whole-project context.” With this extra bit of design work in their first work package, the developers will

100 PART | II Review of Fast EDW Coding and Risk Mitigation

be able to keep the application modules consistent and coherent across time. Thus, Package A for both of them will

have slightly more detail, so it is labeled “A1 ” in the diagram rather than just “A.”

In acknowledging that Package A1 will need to provide whole-project context, I do not mean to suggest the team

should resort to the big-design-upfront work pattern that bedevils waterfall and many RUP projects. Agile DW/BI teams

must keep in mind that their analysis and design teammates will provide 80/20 specifications—module descriptions that

cover the most important 80% of a need component but that require only 20% as much time to author as a full waterfall

spec. The project architect should aim for the same level of completeness, too, in preparing to communicate the most

important aspects with his or her vision artifacts, leaving the fine details for later. For each step in the pipeline, the

remaining details will emerge when the next party downstream begins working a package. The upstream party provid-

ing the specification is simply another teammate who will be close at hand to answer any questions.

Two-Pass Testing

Pipelining an agile DW/BI team’s development work will also change the pattern it follows for validating its deliver-

ables. That validation will require two reviews, which help the developers reach a higher level of thoroughness in test-

ing than the single-pass approach envisioned before they started pipelining their activities.

As shown in Figure 5.5, the first review occurs at the end of the development step during the iteration demo. At this

point, the developers allow the product owner to test drive the new features, as is normal for Scrum, but here they have

to employ a rather small set of data for the iteration demo—one they can load in approximately 1 hour. Using a data set

that takes longer than an hour to load simply consumes too much time during the iteration’s development step, given

that the programmers must frequently load, review, catch bugs, and recode their modules. A small data set may save

time for coding and demonstrations, but unfortunately DW/BI professionals have learned from experience that just one

or two records out of a million can break an important business rule. To be safe, each build should be validated with

data that closely resembles the full load that a warehouse will receive from its source systems.

Loading near-production data requires considerable time, sometimes several days, due to the number of records. With a

pipelined work approach, the system tester begins loading the near-production data set soon after the programmers have

completed the iteration demo using the small, functional data set. Once the near-production data load is complete, the sys-

tem tester schedules time with the product owner and repeats the previous iteration demo. Because the full-volume load

may include troublesome data that the small, functional data set did not, the system tester and product owner search for fea-

tures and business rules that no longer work during this second demo. Thus, with pipelined work pattern, the product owner

receives two distinct demonstrations of each build, and the quality of DW/BI application improves commensurately.

Iteration

Project
architect

Data modeler /
sys analyst Coders System test

Solution reqts Technical reqts Potentially shippable Shippable code

–1

0

1

2

3

4

A+

A+B

AB

AB

B

C

CD

CD

CD

FIGURE 5.6 Work packages tend to flow diagonally across technical specialties and iterations.

Recap of Agile DW/BI Coding Practices Chapter | 5 101

EVIDENCE-BASED SERVICE LEVEL AGREEMENTS

One important benefit agile DW/BI teams reap from employing a Kanban-style work board is that after approximately a

half-dozen iterations, they can start providing the business and IT management with evidence-based service level agree-

ments (SLAs). I introduced this concept using Figure 3.5. Agile DW/BI teams must adapt the approach slightly but can still

arrive at very accurate, evidence-based average cycle times to help their stakeholders plan delivery times for their projects.

An example of a Kanban distribution analysis adapted for data warehousing is displayed in Figure 5.7. Unlike

generic Kanban, which strives to work small stories that are dependably the same size, data warehousing projects have

a tougher mix of developer stories that vary more in their story-point estimates. The team cannot decompose the work

packages beyond the level of developer stories without making them unintelligible to the product owner. Unfortunately,

major differences in size will remain between developer stories of different types, such as extract scripts and integration

modules. Moreover, agile DW/BI teams load the data into a wide range of different target types—from small dimen-

sions with current data only to large, slowly changing dimensions with complex logic for updating their history records.

DW/BI teams also load a wide range of fact tables, from simple transactions that users will only count to

status-tracking process images with complex, derived metrics.

For these reason, the agile DW/BI teams must adapt the cycle time distribution analysis for work units that range from
1/2 to 13 or more story points. The end result provides important detail for whoever is consuming the team’s performance

metrics. Especially when the developers are using an electronic work tracking system, the team will know when a task

entered development and when a programmer declared ready for integration testing. These programming times can be

aggregated to provide a factual notion of what similar work requests will require in the future. For example, the informa-

tion displayed in Figure 5.7 shows that 2-point stories over the past iterations of the project have taken from 10 to 40

hours from the moment they went into analysis and design to the moment they were ready for integration testing. For

2-point stories in the future, these developers can offer their stakeholders a cycle time of 25 hours or less with 27% confi-

dence, and they can be 98% certain that they complete it in less than 35 hours. For developer stories estimated at 3 story

points, the team has to make a different promise: 30 hours or less 43% of the time and less than 35 hours 90% of the

time. By simply tracking its actual performance on backlog stories, the agile DW/BI team can provide its customers

evidence-based SLAs instead of basing estimates on expert judgment alone and struggling to honor them.

This evidenced-based service level analysis works well with the current estimate that agile DW/BI teams were

already providing its customers. Figure 5.8 shows a current estimate with the cycle time information added. The stories

have been story pointed by the team using the estimating poker technique discussed in Chapter 2. In this analysis, the

Scrum master has listed the cycle times for each story point estimate value used by the team. This cycle time is

expressed as a mean (Column A) and a standard deviation (Column B).

The standard deviation was derived from the cycle time analysis using the assumption that a 95% confidence level

represents the mean plus two standard deviations, as can be found in any college text on statistics. The forecast for all the

stories for a given band of story point estimates is calculated by multiplying the mean by the number of stories at that

estimate level remaining in the project backlog. The standard deviation for each band is calculated by using the square

root of the sum of the squares, again as indicated by the rules of statistics. The forecast for the entire remaining project is

then compiled by taking the sum of the means across the bands and the square root of the sum of squares for the standard

deviations. In this manner, the cycle time analysis yields a current estimate for this example indicating that the team will

require 1,436 hours to complete the remaining project backlog.

Unlike estimates under waterfall methods, the Kanban-enabled SLA provides evidence-based estimates. A team

needs only provide stakeholders three items:

� Its remaining project backlog
� The story point estimates for the developer stories on that backlog
� The mean and standard deviations for actual hours on stories at each level of estimated story points

With this information, the stakeholders can calculate remaining project duration for themselves. They no longer need to

ask the team for a completion date or wait for it to compile an estimate. The cycle time analysis indicates to stakeholders

early in the project whether the team can be reasonably expected to deliver the project on time, and that insight allows them

to promptly discuss change in scope and features if necessary. They can spot trouble and plan an informed solution without

having to rely on developer promises to deliver by a certain date—promises that in practice can rarely be honored.

Team leads should exercise care in providing stakeholders information from cycle time analysis too soon during a transi-

tion to agile methods. One of the greatest advantages of story points is their ambiguity—business and IT management do

102 PART | II Review of Fast EDW Coding and Risk Mitigation

not understand what they represent, and that ignorance forces business and IT to accept a team’s forecast regarding the num-

ber of iterations needed to complete the project. If a team provides its cycle time analysis before its managers have fully

embraced agile DW/BI’s notion of continually updated current estimates, these managers can unfortunately begin translat-

ing story points into hours. The easy math they will use will create the illusion that an agile development process can be

FIGURE 5.7 Cycle time distribution analysis for an agile data warehousing project.

Recap of Agile DW/BI Coding Practices Chapter | 5 103

directed rather than observed. Managers who believe they know how many hours a story point should take to complete often

begin criticizing the actual labor hours that a team reports its work to be consuming. Managers may start dictating that a

whole collection of stories should take far fewer days than the team knows is the case.

To avoid this destructive interference, agile DW/BI Scrum masters should keep the cycle time analysis to them-

selves until management truly understands and accepts that a current estimate for the project will be updated with every

iteration. Once that change in thinking has been achieved, the cycle time measurements can be shared with management

as a validation of the current estimate that the team provides. The Scrum master will still need to provide a healthy

number of provisos, such as “Only the latest current estimate is the truth, and its accuracy fades with time,” followed

by “The cycle time analysis is only a window that lets you see a little deeper into that truth.” Fortunately, it takes many

iterations to acquire enough data points at each story point level before a Scrum master can calculate a complete cycle

time analysis, providing the delay needed to establish the correct perspective among a team’s business partners.

PROOF THAT AGILE DW/BI WORKS

Even a quick glance at the previously discussed material suggests that switching to agile data warehousing is a serious

undertaking with many details involved. DW/BI professionals will naturally want evidence that the iterative approach

has been successful before they decide to abandon the waterfall approach altogether. My company has been able to col-

laborate with The Data Warehousing Institute on surveying the DW/BI profession to not only find those companies that

are practicing incremental delivery of BI applications but also measure their success rates and even their performance

on four key performance indicators (KPIs) [Hughes & Stodder 2013].

The 2013 survey provided the best response yet, with more than 400 companies providing usable answers to more

than 20 questions. Figure 5.9 illustrates the overall success rates that these agile DW/BI practitioners have achieved,

broken out by the number of agile projects completed. This result is extremely encouraging. Nearly 80% of agile DW/

BI practitioners reported improved success rates for their development teams. The surveys of waterfall methods refer-

enced in Chapter 1 revealed that traditionally managed projects succeed only 50% of the time at best. The Ceregenics/

TDWI survey of agile data warehousing suggests that DW/BI professionals who wish to advocate an incremental deliv-

ery approach can assure stakeholders that the agile method quickly improves team performance and achieves better

results than traditional project management techniques 8 times out of 10.

More pointedly, Figure 5.10 depicts the impact of agile methods on important DW/BI aspects such as programmer

productivity, customer satisfaction, application quality, and project cost. These statistics reveal that companies

that switch from waterfall to agile methods will see programmer effectiveness increase 8 times out of 10. Moreover,

customers prefer working with agile teams three-fourths of the time.

Planned
modules

Mean Std by SP Mean Std
[A] [B] [C] [D] [E]

0.5 1.59 0.87 7 11.16 2.31

1 3.23 0.87 15 48.49 3.36

2 4.76 1.29 22 104.76 6.03

3 6.46 0.89 29 187.29 4.78

5 11.18 1.02 23 257.15 4.91

8 19.44 1.95 13 252.78 7.03

13 33.82 3.88 5 169.09 8.69

20 45.71 5.47 6 274.25 13.39

Overall forecast 1,305 66
95% Confidence 1,436 hrs

Story
points (SP)

Actual hours Total forecasted
on past projects by estimated SP

FIGURE 5.8 A current estimate adjusted for observed delivery cycle times.

104 PART | II Review of Fast EDW Coding and Risk Mitigation

Interpreting the key performance indicator (KPI) for application quality involves a bit of subtlety. Sixty percent of

teams surveyed saw improved application quality, which seems low until one realizes that 30% reported that quality

remained the same. Even traditional data warehousing teams experience strong pressures to focus on data quality, so it

is no surprise to discover that a significant number of companies are already achieving sufficient quality with their

DW/BI approach. In this light, a reasonable interpretation of the quality KPI figures might be that for companies for

which the quality of DW/BI deliverables could be influenced by a new method, agile enhanced quality six times more

frequently than detracting from it.

“Better“
Overall:
78.8%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

1–2 3–5 6–12 >12

Worse Same Better

TDWI 2013 ADW adoption survey (N = 342)

FIGURE 5.9 Success rates for agile data warehousing teams, by number of agile projects completed, compared to traditional methods.

FIGURE 5.10 Agile’s impact upon key performance indicators for data warehousing development projects.

Recap of Agile DW/BI Coding Practices Chapter | 5 105

Investigating Project Cost Impacts in More Detail

Our previous polls revealed that companies had the widest range of results with agile methods when it came to project

costs, so in the 2013 survey we added several questions regarding this area of impact. Overall, the results for that year

showed that half of respondents experienced that agile DW/BI lowered development expense, with one-third of respon-

dents stating that it remained the same.

One out of six respondents reported costs increasing, however, providing a reason to carefully consider agile’s impact

on an EDW program. Several reasons immediately come to mind as to why costs might increase on an agile project.

Agile DW/BI keeps the leaders of a team heavily involved with a project throughout the development phase so that the

leaders can work eye-to-eye with the programmers. In contrast, waterfall methods tend to release those resources once

they have completed the big specification up front. The higher level of leadership involvement puts cost pressure on the

project because the people who fill the lead roles are often the team’s most expensive resources. As a counterbalance,

greater involvement of team leaders allows them to work closely with the business as well, resulting in the increase in cus-

tomer satisfaction and application quality that the other KPI metrics demonstrated. Because agile methods invest resources

into improving quality and reducing delivery times, perhaps we should not be surprised that costs do not always go down.

The good news is that the ability of agile data warehousing to improve costs is increasing as the DW/BI profession

learns more about the best ways to deploy the method. A look at the contrast between just the past two surveys, those

of 2012 and 2013, revealed that the number of respondents reporting that costs declined with agile methods increased

nearly 60%, from 30 to 50 percentage points. What could cause such an improvement in only 1 year? The invitations

for both surveys went out to approximately the same mailing list, but the DW/BI profession as a whole had gained

another year of experience with the method. Because agile DW/BI is a new approach, we should expect it to be improv-

ing quickly as practitioners work out the details. Moreover, TDWI and Ceregenics made a deliberate effort during the

2013 survey to include those companies that had either taken our agile DW/BI training classes or had been coached by

Ceregenics’ consultants. Not surprisingly, the improved cost figures reflect a greater inclusion of success stories and

therefore measure more accurately the impact on cost that companies can expect—as long as they utilize some instruc-

tion and support during their transition to agile methods.

Analysis of these surveys also revealed a large group of companies that are truly excelling in agile DW/BI practice,

achieving reductions in cost along with improvements in programmer productivity and application quality. Of the

respondents that reported improved cost, more than 45% also improved productivity, and more than 35% achieved bet-

ter application quality as well; thus, truly effective implementations exist for the rest of us to emulate. Ceregenics’

research in the future will focus on these top performances in order to identify the common practices they follow. Their

success formulas need to be shared with the companies that are struggling with iterative delivery so that the risk

involved in switching development methods can be reduced even further.

The 2013 survey attempted to uncover the detailed factors that determine agile’s impact on project costs. Table 5.2

displays the top four factors rated as having the greatest impact for the 39 of 403 respondents that experienced

increased expenses: multitasking, waiting for other IT groups to respond or cooperate, and the complexity of the enter-

prise data model. Speaking as a veteran of many agile transition efforts, I believe the first three of these factors essen-

tially reflect old waterfall habits that persist within the larger organization in which a new agile team operates. These

issues may begin to dissipate as the iterative delivery projects within a company demonstrate increased productivity,

quality, and customer satisfaction. IT managers may well decide to let their highest performing teams concentrate on

one project at a time in order to achieve even faster deliveries. IT managers might also provide the agile DW/BI with

steadily greater support vis-à-vis the other IT service groups with which they must work, an action that will mitigate

the middle two challenges. Complex data models gave rise to the last item among the top four factors that increase

TABLE 5.2 Factors Having the Greatest Impact for Those Agile DW/BI Practitioners

Reporting Increased Costs

Factor Percentage Agreeing (N5 39)

Programmer multitasking 49%

Waiting for services from non-DW/BI IT service groups 49%

Time spent coordinating between IT service groups 44%

EDW data modeling 41%

TDWI 2013 ADWAdoption Survey.

106 PART | II Review of Fast EDW Coding and Risk Mitigation

project cost. The agile data engineering techniques presented in Part IV of this book may soon make this challenge a

thing of the past as well.

Some Myths Prove True

Since their appearance at the beginning of the 21st century, agile methods have received much criticism from the “old

school” of established project managers and software engineers for being undisciplined. In the agile DW/BI adoption

surveys by Ceregenics/TDWI, we included a set of questions exploring the veracity of these criticisms. A summary of

our findings can be found in Figure 5.11. This summary indicates that most of these criticisms are unfounded. In the

same light, there are a few areas that we need to focus on and improve.

The reader should keep in mind that the statistics in Figure 5.11 are for agile methods alone, without the comparable

figures for traditional methods alongside. By omitting traditional methods from this figure, I do not mean to imply that

waterfall methods perform perfectly in any of these categories. Scanning the results presented in the figure, one can

spot areas in which agile data warehousing has clearly overcome areas of weakness that detractors cited in the past. For

example, organizations deciding whether to switch to agile DW/BI should consider the responses for Items 2�5 and 10.

The evidence shows that most practitioners have found agile compatible with disciplined software engineering, allowing

teams to sufficiently analyze and plan their work, even in highly regulated industries.

On the other hand, Items 8 and 11 suggest that agile DW/BI teams frequently struggle with architecting a solution

or enticing business partners to participate in the development process. Part III of this book provides a new approach to

project definition—one that systematically solicits inputs from the executives of a given organization and thus addresses

these concerns. Items 9 and 12 suggest that agile EDW projects have an even greater struggle with application docu-

mentation and project governance. Faults such as insufficient project documentation should be easy to address, most

likely by revisiting the team’s “definition of done” for task cards. Teams can best address the impression that agile

DW/BI projects are difficult to govern by employing a combination of more disciplined requirements management and

quality assurance, as explored throughout the remainder of this book.

SUMMARY

The agile approach to DW/BI application coding anchors the spirit and style of the larger iterative approach that this

book proposes for EDW. The earliest agile warehousing projects orchestrated programming work with pure, generic

Scrum, but they quickly found that they needed to add new work roles specific to DW/BI, including project architect,

data modeler, systems analyst, and system tester. Other simple innovations gave rise to 80/20 specifications, developer

Data
Pts Agree Disagree

Agree
(bad notion is true)

Disagree
(bad notion is false)

1 The developers in my organization will not support agile 293 16.7% 70.0%

2 Management in my organization will not support agile 293 20.5% 63.5%

3 Agile software development is undisciplined 296 26.0% 62.2%

4 Agile teams don't plan sufficiently 293 30.0% 59.4%

5 Agile teams don't sufficiently address analysis 293 31.7% 55.6%

6 Agile approaches result in low quality 296 29.7% 56.8%

7 The culture of my organization is a bad fit for agile 293 30.7% 54.3%

8 Agile teams don't sufficiently address architecture 294 38.4% 48.3%

9 Agile projects are difficult to govern 292 43.2% 46.9%

10 Agile isn't appropriate for highly regulated industries 293 21.2% 42.3%

11 We can't easily get access to our business stakeholders 292 49.7% 38.4%

12 Agile teams don’t write sufficient documentation 296 47.6% 37.2%

13 Agile isn't appropriate to process-audited environments (e.g. CMMI) 290 23.1% 32.4%

Note: Diagram shown omits respondents answering "no opinion."

Purported weakness of agile methods

FIGURE 5.11 Agile data warehousing surveys indicate that practitioners have overcome some challenge areas.

Recap of Agile DW/BI Coding Practices Chapter | 5 107

stories, and frequent revisions to a project’s “current estimate.” Whereas developer stories help rightsize the work

packages for the project backlog, when it comes to data integration projects, each developer story typically generates

more tasks than a team can complete during a single Scrum iteration. For this reason, data integration teams commonly

adopt a technique known as pipelining, meaning that the full engineering life cycle for a developer story is stretched

across three iterations. Techniques from Kanban make this extended approach manageable, especially once team leaders

such as analysts, designers, and testers abandon Scrum’s time box and focus on moving work through input and output

buffers instead.

Kanban-enhanced development pipelines involve some additional innovations, such as requiring Iterations �1 and 0,

two-pass testing, and a new approach to calculating the service level agreements that a team can offer its customers. All

told, this adapted agile method works well for DW/BI, as demonstrated by the results of successive surveys of companies

that practice it today. Companies experience far better success rates than with waterfall methods, as well as achieving

higher programmer productivity and quality of deliverables. Many companies achieve all of these and significantly lower

project costs, making the agile data warehousing method an extremely valuable strategy for their business intelligence

programs.

108 PART | II Review of Fast EDW Coding and Risk Mitigation

Chapter 6

Eliminating Risk Through Nested
Iterations

The data warehousing profession is replete with stories of development programs that stalled for years, spent millions,

and then delivered only a handful of reports that could have been acquired directly from the operational systems with

far less time and money. Such experiences leave many of us yearning to find a dependable means of eliminating the

risk of investing too much and receiving too little that seems inherent in data warehousing/business intelligence (DW/

BI) projects. The new techniques outlined in this book for managing requirements, modeling data repositories, and vali-

dating the development team’s output all address key hazards that cause enterprise data warehousing (EDW) programs

to fail. However, there is another, more simple solution that sets the tone for employing those other three groups of

techniques: Elevate the notion of iterative delivery as high in the program as possible. The resulting approach sets off a

crucial positive feedback loop between the development team and executive business stakeholders. The agile approach

mitigates risk by delivering frequently, allowing business sponsors and staff to regularly measure progress and be confi-

dent that the EDW program will provide important value without excessive cost or delay. These frequent review points

thus keep the EDW customers at all levels mentally engaged with the project, which in turn leads to better requirements

and quality assurance efforts that greatly improve the team’s performance and further reduces risk. This overall cycle of

risk reduction and improved results can be easily structured using a few concepts, which the EDW team leaders can

deliberately implement with every new project and thereby make agile data warehousing a dependably safe and effec-

tive method for growing a company’s enterprise business intelligence capabilities.

EDW PROGRAMS SLIP INTO “231 SWAMPS”

The first step to making EDW programs a reasonably safe investment for business sponsors is to articulate how and why DW/

BI efforts become huge time and money sinks. First, EDW programs are typically enormous undertakings. It is not uncom-

mon for EDW programs in Fortune 500 firms to have a separate multiyear project underway for each conformed dimension,

such as customer, product, vendor, and location. DW/BI efforts at medium-sized companies can require two or three dozen

information technology (IT) professionals for 1 or 2 years. For even small projects, the fully loaded labor costs covering

wages, facilities, and equipment will total $1,000 or more per developer day so that a team of just 10 people will represent a

“burn rate” approaching $2.5 million per year when the involvement of various IT teams is also taken into account.

These high burn rates raise the stakes and place business executives funding these projects in an unenviable situa-

tion. As money steadily drains out of the program budget month after month, do the executives receive any tangible

work product from IT to demonstrate that the funds are being invested effectively? For an EDW program utilizing a tra-

ditional project management approach, the answer is an emphatic “no.” Surveys of failure rates for traditional software

development efforts point toward a picture of widespread dysfunction. The Standish Group’s Chaos Report surveys,

mentioned in Chapter 1, attest to the inability of traditional methods to dependably manage large projects. As detailed

in Table 6.1, these surveys of more than 8000 application projects pursued at 365 companies revealed that the larger a

software development effort became, the less likely it was to deliver on time, on budget, and with all the promised fea-

tures. When projects were kept under $1 million, the failure rate was 45%—still regrettably high for most business

sponsors—but each increment in project size steadily drove failure rates to 100% as budgets exceeded $14 million

[Standish Group 1995]. Similar studies of business intelligence application projects in the early 2000s suggested that

the average data warehouse project costs between $10 million and $15 million and failure rates were greater than 65%

[Ericson 2006].

109
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00006-0

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00006-0

During the many years we have championed agile data warehousing strategies, my colleagues and I have heard

many woeful stories from the companies that asked our consulting firm for a better way to pursue enterprise business

intelligence:

� A major transport company once complained that “A big systems integrator spent 2 years here, charged us $10

million, and delivered only some binders.”
� A Fortune 50 pharmaceutical firm lamented, “Our last DW/BI project involved 150 people for 3 years. It got so

expensive it’s hurt our share price. And that was our third attempt at building the system.”
� A leading telecommunications company opened the meeting with us by stating, “The finance department wants to

fire all 110 members of the data warehousing department because we’re too slow and too expensive.”
� One of the largest waste management companies in the United States described its last EDW effort by stating

simply, “We spent 2 years, $3 million, and got only one report. That seemed like a really expensive report.”

The last complaint in the collection was an example of a horror story so commonly encountered that we were com-

pelled to give it a special name. Business executives everywhere seem to get lured into spending 2 years and $3 million

on data warehousing just to get Report #1. I am guessing that this particular combination of time and money must be

the average threshold of pain for most companies large enough to pursue enterprise data warehousing. Perhaps, sensing

this threshold of pain, the large system integrators must simply orchestrate their EDW project quotes to arrive at those

numbers, whether or not they plan on actually delivering anything of value once they begin development. In any case,

after a year during which we spoke with at least a half-dozen companies citing this same regrettable outcome, we

started calling the 2-year, $3-million report the “231 swamp.” Whereas the goal of agile techniques in general can be

defined as to “constantly deliver value to the customer,” EDW team leaders would be right to translate this maxim as

“The goal of agile enterprise data warehousing is to keep EDW programs from becoming 231 swamps.”

231 Swamps Derive from a Command and Control Strategy

What is the root cause for so many EDW programs ending up mired in a 231 swamp? Although many DW/BI profes-

sionals suggest that such swamps are unavoidable because EDW is inherently complex, the fact that agile techniques

can so dramatically accelerate DW/BI programs while improving quality and customer satisfaction points to a more

fundamental explanation. Understanding the dynamic that gives rise to the 231 swamp illuminates what EDW team

leaders must do to escape it.

Large programs begin to sink into the swamp when they choose to mitigate project risk with command and control

techniques instead of with results-driven progress tracking. Out of fear of how complex a requested BI application will

be, non-agile project managers adopt an approach that makes EDW development far more complicated than it has to

be. To be fair, enterprise DW/BI development does present several challenges that make it difficult, messy work:

� User requirements are difficult to pin down because companies have complex business rules.
� Users cannot describe what they want from an application until they actually see it on the screen.
� Source systems provide incomplete and inaccurate data.
� Data volumes are enormous, sometimes taking days to process and load into the database.

TABLE 6.1 Failure Rates for Traditionally Managed Software

Development Projects

Funding Level

1999 Dollars 2014 Dollars* People Months

Less than $750 K $1 M 6 6 45%

Up to $1.5 M $2 M 12 9 67%

Up to $3 M $4 M 25 12 75%

Up to $6 M $9 M 40 18 85%

Up to $10 M $14 M 250 24 92%

Over $10 M $14 M 500 36 100%

Failure Rate

*Converted then rounded from 1999 dollars to 2014 using a CPI ratio of 1.429.
Adapted from [Standish 1999].

110 PART | II Review of Fast EDW Coding and Risk Mitigation

� EDW data models are difficult to get right and require a tremendous amount of effort to adapt for mistakes or new

requirements.
� Quality assurance efforts only reveal defects toward the end of the project when time and resources have grown

scarce.

Whereas techniques exist to address all of these concerns, as we will explore in the remainder of this book, it is impor-

tant to realize that the way our project leaders respond to such adverse events can cause as much harm to the development

effort as can these challenges themselves. When complications such as those listed previously cause an adverse event for

a project, managers who have worked all their lives in hierarchical organizations react to the threat by trying to further

control the activities of the people working below them. Extensive, detailed control is in fact the core principle behind tra-

ditional project management methods, down to the point where individual tasks are scheduled, dispatched, and monitored

by managers. In order to measure the effectiveness of the corrective actions they take in response to adverse events, tradi-

tional managers track whether tasks are getting started and completed. Unfortunately, tracking tasks only infers success

from increased developer activity rather than from business-meaningful, working software.

As the program encounters unforeseen adverse events, the traditional project plan grows longer as the project man-

ager defines the additional tasks needed to repair the situation. The road to success was long to start with, and when the

going gets rough, the road only gets longer. Only slowly do the sponsors realize that despite all the controls that project

management has put in place, the work has not delivered any tangible results that the business staff can actually use.

Despite all the developer activity reported, plus the money and time invested, no improved support for better business

operations has arrived. Moreover, as more adverse events occur, the project plan grows longer, turning the plan-driven,

control-oriented program into a 231 swamp.

AGILE’S FUNDAMENTAL RISK MITIGATION TECHNIQUE

Agile EDW practitioners drive the risk out of EDW projects with a system of nested iterations. They eliminate hazards

at the programming level using agile’s basic iterative programming techniques. They then extend the iterative concepts

upward to mitigate risk occurring at the higher levels of an EDW program’s conceptualization. At every level, agile

ADE teams rely upon increased risk detection in order to minimize impact, so we should start by looking at why that

basic strategy works so well.

Agile’s General Risk Mitigation Strategy

Agile general strategy can be expressed succinctly as “fail fast and fail cheap,” that is increase the frequency of encountering

defects in order to minimize their impact. The methods connected to the agile manifesto utilize frequent reviews of working

software to detect and resolve challenges instead of relying on granular command and control of developer activities, as

occurs in traditionally managed projects. To understand why this approach performs so well, EDW leaders should consider

the notion of risk first from a standard project manager’s point of view. One definition of “risk” is the likelihood that

an uncertain event will occur. Whereas theoretically the uncertain event could have an either positive or negative impact,

most project managers focus on the potential for a negative impact. They typically maintain a list of the major possible

adverse events threatening their endeavors and then employ various means to quantify the risk that each represents [Borek

et al 2013, Chapter 11]. The most common technique is to calculate a risk index as the product of three multiplicands:

1. The probability it will occur

2. The impact it will have should it occur

3. The possibility that it will go undetected

Multiplying these three values together quantifies the risk that each item poses. By sorting this list by these risk pro-

ducts, the manager can then plan responses to these potential adverse events in the order of the magnitude of threat that

they pose.

Although agile practitioners would be uncritical of development teams that maintain such a detailed risk analysis,

provided that they find it truly helpful, in general agile practitioners take a radically different approach to eliminating

threats. They encourage development teams to steadily and quickly deliver small pieces of the application, ending

each iteration of development with a review of the product. These incremental deliveries must be the actual version

of components they plan to deliver, very nearly ready to add to a production instance of the application. Because

delivering working, production-ready code is highly difficult, any misunderstandings concerning a module’s intent,

Eliminating Risk Through Nested Iterations Chapter | 6 111

data structures, or transform algorithms will result in a nonworking module that the product owner will reject at the

end of the iteration.

In choosing this difficult objective for each incremental delivery, agile methods reliably force flaws in requirements,

design, and programming to the surface with every iteration, ensuring that errors and oversights are detected early and

often. Thus, over the arc of a project, the iterative review of the developing collection of modules drives the risk that

defects still remain in the application toward zero. By choosing to work in short iterations, the EDW leaders have in

fact reorganized the project so that at any point in the effort, the team can waste at most only a few weeks of work. If

an iteration turns out to be a complete failure, everyone involved will be concerned, but they will also take that opportu-

nity to change policies and techniques so that such a disaster does not occur again. The iterative approach prevents

major defects from accumulating and wasting an entire project’s worth of work.

The quality standard for each iteration is “ready-to-consume” modules, which effectively forces the agile teams to

keep their code unafflicted by defects. If the product review at the end of an iteration uncovers a large defect, the

affected module is rejected and returns to the backlog for further work. If the defects are small, they can be placed on a

“tech debt” list for quick resolution at the beginning of the next iteration. These two practices ensure that the applica-

tion code remains free of flaws, thus keeping the team from losing large amounts of time in teasing apart the complex

webs of cause and effect that occur when programmers layer one defect upon many others.

Reflecting upon the math involved in the traditional definition of risk, we can see how agile teams so effectively

reduce the risk products on the project’s list of possible adverse events:

� By coding small increments, they reduce the impact that an event can have on the project (multiplicand 2).
� By frequently reviewing the resulting application, they reduce the likelihood that an event can remain hidden (multi-

plicand 3).

In the chapters that follow, I illustrate how agile EDW teams can also reduce the likelihood that an adverse event

will occur in the first place. However, EDW team leaders should note that even if those additional techniques did not

exist, the iterative approach alone drives at least two of three factors defining project risk toward zero, thus eliminating

the overall program risk, no matter how resistant the third factor might be to remediation.

Of course, the additional reviews that undergird better detection must be paid for out of the project’s budget, but

EDW team leaders can demonstrate that these reviews are cost-effective because they more than proportionately reduce

the impact that those product flaws will have. Figure 6.1 shows a cost multiplier popularized by Dr. Barry Boehm at

TRW during the 1980s. His work demonstrated that the cost of correcting a system flaw increases considerably when a

team allows it to go uncorrected during the length of a project because, with time, that defect undermines progressively

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
os

t t
o

re
pa

ir
a

de
fe

ct

Time (3-week iterations)

@ 3 weeks: 1.3

@ 52 weeks: 100.0

FIGURE 6.1 Relative cost of correcting defects grows by 100 between requirements and promotion into production.

112 PART | II Review of Fast EDW Coding and Risk Mitigation

more of an application’s features: “Finding and fixing a software problem after delivery is 100 times more expensive

than finding it and fixing it during the requirements and early design phases” [Boehm 1987]. The curve in the diagram

shows the path taken by this increasing remediation cost during the course of a 1-year project. This path was drawn as

an exponential curve to reflect the fact that the number of relationships between components increases geometrically as

more components are added to a system.

With this context, we can approximate the costs that a method involving iterative reviews can save a project. For

example, consider that the error caught during Week 1 cost only one unit to repair. During the first iteration, the product

owner of a team using a 15-workday Scrum cycle will most likely discover the flaw during the product demonstration

at the end of Week 3. Following the geometric growth from Figure 6.1, the impact of that defect will have increased

only 30% to 1.3 units, given the short time that has elapsed. Compared to a waterfall method’s pattern of holding a

single business review at the end of the year-long development effort, validating the development team’s work every 3

weeks represents a 17-fold increase in the number of business validations occurring within a project. This more frequent

review, however, allows the team to seize a 77-fold decrease in the impact of the product flaw, making the trade-off

more than worth the extra effort.

Eliminating Miscommunication with Multiplexed Engineering Phases

Considering the impact of iterative delivery through another lens, we can see that agile’s frequent reviews of a growing

application dramatically change the overall organization of a project in a way that greatly eliminates the risk of mis-

communication between the business and IT.

The Standish Group’s 1995 Chaos Report documented that lack of incomplete requirements, lack of user involve-

ment, and unrealistic expectations were the major causes for project failure sited by more than 35% of respondents

[Standish Group 1995]. To provide the business with frequent checkpoints for the work of the IT staff, the iterative

approach effectively sandwiches together small slices of what a waterfall method would consider distinct software

engineering phases, making such miscommunications a near impossibility. Figure 6.2 depicts the impact that iterative

methods have on the reorganization of work. The top band of the diagram shows the timeline for a typical waterfall

project. The time required to complete both the big specification up-front and the big test at the end is considerable.

Unfortunately, this project duration extends beyond the time frame during which the business could have benefited

Window of opportunity

How long business partners think they should have to wait

Project duration with traditional method

Requirements Database design ETL coding Release validation

R
e

q

D
es

E
T

L

Val

R
e

q

D
e s

E
T

L

Val

R
e

q

D
es

E
T

L

Val

R
e

q

D
es

E
T

L

Val

R
e

q

D
es

E
T

L

Val

R
e

q

D
es

E
T

L

V a l

Fit-for-purpose validated with every subrelease candidate

Project delivered incrementally

Iterations
–1 & 0

FIGURE 6.2 Incremental delivery mitigates risk by increasing the number of product check points.

Eliminating Risk Through Nested Iterations Chapter | 6 113

from the new system, as shown by the “window of opportunity” arrow above the timeline. The situation is even more

ridiculous when the traditional project plan is compared to the business staff’s attention span, suggested by the next

arrow down, and so the waterfall approach naturally leads to tremendous frustration among project sponsors.

Instead of fully completing each software engineering step before beginning the next, agile methods perform a little

bit of requirements, followed by a little bit of design, then a little bit of coding, followed by a little bit of product

validation. The bottom of Figure 6.2 depicts how, in the agile approach, these small slices from the distinct software

engineering disciplines are essentially “time division multiplexed” together [Kundu 2010, p. 252]. The steady stream

series of deliverables that this approach creates repeatedly puts usable product in the customers’ hands, alleviating a

great deal of their frustration with the slow pace of EDW development. It also provides frequent checkpoints with the

business stakeholders, allowing them to keep the EDW development team aligned with the company’s true needs for

business intelligence services.

This last point is crucial. As much as IT staff members would like to say they understand the business, they rarely

do because they do not work with the operational systems every day, as does the business staff. Without a deep under-

standing of the transactions applications, IT staff members can make a large number of mistakes regarding requirements

and design. They need the business staff to review their work product and correct those oversights, especially in situa-

tions in which the business and/or the operational systems are changing.

The repeated validation points found in the agile approach allow the business many opportunities to evaluate how

well IT understands the business requirements and how accurately IT has crafted the application’s design. I have

attended very few product reviews where the business has not caught at least a couple of significant mistakes on the

part of IT members of the team. These frequent reviews allow the business to keep IT aligned with the true needs of

the company and resolve product flaws before a large amount of code is assembled, greatly mitigating the risk of the

project.

AGILE EDW’S EXTENDED RISK MITIGATION TECHNIQUES

Iterative delivery is an effective strategy for mitigating the risk of software development projects in general, but

unfortunately the nature of EDW development tends to limit the effectiveness of this technique. In Chapter 5, we

discussed the fact that a team’s product owner is typically the only business representative attending the regular itera-

tions’ product demos because the nature of data integration work makes it difficult to demonstrate realistic data more

than once per time box. With only the product owner attending, the regular iteration demos become somewhat

myopic, addressing only what I call the bottom tier of hazards that threaten the success of enterprise data warehous-

ing projects. To mitigate a much wider range of project risk, agile EDW team leaders need to extend the concept of

repetitive product validations upwards two levels further, regularly reviewing current builds with the directors and

executives of the company.

Three Types of Risk Threaten EDW Programs

Veteran agile EDW teams realize that project risk emanates from multiple levels. They employ a framework for identi-

fying hazards originating from those distinct layers and devise risk mitigation techniques appropriate for each level.

Project leaders who want to perform an exhaustive search for project risk could regularly evaluate their projects

using the DAMA functional framework discussed in Chapter 3, but that approach tends to overwhelm the team with a

long list of perils that might occur. Teams seem to perform better using a more agile risk detection process that focuses

on the threats that are likely to come to pass so that they can be addressed immediately, saving the exhaustive search

techniques for some later point should there be time to spare. The agile EDW coaches in our consulting firm therefore

employ a simple, three-level risk screening approach that uses product reviews to reveal where conceptual errors have

occurred in the decisions made by the team. We use the reviews to identify where a team that is working fast from

“just good-enough” specifications may have committed an application coding error, a solution concept error, or a busi-

ness concept error. To install these reviews into the agile EDW development process, we add two further types of itera-

tions that encapsulate the basic development sprint established by Scrum.

Figure 6.3 depicts this layered risk mitigation strategy. The three levels of concepts that the team wishes to scan for

errors appear in the pyramid, with each layer sized to suggest the relative number of errors that can occur at each level.

The center column of the diagram shows the type of iteration that addresses the hazards found in each conceptual level.

On the right of the diagram is listed a couple of the major techniques that will enable a team to fail fast and fix quickly

while addressing a particular level of risk. All these techniques are discussed in this book.

114 PART | II Review of Fast EDW Coding and Risk Mitigation

Examples of the Three Levels

Table 6.2 lists the three conceptual levels of an EDW project and also provides examples from the insurance industry

of errors that a team can make in each. This table parallels the approach I recommend for pursuing requirements and

quality assurance, as explored in later chapters. In brief, business concepts describe the new competitive capabilities

that executives believe the company will gain with improved business intelligence applications. Solution concepts

Business
concepts

Solution
concepts

Application coding
concepts

R
is

k
or

ig
in

s

Iteration types

Subreleases

Subrelease

candidates

Coding

builds

Surface solutions

Backfilling the architecture

Agile requirements management

Subrelease value cycle

Agile development method

Agile data modeling

Agile EDW techniques

FIGURE 6.3 The sources of EDW project risk mitigated with three types of iterations.

TABLE 6.2 Examples of Errors by Conceptual Level

Conceptual Level

Goal

Business Partner

Level Example Directive Validation Strategy

Business Concepts

New Competitive
Capabilities

Executive and
Program Sponsors

"Use BI to create call lists for our sales force so
that they can expand market share in the Gen
Y age group in order to build a dependable
revenue stream for the next ten years and
thereby fend off an acquisition."

Directors report improved operational metrics,
attributing them to organization's use of the BI
application

Solution Concepts

New Information
Capabilities

Departmental
Directors

"Identify likely Gen Y prospects by subtracting the
households of our current customers in their 30s
from the set of all households headed by
individuals in that age group for each geographic
region, and subset that list for the sales reps in
each branch office."

Product owner demonstrates to close stakeholders
new data visualizations addressing the information
need, explaining source data employed and business
rules applied

Application Coding Concepts

New Data
Capabilities

Managers or
Senior Analysts

"Implement business rules 4 through 6 upon our
policy data in order to eliminate duplicates within
the current data so that the warehouse produces
an accurate list of current Gen Y households.

Product owner finds correct results when reviewing
data loaded from data sets with known challenges to
the business rules

Eliminating Risk Through Nested Iterations Chapter | 6 115

represent the new information capabilities that will enable the company’s business departments to take the actions

needed to achieve the competitive capabilities envisioned by the executives. EDW teams typically obtain the majority

of a project’s solution concepts by speaking with the departmental directors who report to the executives funding the

DW/BI projects. Finally, application coding concepts determine the data transforms needed to generate the information

that the solution concepts call for. EDW teams receive guidance on the application coding concepts from the staff

and managers who report to the directors who provide the solution-level requirements. Because project sponsors and

department directors rarely have time to participate in a development project, the product owner on an agile EDW team

usually hails from the manager or analysts level within an organization.

In these examples, the executive’s requirements reflect very high-level business thinking. Here, the executive stated

that the BI application should guide the sales force toward better prospecting among young consumers, firming up long-

term revenue projections so that the company no longer looks like an easy acquisition target. The department directors

translated this broad mission statement into departmental actions, including a plan for how to create call lists that will

better guide the sales force. Looking more closely at the solution concept, it can be seen that it expresses a set-based

operation that generates the information the sales force will require. The necessary operation can be outlined as follows:

� Start with the universe of all possible customers.
� Subtract current customers.
� Arrive at a set of names of people with whom the company needs to develop business.

Once the solution concepts have been articulated, the product owner can begin to envision the individual data ele-

ments that the BI application will need to pull from operational systems and blend into the information sets that the

directors have requested. Although he will have to express his ideas in business terms, the product owner will describe

column-by-column the algorithm that the team will need to code in order to populate the target entities in the data ware-

house. The example in Table 6.2 identifies the business rules the application should apply in order to create a clean list

of current customers that can be subtracted later from the set of all consumers within a geographic region.

The EDW project must deliver appropriate capabilities addressing the ideas occurring in all three of these conceptual

levels. Perhaps more important than assessing the quality of the programmers’ extract, transform, and load (ETL) and BI

modules is how the team leaders will know that the concepts they have been given to guide the project’s overall develop-

ment effort are correct. They can use iterations to validate all three levels of these guiding concepts. Each level calls for

a different type of iteration, as outlined here, starting with the bottom layer of the risk pyramid and working upward.

Mitigating the Risk of Application Coding Concept Errors

In the foundation of the risk pyramid we find errors occurring within the application coding concepts. Application

coding concepts include all the guiding information needed by the technical team members regarding how the modules

within the application should be designed and programmed. These concepts represent the team’s notion of how a partic-

ular module should be built and why it should be built in that way. In an agile development effort, the foundation for

these notions will be the insights into source systems and required transformation rules, all expressed at a business level

by the product owner working with the team. In the previous example, the product owner described the three business

rules for removing duplicates from the current customer list. The rest of the team had to translate that guidance into

application coding concepts involving data structures and transform algorithms.

In order to know that the application coding concepts that they employ while building a particular module are cor-

rect, the members of an agile EDW team should use the standard development iterations discussed previously. These

coding cycles are the short iterations of two to four weeks that agile EDW teams use to build potentially shippable mod-

ules that will load BI data for the product owner to explore during a product demonstration. The product demonstrations

at the end of each iteration will allow the product owner to interact directly with the transformed source data. During

this review, the product owner will uncover flaws in the source data selected by the team, in the business rules used to

transform the data, and in the integrity of the information loaded into the warehouse. If the product owner is thorough

in her review, very few application coding errors will go undetected.

Mitigating the Risk of Solution Concept Errors

Solution concepts comprise the middle layer of the risk pyramid. A solution concept packages together the new data

capabilities streaming out of the coding iterations. The “solution” contained in such a package is a mapping of

new application features to the business problems that the team believes the application will solve. Assembling a set

116 PART | II Review of Fast EDW Coding and Risk Mitigation

of new data capabilities into a solution is unfortunately a mental activity that lends itself to many possible errors, so the

set of requested data capabilities needs to be checked as carefully as the code in ETL modules. The product owner

must select the right business problems to solve and express them in a way that the IT members of his team can under-

stand. Those IT teammates must then select appropriate data sources, devise transforms, and design target elements that

present the company’s situation in a way that enables business staff members to solve the desired business problems.

The resulting solution mapping contains statements such as “Features 1 through 3 will solve Business Problem X.

Features 2, 4, and 5 will solve Business Problem Y.” In the example provided in Table 6.2, the solution concept con-

tained several features: a list of current households, a list of all possible households, a function to subtract one from the

other, and the ability to filter the result by consumer age brackets. These were all mapped to a particular business

problem: the need to provide better prospecting lists for the sales force.

This solution map is important to get right because it will guide the programming work of several development

iterations. Regrettably, the group process that generates such mappings can go wrong in hundreds of ways. The business

problem is often difficult for directors to articulate accurately. The product owner often provides only a basic outline of

the features needed, overlooking those software aspects that more unusual circumstances will demand. Returning to the

example, perhaps the product owner did not think of a crucial feature, namely the ability to detect as distinct consumers

Gen Y individuals living in single-family dwellings owned by an older person, such as a parent.

In order to know that the current solution concept they are working from is correct, agile EDW teammates will need

to validate the increments of that solution with the departmental directors who are waiting for the new information

capabilities that they expect the new application to provide. Only when they see their requests translated into working

solutions can the directors realize features that are missing or implemented poorly.

To obtain director-level reviews, the EDW team will need to add a validation cycle higher than the product demon-

stration built into the standard agile coding iteration. To drive out the risk of making a solution concept error, EDW

team leaders will need to take the time to regularly hold subrelease reviews.

During a subrelease review, the team gathers the results of a few application coding iterations into a release candi-

date and presents the new information capabilities that it offers to the stakeholders that have been recently advising the

team. These “close stakeholders” will probably be the directors of the departments and their lieutenants who understand

the solution that the release candidate claims to provide, and who will benefit from the recently added features. The

team’s product owner, who has been translating the departmental input into direct guidance for the team, should present

to these close stakeholders the current build of the DW/BI application, asking them to validate whether that guidance

was correct.

The subrelease contains a very simple proposal to the audience of close stakeholders:

� The current build of the BI application has many new features ready to go.
� The product owner believes these features represent a “critical mass” of new capabilities that will generate signifi-

cant value for the company.
� Promoting the current build into production will consume effort from both the development team and supporting IT

groups.
� Such a promotion will require the team to suspend development for one iteration, so the creation of new features

will temporarily stop.
� The labor from the team and the relevant IT groups will also cost money—often between $25,000 and $75,000

depending on how exacting the company’s promotion procedures are.
� The close stakeholders need to review the new capabilities contained in the current build and decide whether the

benefits they offer will justify the expense of the promotion effort.

If the stakeholders decide that the increment of value offered by the new build outweighs the cost of a promotion

cycle, the subrelease review will have proven that the team’s solution concept was essentially correct—the new features

mapped well enough to the stakeholders’ business problems that they want the new system in operation now. If, on the

other hand, the stakeholders vote no, then the product owner and the team leaders can query them to find out why.

Every gap in capability and poorly designed feature that the reviewers point out will equal a flaw in the team’s solution

concept. By holding these simple, subrelease candidate reviews, the team can drive solution-concept errors out of the

shadows, allowing the team to improve its notion of the business problems confronting the company and the features

required to solve them. Box 6.1 presents the script that my colleagues and I typically ask product owners to follow

when they conduct these subrelease candidate reviews.

Figure 6.4 shows how the application coding iterations assemble into the subrelease candidate reviews that the close

stakeholders should attend. Because the application coding cycles take two to four weeks each, even a few of them will

Eliminating Risk Through Nested Iterations Chapter | 6 117

Box 6.1 A Script for Subrelease Candidate Review Sessions

Once the agile EDW team has added a reasonable number of

new features to the DW/BI application, the product owner

can employ the following script while presenting the system’s

current build to the project’s close stakeholders:

1. Share with the stakeholders that the team desires them

to either endorse or reject the proposal to promote the

current build of the business intelligence application

into production usage.

2. Share with them the estimated cost of such a promotion,

which will cover the following:

a. A “promotion iteration” by the developers during

which they will prepare the build for system and

user acceptance testing

b. Time from other IT support groups needed to review

and implement the build

c. Training the end users how to operate the new ver-

sion of the application

d. Developer time for supporting those users and cor-

recting minor defects

3. Ask the stakeholders to subjectively consider the features

of the new build they are about to see and to decide

whether the features, taken as a whole, merit the cost of

a promotion effort.

4. State the business problem(s) that the team believes the

subrelease candidate will solve.

5. Show the stakeholders how the information now avail-

able through the BI application will enable their

departmental staff to better understand the fundamental

nature and trajectory of the targeted business problems.

6. Show the stakeholders how the BI application will

reveal whether the problem is being solved by the new

actions of their staff members.

7. Explain the sources of information employed and the

business rules used to transform those sources into the

information being reviewed.

8. Explain how the team decided that the end users will be

able to trust the information now flowing into the data

warehouse.

9. Summarize why the product owner believes that the

benefits offered by the new build outweigh the cost of

promotion.

10. Ask the stakeholders to either endorse or reject the new

build.

11. If rejected, ask the stakeholders to identify the further

features and benefits necessary before they will endorse

the build for promotion.

New data capabilities

“Every few weeks”

New information capabilities

“Every few iterations”

New competitive capabilities

“Every few months”

Objective / timingSource of risk addressed

Business
concepts

Solution
concepts

Application
coding
concepts

Subrelease
candidate
(rejected)

Subrelease
candidate
(accepted)

Subrelease

Application codingApplication coding

Iteration type

FIGURE 6.4 Relative timing for the three types of iterations that Agile EDW employs.

118 PART | II Review of Fast EDW Coding and Risk Mitigation

represent a months-long stretch during which the stakeholders will not see much new from the data warehouse team.

To keep stakeholders engaged and their guidance timely, the team should present a subrelease candidate after every few

development iterations. The first candidate presented may very well be rejected, so the team will need to return to the

project room, invest in a couple more coding iterations, and then hold another subrelease review. Given the learning

occurring with each subrelease review, it will not take long before the stakeholders accept a candidate, especially

because their departmental staff members are eagerly awaiting the new business intelligence features that the EDW

team is working on.

People who practice generic agile will suggest that the close stakeholders be included in the product demonstrations

held at the end of every coding iteration. This suggestion touches upon one difference between agile for software devel-

opment in general and agile for data warehousing. As discussed in previous chapters, data warehousing requires that

information progress through the many layers of the DW/BI reference architecture. The EDW team often needs one or

more iterations to build the ETL for each one of these architectural layers. Until that data arrives at the presentation

layer, it will not be very interesting to the project’s business stakeholders. Because the project owner has been working

closely with the developers, she should eventually be able to understand the data as it lands in the preliminary layers of

the reference architecture, but she may be the only business staff member who will be able to appreciate its value.

Given a choice, the other business stakeholders will probably opt to wait until the data can be examined using a finished

dashboard or a report.

Moreover, data volumes and ETL complexity often prevent teams from loading the target tables until the very end

of a coding iteration. For this reason, iteration demos are usually the first time a product owner sees a new set of data,

and it often contains some enormous defects, some of them originating from errors in the directions that the product

owner provided. The product owner may very well prefer to be surprised by these product flaws without her business

colleagues looking on because she may think it better to get the big defects ironed out within the privacy of the immedi-

ate development team. For these reasons, agile data warehousing teams usually choose to show the application to the

project stakeholders only after they have had a chance to first look at the data themselves.

Mitigating the Risk of Business Concept Errors

At the highest level, an EDW team must be sure that the application that the team is building embodies a rational and

coherent set of business concepts. The requirements for every multiproject EDW program are shaped by multiple over-

lapping ideas from business sponsors. These ideas motivated the executives to fund the DW/BI development in the first

place because they express how the company’s performance would improve if only the staff could have better informa-

tion at its disposal. If these business concepts are flawed, however, the component projects or even the entire EDW pro-

gram could prove to be a colossal waste of money, time, and effort.

In the examples provided in Table 6.2, the business concept asserted that identifying prospect Gen Y consumers

would enable the sales force to improve the company’s revenue stream. Perhaps this concept was not as well thought

out as it should have been. When someone gives a prospecting list with only names and phone numbers to insurance

sales agents, they will immediate ask, “How am I supposed to develop a rapport with these people when you haven’t

told me anything about them?” They will tell the data warehousing team to come back later with a list stating every

prospect’s occupation, monthly salary, hobbies, and dependents. In this case, the business executive had launched the

DW/BI project with a half-baked business concept. Unfortunately, the additional capabilities that end users call for

often require an entirely different collection of data sources than those for which the team has programmed, making

these errors very expensive to repair. If the agile EDW team does not take steps to validate the business notions driving

a project, then it risks coding fruitlessly for months, even years.

One could hope that the directors attending the subrelease reviews will catch such errors in the business concepts,

but given their management positions, they may be far removed from the factors that the staff members know all too

well from their daily struggles to keep the business running. To dependably detect business concept errors, the EDW

leaders have to get the application they are building in front of these end users for validation in a real business setting.

For that reason, the team leaders need to plan on multiple subreleases for the EDW rather than just a single, full

release.

Agile data warehousing practitioners often refer to these subreleases as minimal viable products (MVPs), a concept

borrowed from Eric Ries’ 2011 book, The Lean Startup. As Ries explains in his book, his first two attempts at building

web-based service companies failed because he and the other executives involved severely misunderstood what custo-

mers wanted from Internet products. Rather than continuing to assume they could guess at the right product, Ries and

colleagues switched to a strategy of testing market demand using minimal viable products [Ries 2011]. Minimal meant

Eliminating Risk Through Nested Iterations Chapter | 6 119

they would keep the cost of each introduction very low so that they consumed as little of their venture capital as possi-

ble until they understood what the customers wanted. Viable signified that each introduction had to be reasonably

usable or the customers would not have any meaningful feedback to provide. Once they switched to minimal viable pro-

ducts, the fate of their subsequent start-up attempts vastly improved—so much that they grew into durable firms still

operating in the market today.

Given that very few people, especially project sponsors, understand business intelligence applications enough to

envision in the abstract how they will look and operate once online, EDW team leaders would do well to treat their

applications as new Internet services. They should market test them as Ries’ companies did, using minimal viable pro-

ducts before overinvesting in any one business concept.

Team leaders may find it difficult to convince some product owners to support multiple subreleases due to the effort

and expense involved. With generic agile, the product owner role decides when the product is ready for promotion.

With data warehousing, product owners can sometimes believe that there is little value in putting an EDW into produc-

tion until users can “slice and dice” all the metrics by every dimension. They believe that putting the data warehouse

online with only a few metrics and a handful of dimensions will provide end users only a glimpse of the much larger

truth that they need, so they will want to wait until the end users can see everything in full detail. Unfortunately, this

practice will leave the EDW developers diligently programming month after month without any feedback from real

users, leaving the developers vulnerable to business concept errors that the product owner, directors, and senior execu-

tives have all overlooked.

So that business concept errors can be readily uncovered, the project architects in this situation must insist on at least

three or four subreleases per year. They may have to ponder the requirements and design intently to discover ways to

meaningfully partition the project so that each subrelease has value to the end users. Although such planning can be com-

plex at times, I have yet to work on a project where it could not be done. Elaborate fact tables usually have many distinct

sets of metrics within them, and these metric columns often have elements replicated from source systems placed along-

side the complex, derived values. Subreleases for the program can be organized to deliver each metric column set as an

increment, or they can first focus on the replicated values followed by the derived columns in the subsequent subreleases.

The early subreleases can also be issued with the aggregated metrics connected to only a handful of the dimensions, to be

replaced with more granular fact tables connected to more dimensions later. Partitioning the project into subreleases can

take imagination and effort, but the additional cost of a couple of promotions pales compared to the damage that can

occur if the company has seriously miscalculated the value of the warehouse that the team is building.

Putting increments of the facts and dimensions in front of real end users to see if they laugh at the mangled and miscon-

ceived information that the data warehouse contains is the acid test that the EDW team leaders need to strive for. Part VI

of this book surveys some techniques and technology that will greatly assist EDW teams in building fast and inexpensive

subreleases so that they can pursue a series of minimal viable products without risking months of development effort.

SUMMARY

Enterprise data warehousing projects are full of risk. When pursued with traditional project management methods,

efforts at building an EDW fail more often than they succeed. Agile EDW techniques greatly mitigate risks of failure

by both using the general features of the development iteration and adding two further types of iterations to the overall

project plan: one for subrelease candidates and another for actual application subreleases. The development iteration

contains a product demonstration for the product owner, an event that gives him or her a regular opportunity to screen

for application coding errors that may have crept into the BI system’s current build. Development projects also need

accurate guidance at the solution level—the realm in which application features are selected and mapped to the business

problems they solve. To detect solution concept errors, the EDW team must inspire its product owner to regularly pres-

ent a subrelease candidate after every few development iterations to the stakeholders most involved in guiding the

team. If the close stakeholders approve the subrelease candidate, the team should promote the current build into produc-

tion usage and have real business users evaluate the new subrelease. The end users will be able to test whether the busi-

ness concepts shaping the data warehouse are accurate. The errors and gaps in requirements and design that these three

levels of review will uncover will keep the team from investing months of programming into seriously misconceived

application designs.

Application coding concepts, solution concepts, and business concepts provide a handy structure for organizing a

team’s risk mitigation efforts. We elaborate on and heavily rely on this same framework when we devise a requirements

management approach for agile enterprise data warehousing teams—a discussion that begins in the next chapter.

120 PART | II Review of Fast EDW Coding and Risk Mitigation

Part II References

Chapter 4

Abran, A., Moore, J., Bourque, P., Dupuis, R., 2005. Guide to the

Software Engineering Body of Knowledge (SWEBOK). IEEE

Computer Society, Piscataway, NJ.

Angelov, S., Grefen, P., Greefhorst, D., 2012. A classification of soft-

ware reference architectures. Inform. Softw. Technol. 54 (4),

417�431. ,http://www.archixl.nl/files/wicsa_referencearchitecture.

pdf. (accessed December 2013).

Association for Computing Machinery, 2006. Software engineering.

Association for Computing Machinery (website). ,http://computing-

careers.acm.org/?page_id512]. (accessed May 2014).

Balanced Insight, 2014. Accelerating information delivery. Balanced

Insight (website). ,http://www.balancedinsight.com. (accessed

May 2014).

Brackett, M., 2005. Data resource quality. Presentation at the National

Forum on Education Statistics, February 21, 2005. ,http://nces.ed.

gov/forum/pdf/data_res_quality_ppt.pdf. (accessed October 2013).

Brackett, M., 2011. Data Resource Simplexity. Technics, Bradley Beach, NJ.

DAMA International, 2013. About us. DAMA International (website).

,http://www.dama.org. (accessed November 2013).

Department of Defense, 2010, June. Reference architecture description.

Department of Defense (website). ,http://dodcio.defense.gov/Portals/

0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf.

(accessed December 2013).

Earley, S., 2011. The DAMA Dictionary of Data Management, second

ed. Technic, Bradley Beach, NJ.

Gartner, 2013. Gartner IT glossary. Gartner (website). ,http://www.gartner.

com/it-glossary. (accessed November 2013).

Giachetti, R.E., 2010. Design of enterprise systems, theory, architecture,

and methods. Boca Raton, FL: CRC Press. Cited in Wikipedia entry

for “enterprise.”

Hughes, R., Stodder, D., 2013. Agile Data Warehousing: Putting

Business Back in the Driver’s Seat. Keynote Presentation at The

Data Warehousing Institute’s October 2013 World Conference,

Boston.

Inmon, W.H., 1993. What is a data warehouse? PRISM Newsletter. vol. 1,

No. 1. St. Louis, MO: Washington University, Center for the

Application of Information Technology.

Inmon W.H., Imhoff, C., 2001. Corporate information factory, second

ed. New York: Wiley.

Kimball, R., Ross, M., 2013. The Data Warehouse Toolkit, third ed

Wiley, New York.

Malveau, R., Mowbray, T.J., 2003. Software Architect Bootcamp, second

ed Prentice Hall, Upper Saddle River, NJ.

Mosley, M., Brackett, M., Earley, S., 2009. The DAMA Guide to the Data

Management Body of Knowledge. Technics, Bradley Beach, NJ.

Nelson, J., 2013, April 22. The rise of Shadow IT: Should CIOs take

umbrage? CXO Unplugged (website). ,http://cxounplugged.com/

2013/04/shadow_it..

Project Management Institute, 2013. A Guide to the Project Management

Body of Knowledge, fifth ed. Project Management Institute,

Newtown Square, PA.

Sessions, R., 2007, May. A comparison of the top four enterprise-

architecture methodologies. Microsoft Developer Network (website).

,https://msdn.microsoft.com/en-us/library/bb466232.aspx. (accessed

December 2013).

The Data Warehousing Institute, 2011, May. Data integration and

data warehousing defined. What Works in Data Integration, 31,

,http://tdwi.org/Issues/2011/05/What-Works-Volume-31.aspx.

(accessed October 2013).

The Data Warehousing Institute, 2013. About TDWI. The Data Warehousing

Institute (website).,http://www.tdwi.org. (accessed November 2013).

Zachman, J.P., 2011. “The Zachman Framework Evolution,” Zachman

International (website), ,http://www.zachman.com/ea-articles-

reference/54-the-zachman-framework-evolution. (accessed July

2014).

Chapter 5
Hughes, R., Stodder, D., 2013. Agile Data Warehousing: Putting Business

Back in the Driver’s Seat. Keynote Presentation at The Data

Warehousing Institute’s October 2013 World Conference, Boston.

Malik, N., 2007, June 4. WaterScrum vs. Scrummerfall. Inside

Architecture (blog), Microsoft Developer Network. ,http://blogs.

msdn.com/b/nickmalik/archive/2007/06/04/waterscrum-vs-scrum-

merfall.aspx. (accessed June 2013).

Chapter 6
Boehm, D. TRW, Inc., 1987. Industrial software metrics top10 list. IEEE

Software, pp. 84�85.

Borek, A., Parlikad, A.K., Webb, J., Woodall, P., 2013. Total

Information Risk Management. Morgan Kaufmann, Waltham, MA.

Ericson, J. 2006, April. A simple plan. Information Management

Magazine. ,http://www.information-management.com/issues/2006

0401/1051182-1.html. (accessed September 2011).

Kundu, S., 2010. Analog and Digital Communications. Pearson India,

Chennai.

Ries, E., 2011. The Lean Startup: How Today’s Entrepreneurs Use

Continuous Innovation to Create Radically Successful Businesses.

Crown Business, New York.

The Standish Group International, 1995. The chaos report. ,http://www.

standishgroup.com. (accessed April 2006).

The Standish Group International, 1999. Chaos: A recipe for success.

,http://www.standishgroup.com. (accessed April 2006).

121
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00028-X

© 2015 Elsevier Inc. All rights reserved.

http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref1
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref1
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref1
http://www.archixl.nl/files/wicsa_referencearchitecture.pdf
http://www.archixl.nl/files/wicsa_referencearchitecture.pdf
http://computingcareers.acm.org/?page_id=12
http://computingcareers.acm.org/?page_id=12
http://computingcareers.acm.org/?page_id=12
http://computingcareers.acm.org/?page_id=12
http://computingcareers.acm.org/?page_id=12
http://www.balancedinsight.com
http://nces.ed.gov/forum/pdf/data_res_quality_ppt.pdf
http://nces.ed.gov/forum/pdf/data_res_quality_ppt.pdf
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref3
http://www.dama.org
http://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf
http://dodcio.defense.gov/Portals/0/Documents/DIEA/Ref_Archi_Description_Final_v1_18Jun10.pdf
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref4
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref4
http://www.gartner.com/it-glossary
http://www.gartner.com/it-glossary
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref5
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref5
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref6
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref6
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref7
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref7
http://cxounplugged.com/2013/04/shadow_it
http://cxounplugged.com/2013/04/shadow_it
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref8
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref8
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref8
https://msdn.microsoft.com/en-us/library/bb466232.aspx
http://tdwi.org/Issues/2011/05/What-Works-Volume-31.aspx
http://www.tdwi.org
http://www.zachman.com/ea-articles-reference/54-the-zachman-framework-evolution
http://www.zachman.com/ea-articles-reference/54-the-zachman-framework-evolution
http://blogs.msdn.com/b/nickmalik/archive/2007/06/04/waterscrum-vs-scrummerfall.aspx
http://blogs.msdn.com/b/nickmalik/archive/2007/06/04/waterscrum-vs-scrummerfall.aspx
http://blogs.msdn.com/b/nickmalik/archive/2007/06/04/waterscrum-vs-scrummerfall.aspx
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref9
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref9
http://www.information-management.com/issues/20060401/1051182-1.html
http://www.information-management.com/issues/20060401/1051182-1.html
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref10
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref10
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref11
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref11
http://refhub.elsevier.com/B978-0-12-396464-9.00028-X/sbref11
http://www.standishgroup.com
http://www.standishgroup.com
http://www.standishgroup.com
http://dx.doi.org/10.1016/B978-0-12-396464-9.00028-X

Chapter 7

Balancing between Two Extremes

Agile data warehousing projects teeter precariously on a knife edge when it comes to requirements. Without an accurate

notion of the problems their customers face and a strong concept of the system that will solve those problems, teams

can labor for months and still deliver very little of value to the business. On the other hand, defining a project’s require-

ments in exhaustive detail can consume so much time that the team leaves itself too little opportunity and resources to

build enough working modules of sufficient quality to solve any of the business problems identified. To succeed, agile

practitioners need an approach to framing projects that yields requirements that are “just good enough,” to quote a

phrase that iterative delivery practitioners use extensively. Just-good-enough requirements in the agile context means

focusing the developers on the right problems with sufficient understanding to create an effective project backlog.

With an accurate backlog in hand, they can then begin programming increments of working software that meets the

business needs.

An agile enterprise data warehousing (EDW) team employs a unique strategy for successfully balancing between

too little and too much project definition before programming begins. It relies on a lightweight, incrementally adjust-

able, stereoscopic vision to enable the developers to effectively define and scope the project. Lightweight means this

vision is based on 80/20 specifications, as discussed in the introductory chapters. Incrementally adjustable signifies that

as the project iterations proceed, the team can selectively increase the level of detail above the 80/20 mark where

needed. Stereoscopic indicates that a team will describe its project from two perspectives so that it can “see around the

corners,” spotting gaps and investing in greater detail when necessary.

Agile team leaders do not expect that defining the requirements for a project as large as an EDW will be a one-time

effort. Moreover, the needs of many business departments and interacting business systems will determine the full list of

features required of an enterprise data warehousing system, and these needs will not be fully apparent at the start of the

project. Accordingly, team leaders should expect the business stakeholders to improve their notion of the business intelli-

gence services they need as they learn about the insights that data warehousing can provide. Moreover, the competitive

landscape for the organization may also change multiple times before the EDW team fully delivers the next release of its

application. For all these reasons, agile EDW team leaders need to think in terms of “requirements management”—that

is, building a good understanding of organizational needs at the start of the project but then continuing to explore and

update that notion over time so that the active goals of the project remain as accurate as possible.

The mind map in Figure 7.1 shows how the five chapters of this part of the book present the elements involved in

agile EDW requirements management. This chapter, in particular, begins by advocating that EDW team leaders invest

at least some effort into requirements management in order to counter the notion that “agile” means programmers just

start coding. This chapter concludes with an overview of the stereoscopic approach that my colleagues have success-

fully used for many years to identify and lightly document the full breadth of EDW project requirements. The chapters

that follow provide greater details of this process by addressing the following:

� Disciplined definitions for EDW epics, themes, and user stories
� Quantifying value throughout the requirements management process
� The artifacts employed for a generic agile approach
� The artifacts employed for an enterprise-capable agile requirements value chain
� Intersecting those two approaches to yield a stereoscopic definition of the project
� Interfacing agile requirements management with the traditional project governance processes

By combining the generic and enterprise-capable requirements management techniques, agile EDW team leaders

can compile at the beginning of a project a complete and accurate project backlog with just enough detail to properly

125
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00007-2

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00007-2

sequence their work items for fast, iterative delivery. Such a backlog will also enable team leaders to efficiently

estimate the cost and duration of the effort and smoothly support any formal requirements management procedures that

traditional project management offices might impose at a higher level.

A quick reminder regarding some of the terms that will be used frequently here and in the following chapters:

Because data analytics projects include requirements for both data preparation and information visualization, I use the

term data integration when focusing more on the back-end portion of a system, business intelligence when looking at it

more from an end-user’s point of view, and enterprise data warehousing when thinking of a data analytics application

comprising both data integration and end-user analytical components that must combine data from many source systems

and deliver it to many business departments.

BUILDING THE CASE FOR EFFECTIVE REQUIREMENTS MANAGEMENT

EDW team leaders will need to set a team’s goals for requirements gathering and then motivate their developers to con-

scientiously perform this sometimes-tedious work. Such motivation will require a clear and compelling statement of the

benefits that a team will secure by properly defining the needs and objectives that a project should address.

Speaking broadly, a project’s requirements describe the features, functions, capabilities, and characteristics that an

information-based end product or service should provide. Requirements express the conditions and capabilities needed to

solve a problem or to achieve the agreed-upon objectives of a system or component [Larson & Larson 2013]. Requirements

for large projects such as enterprise data warehouses are challenging to manage for multiple reasons, the foremost being the

many kinds of needs that project teams should catalog and analyze before they start programming. Even a simple listing of

requirements types includes functional as well as nonfunctional requirements; business, architectural, and technical

Agile EDW

requirements management

Goals for agile requirements management

Tools for guiding the product owner in creating a robust project backlog

Chapter 7: Balancing between two extremes

Chapter 8: Redefining the epic stack to enable value accounting

Framework for defining epics, themes, and stories

Linking agile requirements to clear notions of business value

Chapter 9: Artifacts for the generic requirements value chain (GRM)

Chapter 10: Artifacts for the enterprise-capable requirements value chain (ERM)

Streamlined RUP artifacts for IT-driven project definition

Chapter 11: Intersecting value chains for a stereoscopic project vision

Connecting GRM to ERM for a single backlog

Addressing non-functional requirements

Interfacing with traditional project governance and the PMO

Wider criteria for prioritizing a project backlog

FIGURE 7.1 Mind map of topics addressed in Part III.

126 PART | III Agile EDW Requirements Management

requirements; and a distinction between positive and negative requirements. Moreover, requirements can be collected at a

high level when the software objectives are simple, or at an excruciating level of detail when the company’s business rules

are complex.

One of the most important decisions that project leaders can make is the level at which requirements will be gathered

and managed. Figure 7.2 provides examples of requirements expressed at three levels of detail. Level 1, although not in

user story format, represents the generalized notions that one finds on most agile teams’ project backlogs. The more com-

plex Level 3 requirement demonstrates the excruciating detail that many traditional project managers insist upon. Projects

that can work with Level 1 requirements will clearly begin programming far sooner than those that invest in Level 3.

However, teams can doom a project to failure if they start coding with only Level 1 requirements in hand when Level 3

artifacts are truly necessary.

The data mart will enable users to decompose sales-transaction metrics by the customer agent that finalized the
sale on the order entry system.

Records that cannot be loaded will be placed into a suspense table associated with each primary target table.
These records will be marked with a date-time value in the INSERT_DATE column. When data on the source
application changes and allows the record to be loaded, that record will be physically removed from the
suspense table. At any time, business users will be able to examine the suspense tables to find a current image
of all records needing correction by end users of the source system.

/* Logic for setting the market segment for a sales order */

if the order references a contract number

then

if contract can be found in the contract table, then dim_market.segment = dim_contract.cust_segment
else dim_market.segment=’CURRENT_CONTRACT_UNLOCATABLE’

else

if the order has a associated retail license

then

if max(order_line_item.bandwidth) > 1 GBPS
and (count(order_line_item)

where order_line_item.product_category = ‘PROVIDER_MANAGED_SECURITY’)
> 3

then dim_market_segment = ‘WHOLESALE’

else

if max(order_line_item.bandwidth) <= 10GBPS

then dim_market_segment = ‘SMALL_MEDIUM_BUSINESS’

else dim_market_segment = ‘LARGE_BUSINESS’

else dim_market_segment = ‘CONSUMER_MARKET’

FIGURE 7.2 Sample EDW requirements expressed at three levels.

Balancing between Two Extremes Chapter | 7 127

Most people in the data warehousing/business intelligence (DW/BI) industry have at least one horror story about

projects whose leaders invested too little in defining their requirements before starting development. Common symp-

toms of this mistake are as follows:

� Overlooking crucial software capabilities that the business absolutely needed in the application
� Modeling the data warehouse to support one analysis to the exclusion of other analytics that turned out to be far

more important
� Overlooking a data source essential for the requested business analysis
� Misstated business rules that necessitated endless repair cycles after the application was placed into production
� Subject matter experts insisting on so many new features that the entire effort ended up costing far more than the

benefits realized would merit

Agile EDW teams need a disciplined approach to requirements that lets them detect where detail is needed and

allows them to use fast, high-level requirements where it is not.

Developers Often Neglect Requirements Work

Given the previously mentioned well-known risks, why do teams so frequently skimp on requirements? Truth be told,

information technology (IT) people generally consider requirements gathering and analysis to be boring work, espe-

cially compared to the fun of programming new system features. Uncovering and articulating the needed application

functionality can be tedious and difficult work, demanding that developers simultaneously consider business processes

and system design from multiple directions. Moreover, once requirements have been documented, they need to be vali-

dated. Validating requirements involves either regenerating the requirements from separate inputs or asking a whole

new group to confirm that every requested capability is in fact needed. To many systems developers, validating require-

ments is like spending weeks re-plowing the same field—an experience they would rather do without.

To make matters worse, all the previously mentioned effort must take place in a setting of impatience. The sponsors

and end users urgently need the business intelligence solution they requested. Usually, the company is hemorrhaging

money on an expense they cannot understand, or a crucial business opportunity is dying on the vine. Everyone from

vice presidents to financial analysts wants the data integration programming to get started now so that new information

and analytics will soon appear on their BI dashboards. EDW teams rarely feel that they have the time to derive a com-

plete and correct list of needed capabilities. Sponsor urgency can weigh particularly heavily on agile teams, whose

entire self-definition hinges on being responsive to customer needs. Moreover, agile teams have an embedded business

partner who directs their efforts as product owner. This product owner often embodies the business’s desire to get new

capabilities programmed in a hurry.

Motivating Teams to Take Requirements Seriously

Situational pressure and dedication to speed can tempt many agile teams into severely forego even rudimentary efforts at

requirements management. Thus, agile project leaders would be wise to begin every project by presenting to their team-

mates a convincing case for carefully planning the requirements effort and then investing the time required to achieve

those objectives. After describing why requirements management will help, they then provide some recommended techni-

ques for keeping the requirements gathering process as lightweight as possible. These techniques are discussed later, but

first the case for good requirements management practices is outlined. If avoiding the horror stories mentioned previously

is not enough, project leaders can employ three further notions to scare their teammates into investing the needed effort

into defining requirements: the Boehm multiplier, the blivit factor, and the curse of working nights and weekends.

The Boehm Multiplier

To achieve world-class performance from their teams, project leaders need to relentlessly inspire their developers to go

beyond being just programmers to become software engineers. Chapter 6 introduced Barry Boehm’s research showing

that teams can correct errors in requirements with one-hundredth as much effort as would be entailed in fixing errors

once the system has been programmed. EDW team leaders should use Boehm’s findings to inspire their agile teams to

critically assess the requirements provided by the project’s product owner. Every teammate—from a senior business

analyst to a beginner extract, transform, and load (ETL) programmer—should be actively searching for gaps and misun-

derstandings each time the product owner presents items from the project backlog. Similarly, every user story should be

128 PART | III Agile EDW Requirements Management

scrutinized until the team is sure that each one is accurate and coherent with the other stories comprising the iteration,

the subrelease, and the project. Agile teams discuss data transformation business rules extensively with their product

owners, including sessions such as story conferences, data-modeling efforts, and daily conversations regarding desired

outcomes. Certainly it is easier for teammates who are not central to the conversation to fall into a passive mode of

simply following rather than contributing to the conversation, but unfortunately, Boehm’s hundred-to-one penalty

awaits a team that lets its members idly coast through any discussion of requirements.

Examples of such passive listening can be seen in almost any project meeting that involves three or more team-

mates. For example, while starting an EDW architectural review for a large bank, I was asked to sit in on a

modeling session for one of the component projects. That day, the team spent more than 4 hours deciding what

would be the primary keys for the major model entities. The data modeler and the product owner did the majority

of the talking, while the other half-dozen teammates seemed to be there only to stay abreast of the modeling deci-

sions. Speaking with the data modeler later, I found out that national and regional identifiers in the primary keys

had not been included in the primary keys of the model, despite the fact that the project sponsors had stated many

times their desire to someday implement the regional EDW at corporate headquarters. The product owner had

overlooked this requirement because she viewed her constituents as only the local financial directors with whom

she worked every day. The data modeler had overlooked the requirement because he was new to the project.

Unfortunately, the other six developers in the room overlooked this requirement because they were listening pas-

sively to the product owner rather than mentally testing each statement against the project’s big picture. How

much more expensive would it have been to let that oversight persist and then correct it later by reprogramming

the application once it had been implemented at headquarters? Given Boehm’s multiplier, the cost would probably

be 100 times larger.

The Blivit Factor

Blivit is a World War II term for cramming 10 pounds of manure into a 5-pound sack. As Kent Beck pointed out in

Extreme Programming Explained, the entire endeavor of software development is imbued with self-similarity:

Complexity observed at one level of consideration will be matched by an equal degree of complexity when the analysis

zooms in to look at the situation more closely. Teams that only scratch the surface when discussing requirements with

their product owners risk overlooking layer after layer of details, any one of which could be the origin of a crucial mis-

take. Teams that do not even glance at the full depth of requirements before they estimate a project’s development

effort will commit to far more work than they realize, condemning themselves to trying to force 10 pounds of features

into a 5-pound project budget. Starving requirements management of the time needed to build a realistic view of the

requested application will convert the project into the proverbial blivit, when deliveries and expenses do not match

expectations, to the chagrin of everyone involved.

The Curse of Working Nights and Weekends

When a project team fails to invest sufficiently in requirements discovery and then slams into the Boehm multiplier and

the blivit factor, who pays the price? First and foremost, it will be the developers on the team. Unfortunately, the unre-

alistic nature of their commitment will become apparent only gradually. The first few oversights and misunderstandings

will be thought of as exceptions, not the start of a pattern. The team will believe that it can address them by working

extra hard for a day or two to pull the project back on track. However, the unpleasant discoveries mount, the Boehm

multiplier and blivit factor start to take over. The extra work required to honor the team’s commitments will grow way

past a day or two into a steady diet of working late nights and weekends. By skimping on requirements management,

the developers are tacitly choosing to forfeit their private lives later in the project.

The combined effect of the Boehm multiplier, the blivit factor, and the curse of working through weekends should

motivate all the members of the agile EDW team to participate in identifying, testing, and polishing the project require-

ments. Because everyone on the team has an interest in defining the delivery goals, EDW project leaders can let the

work of requirements management become a team responsibility. Chapter 5 slated the project architect as the agile

EDW teammate who should “drive requirements.” Drive does not mean “do,” but instead indicates this person’s role is

to ensure the team takes a methodical approach to requirements so that the results will be complete and correct.

Accordingly, the business analysts on the team may perform much of the requirements work, given their training in

diagramming and analyzing business processes. The systems analysts and data modelers should also be highly involved

in translating business requirements into technical requirements. Everyone on the team can catch an oversight, and any

particular person—no matter his or her role—may prove to be particularly good at thinking through requirements.

Balancing between Two Extremes Chapter | 7 129

Given that the entire team will fail if even a few crucial requirements are overlooked, agile EDW team leaders should

encourage wide participation in requirements management and support those who demonstrate initiative in this area.

For this reason, I frequently refer to requirements as a team function in the following discussion, unless a particular

step clearly falls within the responsibilities of a specific role.

EASY TO OVERINVEST IN REQUIREMENTS MANAGEMENT

The adverse effects of the Boehm multiplier and the blivit factor can be so alarming that they scare an agile develop-

ment team back into a waterfall approach to processing project requirements. Team leaders need to guard against this

overreaction and steer their developers instead toward a middle path that tempers agile’s urgency to start coding with

the right amount of old-school techniques for defining projects. To this end, we will now take a quick look at traditional

requirements management so that the EDW team leaders will both be familiar with the disciplined techniques that it

offers and understand how time-consuming it can be if employed unreservedly.

“Requirements Management” Formally Defined

On traditional projects for large organizations, requirements are usually managed by the business analyst (BA) role.

The work of a business analyst has been well defined by the International Institute of Business Analysts (IIBA), which

provides instruction and certification testing on the skills needed. The authors of the IIBA’s Business Analyst Body of

Knowledge define “requirements management” as a discipline with three major goals [Larson & Larson 2013]:

1. Planning the process for gathering, monitoring, and validating an application’s requirements

2. Following that process in order to author a complete and correct set of requirements

3. Maintaining the accuracy of those requirements by properly processing requested changes

When these steps are translated into practice, requirements management involves three activities that often overlap:

1. Requirements discovery: A divergent process during which the project leaders cast a wide net to ascertain the full

extent of business needs relevant to the proposed project

2. Requirement analysis: A convergent process in which the project leaders strive to assemble those discoveries into a

single, coherent and complete narrative of what the application should be when it finally arrives

3. Requirements change management: A disciplined pattern for vetting and accepting new or modified ideas that

impact the nature of the application so that changing notions of intent and desired capabilities do not impede or

undermine the delivery team once development is underway

Typically, the work in these phases is shared between a project architect and business analysts as they work with a

wide range of business stakeholders.

The agile EDW approach to requirements attends to all three of these components. Teams discover requirements by

taking direction from the team’s product owner while also interviewing the project’s stakeholders. They analyze those

requirements by intersecting these independently derived notions of the intent and desired characteristics for the

requested BI application. Finally, they manage requirements by first assembling a concise project backlog and then

evolving it through discussion with stakeholders as the project progresses. They also negotiate a change control process

with their oversight groups such as the project management office, arriving at a governance pattern that empowers the

development team to independently attend to the detailed business and technical requirements of the application.

Traditional Projects Employ a Big Spec Up Front

When companies pursue applications as complex and extensive as an enterprise data warehouse, the traditional

approach results in a requirements specification document (RSD). The RSD for an EDW project is typically a massive

binder of prose and diagrams, often more than 1000 pages long. Figure 7.3 shows a summary of the steps needed to

generate such a specification:

1. The company assigns a requirements team.

2. The requirements team pursues requirements discovery, in which the team reaches out to the project’s likely stake-

holders and requests input on the desired features, functions, capabilities, and characteristics for the proposed

application.

130 PART | III Agile EDW Requirements Management

3. The team invests in requirements analysis, during which it authors many types of requirement artifacts in order to

extend, deepen, and validate its understanding of the company’s needs for the new system.

4. Optionally, the team undertakes a business process reengineering (BPR) effort, during which the team redesigns

some of the company’s major work flows in order to better take advantage of the new application.

5. When the analysis and process reengineering efforts are complete, the team validates with stakeholders the resulting

requirements, usually through some extensive presentations and feedback gathering.

6. With a validated set of requirements in hand, the team prepares a budgeting estimate that forecasts the level of effort

needed to satisfy the requirements. Project sponsors use this estimate to set the application’s scope, matching the

project’s objectives to the funding available.

7. With this subset of requirements approved for development, the team can author the project’s formal requirements

specification document (RSD). This RSD is placed under change control so that any modification to it must be first

presented to and approved by the project governance committee.

8. Using the RSD, the team can update its level-of-effort estimate and provide the sponsors with a (supposedly) defini-

tive estimate of the cost and duration of the project’s development work.

These eight steps all involve considerable amounts of time and labor. Some of them, such as preparing the estimates,

may take only a few weeks to complete, but most of the others, especially requirements analysis and business process

engineering, can span several months for EDW projects of even moderate complexity. If these eight steps progress

smoothly and average only 6 weeks each, for example, then the overall requirements management process depicted in

Figure 7.3 will easily consume an entire year. Add another year or more of development on top of that delay, and many

of the business opportunities that an EDW is designed to exploit will have disappeared before a project’s first BI dash-

board goes online. Agile methods aim to constantly deliver value to the customer and to respond quickly to changes in

the business. Getting mired in a yearlong project definition process before a single module is programmed will clearly

undermine this goal. To successfully streamline the requirements process, however, one must first understand the under-

lying complexity of requirements that drives the traditional approach to such extremes. When we craft an agile

approach to requirements, it will have to somehow manage the full spectrum, from the simple to the devilishly

complex.

Definitive
project estimate

Requirements
specification document

Finish

Project estimation & scoping

Requirements validation

Requirements

analysis

Business process
re-engineering

Requirements discovery

Requirements
team assigned

Start

Development

FIGURE 7.3 Waterfall-style requirements management.

Balancing between Two Extremes Chapter | 7 131

Requirements are Inherently Diverse

Before development teams can manage requirements, they must first discover and analyze them—two tasks that

demand considerable effort because of the many types of requirements that exist and the extensive set of artifacts that

business analysts have created to capture them. Table 7.1 summarizes the traditional requirements management

approach and its artifacts and shows both discovery and two rounds of requirements analysis. To complete these three

major phases adequately, the team must start at a high level and drill into considerable detail, as indicated by the rows

in the diagram. Each row represents one or more BA activities that revisit the current set of requirements at a still finer

level of detail.

The number of steps and artifacts involved in this traditional approach is impressive. Figure 7.4 lists more than two

dozen types of artifacts that the authors of the IIBA’s certification study guide believe would be a reasonable result

from pursuing the process laid out in Table 7.1 [Larson & Larson 2013].

The need for such a large number and diversity of requirements artifacts is appropriate not only because of the mul-

tipass process that the traditional approach involves but also because of the wide range of requirement types implicit in

any project as extensive as an EDW. Table 7.2 attempts to list all the requirements types that traditional development

teams should consider documenting. This list was compiled from several international standards, such as FURPS and

ISO. Also included are several requirements types listed by the Rational Unified Process (RUP), the pre-agile, iterative

development method that many traditional shops still employ, at least to define their projects.

TABLE 7.1 Traditional Requirements Analysis Process

Abstraction Level:

Disciplines

* SIPOC: Tables of suppliers, inputs, process, outputs, and customers listings for each element on the functional decomposition diagram.

Discovery High-Level Analysis

User Interface
Modeling

Application
Definition
Management

Entity-Only Entity Relationship
Diagram (ERD)

High Level Write-Ups, Wire
Frame Depictions

Value Chains, Context Models,
Cross-Functional Models

Solution Scope,
Req. Mgt. Plan,

Business Rules Outlines,
Entity-Only Traceability Matrix

Use Case Diagrams

Business Process
Modeling

Use Case
Modeling

Data Modeling

Detailed Analysis

Functional Decomp. Diagram,
Swim Lane Diagrams,

SIPOCs*

Attributed ERD

High-Level
Prototype

Business Rules Narratives,

High-Level Traceability Matrix

Detailed

Process Maps

Normalized ERD

Detailed Prototype

Requirements Specification

Document, Detailed Business

Rules Algorithms,

Detailed Traceability Matrix

Use Case Narratives
Activity Diagrams,

Sequence Diagrams

Artifacts requiring extensive effort to author and maintain are in bold. Note process requires completing 27 artifacts before application design and development can begin.
Adapted from [Larson & Larson 2013]

132 PART | III Agile EDW Requirements Management

The IIBA does encourage requirements team to selectively choose from these lists rather than aiming to produce

all types of artifacts to cover all requirements types. However, traditional teams tend to invest in documenting a

majority of items suggested on these lists because their project method allows them only one opportunity to capture

requirements before programming begins. Because they only have one chance to define the project, team leaders

often overinvest in requirements gathering so that they do not overlook anything important. Unfortunately, no matter

how much effort a team invests, delivering a perfect set of requirements before programming begins is impossible for

multiple reasons:

� Application requirements are extremely fractal, with each one decomposing into many others that all decompose

ever further.
� Resolving conflicts between requirements becomes considerably more difficult as the level of detail increases, often

requiring committee meetings and delays while stakeholders research their needs.

Requirements
documentation

Req mgt plan
Stakeholder

register

Business
analysis

RACI
PARIS
Contact list

Stakeholder
influence matrix

Support strategies
Influence / impact matrix
Attitude / risk matrix

Categorization worksheet

BA quality plan

Metrics
BA monitoring plan

Product scope
plan

Baselines
Change management plans
Traceability structure

BA communications
plan

BA communications
worksheet

Stakeholder
communication plan

Matrix

Traceability matrix
CRUD matrix

Swim lane diagrams
SIPOCs

Process
models

Text

Requirements listing

Requirements
specification document

Organizational
process assets

Templates

Process listings

Models

Use case models
Class diagrams
Process scope diagrams

Activity list
BA risk plan

FIGURE 7.4 Typical requirements work breakdown for a traditional project. (Adapted from Larson & Larson 2013.)

Balancing between Two Extremes Chapter | 7 133

� Documenting complex, detailed requirements involves many lengthy artifacts that consume too much time to pre-

pare and then later modify.

Agile methods offer a better approach—one in which teams postpone detailed requirements analysis until they begin

programming each module, so that time is not wasted on documenting and accommodating requirements for portions of

a system that never get built.

TABLE 7.2 Standard Requirements Categories

Category Subcategory Category Subcategory

Accuracy (ISO) Testability

Security (ISO) Adaptability

Suitability (ISO) Maintainability

Compliance (ISO) Compatibility

Accessibility Configurability

Aesthetics Upgradeability

UI Consistency Installability

Ergonomics Scalability

Ease of Use Portability

Reusability

Maturity (ISO) Interoperability

Recoverability (ISO) Compliance

Availability Replaceability

Robustness Changeability

Accuracy Analyzability

Fault Tolerance Localizability

Safety

Security

Correctness

Throughput Documentation Requirements (RUP)

Response Time Licensing and Legal Requirements (RUP)

Recovery Time

Stop/Start Cycle Time

Capacity

Resource Utilization

All standards from FURPS unless otherwise marked [Grady 1992].

(+) Added later to FURPS, making it FURPS+

(ISO): Borrowed from [ISO 2011]

(RUP) Borrowed from Rational Unified Process. See [Zielczynski 2008] for details on elements listed.

Designations between functional and non-functional are generalizations—exceptional circumstances will occur

Implementation Requirements (+)

Physical Requirements (+)

Supportability

Design Constraints (+)

N
on-Functional

Functional

Interface Requirements (+)

N
on-Functional (cont.)

Functionality

Usability

Reliability

Performance

134 PART | III Agile EDW Requirements Management

Business Process Reengineering Can Add to the Complexity

Figure 7.3 listed BPR as an optional step. This discipline can provide a valuable set of requirements, but EDW team

leaders should employ this discipline judiciously because when overapplied, it can stall a project for months at a time.

Unconstrained BPR absorbs excessive team resources because it demands that the requirements team prepare both as-is

and to-be diagrams of the business processes that the new application will impact. Figures 7.5 and 7.6 are simplified versions

of BPR diagrams that many traditional business analysts working on enterprise data warehousing projects typically prepare.

The first diagram is the dysfunctional as-is situation that the company would like to address. The second diagram shows the

improved overall process that EDW will enable. The vertical swim lanes on both diagrams represent the business systems that

a project will impact. The rounded boxes represent major functions within those business systems, and the arrows represent

information flows. The small explosion symbols represent areas where the information flows within the organization’s current

business process break down, developing gaps or inaccuracies that undermine effective business performance.

These diagrams and the prose that must accompany them consume an inordinate amount of time to prepare for

several reasons:

� Every flow and alternative flow in the existing business process must be considered for diagramming and modifica-

tion, leading to a large number of processes to document.
� Both the current and the future business processes lie far outside IT’s domain knowledge so that the business staff

must spend a significant amount of time up front familiarizing IT with the basic operations of the company.
� The existing business processes are rarely documented thoroughly, leaving most of the important details existent

only in the minds of the business staff.

Frame new order

Order entry Credit Fulfillment

Submit for credit
approval

Submit credit
approved order Automated work

order & provisioning

Manual research

Suspend order if no
credit approval

Find & update
suspended order

Add to manual
approval list

Email notice
of pending order

Process email queue

Manual work
order & provisioning

Automated credit
approval

Email
suspended order

Email manual
approval list

Where information exchanges can break down

FIGURE 7.5 As-is business process diagram showing a sample work flow requiring re-engineering.

Balancing between Two Extremes Chapter | 7 135

� The benefits of the new application are far off, so the business subject matter experts rarely have the motivation to

invest the necessary time envisioning and discussing how to change the way they currently work.

More importantly, companies easily overstate how much data warehousing they will be able to achieve with a given

project. When coupled with the expensive nature of BPR practices, this overstatement leads development teams into

wasting far too much of their project budgets on process reengineering efforts that never get fully implemented.

In those specific functional areas where the value of a DW/BI hinges on a properly reengineered business process,

BPR is an excellent choice of techniques. Agile teams should definitely retain this technique in their toolkits, but they

should deploy it only when the warehouse features requiring BPR work approach the top of their project backlogs.

When they do employ BPR, EDW team leaders should assiduously keep the scope of that effort well contained so that

the team only spends time and money on reengineering plans that will actually be used.

BPR can also be insidious because of the mindset it encourages. During my decades on BI projects, I have noticed

that business analysts who are trained in BPR seem to believe that every business process that the warehouse touches

should be carefully diagrammed. If project leaders let such an assumption have too much influence, their team will

spend far too much time on drawing swim lanes and vetting them with impatient business experts instead of spending

that time on delivering new analytic capabilities.

REASONS NOT TO OVERINVEST IN REQUIREMENT WORK

With the background on traditional requirements management offered above, project leaders can easily understand

that they must resist any temptation to complete a full requirements documentation effort before beginning program-

ming, else they will never deliver new features in a business-reasonable time frame. Unfortunately, many parties

Frame new order

Order entry Credit Fulfillment

Submit for credit
approval

Submit credit
approved order Automated work

order & provisioning

Manual research

Suspend order if no
credit approval

Add to manual
approval list

Process manual
approval queue

Manual work
order & provisioning

Automated credit
approval

EDW

Find & update
suspended order

FIGURE 7.6 To-be business process re-engineered to use EDW to communicate between agents.

136 PART | III Agile EDW Requirements Management

involved in DW/BI projects—such as program and project managers—believe that an application should be defined

in detail so that the programming effort can be finely controlled. The flaws in such a traditional approach are multi-

faceted. First, it overinvests in precision at the expense of accuracy. Statistically, it fails more than it succeeds,

squandering valuable business opportunities. Moreover, business partners truly detest having to spell out exactly

what they want before receiving any new capabilities, and therefore they overtly or passively refuse to support such

an approach sufficiently. Because EDW team leaders may have to convince project management that these flaws

exist, we will discuss each before considering the agile alternative.

Precision at the Expense of Accuracy

When people insist that a detailed requirements specification will ensure project success, they are emphasizing precision

over accuracy. Unfortunately, precision prevents accuracy during protracted development efforts, and without accuracy,

precision is another form of wasted effort.

We can take carpentry as a metaphor and consider accuracy and precision when it comes to cutting a board to span

an opening in the frame of a house, for example. Accuracy is how well the carpenter identifies the necessary length of

the board. Did he choose to cut the board to fit inside the vertical framing studs when a better design would have been

to cut the board so that it sits on top of them? The notion of precision pertains to how well the carpenter marked the

board once the proper length was determined so that he could put the saw blade exactly where it was needed. As shown

in Figure 7.7, a dull pencil will mark a board with a wide smudge, leaving the precise point at which to cut unclear.

The small bell curve suggests the variance that would occur if multiple cuts were attempted based on the same pencil

mark. Note that if the carpenter had a means of adjusting the board in small ways after the cut, the accuracy of the

specified length would matter far more than the precision of the cut.

In the world of EDW requirements, accuracy becomes a matter of knowing what needs to be built, whereas

precision involves documenting those features in fine detail. When starting a project, or even managing work in mid-

project, teams receive tremendous benefit from an accurate list of features. Describing each feature with high

precision will only overwhelm the team members with details to digest, leading them to lose sight of the spirit of the

application and undermining the accuracy of their efforts. Perhaps because IT people work with computers, they tend

to emphasize precision over accuracy in their requirements management efforts. Table 7.3 shows how typical EDW

requirement questions change depending on whether an IT team emphasizes accuracy or precision. Close study of the

two columns reveals that the questions emphasizing accuracy serve to set application scope—that is, boundaries

around what the application will do and whom it will serve. Precision-oriented questions focus far more on the details

that the developers will need when it comes time to code each module of the application. For this reason, emphasiz-

ing accuracy tends to be a breadth-first approach, one that provides a solid whole-project notion of a team’s goal

without diving into a detailed description of application features.

Accuracy: where you choose to cut (offset)

Precision: how sharply you mark the spot (variance)

Desired length

FIGURE 7.7 Accuracy vs. precision.

Balancing between Two Extremes Chapter | 7 137

Agile teams reverse the normal tendency of an IT development team—they focus on accuracy rather than precision

during requirements discovery. As they define a project, they note where precision is required and then research those

details one module at a time, and only for those modules that have arrived at the top of the backlog for development.

By keeping their requirements work focused on both the high and the medium level, agile teams arrive at complete and

correct project definitions far more quickly than teams using traditional approaches, which tend to get mired in prema-

ture precision.

Business Partners are Adverse to Traditional Requirements Gathering Efforts

Even if the IT members of an EDW engagement could somehow make a traditional requirements effort succeed, their

business partners would prove to be uncooperative participants. Veteran EDW developers have a very common set of

complaints about the end-user communities with regard to requirements:

� At the start of a project, they ask for far more than they are willing to pay for.
� They will not take the time to learn the many ways that DW/BI can help the business.
� They will not make the effort to articulate how their business processes need to be improved.
� They will not take the time to explain those business processes so that IT can suggest improvements.
� The requirements that they do provide are vague and they will not work closely with IT to explore the details.
� Even when IT has deliverables for them, they are unwilling to review them carefully.

As a result, business users cannot tell IT what they want from DW/BI until they see it on a dashboard. Unfortunately,

by then, the project will have run out of the time and money needed to make changes.

These age-old challenges of working with business partners still exist at the beginning of any agile EDW program.

When I ask my customers about why business partners are so unenthusiastic about defining for IT the application they

have requested, many of them offer an explanation such as the following:

Apathetic business partners were made, not born. We in the business have worked with IT for more than 30 years now. IT

always wants us to spend months explaining everything we want out of a system. But, decade after decade, IT has failed to

deliver even half of what we ask for. In fact, when it comes to BI projects in particular, Gartner says 70�80% of those projects

fail [Kernochan 2011], and I feel like I’ve been on the receiving end of every one of them. My department decided long ago

that working with IT is largely a waste of time, especially when the work involves big binders of requirements.

At the start of a new project, business partners must decide on a daily basis whether to spend hours working with the IT

team (which will only result in disappointment) or to focus on running the business. When they pass on collaborating

wholeheartedly with IT, it is the only rational choice.

TABLE 7.3 Comparison of Accuracy and Precision for an Agile Enterprise Data Warehousing Project

Accuracy Precision

Achieving the Right Objectives Achieving them in the Right Way
(Needed up-front to define the application) (Can wait until each area of the warehouse enters programming)

How can DWBI improve this company’s competitiveness? What drill-down path will Role “R” want to use with Fact Table “F”?

What business groups and business process need support? What is the complete list of business rules that the application must implement?

What information do major players need to improve these processes? What should be the Type 2 triggers for Dimension “D”?

What source systems do we need to integrate? What is the complete list of data elements in those sources?

What are the key integration points? What are the formats for each version of a given natural key?

How will end users know they can trust the BI information? What are the edge cases for a particular business rule?

What features should go with each subreleases? Where in the data model will the split between subreleases occur?

138 PART | III Agile EDW Requirements Management

In order to perform noticeably better than waterfall methods, agile EDW project leaders need to offer their business

partners a new approach to managing requirements—one that blends specification work with the delivery of new, excit-

ing business intelligence capabilities. With an agile approach, every effort invested in defining an application is soon

rewarded with a tangible benefit for the business. Given this reward structure, the business staff soon finds the motiva-

tion it needs to participate in the project more fully.

Traditional Requirements Management Fails More than it Succeeds

The many disadvantages to traditional requirements management listed previously result in one decisive fact that folks

arguing for a complete and perfect specification up front cannot overcome: The traditional approach to requirements

fails more often than it succeeds. In the seminal Chaos reports, published before agile methods became available, the

Standish group documented that even the smallest projects, which had the best success rates, failed more than 45% of

the time. As projects grew in size toward the $10 million mark, the failure rate quickly increased to 100% [Standish

Group 1995, 1999]. In these studies, poor performance on requirements constituted 6 of the top 10 reasons that projects

became seriously challenged or were canceled during the era of waterfall project management, as shown in Table 7.4.

Whereas this table can be read as a listing of all the ways that IT typically errs while building software, I believe it

reflects all of the impediments that even the most disciplined IT developers will encounter in traditionally managed

software projects. From that perspective, the factors summarized in the table become warnings to teams that believe

they can amass a complete and perfect requirements specification document before development work begins:

� Incomplete requirements: Many forces will prevent you from finishing your work.
� Lack of user input: Even the end users you are serving will not give you the guidance you need.
� Unrealistic expectations: Sinking too much time into a complete spec will distract you from showing your customers

how much their limited funding can really accomplish.
� Changing requirements: A perfect specification is impossible because the business will not stand still long enough

to be completely described.
� Did not need the application any longer: The time window you have is far too short to consider writing out complete

specifications.
� Unrealistic time frames: The feedback cycle between requirements, design, and project estimation is too long for

you to keep people’s expectations aligned with the true effort needed to build software.

The Greatest Failure is Losing Business Opportunity

The fact that some respondents reported that their projects were canceled because the organization no longer needed the

application being built reveals a particularly pernicious disadvantage to the big, up-front requirements definition pro-

cess. By delaying the flow of usable features, traditional methods force far too much opportunity cost on EDW’s custo-

mers. Advocates of the complete and perfect requirements specification document believe that the big spec up-front

TABLE 7.4 Traditional Approaches to Requirements Performed Poorly in the Era

Before Agile

#

Factor Undermining Performance

Responses by Category of Projects

Cancelled Challenged

Rank % Rank %

A Incomplete requirements 1 13.1% 2 12.3%

B Lack of user input 2 12.4% 1 12.8%

C Unrealistic expectations 4 9.9% 7 5.9%

D Changing requirements 6 8.7% 3 11.8%

E Didn’t need app any longer 8 7.5%

F Unrealistic time frames 9 4.3%

Balancing between Two Extremes Chapter | 7 139

approach protects the company from risk, but they are actually amplifying risk dramatically. As depicted in Figure 7.8,

which shows the probability of adverse events, the risk of product flaws and opportunity costs have opposite dynamics.

IT can drive down the risk of product flaws (the dotted line descending from the upper left) using exhaustive require-

ments management practices, but as discussed previously, that process takes time and can only reduce the risk by so

much. More importantly, as IT spends the better part of the year preparing a full requirements specification, the risk

that the business opportunity driving the project will slip away increases steadily. In this example, by the end of the first

year, the application is no longer needed because no competitive advantage is left for the company to capture.

The situation is even more dire when this graph is updated to show the dollar value of these two risks. I once had to

convince a data modeler that our project team should use two distinct releases when updating the revenue subject area

of an EDW for a telecommunications company. I wanted to start delivering new BI applications as soon as we had the

requirements for only the landline portion of the business and then return later to update the subject area for the com-

pany’s strategic products such as cloud backup and satellite TV services. My point was that the company, which did

not offer wireless phone service, was losing 10% of its copper landline business every quarter as subscribers acquired

cell phones and canceled their traditional phone service. The data modeler’s concern was that starting work on the

warehouse when we only had one portion of the requirements could force us to reengineer a large portion of our data

model when we uncovered the remaining requirements. He wanted to take a full year to discover the company’s com-

plete set of requirements for the revenue analysis.

True, we had estimated that our total project would exceed $5 million, so starting development when we had only a

portion of the requirements could conceivably put all of that investment at risk. However, the company executives des-

perately needed to determine if their new strategy of bundling landline service with new products such as high-speed

Internet was slowing the defection rate of landline customers. Figure 7.9 shows that the value of the compounding loss

of revenue would reach $1.8 billion within a year’s time. The value of the business opportunity that sponsors wanted

the EDW to help capture can be seen clearly in the diagram, whereas the $5 million potential cost of reengineering our

work for the second release visually departs from zero. If we had insisted on spending a full year gathering require-

ments for the project before starting development, our team would have forced this enormous opportunity cost upon the

company, only to avoid the comparatively tiny risk of product flaws.

In choosing how extensively to invest in defining project requirements, then, the rational approach is to consider

the total of the risk confronted by the company sponsoring the warehouse. Figure 7.8 includes a third line that shows

the sum of the two risks as they change over time. The lowest point on that combined curve falls somewhere near

the 5-month mark, but this point is found on the graph that charts only the probability of events, not their value.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

Risk of product flaws Risk of lost opportunity Total risk

Mimimal
combined risk

Mimimal risk of
product flaw

FIGURE 7.8 Standard risk analysis.

140 PART | III Agile EDW Requirements Management

That intersection moves completely to the left in Figure 7.9, when the dollar value of the curves is included. The EDW

team clearly needs to find an approach to requirements that can accurately express the overall nature of its customer’s

BI needs in significantly less than half a year, and it needs to leave fussing over precise requirements until later. Agile

EDW’s two-perspective requirements management technique achieves exactly that goal.

AGILE’S APPROACH CENTERS ON BALANCE

The previous discussion considered the perils of investing both too little and too much into managing requirements.

Fortunately, agile EDW combines traditional and iterative techniques into an effective requirements management

approach that lies somewhere between those two extremes. In fact, agile EDW offers not one, but two processes for

defining a project’s requirements. Teams can utilize either one or both and can adapt each of them so that they achieve

the blend of accuracy and precision that a given project context demands.

The first approach, which is presented in Chapter 9, is a distillation of the requirements management techniques

used by generic agile development teams with some slight modifications so that it can be easily applied to

the needs of data warehousing projects. The second method is a streamlined version of the requirements approach

found in the Rational Unified process, the granddaddy of today’s agile delivery methods. Those techniques are pre-

sented in Chapter 10. Whereas an agile EDW team can draw upon either approach, utilizing both will provide the

advantage of having two separate perspectives on a given data management challenge. With two perspectives,

the developers achieve “stereoscopic vision,” with the combined vantage points allowing them to easily test the

validity and worth of each requirement, thus enabling the team to find gaps in the overall project definition.

Such validation greatly improves the accuracy of the project requirements, thus doubly assuring the program

sponsors that the development team will succeed.

Agile Objectives for Requirements Management

Before diving into the details of our first requirements management approach, we should be clear on the goals we are

trying to achieve. Put succinctly, agile requirements management is designed to ensure that the project’s product owner

performs his or her job well.

$0

$200

$400

$600

$800

$1,000

Minimal
combined risk

$1,200

$1,400

$1,600

$1,800
$000s

1 2 3 4 5 6 7 8 9 10 11 12

Risk of product flaws Risk of lost opportunity Total risk

FIGURE 7.9 Standard analysis adjusted for dollar value of each type of risk.

Balancing between Two Extremes Chapter | 7 141

Agile’s primary focus is to constantly deliver value to the business. Agile data warehousing takes a long stride

toward achieving this goal using the strategy of “80/20 specifications” introduced in Chapter 5. With this strategy, the

product owner provides a backlog of lightweight user stories that not only state in one or two sentences the information

actions that the business staff wants the BI application to enable but also link each of those actions to a clear statement

of business value. This strategy statement is sound, but it does leave many questions unanswered, the largest being,

“What happens when a team is working with a less-than-perfect product owner?”

When the project owner is underqualified or uninspired to speak competently for all the users of the enterprise, the

resulting EDW will likely be a major disappointment when the business staff attempts to work with it. With only a

moment’s reflection, agile practitioners realize that the product owner is the project’s greatest single point of failure. To

ensure the success of the project, the developers of an agile team need an approach to requirements management that

assures them of project success even when the product owner is letting them down.

Pointing out that a product owner may provide a disappointing performance may seem overly negative given the

whole-team, collegial atmosphere that agile methods try to achieve, but it is realistic. As described during the previous

chapter’s discussion of agile EDW’s risk mitigation strategy, the business side of a project starts with an executive who

has enough spending authority to fund a project, but the responsibility of working with the agile team on a daily basis

quickly descends through the organizational structure to land on a manager or a senior analyst several layers below the

sponsor’s office. Serious disconnects can arise between the visions held by the sponsor and those held by the product

owner. Nothing guarantees that the product owner will be informed well enough to author the strong set of user stories

the team is expecting. Given that the responsibility to work with the agile team every day has been kicked downstairs

two or three levels, nothing in fact guarantees that the product owner will even care enough to put a conscientious effort

into his or her work with the development team. The agile team needs a robust, multichannel approach for identifying

and vetting requirements so that the team can sufficiently augment a product owner’s performance, should a gap

appear.

The following qualities of a robust agile approach to requirements management were mentioned previously:

� It will heavily employ 80/20 specifications.
� It will emphasize accuracy, investing in precision only as necessary.
� It will abet an incremental delivery strategy.

To guard against or repair a serious disconnect between a program sponsor and a product owner, however, the require-

ments management approach will have to demonstrate several other properties as well.

Provide Enough Context to Make User Stories Easy to Author

Product owners frequently arrive without the experience or orientation needed to author user stories. In this case, the

requirements management process must “prime the pump” and give the product owner the context he or she needs to

begin authoring a complete and correct stream of user stories.

Engage the Close Stakeholders

The requirements management process must be engaging for not only the assigned product owner but also the subject

matter experts whom the product owner will need to involve if the requirements are going to be correct. Maintaining

their engagement will require keeping the process as light and enjoyable as possible so that the business partners do not

start dreading their collaboration with the development team. The process should also clear the business value of the

application and its likely subrelease dates, so that business users can build reasonable expectations about how the effort

will soon improve their work lives.

Must Address All Types of Requirements

Data integration and business intelligence applications involve not just end-user requirements but also notions such as

enterprise data quality, post-warehouse data processing, and nonfunctional requirements such as performance and secu-

rity. The requirements management process needs to be rich enough to guide IT in identifying even those system

aspects that the product owner cannot deeply appreciate.

142 PART | III Agile EDW Requirements Management

Empower IT to Judge Requirements Completeness and Accuracy

Teams will never be entirely sure that the product owner has provided a reasonably complete and accurate set of

requirements if they cannot independently test that collection. The requirements management process therefore needs to

include a channel of insight into business needs that is independent of the product owner. Once armed with two depic-

tions into the business’s needs, the IT members of the team will be able to judge if the two visions cohere well enough

to be reasonably assured that all major requirements have been detected.

Provide a Whole Project Sketch to Avoid the Big Mistakes

The requirements management process must attend to the needs of not only those who author requirements (the product

owners and subject matter experts) but also those who must lead the developers during the construction of the applica-

tion. Key roles such as data modeler, process architect, and systems tester need to possess enough background that they

will be able to author an 80% complete outline of the project for the programmers, as well as identify the high-risk

areas that need to be tackled early in the project.

Knowing when a Backlog is “Good Enough”

For an agile team, the primary result of effective requirements management is a good, actionable backlog. When a pro-

ject’s initial backlog reaches “good enough” status, project leaders can turn their attention to getting programming

underway. Judging whether an EDW project’s backlog is good enough will require some careful considerations, how-

ever, for three important reasons:

1. It will consist of a blend of different story types.

2. Readiness must be judged from several directions.

3. The clarity of stories will decrease as one travels down the list after it has been prioritized.

To address Item 1, story types, readers should keep in mind that an enterprise data warehousing project frequently

involves both data integration and business intelligence features in an integrated set of back-end and front-end compo-

nents. As discussed in the introductory chapters, the back-end, data integration work in particular needs to be decom-

posed one level farther than the front-end, business intelligence work. Thus, a typical EDW backlog will be a mix of

user stories for the business intelligence components and developer stories for data integration, although some BI

modules can involve business rules complex enough to also require developer stories.

Regarding the second element, readiness, one must apply several tests to the stories that the requirements manage-

ment process generates in order to judge whether an EDW backlog can enable programming to begin. A “good” DW/

BI project backlog is one that demonstrates several important qualities, namely that it

� focuses clearly on business problems that need to be solved someday soon;
� has important people in the organization that want the features it promises;
� offers outlines of the more complex business rules to anchor detail design work later;
� provides several “quick wins” to engender good will from the user community right away;
� makes discernible when in time certain features will be completed, based on the team’s current delivery velocity;
� maximizes the application’s value to the enterprise should development be halted early;
� offers frequent checkpoints, allowing the business to validate that the remaining items are still necessary; and
� minimizes the project’s overall risk.

Item 3 highlights that project leaders must keep in mind that when a backlog becomes good enough to allow pro-

gramming to start, not all of its stories will be equally “crisp.” Stories that will enter development in the next iteration

or two may well need a fairly extensive specification, such as physical characteristics of the data tables to be loaded,

the logic of the business rules involved, and the idiosyncrasies of the source data from which ETL modules will draw.

Stories that will be developed a few iterations from the present may need only enough data modeling work to spot the

key integration points that they will support. Stories that will not be developed until several iterations in the future may

need only enough detail that the team can estimate story points for the programming effort they will require. The rest

of the details can be attended to later as those stories draw closer to actual development. In other words, the farther into

the future a story’s development will begin, the less precision it needs.

Balancing between Two Extremes Chapter | 7 143

Enable Regular “Current Estimates”

Throughout the years, I have been able to use one criterion to determine whether a backlog is sufficiently complete and

detailed—a criterion that rolls together all the considerations listed previously. That litmus test for “good enough” is to

determine whether the backlog can support a current estimate.

For agile EDW teams, a current estimate for a project requires three elements:

1. A backlog with the stories arranged in priority order

2. Story-point estimates of the labor those stories will consume

3. The team’s current delivery velocity in story points

With these elements, the team can then bracket the stories on the backlog using the team’s velocity, as depicted in Figure 5.4.

Once the stories on a backlog are bracketed, the project leaders will be able to count the number of iterations needed

to finish the work. Multiplying the projected number of iterations by the iteration time box yields the number of weeks

of work still needed—that is, the project’s remaining duration. Multiplying the number of brackets by the cost to run an

iteration reveals the funding required to finish the programming—that is, the remaining development cost.

These two calculations constitute the agile team’s current estimate of remaining project cost and duration, two numbers

that are vitally important to the business sponsors of the EDW project. Naturally, providing a current estimate requires the

team to have a whole-project vision of the work ahead. If the team has taken too many shortcuts in defining its backlog,

many stories will be difficult or impossible to estimate with confidence. If the backlog is only half-baked, the developers will

balk at using it to provide numbers for remaining cost and duration, realizing that they are slipping into a project blivit, as

defined previously in this chapter. For that reason, a good agile requirements management approach is one that leads to an

accurate backlog (all the stories on it are truly needed) with just enough precision that the team can calculate and provide a

current estimate to management. The process of preparing a current estimate is considered in greater detail in Chapter 11.

Keeping the Requirements Management Process Agile

Beyond delivering a usable backlog that supports incremental delivery, the overall process of managing the project’s

requirements needs to be agile, meaning that it incorporates the values, principles, and practices from the multiple itera-

tive delivery techniques considered in the opening chapters of this book. With their roots in the Toyota production sys-

tems and with more than a decade of refinement through usage, these principles and techniques ensure that the team

will not make crucial mistakes in the requirements it gathers, nor overly invest in details that will not further the pro-

ject’s chances for success. Table 7.5 displays a selected list of the values and principles that I believe are most pertinent

for the process of requirements gathering and analysis. How agile EDW’s two-pronged requirements management style

that I suggest for agile EDW fulfills these objectives will become clear as each component approach is presented, but

for now the table provides the reader with the qualities to look for in the techniques described next.

TWO INTERSECTING REQUIREMENTS MANAGEMENT VALUE CHAINS

Agile enterprise data warehousing offers a system of two distinct approaches to discovering and analyzing requirements.

These two approaches intersect so that they each provide a test of the other and assure an EDW development team that

the resulting project backlog will be reasonably complete and correct. As depicted in Figure 7.10, the artifacts of each

of the approaches can be portrayed as a value chain—that is, an ordered sequence of activities that generate a steadily

better understanding and expression of a project’s requirements.

The vertical chain in Figure 7.10 represents agile’s generic requirements management (GRM) approach. The GRM

comprises epic, theme, and user stories—notions that a majority of agile teams working on transaction-oriented projects

today depend on and that were discussed extensively in my previous books. It also includes the developer story to sup-

port data integration efforts. Teams pursuing predominantly front-end work or a small data mart may find that they can

manage their project definitions quite well using GRM alone.

The horizontal chain represents an enterprise-capable requirements management (ERM) approach. This value

chain is a streamlined version of the requirements management artifacts available from RUP. As mentioned previ-

ously in this book, RUP is a heavy-duty development methodology used by the world’s largest systems integrator to

build some of the most demanding information systems of our age [Kroll & Krutchen 2003, p. 24]. Impressed by

RUP’s capability but wary that it would be overkill for many projects, my company has been steadily trimming

RUP’s collection of artifacts and templates down to the bare essentials needed to get an agile EDW project defined

144 PART | III Agile EDW Requirements Management

TABLE 7.5 Agile Objectives for Requirements Management

Agile School

Concept
Compliant Agile EDW practice

Lean Principles & Tools

Eliminate waste

Employ techniques such as "80/20 specifications" to keep the inventory of requirements artifacts as small (in size and number) as possible, thus
minimizing cost to project when requirements change or are dropped from scope.

Set-based development

Breadth-first approach defines whole project at high level first, then steadily tightens constraints via requirements and design choices made from multiple
directions, minimizing the risk that important concepts will be precluded or overlooked.

Last responsible moment

Leaving last 20% of requirements for development time and addressing most of those through eye-to-eye contact with the product owner allows
teams to practice just-in-time details, minimizing the number of prior decisions subject to obviation.

Minimize the cost of delay

Practices such as project segmentation and story prioritization combine with just-in-time details to allow incremental delivery of high-value features first,
thereby maximizing benefits realization.

Agile Manifesto Philosophies & Principles

Business people and developers must work together daily throughout the project

Co-location (or at least close collaboration) allows teams to a) work with a minimum of written specifications and b) catch errors as modules are
developed, so a complete and perfect requirements specifications are no longer necessary.

Working software over comprehensive documentation

Investing only 20% of the traditional prep time up-front allows teams to keep detail specifications to a minimum, so they can invest the remaining 80%
into software module development, rather than into polishing the spec.

Simplicity—maximize the amount of work not done

Eliminating the need for 80% of detailed requirements documentation for all but the complicated aspects of the system's modules allows teams to get
more done far sooner than their traditional, waterfall counterparts.

Welcome changing requirements, even late in development

Keeping elaborate specifications to a minimum plus Scrum's frequent planning cycles gives the business a continual opportunity to create, change, and
discard requirements with minimal impact on project documentation and project plans.

XP Values & Principles

Redundancy

Drawing upon both an approach from standard agile practices (GRM) and RUP (ERM) gives the team more ways to detect requirements, but also
allows the requirements generated by each technique to be tested for accuracy and value.

Self-similarity

Both approaches utilize a top-down stack of artifacts that increase in detail with each level of requirements decomposition, enabling teams to manage
requirements at all degrees of detail with equal effectiveness.

Simplicity

Not only does Agile EDW requirements management techniques utilize streamlined templates, but they also defer detail specifications until absolutely
needed, maintaining a high degree of overall simplicity in project definitions.

Feedback

By relying on the development process to illuminate and prove the remaining 20% of requirements, Agile EDW’s requirements management technique
minimizes the lag between business expression of need and IT's demonstration of a software solution.

RUP Philosophies

Address risk early in the project

Agile EDW’s requirements management techniques culminate in a project backlog that is prioritized by considering business value and project risk,
minimizing the probability that adverse events can lie undetected in the project's future.

Balancing between Two Extremes Chapter | 7 145

well enough that a team can begin authoring user stories. The value chain displayed in Figure 7.10 represents the

current status of that effort: five templates, with the first four requiring no more than a few pages of prose and a few

diagrams each.

The GRM value chain consists of the following elements, sequenced in the order of increasing specificity:

1. Epic: Sponsor-level statements describing the needles on the gauges of the corporate cockpit that the company needs

to cause to move up or down

2. Theme: Director-level statements describing the set-based operations that will provide the information needed to

make the business decisions that will deflect an epic’s cockpit needles in the desired direction

3. User story: Manager- or analyst-level statements describing the data validation actions that someone will need to

reference while convincing a director that the information provided by a theme can be trusted

4. Developer story: A statement describing just one of the many data-transformation modules needed before an end

user can perform the data validation described by a user story

Many front-end-oriented BI projects can progress well with a value chain consisting mostly of artifacts 1�3 alone.

Teams pursuing any significant data integration work, however—even if that work is taking data straight from source

systems to star schemas—will find themselves working with many instances of developer story artifacts as well.

The ERM value chain consists of the following five elements, again ordered for increasing specificity:

1. Sponsor’s concept briefing: A half- to one-page statement derived from an interview with the project’s sponsor(s)

that expresses: “Here’s how we’re going to make money with business intelligence’s help.”

2. Stakeholder request: a half- to one-page statement derived from an interview with a key stakeholder group that

describes: “Here’s what’s wrong with our current BI solution, and here’s how we’d fix it if we were IT.”

3. Vision document: A composite document authored by the project architect with only two lists and three diagrams,

which states in essence: “Here are the business problems IT has heard from the business, and here’s a sketch of the

DW/BI application that will solve those operational challenges.”

4. Subrelease overview: A mini vision document authored by the project architect after he or she has been able to seg-

ment the project into multiple, each expressing: “Here’s a partial DW/BI system release that will solve the next,

most important subset of business problems for the customer.”

5. Module use case: A streamlined use case authored by the team’s ETL designer that expresses in essence:

“Here’s a data transformation module we’re going to build as a major component for the current subrelease

we’re assembling.”

Developer
story

Epic

Theme

User
story

Application

use case

Solution

use case

Vision

document

Stakeholder

request

Program

concept brief

Bottom up:

precision

Top down: accuracy

Generic agile
RM value chain (GRM)

Enterprise-capable
RM value chain (ERM)

FIGURE 7.10 Agile EDW’s requirements management benefits greatly from intersecting value chains.

146 PART | III Agile EDW Requirements Management

Considering the ERM value chain as a whole, we can see that it progressively moves one’s thinking from the clouds

(sponsor-level business requirements) down into the weeds (programmer-level technical requirements). All but the last

artifact of the ERM value chain are short documents so that the team will not find itself investing too much in produc-

ing and formatting the actual pages of those documents. The last artifact, the application use case, can turn into an

extensive document if necessary, so teams must choose carefully how much effort to invest each time they decide to

author one.

Readers should note that I do not advocate completing all five of these artifacts, for all aspects of a system, for

every project that a team undertakes. Such an approach would easily take a team back to a big-spec-up-front, waterfall

mentality, and it would hardly be agile. Instead, teams should pick and choose from the ERM artifact set and utilize a

subset that best addresses their needs. For projects in which the challenge is mostly with business�IT alignment and

not with guiding the programmers, EDW team leaders will need only the first three documents to get a project ade-

quately defined. On the other hand, some teams fully understand the context of their projects but have a group of pro-

grammers who demand some detail in module design specs before they will start coding. These teams would probably

do well with just the last three artifacts because only the details of their projects are demanding careful management.

The EDW team leaders may find, in fact, that they need to provide module use cases only for a few of the ETL compo-

nents that will make up the system, namely those with complex business rules. All told, the previous list of ERM arti-

facts is a menu of available templates, and teams should pick and choose which of them will assist their efforts and

ignore the rest.

However, most teams seem to draw upon the middle template, the vision document. In practice, that particular arti-

fact proves to be the pivotal document that allows business-oriented thinking to transition into IT-actionable plans. For

a project requiring high-level definition, the vision document serves as the goal to which the sponsor’s briefing and

stakeholder requests all point to. For a project employing the detail end of the ERM value chain, the vision document is

the whole-project sketch to which the technical members of the agile team need to anchor all of their design decomposi-

tions. In both cases, the vision document articulates the full-scope solution concept toward which the project architect

will steer the development activities of the team. It articulates the “spirit of the application” and enables the architect to

certify that the application about to be developed will solve the project’s central business problems.

Salient Differences between GRM and ERM

In order to enable the agile EDW team to test the indications of each value chain against the other, the generic and

enterprise requirements management approaches need to be materially different. Some of the differences between them

will become clear as readers start to utilize these two value chains on an actual project. To set expectations, the follow-

ing list anticipates the differences that EDW team leaders will probably discover:

� GRM is far more immediate—it works directly on the project’s backlog. In contrast, the ERM artifacts provide

background that will later make the backlog fairly easy to author.
� GRM focuses on getting the product owner to think deeper, drawing from what he or she already knows about the

company and the project. ERM is designed to elevate the knowledge of IT members of the team, giving them an

independent source of information that they can use to judge whether the product owner is providing complete and

accurate user stories.
� GRM has some helper artifacts (see Chapter 9) to nudge the product owner along. They are lightweight, collabora-

tive, and generally fun for the team to work on together. ERM artifacts are streamlined versions of formal IT

requirements artifacts. No one would accuse them of being fun, but most people acknowledge that they are

powerful.
� The GRM approach can work top-down, bottom-up, or both simultaneously, allowing the team to meet the product

owner wherever he wishes to begin his thinking. Teams can start ERM collection with any of the artifacts and back-

fill the rest as time allows, but the value chain does support a top-down approach more strongly.
� Teams can freely pick and choose from the helper artifacts that GRM offers, whereas with ERM, teams tend to

select the first three artifacts, the last three, or all five.
� In GRM, the detail-level artifacts—either user stories or developer stories, depending on the object being pro-

grammed—are the objective, making them mandatory. In ERM, the detailed level artifact—the module use case—

should be employed only where a detailed specification is needed. Accordingly, a project may well need only one or

two of these use cases, and only for the ETL modules involving particularly complex business rules.

Balancing between Two Extremes Chapter | 7 147

As can be gleaned from the previous list, GRM and ERM are clearly different approaches. Teams should selectively

draw on portions of both, using the context that ERM provides to judge whether the backlog emerging from the GRM

process is complete and accurate. Figure 7.11 schematically portrays a combined approach, showing how they con-

verge. The diagram shows the logical ordering of steps, not timing, largely because the actual duration of each step is

determined by the context of each project. This is especially true for teams that start the value chains at random points

and backfill the missing elements later, beginning with an epic stack, for example, and then authoring a vision state-

ment. Because GRM represents the team prompting the product owner to think more deeply, this value chain can begin

when both the product owner and the project architect roles have been staffed. The first action would be for two of

them to define a clear notion of what each level of the epic tree signifies. Once they have established this framework

for defining epics, themes, and users stories, the team then utilizes GRM’s context-defining artifacts, such as user

modeling and vision boxes, until the product owner is reliably authoring good, actionable user stories, thus yielding a

hierarchically organized backlog called an “epic stack.”

True to agile EDW’s notion of 80/20 specifications, this stack does not have to be absolutely complete. If the most

important 80% of the stories have been identified, the team will be able to accurately scope the project, trusting that the

GRM: Agile’s
generic RM approach

ERM: Enterprise-capable
RM approach

Current
estimate

Elaboration
iterations

Subrelease
plan

Developer
stories

Epic stack

Discovery

Analysis

P
roject

re-scoping

D
evelopm

ent
iterations

Context-defining
artifacts

Define epic-story
framework

PO role
assigned

Begin work
with PO

Vision document

Stakeholder
requests

Sponsor’s
concept briefing

PA role
assigned

FIGURE 7.11 Overall agile EDW requirements management plan.

148 PART | III Agile EDW Requirements Management

remaining stories will emerge without too much disruption as development and benefits realization begins. Of course,

once the project starts incremental delivery to the product owner, both business and IT will learn more about the pro-

ject’s requirements. This learning will uncover a few requirements that had been overlooked, but in my experience with

agile teams, the real insight this learning provides is that the project’s requirements were overstated, so that often the

product owner ends up taking large requests out of scope. Figure 7.11 depicts this notion with arrows that show the

development iterations and project rescoping contributing to new versions of the epic stack.

The ERM branch of the combined approach can begin before a product owner is assigned, as long as the project

architect has been named. The project architect, and any other team leaders who wish to assist, can pursue interviews

with the project sponsor and major stakeholders on his or her own, boiling down what they learn into a vision document

that will scope and guide the development work. Once the product owner is assigned, the team will use the context

from the first half of the ERM value chain to assist him or her in authoring a good, 80/20 collection of user stories.

The two chains merge once the product owner has authored the initial epic stack. At that point, the developers on

the team can use the knowledge from their work on the ERM value chain to test the accuracy of the user stories that

the product owner adds to the project backlog. For those user stories that pass muster, the IT team members can then

begin decomposing them into developer stories where necessary. With a reasonable first draft of the project backlog,

the project architect can group the stories together into a candidate subrelease and present the subrelease plan for the

business’s approval.

The backlog of developer stories can also be estimated by the team in story points leading to the project’s first cur-

rent estimate. This estimate can be made right away if the project draws from an established team. Projects using a new

team will have to wait a couple of iterations because the developers must first discover their delivery velocity by actu-

ally working on a few stories. If the project has notable risk in its requirements or design, even an established team

may want to complete a couple of “elaboration” iterations to resolve those issues before providing story points for the

full backlog and issuing a first current estimate. As discussed previously, the current estimate will be updated before

each development iteration, using the team’s actual velocity and the backlog of remaining stories. In this way, team lea-

ders will refresh the forecast for management regarding remaining project cost and duration. While working completely

at a medium level of precision, the team following this two-prong approach will have quickly prepared for business

stakeholders a palpable notion of what they will receive from the project and approximately when they will see it.

BUSINESS ANALYSTS IMPLICIT IN TWO PROJECT LEAD ROLES

Given the diversity of artifacts discussed previously, requirements gathering and analysis for most EDW projects

typically involve a considerable number of people and roles. For clarity in the discussion that follows, I focus the pre-

sentation on a few central roles. Figure 7.12 depicts the formal and informal reporting relationships between these roles.

Those depicted in dark text are the focal roles in the presentation made during the next four chapters.

Because not all projects staff the business analyst position, the BAs are shown in a light print, implicitly defining

two approaches that a project can take. When BAs exist, they perform a large amount of requirements gathering and

analysis. In fact, they tend to be the contributors who chase down all the details needed to validate the requirements

gathered, so their function is crucial. They can report to either the business or IT, as shown in Figure 7.12. Business-

hired BAs usually work closely with the product owner, and IT-hired BAs collaborate more with the project architect.

On the other hand, if the project has not staffed the BA position, the product owner and/or the project architect roles

will have to assume these duties. To keep the presentation simple, I write as if only the product owner and the project

architect exist. This simplification makes sense in that the product owner’s role is to express requirements from the

business perspective as user stories and place them on the project backlog. Any detail discovery and analysis work per-

formed by BAs employed on the business side must still pass through the product owner to land on the backlog, so

using the product owner term to mean “product owner and BA team” will not introduce any confusion. Subject matter

experts appear in light print, too, indicating that their contributions must also flow into the project through the auspices

of the product owner. It will be up to the product owner, the subject matter experts, and the business BAs to self-

organize their work so that the direction they provide the developers is maximally effective.

Similarly, the role of the project architect is to translate the business requirements into a high-level design for the

application that will solve the business problems identified by the product owner. The requirements and discovery work

performed by IT-employed BAs must undergo project architect review before becoming part of the project’s vision or spe-

cifications, so using the term “project architect” to signify a composite role involving multiple people will not detract

from the discussion.

Balancing between Two Extremes Chapter | 7 149

SUMMARY

Agile EDW leaders face a dilemma when managing their project’s requirements. Too little requirements management

will expose them to overcommitment, missing features, and/or endless reprogramming to fix mistakes. On the other

hand, investing in the extensive requirements specification document that traditionally managed teams employ will

force the project sponsors to wait many months before the necessary business intelligence services appear on their end

user’s workstations. Both too little and too much requirements work leads to extremely unhappy customers. The agile

enterprise data warehousing method addresses this dilemma using a flexible, incremental approach to requirements

management. This approach involves two intersecting value chains of artifacts. The generic agile requirements manage-

ment value chain strongly guides the product owner in authoring an accurate backlog for the project. The enterprise-

capable requirements management value chain leads the IT members of the team to develop an independent notion of

the project’s requirements so that they can validate the product owner’s backlog. These two perspectives on project

requirements intersect at the user-story/subrelease level and thus provide the team members with a “stereoscopic vision”

that allows them to spot gaps in the project concept.

Chapter 8 suggests a powerful framework for defining epics, themes, and stories, and it also offers guidance on link-

ing each level to a quantified notion of value to the business user. Chapters 9�11 discuss the generic requirements

management value chain, the enterprise-capable value chain, and how to successfully intersect them into a robust

description of the application that the agile team needs to build.

Product
owner

Data
transform
analyst
(a.k.a. “Data Cowboy”
in Chapter 11)

Subject
matter
experts

Project
governance
committe

Project
architect

Business
analysts
(business
employed)

Business
analysts
(IT employed)

Systems
analyst

Data modeler

Dark text indicates the roles discussed most in the chapter text.

FIGURE 7.12 Enterprise requirements management roles.

150 PART | III Agile EDW Requirements Management

Chapter 8

Redefining the Epic Stack to Enable
Value Accounting

The iterations of an agile development effort revolve around the team’s backlog. For a team to reach its peak effectiveness,

that backlog needs to be an accurate list of needed features and ordered properly, lest the development team labor at

length on modules that do not solve the business’s problem or fail because the team wasted its time on the project’s less

important aspects. My colleagues and I have learned through hard experience that a team cannot simply trust that its

embedded business partner will automatically provide an accurate backlog. Although generic Scrum stipulates that this list

of stories belongs to the product owner, team leaders need to actively contribute to the quality of that list. Their involve-

ment should focus intently on one goal: the derivation of a backlog where every story aligns with an important business

purpose and clearly represents a predefined, quantified increment of value for the customer. To properly align with busi-

ness purpose, the team needs to implement an effective epic decomposition framework for generating accurate stories that

the product owner can place on the backlog. To quantify the importance of each story on the backlog, the team needs to

employ value accounting. Without these two techniques, teams hazard coding for months without delivering enough value

to convince executives that the project achieved something important or that they should continue funding it.

TOWARD A ROBUST EPIC DECOMPOSITION FRAMEWORK

Enterprise data warehousing (EDW) project leaders who gently insist that their teammates discipline their approach to

defining the project backlog and then apply that discipline until the backlog is clear and coherent will enable their teams

to avoid confusion and start effective programming work much sooner. Much of the needed discipline for creating and

managing backlogs revolves around simple organizational concepts. Many teams fervently begin programming with

only vague notions of what the epic-, theme-, and user-level stories are, only to become frustrated many iterations later

when important stakeholders claim they have seen nothing of value among all the modules that the developers have

delivered. To avoid such wasted effort, agile EDW leaders can apply a small amount of discipline in expressing and

organizing a project’s requirements. To begin with, they should

� formally define the hierarchy that the project will use to manage backlogs;
� identify the general business hierarchy for the project’s stakeholders; and
� align these two hierarchies so that the team creates stories speaking to the needs of all levels within the business.

Defining the Backlog Hierarchy’s Structure

Generic agile textbooks refer to the components of a project backlog in terms of epics, themes, and user stories, but

they provide little guidance as to how each level is defined. Teams will need two basic terms to begin building this

guidance for themselves: epic stack and epic tree.

The “epic stack” is simply the collection of terms the team will use to categorize the stories within its backlogs. For

example, the terms “epic story,” “theme story,” and “user story” constitute the epic stack offered by most generic agile

textbooks. An “epic tree” is the collection of stories at all levels that link upwards to a given epic-level story, making a

project’s backlog the set of all epic trees. Epic trees assist in understanding and planning a project. As a starting point,

teams naturally consider delivering one epic at a time. Even when many factors eventually determine a very different

order in which to develop stories, the team frequently considers the backlog one epic tree at a time, testing for accuracy

and completeness.

151
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00008-4

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00008-4

In essence, an appropriately defined epic stack facilitates EDW teams in decomposing a project’s requirements

into accurate, intelligible, and actionable epic trees. Figure 8.1 illustrates the decomposition that agile team leaders

wish to achieve. In the upper left, the product owner submits a huge, vague requirement—that is, an epic. The project

architect and associated business analysts work with the product owner to steadily decompose that large need into

“bite-sized” requests that can comfortably fit, three or four at a time, on the programmer’s workbench. When the pro-

ject’s leading edge of epic requests have been decomposed to this level, the team can begin to crank through the

backlog, turning these actionable requests into working software that provides business intelligence to the organization.

To make this decomposition a straightforward process, EDW team leaders need to clearly state the epic stack that

the team will employ. Generic agile offers the following rudimentary epic stack:

� Huge requests are “epics.”
� Themes are a little smaller, but still too large to program within an iteration.
� User stories are small enough to be actionable.

EDW team leaders should realize they are free to adapt this stack to meet the needs of their particular project. In

previous chapters, I introduced one major modification that many agile data warehousing/business intelligence (DW/BI)

teams make to the epic stack: Add developer stories to further break down user stories into modules that link to the

layers within the company’s DW/BI reference architecture. Some projects require even further adaptations, the most

common being dividing theme-level stories into “subthemes.” For example, an EDW team delivering enterprise dash-

boards that each contain many graphical modules such as pivot tables and line graphs may decide that a given dashboard

is a theme-level story and its graphical modules will be subthemes within it.

With a clear epic stack defined, agile EDW leaders can guide their teammates in authoring stories so that each one

can be clearly categorized with a level from the epic stack and then linked into the proper place within an epic tree.

Chapter 6 urged teams to plan their deliveries in subreleases in order to greatly lower overall project risk. The simple

use of epic stacks and epic trees advocated here will greatly help teams ensure that every story they work on has a clear

lineage to its parents and children, making it much easier for the team to deliver coherent portions of the backlog with

each subrelease candidate they propose. Establishing a clear epic stack and epic trees early in the project will keep the

project highly intelligible to both the product owner and the developers, facilitating their communication and allowing

them to begin effective programming much sooner.

Aligning the Epic Stack to the Company’s Hierarchy

As hinted at previously, lackluster product owner performance occurs frequently. Should this occur, agile EDW project

leaders need to be ready to “manage upwards” and ensure that the team somehow receives the quality backlog it needs

for smooth and effective development. Aside from defining the epic stack the project will use, the next step they can

take toward this end is to align that stack with the company’s business hierarchy.

The team needs the person filling the role of product owner to perform a complex, multipart duty:

� Envision all the different stakeholders for the EDW that exist within the company
� Envision what each of them needs from business intelligence in order to be more effective

Agile project architect

(with assistance from product owners,
stakeholders, and business analyst)

Developers’
workbench

FIGURE 8.1 Big picture � decomposing epics into a backlog of stories.

152 PART | III Agile EDW Requirements Management

� Articulate all those needs in bite-size pieces that the agile development team can program quickly
� Organize those pieces in the order they should be delivered

Many factors can prevent product owners from authoring an actionable set of epic trees. Product owners can be

� underqualified for a leadership position;
� too inexperienced in the industry or with the company;
� loaded with too much work from their regular duties in their assigned business department;
� too new to DW/BI to envision how it can improve a business process;
� harboring serious doubt about EDW in general given the size and complexity of the applications; or
� quietly hostile toward information technology (IT) given a bad experience in his or her past.

Any of these factors will result in a toxically poor backlog for the team to work from and, consequently, project failure.

Team leaders cannot simply resign themselves to failure if the product owner is underperforming in his or her role.

Instead, they must jump in and assist in polishing the stories so that they form an accurate, coherent, and actionable

backlog. They will be far more effective in this effort if they have a framework that imbues each story with clarity and

categorizes it within the appropriate level of the project’s epic trees. One handy framework for categorizing and shaping

stories from the product owner is to link the levels of the epic stack to levels within the organization.

Figure 8.2 provides a simplified notion of a company’s business hierarchy that makes this linkage easy to perceive

and manage. This framework defines epic stories so that they link to project sponsors, theme stories so they con-

nect to department directors, and user stories so that they speak to the experience of managers or analysts. Other

frameworks are possible, so I do not suggest that this particular approach will work for every team without modifi-

cation. However, all teams will arrive at far better backlogs if they employ a framework such as the one illustrated

here, so readers can consider the approach depicted in Figure 8.2 as a starting notion for their own requirements

management system.

To link the epic stack to the organization hierarchy, a team must first have a working model of the stakeholders in

the company and how they connect to the EDW project. Starting from the top of the organization, executives from the

vice president (VP) level or higher usually sponsor EDW projects because these projects are very expensive. The agile

EDW team must realize that although the VP is funding the application development, he or she will not be the team’s

embedded business partner. The responsibilities of a VP will not allow her to spend every day working with the develo-

pers, so she will delegate that responsibility to one of the directors who report to her. Unfortunately, directors usually

have demanding high-level responsibilities, too. They will quickly push the burden of working with the agile EDW

team down yet another level onto a manager or senior analyst working for them.

All this delegation of responsibility creates a communication challenge that the agile team leaders must manage.

Although the VP and director both delegated the chore of product owner downward, they still have requirements for the

project that are very dear to them and that the agile team must discover and include in the application’s design. As

shown in the Figure 8.2, VP sponsors understand the strategic goals of the company that the DW/BI project needs to

support. They can describe the well-informed decisions they want their staff to someday make, and it is hoped that

they accurately understand how those decisions will bring the company competitive success. VPs do not work with the

VP:
Sponsor

Dir 1:
Stakeholder

Manager:
Product Owner

Dir 2:
Stakeholder

User stories
Data capabilities

Manager:

Product owner

Epics
Competitive capabilities

Themes
Information capabilities

Business initiative:

“Expand market share or
we’ll get acquired.”

Info mechanics:

“Subtract our
dealers from a
third-party
contracts list.”

Data mechanics:

“Give me a clean list of
dealers”

“E-mail hot deals to
our best dealers”

FIGURE 8.2 Immediate business stakeholder formalizing all levels of stories by linking them to the hierarchy among business stakeholders.

Redefining the Epic Stack to Enable Value Accounting Chapter | 8 153

company’s line of business systems on a daily basis, however, so they will be unable to specify in detail what pools of

information the company’s business staff members will need to make well-informed decisions.

In contrast, directors will understand the company’s line-of-business systems well enough to describe the information

available there and how that information should be combined into analyses so that their business decisions become as

well informed as the VP’s desire. Directors are probably still too far removed from the data entry and error correction

processes that their staff utilizes to keep the line-of-business systems accurate. They will not be able to specify the data

checks and adjustments necessary to derive a clean analysis from the system’s information.

The understanding of how data must be added, removed, or adjusted to keep a particular analysis from misleading a

decision maker lies at the manager or financial analyst level, the level from which product owners are typically drafted.

It is important to note that the data checks and adjustments that managers and analysts must make before providing an

analysis to their directors are very different from the data cleansing that a development team will program into the EDWs

extract, transform, and load (ETL) process. For example, the programmers can make sure that the numbers reported for

accounts receivables reconcile back to the source systems and are therefore theoretically correct. A manager can know

that those numbers still need to be adjusted because upper management has agreed to reassign a major contract to another

business unit, but that change has not yet been entered into the company’s billing system. To make this distinction clear,

I speak of “programmable data validations” that the developers can embed into the code of an EDW’s data transforma-

tion, in contrast with “business-level data validations” that only a human steeped in the day-to-day operations of the

company can perform.

Clearly Defining Each Level within the Epic Stack

At this point, EDW team leaders have a solid definition of their epic stack and a multilevel model of their project’s

stakeholders. To bring clarity to the project’s backlog and to ensure that requirements at all levels are addressed, the

leaders need only to link the levels of the epic stack to the levels of the business organization.

The starter epic decomposition framework that my consulting firm uses links each class of agile requirements story

to a distinct level in the company hierarchy so that our teams will systematically discover and address the full set of

requirements that an application must satisfy. In this framework, we say that VP sponsors provide epic stories—that is,

stories describing the corporate-level business initiatives that the application must support. We say that directors of the

business departments provide theme stories. Each theme describes an analysis that a director will need before he will

know what his department staff should do in order to achieve the business initiatives set forth by the VP sponsors. We

say that managers and analysts in those departments provide user stories. Each user story focuses on a business-level

data validation that must be performed before the organization knows that the analyses about to be provided to the

departmental directors are not misleading.

Table 8.1 shows how my colleagues and I connect an organizational model to the levels of an epic stack to create a

handy framework for defining the stories within each epic tree. Starting at the highest level, the project’s sponsor, who

will be signing the checks that pay for the project, names the gauges on the corporate cockpit he or she wants to affect

and then states approximately where those needles should move to. Each request from the VP sponsors for greater com-

petitive capability is a natural candidate for epics-level stories. The team needs only to ensure that these requests are

atomic. Sometimes sponsors express multilayered goals for the company, such as “improve market share by providing

the lowest-cost product in its class.” That particular statement contains two objectives, one for sales volume and another

for product pricing. EDW team leaders will need to process this request until they have unpacked it down to the indi-

vidual or “atomic” components, at which point they will have positioned themselves to develop them independently, as

befits agile’s incremental delivery strategy.

Looking within each epic from the sponsor, the framework guides the team leaders to seek how one or more

business departments need to change their behavior in order to move the VP’s selected needles in the corporate cock-

pit in the right direction. The team will need statements from the directors of those departments regarding which anal-

yses it needs in order to achieve the desired corporate performance. These statements will represent director-level

theme stories. For an insurance company, for example, a director could decide, “The fastest way to expand market

share as our VP has requested will be to cross-sell additional coverage to existing customers who currently hold

a policy from only one of the product lines we offer.” To pursue such a strategy, this director’s staff will need an

analysis showing

� financially sound customers holding only one product; and
� products that would interest each customer, given the customer’s demographics and other personal attributes.

154 PART | III Agile EDW Requirements Management

With such an analysis in hand, the director can instruct his or her sales force to “call the people listed in this report and

offer them indicated products for the reasons listed on each line.” Each of the analyses the director requests will make

good candidates for theme-level stories.

Again, the first expression of each theme may have many ideas folded together, so the project architect will need to

work with the directors to tease apart the individual notions until they are atomic and thus more manageable within an

agile development process. One way to translate such director-level requests into atomic EDW-appropriate theme stories

is to consider each deliverable as a set-based operation upon the company’s information. To continue with our example,

the EDW team could work with the director to clarify the previous request to where he or she expresses it as follows:

� Get me a clean list of customers’ households.
� Subtract out all those that hold three or more policies.
� Split that list by the last broker who had contact with the customer.
� Assign any customers missing a broker by intersecting the likely cross-sell product with our agents’ area of specialty.

Each of these set-based operations resulting in actionable information is a perfect candidate for theme-level stores for a

DW/BI application.

Finally, the analyses on which the business staff will act cannot be misleading. Double-checking an analysis for

missing business context is typically left to the managers and analysts who report to the department directors. Here, the

agile team leaders can turn to the product owner and ask for the business-level data validation steps that the staff will

have to perform before the implications of the theme-level analysis can be trusted. The product owner might say,

We will need to take a second look every time we have two phone numbers listed for the same address. That might be a

middle-aged couple with an adult child living in a carriage house in the back. That household should only get one phone call,

else we’ll annoy that prospect so much that they’ll never buy another product from us.

TABLE 8.1 Example of How to Codify an Epic Stack for Agile EDW Teams

Requirements
level

Sample statements (medical
equipment financing company)To define… Expressed casually

Epics
Atomic competitive

capabilities

Identify the needles on
gauges in the corporate
cockpit that have to move
and approximately where
they have to get to

VP project sponsor:
“Expand our market share
through better prospecting”

Themes
Atomic information

capabilities

Describe the set-based
operations on company
information needed for an
analysis that will let
business users act

Director of Direct Sales:
“Financially sound customers
minus customers holding all
three types of products equals
cross-sell prospects”

User stories

Atomic business

data validation

capabilities

Name the context checking
needed before users will
trust the parent theme's
analysis

Manager of sales reporting:
“Here’s how will check that
the list of current customers
is free of any hidden
duplicates...”

Developer

stories

(for data
integration work)

Atomic transform

capabilities

EDW systems analyst:
“Here’s how to load the next
set of customer records from
Source #3 into the integration
layer of the warehouse”

Names a load module
needed to provide the data
required by a user story

Purpose:

Redefining the Epic Stack to Enable Value Accounting Chapter | 8 155

Each necessary data check that the product owner identifies will make a perfect user story because it will be a

stand-alone, extremely focused query against the information in the data warehouse. Often such user stories will suggest

further data transform programming that will be possible in the future once the business-level validation steps are better

understood by the product owner. With some polishing, human data-check steps will become atomic business-level data

validation capabilities required by the user community.

The graphics for this section provide a few more examples of stories defined using this framework. The last column

in Table 8.1 provides an abbreviated sample for each class of story, distilled from the backlog for one of my company’s

projects in the automobile financing industry. Table 8.2 provides a more fully expressed example of an epic tree for a

revenue assurance project in the subscriber-based telecommunications industry. This table expresses these stories in the

full, three-part format that agile textbooks recommend with clauses for who, what, and why. Some teams also add a

fourth element, “How will this be validated?” that can assist the developers in the test-led development technique

described in Chapter 16. The particular instance of the backlog shown in the table is in mid-creation, so the product

owner has not yet provided user stories for all of the epics and themes. In both examples, the strongly typed nature of

each story class should be apparent: Epic stories are new competitive capabilities, theme stories are new analyses for

action, and user stories represent all the necessary business-level data validation steps.

Strongly typed stories empower the developers on the agile team to evaluate more astutely the quality of the backlog

provided by the product owner. They can check that the data validation represented by every user story traces back to

an information analysis linked to a director and then verify that theme’s analysis links appropriately to a competitive

capability requested by the sponsors. Now enabled to validate the backlog, the team leaders will be able to quickly

detect whether the product owner has skimped on his or her backlog-definition duties. If, for example, the product

owner offers a story about compiling customer survey data when all the epic trees address improving product margins,

the team can respectively suggest that something is awry with the project’s requirements. Either a particular epic tree

has not been stated yet or this user story belongs in another project.

The remaining element of the agile EDW epic stack is the developer story. As discussed in my previous books,

developer stories become straightforward to author once the team arrives at a solid set of epics, themes, and user

stories. The team needs to simply take each user story and “stretch” it across the EDW’s reference architecture,

as shown in Figure 8.3. At each intersection, the project architect and other team leads will be able to quickly name

the data transformations needed to load the data that the given user story will require. This effort will identify

the atomic transform modules that the application requires, with each of those modules being a perfect focus for a

developer story.

TESTING WHETHER STORIES ARE GOOD ENOUGH

The epic decomposition framework described previously helps teams author stories at the right level for each class of

requirements they must manage, but it does not guarantee the quality of each story they create. Teams will need a

means to judge whether the stories on that backlog are good enough.

Generic Scrum practitioners employ an “INVEST” test to determine whether a given user story is sufficiently

polished. Because they work with developer stories, especially for the data integration portion of their projects, agile

data warehousing practitioners have had to extend and rename components of the INVEST test elements, transforming

them into “DILBERT’S” test. EDW teams employ this test many times throughout a project, such as during Sprint 0,

story conferences, mid-iteration backlog grooming, and even user demos when the quality of a story appears to be the

root cause of a rejected feature. Figure 8.4 shows the components of each test and how the elements of agile’s generic

INVEST test for user stories have transformed into the components of the DILBERT’S test for DW/BI developer stories.

We need to consider only the DILBERT’S elements because each INVEST test element has been carried forward.

Demonstrable

Demonstrable indicates that the deliverables for each developer story should result in something that can be demonstrated

to the product owner during a user demo. Because developer stories can define data loads for schemas far removed

from an end-user dashboard, teams often have to demonstrate their progress using temporary BI modules connected to

the ordinarily hidden architectural layers of the warehouse. With a little imagination, teams can usually demonstrate

business value to the product owner even if the data for the demo comes from an intermediate data layer such as the

landing area or the integration layer. Seeing the data drawing closer step-by-step to the end-user dashboard is usually

enough to convince the product owner that the team has made significant, tangible progress. As long as the product

156 PART | III Agile EDW Requirements Management

TABLE 8.2 Sample Epic Tree from the Revenue Assurance Example

Background Statement from Chief Operating Officer

Our share prices have under performed in the past two years, making our company an attractive takeover target.
The board of directors has set net margin improvement goals of plus 5% for this year and the next, in order to mitigate this risk.

As Chief Operating Officer, I believe operations can attain these goals through three primary efforts:
a) bundle our products to include high-margin basic services with the high-volume new products
b) decrease our fulfillment cycle times to shorten the lag between order and first dollar of revenue
c) find and correct the cause of "broken orders" that get neither filled nor billed after the customer purchases services

Epic 1 As the Central Region's vice president of operations,
I want my directors to be able to find and show trends for areas of overly long cycle times
so that we can assess the effectiveness of our process redesign efforts.

Theme 1.1 As director of business services provisioning,
I need to identify the problem work orders by subtracting out the 80% with the fastest cycle times
and then breakout the remainder by personnel involved
so that we will know who to manage more closely.

Epic 2 As the vice president of business services,
I want my accounting directors to be able to quantify and assess root cause for sales orders that do not get fulfilled
so that we can reclaim at least a quarter of the $50M per year of earned revenue that manual audits show we're not collecting.

Theme 2.1 As director of Tri-States district accounting,
I need sales orders that do not acquire a matching work order within three working days
so that we can label and analyze them as "broken sales orders."

User Story 2.1.1 As manager of business services accounting,
I need to see the work orders marked with their originating sales orders by number of days between order dates
so that I know those with a lag of less than four days have been removed from
the director's "broken sales orders" analysis.

User Story 2.1.2 As manager of business services accounting,
I need to see the work orders marked with sales orders superseded by revised sales orders
so that I know those have been removed from the director's "broken sales order" analysis.

User Story 2.1.3 As manager of business services accounting,
I need to see unrevised and revision sales orders with late work orders
where product codings on the revisions don't match the product codings on the original sales orders
so that I know those have been removed from the director's "broken sales order" analysis.
(We will have to solve the product coding issues, but that's a different problem.)

User Story 2.1.4 As manager of business services accounting,
I need to see unrevised and revision sales orders with late work orders
where the dates on credit approval or previous account hold flag is more than 3 days after the active sales order's
creation date so that I know those have been removed from the director's "broken sales order" analysis.
(We'll have to address late reversals on credit rejections and previous account holds, but that's a different problem also.)

Theme 2.2 As director of Tri-States district accounting,
I need work order line items that do not acquire matching billing records service items
within three working days so that we can label and analyze them as "orphaned work items."

Epic 3 As the vice president of business services,
I want my accounting directors to be able to quantify and assess root cause for provisioned services that do not get billed
so that we can reclaim another quarter of the $50M per year of earned revenue that manual audits show we're not collecting.

Redefining the Epic Stack to Enable Value Accounting Chapter | 8 157

owner can drive the BI module himself and begin to answer the business question represented by the parent user story,

he should be able to see how the work done so far has reduced the risk of the project and will contribute to a usable

feature for business users, someday soon.

Independent

Developer stories are said to be independent if they are defined so that, given where they occur in the project backlog,

the team will be able to develop them without having to resolve other dependencies first. This definition of indepen-

dence takes into account the ordering of the backlog, so when teammates re-sequence the stories, they often feel the

need to scan the list again to determine whether the new order has created any unintended dependencies.

Layered

The layered criterion indicates that the team has defined the developer story so that it addresses only one layer of

the DW/BI reference data architecture. Focusing on one layer at a time will also help considerably to make each story

independent, especially if all its inputs and outputs connect to data objects located outside the layer in question.

2 Universes
needing modification

4 New and
3 updated

dashboards

5 Developer stories
for staging modules

9 ETL modules
for integration

12 ETL modules
needed for staging

Semantic
layer

(reporting
universes)

End-user

applications
(reports&

dashboards)

Staging
layer

Integration
layer

(standard
normal form)

Presentation
layer

(conformed
dimensional form)

User
story

FIGURE 8.3 Primary technique for decomposing user stories into developers stories. Note the 25-to-1 multiplier for this project’s user story.

FIGURE 8.4 INVEST and DILBERT’S test.

158 PART | III Agile EDW Requirements Management

Business-valued

Closely associated with the notion of demonstrable, the business-valued consideration reminds the team that it must

define and communicate every developer story so that the product owner can appreciate it as a significant step toward

delivering the parent user story and the overall application. Drawing from the epic decomposition framework discussed

previously, business-valued also suggests that developer stories need to be clearly traceable to the hierarchy within a

particular epic tree. Moreover, each parent story for a given backlog item should be clearly expressed as an atomic

capability of the proper requirement class, as listed in Table 8.1. Only when the team can clearly state the competitive,

information, and business data validation capabilities that a given developer story will help bring to life can the team be

sure that its developer story represents undeniable value to the business.

Estimateable

Developer stories in a backlog should be expressed so that the team can forecast the level of effort that the module

will require, in both story points and labor hours. If the team cannot forecast the work that a developer story will take,

quite likely the parent user story is still too big or vague, indicating that the product owner should invest more time in

decomposing it further.

Refinable

Refinable for developer stories is the equivalent of the INVEST test’s “negotiable” for user stories, which is often

phrased as “not too specific” by agile practitioners. For generic agile projects, “negotiable” reminds teams to keep the

user story to a single sentence or two. Agile teams do not want the product owner to write pages of details because that

practice would take the team back toward the waterfall approach of detailed requirements specification, and it would

risk wasting large amounts of effort when business conditions change.

Agile data warehousing practitioners use “refinable” to remind themselves also to rely on 80/20 specifications. The

developer story and its parent user story need only to capture the essence of what services the new features must enable.

The remaining details should be covered during development time when programmers can gather true, detailed require-

ments while working eye-to-eye with the product owner.

Testable

We borrowed the testable criterion directly from the INVEST test, which states that a story should describe a unit of

functionality that is small and distinct enough to be validated in a straightforward manner. For agile DW/BI projects,

developer stories should be fairly close to the programmed units that will make up the application, so if the program-

mers cannot envision how to unit test a developer story, that story or its parent user story is still too large to enter the

iterative development process.

Small

Generic agile practitioners state that user stories should be small enough that each one will consume only a fraction of

the team’s capability during a single iteration. Whether “small enough” means that the developers can deliver, for

example, five stories in an iteration rather than just four will be something that the team members will have to establish

for themselves during the first few sprints of their project. Fortunately, if the team properly applies the earlier criteria

of independent, layered, estimateable, and testable, “small” usually results. Occasionally, a developer story describing

an ETL module still proves to be too large to develop within one iteration. At that point, teams employ additional

decomposition techniques, such as defining separate stories for each natural subset of target-table columns or rows, so

that not all of the business rules for a given module have to be programmed in a single effort.

CLARIFYING EVERYTHING WITH VALUE ACCOUNTING

Teams that adopt a clear framework for creating focused, compelling epic trees greatly increase their effectiveness.

A strong epic tree communicates clearly to the developers what they must do during an iteration and even across

sprints. Developers can begin fast development of DW/BI components once a backlog reaches this level of organiza-

tion. The missing piece, however, will still be an appreciation of their work by end users and project sponsors. A heap

of new modules by themselves means very little to the business departments funding the EDW programming effort.

Somehow the many components created by the programming team must be assembled into deliverables that the

business can appreciate. That appreciation will emerge when the EDW team leaders can demonstrate that they have had

Redefining the Epic Stack to Enable Value Accounting Chapter | 8 159

a positive impact on the organization. Teams can use a technique called “value accounting” to make such a claim.

Value accounting requires some effort, but it pays great dividends by lowering the risk of a project and bolstering team

morale, both of which translate into increasing delivery speeds.

Figure 8.5 portrays the tail end of the process started in Figure 8.1, which depicted the process by which the team

decomposed the originally large and vague business requests down to a backlog of bite-sized work bundles for program-

ming on a developer’s workbench. In the second half of the process shown in Figure 8.5, the project architect orchestrates

the assembly of the many modules that the developers have programmed into a package which end users can operate and

derive value. Given that data must move across several layers of a data warehouse’s reference architecture, every set of

new, business-appreciable capabilities in an EDW project will take two or three iterations to emerge from the develop-

ment process. Moreover, for the reasons stated previously, teams cannot assume that a product owner will adequately

advertise the team’s accomplishments among the business stakeholders. These dynamics may create a public relations gap

for the EDW project as sponsors and end users impatiently wait for the new features to appear, and leaders should address

this gap in order to ensure the continued funding of their team. Value accounting provides EDW team leaders with an

objective means for communicating accomplishments to all levels of stakeholders throughout the life of a project.

The Basics of Value Accounting

Value accounting is the practice of placing a numeric measure of worth on every item on the backlog and actively claiming

credit for that contribution with each delivery, even intermediate ones. The end result of value accounting is shown in the

upper right of Figure 8.5 as a buildup chart depicting the value of the deliverables that the team has delivered into produc-

tion usage. Other versions of this chart show the deliveries of modules to the intermediate environments such as system

testing and user acceptance testing as well. Traditional data warehousing projects typically accumulate a reputation for

being expensive and near useless as the company waits many months before seeing something of value emerge from the

extensive programming effort. Agile EDW teams that use value accounting can prevent this bad impression from taking

root by regularly advertising their achievements through value buildup charts. With every deliverable that the developers

make, the team adds the worth of that delivery to the buildup chart and gets credit for making another contribution to the

success of the enterprise. Should a stakeholder inquire as to what value a particular uptick on the buildup chart represents,

the team can either have the product owner explain what he or she said during the last user demo or can read the value

statements from the user story cards that the team members were programming during the last iteration. Not only does this

small bit of public relations insulate the agile team from criticism, it also builds enthusiasm for the project among the

business staff members and elicits greater participation from them for guiding the next round of deliverables.

The most difficult aspect of value accounting is defining a unit of measure by which the value of epics, themes, and

user stories can be expressed. The numbers displayed on the buildup charts will have to represent something real to

the casual business observer. The project architect will need to research and select an overall measure of value for the

project, such as the return on investment that project sponsors had in mind when they approved the project for develop-

ment. If teams are using the backlog definition framework described previously in this chapter, these statements of

value can be associated with the epic stories that the project’s VP sponsors provided.

Project target
valueValue D

eliveredAgile project

architect

Time

Businss

users

Subrelease 1 Subrelease 2 Subrelease 3

Developer’s
workbench

FIGURE 8.5 Big picture � recompling modules for perceived value.

160 PART | III Agile EDW Requirements Management

As discussed later, once the value of the epics has been articulated, the remaining distribution of value becomes

fairly straightforward. The executives allocate the value of each epic down to the theme stories that it contains. The

development team then distributes the value of each theme to its component user stories. When the team places a theme

into production usage, the team increases the buildup chart by the value that had been apportioned to that theme. If

the theme gets split across subreleases, then the team claims credit for the value of only the user stories that the team

has put into production.

Because value accounting requires some thought and effort, the advantages it provides for a team are discussed first,

before the details of apportioning epic value to themes and user stories are presented. The advantages manifest in two

general areas: team effectiveness and risk mitigation.

Value Accounting Makes Developers More Effective

Once value has been assigned to the project’s epics, themes, and user stories, prioritizing the backlog becomes far

easier because the team acquires a second and very clear measure of importance for backlog items. This second

measure of importance augments the product owner’s personal notion, which can sometimes be unfounded and

change erratically between iterations. In fact, the process of allocating the epic- and theme-level values identified by

executives to the user stories on a backlog is often the pivotal experience that inspires half-hearted product owners to

take their role seriously. When the team leaders begin driving toward full value accounting, the context for the prod-

uct owner changes from “Please tell us which of these stories is more important to you” to “Here’s how much

the company has said these epics and themes mean to everyone.” With that change, the product owner realizes that

the company expects him or her to lead the delivery of benefits that the company is eagerly waiting for. That realiza-

tion is often all the pressure needed to snap many product owners out of their apathy.

Value accounting causes the product owner to think more deeply about the project, which often generates more

and better user stories. When confronted with two themes that seem to have the same worth to the product owner

but that the organization has labeled with widely different values of, for example, $100,000 and $5 million, the

product owner can ask himself, “Why is the second so much more important than the first?” The question will lead

him to trace through the thinking of the executives from whom the values were derived, connecting him thoroughly

with the goals of the company, and in the end, acquiring greater business acumen with which to lead the develop-

ment team.

Value accounting is also powerful because it can rescue teams that are drifting. Without quantifying the worth of

backlog items, the team is at the mercy of the product owner’s whims regarding what features to build next. Value

accounting provides an external reference regarding which project components are most important. This external input

positions the team leaders to reason with the product owner regarding the ordering of backlog. They can keep him or

her better focused on the most worthy system elements, and they can ward off any impulse to chase something new

before finishing the work that has already been started. By reducing any such “requirements churn” from the product

owner, the team gets more appreciable work done in a shorter time and thus becomes far more effective.

Once the team has derived value ratings for the entire backlog, organizing a project into subreleases becomes far

easier. The process transforms from “Sort this big box of rocks, where they all look the same” to one of “Let’s get the

diamonds moved to the front of the line, ahead of these lumps of coal.” Once the team has used value to sort the big

sections of the backlog, issues such as inter-story dependencies and resource availability become much easier to reason

through and resolve.

Value accounting brings clarity to the project because the value ratings on the backlog are numbers that everyone on

the team can see and understand. This positions all team members to have an opinion regarding what should be worked

on next, greatly amplifying the motivation that leads to self-organization. By catalyzing spirited self-organization, value

accounting improves the agile project’s delivery speed.

Value accounting also provides a strong, positive feedback loop rewarding the team for organizing and delivering

software modules. With every user demo, the project leaders can quantify team accomplishments with statements such as,

“Fabulous. We just delivered another $750K of value to the company.” Couple that feedback with knowledge of the

team’s labor cost per iterations, and everyone involved can derive an objective notion of the team’s “profit margin.” If the

project costs $150,000 per iteration, then that hypothetical sprint just made the company $600,000 better off. Naturally,

teams that are returning four times what they cost feel good about their contribution. They have something tangible to be

proud of and a clear reason to believe that the company should appreciate their work and continue funding it. I have seen

this perception alone transform a lackluster team with sloppy software engineering habits into a spirited collective, dead

serious about what it was building and intent on constructing it correctly. Such improvement in the esprit de corps directly

Redefining the Epic Stack to Enable Value Accounting Chapter | 8 161

increases the speed and thoroughness of teams’ everyday decision making, resulting in a higher team velocity and fewer

defects in the modules delivered.

Value Accounting Mitigates Project Risk

Beyond increasing team effectiveness, agile DW project leaders should realize that value accounting greatly reduces

actual and perceived project risk. EDW project leaders face some daunting hazards to their projects and their careers.

Enterprise data integration work takes so long to build correctly that when project leaders finally deliver the application,

they can discover heartbreakers such as the following:

� The business has changed and no longer needs the product.
� The stakeholders asked for features that do not solve the business problem.
� The design omitted one or more crucial information sources.

Teams that put off proving the value of their work until the end of the project risk these undesirable outcomes. Teams

following a generic agile process such as Scrum deliver coded modules in increments, but they can still leave the proof

of value to the end of the project when all the EDW pieces are in place.

Even the subrelease strategy advocated previously in this book will help little if the team does not actively claim

and advertise the value of the intermediate application versions that it puts into production. To mitigate project risk,

teams need to combine a subrelease strategy with value accounting. When EDW team leaders claim to have delivered a

serious increment of value, they will spur the business stakeholders, from managers all the way up to the sponsoring

executives, to look more carefully at the latest subrelease in order to see whether those claims are overblown. When the

stakeholders look more closely at the application, they will more likely find that some requirements have been over-

looked or misunderstood, allowing the team to correct its backlog and soon improve the software. This interplay

between the team’s claims of value and the feedback that it generates will greatly reduce the chance that the project

team is working on the wrong goals and failing to build DW/BI features that matter.

Value accounting provides teams a compelling way to visualize team progress so that stakeholders also see a steady

reduction in the remaining project risk. Returning to Figure 8.5, the horizontal line along the top of the value buildup

graph represents the total value that the executives have asked the EDW team to help them realize. At any point in the

project, the gap between the value delivered and validated by the business and the target value line is the harm that

could occur if the project were to fail at that point. With each increment in the buildup graph, the EDW leaders should

not only advertise the additional value realized but also express it as another large portion of project risk removed. On

a purely practical level, EDW teams that appear to be steadily delivering valued software and eliminating risk are the

teams that executives prefer to keep together and continue funding.

Executives who understand the value buildup chart often turn into powerful allies for agile EDW team leaders, espe-

cially when the team begins to have conflicts with the project management office. Traditional project managers often

push agile teams back toward a big specification up front so that all work is defined before coding begins, giving them

a greater sense of control during the programming work. This conflict between incremental and traditional management

preferences can turn into a heated standoff, at which point the agile team will need to appeal to the project sponsors.

I have been in program governance meetings in which the project managers have insisted that the developers abandon

their incremental approach, only to have the sponsor intervene by saying, “These teams have already delivered several

good results over the past few months. My directors and managers understand completely what they’re delivering and

like how the gap between what we have and what need keeps shrinking on the buildup chart. They seem to know what

they’re doing. Why not let them keep going as they are?”

When the annual budget cycle comes around, the agile team will also benefit from having clear, well-organized epic

trees that have been used to communicate the value delivered and the risks eliminated. When the company needs to

reduce DW/BI funding, which of the following development efforts is more likely to get the ax?

� The project in which leaders can draw a results chart with not only a well-understood goal line but also steadily

increasing bars that represent proven, delivered value
� The project in which the requirements are difficult to understand and the leaders cannot articulate what they contributed

to the company lately

Most steering committees will prefer to support the first project. Project leaders who forego value accounting leave

the outcome of these budgeting decisions to fate. Project leaders who invest in organizing their epic trees and honest

value accounting take their future into their own hands.

162 PART | III Agile EDW Requirements Management

ALLOCATING VALUE THROUGHOUT AN EPIC TREE

Given the many advantages that value accounting can bring to the team, the effort needed to quantify the worth of the

backlog stories will seem modest. Quantifying value for the items on a backlog begins with the value of the project

itself so that later the team can distribute that value to the component epics, themes, and user stories.

Identifying the Value of a Project

What is the value of a project? Finding a hard number to which to anchor the value of a project can take a good deal of

thoughtful discussion and imagination. In commercial business settings, my company’s consultants usually pursue the

matter with the following sequence of questions:

� What was the business case for this project when it was proposed and approved for development?
� What was the return on investment (ROI) cited in that business case?
� If no ROI was stated, do any of the project approvers have in mind a hard measure of financial benefits?

One would think that every company embarking on a multimillion-dollar EDW project would have a solid business

case prepared, but to my continuing surprise, the vast majority of ongoing projects we encounter do not. When no

business case exists for a project, the sponsor is usually one or two very high-placed individuals who feel confident that

the application is needed and that they know what it should do. Such projects are typically discussed and chartered in

terms of features and costs, and the overall benefit of the project is rarely quantified with any rigor.

For situations in which the executives have not articulated a single ROI figure for the project, the EDW team leaders

will have to quantify value one level down, measuring benefits for each epic story instead. Here, a clear definition of

an epic will serve the project architect well during this research, as he or she asks questions such as the following:

� Which needle on the corporate cockpit gauges will this epic move?
� What fundamental business notion does that needle represent: customers, revenue, margin, velocity of assets, or

regulatory compliance?
� What is each increment of movement in that needle worth to the company?

Not every epic has a value that can be expressed in dollars, so the project architect must be prepared to switch to

other units of measure. For example, when a company needs an EDW to maintain operational reporting once the

company switches to a new accounting system, how does one place a dollar amount on the value that each report

delivers? The company needs just about all of the original reports to maintain the business, making it difficult to value

each report separately.

During the approximately 25 years we have been providing agile EDW leadership, the consultants in my company

have had to resort to many different units of measure in order to quantify value such as:

� Hours saved in the work of very important staff members
� Reduction in staff members needed to maintain a major business process
� Number of embarrassing reporting discrepancies caught before they reach partners and customers
� Days shaved off important business processes’ cycle times
� The additional decisions that key staff people can make in a day
� Counting the non-warehouse information sources that decision makers have to consult per transaction

Arriving at a usable unit of measure for benefits realization can take time and creativity. Whenever possible, project

leaders should invest enough effort to find a single unit of measure that they can use for all the epic stories in a

project so that their latter assertions of value delivery will not be challenged simply for “mixing apples and oranges.”

It can be particularly difficult to measure value for noncommercial enterprises because the mission of the organiza-

tion may not focus on transactions that generate currency-denominated revenue. If none of the alternative measures

mentioned previously provide a solution, then project leaders can resort to the size of the budget of the organization

or department that the EDW application will support. Although this type of measure does not link to something as

clear-cut and compelling as company revenue, it still has a respectable rationale. Throughout the years, an organization

will allocate more operating budget to the departments and business processes with the greatest perceived worth to the

company. Following this reasoning, EDW project leaders working for noncommercial organizations can claim to have

delivered objectively measured value with assertions such as “With the last release, we put online dashboards

Redefining the Epic Stack to Enable Value Accounting Chapter | 8 163

supporting another $13 million of operations. With the coming release, the data warehouse front-ends will meet the

needs of another $7 million of business processes.”

In driving toward value quantification, project leaders should remember that they do not need to employ the perfect

unit of measure, and nor do their claims of value contribution require an inordinate degree of precision. The goal is to

provide a reliable measurement of the importance of the team’s incremental deliveries, around which both business and

IT can align. The fact that an agile team can reasonably quantify the value delivered with each subrelease signals that

its leaders probably understand the project requirements well enough to keep the development effort on track and

driving toward success. The exercise of value accounting brings that clarity to the team. Any measurement means that

is objective and quantifiable, with a small enough grain to be able to show the team’s steady delivery iteration by

iteration, will suffice.

Allocating Value to Epics

Once the project architect has identified the value of the project, the team can begin allocating that value down to

epics, themes, and user stories. The mechanism for allocating value varies with each of these levels. Given a value

for an entire project, the project architect should then ask the project governance committee or at least the project

sponsors to divide that single number between the epics that make up the project. Sometimes the steering group

can perform this division easily, either verbally or via a poll orchestrated through the company’s survey engine.

The project architect needs only to check that the individual amounts assigned add up to value stipulated for the

project as a whole.

In other circumstances, the relative values will be unclear to the executives, and they will struggle to agree on a

single allocation of value across epics. Here, the project architect can resort to a game to derive the official values of

each epic. First, he or she creates a poster for each epic, listing its definition and perhaps the major themes associated

with it. The poster for a given epic will have a space designated for each governance council member. The project

architect places those posters around the governance council’s meeting room with plenty of space to walk around each

one. He also provides each governance member with a stack of poker chips that totals $1,000, for example. At that

point, he invites the governance members to spend the next 15 minutes walking around the room, with each member

placing chips in any given epics poster. The governance members can leave as many poker chips on a given poster as

they want, as long as that amount represents the value they subjectively place on the epic described by the poster. In

practice, this process can take far longer than 15 minutes because the governance members will congregate around a

few of the epics and discuss them at length before deciding how many chips to give them. These discussions may well

reveal some additional executive-level requirements to the project architects.

After the chips have been placed on the posters, the project architect calculates the tallies for each epic and asks

whether the totals truly represent the value of the epics. This part of the process may take a few iterations because the

first round may yield some surprising tallies, such as an epic with negligible value, which may generate new insights

and group discussion. The project architect welcomes the council members to redistribute their chips, if desired, until

the tallies reflect the council’s collective opinion of the epics’ relative worth. Once he has secured agreement from the

governance committee on the overall allocation of chips, the project architect will have a solid basis for allocating the

overall value of the project to the epics, whether in dollars or some other unit of measure. For a backlog of epics with

values expressed in different units of measure, this poker chip voting process can provide the conversion ratios for

translating between those units. Consider, for example, a project in which one epic is valued as “20 full-time equivalent

(FTE) positions saved” and receives 2000 poker chips, and another epic that is valued at “1000 process errors avoided”

ends up with only 1000 chips. Here, the project architect can rationally propose to the governance committee that with

regard to reporting value that the project team will deliver, every 100 process errors avoided will bump up the value

accounting graph by the same degree as 1 FTE saved.

Allocating Value to Themes and User Stories

Once the governance council has allocated project value to epics, distributing value to the remainder of the epic

tree is comparatively easy. The value of the themes comprising a given epic should add up to the value of that

epic. For major themes, the project architect can ask the governance committee to distribute an epic’s value using

either analysis and discussion or the poker chip voting game described previously. However, the governance council

will often defer to the directors who are most familiar with the business area of each epic to allocate the value to

the themes.

164 PART | III Agile EDW Requirements Management

In working with the directors who will be impacted by a given epic, the project architect can present his or her

request for value allocations in a manner similar to the following:

� Epics represent new competitive capabilities for the company.
� This particular epic will enable the company to do X.
� The project sponsors and executive stakeholders stated that this capability is worth $Y million per year.
� Themes reflect analyses that merge, intersect, and subtract one set of information from another, giving directors

such as yourself the insight needed to make sound business decisions.
� The epic we’re considering now involves analyses A, B, and C.
� If these analyses taken together will allow the company to achieve $Y million, what contribution to that amount is

reasonable to attribute to each analysis separately?
� Your answer can be as subjective as you like, and it does not have to be precise as long as it is something you can

agree with over the next year or so while we build out the data warehouse.

At this point, the project architect turns the conversation over to the directors, who will then allocate the epic’s value

to the component themes.

Using the framework outlined previously usually empowers directors to assess the value of themes. The value of

the user stories that make up a theme, however, becomes much more difficult for business people to assess. In the epic

decomposition framework considered here, user stories represent business-level data checks that support staff need to

perform to assure themselves that a particular theme-level analysis will not mislead the decision support system’s end

users. If asked to subjectively proportion the value of a given theme down to the user stories that support it, the business

staff may answer, “What’s the value of checking that all the suspended transactions were included versus knowing that

no customers have been double-counted? It’s impossible to say.” The business staff cannot honestly identify the value

of individual data checks because one must perform them all before the information from the warehouse will be useful.

For that reason, EDW project leaders usually recommend that the business staff allocate the value of each theme to the

underlying user stories using the story point estimate of each. The reasoning here is simply as follows:

If you need all 24 story points of data checks before you can use an analysis valued at $12 million, then when we deliver 8

story points in one iteration, we have gotten you one-third of the way closer to performing the analysis, and therefore that story

is more or less worth one-third of the $12 million.

Readers should keep in mind that the team will be measuring value delivered by user stories only as a provisional

tracking mechanism. The real objective is to deliver a full, usable analysis in a subrelease candidate. This level of accom-

plishment is represented by theme-level stories, which can be ascribed value individually. When teams award themselves

value credit for delivering a few user stories, the team members are only communicating within the confines of the project

room and only among themselves and with the product owner. Tracking value at the granular, user-story level helps the

developers stay focused, but no one will try to equate those micro-accomplishments with themes delivered in a subrelease.

VALUE BUILDUPS BY ENVIRONMENT PROVIDE MOTIVATION AND CLARITY

The process of actually claiming credit for value delivered involves some subtlety that agile EDW project leaders will

need to manage carefully. To make the process meaningful to both teammates and business stakeholders, the project

leaders need to distinguish between the environments to which they have delivered finished modules.

Figure 8.6 shows the value delivered by two distinct teams. The top band on both these graphs shows the value of

modules delivered to the system integration test (SIT) environment, a platform in which the team confirms that all the

modules assemble properly together. Two other bands show the value promoted to user acceptance testing (UAT) and

production environments. Although both teams have delivered approximately the same amount to SIT, clearly Team 1

is doing far better than Team 2 in truly creating value for the organization. Team 2 went 9 months before placing

anything in UAT for end users to consider, and then another 9 months after that before offering them a second version

of the application to review. Even worse, this team went 22 months before putting any services into production usage,

and then it was only a small fraction of the warehouse’s already programmed capability. As revealed by this graph, the

customers of this project are paying dearly for new business capabilities that have been programmed but still denied to

them. If the developers of Team 2 had claimed in Month 8 or even Month 20 to have delivered important value to the

company, many staff members of the organization would have rightly scoffed at this assertion. That team’s contribution

Redefining the Epic Stack to Enable Value Accounting Chapter | 8 165

is clearly locked up in the SIT or UAT environment, where it may be pretty to look at but is still providing no business

benefits to end users who can only profit from features that are in production.

In contrast, the value buildup chart for Team 1 shows that it not only maintains a steady flow of value to the

SIT environment but also makes frequent pushes of new application versions to UAT and nearly as frequent promo-

tions of them into production. In essence, the first two bands are important leading indicators of team performance,

but the bottom band is the only value deliveries that count. The top two bands on the value buildup charts are still

worth drawing because they show stakeholders what is in the project’s pipeline. They can also reveal project issues

such as too many modules suffering large defects in SIT or too few features meeting with business approval in

UAT and therefore being kept from production. When these graphs plateau, many different reasons could lie behind

the bottleneck revealed. Seeing the problem highlighted by the value buildup in any of the three environments allows

team leads, project governance committee members, and the project management office to realize that there are issues

to investigate.

FIGURE 8.6 Value build-up charts distingishing between delivery environments.

166 PART | III Agile EDW Requirements Management

SUMMARY

EDW team leaders can take two actions that will quickly make their project backlogs clear and well aligned with

business needs. First, they can adopt an epic decomposition framework that strongly types the stories in the backlog,

giving a memorable and distinct purpose to epics, themes, and user stories. In one commonly used framework, epics

come from sponsors and vice presidents, themes come from department directors, and user stories originate from the

manager or analyst who serves as the product owner. Teams can utilize such a framework to define and refine items

on the project backlog until they pass DILBERT’S test, indicating that they are good enough to enable programming

to begin.

Second, EDW team leaders can ensure business alignment and requirements traceability with value accounting.

Value accounting starts with the overall benefit expected from the EDW project, allocating it downward to the epics,

themes, and user stories. The thinking required to distribute value smoothly down the levels of an epic tree ensures

that the backlog is intelligible and coherent. Moreover, value accounting enables team leaders to state that they have

made a quantifiable contribution to the company with every subrelease, in a way that will stand up to business

stakeholder scrutiny. These claims of value delivery easily constitute a modest public relations effort that will build

excitement and participation for the project among the business departments and that might someday save the EDW

project from the yearly “budget ax.”

Redefining the Epic Stack to Enable Value Accounting Chapter | 8 167

Chapter 9

Artifacts for the Generic Requirements
Value Chain

The goal of agile enterprise data warehousing (EDW) requirements management is to provide the team with a project

backlog of stories accurate enough that the developers can begin transforming the business needs listed there into data

warehousing/business intelligence (DW/BI) modules that provide valuable business insights to end users. Hopefully the

team is working with a product owner who is sharp and motivated enough to author such a backlog. Yet even a capable

product owner may have some trouble starting the process or staying focused over the long term. As a means of sup-

porting a product owner who is struggling with her role, generic agile practitioners have identified several “context-

defining artifacts” that can help considerably. My colleagues and I employ them so often while working with product

owners on epics, themes, and stories that we consider them simply part of agile’s generic requirements management

(GRM) value chain. These helper artifacts assist the product owner in envisioning the situation at a deeper level so that

she can effectively author user stories. They enable the information technology (IT) members of the team to assist in pol-

ishing the stories, making the backlog complete, and keeping the requested features within the proper scope. By providing

a bit of structure to the story-writing process, helper artifacts also greatly reduce the requirements churn that can under-

mine the developers’ agility when the team has made no provisions to keep the backlog pointed toward a single goal.

Agile EDW team leaders should be familiar with this collection of context-defining artifacts so that they have tools to use

in those moments when their product owner struggles to create a backlog or begins to author stories that seem inappropri-

ate for the given project.

This chapter presents the most common context-defining techniques that support well the generic agile requirements

management value chain introduced in Chapter 7. These techniques are listed in Table 9.1. The artifacts involved in

this value chain demand some deep thinking but are very easy to draw, so they enable teams to avoid both underinvest-

ing in discovery work and overinvesting in extensive requirements documentation. Team leaders should not feel that

they need to employ any or all of them from the very start of their project, but instead should pick and choose from this

collection as the situation merits. To better illustrate the usage of artifacts, this chapter provides an example for each

one that ties conceptually to the revenue assurance project introduced earlier in Table 8.2.

BEWARE OF REQUIREMENTS CHURN

“Requirements churn” occurs when the product owner provides erratic direction for the team from one iteration to the

next, to the point where no meaningful progress toward a goal can be made. This antipattern can waste so much time

and effort that it will cause an agile team to fail.

Business customers who believe that agile methods are intended primarily to make the development team responsive

to the business often indulge in the highest levels of churn. I once worked on a project in which the developers received

the following requests from the product owner during the course of the first six iterations:

1. “I need features that show me what’s happening with revenues.”

2. “You know, it’s actually cost reduction where we’re having the greatest challenges.”

3. “I’ve got to be able to combine revenue and costs to reveal where profitability is suffering.”

4. “I think it’s vendor performance that’s hurting profits—show me metrics on deliveries.”

5. “The company is taking too long to ship after receipt of order—show me fulfillment cycle times.”

6. “The VP of sales just complained about customer retention—I need metrics on buyer satisfaction.”

169
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00009-6

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00009-6

Within 2 months, this product owner had the team switching erratically between data found in billing, manufacturing, ful-

fillment, and customer care systems. We were barely able to get a few tables landed from a given source system before we

were suddenly chasing a whole new universe of operational data. Three months into the project, when the sponsor demanded

to know why she had not yet seen any analyses on revenue, the IT members of the team could only say that the product owner

had kept us scrambling and unfocused. It felt like a very thin reason for allowing such deep customer disappointment to occur.

EDW team leaders need to watch for the product owner-driven requirements churn and call attention to it when it begins

to undermine team effectiveness. At that point, they will need to clarify that the intent of agile methods is to constantly deliver

value to the business, not to program in endless circles. When churn reaches a pernicious level, these leaders must be ready to

deploy some of the GRM artifacts in order to put gentle constraints on their product owner’s thinking and thus yield a

stable goal for the project. When a product owner’s direction proves to be erratic, using a few of the GRM context-defining

artifacts listed in this chapter will guide the team’s business partners toward a more stable project definition and give the team

a realistic goal toward which to steer.

USER MODELING/PERSONAS

Product owners are only human, and it is easy for them to focus too much on the needs of only the department to which

they belong, given that those are the business challenges that will be foremost in their minds. Even the most conscientious

product owners will need help envisioning the situation of business stakeholders in departments with which they are not as

familiar. User modeling is a popular technique for heightening the product owner’s understanding of a project’s full range

of stakeholders. It also helps with positioning the rest of the team to judge whether the backlog is complete and correct.

User modeling involves creating personas to make tangible the complete spectrum of users that an application must

support. Personas were defined by the “father of Visual Basic,” Alan Cooper, a thought leader in the software user

experience movement. A “persona” is an imaginary representation of a particular user role, so vivid that everyone on

the team feels like they know the person and can easily imagine his need for better software services [Cohn 2004].

During user modeling, the team members collaboratively create a set of archetypical users, at least one for every

business department that the EDW is going to support. When creating these hypothetical individuals, the team gives

each one a name, a face, and enough relevant details to make them seem real to the project members. The best persona

names link to the role for each, such as “Sandy in Shipping” or “Frank in Finance.” It is easy to find a likely portrait

photo for each of them on the Internet, and teams print those portraits for display on their project board. Teammates

then create a biography for each persona, describing the role that each persona currently has in the corporation and

what his or her work experience must be like.

Biographies for user personas need to be detailed enough to capture the goals and priorities that each hypothetical

person will have when he or she turns to the envisioned application, seeking business intelligence. Teams commonly

include biographical components such as the following:

� The persona’s job title, his boss, and direct reports
� His official and unofficial roles in the organization

TABLE 9.1 Generic Agile RM Techniques

Technique Purpose

Epics, themes, user stories* Hierarchy to assist managing large number of stories

INVEST & DILBERT'S tests* Check list for high-level evaluation of story quality

User modeling / personas Profiles for placing stakeholder needs in sharp focus

User's hierarchy of needs Service categories for keeping solutions as simple as possible

Mind maps & fishbone diagrams Visual aids for decomposing complex problems

Vision boxes Tangible artifacts for expressing the spirit of an application

Vision statements Short, high-powered for forging agreements and advertising goals

Product roadmaps

* Presented in earlier chapters.

Deliveries located in time to assist prioritization and buy-in

170 PART | III Agile EDW Requirements Management

� Cross-organizational committees to which he belongs
� The criteria that will be used in his annual review
� How his work affects the company’s customers
� His upstream and downstream business partners
� What forces him to stay late or work weekends
� His biggest challenges with information timeliness and accuracy

Figure 9.1 shows one of the personas created by the team that built the revenue assurance application used as an

example in this chapter. By investing a moment in creating such profiles, even for only the primary users of an applica-

tion, the team members empower themselves to extensively desk check their product owner’s user stories. When given

stories that do not ring true for at least one person in the user model, the developers can challenge the backlog’s accuracy.

When backlogs do not contain several user stories for each persona in the user model, the team can legitimately ask the

product owner whether the backlog is complete.

END USERS’ HIERARCHY OF NEEDS

Defining a complete and coherent set of stories for a project backlog is difficult work. Part of the challenge is the

complexity of an EDW. End users from multiple departments have asked for business intelligence, but the precise applica-

tion needed is strongly determined by the mix of requirements. Does the intended user community need mostly front-end

dashboarding, back-end data integrations, or a complex combination of the two? The EDW team leaders will arrive at a

better understanding of the users’ requirements mix if they employ a systematic approach that guides their thinking.

Franny in Finance

Title: Director of Accounting, Commercial Marketing Business Unit

Manager: Tri-States District Controller

Direct Reports: Revenue Analyst, Fulfillment Ledger Analyst, Sales Sub Ledger Analyst

Official role: Certify monthly financials for the business unit selling to businesses

Cross-Organizational
Committees:

Product Catalog Consolidation,
Data Quality Stewards Center of Excellence

Annual Review Criteria: Financial close by 5th day of account period,
no more than 300 general ledger corrections

Upstream
Business Partners District controllers, regional provisioning directors

Downstream
Business Partners:

Works late because: Reconciliation of district sub ledgers requires too many judgement calls to delegate it to her
department's analysts

Biggest data challenges: Joining district and regional sub ledgers extremely difficult due to conflicting master data elements,
especially geography and product catalogs

FIGURE 9.1 User modeling example.

Artifacts for the Generic Requirements Value Chain Chapter | 9 171

Throughout the years, I have relied on a very simple tool to help product owners better envision the requirements

of a project business stakeholder: the business intelligence hierarchy of needs. In psychology, Maslow’s “hierarchy of

human needs” posits that people must progress through a sequence of distinct physical and emotional needs in a parti-

cular order that begins with food, water, and safety and then moves on to higher callings, such as friendship, com-

panionship, achievement, and, finally, morality [Maslow 1943]. Use of a similar hierarchy of needs when modeling the

customers of an EDW project can make the agile team more perceptive and faster to deliver appropriate solutions for

the business they work for.

Figure 9.2 provides the BI hierarchy of end-user needs that my colleagues and I use at the start of our projects. It

organizes five major delivery modalities for DW/BI services as a pyramid. With this pyramid, the agile team places at

the bottom the services that it believes are more basic, foundational, and the easiest to deliver. Those services addres-

sing more specialized needs and involving more technology, deeper designs, and rarified technical skills end up toward

the pyramid’s top.

Data Access

At the bottom of the pyramid is the most basic value that an EDW team can provide stakeholder departments: plain old

data access. The presence of this layer asks the team to consider what percentage of the end users’ BI needs could be

satisfied by simply giving them access to the raw data staged from the source systems.

Many DW/BI professionals do not believe that simple data access is a solution modality that they should consider—

until an EDW project takes too long to deliver anything of value. At that point, the sponsors and directors overseeing

the project grow exasperated with IT and insist, “Just give my end users the dang data! I’ll have them knit together

some answers using spreadsheets because we need some visibility now on what is happening with our business.” In

fact, departmental power users, data miners, and shadow IT can all derive great value for the business department using

nothing but raw data, and such an approach is far faster for developers to deliver than all other service modalities.

One challenge to this solution mode is the fact that business departments are often tempted to stop funding system

development once they have access to raw operational data. DW/BI managers naturally fear that with every department

taking a similar path, the organization will be flooded with many incoherent copies of source information, with

hundreds of incomparable derived values based on them. Team leaders need to be clear that the point of including data

access in the hierarchy of needs is not to eliminate the EDW in favor of data anarchy but instead to engender a deeper

understanding of the concept of “solution” as they plan a business intelligence system. Perhaps the realities within the

company will require straight access to landed data to be either a very temporary solution or ruled out altogether. In

either case, the agile EDW leaders should not silently exclude simple data access from consideration without discussion.

Prediction

40%

30%

20%

9%

1%

% of user needs Typical business question

Give me deliveries. I’ll merge it
with billings using excel.

Every Monday: % orders not
delivered with detail list.

Cycle times by product, company
agent, customer type?

What is the formula for cycle
times given orders and staffing?

What will cycle times be if we
increase staff 10% during Q4?

FIGURE 9.2 Business intelligence user’s hierarchy of needs for the example project.

172 PART | III Agile EDW Requirements Management

They need to explicitly articulate the business case for their recommended use of straight data access because (1) there

may be small ways in which this technique can save time and avoid enormous opportunity costs, and (2) explaining an

alternative approach to the customers and the team will cause everyone to explore and balance the needs of the com-

pany thoroughly, leading to far better requirements. Accordingly, this simple solution to business problems should not

be discarded off-handedly by EDW teams that are hoping to be agile.

Reporting

The next layer up is reporting—regular and predictable representations of aggregates, including key performance

indicators (KPIs) for the company. Reporting often requires some data preparation and appealing visualizations, so this

layer involves more work than simple data access. Reporting is valuable to end users who must answer the same

question day after day, but many BI professionals these days do their best to avoid asking end users how their business

problems can be solved with this approach. They prefer to discuss “self-service BI,” suggesting that it will have greater

value for the end users in the long term. Some of these BI professionals will admit that they prefer to discuss self-

service BI in hopes of keeping IT out of the “report writing business” because in the past that solution modality left

developers in an endless swamp of coding and fixing outputs. Many of them also shun reporting solutions because

it involves some of our profession’s oldest and most boring technology. However, IT can often write a few reports in

one-tenth of the time it takes to build the star schemas that support self-service BI. Given that an agile team’s goal is to

constantly deliver value to the customer, the fact that reporting is an order of magnitude faster than IT’s preferred EDW

delivery mode means it still deserves careful consideration.

Research

The middle layer of the hierarchy provides research capabilities—that is, BI applications that allow end users to see

the numbers behind the elements on a report. Users need to perform such investigations when reporting reveals an

unexpected value or a KPI moves into the red. Such analyses can take many forms. For decision-support applications,

empowering end users to see the numbers behind the KPIs would involve the dimensional analysis at which star

schemas excel. End users can start with aggregate measures and drill to detail as the business context dictates. For BI

applications involving more advanced analytics, seeing the numbers behind the KPIs may involve any one of a dozen

favorite algorithms employed today by data miners [Chauhan 2012]. Whatever the style of analysis required, providing

this capability in the research layer will necessitate a careful work on requirements, design, development, and valida-

tion, making the services of this layer in the hierarchy of needs far more expensive to build than those from the first

two layers. Given the additional time and expense of applications in this layer, agile teams need to include them in their

solution designs only when simpler approaches will not suffice.

Analysis

The last two layers of BI users’ needs represent more special-purpose solutions. Analysis involves building statistical

models that can explain what has happened in the company. For example, data miners may want to identify a set of

independent variables that account for the movement of dependent variables with a high degree of precision. Once the

model is perfected, it can be regularly executed by an application scheduler, so that trends in the dependent variables

will be continually tracked and understandable.

Prediction

Prediction is similar to analysis, but it focuses on what will happen rather than on what has happened. Although analy-

sis and prediction are growing in importance these days with the advent of technologies such as big data and purchas-

able social networking data, most EDW programs still consider data access, reporting, and research as more

foundational and therefore place repeatable analysis and prediction at the top of the pyramid.

Benefits Offered by the BI Hierarchy of Needs

Business users’ hierarchy of needs provides many benefits to those teams that take the time to identify an appropriate

pyramid of requirement types for their end users.

First, the hierarchy provides a good agenda for requirements discovery sessions between the product owner and

other subject matter experts from the business departments who will provide the team with requirements. Not only will

Artifacts for the Generic Requirements Value Chain Chapter | 9 173

stepping through the layers cause business stakeholders to think of the needs they have, but the practice will also lead

the project architect to systematically test each requirement offered. By simply identifying the layer where the discus-

sion seems to have concentrated, he or she can ask the stakeholders to try recasting each decision to fit the levels above

and below that layer. If no one can think of a reason to address a requested capability from a different layer, then the

group has probably envisioned the nature of that requirement correctly.

When stakeholders often get stuck disagreeing on how to express a requirement, team leaders can use the hierarchy to

prompt them to think around the problem. By considering alternative layers, they will often imagine a new solution, one that

involves a temporary service that yields instant value that can be followed by a more complete solution later in the project.

From the IT perspective, the hierarchy of needs helps keep the technical members of the agile EDW team from

becoming “one-trick ponies.” BI developers often become fixated on one technology, such as dimensional modeling or

big data, and then pursue projects as if every need must be solved with their preferred solution. Star schemas, for exam-

ple, are powerful constructs, but they require considerable time to design well and are expensive to populate with data,

especially when they track the history of major business entities. Unfortunately, star schemas are difficult to defend

when projects run too long and go grievously over budget.

By simply checking the BI hierarchy of needs on a regular basis, the team can kick itself out of its preoccupation with a

single technical approach when a simpler solution might provide just as much value to the company. The lower layers of

the pyramid will prompt the team to discuss easier, faster solutions with the product owner—solutions such as a simple

spreadsheet connected to landing data or a simple report distributed to hundreds of business people that will let them coordi-

nate efforts on a daily basis. By coming up with simpler solutions to the more banal services that an EDW must provide,

teams can often save their resources to better deliver the complex features that the business also desperately needs.

Conversely, the higher layers will guide team leaders to ask more penetrating questions in situations in which the

product owner instructs them to “simply put all the company data in a pivot table.” By considering analysis models and

predictive analytics, the team can ask, “What crucial causes and effects do you think our operational data could reveal?”

and, “If we were to set up a model linking major operational drivers with business outcomes, what kind of if�then

questions would you be able to answer?”

Figure 9.2 includes examples of requirements that emerged at all five levels of our hierarchy of needs during the

revenue assurance project. The percentages listed for each level reflects the proportion of requirements that discussions

with business stakeholders revealed could be met with services from each layer. These percentages proved very instructive

to the development team. We could ask ourselves questions such as “Why are we spending all our time on designing a

star schema for every aspect of this project when 50% of the requirements can be addressed with spreadsheets and sched-

uled reports linked to the staging layer?” Sometimes we found good reasons to press on with a star schema solution, but

we also found places where we could remove fairly expensive components from the design, ultimately allowing our team

to deliver more benefits while consuming less time and energy.

Many DW/BI designers and managers become alarmed when they see that a team’s hierarchy of needs includes

reporting, and especially simple data access. Readers should take care to realize that just because the hierarchy of needs

includes these notions does not dictate that those types of solutions will be used. Instead, the hierarchy only forces the team

members to ask themselves two important questions that should never be ignored by an agile team intent on delivering

value quickly: (1) “Are we overengineering any aspect of the system we propose to build?” and (2) “Are their some

temporary solutions available in the simpler layers of the hierarchy that will allow us to address an urgent business need

and give us the chance to gather better requirements by observing how the users employ a nonpermanent capability?”

By nudging the product owner and developers to stretch their thinking throughout the requirements management

process, the BI hierarchy of needs leads agile teams to far more focused and perceptive application requirements, thus

giving them a higher probability of success.

MIND MAPS AND FISHBONE DIAGRAMS

Product owners sometimes have trouble decomposing requirements for an EDW in a disciplined, hierarchical manner,

and this frustration can prevent them from drafting a solid set of user stories. Mind maps provide an easy, visual means

for decomposing complicated business problems into multiple layers of components. Once the layers become clear,

stories at all levels seem to be much easier to write.

Figure 9.3 shows a portion of the mind map we used for our revenue assurance project. The central problem

statement came from the sponsor, making it a perfect place to start articulating an epic story. The sponsor suggested a

couple of the first level of bubbles, but it was the director overseeing the project who gave us the definitive list, making

it probable that each of these items would properly anchor a theme story. The director also gave us the factors making

174 PART | III Agile EDW Requirements Management

up the third-level items; looking at them, our team believed they were still information capabilities rather than

business-level data validation steps. Thus, we categorized the third rung as subthemes rather than user stories. Even this

simple diagram was enough to give our product owner the bearings needed to envision all the business validation

activities he would have to perform before forwarding a particular EDW-based analysis to his director. That vision was

enough to get him started dictating a long list of user stories for our team.

Themes

Epic

Late updates for
product options coding

Corrected credit card
disapprovals

Late resolution of
previous account

history flags

order entry systems

Service coding updates

Orders left open when
remote testing delayed

Missing sales
orders in

fulfillment system

Missing work
orders in billing

system

Account-customer harmonization

Frequent updates to product codes and roll-
ups

Discrepancies between overlapping billing
systems

Human error on comparing 100K items

Inconsistent screening rules

Discrepancies
between reports

$50 M in
uncollected

revenue

Ad hoc joins using spreadsheets

Costly &
ineffective manual

audits

$50 M in
uncollected revenue

Sub Themes

Broken orders from

FIGURE 9.3 Mind map & fish bone diagrams.

Late updates for
product options coding

Corrected credit card
disapprovals

Late resolution of
previous account

history flags

Account-customer
harmonization

Frequent updates to product
codes and roll-ups

Discrepancies between
overlapping billing systems

Su
b

T
he

m
es

$50 M in
uncollected revenue

Missing sales
orders in

fulfillment system

Missing work orders
in billing system

Discrepancies
between reports

Costly & ineffective
manual audits

Broken orders from
order entry systems

Service coding updates

Orders left open when
remote testing delayed

Human error on
comparing 100K items

Inconsistent
screening rules

Ad hoc joins using
spreadsheets

Themes

User Stories

FIGURE 9.4 Previous mind map re-drawn as a fishbone diagram.

Artifacts for the Generic Requirements Value Chain Chapter | 9 175

An Ishikawa fishbone diagram offers another form for this conceptual decomposition, illustrated by Figure 9.4,

which shows how the previous mind map appears when redrawn in this style. The fishbone diagram puts the central

problem to the far right with a backbone running to left. The multiple factors contributing directly to the central prob-

lem are then drawn with secondary lines connecting them to the backbone as if they were the ribs of the fish. The next

level of contributing factors are then drawn as sub-ribs connecting to the lines of the next higher concept so that the

resulting drawing resembles the skeleton of a fish [Charantimath 2011]. Such fishbone diagramming recasts the conver-

sation slightly to focus on a series of “cause and effects,” which sometimes provides a better fit for the requirements of

a project. One disadvantage for agile EDW team leaders is that this format spreads out the themes and user stories

somewhat, making it a bit more difficult to draw subsetting lines around themes that should be developed together.

The fact that we resorted to subthemes in the previous example highlights a situation that frequently occurs when

working with backlogs—the epic stack sometimes requires more than just three levels. A business’s EDW requirements do

not always categorize nicely into just epics, themes, and user stories. Some projects and even some isolated aspects of a

given project often call for greater decomposition in between the sponsor’s competitive capabilities and the manager’s data

validation steps. In such situations, teams simply provide a name for each level of theme. Here, we called them subthemes,

but we could have easily referred to the leaf nodes of the mind map as themes, making their parents superthemes, without

losing any accuracy in the epic stack. Getting an epic tree right and maintaining clear traceability from each user story to the

sponsor’s original request is far more important than arranging the requirements in a tidy structure of just three levels.

VISION BOXES

Teams move faster and avoid wasteful tangents when they have a consensus on the application they are building. Many

agile teams start their projects by collaborating on building a vision box for the project in order to foster such a consensus.

In building a vision box, the product owner leads the developers in creating an appealing container for the software

they are about to build together. To draw a good vision box, teammates must imagine that they will offer their applica-

tion for sale on a store shelf, as if it were a package of cereal or a shrink-wrapped software product for someone’s

home computer [Highsmith 2009]. Teams gain a solid, shared understanding of a project when they collaboratively

author the content for the front and back of such a box.

As can be seen in Figure 9.5, the front of the vision box should show an interesting graphic and the major benefits

that would compel the project sponsors to buy the product. The end-user hierarchy of needs, discussed previously,

provides a good tool for making sure that the benefits cited on the box front represent the most important qualities that

the stakeholders expect the BI application to provide.

The back of the box should provide some of the most important features and provide greater detail on benefits. I have

found that teams can easily identify features and benefits at the right level for a vision box back by looking at high-level data

models, even straw man dimensional models, for the data marts that they believe the EDW should support.

At the bottom of the box back, the team should also list the major “operating requirements” that the software will

involve. These items should reflect the project’s major assumptions and constraints, in addition to any important paral-

lel investments that the project sponsors should plan on making (e.g., end-user training or better visualization software)

in order to make the project a success.

Usually, a team only needs half a day or less to generate such a box. For newly formed teams, vision box sessions

are a great way to break the ice between the business partners and the IT staff that will be collaborating on the software

system. Inviting some of the major stakeholders who the product owner should represent during the project to the vision

box session can greatly improve communications on the business side of the project and thus the accuracy of the project

backlog that will emerge from that collaboration.

The end result is a tangible artifact that the team can keep on its project room table. When the product owner gets stuck

authoring user stories, the team can toss him or her the vision box and ask, “What more do we need to build to deliver on

this promise?” Alternatively, when the product owner suggests a user story that is wildly inappropriate, the team can turn to

the vision box and say, “We don’t see where that story fits on this vision box. Do we need to update the box or change the

story?” In this way, the vision box can often provide just enough dampening on the product owner’s erratic direction that

the team achieves a linear direction toward its overall goals, preventing a large amount of wasted effort.

VISION STATEMENTS

Vision boxes work well to build a team consensus, but they are awkward to carry around the company. Vision

statements provide a far more portable means of expressing the spirit of an application, and that portability can pay

handsome dividends.

176 PART | III Agile EDW Requirements Management

Figure 9.6 shows the vision statement for the example application used in this chapter. As one can see, a vision

statement should include a phrase addressing each of the following points [Cobb 2011]:

� For (target customer)
� Who (statement of the need or opportunity)
� The (product name) is a (product category)
� That will (key benefit or compelling reason to sponsor the project)
� Unlike (primary competitive alternative)
� Our product will (statement of primary differentiation)

Although simple in form, vision statements can be amazingly difficult to author. They sometimes require half a day

to get right, but the discussions leading up to the final phrasing will cement a single notion of the project’s goals into

the minds of every team member.

Like the vision box, the vision statement can dampen any requirements churn in which the product owner might be

tempted to indulge. Its laser-sharp focus also greatly minimizes design churn and unproductive tangents by the IT

members of the team, eliminating another major cause of wasted effort on many projects.

Compare sales to deliveries
• 5 order entry systems
• Deduplicated customers

Cycle times
• Clock and labor hours

Operating requirements
• Nightly file extracts
• Overnight scrubbing & integration
• Cognos front end with drill-thru
• Application training for billing
analysts and functional managers

• Compare sales to deliveries to invoices

• Measure key business cycle times

• Insights by product, team, and customer

Revenue assurance details
and reconciliation

FIGURE 9.5 Front and back of a project vision box.

For the billing analyst

who needs to ensure that all products ordered are delivered, and all product delivered are billed for

the Revenue Assurance Data Mart is a reconciliation tracking and analysis tool

that integrates sales orders, work orders, and billing events across multiple business units and line-of-business systems,

 allowing automated detection and detailed analysis of revenue generation fallout.

Unlike the current, manual process of comparing monthly aggregate totals between LOB applications,

our product identifies fallout daily, requires one twentieth as much labor, and has an order of magnitude greater accuracy.

FIGURE 9.6 Example of a project vision statement.

Artifacts for the Generic Requirements Value Chain Chapter | 9 177

I advocate asking every teammate to memorize the vision statement once the product owner believes it is

worded correctly, not only to achieve clarity within the development iterations but also to build support for the pro-

gramming effort outside the project room. When the developers memorize the vision statement, the project acquires

a dozen or more ambassadors, all armed with a compelling value statement that describes the project’s goals. The

vision statement becomes the project’s “elevator pitch” because it is short and makes an impression on those who

hear it.

Whenever one of the developers finds herself riding up the elevator with the CEO or some other highly placed

individual, she can share in one breath the exciting project on which she is working. As the developers circulate around

the company during the next several months, many important people will eventually hear about the EDW project from

them. When the next budget cycle occurs and the executives need some projects to cut, many of them will have heard

the EDW’s elevator pitch and therefore know of a compelling reason to continue funding it. That small dollop of good

will may be all that deflects the budget ax away from the EDW and toward some other project that did not do as good

of a job at advertising its value.

PRODUCT ROADMAPS

Agile focuses on constantly delivering value to the business. The product roadmap is the last of the context-defining

artifacts for the GRM value chain, and it focuses on visualizing the delivery of value across time.

As shown in Figures 9.7 and 9.8, the agile EDW teams can prepare a product roadmap in two different formats. The

examples shown here are for the same revenue assurance project used to illustrate the other artifacts discussed previously.

The first format will speak more to the team’s product owner than to other business stakeholders. It shows the time spans

during which the team will be working on each major component that makes up the warehouse. Milestones toward the

bottom indicate the point when users will receive the information capabilities of the major themes listed on the backlog.

When the project architect creates this type of roadmap, he or she considers the total story points for the developer stories

of the objects displayed. The story points for an object divided by the team’s current delivery velocity translates directly

into the number of weeks it will take to deliver the information capability, giving the project architect the durations to

depict with each block.

Q1 Q2 Q3 Q4

3NF

Dimensions

Facts

Bi modules

Party

ProductGeo

Location Agent

Customer

Sales
Wk Ords

Billings

Sales
Wk Ords

Billings

Product

Work order fallout
Sales order fallout

Invoicing fallout
Work cycle times

FIGURE 9.7 Product road map formatted for discussions with product owner.

178 PART | III Agile EDW Requirements Management

The blocks representing major capabilities are placed in swim lanes named after the layers of the EDW’s reference

architecture, making it easy for both the team and the product owner to see when the project will achieve its major

technical milestones. For example, Figure 9.7 shows that the stories comprising the conformed dimensions for party,

product, and geography will take the team most of two quarters to construct in the integration (3NF) layer of the

warehouse, although the move of that data into the dimensional layer will be finished soon after the third quarter begins.

This roadmap also shows that the team will then focus on the fact tables and dashboard of the sales subject area,

followed by those for work orders, and complete them before starting on the analytics for billing information.

These durations are based on two pieces of information that the team knows very well: the team’s story point

estimates and their current velocity. Because the team measures and confirms both of these quantities every iteration,

the product roadmap is an evidence-based delivery forecast rather than a set of dates pulled out of the air, as happens

with waterfall projects. With the roadmap shown in Figure 9.7 in hand, the product owner gets feedback on what his

backlog looks like when projected onto the calendar, given the stories he has provided and the priority order he has

given them. If he is disappointed with the delivery dates for particular themes, the product roadmap puts him in a good

position to reason with his technical teammates about rearranging stories on the backlog until the desired services arrive

in a business-reasonable time frame.

Such discussion can become very innovative and indeed agile. Consider, for example, that the product owner is

frustrated that sales analytics will not be online until the fourth quarter. The roadmap shown in Figure 9.7 suggests that

if he can live with a sales fact table without party information, the team could put the dashboard into production within

6 months. Of course, some rework would be required to later fold the party information into the star schema, but the

roadmap gave the product owner the opportunity to think of splitting the implementation of the sales fact table. He was

able to assert to both sponsors and teammates that the necessary rework would be more than balanced by the business

value of a preliminary deliverable.

The second format, as shown in Figure 9.8, communicates better with stakeholders beyond the product owner. It

removes the swim lanes for architectural layer, replacing them with bands that reflect major end user groups. Optionally,

it also indicates when the team will place the application’s subreleases into production. The example in the figure shows

that the product owner’s backlog dictates that the Commercial Marketing business unit will receive its three dashboards

long before Residential Marketing users will see theirs.

When my colleagues and I presented this roadmap to the project steering committee, of course the vice presidents

for Residential Marketing objected: “We represent 75% of this company’s revenue, so our dashboards should be

delivered first.” “You may currently generate the bulk of revenue,” answered the vice president for Commercial

Marketing, “but my business unit is growing by 35% per year, and yours is shrinking by 10% per quarter. We represent

the future of this company, so our analytics have got to be at the top of the list.” IT benefited greatly from presenting

Stakeholders

Residential
M

arketing
C

om
m

ercial
M

arketing

Subreleases
1 2 3 4 5 6

W
holesale

M
arketing

WO = work order, OE = order entry

Y1Q1 Y1Q2 Y1Q3 Y1Q4 Y2Q1 Y2Q2

OE-Rev KPIs

Rev Events

OE-W
O KPIs

OE-Events

W
O-Events

Product

Cust/Acct

Product

W
O Events

OE Events

OE-W
O KPIs

Rev Events
OE-Rev KPIs

Rev Events

OE-Rev KPIs

OE-Events

W
O-Events

Product

Cust/Acct

OE-W
O KPIs

Cust/Acct

FIGURE 9.8 Product road map formatted for presentation to conflicting stakeholders.

Artifacts for the Generic Requirements Value Chain Chapter | 9 179

this roadmap to the executives because it allowed the development team to remove itself from the disagreement

between these two titans of the company. If we had not surfaced the conflict, our backlog would have implicitly decided

who would receive services first, inevitably creating a powerful enemy. By presenting this roadmap, we put the vice

presidents in direct communication with each other, and we were able to offer options—such as alternating between

features for each business unit—that made us appear to be problem solvers.

SUMMARY

The product owner role assures a high degree of business�IT alignment for the agile EDW team but also creates a

single point of failure when it comes to defining the requirements for a project or steering a straight line toward the

project’s objectives. Agile EDW teams can actively participate in defining and validating the requirements of their

projects using several context-defining artifacts commonly used by generic agile teams. These artifacts prompt the

product owner to think more deeply about the project so that he or she can provide a dependable and coherent stream

of user stories. They define well the spirit of the application in a lightweight format that avoids overinvesting in large

specifications that are expensive to maintain. Some of them cause the team to frequently consider whether it is over-

engineering the solution or overlooking more complex and powerful approaches. These artifacts also communicate well

the project’s direction and timing to outside stakeholders. Chapter 10 explores agile EDW’s other requirements manage-

ment value chain, one that the IT members of the team can pursue independently of the product owner. Once these two

value chains are combined, the requirements for an EDW project will be expressed from two separate viewpoints that

can be used to validate each other and ensure that the team has not overlooked any crucial business needs.

180 PART | III Agile EDW Requirements Management

Chapter 10

Artifacts for the Enterprise
Requirements Value Chain

As useful as the generic agile approach to defining a project and reducing requirements churn might be, agile enterprise

data warehousing (EDW) teams typically invest in a second requirements value chain to provide themselves with

an independent viewpoint of the solution they should build. This second value chain represents an adaptation of techni-

ques borrowed from the Rational Unified Process (RUP)—a pre-agile, iterative method that large systems integrators

still employ to build large and complex software systems. Agile data warehousing teams strip the original value chain

down to its bare essentials, borrowing only five of RUP’s dozens of templates. The resulting requirements value chain

can be completed quickly yet still provides a comprehensive project definition that takes into account a company-wide

notion of system requirements. Moreover, the information technology (IT) members on an EDW team can pursue this

second value chain without the product owner’s participation, thus acquiring an independent perspective on their project

that can be used to test the backlog provided by the product owner.

In reviewing the five templates we have chosen, some practitioners have suggested that the enterprise-capable value

chain is too heavy-weight for an agile team. I typically respond to such comments by pointing out that all the adapted

templates but the last are fairly brief, allowing them to be authored and updated quickly as business conditions change.

Furthermore, teams are free to utilize these templates as supplements to the generic requirements management process

that the product owner will be driving, rather than as the central requirements management process. Thus, EDW team

leaders can safely employ the artifacts from RUP-based value chain selectively, in only those areas where the templates

will resolve confusion or foster a stronger team consensus on the nature of the project.

THE GENERIC VALUE CHAIN CAN OVERLOOK CRUCIAL REQUIREMENTS

Although having a business partner embedded in the team to author a backlog for the EDW project results in high

business�IT alignment, many veteran developers will notice that the resulting requirements lack a considerable amount

of rigor compared to those generated by an IT-driven waterfall process. Developers familiar with traditional require-

ments gathering can instantly spot three important gaps in the generic agile approach outlined in Chapter 9. First, it

leaves out many techniques that constitute disciplined software engineering as taught in university computer science

programs. For EDW, it omits many of the interrogatories suggested by the time-tested frameworks used by TDWI and

DAMA. These frameworks provide a systematic approach to deriving requirements, and veteran analysts rely on them

so that they remember to consider all major types of requirements, not just functional needs. Fail to follow these frame-

works, they warn, and a team can easily overlook crucial requirements that will become obvious only when the EDW

needs to add an additional source or support a different aspect of the business than one planned for.

The second aspect of generic agile requirements management that concerns formally trained analysts is its reliance

on the product owner. Scrum’s collaboration model makes the product owner the keeper of the backlog. The remaining

members of the team must trust that he or she has included everything essential in the backlog, such as the following:

� Sufficient requirements for all business departments, not just the one that the product owner works for
� Both large and small requirements for the end users in each department
� The larger analytical needs of the directors
� The strategic initiatives belonging to the executives
� The longer term trajectory of the company and its products
� The upcoming changes that one or more departments have planned for their business processes

181
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00010-2

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00010-2

I have yet to work on a project in which the product owner’s first backlog met even three or four of these criteria for a

complete requirements set.

Third, veteran analysts warn that the product owner will be far too focused on functional requirements—that

is, focused on what the application should do once it is online. Two other major categories of requirements must be

incorporated in an application design before it will be a lasting asset for the corporation: nonfunctional and negative

requirements. Figure 10.1 shows these major dimensions organized into a matrix. The two-by-two face of this matrix

offers an example of requirements that the product owner should provide for each intersection of functionality and

polarity. EDW team leaders can use this matrix to screen a backlog for major gaps in the requirements that it expresses.

The horizontal bands in Figure 10.1 reflect the distinction between functional and nonfunctional. The columns focus

on positive versus negative requirements, described later. The depth dimension on this diagram refers to whether the

analysts’ current expression of a requirement is for the end user’s consumption (business requirements) or more for

providing direction to the developers (technical requirements).

The matter of functional versus nonfunctional requirements represents an area with which product owners often

struggle. Functional requirements express how the applications should behave, that is, how they should look to the end

users, respond to their actions, and the information they should manage or provide. Nonfunctional requirements pertain

to all other aspects that make a system fit for its purpose, including crucial matters such as performance, security, and

manageability. Hailing from the end-user community, product owners naturally focus on what the requested BI applica-

tion should do, so that often a backlog omits most of the nonfunctional requirements that the system must meet.

The distinction between positive and negative requirements typically reveals another important gap for EDW team

leaders to search for in a product owner’s backlog. Positive requirements are relatively easy for business partners to

author once they imagine using the data warehouse information to solve business problems. Negative requirements

articulate undesirable outcomes that the company does not want to happen when the data or operating conditions for

the system fall outside the expected boundaries. Unfortunately, the boundaries of a system prove difficult for business

staff to understand, especially with a system that does not yet exist, and so product owners invariably neglect to author

negative requirements, as important as they are to the detailed design of the application.

As for the third dimension on the diagram, business-facing versus technology-facing requirements, the product

owner’s backlog will naturally include mostly the former unless he or she has worked with data warehousing teams in

the past. The derivation of developer stories from users stories speaks to this dimension, but developer stories are still

single sentences describing components to build. The product owner will have to help developers with many further

questions that straddle the border between a pure business requirement and a design decision.

F
u

n
c
tio

n
a
l

N
o

n
-F

u
n

c
tio

n
a
l

"The ordinary knowledge
workers using this warehouse
should not be able to see
customer's exact birthdates or
social security numbers."
(security)

Negative

"As a rate analyst, I don't
want the accident history
analysis to include incidents
where the other driver was
ruled at-fault."

Positive

"As a rate analyst, I want to see
the discounts we provide by
customer demographic attributes
such as household income and
family profiles."

"When there's a major automobile
recall announced, we'll have
about 300 rate analysts from
coast to coast trying to re-
calculate exposure in an 8-hour
window."
(performance)

Precision

Accuracy

. . .

T
e
c
h

n
o

lo
g

y
 F

a
c
in

g

B
u

s
in

e
s
s
 F

a
c
in

g

FIGURE 10.1 Three important dimensions to application requirements.

182 PART | III Agile EDW Requirements Management

In my experience, good product owners provide a solid collection of positive, functional, business-facing requirements

that leave the negative, nonfunctional, and technology-facing needs of the organization unaddressed. EDW team leaders

need an additional tool that allows them to take the lead on closing these gaps, lest the company end up with another

development project that churns on for years, never delivering true business value and squandering crucial business oppor-

tunities. Accordingly, team leaders should help the product owner complete their backlog using the generic requirements

management (GRM) value chain outlined in Chapter 9 and should simultaneously have the product owner help them with

the enterprise-capable requirements management (ERM) process described next. The ERM work will allow developers

to test the results of the product owner’s GRM process and thus ensure that the project has a complete and accurate

collection of requirements. Table 10.1 highlights the major differences between these two approaches.

ERM AS A FLEXIBLE RM APPROACH

When we were first searching for an incremental approach to building EDW systems, my colleagues and I tried RUP

on a few projects but found it to be far too ponderous for teams that need to start delivering services to the customer

quickly. RUP’s numerous and detailed templates led teams back into a big-specification-up-front approach reminiscent

of waterfall project management. Ironically, analysts would get lost in all the detail that RUP generated so that crucial

requirements still got overlooked despite all the effort to identify them completely. To make the RUP approach to

product definition workable, we streamlined its requirements management process. From the dozens of artifacts it stipu-

lates, we boiled the process down to just five documents, arriving at the ERM value chain described here. For each of

the artifacts we kept in our process, we distilled the template from dozens of pages to a few bullet points each.

The resulting enterprise requirements management approach still attains RUP’s comprehensive orientation, but it

defers all the detail that can wait, true to agile EDW’s preference for 80/20 specifications. The result is a technique that

is fast to complete and will take a team’s product definition effort all the way from the clouds down into the weeds,

when and where such detail is warranted. Table 10.2 provides a quick summary of the RUP-based requirements

management artifacts presented in this chapter, including a capsule summary of the intent of each document. Note that

the value chain begins with very short artifacts authored by important business stakeholders and then transitions to still

brief items authored by the project architect. In practice, the EDW team leaders take the effort to interview key business

stakeholders, with or without the product owner, and then write up the first two artifacts for them. This work provides

the team leaders with the information needed to begin authoring the remaining ERM artifacts where they are needed.

When we lead agile EDW projects, my colleagues and I benefit greatly from this second value chain for project

definition because it provides an independent perspective on what an application should be, giving us “stereoscopic

vision” on the endeavor and largely ensuring that important requirements are not overlooked. As indicated in

Figure 7.10, the ERM value chain intersects with the GRM approach at the user story level. When teams find that

the requirements generated by these two systems do not intersect, they have uncovered a fatal risk to the project—the

product owner has a very different application in mind than the rest of the organization, which IT has just finished inter-

viewing. Agile EDW’s two-prong requirements management approach gives the team the opportunity it needs to

resolve such fatal miscommunications before coding begins.

TABLE 10.1 Contrast between Generic and Enterprise Requirements Management Value Chains

Agile’s Generic Requirements Management (GRM) Agile Enterprise-Capable Requirements Management (ERM)

Designed to elicit requirements from the product owner Driven by the project architect—in fact, he or she can complete much of it
before a product owner is assigned to the project

Largely limited to the product owner’s vision, intent,
and business knowledge

Seeks out needs and constraints from all relevant parties within the
enterprise

Focuses on business requirements Designed to pivot from business requirements into technical requirements

Focuses on positive and functional requirements Deliberately prompts IT to consider negative requirements and
nonfunctional aspects of the system

Generally requires team to utilize each level of
artifacts, from epic to user stories

Either end of the value chain is optional, depending on context and
development team

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 183

The previously mentioned artifacts alarm many agile purists who claim that such a multistep process will push projects

back into waterfall’s big spec up front. Two considerations should assuage this concern. First, all of the ERM artifacts are

optional. Agile EDW teams should use each artifact when and where it will mitigate risk. The rest of the ERM artifacts

should be omitted from the project definition effort because the GRM approach of epics, themes, and users stories will do

well to get the project started. The only exception to this notion might be the vision document. We have yet to work an agile

project that succeeded without the clear picture of the team’s destination, a picture that this artifact provides very well.

Second, all of these artifacts except for the last one, the module use case, are very short. They range from only one

page of content to five pages plus three diagrams, as noted in Figure 10.1, so agile teams can still get a project defined

in a short time and move on to coding their first subrelease without great delay. True to agile artifacts in general, the

ERM artifacts are all very quick to author once a team has gotten the deep thinking done, making them very fast to

update when requirements change. Sometimes, the module use case can become a longer document, but mostly because

it includes source-to-target mappings, first mentioned in Chapter 5. Many data integration programmers insist on

source-to-target maps, no matter what method the team employs, so the ERM approach does not add any appreciable

documentation burden beyond what a team has already had to plan on.

FOCUSING ON ENTERPRISE ASPECTS OF PROJECT REQUIREMENTS

The three dimensions of requirements depicted in Figure 10.1 play a major role in planning a full requirements manage-

ment approach, so they deserve more detail. Astute readers will see all three of these dimensions at work in the remain-

ing sections of this chapter, in which we examine the artifacts making up the ERM value chain.

Functionality Dimension

Requirements tend to divide into functional and nonfunctional sets of system capabilities. Functional requirements focus

on the behavior that the application should manifest for the immediate user or other system with which it exchanges

information. They express what the application should “do” for the person utilizing its user interface and the behaviors

that the user’s inputs should unleash. The example provided in the upper left quadrant of Figure 10.1 speaks to what the

user should be able to see in the BI dashboard after having drilled into a subject area.

Nonfunctional requirements are application aspects viewed outside of this immediate human�machine interface. As

illustrated in Table 7.2, they focus on qualities of the application as a system, including many qualities that determine the

application’s total cost of ownership. When these requirements are not met, the costs of maintenance and re-engineering

over the lifetime of the application typically grow dramatically. The example in the lower left quadrant of Figure 10.1

pertains to performance, an important nonfunctional requirement. Teams that understand an application’s performance

requirements before finishing construction will not have to re-engineer the system when user demand peaks, saving

considerable development expense and thus keeping the cost of system ownership from climbing after implementation.

Nonfunctional requirements divide further into two groups: application-specific and externally set architectural

groups. The technical members of the agile EDW team will be well positioned to identify some nonfunctional require-

ments, such as manageability and recovery times, as they start thinking about the system’s design. However, many

TABLE 10.2 Summary of the Artifacts Comprising the Enterprise Value Chain

Artifact Pages Author Intent

Sponsor’s concept
briefing

1�2 Project sponsor/VP (interviewed
by the project architect)

“Here’s how we’re going to make money
with DW/BI’s help . . .”

Stakeholder requests 1�2 each Department director (interviewed
by the project architect)

“Here’s what is weak about our current
DW/BI support and how we would fix
it if we were IT . . .”

Vision document 3�5 with
three diagrams

Project architect “Here’s the BI solution for all of the business
problems in scope . . .”

Subrelease overview 3�5 Project architect “Here’s the outline for a particular subset
of solutions we should build soon . . .”

Module use case 5�10 Systems analyst “Here’s the outline of a major module
needed in the next subrelease . . .”

184 PART | III Agile EDW Requirements Management

nonfunctional criteria will be established by other enterprise planning teams, and the project leaders may have to put

some effort into gathering this input from these groups. For example, the company’s enterprise architecture group may

have declared that all major systems should be able to communicate with other systems using the company’s standard

for service-oriented architecture. Moreover, the company’s data governance council may have stipulated that all data

management teams will support a shared repository of customer information rather than building a separate repository

for each project. The agile EDW team will need to incorporate these standards in its system design. If they do not

manage these nonfunctional requirements, the external architectural groups will undoubtedly try to stop the team’s

development efforts until the discrepancy is addressed.

Product owners and business stakeholders naturally focus on the services they desire from the application, so they

contribute mostly functional requirements. The templates of the ERM value chain deliberately include several key

questions prompting the agile team to consider the application’s nonfunctional requirements so that team leaders can

appropriately judge whether their design has sufficiently controlled the system’s likely cost of ownership.

Polarity Dimension

The second dimension that EDW teams need to keep in mind is the distinction between positive and negative require-

ments. Positive requirements express responses that the team desires the application to make when given inputs and

triggers fall within an expected domain. Negative requirements state responses that the team hopes will not occur,

including situations in which inputs and triggers fall outside of the anticipated range. The functional example in the

upper right quadrant of Figure 10.1 involves sets of records that the users want excluded from the analysis in response

to an expected query. The nonfunctional example below it describes records that should not be visible when the user

requesting data lacks the necessary access credentials.

Every positive requirement that users can imagine involves a combination of expected inputs and triggers. Because there are

typically several possible violations of the boundaries that define those inputs and triggers, multiple negative requirements exist

for every positive requirement, making the negative requirements more numerous and often exhausting to fully identify. For that

reason, users tend to focus on only the positive requirements, thus making the GRM value chain susceptible to large oversights

in the negative realm. By providing a disciplined approach for the project architect to pursue, the ERM value chain gives the

development team the forum it needs to ensure that the application’s negative requirements can be adequately addressed as well.

Orientation Dimension

The third aspect of a project’s requirements that agile teams wish to actively manage during discovery and analysis is

its orientation. Some requirements statements are clearly business facing—that is, they articulate the need in a way that

business users can recognize and validate as an important need of theirs. At the other extreme of this dimension are

technical requirements—that is, statements that speak to the technical members of the team and express system features

and capability in a manner that enables system design and programming. The classic example of a DW/BI technical

requirement is the source-to-target map, which details which source attributes combine into one or more derived values

in the target tables, as well as the transformation logic necessary to create those values. Typically, product owners will

not spontaneously begin to spell out this detailed level of need until after they author each user story. Instead, the EDW

team leaders must make the time to query for this level of guidance.

Because the team’s greatest responsibility is to provide software that users can employ to further the company’s

objectives, requirements typically start out business oriented, phrased mostly as positive, functional needs. As the bulk

of the discovery process is completed, the developers on the team begin to think about what the business requirements

imply about the coded modules they must build. Thus, business requirements steadily become more technology facing

as the team works with them. As the start of construction draws near, the developers find that the product owner

believes that he or she has finally articulated the business needs well so that the team can focus mostly on translating

them to a more technical level. This progression from business to technical requirements does not occur in a single

step, but it should instead evolve along a repeatable pattern so that important factors are not overlooked and the result-

ing GRM and ERM value chains intersect well, as we need them to do.

Teams typically define their own waypoints for this continuum, such as the following:

� High-level business requirements
� Detailed business requirements
� High-level technical requirements
� Detailed technical requirements

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 185

The key step for project leaders is to realize that they will need to manage this progression, so they should prepare in

the early stages of the project by explicitly defining the waypoints they want to use and any special artifacts to

associate with each.

Streamlined ERM Templates

The enterprise-capable requirements management approach that my colleagues and I adapted from RUP achieves the

objectives laid out previously. It allows requirements discussions to focus at first on positive, functional, business

requirements. However, once the team reaches the third artifact—the vision document—the templates ask the team to

focus progressively more deeply on negative, nonfunctional, technical requirements. As can be seen in the listings that

follow, we reduced the templates for the ERM artifacts so that they remain lightweight. Each template has six or fewer

components, so they have been calibrated to still provide 80/20-level requirements or design specifications. If we had

kept any more than the core elements for each template, we would have sunk agile EDW teams back into the protracted

project definitions efforts that make RUP so onerous to use.

Because some EDW projects might be able to benefit from the lengthier version of these templates with their full

complement of questions, agile data warehousing teams should know that the original templates can be retrieved from

the website for OpenUP, the public domain version of RUP [Eclipse Foundation 2012]. I suggest that EDW team

leaders familiarize themselves with the full outlines of the artifacts because every project has a unique challenge that

one or two questions from the original template can sometimes solve handily.

UNCOVERING PROJECT GOALS WITH SPONSOR’S CONCEPT BRIEFING

Every EDW project should be founded on a clear notion of how data warehousing will enable the company to

achieve the business goals selected by project sponsors. Unfortunately, those goals are often left unspoken, or at

least hidden from the developers who might then spend years of their lives programming toward a purpose they do

not understand. In my experience, leaving the mission of a project unexpressed only sets up the development team

for confusion, oversights, and mistakes that easily lead to a devastating waste of time and money. To mitigate that

risk, EDW team leaders should invest a short time drafting the first artifact in the ERM value chain, the sponsor’s

concept briefing (SCB).

The SCB is a single page of text that states how the executives funding the project believe that the company will

achieve new competitive capabilities using DW/BI technology. The input needed to create this artifact is best gathered

through an interview of the executive who is requesting and willing to pay for the application envisioned by the project.

An executive who wants to contribute requirements but no funding should be approached to provide a stakeholder

request, which we discuss next. Usually, IT staff members will only be able to get 15�20 minutes of a sponsoring

executive’s time, so the template guiding their questions will have to be short.

Figure 10.2 provides the streamlined template for an SCB that we use in my consulting company. This template

should result in no more than a page of prose, and the ideas it captures should contain clear statements of project intent

and value to which all other artifacts can be traced. With a concise statement of the entire project’s overall value pro-

position, this document will anchor all subsequent requirements artifacts, as well as decisions regarding scope and

application design, to a core set of notions that the sponsors consider important.

As mentioned in Chapter 8, sponsors should be asked for the new competitive capabilities that they hope to obtain

for company. The sponsor’s concept template focuses precisely on new capabilities, and thus the elements mentioned in

this artifact should directly generate epics for the project backlog.

Figure 10.2 lists the minimal subset of topics needed to get a project underway, in my experience. Readers who are

trained in the Project Management Institute’s (PMI) approach to defining projects will note some overlap with PMI’s

notion of a project charter, another short artifact. The project charter differs in that it focuses on (1) the nature of the

application once delivered and (2) the authority of the project manager, whereas this template is a requirements docu-

ment that expresses only business needs and the value that the requested application should bring to the company.

Teams that have extra energy may profit from drafting a project charter also, although this document may have been

already completed by the project manager associated with the EDW engagement, in which case team leaders should

check that the two documents do not contradict one another.

186 PART | III Agile EDW Requirements Management

Justification Type

This section of the sponsor’s concept template asks the sponsor to classify the overall motivation for the large amount

of money that the company is about to invest in DW/BI. Such motivations can be expressed in many ways, so the

reader will have to take a moment and customize the template here for the needs of his or her particular organization.

In the SCB template, I listed the most common categories for justification on the template: revenue generation, cost

savings, government mandate, and maintaining the business. I have seen justification decomposed in other ways, such

as the following:

� Integrating business systems
� Deepening business partnerships
� Expanding market share of strategic products
� Achieving operational efficiency
� Balancing investment and returns

Still a third set of justification categories that I prefer to use originates from Ram Charan’s short and powerful

primer for corporate staff members, What Your CEO Wants You to Know [Charan 2001]. In his presentation, Charan

states that every company contains a “money-making machine,” and project leaders can contribute much by creating

applications that enhance that machine. According to Charan, a company’s money-making machine has five goals:

� Attracting and retaining customers
� Generating revenue
� Expanding the margin between revenue and costs
� Accelerating the velocity of assets (e.g., increasing inventory “turns”)
� Achieving regulatory compliance

EDW Sponsor’s concept brie�ing (Template)

Justi�ication
How have the sponsors justified the need for this project?

• e.g., revenue generation, cost savings, government mandate, maintain the business

Customer experience
What will be the impact upon our customer’s experience with the company by business unit and functional
group?

• e.g., marketing, ordering, provisioning, repair, support, billing, self-service

Internal impacts
What will be the internal impacts upon those functional groups?

• e.g., marketing, ordering, provisioning, repair, support, billing, self-service

Value of the project
{Insert a description of the driving value that the sponsors plan to capture with the proposed
application, quantified in units such as dollars revenue, hours saved, audit discrepancies eliminated.}

Program metrics and bene�its
• How will the sponsors measure the success of this project especially before the value of the project has

fully materialized, that is, what “leading indicators” will they be watching?

• What measures will be employed and who will be collecting them?

• What are the target levels those measures should achieve and by when?

FIGURE 10.2 Streamlined template for a streamlined Sponsor’s Concept Briefing (SCB).

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 187

Given considerations such as these, any other objectives that stakeholders and product owners might later obsess

over will pale in comparison. Thus, the sponsor’s concept briefing gives the team leaders a powerful tool for keeping

the project correctly aligned.

When I get the rare chance to ask an application’s sponsor for the justification of the project, I ask him or her to name

only one from the list I am using. Sponsors naturally want all they can get for their money, so they will be tempted to list

three or four of these enormous goals, but in my experience that is a setup that will lead the EDW to grief. If a sponsor

cannot identify a single, overriding justification for the project, his uncertainty suggests that he is actually attempting to

get two or more projects developed with a single budget. For me to lead a team into a commitment that is so drastically

underfunded from the start is grossly unfair to my teammates. Gently insisting on a single justification at this very early

stage of the project is the single most effective way I have found to protect my team from such overcommitment. Even if

I lose in this effort, the executive usually sees some wisdom in not trying to “boil the ocean” with a single project and is

able to narrow down the mission considerably, making it all that more achievable for the development team.

Customer Experience Impacts

A project as expensive as an EDW will need to change the organization is some crucial way. The most valuable of

projects will manifest improvements that the company’s customers can see and appreciate. This section of the template

prompts the sponsor to articulate the impact on customers and other external partners by considering how operational

changes across the company’s major business divisions will appear to these outside parties. The template outline pro-

vides a starter set of business groups, namely marketing, ordering, provisioning, repair, support, billing, and self-

service. Team leaders will have to adapt these rubrics to match the actual organization of their company. They should

keep in mind that some important categories, such as “self-service,” will not appear on a formal organization chart for

the enterprise. However, these hidden categories may be inferable from the current set of business initiatives being pro-

moted by the company’s executive team. For that reason, project leaders might wish to review recent directives from

the executive suite while customizing this list of business areas to consider.

Functional Area Impacts Assessments

EDW projects should not only improve the company’s attractiveness to customers but also make life better for the busi-

ness staff. Such improvements may manifest as cost savings, but it is hoped that the EDW’s impact will amount to

something even more valuable, such as getting more done in a given amount of time or even making better decisions

with less stress. This portion of the template prompts the sponsor to articulate those improvements across the company

in a first level of detail by breaking them down into the same functional areas used for customer experience impacts.

Together, these two sections suggest that there is a single reality to the company—the functional divisions—and the

goals of a project must be understood via that structure when viewed both from within (the staff’s perspective) and

from without (the customer’s perspective).

Value of the Program

In my experience, if the sponsor cannot state the value of the project with clarity, then the development team will struggle

incessantly to achieve success. Accordingly, the sponsor’s concept template anchors the project’s value accounting effort

by prompting the sponsor to quantify the value that she hopes to achieve with the BI investment she is proposing to make.

Perhaps the sponsor will require some time to derive a reasonable answer to this request. Perhaps she will need some help

gathering and crunching the numbers to calculate the project’s value. The project architect should volunteer to perform as

much of this work as necessary to get a sponsor-sanctioned statement of value for the project. Getting a solid number on

which to base the rest of the project is worth nearly any effort because when the project is complete, the project leaders

will be able to claim a compelling contribution to the company, in a form such as “We have now . . .”

� brought visibility and manageability to $15 million of new annual revenue;
� enabled a $10 million reduction of annual materials consumption;
� provided the reporting necessary to run 15% of this $50 billion company; or
� saved each sales rep in Global Accounts 15 hours monthly, which is worth $200 million in annual revenue when

multiplied by the business the sales reps generate.

When linked to an unambiguous quantity quoted straight from the project’s executive sponsor, such claims of contribu-

tion of value will ring true. Without such an anchor, others in the business will view such claims as only grandstanding.

188 PART | III Agile EDW Requirements Management

Program Success Metrics

This section of the template essentially asks the sponsor to provide some definitional and logistical details to the

statement of value derived previously. Success can be a more detailed notion than the project’s overall value. Often, the

value of a project, such as expanding market share, will be realized over years, in which case the success of the project

needs to be measured on a far shorter time frame. This measurement might need to focus on the “leading indicators”

that the executive sponsor will employ to decide whether the long-term value is being realized on a monthly or

quarterly basis. Those measures of success will need to be quantified, and those quantities gathered, calculated, and

compared to a target level. This section of the template, by stating all of these considerations—even at a high level—

essentially outlines the contract between sponsor and IT for the construction of the warehouse.

Chapter 9 provided an example for authoring themes and stories for an epic for an insurance company that focused

on “expanding market share by providing call lists to sales agents for cross selling to existing customers.” When the

sponsor of that project was asked for leading indicators that would tell him week by week if market share was bound to

expand soon, he suggested the EDW team show him evidence that

� the monthly number of calls by sales reps to customers with only one or two products has increased;
� the number of quotes to these customers for new products has grown;
� closure rates on such quotes have improved; and
� total dollars for first payment on these quotes have increased $25 million per quarter.

Often, discussion of leading indicators reveals additional metrics that the warehouse will need to provide to the

business. Such a realization is a positive event because those needs were requirements that existed but were hidden,

coming to light only because the EDW project leaders were disciplined enough to ask how to measure their success.

IDENTIFYING PROJECT OBJECTIVES WITH STAKEHOLDER’S REQUESTS

The SCB will explicitly mention the major parties impacted by the EDW project. EDW team leaders should then

interview each of these parties because they are clearly major business stakeholders in the project. These stakeholders

will be easily identified in the two sponsor concept sections that asked how the experience of customer and internal

staff in each major company function would improve. The team’s project architect and business analysts should inter-

view the directors of each of these divisions or departments in order to obtain the next level of detail regarding the

requirements of the EDW application. As suggested in Chapter 9, directors typically provide theme-level stories for a

project; thus, each stakeholder request should map directly to a small collection of themes on the project backlog.

Because these directors often provide only fleeting opportunities for an interview, the project leads need to enter these

discussions prepared, with an effective outline of essential questions to have answered. The core of a stakeholder’s

request is listed in the template provided by Figure 10.3. Descriptions for these essential elements follow.

Business System Challenges

Given the degree of computerization in today’s companies, business departments typically think of their processes

in terms of a series of applications. Members of the typical finance department, for example, usually describe their

operations by listing how transactions and aggregations move between the subledger systems, the general ledger

application, and utilities such as fixed assets and standard costing, to name a few. Accordingly, the opening sec-

tion of the stakeholder request template asks them to reflect upon those business applications with which they are

struggling. Often, this will be expressed in terms of information flows between systems, such as “We cannot get the

sales order system to reliably transfer new orders to the provisioning system, so the sales force will take an order

but fail to roll a truck to the customer’s home for product installation.” In asking where each department is

challenged, the EDW leaders should try to limit the discussion to fit within the context of the sponsor’s concept for

the project; otherwise, a department might dump an unmanageable collection of ongoing frustrations upon the

development team.

Current Manual Solution

Long before the EDW team interviews them, the business departments will have addressed their systems frustrations

with clever, manual workarounds. Accordingly, this section of the template prompts stakeholders to describe at a high

to medium level the steps that they currently take to fill the gaps that their current business applications leave

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 189

unaddressed. The development team needs to understand these because they often represent a process amazingly close

to the solution that the warehouse will need to automate.

Desired Business Solution

Each department’s current workarounds will consist of a mix of manual work and computer-assisted work. As clever as

these provisional solutions might be, they are undoubtedly not as capable, reliable, or repeatable as the business would

want. This section of the template prompts the stakeholders to describe what a complete solution would look like to

them. If the developers listen carefully, they will hear a rough description of the algorithm they need to implement in

the warehouse, usually via business rules programmed into the extract, transform, and load (ETL) modules for the data

integration layer of the reference architecture.

Volume Requirements and End-User Census

The project leaders will need some notion of the data volumes that a department wrestles with and the end-user

community that the BI application will need to support. In this section, the template prompts the team leaders to inquire

about both so that they can surmise the approximate size of the application they are going to build. A requirement

based on 50,000 transactions and 10 users results is a very different system design from designs involving billions of

transactions and thousands of users.

Dependent Systems

Data warehouses may have been only targets for information during approximately the first 20 years of our profession,

but today they are an increasing part of an overall information ecosystem. They often gather and transform data in bulk,

only to pass subsets on to one or more operational systems that need summary or forecasted figures. They also provide

data extracts for a wide variety of analysts in departments other than those sponsoring the EDW. This section of

EDW Stakeholder’s request (Template)

Business systems challenges
Which business processes problems lack good solutions?

• Within the scope of the reigning sponsor’s concept briefing, of course.

Current manual solution
How do you solve these problems now?

Desired business solution
How would you like to solve these problems given the company’s information?

Data volumes
Describe the number of transactions the systems mentioned above manage in a given unit of time.

Scope of the user community
Who are the users?

How many in each business unit and department?

Scope of dependent systems
Which other applications do you need to interface with both as source and targets of information?

FIGURE 10.3 Streamlined template for a streamlined Stakeholder Request (SHR).

190 PART | III Agile EDW Requirements Management

the template prompts the project leaders to ask about such downstream systems so that the project’s “nonhuman

stakeholders” can be identified and supported as well.

SKETCHING THE SOLUTION WITH A VISION DOCUMENT

The vision document is the pivotal artifact in the ERM’s value chain of five templates. It connects upstream

requirements discovery efforts to downstream requirements analysis work. When shown to the project’s business

partners, it communicates the functional intent of the project so that they can assess and confirm that the application, as

conceived, will solve the organization’s pressing business problems. When shown to the project’s technical teammates,

it communicates the spirit of the proposed application so that each specialty can begin digging into the aspects of

requirements analysis that lie within its skill domain.

For all its power, the vision document is an amazingly short document with only two written lists and three

diagrams, as depicted in the template provided by Figure 10.4. Because of its brevity, it can be easily authored and

updated by the team’s project architect, making it a reliable polar star for the team and the project’s stakeholders to

steer by. Because the entire artifact rarely exceeds 10 pages, a project architect really has no excuse not to take a half

day to pull together a vision document, especially because this single artifact so readily ensures that IT understands the

business’s desires and constraints, thus dramatically reducing project risk.

Solutions Statements

The first list in the vision document is a small collection of solutions statements. Solutions statements take a standard

structure so that they can be readily understood:

� The business problem of {A} affects groups and major operational systems {B} and {C}.
� So, the company needs to do {D} in order to increase/decrease hard measures {F} and {G}.

Figure 10.5 provides sample solutions statements for the revenue assurance project that is being used as an example.

Readers who consult the original templates will see that RUP calls this component of the vision document problem

statements, but I believe the word “problem” is far too negative, especially because the second part of problem statements

clearly provides a solution to the business pain identified. Note that the second half of the statement states the business

value that solving the problem should yield. This portion of the statement should trace back to the benefits listed in the

sponsors’ concept briefing, positioning the development team to begin the practice of value accounting.

Practitioners may need to exercise care when stating the hard measures for the second half of each statement, depend-

ing on the culture of the company within which they are working. For example, if the solution statement called for a 30%

reduction in reconciliation errors, and the application only achieves a 29% improvement, critics in some organizations

would actually fault the team for falling short of the target rather than praise it for making an important contribution.

Features and Benefits List

This section of the template prompts teams to list the major solution capabilities that they promise to deliver. The

stakeholders and project managers can use this collection as a punch list at any point in the project to quickly assess

what has been delivered and to discuss timing for the remainder. Figure 10.6 provides a sample list of features for the

example revenue assurance application.

In practice, agile teams do well to employ their project backlog to discuss features that have been delivered and

those that are soon due, especially once that backlog acquires story-point estimates that allow evidence-based position-

ing of deliverables in time. Keep in mind, however, that the vision document is often prepared many weeks before a

backlog is started so that while the company is striving to define the project, this list will be the only census of desired

features that the team will have to work with.

Note that this section calls for features and benefits. Just prompting the business to explain the benefit expected

from each listed capability will provide a valuable reference when the team must prompt its product owner to provide

rationales in the “so that” portion of the users stories.

For all its simplicity, the features and benefits list actually represents a crucial milestone in the life cycle of the

project because it is the definition of the application as a solution to the overall business problem. Consider Figure 10.7,

in which the individual business problems have been placed to the left and the proposed features of the application to the

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 191

EDW Vision document (Template)

Solution statements
The following solution statements distill the business problems identified by the project sponsors and major
stakeholder groups while discussing the desired outcome of this project.

• The problem of...
• Impacts groups of... (either customers or internal functional departments)
• So, our company should... (business description of the proposed solution)
• In order to impact the following hard measures:

o Measure 1: (description, target measurement level, time frame)
o Measure 2:

Major features and their bene�its
The following major features will provide the benefits listed.

• Feature 1
o Benefit 1 (description, target measurement level, time frame)
o Benefit 2

• Feature 2....

Context diagram (Level 0 data �low diagram)

This diagram depicts three crucial elements of the proposed application, all shown upstream or downstream
from the EDW solution, as appropriate:

• Sources of data
• Supported end user groups
• Supported downstream business systems

{insert context diagram here)

Target Business Model
This diagram depicts how the company’s information will appear to business users once available via the
proposed application. This information is shown by major category, not necessarily at the entity level. The
attributes for these information categories will be established later, as each component of the proposed
application approaches the time of its development. Darker elements are dimensions, lighter elements
represent measures (a.k.a. facts or metrics).

{insert target business model here)

High-Level Architecture Diagram (Level 1 Data Flow Diagram)

This diagram depicts how the proposed application will acquire major categories of data and then cleanse,
integrate, and present it for end-user analytics. The vertical bands represent separate layers within the
enterprise data warehouse. Darker elements are existing components.

{insert high-level architecture diagram here)

Non-Functional Requirements
This list identifies qualities of the data services the application must provide besides the actual data offered
for end-user analysis or downstream application support.

• Non-Functional Requirement 1:
o Category:
o Short description:
o Quantified goal:

• Non-Functional Requirement 2:
o

FIGURE 10.4 Template for a streamlined Vision Document (VDoc).

192 PART | III Agile EDW Requirements Management

right. The benefits that the application will provide are expressed here, in detail, by the lines connecting features to the

problems they will solve. Taken together, the lines that comprise these mappings represent the application as a solution.

As business and technical stakeholders work through the many iterations of an agile project, they will refer to “the

solution” many times during their discussions, as they mention concepts such as “solution use cases,” “solution scope,”

and “solution architecture.” As central as the term solution can be in these conversations, many people can leave the

exact definition of this word unarticulated, which only causes miscommunication and increases project risk. Actually

drawing a diagram such as Figure 10.7 for a project as large as an EDW would be unwieldy and very expensive to keep

updated. However, EDW project leaders should realize that such a mapping of features to benefits is possible, and if

drawn it would be the solution that so many stakeholders reference in their statements.

EDW / RADAR Subject area: Solutions statement #3
The fact that Customer Care’s order entry system does not successfully transfer all sales order to the
fulfillment scheduling system is causing a) 1,300 customer orders worth $150M per year to go unfilled,
and b) staff in both Customer Care and Fulfillment to waste 1,500 hours annually (costing $180,000 fully
loaded) searching for transaction fallout.

So we need business analytics systems that allows analysts to identify, understand, and correct sales-
order to work-order fallout, with the goal of preventing or quickly rectifying at least 80 percent of the
dropped orders each year.

FIGURE 10.5 Sample vision document solution statements.

EDW / RADAR Subject area: Major features & bene�its
The Revenue Assurance Detection And Remediation (RADAR) will provide business departments the
following major features and benefits:

Feature Benefits

Integrated direct
sales order information

Single, all-company picture of sales orders created by all three regions of the
customer care organization.

Integrated
work order information

Single, all-company picture of work orders created by any of the four fulfillment
applications.

Integrated
billing order information

Single, all-company picture of billing records and invoicing activity created in
both regional billing systems.

Integrated account and
customer dimensions

Eliminate need to interpret accounts and customers by which system they were
created upon. Far less staff time spent in reconciling input data sets for
analyses.

Integrated
product dimensions

Eliminate need for product management to hand-join and reconcile 11 separate
product catalogs in order to analyze and present company transactions and
inter-system fallout by the equipment and services ordered.

Staff and source
system dimensions

Allow analysts and managers to trace errors in transactions to the individual and
source system contributing to the problem.

Sales-order to
work-order traceability

Ensures staff to start analysis with a list of sales orders that did not become
work orders, so that they can immediately address the concerns of
(potentially) unhappy customers without first having to compile a problem
list.

Work-order to
billing-event traceability

Enables staff to start with a list of unbilled equipment and services, so that they
can allocate far more time to correcting inter-system fallout and thereby
correct the majority of $50M of annual unbilled earned revenue.

FIGURE 10.6 Sample vision document solution statements.

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 193

Team leaders should also realize that such a mapping is dynamic and that it exists simultaneously in different

versions in the minds of the many people involved in the project. EDW team leaders will better position themselves to

manage project requirements if they keep in mind that (1) the solution is a mapping, (2) that mapping has not been

diagramed, and (3) the details of the mapping are changing and inconsistently understood among stakeholders. With

this understanding, teams can spot and deal with miscommunications as they occur. When two stakeholders seem to be

talking past one another during a requirements meeting, it may be that they are working from conflicting notions of the

solution. To bring them to where they can agree or at least clarify their disagreement, the EDW project leaders can

often ask, “What is the mapping of features and benefits that each of you believes this particular version of the solution

entails?” Drawing just a subset of the lines connecting two columns such as shown in Figure 10.7 is often all that is

needed to identify where the parties disagree.

For the vision document, the project architect drafts the list of features and benefits at a very high level, so this arti-

fact can only be a sketch of the true solution. However, given that the primary function of the project architect is to cer-

tify that the application that the EDW team is building will be a solution to the business problem, the mapping between

features and benefits documented in this section of the vision document becomes all-important to his or her success as

a team leader.

Note that the mapping shown in Figure 10.7 makes defining subreleases diagrammatically easier to understand. The

boundary for Subrelease 1, for example, is modest and will only solve a single business problem, although it lays a

good portion of the groundwork that will be required to solve the next business problem with the second subrelease.

Whether to actually draw the mapping lines of the solution or leave it inferred by the features and benefits list is a

decision the project architect will have to make. The full solution mapping for a large EDW project can be complicated

and difficult to read. Still, knowing that a subrelease plan could be depicted if the mapping lines were drawn clarifies

what partitioning a project into subreleases truly means.

Context Diagram

The context diagram of a vision document is a simple diagram that shows the source systems contributing data to a

DW/BI system, as well as the major user constituents and downstream information systems that is supports. This simple

diagram only takes a few minutes to draw once the project architect has completed all the research and the hard

thinking that it represents. This diagram’s simplicity makes it perfect for agile requirements management. With such a

specific purpose and simple grammar, existing versions of this artifact prove to be very easy to update as business

Business

Problems
Solution Mappings Features

A T

B U

C V

D W

E X

F Y

Subrelease

1

2

G Z

3

4

FIGURE 10.7 Defining a business solution.

194 PART | III Agile EDW Requirements Management

conditions evolve and as design insights occur during the life of the project. Figure 10.8 shows the context diagram that

one might find in our sample revenue assurance project’s vision document.

Context diagrams are often called “Level 0” data flow diagrams because if one were to put arrows on the connec-

tions between sources and targets, the diagram could serve as the cover sheet of a data flow diagram packet that many

analysts prepare for traditionally managed projects. The agile context diagram can display only one box for the EDW in

the middle or a few, as shown in the example, depending on whether breaking out the major layers of the DW/BI facil-

ity adds any clarity for the business stakeholder and the technical teammates.

Often the most difficult aspect of getting this diagram correct is simply picking the sources to depict. I have worked in

organizations in which IT had 250 major lines of business systems under management. Deciding which sources for just the

customer data to place on the context diagram for a modest EDW enhancement required 2 months of meetings and analysis.

Context diagrams greatly reduce project risk because they are easy for a team’s business partners to understand.

I have often had subject matter experts catch high-level design mistakes while reviewing this artifact. “Don’t pull sales

rep data from the HR system,” I remember a director of finance telling me on one project. “Our sales reps couldn’t care

less if we’ve processed their income tax forms, but they really care whether we’re ready to pay them their commission

checks. So, grab the data out of the compensation system—it’s the most accurate list we have of active sales reps.”

By depicting the applications downstream user groups and systems, context diagrams also make it clear which user

groups the development team considers to be its customers. The project sponsors often have strong opinions as to whom in

the corporation they are willing to spend money to help. Several of my projects have been delayed for weeks while depart-

ment heads argued about whether or not one of them was going to get a crucial data extract even though he was not going

to help fund the development effort. I was thankful that the context diagram forced these conflicts to occur early during

requirements analysis. If such an issue had come to light after the coding iterations started, months of invested teamwork

could have been easily wasted when the executives changed their minds about whom the EDW was going to serve.

Sales
reps

Invoices

W
ork

orders

EDW

revenue assurance

subject area

Customer

care

Vendor

gateway

Corp.

reference

Fulfillment

systems

Analytic
views & applications

Persistent
staging

Sales

comp

Product

catalogs

Billing

systems

Sales
orders

IDs for
locations,
source systems,
transaction
types

Transaction
Analysts in

Customer Care,
Fulfillment, Billing

Product
management

Corporate
strategy

Products

FIGURE 10.8 Sample context diagram for a vision document.

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 195

Target Business Model

The target business model depicts how the information in the warehouse will be organized when the end users can

finally access it. This model is a simplified, entity-only entity relationship diagram. Figure 10.9 provides the target

model for the example project, where the business had requested a dimensional presentation of the final data. This

diagram has only simple boxes that represent major data features that those users would find in the presentation or

semantic layer of the warehouse once it is complete and online. Note that this graphic is what many data architects

would call a conceptual data model—that is, one that reflects entities that will occur in the users’ world, drawn as

closely as possible to the way those users will perceive and think about the business [Earley 2011, p. 80]. The target

business model is certainly not a logical data model because it does not depict the target database as other applica-

tions—notably the ETL engine—will see the data. The attributes of each entity are notably absent. The diagram is also

not a physical data model because it does not list such notions as column data types or the primary and foreign keys

that will be found in the database tables once the team has created them.

For all that it lacks, however, this picture of the target business model is worth a thousand words. By pointing at the

highly abstract boxes on this model, the project architect can tell many important stories about how the end users will

be able to derive crucial business value from the warehouse once it is online.

Examples of the stories that the project architect can tell using this simple model for our sample project include

the following.

� The value of the sales orders for any given time period will be found here, in the Sales Orders Fact table.
� This fact table will have dedicated dimensions for data elements from both the order headers and the line items, so

you will be able to slice and dice the value of sales orders by transaction aspects such as order type and backorder

status at the time the customer purchased an item.
� The warehouse will also have fact tables for work orders and billing records.
� All these fact tables will share these four dimensions—customer, account, product, and source system—so you will

be able to slice and dice the metrics from any one of the fact tables in the same way.
� In fact, you can move across these fact tables using those shared dimensions, so you will be able to connect notions

such as the completed sales, fulfillment, and billing events for any given customer, and then any given product.

Because the target business model’s format makes it easy for business users to comprehend, this diagram greatly

reduces project risk. I have had subject matter experts, department directors, and project sponsors all catch solution

concept mistakes by examining the proposed target business model. Considering our sample target model, for instance,

a billing analyst might say, “You need to add a dimension for the agent owning each transaction so that we can learn

which members of our customer service and fulfillment teams are causing the most errors.” Catching such an oversight

at an early point in the project when a vision document is compiled can easily save weeks of rework that would have

been necessary if such an error had been discovered after coding had begun.

Moreover, the vision document’s context diagram and target business model interact to reduce project risk even

further. The first diagram identifies the sources of the information, and the second graphic shows the tables into which

FIGURE 10.9 Sample target business model for a vision document.

196 PART | III Agile EDW Requirements Management

information will be loaded. Knowing both source and target, even at a high level, places a major constraint on the

requirements churn that can occur during the project. Consider, for example, that the product owner for the project

represented by Figures 10.8 and 10.9 creates a user story that includes the term “net income.” The fact that a data set

called “standard costing” does not appear on either of these diagrams, which represent the sources and targets to be

included in the application, strongly implies that the requested story is completely out of scope. Should the product

owner add an epic regarding net income during the middle of the project, the source and target models in the vision

document allow EDW team leaders to gently push back, saying, “We don’t see data elements supporting net income on

the diagrams of the vision document. Do we need to defer these stories until another project or do we need to go back

to the sponsor and stakeholders to get the vision document changed?” These simple diagrams, then, provide just enough

dampening on requirements churn to keep an agile team pointed toward the true and steady goal over the entire arch

of the project. Given this stabilizing effect provided by a few quick-to-draw diagrams, projects that incorporate these

artifacts of the ERM value chain for requirements management tend to be far more linear and therefore successful than

agile projects that rely on the generic agile requirements value chain alone.

High-Level Architectural Diagram

The next component of the vision document is a high-level architectural diagram, which summarizes the data trans-

forms that the team proposes to apply to the source data. Figure 10.10 provides a sample of this artifact, one that many

business analysts will recognize as a “Level 1” data flow diagram because it is simply the first decomposition of the

Level 0 diagram provided by the vision document’s context diagram, now drawn with data flows. Like the context

diagram, the high-level architectural diagram still depicts sources and target data elements without a great amount of

detail. The diagram’s goal is to communicate the big picture regarding how the ETL modules will transform, merge,

and store these “gloms” of data as they move across the EDW’s reference architecture.

With the high-level architectural diagram, the vision document begins to bridge business requirements and technical

requirements by providing a diagram that each side of the project can utilize in its own way. Business stakeholders will

recognize elements on this data flow diagram from the context diagram and the target business model, and they can check

that this initial design is complete and correct given their knowledge of the business systems that serve as information

sources. From the other point of view, the technical members of the team will see on this diagram the major transforma-

tions required, and they can begin imagining the ETL modules that will be needed in each layer of the reference architec-

ture. The high-level architectural diagram can thus be validated from these two perspectives, providing a stereoscopic

vision of the proposed application that further ensures business�IT alignment concerning the nature of application.

Considering just the sales data in Figure 10.10, for example, the reviewer can see that the application will derive both

customer and location information from the sales order systems. Once cleansed, the customer information will be trans-

formed to become “party” records, a change that will enhance its reusability for later business intelligence projects. The

reviewer can also see that the EDW will take sales transaction information directly into a sales fact table. The business

stakeholders may adore this decision because it will save them the expense of placing the data first in integration tables,

but the company’s enterprise architect may well insist that all information in the EDW should first land in the integration

layer, where data is stored in tables complying with a third-normal form data model. At this point, the EDW project

leaders may wish to counter with notions of economy, agility, or temporary measures, but at least the high-level data flow

diagram sparked this architectural discussion before the programming began, possibly saving months of rework.

By placing this diagram alongside the four other sections described previously, the vision document makes it as easy

as possible for stakeholders to judge whether the application’s design—at its highest level—is consistent with the

promises being made to the business users. The systems analyst, for example, can easily check whether a general transfor-

mation plan exists for every source identified in the context diagram by simply considering the first column of the high-

level data flow diagram. Similarly, the business analyst can check whether the EDW team has planned to provide all the

information components necessary for the desired front-end applications by examining the last column of the same

diagram.

Nonfunctional Requirements

In this last section of the vision document, the project architect can list a summary of the special characteristics that the

finished application must someday possess, beyond the data analysis actions that it will offer end users. Because the

vision document represents the highest possible depiction of the application’s nature, it needs only to identify, not

detail, the nonfunctional requirements that the project architect can anticipate at this time. The next two templates will

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 197

contain sections for more detailed nonfunctional requirements, allowing the team to describe these needs more carefully

before programming begins.

The project architect can identify plenty of nonfunctional requirements for the system by considering, even briefly, the

items listed in two independently published references: (1) sections for nonfunctional requirements in published IT standards

for requirements management, as summarized in Table 7.2, and (2) the DAMA data management functional framework, as

illustrated in Figure 4.6. While scanning Table 7.2, “security” might suggest itself to the project architect, causing him to

note in the vision document something as simple as, “The application will need to control access to table columns by user

group so that the personal protected information (PPI) of customers is visible only to a particular category of managers.”

While examining the DAMA framework, the intersection of “Data Quality Management” and “Technology” may cause him

to add another single sentence such as, “The application should rely on the Parts Data Management system for standardized

identifiers for all products manufactured in-house.” Chapter 11 further discusses the analyzing nonfunctional requirements.

SEGMENTING THE PROJECT WITH SUBRELEASE OVERVIEW

By preparing a vision document, the project architect was able to communicate to a wide group of both business

and technical stakeholders, securing buy-in on both sides at a very high level. With the next artifact in the ERM value

chain, the subrelease overview, the project architect will communicate mid-level, increasingly technical requirements to

(standard
normal form)

(conformed
dimensional form)

Cus

Sales order

systems

tomer

care

Fulfillment

systems

Product

catalogs

Billing

systems

Vendor

gateway

Sales

comp

Party
Account

dim

Customer

dim

Product

dim

Geo’s

Products

Agent

dim

Sales

fact

Work Order

fact

Billing

fact

Sales-fulfill

fallout

Fulfill-billing

fallout

Location

dim

Staging
Layer

Integration
layer

Presentation
Layer

Semantics &
Analytics

FIGURE 10.10 Sample high level architecture diagram for a vision document.

198 PART | III Agile EDW Requirements Management

the members of the development team. As a member of the team who is learning quickly about data warehousing

through her involvement with the project, the product owner should at some point be able to understand the subrelease

overview as well.

The subrelease overview is a mid-level description of an incremental version of the DW/BI system that the project

architect believes will make a good subrelease candidate at a particular point in the project. A good way to communi-

cate the restricted scope of a given subrelease is to update a copy of the target business model included in the vision

document, striking out all but what will be included in the next version of the application that the end users will see.

Figure 10.11 provides an example of how such a revised business target model would appear. Some aspects of the

subrelease overview template are geared to systems that provide a rather mainstream set of business analyses that use

facts and dimensions. Teams working with data mining or specialized analytics platforms will want to adapt these sections

with the typical elements with which they work. If EDW program frequently involved time series analysis, for example,

then the project leaders might want to update the Technical Description section of the template to include the various

smoothing algorithms the company prefers and the high-level parameters controlling those algorithms [Milhøj 2013].

The purpose of a subrelease overview is twofold:

1. Enable the project architect and product owner to reason about partitioning the project into multiple subreleases so

that the team can pursue the risk management approach suggested in Part II of this book.

2. Communicate to the technical members of the team just enough information about what they will be building during

the next few development iterations that they can all start pursuing their work in a self-organized manner.

The project architect may draft all the subrelease overviews for a project at one time, before any programming begins,

in order to depict a complete, multistep release plan, or he may draft these overviews as they are needed, focusing

instead on only the next version of the application that the team should place into production.

The template for the subrelease overview calls for more sections than any of the previous templates in the ERM

value chain. Because many of them are diagrams, they are quicker to author than prose, but they will still require appre-

ciable time to prepare and validate. In my experience with this artifact, only a few of the diagrams listed are actually

required for any given project, although the actual set needed varies from project to project. Thus, keeping with the

theme of “just enough requirements,” the project architect should choose carefully from the many sections of the

subrelease overview template and only include in any particular overview those diagrams needed to achieve the two

objectives mentioned previously.

Legend

New Existing

Sales orders
facts

Work orders
facts

Billing
facts

Role Grouping

Billing address
dimension

Service address
dimension

Geography
dimension

Creation
date dim

Product
dimension

Customer
dimension

Account
dimension

Sales agent
dimension

Source
system dim Status

date dim

Date dim

Work order
header dim

Billing
header dim

Sales orders
header dim

Deferred One-to-many

FIGURE 10.11 Target business model for a subrelease overview.

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 199

Moreover, the sections that the project architect does choose to include do not have to be perfectly complete with

his or her first draft of the overview. Those sections can be steadily polished as the project progresses and more ques-

tions concerning project partitioning get answered. Just as the stories at the top of a project backlog are the most

polished, the overview for the current and next subrelease will probably be fairly detailed, but those describing more

distant subreleases will have many elements left still unstated or partially expressed. The short descriptions of the

sections of the subrelease overview are presented here.

Subrelease Identifier

The team and its stakeholders need a name for each subrelease so that they can refer to them individually. My

preference is to simply label them with cardinal numbers—that is, “Subrelease 1,” “Subrelease 2,” etc. When teams

name them for their intended delivery dates, such as “August Subrelease,” they soon feel obligated to meet the implicit

deadline and quickly slip back into a date-driven project management mentality that worked so poorly in the traditional

waterfall methods.

Subrelease Scope

The scope of a subrelease can be expressed in any combination of three ways: the data services that the proposed

version of the application will provide, the logical data entities the data repository should contain, or a subset of the

facts and dimension attributes that it will offer end users (for star schema-based solutions). The project architect should

decide which combination of these formats the current situation requires.

Expressed as Data Services

To express scoping by data services, the project architect can create a “dimensions of value” diagram that I discussed

extensively in my previous two books. Figure 10.12 provides an example of this diagram type for the back end of a

DW/BI application. Dimensions of value diagrams first identify the major aspects of a project that deliver benefits for

the customers in terms of data services. Because DW/BI solutions are so diverse, each EDW project may have its own

particular set of dimensions for these diagrams. In the example, the aspects determining the value that an intermediate

subrelease can provide are largely as follows:

� The layer of the reference architecture in which the data is located (the closer to the semantic layer, the better)
� The types of transformation that have been added so far (the more derived columns, the more informative the data

will be)
� How advanced the loads have become (incremental loads can handle more data than “kill and fill”)
� How frequently the data gets refreshed (daily is better than monthly, although it takes more scripting)

Next, these diagrams indicate the “waypoints” along those dimensions and order them by increasing value to the

customer. In the example, the waypoints of the architectural layer suggest that customers may be able to derive some

small value out of the data warehouse’s landing data alone, but they obtain more value when IT can provide integration

of current data, and even more when IT can deliver all the data into a dimensional data mart.

To express the proposed scope for a particular subrelease overview document, then, the project architect needs only

to draw a boundary that connects the intended waypoints from each of the dimensions of value. Such a boundary line

clearly depicts the data services that will be achieved when the team places the proposed subrelease into production

usage. Upon viewing Figure 10.12, in particular, the product owner can view the boundary line and understand instantly

that the proposed subrelease will provide only current data from an integration layer, loading everything but the harder

derived columns via weekly, incremental loads with no error trapping.

Figure 10.13 depicts sample dimensions of value for the front end of a DW/BI system. It repeats the dimensions for

transformation type and refresh frequency from Figure 10.12, but the other two dimensions have been replaced with

one for the user friendliness of the dashboard and another representing the scope of the users groups that will have

access to a particular version of the application. Instead of depicting just one subrelease, however, this version of the

diagram shows three boundary lines drawn, indicating the increasing level of service that users will receive from the

sequential subreleases.

200 PART | III Agile EDW Requirements Management

D
ai

ly

W
ee

kl
y

M
on

th
ly

La
nd

in
g

da
ta

C
ur

re
nt

 in
te

gr
at

io
n

da
ta

C
ur

re
nt

 d
at

a
m

ar
t

H
is

to
ric

al
 in

te
gr

at
io

n
da

ta

H
is

to
ric

al
 d

at
a

m
ar

t

Full table truncate
& reload

Incremental loads
with error trapping

Incremental loads,
no error trapping

Replicated
columns

Aggregations

Easier derived
columns

Complex derived
columns

Subrelease #2
data services

profile

T
ransform

ation type

Presentation readiness

Refr
es

h Fre
qu

en
cy

Refr
es

h Sty
le

FIGURE 10.12 Subrelease scope drawn on a dimensions of value diagram.

D
ai

ly

W
ee

kl
y

M
on

th
ly

S
ta

rt
er

 u
ni

ve
rs

e

Li
st

 o
f v

al
ue

s
fo

r
qu

er
y

de
fin

iti
on

s

D
ril

l t
hr

ou
gh

P
er

so
na

l p
or

ta
l

ac
ce

ss

In
te

gr
at

ed
 e

nt
er

pr
is

e
da

sh
bo

ar
d

Product
owner

workstation

Full enterprise
access

Dept server/
SME access

Replicated
columns

Aggregations

Easier derived
columns

Complex derived
columns

Subrelease #2

T
ransform

ation type

User friendliness

Refr
es

h f
re

qu
en

cy

End
Use

r Com
mun

ity

Subrelease #3

Subrelease #1

FIGURE 10.13 Subrelease plan summary on a front-end dimensions of value diagram.

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 201

Expressed as a Target Business Model

A subrelease overview can also express the scope of a proposed version of the BI application by communicating which

data elements end users will have access to. The vision document contains a fully scoped target business model in order

to communicate and secure buy-in for the project as a whole from business stakeholders. Because the product owner

will be familiar with the target business model in that document, the project architect can employ that model to depict

the limits of an upcoming subrelease scope in a way that will be readily understood. Figure 10.11 shows such a model

for the revenue assurance example used in this chapter. It has been updated to depict the entities that will be in scope

for the next subrelease versus those that will be left undelivered. Moreover, the shading scheme reveals which entities

are already in place from the previous subrelease and those the team will have to build for the next.

Expressed Using the Fact Qualifier Matrix

Describing a subrelease using the target business model works well when each data entity will be delivered in its

entirety. For projects in which even the attributes of the entities will be delivered incrementally, the project architect

may want to employ the fact qualifier matrix to express the scope of a given subrelease. Table 10.3 shows a typical fact

qualifier matrix (FQM) much like those taught by The Data Warehousing Institute. The FQM lists the metrics that the

fact tables of a warehouse will provide as columns in this matrix. The dimensional elements are listed as rows. In

its simplest notion, the FQM simply places a check mark on those intersections where the BI users will be able to

decompose a measure by a given set of dimensional elements.

Table 10.3 depicts the FQM for a hypothetical Subrelease 2 of the revenue assurance example. Aside from some

helpful enhancements to indicate where the dimensions will track history and how the measures will be packaged into

fact tables, the version of the FQM contains a “Subrelease Status” indicator for both the dimensions and the measures.

This indicator identifies those elements that (1) already exist in the current version online, (2) will be added during the

next subrelease, or (3) will have to wait for a future subrelease.

Fact-qualifier matrices do communicate a large amount of information in an easy-to-understand format, but agile EDW

projects tend not to employ them as regularly as waterfall project teams for two reasons. First, they are detail-oriented,

making them slow and expensive to not only create but also later maintain. For those fact or dimension tables that will be

delivered as whole tables, teams need only to refer to the components of a subrelease by table name. They can manage

table names more quickly using the target business model, which assumes that the attributes of each table “travel together.”

Second, FQM artifacts tend to be transitory in value, falling temporally between the vision document and the ETL

modules the team will create. The vision document identifies the company’s intent for the EDW, in terms of both sources

and desired transformations. The automated documentation that most ETL engines can provide will identify the details of

the transformations that the programmers have actually built. Once they have finished programming a module, the team

can understand it quite well using the vision document and the generated as-built design, and the team will obtain little

additional insight from the detailed to-be specification that the FQM provides. The exceptions I have seen to this trend

are EDW programs that include an extensive semantic layer on which users intend to build their own dashboards. In this

case, the users have been promised “self-service” business intelligence, and a matrix showing how facts and dimensions

intersect enables them to understand in detail how they will be able to work with each element in the data marts.

Business Process Supported

In addition to scoping the next version of the EDW, the subrelease overview needs to make clear to the product owner

the business functions that end users will be able to perform with each version of the application. The project architect

can express this envisioned set of capabilities in any of several ways. Given the four formats suggested here, the project

architect should include in any given subrelease overview only those needed to describe a particular planned version of

the project’s DW/BI application. Naturally, project architects on agile EDW engagements will prefer those formats that

best communicate the value that a particular subrelease will deliver.

Use Case Model

Perhaps the simplest means of describing the business operations that the next subrelease will enable is the summary

diagram of a use case model. As mentioned in Part I, RUP employed use cases to document the capabilities of a pro-

posed system. The uses cases themselves involve so much text that they do not fit comfortably into an agile approach,

but the use case summary diagram that RUP employed is quick to draw and communicates well with a company’s

business staff members. Agile EDW teams often employ the summary diagram and forego writing out the use cases.

202 PART | III Agile EDW Requirements Management

Figure 10.15 shows a summary use case diagram for a particular subrelease of the sample revenue assurance project

described in this chapter. The stick figures depict the EDW’s major user constituencies who will receive new services with

the next version of the data warehouse. The bubbles provide short descriptions of what those services will be. The target

business model in Figure 10.14 stated that our sample application’s next version would add work order facts to the already

existing sales order facts. This use case summary diagram states that with both those collections of facts in place, the

billing analyst and customer care manager will be able to quantify the number of sales orders that did not get transmitted

to the fulfillment system, and the fulfillment manager will be able to decompose that fallout by the products involved.

Analysis Venn Diagram

A Venn diagram is a simple illustration that uses ovals to picture the universe of data that an analysis begins with and

the subsetting, unions, and intersections that one can make within that data. In the epic stack presented in Chapter 8,

TABLE 10.3 Fact-Qualifier Matrix for a Subrelease Description

Enterprise data warehouse / revenue assurance subject area\

Fact-qualifier matrix for subrelease 2

Dimension Sales order facts Work order facts Billing facts

Ordered
qty

Current
qty

Ordered
value

Current
value

Ordered
qty

Current
qty

Ordered
value

Current
value

Tariff
value

Discount
value

Billed
value

Attribute Exists Deferred Exists Deferred Add Deferred Add Deferred Deferred Deferred Deferred

Account dimension

Account number Exists
Subscriber name Exists
Account value rating Y Add

Credit denial Add

Credit denial waiver record ID Add

Customer dimension

Standardized customer number Deferred
Customer name Y Deferred
Customer value rating Y Deferred
Bad history flag Deferred
Bad history waiver record ID Deferred

Sales agent

Agent personnel ID Exists
Name Y Exists
Original start date Y Exists
Line manager Y Deferred

Product dimension

Native product code Exists
Native product description Y Exists
Standardized product code Add

Standardized product description Y Add

Std product coding date Add

Product line Y Deferred
Product class Y Deferred
Product group Y Add

Sales order header dimension

Sales order number Exists
Status Y Exists

Work order header dimension

WO Number Add

Status Y Add

Billing header dimension

Invoice number Deferred
Billing cycle Deferred

Source system dimension

Source system code Deferred
Source system description Deferred

Date dimension

Date Exists
Day of week Exists
Holiday Deferred

Track
history

Subrelease
Status

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 203

themes represented atomic information capabilities that support a specific analysis requested by high-ranking members

of the business staff. Most of those information capabilities can be expressed as set-based operations—that is, as unions,

intersections, and subtractions of large assemblies of records that yield a final set of records that mean something to the

business. If themes represent set-based operations, then a Venn diagram is a perfect way to document the themes that a

subrelease will support.

Figure 10.16 illustrates the fallout analysis depicted in the use case summary diagram just considered. The diagram

states that, with the next EDW version, users will be able to distinguish sales orders that have been open for 3 days or

more and then subtract out those associated with work orders, reversed credit denials, and late product codlings.

EDW Subrelease overview (Template)

Subrelease identi�ier
Provide an identifier devoid of any suggested implementation time frame, since many factors outside of the
control of the team can determine the actual delivery date.

Subrelease scope
Employ as many of the following three artifacts as necessary to define the scope of the subrelease.

Data services diagram subset

{insert data service scoping (a.k.a. a “dimensions of value”) diagram here}

Target business model subset

{insert diagram here}

Fact qualifier matrix

{insert diagram here}

Business description
Employ as many of the following artifacts as needed to provide the business stakeholders with a clear
understanding of the capabilities the proposed subrelease will provide.

Use case model

{insert diagram here}

Venn diagrams for supported analyses

{insert diagram here}

Data validation steps

Analysis 1:

Step 1:
Step 2:

Analysis 2:

Step 1:
Step 2:

Sample business queries
During project inception, elaboration, and construction, business stakeholders and project analysts have
mentioned interest in conducting the following queries against the EDW once available. These queries are
important to track, but are not “large” enough to manage as separate user stories.

• Query 1: (presentation-layer entities required, goal of the query, joins expressed in natural keys)
• Query 2:

FIGURE 10.14 Template for a streamlined Subrelease Overview (SRO)

204 PART | III Agile EDW Requirements Management

The diagram also states that with regard to seeing the impact of late bad history waivers, the end users will have to wait

until the next subrelease.

Business-Level Data Validation Steps

The epic decomposition framework I have suggested for agile EDW projects encourages teams to consider user stories

as the business-level data validation steps that a manager would want to take before forwarding an analysis to his or her

director, knowing that the director will proceed to take perhaps irreversible actions based on the insights that this

analysis provides. The data validation steps section of the subrelease overview simply lists those data validation actions

that the next version of the application will support.

Technical description
This section provides high-level technical requirements that the project architect needs to communicate to
the design and development team.

Target measures details

{a.k.a. "facts," list relevant details here}

Reusable target dimensions details

{list relevant details here}

Non-reusable target dimensions details

{list relevant details here}

Data sourcing details

{list relevant details here}

Non-functional requirements
This list identifies qualities of the data services the application must provide besides the actual data offered
for end-user analysis or downstream application support.

• Non-functional requirement 1:
Category:
Short description:
Quantified goal:

• Non-functional requirement 2:
....

FIGURE 10.14 (Continued)

Quantify fallout from
sales order system

Understand
fallout by product

Understand fallout
by sales agent

Customer care
manager

Fulfillment
manager

Billing analyst

Scope of subrelease #2

FIGURE 10.15 Use case model for a subrelease description.

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 205

Figure 10.17 shows the data validations that a manager might want to undertake for the fallout analysis that the

previously discussed use case summary and Venn diagrams have been considering. In this case, the product owner has

imagined holding a report showing the sales orders that did not transfer to the fulfillment system. He understands that

when he provides this analysis to the director of the customer care department, the director will speak—perhaps

harshly—to the sales agents and fulfillment managers involved with those transactions that were not properly handled.

If the sales agents and fulfillment managers refute the analysis from the EDW by showing that the orders were sus-

pended for an obvious and legitimate business reason, the director will be returning to speak—probably harshly—to the

billing analyst who provided the faulty analysis. Because of this risk, most managers will want several means of vetting

the information presented by the EDW for any given analysis.

The list of data validations section is therefore a crucial portion of the subrelease overview to plan out carefully.

Each of these data validation steps represents a small operation that end users will want to perform with the EDW

front-end application. Not only are these actions small but also each has a very specific objective, such as ensuring that

a certain set of transactions were excluded or that an intermediate result still reconciles to an independent tally of

Late bad history
waivers

Reversed credit
denials

Late product
codings

SOs open

3+ work days

Sales orders

SOs with matching work orders

Subset SubtractedStarting data set

Legend

FIGURE 10.16 Venn diagram for a subrelease description.

List sales orders by
native product code

Theme # 4

User story 4.1

User story 4.2

User story 4.3

User story 4.4

User story 4.5

User story 4.6

Match late product codings
to “released” status

Switch to standardized
product codes

Match credit denial
reversals to“ ready” status

Subtract SOs open
two days or less

Subtract SOs with
associated work orders

Data validation steps
(from ERM)

Project backlog
(from GRM)

FIGURE 10.17 Data validation steps for a subrelease description.

206 PART | III Agile EDW Requirements Management

problem cases. Given that they are small and focused, these data validation steps map well to user stories. Therefore,

this section of the subrelease overview provides the area where the product owner and the entire team can validate that

the ERM value chain is intersecting properly with the user stories in the project backlog derived from the GRM

approach described in Chapter 9. This mapping is indicated on the right portion of Figure 10.17.

Sample Business Queries

This last component of the business description for a subrelease provides the project architect with an area to record

the small investigations into warehouse data that the product owner has mentioned he will want to perform once the

warehouse has been loaded. Product owners typically mention dozens of small actions they look forward to taking once

they can get their hands on the company’s operational data. These passing comments are too minor to merit converting

them into bona fide user stories that must go on the backlog and be processed and estimated during story conferences.

However, the team cannot afford to discard these desires of the product owner, no matter how small. If the project

architect simply gathers them as a list in this section of the subrelease overview, the team members can draw from

them in the future when they validate an upcoming subrelease.

This list of intended queries can greatly help technical teammates who are working with a product owner who is

being too casual with his or her validation duties. I have often observed iteration demos in which the product owner

only glances at a dashboard full of new information and then gets up to leave, saying off-handedly, “Looks OK to me.”

In such cases, the team leaders can draw from this section of the subrelease overview, saying, “Please wait. Here’s the

list of 40 things you said you wanted to try with the warehouse once we had data loaded. Why not see if you can

accomplish a few of them with this demo version you’re looking at now?” The resulting user demo session will be a far

more productive review, perhaps uncovering several defects and even some new requirements.

Technical Description

The content of the scoping and business description sections contains information that the technical members of the

development team certainly appreciate receiving. The developers will need still further information, however, before

the subrelease overview will contain enough mid-level details that they will consider it an 80/20 specification that

provides enough guidance to support early design work. In particular, my colleagues and I have found this section of

the overview to be a convenient place to record the many special-purpose design solutions that Ralph Kimball has

popularized throughout the years for star schemas.

Target Fact Tables Details

This section of the overview gives the project architect a place to record a clearer description of the fact table(s) to be

included in the subrelease than the vision document allowed space for. Here, the project architect would spell out notions

such as the following:

� Factors determining the grain of each fact table, especially if they are changing from the last EDW version
� Whether each fact table involved tracks single-moment events, an evolving process, or recurring transactions
� Metrics that are semi-additive, such as percentages
� Allocated facts [Kimball & Ross 2013]
� Degenerate dimensions [Kimball & Ross 2013]
� Factless fact tables [Kimball & Ross 2013]
� Removing records that have exceeded the customer’s desired retention period
� Special coding for references to nonexistent dimensional records
� Special handling for records that are unloadable because they are incomplete

Reusable Target Dimensions Details

This section of the subrelease overview should include mid-level technical requirements for dimension tables shared by

multiple fact tables.

The Kimball Group discusses extensively the practice of conforming the dimensions of a BI application whenever

possible. When a modeler conforms a dimension table, he or she generalizes it so that it can be linked to many fact

tables within an EDW. By making dimensions reusable, the data modeler allows the business to analyze a large

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 207

collection of metrics using the same representations of major business entities such as customer, product, sales force,

and geographies.

Conforming dimensions is a major challenge for the EDW developers for several reasons. First, they require stan-

dardized definitions, often at the enterprise level. Such standardization can involve data governance committees,

meaning many people outside the project must weigh in before the EDW team can design a particular dimension table.

Second, several sources contain data for these shared entities, so conformed dimensions typically require extensive data

integration coding. Third, users frequently want to understand the history of the standardized representations, making

these conformed tables some of the EDW’s more complicated slowly changing dimensions. Fourth, these dimensions

can involve complicated business rules for “late arriving dimensions”—that is, situations in which a fact table must be

loaded before all the information needed to properly set the attributes for a dimension is available.

Given this complexity, the developers will need the project architect to describe his or her intent for reusable

dimensions in this section of the subrelease overview so that technical teammates such as the data modeler and systems

analysts can get started on the extensive analysis and design work that such situations require.

Non-Reusable Target Dimensions Details

Aside from the EDW’s conformed dimensions, any particular fact table may have qualifiers that only it will employ,

such as the Sales Order Header dimension in the example used in this chapter. Both these dedicated dimensions and

conformed dimensions involve many technical requirements, such as the following:

� Hierarchies contained
� Strategy for slowly changing data—that is, whether the dimension is Type 1, 2, 3, 4, or 6 [Kimball 2011]
� Seeding records for unknown references in the transaction data
� Business rules for removing records once they exceed the desired retention period

This section of the template gives the product owner a place to summarize any such thoughts on these single-use

dimensions.

Data Sourcing Details

This section of the subrelease overview is where the developers will find the project architect’s recommendations for

how to acquire the necessary data to load into the data warehouse. Especially in large companies, multiple sources of

information often exist for a given element of the target business model, especially for reusable dimensions such as

customer, product, and locations. The developers will validate the project architect’s choice, but to get started they

will need to understand the criteria that the architect employed to make his or her original recommendation. This

section provides an area for the project architect to communicate not only that selection rationale but also a high-level

description of the following:

� Major business rules for cleansing and transforming the major data flows from each source
� The mechanism that the team can use to pull only the new information from each source—that is, the “change data

capture” logic to employ
� Processing the less-than-perfect records acquired from each source, whether to load them with flags, reroute them to

a suspense table, and/or notify users of the source system that corrections need to be made

Nonfunctional Requirements

This section of the subrelease overview provides the project architect with a place to communicate to his or her techni-

cal teammates any relevant notions concerning the application’s nonfunctional requirements for the envisioned version

of the application. Material for this section will often be rooted in a list of nonfunctional requirements such as was pro-

vided by Table 7.2 or the DAMA data management framework, summarized in Figure 4.6. For example, if the project

architect refers to the nonfunctional requirements list while preparing an outline of the second subrelease of the EDW,

the “capacity” heading might cause him to note in the subrelease overview that “The physical storage will need to be 1

TB or larger because the additional sources in this subrelease will add 350 GB to the 450 GB consumed by the first

subrelease.” Similarly, the intersection of “Reference and Master Data Management” and “Roles and Responsibilities”

in the data management functional framework might inspire him to add another single sentence, such as “The Product

208 PART | III Agile EDW Requirements Management

Management group within finance will need to provide three data stewards to review and make updates to part records

given the new data quality reports that this version of the application will provide.”

PROVIDING DEVELOPER GUIDANCE WITH MODULE USE CASES

If and when the project backlog contains a particular module that requires more careful planning, the EDW team leaders

can organize the necessary details using a module use case. Sometimes a particular module involves enough complexity

or risk that the programmers will want lower-level guidance before they start coding, and the module use case provides

the system analyst a structured artifact for recording those details. Note the change in authorship that occurs at this

point in the ERM value chain. The business’s sponsor and department directors provided the content of the concept

briefing and stakeholder requests. The team’s project architect supplied the material for the vision document and the

multiple subrelease overviews. With the module use case, the team’s system analyst and perhaps technical lead become

active to document any remaining technical requirements that the programmers will require before they can begin

collaborative development with the product owner and other subject matter experts. Typically, these team leaders do

not bother to draft a module use case for those modules that are readily understood through higher-level documents and

direct conversation with their teammates. Only when a module involves details that could be forgotten if not written

down do they start placing that information in a module use case. Moreover, they use the sections of the module case

selectively, completing those that speak to the points of uncertainty for a given module and leaving the rest of the topics

to be addressed while speaking eye-to-eye with the programmers when they start coding the module.

Given its structure, the module use case is aptly named because it focuses on a single ETL or BI module and closely

follows the use case template available from RUP. As revealed by the template in Figure 10.18, the core of this artifact

describes the flow of events that should occur within a particular system module or component (here used as synony-

mous terms). For ETL systems, a module may be one mapping or several that run together in a single workflow. For a

BI front end, a module may be a simple graphical device such as a pie chart, an entire display complete with menu

bars, or a managed portal that has been distributed enterprise-wide. The systems analyst authoring the use case will

have to decide the correct scope for this artifact.

As with all the other documents within the ERM value chain, the author of a module use case should aim for an

80/20 spec—investing only one-fifth as much time as a waterfall specification would require but capturing the most

important 80% of the concepts that the component should embody. The remaining details can be decided when the

team begins developing the module described. The sections of this module use case are as follows.

Goal

Stating the goal at the onset of a use case provides context that makes the remaining material much easier to understand.

RUP defined use cases to document a flow of events that generates value for an actor, whether that actor might be a

human or another automated system. For module use cases, the actor is usually the application to which the component

will belong, so benefit will be for the EDW system rather than an EDW user. If the module is part of the ETL system, for

example, the actor receiving the benefit is often the EDW data repository, so the goal of the module use case will be

typically some version of “further enrichment of the information stored within table set X of the data warehouse.”

For the sample project discussed in this chapter, the focal component for a module use case could be “Load Customer

Data from Central Region Work Order Data,” in which case the goal would be “Cleanse and conform staged customer

records from system X and place them into the EDW’s integration layer.” Note that this sounds very much like the devel-

oper stories from the generic value chain that were examined in Chapter 9. In fact, if the goal of a component use case

did not match a developer story found in the project backlog, it would signal that the GRM and ERM value chains have

arrived at different notions regarding the application. In that case, the gap between the two value chains will have revealed

a major risk to the project. To resolve this disconnect, the project architect will need to invest time on artifacts upstream

from the module use case, realigning the conclusions of the two requirements management efforts.

Standard Flow of Events

In RUP, a flow of events is an ordered list of actions that the software should take. For use cases that rely on prose,

documenting a flow of events can take up the bulk of a use case write-up, sometimes as long as several dozen pages for

complex processing components. Writing, validating, and maintaining such prose is expensive, and it also represents

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 209

the last 20% of the details that an 80/20 spec would leave unaddressed until development time. For that reason, my

colleagues and I prefer to express flow of events as simply a Level 2 data flow diagram, as shown in Figure 10.19.

Where a particular bubble on the Level 2 diagram requires greater detail, the designers can document a link to a data

flow diagram drawn at an even deeper level of abstraction or resort to prose, whichever would be more effective.

To make a process such as the one shown in Figure 10.19 describe a standard flow of events, the team usually constructs it

to depict the nominal or “happy path” processing pattern that records should follow within a system’s ETL. Here, nominalmeans

“everything progressing according to plan,” signifying standard, everyday data that the team expects to load with exceptions.

Alternative Flow of Events

Not all data will comply with expectations of the nominal case, however, and for those records that do not comply, the

designers will need to spell out an alternative flow of events. The most common alternative flow documented in an ETL

module use is the initial load of data. Initial loads often come from a different source than those that provide daily data

increments to the warehouse. Initial load records are often pulled from archive tapes or an old data mart that the company

Single sentence description if module’s reason for existence, in terms of:

Category of data accessed and its EDW reference architectural layer
Category of target data to create and its EDW reference architectural layer
Major value added during the data’s transformation

This level 2 data flow diagram depicts at a high level the steps required to access, transform, and load the data
into the necessary target tables, including any master data elements, external processes, and look-up tables
required.
{insert diagram here}

These level 2 data flow diagrams depict the variation on the standard flow of events required during the initial
load of the target tables or for the proper handling of unloadable records.
{insert diagram here}

This list enumerates the logical programming elements that will be needed to properly manage the data and
meta data affected by this transform module.

How to handle failed lookups:
How to handle incompletely loaded data from a prior module run:
Parties to notify upon modules success:
Parties to notify upon module failure:
....

{attach source-to-target map here or indicate location in project document repository}

This list identifies qualities of the data services the application must provide besides the actual data offered for
end-user analysis or downstream application support.

Non-Functional Requirement 1:
Category:
Short description:
Quantified goal:

Non-Functional Requirement 2:

....

Module goal

Standard �low of events

Alternative �low of events

Special requirements

Supplemental speci�ication: source-to-target mapping

Non-functional requirements as supplemental speci�ications

EDW module use case (Template)

FIGURE 10.18 Template for a streamlined Module Use Case (MUC).

210 PART | III Agile EDW Requirements Management

hopes to retire. The business rules for initial load records invariably have some differences from the processing

needed for incremental data. The special handling they require should be spelled out in a variant of the Level 2 data

flows documented for the nominal case.

A second common alternative flow found in EDW component use cases is error management logic. Sometimes

EDW modules halt an entire batch run when a record proves to be unloadable, but more mature applications place the

record in a suspense table. Modules that utilize suspense tables frequently have logic that watches for a corrected

version of each suspended record. When a corrected version is encountered, the ETL module not only loads it into the

warehouse but also removes the faulty record from the suspense table.

Party
Lookup

customer ID

Lookup sales
location ID

Geography

Sales

fact

Separate
unloadables

Suspended sales

transaction

Lookup corp.
product Nbr

Product

Lookup
suspended
transaction

Upsert

Lookup std status
code

Code

reference

Mark retired
Separate newly

loadables

Separate status
updates

Retire old image Insert new images

Vendor

gateway

FIGURE 10.19 Communicating the main flow of events with a level 2 data flow diagram.

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 211

When such logic is too complicated to include in the standard flow of events diagram, designers will need to be move

these details to an alternative flow document, sometimes switching the format to a flow chart or a UML activity diagram.

Special Requirements

This section of the use case allows the systems analyst to describe important details that cannot be recorded easily on

the diagrams used for flow of events. For DW/BI modules, developers often use the special requirements section to doc-

ument design topics that can be addressed in a sentence or two. A common example is the action that a fact-table load

module should take when a lookup fails to provide a surrogate key for a dimension table record. Typically, EDW load

modules place a surrogate key value in the fact table that links to a pre-seeded dimension record indicating “unknown

value.” The need for a seeded record and its role as a default return value should be noted in a module use case’s

special requirements section.

Another common example is the restart logic that a given module should follow after an ETL run ends abnormally.

The systems analyst preparing the module use case might note in this section that the records loaded by the earlier,

failed ETL process should be removed at the beginning of the next run so that the load module can simply restart its

work at the top of the landing table without fear of duplicating target records.

A third special requirement frequently found in ETL module use cases is the desire of certain roles in the organiza-

tion to be notified when the ETL for a given portion of EDW data has finished processing. Frequently, different

managers monitor different areas of the warehouse. Order entry management cares most about conformed customer

dimension, for example, and product managers care only about loading the conformed product tables. A module use

case would spell out this notification pattern in the special requirements section.

Source-to-Target Mappings as Supplemental Specifications

The RUP templates include a supplemental specification section in which a designer can express early design details

specifying notions about how the application should be built. EDW teams use this section in particular for a standard

data warehousing artifact called the source-to-target map (STM). STMs specify how one or more columns in source

data tables will be merged into a single column on the target side. Some agile data warehousing teams do not employ

STMs because their programmers prefer to work directly with a product owner who can explain the necessary business

rules as they are coding a module. Just as frequently, however, teams include programmers who want only to code ETL

and are not comfortable filling an analyst role. The teams would rather program from a specification rather than hashing

out business rules with a subject matter expert. This preference is particularly common for teams involving subcon-

tractors for module coding, or when a language barrier may prevent the subject matter experts and programmers from

readily understanding each other. In such cases, the project leads can fill out a spreadsheet detailing transformation

rules, such as the excerpt shown in Figure 10.20.

Nonfunctional Requirements as Supplemental Specifications

Finally, the EDW designers can add a supplemental specification section to the module use case to record the nonfunc-

tional requirements for a given module. Again, the team leaders should consult the table of standard nonfunctional

requirements shown in Table 7.2 and the DAMA functional framework in Figure 4.6. For example, a manageability

requirement might prescribe that the given ETL module should send XML messages upon startup to a particular queue

so that particular data transform can be monitored and restarted when necessary by the administrators of the company’s

supply chain system. While reviewing the DAMA framework, the systems analyst might encounter the intersection

between “Reference and Master Data Management” and “Activities” and realize that the data steward in the Vendor

Maintenance Office should send the EDW a spreadsheet of authorized vendors weekly so that the warehouse can report

on purchasing compliance.

Many nonfunctional requirements are inherited from IT or DW/BI departmental standards, but each EDW module

can have several items deserving a nonstandard specification. For example, a module performing predictive analytics

may have a particularly difficult performance challenge and cannot meet the standard response time that the enter-

prise architecture group specified for data warehouses in general. Such discrepancies should be spelled out in the

supplemental specification section so that they can be discussed and tracked when the module enters into programming

and deployment.

212 PART | III Agile EDW Requirements Management

SUMMARY

The generic agile approach to managing requirements involves a useful hierarchy of epics, themes, and user stories, but

it relies exclusively on the input of the product owner. Because there are many reasons why the product owner might

perform poorly in authoring users stories, the technical members of an agile EDW team may well want to invest in a

parallel requirements discovery and analysis process. Moreover, product owners naturally focus on positive, functional

business requirements, leaving important notions such as negative, nonfunctional, and technical requirements largely

unaddressed. Agile EDW practitioners utilize an ERM process to prevent such gaps in their project definitions.

The ERM value chain consists of five streamlined artifacts borrowed from RUP. They have been streamlined so that

they represent 80/20 specifications and fit well within an agile development context. The team leaders of an agile EDW

engagement should selectively employ the ERM artifacts as needed to provide a second perspective on the product own-

er’s project backlog. The sponsor’s concept briefing outlines how the executives believe the company will make money

with DW/BI’s help. Stakeholder requests allows business departments to briefly describe what they find lacking in their

BI systems and how they would fix it if they were IT. The vision document allows the project architect to sketch a high-

level design for the application in order to garner buy-in from both business and the development team. A series of

subrelease overviews permits the project architect to record the mid-level details for a particular incremental version

of the application that the team is building. Finally, the module use case provides the system analyst a document in which

to record many technical requirements that programmers sometimes insist upon before they will start coding, especially

when there are complex system data transformation components involved.

With both the generic and the enterprise-capable requirements management approaches now defined, Chapter 11

discusses how to constructively intersect them and prioritize the user stories that result so that the agile EDW team will

have a solid project backlog to feed into its rapid, incremental development process.

Target table type:

Main Source:

Target Logic:

Source Table Source Column Target Table Target Column Transform Logic

- - - - - - Sales_Fact Sales_Fact_SID GET_SQNC("SALES_FACT")

- - - - - - Sales_Fact Insert_Process_ID ETL_PARM.ETL_PROCESS_ID

INTG_VW_SALES_LOAD SO_Nbr Sales_Fact Sales_Order_Nbr replicate

INTG_VW_SALES_LOAD Src_Sys_Msg_ID Sales_Fact OES_Tracer replicate

INTG_VW_SALES_LOAD Product_Class Sales_Fact Selling_Business_Unit replicate

INTG_VW_SALES_LOAD Src_Sys Sales_Fact Source_System replicate

INTG_VW_SALES_LOAD SOLI_Nbr Sales_Fact Line_Item_Nbr replicate

INTG_VW_SALES_LOAD SOLI_Qty Sales_Fact Line_Item_Qty replicate

INTG_VW_SALES_LOAD SOLI_Price_List Sales_Fact Line_Item_List_Price replicate

INTG_VW_SALES_LOAD SOLI_Price_Quoted Sales_Fact Line_Item_Sale_Price replicate

- - - - - - Sales_Fact Line_Item_Ext Line_Item_List_Price * Line_Item_Ext

INTG_VW_SALES_LOAD SO_Open_DTM Sales_Fact Process_Begin_Dtm replicate

INTG_VW_SALES_LOAD SO_Close_DTM Sales_Fact Process_Complete_Dtm replicate

- - - - - - Sales_Fact Sales_Cycle_Time Process_Complete_Dtm - Process_Begin_Dtm

INTG_VW_SALES_LOAD Line_Item_Prdct_Nbr Sales_Fact Dim_Product_SID Call LOOKUP_DIM_PRODUCT(Line_Item_Prdct_Nbr, ETL_PARM.AS_OF_DATE)

INTG_VW_SALES_LOAD SO_Header_Zip Sales_Fact Dim_Sales_Location Call LOOKUP_DIM_GEOGRAPHY("ZIPCODE", SO_HEADER_ZIP, ETL_PARM.AS_OF_DATE)

INTG_VW_SALES_LOAD SO_Header_Status Sales_Fact Dim_Sales_Status Call LOOKUP_DIM_MISCCODE("SALES_STATUS", SO_HEADER_STATUS, ETL_PARM.AS_OF_DATE)

INTG_VW_SALES_LOAD SO_Customer_Nbr Sales_Fact Dim_Sales_Customer Call LOOKUP_DIM_PARTY("CUSTOMER", SRC_SYS, ETL_PARM.AS_OF_DATE)

- - - - - - Sales_Fact Load_Reject_Cd if any DIM_*_SID <= 0 then Load_Reject_Cd || 'BAD_DIM^'

- - - - - - Sales_Fact Load_Reject_Cd if any Sales_Cycle_Time <= 0, then Load_Reject_Cd || 'BAD_CYCLE_TIME^'

- - - - - - Sales_Fact Insert_Dtm ETL_PARM.ETL_AS_OF_DATE

Single event fact table

View of sales transactions in the EDW integration layer, INTG_VW_SALES_LOAD, where UPDATE_DTM > ETL_PARM.AS_OF_DATE

Prepare record, check for defects

if defects, note defects in LOAD_REJECT_CD and insert into SALES_FACT_SUSPENSE

else insert into target

FIGURE 10.20 Example of a source-to-target map.

Artifacts for the Enterprise Requirements Value Chain Chapter | 10 213

Chapter 11

Intersecting Value Chains for a
Stereoscopic Project Definition

The two approaches to requirements discovery and analysis discussed in the previous chapters involve different drivers

and artifacts. The product owner drives the generic requirements management (GRM) value chain by authoring the stan-

dard set of agile artifacts: epics, themes, and user stories. Information technology’s (IT’s) project architect drives the

enterprise-capable requirements management (ERM) value chain through a set of artifacts that begins with a high-level

sponsor’s concept briefing and concludes with a subrelease overview, in addition to a few module use cases in those areas

in which the programmers need greater detail. These two sets of requirements will add up to more than the sum of their

parts. Combined, they should give the team a “stereoscopic vision” of the project, allowing the team to detect significant

gaps in the definition of the application when considered from the business perspective versus what it looks like to IT.

The process of considering a project from two directions does not occur spontaneously, however. The team must

make an effort to look through both eyes and deliberately scan the requirements for aspects that do not appear the

same. In order to make this scanning effort a dependable and repeatable process, agile enterprise data warehousing

(EDW) teams follow a particular train of thought and set of steps. Not only do these steps result in a crisp, prioritized

project backlog but also they prepare the leading edge of the backlog for immediate programming, double-check the list

of nonfunctional requirements, and provide materials for working with the project’s governance team.

INTERSECTING THE TWO VALUE CHAINS

With just a bit of effort from the agile EDW team leaders, the two agile requirements management value chains

described in the previous chapters will intersect well to generate a highly actionable project backlog of developer

stories. “Highly actionable” in this context signifies that

� the team believes the most important 80% of the project is captured by the existing stories;
� all of the stories on the backlog are clearly desired by the business stakeholders, not just the product owner;
� those stories occur in a reasonable order that takes into account value, risk, and dependencies; and
� the top of the backlog has just enough specifications to be ready for immediate agile programming.

Once the team has completed a good portion of both value chains, the project leaders should begin checking for

consistency and traceability between the two sets of artifacts.

Agile EDW’s Version of Requirements Traceability

Intersecting the two requirements value chains results in requirements traceability, an important technique for reducing

project risk. In general, “requirements traceability” is the ability to identify and document the lineage of each require-

ment, including its derivation and its allocation, and its relationship to other requirements [Brennan 2009]. In other

words, traceability allows project planners to confirm that every requested feature ended up in the application’s design

and that every designed feature started with a real business request.

Figure 11.1 portrays agile EDW’s version of requirements traceability. This graphic begins with the two value chains

introduced in Figure 7.10, in which the generic value chain runs vertically from top to bottom, and the enterprise value

chain runs horizontally from left to right. The epic decomposition framework offered to readers in Chapter 8 suggested that

epic stories should represent sponsor-level requirements, whereas themes should link to director needs, and user stories

215
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00011-4

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00011-4

should link to the business-level data validation objectives of managers and analysts. Following that framework, then, the

team should be able to trace between ERM and GRM in the pattern suggested by the arrows added to Figure 11.1. For the

top two levels of the generic value chain, confirming traceability means that the team can conceptually link

� every epic story on the product owner’s backlog to one of the competitive capabilities requested by the project

sponsors, as listed in the project architects’ sponsor’s concept briefing; and
� every theme in the backlog to a director-requested analysis listed in a stakeholder request.

To complete the traceability analysis, the team leaders attempt to run those links in reverse to verify that

� each of the new vice president-requested competitive capabilities is fully supported by the proposed set of backlog

epics; and
� each director-requested analysis is fully supported by the proposed set of themes.

This process of intersecting the results from two requirements management value chains should greatly assist the prod-

uct owner in refining the project backlog. When considering epic stories, should the team discover a “needle on a gauge

in the corporate cockpit” that is not addressed by an epic, the project architect can ask the product owner to investigate

how the project, with its current backlog, will address this requirement expressed by the sponsor. The opposite type of

discrepancy can occur, where the product owner has added to the backlog epics that do not connect to the gauge needles

in the corporate cockpit, as identified by IT’s ERM process. The project architect can state that either the team needs to

ask the sponsor to expand the project scope and update the sponsor’s concept briefing or the product owner needs to drop

that epic story. Either way, it is the logic of the situation, not IT, that guides the product owner to improve the accuracy

of the backlog, allowing the technical project leaders to avoid a conflict of opinions with their embedded business partner.

The dialog concerning gaps in backlog themes will be similar. The project architect can use the stakeholder requests

(SHRs) to guide the product owner in validating and polishing the theme stories on the project backlog. Themes should

represent new informational capabilities that achieve a set-based operation that sparks and tracks business actions by

the company’s staff. If the directors’ SHRs include an analysis not found on the backlog, the logic of the situation will

nudge the product owner to add themes to cover the discrepancy or provide the context for asking the directors to

expand the scope of their requests.

The team leaders need to change tactics slightly when it comes to confirming traceability for user stories. The ERM

value chain does not provide an independent list of business-level data validations that managers have requested.

Instead, the project architect has provided a subrelease overview, which, as discussed in Chapter 10, contains several

graphs depicting how the end users will be able to work with and benefit from the next release of the EDW. With these

graphics, confirming traceability is a matter of the project architect and product owner confirming that

� every user story can be linked to an end-user action or benefit depicted in one of the subrelease overview’s graphics; and
� the user stories that will be developed and delivered with the next subrelease will fully realize those illustrated

actions and benefits.

User
story

Sponsor’s
concept briefing

Stakeholder
requests

Vision
document

Module
use case

Epic story

Theme
story

Developer
story

A few

A dozen or so

A hundred or so

Many hundreds

Suggests a core set of...

Suggests a core set...

Guides subsetting
using...

As
needed

ERM value chain

GRM
value chain

Subrelease
overview

Intersect

FIGURE 11.1 Tracing requirements between value chains.

216 PART | III Agile EDW Requirements Management

The final step in this traceability process is to confirm the last level of the generic value chain, the developer story.

To achieve this, the team leaders need to simply scan the backlog of developer stories that will compose the next

subrelease and identify those that are complicated enough to merit a more detailed to-be description than the single-

sentence developer story provides. They can then confirm that the systems analyst has provided a module use case for

each of those developer stories. They might also confirm that each module use can be associated with a developer story

slated for in the next subrelease because if this is not the case, the systems analyst is building up an inventory of to-be

specifications that could easily go to waste if the direction of the project were to change.

Readers may have noticed that ERM’s vision document was omitted from the traceability check described previ-

ously. Vision documents will support much of the traceability described previously, but it is a high-level summary of

information from the sponsor concept briefing and stakeholder requests, so if the team has already confirmed links

from the backlog’s epics and themes back to those artifacts, including the vision document in a deliberate traceability

validation step will be redundant. Similarly, subrelease overviews derive from the vision document so that validating

support for all user stories against a proposed subrelease makes checking them against the vision document unneces-

sary. If the project architect has chosen not to provide subrelease overviews, however, then checking traceability of

users stories against the vision document is a good substitute.

Confirming traceability in the manner described previously may sound complex at first, but we need to remember

that in truth it means little more than checking the items on a list (the project backlog) against a few short documents

that contain a modest number of diagrams (the ERM artifacts). Taking the small amount of effort required to perform

this check will ensure that no major requirements have been overlooked and that an identifiable person in the organiza-

tion is eagerly waiting for every item that the team is about to program. Knowing that no gaps exist and that every

feature to be built will be used greatly reduces the risk that the team will spend weeks or months developing a system

that does not generate value for the company.

ADDRESSING NONFUNCTIONAL REQUIREMENTS

The previous discussion of traceability focused on predominantly functional needs of the users. In order to deliver

EDW applications with reasonable total cost to ownership, the project leaders will need to also incorporate nonfunc-

tional requirements into their planning activities. The last three templates for the ERM value chain contain prompts for

the project architect and systems analyst to capture the salient nonfunctional requirements as they consider the project

at increasingly finer levels of abstraction. However, those few short sections represent nonfunctional requirements dis-

covery more than careful requirements analysis. Agile EDW teams will have to invest some effort in analyzing non-

functional requirements if they are to avoid overlooking crucial considerations that will seriously undermine the

performance, overall value, and long-term viability of the application they are building.

The agile EDW project life cycle addresses nonfunctional requirements at many points and at many levels, making

it difficult to describe in a few short paragraphs. Instead, I touch upon this topic steadily during the remaining sections

of this chapter while describing other requirements management topics, such as embedding agile EDW development

into a larger application release cycle, prioritizing project backlogs, managing incremental precision, orchestrating

effort levels between team roles, and interfacing with project governance. Before beginning that extended treatment,

however, we need to first scope the discussion of nonfunctional requirements because it is easy to overload an EDW

development team with far more infrastructure work than it will have bandwidth to manage.

The Proper Problem Domain for Agile EDW

Addressing nonfunctional requirements for enterprise data warehousing projects is a tricky subject because the “enter-

prise” and “data” components of these projects border on a whole further class of corporate-level architectural require-

ments that the organization needs to manage assiduously. Topics such as enterprise information management, data

governance, enterprise architecture, and data architecture can easily smother an EDW development team with some

thorny, abstract challenges that often take months or years to resolve. The key to keeping agile EDW development teams

from losing their velocity to these enterprise-level topics is to understand how to properly allocate these additional respon-

sibilities between project teams and other IT planning groups.

Figure 11.2 shows one way that companies approach these areas of planning and implementation. Enterprise infor-

mation management (EIM) serves as an umbrella term incorporating all the work required to successfully manage a

company’s information as a strategic asset, including definitions, planning, staffing, managing repositories, and tracking

the results of that effort. EIM is only one aspect of enterprise architecture (EA), which, as mentioned previously,

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 217

comprises strategic plans for standardizing, integrating, and optimizing the company’s overall business processes for

delivering goods and services to customers. As a component of EA, EIM divides into two major areas of concentrated

effort: data governance (DG) and information management (IM) [Ladley 2012]. Data governance, broadly speaking,

focuses on EIM work that the business staff needs to pursue, especially the definition of shared information elements,

aligning them with corporate strategy, and the dispatching of staff from the business departments to monitor and

maintain data quality. Conversely, information management lies on the IT side of EIM and focuses on the design

and delivery of systems that enable the business staff to achieve the goals and objectives set forth by data governance

work. Information management necessarily involves some complex data management topics, including enterprise data

architecture, master data management, and corporate data quality applications. Note that in this approach, enterprise

data warehousing has an explicit and rather restricted role: It facilitates information management, but it is not responsi-

ble for defining the standards that have been allocated to the process of enterprise data architecture.

During the past 15 years of writing and presenting agile enterprise data warehousing at conferences, I have encoun-

tered many data professionals who believe the agile EDW method to be somehow incomplete or insufficient because it

does not instruct the developers on the creation of data governance programs and enterprise data architectures. These

people are absolutely correct that these organizational and architectural requirements need to be addressed. My question

to them is whether we will be going far beyond the true purpose of enterprise data warehousing if we include techni-

ques for authoring all activities that fall under EIM in Figure 11.2. It seems that agile EDW should be responsible for

no more than the objectives that non-agile EDW is expected to fulfill, which is only the activities shown single bubble

in the lower right of the diagram. Data governance and enterprise data architecture are broader challenges than EDW of

any type should be responsible for.

Data definitions
Data quality definitions
EIM staffing
Data management goals
Data qualitymeasurement
Data quality actions

Enterprise
architecture (EA)

Enterprise information
management (EIM)

Data
governance

Information management

Enterprise data
architecture

Data definition standards
Data identification standards
Data repository requirements
Data repository design

Data repository development
Data repository administration

Enterprise data
warehousing

FIGURE 11.2 Corporate-level planning functions that generate architectural requirements.

218 PART | III Agile EDW Requirements Management

When people suggest that an agile EDW method should provide guidance on data governance and data architecture in

addition to data warehousing, they remind me of a gentleman who interrupted one of my Agile Data Warehousing 101

classes many years ago. “The problem we have with whole-team development in our company,” he said, “is that manage-

ment has equipped the project rooms with these really old laptop computers that overheat in a couple of hours, crash, and

lose all our work.” He stared at me for a moment and then demanded, “What’s agile going to do about that?”

Of course he was right to be frustrated with his company’s programming workstations, but I believe he was mistak-

ing agile development techniques with some kind of silver bullet to be used against all forms of organizational insanity.

Silver bullets do not exist. Every discipline has its proper area of application, and project leaders must carefully apply

each technique to its appropriate domain of problems. EA, EIM, and IM are all challenges that must be addressed, but

to demand that agile data warehousing teams provide solutions for all of these disciplines is taking both data warehous-

ing/business intelligence (DW/BI) techniques and agile methods out of their proper problem domains. The responsi-

bility of enterprise data warehousing is to provide data repositories that support the organizational activities that data

governance and information management have identified as necessary. Agile EDW is no more than a very effective

way to pursue enterprise data warehousing. The fact that it is “agile” does not expand its focal problem domain beyond

that of EDW. It is true that agile EDW has a role to play in solving the challenges in the other problem domains, but it

will lead to disaster to consider it a full solution for all the larger challenges that surround an EDW project.

Agile EDW Supports Broader Architectural Activities

Table 11.1 depicts what I believe to be the proper positioning of agile EDW with regard to the question of identifying

and fulfilling the architectural requirements involved in enterprise data warehousing. The table lists a corporate hierar-

chy, all the way from the directors in the boardroom at the top down to the EDW project leaders working in the project

rooms with the developers. Each rung in the corporate ladder has responsibilities it must attend to directly. It also sup-

ports the functions of the levels above and below it. Much of this support can be characterized by whether a given level

is a creator or a consumer of a particular objective, whether it be a corporate strategy or an information architecture.

The company’s board of directors and the CEO, for example, create corporate strategy, whereas the CxOs consume

that strategy and strive to achieve the goals that it lays out. Similarly, companies should have dedicated teams to formu-

late enterprise architecture, set enterprise information management goals, and author architectures for enterprise data

and enterprise data warehouses. The proper role of the EDW project governance and EDW project leaders should not

be to develop enterprise data warehousing architectures. Instead, EDW teams should focus on delivering applications

that solve specific business problems while honoring the objectives provided by the architectural bodies above them,

including the company’s enterprise data warehouse architecture team. To ask the development team members to provide

these architectures as part of their work in delivering applications would not only distract them from their core responsi-

bility of solving specific business problems but also confuse their proper role as a consumer of an architecture with that

of being its author. It would be like asking the chief operation officer to decide whether her company’s primary objec-

tive for the next 5 years was to expand into new product lines overseas or simply find a buyer, given all the debt that

the corporation has acquired. That decision is properly left to the board of directors and is out of scope for a CxO. Of

course, the company could dump such a decision on its team of CxOs, but the risk of arriving at the wrong decision via

this route is too high to make that choice advisable.

Parties can still be involved with the work outside their scope of responsibilities, however. The CxOs do not silently

consume the corporate strategy and pursue it whether it is right or wrong. They provide feedback on its feasibility

because only they can test whether the goals are practical given the realities at work within their business units.

Similarly, EDW development teams are consumers of the architectural requirements authored by the EA, EIM, EDA,

and EDW architectural groups. In fact, some EDW project leads may well sit on those groups, but sharing personnel

does not make authoring enterprise architectures a responsibility of the development teams. Instead, the development

teams’ responsibility can only be to (1) implement the direction provided by the architectural groups, (2) provide feed-

back on whether those strategies are practical, and (3) make suggestions as to how to fill the gaps found between the

architecture and the real-world constraints encountered during system design and coding.

From this perspective, then, expecting the agile development team to author a host of enterprise architectural specifi-

cations before focusing on the needs of their immediate business customers is ludicrous. To expect them to author these

architectural goals during development—when they are struggling to manage functional requirements, application-

specific nonfunctional requirements, incremental design, database construction, and programming in a time-boxed envi-

ronment—is insane. Companies who lack the discipline to establish separate EA, EIM, DG, and EDA groups can try to

make those high-level specifications the responsibility of the agile EDW team, but in most cases the results will be

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 219

TABLE 11.1 Hierarchy of Enterprise Data Warehouse Planning

Role Party / Function Responsibility

Board of Directors
Protect and further the interest of the corporation's shareholders through setting the mission of the organization, acquiring financial resources, and
selecting and directing the company's chief executives.

CEO
Achieve the mission of the organization by setting strategy at the highest level, driving change within the organization, and presiding over the
entirety of the company's operations.

CxO
Implement the corporate strategy within major functional divisions of the company and maintain the effectiveness of day-to-day activities by setting
high-level policies, measures, and control mechanisms.

CIO
Enable the company's day-to-day operations through the acquisition, development, and management of a sound, secure, and cost-effective
information infrastructure.

Enterprise Architecture
Author and maintain strategic plans for standardizing, integrating, optimizing the company’s overall processes for delivering goods and services to
customers.

Enterprise Information Management
Author and maintain corporate policies, technologies, staff, and processes that maximize the benefits from the company's investment in data and
content [adapted from Ladley 2012, p 8].

Enterprise Data Architecture
Provide the desired model of the enterprise information management environment, its components, and their interactions, interrelating the people,
processes, technologies, and policies needed to manage and effectively use enterprise information assets [adapted from Ladley 2012, p 10].

EDW Director
Hire and direct resources in the acquisition, development, and administration of a data management platform capable of achieving the EA, EIM,
and data architecture objectives of the company.

EDW Architect
High level specification of the data warehousing components and their interactions with an emphasis on achieving EA, EIM, and enterprise data
architectural objectives plus corporate non-functional requirements such as performance, security, scalability, manageability, and extensibility.

EDW Project Governance
Setting and adapting the high-level goals and constraints for an EDW project, balancing specific functional objectives with the directives from EA
and EIM, plus directing and monitoring project timelines, inter-project milestones, and the use of resources and funds

EDW Project Leaders
Discovery and proper articulation of a project's requirements, crafting a design that delivers upon those requirements and honors the constraints
set by project governance, and the economical creation and implementation of software systems fulfilling that design.

[Ladley 2012] John Ladley, Data Governance , 2012, Morgan Kaufman.
My thanks to my colleague, Mark Mays, for providing an early version of this table.

Consumers
of DW/BI

Architecture

Creators
of DW/BI

Architecture

Consumers
of Corporate

Strategy

D
ire

c
tio

n

F
e
e
d

b
a
c
k

Creators of
Corporate
Strategy

disastrous. If the teams listed above the EDW project leaders in Table 11.1 do not exist, IT management needs to advo-

cate that these groups be formed. Perhaps some of the agile EDW team members can serve on these groups, but the

EDW team itself must be considered only a consumer and reviewer of the direction statements these groups should

provide. To ask agile EDW to also provide enterprise architectures in addition to reducing system delivery time,

increasing application quality, and solving the end user’s specific business problems is to overload the method. It is tak-

ing a solution out of context and placing it in an inappropriate problem domain.

SUPPORTING THE ORGANIZATION’S SOFTWARE RELEASE CYCLE

With agile EDW properly conceptualized as a consumer and reviewer of enterprise information architectures, teams

will need some guidance as to how their work patterns should support the larger planning efforts provided by the

higher-level architectural teams. This guidance will require first a clear model of the company’s release cycle for EDW

projects and then a notion of effort curves so that the project leaders can find the time to fulfill their responsibilities to

appraise higher-level architectures and suggest corrections. Properly aligning agile EDW efforts with the company

release cycle will also provide team leaders with the opportunity to invest in clarifying their application’s nonfunctional

requirements.

Phases Borrowed from Rational Unified Process

Large projects, such as constructing a major enhancement to an EDW, proceed in phases. These phases are designed to

address the organization’s need for risk management and the hand-offs of major deliverables. Although the names and

numbers of these phases vary slightly from company to company, every large organization with a corporate IT function

will have a “release cycle” that defines them. The agile EDW project leaders will have to support the release cycle that

their company follows.

The inner circle shown in Figure 11.3 portrays a typical release cycle. This depiction is a simplified version of the

cycle offered by the iterative method Rational Unified Process (RUP). Although RUP is an iterative method, its release

cycle has proven general enough that many companies that are thoroughly committed to the waterfall approach use its

terminology to describe their release cycles. For that reason, Given that flexibility, I will use the RUP release cycle as

an iconic approach to systems development whether or not a company employs an iterative method.

In the waterfall version of this release cycle, a project begins with the inception phase, typically driven by a project

architect with perhaps some business analysts to assist him or her. Their objective is to define the system and applica-

tion requirements just enough to provide an initial scoping of application features and a cost estimate, so that sponsors

can decide whether to pursue the project. Should the project get funded, the team staffs up for the elaboration phase by

adding the other leading roles, such as a data modeler, system analyst, and system tester. Management also provides a

few coders. The objective of elaboration is to address the key risks of the project and to prove out the application’s

architecture. Once the architecture is proven and the major risks are mitigated, the team moves into the construction

phase. Management staffs the team with its full complement of coders, and the team delivers all the remaining project

features. Finally, the team arrives at the transition phase, during which it collaborates with (1) business customers to

complete a user-acceptance test and (2) operations to plan the application’s deployment to production usage and an

initial period of operational support. At this point, the team can begin another release cycle for the application should

additional features be required.

Iterations �1 and 0 Fit into the Inception Phase

Agile EDW teams can begin adapting to a standard release cycle, such as the one described previously, by utilizing a

notion of “Iteration �1 and 0” to fulfill the role of an inception phase. As discussed in Chapter 5, Iteration 0 is a stan-

dard technique for agile teams to begin projects in general, and Iteration �1 is an adaptation that agile DW/BI teams

make to better support data integration work. As illustrated in Figure 5.6, Iteration �1 represents the time that a project

architect needs to prepare guidance for his or her team’s data modeler and system analyst. Iteration 0 creates time for

those two roles in turn to author 80/20 specs for the programmers concerning the modules they will build during

Iteration 1.

In theory, the specifications resulting from these two preparatory iterations should also include just enough whole-

project information to allow the team to incorporate good architecture and nonfunctional requirements into the design

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 221

of the modules that programmers will code during Iteration 1 and beyond. Calling these two predevelopment periods

“iterations” is a bit of a misnomer, however. On many projects, the team leaders need significantly more than a standard

iteration time box to envision the application as a whole and complete the needed guidance, even at an 80/20 level.

Given the two requirements management value chains described in this part of the book, we can paint a more

detailed picture of the work that occurs during these predevelopment iterations. Figure 11.4 depicts the ERM and GRM

artifacts to Iteration �1 and 0. The project architect’s goal for Iteration �1 is to articulate a whole-project vision. That

work is accomplished with the first four artifacts of the ERM value chain. The sponsor concept briefing and stakeholder

requests provide the discovery work needed, and the vision document and the first couple of subrelease overviews

represent the project architect’s requirements analysis work.

Iteration 0 provides the opportunity to connect the project architect’s guidance to the first set of specifications for

the programmers. Programmers need a crisp, reasonably complete backlog down to the developer story level in order to

understand the work ahead. They will also need physical models for the relevant portions of the target database, source-

to-target maps (STMs), and module use cases for whatever components involve complex business rules. The project

architect, data modeler, and systems analyst can collectively provide these artifacts as a reasonable set of objectives for

Iteration 0. Combined, Iterations �1 and 0 fulfill the goals of the release cycle’s inception phase because they position

the team to begin at least the elaboration work, during which the team will address the project’s greatest risks.

Figure 11.3 also lists a first project estimate as an output from the inception phase. The team leaders can actually

derive two estimates from the requirements management artifacts listed previously. The vision document positions the

project architect to draft a rough order of magnitude estimate or “T-shirt estimate” (�25 to 150% [Project

Management Institute 2013]). Later, the team can employ an early version of the project backlog to assign story points

to developer stories and then calculate a first current estimate, which will serve as the basis for a budgeting estimate

(�25 to 110% for that specific collection of stories).

Fig. TRC: Typical large project release cycle

It –1

It 0 It 1

It 3

In
ceptio

n

Tr
an

si
tio

n

C
on

st
ru

ct
io

n

D
iscovery

&

elaboration

Delivered

system increments

Release

cycle

It 2

GRM artifacts
Initial epic trees
Initial project backlog
Initial current estimate

Iteration 1 80/20 Specifications
Data model
Source-to-target mapping

ERM artifacts
Sponsors concept briefing
Stakeholder requests
Vision document

FIGURE 11.3 Typical project release cycle used by large companies.

222 PART | III Agile EDW Requirements Management

Arriving at a Predevelopment Project Estimate

Figure 11.4 qualified the budgeting estimate at the end of an inception phase as a “predevelopment current estimate”

because the team leaders will compile it before programming gets underway with Iteration 1. Once development begins,

they will prepare many more current estimates, one at the conclusion of each programming iteration. The predevelopment

labor forecast will pose a unique challenge, however, because the team will be lacking two crucial pieces of information

needed for an accurate current estimate: story points on the stories of the backlog and a team velocity. Agile EDW practi-

tioners call this the “green team estimating problem,” which vexes every new agile data warehousing program.

Fortunately, agile teams have created a means for overcoming this problem. The practice entails some risk if the estimate

provided is taken too seriously, but it does allow project leaders to offer business stakeholders a whole-project forecast of

cost and duration that all managers naturally desire at the start of a project.

As was illustrated with Figure 5.4, teams generate current estimates at the end of each iteration. These current esti-

mates are easy to calculate at the end of an iteration because the team needs only to divide total story points for stories

still awaiting development by the team’s current “velocity,” the number of story points the team just delivered during

the past iteration. The result indicates how many additional iterations will be needed to complete the programming.

If the developers are progressing at rate of, for example, 20 story points per iteration, and they have 200 points of

developer stories ahead, one can easily project that they will need 10 more iterations to finish the programming. This

forecasted project duration can then be converted into estimated programming cost by multiplying the projected number

of iterations by the labor cost incurred during a sprint. Estimating project duration before development iterations have

started is difficult, however, because the developers have not yet programmed a single story, so they have no velocity

measurement to use. Moreover, the team does not have even story points assigned to the items on the backlog yet.

As covered in my previous books, ongoing agile teams can estimate the story points of a requested module by envisioning

the work it will require and comparing that effort to the work they have already invested in two or three other modules that

they have recently delivered. These “reference modules” allow them to estimate by comparison the level of effort needed for

any item on the project backlog ahead. For example, if in the last iteration, the account dimension module was 3 story points

of work and the customer dimension was 13, then the team could well estimate that the effort required to deliver the geogra-

phies dimension, which feels like it falls between the two reference modules in terms of difficulty, will be 8 story points.

Iteration –1
(Project architect & business analysts)

Iteration 0
(Add Product Owner, Data Modeler &
System Analyst)

Sponsor’s
concept briefing

Stakeholder
requests

User
story

Epic story

Theme
story

Rough order of
magnitude estimate

Vision
document

Pre-development
current estimate

Developer
story

Data
models

&
STMs

Requirements
discovery

Requirements
analysis

Iteration 1
module

use cases

Subrelease
overview

Intersect

FIGURE 11.4 Fitting RM artifacts into the pre-development iterations.

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 223

At the end of the inception phase, the team will have an initial backlog of stories that need programming; however,

the team members will be “green”—that is, lacking any programming experience that would give them the reference

modules needed to perform story point estimation. To provide an initial estimate of labor required for the project, then,

the team will need to create reference modules and a team velocity from thin air. Throughout the years, agile EDW

teams have devised a way for green teams to “back into” story point estimates for reference modules and a velocity. Of

course, this technique provides only a rough estimate, so team leaders should carefully manage the expectation that

stakeholders form when they receive this first labor forecast for the project.

Figure 11.5 shows the steps that the leaders of a green agile EDW team typically follow in preparing a project’s first

current estimate. In essence, the developers must surmise a reasonable number of story points for a pair of stories they

Select a small and a medium-large
story to serve as references

Prioritized
backlog

Estimate tasks
in labor hours

Enumerate developer tasks
within the reference stories

Reference stories
with story points

Guestimated velocity
in estimated labor hours

Project’s first current

estimate

Label smallest
story labeled as
2 story points

Calculate medium-large story’s story points
based on its estimated labor hours

Calculate how many of the
reference stories should fit in one
time box based upon labor hours

Set time box to number of person
hours available in one iteration

divided by three

Guestimated velocity
in story points

Estimate remaining backlog in story
points using reference stories

Bracket stories on backlog by the team’s
guestimated story-point velocity

Multiply to calculate
project duration and cost

Guestimated number
of iterations

Calculate labor costs per
iterations

Chosen
iteration length

FIGURE 11.5 Preparing the pre-development estimate for a new team.

224 PART | III Agile EDW Requirements Management

plan to build, and then use the story points on those hypothetical reference stories to not only story point the rest of the

backlog but also guess what the team’s velocity will be once it starts programming. The first step in this process is to

find on the backlog a couple of developer stories for each layer of the reference architecture that would be good bench-

marks for estimates if only they had been already developed. A good pair of benchmarks for a given layer of the refer-

ence architecture would include a story that seems smaller than the rest and another that seems medium to large.

To calculate story points for each of these hypothetical benchmarks, developers will need to identify the develop-

ment tasks implicit in each story and then estimate that work in labor hours, yielding a total labor hours for each story.

Arranging the benchmark stories from smallest to largest based on these estimated labor hours, the team awards the

smallest story an arbitrary “size” of two story points, for example. The developers then use the ratio of the labor hours

of each remaining benchmark story to that of the smallest story and thereby derive story points for the remainder

of the reference stories.

Agile teams allow themselves to use only a few numbers in estimating story points, typically the Fibonacci series

(0, 1, 2, 3, 5, 8, 13, 21, 34, . . .). Using a sparse collection of possible numbers prevents developers from splitting hairs

during estimating—that is, wasting time arguing whether a particular story is a “5” or a “6.” Teams may have to revisit

the story points they have derived for their hypothetical reference stories so that they will align with the sparse number

scale that the teams wish to use. Once they have story pointed a set of reference stories using their sparse number scale,

the developers can then employ these reference stories to estimate the rest of the project’s backlog using estimating

poker [Rubin 2012].

The story points on these hypothetical reference stories will also allow the developers to guestimate a reasonable

velocity for the team. First, they calculate how many work hours will exist for a standard iteration, usually by multiply-

ing the length of the workday by both the number of developers and the number of workdays in the development time

box they have chosen. They then adjust this number by a “get real” factor, typically dividing it by three, to arrive at the

number of estimated programming hours that the team will probably be able to complete during one iteration. This

number represents a reasonable velocity in labor hours for the team to shoot for during its first iteration.

The project leaders then take stories from the backlog, identify the development tasks for each, and estimate those

tasks in labor hours. They continue to add stories to the iteration backlog until the total estimated labor hours matches

the reasonable labor-hour velocity that they calculated previously. They had already assigned story points to these stor-

ies, so once they add up the story points for the stories in the iteration backlog, they will have a reasonable velocity for

Iteration 1 measured in story points. At this point, the team needs only to apply that guestimated velocity in story points

against its project backlog to forecast how many development iterations it will need to complete the project.

Some people might think it is too severe to divide the work hours available during a development time box by three

in order to calculate a likely velocity for the team in labor hours. Teams that skip this reduction step unfortunately

assume that the developers on the team will be able to program during every hour of the workdays available within an

iteration. In practice, however, developers lose considerable programming time to emails, phone calls, and informal

communications between teammates. Moreover, programmers can never anticipate all the work that programming a

given module will require. As they start work on each one, they uncover new development tasks, especially during early

iterations in which the team will be challenged by issues involving unfamiliar tools and unconfigured platforms.

Finally, teams should be careful with their first current estimate because corporate managers may well use that number

against them for the remainder of the project. Given that the organization will tend to remember their initial estimate,

developers are wise to understate what they think they might be able to accomplish. All these reasons combine to make

“divide by three” a reasonable adjustment when guessing a team’s likely velocity during Iteration 0.

Managing the Predevelopment Estimate

Rather than a single deliverable, the agile EDW team leaders should realize that providing the predevelopment project

estimate to project governance is just the beginning of an information flow that they will have to maintain. If not soon

supplied with yet further current estimates at the conclusion of Iteration 1, and 2, and so on, project governance will

adopt the predevelopment forecast of labor and duration as the estimate for the project. Undoubtedly, business stake-

holders will interpret the only current estimate they have received as the EDW team leader’s promise to deliver X scope

of features by Y date, turning the entire endeavor into yet another waterfall project with a high risk of failure.

The team needs to actively submit current estimates at the conclusion of each iteration and emphasize that each

is the most recent—and therefore the only accurate—appraisal of the time and development labor needed to finish

the project. Business and IT managers who are new to agile will be unreceptive to updated estimates at first and

may even criticize the agile EDW team for its inconsistency. In the projects I have led, two arguments have helped

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 225

me move project governance past this counterproductive mindset. First, the predevelopment estimate was compiled

when the team and its business partners were at the peak of their ignorance regarding the level of effort the project

will require. Clinging to an estimate made by uninformed people is foolhardy when better forecasts exist.

Second, to refuse to factor the new current estimates is to remain deliberately blind to the latest information. That

practice is tantamount to buying a new car with only an idiot light for a fuel gauge. The light will remain dark as one

drives relentlessly into the desert and then suddenly come on when the gas is gone and the driver is hundreds of miles

from any help. Just as drivers will make better decisions if they rely on incremental fuel gauges in their cars, project

governance teams will be able to better keep their project scoped and funded if they will accept an honest reappraisal of

remaining effort and duration at the end of each iteration.

Completing the Release Cycle

With the conclusion of the inception phase, agile EDW team leaders need to turn to their attention to moving their

developers expeditiously through the elaboration phase of their company’s application release cycle. As depicted by the

outer ring in Figure 11.3, Iterations �1 and 0 make up the inception phase as expected. The elaboration phase spans the

first few development sprints, starting with iteration 1. The RUP method advocates an elaboration phase in order to

give the team an opportunity to (1) draft a technical architecture for the application, (2) demonstrate its appropriateness

for the project, and (3) mitigate the project’s greatest development risks [Rational Software 1998].

Naturally, it is impossible to say a priori how many iterations will be required to prove an architecture and mitigate

serious risk. Agile EDW teams usually believe they have achieved “just enough” risk mitigation within one to three

iterations, depending especially on the length of the development time box they are using. The developers will need to

estimate the actual number required once they have had a chance to consider the project vision provided by the project

architect as part of the inception phase. The outer band in Figure 11.3 depicts a project for which the team decided that

two iterations would suffice, and those two sprints are shown fitting into the elaboration phase accordingly.

The remaining development iterations make up the project’s construction phase. These sprints are followed by the

work of promoting a subrelease into production during an iteration that constitutes the transition phase. This promotion

iteration typically involves user validation, system testing, and promotion activities, which will be discussed in the next

part of this book when we take up quality assurance.

TECHNIQUES FOR THE ELABORATION PHASE

After the opening inception phase, the RUP release cycle begins an elaboration phase in which the goal is to both iden-

tify a viable architecture for an application and mitigate the major risks of a project. Agile EDW practitioners can draw

from two techniques to accomplish this phase of work quickly and effectively.

Choosing Developer Stories for the Elaboration Phase

RUP and traditional project management methods actively assess a project’s work breakdown structure for risk [Aked

2003]. Agile EDW project leaders should emulate this practice and appraise their project backlogs accordingly in order

to identify those stories to include in the elaboration phase of a project. Table 11.2 depicts a simple framework for cal-

culating the risk represented by a collection of developer stories. The risk of a developer story is simply the product of

the points awarded to it based on three considerations: how likely the risk is to occur (its probability), the damage it

will cause if it does occur (its impact), and the difficulty the team will have in judging whether it has occurred

(its undetectability). Developer stories with the lowest probability, impact, and undetectability receive points that multi-

ply out to 1. Stories with the highest degrees of these considerations multiply out to 27. Some teams do not employ the

undetectability consideration, in which case the risks scores will range from 1 to 9.

Before scanning the backlog for risk, the team leaders decide what score indicates a hazard that deserves assiduous risk

mitigation. Usually, the threshold is 9 or greater (when using all three considerations), which means that the project leaders

will leave to the normal development process risks with medium or lesser levels of probability, impact, and undetectability.

Using this risk assessment framework, the project leaders start the elaboration phase by working through the back-

log, calculating the degree of risk that each developer story represents. The team might evaluate user stories and entire

themes in a similar manner to determine if any of them stand out as particularly risky. Stories with risk points exceed-

ing the preestablished threshold will be moved upward in the backlog so that they will undergo development during the

226 PART | III Agile EDW Requirements Management

elaboration phase. Given the dependencies between stories on the backlog, some work items with under-threshold risk

will also travel upwards on the backlog as companions to the high-risk stories. Later, we discuss the process of prioritiz-

ing a full backlog for multiple considerations, including risk.

Proving Out Architectures Using a “Steel Thread”

RUP practitioners advocate a further technique that agile EDW teams will find very helpful during the elaboration

phase of their projects. Given a typical EDW project’s complex mix of functional, architectural, and nonfunctional

requirements, how can a team know that the programming architecture, tool set, and platforms chosen for the project

represent a workable combination? Agile EDW teams can answer this by constructing a “steel thread”—that is, by

programming a single small line of information services all the way from the landing area to a front-end dashboard.

As explained to me by RUP practitioners, the name of this technique derives from the construction of suspension

bridges, such as the Golden Gate Bridge in San Francisco. The roadbed of these bridges hangs from massive cables that

stretch between piers set in bedrock, often miles apart. Those massive cables were not delivered ready-made and then

lifted to the appropriate height but, instead, had to be assembled, in place, one strand of steel at a time. Once the first

small thread of steel was situated along the correct arc, the construction crews used a special winding device that would

travel along the partially completed cable, back and forth between the piers, laying down one wire after another until

the full cable was complete.

This anecdote immediately brings one question to mind: Where did the original steel thread that the winding

machine began following come from? Someone had to start at the top of the first pier, attach the starter strand, and then

climb down, travel by boat to the next pier, and climb the second tower to put the first steel thread in place. Once the

first steel thread was situated, the rest of the work of building the full cables could proceed at pace.

To prove out the project’s architecture, then, the agile EDW developers need to identify a small slice of functiona-

lity that will travel from source extract to business intelligence dashboard. They need to think through their design and

TABLE 11.2 Risk Calculation Framework and Example

Reduce number of loss events

Loss events by location

Harmonized locations 3 2 2 12 Y
Different geocoding between bus units
Translation table

Harmonized events

Stage transaction files 3 3 2 18 Y
XML data without XSD schemas
Change request to vendor

Integrate transaction / source 1 2 1 3 6

Increase cross selling

Call lists for customer with only 1 product 1 3 2 6

Lower customer churn

List of customers at-risk

At-risk profiles 1 2 2 4 N

Calculate at risk scores 3 1 3 9 Y
Move call to external procedure into
the steel thread subrelease

Epic
Theme

User Story
Developer Story Action

Risk Description /
Mitigation Plan

Probability

Im
pact

U
ndetectability Risk

Level

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 227

pick the path of this steel thread carefully so that it touches on as many of the doubtable components in the architecture

as possible without involving too large a set of developer stories. If possible, the team should strive to select developer

stories that not only prove viability of the project architecture but also add up to a valuable business service so that the

product owner can appreciate from a business perspective the deliverables of the elaboration phase when reviewing

them during the project’s first few user demos.

For some projects, the steel thread will involve a majority of technical issues so that the team may need the product owner

to allow it an “architectural sprint” that everyone understands will provide very little for an end user to appreciate. Such

architectural sprints should be kept to a minimum, however, because they violate the central agile tenet of constantly deliver-

ing value to the customer. By definition, a steel thread for EDW projects brings at least a few data elements to the end-user

dashboard, so with a little imagination, project leaders should be able to include in this work multiple end-user features.

Viewing the previously discussed notions through the lens of requirements management, then, team leaders can antici-

pate that the steel thread will somewhat impact their project’s starting backlog. The risk mitigation analysis elevated the

riskiest stories in the backlog. The steel thread analysis then rearranges the backlog further to ensure that the opening

iterations not only address the technical concerns over risk but also add up to something of appreciable value for end users.

PRIORITIZING PROJECT BACKLOGS

Agile development teams aspire to be responsive to the changing business conditions faced by their business customers.

For that reason, they often collaborate with their product owners to re-sequence the stories in the project backlog at the

end of each iteration so that, as much as possible, the stories that are most important at that moment enter development

during the next sprint. In addition to business value, the risk inherent in a developer story will also affect the point at

which it will be developed during the project, as discussed in the previous section.

Throughout the years of practicing agile EDW, my colleagues and I have found several other criteria for properly

sequencing the stories on project backlogs. Some involve business considerations, whereas others are more technical in

nature. So that the reprioritization process works for both the business and the technical aspects of the project, agile

EDW project leaders should negotiate up front with their product owner and project governance council the criteria to

be employed while sequencing a backlog and their relative importance. To provide a starting point for such a conver-

sation, the following list names the criteria from which my colleagues and I draw upon for the project teams we lead, in

the order that we typically apply them.

Many of the following steps assume that project leaders are considering their backlog in current estimate format, illus-

trated in Figure 5.4. That format shows the sequence of developer stories for the project, the story points for each story, and

brackets grouping the stories into the iterations during which they will be developed. Those brackets are sized to match the

current velocity of the team, as measured by the number of story points delivered by the last iteration completed.

Priority 1: Business Value

True to our agile mission to constantly deliver value to the customer, the business value of a particular story is the first

criteria we use to sequence the items on the project backlog. It is hoped that the value is expressed in terms of value

points resulting from the value accounting process that I recommended in Chapter 8, but at a minimum, the product

owner can simply sort the backlog by the importance that he or she places on each one.

Priority 2: Predecessor/Successor Dependencies

After business value, the most important consideration in a data warehousing project has to be the technical dependen-

cies that exist between stories. Dimensions must exist before fact tables are loaded, for example, otherwise, the product

owner and other users will not be able to perform analytics on the measures provided by the data warehouse. During

this step, the technical members of the project leadership team need to push the dependent stories lower in the backlog

while doing their best to honor the business priorities previously established by the product owner. This step provides a

valuable opportunity, by the way, for the project architect to validate his or her subrelease plan with the developers on

the team. For example, if a few fact tables are slated for delivery before all the dimension tables have been created,

does the delayed arrival of the various dimensions create more rework than is justified by the benefits of providing cer-

tain facts earlier in the project? The project architect can also discuss with the developers shortcuts for delivering value

to the customer, such as backfilling the architecture, a technique that is discussed in the next part of this book.

228 PART | III Agile EDW Requirements Management

Priority 3: Architectural Uncertainties

The previously mentioned priorities will yield a technically rational backlog that reflects what the business requires of

the data warehouse. At this point, the technical team leaders should employ the risk assessment technique discussed

previously to identify the developer stories that may seriously impact the project if they cannot be delivered as planned.

At the start of the project, the riskier stories should be elevated so that they fall into the first few iterations that will

make up the elaboration phase of the release cycle. These stories will need to be moved as a block with the other stories

on which they depend, so sequencing for risk must occur after predecessor/successor dependencies between stories

have been identified. After the team completes the elaboration phase, high-risk stories should be far fewer in number.

Conditions may still change, so re-sequencing by risk will be necessary to a small degree throughout the project.

Priority 4: Meeting Interproject Milestones

Once the backlog addresses the major issues of value, dependencies, and risk, team leaders can consider rearranging

large blocks of stories to better meet the requirements of other projects that wish to exchange data or services with the

enterprise data warehouse. The current estimate clearly shows the iterations in which certain features will be

programmed, making it easy to deduce whether the requested capability will be developed and online by a given date.

If a large block of stories must be pushed upwards—that is, earlier in time to meet an external milestone—the team

leaders will have to revisit the first three steps to ensure that business, risk, and architectural priorities are still being

intelligently addressed by the resulting development schedule.

Priority 5: Smoothing Out Iterations

As a team brackets its developer stories for upcoming iterations, some items at the bottom of each bracket may be a

few story points too big to fit perfectly into that iteration. Rather than splitting the story between iterations, teams can

more simply swap that story with a more appropriately sized story further down in the backlog. The product owner

must agree with this recommendation or propose another substitution that he or she would like better.

Priority 6: “Funding Waypoints”

Agile EDW projects often span fiscal years and thus might lose funding when the budgets are prepared for the next

year. Team leaders should locate on the current estimate the iteration where the fiscal year will end, and they should

ask the product owner if any story below that cutoff is one that end users will absolutely need to have. Often, the prod-

uct owner will find a few stories toward the bottom of the list that, although low in overall importance, are still essential

for the system, such as the module for expunging transactions that have exceeded the warehouse’s data retention period.

In order to play it safe, the product owner may well wish to elevate these stories above the fiscal year cutoff and then

push a corresponding number of story points for other stories below that boundary line.

Priority 7: Resource Scheduling

Finally, the order of stories on the backlog must be adjusted to reflect resource availability. If the BI developers

will not be available for 4 months, for example, it makes no sense to have front-end stories occur before their

arrival. Project leaders should place stories with missing resources lower on the list in order to accommodate the

given constraints.

MANAGING INCREMENTAL PRECISION

Once the agile EDW project leaders have properly intersected the GRM and ERM value chains for requirements and have

completed the backlog prioritization process described previously, they will possess a solid backlog for their project. They

will be able to story point the entire backlog and generate a current estimate by which they and other project stakeholders can

understand the arc of the coming months of labor and track the team’s steady progress. However, the fact that a backlog is

well organized does not imply that the project’s stories will be equally actionable. Any story more than a few iterations away

may eventually be dropped from the backlog as business conditions change or when one of the project leaders discovers an

easier way to achieve the same business goal. To minimize the risk of wasted effort, then, the team should have the leading

edge of stories ready for development but should leave more vague those that will not be programmed until much later.

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 229

The variable level of precision occurring within the requirements expressed in the project backlog has to be deliber-

ately controlled. A distant story may be vague now, but in a few months, when it enters development, the programmers

will demand clear instructions if they are to code it accurately. Although the details required for coding a module will

depend on the particular programmers assigned to a team, the list of possible specification artifacts is quite extensive,

as one can see by considering the templates for the subrelease overview and module use case presented in Chapter 10.

These specifications cannot be provided spontaneously, and therefore project leaders need to plan to steadily enrich the

documentation available for a given story as it approaches the top of the backlog. At the start of a project, team leaders

should agree upon a repeatable pattern for progressively elaborating the guidance accompanying a story. Besides

facilitating effective programming, the team’s incremental specification approach should also create the opportunity

for project leaders to address the nonfunctional requirements relevant to the upcoming modules.

A Framework for Visualizing Progressive Requirements

The fact that agile EDW teams allow distant stories on the backlog to be vague until they are truly needed harks back

to the notion of accuracy versus precision introduced in Chapter 7. When the product owner authors a user story, the

developers want that story to both possess business value and comply with the stated purpose of the application. But

until the planning day in which the associated developer stories will be coded, the programmers could not care less if

their technical leaders understand the technical details of a given user story. In short, the developers will insist on

accuracy in the backlog’s stories, but they can wait for precision.

For the team leaders such as the data modeler and the systems analyst, precision is not a quality they can provide

overnight. The business rules and data structures involved in a single developer story can take days to articulate. Often,

they will need time to research the impact of many nonfunctional requirements as well. For these reasons, the project

leaders should employ a clear process for progressively elaborating the requirements of user and developer stories as

they draw nearer to their day of programming.

Table 11.3 shows one approach to managing progressive requirement elaboration within an agile EDW project. This

frameworks knits together the many notions regarding requirements discussed in the past three chapters and locates all

the artifacts we have examined within a repeatable process. Focusing on the artifacts, we can see that most of the ERM

value chain—from sponsor’s concept briefing to subrelease overview—occurs in the first two rows. The requirements

process then switches over to the GRM work of authoring an initial set of epics, themes, and user stories on row 3. The

remaining ERM artifact, the module use case, can be found at the end of requirements analysis on row 5. The artifacts

from both these value chains are highlighted in heavy script to make them easier to find.

The structure of the framework corresponds to many of the dimensions of requirements management that have been

examined in this part of the book. The artifacts occur in the shaded portion in columns 4�9 in Table 11.3. The rows of

this area reflect the deepening precision in the requirements, whereas the columns reflect temporal sequencing. A label

is provided for each level of precision in column 3, although readers are invited to rename these should they think of

terms that better describe the degrees of elaboration achieved. In general, the process of progressive elaboration is

reflected by a diagonal movement from the upper left to the lower right, as indicated by the arrow.

Starting with the row labels in column 1, this framework distinguishes between requirements discovery, require-

ments analysis, and design, showing that requirements discovery transitions into analysis as the epic stack becomes

steadily more complete in row 3. It can also be seen where business requirements progresses into technical requirements

as the progressive elaboration moves into row 4.

In row 7, the framework lists the software engineering phase that the artifacts achieve. Immediately below that row

is listed the role on the team that typically takes the lead with each set of artifacts. Taken altogether, this framework

provides a handy reference to the crucial questions of who, what, and when within the domain of agile EDW require-

ments management.

The Freezer, Fridge, Counter Metaphor

The last row in the agile EDW requirements management framework describes “storage” and reflects a simple meta-

phor that many teams with which I have worked like to use in order to more easily communicate the progressive elabo-

ration pattern to which they have agreed. The metaphor describes the journey of a package of frozen food as it makes

its way from the freezer onto your kitchen cooktop [Rawsthorne and Shimp 2011]. This journey begins for an agile

EDW requirement when a product owner first articulates a user story and the project architect can vet that it fits within

the spirit of the application, as expressed in the project’s vision document. The project architect also analyzes how the

230 PART | III Agile EDW Requirements Management

TABLE 11.3 Progressive Requirements Elaboration Pattern

Col 1 2 3 4 5 6 7 8 9

Row Activity Orientation Precision

1
Requirements

Discovery
Notional

SSCB

SHR

Sponsor's Concept
Briefing

Stakeholder's Request

2 Scoped VDoc
SRO s

(Subrelease Plan)

Vision Document
Stub Release Overview

70%

Complete

80%

Complete

95%

Complete

4
Requirements

Analysis
High Level

LDM @ Key

Integration Points 80/20 LDM

BR Sketches

DW Architecture

NFRs

Logical Data Model
Business Rules
Data Warehouse
Non-Functional
Requirements

5 Actionable

Data profiles

80/20 PDM

MUC s (STMs)

Physical Data Model
Module Use Case
Source-to-Target

Mapping

6

Remaining PDM

Whiteboard DFD

Pseudo code

Test script

Coded Modules

Physical Data Model
Dataflow Diagram

7
Requirements

Analysis
High Level Design Detailed Design

8
Product Owner &

Project Architect

Project Architect,

Business Analyst,

& Data Modeler

Data Modeler &

System Analyst

System Analyst

& Developers

9 Freezer Fridge Countertop Cooktop

P

Queued

"Storage" >

Project Architect & Business Analysts

3

Who >

SWE Phase >

Business

Facing

(Business

Requirements)

Technology

Facing

(Technical

Requirements)

Requirements Gathering

Design & Development

(pursued simultaneously during development

iterations)

User & Developer Stories

within an Epic Stack

Abbreviation Meanings
Artifacts

(integration &
presentation

layers)

user story will intersect with the EDW’s reference architecture and generates a starter set of developer stories. The data

modeler then considers the impact that this set of developer stories will have on his or her logical data model (LDM),

especially the key integration points that will connect its data to the subject areas already populated in the warehouse.

If this user story is placed at the bottom of the backlog, development will not occur soon, and the story needs no further

requirements elaboration. We say that the team has placed this story in the freezer for long-term storage.

As the time for coding approaches, the project architect realizes that the story needs to acquire greater clarity regard-

ing logical data modeling, business rules, and the impact of nonfunctional requirements. Thus, the architect places the

story into the team’s pipeline for the data modeler and business analyst to begin working on. The data modeler will

draft the attributes for the relevant entities of the logical data model that will support the user story while leaving the

least important 20 percent of the attributes unspecified. The data modeler will also invest effort to comply with the non-

functional architectural requirements received from external bodies, such as enterprise information management,

enterprise architecture, and the enterprise data warehouse architect. At this point, the team has completed high-level,

technical requirements analysis, and we say that the story has moved from the freezer into the fridge.

One or two iterations before the programmers will start coding the developer stories for this product owner

request, the system analyst will begin data profiling the source data and the data modeler will draft an increment to

the physical data model for the most important 80 percent of the attributes. Once the data modeling is complete, the

systems analyst will document the transformation logic, at least the derived columns implied by the story, placing

these specifications in an STM for the programmers to follow. At this point, we say that the story has moved from

the fridge onto the kitchen countertop, ready for the developers to throw it in a pot and place it on their cooktops for

final transformation into a meal.

EFFORT LEVELS BY TEAM ROLES

Table 11.3 focuses on the progressive elaboration of a single requirement. It lists the objectives that requirements work

should achieve, but it does not convey the overall effort required from project leaders during requirements management.

These demands will peak and ebb at different times for the various roles on a team as the work of defining a project,

and later a given iteration, progresses through the software engineering disciplines such as requirements and design.

Teams can visualize the expected demands on each teammate using effort curves. These charts allow project leaders to

better plan resource acquisition, communicate expectations, and, just as important, budget time for each role to address

the project’s nonfunctional requirements.

Visualizing Requirements Management Demands with Effort Curves

Figures 11.6 and 11.7 portray the labor time that the typical agile EDW project requires from each role. These curves are

analogous to the RUP whale charts mentioned in Chapter 3 and represent the level of effort required from a given role at

a given time in the project. Figure 11.6 focuses on the roles of the project architect and the product owner. The second

drawing shows the pattern of involvement expected from the remaining roles on the team. The columns of the graph iden-

tify the iterations during which the work should occur, starting with �1 and 0. In both figures, a lighter block suggests the

portion of time that the role will invest in quality assurance (QA), which is discussed in detail in Part V. The darker block

depicts the non-QA effort that a role must invest, which for most roles is dedicated to functional requirements.

The particular project depicted in Figures 11.6 and 11.7 utilized the combined requirements management approach,

investing in both ERM and GRM in order to gain stereoscopic vision on the needs of the company. The requirements

management demand on the project architect is heavy at first but then tapers off once he or she has completed the

vision document. Only as the team approaches each subrelease does the requirements management effort spike again

because the project architect must (1) check on many details in order to certify that each version of the application

going online is a solution to the proper subset of business problems and (2) invest some additional effort to communi-

cate to the team the intent of the next subrelease as its development gets started.

The product owner’s involvement is zero during Iteration �1 because that is the period in which the project archi-

tect is gathering content for the vision document from sponsors and major business stakeholders. As usually occurs in

large companies, the project sponsors and governance council require a vision and a budgeting estimate from IT before

they will assign someone from the business staff to work every day with a development team as a product owner.

Once project governance has named a product owner, the time demands on this person peak in Iteration 0, during

which he or she collaborates with the project architect on a first collection of user stories that will make up the project’s

232 PART | III Agile EDW Requirements Management

backlog. After that, the project’s IT leaders strive to keep the time demand on the product owner low overall so that the

engagement only consumes a small fraction of his or her average workday. Small spikes in the effort needed for

requirements occur midway through each sprint when the product owner and the team leaders invest some time in

grooming the leading edge of the backlog for the next iteration. An even larger spike in requirements management

work occurs during the iteration before a subrelease, representing the effort necessary to review the requirements to be

addressed during the coming user acceptance test.

Figure 11.7 depicts the requirements management work needed from the remaining roles of a typical agile EDW proj-

ect. Except where noted, these effort curves here represent requirements analysis yielding technical requirements rather

than work on nonfunctional requirements. The data modeler’s loading peaks at the start of the project, as soon as the proj-

ect architect has authored a project vision document for him or her to work from. The modeler’s involvement tapers off

once the project data model gels and the programmers gain a fuller understanding of the data repository they are building.

Of all the roles, the systems analyst has the highest loading throughout the project because he or she is busy profil-

ing the next set of source data, writing STMs, or validating that the programmers have correctly implemented the

Subrelease 2 Subrelease 3 Subrelease 4
(Release 1)

Elaboration
(Subrelease 1)

Inception

–1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Backlog grooming for next iteration

Revisit definition of next subrelease

UAT

UAT SRO for subrelease 2

Iterations

Epics & themes: 100%
User stories: 90%

EARs

NFRs

Project definition

Sponsor’s concept brief, stakeholder requests, vision document
subrelease overview (SRO) for subrelease 1

Product
owner

Project architect

Quality assurance

Dark areas: Development (non-QA) work Light areas: QA work
Abbreviations used: UAT = user acceptance testing
EAR = enterprise architecture requirements NFR = non-functional requirements

SRO for subrelease 3

SRO for subrel. 4UAT

UAT

Epics: 90% identified, Themes: 70%, User Stories: 50%

FIGURE 11.6 Requirements management effort curves and timing of artifacts over length of a project (part I).

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 233

business rules expressed in the STM. The coders only hit their peak loading when elaboration gets underway. Their

involvement should stay maximized throughout the remainder of the project, which only makes sense if the agile team

wants to deliver the greatest possible value to the organization. Finally, the system tester role contributes somewhat to

project definition, reflecting the fact that test-led development can be practiced to some degree at the level of the

project and not just that of the module, as will be discussed in the chapters on quality assurance.

Allocating Time for Nonfunctional Requirements

The effort curves in the preceding diagrams provide the team with a means to plan for addressing the nonfunctional

requirements of a project. As discussed previously, there are two types of nonfunctional requirements that EDW project

leaders need to address. First, there are application-level “abilities,” as listed in Table 7.2, that make up the standard

notion of “nonfunctional” requirements for any computer application. Second, there are higher-order, enterprise require-

ments provided by architectural groups such as the enterprise information management, enterprise architecture, and

Subrelease 2 Subrelease 3 Subrelease 4
(release 1)

Elaboration
(Subrelease 1)

Inception

–1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iterations

Data modeler

Systems
analyst

Coders

System tester

Technical requirements

Quality assurance

Quality assurance

Technical requirements & programming

Quality assurance

Project definition

Technical requirements

Quality assurance

“Data cowboy”
work

EARs

FIGURE 11.7 Requirements management effort curves and timing of artifacts over length of a project (part II).

234 PART | III Agile EDW Requirements Management

enterprise data warehouse architecture groups. As discussed previously, an agile EDW team is a consumer of these

requirements and is responsible for both supporting them during the construction of individual projects and providing

feedback and ideas where those high-level specifications prove infeasible.

Addressing both of these classes of requirements consumes effort, so processing time for them needs to be budgeted

by the project leaders. Looking at the effort curve for the project architect, the time demand on this role lessens soon

after he provides a functional definition of the project via the vision document and subrelease plan. Eventually, DW/BI

management will ask the project architect to begin definition work on another project because the project depicted in

the graph no longer needs him full-time. Before he begins on that second project, however, he will have the bandwidth

starting with the first iteration of elaboration to consider both enterprise architecture requirements (EARs) and classic

nonfunctional requirements (NFRs). This effort is indicated by the cross-hatched area marked “EARs, NFRs” in

Figure 11.6, occurring during Iterations 1�3. As a result of this effort, he may need to revise slightly the project’s

vision document and subrelease plan. Such refinements should not disrupt his teammates much because the refinements

will come to light during elaboration, before the team has locked in a desired application architecture.

For the data modeler, this role could probably complete the bulk of her schema designs in the first few iterations, if

all she were focusing on were functional requirements. We want her to incorporate the company’s enterprise architec-

tural requirements, however, so her effort curve will probably extend well into the development time of the second

subrelease. Although the exact mix of functional and nonfunctional work effort cannot be depicted precisely for the

data modeler, at least a graph such as Figure 11.7 will illustrate that both are involved. Team leaders can use the total

of both types of effort during conversations with DW/BI management to illustrate why the data modeler will need a

longer involvement with the agile EDW project than the functional requirements alone might suggest.

CONQUERING COMPLEX BUSINESS RULES WITH AN EMBEDDED METHOD

Carefully planning the progressive elaboration of application requirements will greatly help the project leaders generate

a smooth supply of design guidance for their programmers, but one serious challenge will remain. Projects receiving

poor data quality from sources systems and/or involving complex business rules easily fall prey to “analysis paralysis.”

When the analysis and design roles cannot make immediate sense of the source systems and subject matter experts fail

to adequately explain how the source data should be integrated and transformed into metrics, the project leaders will be

unable to continue creating 80/20 specifications for their coders. Without guidance, the programmers will run out of

work, they will fall idle, and the entire agile delivery process will grind to a halt.

This situation requires the team to readjust its process quickly lest it begin to squander valuable development

resources and forfeit crucial business opportunities. The challenges posed by sources and transform logic are large

unknowns at the beginning of a project. In my experience, these massive unknowns must be met with a surge of

analysis as soon as the vision document has been approved. The best solution is for the project to engage a short-term

“data cowboy” to wrangle the more unruly areas within the source data and to illustrate the full intricacies of the

project’s most complex business rules. Naturally, this cowboy will need a special blend of skills and tools to master this

situation, but just as important, he will be most effective if he employs a special method of his own.

Add the Data Cowboy Role

A more formal name for this role might be data transform specification analyst because that is the mission this person

takes on: Dive into the source data; make sense of it as quickly as possible; decide how the extract, transform, and load

(ETL) process should transform it in order to create the desired information in the EDW repository; and document those

rules for programmers to follow during coding. I prefer the data cowboy label for this person, for just as the cattle wran-

glers of the past had to be willing to leap off a horse and wrestle errant cattle to the ground, this analyst must be ready

to try anything to pummel a heap of poorly documented sources and business rules into yielding their secrets. Our

company has one associate specializing in this role who actually prefers to be called the “data spanker,” a fitting moni-

ker even if it is slightly difficult to use when introducing the team members to a new customer.

When it comes to source data, individuals filling this cowboy role will need true bravado because the data quality

problems can be a horrid mix of nightmares, such as the following:

� Inconsistent element definitions
� Nonexistent data models
� Unreliable join patterns between tables

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 235

� Missing or incomplete lookup tables
� Overloaded columns in a transaction system that each data entry operator used for a different purpose
� Columns with binary encoding instead of text

Source data quality problems seem to be particularly common in the records originating from mainframe and personal

computer applications because the transaction systems created for these platforms often impose few checks on the informa-

tion submitted by the users. Atop this frustration, the project must contend with subject matter experts who cannot clearly

articulate the business rules defining the target data elements because they involve scores of if�then�else statements that

no one in the company has ever documented. Compound these challenges with tight time frames imposed by project spon-

sors anxious to start using business intelligence now, and the data cowboy will need to be a miracle worker indeed.

Special Skills and Tools for the Data Cowboy

The perfect person for this role will possess an extensive experience in profiling, cleansing, and migrating poorly

behaved source data. Often, individuals who have spent some time serving as shadow IT make excellent candidates

because such experience will have made them practiced at knitting together corporate and noncorporate data sources,

usually with minimal help from the corporate systems owners. Such work will have taught them how to rapidly iterate

through an invent-and-try cycle until they find a means to match candidate keys, accomplishing a difficult join between

tables from different source systems. They will have also had to dispose of any self-imposed notions of “doing things

the right way” and focus instead on just getting the job done quickly. Such an attitude would be dangerous to instill in

ETL or BI programmers because it could undermine the culture of disciplined software development that the team

leaders would like to establish in the project room, but the attitude is perfect for a specialist whose mission is to

discover and record hidden patterns in source data.

This specialist will be comfortable building up complex transform algorithms during interactive sessions with the

data and then repeatedly transferring the algorithms that work to a script that embodies the overall sequence required to

groom and join the source information into the desired output. Many of the rules that the specialist identifies can also

be directed to the data governance group because they describe editing and harmonization rules needed to create a

reliable set of master data that applications upstream from the data warehouse should employ.

To work at this demanding level, the data cowboy will need several data-taming weapons in his arsenal. He will

need fluency in SQL, the lingua franca of databases, and a scripting language such as Python or Perl. Some aplomb

with programming languages such as C and Java will allow him to manage binary data representations. He should

certainly be comfortable with one or more data profiling tools, which can provide some basic intelligence regarding a

new data source fairly quickly. The other skills he will need will depend on the sources involved, such as mainframe

applications demanding COBOL or web-based applications requiring Java and XML.

The data cowboy will undoubtedly need strong capabilities in one or two tools for data visualization. The data spanker

who works with my company prefers to use a self-service BI tool that employs an enormous memory-resident data repository

so that he can toss, churn, and display a tremendous number of source records in real time until he forces them to make sense.

Agile DWBI project leaders should not be concerned that the data cowboy wishes to employ a tool outside the tech-

nology selected for the project. This maverick works only in the discovery and elaboration portion of the software

engineering life cycle. His mission is to jump into a heap of lousy source records and half-baked business rules in order

to discover their secrets, then convey the necessary transform logic to the team. His deliverables can be as simple as a

page of ETL pseudo-code for every target column that the team’s regular systems analysts could not profile or under-

stand. Speed and insights are the goals of the data cowboys, not maintainable or compliant code. They should use what-

ever tools allow them to get this job completed quickly because the longer they take, the more likely the ETL

programmers will run out of coding specifications and fall idle.

Modified Data Mining Method Can Help

Although the data cowboy’s choice of tools is largely immaterial to project success, the process he employs should still

be lightly managed in order to avoid adverse impacts on the other developers. Adding such a free spirit to a project

team, even for a short while, represents risk. If not properly channeled, the data cowboy can create a large distraction

with his nonstandard tools and work habits. Moreover, if the cowboy is allowed to work any way he desires, project

leaders cannot be sure that his efforts will result in complete and correct specifications. To mitigate this risk on our

236 PART | III Agile EDW Requirements Management

projects, my company’s project architects often request that the data cowboy follow a simple iterative process adapted

from CRISP-DM, an international method for disciplined data mining.

The Cross-Industry Standard Process for Data Mining (CRISP-DM) originated in the late 1990s as part of the

European Union’s ongoing initiatives to coordinate research, development, and knowledge transfer in the realm of

information technology. Recent surveys have identified CRISP-DM as the “de facto standard for developing data

mining and knowledge discovery projects” [Marbán and Segovia 2009]. Figure 11.8 portrays CRISP-DM’s six major

steps and shows how they are arranged into a repeatable process.

Table 11.4 provides greater detail for steps composing the CRISP-DM cycle. I have adapted these steps to better

meet the needs of a DW/BI project, but readers can find a reference to the official formulation of this process at the

bottom of the table so that they can compare my version to the wording of the original. I have also added the two

involvement columns, which emphasizes that the business rule discovery is a collaboration between the data cowboy

and the project’s product owner or other subject matter experts. These two roles will trade off the lead frequently as

they progress through the CRISP-DM process.

The discovery of business rules hidden within source data or target transforms begins with understanding the

business context. The process then gives the data cowboy a chance to acquire a sizable collection of source records to

explore. At this point, the product owner and data cowboy focus on modeling the business rules and validating each

guess against real records. When they believe they have modeled the transform for a given target column in the EDW,

they demo that understanding to other subject matter experts who work with the source data but did not share in the

modeling. When these subject matter experts accept the proposed business rules, the agile team’s leaders can be reason-

ably assured that the data cowboy and product owner have accurately divined how to work with the source data system.

Finally, this pair compiles its validated knowledge into a pseudo-code narrative of the necessary transform steps, or

even an STM that the EDW team can later elaborate upon and follow when coding ETL modules.

By placing just a small amount of structure on the work of the data cowboy, EDW team leaders will make business

rule discovery a transparent practice that the team can understand, track, and steer. Giving the data cowboy his own

process allows the team to optimize that discovery effort without having to alter the way all the other developers on the

agile team pursue their work. The result is a small process running in parallel during the early days of an agile EDW

FIGURE 11.8 The CRISP-DM process for data mining.

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 237

engagement that provides the team’s regular developers with reliable data transform specifications while keeping them

undistracted from the careful coding that their ETL modules require.

Placing Business Rules Discovery and Analysis into the Effort Curves

In my experience, the data cowboy role is a relatively short-lived assignment. The individual filling that role may well

stay on with the team, given his valuable problem-solving skills, but at some point the need for wild, rapid data dis-

covery disappears. That transition frequently begins with the end of the elaboration phase of the project and concludes

a few iterations thereafter. Winding down the rapid business rules discovery process at this time coincides well with the

rest of the developers’ transition to the steady work of programming the applications ETL modules in the context of a

proven, stable architecture.

To illustrate this transition, I placed a supplemental effort curve on the tasking for the system analyst role in

Figure 11.7. The work of business rules discovery can begin as soon as the project architect secures approval of the

vision document. Working from the sources listed on the vision document’s context diagram, the data cowboy can

jump into data extracts from the transaction systems and start making sense of the records they contain. The work of

data cowboys complements that of the systems analyst in that it provides the insights that the latter needs to prepare

decent STMs for the coders. In this collaboration, the data cowboy reconnoiters the unknown territory ahead, and the

systems analyst serves as cartographer, documenting the landscape in a way that connects the cowboy’s discoveries

with landmarks already known, creating an intelligible map that developers can readily follow.

TABLE 11.4 Steps of the CRISP-DM Process

CRISP-DM Step

Tasks (Adapted for EDW Business Rules Discovery)

Data
Transform
Specialist

Product
Owner

Business understanding

Clearly articulate the business rules needing documentation Assist Lead

Assess how much data exploration the current resources, assumptions, and constraints will allow Lead Assist
Translate each business rule to a input/output model Assist Lead

Sketch the current understanding of how inputs become outputs Assist Lead

List the exploration work steps needed to confirm each business rule, articulating them as a series of questions to be answered Lead Assist
Data understanding

Gather initial data collection, integrate as necessary to support intended exploration Lead Assist
Document "gross" or "surface" properties of the data Lead Assist
Begin the exploration work steps, answering the associated questions using queries, reports, and visualization. Lead Assist
Assess whether acquired data is complete, correct, and of sufficient scope Lead Assist

Data preparation

Acquire secondary sources Lead Assist
Clean secondary data Lead Assist
Construct derived attributes as needed Lead Assist
Integrate secondary data with primary Lead Assist
Format data with syntactic modifications that do not change meaning Lead Assist

Modeling

Select business rule modeling techniques Lead Assist
Generate test scenario(s) for assessing validity of the model, e.g., specific transactions to run through the business rule Assist Lead

Create expected results for each test Assist Lead

Create models using modeling tool on the prepared dataset Lead Assist
Assess whether models generated the expected and/or correct results Assist Lead

Evaluation

Present to SMEs the models' current ability to match expected results and remaining gaps Assist Lead

Document changes in logic and business requirements suggested by SMEs Lead Assist
Document the complete understanding of how inputs become outputs Lead Assist
Decide whether to send current models to development team Assist Lead

Deployment

Communicate validated business rules to systems analyst for documentation in source-to-target maps Lead Assist
Review new business rules capabilities during iteration demos Assist Lead

Present new business rule capabilities to stakeholders during UAT Assist Lead

Involvement

238 PART | III Agile EDW Requirements Management

Adding a data cowboy to the development team for a few months at the start of the project allows the team to get

out ahead of the large learning curve that each new source system represents and avoid analysis paralysis during the

construction phase of the project.

INTERFACING WITH PROJECT GOVERNANCE

The definition of requirements management cited in Chapter 7 included three key elements: planning the work,

gathering and validating the requirements, and maintaining the accuracy of those requirements. The previous discus-

sions have focused largely on the first two of the elements, leaving management of the requirements unaddressed until

now. Agile EDW teams frequently butt heads with project governance structures in many corporations, largely due to

the style in which the latter wants to manage requirements. The solution to this conflict usually requires a “negotiated

settlement.” A quick outline of such a settlement will provide agile EDW project leaders with a good notion of the type

of solution to insist upon. Having a solution in mind will help them quickly propose a workable pattern and avoid losing

months of agile development to excessive interference from a project oversight group.

Project governance can be a multilayered structure in large corporations. It often includes a steering committee of

executives funding the project and then, informally, all of their direct reports charged with tracking the development of

the EDW in detail. It also invariably involves agents from the project management office (PMO) and often includes

project managers on both the technical and business sides of a program.

For those organizations that have not yet developed an incremental project management mindset, an agile data ware-

housing effort will appear very alien and threatening to many of the parties in project governance. The traditional mind-

set requires that all work be defined before programming begins so that the parties overseeing the project can check off

work packages from a defined list as they are completed. Traditional project management also demands that the level

of effort be estimated with precision before work begins so that managers can keep the project’s expenses within the

budget that the sponsors have approved. Traditional managers frequently disapprove of the development methods of

agile EDW teams for multiple reasons. First, EDW teams work with 80/20 specifications—the final details will be

unavailable until coding is underway. Second, agile EDW backlogs also operate at an 80/20 level—a good number of

user stories and even some themes will be identified mid-project as the business learns progressively more about its BI

requirements. Third, agile EDW teams can provide only a current estimate for the project and not a single, definitive

estimate, as all traditionally trained project managers will demand.

To take some of the friction out of this relationship, I recommend agile EDW teams start the stream of current

estimates right away, as previously discussed. It is true that most agile EDW teams will struggle at first to convince

project governance to accept a regularly updated estimate of the remaining work, but in my experience, rational people

soon see the value of working with up-to-date forecasts rather than sticking to an increasingly outdated original estimate.

Convincing traditionally minded managers to accept the fact that a project’s backlog and the requirements that it

contains are never fully complete, however, is a much tougher sell. Countless project managers have told me, “I want

every piece of work defined before you start coding, so I can control what’s happening in the project room.” In my

experience, the notion of a nontechnical person truly controlling the details of a protracted programming effort is an

illusion, but that illusion is seductive to both project managers and the executives to whom they report. Because require-

ments so strongly determine the objectives and labor costs of a project, the PMO typically demands total control over

changes to requirements. In their world, the requirements and funding approved by the sponsors represent a contract

with IT to deliver an exact list of features for something very close to the agreed-upon price. Every desired modification

to the collection of requirements must therefore be submitted as a change request to the project governance board along

with a careful estimate of the impact that the request will have on the project’s development costs.

Unfortunately, agile EDW teams need to be, well, agile. To deliver real value to the customers in the shortest amount of

time and effort, the agile team needs to be responsive to its product owner when she informs the team of changing business

conditions. The developers also need to adapt the details of the system when the product owner changes her mind regarding

features, in response to what she is learning about business analytics, the source data, and the problem domain of the project.

Preparing the description and cost impact for a formal change request takes time, sometimes days. The project governance

council then frequently takes even more time to consider and approve it, sometime multiple weeks. Submitting every little

decision that needs to be made to project governance will paralyze the agile EDW team’s decision making and force its pro-

grammers to fall idle, squandering valuable resources and, more important, business opportunities.

I have found that the trick to finding a workable compromise with the traditional project governance’s command-

and-control mindset is to set clear limits as to how far into the team’s decision-making process the PMO’s change

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 239

control process extends. The agile EDW team will need to cede some territory to the traditional management approach

but then jealously guard the rest of the landscape against invasion. To effectively negotiate the boundaries to external

control, the agile team will need a map of the territory and a clear definition of the objects on that map.

Figure 11.9 depicts the settlement that my colleagues and I can usually reach with the traditional project manage-

ment office of a typical large corporation. This diagram lists the requirements management artifacts presented in the

past few chapters and even the components of some of those documents. They are divided into those artifacts originat-

ing from the generic agile requirements value chain and those emerging from the enterprise-capable approach, with

lines and cardinalities showing the relationship between them. The darker objects represent items that the agile team

Epics

Themes

Sponsors

concept briefing

Stakeholder

requests

Vision document

Sources Targets

Solution statements

Hi-level data flow

Major features & benefits

Other itemsno CR needed

Legend

requires CR

Colors

ERM value chain GRM value chain

User storiesModule use case

Subrelease overview

Developer

stories

Supplemental requirements (NFRs)

Formal document
control

Shapes

FIGURE 11.9 Interfacing agile EDW RM with project governance.

240 PART | III Agile EDW Requirements Management

cannot change without first securing an approved change request. The team can change all of the remaining objects at

will in order to keep the project focused, moving ahead, and responsive to changing conditions.

The fact that the EDW development team follows the direction of a business-based product owner should alleviate

some of the traditional project manager’s concerns over unmanaged development because business approval for all

changes is built into the very work method that the developers are following. Negotiating a boundary over external

control often involves agreeing upon the extent to which this built-in business oversight can effectively keep the project

aligned with the business’s interests. Generally, PMOs seem able to accept a division of controls stating that the team

will seek approval of any new epics or themes, but beyond that, the product owner is free to create new user stories as he

or she sees fit. Using the epic stack definition offered in previous chapters, this agreement will amount to giving the

PMO a say on the EDW project targets’ new competitive capabilities or business analyses. The business-level data vali-

dations, however, will be up to the team to define.

Figure 11.9 also identifies the artifacts that must reside in a formal document repository, another project manage-

ment aspect that needs boundaries and that should be negotiated ahead of time with project managers. Many agile

EDW projects are subject to process audits, especially in companies striving to maintain formal quality or maturity

certifications. In those companies, development teams are required to register all project artifacts and their revisions

into a document repository. The simple version control that a document repository provides for project documents bene-

fits the developers by letting them recover previous versions of their artifacts.

Formal document control, however, is different and indeed challenging. Formal document control requires that arti-

facts be reviewed and approved before changes are committed to the repository, greatly lengthening the cycle time for

updating a requirement or design element. Formal document control also requires extensive metadata concerning

changes. Keeping that metadata updated well enough to provide an auditable history for each document requires even

more effort, as does resolving the inevitable discrepancies between official versions of the artifacts in the repository.

Developers caught in formal document control regimes often grumble that for most of the documents they work with,

they only need them to be correct. Being able to state the reason for a small change six months earlier has absolutely

zero value in terms of the programming decisions they need to make today. However, such overhead is valuable for the

major artifacts of a project, such as stakeholder requests, but it becomes a paralytic time sink when applied to the more

numerous, detailed artifacts that experience high rates of change, such as user and developer stories.

Because formal document control can paralyze a team when applied to the smaller documents it employs, the suggested

settlement diagram shown in Figure 11.9 also denotes the document management style for the artifacts. Documents that the

team should be maintained in the project’s formal document repository have sharp corners, and those that the team can man-

age informally possess a rounded shape. The settlement portrayed in the diagram stipulates that the agile EDW team will

practice change control and a formal repository for the high-level artifacts of the project. On the ERM side of the diagram,

the controlled artifacts include the sponsor’s concept briefing, stakeholder requests, and the business-oriented portions of

the vision document. The vision document’s high-level architecture, subrelease overviews, and module diagrams lie outside

of formal document control because this particular team convinced external management that the project would proceed fas-

ter and better with easily changed designs as long as the major requirements driving those designs were carefully managed.

On the GRM side, epics and themes are controlled, but user and developer stories are not. The effectiveness of this

arrangement is strongly rooted in the agreed-upon definitions of each type of backlog story. For teams using the epic

decomposition framework presented in Chapter 8, epics are the new competitive capabilities that the sponsors believe data

warehousing can provide the company. Themes are the analyses that directors will use to take action in order to achieve

the epic’s desired competitive results. Revisions and churn at this level could devastate a team by redirecting development

in so many different directions that the team finds it impossible to make any meaningful progress. Accordingly, a bit of

control actually helps the team to be more effective, so once the epics and themes are expressed correctly, the project

governance council should insist that their wording remain unchanged without formal review. User stories, on the other

hand, are business-level data validation steps that managers will need to make before they forward an analysis to a direc-

tor. Change at this level of stories can only help the project because it represents the product owner steadily getting clearer

on exactly how the numbers on each analysis should be checked. Similarly, change among developer stories represents

that the team is both learning how to best deliver those data validations and keeping up with the new ideas from the

product owner. Formal document control at either of these levels would only impede the developers’ ability to match their

development decisions to the business needs expressed, greatly undermining their effectiveness.

Figure 11.9 is only an example of the settlement for one agile EDW project. Every team will need to adapt the

shading and the corners of the artifacts shown to meet their particular context. However, starting with an example of

such an agreement can greatly empower the team leaders to negotiate a better arrangement at the beginning of the proj-

ect and allow them to forestall destructive micromanagement from project governance councils and the PMO.

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 241

NOT RETURNING TO A WATERFALL APPROACH

The approach to requirements management described in the past few chapters has many components. It includes

approximately a dozen artifacts, a process for authoring them, and an approach to changing some of them quite care-

fully. These aspects often inspire folks who profess to be agile purists to dismiss this approach, thinking it takes the

agile EDW method back to a waterfall mindset. I believe this conclusion misinterprets the intent and style of our

approach for two reasons.

First, the agile EDW requirements management approach presented here is a “pick and choose” proposition. All the

artifacts and techniques described in these chapters represent only a menu of elements that can be employed. The combi-

nation of companies, industries, and project objectives involved in enterprise data warehousing creates a wide range of

development circumstances and risk levels with which to contend. For that reason, any team will find that some of the

requirements management components described here apply to their project and the rest are superfluous. My colleagues

and I in fact arrived at the relatively small collection of artifacts discussed previously by steadily whittling away at the

recommended documents from several other agile methods, and we expect readers to continue that reduction process

diligently. Project leaders should make an effort to learn about the agile EDW artifacts available, discuss requirements

management with their stakeholders, and then adopt only those artifacts that are needed by their particular engagement.

In many situations, a sufficiently stereoscopic vision will emerge if only a couple of the artifacts or techniques from

each value chain are utilized. For many subject areas of an enterprise warehouse, a backlog with crisp epics, themes,

and user stories complemented by only a vision document and a couple of subrelease overviews will be all that the

team needs to quickly deliver an excellent business solution without any false starts. In other words, the requirements

management approach advocated here still allows team leaders to “maximize the work not done” by skipping the

artifacts they do not need, thus remaining true to the agile manifesto.

Second, my colleagues and I feel assured that the approach described in the preceding sections is definitely agile

because we can trace so many of its aspects back to the values and principles espoused by agile methods such as XP,

Scrum, Kanban, and the lean school of software development. Those linkages are listed in Table 11.5. They indicate

that although we have worked hard to codify agile requirements management into a disciplined, repeatable process that

will scale up to the needs of an enterprise data warehousing program involving multiple projects, we have in no way

abandoned our agile roots. We welcome the innovations that another generation of agile practitioners can bring to the

approach we have documented here. Such a contribution can only make the resulting method all the more robust and

efficient.

SUMMARY

EDW team leaders can use the IT-driven, enterprise-capable approach to requirements management presented in

Chapter 10 to validate the results of their product owner’s more informal process for authoring a project’s epic stack.

The intersection between these two requirements value chains should yield a highly accurate backlog that developers

can use to prioritize the work of the team in ways that meet multiple criteria. In particular, team leaders should elevate

areas of high risk to fall within the elaboration phase of the company’s release cycle. Project success can be further

enhanced by selecting stories for early development that represent a “steel thread” that delivers a handful of valuable

services for end users while simultaneously proving that the application’s architecture is sound.

Team leaders should establish a pattern of progressive elaboration with their backlog rather than striving to make all

stories equally precise from the start. They can use the freeze�fridge�countertop metaphor to steadily hone the

precision of technical requirements as stories approach the day their development begins. Progressive elaboration will

cause the workload for each team role to wax and wane differently. The overall pattern of team member workloads can

be visualized with effort curves that will enable better resource planning and the creation of realistic expectations by

team members, including the product owner. These effort curves will also provide a means for budgeting time for the

project leaders to address nonfunctional and architectural requirements. The systems analyst in particular will have an

excessive amount of work at the start of a project, given that he or she must provide 80/20 specs for the programmers,

no matter how difficult the source data may be to understand. Teams can flatten out the effort curve for the systems

analyst by engaging a “data cowboy” during the elaboration phase. The data cowboy combines advanced data skills,

nonstandard analytic tools, and a method called CRISP-DM to rapidly discover and sufficiently document solutions to

the most difficult challenges that lie hidden in the source data.

242 PART | III Agile EDW Requirements Management

TABLE 11.5 Assessment of Agile EDW Requirements Management Approach for Agility

Agile
School*

Value
ID Principle Agile EDW RM Manifestation

1 AM Individuals and interactions over processes and tools Product owner and SMEs provide detailed requirements directly at development time

2 AM Working software over comprehensive documentation Subrelease cycle validates requirements through usage by actual end users

3 AM Customer collaboration over contract negotiation See 2

4 AM Responding to change over following a plan Product owner free to reshape project backlog as necessary

7 AM Welcome changing requirements and deliver working software
frequently

See 2 and 4

9 AM Ensure business people and developers work together daily See 1

12 AM Trust that the best architectures, requirements, and designs will
emerge from self-organized teams

Though additional leadership roles augment team, developers still expected to adapt
process themselves as needed

13 AM Find and support the team's sustainable pace of work Current estimate approach utilizes team's velocity to determine number of iterations needed

14 AM Pay continuous attention to technical excellence Freezer-fridge approach represents progressive requirements grooming

15 AM Strive for simplicity and maximize the work not done User stories still the fundamental requirements management vehicle

16 AM Consider and improve team effectiveness at regular intervals Teams expected to discuss quality of user and technical requirements during iteration
retrospectives

17 XP Communication
Stereoscopic approach ensures that product owner, stakeholders, and developers
develop a consensus on the project's requirements

18 XP Simplicity Teams utilize only as much of the two RM value chains as they need to get the job done

19 XP Feedback See 16

20 XP Courage
Proceeding with 80/20 specs requires trusting that remaining details will emerge during
module construction

23 XP Economics Current estimates keep business apprised of likely project cost, allowing them to make scoping
decisions early

25 XP Self-Similarity Both RM value chains abet progressive elaboration, acknowledging that requirements must be
managed at all levels

29 XP Flow
Freezer-fridge approach minimizes premature investment in detail specifications,
alllowing development work to begin as soon as possible for individual modules

32 XP Failure Early iterations (during elaboration) will reveal whether level of requirements detail will suffice

36 Lean Eliminate Waste
80/20 specs and selective utilization of ERM value chain artifacts keeps inventory of
requirements to a minimum

43 Lean Tool 6: Set-Based Development Freezer-fridge approach emphasizes breadth-first and accuracy over precision, avoiding
premature specificity

46 Lean Tool 8: The Last Responsible Moment See 43

47 Lean Tool 9: Making Decisions ERM value chain provides breadth-first approach, avoids excessive details, and steadily
draws upon team leader's intuition

49 Lean Tool 10: Pull Systems Freezer-fridge and pipelined delivery approaches position team to pull requirements into
development when new work is needed

51 Lean Tool 12: Cost Of Delay Product owner's participation, lead-off ERM artifacts, and project segmentation allow
business value to shape the subrelease plan

55 Lean Tool 15: Leadership Product owner and project architect ensure team has support of a product champion and
a master developer

67 RUP Develop iteratively, with risk as the primary iteration driver Elaboration phase and subrelease plan specifically designed to drive risk out of the project

68 RUP Manage requirements Two value chains leading to clear current estimates ensures team works on requirements
throughout the project and iterations

70 RUP Model software visually Vision documents ensures that every project begins with a high-level visualization that
can be later elaborated as needed

72 RUP Control changes Change control planning artifacts links both RM value chains to project governance and
document auditing needs

Thoughts on how agile enterprise data warehousing's approach to requirements management addresses the 72 values and principles promoted by four
agile schools, showing only those items that apply.

*AM = Agile Manifesto school of iterative delivery methods.

Intersecting Value Chains for a Stereoscopic Project Definition Chapter | 11 243

Overarching all of the team’s discovery and analysis work is the need to manage requirements in a way that satisfies

the demands for predictability and control often voiced by project governance and the project management office.

A simple graphic will allow the agile EDW team to envision a workable compromise between agility and compliance

so that team leaders can negotiate up front a sufficient degree of freedom from the micromanagement that would other-

wise eliminate their agility.

We have now concluded the discussion of agile requirements management, a collection of techniques that allows

team leaders to quickly define and prep an EDW project for incremental development. Veteran data warehousing

professionals will still doubt whether agile data warehousing is truly possible. “It doesn’t matter if you can quickly

define an EDW component,” they might say, “If you make a mistake in the design of a warehouse table you will have

billions of records loaded that will take forever to restructure and reload. You’d be better off designing the whole

system first, like we do when following waterfall methods.” To address that challenge, EDW teams will need to employ

agile data engineering techniques that allow the schema of a loaded production data warehouse to be updated in place

without expensive conversion scripting. That practice is the subject of the next several chapters.

244 PART | III Agile EDW Requirements Management

Part III References

Chapter 7

Grady, R., 1992. Practical Software Metrics for Project Management and

Process Improvement. Prentice Hall.

ISO, 2011 International Standards Organization, ISO/IEC 25010:2011

(Systems and Software Quality Requirements and Evaluation), iso.

org, 2011.

Kernochan, W., 2011, May 2. Why most business intelligence projects

fail. Enterprise Apps Today. ,http://www.enterpriseappstoday.com/

business-intelligence/why-most-business-intelligence-projects-fail-1.

html. (accessed January 2015).

Kroll, P., Kruchten, P., 2003. The Rational Unified Process Made Easy:

A Practitioner’s Guide to the RUP. Addison-Wesley, Boston.

Larson, E., Larson, R., 2013. Requiremetns Managments. Watermark

Learning, Minneapolis, MN.

The Standish Group International. 1995. The chaos report. ,http://www.

standishgroup.com. (accessed April 2006).

The Standish Group International. 1999. Chaos: A recipe for success.

,http://www.standishgroup.com. (accessed April 2006).

Zielczynski, P., 2008. Requirements Management Using IBM Rational

RequisitePro. IBM Press, Indianapolis, IN.

Chapter 9
Charantimath, P.M., 2011. Total Quality Management. second ed.

Pearson India, Chennai.

Chauhan, A., 2012, May 4. Top most algorithms used in data mining.

Big Data Analytics, Data Visualization and Infographics (website).

,https://cloudcelebrity.wordpress.com/2012/05/04/top-most-algorithms-

used-in-data-mining..

Cobb, C.G., 2011. Making Sense of Agile Project Management:

Balancing Control and Agility. Wiley, New York.

Cohn, M., 2004. User Stories Applied: For Agile Software Development.

Addison-Wesley, Boston.

Highsmith, J., 2009. Agile Project Management: Creating Innovative

Products, second ed. Addison-Wesley, Boston.

Maslow, A.H., 1943. A theory of human motivation. Psychol. Rev. 50

(4), 370�396, ,http://psychclassics.yorku.ca/Maslow/motivation.

htm. (accessed October 2014).

Chapter 10
Charan, R., 2001. What the CEO Wants You to Know. Crown, New York.

Earley, S., 2011. The DAMA Dictionary of Data Management.

second ed. Technic, Bradley Beach, NJ.

Eclipse Foundation, 2012. Intro to OpenUP, OpenUP (website). , http://

epf.eclipse.org/wikis/openup. (accessed February 2014).

Kimball, R., Ross, M., 2013. The Data Warehouse Toolkit: The Definitive

Guide to Dimensional Modeling, third ed. Wiley, New York.

Milhøj, A., 2013. Practical Time Series Analysis Using SAS. SAS

Institute, Cary, NC.

Chapter 11
Aked, M., 2003, November 25. Risk reduction with the RUP phase plan.

IBM Developer Works (website). ,http://www.ibm.com/developer-

works/rational/library/1826.html. (accessed April 2014).

Brennan, K. (Ed.), 2009. A Guide to the Business Analysis Body of

Knowledge (BABOK guide). International Institute of Business

Analysis, Whitby, Ontario, Canada.

Ladley, J., 2012. Data Governance: How to Design, Deploy and Sustain an

Effective Data Governance Program. Morgan Kaufmann, Waltham, MA.

Marbán, G.M., Segovia, J., 2009. A data mining and knowledge discov-

ery process model. In: Ponce, J., Karahoca, A. (Eds.), Data Mining

and Knowledge Discovery in Real Life Applications. I-Tech,

Vienna, Austria, pp. 438�453.

Project Management Institute, 2013. A Guide to the Project Management

Body of Knowledge (PMBOK guide), fifth ed. Project Management

Institute, Newton Square, PA.

Rational Software, 1998. Rational Unified Process: Best practices for

software development teams. ,www.ibm.com/developerworks/ratio-

nal/library/content/03July/1000/1251/1251_bestpractices_TP026B.

pdf. (accessed August 2013).

Rawsthorne, D., Shimp, D., 2011. Exploring Scrum: The Fundamentals.

second ed. CreateSpace Independent Publishing.

Rubin, K.S., 2012. Essential Scrum: A Practical Guide to the Most

Popular Agile Process. Addison-Wesley, Upper Saddle River, NJ.

245

http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref19
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref19
http://www.iso.org
http://www.iso.org
http://www.enterpriseappstoday.com/business-intelligence/why-most-business-intelligence-projects-fail-1.html
http://www.enterpriseappstoday.com/business-intelligence/why-most-business-intelligence-projects-fail-1.html
http://www.enterpriseappstoday.com/business-intelligence/why-most-business-intelligence-projects-fail-1.html
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref2
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref2
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref1
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref1
http://www.standishgroup.com
http://www.standishgroup.com
http://www.standishgroup.com
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref3
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref3
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref4
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref4
https://cloudcelebrity.wordpress.com/2012/05/04/top-most-algorithms-used-in-data-mining
https://cloudcelebrity.wordpress.com/2012/05/04/top-most-algorithms-used-in-data-mining
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref5
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref5
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref6
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref6
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref7
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref7
http://psychclassics.yorku.ca/Maslow/motivation.htm
http://psychclassics.yorku.ca/Maslow/motivation.htm
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref9
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref10
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref10
http://epf.eclipse.org/wikis/openup
http://epf.eclipse.org/wikis/openup
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref11
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref11
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref12
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref12
http://www.ibm.com/developerworks/rational/library/1826.html
http://www.ibm.com/developerworks/rational/library/1826.html
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref13
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref13
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref13
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref14
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref14
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref15
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref15
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref15
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref15
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref15
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref16
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref16
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref16
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref17
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref17
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref18
http://refhub.elsevier.com/B978-0-12-396464-9.00029-1/sbref18

Chapter 12

Traditional Data Modeling Paradigms
and Their Discontents

The agile approach to requirements management presented in the past several chapters allows enterprise data ware-

house (EDW) project leaders to adroitly discover and express the goals and objectives that stakeholders have in mind

for the requested data warehousing/business intelligence (DW/BI) application. As powerful as those techniques are,

they only bring the team to the doorstep of the design process. From that point on, the team leaders will have to

choose functional and nonfunctional attributes for the system that will actually fulfill both the requirements identified

to date and those that will later emerge during the iterative development process. For enterprise data warehousing

projects, the design element of primary concern is the data model. A poorly crafted data model can impede or entirely

prevent end users from performing the analyses identified by the requirements artifacts. Moreover, a poorly designed

data model can be inordinately expensive to alter once the schema it describes has been loaded with many millions

of records. Such impacts can leave customers sorely disappointed and plunge the developers into a protracted period

of emergency programming in order to retrofit an application’s data schemas and transform modules to support the

unmet business needs.

An agile approach to DW/BI design would let a team build and populate the EDW in small increments so that both

information technology (IT) and the business partners can explore possible designs throughout the project and adjust

their direction without major consequences. Most traditional data modelers would say such an objective is impossible,

given the limits of the database technology DW/BI teams currently have at their disposal. Fortunately, adaptive data

modeling techniques now exist, along with tools that support them, so that today we can deliver an EDW one small por-

tion at a time, fluidly adapting the design and the already loaded data in response to end-user feedback.

Part IV of this book focuses on such techniques and tools that allow EDW teams to fail fast and cheaply and then

fix quickly. Presenting these new tools and techniques requires several segments. First, this chapter outlines the tradi-

tional approach to BI data design, summarizes its weaknesses that leave EDW teams searching for an alternative, and

introduces the notion of agile data engineering. Chapter 13 presents the notion of “surface solutions,” which involves

three easy improvements that EDW team leaders can make to their solution strategy that will accelerate deliveries

before they radically change their data modeling techniques. Chapter 14 outlines hyper normalized data models and dis-

cusses how they can accelerate construction and adaptation of the integration layer of the DW/BI reference architecture.

Finally, Chapter 15 describes hyper generalized data models, which can bring agility to a far wider portion of the

reference architecture than hyper normalized data modeling can address, namely the application’s integration, presenta-

tion, and semantic layers.

EDW AT A CROSSROADS

Reviewing the Reference Architecture

EDW are odd beasts in that their data repositories typically blend multiple sets of physical tables that follow wildly dif-

ferent structural designs. The reference architecture of a traditional EDW can be seen in Figure 12.1, which is a slight

update of a diagram employed in a previous chapter. As the reader might recall from Chapter 4, a reference architecture

depicts the data design of an EDW application at a very high level, delineating distinct layers across which a company’s

information must move during its journey from source system to end-user BI applications. Every company defines its

own particular reference architecture, so Figure 12.1 portrays a quite generic version designed to illustrate the principles

of data engineering and the four data modeling paradigms we need to discuss.

249
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00012-6

© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00012-6

The layers in this plain-vanilla EDW reference architecture have the following general purposes:

Landing: Provides temporary storage for raw data replicated or captured from source systems.

Integration: Allows persistent storage of integrated enterprise data, modeled for accurate representation of the com-

pany’s informational entities and business events. It represents the organization’s “single version of the truth.”

Many people refer to this layer as simply “the warehouse,” although that practice tends to generate confusion.

Presentation: Supplies ready-to-consume data for end-user reporting, modeled for business intelligibility and query

performance. Department-specific, derived values are often stored here. Many people refer to this layer as “the data

marts,” although again this practice can be misleading.

Semantic: Offers logical objects that control the appearance and access to presentation-layer data stores.

End-user applications: Employs the semantic layer to provide access to presentation-layer data and is typically the

only layer DW/BI allows end users to actually see. It includes dashboards, reports, and displays sent to users’ work-

stations and mobile devices.

I have also added a layer for metadata to the diagram, important components for team leaders to keep in mind as

they use agile data engineering techniques to steadily evolve their EDW data repositories.

The reference architecture presents the EDW team with a challenge: They must choose a data modeling style for

each of its layers. Most teams find that no single data modeling approach will meet the purposes they have for all the

layers. The spectrum of choices available today for a data warehouse designer breaks into two groups with two data

modeling paradigms in each, as illustrated in Figure 12.2. The traditional group contains, of course, the two paradigms

that the DW/BI community has been teaching for more than 20 years. The first is standard normal forms (SNF), which

for many EDW projects is third normal form, the data modeling paradigm most often used for the integration layer.

The second is conformed dimensional form (CDF), which data mart designers often call simply “conformed dimen-

sions,” a style of data models that is commonly employed for the presentation layer. Together, these familiar modeling

paradigms are referred to here as “traditionally modeled forms” (TMF).

The new modeling approaches constitute a group that enables iterative and incremental delivery, making them

“agile” paradigms. This group includes the following:

� Hyper normalized form (HNF), so named because it results in more physical tables in the data repository than a

standard normal form requires
� Hyper generalized form (HGF), so named because it takes the common data modeling technique of generalization

and applies it to an extreme

These latter two paradigms both involve a notion of “hyper,” so collectively I refer to them as “hyper modeled

forms” (HMF). Both HMF approaches provide data modeling guidance for the integration layer in particular. The

Definitions

Genealogy

Processing

Dashboards &
reports

Landing
layer

Integration
layer

Presentation
layer

Semantic
layer

End-user
apps

Raw data
extracts

Standard normal
form

Conformed
dimensions

BI tool
“Universe”

FIGURE 12.1 Basic EDW reference architecture with data paradigms listed. This particular reference architecture supports the “standard

approach” to data warehousing and does not list data modeling paradigms for the metadata layer.

250 PART | IV Agile EDW Data Engineering

presentation layer (when it is still needed), is modeled in conformed dimensional form. The HNF paradigm allows

EDW teams to employ programming automation for the modules of the integration layer, whereas HGF extends this

automation to cover aspects of all but the end-user application layer.

Although ways exist for getting traditional and hyper modeled data tables to coexist within a single EDW, teams

find it easier to pursue a project using one primary paradigm per layer rather than blending together a little bit of each.

Because each of the four paradigms has strengths and weakness, the choice between them requires careful consider-

ation. Given that switching between them in mid project can deeply disrupt the development effort, this choice of data

modeling paradigms needs to be made early in the engagement, thus placing every new DW/BI project at a crucial

crossroad at the beginning of each project that the team leaders must navigate carefully.

Standard Normal Forms Lead to Complex Integration Layers

In the traditional approach, teams structure the database of the integration layer using a standard normal form, some-

where between third and fifth normal form. One need only glance at the data model of a typical EDW integration layer

to appreciate the effort required to build and maintain such a data repository.

Figure 12.3 shows an SNF integration layer from simple to complex, starting with a rudimentary depiction of a sales

order transaction in the top panel. The square boxes represent tables maintained by the database management system

(DBMS). The short lines of text visible in each table box represent attributes of the entity, which will translate into col-

umns in a table when this model is implemented in the database. The lines depict the relationships that exist between

the tables, with the round dot on the end representing the “many” side of a one-to-many relationship.

Panel 2 in Figure 12.3 shows the data model for a relatively small EDW, with the background shading distinguish-

ing between subject areas such as Customer, Marketing, and Finance. Most data modelers try to arrange models such

that they are intelligible to others on their development teams. In my experience, however, any project involving scores

of business entities probably has already crossed a threshold of complexity where only one or two teammates effec-

tively understand the data model in its entirety.

A mature EDW for a company of any appreciable size will be so complex that a detailed model will no longer

fit into a single diagram, even when drawn on plotter paper. Teams frequently resort to summary depictions for these

data models, such as shown in Panel 3 in Figure 12.3. Here, the tables and the relationships between them have grown

Traditionally modeled forms
(TMF)

Standard normal
forms
(SNF)

Conformed
dimensional form

(CDF)

Hyper generalized
form

(HGF)

Hyper normalized
form

(HNF)

Agile
thinking

Hyper modeled forms
(HMF)

FIGURE 12.2 Given the advent of hyper-modeled forms, EDW project leaders now have four data modeling paradigms to choose from.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 251

FIGURE 12.3 Examples of standard normal form data models of increasing complexity.

252 PART | IV Agile EDW Data Engineering

so extensive that there is too little space to depict tables individually, let alone their attribution. Each dot represents

instead a group of entities.

Team leaders embarking on an EDW development effort involving a spider’s web data model such as this last panel

should be filled with trepidation. Every point on that diagram will require multiple extract, transform, and load (ETL)

modules that must be “engineered”—that is, teammates will have to gather requirements for it and then proceed with

the module’s design, coding, validation, and promotion into production usage. Given the large number of items depicted

in the web of objects, the team members will have many doubts about whether they are up to the challenge ahead,

including the following:

� Can we really master the detailed requirements and design for such a complex application?
� Will we be able to properly construct so many components in a reasonable amount of time?
� Do we have sufficient time and resources to test that much code adequately?
� As we build out this behemoth, will we reach a point where we will be unable to predict the impact of a change in

one area on the functionality of the rest of the application—especially for objects in the middle of the diagram that

seem to connect to everything else in the application?

This last point is crucial. I have encountered many companies with data models so complicated that they can no

longer discern in a reasonable amount of time the effect maintenance programming will have on their EDW. Having

passed this threshold, the DW/BI staff members become very resistant to accommodating new or changing requirements

because, without the ability to accurately gauge the impact of changes, they fear breaking the EDW should they touch

it. When new business needs appear, these DW/BI departments take the defensive strategy of building new tables on

the side of the existing warehouse in order to leave the core of the EDW alone. Unfortunately, this practice leaves them

with an EDW in name alone, for without an integrated and coherent set of data tables, the warehouse is even more diffi-

cult to understand in its entirety, and the company no longer has a single point of truth.

Some DW/BI pundits might challenge companies with a growing data warehouse to simply keep tighter control

over their designers so that they will not need to resort to this strategy of peripheral tables. I believe it is more useful

instead to confront the inconvenient truth that large data repositories in standard normal form are unsustainable over the

long term. As a profession, DW/BI needs to find instead a more practical data modeling paradigm.

Conformed Dimensions Lead to Complex Presentation Layers

Traditionally, EDW professionals prescribes a conformed dimensional model for the presentation layer. Panel 1 of

Figure 12.4 portrays a simple dimensional data model, which is certainly very easy to understand. Like the standard

normal form diagram, this model contains entities and relationships, but here the fact table at the center holds the

metrics that the BI applications will display in their dashboards and reports. The surrounding dimension tables provide

the qualifiers by which the metrics in the central fact table will be analyzed (“sliced and diced”). Because of the inher-

ent clarity provided by this arrangement of fact and dimension tables, some portion of the DW/BI community advocates

storing all of a data warehouse’s information in dimensionally modeled tables. This strategy seems reasonable when the

warehouse is small, but it suffers the same fate as standard normal form models when the EDW starts to grow.

Panel 2 in Figure 12.4 demonstrates that the dimensional model for a full enterprise data warehouse becomes as dif-

ficult to visually comprehend as the standard normal form model. This diagram depicts a presentation layer in which

the fact tables are joined together by shared (“conformed”) dimensions so that end-user analyses can employ the same

definition and value domains for their qualifiers. However, at this point in the EDW’s growth, the team will have

trouble readily discerning from the layout which tables are facts and which are dimensions.

Panel 3 in Figure 12.4 suggests that dimensional depictions of enterprise data warehouses eventually suffer the same

fate as standard normal form models as the DW/BI system grows in size. The development team can depict the com-

plete warehouse in summary form only, with groupings representing the subject areas. Again, individual entities and

attributes have disappeared. The developers can only comprehend the model one area at a time, and with so many inter-

dependencies, fast impact analysis has become nearly impossible. Especially when a new requirement suggests chang-

ing the structure of one of the major, shared dimensions such as customer, product, or location, adapting the warehouse

to meet new business needs becomes a risky solution that DW/BI management will sanction only when the situation

becomes extreme.

The fate of both traditional model forms is the same: The interconnected nature of the tables increases as the data

warehouse grows until the risk of making structural changes becomes impossible to assess or bear. This outcome is

extremely important for advocates of agile data warehousing to confront honestly. The agile techniques for

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 253

FIGURE 12.4 Examples of conformed dimensional form models of increasing complexity.

254 PART | IV Agile EDW Data Engineering

requirements gathering and coding may well allow a team to create a new data warehouse quickly, but to what end? An

incremental development method alone offers no solutions to the paralysis that develops as an EDW’s data model

increases in size. Over the long term, agile teams that employ a traditional data modeling technique only offer their cus-

tomers a faster trip into the swamp of unmaintainable data repositories. The fact that the traditional BI data modeling

paradigms are thoroughly documented, well promoted, and the basis of many existing data warehouses does not mean

they are the best approach nor even a good strategy for the entire life span of the typical EDW.

Faced with this situation, the major advantage that agile EDW team leaders have is their incremental mindset

because it will lead them to a solution. Agile methods are all about constantly delivering value to the customer, even

when the warehouse has grown large. With that mission in mind, agile teams will refuse to accept the

inevitable paralysis that comes with traditional design paradigms. They will be the first to search for alternatives, and

fortunately they now have more than one to choose from.

A Peek at the Agile Alternatives

Figure 12.2 shows the full choice that all EDW teams should consider as they start on an enterprise data warehousing

application or even undertake adding a new subject area within an existing system. Standard normal and conformed

dimensional forms are shown there, but so are the hyper modeled forms. In addition to enabling new data warehouses

to be developed faster, the hyper modeled paradigms have the benefit of producing EDWs that can be far more easily

maintained over the long term. In fact, they enable production data warehouses, fully loaded with data, to be incremen-

tally re-engineered in place, without requiring the team to pursue ruinously expensive data conversion programming for

existing table records. They empower the agile team to not only deliver the first release of an EDW quickly but also

economically evolve the warehouse to meet new business requirements that emerge when their customers learn more

about the BI problem space or when the fundamentals of the business change.

Figure 12.5 provides a good look at the hyper normalized model. It has only three types of entities. Tables of busi-

ness keys, prefixed with “BK_,” are isolated into small, dedicated tables. Simple many-to-many linking tables join the

business keys, whether the relationship between them is one-to-many or many-to-many. The attributes of both business

key and linking tables are split out into their own separate tables, prefixed with “A_.”

BK_Installer

Installer name

BK_Package

Package ID

BK_Manufctr

Manufctr name

BK_CRM agent

CRM agent ID
BK_Order

Order Nbr

BK_Dealership

Installer name

Manufctr name

Namebook ID

BK_Customer

A_CRM agent

Agent name

A_Order_Item

Item qty

A_Package

Package name

Link

Link

BK_Order_Item

Order item Nbr

Link

Link

Link

Link

Link

Link

A_Order

Order date
eBiz site

A_Customer

Customer name
customer city

eSegment

FIGURE 12.5 Example of a hyper normalized data model.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 255

As detailed in a later chapter, a hyper normalized data repository has many advantages, but perhaps most important

among them is the fact that only one parameter-driven ETL module is required to load all the data stores of a given

table type. Because an HNF data warehouse consists of only three table types, the EDW development team needs to

build only three reusable ETL modules, and the data loading programming for the integration layer is largely complete.

The risk of model change is significantly reduced because new requirements can be addressed by (1) utilizing these

reusable ETL modules to populate a new business key or linking table and then (2) dropping the other tables that no

longer reflect the business conditions of the enterprise.

Figure 12.6 provides a good look at the hyper generalized approach. This data model depicts the core of the integra-

tion layer for any and all enterprise data warehouses built using the hyper generalized data modeling paradigm. The

company’s dimensional data can be stored in only six logical tables. Transaction data is stored in one simple “fact”

table per group of metrics sent to the data warehouse. The advantages of the hyper generalized paradigm are manyfold,

including the fact that an EDW automation tool can now understand both the company’s data model and the data that it

contains. By making both the model and the data machine intelligible, development teams need only to describe the

required data warehouse in terms of business-level concepts. The warehouse automation tool can then read the

business-level depiction and generate from it nearly all the ETL programs needed for loading the layers of the DW/BI

application. It can also frequently convert the existing EDW data already to fit a new model necessitated by changing

business conditions. For data conversions that the automation tool cannot manage on its own, the development team

can program them at a business model level, saving a tremendous amount of labor over the physical-level design and

coding required by the traditional modeled forms.

In both the HNF and HGF paradigms, the information in the data warehouse appears to end users the same as it did

using a standard DW/BI approach. The hyper modeled forms focus primarily on the structure and agility of the integra-

tion layer. In both of these new paradigms, data is projected from the integration layer into the dimensional model of

the presentation layer. Changes in the integration layer can be selectively expressed to the presentation layer, so impact

on downstream BI applications is minimal, often nonexistent except for making additional data items available through

the semantic layer.

Teams can interface hyper modeled solutions to traditionally modeled forms of their legacy data warehouses,

making it possible for EDW projects that were started using a traditional approach to embrace these new data modeling

paradigms. When choosing between the two new data modeling paradigms, team leaders must decide whether they

want (1) HNF’s solution, which involves three reusable ETL modules loading a large number of tables, or (2) HGF’s

approach composed of a data warehouse administration tool that stores everything in approximately six highly

abstracted tables and projects consumable data sets as needed. Either paradigm will allow the EDW developers to

evolve the data warehouse in place, using reusable ETL modules or an automation tool that manages much of data con-

versions for them.

Thing Link

Thing type Link type

Attribute

Effectivity

FIGURE 12.6 The main portion of a hyper generalized data model.

256 PART | IV Agile EDW Data Engineering

These new data modeling paradigms usher in the era of the adaptive data warehouse. Because they eliminate much

of the cost of re-engineering a warehouse for changing requirements, they greatly reduce the harm that can occur if a

team gets the EDW data model wrong at first. By reducing the impact of modeling mistakes, they free EDW teams to

focus more intently on delivering the next subrelease without having to get the entire EDW model perfect before they

start coding. EDW teams no longer risk falling into the swamp of a brittle data repository once the data is loaded, so

they can take business requirements as they come, build the best solution for the moment, and then bend both the ETL

and information stores in the warehouse to the next best solution when further requirements arrive. This process of

building a warehouse that meets current needs and then adapting as new requirements emerge is what I call agile data

engineering. EDW team leaders need to seriously considered the hyper modeling techniques because agile data engi-

neering allows developers to keep the EDW aligned with business needs with very low total cost of ownership. Agile

data engineering eliminates the temptation to solve new requirements with siloed data marts alongside the main ware-

house simply because the effort and risk of adapting the warehouse has gotten out of hand.

MODELS, ARCHITECTURES, AND PARADIGMS

In the previous overview, I employed some terms without providing or adhering to stringent definitions. Seasoned DW/

BI professionals will have noted that the discussion at times mixed notions of architecture with models. The discussion

also failed to distinguish carefully between logical with physical models. Going forward, the presentation must be more

exacting with its language in order to clearly express the concepts involved. I take a moment here to define and explain

some key terms we will need and their usage.

Data Architecture

Figure 12.7 shows the key terms needed to discuss data modeling paradigms and how they establish progressive con-

straints on each other. This stack begins with the notion of data architecture. Speaking roughly, a data architecture

provides the overall design pattern for the information storage of an application. It enumerates the major data compo-

nents of that application and the interrelationships between them. More formally, a data architecture specifies the set of

models, policies, rules, and standards that govern which data elements will be collected, described, arranged, integrated,

stored, and employed in a particular application.

A data architecture can be deliberately scoped to a specific application, such as the company’s enterprise data

warehouse, or it can be specified to apply to all applications within a category. The staff working in a company’s

enterprise data architecture group may provide, for example, a more general architecture that all data marts within

the organization should follow so that these data marts will integrate constructively together and thus form an enter-

prise data warehouse.

Data model

The description of the information objects managed by a particular
computer system together with their definitions, properties, relationships,
and constraints

Data architecture
The set of models, policies, rules, and standards that govern which data
will be collected, described, stored, arranged, integrated, and employed
in particular application or a category of systems within the organization

Constrains

Data modeling
paradigm

The style of logical data models for the data stores within a large
application or category of systems within the enterprise, e.g., third
normal form or conformed dimensions

Constrains

FIGURE 12.7 Data architectures, paradigms, and models.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 257

The practice of providing a general architecture for all DW/BI applications naturally gives rise to the notion of a

reference architecture that is employed widely throughout this book. In Chapter 4, I cited the Department of Defense’s

definition of a reference architecture as a generic, high-level design pattern for a class of information systems that can

be used as a foundation for designing specific solutions within that class and that can be readily used for comparison

and alignment purposes between projects.

In practice, I find that the data architectures that development teams create for specific applications tend to govern

both high-level and a small set of low-level concerns. The high-level concerns generally focus on meeting nonfunc-

tional requirements such as security, maintainability, and recoverability. DW/BI departments strive for standardization

on these high-level concerns in order to achieve a degree of predictability in the designs and capabilities across system,

although these standards usually evolve considerably for a given company as the years go by.

The select set of low-level concerns addressed by an application’s data architecture usually pertain to a few major

challenges that the new system will have to overcome. For example, data architectures for telecommunications applica-

tion often have a specific architectural solution specified for call detail records because these records have very wide

record structures and are very numerous, threatening the performance of applications that are not carefully designed to

manage this difficult data element from the start. Accordingly, the enterprise architecture teams at many telecommuni-

cations firms have invested in a standardized approach to managing call detail records that they can suggest to any

team preparing to build a data management system involving a new collection of this type of records.

The data integration function that EDW applications must achieve is heavily dependent on the quality of their data

architectures because integration involves interactions between data systems that can be optimized only by aligning cer-

tain aspects of their high-level designs. For example, EDW teams often struggle to integrate the customer information

between two systems if both identify customers with smart keys. Smart keys bury important business object attributes

into the structure and value of the record identifiers themselves, making the history of each record very difficult to

follow should the values of these qualifiers change. Such integration challenges can be prevented if the company adopts

a data architecture for transaction systems stipulating that all records will be identified using a unique, meaningless,

and dimensionless serial number for each record created.

Data architectures are typically drafted by data architects rather than data modelers. The data architect authors the

target architecture of an application or category of systems and often works to align the actual designs of multiple pro-

jects. When data architects specify the data architecture of a specific application, they typically identify the major types

and sources of data necessary to support desired, enterprise-wide capabilities, such as a coherent identification of pro-

ducts across all the divisions within a conglomerate. They may well specify a subset of the attributes that shared busi-

ness entities must all have in order to facilitate data integration. Soon, however, design aspects start to pertain to only a

specific application, at which point the data architects typically choose to delegate further specifications to the project’s

data modeler. A data modeler is responsible for actually creating the various data models of the application, ensuring

that they comply with the guidance and constraints set forth by the reigning data architecture. Often, the data architects

hold architectural review sessions with the project data modelers in order to ensure that the specific application designs

have honored the dictates of the shared specifications.

Data warehouses can be enormous projects with both a large number of details specific to a particular subject area

and also numerous intersystem requirements given their data integration function. For that reason, EDW projects tend

to involve considerable work for both data architects, who focus more on enterprise requirements, and data modelers,

who attend more to subject-area needs. For brevity in the following discussion, I refer to them collectively as data archi-

tects, being sure to specify data modeler when necessary to indicate an application-specific concern.

Data Model

Occurring at the bottom of the terms listed in Figure 12.7, a data model is an illustration of the information objects

managed by a particular software application, together with their definitions, properties, relationships, and constraints.

The objects within a model frequently correlate with “real-world” objects such as products, suppliers, customers, and

orders, although data modelers place a good number of “system” entities in the model of an EDW that serve to support

information acquisition, integration, and retrieval functions.

Data modelers prepare three major types of data models, each pertaining to a different level of abstraction, as illus-

trated by Figure 12.8. At the highest level abstraction, data modelers prepare conceptual models that focus on the

major business entities within a modeling domain and their relationships, without concerning the reader with details

such as fully enumerating the types of instances occurring for an entity or the entities’ attributes. EDW team leaders

often employ conceptual models to discuss with the business people the overriding requirements for a computer system.

258 PART | IV Agile EDW Data Engineering

For this reason, conceptual models are often called “business conceptual models” or just “business models,” but this

labeling must be used with care because the business staff often has other documents referencing “business models”

that describe commerical partnerships and profit formulas and which have nothing to do with DW/BI projects. The tar-

get business model that the enterprise-capable requirements management (ERM) value chain includes in its vision

document is a good example of a conceptual model, as was illustrated with Figure 10.9.

At a more detailed level of abstraction, data modelers create logical data models that depict the data of a computer

system as it should appear to people or computer applications that must use it. Such a model must identify all the enti-

ties the system will manage and also specify details concerning their semantics, relationships, attributes, and constraints

[Earley 2011]. Given this additional detail, business users usually struggle to understand logical data models, leaving

them to technical staff members who employ them for many purposes, such as the following:

� Understanding the data contained within sources systems
� Planning integration of data between systems
� Matching the capabilities of a DW/BI data repository to the requirements it must support

At the lowest level of abstraction, data modelers utilize physical data models to illustrate how data specified by a

logical model will actually be stored within the disk-based and solid-state storage devices of an application. In a physi-

cal model, the logical data model’s entities and attributes become tables and columns. Physical models can vary signifi-

cantly from the corresponding logical data models as entities are combined or subdivided into physical tables in order

to better achieve nonfunctional requirements such as security and performance. Preparing a good physical model

requires solid knowledge of the specific data storage system a project will employ, because each DBMS offers a differ-

ent set of performance and security features. For this reason, data modelers often collaborate closely with database

administrators in the preparation of physical models.

Given the purpose of each level of abstraction, data modelers employ business models to constrain a logical model—

that is, to define its scope and set its objectives. This pattern of constraints is depicted by arrows in Figure 12.8.

Similarly, logical models constrain a system’s physical data model. When a complete EDW design honors these cascad-

ing constraints, developers will be able to trace all features of the physical model to a stipulation within the logical model

and, similarly, all features of the logical model to requirements established by the business conceptual model.

Data Modeling Paradigm

With the notions of data architecture and data models defined, we can return to the remaining concept found in

Figure 12.7. A data modeling paradigm is a term I have adopted to specify the style of logical data models to be

employed within a particular realm of an enterprise data warehouse. These realms are frequently defined by the refer-

ence architecture stipulated by the DW/BI architects for all the warehouses within the organization. For example, the

traditional DW/BI approach calls for integration layers to employ the standard normal form data modeling paradigm

Physical data
model

Documents how the data will be actually structured within the data store,
often organized to optimize performance and maintainability rather than
for external access requirements

Conceptual data
model

Documents a data store at a high level to support scoping and
requirements discussions. Displays only business-intelligible entities
and the relationships between them—a.k.a. “business data model”

Constrains

Logical data
model

Documents what a data store contains, depicted as the data will appear to
other applications. Provides details on the attributes of the entities
it includes.

Constrains

FIGURE 12.8 Business, logical, and physical data models.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 259

and for the presentation layers to rely on the conformed dimensional paradigm. We can say that a system’s data archi-

tecture constrains a team’s choice of data modeling paradigms by stipulating which shall be used in each layer of the

EDW’s reference architecture. The paradigm then constrains the data models found within that layer by specifying the

types of entities and relationships that will exist between them. Figure 12.7 depicts these cascading constraints with

arrows between the concepts.

Considering some typical statements that data architects make when using these terms will aid in understanding how

they stack within each other. Regarding an EDW data architecture, the DW/BI data architects might stipulate, “Data ware-

houses in this company should have an integration layer for harmonizing and combining information and a presentation

layer that provides access to end-user applications.” Here, he or she is speaking to the top box in Figure 12.7. For data para-

digms, a project architect might suggest, “Let’s try using the ‘data vault’ flavor of hyper normalization for the integration

layer of this next enhancement for the EDW.” Here, he is using terms that trace to the top and middle boxes of Figure 12.7.

The team’s data architect might open a review session with the EDW program’s data modelers by saying, “I’ve added a

new metadata column that I would like you all to add to every Type 2 slowly changing dimension table in your logical data

models.” In this case, her comments pertain to the bottom box of Figure 12.7 and the middle box of Figure 12.8.

NORMALIZATION BASICS

Before I can present how hyper modeling can allow agile EDW teams to fluidly adapt their production warehouses to

new and changing requirements, we first need to discuss the basic data modeling techniques of normalization and gen-

eralization that underlie nearly all DW/BI data design work today. Normalization prepares the data model so that it

can hold the business information of the enterprise without distortion as it captures the events and relationships occur-

ring within the organization. Generalization typically starts with a normalized, logical data model and combines highly

similar objects in a way that some or all of their attributes can be managed through a shared entity so that the team

ends up with fewer entities and ETL modules to build and support. A quick introduction to normalization is provided

next, and a similar overview of generalization is provided in the following section.

Designing Databases to Eliminate Update Anomalies

Database normalization is the process of organizing the columns and tables of a relational database in order to minimize

the data distortions that can occur when a system makes inserts, deletes, or modification data records. Normalization

achieves this goal through a multistep process that steadily eliminates the redundancies and dependencies between

the objects in a relational data store. By following a specific set of design modifications in the proper sequence, a data

modeler normalizes a data model by progressively dividing large tables into smaller, “single-themed” tables and

redefining the relationships between them [Wyllys 2003].

Normalization drives redundant storage out of a data model so that each piece of information is stored only once.

The properly designed relationships within the database guarantee that any given datum can be connected to all other

records that need to be associated with it. Thus, changes to a single value in the database will “flow” through all the

relationships created between the tables and properly appear in the results of all relevant data retrieval queries.

Each of the formal normalization steps theoretically makes the data model better reflect the truth about objects and

relationships within the business. If the data modeler is diligent enough, he or she can supposedly create a model that

needs little or even no restructuring later because all the business objects and relationships comprising the business will

have been anticipated and supported by the model.

The first versions of this technique were defined in the early 1970s by the an IBM researcher, E. F. “Ted” Codd,

who called it “normalization” to echo the normalization of relationships occurring between the United States and the

Soviet Union at the time [Date 2012, p. 36]. Codd was searching for a means to dependably design the tables of a data-

base so that an information system would be free from the distortions cause by “update anomalies.” As illustrated in

Figure 12.9, update anomalies can occur in poorly designed tables from three causes, namely operations to delete,

insert, or modify the data records of the table. In the discussion that follows, I will take advantage of the fact that modi-

fication actions can be viewed as a delete followed by an insert event, and provide at times only examples for a modifi-

cation or a insert-plus-delete actions.

We expect the information in a company’s databases to accurately reflect the reality of the businesses. Insert anoma-

lies occur when an inconsistent view of reality arises after a record is added to the database, but others holding redun-

dant data are not modified in a coordinated way. Delete anomalies occur when removing an entire record in order to

260 PART | IV Agile EDW Data Engineering

eliminate one field causes too much information to be destroyed because all the other, still valuable fields on that record

are discarded as well.

Figure 12.9, for example, shows a table that combines broker, office, and broker specialty for a wealth management

company. The delete anomaly occurs when broker Pat leaves the company, causing the database administrator to delete

her record. Unfortunately, Pat’s departure eliminates the database’s knowledge that the company has a Chicago office

because, at that time, Pat was the only agent working in that city. Somehow, the elements of this database are too

tightly coupled.

Figure 12.9 also shows that this overcoupling between data elements can prevent the company from keeping its data

as up-to-date as possible. Sam has joined the Boston office, but his specialty has not yet been identified. If we were to

add a record for Sam, the information in the database would imply that we can have brokers without a specialty, which

in truth is against the company’s business rules. The organization can choose to simply not record Sam’s existence in

order to avoid such an insert anomaly, but this leads to a distortion in the other direction because an accurate company

roster cannot be retrieved from the database.

The third example in Figure 12.9 illustrates the distorted picture of the truth that a database can acquire through

update anomalies. The company’s IPO expert, Terry, moved to the company’s new office in Orlando as soon as

she became certified to perform bond swaps. If the database drops her old record for Boston and inserts her

new record for Orlando, marking her specialty as bond swaps causes the company to lose all knowledge of her skills

in mergers.

Table 12.1 presents the seven steps currently defined for correcting a database design to eliminate update anomalies.

This table also names the database theorists that have most actively worked to define each step, starting with Ted Codd

in 1970. Three considerations should strike the reader immediately. First, data normalization is a nontrivial practice

involving multiple steps. Searching for “data normalization” on the website for any mainstream bookseller yields

2000�3000 references from which to choose. Second, the practice still entails some controversy, given that two ver-

sions exist for the first, third, and sixth normal forms. Third, the overall process is still in a state of change, with Chris

Date still suggesting new approaches as recently as 2003.

The complexity of the subject and its ongoing refinement give rise to one of the greatest weaknesses with the

practice of normalization. EDW projects would be far more manageable if data normalization were a

repeatable process with a reliable outcome, but that is not the case today. Data normalization is a slow and labor-

intensive practice, especially when teams aim for the higher fourth and fifth normal forms. Two equally skilled

data modelers normalizing the same starting data structure will typically come up with two different yet equally

valid designs. Even a single data modeler normalizing the same starting database twice will produce a different

specification. Given that normalization does not provide repeatable results, how can DW/BI managers and pro-

gramming teams have confidence that a team’s current data model represents a sound basis for months, even years

of ETL development? The variability in the results of normalization makes this area of database design an

enormous threat to the success of a project. So that they can reliably drive enterprise data warehouse projects to a

successful completion, EDW project leaders need to understand not only normalization and its weaknesses but

Table: Brokers

Broker Office Specialty

Deletion anomaly 1 X Pat Chicago IPO

2 Terry Boston Mergers

Insert anomaly 3 Sam Boston ?

Modification
anomaly

4 Δ Terry Orlando Bond swaps

Can't register knowledge of Sam until a specialty is
assigned.

We modify the record for Terry’s new certification but
lose knowledge of her other skill.

If we delete this record because Pat leaves the company,
we lose knowledge that Chicago office management has
had experience with initial public offerings.

FIGURE 12.9 The update anomalies data normalization is designed to prevent.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 261

also the costs and benefits of each level of normalization so that they can choose the right style of normalization

to pursue.

Example: One Table from First to Fifth Normal Form

To provide an example that illustrates the previously discussed concepts, I now take one table from a state of total

“denormalization” to fifth normal form. This section serves only as a quick introduction to normalization, and it

assumes that the reader has some basic vocabulary regarding relational databases, such as tables, columns, and keys.

Moreover, to keep the presentation streamlined, this example excludes Boyce�Codd and sixth normal form because

Boyce�Codd is a variation on third normal form and sixth normal form is still controversial. An example showing only

levels one through five will be complete enough to familiarize readers with the practice of normalization and the

hazards involved. A more complete presentation of these terms and data normalization can be found in reference books

such as that by Date [Date 2012].

Figure 12.10 shows the context model for the hypothetical data warehouse we will be normalizing. This DW/BI

application belongs to a telecommunications company that sells services such as cell phones, video on demand, and

high-speed Internet. This company advertises its products via ads on other companies’ websites. Customers who click

on those ads are taken to the telcom company’s consumer ordering website, where they can pick one or more packages

of services and select a third-party company that will deliver and install the equipment. One can think of the company’s

marketing program as comprising three major components:

1. The sales management team initiates reseller advertising agreements with major ad managers such as Google and

Yahoo!, which will display ads across the Internet.

2. The fulfillment management team recruits a cadre of installers throughout the nation who are qualified to implement

the equipment and services that consumers purchase.

3. The sales website team maintains the company’s consumer ordering website so that consumers can find the products

advertising and purchase them.

TABLE 12.1 History of Data Normalization

Form Definition events Reference

1NF Two versions:

E.F. Codd (1970) [1a]

C.J. Date (2003) [1b]

2NF E.F. Codd (1971) [2]

3NF Two versions:

E.F. Codd (1971) [3a]

C. Zaniolo (1982) [3b]

BCNF
R.R. Boyce and
E.F. Codd (1974)

[3.5]

4NF Ronald Fagin (1977) [4]

5NF Ronald Fagin (1979) [5]

6NF Two versions:

Ronald Fagin (1981) [6a]

C.J. Date, et al (2002) [6b]

[1a]

Notes:

[1b]

[2]

[3a]

[3b]

[3.5]

[4]

[5]

[6a]

[6b]

E. F. Codd, Further normalization of the database relational

model, Courant Institute: Prentice-Hall, 1972

Chris Date, "What First Normal Form Really Means", Date on

Database: Writings 2000-2006, Springer-Verlag, 2006

Codd, E.F. "Further Normalization of the Data Base Relational

Model," Randall J. Rustin (ed.), Data Base Sy stems: Courant

Computer Science Sy mposia Series 6. Prentice-Hall, 1972

Ibid.

Chris Date, Hugh Darw en, and Nikos Lorentzos, Temporal Data

and the Relational Model, Elsev ier LTD, January 2003.

Carlo Zaniolo, "A New Normal Form for the Design of Relational

Database Schemata." ACM Transactions on Database Sy stems

7(3), September 1982

BCNFL "Boy ce-Codd Normal Form"

E.F. Codd, "Recent Inv estigations into Relational Data Base

Sy stems," IBM Research Report RJ1385, April 23, 1974

Ronald Fagin, "Multiv alued Dependencies and a New Normal

Form for Relational Databases," ACM Transactions on Database

Sy stems, Vol. 2, No. 3, September 1977

Ronald Fagin, "Normal Forms and Relational Database

Operators", ACM SIGMOD International Conference on

Management of Data, May 31-June 1, 1979, Boston, Mass.

Ronald Fagin, "A Normal Form for Relational Databases

That Is Based on Domains and Key s,"

ACM Transactions on Database Sy stems, Vol. 6, No. 3,

262 PART | IV Agile EDW Data Engineering

As shown Figure 12.10, the Sales Channel Monitoring System provides the EDW with information regarding

the advertising that the ad managers such as Google and Yahoo! provide for the company’s products. Downstream,

the sales channel managers want to query this data to learn how faithfully ad managers are displaying the company’s

promotions to the people surfing the web. The Fulfillment Channel Management System provides information regard-

ing the installers contracted to service the consumers. The fulfillment channel management team will want to ask

questions about who is ready to support which types of equipment that the telecommunications company provides.

The Consumer Ordering Website provides information about the sales that occur, and the sales managers will want to

analyze which retailers and promotions have proven to be the most effective at enticing the public to buy the com-

pany’s products.

Figure 12.11 presents a starting data model in which a single data record called “Sales Order” contains all

the information provided by these three source systems on a single data record. The particular data record shown

in the figure represents a sale of two packages of equipment and services to a city recreational center in California.

The designers of this starting database chose the consumer’s Facebook ID and the order’s date-time as the business

attributes that will uniquely identify each sales record. They have designated this combination as the table’s primary

key, as indicated by the bold borders in the diagram. For the transaction depicted, the customer actually purchased

two packages after clicking on an advertisement she saw while viewing the website for OnlineDepot.com. That par-

ticular ad was displayed to her by the Google ad management service, and it offered her half-off on her installation

charges.

With all the attributes of a sale placed in one table, Figure 12.11 depicts a database in “zeroth normal form” or

0NF. This example shows how a design team takes a 0NF database and progressively normalizes its structure from

1NF to 5NF.

EDW

Sales channel

monitoring system

Fulfillment channel

management system

Consumer ordering

website

Sales channel managers :

“Show me the retail vendors and
promotions that the ad

managers we’ve contracted are
using.”

Fulfillment channel

managers:

“Show me the manufacturers
and installers we’ve got under

contract for each type of service
we sell.”

Sales managers:

“Show me this week’s sales
order broken out by sales

channel and fulfillment channel
attributes.”

Ads displayed by ad
managers on other

company’s web sites

Installers
available

Sales made when
consumers click

upon an ad

Source
systems

Requested
application

User
communities

FIGURE 12.10 Context diagram for the normalization example.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 263

1NF Correction

According to the rules of data normalization, the first design flaw we should correct is the fact that this database has a

repeating set of columns for the items sold. The current structure provides storage for only two line items for each sale,

which makes the database vulnerable to insert anomalies. Should the company next receive an order with three items,

the warehouse would either be blocked from recording this event or have to duplicate sales header information on

another, new record that would be necessary only to record the third item. The first choice prevents the organization

from knowing that it had demand for the third item. The second choice will cause misinformation when the company

tries to determine how many orders it has received by counting order headers. Similarly, if this record were dropped, a

delete anomaly would occur because it might hold the only instance of the VOIP phone manufactured by Winsome,

causing the company to lose knowledge that such product exists for sale.

First normal form dictates that no elements within a record can represent sets of values. Every attribute of an entity

should contain only one atomic value from a particular domain. In the 0NF configuration, Package ID is actually an

array containing two values, VPH and STV.

The first panel in Figure 12.12 shows the corrected database record, in which the problem of repeating columns

has been eliminated. The second panel in this figure depicts the change in the data model when viewed as a high-

level entity relationship diagram. The items sold have been moved to their own “Line Item” table, which contains

one record per item sold. The designers established a many-to-one relationship between the tables through a foreign

key (designated with bold dashed borders) on the Line Item table, composed of Order DTM and Facebook ID. The

values in these fields link each Package record to a single parent record in Sales Order Header, whose primary key

fields are Order DTM and Facebook ID. The primary key of the Line Item table is this foreign key plus the item

number.

2NF Correction

At this point, the designers consider the fields remaining in Sales Order Header table and notice that the non-key cus-

tomer attributes have nothing to do with the order date-time. Second normal form requires that a database be in first

normal form and that the values of all non-key columns be determined by all of the table’s primary key, not just part of

it. With the record’s current design, a delete anomaly could occur if this order were cancelled and its record removed,

because this record might be the company’s only indication that the Westwood Rec Center exists as an interested cus-

tomer. Conversely, an insert anomaly might occur if a sales transaction arrived to the company’s server that was miss-

ing the customer’s city and the city had been designated as a required value. Because it was missing a required

customer field, the warehouse would be prevented from recording a sales transaction, causing the sales counts provided

by the database to be in error.

Online sales order

Package 1: VOIP Phone Qty: 3

Package 1: Satellite TV Qty: 2

Item 1:

Item 2:

Pkg ID: VPH

Pkg ID: STV

Mfg: Winsome Installer: 911-TechInst. Svc: IW9 Svc Ctgy: Internet voice

Mfg: LongLife Installer: Prime starInst. Svc: SLP Svc Ctgy: Remote video

Customer: Westwood Rec CenterFacebook ID: paula_gOrder DTM: 5-Jan 11:23 City: Westwood, CA

Ad site: onlinedepot.com Promo: 1/2 OffAd manager: GoogleSales channel: GOHO

Primary key fieldLegend: Foreign key field Other data fields

FIGURE 12.11 Sample case’s data in its starting arrangement, i.e., zeroth nomal form.

264 PART | IV Agile EDW Data Engineering

Figure 12.13 shows the database after it has been redesigned to meet second normal form. The fields identifying the

purchaser have been moved to their own dedicated table called Customer. The Facebook ID field links each record in

the Sales Order Header table to the single appropriate customer record in Customer.

3NF Correction

Continuing on with the normalization process, the designers now search their new structures for violations of third

normal form, which rules out “transitive dependencies.” Transitive dependencies occur when a non-key element

determines the value for another non-key element. We can see three such dependencies in the second normal form

version of this database. First, in the Sales Order Header table, the sales channel code is not part of the records’

primary key, but it does determine the values for the ad manager, ad site, and promotion that make up the buyer’s

path to the purchasing site. Second, in the Line Item table, Package ID is not part of the primary key, but it deter-

mines the Package Name. This connection is another transitive relationship that violates third normal form. Finally,

the Fulfillment Channel code is not part of the Line Item records’ primary key either, but it dictates the values

for Service Category, Manufacturer, and Installer. Considering the update anomalies for just the first of these

dependencies, we can see that if this record were to be deleted, the company could lose all knowledge that

the Google ad manager has displayed half-off advertisements or any ads on OnlineDepot.com at all. Similarly,

if the business rules made advertising sites or promotional styles mandatory values for the record, a transaction

missing either of them would get blocked during an insert action, making incomplete the data warehouse’s informa-

tion regarding ads that have been displayed.

Line item

Package 1: VOIP Phone Qty: 3Pkg ID: VPH

Sales order

0NF 1NF

Line item

Sales order

header

Line Item

Package 1: Satellite TV Qty: 2Pkg ID: STV

Mfg: Winsome Installer: 911-TechFulfillment channel : IW9 Svc Ctgy: Internet voice

Mfg: LongLife Installer: Prime starFulfillment channel: RLP Svc Ctgy: Remote video

Facebook ID: paula_gOrder DTM: 5-Jan 11:23 Item Nbr: 1

Facebook ID: paula_gOrder DTM: 5-Jan 11:23 Item Nbr: 2

Sales order header

Customer: Westwood Rec CenterFacebook ID: paula_gOrder DTM: 5-Jan 11:23 City: Westwood, CA

Ad site: onlinedepot.com Promo: 1/2 OffAd manager: GoogleSales channel: GOHO

FIGURE 12.12 Impact of a first normal form correction upon sample case’s data model.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 265

To correct these weaknesses, the designers diligently eliminate each transitive dependency so that each set of items

that were not determined directly by a data record’s primary key receive their own single-themed table. In this case, the

data modelers updated the design as follows, all of which are illustrated in Figure 12.14:

� Sales channel fields receive a dedicated table with columns for Ad Manager, Ad Site, and Promo. Sales order

headers will link to this table using the field for the Sales Channel code.
� Package Description is split out to a separate table also. Line item records will link to this table via the Package ID.
� The fulfillment channel fields land in a table of their own that will have columns for Service Category,

Manufacturer, and Installer. Line item records will link to this table using the Fulfillment Channel code.

Note that this type of correction was used for the Package ID and Package Name fields, which represent a code and

its meaning. Data modelers learn early on to look for code-decode pairs within the same table, since they are usually

third normal form violations. As a general practice, EDW teams will create many reference tables for data warehouses

that hold code meanings in order to avoid the update anomalies that third normal form violations engender.

4NF Correction

Some designers believe that moving a database to third normal form is sufficiently free of update anomalies and stop

their design work there. Modelers on more advanced projects, however, believe it is necessary to insulate their database

designs against another class of anomalies, namely multivalued dependencies, and this belief causes them to search their

third normal form schemas for fourth and fifth normal form violations.

A multivalued dependency exists if the keys of a table determine not just one occurrence of the remaining values in

a table but instead multiple values. Consequently, if a multivalued dependency exists in a table, we need to create more

than one record to store the information associated with a given key value [Singh 2011, Chapter 10]. One disadvantage

Line item

Sales order

header

Customer

2NF

Customer

1NF

Line item

Sales order

header

Sales order header

Facebook ID: paula_gOrder DTM: 5-Jan 11:23

Ad site: onlinedepot.com Promo: 1/2 OffAd manager: GoogleSales channel : GOHO

Facebook ID: paula_g Customer: Westwood Rec Center City: Westwood, CA

FIGURE 12.13 Impact of a second normal form correction upon sample case’s data model.

266 PART | IV Agile EDW Data Engineering

of allowing this condition to exist in a data warehouse is that additional, inter-record logic must be designed and pro-

grammed into the ETL so that all the necessary records are created each time a new set of key values is added. Such

multirecord logic is difficult to specify and program correctly, and so it is a common source of vexing quality errors

within a data warehouse.

Multivalue dependencies can be more difficult to spot than the first three normal-form violations because one

must consider the values that can occur across several records in a table, not just the values stored on a single

record. To take our model beyond third normal form, we must search it for two types of multivalued dependencies.

Two or more independently varying, non-key fields lead to a fourth normal form violation. Two or more fields

whose values can be determined by an exogenous reference domain, such as a control list, violate the requirements

for firth normal form.

To understand the fourth normal form violation, consider Table 12.2, which shows the full domain for the Sales

Channel table in the third normal form data model. Looking at this listing, the designers discovered that there is more

than one way to interpret the records that it holds. With multiple interpretations possible, the sales management team

may draw the wrong conclusions when it uses these records to review the company’s advertising campaigns that are

running on the Internet. The ambiguity emerged when the designers asked themselves what updates to this table should

the ETL make when the Ask ad manager started displaying the company’s advertisements via the OnlineDepot.com

website. The company is currently running two types of promotion: “1st Free” and “2 for 1.” If the data warehouse cre-

ated records for both of these promotions, as shown at the bottom of Figure 12.14, it would imply that Ask displays

both types of ads on OnlineDepot.com, but perhaps that would be a false picture of reality. Ask’s ad servers may have

a problem with the images used for the 2-for-1 promotions, so populating this reference table with both records will

imply a counterfactual notion that Ask is fulfilling its contract obligations. Conversely, if the warehouse created a

record for only 2-for-1 promotions because that is the only ad found in the sales channel monitoring system, the end

users might infer that Ask has deliberately chosen not to run 1st-Free ads for the company. Perhaps it is only

Line item

Sales order header

Sales channel

Line item

Sales order

header

Customer

2NF

Customer

3NF

Package
Fulfillment

channel

Line item

Qty: 3

Fulfillment channel: IW9Pkg ID: VPH

Package

Package 1: VOIP PhonePkg ID: VPH

Fulfillment channel

Mfg: Winsome Installer: 911-TechSvc Ctgy: Internet Voice

Sales channelSales order header

Sales channel : GOHO

Fulfillment Channel: IW9

Ad site: onlinedepot.com Promo: 1/2 OffAd manager: Google

Sales channel : GOHO

Facebook ID: paula_gOrder DTM: 5-Jan 11:23

Facebook ID: paula_gOrder DTM: 5-Jan 11:23 Item Nbr: 1

FIGURE 12.14 Impact of a third normal form correction upon sample case’s data model.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 267

coincidence that has kept the 1st-Free ads from running yet, so the missing record will mislead the sales management

team. The inclusion of two independently varying columns in the same table leads to insert anomalies that make it

impossible to populate the table so that end users can dependably interpret its information.

Delete anomalies exist as well for tables violating fourth normal form. If BigBuy.com decides to block Ask as an ad

server for its website, the data warehouse would have to delete all the records that contain “Ask” and “BigBuy.com”

(Records 5 and 6 in Figure 12.14). Record 4 would be the only indication in the data warehouse that 2-for-1 ads are run-

ning on the BigBuy.com website. If Record 4 did not exist, then deleting Records 5 and 6 would have eliminated all

knowledge of this particular combination of ads and ad sites, leading to incorrect information for the sales team. In real-

life data warehouses, the number of columns and records involved with fourth normal form violations will be many times

higher than the two small records here; thus, the rules for avoiding and correcting the possible update anomalies can be

very difficult to specify. Multivalued dependencies also require complex ETL routines that act on more than one record

per event, programming, so most veteran EDW data modelers work hard to remove them from their designs.

Correcting for a fourth normal form violation follows a similar strategy that data modelers used for the first through

third normal forms: The columns involved in multivalue dependencies should be relocated into their own special-

themed tables. As illustrated in Figure 12.15, a fourth normal form design will split the columns in the last model’s

Sales Channel table into three separate entities: Ad Manager, Ad Site, and Promotion. Furthermore, the designers will

need to add two associative tables in order to express the relationships between the records in the three entities—one

for tracking relationships between ad managers and ad sites and another for links between ad manager and promotions.

Table 12.3 illustrates how the rows of the original Sales Channel table would be distributed across the five new tables.

With this design, only one record is needed in the first associative table to document that Ask will be running the com-

pany’s advertisements on the OnlineDepot.com website. Whether that contract supports 1st-Free or 2-for-1 promotions

will be documented independently in the second associative table. The existence of an advertising contract is now

decoupled from the promotion it covers so that end users will not be misled by the update anomalies that could occur in

the previous design. Updates to the Ad Manager�Promotions table incur no requirement to affect the records in the Ad

Manager�Ad Site table, so the programming for maintaining an accurate database becomes much simpler. Business

users still create the full set of records making up the previous Sales Channel table by joining these five tables together,

only now the business situations that those results imply will be clear.

This correction for a relatively simple fourth normal form violation should serve as a cautionary tale for EDW team

leaders. Our example identified several columns in an apparently functional table that turned out to be varying indepen-

dently. When the EDW team realized that some of the attributes no longer represented a simple set of values qualifying

the primary key of a table but had instead taken on independent lives of their own, the design fix required turned out to

be very involved. The correction required five new tables, each needing an ETL module of its own, in addition to data

TABLE 12.2 Insert Anomaly for the 3NF Sales Channel

Table

Existing records

ID Ad Manager Ad Site Promo

1 Google OnlineDepot.com 1st Free

2 Google OnlineDepot.com 2 For 1

3 Yahoo! BigBuy.com 1st Free

4 Yahoo! BigBuy.com 2 For 1

5 Ask BigBuy.com 1st Free

6 Ask BigBuy.com 2 For 1

Proposed new records

7 Ask OnlineDepot.com 1st Free

8 Ask OnlineDepot.com 2 For 1

Sales channel table

268 PART | IV Agile EDW Data Engineering

TABLE 12.3 Sample Case’s Tables After 4NF Correction Applied

Ad Manager ID Ad Manager name

101 Google 101 (Google) 201 (OnlineDepot.com)

102 Yahoo! 101 (Google) 202 (BigBuy.com)

103 Ask 102 (Yahoo!) 201 (OnlineDepot.com)

103 (Ask) 201 (OnlineDepot.com)

103 (Ask) 202 (BigBuy.com)

Ad Site ID Ad Site Name

201 OnlineDepot.com

202 BigBuy.com

101 (Google) 301 (1st Free)

101 (Google) 302 (2 for 1)

Promo ID Promo name 102 (Yahoo!) 301 (1st Free)

301 1st Free 103 (Ask) 301 (1st Free)

302 2 For 1 103 (Ask) 302 (2 for 1)

Entity tables Associative tables*

* Associative records populated with IDs of the entity table records that they relate.
 Names for each ID shown in parentheses for clarity.

Ad Manager-Ad Site TableAd Manager Table

Ad Site Table

Promo Table

Ad Manager-Promo Table

Ad Manager Promo

Ad SiteAd Manager

Ceregenics, Inc. confidential information.

Sales order header

Sales channel

Sales channel ID
Ad manager name
Ad site domain
Promo name

Sales order

AM-eS AM-Pr

Ad manager

Ad site Promo

Sales order Nbr
Sales channel ID
. . .

Sales order Nbr
Ad manager ID (new)
eSite ID (new)
Promo ID (new)
. . .

Ad site ID
Ad site domain

Promo ID
Promo name

Ad manager ID
Ad manager name

Ad manager ID
Promo ID

Ad manager ID
Ad site ID

Dark headers represent newly created tables.
Indicates where new foreign keys are required in the dependent table.

FIGURE 12.15 Impact of a fourth normal form correction upon sample case’s data model.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 269

conversion for the tables that used to link to the original table before those attributes were split out. Because business

changes can frequently transform simple attributes in a table into an independent entity, we will use the fourth normal

form correction as a change case later in this chapter to demonstrate how much effort hyper modeled approaches can

save an EDW program.

5NF Correction

The interconnections between the columns of the Sales Channel table were not the only multivalued dependency that

our design team discovered when it reviewed its third normal form data model. The fulfillment channel also suffers

from a fifth normal form violation, and the efforts needed to repair it will involve six new tables.

To see the multivalued dependencies in this table, it helps to list out a representative set of records that it will hold,

as shown in the top left side of Table 12.4. The table lists the installation mechanism that consumers can request when

they order service packages via the company’s online purchasing website. Given the service category to which a given

product belongs, each installation choice allows the consumers to select the manufacturer of their equipment and the

third-party installer that will deliver it to their homes.

Multivalue dependencies lead to redundancies between the values in a table’s columns—redundancies that can cause

data anomalies when records are inserted, deleted, or modified. Such redundancies have been indicated in the

Duplications Grid to the right of the data table. Three records express the same combination of service category

and manufacturer as another record in the rows above, two duplicate a previous combination of service category and

installer, and six list a redundant combination of manufacturer and installer. Updates become complex with these multi-

value dependencies in place. Two possible update anomalies are listed at the bottom of Table 2.14. We can imagine a

third type of complex update that would occur if a manufacturer decided to stop doing business with a particular

TABLE 12.4 Records Demonstrating a Fifth-Normal Form Violation

ID Svc. Category Manufacturer Installer

1 Cloud Storage TwoProng GeekSquad

2 Demand Video Winsome GeekSquad

3 Hi Speed Copper LongLife Prime Star

4 Internet Voice LongLife Prime Star Y
5 Internet Voice Winsome 911-Tech

6 Internet Voice Winsome GeekSquad Y Y
7 Mobile Hotspot LongLife GeekSquad

8 Remote Video LongLife Prime Star Y
9 Internet Voice LongLife GeekSquad Y Y Y

10 On-Premises Wifi LongLife Prime Star Y
11 On-Premises Wifi Winsome 911-Tech Y
12 On-Premises Wifi Winsome Prime Star Y Y

Problem cases

Delete anomaly

1 Cloud Storage TwoProng GeekSquad

Insert Anomaly

13 Remote Video LongLife 911-Tech

If deleted, database loses all knowledge that there is a
"cloud storage" product type.

If added, ETL will also need to add two further records for
the 911-Tech and LongLife combination to cover the other
two service categories that 911-Tech already works in.

Fulfillment channel table
Svc Ctgry-

Manufactr

Svc Ctgry-

Installer

Manufactr-

Installer

Duplications grid

"Y" indicates a record contains the same values
for the given pair of columns as a record above it

270 PART | IV Agile EDW Data Engineering

installer. If LongLife suddenly refused to support Prime Star, for example, it would not be enough to delete Record 3.

Records 4, 5, 10, and 12 would have to be removed as well. Ensuring that the ETL performs multiple, coordinated

deletes can require a nontrivial effort, especially when the business rules determining the affected rows involve many

columns.

The consideration that makes this design a fifth normal form violation is the fact that the company’s s subject matter

experts have provided insight that will help the DW/BI team correct this table’s multivalued dependencies. They have

assured the team that there is no need to track all the known combinations of manufacturers and installers for each ser-

vice category because if a particular installer is authorized to install a manufacturer’s equipment for one service cate-

gory, it is qualified to perform installations for that manufacturer in all the other service categories that the installer can

handle. In fact, the company possesses a list of dealerships—that is, a control list of installers authorized for each manu-

facturer. With that information available, the Fulfillment Channel table can be decomposed into three core entities with

three associative tables linking them, as shown in Table 12.5. The data modelers isolate service categories, manufac-

turers, and installers into their own special-themed tables. Then they create associative tables to link the valid combina-

tions between any two of these core entities.

Once the original Fulfillment Channel data has been distributed to the new design, the relationships between service

categories and manufacturers can be maintained separately from relationships between service categories and installers

and also separately from the links between manufacturers and installers. To re-create the Fulfillment Channel table of

the original design, the end users can join the six new tables as shown in the high-level entity diagram of Figure 12.16.

Records can be inserted in or deleted from the appropriate table to express new truths about the theme of that

table without altering the truths held about the other, unaffected entities in this corner of the data model. Consider the

insert anomaly identified in Table 12.4, for example. In the third normal form design, the ETL would have had to add

three records when 911-Tech started installing equipment made by LongLife, one for each of the service categories

in which 911-Tech works. Perhaps the ETL would perform that insert correctly, or perhaps coding errors would cause

one or two of the records to be omitted. Once the design is compliant with fifth normal form, however, only one record

has to be inserted in the Dealership table, namely, one linking 911-Tech with LongLife. Programming the ETL to add a

single record is far easier than coding modules to execute three coordinated inserts.

GENERALIZATION BASICS

The other fundamental EDW data modeling technique besides normalization is generalization. Generalization is a

modeling technique that transforms data structures that are specific to a particular entity to a form that can support a

wider range of entity types.

The classic use of generalization is the party model. Without generalization, a data model could specify a separate

table for each of a company’s customers, employee, and vendor entities. However, the modelers could note that

instances of all three of these entities are either companies or individuals. With some thought, they could consolidate

the three specific tables into a single generalized set of tables that can store instances of a party, whether it be a person

or a company. Such an adaptation makes it far easier to update the data warehouse’s design when the company creates

a new way to work with other companies, such as marketing partnerships, because it can simply declare a new type of

party and begin storing that flavor of data in the existing party tables. When one generalizes a denormalized table such

as a flat file extract from a source system, the resulting model tends to have a generalized parent table (a supertype)

that holds the common fields shared by the entities plus a set of related child tables (subtypes) that will hold the attri-

butes specific to entity types. We will see this pattern play out when we step through a generalization example later.

Advantages and Disadvantages of Generalization

As an overall advantage, generalization consolidates data transform logic within a DW/BI application, thus eliminat-

ing redundant blocks of programming within the ETL modules. With fewer redundant blocks of code, developers

have fewer locations to consider while performing impact analysis and maintenance programming so that they

can update the EDW’s functionality faster and with fewer mistakes. For example, if customer, employee, manufac-

turer, and installer all share some basic attributes and the data modelers locate these attributes together in a shared

entity, the EDW developers can program the transformation logic for these attributes in a single, reusable module,

leaving themselves only one block of code to update when the business rules affecting these entities change in

the future.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 271

Generalization is not guaranteed to always reduce complexity, however. If the data modelers must take extraordi-

nary steps while abstracting data field names, domains, or data types, for example, generalization can lead to designs

that are more opaque and ETL programs that are more internally complex, overshadowing the advantage of locating the

logic in one module.

Generalization is different than abstraction, another concept in data modeling. Whereas abstraction is a loss of

unnecessary detail as one takes a progressively higher viewpoint upon a system, generalized data structures can still

manage all the required detail�they just utilize tables that can store more than one type of entity [Silverston and

Agnew 2008].

Unlike data normalization, the practice of generalization does not yet have a single set of modeling techniques that

a data modeler can follow across all types of entities. In general, data modelers can take two or three steps in

TABLE 12.5 Table Records After 5NF Correction Applied

ID Name

101 Cloud Storage 101 (Cloud Storage) 301 (TwoProng)

102 Demand Video 102 (Demand Video) 303 (Winsome)

103 Hi Speed Copper 103 (Hi Speed Copper) 302 (LongLife)

104 Internet Voice 104 (Internet Voice) 302 (LongLife)

105 Mobile Hotspot 104 (Internet Voice) 303 (Winsome)

106 Remote Video 105 (Mobile Hotspot) 302 (LongLife)

107 On-Premises Wifi 106 (Remote Video) 302 (LongLife)

107 (On-Premises Wifi) 302 (LongLife)

107 (On-Premises Wifi) 303 (Winsome)

ID Name

301 TwoProng

302 LongLife

303 Winsome 101 (Cloud Storage) 201 (GeekSquad)

102 (Demand Video) 201 (GeekSquad)

103 (Hi Speed Copper) 202 (Prime Star)

ID Name 104 (Internet Voice) 202 (Prime Star)

201 GeekSquad 104 (Internet Voice) 203 (911-Tech)

202 Prime Star 104 (Internet Voice) 201 (GeekSquad)

203 911-Tech 105 (Mobile Hotspot) 201 (GeekSquad)

106 (Remote Video) 202 (Prime Star)

106 (Remote Video) 201 (GeekSquad)

107 (On-Premises Wifi) 202 (Prime Star)

107 (On-Premises Wifi) 203 (911-Tech)

301 (TwoProng) 201 (GeekSquad)

302 (LongLife) 202 (Prime Star)

302 (LongLife) 201 (GeekSquad)

303 (Winsome) 201 (GeekSquad)

303 (Winsome) 203 (911-Tech)

303 (Winsome) 202 (Prime Star)

** Also known as the "Manufacturer-Installer Associative Table."

Associative tables*Entity tables

Service category-manufacturer table

Service category-installer table

Dealership Table*

Svc. Category Manufacturer

Svc. Category Installer

* Associative records populated with IDs of the entity table records that they relate.
 Names for each ID shown in parentheses for clarity.

Mfctr Installer

Installer table

Manufacturer table

Service category table

272 PART | IV Agile EDW Data Engineering

generalizing a starting flat-table design, but for some common topics, such as status codes and methods of contact, a

fourth step is possible. Not only does the number of possible steps vary between topics but also the goal of each gener-

alization step can be different. Generalization is therefore more of an art than normalization. With each step, the data

modelers must carefully weigh the gains in simplifying the ETL code against the obfuscation caused by having a single

structure that can serve two or more purposes.

Line Item

Sales Order Nbr
Package ID
Quantity Ordered
Fulfillment Channel ID
. . .

Fulfillment Channel

Fulfillment Chanel ID
Service Category
Equipment
Manufacturer
Installing Company

Sales Order

Header

Package

Package ID
Package Name

Line Item

Sales Order Nbr
Package ID
Quantity Ordered
Service Category ID (new)
Manufacturer ID (new)
Installer ID (new)
. . .

Sales Order

Header

Package

Package ID
Package Name

SC-M SC-I

Service Category

Dealership

Manufacturer

Service Category ID
Service Category Name

Manufacturer ID
Manufacturer
Name

Service Category ID
Manufacturer ID

Manufacturer ID
Installer ID

Service Category ID
Installer ID

Installer

Installer ID
Installer Name

Dark headers represent newly created tables.
Indicates where new foreign keys are required in the dependent table.

FIGURE 12.16 Impact of a fifth normal form correction upon sample case’s data model.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 273

Many data modelers emphasize generalization heavily in their practice because they believe it future proofs their

application’s data structures against possible changes in business requirements. Some forms of generalization can make

data models more robust against new requirements, but EDW teams should be aware that full future proofing is costly.

Because the future can only be guessed at and because generalization is not a science, data modelers tend to argue

extensively over some of the smallest design details when trying to insulate an EDW design against all possible contin-

gencies. Consequently, ambitious generalization efforts can seriously distract a development team. Moreover, future

proofing efforts frequently fail when confronted with business conditions completely outside those that the data modelers

anticipated. Given the rapid change occurring today due to forces such as globalization, e-commerce, and the Internet of

Things, EDW team leaders will be wise to invest only modestly in future proofing their data models. Delivering new BI

services quickly will far outweigh the possible updates that a team might someday have to make because it moved ahead

with a less-than-fully generalized data model. Especially if teams employ the agile data modeling techniques of hyper

normalization and hyper generalization that are introduced later, they will be able to adapt EDW designs so quickly that

there will be very little advantage gained by trying to guess and design for the murky future.

As a final note of caution, readers should realize that mistakes in generalization can make data models more brittle

rather than more flexible. If the modelers generalized an organization’s customers and employees into a single people

entity, for example, that decision could actually make it difficult for the company to someday start selling to companies

because there would be nowhere to record company-appropriate qualifiers such as employer tax identifiers, Duns num-

bers, or resellers licenses. Generalization is a two-edge sword, and EDW project leaders should manage the situation

carefully when their data modelers start swinging it broadly.

Example: Generalizing a Sales Table for the Party Entity

The party model is perhaps the most common use of generalization in enterprise data warehousing and thus will serve as

a good illustration of the steps involved in this data modeling technique. Figures 12.17�12.21 demonstrate how data

modelers might progressively generalize an application’s logical data model so that the attributes for people and organi-

zations will migrate from a single table to several tables in a way that enables greater reuse and adaptability. When com-

pleted, a single set of entities will be able to play several roles in a database and support widescale reuse of information.

As with the normalization example, these diagrams begin with a “Level 0” representation, as shown in Figure 12.17.

In the Level 0 configuration, the data model has been normalized just enough that each sales order header record serves

as a parent for one to many line items. Each line item references the manufacturer of the equipment on the sales order.

Note that the attributes for customer, contract agent, and installer are on the sales order header, and similar attributes

have been placed on the manufacturer’s table.

The modelers may well choose to leave the database in a Level 0 configuration if the project’s context does not call

for reusable entities. However, this configuration does have the following disadvantages:

� If a particular customer changes his or her last name, all sales records involving that person must be updated in order

to keep the database accurate.
� Because the customer fields are specific to individuals, the application will not be able to record a transaction for

which the customer is an organization.
� All the orders facilitated by the same agent will have to hold the same values in the contract agent fields, filling the

database with much redundant information.
� Similarly, the database will store redundant information for manufacturers that serve as installers, leading to a main-

tenance challenge each time these multirole companies change their information.
� Project members reviewing the model cannot see at a glance the roles that each business entity plays without consid-

ering the details of the table’s attributes.
� The model cannot support the rollups that occur when hierarchies exist between customers (as in a household) or

between installers (as exists when the company contracts out to the members of a services conglomerate).
� By collocating so many columns, the designers have created a very wide table that may incur poor performance

when the database server must process huge blocks of data even if the query requires values from only a few fields.

Several of these disadvantages represent the update anomalies considered previously during the discussion on data

normalization, and many would be corrected by normalizing this logical model. Rather than employing normalization,

the following three steps will correct these disadvantages through the related practice of generalization—that is, remo-

deling tables to achieve greater applicability rather that redistributing keys and breaking up multivalued dependencies.

274 PART | IV Agile EDW Data Engineering

Manufacturer

Line Item

Sales order header

Customer

Contract agent

Installer

Sales Order Header

Manufacturer

PK

PK

PK Manufactuer Name
Manufacturer CAGE Code
Manufacturer Web Site URL
Manufacturer Address

Order DTM Date-Time

Date-Time

Character
Character
Character

Character

Character
Character
Character

Character

Character
Character
Character
Character
Character
Character

Character
Character
Character
Character

Date

Customer Namebook ID
Customer First Name
Customer Last Name
Customer First Purchase DTM
Customer Address

Contract Agent Emp ID
Contract Agent First Name
Contract Agent Last Name
Contract Agent Hire Date
Contract Agent Address

Installer Company Name
Installer Dispatch office
Installer Federal Employer ID
Installer Resale License
Installer Web Site URL
Installer Address

FIGURE 12.17 Level zero data generalization.

Line item

Sales order header

ManufacturerInstaller
Contract

agent
Customer

Dealership

FIGURE 12.18 Level one data generalization for the party model.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 275

As will be shown, normalization generally aligns with Level 1 generalization, but the later generalization steps tend to

consolidate the many single-theme tables that normalization creates into fewer tables with reusable attributes.

Level 1 Generalization for Party

Figure 12.18 shows the results of Level 1 generalization, which begins our design’s journey toward a standard party

model. This step moves each set of attributes representing a person or an organizations to a separate table, leaving the

Sales order header

Line item

Dealership

Customer

role

Manufacturer

role
Installer role

Contract

agent role

Party

Note 1: A super type that
holds the more general

attributes shared by customer,
agent, manufacturer and

installer

Note 2: Sub type tables
holding the attributes
specific to each entity

Person attributes Oraganization attributes

FIGURE 12.19 Level two data generalization for the party model.

Role

Role Role rollup

Effective from Dt
Effective until Dt

Role rollup

type

FIGURE 12.20 Data generalization roll-up patterns.

276 PART | IV Agile EDW Data Engineering

design with distinct entities for customer, contract agent, manufacturer, and installer. The model also shows the impact

of some additional normalization where a Dealership table has been created to manage the relationship between instal-

lers and manufacturers, as discussed in the previous section. The dealership entity is used in later generalization steps

to demonstrate how rollups are managed.

This new version of the model addresses much of the disadvantages noted previously regarding redundancy. Now

orders created by the same contract agent, for example, can all refer to a single Contract Agent record. With fewer attri-

butes, the Sales Order record is “skinnier,” suggesting performance will probably improve for queries that link sales

orders to only one of these four entities.

This new arrangement still suffers from some important challenges, however. If a contract agent becomes a cus-

tomer, then a redundant record must be created and maintained. This is also the case for manufacturers who can serve

as installers. Manufacturers and installers cannot become customers because customer is still modeled as if it were a

person. Moreover, consider the work that will be required should the EDW team decide to manage the address fields

with greater sophistication—for example, dividing out elements such as street names and cities and ensuring that all

such elements have been cleansed and standardized. That rather complex logic will have to be replicated to the ETL

modules dedicated to each entity, leading to a maintenance challenge over the long term. This redundant programming

will be required everywhere people and organizations share similar attributes. In the minds of many data modelers,

such a situation calls out for further model generalization so that the necessary ETL logic can be consolidated.

Level 2 Generalization

Figure 12.19 shows how this database will be structured after Level 2 generalization for people and organizations. All

such business entities are now treated as just another instance of a notion called Party. This entity contains a set of attri-

butes for people and another for organizations so that it can receive the information of any party to a transaction, whether

it be an individual or a company. The person attributes would hold an individual’s first and last names, for example. The

organization attributes would provide fields for company name and federal employer identifiers. By collecting these

common attributes into the party table, the EDW developers consolidate the logic that maintains these various fields into

the single ETL module that populates the Party entity, making defect analysis and logic updates far easier to manage.

Party role

Sales order

header
Package

Manuf’r Installer

Line item

Party

CustomerAgent

Party role type

Party role

rollup

Includes
“dealerships”

Party role

rollup type

FIGURE 12.21 Level three data generalization for the party model.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 277

The attributes that are unique to each entity type are left in much smaller role tables dedicated to specific role types.

Perhaps only the Manufacturer Role table would hold the CAGE code identifier given to manufacturers by the U.S. fed-

eral government, for example. These tables are labeled as “role” entities because they allow a single instance of a party

to play the role of, for example, a customer for some transactions and the role of an installer for others. In fact, if the

Customer Role and Contract Agent Role records for a given sales order both pointed to the same Party record, that

arrangement would indicate that the contracting agent has sold the products to him- or herself. Data modelers call the

smaller tables holding entity-specific attributes “subtypes.” Each record in the four party role subtype tables is linked to

a parent, supertype Party record by a Party ID attribute.

Some data modelers will still find this pattern insufficiently generalized, however, for the following reasons:

� Separate entities must be modeled and maintained for each entity type, even if they have essentially the same collec-

tions of attributes.
� Records must be duplicated between the entities for parties that play more than one role in the database’s collection

of transaction.
� Each time the business transactions involve a new entity type, such as sales broker, a new subtype table has to be

added to the model and ETL programmed for it.

Such concerns lead many modeling teams to drive their designs to an ever-greater level of generalization.

Two Patterns for Role Hierarchies

As a further limitation, the previous model does not yet include a mechanism for recording the hierarchies that can exist

between parties. Rollups along hierarchies are a frequent data warehousing requirement for companies that want to better

manage nested structures of entities, such as ownership patterns between customers and multilevel product catalogs.

Common examples of hierarchies between parties are customers who are people who share a single household, customers

that are companies embedded within a conglomerate’s ownership structure, and employees who have managers and

directors within their departments. Supporting information about hierarchical relationships can greatly increase the value

of an enterprise data warehouse. Tracking the relationships between individual customers alone can easily support better

marketing, discounting, and customer care decisions. When working with the party model, hierarchies are typically

applied to the roles a party plays rather than the party itself. This practice allows for a given party to participate in one

hierarchy scheme when active as a customer, for example, and another when viewed as a vendor.

While generalizing the logical data models, data designers implement rollups in two ways, as shown in

Figure 12.20. The top half of the figure shows a simple mechanism that supports only a single recursive rollup scheme.

Here, the data modelers have given a party role table a Parent ID attribute in which the ETL will place a value identify-

ing the next higher party role record in the hierarchy. This approach works but has two limitations, the first being that it

restricts each role to participating in only one type of hierarchy. Second, it supports only one rollup instance between

any two role records so that when the database updates the relationship between two party roles, all knowledge of a

previous relationship disappears.

The bottom half of the figure shows a more flexible rollup scheme. A separate associative table called Party Role

Rollup will support multiple many-to-many links between any two parties roles. Attributes on the rollup record hold

values for an Effective-From date and an Effective-Until date that allow these records to be marked as retired but left in

the database when the relationships they reflect end, so that the data warehouse can track the full history of the hierar-

chies between parties roles. In order to support many rollups patterns involving a given party role, each rollup instance

links to a record in a Party Role Rollup Type reference table.

Level 3 Generalization

Figure 12.21 shows a Level 3 generalization of our starter model that addresses the remaining challenges cited in the

Level 2 model and employs the more flexible style of rollups between parties. This model still contains the party entity,

but now the multiple role tables of the previous model have been consolidated into a single Party Role table. The Party

table holds a rich collection of information about each participant in the company’s transactions, whether they be a per-

son or an organization. Each party record can play many different types of roles in the transactions, even multiple roles

within a single transaction. This flexibility arises from the fact that each Sales Order now references a Party Role record

for each type of participation in a given transaction, such as customer or installer. By reusing the Party Role instances,

this design eliminates the redundant information storage seen in lower levels of generalization and allows an EDW

team to place all the transformation logic for parties and party roles in one module for each table.

278 PART | IV Agile EDW Data Engineering

The database can apply different rules to match various kinds of roles because each Party Role instance has a parent

Party Role Type reference record describing the class of role to which it belongs. New roles can now be easily imple-

mented by simply adding a new role type record and updating the ETL for the Party Role module to follow a new set

of business rules for records referencing that role type.

With the new Party Rollup Type entity, this design can also track more than one rollup scheme between parties

roles. For example, it can support the ownership relationships between parties serving as manufacturers and also their

membership in industry organizations. For consumers who are people, the same rollup tables can track how customers

share the same households.

Further Generalization Concepts

The previous discussion of generalization steps will serve to familiarize readers with this data modeling concept well

enough to understand the new agile approaches to EDW data modeling. This presentation only scratched the surface of

the technique, however. Techniques for generalizing topics such as products, locations, contact mechanisms, and trans-

action statuses all follow their own patterns, which are very different from the one employed for people and organiza-

tions. Moreover, an entire second layer of tables for roles and role types is typically needed to manage the difference

between declarative and contextual relationships, where declarative entities manage the roles an organization allows for

a given party, and contextual tracks the relationships that actually manifest as the company pursues its business.

I invite all EDW project leaders to thoroughly familiarize themselves with the rich and extremely powerful discipline of

data model generalization by reading the books by my colleague at The Data Warehousing Institute, Len Silverston. The

Data Model Resource Book series that he has published during the past 15 years provides an invaluable reference for reus-

able patterns that can provide extensive guidance for EDW project leaders, saving them the effort of reinventing models

and helping them avoid the frustration of deploying improperly structured repositories for business analytic systems.

THE STANDARD APPROACH AND ITS DATA MODELING PARADIGMS

The notions of data normalization and generalization sketched previously position us to now discuss what I refer to as

the traditional or standard approach to enterprise data warehousing. The standard approach is robust and very well

documented, but it is hardly agile, in no small part due to the type of data modeling that traditional EDW teams

employ. The notions of normalization and generalization allow me to present in the following chapters alternatives to

the traditional approach that are far faster to deliver and more flexible in the face of changing business requirements.

The concept of enterprise data warehousing took root in the 1990s and 2000s through the writings of Bill Inmon,

Claudia Imhoff, Gartner Analytics, and many others. (See [Inmon et al. 2001] for a definitive guide to what I call the

standard approach.) To provide readers with a simplified version of the consensus emerging from this community of

thought leaders, Figure 12.22 depicts the data topology of the standard approach, and Figure 12.1, which was consid-

ered previously, portrays the layered data architecture one typically finds in traditional EDWs.

Figure 12.22 expresses the notion that the EDW should gather and harmonize all of the company’s key decision sup-

port information and then distribute subsets of the resulting integrated information to special-purpose data marts. The

Enterprise data
warehouse

Source
system

Source
system

Source
system

Source
system

Department
data mart

Department
data mart

Department
data mart

Department
data mart

FIGURE 12.22 The hub & spoke conception of an enterprise data warehouse.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 279

intent of the data warehouse is to provide a “single version of the truth” for the organization. The data in the EDW has

been cleansed, transformed, and validated so that it supposedly provides measures and qualifiers that all departments

within the company can trust to be standardized and correct. The DW/BI team subsets this information out to

departmental data marts so that end users need only sift through a small portion of corporate data to receive fast

answers to their business questions. DW/BI is free to choose whether these data marts operate on separate data servers

or are simply logical subdivisions of the information available on the data warehouse host.

Stepping down one layer of abstraction to look more closely at the data architecture found in a standard approach, we

can see that the warehouse and data marts typically employ different data modeling techniques to meet the distinct pur-

poses. As noted in Figure 12.1, the Landing layer holds source system extracts. Traditionally, these extracts are held only

long enough to load into the warehouse and are then discarded. EDW teams typically structure Landing layer tables to

closely match the source database, with the addition of a few metadata attributes such as extract date, so that the source

systems are the biggest determinant of the structure that Landing tables take. Frequently, Landing-layer objects are

loaded with only the subsets of the records found on the source systems, namely those records that have not yet been cap-

tured by the warehouse. Because these subsets represent the difference between what the current operational systems and

the data warehouse have last loaded, DW/BI developers often say that the Landing layer holds “delta” record sets.

In contrast, the design of the Integration layer is largely determined by the EDW team. Because its purpose to hold

a single integrated collection of enterprise data, data modelers commonly place this layer in one of the standard normal

forms, either third, fourth, or fifth, depending on how much they wish to guard against the update anomalies discussed

previously in this chapter. Given that data normalization divides starting data models into many single themed tables, a

standard normal form EDW Integration layer can contain hundreds of tables, becoming a time-consuming challenge for

the EDW team to design, populate with data, and then maintain.

In the standard approach, the Presentation layer reverses the data normalization of the Integration layer. Whereas the

measure and qualifier attributes are typically spread across scores of tables in the Integration layer, the Presentation layer

thematically reduces the information down to a few dozen fact and dimension tables. As shown in Figure 12.23, the

Presentation layer surrounds each fact table with consolidated dimension tables, making it easy for end users to “slice

and dice” metrics by the business attributes that qualify them. Each fact table represents a coherent set of measures for

the enterprise, such as sales, revenue, or shipment numbers. Each fact record is stamped with foreign keys that link it to

records in the dimensional tables that provide context for each value provided. The dimension tables typically contain

textual qualifiers that allow the facts in a table to be divided into steadily smaller subsets, allowing the end users to

“drill drown” to groups or specific instances of business notions such as a given product, department, or sales agent.

EDW teams choose to transform and store Integration-layer data into the simplified structures of the Presentation

layer for multiple reasons. The first reason is performance. The denormalized nature of the data means that the informa-

tion has been essentially “pre-joined” for the end-user departments. Because most of the joins were executed when the

data was transformed and stored in the Presentation layer, the response time to end-user queries is far faster. In fact,

EDW teams strive to achieve “train of thought” performance for end-user queries, meaning that answers arrive before

the user’s attention wanders off the business question he or she is trying to answer. When end users construct queries

against the hundreds of tables found in the Integration layer, they frequently author poorly designed queries that can

sometimes take days to return an answer. If a star schema of prejoined, atomic data does not return answers quickly

Fact TableFact TableFact tables

Dimension

Dimension

Dimension

Dimension

Dimension

Dimension

Dimension

DimensionTime

FIGURE 12.23 A schematic representation of a simple subject area in an EDW presentation layer.

280 PART | IV Agile EDW Data Engineering

enough, the DW/BI team can choose to aggregate the Integration-layer data before placing it in the Presentation-layer

tables. Should the end users of aggregated star schemas eventually need the atomic detail behind these aggregates,

the EDW designers can enable the front-end applications to “drill through” to the individual records stored in the

Integration layer.

Second, prejoining Integration data into Presentation-layer tables allows the EDW team to ensure that the corporate

information arriving to the end-user dashboards and reports has been properly assembled. Allowing the general end

user to construct his own retrievals from the hundreds of tables in the Integration layer only invites him to make mis-

takes, sometimes double or triple counting transactions, for example. Should the business users base an important deci-

sion on a faulty analysis that the end user insists was retrieved from the data warehouse, the EDW teammates may well

find themselves looking for a new job. The fact that it was the end users who put the corporate information together

wrong will offer little protection. After the large amount of time and money consumed by the data warehouse develop-

ment effort, executives rightly expect everything retrieved will be correct.

The last layer of the reference architecture is the Semantic layer. In essence, it provides a set of views draped over

the EDW Presentation layer, and thus it typically reflects the dimensional design implemented in the Presentation layer.

However, these views can impose more user-friendly names to the objects than found in the Presentation layer. It can

also provide the EDW team with another level of control over how the queries pulling data from the Presentation layer

will be constructed.

THE TRADITIONAL INTEGRATION LAYER AS A CHALLENGED CONCEPT

We now have all the vocabulary and concepts needed to fully discuss the data modeling paradigms from which EDW

team leaders have to choose. The choice of data modeling paradigm for each layer is perhaps the greatest architectural

decision that these leaders can make. More than any other decision, it will determine by an order of magnitude how

well EDW development teams will perform, including the following:

� The speed by which the business will receive new decisions support
� The cost of establishing those capabilities
� The ease with which the warehouse can adapt to mistakes in design and new business conditions
� The long-term costs of maintaining the warehouse

Whereas EDW teams can theoretically choose to combine data modeling paradigms within each layer of the refer-

ence architecture, in practice most fast-delivery teams want to keep their architecture as simple as possible and there-

fore desire a single paradigm per layer. The choice of paradigm thereby takes on an “all-encompassing” importance and

needs to be made carefully. To fully inform EDW project leaders so that they can make this choice well, I first present

the weaknesses frequently found in the standard approach and then present two alternative data modeling paradigms. I

conclude the chapter with four data-modeling “change cases” by which we can measure the advantages these alternative

approaches can provide.

Involves an Expensive Hidden Layer

The standard approach is very solid in theory. In practice, however, its careful step-by-step approach leads to EDW

project plans that take too long to deliver and cost far too much for even large corporations to be comfortable with. The

best example of this lamentable situation during my career was when I joined an EDW project at a Fortune 50 pharma-

ceuticals company to help construct the “lights-out” automation of its ETL job stream. The project leaders were follow-

ing the standard approach as closely as they could. Overall, this development effort had consumed 150 programmers

over 3 years and required three project managers to keep it on track. In the end, the effort grew so expensive that it

began to negatively affect the company’s share price, and it was therefore dramatically scaled down by the board of

directors. Unfortunately, this particular effort was the company’s third attempt at the project, with each attempt being

led by one of the major systems integrators in the field.

The previous example is only the most extreme case of many standard EDW projects I witnessed during the late

1990s and early 2000s that exploded in cost and duration beyond all reasonable bounds while delivering very little.

Such evidence clearly indicates that something is wrong with the standard approach and demands that we reconsider

the fundamentals of EDW projects. Many factors point to the complexity and expense of the integration layer as a

major root cause for EDW project failure. Many years ago, I began asking DW/BI directors for the back-of-the-

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 281

envelope cost-estimating parameters they use when considering whether to build a new EDW subject area. A director

of a major telecom provided the clearest guidelines, which fall in the middle of what I have heard from many others.

To build a new EDW subject area following the standard approach, he suggested allocating the program’s development

budget as follows:

� 30 percent for constructing the data extract routines that load the Landing layer
� 50 percent for building the Integration layer
� 20 percent for developing the Presentation and Semantic layers

Although these figures are rough planning guidelines that must be adapted for the specifics of any given project,

one aspect of them should cause DW/BI professionals to seriously question our standard approach: The Integration

layer consumes approximately half of an EDW project.

Data architects are fond of saying that the internal design of a warehouse is a technical decision. That frame of

mind frequently leads EDW professionals into a blindness of hubris that can seriously affect their careers. Consider

the reference architecture from the perspective of the project’s business sponsor: “You mean adding an ‘Integration

layer’ to my data warehouse is going to double the cost of this project? Then forget it. Find another way to build

the warehouse.” The situation is equivalent to a patient having to make a choice over a major surgery. He does not

have the medical training of the surgeon, so he should not have to evaluate competing surgical techniques on his

own. On the other hand, it is his body and his life under discussion, so his input truly counts. Just as surgeons have

a responsibility to seek out all the best options for their patients and explain them clearly, EDW project leaders

need to be familiar with the full spectrum of DW/BI architectural choices and present the advantages and disadvan-

tages to their business sponsors so their customers can make an informed decision regarding their budgets and

outcomes.

Results are Difficult to Understand

DW/BI data architects often claim that the standard approach is optimal because carefully designed Integration layers

fully document the realities of the organization sponsoring the data warehouse. Unfortunately, the value of this docu-

mentation rarely lives up to these high expectations.

The standard approach calls for an extensively normalized and generalized data model before the programmers can

begin coding the ETL modules. Creating such a detailed specification requires the developers to ask a myriad of ques-

tions, leading data architects to believe that the modeling process ferrets out the hidden entities and relationships at

work within the business. With this in-depth research invested, they believe that the data model and the data that is

eventually stored in the specified structures will essentially represent the truth of the business.

Data architects cite many advantages to possessing such a complete and well-documented notion of a company’s

truth. Supposedly, business and technical staff members can refer to it to accurately understand the company’s informa-

tion requirements. Its clarity will allow developers to better validate their designs with business experts before coding

begins, allowing them to build more accurate information systems. With well-validated models, all the business’s fun-

damental data items will be included in the data warehouse, and the team will have prevented situations in which they

need to restructure a warehouse due to a requirements oversight or a design error. Because normalization has removed

the model’s redundancy and because generalization has endowed it with adaptable entities, the EDW team will be able

to support future requirements by simply adding new classes of transactions that simply reference those fundamentals.

If only documenting the truth was equivalent to making it understandable to everyone.

During my 20 years of observing and working with the standard approach, the data model for an EDW never lives

up to these promises. First, the fully normalized and generalized data models are simply too big to understand. Many of

them exceed what can fit on plotter-sized paper. Second, despite the care that data architects use to build these models,

the results are still too detailed and technical for business people to comprehend. Even the technical members of

an EDW team will struggle to understand a typical Integration-layer data model. They can usually follow narrow por-

tions of it after careful study, but in practice only the few developers who spend months working with the model are

able to appraise the impact of the design changes a new business requirement demands. In practice, these models do

not provide the clarity data architects expect. Without clarity, the organization cannot validate the model, allowing

oversights and errors to creep into the EDW design. The developers must make their best guess when they build the

ETL and discover the modeling mistakes many months later when the end users object to the nature of the data dis-

played on their dashboards.

282 PART | IV Agile EDW Data Engineering

These observations do not suggest that EDW teams should forego modeling their projects before programming the

ETL. However, with regard to evaluating alternative architectural approaches, I do not believe we can honestly insist

that traditionally designed Integration layers that make up the standard approach are intelligible.

Entails High Maintenance Conversion Costs

Another factor that undermines the effectiveness of the standard approach is the fact that traditional integration layers

never provide the insulation against future adaption costs that architects promise. Highly normalized and generalized

data models require a tremendous amount of thought to be invested in every corner of the model. One might think that

such an investment would future proof a model, but it in fact only makes it more brittle to requirements changes and

design oversights. Figure 12.24 illustrates the type of brittleness implicit in highly engineered Integration layers that

employ data models in standard normal form. The tables shown represent only a small corner of an EDW logical data

model, namely the customer subject area, and in fact only the portion that ties to a Customer Profile table. Consider

that a business decides it must support a facilitated purchasing model for some of its major customers, making it crucial

to track who put each deal together rather than just which company made the purchase. In this case, the impact is easy

to express, as shown in the figure: The EDW team must insert a Contracting Party entity between Customer Profile and

all the entities that link to it.

Unfortunately, this easily stated change in business requirements will require the development team to undertake new

development and re-engineering work for eight physical tables (assuming that the physical model follows the logical

model rather closely). Granted, a table and corresponding ETL must be designed, built, validated, and deployed for the

new entity, Contracting Party. However, the bulk of the work involved will occur when the team turns to adapting the

remaining seven tables shown in Figure 12.24 for the new join pattern this change will require. Each of those tables must

be reconstructed to join via foreign key to Contracting Party rather than Customer Profile. All the data already loaded in

the existing tables must then be converted so that the foreign key values will link to the correct record in the new parent

table. Achieving this two-step goal unfortunately requires double development: one to update existing tables and their

ETL modules and another to build a conversion script for the data already loaded into the data warehouse.

FIGURE 12.24 Standard normal form models are brittle in the face of changing requirements.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 283

Data conversion programming is very much like building ETL for new tables, requiring just about as much labor.

Although often they are programmed with the same tools, the conversion modules can require far more carefully

designed and validation efforts because they will be applied against millions or even billions of existing data records.

I have worked with many journeyman DW/BI developers who initially scoff at the idea of carefully developed conver-

sion scripts for making structural changes to an existing warehouse. “Just back up the existing table,” they will suggest.

“Slap together some code, and throw it against the existing records. If it doesn’t convert them properly, restore from

tape and try it again.”

A second pass at this analysis usually surfaces several points that establish the need for careful conversion

programming:

� Back-of-the-envelope estimates show that a conversion for the existing records will take a few days to run.
� It will take even longer for the business staff to validate the results.
� How many times does the conversion team want to sit and wait for a multiday conversion to complete running?
� How many times will business users put aside what they are doing to spend a few days validating a conversion run?
� What if the business and IT make only a half-hearted business rules validation and defects in the converted data set

are not discovered until many months later? Who in IT or the business is going to be impressed that the data has to

be converted all over again?

If there is any aspect of DW/BI that does not lend itself to an agile approach, it is data conversions during model

changes for traditionally structured integration layers.

The previous analysis raises an important question: How much does it cost to convert a table with the proper amount

of care? Table 12.6 shows how my colleagues and I have estimated this work for our customers in the past. The calcula-

tion has been simplified somewhat by assuming that the new and updated tables will require 2 days of data transform

programming on average (see line 7). This average has proven accurate for highly engineered Integration layers

because data normalization tends to fill the data model with many smaller tables. We assumed only 6 hours of produc-

tive work per day to account for the usual office overhead, such as status meetings, email, and supporting other projects.

The estimate is organized as a RASCI chart (responsible, accountable, supporting, consulting, and informed) to reflect

the fact that most roles generally need to interact with others on the team during this type of work. The estimate takes

into account tasks that must be completed just once per update effort, no matter how many separate tables are

involved—that is, “shared” tasks. The remaining work items are tasks that must be completed once for each

table affected by the database design change. These tables must have their structure updated and their existing data con-

verted and loaded into the new or modified schema.

Note that careful data conversion efforts must invest time in analysis, design, test planning, and test data preparation

in addition to coding, just like one would undertake for a regular, reusable ETL module. Moreover, conversion scripts

must be promoted, executed, and validated at least twice—once to move them into system integration testing (“SIT”)

and again to move them into production usage (“PROD”). The sheer number of steps involved is one aspect that leads

this estimate to a surprisingly large cost projection per table affected. Another aspect increasing the estimate is the sup-

port time required from the others in this RASCI analysis—time that might be hidden in the clutter of the average work-

day but that must be paid for nonetheless.

According to this estimate, converting an EDW for a design change that impacts existing tables loaded with data

will involve labor for both overhead activities and tasks required on a per-table basis. The once-per-batch overhead will

be approximately 7 calendar days for the developers in addition to 20 calendar days for the business staff to review the

outcomes first in SIT and then in production. The per-table labor will be approximately 180 labor hours per table.

EDW team leaders who multiply these hour estimates by a reasonable compensation rate for developer labor will see

that the cost to re-engineer just one production warehouse table breaks into the five figures.

These numbers may come as a shock to many readers, who are invited to re-do these estimates with parameters that

reflect their experience. When substituting in their own parameters, they should keep in mind that a realistic estimates

must (1) reflect the time required for all the roles on the team, not just the primary actor (2) reflect careful software

engineering practices for data conversion because the existing records contain valuable decision-support data that for

the most part cannot be replaced; and (3) DW/BI work almost always takes far more labor than anyone anticipates. The

previous sample labor forecast employs some very conservative estimates for each task. For example, the labor for

creating coding specs and test data was set below the programming time, which proves true only approximately half the

time in my experience. Even with these conservative numbers, the situation is clear: Re-engineering standard

integration layers is an expensive and time-consuming proposition.

284 PART | IV Agile EDW Data Engineering

Given these costs, it can be seen why companies that depend on the standard approach become extremely reluctant

to change the design of an existing data warehouse in the face of changing business requirements. This reluctance in

turn leads organizations to believe they must model the EDW integration layer perfectly and make it completely future

proof before ETL coding begins. If the model has to be perfect before programming starts, DW/BI management will

naturally emphasize a big data model up front—the antithesis of agile development. Clearly, agile EDW leaders need to

find an alternative to standard normal form Integration layers if they wish to incrementally deliver data warehouses that

can economically adapt to changing business needs.

TABLE 12.6 Realistic Level-of-Effort Per Table for Non-Trivial EDW Re-Engineering Assignments

For tables requiring two programming days of data transform programming2

Presented as a RASCI chart with the following codes in the effort-by-role columns:
R: Responsible, the role for which labor hours are estimated
C: Consults (considerable involvement), participation calculated as 50 percent of responsible party's time
S: Supports (occasional involvement), participation calculated as 15 percent of responsible party's time

Ln #
Performed Once

Per…

Project
Architect

Business
Analyst

IT
Analyst

Data
Modeler

Coder Admin Tester IT Team3
Business

SMEs4

1 Analyze and select sources Model Change S 1 R 6 C 3 10 hrs 1.00

2 Create new business data model Model Change S 1 C 3 S 1 R 6 11 hrs 1.00

3 Create new logical data model Model Change S 1 S 1 C 3 R 5 10 hrs 0.83

4 Create new physical data model Model Change R 4 4 hrs 0.67

5 Analyze existing target data Model Change S 3 C 10 R 20 33 hrs 3.33

6 Author STMs1 Affected Table S 2 C 6 R 12 S 2 22 hrs 2.00

7 Data Transform Programming2 Affected Table S 2 S 2 R 16 S 2 22 hrs 2.67

8 Author test cases Affected Table S 1 C 3 C 3 C 3 C 3 R 6 19 hrs 1.00

9 Write test scripts Affected Table S 1 S 1 R 4 S 1 7 hrs 0.67

10 Create test data Affected Table C 3 C 3 C 3 R 6 C 3 18 hrs 1.00

11 Validate test scripts in DEV Affected Table S 1 C 3 C 3 C 3 R 6 16 hrs 1.00

12 Promote to SIT Affected Table S 0 S 0 C 1 R 2 3 hrs 0.33

13 Execute scripts Affected Table S 0 R 2 2 hrs 0.33

14 Drive IT's conversion validation Affected Table S 1 S 1 C 2 S 1 S 1 R 4 10 hrs 0.67

15 Support business' validation Affected Table R 6 6 hrs 1.00 10 days

16 Document errors Affected Table C 3 R 6 C 3 C 3 15 hrs 1.00

17 Promote scripts to PROD Affected Table S 0 S 0 C 1 R 2 3 hrs 0.33

18 Execute scripts Affected Table S 0 R 2 2 hrs 0.33

19 Drive IT's conversion validation Affected Table S 1 S 1 C 3 S 1 S 1 R 6 13 hrs 1.00

20 Support business' validation Affected Table R 8 8 hrs 1.33 10 days

21 Document errors Affected Table C 3 R 6 C 3 C 3 15 hrs 1.00

Per-model-change task totals (Lines 1-5) 6 hrs 20 hrs 27 hrs 15 hrs 0 hrs 0 hrs 0 hrs 68 hrs 7 days 20 days

Per-affected-table time totals (Lines 6-21) 5 hrs 35 hrs 41 hrs 22 hrs 42 hrs 8 hrs 28 hrs 181 hrs 16 days

1 Source-to-Target Maps
2 The average programming effort on a past project of the author's for an EDW with many hundred tables, large and small. Represents ETL programming for new tables, conversion scripting for

3 Reflects how many days the longest task will take, assuming that team members work on that task 6 hours per day.
4 Task duration for business Subject Matter Experts to validate IT work, shared across all table involved.

Tasks

RASCI & Effort in charged labor hours Total
Effort
Hours

Duration

existing tables.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 285

“STRAIGHT-TO-STAR” AS A CONTROVERSIAL ALTERNATIVE

Many people who have considered the weaknesses of the standard approach have suggested instead that data be taken

straight from the Landing area into the star schema of the Presentation layer. In the standard approach, the Integration

layer is summarized and then projected into the Presentation layer’s dimensional model. An option promoted by the

Kimball group is to instead use the star schema to store the atomic data in dimensional form [Kimball and Ross 2013].

In this approach, the data is pulled directly from the Landing area and dimensionalized as loaded, after which the

Landing data is discarded. The Kimball group urges EDW designers to consider “conforming” the dimensions and facts.

At the atomic level, a conformed warehouse in this approach contains only one version of each dimension which should

be linked to all fact tables that can make use of it. The fact tables within the multiple subject areas should be defined so

that they can link to these reusable dimensional tables (also known as “qualifiers”).

To be fair, the thought leaders in the Kimball group do state that some normalized helper tables might make data

transformation easier where the business rules governing conformed objects get complex [Becker 2007]. However, they

generally believe that the effort needed to build a large Integration layer, with its standard normal form data models, is

an unnecessary expense. They find it pointless to place the company information in a data repository that few can

understand and query. Although disk space is declining in price, they also point out that it is not inexpensive. They ask

why an EDW program should have to pay for the storage required to hold a preliminary copy of the data that provides

no immediate decision support directly to the BI user.

Standard approach advocates have some powerful rebuttals to the Kimball group’s position, so neither approach is

clearly superior in all situations. First, a dimensional model—with its fact tables linked to the dimensions—tends to

support specific patterns of analysis. The star schema’s design in effect presupposes the questions the business will be

able to ask of the warehouse. The value of a specific pattern of analysis lasts only as long as the business confronts the

same challenges day after day. The minute business requirements change for a new product, a new competitor, or a

new regulation, a different analysis will be required, making some or all of the current star schemas obsolete.

Second, when a team must update the design of a star schema, it will have to convert the existing information so

that it can be loaded into the new tables. Transforming the data from one star schema to another requires breaking the

information into small, independent pieces and reassembling them to match the new patterns of analysis. That decom-

position process will in fact require a third to fifth normal form model, so why not permanently keep the data in such a

format from the start so that the EDW team can meet new requirements by simply reprojecting Integration-layer infor-

mation into new star schemas as they become necessary?

Third, consider the star schema model in the middle panel of Figure 12.4, which we examined previously. By defini-

tion, “conformed dimensions” implies that a Kimball-style warehouse will contain tables to which many other

tables connect. Change the design of one of these shared tables, and the EDW team will be knee-deep again into an

expensive data conversion effort for all of the related tables, just as we estimated previously. No major advantage has

been secured by skipping the Integration layer.

This analysis is essentially the infamous Inmon�Kimball debate that has been simmering for decades without much

advantage gained by either side. What this debate overlooks is that both design approaches suffer from the same

weakness—one cannot truly future proof a data model against all the unanticipated changes that a business will experi-

ence in the years ahead. There is no way to design against Donald Rumsfeld’s “unknown unknowns” [U.S. Department

of Defense 2002]. EDW teams following either the standard approach or the conformed dimensional strategy will find

themselves paying heavily for data conversion work when the supported business operations must evolve. The data

warehousing industry does not need an answer to the Inmon�Kimball debate. It needs a totally new approach to data

modeling that can cut through the Gorgon’s knot of data conversion.

FOUR CHANGE CASES FOR APPRAISING A DATA MODELING PARADIGM

Converting the information contained in an enterprise data warehouse is arduous and expensive if the EDW’s design

employs either form of the traditional data modeling paradigms. The solution to this unfortunate situation is to utilize a

different data modeling technique—an adaptable one that allows data warehouses to evolve as fast as business condi-

tions change.

Fortunately, agile data engineering provides two alternatives to the traditional data modeling paradigms—alterna-

tives that allow teams to economically adapt EDW data repositories in the face of unfolding business requirements,

286 PART | IV Agile EDW Data Engineering

even after those repositories are full of many years of transaction records. So that readers can appreciate that these alter-

native data repositories are far less expensive to evolve and therefore enable truly agile enterprise data warehousing, I

examine and quantify in the discussions ahead the cost of updating an EDW using four common “change cases.” These

change cases reflect some of the surprise requirements that DW/BI programs must contend with the most. The effort

required to accommodate these change cases is analyzed using the cost estimates for new and updated tables presented

in Table 12.6. Table 12.7 shows the likely labor time and re-engineering costs incurred by these four change cases

under the traditional modeling approaches.

Change Case 1: Correcting Fourth Normal Form Errors

The first change case will be the fourth normal form correction that was used to illustrate data normalization previously

in this chapter (see Figure 12.15). Enterprise data warehouses frequently confront the situation in which a simple busi-

ness notion such as Ad Site or Promotions becomes more important or complex over time. As the developers must

steadily add more attributes to an existing table to support new versions of such an item, they can realize that the notion

clearly has a life of its own, independent of the theme of the table in which it is located. This situation can easily

become a multivalue dependency with two or more independently varying, embedded entities, such as we saw when we

considered a fourth normal form violation. At this point, the attributes for each component of the multivalued depen-

dency should be removed from the original table and relocated to a separate entity.

In our normalization example, the Ad Manager, Ad Site, and Promotions all had to be broken out into separate enti-

ties, requiring five new tables to support three new entities and the two associations between them. (See Table 12.3.) In

addition, the Sales Order Header table needed its foreign key for Sales Channel converted into three different foreign

keys for the new entity tables. Although in this example, the items migrating to new tables were only one attribute

apiece, in real EDWs most entity split outs can involve dozens of attributes. If we focus instead on situations in which

the entities to be split out involve tables complex enough to require on average two ETL programming days each, we

can use the estimating parameters established previously to forecast the expense and elapsed time for accomplishing

this design change.

Table 12.7 employs the per-table and once-per-effort labor forecasts from Table 12.6 to estimate the investment a

company will need to make for each of the four change cases, resulting in a quantitative contrast of the traditional and

agile data modeling paradigms. Using those parameters, correcting the fourth normal form violation described previ-

ously will require creating five new tables and the re-engineering of a third, which will exceed 1100 total team hours

and $140,000 (2015 dollars). Moreover, as detailed in the last column of Table 12.6, this work will also entail two

reviews by the business stakeholders taking 10 days of elapsed time each—if IT is fortunate to be working with a busi-

ness department that is reasonably responsive.

An important downstream impact of the contemplated design change is missing from both this estimate and the one

for Change Case 2. The Integration layer represents a source system for the Presentation layer so that when EDW teams

alter the design of their Integration layers, they typically must update the ETL to the Presentation layer’s star schemas

as well. The estimates for the standard-normal-form change cases omit this work item because an EDW’s particular

design will determine how much Presentation-layer work will be required. In cases in which the Integration layer is pro-

jected to the Presentation layer via database views, the team may be able to mask out most of the impact of the new

design on the star schemas using simple updates to those views. If ETL modules with complex business rules load the

Presentation layer, then updating these data transforms may be as expensive to accomplish as the Integration-layer

changes. The change cases assume the former case, in which Integration-layer changes can be hidden behind easy mod-

ifications to database views. Even with this simplification in place, these estimates for Change Case 1 should make one

fact very clear: Making even simple changes to an existing data warehouse based on the standard approach is neither

fast nor cheap.

Change Case 2: Generalizing to the Party Model

The second, more extensive change case comes from our generalization study, namely the effort required to consolidate

four business entities into the party model. The starting point for this change case is the situation depicted in

Figure 12.18, which, after conversion, arrives at the model depicted in Figure 12.21. EDW teams frequently face situa-

tions such as this, especially when they realize they have drastically underestimated how many different people and

organizations play a role in their organization’s business processes. In the case considered here, the EDW had believed

that there were only two parties involved in the demand channel and two in the supply channel. New regulations or

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 287

TABLE 12.7 Summary of Re-Engineering Labor for Four Change Cases when Using a Traditionally Modeled Modeling Paradigm

Per table estimates Implied re-engineering costs for four common DW/BI change case

$125

IT Activities Effort Expense Tables Effort Expense Tables Effort Expense Tables Effort Expense Tables Effort Expense

Per conversion 68 hrs $8,500 68 hrs $8,500 68 hrs $8,500 68 hrs $8,500 68 hrs $8,500

Per affected table 181 hrs $22,625 6 1,086 hrs $135,750 8 1,448 hrs $181,000 2 362 hrs $45,250 4 724 hrs $90,500

Total 1,154 hrs $144,250 1,516 hrs $189,500 430 hrs $53,750 792 hrs $99,000

IT Activities Tables Effort Expense Tables Effort Expense

Per conversion 68 hrs $8,500 68 hrs $8,500

Per affected table 11 1,991 hrs $248,875 13 2,353 hrs $294,125

Total 2,059 hrs $257,375 2,421 hrs $302,625

1 Assumes affected fact tables as shown in Figure 12.25

2 Assumes ten fact tables affected by the change in dimension tables

#3: New SCD trigger #4: Change of grain

Conformed dimensional form: Minimal case1

#1: 4NF Correction #2: Party model #3: New SCD trigger #4: Change of grain

Conformed dimensional form: Typical case2

Standard normal form

Blended hourly rate across

roles for expenses:

business conditions such as social networking or software-as-a-service can quickly introduce additional players into a

company’s business model. Sensing this, the EDW team decided it was time to invest in generalization so that future

roles can be accommodated with less programming. As can be discovered from studying the diagrams used previously,

such a change will require the following:

� Creating five new tables: party, party role, party role type, party role rollup, and party role rollup type
� Converting four tables in order to subsume their data into the new party tables: customer, contract agent, installer,

and manufacturer
� Converting two further tables so that their foreign keys now link to the party tables: sales order and line item

Even for an EDW data model as simple as the one used here (one transaction table involved), the company should

expect to invest more than 1500 development hours and more than $175,000. Our example assumes that only the sales

subject area will be affected. In most EDWs, however, the entities being moved into the party model here would link to

many other subject areas, so the amounts forecasted here vastly underestimate the cost of this design change. It can be

seen from the parameters employed for Table 12.7 that each additional table referencing the party roles will require

approximately 180 labor hours and cost $22,000 to complete.

Party is not the only central entity found in the typical enterprise data warehouse. Products, geographies, and pro-

cesses are other notions that DW/BI teams frequently realize must be generalized in the data model. Given these cost

estimates for making such conversions after the first version of the EDW is built and loaded, one can understand why

(1) data modelers using traditional data modeling paradigms want their designs to be perfect before ETL programming

begins and (2) so many companies choose to just patch their existing EDWs with single-purpose “outrigger”

tables rather than re-engineering them correctly when requirements change. Because both practices are the antithesis of

agility for enterprise business intelligence programs, EDW team leaders need to find an alternative to the standard

approach if they want their companies to remain competitive.

Change Case 3: New Trigger Attribute for a Slowly Changing Dimension

The third change case involves a common update required for teams that have chosen a Kimball-style conformed dimen-

sional approach that takes operational data straight from a landing area into a star schema. When first designing a Kimball-

style warehouse, the EDW team must choose the columns of each slowly changing dimension table that will trigger the crea-

tion of a new history record for a given business key. When the ETL application detects a new value in a “trigger attribute,”

it marks the existing record in the repository as “retired” and inserts a new record with updated values for all attributes. Most

designers avoid making every column a change trigger so that the ETL is not constantly creating updates, eating up proces-

sing horsepower and storage space just to track the history on the attributes of lesser interest. Such discretion entails risk,

however, because often business stakeholders will approach the EDW after the data warehouse is in production to ask that

history be tracked on an attribute that they had originally claimed was unimportant. Moreover, they will not be satisfied with

accumulating history records going forward but, rather, will want this change to be implemented with as much prior history

loaded as possible. Because more history means a proliferation of records in the dimension table, many existing links

between the fact table and the outdated dimension records will have to be updated in order to honor this request.

Figure 12.25 provides the starting dimensional model for the two change cases we will consider for data warehouses

that follow the conformed dimensional approach. Change Case 3 focuses on the work required to expand the set of attri-

butes in the Vendor table that cause a Type 2 slowly changing dimension update. In this scenario, the business did not

originally believe the company needed to track changes in the CAGE code that the federal government assigns to manu-

facturers. However, the executives decided recently that CAGE codes provide a tracking mechanism that can sometimes

allow the company to offer better discounts than would be warranted by transaction histories assembled by other com-

pany identifiers such as name or location. In order to understand a company by its CAGE code, the sales team will now

need the warehouse to provide the full history of this newly important attribute.

Examining the logical model in Figure 12.25 reveals that answering this change request will require updating two

tables: Vendor and Expense event. Vendor will have to be converted when the EDW team draws upon any archived

landing data still on backup media in order to backfill as much history as possible. The net result will be a noticeable

increase in the number of Vendor records. Records in the Expense Events table will have to be re-keyed in order to link

to the new set of surrogate keys that the conversion of the Vendor table will create.

For both conformed dimensional form change cases, Table 12.7 summarizes the cost of performing this change

case under two scenarios. The first is the minimal case in which we assume that the impact of the new design can

only affect tables shown in Figure 12.25. Although the minimal case is possible, it is not realistic because both the

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 289

design changes contemplated here affect dimensions tables with widespread presence in enterprise data warehouse

employing conformed dimensions. To make the estimates more typical, the second scenario assumes that changes to

the Vendor and Corporate Customer Account dimensions will affect 10 fact tables, and it increases the labor projec-

tions accordingly.

As totaled in Table 12.7, converting two tables in order to meet this simple change request and retrofitting multiple

fact tables for the change will involve more than 2000 developer hours and cost $250,000. Given the fact that the con-

formed dimensional form strives to reuse dimension tables as much as possible, re-engineering even a modestly important

dimension can easily impact dozens of tables. Of course, the cost of this design change depends heavily on how many

fact tables will have to be updated given the new design of the conformed dimension. EDW team leaders should take to

heart that altering a conformed dimension has a large ripple effect within a data warehouse following the conformed

dimensional approach. The large number estimated previously underscores what I have observed many times during my

years of consulting: The savings that Kimball school adherents claim will be garnered by following the conformed

dimensional approach largely disappear when one considers the cost of maintaining rather than simply building an EDW.

This change case began when the customer requested an additional history trigger for the conformed dimension.

Although the EDW team would like to know all the history triggers the business will require over the life of the data

warehouse, such insight is unlikely, so their choices over the long term will be limited to the following:

� Make every column a trigger (which will lead to far more programming of the original ETL modules)
� Get used to making these expensive changes as new triggers are needed
� Refuse to make such model changes due to the high expense and allow the warehouse to become increasingly

unaligned with business needs

Because none of these choices are attractive, EDW team leaders will want to find a more agile data modeling para-

digm than the conformed dimensional approach.

Change Case 4: Changing a Fact Table’s Grain

Change Case 4 represents another common update scenario required of data warehouses based on conformed dimen-

sions without an integration layer. Changing business conditions often require that the EDW create a new shared dimen-

sion. This additional dimension can provide a new means of slicing and dicing existing fact tables. Should this new

avenue of decomposition provide a more detailed or a completely unrelated level of analysis, the additional dimension

will require a change of grain for all existing fact tables to which it links.

Revenue

events

ProductExpense

events

Sales event

margins

Revenue
cust account

Vendor

GL account

Date

Business unit

Corporate

customer account
(new for change case #4)

Vendor number (PK)
Vendor name*

CAGE Code*

(Chg. case #3)
*SCD trigger

Dimensions Facts

Legend

FIGURE 12.25 Change Cases #3 and #4 for conformed dimensional form model.

290 PART | IV Agile EDW Data Engineering

Figure 12.25 also depicts the situation in which a company was interested in product-oriented analyses. Accordingly,

the data warehouse’s first design linked the fact tables to the account numbers found in the operational systems of each

business unit. Later, the business realized that it would not be able to reduce customer churn until it started understand-

ing the consumer. The EDW sponsor requested that DW/BI add a corporate-level Customer dimension that consolidates

consumer information across the conglomerate, uniting the multiple account numbers a given customer might have.

Such consolidated information will allow corporate analysts to retrieve a “360-degree” view of the customer, allowing

the company to offer better discounts and, it is hoped, to reveal what makes some large customer leave.

As Figure 12.25 indicates, such a change will require that a new dimension table be added for Customer, and the

foreign keys of all three fact tables be updated, so one new table and three table conversions will be necessary.

Fortunately, the EDW in this hypothetical case has kept 3 months of landing data on active backup tapes, so the develo-

pers will be able to generate some prior history for each customer. This work will require updating the existing

Customer records in order to capture as many acquisition and merger events among those parties as possible. As sum-

marized in Table 12.7, fully analyzing, coding, validating, and deploying these changes against even this small,

Kimball-style data warehouse once it is in production will require approximately 2400 developer hours and cost more

than $300,000.

Again, this estimate was compiled assuming 10 impacted fact tables. A team may actually need to update fewer fact

tables than assumed, but the shared dimensions most vulnerable to changes as business conditions evolve are precisely

those that most fact tables employ, such as customer, vendors, product, and geographies. Large dimensional enterprise

warehouses can hold hundreds of tables, with the core dimensions linking to nearly every fact table in the data model.

Moreover, dimension tables can require more than one version in order to accommodate the business nuances

frequently found in heavily used business entities such as customer, product, and geography. Telecommunications com-

panies, for example, are frequently vexed by the fact that the early versions of their decision support systems failed to

distinguish between billing address and service address but that marketing and network engineering analysts eventually

insist that the distinction is crucial. Performance considerations can also require multiple versions of both dimensions

and facts because analyses that employ less detail run far faster if they pull data from preaggregated fact tables joined

to preaggregated versions of each major dimension.

All told, a simple change in grain as illustrated previously can easily impact 50�60 fact tables in an established

enterprise warehouse with conformed dimensions, making a more reasonable estimate for updating the BI applications

many times larger than the figure I have calculated for this change case. Advocates of Kimball-style EDWs often claim

that their approach leads to agile data warehouses, but given the estimates provided by the previous analysis, there is lit-

tle reason to believe that this claim can be proven. With such high maintenance costs for even simple feature requests,

sponsors and DW/BI management may well refuse to update even a Kimball-style data warehouse when changing busi-

ness conditions demand it, leading to an EDW with a design increasingly at odds with business needs. For this reason,

EDW team leaders need to find an agile alternative to the conformed dimensional approach. As we will see in the com-

ing chapters, hyper-modeled paradigms provide precisely the alternative approaches that agile EDW teams desire.

SUMMARY

Every EDW team starting upon a new warehouse or major subject area is at a crossroads where they must choose to fol-

low either traditional data modeling techniques or one of the new agile approaches. To understand the advantages of

the agile techniques that are demonstrated in the following chapters, EDW team leaders must first understand the weak-

nesses of the two traditional approaches: standard normal forms and conformed dimensional forms.

The standard normal form implies a very traditionally structured data warehouse, one with an Integration layer and a

Presentation layer. Designers will model a traditional Integration layer with tables in third, fourth, or fifth normal form.

ETL will load this normalized Integration layer first before transforming it again to populate the star schemas of the

Presentation layer, which better support user-friendly BI applications. The conformed dimensional data warehouse skips

building much or all of the Integration layer in order to load the company’s operational data directly into star schemas.

Both of these modeling approaches lead to data warehouses that are very expensive to modify once data is loaded

into their data repositories, making them brittle in the face of changing business requirements. In order to provide a

data warehouse that can evolve as fast as the business context can change, EDW team leaders will need to draw upon

an agile approach to DW/BI design. The alternative delivery and data modeling techniques that will make such “agile

data engineering” possible are presented later, but in the next chapter we first consider some provisional agile solutions

that can be achieved even without adopting a new data modeling technique.

Traditional Data Modeling Paradigms and Their Discontents Chapter | 12 291

Chapter 13

Surface Solutions Using Data
Virtualization and Big Data

A primary challenge to agile delivery of business intelligence applications is the complexity of the data warehousing/

business intelligence (DW/BI) architecture. As we explored in Chapter 12, delivering clean, integrated, and standardized

data for the enterprise requires several distinct data layers, all requiring their own type of data schema and extract,

transform, and load (ETL) transformations. These requirements give rise to the typical DW/BI reference architecture

that contains separate layers for landing, integration, presentation, semantics, and end-user applications. However, the

fact that the reference architecture contains multiple layers does not mean that every strand of data must land in each

data layer as it progresses from the source applications to the end user’s dashboard. Insisting that enterprise data ware-

housing (EDW) applications persist data in each of these layers without exception from the very beginning of a project

will easily undermine agile’s goal of early and repeated delivery of value to the customer.

Even without resorting to new data modeling techniques, EDW team leaders can greatly improve their speed of

delivery and end-user satisfaction by employing a strategy that I call “surface solutions with architectural backfilling.”

With this strategy, the EDW team delivers a provisional application that, considered from the surface, looks like a busi-

ness solution or an important piece of one. In reality, this provisional application utilizes just one or two layers of the

reference architecture and skips the rest. Of course, the developers need to eventually provide a fully governed and reli-

able corporate information asset, so this surface solution approach simply buys them some time to define and construct

a more robust version of the application. Although the surface solution may soon be replaced with a more complete

application, the end users see at least a quick, partial answer to their pressing business needs, and then a steady stream

of improved capabilities that address whatever information gaps the users may have found in the first few deliveries.

This surface solution with subsequent backfilling of the architecture looks agile to the business consumer, allowing the

EDW team to both learn quickly and achieve high levels of customer satisfaction.

Agile EDW teams can pursue surface solutions in three ways, listed here in the order of increasing completeness:

� Leveraging a business department’s shadow information technology (IT)
� Data virtualization servers
� Big data technologies

These three strategies couple well with the hyper modeled data design techniques that are discussed in detail in the

next two chapters. Hyper modeling enables teams to build a full data warehouse more quickly than traditional methods,

but the process still takes significant time. In contrast, surface solutions allow super-fast delivery of applications, but

those deliveries must address a smaller scope of requirements. Frequently, EDW teams employ surface solutions to pro-

vide an immediate answer to a few key business problems and then use that provisional application to learn about the

project’s full spectrum of requirements in greater depth. With more complete requirements in hand, they then employ

hyper modeling techniques to construct a complete solution that addresses not only a fuller range of the business’s func-

tional needs but also the system’s nonfunctional requirements.

EDW teams will benefit from adding surface solutions to their bag of tricks because even in areas where this

approach provides only a temporary fix, it blazes the trail that the fully engineered solutions should follow. Moreover,

there are some situations in which the surface solution works well enough for specific business problems that they can

be converted into production systems, answering customer needs inexpensively and thus freeing up EDW resources for

work on features for which more labor-intensive approaches are absolutely necessary.

293
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00013-8

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00013-8

LEVERAGING SHADOW IT

The first and simplest approach to surface solutions and architectural backfilling involves no new technology whatso-

ever. This technique requires only that the DW/BI developers join forces with the appropriate shadow IT resources in

order to quickly solve crucial business problems. This approach is a dynamic strategy involving several subreleases,

each of which buys the EDW team more time to build a better solution, simultaneously identifying for the developers

improved business and technical requirements. In essence, this approach is a collaborative discovery process that pro-

vides usable solutions with every step in the learning cycle.

The company for which I first suggested this approach was an online game publisher that owned many of the most

popular electronic game titles at the time. This company’s medium- and long-term revenue depended on its customers

feeling challenged just enough at each point in a game’s design. Places in the game where characters repeatedly died

had to be detected and designed out of the play path lest customers decide it was impossible to win and abandon the

product for another company’s game. High-challenge locations could also be addressed by placing a bottle of magic

potion or an all-powerful sword within the game player’s view. The players needed only to pay for the instant solution

to surpass the obstacles and adversaries confronting them. These pay-as-you-go shortcuts represented a significant reve-

nue stream, but they could also backfire if not designed and monitored carefully because too many of them could make

the customer feel fleeced rather than entertained.

Like most online games, the actual events took place upon centralized servers, leaving the player’s workstations to

serve as display consoles linked to the company’s servers via the Internet. This architecture gave the company great

flexibility in that it could bring in a dozen or so programmers and completely re-engineer the game over the span of 10

days or so, deploying the new version back to “the cloud.” Naturally, after investing in several weeks of round-the-

clock programming, the design and finance groups wanted to know immediately whether the changes were improving

customer satisfaction and company revenue.

Unfortunately, the speed with which the company could change its products created a particularly stiff challenge for the

DW/BI department. When the product managers re-engineered a game, they essentially restructured most of DW/BI’s data

sources, usually breaking a large portion of the company’s ETL modules. To reprogram the majority of the warehouse’s ETL

was a multimonth proposition, but DW/BI’s corporate customers were willing to wait only a week or two for their answers.

Example of a Five-Step Collaborative Effort

Figure 13.1 sketches an approach based on surface solutions and architectural backfilling that resolved this impasse.

This diagram shows that the full solution was delivered in five subreleases, the first four of which relied heavily on the

interim solutions provided by “shadow IT”—that is, computer-empowered data analysts and front-end tool programmers

employed by the end-user business departments rather than corporate IT. Readers who are familiar with the require-

ments management strategies presented in Part III of this book will see in Figure 13.1 a steady progression through the

BI end-user’s hierarchy of needs.

The surface solution begins when the EDW team, confronted with a large programming assignment and impatient

end users, simply lands the new source data onto the warehouse servers with Subrelease 1. EDW team leaders have

equipped the department data miners with an associative query engine (similar to the type of tool that was recom-

mended for “data cowboys” in Chapter 11) along with selective access to this raw source data. With this tool and

access, the end-user departments can at least see and process for themselves the new click stream data that the updated

game servers have started to provide.

Upon providing this access to the shadow IT staff, the EDW project leaders warned the departmental analysts not to

overinvest in their front-end applications because very soon that temporary solution would be replaced with another

offering more data and greater capabilities. The EDW team leaders also only provided access to 1% of the game events

so that no one can claim to have possession yet of the whole truth. However, even that small percentage of the source

was enough to let the data miners begin asking some fundamental questions and provide company executives with a

notion on whether the new game design was achieving its goals.

With the small dose of new data provided with Subrelease 1, the shadow IT analysts spent several happy weeks

writing new analyses and reports, taking the pressure off of EDW to deliver a full solution immediately. The EDW

team leaders used this time to observe the applications that the shadow IT staff created, gathering for their data ware-

housing teammates some very accurate solution requirements. The EDW team also used this time to build the next

surface solution.

294 PART | IV Agile EDW Data Engineering

For Subrelease 2, the EDW team leaders updated their persistent source archive for the sources data sitting in the

Raw Landing layer. The team leaders communicated to the shadow IT analysts that access to the landing area was going

to disappear so they should start “rolling their front applications forward” to utilize the new data that would be available

in the next layer of the reference architecture. So that the shadow IT would not rebel against this change, the EDW team

leaders offered two new features: a fivefold increase in the amount of data available (to 5% of the click stream) and the

historical capabilities that the Persistent Source Archive provided. The history capabilities of this layer would allow

shadow IT to analyze and report on trends in player behavior rather than just summarizing current activity.

These new capabilities again kept the shadow IT analysts happily engaged with creating new data visualizations for

weeks, during which the EDW team again observed the new development for solutions requirements and used the time

to build out the next surface solution. With Subrelease 3, EDW instructed shadow IT analysts to once again roll

their front-end applications forward to the Integration layer, where they would now be able to construct 360� views of

customers and products while receiving doubling in the amount of data available. As the departmental analysts

expanded and created applications to employ this larger universe of information, the EDW team leaders gathered further

solution requirements by watching usage patterns. They also used the time to bring the new data into the star schemas

of their data warehouse’s Presentation layer.

When the Presentation layer was finally re-engineered, the EDW team leads initiated Subrelease 4, where end users

would find the data in a dimensional model. Once this next solution was ready, they asked shadow IT to connect their

front-end applications to the Presentation layer, where analysts would find more than twice the information as before, as

well as the ability to slice and dice game events using the multidimensional features of their visualization tools.

By again noting new usages and adding them to all the observations made during the three earlier subreleases, the

EDW team was able at this time to compile a comprehensive list of requirements. The team used the full requirements

list to construct a new version of the company’s official BI portal. Because this well-guided BI update had finally back-

filled all of the architectural layers, it was no longer a surface solution but instead a full and robust application for the

enterprise. This version was therefore promoted not as a subrelease but, rather, as the next full release of the corporate

analytics application. With this last step, EDW team leaders announced they would be removing access to intermediate

Raw

landing

area

Integration

layer

Presentation

layer

Corporate

BI portal

Departmental

front-end

apps

Persistent

source

archive

Shadow IT

Access

Trends

360º Vision

25% of data

100% of data

10% of data

5% of data

1% of data

High

performance

IT-Maintained

application

1

2

3

4

5

Start with a “surface solution” and then backfill the

architectures as requirements become clearer

Subrelease

FIGURE 13.1 A surface solution with architectural backfilling that leverages “Shadow IT”.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 295

layers of the data warehouse, giving them instead a new universe of information that (1) met corporate standards

of data quality; (2) now contained 100% of the player activity; (3) integrated the activity data with well-governed

representations of customers, products, and locations; and (4) was tuned for high performance.

Lessons from the Case History

This case history demonstrates several useful notions regarding surface solutions that EDW team leaders can regularly

employ in their agile project planning. First, by providing a series of interim solutions, the team allowed departments to

address their most pressing needs in quick succession, generating incredible value for any company that competes via

an improving consumer product in a fast-moving marketplace. Second, by collaborating rather than resisting shadow

IT, the EDW team was able to employ departmental resources to solve the problem, expanding the effective size of the

development team, and picking up valuable staff labor that was not charged to the data warehousing program. Third,

the approach used every interim solution to buy time to learn about requirements and build out the next installment in

the application.

Finally, with every subrelease, the team employed carrots rather than sticks to motivate end users to move forward

in the EDW reference architecture. Early solutions only had a small sliver of the data with little enrichment. With later

solutions, EDW offered not only more data but also clearly articulated new capabilities that end users would appreciate

such as trends, full representations of business objects, or faster analyses. By putting some thought into a progressive

motivational plan, the team kept end users excited and willing to move forward to a more thoroughly designed solution

rather than insisting that a prototype be kept in production. By providing a surface solution and steadily backfilling

the architecture, the EDW team in this example was able to meet its customer’s conflicting needs for fast solutions that

are still well built and offering reasonable total cost of ownership over the long term.

Note also the agile philosophies and principles that lent the right mindset to EDW project leaders on that project

that made them willing to try this dynamic approach:

� Constantly deliver value to the customer.
� Seek specifications and designs that are “just good enough.”
� Collaborate rather than contract with customers.
� Work in small iterations and learn as you go.

Striving for a perfect solution on the first release would have ruled out the collaborative and highly successful incre-

mental solution described previously. The EDW team would have taken months to derive a 100% perfect vision of the

new BI system needed and then, even with agile development techniques, many more months to build out the ETL with

a front end that supported the new data warehouse design. The business would have waited the better part of a year to

learn whether its end-product enhancement effort, which took only a few weeks to implement, had generated any

positive results for the business. If the game redesign had offended and driven away customers, the company would

have been entirely blind to the reasons why this occurred, able to vaguely detect the changing tide only months later

through falling corporate revenues. Although the agile approach involved some extra expense to pay for multiple subre-

leases and some re-engineering here and there, it provided decision support in a business-reasonable time frame.

FASTER VALUE DELIVERY WITH DATA VIRTUALIZATION

The second approach to surface solutions and backfilling the data warehouse architecture involves a technology that

many companies already have and that the rest should consider acquiring—data virtualization servers. The case study

presented previously simply combined departmental shadow IT and a good front-end tool to provide a type of “self-

service BI.” As much as it pleased end users with fast answers to crucial questions, this departmentally powered solution

will alarm many veteran data managers because at any point the company management might declare one of the

subreleases as “good enough” and insist that DW/BI leave it in permanent production. These “production prototypes” are

usually a dangerous decision because they leave unanswered many important questions, such as the following:

� What guarantees that shadow IT groups have correctly represented the company’s information with their hastily

assembled front ends?
� What assures the company that these new BI applications will have low ongoing maintenance requirements and can

be economically enhanced for new business requirements in the future?

296 PART | IV Agile EDW Data Engineering

� Are the important analytics they provide well documented so that IT can support them when they break months

later, after the folks who created them have moved on to other opportunities?

By allowing DW/BI to participate more fully in the creation of the prototypes, a data virtualization server (DVS)

allows EDW teams to provide surface solutions without incurring that type of major risk. DVS can quickly deliver

low-cost BI services that are reliable corporate assets, with many of them so robust that they can be safely treated as

permanent analytic solutions.

Defining Data Virtualization

The major database management systems in the marketplace today all provide a handy construct called “views.”

A view is a logical representation of one or more tables within the database that is predefined and ready for execution

whenever that particular representation is needed, making them in essence a stored query. Often, they join numerous

tables together and return only a select set of columns, many of them renamed for the particular usage the designers

intended to support. Creating a view is a very efficient approach to tailoring what the surface of a large database looks

like to end users because they simply need to be declared. No additional data is created when a view executes. Instead,

the particular combination of data that a view defines is simply assembled by the database management system

(DBMS) when end users draw upon the view and is later automatically released when no longer needed. Where a run-

time query can solve a business problem, views are an economical approach because they do not incur additional disk

storage and thus require very little management effort.

Unfortunately for DW/BI, views are bounded to the database within which they execute. Designers can extend them

somewhat by including tables linked from other databases into the FROM clause of the view’s SQL declaration, but

database links require additional setup and at best are limited to tables residing in databases from the same vendor. This

severely limits the value of traditional views for data warehousing because they cannot be easily used to perform real-

time integration services across the wide variety of source systems that typically feed into an EDW.

Data virtualization servers break down this last barrier, allowing an EDW team to create views that span many

brands of databases. In fact, DVS views can span many classes of data—relational, semistructured, and unstructured.

Modern database servers rely on an “optimizer” component that translates every SQL statement into a highly

efficient execution plan for retrieving and assembling the data with a database. Data virtualization servers represent a

“superoptimizer” that builds highly efficient execution plans that can tap information from source systems from

competing vendors and widely varying data formats.

This superoptimizer provides several features that allow EDW teams to rapidly build robust, useable, and maintain-

able solutions for DW/BI applications and end users. First, a DVS uses SQL, allowing EDW teams to build surface

solutions using this lingua franca of the database world, no matter how many different types and sources of data a given

view actually draws upon. We say that the DVS encapsulates the organization’s data, allowing it to be retrieved without

any concern for where it resides, what the technical interface is, how it has been implemented, which platform it uses,

and how much of it is available [van der Lans 2012, Chapter 1.3]. Encapsulation masks away all those technical details,

allowing DW/BI applications and end users to work with a single simplified interface based on a language that many

developers and consumers already know.

Second, DVSs provide abstraction for companies’ enormous collection of data. As controlled by the specific defini-

tion of a given DVS view, the consumers see only the elements and rows of the data that fits their needs. The informa-

tion may be presented on a detailed level or on an aggregated level, concatenated or transformed, as best suits the needs

of the consuming applications and end users [van der Lans 2012, Chapter 1.6].

Third, DVS tools provide metadata management support, so that EDW can more easily review the genealogy of

queries that accumulate and so that end users can understand the information they have retrieved. All told, DVSs enable

EDW teams to offer data consumers a unified, simplified, and intelligible collection of integrated data through easily

created data objects. Moreover, the fact that these virtual data resources are declared rather than materialized dramati-

cally improves the economics of providing BI solutions, as will be shown later.

The Basic Use Case

Figures 13.2 and 13.3 show the before and after pictures of the basic data integration use case that employs a DVS. The

context for this case is a pair of applications that must draw upon four data sources as diverse as an ERP system,

an existing EDW, an independent departmental data mart, and an assembly-line process controller. Although the two

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 297

ERP

? ? ?

Application A

Application B

Departmental
data mart

Mainframe

EDW

FIGURE 13.2 Basic data integration use case, delivered without data virtualization.

FIGURE 13.3 Basic data integration use case, delivered using a data virtualization server.

end-user applications shown deliver much of the same information, they were built independently, thus the company’s

information takes two separate paths to the data consumer. No structural guarantees exist that the data consumed by

these two groups of end users have been extracted, transformed, or stored in a compatible manner. Nor does the com-

pany have any guarantee that the definitions for similarly named elements are equivalent, because the metadata for the

informational elements also takes two independent paths to the applications. Such a situation leaves the company vul-

nerable to situations in which end users will retrieve very different values for what they think is the same data element.

Decisions based on such conflicting information can easily interfere with each other, allowing the data disparities to

become operational paralysis. Moreover, the information provided in the “before” situation is severely limited. Because

the company’s traditional DBMS tool set is missing an easy means for including data from sources such as the Internet,

cloud applications, and social networking sites, the decisions made using the two end-user applications will be imper-

fectly informed and therefore easily flawed.

The second diagram in this pair shows a much improved state. A DVS has been placed in between sources and end

users so that the EDW team can declare a single set of highly managed views, integrating data from all the necessary

sources. The DVS will also deliver a single pool of metadata, allowing the company to understand how the EDW infor-

mation is defined and derived. Now the end users of the two applications know that they both receive equivalently

defined data elements, empowering them to pursue comparable analyses and complementary decisions. Moreover, EDW

can now support new applications that include the wider variety of information available via Internet sources today.

Notably, the EDW team provides these benefits without programming ETL modules or materializing new data

objects. All these services are provided by virtual data resources created via declarations, a much faster process than

designing data tables for information storage and programming ETL to load them. This reliance on declarations makes

DVS solutions faster not only to create but also to update. Should a particular view prove to be imperfectly defined, the

EDW team can simply modify and republish the SQL that defined it. By working with a high-level language such as

SQL, this republishing is faster than coding. Because the results are pulled in real time from the sources, previous ver-

sions of the solution did not create persisted data stores that have to be located, analyzed, and converted or expunged.

The faster try-and-fix cycle that DVS allows greatly amplifies the agility by which the EDW team can address end

users’ needs and adapt to changing requirements.

Data virtualization provides EDW teams with many new opportunities for providing the surface solutions and archi-

tectural backfill discussed previously. This incredibly agile approach is subject to two important limitations, however.

Although these limitations are manageable, they need to be considered when incorporating DVS into an EDW architec-

ture. First, a DVS can only deliver data that exists in the source systems. For views built solely on the transaction sys-

tems, the result will be current information only without any derived history that trending analyses would need to

display. Second, because it knits together existing sources using the network, the speed of the network and the volume

of records returned will largely impact the speed with which results arrive to end users. Even with these limitations, a

large number of business problems can be addressed using a reasonable amount of current information, and for those

problems, DVS offers an inexpensive solution, rapidly delivered.

DVS Performance Features

The limitation that a data communications network might impose on a DVS is only one aspect of a broader topic of

“performance,” a concern that DVS vendors have made serious efforts to address. When most DW/BI practitioners first

hear that DVSs provide real-time data integration using views against heterogeneous sources, they rightly worry that

query response times will exceed end users’ willingness to wait for answers. They ponder how quickly intermediate

results from the multiple data sources can be channeled across the network to a single delivery point and then integrated

and transformed by the lone data virtualization server.

Not surprisingly, when the DVS does attempt to perform all the processing on its own, end users can experience

such excessive data latency that they will consider the service largely unusable. Fortunately, the DVS products available

today have a decade or more of design and programming behind them and thus include many high-performance features

that eliminate a good portion of the performance issues. As superoptimizers, they employ analogs of the strategies that

relational database management system (RDBMS) servers utilize in their execution plans, except the DVSs no longer

limit these strategies to a single database, single brand of databases, or a single type of source data. The following are

the primary performance technologies that data virtualization packages employ so that a wide variety of queries can

complete in a business-reasonable time frame:

Pushdown processing: The DVS does not have to perform all of an execution plan on its own computer host.

Instead, the DVS inquires and learns about the capabilities of each data source from which it must draw information.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 299

It then pushes as much of the integration, filtering, and sorting work as possible down onto the database servers of

these sources, thereby distributing the process load and executing the resource-intensive aspects of each view on

hosts with superior resources.

Query substitution: There is no reason why a DVS must execute the queries precisely as written by the EDW team.

With query substitution, the DVS translates the overall request into a collection of subqueries so that each portion can

be pushed down to the underlying database servers, allowing data requests to be fulfilled as effectively as possible.

Query injection: While rewriting the queries, the DVS moves up constraints in an execution plan so that they can be

pushed down to the underlying database servers earlier in the overall process. “Injecting” these constraints into the

early query segments running on source resources reduces the rows returned and thereby minimizes the join work

the DVS needs to do when assembling the final presentation of the data.

Ship joins: The DVS can go as far as sending data from one data store to another so that the database server that

runs the fastest can process both sides of a join.

Sort-merge joins: The DVS can also push down only the ORDER BY clauses implied by a join so that the original

data sources sort their records before sending them downstream, leaving the DVS to perform only the merge portion

of an operation.

Statistical data: The DVS continually gathers information from the source data stores regarding the objects they pos-

sess, such as the number of rows in a table, the average width of the rows, the columns that have been indexed, and

the number of different values and nulls in each column. Such statistics allow the DVS to optimally rewrite execu-

tion plans using a wide variety of shortcuts.

Hints: The EDW developers can review the DVS execution plans, and sometimes they will spot an optimization

trick the server has not thought of. In this situation, they can instruct the DVS to use their preferred technique by

providing a small piece of execution guidance within the SQL defining the view.

SQL override: Sometimes the EDW developers will want to affect the query far beyond a small hint. The DVS will

allow them to provide a fully formed SQL statement that will override the DVS execution plan, allowing the develo-

pers to completely control which query segments pushed down to the source DBMSs.

Data caches: When the previous techniques do not achieve sufficient performance, the DVS can build a data cache

by materializing intermediate or final results of queries run against the source data stores so that later queries calling

for the same information will draw data from physical tables. These caches are managed and refreshed by the DVS

so that they do not become programmed objects that the EDW team must spend time maintaining.

The Economics of Virtual Solutions

With all the advanced features listed previously, DVSs can deliver amazingly complex queries with impressive speed,

but in many cases the latency will still be greater than if the end users were receiving results from a single set of

tables with data already preprocessed for analytics. Whether the latency for a given result is small enough to be

business-reasonable requires a fairly subtle calculation. The first element to that calculation should be the raw economics

of virtual versus fully engineered solutions.

Although the savings offered by a given DVS-based solution will depend on the particulars of the application, one

can make a strong case that in general the DVS approach should cost a small fraction of the effort that an ETL-based

solution will require. Figure 13.4 depicts the alternatives for quickly delivering three new analytic applications via ad

hoc ETL (shown on the left) versus DVS (shown on the right). For the ETL-based approach, a separate data access

channel must be created between every source and the application that uses it. The total number of channels needed

here by three applications drawing upon six sources is 18 ETL modules that must be analyzed, designed, coded, vali-

dated, and promoted. Of course, it would make more sense to gather all these data sources into a single EDW and then

send the integrated information to the applications. However, this organization, like many others, has decided that the

new modules for the EDW (already one of the sources in the diagram) take far too long to adapt, hence the resulting

mess of three separate, stove-piped solutions.

How should the EDW team proceed using a DVS if the team’s primary objective was fast delivery of a solution?

The right side of Figure 13.4 depicts a design for providing the same analytic services using a DVS. Using a DVS,

EDW team leaders can deliver new services by declaring views, allowing them to provide a shared data transform

service in a matter of hours or days rather than months. They first declare six views to acquire information from the

source systems. They then declare three views based on the first six that each finishes shaping the data needed by one

of the end-user applications. All told, they need only declare 9 objects instead of the 18 needed using ETL, leading to a

50% reduction in the number of new components required.

300 PART | IV Agile EDW Data Engineering

The fact that the DVS objects are declared rather than engineered leads to even greater savings. Table 13.1 provides an

analysis of the level of effort required to build an ETL module—which must be designed, coded, and validated—versus the

labor required to simply declare a DVS component. Some of the creation steps on this list, such as identifying transformation

rules and logical design, are required in both approaches and require approximately the same amount of time. Other steps

appear only in one approach or the other. ETL programming is needed only for the engineered approach, for example, and

only the DVS requires a “write view logic” step. The labor requirement between these two activities is notable. The DVS

object is declared and therefore delivers the service in 1 hour versus the 2 days of work required to program an ETL module

that would materialize the required data. Granted, another person might estimate the steps shown in this table differently

than me, but the speed with which that object can be declared versus programmed should cause our two results to agree in

approximate magnitude. This difference arises from the fact that ETL tools are procedural, forcing developers to specify

every action the module must take. The SQL statements employed in a DVS query are declarative, relying on descriptions

of the set-based results desired and leaving the enumeration of logical processing steps to the optimizer to perform.

Table 13.1 also lists a set of steps that appear in both approaches but require less time in a declarative approach. For

example, logical design review and unit testing absorb less time in the DVS approach because of the lower level of

Ad hoc
ETL

Data
virtualization

server

ERP

Dept.
Data Mart

Mainframe

View

View

View

View

View

View

View

View

ViewDocuments

Cloud Apps

18 Engineered
interfaces

9 Declared
interfaces

EDW

FIGURE 13.4 Data virtualization reduces the number of interfaces required for a given set of solutions.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 301

detail involved in declarative versus programmed approaches. The lower estimates for the DVS tasks also reflect a

lower level of risk. Because creating�testing�fixing cycles occur far more quickly when a team is declaring a solution,

developers can rely more on validation to catch errors rather than laboring over specifications up front and verifying

programming once a module is built. Because developers can simply republish a view that proves insufficient for its

purpose, the consequences of making a mistake are lower, and therefore specifications, reviews, and unit testing for

DVS modules do not need to be as exhaustive. For this reason, many of the steps listed for both approaches in

Table 13.1 are estimated far lower for the DVS-based solution than for the programmed ETL.

As shown in the totals at the bottom of the main table, the DVS approach allows teams to create modules in approx-

imately half the time that fully engineering ETL modules would require. For the hypothetical case of six sources and

three targets depicted in Figure 13.4, this 50% reduction in module development effort along with the 50% reduction

in the number of objects necessary combine to give the DVS approach a 4-to-1 advantage over ad hoc ETL solutions,

as summarized at the bottom of the table.

Because the previous analysis focused on an ad hoc ETL solution, we should ask whether a DVS would have the

same advantage over the standard approach to enterprise data warehousing, where a carefully designed ETL-based

system consolidates the data before delivering it to applications. The standard approach can provide high-quality

information to the enterprise, but it cannot match DVS in terms of fast delivery of solutions. EDW teams that pursue a

traditional hub-and-spoke delivery strategy take even more time than developers pursuing an ad hoc ETL approach

because they must plan data transforms for harmonizing disparate data sources and design the appropriate data stores.

Replicating the DVS “shared bus” approach shown on the right side of Figure 13.4 using ETL would be considerably

more involved, creating an even greater economic advantage for DVS than that demonstrated in the previous case.

DVS Surface Solutions and Progressive Deployment

Reconsidering the case history presented at the beginning of this chapter, DVSs can provide an even better means for pro-

viding surface solutions than leveraging shadow IT. Figure 13.5 provides a four-step approach that an EDW team might

TABLE 13.1 Comparative Level of Effort for Engineered vs. Declared Objects

Action

Hours Ext Hours Ext
Transform mapping and rules 1 8 8 = 8 8
Functional requirements review 2 2 4 > 2 4
Logical design 1 8 8 = 8 8
Logical design review 2 2 4 = 2 4
Physical design 2 2 4
Physical design review 2 2 4
ETL programming 1 16 16
Write view logic 1 4
Unit test 1 4 4 > 2 2
Unit test review & code walkthrough 2 2 4 > 1 2
Promotion to SIT 1 2 2
Integration testing 1 4 4 > 1 1
Integration test review 2 2 4 > 1 2
Readiness review 3 2 6 > 1 3
Promotion to PROD 1 2 2 > 1 1
Validation 2 4 8 > 1 2

Subtotal 82 hrs 41 hrs

Rework @ 50% 41 21
Total Effort per Interface 123 hrs 62 hrs

Count Effort Count Effort
Interfaces Required (Fig. DVRO) 18 2,214 9 554

Savings offered by data virtualization per interface 50%

Total Savings Across the EDW (Fig. DVRO) 75%

Engineered
(Programmed ETL)

Declared
(Data virtualization views)

of
People

302 PART | IV Agile EDW Data Engineering

take to iteratively deliver analytical information from a new or significantly updated data source. The line marked

Subrelease 1 represents the first deliverable the team might plan on. Although DVS would allow creating multisource

views that pull data directly from the transaction systems, usually companies do not want to burden their line-of-business

systems with BI reporting requests. Accordingly, Subrelease 1 depicts a surface solution based on a simple extract from

the source systems that the EDW team has placed in the landing area of its reference architecture. The team can then

create a DVS view that reformats this replicated new source data for the end users, exposing it through the semantic layer

of the company’s BI application. Assuming a daily refresh for the extracted tables, this first subrelease is a quick solution

that offers current data from the new updated source systems. The team has not yet taken the time to cleanse, harmonize,

or aggregate the data, however. Nor has it created any value-added fields, largely because the source is unfamiliar to the

company and the business users cannot yet say how they want it transformed or enriched.

If the raw data is large and requires many joins or special processing to surface it as an intelligible, relational

table, then queries against this new data may well perform poorly, despite the fact that it has been extracted from

source systems and placed on EDW servers. Some of the key queries may need to run overnight to finish, so the

only sure value of this first step is providing the business with a partial design of a solution with some real data

with which to evaluate it. Still, the cost was low because the EDW probably only needed a day or two to create and

validate this view. Moreover, the team may well have been able to link the new data to information already in the

EDW, so the business may have been able to review the results in a rich corporate context. At a minimum, this first

subrelease will allow departmental analysts to begin exploring the new source data and answer some basic business

questions.

While the end users work with this first deliverable as best they can, the EDW team begins developing a next ver-

sion, shown as Subrelease 2 in Figure 13.5. With this version, the EDW team draws upon the performance-enhancing

FIGURE 13.5 General surface-solutions delivery pattern with data virtualization.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 303

features of the DVS, such as data caching, hints, and SQL overrides, so that the business queries complete more

quickly, perhaps while the analysts go for lunch—not spectacular but still a tangible improvement over Subrelease 1.

The developers may well add some aggregations and basic derived columns in order to make some analytical reporting

on the new source data easier to construct.

While the business continues to explore and benefit from this next presentation of the new source, the EDW team

invests in Subrelease 3, which will employ ETL to bring the new source into the integration layer of the data ware-

house. This subrelease may actually be several mini-subreleases. Each one would look the same to the end users, but in

the background the EDW team will be steadily moving the join and transformation logic from the DVS views to the

ETL engine in order to improve the solution’s overall performance. These hidden iterations should steadily improve the

completion times of end-user queries to the point where business questions are answered in the time it takes the analysts

to fetch a cup of coffee. Moreover, users will be able to ask a wider collection of more illuminating questions given the

cleansing and derived columns that the EDW team has had the time to add to the information.

Finally, based on the usage observed during all three of the prior subreleases, the EDW team has been able to not only

cleanse and integrate the data from the new source but also add a star-schema base presentation layer in Subrelease 4 so that

business questions are now answered fast enough for end users to maintain a steady train of thought during their analyses.

Figure 13.5 showed how each subrelease differs architecturally from the next, but agile EDW team leaders will also

need to articulate the additional business value of each application version, lest management prematurely decide to

make one of the prototypes the production version. Figure 13.6 employs a dimensions of value analysis, introduced in

Part III, to illustrate the incremental value offered by each step in the chain of subreleases described previously. As the

team delivers the quick surface solution and then steadily backfills the architecture using the DVS, the ring of realized

data capabilities on this dimensions of value analysis expands outward.

Comparing DVS Surface Solutions to the Previous Example

The dynamic delivery approach using a DVS is far better in both capabilities and value accounting than the shadow IT-

based approach sketched previously. Because agile EDW team leaders will need to regularly improvize subrelease plans

involving surface solutions and backfilling, taking a moment to compare the previous two examples will highlight some

of the major issues they should be prepared to consider. In the first example, the EDW team employed a quick burst of

1

Raw source

Simple derived columns

Overnight

Train-of-Thought

1
or

2

3

6

12

After lunch

Cup of coffee

Standard, integrated entities

Groomed & user friendly

H
alfdozen

1,000s

C
ouple

dozen

Query performanceMax simultaneous
users

Data
enrichment

Weeks
to deliver

Subrelease

FIGURE 13.6 Dimensions-of-value analysis for surface solutions with data virtualization.

304 PART | IV Agile EDW Data Engineering

ETL development and allowed data-savvy departmental analysts to access the results in whatever layer the data next

landed. Whether the business staff received analyses employing standardized data definitions, code translations, or

transformation business rules was completely up to the departmental analysts who built the provisional reports and

dashboards.

In the DVS example, EDW surfaced everything through the semantic layer, leaving only the final data visualization

for the end users to build. Both approaches allowed for fast cycles of discovery and incremental solution improvement

and thus enabled the agile EDW team to constantly deliver value to the customer. Yet there are several points of con-

trast between the two solution paths, as enumerated in Table 13.2. Overall, the DVS-based approach can offer higher

value and therefore merits the greater up-front cost required to put a DVS platform in place.

Data Virtualization’s Value Proposition

Do the benefits provided by a DVS justify the cost and effort to acquire and deploy such a tool? Teams can utilize the

value buildup chart discussed in Part III of this book to make this case. Figure 13.7 shows three such buildup graphs,

representing the three agile approaches discussed so far:

� Engineered ETL modules programmed by the EDW team
� Surface solutions with EDW providing data to shadow IT groups
� Surface solutions using a DVS

These three graphs have been overlaid so that the effectiveness of the various approaches can be compared.

The all-EDW approach requires the DW/BI team to program ETL for all four layers of the reference architecture for

each subrelease but focusing on only a theme or two with each delivery. Even with agile techniques, this approach

requires multiple months before end users receive each installment of usable applications, so the value buildup graph

for this approach grows the slowest, as shown by line 1’s location to the far right. Importantly, because this work

TABLE 13.2 Contrast between Surface Solutions Using Shadow IT Versus Data Virtualization Servers

Surface Solutions via Early Data Access for Shadow IT Surface Solutions via Data Virtualization Servers

End users work with data models in many different reference
architecture layers, some of which are not structured for
intelligibility.

End users always work with a semantic layer of views that EDW
controls and can make user-friendly.

Each subrelease requires physical deployment, which demands
greater care and effort.

EDW simply publishes a new view for each subrelease, which
requires less effort and far less time.

Metadata probably incomplete and overly technical. Solution utilizes DVS’s facility for easy-to-use metadata that
adapts as developers steadily increment the views.

Departmental developers must constantly re-engineer their
applications for the new sources EDW provides.

Source may steadily offer new entities and additional attributes,
but the source itself stays in the same logical location, making
end-user applications easier to update.

Moreover, because views are less labor-intensive to deploy and
manage, EDW can maintain old and new versions, allowing end
users to update their applications on their own time schedule.

End users determine all the logic of the data retrieval queries. By defining the access views, EDW retains considerable
influence on the retrieval query logic.

End users may write queries that run inefficiently or distort the
information retrieved with flaws such as double counting due to
missing join conditions.

EDW team members can ensure proper query construction, and
by monitoring run times via the DVS administration front end,
they can correct inefficient queries.

Poorly written departmental queries may impose heavy loads on
normally hidden EDW layers, perhaps requiring EDW to tune
those layers for end-user access.

DVS optimizer and data caching give EDW better tools for
reducing the burden on the EDW servers.

Every intermediate subrelease is undoubtedly not an application
EDW would want to leave in production.

As long as performance is good enough, any acceptable view
can be safely left in production because the DVS guarantees it is
well-defined, intelligible, monitored, and manageable.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 305

pattern delivers the fewest installments, the learning experienced by DW/BI and the business staff with this approach is

the lowest of all three strategies.

Line 2 represents a surface-solution strategy leveraging shadow IT groups. EDW progressively programs ETL for

one layer of the reference architecture and makes the results available to the end-user department. The business receives

usable data far earlier than with the previous strategy, and DW/BI start learning about the project problem space and

source data sooner. Faster learning shortens the overall delivery time of the entire project, as indicated by line 2’s loca-

tion to the left of the all-EDW programmed approach. However, there is only so much the departmental analysts can do

with their front-end tools, so the end users still find themselves repeatedly waiting for EDW to provide the next install-

ment of ETL.

Such waiting disappears with the DVS-powered approach, in which the EDW team can begin creating views as

soon as source data is available and validating them with the business staff. There are still some capabilities that EDW

cannot deliver until the data is fully persisted in the Integration layer or reformatted for business consumption in the

Presentation layer, but because DVS allows faster build�review cycles with the business, more features undoubtedly

appeared in each subrelease than in the ETL-dependent approach. Moreover, because this strategy allows for the most

frequent deliveries, learning occurs fastest with this approach, leading to a further shortening of the overall project

delivery time, as indicated by line 3’s placement to the far left.

With these value buildup charts, the area under each curve represents the benefits to the business delivered by each

strategy. Because the DVS-powered approach creates the largest value under the curve, it is a strategy that all agile

EDW team leaders should consider.

EDW’s Reference Architecture Becomes Dynamic

Because data virtualization allows EDW teams to quickly deliver a wide variety of new data capabilities, this technol-

ogy should be fundamentally incorporated into the reference architecture of a data warehouse. EDW leaders need only

establish the following maxim for their teammates to follow:

Because DVS views allow us to quickly extend the value of available information and mask out problems within the source

data, such views should be placed around every DW/BI object so that we can insulate consumers of EDW data from confusion

and needless change.

Figure 13.8 shows the multiple impacts that this guidance will have on the EDW reference architecture—impacts

that will make the EDW considerably more agile in the face of new and changing business requirements. First, every

layer in the EDW is “wrapped” within a set of DVS views so that each layer can no longer draw data directly from its

upstream source. The Landing area acquires data from DVS views of the source systems, the Integration layer obtains

data from DVS views of the Landing layer, and so on. If one layer requires no special adaptations to the data in its

upstream source, then these views are just pass-through constructs based on simple “select * from {source}” statements.

Following this pattern, views will be in place and incorporated into all EDW data access statements, ready to intercept

challenges when the situation changes unexpectedly. When challenges occur, the EDW team will be able to solve many

Line 3:
DVS-powered

surface solutions

V
al ue

Months

Line 2:
Shadow IT-powered

surface solutions

Line 1:
EDW-programmed

ETL only

FIGURE 13.7 Data virtualization’s value proposition for agile EDW teams.

306 PART | IV Agile EDW Data Engineering

of them by changing the wrapper view surrounding the objects in the affected reference architecture layer. Because

these views are fast to re-declare, this strategy allows the EDW team to respond far more quickly to surprises than if it

had to redesign and reprogram a large collection of ETL modules. With wrapper views, the general response pattern

becomes (1) change the wrapper view first, then (2) substantiate the new design by refactoring the ETL, and (3) reset

the wrapper view to pass-through mode.

The second major impact that a wrapper-view strategy will have on an agile EDW program is that it creates several

channels for surface solutions from which the EDW team leaders can choose. Figure 13.8 depicts these choices as

“Channels 1 through 5,” which reflects the order in which they should occur in a surface solution approach. Channel 1

represents making source data available to end-user departments for self-service discovery and BI solutions whenever

the line-of-business systems can tolerate the additional burden of a few reporting queries. Channel 2 corresponds with

the first two surface solutions shown in Figure 13.5, in which an EDW-administered view delivered Landing layer data

directly to the end users, with and without data caching. Channel 3 represents the progressive backfilling that

Subreleases 3 in that diagram provided. Channel 4 is equivalent to the fully implemented standard approach in which

data moves one step at a time through the layers of the EDW, but in this case it passes through DVS wrapper views,

which are left in place in case they can enable a fast adaptation in the future.

End users will also greatly benefit from a third impact that data virtualization servers will have on an agile EDW pro-

gram. Because DVS allows developers to inexpensively create views, EDW may well be willing to provide department-

specific access to objects throughout the reference architecture. Examples of such utility views are the reconciliation

reports that Finance needs to run only a few times each year. Instead of investing the time and expense to create this capa-

bility using ETL programming and persisted data stores, the EDW project leaders can solve the business needs with one

or more custom views, as shown by the department-specific views labeled “Channel 5” at the bottom of Figure 13.8.

All told, data virtualization allows EDW team leaders to answer business needs in a fast and well-managed manner

using steadily improving surface solutions that generate high value for the business in dramatically shorter time frames

than ETL programming and persisted data stores can achieve. Because of these advantages, EDW team leaders will

benefit greatly by adding data virtualization to their agile toolkits.

FIGURE 13.8 Surface solutions “channels” enabled by data virtualization.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 307

AN AGILE ROLE FOR BIG DATA

Big data is a loosely defined cohort of new and rapidly evolving data management technologies currently generating

tremendous interest within IT and DW/BI departments. The technology is perhaps a bit too popular for its own good,

with many thought leaders and vendors asking how much longer it will be before the big data products completely sup-

plant relational database technologies in the realm of business analytics [Henschen 2013] and [Kumar 2013]. Consider,

for example, the Sears Roebuck company decision in 2010 to scrap its mainframe BI platform in order to replace its

RDBMS analytical applications with new applications written with Hadoop: “Eliminating all of the mainframes in use

would enable Sears to save ‘tens of millions’ of dollars . . . while also delivering at least 20, sometimes 50, up to 100

times better performance on batch times” [Henschen 2012]. Sears in fact became so enthralled with the potential for

this new technology that it spun off its BI department to become an independent big data consulting firm to help other

companies make the same overhaul on their data processing infrastructures [King 2012].

Although the rest of the BI profession is not yet ready to take such a leap of faith, we can at least begin to factor in

this new class of products in the solutions we devise to data management problems both new and old. EDW team leaders

in particular should be cognizant of big data technology, even though it is at an early stage in its development, because it

does indeed offer another handy route for building surface solutions. We can leverage the “schema on read” quality of big

data technologies to deliver partial data services quickly to our customers, allowing them to explore and discover value in

data sets that were formerly too large or too unstructured to make use of. Even when employed against typical data

sources, big data products will allow us to assemble simple end-user access early on and then gradually add engineering

rigor until the overall solution has just enough heft to be a reliable and manageable BI application. Because big data tech-

nologies can power an iterative discovery-and-engineering process, all agile data warehousing practitioners should be

aware of them and understand how to fit them into their agile data engineering toolkits.

Introducing Big Data Technologies

Trying to describe the spectrum of big data technologies is like trying to nail a slab of gelatin to the wall. The constant

innovation currently occurring with these products makes them wriggle and morph so that a single static definition will

fail to capture the subject’s totality or remain accurate for long. The description offered here, then, is intended to be

just good enough to present some notions on how to fit big data products into an iterative BI delivery program.

Big data technology emerged when engineers at large web companies created programming frameworks to take

advantage of inexpensive “commodity” computers and disk drives. These inexpensive components allowed companies to

economically assemble enormous clusters of data servers that could not only store a tremendous amount of data but also

read and transform the information using massively parallel processing (MPP). Such large capacity was sorely needed as

they struggled to tame the flood of new information pouring in from the new, Internet-based economy, much of it in unfa-

miliar and poorly constrained formats. Web logs, social networking sites, cell phones, RFIDS, and instrumentation on

nearly every device from thermostats to jet engines were generating a sudden surge in the volume and variety of data

available, all pouring in at high velocity, as fast as these devices could transmit it over the internal networks and the

Internet [Finley 2014]. Observers noted that these “three V’s”—volume, velocity, and variety—of data in the web age far

exceeded the ability of traditional RDBMSs to management it and thus demanded a new class of tools [Laney 2001].

Companies soon realized that although any given sample of this relentless stream was worth very little, putting it all

together could generate some important insights into the behavior of commercial processes and actors in the economy.

Thus was born new or dramatically improved services such as preference engines, fraud detection, preventive mainte-

nance alerts, and one-to-one marketing. Several of the Internet companies that created the first versions of the big data

programming frameworks placed them in the public domain as open source software (OSS) projects, making it easy

and economical for teams in other companies to experiment with these ideas and improve upon the early products. New

versions of big data technology began to rapidly appear. When some particularly innovative companies began generat-

ing huge revenue streams from this convergence of high data volumes, inexpensive platforms, and readily available

software, the big data gold rush of the 2010s was set into motion.

Whether big data products soon replace traditional data management tools or just take their place alongside them,

this technology will be increasingly important to DW/BI because the quantity of information in the world is growing

exponentially. In a 2014 survey, more than 500 big data professionals revealed that they expect the data volumes they

must manage to grow by 45% during the next 2 years [QuinStreet 2014]. Another forecast suggests that by 2020,

the world will generate information at 50 times today’s frantic pace [Maguire, 2014]. If these trends continue, soon all

308 PART | IV Agile EDW Data Engineering

the data generated in the world between the beginning of time through the first decade of this century will be generated

every minute [Marr 2014].

Much of this growth will be powered by the emerging Internet of Things, where even ordinary devices such as auto-

mobiles and HVAC systems will transmit a steady stream of information to enable better monitoring and control. The

aviation industry, for example, expects that the Boeing 787 will generate a half terabyte with every flight it makes. For

the airlines, the ability to quickly warehouse and analyze events and status for everything from planes to cargo devices

and personnel will soon become a competitive weapon as each company tries to outperform the other in adapting

schedules and other delivery logistics [Finnegan 2013].

The Need for Big Data Technology

The flood of information generated by all these new sources far exceeds the capabilities of the traditional relational

database technologies and techniques that the data warehousing industry has employed until now. As the marketplace

scrambles to provide solutions for these rapidly growing data sets, data managers have adopted the term big data to

refer to a new generation of the software tools that can capture, curate, manage, and process this new quantity of infor-

mation within a business-reasonable time frame.

Entrepreneurs and venture capitalists have flocked into this market space, which is currently growing six times faster

than the overall IT market [Press 2013]. Today, the number and diversity of companies offering big data solutions are

overwhelming. A survey of the vendors offering products in this general category includes more than 250 companies

[Turck 2014]. These products fall into more than 30 different categories, each varying in either the aspect of the big

data challenge that they address or the technical strategy with which they attempt to solve it. An introduction to one of

the most popular solutions, the Hadoop distributed file system (HDFS) and MapReduce as offered through an OSS

package called Hadoop, is provided later. But to be even vaguely conversant in this field today, one would have to be

able to appraise the relative strengths and weaknesses of a much wider range of products, such as NoSQL databases,

data warehouse appliances, and the big data extensions that vendors are adding to the traditional relational database

packages.

The discussion of Hadoop offered later focuses on providing faster surface solutions in an enterprise data warehous-

ing context, but this use case only scratches the surface of big data products. This technology can support many other

technical strategies besides enterprise data warehousing, including the following:

� Real-time analytics of high-volume data streams
� Complex event processing
� Predictive analytics
� Data mining software
� Text analytics software
� Web log analysis

Today, companies employ big data to solve an astonishingly diverse range of problems, such as the following:

� Risk modeling
� Customer churn analysis
� Ad targeting
� Trade surveillance
� Threat analysis
� Predicting network failures

Big data technology has already proven its ability to yield great value, and it will continue to expand its range for

many years to come.

Where these applications can be deployed quickly and iteratively, big data will be an excellent addition to the

agile toolkit. However, readers new to this field should be alert to big data’s dark side. Because it relies on OSS

and commodity hardware, too many people hastily concluded that it will solve data management challenges with

next to zero cost and in next to zero time. Such enthusiasm has led them to pursue big data application develop-

ment with too little discipline. Perhaps the most serious and common manifestation of this dangerous approach can

be paraphrased as “just grab all our company’s data and throw it in the ‘data lake.’ We’ll figure out what to do

with it later.”

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 309

Perhaps such a reckless orientation has taken root because the economy’s exploding data volume has created a sense

of panic among corporate executives. Forbes translated big data’s three V’s to the three I’s of big data [Feinleib, 2012]:

� Ill-defined: Everyone is still asking “What is it?”
� Immediate: Everyone feels they had better do something about it now.
� Intimidating: Everyone fears what will happen if they do not.

One executive expressed the mental malaise gripping executives by quipping, “We used to ask whether we could afford

to store information. Today we ask whether we can afford to throw it away” [Henschen 2013]. IT has been plagued by suc-

cessive waves of anxiety from the top ever since the invention of the computer. We invented structured requirements man-

agement precisely to counterbalance the WISCY pressure (“Why isn’t somebody coding yet??”) typically supplied by

business partners once they decide to sponsor an application development project. In many ways, the low cost and power

of some big data solutions has led to a further push from executives, namely WIHSODA—“Why isn’t Hadoop storing our

data already?” We can see the impact of this panic in a HelpIT and Teradata survey of nearly 200 companies of $1 billion

annual revenue or more, which revealed that more than half of the big data projects today are being pursued without a

business case [Du Preez 2014]. The same executives who pay for these unguided missiles would never think of hiring a

half-dozen clerical staff members without carefully outlining the roles and responsibilities that these people would assume

when they join their departments. Why they would spin up a big data project that could easily exceed that level of spend-

ing without first carefully articulating goals, objectives, and business impacts is a true mystery.

To guard against wasting big time and big money on big data technology, I encourage readers to utilize at least the

first two or three of the lightweight, enterprise-capable requirements management artifacts discussed in Part III to prop-

erly frame every big data project they take on. Before any funds are invested, every IT project deserves a few sentences

describing the sponsor’s concept, the stakeholder’s complaints with current capabilities, and an IT vision of what the

new business solution will look like. Moreover, I believe that all IT projects, including big data implementations, would

also greatly benefit from at least a single draft of a subrelease plan that expresses in just a few sentences the value that

business stakeholders will receive over the span of the next three or four versions of the requested application.

The Promise of Schema-On-Read

The caveats expressed above notwithstanding, big data technology offers agile EDW teams a fabulous path to quick

value if for no other reason than it enables “schema on read.” The traditional approach to presenting corporate informa-

tion on a dashboard involves landing data into relational tables that closely match a source system’s data structure and

then integrating it into a data warehouse. The data warehouse tables are structured not to reflect the source systems but

instead the combined realities and needs of the enterprise. In the late 1990s, most of the source data systems were built

with either COBOL or relational databases, so acquiring data from them was simply a matter of discerning the source

tables’ inherent structure. Today, BI sources increasing include spreadsheets, email, web services, machine logs, docu-

ment images, and social networking streams. The location and format of the data elements in these sources commonly

vary over time and often from document to document, making it impossible to ascribe a structure to many information

streams at the time when a data capture application for them is designed. Instead, the structure must be discerned when

the data is utilized—that is, when it’s read into the analytical program.

The growing proportion of such unstructured or semistructured information in the enterprise poses a major challenge

to the DW/BI team equipped with traditional tools. Relational databases management systems do allow designers to

place information in columns typed for binary or character-based “large objects” (BLOBs and CLOBs). EDW teams

can place largely undefined data items in these columns, but the overall data still has to be interpreted as records with

keys so that it can be placed in a table structure. Moreover, writing these records will involve all the overheads of

relational tables and rows, making acquisition too slow for billions of records and the resulting repository large and

expensive to maintain.

Big data technologies allow a far more agile approach to managing poorly structured data. An application can store

the raw extracts or source events directly in simple disk files, in whatever form in which they arrive, rather than trying

to interpret them as records or impose any structure on them before saving them away. In this approach, the end consu-

mers of the data can decide what structure to impose on the information if and when they decide to use these files.

They can impose a schema on the data using the program that reads the data so that the application’s ability to make

sense of the source can be changed and improved as easily as one can change a line of code in the access program.

With this schema-on-read approach, data can be grabbed and salted away as it is generated without incurring any delay

in trying to make sense of it.

310 PART | IV Agile EDW Data Engineering

This strategy is perfectly in line with an agile philosophy of eliminating waste in the software development process.

If one insisted on imposing structure on every item stored, that effort would have been wasted on whatever portion of

the company’s information that is never used after it has been gathered. It is far more effective to pursue the expensive

process of discovering and imposing structure on only the minority of items that actually get utilized for decision mak-

ing. As we will see in the following discussion of Hadoop with its HDFS storage technology and MapReduce proces-

sing, big data products embody this schema-on-read approach extensively, making it natural to include them in an agile

data warehousing program.

Of all the big data technologies listed previously, the Hadoop software suite is the cohort of big data products that

companies most often employ today to accomplish exactly this “grab now, parse later” strategy. To illustrate how EDW

team leads can harness this technology for agility, we need a basic outline of Hadoop. Readers should keep in mind

that (1) Hadoop is only one style of managing big data and (2) all the flexibility that it provides comes at a cost, a point

I return to later.

An Introduction to Hadoop

Hadoop is an ecosystem of solutions based on HDFS and MapReduce (MR). Written in Java, HDFS can automatically

distribute large files over many computers so that high-volume reads can execute in parallel. MR is a particular technique

for spreading queries involving large data sets across many computers so that they, too, can be executed in parallel.

Hadoop will serve as a good introduction to big data technologies for multiple reasons. First, it is by far the most

popular big data technology. Now that big data fever has taken hold of the world economy, more than half of the

Fortune 50 companies are using or experimenting with Hadoop [Altior 2012]. Its mindshare has grown such that today

many people use the terms “big data” and “Hadoop” synonymously, despite the fact that there are many other, equally

effective and completely different approaches available in the marketplace. The popularity of Hadoop is probably due

to the fact that it was one of the first big data solutions widely available as OSS, so it spread far and wide very quickly.

Second, Hadoop represents the cohort of big data products that are evolving most rapidly, again probably due to its

OSS availability, so that many of big data’s “rough edges” get addressed and solved in the Hadoop ecosystem first.

Third, the path that the market is taking with big data will in many ways make it soon “just another data source” for

standard DW/BI products, so understanding just one big data product will enable EDW team leaders to envision surface

solutions using this new technology family. For example, many of the Hadoop products have been weak in interactive

speeds and good programming interfaces, as can be expected with open-source initiatives [Turck 2014]. Accordingly,

commercial vendors offer an increasing number of user-friendly and high-performance versions of these components,

interfacing them with the older, more polished data management products with which most DW/BI teams already

work. With this support, EDW teams can expect to eventually work with big data repositories while staying within the

administration system of their preferred RDBMS.

Hadoop originated in the early 2000s when academics and Silicon Valley engineers chose to scale up web crawler

utilities to manage the extremely large (“web-scale”) data sources proliferating on the Internet. Contributors participat-

ing in Internet cornerstone ventures such as Yahoo!, Google, Facebook, and Wikipedia chose to create an Apache

Foundation project as an umbrella for Hadoop’s further development, which allows for usage and contributions from a

global community of independent programmers and commercial software companies.

Figure 13.9 provides a basic presentation of the components making up the core of Hadoop distributions available today.

The assembly shown is simply the baseline collection of products that most people have in mind when they speak of big

data and/or Hadoop in general. By design, these components are loosely coupled to one another so that data management

teams can use them selectively and swap out many of them to arrive at a technology stack adapted to a specific purpose.

The open source community has also steadily built economic scaling into the foundations of the Hadoop project,

notably assuming that all modules will run on “commodity servers” employing inexpensive disk resources. With this

backdrop, the community has designed these software components to widely distribute their functions and controls so

that a Hadoop data facility can respond elegantly when a disk, server, or an entire rack of servers fails.

The economies of open source combined with distributed, fault-tolerant designs have allowed companies to build

massive data centers based on Hadoop. The Hadoop cluster for the web search application at Yahoo!, which contributed

much of the early source code to the Apache project, exceeded 10,000 Linux cores by 2010 [Babcock 2012]. In the

same time frame, Facebook claimed that its Hadoop cluster had surpassed 21 PB of storage [Borthakur 2010]. This

cluster then expanded to 100 PB 2 years later, and it continues to grow by roughly half a PB per day [Ryan 2012 and

Facebook 2012]. To better understand how Hadoop enables scalability and schema-on-read, we need to briefly examine

its two core products, HDFS and MapReduce.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 311

Hadoop Distributed File System

Although big data implementations can operate with many different file systems, HDFS is by far the most popular

choice for storing the data in a Hadoop cluster. Written in Java, HDFS can be deployed on a wide range of machines. It

was designed from the start to support read-mostly data access and to redundantly distribute large files across many

disks. When given a file, HDFS partitions it into the massive blocks and spreads these blocks across the disks of a given

Hadoop cluster so that read actions can draw upon them in parallel. This partition-and-distribute strategy allows a file

to be larger than any single disk in the network. It uses huge block sizes (typically 1000 times larger than normal file

system blocks) in order to reduce the seek times and increase data transfer for applications to be nearly the read speed

of the underlying hardware [White 2012].

HDFS also maintains many copies of each block, locating them on separate disks and racks, so that read operations

will be able to circumvent any particular device failure. When blocks become corrupted or failed devices are replaced,

HDFS will automatically restore the desired redundancy and distribution of the cluster’s data by referencing the reliable

copies of the blocks it has maintained elsewhere.

The design decisions that give HDFS scalability and fault tolerance come at the cost of some other capabilities.

First, being optimized for large block size in order to achieve high throughput, HDFS data stores can experience high

data latencies. Applications that require responsive data access—for example, in the range of tens of milliseconds—will

not work well with HDFS. In such cases, switching to HBase, Hadoop’s low-latency file systems, should be considered.

Second, applications involving many separate files will be constrained by the HDFS name node, which maintains the

metadata of each file, because it must fit within the memory space of a single machine in the cluster. Storing millions

of files is feasible, but storing billions is beyond the capability of current hardware [White 2012]. Third, writes are

always made at the end of an HDFS file by a single write process, making HDFS inappropriate for applications needing

fast data capture and random updates.

Hadoop MapReduce

MapReduce is a programming model for data processing large datasets designed to scale a data request to process over

multiple computing nodes. In Hadoop, developers can write MR programs written in various languages, such as Java,

RDBMS
HDFS

Map/reduce

Pig

Yarn

Sqoop

Hive

Distributed file system that provides
high-throughput access to application data

A programming framework for processing multi-terabyte
data-sets in-parallel on large clusters (thousands of nodes)
of commodity hardware in a reliable, fault-tolerant manner

A framework for job scheduling and
cluster resource management

A data warehouse
infrastructure that provides
data summarization and ad

hoc querying

A high-level data-flow
scripting language and

execution framework for
parallel computation

A tool designed for
efficiently transferring bulk
data between Apache
Hadoop and structured
datastores

End-user access

FIGURE 13.9 Notable Apache Hadoop software components. Definitions adapted slightly from Apache Software Foundation, www.apache.org.

312 PART | IV Agile EDW Data Engineering

http://www.apache.org

Ruby, Python, and C11. Although one can chain together utilities to simulate an interactive session, in a plain-vanilla

Hadoop implementation, the input is stored in HDFS files and MR jobs send their output to a file stored in either HDFS

or on a traditional disk directory, whichever the programmer chooses. MR programs inherently employ parallel execu-

tion, thus putting very large-scale data analytics into the hands of teams with mid-level programming skills and enough

computer hardware. The original developers of Hadoop designed MR and HDFS concurrently so that despite the fact

that one can write MR programs against a variety of file systems, MR’s capabilities and execution modes fit perfectly

on top of an HDFS cluster.

The key to understanding MR technology is to consider the map and reduce portions of the programming model as

separate and sequenced components. In an MR program, the developer provides a core piece of logic for the Map por-

tion and another for the Reduce. In essence, the mapper should filter and transform the input files into a stream of

records that the reducer can readily aggregate [Lohr 2013]. Wrappers provided by the Hadoop implementation take care

of the execution and scaling of the two pieces, automatically invoking them in sequence. Because the logic that the

developer places in either component determines what the MR programs actually do, these modules can perform a wide

range of data analysis tasks, such as text analytics for customer sentiments profiling or recommendations for one web

user based on past surfing pattern records for both him and thousands of people like him. Hadoop, by providing both

the HDFS and the MR framework, enables these analyses to reach high levels of parallel processing and accelerates run

times against truly enormous collections of data many orders of magnitude faster than traditional relational databases

can achieve against the same data volumes.

Figure 13.10 gives readers new to big data an overview of how MR would process a simple join between two tables.

For our example, consider the following five-line SQL statement:

select CUST._ID, CUST._NAME, CUST._CITY,
SO.ID, SO.CUST_ID, SO.DATE, SO.AMOUNT

from CUSTOMERS CUST, SALES_ORDERS SO
where CUST.ID 5 SO.CUST_ID
order by CUST.ID, SO.ID;

In MR, one would have to write a program similar to the 70 lines of Java code listed in Figure 13.11 and then place

them in a proper MR wrapper for execution.

In Figure 13.10, File One is the CUSTOMERS, and File Two is SALES_ORDERS. The right side of the diagram

provides a stylized data flow between the components of the MR program and shows the actual output from each step

so that the reader can see the transformations achieved with each action. The comments on the left call out the essence

of each step in the program. As is typical in MR programming, this join module’s strategy will be to progressively

interpret the data entering each step as one kind of key-value pair, re-parse it to establish a different key-value pairing,

and then sort or combine the new key-value pairs in preparation for the next step. In this example, the programmer pro-

vided a mapper component with enough smarts to process both of the input files correctly, despite the different layouts

of the data elements they contain. For customer, the first key-value parsing was Customer ID as k1, and all other

columns as v1. For Sales Orders, order number was k1, and all other columns were treated as v1. The core logic the

developer provided simply puts distinct tags on each record to mark it as either a Customer or Sales Order and then

re-parses either type of record so that the Customer ID becomes the new group key, k2.

When this mapper component executes, scaling is accomplished automatically from two directions. First, HDFS had

already distributed storage of the two input files across as many data nodes as the cluster could offer so that many disks

can collaborate in providing many parallel input streams. Second, Hadoop’s MR framework automatically partitions the

k1 keys and spreads the processing of the resulting partitions across as many processers as available.

After the many instances of the mapper component conclude their work, Hadoop automatically performs a shuffle

and sort with those output segments (“shards”), deciding how to partition and distribute the full domain of new k2

values across processors. When these partitions are sent to a reducer component, each reduce instance will work with

an appropriately sized range of contiguous k2 values.

Note that because MR treats the data as key-value pairs, only the key portions of the input data have to be compatibly

defined and formatted. The non-key portion of the original Customer and Sales Order record now occurs in the value por-

tion of the mapper output, with each record appropriately tagged so that the reducer can later process them correctly.

Once shuffled and sorted into ready-to-process shards, Hadoop sends them to multiple reducers where the develo-

per’s logic will have Sales Order predicates concatenated to the end of Customer predicates for each occurrence of the

group key (Customer ID). Hadoop will automatically take the output from each of these reducer instances and insert

them into the output file in group key order.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 313

Notable Contrasts between SQL and MapReduce

A simple two-table join example should suffice to highlight for the reader several differences between big data products

and traditional data management tools. Given the high level of enthusiasm Hadoop currently inspires in DW/BI decision

makers, EDW team leaders need to be able to accurately contrast the two approaches and provide balanced guidance

regarding the areas where each technology will perform the best.

To counterbalance the hype one hears about big data, consider the warning that two of the open source database

luminaries have offered regarding the Hadoop’s core technology [DeWitt and Stonebraker 2008]:

MapReduce may be a good idea for writing certain types of general-purpose computations, but to the database community,

it is:

� A giant step backward in the programming paradigm for large-scale data intensive applications
� A suboptimal implementation, in that it uses brute force instead of indexing

Input files
(different notions of (k1, v1) Customers

Tag

Tag Tag

TagGroup key

Group key Group key

Group keyValue

Value Value

Value

Customers
Customers

Customers
CustomersCustomers

Customers

Customers
Customers

1001

1001

1001

1001
1002

1002

1002
1002

Sales by customer

Sales by customer

Sales by customer

1002
1003

1003

1003

1003
1004

1004

1002

1001,Part Able, Richmond

1001,Part Able, Richmond

1001,Part Able, Richmond, 1001, 15-Jan, $450

1001,Part Able, Richmond, 1001, 15-Jan, $450

1002, Sandy Baker, Houston

1002, Sandy Baker, Houston

1002, Sandy Baker, Houston, 1002,10-Feb, $600

1002, Sandy Baker, Houston, 1002,10-Feb, $600

1002, Sandy Baker, Houston, 1003, 05-Mar, $300

1002, Sandy Baker, Houston, 1003, 05-Mar, $300

1003, Terry Jones, Chicago

1003, Terry Jones, Chicago,1002,12-Apr,$550

1003, Terry Jones, Chicago,1002,12-Apr,$550

1003, Terry Jones, Chicago
1004, Cari Rogers, Miami

1004, Cari Rogers, Miami

Orders
Orders
Orders
Orders

Orders

Orders
Orders
Orders

1001, Pat Able, Richmond
1002, Sandy Baker, Houston
1003, Terry Jones, Chicago
1004, Cari Rongers, Miami

22004, 1001, 15-Jan, $450

22004, 1001, 15-Jan, $450

22004, 1001, 15-Jan, $450

22005, 1002,10-Feb, $600

22005, 1002,10-Feb, $600

22005, 1002,10-Feb, $600

22006, 1003, 05-Mar, $300

22006, 1003, 05-Mar, $300

22006, 1003, 05-Mar, $300

22007,1002,12-Apr,$550

22007,1002,12-Apr,$550

22007,1002,12-Apr,$550

Orders
Automatically scaled
across all available

nodes within a cluster

File TwoFile One

Map(k1,v1) list(k2,v2)→

→

Shuffle & sort

reduce()
instance

reduce()
instance

map()
instance

map()
instance

Mapper shards
(shared notion of k2, but v2's still distinct)

Combined
shards

Final output file
(list(v3))

list(v3)

Reduce instances’
output record subsets

Reduce(k2, list (v2))
(v3 = concatenated v2s)

FIGURE 13.10 Processing pattern for a simple Map/Reduce join operation.

314 PART | IV Agile EDW Data Engineering

� Not novel at all—It represents a specific implementation of well-known techniques developed nearly 25 years ago
� Missing most of the features that are routinely included in current DBMS
� Incompatible with all of the tools DBMS users have come to depend on

We can put a finer point on this sentiment by contrasting the two approaches we just considered, as shown in

Table 13.3. Keep in mind that this comparison is based on a simple two-table join. The advantages for the higher-

level SQL language will only increase in situations in which the number of tables grows and the set-based logic

begins to require complex logic such as outer joins and correlated subqueries. The advantages for the MR approach

Mapper for First Table
public class JoinStationMapper

extends Mapper<LongWritable, Text, TextPair, Text> {

private NcdcStationMetadataParser parser = new NcdcStationMetadataParser();

@Override

protected void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

if (parser.parse(value)) {

context.write(new TextPair(parser.getStationId(), "0"),

new Text(parser.getStationName()));

} } }

Mapper for Second Table
public class JoinRecordMapper

extends Mapper<LongWritable, Text, TextPair, Text> {

private NcdcRecordParser parser = new NcdcRecordParser();

@Override

protected void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {

parser.parse(value);

context.write(new TextPair(parser.getStationId(), "1"), value);

} } }

Reducer
public class JoinReducer extends Reducer<TextPair, Text, Text, Text> {

@Override

protected void reduce(TextPair key, Iterable<Text> values, Context context)

throws IOException, InterruptedException {

Iterator<Text> iter = values.iterator();

Text stationName = new Text(iter.next());

while (iter.hasNext()) {

Text record = iter.next();
Text outValue = new Text(stationName.toString() + " \t" + record.toString());

context.write(key.getFirst(), outValue);

} } }

FIGURE 13.11 Sample Map/Reduce code for a simple two-table join. Taken from [White 2012, Examples 8�12 through 8�15],

used by permission.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 315

Driver Script to Call the Above Components
public class JoinRecordWithStationName extends Configured implements Tool {

public static class KeyPartitioner extends Partitioner<TextPair, Text> {
@Override
public int getPartition(TextPair key, Text value, int numPartitions) {

return (key.getFirst().hashCode() & Integer.MAX_VALUE) % numPartitions;
} }

@Override
public int run(String[] args) throws Exception {

if (args.length != 3) {
JobBuilder.printUsage(this, "<ncdc input> <station input> <output>");
return -1;

}

Job job = new Job(getConf(), "Join weather records with station names");
job.setJarByClass(getClass());
Path ncdcInputPath = new Path(args[0]);
Path stationInputPath = new Path(args[1]);
Path outputPath = new Path(args[2]);

MultipleInputs.addInputPath(job, ncdcInputPath,
TextInputFormat.class, JoinRecordMapper.class);

MultipleInputs.addInputPath(job, stationInputPath,
TextInputFormat.class, JoinStationMapper.class);

FileOutputFormat.setOutputPath(job, outputPath);

job.setPartitionerClass(KeyPartitioner.class);
job.setGroupingComparatorClass(TextPair.FirstComparator.class);
job.setMapOutputKeyClass(TextPair.class);
job.setReducerClass(JoinReducer.class);
job.setOutputKeyClass(Text.class);

return job.waitForCompletion(true) ? 0 : 1;
}

public static void main(String[] args) throws Exception {
int exitCode = ToolRunner.run(new JoinRecordWithStationName(), args);
System.exit(exitCode);

} }

FIGURE 13.11 (Continued)

316 PART | IV Agile EDW Data Engineering

will emerge when data volumes reach very high levels or the exotic format of source data requires one or more

complex parsing algorithms.

Given the strengths and weaknesses of each technology cited previously, one can see that Hadoop is not going to be

a solution to every challenge encountered in a DW/BI program and, at the same time, SQL will struggle to scale as

easily as Hadoop. EDW team leaders who desire more details on factors favoring one of the technologies over the other

can consult Table 13.4.

Making MapReduce Look Like SQL with Hive

Table 13.4 paints the contrast between SQL and HDFS/MR quite starkly in order to help inoculate readers new to

Hadoop against the extreme big-data enthusiasm gripping the market today. It is important to see past the “silver bullet”

hype and realize that all major tools have areas in which they work well and others in which they do not. It was slightly

unfair, however, to compare SQL against HDFS/MR because SQL is a high-level command set with many decades of

development behind it. Using a polished high-level tool will naturally make programmers far more productive than a

tool for which all capabilities have to be created by hand in a low-level language such as Java. The Hadoop community

understands this point, of course, and has introduced a SQL-like add-on for MR called Hive.

Hive started as a subproject of Hadoop, but as it gained popularity, the Apache Software Foundation promoted it to

a top-level, open source project of its own. The Apache community states that Hive is

data warehouse software [that] facilitates querying and managing large data sets residing in distributed storage. Hive provides

a mechanism to project structure onto this data and query the data using a SQL-like language called HiveQL. At the same

time this language also allows traditional map/reduce programmers to plug in their custom mappers and reducers when it is

inconvenient or inefficient to express this logic in HiveQL [Apache 2014].

To understand the potential for Hive to enable surface solutions in an agile data warehousing context, one only

has to consider the wide range of data analytics that a company such as Facebook was quickly able to achieve

using this language. Facebook has been a major contributor of programming to the Hive open source project.

In early 2008, the members of the Facebook data team confronted the need to produce a plethora of analyses

based on the astronomical amount of data their servers were generating through web logs and user activities on

the site. The volume of data in just 32 source files had already exceeded 2 TB, with 200 GB flowing in each day

[Shao 2008].

To answer this challenge using traditional data warehousing tools, Facebook would have had to carefully engineer

target tables and then many ETL modules to preprocess the data for end-user analytics. This traditional engineering

would have required months of analysis and design so that the resulting tables would support all the analyses the end

TABLE 13.3 Contrasting the SQL and MapReduce Queries Used for the Two-Table Join Example

SQL MapReduce

Requires one statement, comprising five lines of code when
formatted for fast comprehension

Requires six times as many statements spread over 75 lines of code in
four separately developed modules

Expressed in near-English text, making it easier for
journeyman developers to understand and maintain

Expressed in Java, with some complex statements such as overrides
required and many nested braces to keep aligned

Declares the set-based operation desired, letting the
optimizer perform the actual programming

Requires the coder to engineer the exact processing steps needed to
achieve the desired goal; the Hadoop framework attends only to
distributing that logic over multiple processing nodes once it works

Requires the data to be loaded into well-structured
tables with data-typed columns before a command will
execute

Developers decide how to parse each input file when programming a
mapper, allowing the module to extract a completely different set of
elements each time an input file is used

Scaling requires careful planning and distribution of keys
across disk-based partitions

Scaling largely handled by the Hadoop framework, with partitioning
determined by the program, so that it can be determined late and
changed as fast as one can update the MapReduce code

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 317

users hoped to perform. In addition, the size of the source data would have forced them to choose an aggregation strat-

egy to reduce the data to at least a hundredth of its original size in order to gain reasonable query performance using

their BI tools. Unfortunately, aggregation would have eliminated much of the detail the end users hoped to drill down

to, thus greatly reducing the value of the data in crucial ways.

TABLE 13.4 Relative Strengths of Data Management Paradigms

Traditional BI

with Relational

Database

HDFS-Based Data

Management System

Structure within the source
data

A single, explicitly
designed structure exists

Little, changing, or
many overlapping

structures exist

Traditional DBMS need to impose a schema
when data stored, each MR program
imposes its own notion of structure when data
is read

Clarity of source structure
Discernible through

documentation or a bit of
research

Discernible only after
extensive research

Expensive to re-engineer traditional tables
and ETL for change in structure; MR
programming can be easily tweaked until it
works

Nature of the queries
consumers will submit

Numerous, but variations
on a pattern

Relatively few and
each largely unique

Traditional EDW allows users to request
different values for multiple dimensions that
have been pre-linked to transaction data

Consumers' level of comfort
with programming and
statistical languages

Little Considerable

Traditional DW/BI pre-defines dimensions, so
that it does not have to write custom queries
for every slight variation in business
question; big data users willing to program
their own queries

Data volumes Small to large Huge

Traditional DW/BI relies on expensive disk
and pre-processing for dimension-based
queries, so will struggle to keep pace with
increasing variety and volumes of data

Connectors to data sources Parameter Driven Custom Coded

Traditional DW/BI applications focus upon a
finite number of source types, switching
between them with changes in connect
strings; MR connectors handle variety of
types because some custom connect
programming assumed

Longest users will wait for a
query results

Train-of-thought to a
minute or two

Cup-of-coffee to after
lunch

BI teams may well tackle queries running a
day or more in either technology with a more
specialized database technology such as
columnar or graph databases

Longest the business can wait
for a redesign

Weeks and months OK Hours or days

EDWs require coordinated modifications to
many architectural layers, whereas HDFS
apps need only change one or two program
files

Nature of the complex
derivations

Step-by-step applications
of relatively simply

transforms (business
rules)

Statistical inferences or
advanced mathematical

transforms

Traditional ETL good at applying long chains
of logic, especially with merging data
streams; MR programs can easily link in far
more advanced code libraries

Required degree of
organization consensus upon
key data definitions

Widely accepted Siloed

EDW drives organizations toward shared
business objects, whereas MR applications
allow the programmer to apply his own rules
as needed

Number of people directly
influenced by the derived
information

Large number Fewer in number

EDWs need well-governed data elements
because many people will take their cues
from the values provided; HDFS applications
need definitions that make sense to the
individual or department asking a particular
question

Conditions Favoring One Approach Over the Other

Factor Notes

318 PART | IV Agile EDW Data Engineering

The members of the Facebook analytics team did have MR, but instead of writing extensive Java programs

such as the join logic shown in the previous example, they used Hive to achieve the same results via high-level

statements that were very much like SQL. Although Hive does not provide the full set of primitives found in a

true SQL implementation, it allows end users to request output using JOIN and ORDER BY commands. Behind

the scenes, Hive translates the SQL-like commands into MR jobs that run against the appropriate files stored in

HDFS.

Figure 13.12 provides a summary of the solution architecture they used [Shao 2008]. In general, they planned to

let business departments use “SQL-on-HDFS” to batch process the data into structured output files that a wide range

of end users could query. They chose Hive because their users already knew SQL, making MR programming an

unnecessary stretch.

To create the table in Hive, they used commands such as

CREATE TABLE employees (
name STRING,
salary FLOAT,
subordinates ARRAY,STRING.,
deductions MAP,STRING, FLOAT.,
address STRUCT,street:STRING, city:STRING, state:STRING, zip:INT.

) PARTITIONED BY (country STRING, state STRING);

To load the data, they used commands such as

LOAD DATA LOCAL INPATH '${env:HOME}/california-employees'
OVERWRITE INTO TABLE employees
PARTITION (country 5 'US', state 5 'CA');

This command pulls data from an HDFS source file (still in native format from the source applications) into a struc-

tured, Hive-managed table located elsewhere in the HDFS file system. Now analysts throughout the company could

submit queries to this data in order to answer decision support questions.

For example, consider that the content management team wanted to profile the age of the users by page viewed so

that they could ensure that sites designated as “mature” are being accessed only by subscribers older than the age of 18

years. With data tables created and loaded using commands such as the ones shown previously, these end users could

submit queries such as

SELECT pv.pageid, u.age, count(1)
FROM page_view pv JOIN user u ON (pv.userid 5 u.userid)
GROUP BY pageid, age;

With HDFS as the foundation, the data team was able to load a wide variety of files with data types that ranged

from binary to sequential text files that end users could query using only Hive SQL statements. The Hadoop framework

also allowed the team to embed scripts in the processing path to extend Hive’s capability, in order to provide nonstan-

dard analyses. The output can be viewed using Hive’s command-line interface, inserted into another Hive table for

further SQL-style processing, or dumped to a normal file directory as comma-delimited output for importation into the

end user’s preferred spreadsheet or data visualization tools.

Despite the enormous size and exotic formats of the source data, Facebook’s Hive-based data warehouse allowed

end users to use SQL-like commands to write a wide variety of summarizations and ad hoc analyses to support opera-

tional decision making such as the following:

� Period aggregations of ad impressions served and browser click-throughs
� Counts of website users by geographies
� Ad placement optimization
� Complex measures of website users and their activities by biographic attributes
� Spam and intrusions detection via anomalies in the site’s user-generated content and API usage

Notably, the combination of HDFS and Hive allowed the DW/BI team and the power users to build BI applications

following a fairly agile approach of “load some new data, define a schema, try a query, repeat” until they determined

the value contained in a new source and got their SQL statements correct. This fast try-and-fix cycle provided the com-

pany with far shorter “time to value” for the first version of the data warehouse plus much greater adaptability later in

the face of changing requirements.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 319

A Tempered View of Hive

The analytics team in the previous case study was indeed able to deliver an impressive amount of BI functionality using

OSS running on commodity servers. The fact that end users wrote their own queries to secure answers as fast as they

could articulate questions certainly seems to be the epitome of an agile decision-support system. Given successes such

as this, many observers naturally ask why everyone should not imitate Sears’ decision to scrap its traditional analytics

platform and “do it all with HiveQL.” Unfortunately, such an impulse is too extreme and could easily land the agile

EDW team in an open-source swamp. A quick overview of this use case will reveal some other trade-offs.

FIGURE 13.12 Solution architecture for the Facebook Hive data warehousing example.

320 PART | IV Agile EDW Data Engineering

Apache Hive is only a data warehouse infrastructure built on top of Hadoop. To claim companies should build their

EDWs entirely with Hive is equivalent to saying 10 years ago that everyone should have built their data warehouses

with procedural SQL (e.g., Oracle’s P/SQL). Such a statement implies that DW/BI departments never really needed

tools such as visual ETL interfaces, change data capture utilities, and data virtualization. During the 1990s, I encoun-

tered folks who advocated building EDWs using only P/SQL in order to save the time and money needed to implement

visual ETL tools. These folks found themselves in a small minority once the other DW/BI architects and managers

grasped that such a reductionist approach would

� generate a huge number of long, hand-coded procedures;
� create a nightmare in trying to organize and manage so many text-based source files over the long term;
� require heavy and consistent supervision to get programmers to annotate their code;
� require “reinventing many wheels in SQL” for components such as change data capture agents; and
� limit analytics to what one relational database server could access.

In the end, the project leaders realized they did not have energy to ensure that challenges such as those just men-

tioned were properly remedied. Many of those challenges would require closely monitoring their developers over the

arc of a long project. For applications as big as EDWs, management usually decides it will need to rely on tools to uni-

formly constrain bad behaviors and encourage constructive practices from the large number of developers that will be

involved.

We face the same predicament today with Hadoop, and agile EDW team leaders need to see beyond the hype of a

“silver bullet” data warehousing language. They need to carefully identify the limits of each product in the marketplace

and then assemble the best of them into an agile value cycle that can quickly deliver data integration modules with last-

ing worth through a series of subreleases that allow both business and IT to drive the risk out of the requirements,

design, and programming processes.

Careful study of the Facebook case history reveals several limitations that are common to “do it all with HiveQL”

solutions:

1. The data management team only placed data in Hive tables, a format that many applications throughout a company

will find unintelligible. A company could use another Hadoop component called Sqoop to export information to

relational tables, but that would be tantamount to creating a spider’s web of stovepiped data transfers.

2. The end users were responsible for writing the SQL to make sense out of the information, whether at the command

line or by loading it into a data visualization product. This approach only worked because those end users were

comfortable with SQL. Perhaps widespread SQL skills exist in Silicon Valley companies, but not in the rest of the

economy. Most companies must support the needs of hundreds and thousands of business analysts without skills in

any computer language. Most of them will not be able to load more than a single simple output file into the data

visualization tool. Yet much of their analyses will draw information from multiple source tables that need to be

cleansed before they can be joined.

3. Hive translates into MR programs, which have to perform the equivalent to full-table scans against each

partition. As a consequence, HQL queries do not typically deliver train-of-thought-level performance but instead

experience go-get-a-cup-of-coffee-or-even-grab-lunch latencies. Long data latencies can be acceptable for

one-off queries where one or two end users are working to discover something for the first time. They are not

acceptable for thousands of users who will be running the same basic query with simple variations in para-

meters, which is the dimensional analysis that star schemas, implemented with more traditional data management

tools, support very well.

4. Hive does have indexing available to address these performance problems. In fact, one can load all the necessary

data in yet another high-performance Hadoop database called HBase. However, now the EDW developers will be

relying on multiple tools again, requiring them to combine these tools carefully. Moreover, they are back to a

schema-on-design approach. They have essentially landed back into a traditional DW/BI approach, only now they

are using open source tools that have been recently invented, leaving them vulnerable to all the bugs and missing

features these new-born products entail.

This last point concerning response times deserves further emphasis.

DW/BI incorporates many types of analytics, from one-off questions that data scientists focus on to queries that a

large community of analysts run every day or even hundreds of times within the span of a single hour. No single solu-

tion covers this full range, and it would be almost impossible for an agile EDW team to try to solve their employer’s

diverse business needs with a single tool, whether it be SQL, data virtualization, Hive, or HBase. To understand the

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 321

larger reality, we need to compare the cycle times of traditional BI applications to Hive-based solutions from the end

user’s point of view and then see how those cycle times add up as we multiply them out by the various usage patterns a

company expects an EDW to support.

Figure 13.13 provides the foundation for this analysis by showing the process needed to build the components of a

solution using traditional ETL tools versus Hive. Both processes involve a source extract, transform, data load, and

retrieval SQL. The difference is in the ordering and the portions of the process that get repeated during subsequent

queries. Note two very important differences between these two approaches:

� The analysis and schema design is deferred in the Hive process. That accelerates providing end users basic data

access. If data access is the key to a particular use case, then this is the better approach.
� The work of data transformation has also been delayed in the Hive process. It is in fact pushed upon the end users,

who must invest the necessary analysis and design effort before they can write the SQL that their analyses require.

The graph placed between these two data flows shows the cumulative cycle time curve for building each solution.

The ETL process’s cycle time is shown in a solid line, with that of Hive depicted as a dotted line. The steps for each

Source
extract

Source
extract

Transform
& load

EDW
Retrieval

SQL

Answer

Analysis &
schema design

100

Load HDFS
Transform &
retrieval SQL

Preliminary
answer

Analysis &
schema design

50

50

10
10

5

5
105

25

Learning cycle

Learning cycle

Usage cycle

Usage cycle

Cumulative
cycle times

Using ETL

Delivery using ETL

Delivery using big data

E
lapsed tim

e

Using big data

Cycle steps

FIGURE 13.13 Cycle-time analysis for building the components of traditional and big-data DW/BI solutions.

322 PART | IV Agile EDW Data Engineering

process are laid out at arbitrary distances from each other along the horizontal axis. The vertical axis shows the cumula-

tive time that each cycle has consumed by the time it completes each step. The amount of time depicted for each cycle

step is admittedly subjective, and readers familiar with both technologies would probably choose different amounts, but

it is the relative difference between these two graphs that is important.

The cycle time for building the ETL-based approach naturally takes a big jump during the analysis and schema

design step and then again during the transform and load. These big jumps reflect the work required to analyze all the

data being placed into the warehouse and pretransform all the derived values, whether or not the end-user queries will

draw upon them. In my experience, adding a new subject area to an existing data warehouse typically requires three or

four senior developers to complete the business and data analysis and schema design, and then it requires four or five

less expensive programmers to build the ETL and BI components. Because the product of hours worked and billing

rates for these two subteams is approximately the same, the jumps for these two steps were both set to 50 “points”

each. The effort to build the retrieval query was set to a nominal 5 points, reflecting how little work is needed to pull

information from a traditional warehouse once it has been thoroughly preprocessed for dimensional analysis.

In drawing the cycle time curve for the Hive-based approach, the key distinction is that teams using Hadoop first

load the data without considering its structure or worth. The organization performs analysis and schema design only on

the portion that will be used, and only when an end user needs it. Because it does not have to be understood first, load-

ing the source data into HDFS is fairly trivial, say 5 points of work. The analysis and schema design step is set at one-

fifth what is necessary in the ETL-based cycle because with Hive’s schema-on-read approach, the EDW team needs to

consider only the portion of the new data that will be used immediately rather than having to analyze everything in the

source before it is stored and used. For the retrieval step, the effort required will certainly be greater using Hive because

any transform work has to be accomplished then. Accordingly, the effort for this step amounts to 10 points, or twice

what is required to create another dimensional query using the ETL-based approach. All told, the level-of-effort needed

to deliver the very first query for a new subject area is 105 points when using standard ETL tools, approximately four

times the 25 points required to achieve the same result with a Hive-based solution.

The differences between data warehousing with the ETL versus big data tools can now be seen in Figure 13.13 by

considering the difference in Learning Cycles and Usage Cycles shown on the diagram. Teams follow the Learning

Cycle when they must accomplish something new with the data warehouse, such as adding a new source or implement-

ing a new subject area. Companies follow the Usage Cycle when their business staff take a developed solution and dis-

tribute it for widescale execution across the many business units and departments in the organization. When building a

new solution, a team will want a fast Learning Cycle, as shown for the big data approach illustrated in Figure 13.13,

and will not concern itself much with the length of the Usage Cycle. On the other hand, companies with users who con-

stantly use an existing solution will want a short Usage Cycle, as seen for the ETL-based process.

Using the cumulative times diagramed for each cycle in Figure 13.13, we can quantify the relative strengths of these

two technologies for enterprise data warehousing. Figure 13.14 depicts the cumulative learning time for the two tech-

nologies and reveals that the total effort required to deliver a Hive solution (dotted line) grows far more slowly than the

traditional approach (solid line) as the number of subreleases (repeated Learning Cycles) increases. When the number

of subreleases is the driver, Hive will be the better choice.

Figure 13.15 focuses instead on cumulative usage time and speaks to the situation faced by companies interested in

EDW solutions that will experience high repeated use. It shows the cumulative time the business staff spends in the

Usage Cycle as it utilizes a given set of queries at increasing frequencies. Looking back on Figure 13.13, we can see

that although Hive’s Learning Cycle time is approximately one-fourth of that shown for the ETL-based approach (25

vs. 105 points), its Usage Cycle time is five times greater (25 vs. 5 points). This relative difference has a major impact

for queries that will be used enterprise-wide tens of thousands of times. In Figure 13.15, the cumulative Usage Cycle

time for the ETL-based approach grows far more slowly than that for the Hive technology, revealing that when the

driver is number of executions, Hive’s schema-on-read paradigm makes it the less desirable technology. For this reason,

EDW teams building solutions for intensive use or a large number of users cannot throw away their ETL tools and

switch all their company’s business intelligence to Hadoop.

This example illustrates that the advantage of big data technologies for agile data warehousing project is specific,

not universal. The advantage considered previously was based on re-usage patterns only. When one adds in other fac-

tors, such as performance, single sign-on, metadata support, and data security, the traditional EDW approach will seem

preferable for an even greater number of use cases. The advantage for the traditional toolkit will increase further for

analytics requiring layer after layer of ordinary business rules because that type of programming is far easier to accom-

plish and manage using a graphical ETL tool than in the rudimentary SQL that Hive provides. Big data technologies

will regain the advantage when advanced analytics are necessary, but only approximately 5% of the total queries within

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 323

the typical enterprise require that level of mathematical sophistication. Far from representing a “silver bullet” that will

slay all the dragons plaguing BI, big data is a nice copper bullet. Rather than discarding all other bullets in favor of a

Hadoop-only strategy, agile EDW teams should keep a variety of ordnance in their magazines.

Big Data Is Not Just Hive

Readers who are familiar with the Hadoop products and other big data technologies may believe that the previous anal-

ysis has been unfair to the world of big data products in several ways. First, a quick glance at the Apache Hive project’s

roadmap reveals that its community of developers plans to continue refining Hive’s SQL capabilities. Moreover, the

Hadoop project continues to provide new components that can greatly assist an EDW team in building a high-

performance multi-user BI application—products such as HBase, Spark, Yarn, and Sqoop. Whereas Hadoop might be

only a copper bullet today, plenty of people argue that it will soon be turning silver. Fortunately, despite the rapid evo-

lution of big data products, EDW team leaders need not scrap the technologies they already know. They can still devise

an effective incremental delivery strategy without making a wholesale switch in their toolkits because in the medium-

to long-term the impact of big data products will be moot.

First, consider the fact that “little data” will not be going away. Well-defined and assiduously curated information

will continue to be absolutely necessary in the enterprise data warehouse of the future. Organizations will still care

about master data for such key business entities as customers, vendors, products, employees, and geographies. For

example, a big data application might be able to show management that four or more phone calls to product warranty

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

of repeated executions

Cumulative cycle time

10

ETL HIVE

FIGURE 13.14 Cycle-time analysis � cumulative time in learning cycles. Showing how time invested accumulates as learning cycles are

repeated.

0

200000

400000

600000

800000

1000000

1200000

100 200 400 800 1600 3200 6400 12800 25600 51200

ETL HIVE

Cumulative cycle time

of executions

FIGURE 13.15 Cycle-time analysis � cumulative time in usage cycles. Showing how time invested grows as application is adapted by thousands

of end users answering everyday business questions. Rapidly growing cost of HDFS in this scenario should give pause to those considering routing all

of an organizations information into a “data lake.”

324 PART | IV Agile EDW Data Engineering

are highly associated with incipient customer churn. But what has it accomplished if it cannot provide a call center

manager a personalized depiction of the specific customer who is on the line, frustrated with the company’s service

right now? To intervene effectively, that manager must be able to see details about a given customer, such as whether

he owns a product that is impossible to support or whether he is behind in his payments and therefore not worth keeping

in the first place. If little data will still be vital going forward, then so will be the RDBMS packages that make little

data manageable and the traditional ETL tools that allow EDW teams to cleanse, integrate, and dimensionalize those

components of the company’s operational information.

Moreover, the vendors providing these databases and transform tools are not sitting idle while open source Hadoop

products scoop up their market share. They are quickly adding Hadoop capabilities to the mainstream data warehousing

products we already know, so that many of them can now present HDFS disk farms as just another data source. As a

result, we have the situation depicted by Figure 13.16, in which Hadoop will soon have added so many SQL-like

features that it will have drawn closer in capabilities to SQL-based RDBMSs, but the RDBMS will have traveled

just as fast in the opposite direction to tap HDFS file stores. In fact, because today’s RDBMSs are mature products with

decades of programming behind them, they may well become far better at incorporating big data sources than big data

products will be at replicating what current database tools can do.

EDW team leaders can best devise an agile DW/BI platform by searching for the convergence of big and little data.

Teams on a budget will want to work with the open source products, whereas those in the larger programs will appreci-

ate the maturity of traditional tools. Neither group will be at a disadvantage. Confronted with new, unfamiliar data,

both of them will be able to quickly build a surface solution by throwing the data into HDFS and exploring it with a

version of SQL that can support a schema-on-read strategy. Where the data volumes are manageable, they will then

both be able to modulate the warehouse’s management of that information, addressing requirements needing fast

response time into preprocessed tables using a schema-on-design approach. Given that both groups will be able to steer

their information between big and little data strategies as needed, the question then becomes, “Which of the many value

chains that our EDW team can follow will generate the highest value given the particular set of information we need to

add to the data warehouse?”

Using Big Data to Enhance EDW Agility

Figure 13.17 provides one picture of an answer to that question. It shows the data for business intelligence information

flowing toward the end user via any one of four paths. Dataflow 0 is the starting point: The organization has a data

warehouse that contains master data for business entities such as customer and product. Data is loaded into the EDW

using traditional ETL applications. A wide community of end users can draw upon it using easily adjusted constraints

on highly reusable queries.

When a new and possibly quite large data source appears, the EDW team will need to employ Dataflow 1. Here, the

new source files are simply loaded into an HDFS cluster. A small community of IT and business power users can then

invent schemas on the fly and query the new resource. They will use Hive if their company has implemented Hadoop.

They will use HDFS-enabled SQL if they are using a new version of a traditional RDBMS.

Once these first users have discovered an effective way to parse and output the new data that reliably yields business

value, the EDW team will have a choice. If MR delivers reasonable performance times, the team can make the big data

queries available to the wider EDW user community through Dataflow 2, which requires that the team simply publish

that access through the company’s DVS. The DVS can even join the results of a Hive query with the master data found

Ability to query HDFS

What is the best strategy for the agile EDW teams once these
two worlds overlap, allowing them to employ both big data and

“little data” technologies in a single value architecture?

More SQL-like featuresHadoop

SQL-based
RDBMS

FIGURE 13.16 Big data and traditional RDBMSs are converging.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 325

in the EDW in order to provide information with standardized references so that it can be used without confusion by

departments throughout the enterprise. If, on the other hand, the end users require preprocessing for faster performance,

then Dataflow 3 simply utilizes the Hive output as just another source for the ETL. The ETL modules will load relevant

aggregations and subsets of atomic records into the company’s “little data repository,” otherwise known as the enter-

prise data warehouse.

Hive
(MR)

HDFS ETL

EDW

Limited access

Wide access

DVS

1 3

2

0

0

FIGURE 13.17 A succession of surface solutions leveraging big data.

FIGURE 13.18 EDW reference architecture with surface solutions employing big data technology.

326 PART | IV Agile EDW Data Engineering

We can view this iterative and incremental development of the application’s high-level design as another flavor of

surface solutions with backfilling, which can be depicted in terms of the EDW reference architecture. As shown in

Figure 13.18, the first subrelease allows end users to pursue data discovery by accessing the results of Hive directly.

This provisional solution can serve a small user community, and it will allow both business and IT to become familiar

with the new data, define accurate requirements, and reduce project risk.

With the second subrelease, the Hive output is routed to the Integration layer, enriched with the EDW’s existing

“little data,” and made accessible to end users via a data virtualization server view. By the time they construct the third

subrelease, the EDW team and end users understand enough of the big data stream that they can combine it completely

into the dimensional analyses that the Presentation layer of the EDW supports. In this case, EDW team delivered

something cheap and easy at first, then steadily backfilled the architecture with increasing capable and robust solutions.

The end users saw a quick solution and then a steady improvement in the data services provided, all amounting to a

constant delivery of value, true to the goals of agile development.

SUMMARY

Incremental delivery, requirements discover, and project risk mitigation can all be achieved using a strategy called

“surface solutions and architectural backfilling.” Following this strategy, agile EDW teams focus first on a simple

solution—perhaps based on raw data from the source—in order to allow their customers to begin solving business pro-

blems. The EDW team then steadily backfills the reference architecture to provide a series of more complete and robust

solutions, eventually arriving at a full DW/BI application after several subreleases.

Agile EDW teams have three basic approaches they can take when pursuing a surface solution strategy: leveraging

shadow IT, data virtualization, and big data. When leveraging shadow IT, the EDW team delivers progressively richer

data sets to departmental staff, who build their own temporary BI solutions using that information. The EDW team

spends the time between each subrelease observing how end users employ the data and using that information to design

the next, more capable solution.

The data virtualization strategy relies on a “superoptimizer” that can create views across databases and data types,

even including semistructured data as needed. With data virtualization, EDW retains more control so that data gover-

nance and performance can be better managed. The data virtualization technology has some limitations in terms of per-

formance and the scope of data it can offer, but its solutions are declared rather than engineered, so they offer much

shorter time-to-value for the business customer.

The big data strategy employs a new category of products, such as Hadoop’s HDFS, MapReduce, and Hive, to pro-

vide access to new data, whether it be very large, poorly structured, and/or just unfamiliar to IT and the business users.

Given that big data and traditional DBMSs are converging, EDW team leaders can plan on a new architecture that

allows them to selectively modulate BI solutions from HDFS to RDBM in order to fulfill a wide variety of use cases.

All these surface solution strategies provide live-data prototypes that offer the business learning opportunities and

temporary services, but for many business intelligence requirements, these lightweight solutions will not be enough.

There are still many situations in which the EDW team will need to build out a fully architected data warehouse that

provides reliable and well-governed information with high performance. Moreover, EDW team leaders will want to

have an agile approach to delivering this highly engineered data warehouse, one that allows them to build it incremen-

tally and evolve it easily as business requirements change. As discussed in Chapter 12, the traditional data modeling

paradigms actually work counter to this goal. Starting with Chapter 14, we consider the hyper modeling paradigms that

allow EDW teams to achieve truly agile enterprise data warehousing.

Surface Solutions Using Data Virtualization and Big Data Chapter | 13 327

Chapter 14

Agile Integration Layers with Hyper
Normalization

The previous chapters presented many techniques for creating fast enterprise data warehousing (EDW) solutions for

business customers by leveraging data virtualization servers, big data technologies, and shadow information technology

(IT) resources. As powerful as these techniques might be, EDW team leaders will still encounter many data warehousing/

business intelligence (DW/BI) requirements that can only be supported by a large repository of well-defined and assidu-

ously prepared and persisted data elements—the kind of data repositories that enterprise data warehouses offer. When

requirements tip over into this category, it is of course the outcome that everyone dreads because building or extending

an enterprise data warehouse typically demands many months of engineering, involving large expense and high risk. As

explored in Chapter 12, much of the expense and risk of building large DW/BI applications arise from the rigidity and

brittleness of the traditional data modeling paradigms that EDW teams typically employ. Data repositories built using

standard normal or conformed dimensional forms simply require far too much re-engineering and data conversion when-

ever business requirements change to support a truly agile data warehousing program.

Fortunately, two hyper modeling alternatives exist that can eliminate a good deal of the work and mitigate much of

the risk imposed by traditionally modeled data warehouses. This chapter introduces readers to the hyper normalized

data modeling paradigm, which lends considerable agility to the EDW’s integration layer in particular. Chapter 15

presents the hyper generalized data modeling approach, which extends those benefits to the presentation and semantic

layers of the EDW reference architecture. Because space limitations allow for only a brief presentation, these chapters

aim to simply introduce the hyper modeling techniques to EDW team leaders and demonstrate why they hold such

promise for making enterprise data warehousing truly agile. The citations to multiple reference works will provide

DW/BI professionals wanting to explore these topics further with a place to start.

At the time of this writing, hyper normalization has a strong toehold in northern Europe and, to a lesser extent,

Australia and Canada, where it has dramatically improved the economics and success rates of enterprise data warehousing

teams—to the point where DW/BI professionals participating in these efforts agree that they will never voluntarily build a

data warehouse using a traditional data modeling technique again. As we will see using the four change cases established

previously, hyper modeling can eliminate 30�90 percent of the labor required to construct an enterprise data warehouse.

The data warehousing community only began using these techniques slightly more than 10 years ago, but given their

power to accelerate deliveries and reduce project risk, I predict that in another 10 years hyper modeling paradigms will be

the mainstream approach for most new enterprise data warehousing initiatives. Thus, EDW team leaders need to become

familiar with them now if they wish to be part of the coming sea change in DW/BI design practices.

HYPER NORMALIZATION HINGES ON “ENSEMBLE MODELING”

I use the term hyper normalization to refer to a family of data modeling techniques that all employ ensemble data

modeling. As depicted in Figure 14.1, ensemble modeling is a strategy for representing data within a data warehouse

that decouples the three categories of elements found in traditionally modeled data tables. Entities are captured from

the source systems and broken into the following components:

� The core identifier for the entity—that is, its business key
� The relationships between entities—that is, the links
� All the other elements that provide context for these business keys and links—that is, their attributes

329
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00014-X

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00014-X

Ensemble modeling does not destroy any information. By joining the business keys and attributes together using

the links, organizations can not only reassemble the original data but also project the data into a myriad of other

presentations that better support specific end-user analytics.

Delivery speeds for the first version of an EDW improve by decoupling these fundamental data components into atomic

business keys, links, and attributes because then the delivery team can manage the operational data using highly pattern-

based data structures that lend themselves to population by reusable data transform modules. More important, these

decoupled components dramatically enhance a team’s ability to maintain and extend an existing EDW, even once produc-

tion data is loaded, because they insulate each component from changes occurring in related entities. Such insulation makes

it far easier to respond to new requirements with only a small amount of data schema re-engineering, with the data often

quickly and easily converted using the same reusable extract, transform, and load (ETL) modules. As discussed later, this

pattern-based approach allows EDW developers to rapidly collect all the organization’s operational data into an integrated

and persistent data store using only three parameter-driven data transformation routines. Although programming these

parameter-driven load modules requires some thought and effort, overall the time saved by reusing the three modules allows

teams to deliver key portions of the enterprise data warehouse in an order of magnitude less time. By empowering flexible

projections, fast data capture, and speedy re-engineering for end-user analytics, ensemble modeling allows DW/BI

departments to be incredibly responsive to new business requirements in ways traditional EDW teams cannot match.

Several Varieties of Hyper Normalization Exist

Many styles of ensemble modeling exist today. Figure 14.2 shows a family tree of the more codified styles I have

encountered during the past 10 years. The American style is called data vaulting, which was started by a series of white

papers published by Dan Linstedt [Linstedt 2003]. Several of the developers on the first few data vaulting projects

compiled their practices into a Data Vault 1.0 standard and published these guidelines so that others could also experi-

ment with this new data modeling paradigm [Linstedt and Graziano 2011]. This original standard was eagerly adopted

by a large contingent of DW/BI consultants in The Netherlands who implemented well over 600 separate data vault

warehouses within the next 10 years. The Dutch developers began sharing the challenges and solutions they encoun-

tered on these early implementations, creating a vibrant community of data vault practitioners with an enormous collec-

tion of best practices that informally defines a “Dutch” standard to hyper modeling [Hultgren 2013].

As the Dutch school of data vaulting took off, Linstedt and his colleagues were busy extending their approach.

They have recently introduced a Data Vault 2.0 standard, which adds a few technical innovations such as hashed sur-

rogate keys and some new practice elements that incorporate Scrum, big data, and data virtualization into one’s project

planning [Linstedt 2014a].

Within these three schools of data vaulting standards, there are three styles for how the resulting data objects should

function within the layers of the EDW reference architecture [Damhof 2011a]. As an example, which is discussed in

more detail later, the classic style advocates applying only a minimum of business rules while integrating operational

data, whereas practitioners of the enhanced style will readily add derived values to the tables of the Integration layer.

Such a diversity in approaches is a testament to adaptability of the ensemble modeling concept and the great success

that data vault practitioners have encountered in the field. Fortunately, these standards and styles are not mutually

exclusive so that agile DW/BI teams can derive a hybrid approach that best matches the unique context confronting a

particular DW/BI department [Linstedt 2014b].

Source
system

Hyper normalized
data warehouse

Presentation layer
(data mart)

Business keys

Relationships

Context attributes

FIGURE 14.1 Ensemble data modeling.

330 PART | IV Agile EDW Data Engineering

Because the Dutch standard for data vaulting seems to have the largest user community of any hyper normalization

approach, I employ their guidelines for the remainder of this chapter. Unless stated otherwise, I also follow the

“enhanced style” of design. Both of these points will be far easier to understand after we have discussed the basics of

hyper normalization data modeling.

Running in parallel to the rapid innovation occurring among the data vaulting communities is a Swedish version of

ensemble modeling called anchor modeling. Invented by Olle Regardt, Lars Rönnbäck, and several other computer

science academics at the University of Sweden in Stockholm, anchor modeling extends the notion of ensemble modeling

with concepts from Chris Date’s sixth normal form. The creators of anchor modeling honed their approach while building

data warehouses for some of the largest insurance and retail companies in Sweden. They formally introduced the tech-

nique to the world in 2009 at the International Conference on Conceptual Modeling in Gramado, Brazil [Regardt et al.

2009]. Anchor modeling represents a second data design approach that results in more tables than data vaulting. Because

both anchor modeling and data vaulting result in models with more tables than third through fifth normal form would

create, I refer to them collectively as “hyper normalization” techniques. Interestingly, the Dutch school of data vaulting

has begun to merge with data vaulting (see the sidebar), so EDW team leaders should be at least aware of how anchor

modeling differs from data vault so they can choose wisely from all the hyper normalized options available for their

DW/BI projects. The salient differences between anchor modeling and the data vaulting approaches are outlined later.

HYPER NORMALIZED DATA MODELING CONCEPTS

Hyper normalization data modeling is a set of techniques for designing the integration layer of a data warehouse. More

pointedly, an EDW team typically uses hyper normalization to design a lightly integrated, persistent staging area for

data from a company’s operational systems. As detailed later in Figure 14.25, the data in this persistent staging area

American data
vault

American data
vault 2.0

6th Normal
form

Classical
style

Source vault
style

Note: Schools and styles renamed and simplified somewhat for presentation clarity

Swedish anchor
modeling

S
chools

S
tyles

Unified anchor
modeling

Dutch
data vault

Enhanced
style

Staging vault
style

C
oncepts

Ensemble modeling
concepts

FIGURE 14.2 Family tree of hyper normalized modeling approaches.

Agile Integration Layers with Hyper Normalization Chapter | 14 331

can be enriched by linking it to additional hyper normalized data tables that store the results of applied business rules.

Data from both the persistent staging area and the enriched tables can then be projected at will into a conformed

dimensional presentation layer.

In practice, EDW teams pursue hyper normalized data modeling in very much the same way they conduct standard

normalization techniques. They identify core business entities, the relationships between them, and the attributes that

provide context information about both entities and relationships. Understanding the difference between standard nor-

malization and hyper normalization is easiest if we apply hyper normalization techniques against a data model already

in third normal form.

The starting point of this exercise is shown in Figure 14.3, which replicates the third normal form integration layer

for the simple sales transactions data warehouse we considered in Chapter 12. The square boxes are data tables, with a

Sidebar

Interestingly, after achieving many successful projects using

data vaulting, the Dutch have not stopped innovating in the

area of advanced data modeling techniques and computer-

generated EDW solutions. Several of the leading practitioners

there have recently combined the best of the Swedish anchor

modeling technique with American data vaulting, resulting in

a “Unified Anchor Modeling” technique. This new approach

offers more options in terms of entity types and loading

patterns than data vaulting, as well as a more formal way of

modeling the transformations that need to be supported.

The Unified Anchor Model is a physical modeling strategy

that is derived from an enhanced third normal form

(Boyce�Codd) and requires the data modeler to be well

versed with fact-based modeling, a type of modeling that is

rooted in new data analysis standards such as FCO-IM, ORM,

and NIAM. Recent demonstrations of this hybrid and more

streamlined approach include a program completed for the

Dutch central bank (De Nederlandsche Bank) whose nation-

wide oversight responsibilities required a fast, model-driven

solution that can collect, validate, enrich, and disseminate

data from The Netherlands’ commercial banks and financial

institutions. Unified Anchor Modeling has allowed the data

integration team to deliver EDW increments in time boxes as

short as a few weeks while meeting the strictest of non-

functional requirements for accuracy, reliability, consistency,

availability, meaningfulness, and traceability.

Dealership PackageSales order

Attributes

Customer eSiteAgent ManufacturerInstaller

Attributes Attributes Attributes Attributes

Line_Item

Attributes Attributes Attributes

Attributes

Note: This model in a standard normal
form is starting with nine data tables and
one reference table.

Ref_Sales_Order
_Status_Cd

Attributes

FIGURE 14.3 Hyper normalizing a 3NF data model � starting point.

332 PART | IV Agile EDW Data Engineering

horizontal line separating a table’s business key fields from its context attributes below. This model also includes a

reference table for Order Status that we will need to demonstrate how one would hyper normalize code lookups using

anchor modeling. The table structures for all the objects in this starting model can be found in Figure 14.4.

Business Key Entities

The first step in hyper normalizing a starting data model is to simply identify the pivotal business keys underlying the

organization and its transactions that we want the data warehouse to support. As shown in Figure 14.5, the modelers

here decided the entities shown with dark headers are the major business elements the warehouse will need to track.

Not all of the starting tables were deemed to be major business keys. The sales orders themselves were included

because “Order Number” is an identifier that many business people know and use extensively in their everyday business

processes. Line Item was not designated a major business entity not only because “Line Item Number” is rarely a

stand-alone business concept but also because it can be considered simply a relationship that joins Order with Package

on an item-by-item basis.

Customer AdSite

PK customer_number PK AdSite_number

namebook_id ad_style

company_name promo

billing_street_address

billing_city

billing_postal_code Agent

PK agent_number

Package agent_name

PK package_number date_emp_start

package_name email_id

package_descr

FK manufacturer

mfctr_pkg_nbr Installer

PK installer_number

Sales_Order installer_name

PK order_number contract_office_city

FK customer_number service_category

FK AdSite_number

date_submitted Manufacturer

date_install_desired PK PK manufacturer_number

date_complete manufacturer_name

service_street_address service_category

service_city

service_postal_code

Dealership

Line_Item PK FK installer_number

PK FK order_number PK FK manufacturer_number

PK line_item_number cycle_time

FK package_number

qty_requested Ref_Sales_Order_Status_Code

qty_installed PK order_status_code

date_last_updated order_status_descr

FIGURE 14.4 Structures for the starting model (in 3rd normal form).

Agile Integration Layers with Hyper Normalization Chapter | 14 333

Each business key is given its own dedicated table with the following simple set of data columns:

� Surrogate ID (SID)—a computer-generated serial number assigned to records as they are inserted into a table
� Load date time—identifies the moment the load occurred, often standardized to be a single value across the records

added to all tables during a single ETL run
� Source system—the operational system providing the data for a given record
� The human-recognized value of the business key, which can comprise more than one source column

The first three columns are metadata elements and are included in every business key table defined by data

vaulting. These columns will also occur in the other two types of tables making up the data vault standard (with the

exception of a surrogate key for the attribute tables, discussed in a moment). Figure 14.6 illustrates the structures of

the business key and attribute tables that will result from this sample hyper normalization exercise.

Data vaulting is a steadily improving family of best practices, so the standards continue to change. For example, the

standards originally specified that the load date metadata column should reflect the moment a record was inserted into a

data warehouse table, but many practitioners now prefer to set it to the moment the source record was captured in the

EDW’s landing area so that it can remain static and traceable throughout all the layers of the reference architecture. As

another example, the V2.0 data vaulting standards now recommend using MD5 hash values of the business keys rather

than sequences as the primary keys on data warehouse tables. This enables ETL modules to calculate primary key

values from the source data, avoiding many resource-intensive lookup actions against business key tables while loading

links and attributes. Moreover, by calculating the primary keys independently, the link and attribute loads no longer

have to run after the ETL for the business keys, allowing the data warehouse to load far more tables in parallel, increas-

ing EDW performance. Nuances such as these are the primary differentiator between the various flavors of data vault-

ing techniques available today.

Linking Entities

In the second step of hyper normalization, the joins of the original model are all converted to many-to-many

(M�M) relationships. As shown in Figure 14.7, this step requires declaring “linking” tables between all business

keys that have a relationship. In the diagram, these associative tables have been labeled with “link.” Figure 14.8

provides the structures for the linking tables of our example. As can be seen there, they are very simple tables,

holding only the surrogate keys to the business key records that relate and also the standard metadata columns.

Dealership BK_PackageBK_Sales_Order

Attributes

BK_Customer BK_eSiteBK_Agent BK_ManufacturerBK_Installer

Attributes Attributes Attributes Attributes

Line_Item

Attributes Attributes Attributes

Attributes

BK_Ref_Order_Status_Cd

Attributes

FIGURE 14.5 Hyper normalization Step 1 � declare business keys.

334 PART | IV Agile EDW Data Engineering

Because they have such simple and predictable structures, in future diagrams they are abbreviated to diamonds

marked only with the letter “L.”

Note that although these linking tables are built for M�M joins, they can support both one-to-many (1�M) and

M�1 relationships. This modeling technique eliminates the risk that we will have to re-engineer our model and convert

our data when joins that we thought were 1�M later become M�M or even reverse into 1�M. The small price to

pay is that the data model no longer structurally communicates the cardinality between business key tables so that

information has to be documented elsewhere, perhaps as comments on the integration layer model.

Attribute Entities

With the third hyper normalization step, the modelers move the remaining attributes of the original tables to their own

“attribute tables,” as shown in Figure 14.9. Attribute tables can provide context for either business key tables or link

BK_Customer BK_AdSite BK_Installer

PK customer_SID PK AdSite_SID PK installer_SID

insert_datetime insert_datetime insert_datetime

source_system source_system source_system

customer_number AdSite_number installer_number

Attrib_Customer Attrib_AdSite Attrib_Installer

PK customer_SID PK FK AdSite_SID PK FK installer_SID

PK insert_datetime PK insert_datetime PK insert_datetime

source_system source_system source_system

namebook_id AdSite_number installer_name

company_name ad_style contract_office_city

billing_street_address promo service_category

billing_city

billing_postal_code BK_Agent BK_Sales_Order

PK agent_SID PK order_SID

BK_Package insert_datetime insert_datetime

PK package_SID source_system source_system

insert_datetime agent_number PK order_number

source_system

PK package_number Attrib_Agent Attrib_Sales_Order

PK FK agent_SID PK order_SID

Attrib_Package PK insert_datetime PK insert_datetime

PK package_SID source_system source_system

PK insert_datetime agent_name order_status_code

source_system date_emp_start date_submitted

package_name email_id date_install_desired

package_descr date_complete

universal_product_nbr service_street_address

Attrib_Manufacturer service_city

BK_Manufacturer PK FK manufacturer_SID service_postal_code

PK manufacturer_SID PK insert_datetime

insert_datetime source_system Ref_Order_Status_Code

source_system manufacturer_name PK order_status_code

manufacturer_number service_category order_status_descr

FIGURE 14.6 Structures for the hyper normalized model � business keys and their attributes.

Agile Integration Layers with Hyper Normalization Chapter | 14 335

tables. Aside from one column per attribute to be stored, the data vault standard requires these “Attrib_” tables to also

have the following metadata elements:

� The SID for the Parent BK or link table (PK)
� Load time stamp (PK)
� Record source

The structures for the tables of this final model can be found in Figures 14.6 and 14.8.

Note that instead of a surrogate key of its own, an attribute table employs the SID of its parent table, whether that

be a business key or a linking entity. This fact speaks to the purpose of a record in an attribute table: to provide the

context for a given parent record as of the moment it last changed in the source system. Accordingly, a given business

key or linking record can have many attribute records associated with it, namely one for each time any of the source

fields captured by the attribute tables experiences a change of value. A dedicated surrogate key for each attribute record

proves unnecessary because combining the parent SID and the load timestamp is enough to uniquely identify the

attribute record holding the new context values for a particular parent record and at a particular moment in time.

Note also that a business key or link table can also have multiple attribute tables associated with it, depending on

how the data modeler wants to group the context fields found in the source system. If the parent business key or

relationship has only a few descriptive elements, he or she will typically keep them all in a single attribute table. In

these situations, my figures will depict the attribute tables in an abbreviated form as a simple object marked with an

“A,” as shown in Figure 14.10. Each of these attribute “stubs” in this diagram implies that all the required context

elements have been collected into satellite tables and linked through key values to its parent table.

Data modelers do not always place all the context columns for a business key or link into a single table. When

context columns are very numerous, they will divide them by topical area or by their rate of change in the source

systems. A customer business key, for example, could have an attribute table for identifying qualifiers, another for

address elements, and a third for credit worthiness. In a hospital EDW, a patient business key might have one attribute

table for values observed at the time of admission, another for measures taken during daily physician rounds, and a third

for holding vitals gathered by the minute during surgeries.

Attributes may also contain columns recording effective dates, such as the Effective_From_Date and

Effective_Until_Date as seen in Attrib_Link_Dealership in Figure 14.8. These columns hold the business dates for

BK_Customer BK_eSiteBK_Agent BK_ManufacturerBK_Installer

Attributes Attributes Attributes Attributes Attributes

Link_

Dealership
BK_PackageBK_Order

Link_Line_Item

Attributes Attributes Attributes

Attributes

Link Link Link LinkLink

BK_Ref_Order_Status_Cd

Attributes

FIGURE 14.7 Hyper normalization Step 2 � install many-to-many links between business keys.

336 PART | IV Agile EDW Data Engineering

which the values in the given attribute table apply to the associated record in the parent business key or link table.

Effective dates are a business concept, so the values they store are conceptually independent from the load_datetime

metadata column found in each table, per the data vault standard. Some modelers do not provide a column for end

effectivity because the start date of the next record for a given business key implicitly defines the end of the time span

the first record describes. When an end date column is included, it requires the ETL to perform an update to existing

records, which runs counter to the data vault’s “insert only” orientation, which is discussed later.

Lightly Integrated, Persistent Staging Area

Now that we have identified the three components for a hyper normalized data store, we can reflect upon how this form

supports the desired function for an integration layer. Especially in the classic style of data vaulting, the intent of hyper

normalization is to provide a persistent recording of business entities and operations in a way that we can later project

the company’s operational data into dimensional presentation layers for responsive business analytics. This goal implies

several objectives for the hyper normalized data store; namely, it must allow

Link_Customer_Order Link_Dealership

PK link_cust_ord_SID PK link_dealership_SID

insert_datetime insert_datetime

source_system source_system

FK sid_customer FK installer_SID

FK sid_order FK manufacturer_SID

Link_Agent_Order Attrib_Link_Dealership

PK FK link_agt_ord_SID PK FK link_dealership_SID

insert_datetime PK insert_datetime

source_system source_system

FK sid_agent dealer_number

FK sid_order effective_from_date

effective_until_date

Link_AdSite_Order

PK link_AdSite_ord_SID Link_Line_Item

insert_datetime PK link_line_item_SID

source_system insert_datetime

FK sid_AdSite source_system

FK sid_order FK order_sid

FK package_sid

Link_Installer_Order

PK FK link_inst_ord_SID Attrib_Link_Line_Item

insert_datetime PK link_line_item_SID

source_system PK insert_datetime

FK sid_installer source_system

FK sid_order line_item_number

qty_requested

Link_Manufacturer_Package qty_installed

PK link_mnfr_ord_SID date_last_updated

insert_datetime

source_system

FK sid_manufacturer

FK sid_package

FIGURE 14.8 Structures for the hyper normalized model � links and their attributes.

Agile Integration Layers with Hyper Normalization Chapter | 14 337

Attributes

Note: Once hyper normalized the model has
23 tables – one and a half times as many.

Attributes

Attributes

Attributes

Attributes

Attributes

AttributesAttributesAttributes

BK_eSiteBK_Agent BK_Installer

Link_Dealership

BK_PackageBK_Order

Link_Line_Item

Link Link

BK_Customer

Link Link

Attributes

BK_Manufacturer

Link

BK_Ref_Order_Status_Cd

FIGURE 14.9 Hyper normalization Step 3 � split out all attributes to their own tables.

A

BK_eSiteBK_Agent BK_Installer

Link_Dealership

BK_PackageBK_Order

Link_Line_Item

BK_Customer BK_Manufacturer

A A A A

L

A

L L L L

A

A

A

BK_Ref_Order_Status_Cd

A

FIGURE 14.10 Hyper normalized model with abbreviated depiction of link and attribute entities.

Note that one can always restore the data to a third normal form by re-joining the components, as the dotted line indicates for the Order entity.

338 PART | IV Agile EDW Data Engineering

� the structure of the warehouse to be quickly updated so that EDW developers can rapidly respond to new data

sources;
� the data of the warehouse to be economically adaptable so that existing data can be massaged to fit into the newly

updated table structures; and
� light integration so that the data collected from source systems contributes to a single view of the enterprise rather

than forming multiple, unrelated “data heaps” that are each specific to the operational system from which it was

sourced.

The term “light integration” indicates only that all the source records pertaining to a core business entity such as

customer or product end up in the same target structure whenever they clearly represent the same concept. Many EDWs

perform further processing beyond this straightforward collocation of business entities. For example, they take a second

look at customers, vendors, and other business partners to determine if they are indeed the same entity masquerading under

different names, such as trade names belonging to the same corporation. As another example, they might use complex

analytics to assign a “partner value score” so the organization can know which partners are most important to the business.

The creation of company-wide master data elements and the application of business rules go beyond “light integration.”

Hyper normalized data stores can support these postcapture, value-added activities, but they typically store them in a

distinct sublayer of the reference architecture. This two-sublayer approach is the hallmark of the “enhanced style” of data

vaulting. In that style, a data vault with a fairly simple design rapidly captures data arriving from source systems, processing

that data just enough to store it appropriately in a shared set of business key and linking tables. A subsequent ETL session

then applies business rules to generate derived values, harmonize information across business units, and support master data

elements. This second ETL session deposits newly created information in additional hyper normalized tables that reside in

a second area of the reference architecture called the “business vault.” This secondary sublayer will be examined in greater

depth later when we discuss Figure 14.25.

Ensemble Modeling Components Allow Light Integration and Agility

Now that we have defined the three structural components stipulated by ensemble modeling, we can consider how each

abets the goal of a light, persistent staging area for operational data.

Business Key Tables Abet Agility

First, the notion of dedicated entities for each type of business key enables fast capture of shared information. Many

business applications have a notion of a customer, for example. Each time the business requests that the EDW team add

a new data source to the data warehouse, the data modelers simply look through that applications data model for how it

represents customers and other common business concepts. Once they have discerned the fields that the new system

uses to uniquely identify these common objects, they create an ETL to add those values to the data vault’s business key

tables, such as BK_CUSTOMER. If two or more systems are using overlapping sequences of integers, the modelers

will simply need to make the natural key for the target business key tables the source system plus customer number in

order to resolve those collisions. In either case, the EDW team can quickly employ the pattern-based modeling rules to

define a shareable table for these two sets of business keys and then utilize a reusable ETL module to capture the source

data. Moreover, because these business key entities reflect the real, core business concepts underlying the enterprise

and its operations, a data vault’s collection of business keys stabilizes very soon and then rarely needs to be expanded

or redesigned. Although source systems may be subject to change, only occasionally do those changes change the types

of entities that make up the structure and processes of the organization.

Linking Tables Abet Agility

A second advantage to hyper normalized designs derives from the dedicated linking tables. They too are simple in

structure so that they are fast to define and can be loaded with a parameter-driven, reusable ETL module. Moreover,

their minimal contents dramatically reduces the impact that many changes in the source systems might impose.

Linking tables contain just the keys of the objects they relate to and also some metadata columns. Because of this

construction, they are designed for many-to-many joins. Most relationships in an enterprise data model are one-to-

many, but occasionally new requirements require us to suddenly record a many-to-many association. For example, a

product owner believes that brokers own their sales opportunities, so the company needs only one broker record per

prospective contract. However, in the data, the development team found instances in which brokers were sharing sales

Agile Integration Layers with Hyper Normalization Chapter | 14 339

prospects. Because linking tables are designed for many-to-many joins, the links the team believed would be one-to-

many can be simply populated with additional records to manifest the bidirectional join. The structure of the warehouse

does not need to be updated, nor does any existing data have to be converted.

Moreover, these single-minded association tables insulate the data warehouse from major impacts when new entities

appear. The excerpt of a EDW module included in Figure 14.11 shows the impact a new entity can have on traditionally

modeled data warehouses. The company has recently implemented a master data repository for customers, so the EDW

must add a Corporate_Customer_Account table, and because it will serve as a parent to the customer table coming from

the revenue system, this latter table will need to be restructured to add a new foreign key, and its data will need to be

converted. Hyper normalization eliminates this restructuring and data conversion, as can be seen in Figure 14.12.

There, the EDW team needs to add only three tables to support the new corporate customer account entity—a business

key, its attributes, and a many-to-many linking table that will be used to join the BK_Corporate_Customer to

BK_Revenue_Customer using records implementing a one-to-many relationship. This design achieves the same

functionality but leaves the structure and data of the original entity unaffected, allowing teams to make these changes

far faster than when they utilize a standard normal form model [Boyina and Breur 2013].

Attribute Tables Abet Agility

Finally, attribute tables also support the data vault’s purpose of agile data integration. For data vaults designed to simply

record operational data as it occurs without adding additional value, data modelers frequently structure the attribute

columns to closely reflect the source elements they are designed to capture, even naming them to match the identifiers

used in the source system. Given that the data vault typically integrates the information from multiple sources, some situa-

tions may entail conflicts between the names chosen for the same concept by the different upstream systems—for exam-

ple, “CUST_NME” versus “CUSTOMER_NAME.” To resolve this type of conflict, many data vault modelers choose to

create a separate attribute table for each source, as shown on the left side of Figure 14.13. Here, data from the company’s

prospecting system, sales management application, and warranty registration utility land in a separate attribute

Sales order header

PK Order Nbr

FK Revenue customer SID

Order date time

Terms

Revenue customer

PK Revenue customer SID

FK Corporate customer Nbr

DUNS number (BK)
Company name

Structural change
required

Corporate customer account

PK Corporate customer Nbr
DUNS number
Trade name
Corporate name
CC account created date

New table

Existing table

Existing table

FIGURE 14.11 Third normal form data warehouses are heavily impacted by new entities.

340 PART | IV Agile EDW Data Engineering

BK_Revenue_Customer

PK Revenue customer SID

BK DUNS number

Source system
Load date time

BK_Sales_Order_Header

PK Sales order SID

BK Sales order Nbr

Source system
Load date time

FK Revenue customer SID

Company name
CC account created date

Source system
Load date time

A_Revenue_Customer

FK Sales order header SID

 Order date time
Terms

Source system
Load date time

A_Revenue_Customer

PK Corporate customer SID

BK Corporate customer Nbr

Source system
Load date time

FK Corporate customer SID

DUNS number
Trade name
Corporate name
CC account created date

Source system
Load date time

A_Corp_Cust_Account

Corporate customer account

L_Rev_Cust_Sales_Order

FK Revenue customer SID
FK Sales order SID

Source system
Load date time

L_Rev_Cust_Sales_Order

FK Revenue customer SID
FK Sales order SID

Source system
Load date time

New

Unchanged

FIGURE 14.12 Linking tables in a hyper normalized data warehouse insulate existing tables against disruption when new entities are added.

Agile Integration Layers with Hyper Normalization Chapter | 14 341

table dedicated to each source. Notice similar attributes such as Facebook ID and company name have slightly different

spellings between the data vault attribute tables. Such a practice reflects the data vault’s intent to provide a quickly

deployable archive of source systems that requires a minimum of reengineering as business requirements change. When a

new source becomes available to the warehouse, the modeler simply declares an additional table to receive the new

collection of attributes it provides, giving them names to match the source and thus reducing the decisions that need to be

made while simultaneously enhancing the integration layer’s traceability back to the source systems.

Utilizing multiple tables for the attributes of a given parent is particularly common when different groups of

qualifiers change at different tempos. Qualifiers describing an order when it is placed, for example, are relatively per-

manent, whereas the values describing current status during provisioning can change frequently. Splitting apart these two

groups of qualifiers based on change cadence saves needless repetition of storage for the more static attributes. Often,

modelers provide a different attribute table for each set of attributes that change together—for example, one table for

attributes that change daily and another for those that change monthly, as depicted on the right side of Figure 14.13.

With the flexible approach to capturing business context that data vault attribute tables provide, new sources can

come and go, they can change structure, and the elements within them can vary the frequency of their updates. The

EDW team adapts to these new conditions by simply adding new attribute tables to reflect the new situation in the

upstream system. Records in existing attribute tables still reflect the reality that prevailed when those records were

captured, and therefore do not need to be adapted or converted, obviating much of the maintenance work that makes

data warehouses in standard normal form brittle and highly resistant to change.

An Insert-Only Paradigm

Readers should note that data vaults emphasize an “insert-only” paradigm by design. We can visualize this notion at

work by considering an established data vault in operation. When any of the supported source systems creates a new

instance of a business entity, such as a customer or an order, a new business key value will appear in the extracts fed to

the data vault. When this new business key value appears, the ETL simply inserts it into the appropriate business key

table. The load process simply ignores the other business key values found in the extract that are already in the integra-

tion layer’s business key table. Business keys are never deleted because once they are seen, the fact that they once

BK_Customer
BK_OrderL

Link_Line Item

PK

Attrib_Cust_Prospecting

PK

PK

PK
PK

PK
PK

Attrib_Cust_Sales

Attrib_Cust_Warranty

Attrib_Link_Item_As-Requested

Attrib_Link_Item_Provisioning

Attrib_Link_Item_As_Installed

PK

PK

PK

PK

PK

PKNK

NK

NK

customer_SID

customer_SID

load_date

source_system

source_system

source_system

load_date

load_date

customer_SID

customer_SID

link_line_item_SID

link_line_item_SID

link_line_item_SID

load_datetime

load_datetime

load_datetime

source_system

source_system

source_system

street_suffix

facebook_login

facebook_id

organisation_name

organization_name

line_item_number

qty_as_requested

qty_on_order

qty_installed

installed_date

activate_date

last_configured_date

promised_date

arrived_date
svc_street_nbr

svc_street_nme
svc_street_sfx

svc_city

svc_postal

billing_postal_code

billing_city
billing_street_address

city

zip_code

street_name

street_number

organisation_name
facebook_id

load_date

source_system

customer_number

Q1: What if this record
does not arrive till

many days after the
sales is closed?

values set at order
time, changed rarely

values change daily
until product received

values set upon install, often
updated after each support call

Q2: Which of the
many records here for
a given business key

should a query return?

FIGURE 14.13 Data vault model excerpt showing business keys and linking entities with multiple attribute tables.

342 PART | IV Agile EDW Data Engineering

existed remains true forever. Their status in the source system may change to deleted, but that situation is recorded in

the status column of an associated attribute table, not in the business key records themselves.

The same treatment occurs when the ETL scans the input data stream for links. If the operational data contains a

previously unseen combination of business keys, the ETL inserts a new link record into the appropriate table, translating

the business key’s natural values into surrogate keys by looking them up in the appropriate BK tables or calculating a

hash value. The fact that these two business keys once had an association will be true from that moment forward, so

this link record will never need to be deleted. The effective date, status, and other qualifiers for a given relationship

between business key values are recorded in the records of an attribute table associated with the link table, not in the

link table itself [Data Vault Discussion Group 2014].

Two aspects of the data vault paradigm make business keys and linking records impervious to later events and free

them from deletes or updates: (1) They record facts that were once true rather than concerning themselves with whether

those facts are still true, and (2) they have been isolated from the attribute records, which in fact can contain effective

dates. These considerations make business keys and linking tables insert-only entities. We will see later that this fact

greatly simplifies the ETL needed to support these table types.

The design of attribute tables should emphasize insert-only also, but the situation here is slightly more nuanced. The

data vault creates a corresponding attribute record when the parent business key or linking record is first captured.

When the context elements for this parent change in the source system, a new attribute record is created, reflecting the

new truth. The old attribute record still accurately reflects the previous truth, so we should not delete it. If the source

provides a begin effectivity date column, then the value in this column should be replicated to the warehouse to

indicate when in time the operational system believes the record’s information begins to apply. If no begin effectivity

column is available in the source, the load_datetime value or the landing layer capture date time of the attribute record

can provide a substitute [Vos 2014a]. In either case, the begin effectivity time of the new record implicitly defines the

end effectivity of the previous attribute record for that business key, so no end effectivity columns need to be created or

maintained. Following this pattern, even attributes are insert-only, again making the necessary ETL far simpler.

If the modelers place end effectivity columns on the warehouse tables, the ETL would have to search for the

existing record that has become obsolete and update its end effectivity value before a new record could be inserted,

making the ETL more difficult to program and slower to execute. It must be remembered that the integration layer is a

repository to hold information to be projected into the star schemas of the Presentation layer. During that projection,

end effectivity values can be added to the target objects where end users can find and benefit from them.

Swedish Variation: Anchor Modeling

With the three entity types involved in ensemble data modeling identified, we can now point out the major difference

between the data vaulting standards and the Swedish anchor modeling technique. Readers desiring a more detailed com-

parison that the major points offered here can consult [Ronnback et al. 2013].

Figure 14.14 shows the sales orders data model of Figure 14.10 converted into an anchor model. This model was

built using the online modeling tool provided by anchor modeling’s creators and that can be found at http://www.

anchormodeling.com. This site also provides online tutorials and a “generate” function that creates key data ware-

housing components such as target data definition language (DDL), views with triggers that facilitate table loading, and

basic retrieval views that simplify data access. This level of online support makes anchor modeling an easy type of

hyper normalization for DW/BI professionals to get started with.

Perhaps the most noticeable difference between the data vault and anchor modeling standards is nomenclature, as

shown in Table 14.1. A second difference between the two approaches is the different treatment they give reference

tables. Reference tables typically hold the codes that are used throughout a data warehouse, such as the Order Status

qualifier found in the sample model I have been using. In data vaults, reference tables are typically modeled as a hub

with a satellite, as shown in Figure 14.9. Each coded value is a unique record in the business key table. The decode for

each code is stored in an attribute table record that, with its load date time column, enables the warehouse to track the

changes a company makes in the meanings associated with its code values. In contrast, anchor models explicitly depict

reference tables as a connected part of the model, using a fourth element type called “knots.” One can see a knot called

Order Status attached to the Order anchor in the figure.

A final difference to mention is probably the most important. Anchor models provide a separate entity for every

attribute column the data warehouse contains. This approach can be seen in Figure 14.14 for the Agent anchor, which

has separate attributes modeled for agent number, agent name, agent email id, and data started. If the modeler chooses

to “historize” an attribute, then the online tool will give that attribute table a ChangedAt date time column to record

Agile Integration Layers with Hyper Normalization Chapter | 14 343

http://www.anchormodeling.com
http://www.anchormodeling.com

when its values have changed. By splitting out every attribute to its own separate table and tracking the history of the

values in each (when that option is selected), anchor modeling achieves many of the design objectives spelled out for a

completely temporal database in the sixth normal form, as described by Chris Date [Date et al. 2002].

Data vaults, in contrast, assemble many qualifier columns together in the attributes tables, either one or a few,

depending on their business themes and their rate of change. With many attributes sharing the table, data vaults require

far fewer physical objects to actually store the information arriving from the source applications.

REUSABLE ETL MODULES ACCELERATE NEW DEVELOPMENT

The flexibility of the resulting EDW data models is an important feature of hyper normalized designs. DW/BI teams

receive even greater advantage from the fact that hyper normalization frequently allows them to capture all the data of

their source systems using only three parameter-driven ETL modules. In other words, when asked to create a new enter-

prise data warehouse, the team needs only to program three modules and the integration layer is done. That last sen-

tence overstates the situation somewhat. It says nothing about a data warehouse’s derived columns, and it overlooks the

fact that many teams need a utility for writing retrieval queries against the hyper normalized data warehouse once it is

TABLE 14.1 Nomenclature Differences between Data Vault and Anchor Modeling Standards

Generic Concept Data Vault Name Anchor Modeling Name

Business key tables Hubs Anchors

Linking tables Links Ties

Attribute tables Satellites Attributes

Model shown before all attributes
were added to the Order entity

Bill_Street

Company_Name

places
customer

Bill_City

Bill_Postal

Qty-Installed

Date-Updated
Aggregates

Elaborates

Line-Item

Requires

Describes
Package

Number

Description

sourced-from

Service-Category

Manufacturer

Number
Name

Dealership

Name
Number

Service-Category

HQ-City

Installer

installs

Agent

Number

email_id

Date_Started
NameManages

Managed-By

Installed-By

Order

Originates-From

Channel-For

eSite Number

Promo

Ad-Style

Order-Status

created-by

Number

fabricates

UPC

Name

Number

Qty-Requested

Namebook_ID

1

1

1

1

1

1

1

m

m

m

m

m

m

m

m

m

“Tie”

“Anchor”

“Attribute”

“Knot”

FIGURE 14.14 Anchor modeled equivalent of the HNF order model.

344 PART | IV Agile EDW Data Engineering

loaded with information. But if we refine the statement to “build three parameter-driven ETL modules and the data cap-

ture portion of your warehouse’s integration layer is complete,” we will be getting very close to the truth.

One ETL Pattern Needed Per Hyper Normalized Table Type

Some readers may have viewed the transition of the third normal form in Figure 14.3 to the hyper normalized structure

in Figure 14.9 with alarm. The model started with 9 tables and ended with 23. EDW teams following a traditional pro-

cessing architecture typically develop one ETL module per target table being loaded. Would not hyper normalization

then more than double a development team’s programming work?

The pattern-based nature of the hyper normalized tables plays a crucial role in keeping the higher number of

tables from translating into considerably more development labor. Consider the structure of the business key tables in

Figure 14.6. Every business key table has the same structure: three metadata columns and a natural key value, which

might be a single column or a concatenation of two or more. Many EDW developers are well versed in the technique

of dynamic SQL—an approach in which the computer writes and then executes its own SQL statement, with the details

of the instruction the machine creates for itself determined by the input conditions. EDW teams can take this approach

to develop a reusable, parameter-driven ETL module for business keys.

Consider the BK_Customer table, for example. Why not write an ETL module so that a developer invokes in two

different ways for two different sources? The first invocation of this module might amount to “Scan the Prospecting

System’s CUST table for new values in PROSPECT_NUMBER, and every time you find a previously unseen value,

insert a record into BK_CUSTOMER.” The second call might be “Now scan the Sales System’s CUSTOMER table for

new values in CUST_ID, and insert any new values into BK_CUSTOMER.” In both cases, the ETL will create a sur-

rogate key value for the CUSTOMER_SID column and put an appropriate value in the LOAD_DATETIME column.

SOURCE_SYSTEM will be set to the name of the application that provided the data to be scanned. If designed prop-

erly, this shared LOAD_BK_TABLE module should need only the following parameters to be able to determine for

itself the actual processing it should do:

Parameter Name Value for 1st Call Value for 2nd Call

Source System PROSPECTOR ONLINE_SALES

Target Table BK_CUSTOMER BK_CUSTOMER

Source Table CUST CUSTOMER

Source Business Key Field PROSPECT_NUMBER CUST_ID

Similarly, all linking tables have the same structure: three metadata columns and then the surrogate keys of the

business key records being related. For the table linking BK_Customer and BK_Order in Figure 14.10, for example, the

call for the first source system would be as follows:

1. Scan the Prospecting System’s INQUIRY table for quotes new marked “CLOSED.”

2. Look up new combinations of PROSPECT_NUMBER and QUOTE_NUMBER in BK_CUSTOMER and

BK_ORDER, respectively.

3. Create a new LINK_CUSTOMER_ORDER record using the surrogate keys retrieved.

The call for the second source system would then be:

1. Scan the Sales System’s SALES_ORDER table for new combinations of CUST_ID and ORDER_NBR.

2. Repeat steps 2 and 3 given previously.

Again, the ETL module can derive values for surrogate keys, load timestamps, and source systems on its own from

either the parameters provided or the conditions prevailing when it creates each output record.

Attribute tables are slightly more complex, but they still yield to a pattern-based treatment. All attribute tables have

the same three metadata columns: a parent surrogate key, load date time, and source system. Each attribute table will

have a different set of columns for receiving the context columns from the source tables. Some EDW teams structure

attribute table columns to match a source system’s column names and data types so that the ETL can infer the column

identifiers of the target schema from the structure of the landing table it is processing.

Agile Integration Layers with Hyper Normalization Chapter | 14 345

In this case, the invocation of the ETL for the attribute table of our example is quite simple. The first call would be

as follows:

1. Scan the Prospecting System’s CUST table for a new set of values in the following columns.. . .
2. Look up the combination of SOURCE_SYSTEM5 “PROSPECT_SYSTEM” and CUSTOMER_NUMBER5

PROSPECT_NUMBER in BK_CUSTOMER.

3. Use that surrogate key to create a new record in ATTRIB_CUSTOMER and transfer the values found in the

columns listed in Step 1.

Alternatively, the LOAD_ATTRIB_ETL module could be programmed with an INCL-EXCL parameter in which

“INCLUDE” would cause all the context columns listed to be transferred to the warehouse, and “EXCLUDE” would

cause all the columns except those listed to be captured.

The development team might find it too restrictive to have to structure and name all of the target columns so that they

match a source system’s elements. In that case, the previous logic would still apply except that the developers would have

to provide a mapping table that indicates a target column for each source attribute. Many EDW teams intend their data

vaults to enable fast capture of source system information and plan on restructuring it later when they move it to the pre-

sentation layer for analytics. These teams find it easy to structure the target schemas to match source elements, and for

ease of exposition, it is assumed that this is the case for the remainder of this discussion.

Parameter-Driven ETL Module Prototypes

The previously discussed concepts provide clear guidance for EDW teams wanting to craft a set of parameter-driven

ETL modules. Figure 14.15 depicts the goal for this work—to build three reusable ETL procedures that can load the

entirety of a data warehouse’s sources into the tables of a “source” data vault. (The distinction between source and busi-

ness data vaults will be discussed in a moment.) Procedure LOAD_BK (business key) populates all the business key

tables following the pattern just described. LOAD_LINK and LOAD_ATRRIB perform the same service for link

tables and attribute tables, respectively. Figure 14.16 lists the parameters my colleagues and I typically employ when

creating these three ETL modules for our projects. We usually implement these modules using a scripting language

such as Python or Perl for portability between projects, but we have built them using the procedural language of the tar-

get system’s database management system (DBMS) as well.

LOAD_BK needs only seven parameters to give it the guidance needed to populate a business key table. The

“source natural key columns set” parameter is usually a comma-delimited list of the column(s) that the target

table should use as a natural key in order to determine the unique occurrence of records within the source entity. The

ETL will scan those columns to spot entities not yet in the data warehouse. Working in terms of column sets rather than

BK_eSiteBK_Agent BK_Installer

Link_Dealership

BK_PackageBK_Order

Link_Line_Item

BK_Customer BK_Manufacturer

A A A A

L

A

L L L L

A

A

A

Load attribute
module

Load link

module

Load business

key module

A

Note: For clarity, a couple of attribute tables were left
outside of the load attribute table module shading

FIGURE 14.15 Only a few, parm-driven ETL modules are needed to load the bulk of the data warehouse.

346 PART | IV Agile EDW Data Engineering

expressions allows the ETL to manage the concatenation and delimiters between values, lending consistency and avoid-

ing programming errors, but some teams use a column expression for the column set parameters instead.

The timestamp value in ETL_start_DTM will be placed in the LOAD_DATETIME column of every record captured

to the warehouse. If the same value is employed for all calls to these reusable ETL modules in a given batch, then an

entire cohort of new records within the data vault can be easily identified by this shared load date time. In order to

facilitate effective tagging of record cohorts, some teams utilize a “load process ID” value in the place of the load date

time field, with a LOAD_PROCESS reference table maintained separately that holds a rich set of event data for each

load process the warehouse undertakes. The last_delta_datetime parameter allows the ETL module to process a much

smaller subset of source records, namely those with create or update timestamps that occur after this value.

The distinct_option will cause the database to utilize a DISTINCT clause on the source records (when landed in a

DBMS table or at least accessed as external table). Letting the database provide a stream of distinct input values often

results in shorter overall execution times than occurs when an ETL script must work its way through a large number of

redundant records.

For link tables that relate only two tables, LOAD_LINK requires 13 parameters. When it relates more than two

tables, it requires an additional 4 parameters per additional table. Unlike LOAD_BK, this ETL module must name some

reference entities already in the data warehouse so that the programming will know where and how to find the surrogate

keys already assigned to the business key value the new link will refer to.

LOAD_ATTRIB requires a reference table to be named as well, but here the reference is its parent table, and the

parameters provided instruct the module how to identify the parent record for a given set of context elements it wants to

capture. This module also utilizes an include/exclude flag so the ETL module will know whether the following list of

columns are those to be captured or ignored. The use of this last column list allows the developers to selectively capture

the source context columns, thus separating the attributes by business theme or change cadence, as discussed previously.

Modules Prototypes

Load_BK (source table, target table,
 {source natural key column set}, {target column set},
 ETL start DTM, [last delta datetime], [distinct option])

Load_Link (source table, target table,
 source column 1, reference table 1, {source natural key column set 1}, target column 1,
 . . .
 source column N, reference table N, {source natural key column set N}, target column N,
 ETL start DTM, [last delta datetime], [distinct option])

Load_BK_Attrib (source table, target table,
 parent_table, {parent natural key column set}, {source natural key column set},
 incl/excl flag, {source attribute column set},
 ETL start DTM, [last delta datetime], [distinct option])

Load_Link_Attrib (source table, target table, parent_table,
 lookup_table 1, {lookup 1 natural key column set}, {source natural key 1 column set}, target column 1,
 lookup_table 2, {lookup 2 natural key column set}, {source natural key 2 column set}, target column 2,
 incl/excl flag, {source attribute column set},
 ETL start DTM, [last delta datetime], [distinct option])

Parameter Details

{sets of values}
[optional parameters]
target: name of object into which the module will insert records
source: name of object from which input records will be retrieved
ETL start DTM: shared date-time value with which all records created within one load will be stamped
incl/excl flag: indicates whether the following list of columns should be included or excluded from the attributes to be loaded
distinct option: TRUE causes the DISTINCT reserve word to be added to the SQL command that pulls records from source

FIGURE 14.16 Prototypes for reusable hyper normalized load modules.

Agile Integration Layers with Hyper Normalization Chapter | 14 347

These examples assume that the targets have been modeled to closely match the source system so that the names of

target columns are predictable. If this constraint is too demanding, these procedure prototypes can be easily adapted by

adding parameters to name mapping files that will allow the ETL modules to understand how source column names

flow into distinctly named target columns.

Calling the Reusable ETL Modules

Once a team has created the three ETL modules needed to populate the source data vault tables, those modules have

to be invoked in the proper sequence. Figure 14.17 shows a driver script utilizing the reusable ETL modules for our

example data vault model from Figure 14.10.

Using Modules That Each Read Through The Source Data Set

Procedure calls follow prototypes listed in Figure 14.16 except sources assumed to be flat file extracts.
(Shaded lines will be found adapted in the second approach below)

/* Begin script
declare LOAD_DTM = now()
declare EXTRACT_DIR = "/usr/edw/extract/western_region"
declare NULL_STR = ""

/* Fundamental tables with dedicated extracts */
Load_BK ("$EXTRACT_DIR/sales_customer_extract.txt", "BK_CUSTOMER", "customer_nbr", "bk_customer_sid", $LOAD_DTM)
Load_BK ("$EXTRACT_DIR/hr_extract.txt, BK_AGENT", "agent_number", "bk_agent_sid", $LOAD_DTM)
Load_BK ("$EXTRACT_DIR/product_catalog_extract.txt", "BK_PACKAGE", "package_number", "bk_package_sid", $LOAD_DTM)
Load_BK ("$EXTRACT_DIR/online_mktg_extract.txt", "BK_AD_SITE", "ad_site_domain" "bk_ad_site_sid", $LOAD_DTM)
Load_BK ("$EXTRACT_DIR/daily_sales_transactions.txt", "BK_SALES_ORDER", "sales_order_number", "bk_sales_order_sid", $LOAD_DTM)

/* Fundamental tables sourced from the service channel extract */
Load_BK ("$EXTRACT_DIR/service_channel_extract.txt", "BK_INSTALLER", "installer_number", "bk_installer_sid", $LOAD_DTM)
Load_BK ("$EXTRACT_DIR/service_channel_extract.txt", "BK_MANUFACTURER, "manufacturer_number", "bk_manufacturer_sid", $LOAD_DTM)

/* Link tables sourced from the service channel extract */
Load_Link("$EXTRACT_DIR/service_channel_extract.txt", "LINK_MANUFACTURER_PACKAGE",

"manufacturer_number", "BK_MANUFACTURER", "manufacturer_number", "manufacturer_sid",
"package_number", "BK_PACKAGE", "package_number", "package_sid", $LOAD_DTM)

Load_Link ("$EXTRACT_DIR/service_channel_extract.txt", "LINK_DEALERSHIP",
"manufacturer_number", "BK_MANUFACTURER", "manufacturer_number", "manufacturer_sid",
"installer_number", "BK_INSTALLER", "installer_number", "installer_sid", $LOAD_DTM)

/* Links source from the sales transaction system */
Load_Link ("$EXTRACT_DIR/daily_sales_transactions.txt", "LINK_CUSTOMER_SALES_ORDER",

"customer_number, "BK_CUSTOMER", customer_number, customer_sid,
"sales_order_number", BK_SALES_ORDER, "sales_order_number", "sales_order_sid", $LOAD_DTM)

Load_Link ("$EXTRACT_DIR/daily_sales_transactions.txt", "LINK_AGENT_SALES_ORDER",
"agent_number, "BK_AGENT", "agent_number", "agent_sid",
"sales_order_number", BK_SALES_ORDER, "sales_order_number", "sales_order_sid", $LOAD_DTM)

Load_Link ("$EXTRACT_DIR/daily_sales_transactions.txt", "LINK_AD_SITE_SALES_ORDER",
"ad_site_number", "BK_AD_SITE", "ad_site_domain", "ad_site_sid",
"sales_order_number", BK_SALES_ORDER, "sales_order_number", "sales_order_sid", $LOAD_DTM)

Load_Link ("$EXTRACT_DIR/daily_sales_transactions.txt", "LINK_INSTALLER_SALES_ORDER",
"installer_number", "BK_INSTALLER", "installer_number", "installer_sid",
"sales_order_number", BK_SALES_ORDER, "sales_order_number", "sales_order_sid", $LOAD_DTM)

Load_Link ("$EXTRACT_DIR/daily_sales_transactions.txt"", "LINK_LINE_ITEM",
"package_number, "BK_PACKAGE", "package_number", "package_sid",
"sales_order_number", BK_SALES_ORDER, "sales_order_number", "sales_order_sid", $LOAD_DTM)

FIGURE 14.17 Driver script employing reusable load modules.

348 PART | IV Agile EDW Data Engineering

This script first sets a single load date time value for all the modules to share so that each cohort of records can be

identified easily later, although many teams would employ a LOAD_ID value here instead. The invocation of the

parameter-driven load modules then begins and follows the logical order implied by the data model. All the business

keys are loaded first, which is possible because these tables are fully independent given that all foreign keys have been

relegated to linking tables. Varying source tables are used to load these business keys. Agent and product, for example,

are populated using extracts from the human resource and product catalog applications, given that they hold master

records that the sales application will later utilize as reference tables. The invocations against the same source data

object, such as service_channel_extract, have been grouped together to provide a small bit of predictability within the

driver script. Next in the driver script come the calls for loading the linking tables, which have also been grouped by

the source data object utilized. Finally, the driver script calls the LOAD_ATTRIB modules, progressing by shared source

data object, until all the context needed for the business keys and links loaded previously has been captured.

Astute readers may have noted that the approach taken in Figure 14.17 requires a given source data object to be read

multiple times if more than one load module draws records from it. Given that the primary tables of a hyper normalized

data warehouse operate in an insert-only mode and do not update target records, one can expect high enough performance

with each call. For data warehouses employing small- to medium-sized data sources, the performance will be high enough

that the repeated read operations implied by Figure 14.17 will still complete within a reasonably short time window.

When data sources become very large, however, the load times for this approach may grow beyond what can be tol-

erated. In that event, the reusable ETL modules should be designed as subscripts to be called in sequence as each record

/* Attributes for fundamental tables */
Load_BK_Attrib ("$EXTRACT_DIR/sales_customer_extract.txt", "ATTRIB_CUSTOMER",

"BK_CUSTOMER","customer_number", "customer_number",
"EXCL", "$NULL_STR", $LOAD_DTM)

Load_BK_Attrib ("$EXTRACT_DIR/hr_extract.txt", "ATTRIB_AGENT",
"BK_AGENT","agent_number", "agent_number",
"EXCL", "$NULL_STR", $LOAD_DTM)

Load_BK_Attrib ("$EXTRACT_DIR/online_mktg_extract.txt", "ATTRIB_AD_SITE",
"BK_AD_SITE","ad_site_domain", "ad_site_domain",
"EXCL", "$NULL_STR", $LOAD_DTM)

Load_BK_Attrib ("$EXTRACT_DIR/product_catalog_extract.txt", "ATTRIB_PACKAGE",
"BK_PACKAGE","package_number", "package_number",
"EXCL", "$NULL_STR", $LOAD_DTM)

/* Attributes from the service channel extract */
Load_BK_Attrib ("$EXTRACT_DIR/service_channel_extract.txt", "ATTRIB_INSTALLER",

BK_INSTALLER, "installer_number", "installer_number,
"INCL", "installer_name, contract_office_city, service_category", $LOAD_DTM)

Load_BK_Attrib ("$EXTRACT_DIR/service_channel_extract.txt", "ATTRIB_MANUFACTUER",
BK_MANUFACTURER, "manufacturer_number", "manufacturer_number",
"INCL", "manufacturer_name, service_category", $LOAD_DTM)

Load_Link_Attrib ("$EXTRACT_DIR/service_channel_extract.txt", "ATTRIB_LINK_DEALERSHIP", "LINK_DEALERSHIP",
BK_INSTALLER, "installer_number", "installer_number", "installer_sid",
BK_MANUFACTURER, "manufacturer_number", "manufacturer_number", "manufacturer_sid",
"INCL", "cycle_time", $LOAD_DTM)

/* Attributes from the transaction extract */
Load_BK_Attrib ("$EXTRACT_DIR/daily_sales_transactions.txt", "ATTRIB_SALES_ORDER",

"BK_SALES_ORDER, "sales_order_number", "sales_order_number",
"INCL", "date_submitted, date_install_desired, date_complete, service_street_address, service_city, service_postal_code", $LOAD_DTM)

Load_Link_Attrib ("$EXTRACT_DIR/daily_sales_transactions.txt", "attrib_link_line_item", "LINK_LINE_ITEM",
"BK_SALES_ORDER", "sales_order_number", "sales_order_number", "sales_order_sid",
"BK_PACKAGE, "package_number", "package_number", "package_sid",
"INCL", "line_item_number, qty_requested, qty_installed, date_last_updated", $LOAD_DTM)

FIGURE 14.17 (Continued)

Agile Integration Layers with Hyper Normalization Chapter | 14 349

of a large data source is read so that all the loads stemming from the same extract can be completed via only a single

read through the source data. Figure 14.18 lists a pseudo code excerpt for such a “high-performance” approach, showing

how the calls made in Figure 14.17 against the service channel extract (shaded in gray) can be all called in sequence

for each record of a source data set.

Teams facing very high load volumes often add source_partition parameters to their reusable ETL modules. These

parameters cause an instance of a load module to operate only upon a certain value range of natural keys or other

driving attributes found in the source data of the business entity that the module is loading. With such parameters, the

EDW developers can distribute the data capture processing for their hyper normalized loading operations across many

ETL servers. These parameters can be easily updated in driver scripts, making a high degree of parallel processing very

manageable. Moreover, the insert-only paradigm underlying hyper normalized data stores keeps the load processing

very lightweight and allows EDW teams to implement their data capture routines on very inexpensive servers. Combine

that with the easy management afforded by the natural key partitioning just described, and EDW teams find that hyper

normalized integration layers scale very well indeed.

Self-Validating Reusable ETL Modules

The standard structures of a hyper normalized data store allow an EDW team to write reusable, pattern-based ETL

modules to load the data. Many teams also leverage the pattern-driven structure of source data vault tables to create

reusable, parameter-driven validation routines as well. By combining these two concepts, DW/BI departments can

quickly program and adapt the components of an EDW Integration layer that both captures and quality assures the

company’s operational data with a single driver script.

Excerpt from a Script Calling Multiple Modules On Each Record As It Is Read From A Single Source Data Set

(illustrating processing of the service channel extract only)

procudure load_from_service_channel_extract (
declare CURRENT_RECORD = $parameter_1

/* Fundamental tables sourced from the service channel extract */
Load_BK ("$CURRENT_RECORD", "BK_INSTALLER", "installer_number", "bk_installer_sid", $LOAD_DTM)
Load_BK ("$CURRENT_RECORD", "BK_MANUFACTURER, "manufacturer_number", "bk_manufacturer_sid", $LOAD_DTM)

/* Link tables sourced from the service channel extract */
Load_Link("$CURRENT_RECORD", "LINK_MANUFACTURER_PACKAGE",

"manufacturer_number", "BK_MANUFACTURER", "manufacturer_number", "manufacturer_sid",
"package_number", "BK_PACKAGE", "package_number", "package_sid", $LOAD_DTM)

Load_Link ("$CURRENT_RECORD", "LINK_DEALERSHIP",
"manufacturer_number", "BK_MANUFACTURER", "manufacturer_number", "manufacturer_sid",
"installer_number", "BK_INSTALLER", "installer_number", "installer_sid", $LOAD_DTM)

/* Attributes from the service channel extract */
Load_BK_Attrib ("$CURRENT_RECORD", "ATTRIB_INSTALLER",

BK_INSTALLER, "installer_number", "installer_number,
"INCL", "installer_name, contract_office_city, service_category", $LOAD_DTM)

Load_BK_Attrib ("$CURRENT_RECORD", "ATTRIB_MANUFACTUER",
BK_MANUFACTURER, "manufacturer_number", "manufacturer_number",
"INCL", "manufacturer_name, service_category", $LOAD_DTM)

Load_Link_Attrib ("$CURRENT_RECORD", "ATTRIB_LINK_DEALERSHIP", "LINK_DEALERSHIP",
BK_INSTALLER, "installer_number", "installer_number", "installer_sid",
BK_MANUFACTURER, "manufacturer_number", "manufacturer_number", "manufacturer_sid",
"INCL", "cycle_time", $LOAD_DTM)

)

FIGURE 14.18 Driver script employing reusable load modules

350 PART | IV Agile EDW Data Engineering

Figure 14.19 anticipates some of the material we will consider in the quality assurance portion of this book by first

providing three examples of some parameter-based testing widgets: confirm_domain, confirm_median, and count_nulls.

These widgets are examples of a class of simple widgets that agile EDW teams often create to automate the bulk of

their ETL unit testing. Any one of these widgets does not accomplish very much on its own, but teams can employ

many of them against all the target columns, every time they load the warehouse. By “swarming” the target tables with

many simple tests, they in fact catch the bulk of the programming errors introduced into ETL code during design

changes and other application maintenance activities.

Confirm_domain, for example, ensures that a given column found in both an extract and the target table records just

loaded from it have the same set of unique values. Confirm_median checks that a particular column in a source extract delta

and the new target records created from it have the same median value. The median statistic works better than average

Reusable Test Widget Prototypes (Examples)

procedure confirm_domain (HNF_table, HNF_column,
source_extract_file, source_field, HNF_Load_Date)

procedure confirm_median (HNF_table, HNF_column,
source_extract_file, source_field, HNF_Load_Date)

procedure count_nulls (HNF_table, HNF_column,
source_extract_file, source_field, HNF_Load_Date)

Sub driver procedure to validate all columns of a given target table

procedure validate_hnf_table_load
declare HNF_TABLE = parameter_1
declare HNF_COLUMN = parameter_2
declare SOURCE_EXTRACT = parameter_3
declare SOURCE_FIELD = parameter_4
declare HNF_LOAD_DATE = parameter_5

for all columns
if upper(right(column_name,4)) <> "_SID"
and upper(column_name) not in ("INSERT_DATE", "SOURCE_SYSTEM")

confirm_domain ($HNF_TABLE, $HNF_COLUMN,
$SOURCE_EXTRACT, $SOURCE_FIELD, $HNF_LOAD_DATE)

confirm_median ($HNF_TABLE, $HNF_COLUMN,
$SOURCE_EXTRACT, $SOURCE_FIELD, $HNF_LOAD_DATE)

if upper(left(column_name,7) <> "ATTRIB_")
confirm_nulls ($HNF_TABLE, $HNF_COLUMN,
$SOURCE_EXTRACT, $SOURCE_FIELD, $HNF_LOAD_DATE)

endif

endif
endfor

endproc

/* Validate that both extract and target table records just loaded have the same set of unique values */

/* Validate that both extract and target table records just loaded have the same median values
(works for both numeric, text, and date columns) */

/* Validate that both extract and target table records just loaded have the same number of null values */

FIGURE 14.19 Prototypes of reusable test widgets and a driver script calling them.

Agile Integration Layers with Hyper Normalization Chapter | 14 351

because it can be applied against many data types, including numeric, string, and dates. Count_nulls can be used for non-

key columns of an attribute table to ensure that the new records in a context column have the same number of null values as

the source delta from which it was replicated. EDW developers typically write a dedicated test driver script that applies

these widgets as appropriate against all the columns in the primary vault tables of the integration layer, calling it after each

load session. These simple widgets do not require a tremendous amount of horsepower, so often the full validation script

can fit comfortably within the EDW’s nightly load window. When the validation routine for a given module represents

such little overhead, some teams actually incorporate these test widgets into the load process. Where the ETL performance

and load window allow such an approach to be employed, this strategy will guarantee that at least the leading edge of the

data vault contains a clean, accurate, and therefore trustworthy portrayal of all the operational data sent to it.

Whether EDW team leaders decide to incorporate data validation steps directly into their load processes or run them

as a separate script, the overall advantage of the hyper normalized approach is clear. By allowing a highly patterned

approach to both data transformation and quality assurance, hyper normalization permits programming and validation to

be achieved far more easily than traditional DW/BI design paradigms allow. Both traditional and hyper normalized

approaches start with a conceptual model of the target entities and relationships the team believes the data warehouse

will need. In practice, it takes only a small effort to find the business entities and links prescribed by the target con-

ceptual model in each source system, and it takes even less effort to add calls to LOAD_BK and LOAD_LINK to the

EDW’s ETL driver script. Specifying the appropriate calls to LOAD_ATTRIB takes only slightly more effort, and

suddenly the EDW will be poised to begin archiving data for a new source system or subject area. With a small amount

of additional time to add calls to a set of reusable test widgets, the team will have implemented the bulk of necessary

unit-level quality assurance, and the foundational components of the enterprise data warehouse will be ready to run.

Estimate of Comparative Development Efforts

Given that loading and testing the leading edge of the data warehouse can now be configured using modular components,

we should revisit Chapter 12’s estimate for implementing new EDW objects. Table 14.2 both summarizes the estimate

last seen in Table 12.6 and adjusts it for the far lower level of effort required by a hyper normalized data repository.

The first two items in the estimate cover the source and requirements analysis necessary to arrive at a conceptual

data model and the understanding needed to specify a source-to-target map. Because this work in unaffected by the

choice of data modeling paradigm, its estimated labor is the same for both the standard approach and hyper normaliza-

tion. The remaining elements will take far less labor when working with hyper normalized designs, however. The devel-

opers will be able to accomplish many tasks, such as analyzing existing target objects, programming data transforms,

and validating newly programmed units, far more quickly with the hyper normalized approach because (1) the work is

now highly pattern based and (2) it focuses only on implementing the lightly integrated, persistent repository. Applied

business rules will be tackled later after the operational data has been safely stored away.

My observation is that EDW teams working with data vaults tend to complete approximately 90 percent of the tasks

listed previously with approximately 10 percent of the effort, and the remaining 10 percent proceeds only twice as fast.

These factors combine so that many of the tasks pursued with hyper normalized data models require less than one-third

of the effort they would take when working with a traditional data model in standard normal form. The remaining tasks,

such as creating a new logical model and supporting business validation efforts, are noticeably faster under hyper nor-

malization but require work involving several people so that they still take approximately half the effort of a traditional

approach. These adjustment factors are noted in Column H of Table 14.2.

The combined impact of these different accelerations can be seen in the totals at the bottom right of Table 14.2. For

creating or updating the primary vault tables for an EDW, working with a hyper normalized data model can save an

EDW team approximately three-fourths of the labor per table. In terms of billable time, the hyper normalized approach

saves the EDW team and its sponsors approximately 60 hours per table—a sizable amount that should inspire all

enterprise data warehousing teams to at least consider this innovative data modeling approach.

COMMON DATA RETRIEVAL CHALLENGES AND THEIR SOLUTIONS

The old saying, “There is no free lunch,” certainly applies to hyper normalized data warehousing. Now that we have

examined the basic components and outlined the benefits the technique offers, it is time to consider the price we pay

for these advantages. A balanced appraisal will allow EDW team leaders to make a fully informed choice regarding a

data modeling paradigm when they start their next major project.

352 PART | IV Agile EDW Data Engineering

HNF Aids the Leading Edge of the Integration Layer Only

For all the ways that hyper normalization makes data warehouses easier to design and ETL easier to program, there are

several limitations and difficulties that must be kept in mind. First, hyper normalization only addresses the integration

layer of the EDW reference architecture. EDW teams must still generate the presentation layer of business analytics

solutions using the same labor-intensive techniques they have followed for decades. Of course, a data virtualization

server (DVS) may well make that task far easier, as described in Chapter 13, as long as the data volumes do not exceed

the DVS’s bandwidth and begin taking overnight to answer queries.

TABLE 14.2 Comparable Conversion Costs Per Table when Employing the Hyper Normalized Data Modeling

Paradigm

For tables requiring two programming days of data transform programming1

A B C E F G H J

Hyper Normalized

Duration

Ln # Tasks
Performed Once Per… Days

1 Analyze sources Model Change 10 hrs 2.70 100 percent 10 hrs

2 Create new business data model Model Change 11 hrs 0.70 100 percent 11 hrs

3 Create new logical data model Model Change 10 hrs 1.30 50 percent 5 hrs

4 Create new physical data model Model Change 4 hrs 0.70 28 percent 1.1 hrs

5 Analyze existing target data Model Change 33 hrs 0.70 28 percent 9.2 hrs

6 Author STMs1 Affected Table 22 hrs 1.30 28 percent 6.2 hrs

7 Data Transform Programming2 Affected Table 22 hrs 2.00 28 percent 6.2 hrs

8 Author test cases Affected Table 19 hrs 0.70 28 percent 5.3 hrs

9 Write test scripts Affected Table 7 hrs 0.70 28 percent 2.0 hrs

10 Create test data Affected Table 18 hrs 0.70 28 percent 5.0 hrs

11 Validate test scripts in DEV Affected Table 16 hrs 0.70 28 percent 4.5 hrs

12 Promote to SIT Affected Table 3 hrs 0.20 28 percent 0.8 hrs

13 Execute scripts Affected Table 2 hrs 0.20 28 percent 0.6 hrs

14 Drive IT's conversion validation Affected Table 10 hrs 0.30 50 percent 5.0 hrs

15 Support business' validation Affected Table 6 hrs 0.30 50 percent 3.0 hrs

16 Document errors Affected Table 15 hrs 0.30 50 percent 7.5 hrs

17 Promote scripts to PROD Affected Table 3 hrs 0.20 28 percent 0.8 hrs

18 Execute scripts Affected Table 2 hrs 0.20 28 percent 0.6 hrs

19 Drive IT's conversion validation Affected Table 13 hrs 0.50 50 percent 6.5 hrs

20 Support business' validation Affected Table 8 hrs 0.50 50 percent 4.0 hrs

21 Document errors Affected Table 15 hrs 0.20 50 percent 7.5 hrs

Hours

Per-Model-Change Task Totals (Lines 1-5) 68 hrs 5 days 27 hrs 60 percent

Per-Affected-Table Time Totals (Lines 6-21) 181 hrs 13 days 65 hrs 64 percent

1 The average programming effort for an established EDW including ETL programming for new tables, conversion scripting for existing tables.
2 Numbers for standard approach duplicated from Table 12.6.

Total Effort
Hours

HNF-Generated

Savings

Standard Approach2

HNF
Adjustment

Total Effort
Hours

Agile Integration Layers with Hyper Normalization Chapter | 14 353

Second, the work represented in the labor savings previously estimated covers only light integration. One could be

forgiven for saying that this leading edge of the data warehouse is only a fancy staging layer. The data there has been

lightly integrated, but no business rules or master data elements have been added, so very little value has been added to

the data. Data vaults in this portion of the warehouse contain table structures and data that closely resemble the opera-

tional data. Because teams can always reconcile the contents of these source-oriented structures back to the source

systems, especially given the insert_datetime and source_system metadata columns, I refer to this portion of the refer-

ence architecture as an “audit layer.” The audit layer’s goal is to simply capture the source system data in a permanent

time-oriented repository so that later the company can base trustworthy analytics on it.

With the shared business key entities, however, the audit vault does provide a further service that makes it significantly

more valuable than just a persistent staging layer. By collocating the business key instances, the audit vault offers the com-

pany access to well-defined data with a first level of integration applied. One can draw upon the audit vault for 360-degree

views of the enterprise, as long as those views pivot on core business entities—such as customer, product, and location—

that can be found in the source systems. Because the pattern of business keys and links reflect business reality, they will

not change any more than the business conditions they reflect, so the audit vault is a solid foundation on which departmental

analysts can build temporary reports and analyses. Advanced users can certainly begin data mining this stable repository of

operational data as soon as the EDW team begins loading it.

Reflecting on the end-user’s hierarchy of needs that we considered during our look at agile requirements

management, we can say that the audit sublayer of the hyper normalized data warehouse does address both the “data

access” stratum and perhaps 50 percent of the value sought in the remaining layers. Not bad for a data pool that can be mod-

eled quickly and populated with reusable, parameter-driven ETL. To be fair, however, the business will soon need derived

columns and master data elements. Because those needs eventually appear, hyper normalization, with all its speed-to-

market, is not a complete solution, and EDW team leaders should be sure not to oversell this approach to their customers.

Retrieving Data from an HNF Repository Doubly Difficult

Another important caveat for EDW team leaders to keep in mind is that everyone—business and even SQL wonks—finds

it very difficult to retrieve data from hyper normalized data repositories. Consider the question marked “Q1” in the model

excerpt we reviewed in Figure 14.13. BK_CUSTOMER has three attribute tables, one for each source system providing

operational transactions to the data warehouse. A sale can easily close weeks before the customer sends in his or her

warranty registration card. Say analysts in the sales department used a desktop SQL tool to query for the current status of

all customers purchasing products during the past month, and that they built that query using equijoins to link together

these four tables. Such a query would generate the wrong answer. All customers who had not yet appeared in the warranty

system would be missing from the result because records for them would not exist in ATTRIB_CUST_WARRANT. To

properly retrieve data from a hyper normalized data warehouse, then, query writers must make sure to use outer joins for

those portions of clauses that pull data from attribute tables.

The question marked “Q2” in Figure 14.13 represents an even more daunting challenge. Any given record in the

LINK_LINE_ITEM table can have multiple associated attribute records in ATTRIB_LINK_ITEM_PROVISIONING,

each one reflecting a different state of a line item’s provisioning status. Say the sales analysts wanted to report on the

average promised date for the company’s undelivered line items. The typical query statement one would construct with

a desktop SQL tool would again use straight equijoins to all the tables involved in the request. These joins would bring

back all the statuses from ATTRIB_LINK_ITEM_PROVISIONING, not just the latest record, which would again give

the sales department an inaccurate answer to its business question.

Without additional preparation, one has to employ not only outer joins but also correlated subqueries on all the

attribute tables to properly retrieve data from a hyper normalized data warehouse. Figure 14.20 provides an example of

a retrieval query for selecting data from only the very small splinter of the hyper normalized data model shown on the

left side of Figure 14.13. This example retrieves data from one business key table and three attribute tables. The syntax

answers the challenge posed by question Q1 in the figure, namely how to prevent a missing record in an attribute

table from causing no records to be returned for a given record of the business key table driving the query. It also

addresses the challenge posed by Q2—that is, retrieving just one child record per attribute table for each parent record

even though more than one set of attributes have been recorded for a business key value over time. Note how complex

the query retrieving data from just these three tables has become with the combined effect of correlated subqueries and

outer joins. Given that hyper normalization greatly increases the number of objects in a data model, the EDW teams

will need to author far more complicated SQL than this statement when the queries start to include 10, 20, or more

tables. Each one will require significant labor to write.

354 PART | IV Agile EDW Data Engineering

With the retrieval queries becoming so labor-intensive to write, one could justifiably suggest that hyper

normalization has only relocated, not reduced, the complexity of creating an EDW. The EDW team has only deferred

the complicated data transforms found in the integration-layer loading routines of the standard approach and will have

to confront those challenges when it comes time to build the presentation layer objects. Moreover, both outer joins and

correlated subqueries consume considerable memory and processing horsepower in the typical SQL engine, so perfectly

reasonable business questions may involve a long wait or may never get answered at all.

The previous caveats require one to seriously consider both data capture and data retrieval before committing whole-

heartedly to a hyper normalization strategy. Fortunately, there are several partial solutions to these challenges that keep

FIGURE 14.20 SQL query demonstrating the correlated subqueries needed to retrieve information from hyper normalized data warehouses.

Agile Integration Layers with Hyper Normalization Chapter | 14 355

hyper normalization as a viable strategy. EDW team leaders need to understand these solutions so that they can make

an informed choice regarding data modeling paradigms and prepare a sufficient platform for their applications should

they decide to pursue this flavor of hyper modeling during their next project.

Solution 0: Focus on Presentation Layer Objects

The first solution is not really a technique but, rather, simply a reminder of original intent. Hyper normalized data stores

provide a persistent data staging area that provides light integration, holding operational information for further trans-

formation into the star schemas that will be found in the EDW’s presentation layer. Many of the frustrations that EDW

teams experience when they begin writing queries against hyper normalized data stores arise because they are trying to

create fully denormalized reporting data sets that skip the presentation layer and report directly out of the integration

layer. Many EDW teams can report directly off their data vaults for some reports, but their leaders also realize that they

will need to create a dimensional repository to support the more complex reporting and analytical requirements. When

populating a presentation layer from hyper normalized integration tables, the data retrieval queries will focus on loading

one dimension or fact table at a time. These queries involve far fewer objects each and are thus much easier to write.

Once the data has been projected into a dimensional model, users can turn to business intelligence tools to answer ques-

tions such as an order’s status on a given date or year-on-year comparisons. By deferring these advance analytical

operations until the data is in a form suitable for presentation, these EDW teams avoid trying to make a hyper normal-

ized data repository achieve too much.

Solution 1: Dummy Attribute Records

Teams can remove the need for outer joins by ensuring that at least one record exists in all the attribute tables for every

record in their parent business key or linking entity. They can achieve this by providing an additional parameter for

their reusable ETL modules for business key tables and links that causes the routine to seed a null record in every

attribute table identified by the parameter. Regarding the situation for the LINK_LINE_ITEM table depicted in

Figure 14.13, this additional parameter would name the three attribute tables for items as requested, being provisioned,

and installed. After creating a given parent record, these ETL modules would place a record in each named attribute

table that had NULL or default values for all columns except the primary key and record source [Linstedt 2010b]. If the

query writers know for a fact that all attributes will contain at least one record for each parent business key, they can

omit the outer join clauses from their SQL logic, making the queries much easier to author and maintain.

Solution 2: Current Record Indicators

Because so many end-user queries focus on the current status of business affairs, some EDW teams opt to add current

record indicators to their attribute tables in order to reduce how many correlated subqueries they must include in their

retrieval queries. On the records of every attribute table, a current record indicator has a value of TRUE if that record is

the last one added to the table. All other records will have an indicator value of FALSE. For end-user queries focusing

on the current state of affairs, a simple condition of CURRENT_IND5TRUE will eliminate the need for correlated

subqueries because only the latest record from each attribute table will be retrieved [Vos 2014b].

A minor disadvantage to this strategy is the small amount of additional load processing it requires and the violation of

the insert-only paradigm that it represents. With each run, the reusable ETL modules will need to somehow detect previ-

ously current records that have now been superseded by a more recent addition and then modify their current indicators to

FALSE. Such processing usually involves a second pass and an update of the indicator’s value. For EDW that must answer

many queries regarding the company’s current status, this slight aberration from the single-pass, insert-only model described

previously is a small price to pay in exchange for being able to drop correlated subqueries from many data retrieval steps.

Solution 3: Point-in-Time Tables

A more elegant workaround that eliminates the need for both correlated subqueries and outer joins is the point-in-time

table. Figure 14.21 shows the situation we need to solve using the customer topic area we considered in Figure 14.13.

To retrieve information regarding a customer, BK_CUSTOMER is joined to three attribute tables that correspond to

three different time points in the sales cycle: prospecting, sales, and warranty registrations. Simply constructed queries

356 PART | IV Agile EDW Data Engineering

intended to join these three tables into a comprehensive view will need to use outer joins for all of them so that custo-

mers missing a record, such as warranty, are not dropped from the query results. They will also have to use correlated

subqueries so that each customer business key is returned only once, even if it has more than one time point recorded

for it in one or more of the associated attribute tables.

EDW teams that want to make such a query easier to write or that have data volumes high enough to create perfor-

mance problems can create a point-in-time (PIT) table, as shown in Figure 14.22. A point-in-time table contains a for-

eign key for each attribute table that corresponds with a select set of time points addressed by the data. The example in

the figure supports beginning-of-month time points, but the team could decide instead to create records for every load

date time present in the attribute tables. The retrieval query is then rewritten by (1) inserting the PIT table in between

the attribute and business key entities, as shown in the bottom of the figure; (2) adding join logic that matches up the

load date time values; and (3) converting the outer joins to inner joins. With this adaptation, each BK_CUSTOMER

record can be easily joined to the appropriate attribute record because the PIT table contains foreign keys for both the

BK_CUSTOMER_SID column and the appropriate load date time. For any given time point, the appropriate record

from each attribute table will appear in the result set, whether it was created on the date recorded on the business key

recorded or loaded sometime earlier. Because the correct record for each point in time has been identified by this pre-

processing, correlated subqueries are no longer needed to retrieve the most current records or the records for any other

moment in history.

EDW team leaders should not worry that their developers will be populating a large number of point-in-time

tables because in practice hyper normalized data performs well enough that such preprocessing is necessary only occa-

sionally. Keep in mind that hyper normalization is employed for the integration layer. Data is typically transformed into

a star schema in the presentation layer to provide end users with high performance for their dashboards. Given that,

point-in-time tables are only necessary for those portions of the integration-to-presentation ETL that run so slow that

the overall presentation-layer load exceeds the load window allowed. Although people often worry that hyper normali-

zation will cause EDW performance problems, the overhead of the extra tables and more technical join logic rarely

impacts the speed of presentation-layer loads noticeably, especially with today’s fast disk subsystems and high-memory

server configurations.

FIGURE 14.21 Hyper normalized designs can require many correlated subqueries.

Agile Integration Layers with Hyper Normalization Chapter | 14 357

Solution 4: Table Pruning

Another tactical solution called table pruning frequently prevents the performance problems that many people expect hyper

normalized data stores to encounter. To see table pruning in action, consider Figure 14.23. This figure shows how the data

model of 4.10 would be employed to answer a query that stretches across the model and involves many tables, namely,

“How many products made by a specific manufacturer and sold by a given agent have been installed in a given geography?”

A_Cust_Prospecting A_Cust_Sales

PIT_BK_Customer

A_Cust_Warranty

BK_Cust_SID

123

123

123

123

123

123

123

123

123

123

123

123

123

123

123

123

123

123

123

123

1-Aug-12 1-Aug-12 1-Aug-12UNK UNK
A

AA

AA

AAA

A-

51 Irving
51 Irving St
61 S. Holly St

14-Oct-12 14-Oct-12 29-Sep-12
17-Dec-12
1-Jan-13

Fast Buyer
Cau�ous

Fast Buyer
Tire Kicker

15-Oct-12

16-Oct-12
17-Oct-12

18-Oct-12

1-Nov-12

31-Dec-12

Load_DTM BK_Cust_SID Load_DTM

BK_Cust_SID Load_DTM A_Prspct_Load_DTM A_Sales_Load_DTM A_Cust_Load_DTM

BK_Cust_SID Load_DTMAddr Credit Segment

Attrib_Cust_Prospecting

Attrib_Cust_Sales PIT_BK_Customer BK_Customer

Attrib_Cust_Warranty

customer_SID

customer_SID customer_SID customer_SID

customer_SID

load_date

load_date load_date load_date

load_date

source_system

source_system source_system source_system

source_system

facebook_id

facebook_login a_cust_prspct_load_date

a_cust_sales_load_date

a_cust_wrnty_load_date

customer_number

facebook_id

organization_name

svc_street_nbr

svc_street_sfx

svc_street_nme

svc_city

svc_postal

or

org

bill

bill

bill

str

str

str

cit

zip

1-Aug-12 1-Aug-12 1-Aug-12
1-Aug-12 1-Aug-12
1-Aug-12 1-Aug-12

11/1/2012

10/18/2012
10/18/2012
10/18/2012

8/1/2012
8/1/2012

9/29/2012
9/29/2012
9/29/2012
1/1/2013

11/1/2012
12/31/2012

1-Sep-12
1-Oct-12
1-Nov-12
1-Dec-12
1-Jan-13

Records needed to support beginning-of-month
points in time. Note repeated dates (shaded)

that point to null records in some tables.

With point-in-time table, retrieval query can use simple
inner Joins to retrieve records because preprocessing

ensures there will be load dates to link to.

FIGURE 14.22 By using point-in-time tables where needed, we can simplify retrieval queries.

358 PART | IV Agile EDW Data Engineering

In Figure 14.23, check marks are placed on the tables that have columns needed in the result set for this query, and a

few tables that neither provide data values or participate in the join logic have been faded out. However, even more

entities can be eliminated from the logic of this query through table pruning. The practice of table pruning examines

the contribution of each table to determine if the information in another table can fill that role, allowing the first table to

be eliminated from the query. Take customers, for example. The query needs only the postal code of people placing

orders, not their customer numbers. Accordingly, only the customer attribute table is needed, not the business key.

Because the attribute table contains the surrogate key for the customer, it can be joined directly to the

LINK_CUSTOMER_ORDER table, which already refers to the customer using that surrogate value. The

BK_CUSTOMER table can be eliminated from the query language. Similarly, the query focuses on a sales agent’s name

rather than the agent number that is stored in BK_AGENT, so that table can be pruned from the query as well.

By connecting data mostly through the surrogate keys found in linking tables, many business key tables can be

pruned from every query. Figure 14.23 uses X’s to show that, upon analysis, this example had no need for the five

business key tables originally included in the query. Moreover, only the attribute tables contributing values to the end

result need to be included. A schematic representation of the resulting join is shown on the right. The set of 14

tables first identified on the left has been reduced to 8—a 42% reduction.

Although hyper normalization significantly increases the number of tables in a data model, table pruning reduces

much of that impact upon retrieval query complexity. The previous example presented table pruning as a design-time

process that developers must invest in while writing a retrieval query. In practice, most DBMSs today will natively

apply table elimination to drop superfluous joins, reducing the labor required to retrieve information from the hyper

normalized data warehouse. For the remaining tables, it should be kept in mind that business key and linking

tables have very “skinny” records that is, they contain very few columns, making a large number of them pass through

the database server’s I/O buffers quickly. With table pruning and the reliance on skinny tables, most queries against

hyper normalized data stores perform just fine.

Solution 5: Bridging Tables

Table pruning and point-in-time preprocessing aside, the increased number of tables comprising a hyper normalized

data repository can sometimes cause performance problems for queries involving many tables. To correct this

Attrib_Line_Item

Attrib_Manufacturer

Link_Manufacturer_Pkg

Link_Line_Item

Link_Customer
_Order

Link_Agent
_Order

Attrib_Customer Attrib_Agent

Query: How many products made by TwoProng has agent
Henry had installed for customers in postal code 92683?

L

A

A

eSiteAgent Installer

Dealership

PackageOrder

Line item

Customer Manufacturer

A A A A

L L L L

A

A

A

X

X X

XX

FIGURE 14.23 Data retrieval queries can be (a) simplified through table pruning and (b) generated from DBMS constraints.

Agile Integration Layers with Hyper Normalization Chapter | 14 359

occasional challenge, EDW teams extend the preprocessing strategy employed for point-in-time tables to where they

preload results of specific queries into bridging tables. A bridging table is like a materialized view—it stores the results

of a frequently run query so questions against a particular join pattern can be answered from a preprocessed data store

rather than requiring the base tables to be rejoined again.

Say the example considered in Figure 14.23 started consuming too much of the EDW’s overnight load window. The

team could prejoin the eight tables of the pruned retrieval query and place records for the combined column set in a

new table, as shown in the table structure found in Figure 14.24. Each column in this figure has been prefixed with the

name of the base table from which it was derived. To keep this example realistic, the collection of elements shown in

the figure includes the business keys from the associated BK_ tables because downstream usages frequently need such

identifiers. The resulting table can serve as a bridge between the hyper normalized base tables and the queries that need

particularly fast performance. Subsequent queries needing this particular combination of tables will be able to pull a

subset of columns as needed directly from this bridging table.

Solution 6: Retrieval Query Writers

Even with all the previous tactics, the team will still need to write many queries that cannot employ bridging or

point-in-time tables. These queries will involve a good number of outer joins and correlated subqueries and thus be

difficult to write and maintain. Fortunately, EDW developers do not have to resign themselves to manually writing such

complex joins every time they need a new query. They can either acquire a query writer from the hyper normalization

community or build one of their own.

Before such query writers can begin to assist, the EDW developers will need to declare the primary and foreign key

constraints when creating the tables of the hyper normalized integration layer. Many teams do not plan to use such

constraints to ensure referential integrity because they slow down data loads. However, a team can declare these con-

straints and leave them “unenforced” so that they still document how tables in the data warehouse should be linked

together but do not incur data checks when records are inserted into the database. With primary and foreign key con-

straints declared, query-writing programs can use them to discover the relationships between tables and intelligently

construct a query’s WHERE clause.

Consider again the pruned model shown in the lower right of Figure 14.23. The most dependent table is

ATTRIB_MANUFACTURER, from which we need values that are stored in the Manufacturer_Name column. With

primary and foreign key constraints declared in the database, a program introspecting the DBMS’s system catalog regarding

Bridge_Customer_To_Manufacturer

bk_customer_customer_number

attrib_customer_facebook_id

attrib_customer_company_name

attrib_customer_billing_street_address

attrib_customer_billing_city

attrib_customer_billing_postal_code

bk_agent_agent_number

attrib_agent_agent_name

attrib_agent_date_emp_start

attrib_agent_email_id

bk_manufacturer_manufacturer_number

attrib_manufacturer_manufacturer_name

attrib_manufacturer_service_category

bk_order_order_number

attrib_link_line_item_line_item_number

attrib_link_line_item_qty_requested

attrib_link_line_item_qty_installed

attrib_link_line_item_date_last_updated

FIGURE 14.24 Columns in the resulting bridge table.

360 PART | IV Agile EDW Data Engineering

ATTRIB_MANUFACTURER will see that it has a foreign key that resolves to the column Manufacturer_SID in the

LINK_MANUFACTURER_PACKAGE. The program could then introspect this table in turn, discovering that it similarly

shares a key of Package_SID with LINK_LINE_ITEM. The program could progress in this manner until it has discovered

all the tables required to traverse from ATTRIB_MANUFACTURER at the bottom to both ATTRIB_CUSTOMER and

ATTRIB_AGENT at the top. It could then generate a query that includes joins between the business keys and linking tables,

employing outer joins and correlated subqueries as needed to retrieve records from the hyper normalized data store.

EDW team leaders who wish to employ one of the data vault standards can find several online communities that are

sharing already programmed query writers. Typically, such borrowed utilities are close to what a given team will need,

but they will require some polishing. Thus, EDW leaders opting for hyper normalization should include some time for

tuning query writers into their project plans. Once a tuned query-writing utility is in place, the EDW team will be able

to upload to it the data definition language of the team’s hyper normalized warehouse, which will include the primary

and foreign key constraints declared in the team’s database. After the utility has parsed the tables and constraints, the

developers may have to declare “roles” for tables that participate in more than one join path. At this point, they will be

able to select desired elements from a list of columns in the database, push a button, and receive the text of a data query

that will provide the requested fields.

Clearing an Architectural Review

Despite the advantages of hyper normalized designs presented previously, many EDW teams still worry that they will

never get their company’s IT architectural review board to approve this data modeling approach. Careful positioning of

the concept may make the difference in the outcome such a review might produce.

First, EDW team leaders can cite the distinction between logical and physical data modeling. As we saw in the

example provided via Figures 14.5�14.9, a standard normal form (SNF) data model always exists as a foundation for a

design in hyper normalized form (HNF). Because the HNF design concepts are very easy to apply, many teams of

course skip creating an SNF design and author the HNF model immediately. When the design must pass a review,

however, investing the time needed to prepare a SNF representation of the HNF design may help. The EDW team

leaders can then present to the reviewers the SNF logical model first and then mention that they intend to decouple

business keys, links, and attributes in the physical model—for all the benefits discussed in this chapter. Some review

boards focus on logical models because their priority is how data will appear to end users and other systems, so leading

with the SNF logical model answers their concerns and avoids giving them design points they will object to.

Second, EDW team leaders can demonstrate that data in HNF can always be projected into SNF. The business keys,

links, and attributes of a business entity can be reassembled by a query that joins those components back together. In

practice, it is not difficult to spot the tables needed to re-create any desired entity, as the dotted line in Figure 14.10

demonstrates for the ORDERS object we started with in the original SNF model shown in Figure 14.3.

The previous considerations are often enough to turn the conversation with the architectural review board completely

around. If a logical SNF model lies at the heart of an HNF design, and one can always physically reassemble SNF objects

when needed, why should the EDW not utilize a hyper normalized physical model for the data warehouse? The team can

bolster this rhetorical question by pointing out that an HNF physical model will allow the EDW team to

� create an entire integrating data capture facility after programming only three modules;
� load faster than a third normal form physical model given that it involves many fewer database constraints;
� start delivering sooner in small pieces, following a path that greatly reduces project risk; and
� adapt the warehouse once online for new business requirements without ruinously expensive re-engineering and data

conversion scripting.

As a final argument in favor of hyper normalization of one flavor or the other, EDW team leaders can share that

Bill Inmon, the creator of the data warehousing concept, has endorsed the data vault style in particular for his Data

Warehouse 2.0 specification (quoted in [Linstedt 2015]). Positioning the hyper normalized approach in this manner

usually leaves data modeling traditionalists with few arguments powerful enough to convince business sponsors they

should fund the slow, more expensive, and riskier standard approach to enterprise data warehousing.

RE-ARCHITECTING THE EDW FOR HYPER NORMALIZATION

Until now, I have said very little about supporting derived EDW components such as advanced metrics and master data

elements within a hyper normalized integration layer. To manage derived elements, we need to divide the integration layer

Agile Integration Layers with Hyper Normalization Chapter | 14 361

into sublayers, as shown in Figure 14.25. Each EDW team has to decide whether to implement these sublayers as separate

physical schemas within a database or instead through a naming convention for identifying tables within a shared schema.

The audit layer in Figure 14.25 supports the purpose of quick data capture and light integration discussed

extensively above. Every record in this sublayer can be tied back to a record in a source system. The value-added sub-

layer that this diagram adds to the integration portion of the reference architecture will store derived elements that sec-

ondary ETL operations create based on the data in the audit layer. The business rules applied in creating this new layer

add value to the information, for example, by populating derived metrics, or they consolidate multiple audit records

down to one. Because these results cannot always be tied directly back to source system records, the elements in this

sublayer must be validated through solid quality assurance practices. The diagram also shows a third, performance sub-

layer, in which helper objects such as bridging and point-in-time tables are placed.

With the audit and value-added layers defined, the EDW team faces some interesting choices on how to spread the

processing across the sublayers of the data warehouse. The data vault community in particular provides several styles

on how to be best accomplish this secondary processing, although the same patterns would apply to anchor-model data

repositories as well. These styles are largely architectural patterns that offer solution components that can be mixed and

matched in many ways. The few styles discussed here are thus just archetypes that EDW team leaders need to under-

stand in order to arrive at a design that matches their project’s particular needs. In outlining these styles, I have

borrowed from one of the thought leaders of the Dutch school of practitioners, although I have relabeled their ideas

slightly for greater clarity here [Damhof 2011b].

The Simple Vault Style

The architectural pattern promoted by the classical school of data vaulting is closest to what the original creator of data

vaulting described in his earliest works [Linstedt and Graziano 2011]. As portrayed in Figure 14.26, data is extracted

from the source systems and placed into a data vault in the warehouse’s audit layer. In this style, the target data vault

employs business keys that can be found in the operational data, and the ETL creates no new information aside from

generating the surrogate keys and adding metadata columns for auditing purposes. The remaining columns in the

integration layer contain only data replicated from the source systems.

FIGURE 14.25 EDW reference architecture adapted for a hyper normalized integration layer.

362 PART | IV Agile EDW Data Engineering

This flavor of vault does perform “light integration,” but only as much as can be achieved with the natural key

values replicated from source. Any value-added column derivations, cleansing, or second-level integration is performed

when the data is projected into a star schema structure and delivered to a data mart. Such value-added activities

are marked as “departmental business rules” in the diagram, although in practice they may be applied by the EDW

team when it creates the data mart on the department’s behalf. Because these data vaults serve to stage the data for

transformation into star schema, they are labeled “staging vaults” in Figure 14.26.

The Enhanced Vault Style

The EDW team does create value-added ETL for the integration layer in the next style of data vaulting, which builds

on the classic style by adding another vault-structured repository to hold the results of any second-pass processing. As

shown in Figure 14.26, this enhanced style applies enterprise-level business rules to the data found in a staging vault

and then places the results in a repository kept separate from the primary vault by either a physical schema or a naming

convention for the target tables.

The first stage of ETL does nothing more than (1) place another time slice of captured operational data in the

EDW’s persistent staging area and (2) lightly integrate that data by collocating business keys based on source-based

values for common business notions such as customer and product. The second stage of the ETL, however, does some

“heavy lifting” by cleansing, reformatting, and harmonizing the data. It performs further integration and consolidation

of the operational data, often generating master data records and creating some derived values as well, all of which will

be stored in the tables of a value-added “business vault” sublayer, as shown in Figure 14.25.

The business keys may change considerably for data moving from the audit to the value-added sublayers. The audit

layer’s staging vault typically builds business key records based on the identifier found in the source data with little or

no modification, even if they are dimensionless values without any independent meaning, such as “order number.”

Value-added

sub layer

Presentation layer

Audit sub layer

Integration layerSource environments

Staging

vault

Src 1

Src 2

Data

mart

Business

vault

Src 1

Src 2

Data

mart

Raw

vault

Raw

vault

Light integration

Departmental
business rules

D

E

L

D

Enterprise
business rules

Business

vault

Src 1

Src 2

Data

mart

Source

vault

Source

vault

DE

Light integration

Data

mart

Staging

vault

Business

vault
DE

Src 2

Src 1

L

FIGURE 14.26 Four styles for distributing hyper normalized repositories across the EDW reference architecture.

Agile Integration Layers with Hyper Normalization Chapter | 14 363

These keys will align closely with the way the staff working with the operational systems identify the core business

entities their systems manage. More often than not, the values for these keys will be surrogate keys assigned by the

source systems, which can be meaningless and dimensionless numbers. In the sources system, the values providing

human-meaningful business keys will be attributes of the tables, perhaps designated as “alternate keys.” In the staging

vault, they will land in columns of the attribute tables associated with the business keys. In the value-added layer, the

EDW developers drive toward a design that better represents the business truth of the organization. To achieve this

goal, they may well promote the alternate key values to the columns of the business key table and relegate the source

system surrogate keys to a column in the associated attribute tables.

The Source Vault Style

The third strata in Figure 14.26 shows a “source vault” variation on the enhanced style. In this approach, the EDW

defers any integraton and then accomplishes it in one step rather than two. Each source has its own data vault in the

audit sublayer of the data warehouse. Because each data vault is specific to a particular source, they are labeled “source

vaults” in the diagram. In each source vault, data is simply replicated from one operational system, stored away time

slice by time slice with the standard metadata added, so that it can be audited back to its source application. Surrogate

keys are employed, per the data vault standards, but do not achieve even light integration because the information from

each source is placed in its own set of tables. The second-pass ETL then must perform both integration and value-

added activities all in a single process. As an advantage, this approach allows the EDW team to begin saving away

operational data as fast as possible because they do not even have to identify and harmonize staging layer business

keys. A major disadvantage is the fact that the all-in-one ETL that moves data from the audit to the value-added

sublayer will be more difficult to maintain because it will have both integration and derived column logic located within

the same modules. When new sources appear or existing sources change structure, the maintenance programmers will

have to take care not to impact the value-added logic of the ETL while they update the portions that achieve data

integration. The end point, however, will be the same as that for the enhanced style because the results get stored in a

business data vault housed in the value-added schema of the warehouse.

The Raw Vault Style

The last archetypical style of data vaulting requires a change in ownership rather than simply a change in schema. In

the fourth strata of Figure 14.26, data is replicated from source into a “raw data vault.” These vaults are in fact identical

in structure and content to the source vaults discussed previously. The only difference is that they reside in the source

layer of the reference architecture, meaning they are created and maintained by the teams that own the source

applications.

Such a change in ownership is not as far-fetched as it might first appear, and this style offers some important

advantages to the company’s EDW program. The rules for designing and populating a data vault are so pattern-based

that “nearly anyone can do it.” I have met project managers, stuck on projects without an EDW team yet assigned, who

have commandeered programmers and successfully instructed them on building out the first incarnation of the data

warehouse using the data vaulting standards. By separating the functional components of the traditional data warehouse

into business keys, links, and attributes, ensemble data modeling has positioned us where we no longer need data

modeling geniuses to build repositories for every business analytics application.

Given the decoupling that hyper normalization makes possible, pushing responsibility for the persistent staging layer

to the owners of the source systems is a perfectly rational policy decision. In the organizations in which I have seen this

done, the statement from the executives to the source application owners has been simply, “If you’re going to run a

major business application such as customer relationship management, fulfillment, or billing, you need to make that

data available for tracking and analysis by the rest of the company.” In other words, it is not fair for one department to

own such a valuable information resource and lock away its data from others in the business who need it.

In practice, wrapping source systems with raw data vaults has led to much better organizational dynamics. Before,

parties wanting a new data feed from the major line-of-business systems had to beg the system owners for an extract.

These extracts were always specific to a particular purpose so that the next party needing a different extract—including

the EDW team—would have to go through the same groveling to get the desired data feed created. Once the raw vaults

were in place, getting data from these source systems for any reason became a self-service function, removing not

only a large delay in the creation of new data flows within the company but also the source of frequent and heated

confrontations with source system owners.

364 PART | IV Agile EDW Data Engineering

Although these raw data vaults do not perform any integration, because their data derives from a single source,

they do provide persistence of the operational information, which solves a common frustration for companies that

undertake an enterprise data warehousing program belatedly. Without raw data vaults, many companies find that the

past data in the operational systems has evaporated by the time they finally decide to build an EDW. Companies

that adopt a policy of wrapping source systems with raw data vaults, however, find that they have a readily intelligi-

ble pool of historical data to load into the enterprise data warehouse once it is built and ready to operate. All told,

raw data vaults offer an easy-to-build, self-service data source for the entire organization, and they provide EDW

with a reliable source of history, making them a smart policy choice for large organizations, even before they begin

data warehousing.

Blending Styles to Achieve Agility

Considering the four styles of data vaulting shown in Figure 14.26, the enhanced style offers the greatest support for an

agile enterprise data warehousing, but if the organization will not support this choice, the raw vault style will still allow

for a fairly nimble EDW program.

In the enhanced style, the EDW team can quickly pull together the primary vaulting tables. All they must do is

identify the semantically equivalent business keys spread among the disparate sources they have been asked to ware-

house and then configure their driver scripts to begin storing away the operational data. By wrapping some data-

virtualization or semantic-layer views around this primary vault, they will be able to provide a very useful surface

solution for the business in very little time. This first subrelease will have light integration on simple business keys that

everyone in the company will admit do exist. Even if the definitions of the business keys are not as all-encompassing as

the stakeholders would like, at least some enterprise reporting can begin. Moreover, this primary vault will be able to

provide counts of business entities and events that end users will be able to slice and dice by all the attributes available

in the source systems. Such qualifiers may not be harmonized across source applications yet, but departmental BI

programming resources can bridge the gap by crafting their own cross-reference tables. The data necessary to build

such Band-Aids will exist in the warehouse.

Some companies do not allow the EDW team the time or resources to build a staging vault, but if the organization

has at least implemented a raw vault policy, the path to enterprise data warehousing will be considerably shorter. With

raw vaults in place, the EDW team will find not only that source extracts exist but also that the contents of the business

applications have already been categorized into business keys, links, and attributes by the subject matter experts who

know those systems well. Given that start, the developers can skip the staging vault found in the other styles and begin

immediately building an enterprise-oriented business vault in the value-added sublayer. Moreover, because their develo-

pers will be populating data vault structures in this secondary area of the integration layer, they can build out the EDW

“one slice at a time,” knowing that if they make a design mistake, it can be corrected by re-engineering only a small

portion of the model. If they really mess up an increment of their business vault, the EDW team will be able to start

over using the original data from the persistent raw vaults. With such a low-risk profile for their intended approach, the

EDW team can rapidly deliver EDW increments in a “fail fast and cheap, then fix quickly” mode, much to the delight

of their business sponsors who will easily forgive a couple of small mistakes as long as the overall warehouse takes

shape with speed.

The hyper normalization styles described previously are just archetypes. With only a moment’s study of

Figure 14.26, one can spot ways to mix and match these separate notions into a wide range of additional solutions. For

example, a hyper normalized EDW could build a business vault from four sources—one captured with a raw vault,

another stored in a source vault, and the other two already integrated in a staging vault. Speaking from the agile per-

spective, the key to overall project success will be identifying the pattern that provides the business customers the great-

est area under the value buildup chart we considered in Figure 13.7. Perhaps the team’s first surface solutions will be a

virtual star wrapped around a staging vault to be replaced later by a full business vault and a traditional presentation

layer once the subject matter experts can fully discern the end users’ requirements.

With so many combinations of styles possible, and because all choices involve integration structures that can be

adapted easily, hyper normalization has shifted the work of building enterprise data warehousing from what we used to

face with traditional data modeling approaches. In the past, EDW teams had to wade through mountains of technical

details to arrive at a perfect solution, which they then had to deliver in a single development effort. Now, the more

effective teams sprint through a few subreleases, hoping that the users object substantially to the first one or two so that

the uncertainty regarding business needs is resolved. With end-user requirements clarified, the early version of the

warehouse can be quickly adjusted to serve the business correctly.

Agile Integration Layers with Hyper Normalization Chapter | 14 365

ENABLING EVOLUTION OF EXISTING EDW COMPONENTS

The estimates offered previously in Table 14.2 suggested that hyper normalization could save an EDW team two-thirds

of the development effort when creating the tables for a new warehouse or subject area. However, the effort of creating

Version 1 of an EDW pales in comparison to the cost of adapting a data warehouse’s structure and data for new require-

ments once its tables are loaded. Fortunately, hyper normalized data models prove to be resilient in the face of changing

business requirements as well, as revisiting the change cases introduced in Chapter 12 will demonstrate.

Change Case 1: Splitting Out Entities

The first change case addressed the cost of splitting attributes out of an entity when it became clear that they had a

separate life of their own and needed to be modeled as independent tables. Figure 12.15 illustrated this change case via

an entity relationship diagram, showing the tables AD_MANAGER, AD_SITE, and PROMO being split out from the

SALES_CHANNEL table. Table 12.7 calculated that this work would consume more than 1100 labor hours and cost

nearly $150,000 (at a fully loaded labor cost of $125 per hour).

Figure 14.27 shows how the same functional update would manifest itself in the integration layer of a hyper normalized

data warehouse. At first, the Ad Site and Promo columns are found in the attribute table of the sales channel, as shown in the

detail to the right. In the second model, business key tables and dedicated attribute tables have been created for both of them.

Linking tables have been created to maintain the relationships needed between the existing BK_SALES_ORDER_HEADER

and the new business key tables for the ad manager, ad site, and promotion entities. The net impact is three new business key

tables, five new link tables, and three new attribute tables. After the data in the original BK_SALES_CHANNEL and its

linking and attribute tables have been moved into these new tables, they can be dropped. The sales order entity is still valid,

so it will remain. By virtue of the data vault modeling rules, it is free of any foreign keys that would have to be adjusted

given the new tables, so its structure and the rest of the model that links to the new tables through it can remain unchanged.

The modeling change under consideration involves many tables, but fortunately the labor needed to populate the

new structures will remain quite modest. Figure 14.27 illustrates the modeling change this change case will require.

The join pattern illustrated on the far right illustrate where the EDW team can source data elements from the original

Original model New model

Change case summary

Add 3 new business key tables
Add 3 new attribute tables
Add 5 new linking tables
Discard 1 each business key, linking, and attribute table

BK_Sales_Channel

A

A

L L L

A

BK_Sales_Order_Header

A

L L

L

BK_Sales_Order_Header

BK_Ad_Site

BK_Ad_Manager

BK_Promo

PK Corporate customer SID

BK Corporate customer Nbr

Source system
Load DTM

BK_Sales_Channel

FK Sales channel SID

Sales channel ID
Ad manager name
Ad site name
Promotion name

Source system
Load DTM

A_Sales_Channel
L_Sales_Channel

_Sales_Order

PK l_sls_chnl_so_header_SID

FK Sales channel SID
FK Sales order header SID

Source system
Load date time

Join of existing tables for loading NewL_Ad_Site_SO Header Table

(unchanged)

PK Sales order header SID

BK Sales order number

Source system
Load DTM

BK_Sales_Order_Header

: Columns that the link-table ETL
module will scan while loading the new
L_AD_SITE_SO_HEADER table

FIGURE 14.27 Data models for Change Case #1 under hyper normalization.

366 PART | IV Agile EDW Data Engineering

tables. The new tables comply with the insert-only paradigm discussed previously, so populating these columns will

require only copying information from the original tables rather than changing values in place. Such migration will be

easy to accomplish—we need only to employ the parameter-driven ETL modules already built to insert the necessary

records, using the existing tables as a data source. To load BK_Ad_Site, for example, the developers will only need to

employ the business key loader to scan A_SALES_CHANNEL for unique instances of ad site names. To load

L_AD_SITE_SO_HEADER, they will call the link-table loader and instruct it to scan a temporary join of the existing

tables shown on the right side of Figure 14.27, creating new link records for each unique occurrence of sales order number

and ad site manager. After using their parameter-driven ETL modules to place the existing data into the new tables, the

developers will drop the three original tables because they are no longer needed, as indicated on the left of the figure.

Table 14.3 uses the estimated effort for new and updated tables calculated in Table 14.2 to identify the impact that hyper

normalization will have on this change case. Because the hyper normalization requires more entities to store the same data,

the number of new tables involved in this change case actually increased from 6 to 11. With the reusable, parameter-driven

ETL at their disposal, however, even this increased number of tables will require the EDW team to invest only two-thirds

as much effort as required under the standard approach. Instead of writing a special-purpose conversion script to transform

existing data for each new table, the developers can simply call their reusable ETL widgets on the tables of the old model in

order to populate the tables of the new. After converting the data, they then drop the tables or columns that are no longer

needed. We will see far greater savings in the next change case, which requires a more complicated model revision.

Change Case 2: Upgrading to a Party Model

The second change case addressed the cost of converting the EDW’s integration layer to a party model when it became

clear that the development team would be constantly adding new entities for people and organizations if it did not “bite

the bullet” and generalize them all into parties. The change in logical models can be quickly discerned by comparing

the starting point shown in Figure 14.10 to the new model required, as depicted in Figure 14.28. This transition

drops the entities for Customer, Agent, Installer, and Manufacturer, consolidating them all in BK_PARTIES. Separate

attributes tables are maintained for each party type, and a new attribute for shared qualifiers has been added in

ATTRIB_PARTY_CORPORATE. The “corporate” component of this new table’s name reflects the fact that the

Marketing and Sales departments have decided to collaborate on providing the EDW team with a list of corporate

identifiers for all parties. The link between the four old entities is replaced by four new linking tables to the business

keys for orders or packages. True to the Level 3 generalization approach to parties that we considered in Chapter 12,

this new model has a rollup link table associated with the PARTY table so that the organization can track such notions

as subsidiary ownership, trade associations, and purchasing collectives. In fact, the LINK_DEALERSHIP table in the

old model has been subsumed by this LINK_PARTY_ROLLUP, becoming just another set of records in this new

entity, distinguishable by a Rollup_Type column on the rollup entity’s attribute table.

All told, the extent of this modification would be simply the effort to build and populate a new hyper normalized

table for each of the 12 entities shown in the “New Tables” section of Figure 14.28. The effort of creating these

tables is shown in the last section of Table 14.3 and amounts to roughly half of what a team would need to invest if it

had built the EDW with a standard normal form data model.

Again, it is important to note that much of this savings comes from the ability to employ the reusable ETL modules to

not only load new records into the revised model but also convert the existing records. The conversions required for this

change case utilized temporary views between old and new tables to feed the team’s already programmed data transforms,

TABLE 14.3 Hyper Normalization’s Impact Upon EDW Re-Engineering Change Cases

Calculated at a blended hourly rate for all roles of: $125

IT Activities Effort Expense Tables Effort Expense Tables Effort Expense Effort Expense Tables Effort Expense Tables Effort Expense

Once Per Conversion 68 hrs $8,500 68 hrs $8,500 68 hrs $8,500 27 hrs $3,390 27 hrs $3,390 27 hrs $3,390

Per New Table 181 hrs $22,625 6 1,086 hrs $135,750 8 1,448 hrs $181,000 65 hrs $8,178 11 720 hrs $89,953 12 785 hrs $98,130

Total 1,154 hrs $1,44,250 1,516 hrs $1,89,500 747 hrs $89,953 812 hrs $98,130

HNF-Generated Savings 38 percent 48 percent

#1: 4NF Fix #2: Party ModelPer Table Estimates

Standard Normal Form (From Chapter 13) Hyper Normalized Form

Per Table Estimates#1: 4NF Fix #2: Party Model

Agile Integration Layers with Hyper Normalization Chapter | 14 367

much as was done in Change Case 1. ATTRIB_PARTY_INSTALLER, for example, has nearly the same structure as the

old ATTRIB_INSTALLER table, only it has acquired the Installer_Number column that formerly served as the business

key for the BK_INSTALLER table in the original model. In order to properly load some of the linking tables, the develo-

pers will have to run the reusable ETL module against some temporary joins between the original tables, as was necessary

in the previous change case. For example, to load the linking table for installers between PARTY and ORDER, they will

need to run the link loading module against a join of original LINK_INSTALLER_ORDER to the BK_ORDER (which

will be retained) and BK_INSTALLER (soon to be dropped), as shown in Figure 14.29. This join will provide the order

number and installer number combinations that the link loading module will scan for unique occurrences.

Loading the new LINK_PARTY_ROLLUP using records from the old LINK_DEALERSHIP table will require an even

more extensive temporary join, as shown in Figure 14.30. The three tables in the middle of the join shown in the top of this

diagram provide the necessary information from the previous model. The two party attribute tables joined on both sides will

translate name attributes for these parties into business key elements that the link loading module will scan in order to detect

unique combinations of installers and manufacturers. For each new combination, the load module will create a party rollup

record, and once this load is complete and validated, the developers can drop the old LINK_DEALERSHIP table.

HNF-POWERED AGILE SOLUTIONS

The previous discussion presented many advantages of hyper normalized data models that, when combined, offer EDW

team leaders a variety of attractive options for agile delivery of large data integration applications. We have seen that

hyper normalization allows an EDW’s integration layer to be

� modeled quickly with far more repeatable results than standard normal forms;
� constructed one small piece at a time;
� re-engineered in small pieces when confronted with new or changing requirements;
� loaded using only a few reusable ETL modules;
� adapted using the same reusable modules; and
� loaded quickly using high parallelization across inexpensive servers.

Attrib_Party_Customer

Attrib_Party_Agent

Attrib_Party_Installer

Attrib_Party_Manufacturer

L
A

PackageOrder

Line item

A

A

L

A

A

eSite

L L L L

L
ink_P

a rty_
O

rder_C
ustom

e r

L
ink_P

art y_
O

rder_ A
ge nt

L
i nk_P

arty_
O

rde r_I nstal ler

L
i n k_P

ar ty_O
rde r

_M
an ufac ture r

Link_Party_Rollup

New tables

Existing tables

Attrib_Party_Corporate

Party

FIGURE 14.28 Hyper normalized model needed to solve Change Case 2.

368 PART | IV Agile EDW Data Engineering

FIGURE 14.29 Joins of existing and new tables needed to feed load_link() for the Link_Party_Order_Installer table.

FIGURE 14.30 Joins of existing and new tables needed to feed load_link() for the Link_Party_Rollup table of dealership relationships.

Agile Integration Layers with Hyper Normalization Chapter | 14 369

I should also point out that hyper normalization seems to remove the large gulf between logical and physical model-

ing. During logical modeling, the team identifies business keys, then links, and finally attribute entities. The attribute

entities are then logically partitioned to support distinct sources of operational data and change cadences among the ele-

ments provided by those sources. In practice, the tables of the physical models of at least the source vaults and staging

vaults in the audit sublayer seem to closely match the entities prescribed by the logical modeling process. For most

small to medium data warehouses, partitioning of tables and indexes for performance is rarely needed, allowing the log-

ical model to serve as the physical model. This result is favorable for the agile EDW team because the more the logical

and physical data models overlap, the fewer days developers will have to invest in data modeling before the EDW

programming and delivery of business-usable information can begin.

These deliveries can in fact start very early on if the EDW team leaders adopt a surface-solution strategy. Exactly

as described in the previous chapters on data virtualization and big data, the fast and adaptable delivery that hyper

normalized forms enable will permit the EDW team leaders to tackle large BI requirements with a series of surface

solutions and architectural backfilling, as shown in Figure 14.31. Using all the components examined previously, the

typical approach to employing a hyper normalized integration layer would progress following a five-step process such

as follows.

Step 1: Surface Solution with Raw Data Vault

Before the team even begins considering the logical model of the integration layer, it first must land the data and offer

end users access to it. This access can come via views provided by the database or a data virtualization server, and it is

intended only to support data discovery and temporary solutions to those burning business questions that can be

answered easily with current, unintegrated information.

Step 2: Audit Sublayer

The EDW team leaders iterate quickly under a product owner’s guidance to identify business keys, links, and attributes

within the sources system data. Using parameter-driven ETL models, the EDW developers populate a staging vault a

few tables at a time, steadily building out 360-degree views of business entities found in the source systems such as

customer and product. Again, these features are brought to the DW/BI application’s “surface” for end users to access

via views or virtual star schemas.

Performance

layer

Landing

area
Business

vault Presentation

layer

Semantic layer

Audit

vault

Data discovery
1

2

3

5

Subrelease

Closely matches
source’s structure

Parm-driven
ETL, auditable

archive with light
integration

Value-added
business rules
applied using
standard ETL

With or without data
virtualization

Helper tables

Views

360º view of source-
based business entities

Advanced metrics
& master data entities

Train-of-thought
response times

Shorter load cycles

End user
applications

Incremental
business value

Start with a “surface solution” and
then backfill the architecture as
requirements become clearer

4

Dimensional

data marts
Hyper normalized data warehouse

FIGURE 14.31 Surface solution patterns employing a hyper normalized integration layer.

370 PART | IV Agile EDW Data Engineering

Step 3: Value-Added Sublayer

Building on the insights into data sources and requirements uncovered by end-user reactions to staging vault data, the

EDW team next switches to its standard ETL tools to apply business rules to the lightly integrated information in

the audit sublayer. Here, the team must slow down as it performs the difficult work of cleaning and harmonizing data,

as well as generating master data elements and derived metrics. The team places the results of value-added entities into

the business vault sublayer and asks the end users to evaluate the new tables. If the team makes a mistake in design, the

separation of business keys, links, and attributes will still allow it to correct its designs work fairly quickly and repeat

the evaluation until it delivers true value for the business.

Step 4: Fully Managed Data Delivery Chain

With a sound integration layer assembled and a detailed notion of the analyses end users require from the new

information, the EDW team can now project the integration-layer data into star schemas to give the business fast,

multidimensional analytics.

Step 5: Performance Sublayer

The operations team may struggle to make some of the projections of hyper normalized data into star schemas run

quickly enough to meet the company’s desired refresh schedule. At this point, the EDW developers can add a few

point-in-time and bridging tables to shorten the delivery times so that data transform processing fits comfortably into

the data warehouse’s load window.

EVIDENCE OF SUCCESS

The theory presented above may offer enough abstract reasons to inspire early adopters to begin experimenting with

hyper normalized forms, but most enterprise data warehousing team leaders will need evidence of any modeling

technique’s success at reasonably large companies before they will be willing to stake the success of their next proj-

ect on such a novel data modeling approach. Fortunately, we are more than 10 years past Dan Linstedt’s 2003

“Data Vault Overview” in The Data Administration Newsletter [Linstedt 2003], and evidence is now quite easy to

come by.

I began regularly hearing about data vaulting for enterprise data warehousing in 2011. In that year, EDW team

leaders from Sydney, Australia, to Stockholm, Sweden, asked me how this new data modeling technique might augment

the agile delivery of large analytic systems. Some online research revealed a large and active data vaulting community

in The Netherlands. Before I began adding hyper normalized concepts to the agile data engineering classes I taught

for The Data Warehousing Institute (TDWI), I traveled to Amsterdam to meet with a few thought leaders from this

community and interview some of their customers for case studies that could illustrate the technique’s success.

Data vaulting got started in The Netherlands when the government’s internal revenue agency hired Dan Linstedt to

teach its data warehousing team the Data Vault 1.0 standard. After several successful projects there, the members of

that technical team relayed this new technique to private companies and nonprofit organizations so that now the Dutch

data vaulting community can point to more than 600 completed data vault projects in their country alone. Many thanks

go to Ron Damhof and Tom Breur for introducing me to the Dutch school of hyper normalized data modeling and

facilitating the case studies described next. These gentlemen have been thought leaders in the rapid data warehousing

movement there, and they estimate that approximately 80 percent of the new data warehousing projects in The

Netherlands are now designed using data vaulting standards.

For a while, North America definitely seemed to be falling behind Europe in adaptable EDW designs, but I have

recently seen rapidly growing interest in hyper normalized designs in North America. When I now teach agile data

engineering at TDWI’s world conferences, usually two or three people in the audience will share with the class that

they have switched to either data vaulting or anchor modeling, adding that these techniques have greatly accelerated

their EDW delivery speeds. At the time of this writing, Canada in particular seems to be in the lead on this continent.

The largest financial services company, the largest semipublic pension fund, and the largest aircraft maker in Canada

have all shared with me the tremendous success they have had with ensemble data modeling. To finish this chapter,

I share with readers the highlights of two case studies I was able to complete while researching hyper normalization in

The Netherlands.

Agile Integration Layers with Hyper Normalization Chapter | 14 371

Online Financial Services

One case study, a financial company offering online services for private and professional investors, demonstrated the

power of data vaulting. BinckBank N.V. is one of the most successful young players in the Dutch financial landscape.

It offers clients fast, low-cost access to the leading financial markets throughout the world, extensive market informa-

tion, and accurate administrative processing of securities and cash transactions [BinckBank 2014]. During my interview

with BinckBank, I met with the manager of BI and the technical lead on the company’s data warehousing project. They

explained that they employ data vaulting in the “enhanced style” described previously in this chapter using a code

generator to create the target tables and ETL to build a 500-GB integration layer with 10 years of history based on

Microsoft’s SQL server.

When I was introduced to BinckBank, it was growing quickly through acquisitions. It had recently attempted to

update an 80-user, Kimball-style warehouse—an experience that proved to the company that the enterprise data bus

approach was never going to allow the EDW team to keep up with the company’s steady stream of new requirements

and acquisitions. Data vaulting gave the EDW team the ability to add new data sources and expand analytical services

for end users at an incredibly quick pace. As an example, the technical lead related a recent situation in which he had

to add all the data from an Oracle-brand customer relationship manager to the existing CRM subject area, which was

based largely on a PeopleSoft application. “How long did that much additional data modeling take you?” I asked him.

“Including getting coffee? All of about one morning.” I looked to the BI manager for validation. “He’s not kidding,”

was the response. “He was adding the new company’s data to our warehouse by the end of the day.” Needless to say,

such rapid turnaround hinged upon having a good data model of the source available that made primary and foreign

keys easy to discern. Such a case history makes the savings I have estimated for data vaulting in the previously

presented change cases look very conservative indeed, suggesting that in practice EDW teams can expect to achieve

incredible agility with hyper normalized data models.

The Free University

A second case study the Dutch data vaulting practitioners were kind enough to arrange on that same trip was with the Vrije

Universiteit Amsterdam (known as “VU,” the Free University, with “free” meaning “liberated”). VU is composed of 12

colleges with a total of 22,000 students and 4000 employees. There, I met with the data warehousing program manager,

project leader, and lead engineer. This team had recently built a first release of an analytics system using Oracle and

Business Objects that provided users with a large book of key performance indicators. The data for these KPIs originated

from a wide variety of sources, including multiple registration systems, a newly marketed Student Life Cycle Management

application from SAP, and other legacy systems for finance, human resources, housing, and research publications.

The project architects had chosen to build a classic-style integration layer in which the data vault provided a

persistent staging area of lightly integrated source data that was then projected into the star schemas of their presenta-

tion layer. The first release of the warehouse contained 30 business keys, 70 links, 140 attribute tables, and 100 refer-

ence tables. Because the student life cycle application was new and still being changed regularly by the vendor, the VU

data warehousing developers were particularly grateful that the data vaulting approach allowed them to update their

integration layer as the table structures in that source continued to change. They found that the decoupling of business

keys from links and attribute tables allowed them to create target tables and ETL before the source specification was

finalized and adapt to any surprises with only a small amount of rework. Based on this ability to model fairly accurately

in the abstract and quickly adapt to specifics, their team was able to make the first set of data available to end users

only a month after a new sources system went online.

The VU team relied heavily on reusable ETL modules, which contributed greatly to the team’s rapid deliveries of

new features. Staging and integration programming was facilitated by template files. To create new features, the develo-

pers needed only to enter some parameters, such as the names of the staging target tables, and the ETL was generated

for them. With programming largely automated, the data modeling became the most difficult part of providing new

information services because it required investigating the source data and deciding how to structure the integration layer

accordingly. They estimated that with their parameter-driven ETL, staging work consumed 10 percent of the effort,

data modeling 65 percent, and ETL development only 25 percent.

The attribute tables team underscored the many ways that hyper normalized data models allowed it to be far more

agile. Because the team was using a classic-style approach, its data warehousing activity focused on quickly capturing

source data, leaving the value-added activities for the front-end programmers to implement when they created new

dashboard features. The team estimated that the division of labor for adding new data elements to the warehouse was

372 PART | IV Agile EDW Data Engineering

10% for the data vaulting work and 90% for the BI layer. This allocation worked well for the team’s analytics program

because it minimized the effort invested in the non-value-added portions of the work, such as basic ETL coding,

allowing the EDW leaders to reallocate staff to those portions in which the team was closely collaborating with the end

users.

SUMMARY

To speed up both design and ETL coding for an enterprise data warehousing program, EDW team leaders should

consider ensemble data modeling. This style of modeling dictates separate data tables for business keys, the relation-

ships between them, and their attributes. There are three schools of ensemble modeling, all of them resulting in hyper

normalized data models that have more tables than equivalent repositories designed using standard normal forms.

Fortunately, these larger models contain only three or four kinds of tables, depending on the school of ensemble model-

ing a team decides to use. The table types are business keys, links, attributes, and optionally references—all of which

can be populated using one parameter-driven ETL module for each table type. This approach allows EDW teams to not

only begin capturing data after programming just a few reusable data transform modules but also employ these modules

to quickly reload the data should the target data model need to change.

Hyper normalized data designs strongly support agility by removing the risk involved in building large integration

layers for business analytics. By separating business keys, the foreign keys that model relationships, and the many qua-

lifiers that provide context for those keys and relationships, modeling mistakes and new requirements tend to affect

only one or two small tables and are therefore fast to correct. Accordingly, agile EDW teams can start their integration

layers with only small set of tables and safely add on additional tables as further requirements become clear.

There are several architectural styles for employing hyper normalized data repositories. They differ in whether

the EDW team chooses to combine or separate primary data capture and light integration from the application of

value-added business rules. The style that first stages lightly integrated data and then populates a value-added layer

using business-rules supports well agile data warehousing’s notion of delivering surface solutions with steadily richer

capabilities provided through later backfilling of the reference architecture.

Hyper normalization offers EDW team leaders many options for constantly delivering value to the end customers.

However, all these advantages focus only on streamlining the creation and maintenance of the integration layer of the

reference architecture. To extend this speed and labor savings to the remaining layers, EDW teams will need to consider

hyper generalized design techniques, which are the subject of the next chapter.

Agile Integration Layers with Hyper Normalization Chapter | 14 373

Chapter 15

Fully Agile EDW with Hyper
Generalization

The hyper normalized approach to enterprise data warehousing (EDW) integration layers described in Chapter 14 is

popular with many agile data warehousing teams because of the advantages it offers over traditionally modeled data

warehouses. Hyper normalized forms (HNFs) allow developers to build out the business intelligence applications in

small pieces and then employ reusable data transform modules to load the warehouse, saving significant labor on

extract, transform, and load (ETL) coding. More important, many of the HNF modeling rules make it easier for an

EDW team to evolve the structure of an integration layer even after the company’s operational data has been loaded.

For other EDW teams, however, the thought of employing a hyper normalized form only creates concern. These teams

are disquieted by the fact that HNF addresses only the integration layer of the data warehouse, that it doubles the num-

ber of tables of a standard normal form model, and that it makes data considerably more difficult to retrieve. They see

the performance workarounds such as seeding null records and materializing point-in-time tables as kluges and wish

there was a more widely supported means of generating a far more complete enterprise data warehouse.

A more complete solution does exist, and it lies in the opposite direction along the hyper modeling spectrum.

Instead of hyper normalizing an EDW model into more tables, the development team should hyper generalize the inte-

gration layer down to just a handful of entities. Such hyper generalized forms (HGFs) enable EDW teams to generate

and evolve nearly all of a data warehouse and its basic data management functions using a commercially available tool.

Although HGF involves fewer tables, it makes the details of the integration layer ironically more complex to under-

stand. This chapter introduces the three main components of the hyper generalized data store: an associative repository

for business entities and links, a stack of name-value pairs for attributes, and barely transformed relational structure for

transaction records. The reader should remember that in practice, teams that utilize hyper generalization in their EDW

programs invariably acquire a data warehouse automation tool to perform all the difficult work. This automation tool

makes the complexity of the integration layer moot because it generates new and updated data warehouses according to

the developer’s instructions, communicated through data models and data flows expressed at the business level.

Because EDW team leaders should understand how hyper-generalized repositories permit such extensive model-driven

development, this chapter begins by introducing HGF’s inner workings. The reader should keep in mind that, given the

automation tool, most of this complexity remains hidden from even the EDW programmers. The later sections of this

chapter illustrate how the model-driven development enabled by an HGF repository eliminates more than 90% of the labor

formerly required to create and modify a production data warehouse, including its presentation and semantic layers. With

that level of acceleration and support, hyper-generalized integration layers represent the pinnacle of agile data warehousing

and should be carefully considered at the beginning of any significant data warehousing project.

HYPER GENERALIZATION INVOLVES A MIX OF MODELING STRATEGIES

Chapter 14 demonstrated how ensemble modeling instills flexibility and resilience into hyper normalized integration

layers. The warehouse decomposes source information into very small pieces that can be reassembled in a myriad

of ways to meet a wide range of business needs. The hyper generalized data store obtains its advantages from ensemble

modeling as well. However, where the HNF technique uses a single approach to modeling the integration layer

(business keys, links, and attributes), the HGF repository employs three different styles of data storage.

375
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00015-1

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00015-1

As shown in Figure 15.1, the hyper generalized warehouse decomposes and stores an input record into multiple logi-

cal targets. The elements within the single source information record are decomposed into four categories:

� Things: All business entities (not just major “business keys” as in the hyper normalized approach)
� Links: Relationships between things
� Qualifying attributes: Analogous to the attributes in HNF
� Quantifying attributes: The measures occurring within transactions and events

Link Qualifier attributesThing Quantifying attributes

Relational record

Associative data store

Stack of
name-value pairs

Relational
transaction stores

Getting data in

Getting data out

FIGURE 15.1 Decomposing data into a hyper generalized data store and then projecting it to a star schema.

376 PART | IV Agile EDW Data Engineering

Things and links are stored in an associative data model. The qualifying attributes are placed in a tall and skinny stack

of name-value pairs. Quantifying attributes are recorded in dimensionalized fact structures with the foreign keys neces-

sary to link them to things and links.

As with the HNF approach, the purpose of the hyper generalized data stores is to retain information in an elemental

format that can be re-projected into a wide variety of star schemas as needed to meet specific analytical requirements.

The bottom of Figure 15.1 depicts how the multiple storage areas within the HGF integration layer support the creation

of presentation layer objects:

� The associative data store provides the core entities and rollup hierarchies for the dimensions.
� The name-value pair table enriches those dimensions with attributes.
� Information in the dimensionalized transaction store becomes the fact tables.

Readers who think that this data management strategy involves too many gymnastics should keep in mind that this

exotic blend of data structures will enable the bulk of a data warehouse’s design and operations to be controlled from

business-level diagrams, eliminating three-fourths or more of the work that building an enterprise data warehouse used

to require.

Extreme Generalization

Of the three storage areas for the HGF warehouse, the associative data store is the hardest to comprehend at first. Its

nature is much easier to understand if we see it derived from hyper normalized model considered in Chapter 14. Such a

theoretical transformation requires five conceptual steps, as shown in Figures 15.2�15.7.

Figure 15.2 depicts our starting point, a portion of an enterprise data warehouse already in hyper normalized form.

This model fragment shows customer linked to sales orders, both with attribute tables. True to HNF’s guidelines, these

two business key tables contain nothing but a string representing each business entity’s natural key(s), a surrogate key,

plus the metadata columns for record source and insert timestamp. Aside from any differences in the size or data type

of the natural key columns, the only aspect of these tables that makes them distinct is simply that they have been

declared as separate objects with unique names. Would it not be easier just to store the records for both of these entities

in a single business key table? We would need to record some metadata to indicate record type so that we could later

distinguish between records describing customers from those documenting sales orders. Such a generalization would

certainly reduce the number of tables within an HNF integration layer.

Figure 15.3 shows this change put into effect. CUSTOMER and ORDER have now been consolidated into a

table called THING. Each THING table has a foreign key pointing to a record in another new table called

THING_TYPE, which will remember which THINGs are customers and which are orders.

Similarly, the links shown in our starting model are structured all the same. They have only some foreign keys point-

ing to the business entities they link and then the same metadata columns we listed a moment ago. So why not collate

all the link records into a single table and use a metadata column to document the type of relationship each describes?

Link

Cust-Order
BK_Customer BK_Order

Attrib_
Customer

Attrib_
Order

“Pat Jones” “MN-234”
“Pat Jones”

+ “MN-234”

Credit rating: “B+”

Value score: “82”

Approved: “20-Apr-13”

Target install: “27-Apr-13”

FIGURE 15.2 Hyper generalizing a HNF data model � starting point.

Fully Agile EDW with Hyper Generalization Chapter | 15 377

Link

Attrib _
Customer

Attrib _
Order

ThingThing

Link

type

“Customer”
“Cust-Order” “Order”

“Pat Jones” “MN-234”
“Pat Jones”

+ “MN-234”

Credit Rating: “B+”

Value Score: “82”

Approved: “20-Apr-13”

Target Install: “27-Apr-13”

Thing type Thing type

Model

Data

FIGURE 15.3 Hyper generalization Step 1 � add metadata tables.

Link

Attrib _
Order

Thing

Thing type

Attrib _
Customer

Thing

Link

type
“Customer”

“Cust-Order”

“Order”

“Pat Jones”

“MN-234”

“Pat Jones”

+ “MN-234”

Credit Rating: “B+”

Value Score: “82”

Approved: “20-Apr-13”

Target Install: “27-Apr-13”

Thing type

Model

Data

FIGURE 15.4 Hyper generalization Step 2 � simplify to one table per function.

378 PART | IV Agile EDW Data Engineering

[MN-234] Approved: “20-Apr-13”

[MN-234] Target Install: “27-Apr-13”

[Pat Jones] Credit Rating: “B+”

[Pat Jones] Value Score: “82”

Link

Attributes

Thing

Link

type

“Customer”
“Cust-Order”

“Order”

“Pat Jones”

“MN-234”

“Pat Jones”

+ “MN-234”

Thing type

Model

Data

FIGURE 15.5 Hyper generalization Step 3 � “shred” attributes into name-value pairs.

Thing

classification

Link

Attributes

Thing

Link

type
Thing type

Model effectivity

Model

Data

FIGURE 15.6 Hyper generalization Step 4 � temporalize thing type relationships.

Fully Agile EDW with Hyper Generalization Chapter | 15 379

Such a design change would further reduce the number of tables within the HNF model considerably. This generalization

is also shown in Figure 15.3, in which the relationships have all been moved to the LINK table, and meta data records

denoting the type of each have been collected in LINK_TYPE.

With the metadata now identifying the records in the THING and LINK, these various instances of those two entities

no longer need to be kept separate. Indeed, Figures 15.4 and 15.5 show the model being “folded” upon itself so that the

THINGs and LINKs become aligned and then merged into one table each. (The attributes associated with business keys

and links must be converted to name-value pairs before they too can be folded together, as we will discuss in a moment.)

Note that this transformation of the tables has created two distinct functional areas within this integration-layer

model. THING_TYPE and LINK_TYPE define what kinds of objects the model can store and the relationship that we

expect to see between them. The records stored in these two tables describe the data model of the warehouse. Those

records determine what kinds of business objects can be stored in the integration layer and the ways they can be joined

together to create meaningful information about the enterprise. The THING and the LINK tables, on the other hand,

store the actual values of the warehouse. They represent the enterprise data.

Adding Time-Oriented Object Classification

Figure 15.6 inserts a many-to-many THING_CLASSIFICATION table between THING_TYPE and THING, giving the

hyper generalized data store incredible flexibility. This table provides a pair of date time values, “effective from” and

“effective until,” allowing the EDW team to declare that a given value is considered an instance of a particular thing

type until a certain date, after which that same value becomes an instance of a different business class altogether.

In other words, this classification table determines the effectivity of a given business model to the business data that the

warehouse contains. Because business models now have effective dates, the HGF data store allows the EDW team to

apply a series of data models against the company’s business information across time.

By adding the constraint that the models cannot overlap in time, the classification table enables the agile EDW team to

evolve the data warehouse as business conditions change. For example, the record for “Small Trucks” could be a “Business

Unit” of a large automobile company up until June 30, after which it is linked to a “Division” THING_TYPE record,

indicating that Small Trucks is now a fully independent business concern responsible for its own profit and loss statement.

Thing
classification

Link

Attributes

Thing

Link

type
Thing type

Model
effectivity

Model

Data

FIGURE 15.7 Hyper normalization Step 5 � temporalize the remaining entities.

380 PART | IV Agile EDW Data Engineering

By connecting Small Trucks to a new THING_TYPE record, the classification table causes that business object to be

governed by a new set of the LINK_TYPE records after the effective date. The new LINK_TYPE records may well give

Small Trucks a new place in a given rollup scheme or cause it to participate in several completely different types of rollups

altogether.

This THING_CLASSIFICATION table lends great agility to the EDW team. Using the effectivity dates on the clas-

sification records, the developers can create a new model using THINGS and LINK and then declare that it takes effect

sometime in the future. Such capability enables them to respond to upcoming requirements changes with a new pattern

of classifications and hierarchies on the already existing data records. They are able to manage complex requirements

changes such as a new rollup by simply inserting a few additional records in the model portion of the integration layer

that represent the new relationships between entities. When the data is next projected out of the integration layer into

the presentation layer, the data warehouse administrator makes a choice between the following:

1. Use the relationships that existed at the time of the transactions, in which case retrieval queries will follow the

previous set of THINGS and LINKS records.

2. Use the relationships belonging to the current model, in which case the retrieval queries follow the new set of

THINGS and LINKS records.

This inherent flexibility of the HGF repository allows the EDW team to steadily refine the data model without having

to reload the existing production data—very agile indeed.

Given the power that effectivity in the classification table provides, many people would naturally suggest that such

a strategy be employed throughout the rest of the data warehouse. Figure 15.7 depicts the final step in hyper general-

izing a starting data model, which adds effectivity metadata columns to all the remaining entities in our integration

layer’s logical model. When records are added that represent the current business situation, the business date is placed

in the effective-from column, and an “end of time” (EOT) value is placed in the effective-until field. By placing

effective-from and effective-until dates on every entity, the HGF integration layer can depict a change in both the

data and the data model of the warehouse by simply incrementing the image held in the data repository. When the

source system next contains a change of fact, the load process retires the old image of the appropriate records by plac-

ing a non-EOT value in the effective-until column, and it creates a new image with current data in the repository,

placing an EOT timestamp in the effective-until column.

Managing Things and Links with an Associative Data Model

The most exotic portion of an HGF warehouse manages the data for the backbone of an enterprise data model. We

called the components of this backbone business keys and links when discussing the hyper normalized form in

Chapter 14. As with the HNF approach, the company’s notion of its major business entities and how they relate to one

another determines the core truths that the hyper generalized warehouse will record and later express about the organi-

zation. The qualifying attributes, on the other hand, only provide a series of details or context about that larger truth.

The hyper generalized repository manages things and links differently from qualifying attributes because when funda-

mental business conditions occur in the enterprise, it is usually the collection of business keys in the data warehouse

and the relationships declared between that must change radically. The attributes already recorded about those things

and links can often remain largely unchanged. The similar revision to the data warehouse is necessary when a team

must correct a major misunderstanding regarding business requirements. By allowing the team to quickly adjust the

backbone of the data warehouse, HGF data warehouses offer the ultimate in fail fast and fix quickly.

To provide flexible management of things and links, hyper generalized warehouse applications store business keys

and links in an extremely flexible format called an associative data model. Associative databases store all different

types of data together in a single consistent structure that never changes, no matter how many types of data are stored

[Williams 2002]. The associative data model employed in hyper generalized data warehouses allows the five logical

tables representing the things and links to be stored in a single physical table. Figure 15.8 shows a small portion of a

business model that an EDW team wishes to implement using hyper generalization. The two entities, products and prod-

uct types, have a many-to-one relationship. To capture this modeling fact, we need two entities in the THING_TYPE

table, and their relationship must be then recorded in the LINK_TYPE table.

Figure 15.9 shows how the records inserted into the warehouse’s business metadata table would be structured. Each

record is given an object identifier (OID) when inserted in the repository. OID 1001 records that Product Category

exists as an entity in the data model starting 8-April. OID 1002 records that Product also exists as an entity with the

Fully Agile EDW with Hyper Generalization Chapter | 15 381

same starting date. To express that product records will eventually roll up to product categories, OID 1003 asserts that

OID 1001 (product category) is the parent of OID 1002 (product).

These records demonstrate the three parts of a record format called a triple. Triples consist of a subject, a predicate

(all assertions beside the subject), and often an object (a portion of the predicate.) For OID 1001, the subject was prod-

uct category, and the predicate was that this entity simply exists for a given data range. No object was needed for this

assertion because associative data modeling treats existence as a root fact that stands alone, much the way that business

keys are treated in the hyper normalized modeling paradigm. For record 1003, the triple structure is as follows:

� Subject: Parent OID 1001 (“product category”)
� Predicate: Receives a rollup starting 8-April
� Object: Child OID 1002 (“product”)

Records
created in

metadata tables
expressing the

model

Thing type

effectivity

Link

type
Thing type

Model

Data

Effectivity

Product

category

Product

Business model drawn
in a graphical tool

FIGURE 15.8 Business models are machine readable.

Product

category

Product

Business model drawn
in a graphical tool

EOT: end of time

Assertions recorded
“Product Category” is an entity (receives OID 1001)
“Product” is an entity (receives OID 1002)
Product rolls up to Product Category (receives OID 1003)

FIGURE 15.9 Dimensional objects from the business model translated to records in the associative data model.

382 PART | IV Agile EDW Data Engineering

The dimensional data governed by this model can be expressed as associative records as well, as shown in

Figure 15.10. In this example, five data records express that a product known as “CM21DU” is considered to be a “cable

modem” product type. Records for OIDs 1004 and 1005 provide the standalone assertions that “cable modem” and

“CM21DU” exist. Logically, these records belong in the THING entity. OID 1006 registers that cable modem is a product

type, utilizing the OID 1001 record shown in the previous diagram. Likewise, OID 1007 states that CM21DU is a product,

referring to the OID 1002 record created previously. Both of these records belong to the THING_CLASSIFICATION

entity. Finally, OID 1008 associates product CM21DU with the cable model product type by registering a parent�child

relationship between OIDs 1004 and 1005. Logically, this record belongs to the LINK entity. Note that this entry also refers

to OID 1003 as the “link parent,” declaring that the actual rollup documented for data records here complies with a particu-

lar rollup already configured by the records depicting the data model.

The records registering the existing types and instances of both things and links are all expressed as triples.

Because all the triples can be expressed using the eight columns shown in Figure 15.10, they can all be stored in

the same physical table. “Hyper generalization,” then, refers to not only the fact that an entire EDW model can be

captured in a few logical tables but also that those logical tables can be further consolidated into even fewer phy-

sical tables.

Note that the term hyper generalization is a fairly loose concept that I coined for this book in order to contrast

data warehouses based on associative data modeling with those utilizing the hyper normalization techniques

discussed in Chapter 14. The sidebar explains how much of this approach is actually based on meta modeling and

provides a more careful definition for the hyper generalization term. The crucial notion for EDW leaders to keep

in mind is that they now have two new directions in data modeling to choose from besides the “Inmon versus

Kimball” dichotomy established during the 1990s. When embarking upon a new project, the EDW architects can

either (1) invest in a data model with more entities than standard normal forms would specify (hyper normalization)

or (2) insist on extremely general data structures where only a handful of entities are necessary (hyper generaliza-

tion). Either choice will enable teams to achieve considerable automation in the creation and maintenance of their

enterprise data warehouses.

Hyper generalization’s use of very few tables allows the EDW’s underlying logical data model to be considerably

simpler than a standard modeling approach, but it also makes the internal workings of the data warehouse more complex.

The data capture operations shown in this section illustrate that many small records have to be perfectly coordinated to

store a company’s business information in the HGF’s reduced number of tables. That introductory presentation left out

many other details that the data warehouse will also have to manage, such as the following:

� Relationships between two entities can be optional.
� Multiple relationships might exist between two entities, in which case they need to be labeled for the various roles

that the entities play.
� Name fields should be stored as references in case the name text changes over time.

Detailed technical requirements such as these were the primary obstacle keeping EDW teams from utilizing hyper gen-

eralization until the vendor community could offer reliable tools for managing all these internal operations.

Assertions recorded
“Cable modem” is an instance of Product Category(OID 1001).
“CM21DU” is an instance of Product (OID 1002)
“CM21DU” has a Product Roll-Up to “Cable Modem”

EA B

C D

Business
objects
table

Attributes
table

FIGURE 15.10 Sample records for things and links in the associative data store.

Fully Agile EDW with Hyper Generalization Chapter | 15 383

Storing Attributes as Name-Value Pairs

Astute readers will have noted that our generalization process hit a snag when it merged the THING and LINK

tables in Figure 15.5. Combining these logical tables worked well for data and metadata tables belonging to THING

and LINK because they had comparable structures to begin with. But what about the attribute tables tied to each busi-

ness key and link table? In the HNF paradigm, many of those tables were closely modeled after the operational sources

so that each will have a unique set of columns. Tables so structured cannot be simply combined because their column

layouts do not match.

In theory, attributes could be treated as assertions and stored in the THING table along with the qualifier entities.

However, vendors who have tried this approach have encountered performance challenges when trying to retrieve

dimensional data from the associative data store. Automation tool makers have found that they can achieve far

better performance without any loss in capability if they “shred” the attributes of dimensional entities into a stack of

name-value pairs. As shown in Figure 15.11, each column in a given record can be converted to a record of its own,

where one column provides the name of the element represented and the next column provides the value for that

element. An additional column in the record holds the foreign keys necessary to link all the attributes back to the entity

being described. Foreign key values stored in those columns will identify the parent object to which the name-value

pair applies. In this example, the parent OID receives the values of the Line Item OID.

Because all tables arrive at the same structure when shredded in this way, their records can be directly combined.

Such a transformation turns multiple short and wide tables into a single tall and skinny stack of information. Note that

Sidebar: A More Careful Definition of “Hyper Generalization”

Technically, the data modeling patterns described is this

chapter go far beyond the traditionally recognized patterns of

generalization, requiring us to be slightly more careful in

defining the term “hyper generalization.” According to data

modeling theory, when we generalize a starting model, we

steadily create supertype entities and reassign to them the

attributes that apply to most or all of the entities that have

now become subtypes. Although one could say that in

Figure 15.7 we have generalized our entities so extensively

that they have all become just “things,” a second look will

reveal that the new model does not involve any subtypes.

Instead, supertypes and subtypes will all be stored in the

same entity. Moreover, records in a model that has been truly

generalized will still employ foreign keys or pointers within

dependent tables for linking records of a dependent entity to

records in its parent. The entity records in the hyper general-

ized data model we have been discussing no longer have

foreign keys as part of their structures, given that the pointers

between all the modeled objects have now been isolated to a

single LINK entity.

Speaking precisely, then, the repository for the dimen-

sional data of a warehouse described in this chapter is not an

example of generalization but instead of meta-modeling.

When people structure entities to capture a model of reality

rather than reality itself, they have created a model for a

model or, in other words, a meta model. The six logical enti-

ties in Figure 15.7 not only allow an EDW team to describe a

data model as a series of assertions but also provide abstract

storage for observed facts that comply with those model

assertions. Creating meta models in computer science has a

long history, and many patterns for meta models exist [West

2011]. The associative data model described here for holding

the dimensional data of an enterprise data warehouse is but

one example [Williams 2002].

Given the previous considerations, we need to provide a

slightly larger definition for “hyper generalization” so that the

term still makes sense, at least within the context of this

book. The data warehouse automation tools that this chapter

describes utilize a blend of models:

1. An associative meta model for the entities comprising the

backbone of an EDW’s dimensional data

2. A name-value pair stack for holding the attributes of those

dimensions

3. Fact tables for capturing business transactions that receive

foreign key values associating their records to the entities

described by the associative meta model for dimensions

If one starts with a single record representation of EDW

data, as we did in Figure 12.11, and then restructures it to

reside comfortably in our data warehouse automation system,

we will have abstracted that starting record in three ways:
� The dimensional entities will have become things and

links.
� The dimensional attributes will have become key-value

pairs with linked metadata records.
� Events and measures will have become an array of quan-

tities with links to a wide variety of qualifiers that provide

context information for each fact.

In this light, we have generalized business data to an

extreme so that a computer can greatly assist us in creating,

programming, and modifying an enterprise data warehouse.

The term “hyper generalization,” then, makes sense as long

as we define it to include the three types of modeling abstrac-

tions listed here.

384 PART | IV Agile EDW Data Engineering

the hyper generalized form places effectivity columns on the shredded table as well so that the HGF integration layer

can easily track the history of attribute values for any entity in the database by simply retiring old records with a

defined end date and placing a new record in the table with an undefined end date.

When information needs to be retrieved from this stack, the data management system needs to pivot an appropriate

set of name-value pairs back into a standard multicolumn format, as shown in Figure 15.12. The foreign key associated

with each pair allows the reconstructed relational record to be linked to the appropriate parent entity. In the diagram,

the shredded attributes table has three records providing a code, name, and stock keeping unit number for a package

that a telecommunication company sells. The two records that pivot out of the name-value pairs for this package regis-

ter that its SKU was CMX2112 until 8 September, at which point it changed to NPC14.

Storing Transaction Data in a Lightly Dimensionalized Format

The hyper generalized form transforms business entities and their relationships into triples and their attributes into

shredded storage. All that remains to manage from the source data is the transaction information that depicts events in

the life of the business. The hyper generalized form leaves this information in a relational structure that closely resem-

bles how it is received from the source systems. When the HGF warehouse captures each transaction record, it simply

replaces any natural foreign key values with new surrogate keys that relate it to the proper entities in the associative

data store, arriving at a “lightly dimensionalized” format for facts.

In processing source information, HGF applications typically read through the input tables that represent the

qualifiers first, identifying the business objects and storing them away with object identifiers or OIDs. When it later

processes the transaction data (which may or may not be found in the same extracts just scanned for qualifier informa-

tion), the HGF transform needs only to (1) identify the dimensional entities associated with each transaction and

(2) save away the measures representing the transaction. The remaining qualifier information can be ignored during

transaction capture because it was processed earlier and stored as things, links, and attributes. By identifying the

Resulting attribute records
in DW integration layer:

Source records:

Two records of 3 columns by 1 row
shreds into

Two sets of 2 columns by 3 rows

Note that the data warehouse automation system assigns the attribute records
surrogate keys (that point to parent records) and effectivity dates. EOT stands for
“end of time,” i.e., no end date.

Line Item OID Pkg Code Pkg Name Pkg SKU Qty Ord Qty Instld
13094304 VOIP Voice Over IP CMX2112 2 1

29339401 ODTV Ondemand TV NPC14 1 1

Parent OID

39349302 13094304 Pkg Code VOIP 2-Aug EOT

39349341 13094304 Pkg Name Voice Over IP 02-Aug EOT

39349383 13094304 Pkg SKU CMX2112 2-Aug EOT

39349432 29339401 Pkg Code ODTV 2-Aug EOT

39349481 29339401 Pkg Name Ondemand TV 2-Aug EOT

39349424 29339401 Pkg SKU NPC14 08-Sep EOT

Attribute OID Value Start Dt End DtName

FIGURE 15.11 Shredding attributes into name-value pairs.

Fully Agile EDW with Hyper Generalization Chapter | 15 385

qualifiers ahead of time, the HGF transform can translate them into OIDs to be stored on the transaction record so that

they can be rejoined later to the measures and provide context for the events. Some transaction source data contain

complex grains, so the developers will have to process those data sets multiple times, with each pass capturing the set of

transactions for a particular level of granularity.

Transaction records do not need effectivity metadata. They will retain instead their event date. The HGF repository

already maintains effectivity dates for everything that a transaction will be tied to, as well as its associated links and

attributes. The effectivity dates on these other elements allow the context for an event to be re-created for any arbitrary

point in time, so there is no need to treat a transaction extract as anything more than a stream of timestamped observa-

tions of business events.

Managing Hyper Generalized Data in HGF Requires an Automation Tool

Looking over the examples of how simple business notions require many records in an associative database, one

realizes how difficult it would be to manage enterprise data in this format by hand. It is true that the transaction

data is left in a relational form that most data warehousing staff members will understand and that most traditional

ETL tools can support. Expressing things and links in triples, however, will force the EDW team to create dozens

of records for even simple business assertions and to store them using a complex pattern of interlocking object

identifiers. Building the ETL to perform these functions would be a complex undertaking that would consume the

development team with creating the underlying data automation system and leave little time to construct the actual

enterprise data warehouse. Similarly, storing the many millions of attribute values in name-value pairs would obli-

gate the EDW developers to program shredding and pivot routines just to store data replicated from the sources

system, seriously detracting from implementing the business rules that create new derived information that adds

value to the organization.

For these reasons, hyper generalization cannot follow a build-it-yourself approach. Whereas hyper normalization

requires only that the EDW team build a few reusable ETL modules before it can begin warehousing corporate informa-

tion, hyper generalization will necessitate the EDW department to acquire a tool already built and validated to manage

the triple stores and name-value pairs that HGF requires. Fortunately, such tools exist and have supported hundreds of

successful EDW programs during the past decade. These tools perform multiple functions. They build the warehouse

and load data into the new structures. When requirements or designs change, the admin tool allows the EDW team to

update the data model and automatically convert much of the data between an old business model and the new. The

tool also retrieves the data from this flexible integration layer, creating the desired presentation layer and appropriate

semantic layer objects so that the data is ready for end-user analytics.

Shredded attributes table

Denormalized output table

Pivot operation (the opposite of
shredding data into name-value pairs)

Obj OIDObj OID Parent OID Parent OID NameName Value Value Start DtStart Dt End DtEnd Dt
1009 1006 Pkg Code VOIP 2-Aug EOT

1010 1006 Pkg Name Voice Over IP 02-Aug EOT

1011 1006 Pkg SKU CMX2112 2-Aug 08-Sep

1908 1006 Pkg SKU NPC14 08-Sep EOT

Obj OIDObj OID Parent OID Parent OID Pkg CodePkg Code Pkg NamePkg Name Pkg SKUPkg SKU Start DtStart Dt End DtEnd Dt
1009 1006 VOIP Voice Over IP CMX2112 2-Aug 8-Sep

1009 1006 VOIP Voice Over IP NPC14 8-Sep EOT

FIGURE 15.12 Pivoting shredded attributes back to their original format.

386 PART | IV Agile EDW Data Engineering

By doing far more than just creating the integration layer or loading it with information, these tools greatly acceler-

ate the many services an EDW team must provide its customers, allowing the team to easily reach high levels of agility

in a very short time. Because they do far more than just extract, transform, and load, I refer to these tools as data ware-

house automation systems, in line with The Data Warehousing Institute’s categorization of these products [Wells 2014].

This is a new term in the DW/BI industry, one that has not yet been properly recognized by the analyst industry [Pace

2013], a fact that will make simply identifying the products in this space challenging for the next few years. However,

the features and performance demonstrated to date by the tools utilizing the hyper generalization should cause analysts

to eventually categorize these products properly and give them the attention they deserve.

HGF ENABLES MODEL-DRIVEN DEVELOPMENT AND FAST DELIVERIES

If we focus on just the creation of new enterprise data warehouses or at least adding new subject areas to an existing

EDW, we can see that hyper generalization accelerates DW/BI deliveries in multiple ways, including the following:

� Eliminating most of the logical and physical artifacts that other data modeling paradigms require
� Allowing teams to build integration layers directly from a graphical business model
� Enabling teams to update an existing data warehouse by making changes to the EDW’s graphical model

Eliminating Most Logical and Physical Data Modeling

Consider the logical data model for data integration layers that the hyper generalized paradigm utilizes, as shown in the

top portion of Figure 15.1. That diagram depicts the logical data model for any enterprise data warehouse built using

this approach, so for any DW/BI team building an enterprise data warehouse, the logical data modeling work is com-

plete the minute they select their warehouse automation tool. The fact that data for the dimensional entities will be

stored in either a table of associative triples or a table of name-value pairs means the physical data model for the non-

transactional data is also already defined. Transaction tables will receive a structure that closely matches the format in

which event data arrive to the data warehouse. For that reason, the physical data modeling for the EDW is also largely

complete once the team has selected its automation tool. With the logical and physical data modeling reduced to a mini-

mum, the development team can redirect its efforts elsewhere.

Controlling the EDW Design from a Business Model Diagram

The logical and physical models for a hyper generalized integration layer may be already set, but the records expressing

the conceptual nature of the company’s information must still be entered into the model portion of the HGF repository.

Where does the knowledge needed to make the correct entries into those entities come from? The answer is the business

model for the EDW. The multiple forms that the hyper generalized data modeling paradigms use for storing things,

links, and attributes makes it possible for the computer to read a graphical depiction of a business model and translate it

into metadata entries in the model portion of the HGF repository. Moreover, once the EDW team supplements the busi-

ness model with some business-level source-to-target column mappings, the data warehouse automation system can

generate the ETL needed to capture the business data and translate it into instances of things, links, and attributes.

Figure 15.9 demonstrated how a simple entity diagram translates directly into records for the THING and LINK

entities of an HGF data warehouse. Figure 15.13 depicts the diagram that a team would employ to define a larger

portion of an enterprise data warehouse. This business model has been drawn using the business information modeler of

the data warehouse automation system. The particular entities in the figure represent the standard normal form model

shown in Figure 12.14 that serves as the starting point for the change cases I have been using to demonstrate the advan-

tages of hyper modeled forms. The fifth normal form solution for dealerships has been included, but the fourth normal

form violation still needs to be corrected. We will see how that violation is resolved using the HGF automation tool

when we return to the four change cases later.

In Figure 15.13, 12 entities represent qualifier information the team wishes to capture, organized into six dimen-

sions. The dark arrows point to the entities that hold the parent objects that dependent entities require and thus can

be interpreted as equivalent of the foreign-key constraints used in relational database management system (DBMS)

schemas. Two transaction data sets have been defined for the Sales Fact, one for sales made directly through the

company’s own web and the other for sales made through partner sites. These transaction sets have slightly different

but overlapping fields for measures defined—in particular, there are no discounts allowed for sales made through

Fully Agile EDW with Hyper Generalization Chapter | 15 387

partner websites. The light arrows represent how these transaction records will connect to the dimensional information

once the warehouse is loaded. For clarity, these links are shown for only one of the transaction data sets.

In this model, the developers have organized the qualifier entities into the dimensions they wish the final presenta-

tion layer to possess. The Sales Order and Ad Site entities will be denormalized into the Sales Dimension, for example,

and the four components for dates will be consolidated into a Time Dimension. The company also desires to track

subsidiary relationships between its customers, so the developers have declared a recursive relationship on the customer

entity, with the dotted line indicating that some CUSTOMER instances may not have a parent record.

The entities show the attributes that the operational data will be able to provide. Similar to the examples in previous

chapters, all customers will have values for names, social networking IDs, and their cities. The transactions data sets

will both have quantities requested and installed, but only direct sales will have a measure for a discount on a sale.

Note that this model is expressed in business concepts. Every entity, attribute, and relationship drawn is a fact that

the business subject matter experts working with the EDW developers can confirm or dispute as they review the dia-

gram. This model, once drawn using the business modeling interface, can also be reviewed and interpreted by the HGF

automation system. If the automation tool finds the business model complete and consistent, it will insert the records

necessary to express that model into the logical entities shown in Figure 15.7. Once those configuration records have

been inserted into the EDW’s physical repository, it is ready to receive qualifier data. The team can then build data

loading routines to capture the data for the dimensions using extracts from the operational systems.

The fact that this model can be interpreted by both business partners and the DW/BI development tool takes enter-

prise data warehousing to a much higher level of IT-business alignment. Business assertions can be translated directly

by the machine into a data store that will behave as the subject matter experts desire. Such direct translation of busi-

ness knowledge not only eliminates logical and physical data modeling chores for the EDW developers but also

prevents many time-consuming mistakes they can easily commit when following traditional development practices.

Customer

Consumer Dim

Facebook ID
Customer name
City

CRM agent

Employee Dim

Emp Nbr
eMail address
Hire date

Installer

Service Dim

Installer name

Dealership

Date established
Cycle time

Manufacturer

Product Dim

Manufacturer name

Package

Package code
Package name

Sales order

Sale Dim

Ad site
Promotion

Time dim

Year

Calendar

month

Day

Accounting

month

Sales fact

Partner site
Qty requested

Qty installed

Direct site

Qty requested

Qty installed
Discount

Package SKU

Order Nbr
SOA tracer Nbr

Ad manager

Home page title

FIGURE 15.13 Data warehouse business model used for the change cases.

388 PART | IV Agile EDW Data Engineering

Driving Design Changes Using a Business Model

Perhaps more important, the HGF automation system allows the EDW developers to change the data warehouse’s struc-

ture by updating the very same business model they used to create the warehouse in the first place. When requirements

change, the data warehouse administrators update the model and then publish the new version when they wish for it to

take effect. The automation system will first retire and insert into the hyper generalized repository the new records

needed to express the updated model. It will then adjust the dimensional data so that existing entities will comply with

the newly declared relationship patterns from that date forward. When the presentation layer objects are refreshed, the

EDW team can choose whether to portray the business dimensions as they were through the past or as they are now,

given the new data model.

Figure 15.14 shows the details of how an updated diagram of the EDW’s business model alters the entries made in

the HGF things and link repository. The EDW team decided that, as of 7-October, the company should be able to cate-

gorize orders into electronic commerce segments without regard to which website they originated from. Until then, the

originating website determined which market segment an order represented. In the business modeler, this change

requires removing the arrow between AD SITE and eSEGMENT and replacing it with a direct link between orders and

segments. In the model entities of the repository, the automation tool should retire the LINK_TYPE record that rolls up

AD SITE and eSEGMENT and insert another relating ORDER directly to eSEGMENT. The bottom of the diagram

shows how the automation system will interpret this request into actual data management actions. The record with OID

6014 (linking 6012 Ad Sites to 6011 eSegments) is given an end date of 7-October, and a record 10071 linking 6013

Orders directly to 6011 eSegments is inserted to take effect from that date onward.

Again, this update was accomplished without any logical and physical modeling, saving the development team a

tremendous amount of time and effort. This direct link between the business model and the data warehouse’s capabili-

ties allows the EDW team to fluidly respond to new realization regarding requirements, thus dramatically improving

the DW/BI department’s agility. With the ability to fix quickly, a tremendous amount of EDW project risk has been

eliminated. The business model no longer has to be perfect before the team can begin building the data warehouse,

allowing teams to safely start the data warehouse with a modest subrelease and add on small increments with each

development iteration.

Ad Site

OID 6012

eSegment

OID 6011

Order

OID 6013

Thing type

effectivity

Link

type
Thing type

Data

New

Modeling record retired

Model

Metadata

FIGURE 15.14 Example of how graphical model changes impact the associative data store.

Fully Agile EDW with Hyper Generalization Chapter | 15 389

LOADING DATA INTO THE HYPER GENERALIZED INTEGRATION LAYER

Hyper generalization not only allows the EDW team to create the data warehouse’s integration layer from a business

model but also enables the team to build the data transforms using business concepts. Using the data warehouse automa-

tion tool, the team must configure two types of ETL modules to load the warehouse—one for populating the qualifier

objects and another for loading transactions.

Loading the Dimensional Objects

The dimensional data transforms naturally must be executed before the transactional ETL modules. Figure 15.15 depicts

the ETL that a team might create to load the Sales Dimension from Figure 15.13. The team has created this data flow

mapping using a graphical user interface contained in the hyper generalized data warehouse automation system.

Of course, the actual configuration required for each data transform module will depend on the nature of the source

extract employed. Here, the extract file contains the header information of the sales orders. The goal for this ETL mod-

ule is to create instances of ad site and sales order objects from sales header input. Accordingly, the targets of this data

flow mapping are the AD MANAGER and SALES ORDER objects. As determined by the business model, ad manager

instances will be independent, but each eSegment instance will need an object identifier to associate it with a parent

ad site.

The key functional widget comprising this mapping is the add�modify instance unit. It represents a reusable,

parameter-driven ETL module, much like those that teams using hyper normalized integration layers must build.

However, the HGF add�modify instance widget is provided by the automation tool. It is designed so that EDW teams

can easily specify a data transform using a graphical drawing rather than calling hand-coded modules in a script using

parameters to achieve different functionalities.

By considering the downstream objects to which it is connected, each add-mod instance widget drawn in an ETL

module decides for itself much of what it will do during load time. Consider the widget connected to the Ad Manager

object, for example. At run time, it will receive two fields from the data source—the domain of the ad manager serving

Ad manager domain

Home page title

Add-mod instance
Transaction date

Ad manager

Transaction date

Sales orderAdd-mod instance

Ad site code

Response URL

Promotion code

Percent discount

Order number

SOA tracer Nbr

Ad site domain

Xtrc_Sales_Header

Ad manager domain

Home page title

Ad site code

Response URL

Promotion code

Percent discount

Order number

SOA tracer Nbr

Customer Nbr

Customer name

Order date

Data flow (all but elements loaded into transaction dates)

Data flow for transaction dates, shown in light color only to aid clarity.

FIGURE 15.15 Change Case 1’s data transform for dimensions before the business model is updated.

390 PART | IV Agile EDW Data Engineering

the promotion through which a purchase was made and the title off of that service’s Internet home page. To complete

its role, it will take this information and do the following:

� Employ the fields declared as natural keys for creating unique occurrences of AD MANAGER instances
� Look up that value to determine whether the warehouse has encountered that particular ad manager before
� If no, create a new instance in AD MANAGER
� If yes, check whether the existing instance has a matching value for the home page title
� If that value differs from the source record, (1) retire the appropriate name-value pair for home page title in the attri-

butes table, and (2) insert a new name-value pair with the updated value

Recall that every instance and attribute value in the hyper generalized integration layer is timestamped with effectiv-

ity dates. Accordingly, this ETL module contains a data flow that takes the order date to the Transaction Date element

for each target object.

Note that the team was able to keep this mapping fairly simple because it did not need to specify any special proces-

sing for the source fields or target columns providing primary key values for the target objects. Because they had already

declared the natural key using the business modeler, the developers only had to route the output of the add�modify

instance widget to the target object. The automation tool automatically identified the natural key fields and provided the

logic of creating object identifiers from them. All that design has been provided by the programming of the Add-Mod

Instance widget by the publisher of the HGF automation system tool, making data transformation modules very fast to

create and modify. This and other built-in functionalities provided by the HGF automation tool keep ETL modules very

streamlined and intelligible, greatly amplifying EDW developers’ ability to do impact analysis when the data warehouse

must later be maintained or enhanced.

The add-mod instance widget feeding the SALES ORDER object must perform very similar tasks as described

for Ad Manager, but it will need to store the appropriate object identifier for each sale’s parent ad manager object.

In fact, it will need to consider whether a particular sales order should be associated with an ad manager by com-

paring the transaction date to the effective date of the various models stored in the HGF repository. If the relation-

ship is effective for a given transaction date, the information will be loaded with the proper object identifiers. If

not, the automation system will refuse to load the record, keeping the warehouse data aligned with the company’s

sequence of business models.

Loading the Transactional Objects

Referring back to the business model for this example contained in Figure 15.13, we can see that the transaction records

will be associated with six dimensions. After the HGF automation system has acquired the information for those six

dimensions, it can then load the transaction data using a data transform such as the one depicted in Figure 15.16. Here,

the source is a listing of sales order line items. This extract has many fields, but the mapping only draws upon a subset

of them. Two of the measures available represent magnitudes for the business events that the EDW developers wish to

capture, namely Quantity Ordered and Unit Price. Several others provide foreign key values they can use to link events

to the data warehouse’s dimensional objects, such as Ad Manager and Package.

In this mapping, Order Number performs a dual role, identifying a parent Order object and combining with the line

item number to form a unique identifier for the transaction. Order Date also feeds two targets, identifying a parent

Day object and providing value for the transaction date. Note the behind-the-scenes translation that the data warehouse

automation tool performs in this module. The Package Code column in the extract, for example, is diagrammatically

connected to the Package object reference in the target structure. The automation tool can clearly infer that this code

should be used to link each transaction record to the appropriate package instance already stored in the dimensional

data of the warehouse. Rather than trying to insert the Package Code value, it will search for an existing Package

instance and insert the object ID instead.

Thus, the EDW developers can describe the data transform they desire at a business level: “I want that source

column to be stored in this attribute of the target entity. Automation system, you perform the proper value-to-object

identifier translations for me.” By allowing teams to work using diagram-driven, business-level data transform program-

ming and business-level repository creation, the hyper generalized approach dramatically accelerates the delivery speed

of an enterprise data warehouse. Such capabilities explain why business executives regularly share comments with me

such as “We got more done in 5 days using the data warehouse automation tool than two of the world’s largest systems

integrators were able to accomplish in the past 5 years.”

Fully Agile EDW with Hyper Generalization Chapter | 15 391

RETRIEVING INFORMATION FROM A HYPER GENERALIZED EDW

The hyper generalized approach further accelerates DW/BI deliveries by automatically maintaining a performance sublayer

within the EDW and automating the creation and refresh of presentation-layer objects. It was shown in Chapter 14 that

hyper normalized data modeling techniques make data more difficult to retrieve from the EDW’s integration layer. To

compensate, the EDW team needed to selectively build helper objects such as point-in-time and bridging tables, locating

them in a performance sublayer of the reference architecture. Although the hyper generalized strategy reduces the number

of integration-layer tables required, the associative and shredded storage formats result in data warehouse records with a far

greater level of interdependency. A careful observer would be concerned that this approach might require even more hand-

crafted helper objects than the hyper normalized paradigm. Whereas the hyper generalized integration layer does include

performance sublayer, fortunately, the HGF automation system automatically creates and maintains the objects required

there—another reason why this approach allows for high productivity among agile EDW teams. In addition, the HGF

toolset includes a query writer that allows the developers to define data retrieval modules using business-level concepts,

much in the same way that they created the data warehouse structure and defined data transforms to load it.

HGF Systems Maintain a Performance Sublayer

Figure 15.17 depicts how data moves across the entire reference architecture in a hyper generalized approach. Source

extracts arrive first in the landing area, where the data structures closely mirror how data appeared when taken from the

source systems. The HGF automation tool then employs the business-level depictions of the repository and transform

logic to move dimensional data into the core of the integration layer. Although an HGF warehouse employs a relational

DBMS to hold the associative data records and name-value pairs of the integration layer’s core repository, the hyper

generalized formats used are extremely difficult to read, given that each source record can become hundreds of small

HGF records, all linked together with object identifiers. With this design, the database engine must perform a high

number of joins to reassemble the business information once placed in the core, so hyper generalized repositories need

to consider performance problems.

Note: Mappings for transaction date shown in light color only to aid clarity.

Transaction target:
Direct site

Order number

CRM agent

Package

Customer

Ad manager

Xtrc_Sales_Items

CRM agent email Addr

Ad manager

Response URL

Order number

CRM agent emp Nbr

Customer namebook ID

Customer name

Order date
Transaction ref.

Package code

Package name

Manufacturer Nbr

Installer Nbr
Day

Transaction date

Manufacturer

Installer

Qty requested

Unit price

Qty requested

Unit price

Order number

Line item number

Concatenate

Line item number

Line item number

FIGURE 15.16 Starting data transform for the transaction data of Change Case 1.

392 PART | IV Agile EDW Data Engineering

The HGF automation tool takes the same solution to this challenge that the hyper normalized data warehouse

builders must resort to: It maintains a performance sublayer. In this layer, the atomic dimensional data are reassembled

and pivoted until they appear very much like the enterprise-level dimensional tables. All the things and link records are

connected together by following the object identifiers, and the attributes for each business object are pivoted out from

the shredded records stored as name-value pairs. These reconstituted dimensional records will then link to the ware-

house’s fact tables, in which the company’s transaction and events have been loaded.

These dimension helper tables are refreshed each time the data warehouse receives a load of operational data.

Because this transformation operates only upon the increment of data acquired during the last load from source, it occurs

fairly quickly for most of the dimensions in the warehouse. Readers who refer back to Figure 15.13 will see the dotted

line boxes around qualifier entities and transaction data sets that mark each with the dimension or fact table of the perfor-

mance sublayer into which they will be placed. Following this simple guidance from the application’s business model,

the HGF automation system knows what performance sublayer objects to update after each load of the warehouse. When

it comes time to output a full data set to the presentation layer, the preprocessing will have already been accomplished,

allowing fully dimensionalized information to be retrieved from the performance sublayer without extra delay.

Performance Layer Objects Enable Business-Intelligible Data Retrieval

Beyond providing fast creation of presentation layer objects, the helper tables in the performance sublayer allow EDW

users to retrieve information using a graphical interface referencing business-level objects instead of using a technical

query language such as SQL and pulling data from physical tables.

Figure 15.18 shows how this capability is possible. The process begins with the performance sublayer’s prepro-

cessed objects, as shown in the upper left. Here, the qualifiers have been assembled into dimensions as instructed by

the business model that the team used to create and update the data warehouse. The automation system also provides

fact tables from which to retrieve measures, each consolidated from the perhaps multiple transaction data sets grouped

together by the EDW’s business model, as Figure 15.13 illustrated for Direct Site and Partner Site.

On the query writer utility’s graphical interface, the automation system depicts each dimension as a denormalized

table. EDW teammates desiring to retrieve or refresh a data mart into the presentation layer need only to select which

Landing

area

Presentation layer

Hyper-generalized core Performance

sub layer

Integration layer

Dimension helper tables

Fact tables
(transactions)

Atomic dimensional data

Thing type
Link
type

Thing

Attributes

Thing type

effectivity

Link

FIGURE 15.17 Hyper generalized data warehouse automation systems can address the full EDW reference architecture.

Fully Agile EDW with Hyper Generalization Chapter | 15 393

fields they wish to have placed in an output data set. They can also set constraints that will filter the result set down to

the subset of data warehouse records they wish to retrieve.

Specifying a result set is thus very much like defining a query using any of the popular business intelligence front

ends available today. The primary difference is the extent of actions that EDW teams can control using this utility of

the automation system. At a minimum, they can simply run a query to create a data mart in the data warehouse’s

presentation layer. Small data marts can be sent to spreadsheets and even mailed to end users, larger data marts can be

written to a relational database. When that desired data mart grows beyond what a typical database server can support,

the EDW team can instruct the automation system to send the data mart to a data warehouse appliance, without having

to do any more work than selecting the appropriate database connect to write through. All this migration takes place

with a change in connect string rather than hand-crafted ETL objects—again making the EDW team very agile.

Moreover, the EDW developers can choose whether to send just the data to these targets or to deliver them complete

with a semantic layer describing the data mart created. The business modeler allowed the EDW developers to enter

business metadata while designing the warehouse. As long as the team entered this descriptive information, the automa-

tion tool can create semantic layers that include standardized business definitions for all the elements, making them

much easier for the end users to understand and utilize for reporting.

The query writing utility represents a key advantage of a hyper generalized toolset over the hyper normalized

approach we considered in Chapter 14. The HNF strategy certainly allowed EDW teams to create and maintain the inte-

gration layer with far less labor, but retrieving data involved difficult SQL programming or hand-crafted helper object

in the performance sublayer. Some query writing tools are available from the HNF community, but finding, selecting,

and implementing one is still a major undertaking the team must accomplish before the EDW will be fully operational.

For that reason, one could consider hyper normalization a three-fourths solution for the integration layer only.

The hyper generalized approach, in contrast, consists of acquiring a tool from a commercial vendor. Especially with

the more established vendors, such a tool will come complete with not only the business modeler but also the graphical

FIGURE 15.18 Helper tables allow EDW admins to write queries against business objects.

394 PART | IV Agile EDW Data Engineering

data transform programmer and the query writer. Because this toolset allows the EDW team to build and maintain

integration, presentation, and semantic layers, the hyper generalized approach represents a full solution with three times

the scope of the hyper normalized strategy.

MODEL-DRIVEN EVOLUTION AND FAST ADAPTATION

So far, this chapter has focused on how hyper generalization can accelerate the design and implementation of a new data

warehouse. As discussed in the previous few chapters, the agility of a given approach has far more to do with how readily

an EDW team can change a data warehouse once it is in operation and loaded with an enormous number of records. The

hyper normalized approach of Chapter 14 represented a significant improvement for managing the integration layer over

standard normal forms. In the HNF context, most new business requirements will demand only that the EDW team add

some tables and reuse the parameter-driven ETL modules to load them. Business keys or existing attributes are rarely

affected, so conversion scripts for integration layer objects are rarely called for, saving significant time and money.

However, new business requirements can impact not only the integration layer but also objects in the dimensional

presentation layer. As explored in the previous section, a hyper generalized warehouse automation system extends the

reach of agile DW/BI into the presentation and semantic layers as well. Furthermore, it provides tools for re-specifying

and re-generating the objects in all three layers using a graphical user interface rather than hand-code scripts. These two

considerations make the hyper generalized strategy considerably more agile than even the HNF approach. This section

will examine how the hyper generalized toolset supports model changes without requiring expensive data conversion

efforts. It will then tally the savings in EDW maintenance labor that such a capability makes possible.

Impact of Model Changes on Existing Data

A major new business requirement can easily require restructuring the backbone of an existing data warehouse. Such a

change will require an update to both the business model that controls the structure of the EDW and the data that the

data warehouse contains. The hyper generalized toolset makes both of the modifications easy to accomplish. First, we

discuss how to effect the necessary changes in terms of the records stored within the associative data model. We then

consider how to use the business-level controls of the warehouse automation system to achieve these record changes.

Consider, for example, the modeling change illustrated in Figure 15.14. In this figure, a new business requirement

necessitated the EDW team flatten the rollup pattern between the Order, Ad Site, and eSegment entities of the SALES

dimension. When viewed in terms of the business model, the required change is easy to describe: Draw an arrow from

the ORDER to the eSEGMENT entity to declare a new child�parent dependency, and then drop the arrow from AD

SITE to eSEGMENT. When the team publishes this result, all data loaded henceforth will need to comply with this

new hierarchy.

Such a modeling change will manifest as entries in the THING_TYPE and LINK_TYPE entities of our associative

data model. When the developers update the business model, the HGF automation tool will read the new diagram and

mark one LINK_TYPE record with a retirement date and insert another record with the proper value in Start Date. Of

course, updating the model is not enough because the entities affected are metadata for real data records contained in

the entities THING and LINK. Having a link with an end date that does not comply with the retirement of its reigning

LINK_TYPE, for example, will cause data disparities within the associative data repository that would be very difficult

for EDW analysts to identify and resolve. For this reason, the developers will have to use the automation system to

adjust existing data records so that model and data remain aligned. Before we discuss how they will use the business

model to make the change, we must first consider the changes in the existing records in the associative data tables that

will represent the new hierarchal pattern.

Figure 15.19 shows the records impacted by flattening the rollup from Orders to eSegment. Records with OIDs

6011 through 8025 represent the information in the physical associative data table before the model change. (Note the

records have been grouped by their HGF entity type and are not in perfect OID order.) The model change impacts only

two of the existing records, which are marked as “retired” on the left edge of the table. They are superseded by two

new records, 10071 and 10072, the first one for logical LINK_TYPE modeling entity and the second for the LINK data

entity. The model change retired the LINK_TYPE record connecting Ad Site to eSegment (OID 6014), so the LINK

between Ad Site and eSegment instances (OID 6018) had to be retired as well. Similarly, the new LINK_TYPE model-

ing record (OID 10071) needed a new LINK data record to provide the new direct association between Order and

eSegment instances. Inserting record OID 10072 represents this new relationship.

Fully Agile EDW with Hyper Generalization Chapter | 15 395

The fact that some readers will find it demanding to follow the logic for resolving all the OIDs and associations

involved with this update illustrates why an automation system is required by the hyper generalized approach. EDW

teams should not attempt to manually maintain records stored in the hyper generalized data store because with so many

dependencies between the records in the associative data store, it would be too easy to omit a connection and thereby

corrupt the data within the warehouse. Indeed, maintaining the integrity of a hyper generalized integration layer is so

complex that EDW teams should not even consider programming their own administration system but, rather, purchase

a mature and proven tool instead.

Hyper Generalization Tools Facilitate Data Conversions

Updating the EDW business model is not enough when the warehouse already contains business data, however. This

example restructured a Sales Dimension hierarchy. Now that ORDER instances should have a direct relationship to

eSEGMENT records, the team will need to place the right foreign key values in the existing ORDER instances.

Fortunately, this can be accomplished while still working at a business level, using the warehouse automation toolset.

Figure 15.20 shows how the developers would work with both the graphical business modeler and the data transform

authoring tool in order to achieve the data conversion this example will require. The figure illustrates the progression

that the data model will take, as shown in panels A�C. The team’s strategy is to create new direct associations between

ORDER and eSEGMENT by using a query of the existing indirect associations as a source for a data load.

This work is accomplished using the following steps:

Step 1: Use the query writer to define a module that will retrieve the business identifiers of existing orders and e-

segments that are currently linked via a child�grandparent relationship.

Step 2: Create an optional relationship between ORDER and eSEGMENT—it must be optional because instances of

both objects already exist, before any relationships between them have been loaded.

Step 3: Use the data transform authoring tool to create and run a simple loader that will create link instances between

ORDER and eSEGMENT. This load module will look very much like the transform depicted in Figure 15.15. In this

case, it will send business identifiers for associated eSegments and Orders to an Add-Modify Instance widget that

loads Orders. When the developers run the load module using the query definition from Step 1 as a source, every

unique combination of identifiers for eSegment and Order will create an association record in the HGF repository.

6011 Model Thing Type eSegment - - - - - - - - - 01-Jun EOT

6012 Model Thing Type Ad Site - - - - - - - - - 01-Jun EOT

6013 Model Thing Type Order - - - - - - - - - 01-Jun EOT

Retired 6014 Model Link Type Cust Profile 6011 6012 - - - 1-Jun 07-Oct

6015 Model Link Type Cust Profile 6012 6013 - - - 1-Jun EOT

New 10071 Model Link Type Cust Profile 6011 6013 - - - 7-Oct EOT

6016 Data Thing Tech Warriors - - - - - - - - - 01-Jun EOT

8022 Data Thing Online Depot - - - - - - - - - 2-Aug EOT

9041 Data Thing CF904-A - - - - - - - - - 4-Sep EOT

6017 Metadata Thing Classification - - - 6011 6106 - - - 1-Jun EOT

8023 Metadata Thing Classification - - - 6012 8022 - - - 2-Aug EOT

8024 Metadata Thing Classification - - - 6013 9041 - - - 2-Aug EOT

Retired 6018 Data Link - - - 6016 8022 6014 1-Jun 07-Oct

8025 Data Link - - - 8022 9041 6015 2-Aug EOT

New 10072 Data Link - - - 6016 9041 10071 7-Oct EOT

FIGURE 15.19 Records impacted by flattening the hierarchy between Orders and eSegment

396 PART | IV Agile EDW Data Engineering

Step 4: Return to the business modeler to update the link between ORDER and eSEGMENT to be mandatory. Now

that linking records have been loaded for this relationship, it no longer needs to be optional.

Step 5: Drop the link between ORDER and eSEGMENT.

Taking stock of all the assistance that the data warehouse automation tool provides the EDW team, we can appreci-

ate that hyper generalization allows a dramatically different and less labor-intensive means for building and maintaining

data warehouses. We have seen how the development team can create and modify the structure of the data warehouse

by providing a business model of the next version of the data repository it wants. We have seen how that business

model allows the team to then specify data transforms by referencing elements defined by that business model. Given

that the bulk of an EDW can now be declared and updated while working with business-level objects and diagrams, we

can reasonably predict that the business analysts and data modelers will be the ETL programmers of the future [Breur

2015], which will move the DW/BI profession dramatically closer to our desired goal of full IT-business alignment.

SUPPORTING DERIVED ELEMENTS

The capture and transformation of raw operational data is a primary function of a data warehouse, but most companies

also need business rules applied and master data elements established. In the hyper generalized context, EDW teams

achieve both of these objectives using value added loops, although the master data elements are typically achieved

more easily by employing utilities provided by the warehouse automation system.

Value-Added Loops

Hyper generalized data warehouse automation systems can derive new values either during or after capturing the com-

pany’s operational data. The graphical design tool for data transforms provides several additional controls than just the

add�modify instance widget, including field parsing, time calculations, and decision points. However, EDW profes-

sionals who compare this toolset to today’s traditional ETL tools and even the capabilities of the SQL engines of the

typical RDBMS will consider the HGF offering quite rudimentary. The fact that HGF tools offer only the basics is not

an issue, however, because the hyper generalized automation system operates on top of a database engine. The SQL

command set of the underlying database will always be available, and many companies large enough to build a data

warehouse will also have an ETL package available. The EDW team needs only to pull the data as captured from the

operational systems out of the data warehouse, add derived values, and then insert the results back into the warehouse.

This pattern represents extract, load, and transform (ELT) rather than the traditional extract, transform, and load (ETL).

Figure 15.21 depicts the overall processing pattern the HGF automation systems comfortably support. The core of

the integration layer has captured the company’s operational data and preprocessed it into performance sublayer objects,

Query
definition

Ad site

OID 6012

eSegment

OID 6011

Order

OID 6013

Ad site

OID 6012

eSegment

OID 6011

Order

OID 6013

1
2

3

Ad site

OID 6012

eSegment

OID 6011

Order

OID 6013

4 5

Panel A:
Starting model

Panel B:
Intermediate model

Panel C:
Final model

Load

FIGURE 15.20 Steps to updating a hyper generalized EDW’s dimensional entities and their data.

Fully Agile EDW with Hyper Generalization Chapter | 15 397

as discussed previously. The EDW developers next create a value-added loop. In a value-added loop, a query writer

pushes an appropriate subset of data into one or more relational tables that have been created in a workspace maintained

by the data warehouse’s systems underlying database. The EDW developers then use a traditional ETL package or

advanced SQL commands to apply business rules to this temporary data set, storing the values derived back into the

temporary working tables. In practice, value-added loops can apply these business rules via many means, such as data-

base views, stored procedures or other built-in functions offered by the database, or third-party statistical packages such

as R. In order to bring the enriched data back into the data warehouse, the developers will need to define new objects

and attributes in the HGF warehouse and then configure a data transform that loads the new values into the integration

layer, as if the derived elements were just another operational data source. Having accomplished this step, the EDW

team then defines a new result set that is projected all the way to the DW/BI presentation and semantic layers.

Following this work pattern, the team certainly accelerated its delivery of a complete analytic solution. The team

accomplish all but Step 3 in the diagram using the graphical design utilities of the HGF automation system. They must

still pursue some hand-coded data transforms, but at least creating and evolving the “basic plumbing” that makes up the

bulk of a data warehouse’s programming has been automated for them. These basic data management functions often

represent 70�80% of the labor required to build a data warehouse. With HGF tools, this work typically requires

only 10% of the effort it formerly consumed, as will be demonstrated with the change cases discussed later. By

accelerating the development of the basic portion of the warehouse, the team can reallocate three or four times as many

resources to programming the business-rule-driven features of the data warehouse. Consequently, the customer will

see the team creating value-added features three or four times faster than when it relied on a standard approach.

With faster turnaround from the DW/BI team, the business stakeholders will be able to work far more closely with the

EDW developers, thus greatly increasing the company’s overall DW/BI agility.

Model-Driven Master Data Components

Building on the notion of the preprogrammed add�modify instance widget, the leading data warehouse administrative

package based on hyper generalization also provides an adaptable architectural component that development teams

Value-added

workspace

Presentation layer

Core Performance

sub layer

Integration layer

1 2

4

Value-
generating
business rules

3

5 6
7

FIGURE 15.21 Creating derived columns and master data elements using value-added loops.

398 PART | IV Agile EDW Data Engineering

can easily incorporate in order to quickly establish robust master data management (MDM) for their company’s EDW

applications.

Figure 15.22 shows how these packages enable EDW teams to generate key MDM elements from their business

models and then draw upon an adaptable web-based master data administration tool to arrive at canonical records for

key business entities such as customer, product, and location. Using the hyper generalized warehouse administration

package, the EDW developers employ machine-driven development to create four components based on the business

models they have created:

� The database tables of the landing area
� The ETL for processing the master data elements
� The master data repository for validated records, and another for rejected records

The data transform module for processing master data elements automatically assembles candidate master data

records from the landing area according to the logic provided by the developer’s business model. This process then

decides whether to accept or reject each candidate record. Candidate records are evaluated using multiple tests, such as

regular-expression parsing for acceptable formats, valid domains screening for legal values, and parent record lookup

for implied foreign keys. Records passing these tests are sent to a staging area from which the data warehouse can load

them into the EDW. The master data processing component also employs “fuzzy logic” to discern whether or not the

candidate records are already in the master data repository. Fuzzy logic relies on cascading matching events to quantify

how well candidate data resemble existing master data records. Candidates with many matching components will pass a

threshold value that the master data managers have set for each entity, causing the MDM process to consider them

already included in the master data, dropping them from any further processing.

The MDM process places records failing to meet the required threshold values for each master data element type

into a work-in-progress area. The company’s data stewards and data administrators then collaborate on manually

processing the rejected records using a web-based user interface provided with the master data management utility.

The web-based interface automatically adapts to the structure of each master data element and allows developers to

customize the processing workflow for each entity. Figure 15.23 illustrates some of the details of a typical workflow.

Data stewards selected from the departmental business staff review the rejected records, searching for defects in

MDM
processing

Data transform
module

MDM source

landing area

EDW

staging area

Rejected

records

Data steward
Discrepancy

resolution

Business
models

Sources

Automated model
generation

Web-based
master data management

interface

Records passing data
quality checks

Approved

MDM records

FIGURE 15.22 Using the master data management utility of the data warehouse automation tool.

Fully Agile EDW with Hyper Generalization Chapter | 15 399

formatting or semantics that they can correct in order to make a candidate record acceptable for the master data collec-

tion. Later, a data administrator reviews the corrected records and releases those that he or she accepts to a pending-

records pool.

MDM tools provide considerable flexibility, supporting other approval workflows besides the example discussed

here. Data steward approval can be required even for new records that pass the data quality tests. These records can be

distributed to data stewards as they arrive from source systems or queued for bulk authorization. No matter the path

records take among the data stewards, when the pending pool of approved records reaches a preset limit, such as a

time-based event or a particular number of pending records, the MDM applications release the accepted records to the

data warehouse. The model-driven ETL will then treat the released master data records as simply a trusted source for

dimensional entities and load them into the data warehouse.

The end users can search and browse the approved master data using another adaptable web-based interface included

in the hyper generalized EDW automation system, making the MDM repository an important component to the com-

pany’s BI data dictionary. Should end users spot records or values that they question, know must change, or believe are

missing altogether, they can submit a change request via the MDM interface. The data stewards will process these

requests, again using their web-based management tool, correcting the values or creating records as appropriate, all of

which then flow to the master data administrator for approval and release to the warehouse.

Figure 15.24 provides a schematic notion of the management interface that the data stewards and administrators use.

The middle of the top panel provides a summary of the candidate records waiting in the working area for the data stew-

ards to correct. The right side shows the number of records now in pending status after data administrator review, as

well as counts of records published for the data warehouse to incorporate in its subject areas.

The stewards and administrators can click into any one of the values displayed to enter a searchable list of the

records for a given entity in any state within the master data repository. These users can open up any one of the values

Programmed extract
Land source data

Time based, record count
triggered, or manual release

Model-driven transform
Apply master data rules

Data administrator
Approve for publication

MDM application
Release approved records

Data warehouse

Data steward
Corrections

Valid

Invalid Data steward
Manual creates & deletes

End users
Raise issue or

request change

Actor
Action

Legend:

FIGURE 15.23 Sample workflow for master data processing, highlighting the role of the data stewards.

400 PART | IV Agile EDW Data Engineering

shown in the resulting list to view and edit any record in particular. The bottom panel of Figure 15.24 shows a single

rejected record for a service customer. The two errors displayed reveal that (1) this record has defective value for

county (it should have been expressed as “Los Angeles,” not “LA”) and (2) it also has a postal code not found among

those known for the customer’s city. At this point, the data steward can click on both the county and the postal code to

receive a searchable list of acceptable values for these fields. Once correct values have been selected, the error flags

will be cleared and the record will be sent by the application’s workflow to the data administrator for approval and

release to the warehouse.

With the addition of a machine-driven master data management processing and a few adaptable web interfaces, the

hyper generalized data warehouse automation tool eliminates a large number of value-added loops that the EDW team

would have had to construct in order to derive clean dimensional data for the company’s key business entities. By elim-

inating the need for so much programming, the MDM features represent a crucial element that EDW team leaders need

to add to their reference architecture. They should consider the machine-driven master data facility as a preprocessing

layer just before the data warehouse and add it to their reference architectural diagram. As shown in Figure 15.25, the

MDM facility takes data from the landing area to a sublayer of published master data elements. Objects in the published

sublayer will then be incorporated as trusted dimension tables into the integration layer and later the star schemas when

warehouse data is projected into the presentation layer.

In this overall system, the hyper generalized data model allows the development team to deliver both master data

management and regular data transforms using business-model-driven application generation and modification. Because

it offers machine-assisted tools for both master data and subject area development, it is no surprise that teams opting for

hyper generalization can achieve 3�10 times the delivery speed as teams using traditional EDW methods and technolo-

gies. The dollar value of the human toil that these tools eliminate alone will justify the purchase and implementation costs

Total Rejected Correct

Customer Marketing 556 128 428 3,971 397,143

Customer Sales 463 102 361 7,717 6,619,048

Customer Service 598 126 472 14,950 7,148,571

Customer Warranty 537 64 473 4,131 7,648,971

Location City 490 15 475 467 481

Location Country 0 0 0 2 113

Location County 516 15 501 491 523

Location Postal code 500 20 480 549 585

Location State 2 0 2 0 867

Phone Area code 1 1 0 1 482
Phone Number 527 11 516 493 553

Drill down to individual records

Entity Customer

Sub entity Service

Identifier 100283403

Name Westwood Rec Center

Location City Westwood

Location Country USA

Location County LA Error Value not found in domain Location-County

Location Postal code 99999 Error Value invalid for entity Location-City

Working area
Entity Sub entity Pending Published

FIGURE 15.24 Master data management front end showing single-record correction screen.

Fully Agile EDW with Hyper Generalization Chapter | 15 401

of the hyper generalized data warehouse automation package. Far surpassing those savings, however, will be the value of

the additional business opportunities from which companies will be able to profit because their EDW teams can now

deliver and adapt a data warehouse—including its master data—with an order of magnitude greater agility.

ADDRESSING PERFORMANCE CONCERNS

When traditionally trained DW/BI architects look upon the “things and links” design of a hyper generalized data

warehouse, they invariably suggest that this approach will have performance problems. Although HGF repositories do

follow many more logical steps to retrieve data from their hyper generalized data stores than a traditionally modeled

data warehouse, there are several countervailing factors with regard to overall performance.

First, the HGF architecture isolates any performance issues away from end users. The nonstandard data repositories

lie within the integration layer of the warehouse. Data is projected out of these exotically designed data stores into the

familiar star schemas regularly found in a data warehouse’s presentation layer. End users will experience the desired

train-of-thought level of performance, limited only by the capabilities of the resources of the presentation-layer host.

Second, the records in both the associative and the name-value pair data stores are very skinny records, so an

impressive number of them are processed with every I/O cycle of the database engine’s CPU. For this reason,

integration-layer performance issues typically do not appear in hyper generalized data warehouses until they reach

data volumes that would also give a relational data warehouse a challenge, somewhere in the neighborhood of tens of

terabytes given today’s hardware.

Third, HGF databases respond quite well to the same solution that DW/BI teams employ when their standard-approach

EDWs begin to respond too slowly: The company should re-platform the application upon a data warehouse appliance. The

HGF tool vendors are not hardware providers. Instead, they collaborate extensively with hardware makers and DBMS pub-

lishers, so their automation systems function well on the data warehouse appliances from all the major providers. Because

of this collaboration between vendors, the performance limits experienced with hyper generalized data warehouses originate

from the underlying platform and not from the nontraditional data stores that the HGF repositories employ.

Figure 15.26 provides a compilation of benchmarks based on the collaboration between the publisher of a leading

HGF data warehouse automation system and one of the more popular providers of data warehouse appliances. Unlike

most benchmarks that are compiled using machines in a vendor lab, these figures represent actual customer implemen-

tations. These statistics depict customer experiences in terms of several important “ceiling” considerations, such as the

number of entities in the warehouse, the number of integrated sources, and the amount of data being managed. In terms

of the number of entities within a business model, the HGF vendors have come very close to the maximum that a

Presentation layerLanding
area

Work area Published

Master data layer

Core Performance
sub layer

Integration layer

Dim

Dim

Fact

Dim

Dim

MDM
processing

FIGURE 15.25 EDW reference architecture updated to include master data management layers.

402 PART | IV Agile EDW Data Engineering

documented data warehouse has ever managed. Although I have not found a documented maximum for the number

of integrated sources ever consolidated by a data warehouse, the HGF implementations have incorporated well over

200 separate system feeds. In terms of the maximum number of concurrent users and records in the largest table,

the HGF warehouses have not had customers coming anywhere near the DW/BI industry’s maximum of 33,000 con-

nections and 2 trillion records, but the 6000 concurrent users and 14 billion records they have achieved to date represent

a very respectable performance. These numbers provide solid evidence that the HGF data modeling paradigm intro-

duces no appreciable limitation that should cause an EDW team to steer away from this new approach for performance

considerations.

DEMONSTRATING AGILITY THROUGH FOUR CHANGE CASES

The greatest advantage that hyper modeling in general offers to agile EDW leaders is that it allows a development

team to start small and continually build out the data warehouse in small slices as requirements become clear. To

make this possible, this data modeling paradigm must either (1) insulate existing data from change so that the team

can move forward without writing expensive data conversion scripts or (2) make data conversions easy. Although the

hyper normalized approach from Chapter 14 does allow teams to respond to requirements change by adding a few

tables and converting data once with the help of some temporary views, the updates do require hands-on work applied

to the warehouse’s physical data objects.

Data warehouses built with a hyper generalized repository enjoy a much higher degree of machine-supported data

conversion, as demonstrated by the example previously presented. Of course, certain modifications will require new or

dramatically relocated objects so that no chain of OIDs will exist for EDW teams to leverage during a data conversion.

However, in those cases, the developers can use business-level query writers and data transforms to populate the new

objects and associations. This hands-on data conversion work can be achieved through a graphical interface operating

on business-level objects only, not physical ones.

By allowing the EDW team to make most of the changes to existing warehouses using business-level modifications,

the hyper generalized approach saves far more labor than even the hyper normalized form can save. This advantage is

illustrated next as we use the HGF tools to accomplish the four change cases introduced in Chapter 12.

We must keep in mind that the hyper normalized approach can address only half the number of change cases that the

hyper generalized toolset will be able to solve. Hyper normalized techniques only simplify changes to the integration layer.

Regenerating presentation and semantic layer objects after a model change still require hands-on labor from the HNF-

powered team. In contrast, the hyper generalized automation tools manage objects for the full arc of layers within the refer-

ence architecture—integration, presentation, and semantic—so we will see the highest labor savings for HGF in all four

change cases.

Change Case 1: Upgrading Attributes to Entities

Change Case 1 addressed the cost of splitting attributes out of entities when it became clear that they needed to be

managed separately in order to support newly discovered many-to-many relationships and varying change cadences.

Max Industry
Entities 2,707 2,426 Consumer packaged goods
Integrated sources n/a 240 Oil & gas
Number of users 33,000 6,000 Oil & gas
Records in largest table (billions) 2,000 14 Retail
Peak transactions per hour (billions) n/a 2 Pharmaceuticals
Minimum reported data latency* (minutes) n/a 15 Insurance

Courtesy of Kalido, 2012

DW/BI

Industry Max

Hyper generalized data warehouse

* Time required to re-project data from integration to presentation layer, as reported by the owners of these

systems. Users then queried presentation-layer star schemas as if working with a traditional data warehouse.

FIGURE 15.26 Hyper generalized data warehouse performance benchmarks.

Fully Agile EDW with Hyper Generalization Chapter | 15 403

Figure 12.15 illustrated how a team would affect this change when working with standard normal forms. It showed the

tables AD SITE and PROMO being split out from the Sales Channel table. Estimates in Chapters 12 suggested that

making this relatively simple modification to a data warehouse loaded with production data would consume 1100 total

hours from the many IT roles required to update the programmed components, convert the data, migrate the code, and

validate the results. As analyzed in Chapter 14, teams working with a hyper normalized integration layer would save

nearly 40 percent of this labor.

Figure 15.27 shows how the same functional update would manifest itself in the integration layer of a hyper general-

ized data warehouse. Using the graphical business modeler, the developers would create the AD SITE and PROMO

objects within the SALE DIMENSION group. They would move the attribute for ad site domain to the AD SITE entity

and add a new attribute, Response URL, which has just become available through the source systems. Similarly, they

would move the promotion code field to the PROMO entity and add the newly available percent discount attribute. The

developers would draw associations from ORDER to the two new objects, and from them to AD MANAGER. When

the developers publish this new model, the HGF automation system will begin to update the entities in the modeling

layer of the EDW’s associative data store.

A change in data transforms must accompany the new objects in the business model. Figure 15.28 shows the updated

ETL that the data warehouse will need in order to properly process sales dimension data after the business model changes.

The starting version of this ETL was shown in Figure 15.15. In Figure 15.28, the added elements have been labeled as

“new.” Because a sales order will now have three parents instead of just one, the developers have had to add an object

reference for Ad Site Domain and Promotion Code to the add-mod instance widget for the Order object.

This change case provides an example of where the team will have to provide hand-crafted data transforms because

automatic data conversion is not possible. Because the Ad Site and Promotion objects are new, there are no existing OIDs

that can be utilized to provide the association for Order records, so the team will need to explicitly generate and load

those. Fortunately, this work is very easy to accomplish using the business-level ETL design tool provided by the HGF

automation system. The team simply creates ETL mappings with add-mod instances widgets to process the source

elements that will be sent to each new object. The output of these widgets will be inserts or updates to the appropriate

object instances where needed, creating the new object identifiers that the existing ORDER records will need to reference.

Sale dimension

New objects with
some new attributes

Sales fact

Direct site
Qty requested

Qty installed
Discount

Ad site

Ad site domain

Promo

Response URL

Promotion code

Percent discount

Ad manager

Home page title

Order

Ad site domain

Affiliation date

Ad site domain

Promotion code

x

x

Attributes
moved to

new objects

FIGURE 15.27 Business model changes needed to accomplish Change Case 1.

404 PART | IV Agile EDW Data Engineering

Returning to the updated ETL that will load records on a daily basis, note there are now data flows that take the

results from the new Add-Modify Instance widgets to the new ad site and promotion objects shown at the lower right of

Figure 15.28. Another pair of data flows takes the results from the new add-mod instance widgets for ad sites and pro-

motions to the new parent object references just added to the ORDER entity. These latter two flows insert or update

parent instances of orders as needed. The add-mod instance widgets automatically perform a tremendous amount of

decision making, so this new ETL is very simple to draw using the graphical tool. They take care of creating OIDs

when a new image of a given ad site or promotion is encountered. They also detect that changes have occurred to par-

ents, retiring existing instances of AD SITE and PROMOTION and their associations whenever needed, replacing them

with new ones.

The ETL shown in Figure 15.28 is appropriate for future feeds from the source system. We must still convert the

existing Order records with transaction dates occurring after the new business model’s effective date so that they

become linked to the new Ad Site and Promotion instances. We can achieve this data conversion using the same type

of ETL logic, only we need to pull the information to be converted from records already stored in the warehouse. To

achieve this, the team needs only to use the query writer to retrieve the appropriate information from the warehouse and

use that query as the source for a copy of the ETL shown in the figure. Although the team will run this ETL only once,

it was at least very easy to create.

In fact, the overall labor required to fulfill this change chase is remarkably low. Table 15.1 shows the effort for the

work described previously. Because an HGF automation tool makes such evolutions so straightforward, the times

reported in the tables are not estimates but instead actual times that it took me to perform this work on a live system.

Nine steps were required. The results were executed in both development and system integration test environments and

then promoted to production. As shown in the figure, the graphical, business-level tools allow a data warehouse to be

adapted for new requirements very quickly. Change Case 1 was accomplished in only a few hours rather than the multi-

ple days required by data warehouses built using either standard or hyper normalized approaches.

We should consider the impact of the modifications made in this change case on the end user’s reports, especially

those for which the effective date of the modeling change occurs in the middle of the data being retrieved. Records in the

result set occurring before the model change will not have objects for Ad Site and Promotion, but those occurring after-

ward will. The hyper generalized data warehouse automation system is intelligent enough to elegantly apply model

New

New

New

New

Transaction date

Transaction date

Transaction date

Ad manager

Order

New objects

Note: Mappings for transaction date shown in light color only to aid clarity.

Promotion

Ad site domain

Response URL

Promo code

Perc. discount

Add-mod instance

Add-mod
instance

Ad manager domain

Home page title

Add-mod instance

Add-mod instance

Order number

SOA tracer Nbr

Ad site domain

Ad Mgr domain

Promotion code

Transaction date

Ad Style

Xtrc_Sales_Header

Ad manager domain

Home page title

Ad site code

Response URL

Promotion code

Percent Discount

Order number

SOA tracer Nbr

Customer Nbr

Customer Name

Order date

New

FIGURE 15.28 Data transform needed for Change Case 1 after modifications are made.

Fully Agile EDW with Hyper Generalization Chapter | 15 405

changes to the presentation-layer data set that will be consumed by end users. Figure 15.29 illustrates the impact that

Change Case 1 will have on the presentation data once it is regenerated. In this example, the EDW team published the

new model to take effect on September 30, 2013. Reports for the last two quarters of that year, like the one shown, will

span across the model change. Before the change, the orders for a given ad manager have attribute values for the ad site

and promotion associated with each order. The AD SITE and PROMOTION objects, shown on the left side of the report,

did not exist for those time points, so the data warehouse reports them as “unknown” values. After the modeling change,

the ad site and promotion attributes are no longer populated and are therefore listed with unknown values, whereas the

AD SITE and PROMOTION objects are now supported by the new ETL and thus have values shown.

Change Case 2: Consolidating Entities into the Party Model

Change Case 2 demonstrates the effort required to generalize a data warehouse from discrete entities for customers,

agents, installers, and manufacturers into a shared Party entity. Figure 12.21 illustrated the modifications required by

this case for a data warehouse in standard normal form. Figure 15.30 shows the comparable modification that the EDW

team would employ when making this change with a hyper generalized integration layer. Using the graphical business

modeler, a developer takes the four entities representing the parties participating in a sales order and drags them into a

new entity called Corporate Party. This new entity has an attribute for Party Type (person or organization) and another

for Corporate Party ID. In this scenario, several departments in the company have collaborated on a master data applica-

tion that will apply a unique identifier across all the parties involved in a sale so that henceforth they can retrieve from

the warehouse a single view of all activity for a given partner whether they play a combination of customer, agent,

installer, and/or manufacturer roles.

By placing these four entities inside a shared entity, the hyper generalized HGF automation system will understand

that an instance of a corporate party ID should be associated with each of the party subtypes from that day forward.

The repository will not require us to have a parent party instance for existing customers, agents, etc. because they were

loaded before the new data model was placed into force. Of course, the customer will want all existing party instances

to have a Corporate Party ID, but we will have the luxury of running a data transform after the model change to provide

those identifiers.

TABLE 15.1 Level-of-Effort Estimates for Four Change Cases

Dev SIT Prod Dev SIT Prod Dev SIT Prod Dev SIT Prod

a) Create restore point 0.1 0.1 - - - 0.1

b) Fetch DW into business modeler 0.1 0.1 - - - 0.1

c) Update model 0.2 0.2 - - - 0.2

d) Re-deploy model to DW 0.1 0.1 - - - 0.1

e) Update & run mapping 0.3 0.1 0.1 0.3 0.1 0.4 - - - - - - - - - 0.3 0.1 0.1

f) Create and run pre-load ETL - - - - - - - - - 0.3 0.1 0.4 - - - - - - - - - 0.3 0.1 0.1

g) Create and run conversion ETL 0.3 0.1 0.1 1.2 0.4 0.4 - - - - - - - - - 0.1 0.1 0.1

h) Re-build performance sub layer 0.2 0.1 0.1 0.2 0.1 0.1 - - - - - - - - - 0.3 0.1 0.1

i) Update presentation layer query definition 0.2 0.1 0.1 0.2 0.1 0.1 - - - - - - - - - 0.1 0.1 0.1

j) Refresh presentation layer 0.1 0.1 0.1 0.2 0.1 0.1 - - - - - - - - - 0.2 0.1 0.1

k) Promote to next environment 0.4 0.4 0.4 0.4 - - - - - - 0.4 0.4

2.0 0.9 0.5 3.3 1.3 1.5 - - - - - - - - - 2.2 1.0 0.6

Standard normal forms 1,154 1,516

Conformed dimensional form 430 792

Hyper normalized form 747 812

* Hours for conformed dimensional form assume only one affected fact table. In practice, multiple fact tables would need to be updated, making the actual labor hours much higher.

hours* hours*
HGF savings HGF savings HGF savings HGF savings

Savings achieved through

hyper generalization

100.0 percent 99.5 percent

99.5 percent

99.6 percent

99.2 percent

99.7 percent

hours hours

0.0 hours 3.8 hours

Change case 4:
Change of grain

Change case 3:
Change SCD trigger

6.1 hours

Change case 2:
Party generalization

Task

Total by environment

Grand total 3.4 hours

Change case 1:
4NF correction

406 PART | IV Agile EDW Data Engineering

Nbr Ad Site Promo

21037 BigBuy.com BOGO $161,649

21047 BigBuy.com BOGO $178,153

21067 BigBuy.com 1st Free $214,436

21078 BigBuy.com 1st Free $217,500

21091 MobToys.com BOGO $197,518

21105 MobToys.com BOGO $129,323

21115 MobToys.com 1st Free $110,784

21127 MobToys.com 1st Free $117,592

21037 UNK UNK $212,029

21054 UNK UNK $140,015

21068 UNK UNK $170,691

21082 UNK UNK $158,673

21092 UNK UNK $189,867

21104 UNK UNK $145,533

21122 UNK UNK $210,236

21134 UNK UNK $228,196

4Q13 Google

BigBuy.com

BOGO

1st Free

MobToys.com

BOGO

1st Free

Amount

Order

3Q13 Google UNK UNK

Qtr Ad manager Ad site Promotion

Model

Change

FIGURE 15.29 Hyper generalized reporting can successfully span a change in business models

ManufacturerInstaller

Corporate party

Consumer Dim

CRM agent

Employee Dim

Emp Nbr
eMail address
Hire date

Installer

Service Dim

Installer name

Dealership

Date established
Cycle time

Manufacturer

Product Dim

Manufctr name

Package

Package code
Package name
Package SKU

Party Dim

Corporate party ID

Customer

Namebook ID
Customer name
City

Objects moved to the
Party dimension

Now empty dimensions

Customer CRM agent

Party type

FIGURE 15.30 Business model changes needed to accomplish Change Case 2.

Fully Agile EDW with Hyper Generalization Chapter | 15 407

Before the modeling change, the transaction data sets were visually linked in the modeler to the party entities such

as CUSTOMER, as previously shown in Figure 15.13. When the developers drag the four party subtypes into the new

CORPORATE PARTY entity, those links will stay attached. The existing instances for the four party subtypes will

continue to exist in the repository, so the OIDs connecting sales transactions to them will remain valid, and no data

conversion ETL for the transaction records will be necessary. Similarly, when Installer and Manufacturer were dragged

into the Party Dim, the associations to Dealership and Package remained in effect, so they will not need conversion

ETL development either.

We will need data transform modules to create the new CORPORATE PARTY instances and to associate the four party

subtypes to them. The hyper generalized toolset makes these transforms very simple to create. First, the developers will

need to preload the master data information into the warehouse so that the Corporate Party ID entities will have object

identifiers that the party sub-entities can later reference. The ETL needed to load one set of those OIDs, for the Customer

entities, is shown in Figure 15.31. The warehouse will need three more ETLs such as this one to backload Corporate Party

OIDs for agents, installers, and manufacturers. The only new aspect of this mapping is the constant widget that will provide

the add�mod instance widget with a “PERSON” value to place in the Party Type attribute of CORPORATE PARTY.

I have diagrammed the easy case here, in which all customers are people. In practice, the data transform would have more

sophistication to examine a few values in the incoming data and set the party type to “person” or “organization” appropri-

ately. Once designed, the data transforms for these four party types need to be added to the regular processing regimen

ahead of transforms that load the four party objects so that the latter set will find CORPORATE PARTY OIDs waiting for

each customer, agent, manufacturer, and installer found in the source system extracts.

With the corporate party ID objects created, the team must next revise the data transforms that load the party sub-

types to include a lookup of Corporate Party ID before the add-mod instance widget that will populate each party entity.

The updated transform mapping that loads the CUSTOMER object is shown in Figure 15.32. The widgets that had to

be added from the ETL existing before the model change are marked as “New.” This transform will create or update

the subtype customers with corporate party IDs when they occur in the operational data after the model change is put

into effect, and the others will take care of the remaining three subtypes similarly. To get those corporate party IDs

linked to those subtype records that do not appear in new operational data, however, the team will have to provide a

conversion data transform and run all the existing records for the subtypes through it. Given the hyper generalized

context, those conversion transforms will be easy to construct. The one for customers, for example, will look very

much like the one in Figure 15.32, except that for its data source it will use a query definition that pulls all the existing

customer records out of the warehouse for a quick update.

All told, this change case required the developers to complete the following steps using the business-level design

tools of the HGF automation system:

� Update the business model
� Create four preload ETLs
� Update four load ETLs
� Use copies of the four load ETLs to perform data conversions

Transaction dateXtrc_Corp_Party_ID

CRM agent Nbr

Installer name

Manufacturer name

Customer namebook ID

Add-mod instance

Last update

Corporate party ID

Corporate party ID

Party identifier

Party type

Corporate party ID

Constant

“PERSON”

Corporate party name

Corporate party name

FIGURE 15.31 Pre-loading the Corporate Party objects for customers in Change Case 2.

408 PART | IV Agile EDW Data Engineering

Table 15.1 shows the actual labor times required to perform these changes for Change Case 2. The amounts for items e)

through g) are four times larger than they were for Change Case 1, given that those tasks had to be repeated for each of the

four party types. Despite the larger number of objects affected, Change Case 2 was also accomplished in hours instead of

the multiple days needed to achieve the same result with a data warehouse in standard or hyper normalized form. Here

again, the ability to accomplish all this work using business-level design tools saves more than 90 percent of the labor

required by the baseline case defined in Chapter 12.

This change case included the data transforms to backfill corporate party IDs for all the subtypes already stored in

the data warehouse, but not all sub type instances will have received standard identifiers from the upstream master

data application. As with Change Case 1, the HGF automation system will elegantly manage data gaps caused by

model changes when it refreshes the result sets in the presentation layer. Assume for the moment that the upstream

systems provide corporate IDs for only parties involved in new sales. Figure 15.33 shows how the hyper generalized

toolset will handle the fact that the model change left all the existing parties without a standard ID attribute. In this

case, the model change was published to be effective on 30-Nov-2012. Before that time point, the customers in the

data mart created by the HGF automation system are listed with “unknown” corporate party ID and name. After the

model and ETL are changed, the customers in the data mart have both a corporate party ID and the name of their

shared parent company.

Change Case 3: New Trigger for a Slowly Changing Dimension

Change Cases 3 and 4 focus on modifications typically required for data warehouses built using the conformed dimen-

sional form—that is, EDWs that take data “straight to the star schema” without first placing it in an integration layer

designed with standard norm forms. I believe these change cases are necessary for a full consideration of hyper general-

ization because many people believe that the enterprise data bus strategy accelerates EDW deliveries enough that no

other solutions need be considered. Change Case 3 examines the cost of expanding the set of update triggers in a Type

2 slowly changing dimension. These dimensions track the history of the entities they reflect. EDW developers program

the ETL for a Type 2 dimension to update the history recorded for a particular natural key value each time one of a

particular set of “trigger” attributes changes value. The standard pattern for such an update is to mark the existing

New

New

Xtrc_Sales_Line_Items

CRM agent Nbr

CRM agent email addr

Line item Nbr

Package Nbr

Installer name

Manufacturer name

Order number

SOA tracer Nbr

Customer namebook ID

Customer name

Customer namebook ID

Customer name

Add-mod instance

Order date

Note: Mappings for transaction date omitted for clarity.

Customer

Corporate party

Lookup instance
(Cust-Corp Party)

Party identifier

Party type

Corporate party ID

Constant

“PERSON”

Corporate party name

FIGURE 15.32 Data transform needed for Change Case 2 after modifications are made.

Fully Agile EDW with Hyper Generalization Chapter | 15 409

record with an end-effectivity date and create a new record with the incoming values, leaving its end-effectivity null or

set for “end of time.”

Typically, development teams do not program the ETL to increment the history in a Type 2 dimension for every

possible change in every source column value because the more “trigger” columns the design includes,

� the more difficult the ETL is to code;
� the more records the end users have to wade through to find the changes they are particularly interested in; and
� the more storage the dimension with all its history will consume.

Unfortunately, teams that let the customer specify a subset of columns to serve as a history trigger risk having the

business change their mind and demand that a few more triggers be added to the list after the data warehouse enters

production usage. As the estimates in Chapter 12 revealed, such maintenance on a production warehouse is an expen-

sive proposition. Assuming that the organization has retained the source data from which at least some past history can

be loaded, the change in history-tracking triggers will cause some existing records to become two or more records. The

fact tables linking to any dimension receiving new history will then have to be rekeyed so that its records can be prop-

erly linked to the new history data. We saw that if only one fact table needs to be rekeyed, the effort will require more

than 430 hours of labor. If 10 fact tables are affected, to take a more reasonable number, this effort will grow past five

times that amount. With the re-engineering labor necessary to make this simple change running so high, many DW/BI

professionals have difficulty calling the conformed dimensional form “agile.”

The hyper generalized solution to this particular challenge is amazingly more efficient. In fact, the fundamentals of

HGF data warehouses make this particular change case disappear. Consider again the structure of the logical data model

for the hyper generalized integration layer, which was shown in Figure 15.1. The backbone of the dimensional data is

stored in a set of associative entities, and its attributes are stored in a stack of name-value pairs. All of these

tables carry effectivity dates so that every dimensional entity and attribute in the data warehouse is timestamped, with

full history tracked automatically. With that configuration, customers cannot surprise the EDW team with a new set

of columns for which they now want history. History is already being collected in every aspect of the data in the ware-

house. The only question is, where would the customers prefer to have all that history masked out?

The query writer included with the HGF automation system allows the development team to create a result set with

either current information only or the values from the time of transaction. For situations requiring history, the team will

select the latter so that the downstream data mart will be loaded with dimensional values as they existed at the time of

the transactions to which they are linked. The business intelligence front-end tool can be employed from that point on

to summarize to current values those columns where end users do not want to see the history of the dimensional data.

Given that the HGF data warehouse is designed to maintain history on all elements, Change Case 3 becomes

moot—history is always tracked. The team needs only to decide whether to display it. Table 15.1 lists the time required

to make the requested adaptation for this change case zero, which translates to a 100 percent savings on the labor

required to achieve the same result using a data warehouse modeled in conformed dimensional form.

Change Case 4: Increasing the Grain of a Fact Table

Change Case 4 addresses another common predicament confronting EDW teams that have based their data warehouse

on the conformed dimensional form. Either new capabilities in the source systems or changing business requirements

Date SO Corp Cd Corp Nm Cust Cd Cust name Package Qty Unit Pr

Nov-12 UNK UNK PriceCo Instant HQ
UNK UNK Pangea Exec Start-Up
UNK UNK Simplicity Instant HQ
UNK UNK Walton's Hi-Speed Web

Dec-12 BigBox Quigley's Hi-Speed Web

" " NeoPJs Bulk Forward
Chapps Morton's Exec Start-Up

" " ProMix Fiber Node

10027

10030

10032

10034

10036

10043

10038

10045

11909

11909

12886

17108

16492

$904.00

$1,196.00

$1,309.00

$894.00

$1,456.00

$1,054.00

$1,448.00

$589.00

12886

17108

8

7

7

9
9

9

4
684

548

4

16492

FIGURE 15.33 HGF query writer automatically spans modeling changes. The data warehouse automation system provides default supertype entity

references for customer records that existed before the modeling change.

410 PART | IV Agile EDW Data Engineering

can suddenly necessitate adding a dimension to the star schema. Unfortunately, such a request requires that all impacted

fact tables and their ETL modules be re-engineered to include another foreign key. Because the existing fact records

may now need to be linked to a new set of dimensional records, the entire fact table will need to be rekeyed as well,

thus requiring a conversion script. Figure 12.25 illustrated the case for our sales order analytics system. Here, the com-

pany’s website has been retrofitted to begin providing information for the products included with each telecommunica-

tion package sold. Accordingly, the EDW’s star schema needed to add a PRODUCT dimension table and include links

to it in every sales transaction fact table.

Figure 15.34 depicts the changes that the EDW team working with a hyper generalized automation system would

have to make to the business model that governs its warehouse in order to accommodate this change case. The team

must draw a new product entity, shown in dark shading, and associate it with the manufacturer entity that will serve as

Product Dim

Package

Package code
Package name
Package SKU

Manufacturer

Manufctr name Sales fact

Direct site
Qty requested

Qty installed
Discount

Product

Product SKU
Model Identifer

DW admin system warns query authors
that not all transactions requested have a

link to a product dimension record

Note: New elements shown in bold.

Effective Jan 2013

FIGURE 15.34 Business model update and resulting reporting for Change Case 4.

Fully Agile EDW with Hyper Generalization Chapter | 15 411

its parent. Because a given product from a particular manufacturer can appear in many of the packages that this

company provides, the Package and Product entities remain unassociated so they both can vary independently. The

developers must also add a link from the fact tables to the Product entity. The developers will declare an effective date

so that both of the new associations will affect only information flowing into the warehouse from that point on.

Existing records will remain untouched and linked as before.

Given the HGF repository’s ability to maintain multiple models, the query writer will help the developers work effec-

tively with this modeling change. As shown in the right half of Figure 15.34, the query writer’s interface gives the developers

the choice of seeing the data model in its current configuration or as appropriate for “time of transaction.” The latter choice

leads to a more complicated display that must hide the impact of modeling changes. The HGF automation system will warn

developers that a newly added object such as product has an incomplete association to the transaction data.

The data warehouse’s ETL logic will need to be updated to support the new Product object. Figure 15.35 shows the

main ETL after developers updated it to support the new Product object in the business model. The components added

to this data transform for this purpose are depicted more darkly. They include

� a redefined extract description that now includes product information;
� another add-mod instance to load the Product object; and
� a flow of Manufacturer OIDs to the Product entity so that product records will be linked to their parents.

If this model change is entered into the HGF automation system before the new source data is available, then no

conversion of existing information will be necessary. If the model change is made after the product information

becomes available, then the developers will need to make a special run of this ETL, feeding it the history file that now

has product information in it. This special run will backfill any products or product to manufacturer associations that

had been missed.

The developers will need to update the ETL for loading sales order transactions data as well. Figure 15.36 shows

the simple upgrade required, which consists of adding only a data flow for the new product number field that is now

available through the source. Note that no special widgets for looking up the product OID associated with a given

product number are required. The HGF transaction loader is smart enough to perform that lookup for a data flow that

delivers a product number to the product object referenced in the target structure for transactions.

Manufctr Nbr

Add-mod
instance

Package

Manufacturer

Product

Note: Model elements added for change case are associated with the bold
data flow lines. Mapping for transaction date omitted for clarity.

Xtrc_Sales_Header

Order number

Line item

Qty requested

Order date

Package code

Product SKU

Model identifier

Manufactuer Nbr

Package name

Package SKU

Add-mod instance

Package code

Package name

Package SKU

Manufctr Nbr

Add-mod instance

Product SKU

Model identifier

Manufctr Nbr

FIGURE 15.35 Dimensional data transform changes needed to accomplish Change Case 4.

412 PART | IV Agile EDW Data Engineering

All told, this change case required the developers to complete the following steps using the business-level design

tools of the HGF automation system:

� Update the business model
� Update the dimensional ETL module
� Conduct a special run of the dimensional ETL to backload some object IDs
� Update the transaction ETL module

Table 15.1 shows the actual labor times required to perform these changes. As can be seen from the tallies, the work

for this change case was accomplished in hours instead of the multiple days needed to achieve the same result with a

data warehouse in a conformed dimensional form. Again, the ability to complete all this work using business-level

design tools saved more than 95 percent of the labor required by the baseline case defined in Chapter 12.

As with the previous change cases, the lack or existence of the new data elements will be managed elegantly by the

HGF automation system when it refreshes the result sets in the presentation layer. Figure 15.34 included a sample report

from the data mart that the HGF automation system would create, assuming that the model change described took effect

on 01-Jan-2013. Before that time point, the source systems provided package information without listing the component

products, and the HGF automation system populated the data mart with “unknown” product names up until that point.

Afterward, the HGF automatically placed the product information on each record.

Recap of Change Case Findings

The previous three chapters have provided estimated and actual hours for achieving four change cases in order to gauge,

however roughly, the degree to which the hyper modeled forms can accelerate enterprise data warehousing teams. The

findings produced through this comparison are impressive: Hyper normalization saves between 40 and 50% of the labor

needed to evolve a data warehouse, depending on the particular challenge confronting the team. Hyper generalization

offers an even greater impact, saving 95 percent of that labor or more. Because these numbers are more than a little

astonishing, I summarize here the context and limitations of the estimation process generating them so that readers can

use my findings appropriately when deciding between data modeling paradigms.

With regard to context, these estimates are for change cases—that is, situations in which the business requirements

governing an existing data warehouse changed, requiring the EDW team to evolve the analytics system after it had

already been placed into production. Such change cases are in many ways more important than the use cases that guide

initial EDW construction because the time and money that data warehousing teams spend maintaining, extending, and

redesigning data warehouses far exceeds the investment required to build them in the first place. For that reason, readers

Xtrc_Sales_Line_Items

Product qty rqsted

Order number

Line item

Manufacturer Nbr

Package Nbr

Order date

Direct site sales

Line item

Transaction date

Order Nbr

Package unit price

Manufctr Nbr

Day

Package Nbr

Transaction ref.

Package qty rqsted

Product qty rqsted

Package unit price

Product Nbr

Product Nbr

Note: Model elements added for change case
are associated with the bold data flow lines.

Package qty rqsted

FIGURE 15.36 Transaction data transform changes needed to accomplish Change Case 4.

Fully Agile EDW with Hyper Generalization Chapter | 15 413

should focus predominantly on change cases rather than creation cases when interacting with vendors and consultants

offering a new approach for data warehousing.

Regarding the limitations of the estimates provided in this part of the book, I have several points of caution that

readers should keep in mind. First, the four change cases may not be the situations that will be most important for every

EDW team. The team leaders should author and estimate the particular scenarios that make up the bulk of their particu-

lar DW/BI change cases.

Second, my forecast for the hours required for these change cases will not match the labor hours other EDW practi-

tioners will provide. My estimates should be used as an illustration about how a team deciding between data modeling

paradigms should derive labor estimates of its own. Different people forecast wildly different amounts for a given

hypothetical situation. Generally, my estimates usually lie somewhere in the middle of those of my teammates when I

am working on a development project, so many people will find the numbers I have used here within reason. However,

readers should definitely prepare their own estimates, even if they use my four change cases as a template.

Third, my treatment of hyper normalization was missing an important piece required to fully compare it to the hyper

generalized approach. I did not include the cost of refreshing presentation- and semantic-layer data marts while using the

HNF approach. Because HNF is largely a technique, and one that does little to streamline the portion of the warehouse

beyond the integration layer, these steps may well consume a considerable amount of additional labor. The HGF automa-

tion tool provides both of these services, making them quick to accomplish and speeding up data warehouse evolution all

that much more. Teams that are having trouble deciding between the two hyper modeled paradigms should take the time

to expand the estimates provided in Chapter 14 by the time it would take to refresh data marts and semantic layers.

The contrast between HNF and HGF approaches deserves more attention. Table 15.2 provides several points of

comparison between the two styles of hyper modeling. Most of them favor the hyper generalized paradigm, as long as

the EDW program can afford the cost of acquiring the necessary data warehouse automation tools. Usually, when one

monetizes the value of delivering several times faster and evolving a data warehouse almost as fast as customers can

refine their requirements, the cost of tools seems very small indeed.

Because the choice of data modeling paradigms is an important and early milestone in any DW/BI project, every

team needs to explore the power of the hyper modeling paradigms for itself rather than taking another party’s word for

it. I have provided enough background on how I compiled my numbers that it should be a straightforward exercise to

decide whether my estimates cover all the considerations that should be included, such as the time required from

supporting teammates and the effort required to promote builds between applications.

HGF-POWERED AGILE SOLUTIONS

Although hyper generalization seems to offer the greatest potential for accelerating EDW teams, that fact does not

necessarily mean that it is the best for agile data warehousing. Agility is more than just delivering fast. It has more to

do with failing fast and cheaply and then fixing quickly. In previous chapters, the practice of surface solutions and

architectural backfilling was key to providing a series of subreleases that allow customers to participate fully in refining

the vision for a data warehousing application. Increased customer participation was key to uncovering errors and over-

sights committed by the EDW team. Hyper generalized data warehouses truly excel in supporting the surface-solution

process and keeping IT aligned with the business as stakeholders discover what it is they truly need.

TABLE 15.2 Hyper Modeling Approaches Compared

Hyper Normalization Hyper Generalization

EDWs evolve with 35�65% less labor compared to standard
normal formsa

Labor savings reach 98% or morea

Addresses the integration layer only Manages all layers of the EDW architecture except for the landing
area

Data model remains under DW/BI’s control All but the business model and value-added loops hidden from the
EDW team

Requires DW/BI to write ETL and queries Eliminates all but the ELT for derived columns

Only a technique—one that is data based and ETL tool agnostic Tool-bound solution, but still DBMS agnostic

Teams need only training and support to get going Teams must acquire and learn a data warehouse automation tool

aLabor savings based on four common DW/BI change cases.

414 PART | IV Agile EDW Data Engineering

Easier Backfills for Surface Solutions

Figure 15.37 depicts an EDW reference architecture adapted for a hyper generalized data modeling approach. The inte-

gration layer has been renamed the “data warehouse automation system” because that tool appears to place much of the

warehouse in a black box when viewed from the perspective of the EDW developers who will be working with it.

Within the HGF automation system, the developers will find the core storage, the value-added workspace, and

the performance sublayer as described previously. Separate from the HGF automation system will be the database

area that receives the departmental data marts that the HGF automation tool will create and refresh after each load of

source data.

When confronted with a new, large requirement, the first step the EDW team should take with its business part-

ners is the same as the action suggested for all other paradigms: Provide a Subrelease 1 by placing as much opera-

tional data in a landing area as possible and then surfacing that raw data to the subject matter experts in the business.

This simple step will allow the team to employ a nimble data visualization tool to collaboratively explore source

data with the end users, investigate whether it offers any value, and research the data transforms needed to solve the

business problem.

For Subrelease 2, the team should begin populating the core of the data warehouse, using the HGF business modeler

to quickly create a repository for a first subject area or even a topic-oriented subset within that subject area. The focus

should be simply acquiring the source data and integrating it in obvious ways. This data can then be projected to a

beginning departmental data mart with the humble ambition of providing only items that can be replicated from the

source. This subrelease will also offer light integration using the business entities clearly present in the source data.

Here, the EDW leaders can promise the business only a 360-degree view of the “things you can count and sum.”

They will be able to slice and dice these simple metrics by qualifiers taken directly from the operational systems.

Subrelease 2 may in fact involve several versions of this simple data warehouse because it will take customers some

time to learn enough about their source systems and their true business needs to provide a “final” collection of require-

ments. However, the team will be using a hyper generalized data repository that gives it a 10-fold increase in delivery

speed, even after the warehouse is loaded with information, so that such fast iterations will be possible.

Once the customer begins to exhaust the value that a quick warehouse of straight operational data can provide, the

team can begin to add value-added loops and offer its business partners Subrelease 3. Because the derived columns

making up the new features in this subrelease require hand programming, the iterations between builds may well slow

1

2

3

5

Performance

sub layer

Landing

area
Value-added

workspace Presentation

layer

Semantic layer

Core

storage

Data discovery
Subrelease

Closely matches
source’s structure

Business-
modeled &
generated
solutions

Hand-built
value-added

loops

With or without data
virtualization

Automatically
created &

maintained

Data warehouse administration system Dimensional

data marts

Views

360º view of source-
based business entities

& train-of-though response
times

Advanced metrics
& master data entities

na (automatically included)

End user
applications

Incremental
business value

Start with a “surface solution” and
then backfill the architecture as
requirements become clearer

FIGURE 15.37 Surface solution patterns employing a hyper generalized integration layer.

Fully Agile EDW with Hyper Generalization Chapter | 15 415

down. However, the fact that the previous subrelease allowed the team to look deeply at the source data and reflect at

length about the requirements, EDW’s oversights and mistakes with Subrelease 3 should be rather small, making

slightly longer iterations perhaps unnoticeable to the customer.

Note that Subrelease 3 is an end point in this process. With hyper normalization, we had another step in which the

team addressed data latency issues by building objects in the performance sublayer. The hyper generalized approach

addresses integration layer performance issues with both hardware and by projecting data into star schemas, so no fur-

ther objects need to be developed. For this reason, the HGF data warehouse eliminates an entire step in the backfilling

process and thus appears all the more agile to the end users.

EVIDENCE OF SUCCESS

For all the benefits that hyper generalization offers, I have been surprised to learn that only a few hundred companies

utilize this technique worldwide. Although the products making this approach possible were first published more than

15 years ago, most enterprise data warehousing professionals are unfamiliar with it. My efforts to introduce this tech-

nology to companies needing a quick and inexpensive means of providing integrated analysis and reporting have at

times met with considerable skepticism and resistance from the DW/BI directors and the EDW staff. Perhaps hyper

generalization is just slightly ahead of its time, in which case DW/BI departments simply need evidence that this

approach is effective and reduces project risk before they will begin considering it as a viable solution to the common

challenges of enterprise data warehousing. To that end, I offer the following two case histories in which fairly large

companies with serious business challenges found that a hyper generalized toolkit and model-driven development per-

formed quite well for both the EDW team and their project sponsors. The first case history illustrates that a hyper gen-

eralized data warehouse automation system enables rapid interactions with business customers, leading to agile EDW

delivery in the pharmaceutical industry. The second case history demonstrates the sheer ease of delivery that model-

driven development brought to enterprise data warehousing for a specialty retailer, enabling analysts to ask more pene-

trating questions of their data and thereby attain greater competitive capabilities with less development expense.

Case History 1: Model-Driven Development in Pharmaceuticals

The first case history regarding the impact that hyper generalized tools can make on an agile EDW program took place at a

Fortune 100 pharmaceutical company in the Midwest in the United States starting in 2006. This case history was described

to me by the senior enterprise architect of the company’s enterprise information management team, who led the program.

At this company, she had employed a leading hyper generalized DW/BI automation for 4 years, building divisional data

warehouses, and then for an additional 4 years while building the firm’s enterprise data warehouse. The business depart-

ments at her company had been steadily funding the enterprise data warehouse in order to gain a better, integrated view of

revenue and cost containment opportunities. During her 4 years on the EDW program, her team of approximately 20 people

had delivered 25 separate subject areas using the hyper generalized tool—an average pace of one new subject area approxi-

mately every 2 months. In fact, the warehouse automation tool allowed her four integration programmers to work so

efficiently that they were able to regularly build out subject areas for three or four different business groups at a time. Each

of these subject areas had hundreds of users, with the total EDW user community reaching several thousand.

Using the model-driven development that the hyper generalized tool made possible, this EDW team followed a very

fast delivery cycle:

1. Meet with the customer to understand the business requirements.

2. Draft a problem statement and the business objectives for their planned EDW enhancement.

3. Identify the data sources and data elements needed to solve the business problem.

4. Discover the relationship between the data elements.

5. Create a business model depicting the solution.

6. Immediately generate a data warehouse from that business model.

7. Build a front end using a BI tool, and validate this first version of the warehouse with the customer.

8. Iterate from there.

“It’s a very agile approach,” my contact assured me, adding that her team could progress from the opening conversations

with the customer to a first, reviewable version of the warehouse in a single month—even if completely new source systems

were involved. Many of her customers would become quickly familiar with business models, enabling them to participate

416 PART | IV Agile EDW Data Engineering

extensively in the design process directly. Once they understood that entities represented dimensions and transactions sets

depicted facts, they began to discuss business scenarios using the warehouse business model, which they could review

directly using the design screen of the automation tool. For these customers, the development cycles quickly accelerated to

the point where they could discuss a new set of requirements, increment the EDW’s data repository, and review it via an

updated front end in 2 or 3 days. With this fast-paced innovation and the power of the hyper generalized warehouse automa-

tion tool, her team was able to push a new EDW subrelease into production twice a month.

Frequently, a business group would need only a couple of cycles with the development team before it would say,

“Yes! I know exactly what business actions I have to take” or “Now I know what decision I have to make.” The tool’s

business model allowed these customers to take full ownership of the enterprise data warehouse. These business

customers often “put the business model . . . on their office wall and reference it. They use it during discussions with

their other business partners, especially the ones who are becoming the consumers of their integrated data.”

I asked my contact if she had any evidence whether the business sponsors of the EDW were pleased with what her

team had been able to accomplish using this process. “My four years with the EDW team have been very successful.”

She explained the difference that her fast, agile approach had made in her work. “We have dozens of data warehouses

here besides the EDW, but ours provides the most widely adopted groups of reports within the company.” The value

that her customers found in the fast EDW delivery process translated into tangible, business-partner enthusiasm for the

development process her team had devised. Often, when her team began a new project for one department, “other busi-

ness groups would jump in” because they wanted to collaborate on the new subject area as well.

She could also measure success by repeat business. “My team is an enterprise information management group. We

help the business groups to manage their information, making sure it is logically all part of an enterprise business

model, and that it follows the company’s master data foundation.” In other companies, business groups often view the

enterprise data warehousing team as an obstacle to creating business intelligence applications, providing nothing but

hoops to jump through before it will allow department staff members to build the data mart they have in mind.

However, her team’s ability to quickly deliver basic data management and then steadily improve the solution for the

customer turned the business partner’s impression completely around. Many of her customers would start off warehous-

ing their data without integration but then request that their information be upgraded to use the company’s master data

elements. “Through the business evolution of the project, we helped them understand the value of enterprise master

data and how we could transform their one-off dimensions into an enterprise data model.”

Perhaps her greatest measure of success lies in the fact that her team had been able to build an extensive enterprise

data warehouse despite the fact that all of her projects had to be funded by the business groups, not out of a corporate

IT budget. The business sponsors were so pleased with the speed and effectiveness of the model-driven development

approach that the “funding has kept coming in steadily over the past 4 years.”

This EDW team was able to achieve its high delivery speed and responsiveness to customers by driving development

completely off a business model, except for the value-added loops, which they constructed using a typical ETL tool. I asked

her if her team members ever felt hand-tied by the fact that they never got to see or touch the data model at work within the

hyper generalized data warehouse automation system. On the contrary, “that is one of the most valuable aspects” of

the tool. “Because, face it, if someone had a choice, who would want to have to create the logical and physical models that

the automation tool hides? What would be the value to the business?” She pointed to how much additional maintenance is

required to maintain a traditional EDW project’s logical and physical models. “If you change one, you have to change it in

three places. To be honest, I’m pretty technical, but I would never want to take the time and the energy required to create

needless models. They’re just an IT artifact. They don’t add any value to the business. Let the software take care of it.”

So, no frustration with the fact that the heart of the enterprise data warehouse is sealed up inside a black box? “A

black box has its own beauty. If you think about the IT industry in general and the business we’re in, my EDW team is

not planning on being a software development firm. We want to be a business partner.”

Case History 2: Hyper Generalized Data Warehousing in Specialty Retail

The second case history for the hyper generalized approach comes from Nik Green, a director of business intelligence

working in the Charlotte, North Carolina, area. With more than 15 years of experience in enterprise reporting and

advanced analytics for publicly traded firms, he now directs business intelligence and data management departments in

providing enterprise data architecture, governance, master data management, and enterprise application integration. He

has incrementally delivered enterprise data warehouses using short iterations in a diverse set of industries from

consumer health products to specialty retail. His preferred tool employs the “things and links” associative data reposi-

tory featured in this chapter. He recently used this technology to build enterprise data warehouses at two companies,

Fully Agile EDW with Hyper Generalization Chapter | 15 417

including a Fortune 100 pharmaceuticals maker. The last of these projects resulted in a 3-terabyte business intelligence

system for a women’s apparel chain with $5 billion of annualized sales, more than 20,000 employees, and 12 million

customers, with fact tables containing a billion records representing 5 years of transactions.

When I interviewed him for this book, the features of a hyper generalized tool were all too easy for him to enumer-

ate. He had recently joined an international food retailer that had standardized on a database that ruled out his favorite

model-driven development tool. Without access to this tool, he had to direct his new team in constructing an EDW

using traditional software engineering, with ETL modules programmed by hand, one widget at a time. Having

downshifted back to building data warehouses “the hard way,” he was able to list the benefits of the hyper generalized

approach that matter most to him in the past, namely

� a better way to work;
� mitigating risk;
� more effective use of development labor; and
� delivering a better warehouse.

Hyper Generalized Tools Offer a Better Way to Work

At his new company, Nik’s challenge is to combine a merchandising data mart and a customer analysis data mart while

his employer switches out the enterprise resource planning system that will serve as primary data source for the new

warehouse. He sorely misses working with a hyper generalized tool that would have allowed his developers to generate

each slice of the EDW directly from a business model. Using traditional methods, his team must first design a data

integration area in third normal form, then employ a graphical tool to draft a business model, next build a logical model

for the presentation layer, which can be finally used while hand coding the ETL. With all the additional layers of design

work, Nik was very aware that it is “very easy for our business models and logical models and physical models to get

out of synch,” whereas with a hyper generalized toolkit “they’re never out of synch because your business model drives

[the application’s hidden] logical and physical model.”

Because his current company has not invested in a data warehouse automation tool, the team there must follow a

standard approach with traditional tools. He has had to allocate 13 developers who have taken 6 months to get just the

first subrelease to the end users. At his previous company where he had a hyper generalized data warehouse automation

tool, he was able to merge two data warehouses while responding to a major source system upgrade with only a team

of four or five people, delivering a new set of features every 6 weeks. The hyper generalized tool allowed his team to

“continuously adapt to changes in our source systems while combining data marts into a single business model that

gave users a holistic view of the company, even as a new ERP system was being rolled out.” With HGF, “you’re talking

about going from model to report in 5 days,” he assured me. “Modeling exclusively at the business model is definitely

the better way to go.”

Hyper Generalized Tools Mitigate Risk

Another advantage of the hyper generalized tools can be described in terms of the risk posed by uncertain or changing

business requirements. Nik noted the advantages of working with a data warehouse automation tool rather than a

product that is only a DW/BI code generator. “Most data warehousing generators are built to get a data warehouse up,

but change is the tricky part.” Using data warehouse automation products, on the other hand, “allows you to adapt

to the changing business landscape in a way that would have been impossible using traditional tools.” The EDW auto-

mation tools based on a hyper generalized integration layer allow a team to iterate through the business requirements

one subject area at a time. “You just create a model, and run the data through it” to determine whether the team got the

requirements and design correct. If not, the team needs only to correct the model and re-project a star schema that will

now provide a better fit to purpose.

The traditional methods he had to use for his current company, in contrast, force the developers to get the design

correct the first time. When a team must employ a long chain of data modeling and ETL coding, mistakes require a

significant number of person hours to investigate and correct. “You have to investigate about 10 different areas to find

out where the assumptions went wrong—maybe it was my model, maybe it wasn’t.” Given how long it takes to

find and correct a design mistake, traditional EDW teams experience a lot of pressure to get the atomic level data

correct first, which causes them to move slowly through design and coding activities of the project.

418 PART | IV Agile EDW Data Engineering

“It doesn’t leave a lot of room for error,” Nik summarized. With model-driven development, on the other hand,

“you can make mistakes and then adapt [the application] to resolve those errors really quickly. I can build the next por-

tion of a business model, load data, and validate that model in an hour or two instead of days or longer.”

Hyper Generalized Tools Allow Better Use of Resources

Downshifting back to a traditional development clearly illustrated to Nik how much more effective model-driven devel-

opment can be with labor resources. For a new increment of the warehouse, his previous team could use its model-driven

data warehouse automation tool to complete both a conceptual model and an end-user review of the application’s new

features in 5 days. With only four or five developers, the team was able to offer its project stakeholders a new subrelease

approximately every 6 weeks. In contrast, his current team of 13 developers, with their traditional methods, needed 6

months to deliver the first subrelease. The implied efficiency of the hyper generalized approach, then, incorporates an

acceleration factor of four as delivery times improve from 6 months to 6 weeks, and a 2.5-fold improvement on labor

productivity as staffing decreases from 13 to 4 or 5 developers. This case study, then, indicates that hyper generalized

tools allow DW/BI directors to get a total of 10 times the productivity out of their development resources, “especially if

you’re using a good business intelligence [front-end] tool that [the data warehouse automation tool] can build out the

meta data for.” DW/BI directors, then, can have both smaller head counts and rapid turnaround, all at once. The hyper

generalized approach “is tremendously faster,” Nik emphasized. “ I mean, it is ridiculously faster.”

Hyper Generalized Tools Deliver a Better Warehouse

Nik pointed out that in addition to better resource utilization, the hyper generalized tools lead to far greater customer

satisfaction. Of course, project stakeholders notice that the team is delivering with greater speed, but more important,

they appreciate that this speed allows the DW/BI developers to tackle an entire class of business questions that are far

more important.

He provided a simple example from his work with the specialty retailer. “If you look at a data mart in a retail com-

pany you’re going to see point-of-sale transactions occurring at the store level. That’s all you’ll have because [the DW/

BI team] can’t spend the time needed to really understand the business.” Switch to a model-driven toolkit, however,

and the team will have the power to build applications enabling their business stakeholders to “look at a store and think

about the detail of how it behaves, the dynamics actually happening at a cash register level.” A cashier register sits

within a particular lane at a specific store. Multiple cashiers cycle through that station every day, creating many nuances

that the company needs to detect and explore.

The advanced capabilities that model-driven tools put within a team’s reach “may not be a big deal when you’re

looking at the sales subject area,” he explained, “but when you start to do investigations around fraud and looking for

training opportunities, the ability to ask enterprise-level questions all the way down to where the true action occurs

becomes a real game-changer.” With traditional DW/BI development, EDW teams never have the time to provide this

level of insights. With hyper generalized tools, however, a team can shift the hours it would have been spending on the

logical modeling, physical modeling, and hand coding of the ETL to deeply learning about the business and adapting

the BI applications as everyone learns more. In this case, his team was able to invest the effort needed to take

the analysis down to the next level of detail and reveal inefficiencies and patterns of theft centered on the individual

cash registers and cashiers. DW/BI customers see and appreciate the greater insight that teams utilizing model-driven

development can achieve for them.

Barriers to Wider Adoption

With all the advantages that Nik was able to illustrate for his preferred approach, I asked him why no more than a few

hundred companies have switched to the hyper generalized technology for enterprise data warehousing. In his appraisal, it

is difficult to convince people to consider the model-driven approach because they do not compare “apples to apples.”

“You can join many [DW/BI departments] and the team doesn’t even know what a slowly changing dimension is, even

though they have claimed to have already built a data warehouse. Teams that do not build advanced data warehousing

features such as slowly changing dimensions and suspended source record management won’t have an appreciation of how

the HGF tools can accomplish all that functionality and more, right out of the package with just a click of a check box.”

The hyper generalized tools create a world-class data warehouse for their users, he explained. If the agile data warehousing

proponent does not establish up-front that such a high-quality data warehouse is necessary, then all the features offered by

the hyper generalized tool will seem superfluous.

Fully Agile EDW with Hyper Generalization Chapter | 15 419

I asked Nik about a criticism of HG packages that I commonly hear from EDW architects and managers—that

the integration layer’s design and its ETL are essentially hidden from the development team. Aside from the documen-

tation, one has to allow the product to work without knowing the details of the data transformation it employs.

“I loved the fact that it was a black box and automated,” answered Nik. Of course, he and his team spent a lot of

time at first learning how the product was built, especially the way the associative data store for dimensional informa-

tion was structured. Once they achieved that level of insight, however, it proved unnecessary for any developer to

actually examine the contents or inner workings of the hyper generalized data store. “We never looked at it and never

touched it,” he said as he summarized his last model-driven project. The hyper generalized tool “may be a black box,

but what I care about is what it is producing. If what it produces mirrors back to my business model, what do I care

what it did in between?”

That said, why do so many teams still pursue EDW projects using manually written ETL routines, I asked, when

they could just generate 80% of an application from a business model? Nik pointed to the fact that system integrators

still build many of the world’s larger data warehouses, and that those companies benefit from following labor-intensive

approaches when building the integration layer that sits in between source systems and the end user’s presentation layer.

“You know a lot of people make a lot of money doing that non-value-added work in the middle.”

SUMMARY

Whereas hyper normalization provides important flexibility in the EDW integration layer by increasing the number of

tables beyond the traditionally modeled approach, HGF takes the data model in the opposite direction. By generalizing to

an extreme the components of a typical source data record, the EDW can store a company’s information in just three data

stores: a collection of associative records for dimensional data, a stack of name-value pairs for the qualifying attributes,

and lightly dimensionalized event records for transaction data. Although the details of saving and retrieving data into the

hyper generalized data stores are rather involved, that complexity is moot. Teams wishing to build a hyper generalized

data warehouse need to invest in a data warehouse automation tool, and this tool will then hide most of the complexity

from everyone, developers included.

With the HGF automation system, the development team can employ graphical design tools to create and manage

most of the objects for an enterprise data warehouse by working with only business-level concepts. Data structures,

data transforms, and retrieval queries for creating star schemas can all be authored directly from the application’s

business model. Moreover, these data warehouse components can be analyzed and updated while still working with

only business-level designs. When used to update an existing data warehouse for new or overlooked requirements,

the HGF automation system makes converting the remaining information relatively easy to accomplish because it

employs fairly simple data transforms, designed using business concepts and run against data already stored in the data

warehouse.

By eliminating the work of logical and physical data modeling, hyper generalized data warehousing tools remove 90

percent or more of the labor DW/BI teams used to invest in building and maintaining “the basic plumbing” of an enter-

prise data warehouse. The ability to quickly change the layout and data within a production data warehouse also enables

the EDW team to provide a steady stream of new features to its customers—a hallmark of an agile team. EDW team lea-

ders can now focus their resources on creating the “value-added loops” necessary to derive new information, thus greatly

increasing the value DW/BI can add to the business. Because the hyper generalized toolset allows EDW developers to

work at a business level, the team can include business partners in the requirements and design discussion. Requirements

and design become far easier to discern, increasing the likelihood that the business intelligence applications will remain

tightly aligned with current business needs. Case studies demonstrate that the new speed and flexibility that HGF tools

permit allow EDW teams to start small, build out incrementally, and revise existing versions of the warehouse without

lengthy and expensive re-engineering. In this way, hyper generalization nearly eliminates the risk that large enterprise

data warehouse projects used to entail. Given the power of both hyper normalization and hyper generalization, EDW

team leaders need to consider hyper modeling options carefully whenever starting a new data warehousing development

effort.

420 PART | IV Agile EDW Data Engineering

Part IV References

Chapter 12

Becker, B., 2007, March 26. Think Critically When Applying Best

Practices. Kimball Group (blog). ,http://www.kimballgroup.com/

2007/03/think-critically-when-applying-best-practices. (accessed

September 2014).

Date, C.J., 2012. Database Design and Relational Theory. O’Reilly

Media, Cambridge, MA.

Earley, S., 2011. The DAMA Dictionary of Data Management, second

ed. Technic, Bradley Beach, NJ.

Inmon, W.H., Imhoff, C., Sousa, R., 2001. Corporate Information

Factory, second ed. Wiley, New York.

Kimball, R., Ross, M., 2013. The Data Warehouse Toolkit, third ed.

Wiley, New York.

Silverston, L, Agnew, P., 2008. The data model resource book,

Universal Patterns for Data Modeling, vol. 3. Wiley, New York.

Singh, S.K., 2011. Database Systems: Concepts, Design and Applications,

second ed. Pearson, India.

U.S. Department of Defense 2002, February 12. Defense.gov news transcript:

DoD news briefing (news transcript). Defense.gov (blog). ,http://www.

defense.gov/transcripts/transcript.aspx?transcriptid5 2636..

Wyllys, R.E., 2003. Overview of normalization. Database

Management Principles and Applications. The University of Texas

at Austin, Austin, TX, ,https://www.ischool.utexas.edu/Bwyllys/

DMPAMaterials/normover.html..

Chapter 13
Altior, Inc., 2012, December 18. Altior’s AltraSTAR—Hadoop storage

accelerator and optimizer now certified on CDH4 (press release).

Eatontown, NJ: Altior, Inc. Apache Foundation (2014). Apache

Hive. ,http://hive.apache.org. (accessed August 2014).

Babcock, C. 2012, June 15. Yahoo and Hadoop: In it for the long term.

InformationWeek. ,http://www.informationweek.com/database/

yahoo-and-hadoop-in-it-for-the-long-term/d/d-id/1104866?..

Borthakur, D., 2010, May 9. Facebook has the world’s largest Hadoop

cluster! HDFS (blog). ,http://hadoopblog.blogspot.com/2010/05/

facebook-has-worlds-largest-hadoop.html..

DeWitt, D., Stonebraker, M., 2008, January 17. MapReduce: A major

step backwards. Database Column. ,http://www.databasecolumn.

com/2008/01/mapreduce-a-major-step-back.html. or ,http://homes.

cs.washington.edu/Bbillhowe/mapreduce_a_major_step_backwards.

html. (accessed July 2013).

Douglas, L., 2001, February 6. 3D data management: Controlling data

volume, velocity and variety. ,blogs.Gartner.com..

Du Preez, D., 2014, April 25. A big data reality check: What the hell is

the use case? Diginomica. ,http://diginomica.com/2014/04/25/

big-data-reality-check-hell-case. (accessed July 2014).

Facebook, 2012, November 8. Under the hood: Scheduling MapReduce

jobs more efficiently with Corona. Notes by Facebook Engineering.

,https://www.facebook.com/notes/facebook-engineering/under-

the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/

10151142560538920..

Feinleib, D., 2012, July 9. The 3 I’s of Big Data. Forbes. ,http://

www.forbes.com/sites/davefeinleib/2012/07/09/the-3-is-of-big-data.

(accessed September 2012).

Finley, K., 2014, May 19. Why tech’s best minds are very worried about

the Internet of things. Wired. ,http://www.wired.com/tag/internet-

of-things/page/2..

Finnegan, M., 2013, March 6. Boeing 787s to create half a terabyte of

data per flight, says Virgin Atlantic. Computerworld UK. ,http://

www.computerworlduk.com/news/infrastructure/3433595..

Henschen, D., 2012, October 24. Why Sears is going all-in on Hadoop.

InformationWeek. ,http://www.informationweek.com/it-leadership/

why-sears-is-going-all-inonhadoop/d/d-id/1107038?. (accessed July

2014).

Henschen, D., 2013, March 22. Big data debate: Will Hadoop become

dominant platform? InformationWeek. ,http://www.informationweek.

com/big-data/big-data-analytics/big-data-debate-will-hadoop-become-

dominant-platform/d/d-id/1109226?. (accessed August 2014).

King, R., 2012, April 30. Sears hopes big data can generate big revenue.

Wall Street Journal. ,http://mobile.blogs.wsj.com/cio/2012/04/30/

sears-hopes-big-data-can-generate-big-revenue..

Kumar, V., 2013, May 7. Will Hadoop replace or augment your

enterprise data warehouse? The Big Data & Analytics Hub, IBM.

,http://www.ibmbigdatahub.com/blog/will-hadoop-replace-or-augment-

your-enterprise-data-warehouse..

Lohr, S., 2013, September 17. Improving the big data toolkit. New York

Times. ,http://bits.blogs.nytimes.com/2013/09/17/improving-the-big-

data-toolkit/?_php5 true&_type5 blogs&_r5 0..

Maguire, J., 2014, May 22. Big data survey: Big data growing quickly.

Datamation. ,http://www.datamation.com/data-center/big-data-survey-

big-data-growing-quickly.html..

Marr, B., 2014, February 28. Big data—The 5 Vs everyone must know.

,http://www.slideshare.net/BernardMarr/140228-big-data-volume-

velocity-variety-varacity-value. (accessed July 2014).

Press, G., 2013, December 12. $16.1 Billion big data market: 2014

predictions from IDC and IIA. Forbes. ,http://www.forbes.com/

sites/gilpress/2013/12/12/16-1-billion-big-data-market-2014-predictions-

from-idc-and-iia..

QuinStreet Enterprise Research, 2014. Big data outlook, 2014. ,http://

www.enterpriseappstoday.com/ebooks/184585110/97360/..

Ryan, A., 2012, June 13. Under the hood: Hadoop distributed filesystem

reliability with Namenode and Avatarnode. Facebook. ,https://

www.facebook.com/notes/facebook-engineering/under-the-hood-

421

http://www.kimballgroup.com/2007/03/think-critically-when-applying-best-practices
http://www.kimballgroup.com/2007/03/think-critically-when-applying-best-practices
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref1
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref1
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref2
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref2
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref3
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref3
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref4
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref4
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref5
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref5
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref6
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref6
http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636
http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636
http://www.defense.gov/transcripts/transcript.aspx?transcriptid=2636
https://www.ischool.utexas.edu/∼wyllys/DMPAMaterials/normover.html
https://www.ischool.utexas.edu/∼wyllys/DMPAMaterials/normover.html
https://www.ischool.utexas.edu/∼wyllys/DMPAMaterials/normover.html
http://hive.apache.org
http://www.informationweek.com/database/yahoo-and-hadoop-in-it-for-the-long-term/d/d-id/1104866?
http://www.informationweek.com/database/yahoo-and-hadoop-in-it-for-the-long-term/d/d-id/1104866?
http://hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-hadoop.html
http://hadoopblog.blogspot.com/2010/05/facebook-has-worlds-largest-hadoop.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://www.databasecolumn.com/2008/01/mapreduce-a-major-step-back.html
http://homes.cs.washington.edu/∼billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/∼billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/∼billhowe/mapreduce_a_major_step_backwards.html
http://homes.cs.washington.edu/∼billhowe/mapreduce_a_major_step_backwards.html
http://www.blogs.Gartner.com
http://diginomica.com/2014/04/25/big-data-reality-check-hell-case
http://diginomica.com/2014/04/25/big-data-reality-check-hell-case
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-scheduling-mapreduce-jobs-more-efficiently-with-corona/10151142560538920
http://www.forbes.com/sites/davefeinleib/2012/07/09/the-3-is-of-big-data
http://www.forbes.com/sites/davefeinleib/2012/07/09/the-3-is-of-big-data
http://www.wired.com/tag/internet-of-things/page/2
http://www.wired.com/tag/internet-of-things/page/2
http://www.computerworlduk.com/news/infrastructure/3433595
http://www.computerworlduk.com/news/infrastructure/3433595
http://www.informationweek.com/it-leadership/why-sears-is-going-all-inonhadoop/d/d-id/1107038?
http://www.informationweek.com/it-leadership/why-sears-is-going-all-inonhadoop/d/d-id/1107038?
http://www.informationweek.com/big-data/big-data-analytics/big-data-debate-will-hadoop-become-dominant-platform/d/d-id/1109226?
http://www.informationweek.com/big-data/big-data-analytics/big-data-debate-will-hadoop-become-dominant-platform/d/d-id/1109226?
http://www.informationweek.com/big-data/big-data-analytics/big-data-debate-will-hadoop-become-dominant-platform/d/d-id/1109226?
http://mobile.blogs.wsj.com/cio/2012/04/30/sears-hopes-big-data-can-generate-big-revenue
http://mobile.blogs.wsj.com/cio/2012/04/30/sears-hopes-big-data-can-generate-big-revenue
http://www.ibmbigdatahub.com/blog/will-hadoop-replace-or-augment-your-enterprise-data-warehouse
http://www.ibmbigdatahub.com/blog/will-hadoop-replace-or-augment-your-enterprise-data-warehouse
http://bits.blogs.nytimes.com/2013/09/17/improving-the-big-data-toolkit/?_php=true&_type=blogs&_r=0
http://bits.blogs.nytimes.com/2013/09/17/improving-the-big-data-toolkit/?_php=true&_type=blogs&_r=0
http://bits.blogs.nytimes.com/2013/09/17/improving-the-big-data-toolkit/?_php=true&_type=blogs&_r=0
http://bits.blogs.nytimes.com/2013/09/17/improving-the-big-data-toolkit/?_php=true&_type=blogs&_r=0
http://bits.blogs.nytimes.com/2013/09/17/improving-the-big-data-toolkit/?_php=true&_type=blogs&_r=0
http://www.datamation.com/data-center/big-data-survey-big-data-growing-quickly.html
http://www.datamation.com/data-center/big-data-survey-big-data-growing-quickly.html
http://www.slideshare.net/BernardMarr/140228-big-data-volume-velocity-variety-varacity-value
http://www.slideshare.net/BernardMarr/140228-big-data-volume-velocity-variety-varacity-value
http://www.forbes.com/sites/gilpress/2013/12/12/16-1-billion-big-data-market-2014-predictions-from-idc-and-iia
http://www.forbes.com/sites/gilpress/2013/12/12/16-1-billion-big-data-market-2014-predictions-from-idc-and-iia
http://www.forbes.com/sites/gilpress/2013/12/12/16-1-billion-big-data-market-2014-predictions-from-idc-and-iia
http://www.enterpriseappstoday.com/ebooks/184585110/97360/
http://www.enterpriseappstoday.com/ebooks/184585110/97360/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920

hadoop-distributed-filesystem-reliability-with-namenode-and-avata/

10150888759153920..

Shao, Z., 2008, October. Hive: Data warehousing & analytics on Hadoop.

SlideShare.net. ,http://www.slideshare.net/zshao/hive-data-ware-

housing-analyticsonhadoop-presentation. (accessed May 2014).

Turck, M., 2014, May 11. The state of big data in 2014. Venture Beat.

,http://venturebeat.com/2014/05/11/the-state-of-big-data-in-2014-chart.

(accessed May 2014).

van der Lans, R., 2012. Data Virtualization for Business Intelligence

Systems. Morgan Kaufmann, Waltham, MA.

White, T., 2012. Hadoop: The Definitive Guide, third ed. O’Reilly Med,

Sebastopol, CA.

Chapter 14
BinckBank, 2014. BinckBank for Investors (website). ,https://www.

binck.com/nl/corporate. (accessed September 2014).

Boyina, B., Breur, T., 2013, April 17. Adapting data warehouse architecture

to benefit from agile methodologies. Slideshare (website). ,http://

www.slideshare.net/bboyina/adapting-data-warehouse-architecture-

to-benefit-from-agile-methodologies. (accessed February 2015).

Damhof, R., 2011a, January 29. Data vault schools. Data Management &

Decision Support (blog). ,http://prudenza.typepad.com/dwh/2011/

01/data-vault-schools.html. (accessed September 2014).

Damhof, R., 2011b, February 17. Dan Linstedt & Ronald Damhof; Let’s

be clear about the raw data vault. Data Management & Decision

Support (blog). ,http://prudenza.typepad.com/dwh/2011/02/dan-

linstedt-ronald-damhof-lets-be-clear-about-the-raw-data-vault.html.

(accessed September 2014).

Data Vault Discussion Group, 2014, November. Barry McConnell (origi-

nal post), “Load end dates and historical rewrites. Data Vault

Discussions (LinkedIn discussion group). ,https://www.linkedin.

com/groups?home5&gid5 44926&trk5 anet_ug_hm&goback5%

2Egna_44926..

Date, C.J., Darwen, H., Lorentzos, N., 2002. Temporal Data & The

Relational Model. Morgan Kaufmann, Waltham, MA.

Hultgren, H., 2012. Modeling the Agile Data Warehouse with Data

Vault. New Hamilton.

Linstedt, D., 2003, January 1. Data Vault overview. The Data

Administration Newsletter (online). ,http://www.tdan.com/view-

articles/5155. (accessed September 2014).

Linstedt, D., 2010a, May 13. Data Vault loading specification v1.2. DV

Standards (blog). ,http://danlinstedt.com/datavaultcat/standards/

data-vault-loading-specification-v1-2. (accessed September 2014).

Linstedt, D., 2010b, May 13. DV modeling specification v1.0.9. DV

Standards (blog). ,http://danlinstedt.com/datavaultcat/standards/dv-

modeling-specification-v1-0-8. (accessed September 2014).

Linstedt, D., 2014a, March 16. 2014 is the year of #DataVault 2.0. Dan

Linstedt (blog). ,http://danlinstedt.com/datavaultcat/2014-is-the-

year-of-datavault-2-0. (accessed September 2014).

Linstedt, D., 2014b, June 30. Data Vault 1.0 and Data Vault 2.0 do NOT

compete. Dan Linstedt (blog). ,http://danlinstedt.com/datavaultcat/

datavault-1-0-and-data-vault-2-0-do-not-compete. (accessed

September 2014).

Linstedt, D., 2015. Quotes. Dan.Linstedt.com (website). ,http://

danlinstedt.com/solutions-2/quotes..

Linstedt, D., Graziano, D., 2011. Super Charge Your Data Warehouse:

Invaluable Data Modeling Rules to Implement Your Data Vault.

CreateSpace Independent Publishing.

Regardt, O., Rönnbäck, L., Bergholtz, M., Johannesson, P., Wohed, P.,

2009. Anchor Modeling. In: Proceedings of the 28th International

Conference on Conceptual Modeling, ER ’09 (Gramado, Brazil).

New York, Springer-Verlag, pp. 234�250.

Rönnbäck, L., Regardt, O., Johannesson, P., Bergholtz, M., Wohed, P.,

2013. Anchor Modeling and Data Vault comparison chart. Anchor

(blog). ,http://www.anchormodeling.com/wp-content/uploads/2013/

06/AM-and-DV-comparison-chart.pdf. (accessed September 2014).

Vos, R., 2014a, June 12. A brief history of time in Data Vault. An

Expert View on Agile Data Warehousing (blog). ,http://roelantvos.

com/blog/?p5 1174. (accessed February 2015).

Vos, R., 2014b, June 12. Integration layer. An Expert View on Agile

Data Warehousing (blog). ,http://roelantvos.com/blog/?p5 57.

(accessed February 2015).

Chapter 15
Breur, T., 2015. Comments on this book’s review manuscript. In:

Breur, T (Ed.), Vice President of Data Analytics. Cengage Learning,

Boston, MA.

Pace, S., 2013, October 8. Where’s my magic quadrant? Kalido

Conversations (website). ,http://blog.kalido.com/wheres-magic-

quadrant. (accessed February 2015).

Wells, D., 2014, April 15. Relieving the pain of the BI back room with

data warehouse automation. The Data Warehousing Institute

(website). ,http://tdwi.org/articles/2014/04/15/data-warehouse-

automation.aspx. (accessed October 2014).

West, M., 2011. Developing High Quality Data Models. Morgan

Kaufmann, Waltham, MA.

Williams, S., 2002. The Associative Model of Data, second ed. Lazy

Software; ,http://www.sentences.com/docs/other_docs/AMD.pdf.

(accessed May 2013).

422 PART | IV References

https://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920
https://www.facebook.com/notes/facebook-engineering/under-the-hood-hadoop-distributed-filesystem-reliability-with-namenode-and-avata/10150888759153920
http://www.slideshare.net/zshao/hive-data-warehousing-analyticsonhadoop-presentation
http://www.slideshare.net/zshao/hive-data-warehousing-analyticsonhadoop-presentation
http://venturebeat.com/2014/05/11/the-state-of-big-data-in-2014-chart
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref8
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref8
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref9
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref9
https://www.binck.com/nl/corporate
https://www.binck.com/nl/corporate
http://www.slideshare.net/bboyina/adapting-data-warehouse-architecture-to-benefit-from-agile-methodologies
http://www.slideshare.net/bboyina/adapting-data-warehouse-architecture-to-benefit-from-agile-methodologies
http://www.slideshare.net/bboyina/adapting-data-warehouse-architecture-to-benefit-from-agile-methodologies
http://prudenza.typepad.com/dwh/2011/01/data-vault-schools.html
http://prudenza.typepad.com/dwh/2011/01/data-vault-schools.html
http://prudenza.typepad.com/dwh/2011/02/dan-linstedt-ronald-damhof-lets-be-clear-about-the-raw-data-vault.html
http://prudenza.typepad.com/dwh/2011/02/dan-linstedt-ronald-damhof-lets-be-clear-about-the-raw-data-vault.html
https://www.linkedin.com/groups?home=&gid=44926&trk=anet_ug_hm&goback=%2Egna_44926
https://www.linkedin.com/groups?home=&gid=44926&trk=anet_ug_hm&goback=%2Egna_44926
https://www.linkedin.com/groups?home=&gid=44926&trk=anet_ug_hm&goback=%2Egna_44926
https://www.linkedin.com/groups?home=&gid=44926&trk=anet_ug_hm&goback=%2Egna_44926
https://www.linkedin.com/groups?home=&gid=44926&trk=anet_ug_hm&goback=%2Egna_44926
https://www.linkedin.com/groups?home=&gid=44926&trk=anet_ug_hm&goback=%2Egna_44926
https://www.linkedin.com/groups?home=&gid=44926&trk=anet_ug_hm&goback=%2Egna_44926
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref10
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref10
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref11
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref11
http://www.tdan.com/view-articles/5155
http://www.tdan.com/view-articles/5155
http://danlinstedt.com/datavaultcat/standards/data-vault-loading-specification-v1-2
http://danlinstedt.com/datavaultcat/standards/data-vault-loading-specification-v1-2
http://danlinstedt.com/datavaultcat/standards/dv-modeling-specification-v1-0-8
http://danlinstedt.com/datavaultcat/standards/dv-modeling-specification-v1-0-8
http://danlinstedt.com/datavaultcat/2014-is-the-year-of-datavault-2-0
http://danlinstedt.com/datavaultcat/2014-is-the-year-of-datavault-2-0
http://danlinstedt.com/datavaultcat/datavault-1-0-and-data-vault-2-0-do-not-compete
http://danlinstedt.com/datavaultcat/datavault-1-0-and-data-vault-2-0-do-not-compete
http://www.Dan.Linstedt.com
http://danlinstedt.com/solutions-2/quotes
http://danlinstedt.com/solutions-2/quotes
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref12
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref12
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref12
http://www.anchormodeling.com/wp-content/uploads/2013/06/AM-and-DV-comparison-chart.pdf
http://www.anchormodeling.com/wp-content/uploads/2013/06/AM-and-DV-comparison-chart.pdf
http://roelantvos.com/blog/?p=1174
http://roelantvos.com/blog/?p=1174
http://roelantvos.com/blog/?p=1174
http://roelantvos.com/blog/?p=57
http://roelantvos.com/blog/?p=57
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref13
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref13
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref13
http://blog.kalido.com/wheres-magic-quadrant
http://blog.kalido.com/wheres-magic-quadrant
http://tdwi.org/articles/2014/04/15/data-warehouse-automation.aspx
http://tdwi.org/articles/2014/04/15/data-warehouse-automation.aspx
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref14
http://refhub.elsevier.com/B978-0-12-396464-9.00027-8/sbref14
http://www.sentences.com/docs/other_docs/AMD.pdf

Chapter 16

Why We Test and What Tests to Run

Enterprise data warehousing (EDW) team leaders who implement the many suggestions in the prior four parts of this

book may experience a strong resonance with the old Chinese proverb, “Be careful what you wish for.” On the one

hand, agile data warehousing techniques unleash data warehousing/business intelligence (DW/BI) developers to

define and program extract, transform, and load (ETL) and BI modules as fast as humanly possible. On the other

hand, if these agile techniques generate a flood of new modules and subsystems, how can EDW team leader know

that this torrent of deliverables have been designed and programmed well enough to actually achieve meaningful cus-

tomer objectives? What assures them that the programmers have not been cutting a thousand corners in order to meet

Scrum’s incessant deadlines and that the resulting application will not fail miserably once placed into production

usage? These leaders could insist that the team’s developers and testers validate every small piece of code in every

conceivable way, but such a policy would consume so much labor and time that the project would completely lose its

speed and responsiveness to the customer.

Similar to how agile requirements management focuses on providing “just enough” project definition and design to

enable programming to get started, the agile quality assurance (QA) for data warehousing aims to provide just enough

validation of deliverables to ensure the team is building the right thing in the right way. This agile approach to QA

blends the same ingredients employed for risk mitigation, requirements management, and data engineering. Instead of

overinvesting in detailed plans before the team has any real results to evaluate, agile QA relies on

� employing a lightweight analytical framework so the team asks the right questions;
� visualizing the challenges uncovered so everyone can participate in their solution;
� providing just enough definition that teammates can begin to self-organize toward a goal; and
� initiating programming as soon as possible and delivering in small increments so that feedback on real results can

focus the team on what truly matters.

In that spirit, this and the following two chapters do not attempt to list every last test that a DW/BI team should

throw against its enterprise data warehouse, nor the deep theory behind the practice and methods of QA in general.

Readers interested in such an exhaustive discussion of those topics can start with the works referenced in this chapter.

Instead, I provide an easy-to-express QA planning approach for EDW team leaders to following as part of their agile

development approach. The work patterns offered here will allow them to structure the core elements of an effective

QA program during the early portions of their DW/BI projects and then rely on the team to fill in the necessary details

as development iterations progress. This approach employs a framework organized around the six basic interrogatives,

ordered so that defining an effective EDW quality assurance plan is as straightforward as possible:

� Why should our teammates care about testing?
� What tests should they be running?
� Who should be writing the test cases?
� When should we be executing each type of test?
� Where should these tests be occurring?
� How should we be getting these tests to run?

Questions regarding why and what focus on identifying the tests that will occur, and these serve as the theme for

this chapter. The questions of who, when, and where provide guidance to the EDW teammates while planning their

individual roles in QA, and those are the topic of Chapter 17. Finally, the question of how pertains to execution details,

which is addressed in Chapter 18.

425
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00016-3

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00016-3

Teams that follow this six-question framework to QA will find that they can define a good-enough set of test types

quickly, get development and validation activities started, and then fluidly fine-tune the team’s quality efforts as the

project’s delivery work steadily reveals the strengths and weaknesses of their testing plan.

WHY TEST?

Quality has received many definitions during the past few decades. The International Standards Organization defines

quality as the totality of features and characteristics of a product or service that bears on its ability to satisfy stated or

implied needs [Charantimath 2010, Chapter 1]. Genichi Taguchi, director of the Japanese Academy of Quality in the

late 1970s, defined quality as a product’s ability to maintain its value to society after taking into account the adverse

results from quality inspections, customer complaints, added warranty costs, damage to company reputation, and loss of

market share [Zairi 2010, Section 1.4.7]. The Six Sigma school of quality assurance suggests that quality is the result of

managing a process until it achieves less than 4 defects per 1 million [Ramu 2010].

I prefer to define “quality” for an application such as an EDW as the system’s fit to purpose, judged by the customer

organization as it considers an application’s features, behavior, and total cost of ownership. For now, we can define the

related term of “testing” as the act of assessing an application’s quality, although we will put a much finer point on this

notion later in this chapter. These definitions take into account that both the fit and the purpose have to be perceived by

the people receiving the application. It incorporates some notions of agility because it allows for that perception to

change as a project unfolds and as everyone involved learns more about the problem space that the application should

address. My working definition also suggests that quality is a product of how the system addresses both the customers

functional and nonfunctional requirements, leaving the relative mix of the two for the organization to determine.

With these definitions in place, one could answer “Why should we test?” with the simple statement, “To measure

whether the EDW is fit for purpose.” However, the question has other possible answers, both obvious and subtle. To

start with the simplest, we can point out that testing catches mistakes before they can impinge upon team velocity. The

challenge of EDW projects is not only that these systems are big and complicated but also that software programming

is an imperfect process that consumes inordinate resources and calendar time. Every EDW project will therefore involve

some requirements oversights and many programming errors. The QA process needs to ferret out the flaws in applica-

tion definition, design, and coding that have steadily crept into the product over the many months of the project.

Without adequate testing, these errors will go undetected during development, only to be forced onto the customer as

production-system defects. In practice, customers will tolerate a small level of imperfection in the application, but

above a certain threshold, product flaws will cause the sponsor to label the application a disappointment or a failure,

amounting to a career-limiting waste of time and effort for the information technology (IT) professionals involved.

Testing Keeps Agile Teams from Cutting Corners

A more subtle answer to “Why test?” revolves around the notion that software validation does more than catch pro-

gramming mistakes—it instills a greater level of discipline and clarity of mind upon the team as it creates the software

to test, leading to better execution of the software development process. Better execution of the software engineering

process leads to a work product that is easier to manage as it is taking shape, which in turn makes QA easier to accom-

plish. Given their preference for self-organization, agile teams benefit in particular from this positive feedback loop.

One of the driving forces behind the move to agile development techniques is the need for speed, and veteran agile

teams do in fact deliver new application modules very quickly. The Scrum method that lies at the heart of the agile data

warehousing approach described in this book organizes work in “sprints,” denoting speed in its name. The method

keeps steady deadline pressure on the development teams so that they get the application programmed sooner. With all

the pressure to deliver quickly, programmers can understandably emphasize “getting it done” rather than “getting it

done right.” The danger, of course, is that haste will make waste.

Gerry Weinberg’s zeroth law of quality states that “if the software doesn’t have to work, you can always meet any

other requirement” [Weinberg 1993, p. 111]. The fact that a software application must work correctly and solve the

right problem imposes a fundamental limitation on how fast and how inexpensively developers can accomplish their

goals. If quality is the limitation, testing is how that limitation actually connects to the activities in the project room.

The objective of every Scrum iteration is not the creation of a software prototype but, rather, the delivery of shippable

or “consumable” work products. Testing reveals whether the delivered product is sound—that is, whether it is truly

shippable code. It keeps us from fooling ourselves into thinking that fast deliveries necessarily equal effective

426 PART | V Agile EDW Quality Management Planning

programming. By revealing where we rushed through requirements, designed in haste, or programmed too simplisti-

cally, testing shows us where the team is cutting too many corners in its work habits and falling victim to the zeroth

law of quality. In essence, testing allows agile EDW teams to work with discipline. Install an effective QA program for

a project, and the need to monitor and cajole developers to work “in the right way” will largely disappear.

Testing Keeps Root Cause Analysis Manageable

Given the emphasis on fast deliveries established by the iterative development approach itself, agile EDW team leaders

sometimes find it difficult to convince programmers to undertake a robust testing effort. Here, some theory can tip the

balance toward more vigorous support for QA among the programmers.

Good, persistent testing keeps defects from compounding to the point where they undermine the team’s ability to

make any progress on building new features. Consider Figure 16.1, which depicts the process a team must go through

to find the root cause for a given set of software defects. The first defect is depicted with a bold line. When a defect

suddenly appears in isolation, it is easy to resolve given that the likely cause of the visible defect is the one and only

change that was just made to the software. However, add more changes before the defects are noticed and the situation

becomes far more complex. With just two more faulty changes, the total combinations of cause and effect that the team

must consider has increased to nine, not just three, revealing that the effort to identify the root cause for a given set of

defects grows exponentially with the number of coding changes made.

Accordingly, another answer to “Why do we test?” is to keep root cause analysis from becoming exponentially

more difficult. Persistent, aggressive testing will detect defects as they occur, before the team throws further coding

changes on the heap of possible causes that must be evaluated. Often, when my firm’s agile consultants perform project

rescues for our customers, we encounter teams that have had very weak testing plans and that are losing three-fourths

or more of their bandwidth to resolving errors in the application’s data. Because these teams have allowed defects to

accumulate, the exponential increase in analysis has led to paralysis. Continuous testing keeps root cause analysis to a

minimum, preserving the bulk of a team’s resources for building new features. For this reason, programmers should be

Subsequent defects

First defectCoding change introducing an error

Visible defect in the software

FIGURE 16.1 The level-of-effort needed to determine the root-cause of a defect increases exponentially with the number of defects that exist.

Why We Test and What Tests to Run Chapter | 16 427

inspired to invest significantly into quality procedures because strong testing equals delivery speed. EDW team leaders

should therefore set their sights on an aggressive QA effort—one that tests all modules and tests them continuously.

The secret is knowing how much to test each object, a topic we will consider in a moment.

Testing Integrates Teamwork Across the Pipeline

As a further benefit, an aggressive testing campaign will increase team cohesion. Even projects that can collocate the

developers will see silos of specialization occurring, a trend that only gets worse with remote teammates. Persistent,

aggressive testing will greatly reduce this natural partitioning of the team that threatens to undermine its ability to

self-organize and swarm problems in an agile manner.

As discussed in my prior books, agile DW/BI teams requires many skills that do not easily flow between teammates.

For example, business analysts are good at capturing business rules, data modelers excel at database design, ETL leads

can quickly draft processing flows, and BI programmers understand the front-end tool. Very few of these specialists

can work adroitly outside of these specialties. Although specialization allows people to work in their “sweet spots”

where they make the fastest progress, it also creates the need for work to be handed off between specialties. Errors in

communication frequently occur during these handoffs when the receiver of a message believes he understands the

direction provided by his upstream teammate but has not actually asked the right questions to fully comprehend the

request. Testing provides feedback to the sender and receiver across these handoffs, highlighting communication gaps.

For example, when a programmer claims he has completed a module with exhaustive edge testing, the business

analyst may well notice that no reconciliation tests have been performed. She realizes she forgot to mention that a set

of aggregated control files exist, against which the data transform results can be validated. After mentioning these files

to the programmer, she agrees with his suggestion that the module should automatically perform this reconciliation;

hence an informal conversation about testing uncovers a further technical requirement. Without steady and effective

testing, EDW teams will need to invest far more in careful, up-front design work and formal communication between

specialties, perhaps resorting to written, detailed specifications. At some point, however, copious, written communica-

tions will become an inventory of technical requirements, and lean software development principles warn us that such

inventories will frequently result in wasted effort. Teams that pursue aggressive testing find that the tests themselves

convey a tremendous amount of information regarding requirements and design. The structure of their tests ends up

replacing much of the communication that other teams must achieve through written specifications, and the instances in

which those tests fail effectively highlight whether any communication gaps exist. By allowing an EDW to reduce spe-

cifications to where it provides just enough communication, testing again equals speed.

Testing Leads to Better Requirements

As will be discussed later, agile teams write the tests for a module before the coding begins. One pronounced by-

product of this test-led development approach is far better requirements, underscoring another reason why agile EDW

teams benefit from aggressive testing.

Given agile’s preference for just-good-enough specifications, writing a test for a module will strain a programmer’s

understanding of the sparse direction he or she has received from team leaders. The questions the programmer must ask to

fill the gaps in his or her understanding will cause the teammates providing the design to better articulate the technical

requirements. Often, the programmer’s questions cannot be answered without first asking for clarification on the functional

purpose for a module, leading in turn to better business requirements from the product owner. Teams that pursue persistent,

aggressive testing find that their programmers work from a far better set of requirements, even if most of those notions were

delivered in a verbal format. Because nothing wastes time like building the wrong thing, better requirements results in a

faster path to project success. By avoiding misguided programming, steady and effective testing again equals speed.

Testing Makes Real Progress Visible to Everyone

As a final answer to “Why do we test?”, agile EDW teams can answer that we do so because it provides all

stakeholders with far clearer evidence of team progress. Teams that invest in significant testing from the beginning

of their project provide themselves with real, meaningful events for measuring the work completed. This depiction

provides evidence-based trend lines that all teammates and project stakeholders can monitor in order to understand

the project’s accomplishments, eliminating much of the mystery that surrounds traditionally managed DW/BI projects.

428 PART | V Agile EDW Quality Management Planning

Consider Figure 16.2, which we will discuss in greater depth in Chapter 18. This graph shows the number of tests

executing in multiple DW/BI environments across time. The top line shows the number of tests defined and executing

in the development environment. The middle line represents the number of tests defined and running in the system

integration testing (SIT) environment. The bottom line reveals the number of those SIT tests that are passing.

The middle line in particular represents modules that have been designed, programmed, and integrated to the point where

they undergo nightly testing. These modules provide substantial evidence that the EDW teams are diligently creating new

system components. The bottom line indicates whether those efforts are effective. When the bottom line touches the middle

line, it indicates that the EDW version running in SIT works and the team has achieved agile’s goal of “shippable code.”

This graphic can even portray whether the team has achieved enough. When applied to SIT, the test-led

development technique mentioned previously can enable the team to forecast the number of SIT tests it will need to

execute by the time the project is complete. That number represents a project goal, one that can be drawn on the test

implementation chart, as shown in Figure 16.2. When the line for SIT tests running reaches the goal line, the program-

ming has been roughly completed, and when the line for SIT tests passing touches the goal, that application is now

polished enough to deliver. Persistent and aggressive testing provides the events and goals that are depicted on this

graph and therefore makes real project progress visible to everyone involved.

AN AGILE APPROACH TO QUALITY ASSURANCE

Although the previous discussion provides plenty of motivation for investing significantly in a QA effort, one naturally

wonders what such an effort would look like for an agile EDW project. The QA plans advocated in this book have three

notable features:

� They emphasize the notion of balance.
� They translate many incremental techniques for programming into the realm of software testing.
� They extend the notion of test-led development far above the level of unit testing where it was originally defined.

Striving for Balance

Perhaps the most notable aspect of an agile QA plan is that it explicitly elevates the notion of balance to be a primary

planning objective. Agile EDW teams do not have the funding, staffing, or calendar time to conduct every conceivable

test for their applications. Even if we had the resources to test everything, we would still choose to reduce testing to

just good enough, in order to divert more resources to programming, so that the customer receives as much value from

the project as possible.

FIGURE 16.2 Visualizing quality via the number of tests executing or passing by environment.

Why We Test and What Tests to Run Chapter | 16 429

Judging how much QA a team should undertake and which tests to forego is a subjective decision, but it helps to

visualize the optimal solution. Consider Figure 16.3, which shows the countervailing risks that a development team

needs to manage as it sets its target level for application testing. The horizontal axis depicts how much time and effort

a team chooses to invest in QA. The vertical axis represents the risk of adverse event, defined as the impact of the event

multiplied by the likelihood that it will occur. Descending from the upper left is the risk of letting product flaws of any

kind slip through and enter into a production application. Teams can drive this particular risk toward zero if they decide

to invest to an extreme degree in QA.

Unfortunately, any decrease in the risk of product flaws achieved through extensive testing must be weighed against

the concomitant increase in opportunity cost incurred. Companies that delay releasing business intelligence features so

that they can complete exhaustive testing risk losing altogether the business benefit that the application was intended to

capture. The project’s sponsor commissioned the DW/BI application to address a pressing business challenge. Teams

that take too long to deliver—for any reason—risk letting that opportunity to profit from solving that challenge disap-

pear. The art of agile QA is finding the sweet spot depicted in the middle of Figure 16.3, where the intensity of testing

is balanced against opportunity costs, and the sum of the two risk curves falls to a minimum.

Previously, this chapter identified the need for an aggressive QA program—one that tests all modules

continuously. Figure 16.3 illustrates that the QA program must be balanced as well—that is, testing each module

just enough to ensure that it’s fit for purpose but not so much as to put the value of the entire application at risk.

The mission for EDW project leaders, then, is to provide a plan for their teammates that identifies a small number

of test types for each module type that will be just good enough to validate the next product release. The chapters

in this part of the book offer a straightforward process for identifying a balanced QA program that involves the

following set of action steps:

� Authoring a top-down testing plan that includes the interest of stakeholders outside the development team
� Negotiating a bottom-up testing plan to which the programmers will adhere
� Confirming that the two plans meet in the middle by implementing categorized event reporting
� Trimming the plan until it fits within budget
� Monitoring and adjusting the plan to maintain the maximum affordable test coverage

Keeping Quality Assurance “Agile”

I illustrate how EDW leaders can accomplish the planning objectives listed previously by progressing through the five

remaining interrogatives—the what, who, when, where, and how of testing. The resulting plan will embody the agile

principles and techniques utilized previously in this book for risk mitigation, requirements management, and data

engineering. The agile notions built into the recommend quality process can be summarized as follows.

R
isk (P

ro
b

ab
ility o

f lo
ss * valu

e lo
st)

Planning & formalism

Point of lowest
combined risk

Opportunity
costs

Product
flaws

FIGURE 16.3 The optimal level of testing is a balance between two types of risks.

430 PART | V Agile EDW Quality Management Planning

It is Collaborative, with High Customer Involvement

The entire team participates in writing test cases rather than leaving it for the project’s system tester role. The team

even requests test cases and product validation from its embedded business partner, the product owner.

It is Iterative and Incremental

Test execution starts with Iteration 1 and builds steadily throughout the project. This practice assures business

stakeholders that all developed components will receive their fair share of QA efforts. In waterfall projects, testing is

planned throughout development, but execution begins only as the application coding nears completion, risking that too

little time and resources have been reserved to validate all the assembled features.

It Embodies the 80/20 Rule

The agile quality plan to be presented covers only the high and medium planning levels. Developers defer specifying

the test details for a given module until it is time to develop it. In this way, the team follows “just-in-time test plan-

ning,” investing only 20% of the predevelopment planning effort one typically sees in waterfall projects, but achieving

up front 80% of the definition needed to execute an effective application testing campaign.

It Relies on Self-Organization

The system test role on an agile DW/BI team focuses much less on writing test cases and far more on mentoring his or

her teammates in the art of testing and inspiring them to incorporate quality practices as part of their everyday work.

The system tester and the remaining EDW team leaders provide their teammates with some easy-to-follow quality

techniques and encouragement but from there on must rely on each developer to identify challenges as they arise and

take the initiative in solving them.

It is Highly Transparent

The artifacts employed to represent and execute the plan are simple and highly intelligible so that anyone interested can

quickly understand the intended process and hold the team accountable for following it. Moreover, this multistrand

effort will resolve to a single quality dashboard displayed in the team room. With daily updates to the graphs displayed

there, the status of quality for the current iteration, the current subrelease, and the application as a whole can be easily

perceived, empowering stakeholders or IT management to take corrective action if necessary.

Its Artifacts are Lightweight

Quality assurance planning for agile EDW projects requires considerable thought and collaboration, but once the team

has decided on a course, the entire plan can be expressed in only a few single-page artifacts. The advantage of this

lightweight documentation is twofold. First, these artifacts can be readily understood by any interested party, including

the programmers. For that reason, these artifacts should be displayed on the project room wall in order to keep the QA

efforts of all teammates aligned with their leaders’ balanced plan for testing. Second, because the team invests very

little in the documentation, it will be willing to update the artifacts whenever the QA needs to change. Practices

providing little value can be dropped, with new policies adopted and documented, without the high cost of updating

artifacts causing the team to regret the change.

It is Stereoscopic

Agile EDW teams use two value chains during requirements management to ensure they arrive at a robust project

description (see Part III). They also employ two units of measure during iteration planning to ensure that their estimates

are accurate. Similarly, in planning QA, agile EDW teams take two approaches: top-down and bottom-up. They work

their QA plan until both of these action plans meet in the middle, assuring them that they have not overlooked anything

important.

Why We Test and What Tests to Run Chapter | 16 431

It Retains QA Practices Already Included in the Base Agile Method

Many aspects of the Scrum method incorporate QA into the very act of defining, designing, and programming software

applications, as discussed earlier in this and my previous two books. The following are examples of these practices:

� Teams ask the product owner for validation criteria as they discuss each user story during iteration planning.
� When a developer takes ownership of a work assignment from the task board, he or she must write out the tests that

will be applied to the software module before programming begins.
� When the coder has completed his programming, he must ask a peer to validate the module according to the

previously written tests before he can place the task card in the Ready to Demo column of the task board.
� At the end of the iteration, the current application is assembled and loaded with data, and the product owner

performs a test drive through the information, determining whether or not she can perform the user stories that

defined the sprint just completed.
� Afterward, the product owner may well take a few days to carefully validate the data in the warehouse and even

reconcile it back to the source systems.
� At the retrospective, the team discusses policies and practices that did not work so well during the sprint. Often,

these challenges include testing practices so that the agile team is constantly improving its approach to QA.

Extending Test-Led Development Far Above Unit Testing

One agile practice in particular serves as the backbone of the QA approach advocated here. Scrum already incorporates

test-led development in the development method, as hinted at previously. Agile EDW teams take this practice of

planning the test before creating an object to a much higher level—to the point where it sets the tone and shapes the

QA efforts for the project as a whole.

Test-led development is a well-defined staple for the programming activities of agile teams, even those using a

method other than Scrum. Figure 16.4 enumerates the five steps that programmers follow when utilizing this practice.

In essence, before coding a module, the developer must write the tests that the module should pass when it is

programmed correctly. He or she then executes the test harness to prove that the test will fail without the planned

programming. By writing the test before coding, the programmer must think through the requirements and design

Add test

Prove new
test fails

Increment
the code

(Re)-run test
suite

Refactor
code

Developer must think through the feature requirements and design

Objective: cause the test to pass

Stop coding once program passes test thus avoiding gold plating the
code and adding any untested functionality

Improve code and meet programming standards without changing
functionality; re-run test cases to ensure all features still work

Prove test harness working correctly,
rule out that new test will always pass

FIGURE 16.4 Steps in the test-led development approach.

432 PART | V Agile EDW Quality Management Planning

guidance his or her team leaders provided. This second look is a major reason why agile teams build applications with

far higher quality than their waterfall counterparts—they double think each module’s requirements and design.

When the programmer begins development, he re-executes the test harness as needed until the module passes the

tests, at which point he ceases adding new features. This policy prevents him from “gold plating” the code—that is,

investing any more into a module than what is required to make it work. It also prevents him from adding additional

features that are not addressed by the tests, allowing the agile team to maintain near 100% test coverage (the proportion

of source code or features validated by the current test suite).

After the module passes the tests, the programmer cannot add new features, but he can ”refactor” the code—that

is, improve its quality without changing its behavior. Refactoring allows the developers to ensure that the module’s

algorithms are optimal and that the source code complies with the team’s coding and naming standards. Each time a pro-

grammer refactors the code, however, he must re-execute the test suite in order to ensure that all the features still work.

This definition of test-led development that we receive from the agile community is a power technique, but it is

limited in its original definition to only the realm of application units and components. Agile EDW teams elevate

test-led development to where it bolsters a team’s approach to the higher-level aspects of the software engineering pro-

cess. They plan out QA in advance for integration, system, and user acceptance testing, anticipating that a second look

at requirements and design will allow everyone to improve the definition of the project. In fact, agile EDW team leads

strive to envision testing at the highest levels by asking themselves which tests the stakeholders and project sponsors

will need to see before they believe that the money and effort invested in the project have achieved something valuable

for the company. This write-the-test-first approach will be clearly visible in the next section, which describes how teams

determine the types of tests they wish to execute.

“WHAT TO TEST?” ANSWERED WITH TOP-DOWN PLANNING

Armed now with the motivations for an aggressive and balanced testing program and the factors that will keep that

effort agile, the EDW team leaders must start the difficult work of choosing the types of tests to place in their QA plan.

Agile EDW teams make this selection working from two directions—top-down and bottom-up. Team leaders should

iterate between these two approaches until they have drafted a coherent set of tests. Ultimately, we will assess whether

the resulting plan is coherent by considering whether a single set of reporting categories allows a stakeholder to drill

down from the top-level QA metrics all the way to the bottom, demonstrating that there are no gaps in the middle. The

top-down process for selecting test types proceeds in three steps:

� Understanding six fundamental dimensions of testing
� Selecting from the universe of all possible test types the best set that the project can afford to implement
� Organizing those selected types in a two-by-two matrix in order to assess the plan’s balance

The Six Dimensions of DW/BI Testing

Often, EDW team leaders first realize the enormity of the planning effort that QA requires when they consider just how

many types of tests exist. Table 16.1 provides a list of the more common test types that I have encountered during my 30

years in DW/BI, although I seem to hear of yet another test type nearly every time I teach a QA class. The impact of this

number becomes very clear when we use it to estimate how many actual tests a team will need to define if it plans to

execute every test type on every module in an EDW. Table 16.2 calculates the size of the permutations involved for just the

data integration portion of a medium-sized enterprise data warehouse with a dozen subject areas. This calculation assumes

conservatively that each subject area workflow averages only a dozen data transforms, which in turn are validated using the

few dozen test types listed in Table 16.1. Taking the product of these factors reveals that an EDW team would have to

implement more than 24,000 test packages in order to exhaustively quality assure this medium-sized data warehouse.

Unfortunately, little can be done about the number of items in the first three components of this calculation because

they are all a function of the application’s design scope. The only degree of freedom that team leaders have here is to

reduce the number of test types included in the quality plan so that the proposed level of testing remains feasible.

Fortunately, they can whittle down the list of required test types by first realizing that the test types listed involve a con-

siderable degree of overlap. Some of them describe a testing style or an intent rather than the actual type of assertion that

a validation step will make. Moreover, one can define assertions that belong to several of these test types at once, so it

should be possible to pick a subset from this list that actually addresses a large number of types at once. In order to pick

the best subset, then, we need to understand the multiple dimensions of testing at work in Table 16.1. Six dimensions of

Why We Test and What Tests to Run Chapter | 16 433

TABLE 16.1 Partial List of Tests Types for EDW Teams to Choose From

System Polarity Time Frame Planning Functional P.O.V
1 Alpha test Assurance Validate
2 Basis path test Control
3 Beta test Assurance Validate
4 Black box test Validate
5 Code walkthrough Control Verify
6 Component test � Control
7 Corner test Management Func. Verify
8 Domain test Control Func. Validate
9 End-to-end test � Management Validate

10 Epic test Management Validate �

11 Exploratory test Validate
12 Gray box text Func.
13 GUI test Func. Validate
14 Installation test Assurance Non-Func.
15 Integration test � Assurance
16 Knock-out tests Assurance
17 Load test Assurance Non-Func. Validate
18 Statistical moment test Control Func. Validate
19 Monkey test Func. Validate
20 Negative test �

21 Performance test Assurance Non-Func. Validate
22 Positive test �

23 Progression test �

24 Recovery test Assurance Non-Func.
25 Referential integrity test Assurance Func. Validate
26 Regression test �

27 Sanity test Assurance Func. Validate
28 Scenario test Validate
29 Security test Management Validate
30 Session-based test Validate
31 Smoke test Assurance Non-Func.
32 Soak test Assurance Func. Validate
33 Soap opera test Assurance Func. Validate
34 Story test Assurance Validate �

35 Stress test Non-Func. Validate
36 System test � Management
37 Theme test Assurance Validate �

38 Unit test � Control
39 Usability test Func. Validate
40 User acceptance test Management Func. Validate
41 Variance test Control Func. Validate
42 White box test Verify

Test NameID Dimension Added
by Agile

434 PART | V Agile EDW Quality Management Planning

testing can be found among the universe of test types offered previously: planning, system, functional, polarity, time

frame, and perspective. Before we can discuss them effectively, however, we have to better define our terms.

Preliminary Definitions

We need a stronger definition of the noun “test” in order to adequately explain the dimensions of quality mentioned

above. Unfortunately, this word is overloaded by the DW/BI profession. It can refer to something as simple as an

observation of a single output value or something as large as a month-long run validation of an entire EDW involving

thousands of assertions. The word test also qualifies a plethora of other terms, including test case, test script, test run,

and test suite. Frequently, this mass of terminology leads to tremendous confusion during the planning and execution

of a quality plan. EDW team leaders will need to be clear about how they use these terms if they are to avoid con-

fusion in their test plans.

To bring clarity to these chapters on quality planning, Figure 16.5 outlines how I use these terms, with crow-feet

connectors showing how atomic terms pack into larger notions. At the bottom are listed three crucial components in

any EDW validation activity:

� The preparation one must take before she can run a test
� The call she will make to execute the necessary ETL or BI module
� The assertions she will make regarding the results

TABLE 16.2 Number of Test Packages Needed to Test

Everything in Every Way for a Medium-Sized Data

Warehouse

Es�ma�ng Factor
Items Per

Factor
Cumula�ve

Number
Subject Areas 12 12
Architectural Layers 4 48
Data Transforms 12 576
Test Types 42 24,192

Error class
Architectural layer

Business time point

AssertionsData prep
script(s)

Execution
script(s)

Test scenario aspects

Test case

Test scenario

Test suite

Environment
Build version

Team

Test case aspects
pro

jec
t ti

me

Test
 run

s (
“tes

ts”)

FIGURE 16.5 Relationships between test terms as used in this book.

Why We Test and What Tests to Run Chapter | 16 435

An “assertion” is a single statement that resolves to either true or false, an outcome that is typically interpreted as a

“pass” or a “fail.” Assertions come in many flavors, from simple ones such as “the target column contains no null

values” to complex notions such as “the sum of the dollar values just added to Column X in either the target table or

the suspense table must match the sum of the values taken from the source table’s Column Y.”

Because a single assertion frequently means very little by itself, validating even the smallest object within an

application often requires packaging several assertions together into a “test case.” When it comes to validating EDW

data integration work, a test case typically marshals together the three components listed previously. By altering either

the preparation or the ETL call, a tester can reuse the remaining test case components, including the assertions, under a

variety of different contexts. These contexts can be understood as a combination of several “test aspects.” Test aspects

are characteristics that testers can use to identify important subsets among the test cases and the resources they require.

For an EDW project, the test aspects can include the particular architectural layer, business time point, and type of error

such as “dirty data” that a particular test case is designed to evaluate. Every combination of test aspects defines the

“test scenario” that governs a particular run of a test case and that must be considered when interpreting its results. The

aspects defining a test scenario strongly describe the scenario’s intent.

The collection of all test cases run under all test scenarios for a given application is usually referred to as the

application “total test suite.” Running the total test suite all at once is usually impractical not only because it usually

requires a considerable amount of time but also because too many characteristics of the application get evaluated at

once to allow the run to be meaningful. Typically, teams will run only the test scenarios for a given set of values

assigned to a couple of test aspects. Teams frequently refer to such a subset as “test suite” as well, but they can give it

a qualifying name such as the following:

� The dirty-data test suite
� The presentation-layer test suite
� The end-of-quarter test suite
� The system-integration test suite

The testing aspects allow test suites to be defined flexibly, and different test suites end up sharing many of the same

test cases. For example, a dirty-data test suite may well include test scenarios for landing, integration, and presentation-

layer modules, whereas the integration-layer test suite may execute tests scenarios for clean, dirty, and missing data sets.

In this framework, the word “test” used in isolation becomes more precise. It signifies a particular run of a test

case, usually invoked as part of a test suite that was identified for execution by constraining some or all of the test

aspects for the component test scenarios. The test scenarios that those test aspects identify will generally cause the

test cases within the chosen test suite to share a coherent set of setup instructions, calls to the ETL, and assertions

applied to the resulting data.

With these terms clarified, the six dimensions of testing will be easier to describe. Note that an EDW team will

probably use each of these dimensions as a test aspect and employ them frequently to define the test scenarios that

should run together in a test suite.

Dimension 1: Planning

An EDW team must plan its software validation efforts to address three distinct realms: quality control, quality

assurance, and quality management. These three realms differ in the degree of direct hands-on activity or control

that the team has on the objects being tested. Each realm requires a different approach and often very different types

of tests.

Figure 16.6 illustrates how these three concepts nest within each other. Starting with the inner realm, a team’s

work directly touches the object needing validation. A vast number of those objects are the modules programmed

during an iteration. The programmers must demonstrate that they now meet their intended purpose. Because the

developers are actively hands-on and can control the modules they are validating, we call this testing work “quality

control.”

Moving outwards, the team must also validate the overall application that will contain the new or altered modules

the team has just finished touching. The project stakeholders want to be assured that the overall application will meet

requirements, not just the few modules that were just altered. When developers provide this kind of assurance by assessing

an entire application regardless of what components they have changed, they are performing “quality assurance.”

At the highest level, the developers must validate that the new version of their application will behave properly

when combined with other applications and technologies in the company’s computer operations center. This level of

436 PART | V Agile EDW Quality Management Planning

validation may well require collaborating with IT teams over which the developers have no direct control. Often, these

external teams own the source systems for a data warehouse, the downstream data marts, or the processing and data

communications resources the warehouse relies on. The EDW teammates can only manage their collaboration with the

parties that own these resources, so when they validate that their new application properly supports the overall business

process, we call this work “quality management.”

Although quality control, assurance, and management are separate concepts, it is cumbersome to continually

distinguish between them. IT professionals often refer to them collectively as quality assurance (QA), although this

term can be used more precisely, as described previously. In general, I use the broader definition when I refer to quality

assurance, but will be careful to invoke the more narrow definition when it is necessary to distinguish it from quality

control and quality management.

EDW teams naturally favor quality control over the other two realms because the tighter scope of that work makes

it something that can be addressed directly with less effort. However, the team leaders should explicitly budget some of

their quality efforts to address the other two realms. I once consulted with a firm at which the vice president of sales

wanted the director of data warehousing replaced because the company’s premier information product had a data

latency of 30 seconds or more. When showing off the service to prospective customers, the sales representatives would

push the “submit” button on the web page and then wait more than half a minute for a simple query to complete. The

DW/BI director insisted that the warehouse was working fine because the developers could demonstrate subsecond

response times when measured at corporate headquarters. When I pointed out that the data latency was upsetting the

sales reps in the field, he answered simply “that means its Networking’s problem.” It was true that the networking

group actually owned the products causing the data latency, but it was the total data warehousing system as viewed

from the field that the vice president of sales was considering. By dismissing a quality problem caused by a team

outside the DW/BI project room, the data warehousing team was pursuing only quality assurance and ignoring quality

management, even though quality assurance concerns were about to get their director fired. The lesson here is that a

balanced EDW quality plan may focus most of the team’s effort on quality control and quality assurance but should still

allocate some time to quality management as well.

Dimension 2: System

The system dimension pertains to the scope of the object a team is planning to test within the technical architecture—

that is, whether the team is validating a part of a system, the whole system, or the overall ecosystem in which a new

application will function. The traditional test-type choices from this dimension are unit, component, integration, system,

and end-to-end. Many development teams actively plan to test only a couple of these levels. Because the levels in this

dimension that get overlooked have a nasty habit of blindsiding the developers with grievously embarrassing defects,

the more successful teams have learned to include at least a few tests for each of these layers.

Figure 16.7 illustrates how the various levels of the system dimension stack together and also how they link to the

planning dimension described previously. Starting at the bottom, a “unit test case” provides the definition for tests that

validate an application unit. A program unit is usually the smallest, independently executable object. It is also the most

numerous item type that is independently managed using the project’s source control utility. For procedural languages

such as SQL scripting, the unit is typically contained in a single source code file. For ETL packages, the unit is usually

a mapping, which is the smallest independently executable item displayed in the programming tool’s object tree.

Business
processes supported

Application
effected

Components
touched

Quality
control

Quality
assurance

Quality
management

VP
Sponsor

Director
Stakeholder

Manager
Product owner

Epic
(new competitive
capabilities)

Themes (new
analyses & insights)

User stories
(data checks)

FIGURE 16.6 The difference between QC, QA, and QM.

Why We Test and What Tests to Run Chapter | 16 437

Some programming tools make units slightly more difficult to distinguish. When working with a BI tool, for

example, a single disk file housed in the source control utility can contain dozens of menus, scores of reports, and

hundreds of display objects. In situations such as these, teams will need to take a moment to explicitly define what they

mean by the word unit so that they can then define unit tests. These discussions will be easier if the team keeps in mind

that each version of a unit is usually the work of a single programmer.

A “component test case” defines the context for tests that validate an application component. Components

are assemblies of two or more units that still have a narrow functional purpose, such as “load source data into the

customer tables of the landing area.” For ETL packages, the components include many mappings and are often called

“workflows” or “sequences.” Components can include modules created by different developers, and determining

whether these programmers communicated effectively while independently programming their separate modules is often

a major objective of a component test.

As shown in Figure 16.7, many components assemble into an application. DW/BI applications provide

many-faceted data services and usually provide the focus for an entire project. Validating applications requires “inte-

gration test cases” during which developers confirm that the many new and existing components that make up the prod-

uct can be assembled together. Integration test cases also prove that any new or updated components interact as

expected with any components that have not been touched during the current work effort. Like components, applica-

tions involve the work of many developers, so confirming that the proper “handshakes” occur between the components

when the application executes is a major objective of the integration test. Because faulty handshakes of core com-

ponents can cripple an entire application, agile teams run integration tests of the product’s current build frequently

rather than waiting to validate just the final build before a subrelease.

“System test cases” are similar to integration tests in that they execute the entire application. However, instead of

confirming that the components within the application interact as expected, system tests validate interactions occurring

outside the application. These tests confirm that the application behaves well enough when run as a system within the

company’s larger computational ecosystem.

The immediate audience of the system test is the operations team—the IT professionals who must keep the applica-

tion running once it enters production usage. Their primary question will be whether the new build of the application

will make their lives a living nightmare as they strive to coax it and a hundred other applications to share the same

information resources. They will want to know that the application can successfully repeat its integration test cases

System
tests

Integration
tests

Component
tests

End-to-end
tests

Unit
tests

Quality
management

Quality
assurance

Quality
control

System
dimension

Planning
dimension Testable objects

Unit

Component

Application

Application within
the computing

ecosystem

FIGURE 16.7 Relationships between two testing dimensions and physical objects.

438 PART | V Agile EDW Quality Management Planning

once it has been installed in a test platform in the machine room. More importantly, however, they will want to see

that the application responds elegantly to common system-level challenges. To prove this, they will ask the develop-

ment team to validate a subrelease candidate using a variety of “knockout tests.” These tests should demonstrate

that an application can recover from events serious enough to knock it out. Their questions here will be similar to the

following:

� What does the application do when it runs out of disk space for its target tables?
� What happens if the FTP node feeding it source data fails?
� If the application crashes and we re-feed it the same data set when it restarts, will it duplicate the information it

contains?
� If a particular data load goes horribly wrong, how easy is it to roll the warehouse back to a known time point and

re-run the ETL?

Finally, “end-to-end tests” involve the widest scope. Rather than focusing on the subrelease candidate for a given

application, end-to-end tests validate that data flows successfully across the entire computing ecosystem in which

the new application build will participate. In a DW/BI end-to-end test, someone typically updates information in the

warehouse’s source systems, and the validation team searches for the expected changes in the data delivered to the end

users’ reports and dashboards. Especially in companies with complex cloud or ERP applications serving as sources,

end-to-end tests can be extremely expensive to conduct. Therefore, DW/BI teams typically include this type of test

sparingly in the quality plans for their projects.

We can relate the notions from the planning dimension to those in the system dimension, as illustrated in Figure 16.7.

Unit and component tests address modules that the team has modified, so they fall into the realm of quality control.

Integration tests validate that the requested functionality can be gained from the entire application, including portions not

recently touched by the development team, and therefore they lie in the realm of quality assurance. System and end-to-

end testing will involve many applications, not just the one that the EDW team owns. Because it involves working with

people beyond the immediate control of the EDW team leaders, these tests will require quality management.

Dimension 3: Functional

Aside from planning realms and system levels, individual tests can focus on either the actions the DW/BI application

can take or the more abstract qualities of a system that determine the end users’ overall experience and the system’s

total cost of ownership. The functional dimension speaks to this dichotomy by distinguishing between functional and

nonfunctional tests.

Functional tests validate the application behavior that business stakeholders expect to find in the end product, both

its end user interface and the data it contains. For DW/BI, functional tests touch a wide domain of objects, including:

� The source systems from which the data warehouse should pull data
� Whether the derived columns have been calculated properly
� The choices in the pull-down menus found in the front end’s query definition screens
� The layout of reports and dashboard widgets
� The information revealed when end users drill down from an aggregate display

Nonfunctional tests validate the remaining characteristics of the application. Chapter 7 presented many of these

characteristics, such as security, recoverability, and data latency. Nonfunctional requirements such as manageability,

scalability, and extensibility can greatly impact the application’s total cost of ownership—that is, how much the

business will need to continue investing in the data warehouse long after its initial version has gone into production.

Although nonfunctional requirements do not affect the prompts and results end users see on the front-end screens, they

still greatly impact the business community’s overall satisfaction with the end product. That overall impression may

take weeks or months to materialize, but EDW leaders will still want to test for quality in the nonfunctional dimension

so that they can be assured that the project is considered a success over the long term.

Dimension 4: Polarity

With the polarity dimension, quality planners distinguish between positive and negative testing. For both these test

types, the team establishes some starting conditions and invokes the application. For positive tests, the team searches

for specific responses from the application. For negative tests, the team confirms that nothing happened, or at least

Why We Test and What Tests to Run Chapter | 16 439

nothing undesired. In other words, negative tests prove that the application can respond elegantly to adverse conditions,

such as data values and other parameters that are outside an expected range.

The polarity dimension is important for EDW team leaders to manage because most developers naturally gravitate

toward positive tests. Positive tests are easier to imagine because one result is directly implied by starting conditions.

For example, if the product owner stated that the warehouse should integrate work orders from the California offices

with the existing Western Region sales orders, most developers can think of what to look for in the target tables to

confirm that a proper linkage between sales and work orders has taken place. On the other hand, if the product owner

said, “Don’t close sales orders that have missing work orders,” the developers must think deeper into the application’s

design, asking questions such as the following:

� How do I know what work orders are missing?
� If a work order does not exist, how do I find the sales order that should have linked to it?
� I know we should not close a sales order that is a missing work, but what other possible changes to the sales order

should we make once we realize that the downstream events are incomplete?

The possibilities for such questions can seem endless to a developer who just wants to prove that he finished coding

an ETL module, so many programmers find negative tests annoying in principle and tend to give them less attention

than they deserve. However, because many exception cases typically exist for every positive specification, negative

tests should actually outnumber positive tests in a well-conceived QA plan. To keep the investment in negative testing

within reason for the unit and component levels, many teams adopt a rule of thumb such as two negative assertions for

every positive validation in a unit test case unless circumstances clearly call for more. With regard to system testing,

the knockout tests that the operations team expects frequently focus on whether the wrong starting condition will make

the application malfunction, so system tests may well be predominantly negative testing.

Dimension 5: Time Frame

The time frame dimension addresses whether a test is looking forward or backward in time. For agile EDW, the number

of new features added to an application during an iteration usually pales in comparison to the number of features that

already exist. For an agile team adding 50 story points of new capability to an application with every iteration, by the

time it delivers upon Sprint 10, the current build will consist of 450 story points of pre-existing features. Progression

testing validates the new features just added—that is, those that the next version of the application should highlight.

Regression testing demonstrates that, given the recent programming, the features added during the past iterations still

work, despite the new programming.

EDW team leaders need to strive for the right mix of tests along the time frame dimension as vigorously as those in

the polarity dimension. Like positive assertions, progression tests are easy for developers to imagine because they

pertain to the features they are currently programming. In contrast, regression tests dwell on work that has already been

completed and seems to have no new value to contribute now. On fast-moving projects, developers can find it difficult

to accurately recall much about what they built in the past, even the previous iteration. If the quality plan does not

balance difficult-to-author regression tests against the easier progression validations, the QA plan may miss the fact that

new programming just undermined the 10 most important features in the subrelease candidate currently taking shape

and the 20 most crucial capabilities of the version that is currently in production. Fortunately, teams that implement test

automation find it very easy to maintain a robust regression test suite, a topic discussed in Chapter 18, which explores

how to execute the planned test cases.

Dimension 6: Point-of-View

The point-of-view dimension considers whether the test cases were written standing outside the system or looking

from within. If one writes a test from an outside point of view, one cannot see the code within a module. The system is

an opaque “black box” and can only be judged by its externally observable behavior and how that changes with dif-

ferent starting conditions. If one could see inside the application, the system would be a “glass box.” A tester could

consider how to cause a module to malfunction by considering the algorithms employed and thus author a very different

set of test cases.

Another closely related distinction involving one’s point of view is that between validation and verification. When

looking within the application and considering a module’s actual programming, notions such as adherence to coding

440 PART | V Agile EDW Quality Management Planning

standards and the strength of the algorithms can be judged. Testers usually call such an examination of internals

“verification” because the reviewer verifies that the application was written in “the right way.”

Conversely, black box tests can only consider externally visible system behavior. They are limited to assessing

whether or not the team has built “the right thing”—that is, whether the application is complete in its features. When

speaking precisely, testers will call such a black box assessment of behavior a “validation.” Because verification

involves reading through an applications code, it is painstaking work and highly manual, so the bulk of the quality

assessments on an EDW project will be validations, which are easier to accomplish. Because verification can represent

a small portion of the overall quality effort, people often use the term validation to include tests from both points of

view, so one has to be careful sometimes in conversations to ask what exact sense of the word is being employed.

Table 16.3 compares validation to verification and adds a few new terms to the mix. When the team validates an

application from a black box perspective, it is asking, “Is the application complete?”—that is, are all the features we

expected working? When an ETL technical lead evaluates newly coded modules from a glass box perspective, he or she

is asking, “Is the coding of the application correct?”—that is, did the programmer build it according to standards and

specs? Because they judge quality based on behavior, functional and many nonfunctional requirements fall within the

category of validation tests. Verification tests often appear as part of code walkthroughs and tend to concern themselves

with design and coding patterns in addition to technical requirements such as data precision and metadata management.

A 23 2 PLANNING MATRIX FOR TOP-DOWN TEST SELECTION

At a minimum, EDW project leaders can employ the categories described previously to ensure their quality plan

incorporates at least some testing from both poles of each of the six dimensions. Unfortunately, some of those dimen-

sions will require more planning than simply adding some tests from both ends of the spectrum for each test type. As

Table 16.1 reveals, just the quality assurance and validation dimensions alone involve so many test types that this strat-

egy will yield a QA plan larger than most EDW teams can afford to execute. To assist team leaders in planning quality

with greater selectivity, the agile community has devised a useful two-by-two matrix for visualizing and evaluating the

balance of a given test plan. Not only will this matrix assist in a top-down selection of test types but also it will allow a

team to tie its QA plan back to the enterprise requirements management framework presented in Chapter 8. Moreover,

we employ this matrix to record the decisions regarding the remaining interrogatives that QA plans must answer,

namely who, when, where, and how.

A Framework for Assessing a QA Plan’s Coverage

Figure 16.8 provides an example of the agile 23 2 QA planning matrix filled out for a typical EDW team. Here, the

team decided it had the funds and time to pursue only 14 of the more than 40 test types listed in Table 16.1. By reflect-

ing on the distribution of those tests on the 23 2 matrix, the team can judge whether it has planned on the correct blend

of quality assessments for its project.

The notions defining the rows and columns of this 23 2 matrix originated with Brian Marick, one of the original

signatories of the agile manifesto [Marick 2003]. The matrix itself was further refined and popularized by Lisa Crispin

and Janet Gregory in their book Agile Testing. The rows of this matrix distinguish between tests that are business or

technology facing. Business-facing tests can be understood by nontechnical stakeholders and speak to the capabilities

TABLE 16.3 Validation Compared to Verification

Validation Verification

Viewed externally Viewed internally

Black box testing Glass (white) box testing

Built the right thing Built it the right way

Complete Correct

Functional requirements Technical requirements

Nonfunctional requirements Coding standards

Why We Test and What Tests to Run Chapter | 16 441

they wish to find in the application when they receive it. Technology-facing tests address concerns that the developers

or other IT stakeholders may have about a module or a system and are expressed in programming terms and jargon

[Crispin & Gregory 2009, p. 5].

With rows defined in those terms, this matrix suggests that a quality plan should have a reasonable mix between test

types that speak to business and technical concerns. If the plan contained only technology-facing tests, the development

team would obtain a good understanding of the system it has built, but business customers will have seen nothing

reassuring them that the application is complete. Conversely, if all the test types in a plan speak to business stakeholder

concerns, the customers might well be eager for the system to go online, but the development team will be left with

grave doubts whether the application will be sustainable once placed into production. Business users have to approve of

the development completed and developers have to know the application is sound, so a balance between the rows

of this matrix is absolutely necessary.

The columns of this matrix distinguish between tests that support the team and those that critique the product.

Tests that support the team inform the developers whether they have completed the coding they committed to deliver.

Tests that critique the product demonstrate that the end users will receive compelling value from the application once

it goes online. The column on the right can be viewed in terms of the epic stack, interpreting it to mean “What

epics, themes, and user stories does this product fulfill and what additional user requirements need to be captured on a

story card?”

Again, a development team wants to balance between the choices represented by these two columns. If all the test

types focused on assessing whether the project’s coding tasks have been completed, the team might well deliver an

application that embodies what the product owner requested but is nowhere near what the business actually needs.

Conversely, if all the test types focused on the value of the application, the programmers would be unable to declare

their programming tasks “done,” and no one would be able to state when the project was finished.

I have found that the fastest path to a good QA plan is to ask my teams to pick a dozen or so test types from

Table 16.1 and place them on these quadrants. Frequently, the first collection of tests land mostly in Quadrant 1,

technology-facing tests that will indicate when the development is complete. This initial distribution is pre-

dictable because programmers outnumber the other roles on the team. They are technical professionals and have anxiety

over whether they have time enough to code all the modules that a project as large as an EDW will require. Quadrant 1

testing addresses that anxiety.

The product owner, who is facing budget and time constraints of his own, will quickly step in and insist on some

tests that he and his stakeholders will be able to understand. The team then removes a few test types from Quadrant 1

and adds others that clearly belong to Quadrant 2.

At this point, the EDW team leaders need to ask the product owner a few questions, such as “How will you know

whether . . .”

� the application is what your stakeholders require rather than just what you alone have asked for?
� the staff members who will use the application will be able to effectively operate the user interface?
� the company’s directors will be able to properly interpret what this system’s BI analyses are showing them?

These questions query whether the application will generate enough value for the development investment it will

require, and they should lead the product owners to see the need for test types rooted in Quadrant 3.

Finally, the EDW project leaders need to ask their teammates how they will know that the application will meet

the many nonfunctional requirements, such as performance, recoverability, and security. These characteristics will

Support the team Critique the product

Business
facing

Technology
facing

FIGURE 16.8 Using the agile 23 2 QA planning matrix to visualize a team’s choice of test types.

442 PART | V Agile EDW Quality Management Planning

contribute importantly to whether the organization widely adopts the system and can maintain it over the long term. So

that the quality plan will provide this type of insight as well, the EDW team will need to trim a few of the planned tests

and replace them with test types appropriate for Quadrant 4.

Of course, the initial allocation of only a dozen tests at the start of this group exercise was arbitrary. The team is

free to increase that limit, but the project architect needs to remind everyone that each additional test type added to the

matrix will cost money and delay the delivery of the application. If a team begins adding tests without any concern for

cost, I usually have its members take a moment to update the definition of done cards for the various module types that

will make up the EDW. If they add tasks for completing the proposed level of testing and estimate the labor hours

that those tasks will generally require, they will be able to quantify the impact of an overly ambitious quality plan for

themselves. Once the teammates see the additional work that each test type creates for them, they usually find the

motivation they need to trim back on the goals documented by the 23 2 top-down planning grid.

Linking Test Planning to Requirements and Risk Management

Quality is the flip side of requirements. When the product owner requests a feature, his team needs to not only build

that feature but also validate that the feature answers the end users’ needs in a dependable way. Quality is also risk

mitigation under a different name. When team leaders identify an adverse event that could undermine the project, they

should author a test case to demonstrate that the adverse event has not yet occurred. With those connections in mind,

EDW teams can align their top-down QA planning matrices with the requirements management and risk management

work described previously in this book.

Starting with requirements management, the reader may recall from Part III that agile EDW teams derive an overall

project definition via two intersecting efforts:

� A generic agile value chain in which the product owner authors epics, themes, and user stories for the project
� An enterprise-capable value chain in which the team leaders ask the sponsors and directors of the company to briefly

articulate the business challenges that they require the data warehouse to solve

We saw that if the project sponsor, directors, and product owners share a coherent concept for the data warehouse

project, then not only will the epic and theme stories derived from these two value chains match but also every user

story will trace back to a theme and every theme to an epic. Once the team has an initial draft of a 23 2 top-down QA

planning matrix, the project architect should ask her teammates to double-check that it contains test types that support

both the requirements value chains.

In the framework developed in Part III, the sponsor’s epics describe new competitive capabilities that management

wants the company to achieve. Because those capabilities may take a long time to visibly impact the business, the team

will typically ask about leading indicators that will demonstrate that those business outcomes are taking shape. By

including those leading indicators in the EDW’s design, the team is in effect adding a test for whether the new business

capabilities are being achieved. That is test-led development applied at the epic level.

Assessing these leading indicators may require business inquiries rather than data analysis, so the team has to be flexi-

ble in the modes it considers for running a test. For example, an EDW team may believe at first that all its testing will

require examination of data but then realize that testing the sponsor’s epic may require speaking to sales agents to find out

if they believe that the call lists and prospective customer backgrounds provided by the data warehouse make their pro-

specting work more effective. Similarly, directors were interviewed for themes, which focused on the analyses necessary

to change the behavior of the company’s business staff. Accordingly, the EDW project’s “theme tests” may have to be

interviews focusing on departmental effectiveness rather than an SQL query against the presentation layer tables.

With regard to testing whether the EDW team has fulfilled the requirements of stakeholders above the product

owner, the team leaders will need to think outside the data warehouse and use nontechnical assessments where

necessary. If these crucial tests are overlooked by the plan, epics and themes will not be validated, and the sponsor and

directors will not receive the feedback they need to believe the EDW project is addressing their requirements. These

powerful executives could easily decide the company is not getting the value it needs from the DW/BI project and

cancel it simply due to lack of information.

Testing epics and themes is truly challenging. Quality assessments become easier as we move down the epic stack

to user and developer stories. User stories can be validated easily using story tests during the product demo for each

iteration. Developer stories can be validated using unit, component, and integration testing.

Turning now to risk mitigation, Part II of this book suggested that the team needs to watch for possible errors in the

concepts controlling the definition and design of the project. When teams first fill out the top-down quality planning

Why We Test and What Tests to Run Chapter | 16 443

matrix, the developers usually select multiple test types in Quadrants 1 and 2 that will reveal errors in the bottom layer

depicted in Figure 6.3, application coding concepts. During quality planning, team leaders need to also ask about the

next two layers if they remain unaddressed. Does the plan include test types that will expose solution-concept errors—

for example, gaps in features that leave crucial stakeholders’ needs unaddressed? Similarly, does the plan stipulate

testing that will reveal errors in the business concept behind the project? A small portion of the QA budget needs to

be allocated to seeking out reasons why end users might not utilize the application once it is delivered or why the

information provided will cause directors to make the wrong decisions.

Quality revolves around “fit to purpose.” Both fit and purpose for business intelligence applications are often very

abstract or nuanced, so the quality assurance plan cannot consist entirely of tests that demonstrate simply that the data

is correct. It must also include elements that speak to these less tangible aspects that will determine how extensive users

will work with the end product and the business value they will receive from that interaction.

“WHAT TO TEST?” ANSWERED BOTTOM-UP

The 23 2 matrix previously employed approaches the challenge of EDW quality assurance from the team leader’s point

of view. The top-down plan it produces will surely contain unit and component testing—elements that must be translated

into detailed guidance for developers. In very much the same way that they employ two viewpoints during requirements

management and iteration planning, agile EDW team leaders examine QA from a second, bottom-up perspective,

determining if the resulting action plan connects well with the top-down action plan provided by the 23 2 matrix.

The bottom-up approach we employ has several appealing features, namely:

� It draws upon techniques specific to data warehousing.
� It augments those techniques with several practices from traditional software testing.
� It organizes the results into an easy-to-follow matrix that developers can use as they build out each module.
� It identifies a set of reusable test widgets that the team can create to dramatically reduce their test coding time.

This section presents each of these elements in turn.

Data Warehousing Testing Techniques

Much of bottom-up quality planning revolves around test techniques that help testers author test cases. In their excellent

book on testing applications at Microsoft, Alan Page et al. define a test technique as a systematic procedure that simply

provides one approach to solve one type of complex problem, often relying on well-established heuristics [Page et al. 2009,

p. 78]. Although many people criticize test techniques as gimmicks, my experience in DW/BI has shown me that EDW

teams that adopt a dozen or so standard test techniques generate far more test cases in a shorter time with much less effort

than teams that attempt to author test cases from scratch each time they build an application module. Moreover, teams that

employ test techniques such as the ones presented here take a consistent approach to test case generation. As a result, they

arrive at test suites that are far less likely to suffer from any serious gaps, especially on agile projects in which they can

steadily tune their initial set of techniques until they provide the correct coverage for the given project.

Of course, team leaders need to watch that the developers do not over-rely on test techniques to the point that they

stop thinking about the code they are writing. Test techniques seem to contribute well to the writing of the easiest 80%

of the tests the average module requires. Accelerating that first 80% frees up the developers’ energy and imagination

for the remaining 20%. That last 20% will still require a solid understanding of requirements and design, in addition to

much hard thinking. EDW team leaders should watch the development work during each iteration to ensure that the

necessary hard thinking is taking place.

The following list of techniques is not intended to amaze anyone, because none of the ones shown are particularly

insightful. Employ them all together, however, and EDW project leaders will find that they produce a good starting

collection of unit tests for the agile EDW development team. The list will come in handy for team leaders particularly

when they begin working with a developer or tester who does not seem to know where to start with unit testing DW/BI

modules. By requesting such a tester to simply “go write one test case using each technique on this list and for every

layer of the reference architecture,” team leaders can get their new assistant oriented and writing tests right away.

The first set of test techniques that everyone on the team should be familiar with are listed in Table 16.4 and are

simple. The remaining DW/BI-oriented test techniques require more explanation.

444 PART | V Agile EDW Quality Management Planning

Referential Integrity Test

A referential integrity test asserts that all the foreign keys in a given column link to a correct record in the parent

table. Such a test will be moot for a target database that has referential integrity constraints in effect because the

database engine will ensure that this assertion is true each time it loads a record into the data warehouse. Many

teams turn off referential integrity constraints, however, so that the data will load more quickly. They trust the logic

of the data transform modules to achieve referential integrity. Any time the team designs ETL to implement an

important business rule, it is wise to test that it has been implemented correctly. If referential integrity constraints

in the database are turned off, then the project’s QA effort should plan on explicitly testing that the foreign keys

resolve without error.

Data Corners

A data corner test or “corner test” is a more advanced version of a referential integrity test. It tests that all the joins

needed to traverse from one corner of the data model to the other are working properly. Figure 16.9 shows the integra-

tion layer schema and dimensional schemas that a particular EDW team plans to load from a set of operational sources.

By querying the transactions in the source data, the team is able to create a count of sales by product types and postal

TABLE 16.4 Simple Tests for a Given Data Warehouse Table

Test Technique Assertion Made

Unique values A particular column is free of repeated values.

Valid range The values in a particular field all fall between an acceptable minimum and maximum.

Count distinct The number of elements within the set of distinct values for a column is as expected—for example,
it matches the same type of count found in the source data set.

Group counts When grouped by an expression, the counts of column values within each group are as expected—
for example, they match the same counts by group made upon the source data set.
Example: Ensure that the numbers of customers for both a source extract and records just added to
the target system are distributed identically when grouped by first letter of the last name.

Sums, averages, medians The calculation made upon the column values is as expected—for example, it matches the same
calculation made against the source data set. Sums and averages require numeric or date fields.
Medians work with text data.

“Diffs” Especially for landing extract files, the team can output the loaded data to a text file and use Unix diff
commands to ensure input and output are identical.

Product
type

Party role
type

Order
type

Location
type

Product Party roleOrder
header

Service
event

Order
line item Party Location

SO header
dim

e.g., work order,
sales order

WO header
dim

Product dim Customer
dim

Location

Sales order
fact

Work order
fact

A

C

A

C

B1

Date dim

B2

B1 B2

FIGURE 16.9 “Data corners” test technique for models in standard normal form and conformed dimensional form.

Why We Test and What Tests to Run Chapter | 16 445

codes. Once the data warehouse has been loaded, the team should be able to re-create that list using both the integration

layer and the presentation layer. In other words, the team should be able to join the target tables of both layers from

one corner of the model to the other and retrieve the same results despite all the joins these queries must make across

the tables in the middle.

For the integration layer, shown on the left side of Figure 16.9, the team should be able to retrieve the expected

results with a query that goes from Corner A (product type) to Corner C (location). This query will have to pass through

five other tables—product, order line item, order header, service event, and party role—so it will in fact validate the

collective referential integrity of six separate sets of foreign keys at once, making it a very demanding test.

When we get to the presentation layer, the integration layer information involves significantly fewer tables.

The same corner test will require not only linking the dimensions for product (A) and location (B) to the fact

tables but also drilling across from sales orders (B1) to work orders (B2), making it an extensive test of the information

in the star schema.

Because one can mix and match the tables in a target schema thousands of ways, a team can go too far with this test

technique, ending up with more test cases than the team has funds to implement. The teams I lead usually employ the

two- or three-way combinatorial reduction technique described later to generate a representative set of tables for which

to write corner tests. Perhaps even more insightful is the practice of authoring corner tests that mirror the data queries

representing the key business questions that the end users plan on submitting to the data warehouse once it is online.

Reconciliation

The reconciliation test technique generates test cases that tie the results of a query from the data warehouse back to a

report or data listing provided by another system that the business stakeholders already trust. “Reconciliation” here

does not mean “match” but instead signifies that the results from the warehouse and the reference system either match

or the differences can be explained. These are very time-consuming tests, so reconciliation should be used sparingly,

employed only to create test cases that align with the key themes and epics driving the project.

Often, business users will not trust a data warehouse if it has not been validated using at least a couple of reconcilia-

tion tests. On my projects, I like to ask each department making a stakeholder request which reconciliation would con-

vince them that they can rely on the data warehouse’s information and then consolidate that list to as few

reconciliations as possible that will satisfy all the requestors. The major disaster team leaders want to avoid by using

this approach is the situation in which the data warehouse has gone online and suddenly a major stakeholder pulls a

thick green bar report from the bottom drawer of his or her desk, saying “Let’s see if the dashboard has gotten these

numbers right.” EDW team leaders do not want to be blindsided by such stealth reconciliation requirements, which can

consume months of labor to satisfy, and often uncover many new requirements in the process. By asking about reconcil-

iation tests upfront, they can turn this black hole of testing into a manageable effort, positioning themselves to say “no”

to matching the numbers on any surprise reports that stakeholders have kept hidden.

Examples and Expected Results

For business rules that are very complicated, it is impossible to validate the data warehouse’s information with analyti-

cal comparisons of source to target using the techniques discussed previously. Take the situation depicted in

Figure 16.10, for example. Here, the values in nine particular source records are supposed to boil down to a set of

completely different values in three target records along with two records in an associated suspense table. With the

expected results technique, the business stakeholders provide the DW/BI team with a set of examples that include both

specific source records and target records they expect the business rules to generate. During validation, the team or an

automated script can repeatedly search for this exact pattern in the target data every time the test source data is trans-

formed. These tests are expensive to set up not only because the examples have to be well documented but also because

they require that the team maintain a repository of expected results records. However, for complex business rules such

as customer segmentation or vendor value scoring, an example is often all the guidance that the business users can

provide for ETL validation.

Traditional Application Testing Techniques

The test techniques discussed previously are fairly obvious ways to test a data-centric application. Agile EDW teams

can also generate test cases by utilizing a collection of techniques that general software application testers rely on when

446 PART | V Agile EDW Quality Management Planning

they create non-DW/BI systems. Although each of the following test techniques provides a handy means of creating

test cases, their emphasis is actually on helping testers to understand the minimum number of test cases necessary to

validate a given feature and thereby reduce the burden of testing to an affordable level.

Equivalence Class Partitioning

Equivalence class partitioning is an extremely common technique for reducing the number of test cases that a team

needs to execute in order to validate a particular aspect of the system the team is building. With equivalence class

partitioning, test writers decompose and model the variable data for each input and/or output parameter for a given busi-

ness rule into discrete subsets of valid and invalid classes [Page et al. 2009, p. 78]. They write their test cases utilizing

only a few representative values from each class, feeling confident that the resulting small set will adequately qualify

the system for the entire set.

For example, the customer last names often need to be cleansed when moving from source systems to data

warehouse. Instead of writing a test case for every last name in the world—and every possible way of formatting those

names—the team decides to create test cases only for a few distinct classes of last name, such as names with the

following:

� Only a single letter
� 15 characters (the average length in the source data)
� 35 characters (the target column’s maximum length)
� Names beginning with small letters, such as “diCicco”
� Names with spaces in them, such as “Del Monte” and “van der Waal”
� Names with hyphens, such as “Meyer-Jones”
� Names with single letter conjunctions, such as “Garcia y Viega”

If the ETL can manage these seven cases, the team believes it will be proof enough that the module has been

programmed correctly for that target column.

Boundary Value Analysis (“Edge Testing”)

Boundary value analysis guides teams in writing test cases that validate a module’s ability to correctly operate with

values at the extreme edges of an independent input variable or output column, as well as at the edges of the classes

identified through equivalence class partitioning [Page et al. 2009, p. 90]. Because of its focus on the edges of input

and output spaces, this technique generates what many people refer to as “edge testing.”

In practice, edge testing requires teammates to understand where a given business rule inflects its logic given

the inputs it will receive or the outputs it will produce. They next write test cases that approach and then cross those

inflection points, otherwise known as edges. For example, if the business rules for a current balance column in the data

Target table

Suspense table

Source records

A

B

C

D

E

F

G

H

I

Q

R

S

E

G

FIGURE 16.10 Typical situation requiring a team to use the “expected values” test technique.

Why We Test and What Tests to Run Chapter | 16 447

warehouse’s Finance subject area employ different logic when the source transaction date progresses into a new month,

the team might well use edge testing to write test cases that validate the following data points:

� June 29
� June 30
� July 1
� July 2
� December 30
� December 31
� January 1
� January 2

Note that this team suspected there may be an important difference between a time point representing a regular

end-of-month versus the end of the year, so they chose to cover both types of edges. They also chose to test both one

and two days on either side of the logical boundary. Because writing tests requires knowledge of each business rule and

a good deal of intuition, another team may well have chosen to test only one day on each side of an edge.

Combinatorial Reduction

Often, a given ETL process or business rule combines multiple input variables in deciding what action to perform or

values to output. Whereas one might argue that the results from all possible combinations of inputs should be tested,

the possible combinations for a dozen parameters can multiply out to the millions or more, far exceeding what the team

can afford to test. For this situation, test writers frequently employ a technique called combinatorial reduction, which

methodically analyzes the dependent and semi-coupled parameter interactions in a complex feature set to systematically

select an effective subset of tests from the universe of all possible combinations [Page et al. 2009, p. 100].

Consider Table 16.5, which lists combinations of input values for three input parameters of a particular business rule.

The possible values for each of these parameters are either true or false so that the set of possible combinations that a team

could test is indicated by the eight test cases in the table. However, the team realizes that for this module, testing every

possible value combination for just the pairs of parameters (rather than all three at a time) would be enough. Through com-

binatorial analysis, they realized that Cases 1, 4, 6, and 7 (shaded) cover all the possible input values for the parameters

when those possible parameter values are considered only two at a time. The other cases touched upon pairs of input values

that are already represented by the four chosen cases and are therefore superfluous. By eliminating the redundant input

value combinations, the team was able to reduce the number of test cases required to validate this feature by 50%.

Of course, module input parameters do not have to be Boolean. Table 16.6 shows the result of combinatorial

reduction for three parameters that provide string inputs to a module. The parameters for sales order status, work order

status, and promotion all take three or more text values. The total combinations possible number 64, but an online

combination generator set for two-way analysis reduced the necessary test cases by 75% to just 16 input combinations.

In general, the greater the number of parameters or values that each parameter takes, the greater the percentage of

savings combinatorial reduction will offer.

Teams need to use their judgment while employing this technique, of course. If a particular combination of parame-

ter values, such as “maximum values for every parameter,” represents a special business case, that case needs to be

included in the test plan, whether or not it was identified by the combination generator. Similarly, some combinations,

such as “all nulls,” will be ruled out by constraints somewhere else in the system and do not need to be tested, so they

can be removed from the test cases generated.

Moreover, in many situations involving a dozen or more parameters, the team may well decide that two-way

combinations will not provide enough test cases to reasonably identify the defects that could occur. These teams will

TABLE 16.5 The Combinatorial Reduction Test Case Writing Technique

Parameters 1 2 3 4 5 6 7 8

Valid customer TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

Valid sales agent TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

End of year TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE

Cases

448 PART | V Agile EDW Quality Management Planning

want to increase the combination algorithm to consider three or four parameters at once, although the number of new test

cases will grow rapidly with these adjustments. If an analysis of the system reveals that crucial combinations of four

parameters, for example, occur frequently, then a series of four-way combinations is a reasonable approach for the module

in question. However, absent any particular insight such as that, many professional testers recommend starting with edge

testing and pairwise combinations and then moving to three- and four-way testing if there is time and funding for these

more exhaustive levels of system validation. Empirically, testing utilizing five-way combinations or more seems to offer

too little additional defect detection power to warrant the expense. Team leaders can peruse the papers collected at Jacek

Czerwonka’s website (http://www.pairwise.org/papers.asp) should they wish to research this topic further.

Agile-Specific Test Techniques

Crispin and Gregory provide a thorough orientation to QA from an agile perspective. Rather than attempting to

reproduce their work here, I only point out two notions from their books that agile data warehousing projects utilize

frequently and that should be part of any team’s bottom-up QA plan: the story-to-epic test stack and exploratory testing

[Crispin and Gregory 2009].

Epic Stack Testing

Testers rely on repeatable patterns to help them plan validations and author test suites with less effort. “Stacks” serve as

one useful pattern, and we have already seen two test stacks: the “quality control, quality assurance, and quality

TABLE 16.6 Combinatorial Reduction Example

Parameters / Domain of Values
Sales Order Status: Accepted, Credit Hold, Credit Rejected, Changed Mind
Work Order Status: Submi�ed, Back Ordered, Parts Stocked, Installed
Promo�on: BOGO, 1st Free, Baker's Dozen, 3 for 2

64 possible combina�ons

One possible set of test cases, covering all two-way combina�ons
Prepared using http://alarcosj.esi.uclm.es/CombTestWeb/combinatorial.jsp

Case # Selected cases from the full set of 64 combinations
1 Accepted, Submitted, BOGO
2 Accepted, Back Ordered, 1st Free
3 Accepted, Parts Stocked, Baker's Dozen
4 Accepted, Installed, 3 for 2
5 Credit Hold, Submitted, 1st Free
6 Credit Hold, Back Ordered, BOGO
7 Credit Hold, Parts Stocked, 3 for 2
8 Credit Hold, Installed, Baker's Dozen
9 Credit Rejected, Submitted, Baker's Dozen
10 Credit Rejected, Back Ordered, 3 for 2
11 Credit Rejected, Parts Stocked, BOGO
12 Credit Rejected, Installed, 1st Free
13 Changed Mind, Submitted, 3 for 2
14 Changed Mind, Back Ordered, Baker's Dozen
15 Changed Mind, Parts Stocked, 1st Free
16 Changed Mind, Installed, BOGO

16 recommended combina�ons, 75 percent reduc�on in test cases

Why We Test and What Tests to Run Chapter | 16 449

http://www.pairwise.org/papers.asp

management” stack that makes up the planning dimension and the “unit, component, integration, and system test” stack

that comprises the system dimension. Those two stacks are commonly found in the QA plans for traditionally managed

projects. Agile teams add one further stack to their collection of planning techniques so that they remind themselves to

always push a little farther on quality and make their test suites that much more complete and robust. On agile projects, we

frequently speak in terms of testing the full epic stack—that is, validating stories from the backlog, then scenarios, themes,

and, finally, the parent epic as a complete package rather than treating those multiple levels as stand-alone pursuits.

Starting from the bottom of the stack, story testing is of course the evaluation that product owners make during

the iteration demo to determine whether a given user story has been fulfilled by new programming just completed by

the developers. In agile data warehousing, the product owner would evaluate developer stories first and the parent user

story later, after all of its developer stories had been delivered. Referring back to Chapter 8’s recommended epic stack,

we can see that evaluating developer and user stories will be insufficient, however, because user stories trace up to a

theme, and a theme to an epic. Accordingly, after a complete set of user stories has been accepted, the agile team will

continue validating all the way up the epic stack.

The first step above user story testing is an activity called “scenario testing,” defined by Crispin and Gregory as

validating the software’s ability to support plausible business workflows that mimic end-user behavior [Crispin and

Gregory 2009, Chapter 10]. As the resident expert on how end users will eventually employ the data warehouse to

support business processes, the team’s product owner should take the lead in identifying which scenarios need to be

tested and even create the test cases for them.

For each major business process supported by the project, the team should create a couple of scenarios that reflect

the extremes in operating context that the system will encounter during production. These edge-case scenarios can then

be grouped together into various “soap opera tests,” compound cases that can demonstrate how the system will respond

under the very worst of conditions. For example, a team building an EDW based on an enterprise resource management

system could review dashboards for the shipping dock receipts and returns for not just an ordinary month but also a

period that stretches over two major holidays during which one of the company’s major shipping vendors was on strike.

Theme-level testing represents the next level up from scenario validations. Following the structure of the recom-

mended epic stack, user stories represent the business-level investigations that managers employ to determine that the

analysis of the parent theme provides trustworthy insights. The theme tests will therefore start with a scenario test of

the user stories making up the theme but then add a validation that asks the directors to confirm they can understand

and benefit from the analysis provided by the theme.

Finally, because themes roll up to epics, the full chain of tests identified using this particular stack will end with an epic

test that asks sponsors to confirm that the actions enabled by the themes will add up to the new competitive capabilities that

their parent epic promised to deliver. Epic tests are frequently more involved than just reviewing the analysis of component

themes with the sponsors. As discussed in the chapters on requirements management, new competitive capabilities require

many months or years to manifest. When researching requirements for an EDW project, teams need to inquire about the

“leading indicators” that executives will rely on to know whether the company has changed its behavior and is competing

more vigorously. Consequently, a particular epic test not only needs to demonstrate that the component themes are func-

tional but also must ask executives whether their preferred leading indicators are sufficiently supported.

Exploratory Testing

In classic software testing, “exploratory testing” is defined as the act of testing and designing tests at the same time. It

is usually a “manual approach to testing where every step of testing influences the subsequent [validation] step”

[Page et al. 2008, Chapter 4, pg. 71]. During exploratory testing, testers essentially write and execute a test, and the

results of that test make them think of the next test they should run. Although it sounds undisciplined, exploratory test-

ing uncovers a considerable number of defects in an application because it demands that testers get to know the product

they are testing and allows them to author tests when their minds are most engaged with the application under review.

Crispin and Gregory are careful to point out that exploratory testing is not as undisciplined as it sounds because, unlike

ad hoc testing, exploratory testing starts with a charter that defines the application aspects to be validated and adds plan-

ning artifacts such as risk analyses, process and data models, collected comments from the programmers, and the

tester’s past experience [Crispin & Gregory 2009, Chapter 10].

Agile teams extend the notion of exploratory testing so that it is no longer a technique just for testers. During

iteration demos, the programmers, team leaders, and product owners actively look past the surface of a given story test

to think of additional validations the team should perform to guarantee that the application is not only complete and

correct but also generating as much value for the company as possible. In this context, exploratory testing does not

450 PART | V Agile EDW Quality Management Planning

focus only on whether the programmers have completed their assigned work (Quadrant 1 in Figure 16.8). It has become

instead a valuable business-facing test that critiques the product (Quadrant 3). As an example of exploratory testing at

work, consider that teammates on an agile EDW project are reviewing whether they have fulfilled a user story for a

standard costing data mart. The project architect might ask the product owner, “Have you considered linking this data

mart to the revenue fact tables? Wouldn’t that allow you to do analysis on product margins?” Because it put the team

on the lookout for new ways to employ existing data assets, exploratory testing led these developers to uncover

far more value for the company than if they had narrowed their thinking to simply whether the team had finished

programming a particular user story from the backlog.

An Easy-to-Follow Test Technique Matrix for Low-Level Validations

At this point, the collection of test techniques discussed previously is just a long list of ideas for a project’s quality

control efforts. Agile EDW teams employ test-led development, so it is only appropriate to preprocess that list into a

detailed plan for unit and component testing.

Table 16.7 depicts a likely result from such planning for a team preparing for the data integration work on a EDW

project. Here, the test techniques have been arrayed along the top of the grid. The rows list the types of columns that the

developers expect to find in most of their data warehouse target tables. In the body of the grid, the team has placed a check

mark where the developers agree they should try authoring test cases using the indicated test technique for the given type of

column. Where the developers believed a test technique had little or nothing to contribute for a given column type, they sim-

ply left the cell blank. If a particular test technique would be difficult to utilize for a certain column type, they marked the

cell with “Imp.” (“impractical”), as can be seen for the intersection of one type of replicated columns and expected results.

The matrix shown in Table 16.7 applies to Type 2 slowly changing dimensions. Note that the techniques have

varying data scopes, as marked at the top of the table. Some of the implied assertions will pertain to an entire target

table. The check mark in the upper left, for example, represents the statement, “All surrogate key values within the

target table should be unique.” Such a test is necessary for EDW projects that chose to speed up their data loads by

turning off their database constraints.

Other test techniques assume that the test will focus only on the records just loaded into a target table, and they

compare those values to the source delta file fed to ETL modules. Any greater scope for these tests would be infeasible,

TABLE 16.7 QA Planning Grid Showing Test Type by Target Column Type

Object Type: Presenta�on Layer, Type-2 Slowly Changing Dimension

Unique Values*

Valid Range*

Equivalent Class

Edge Tes�ng

Comb Reduc�on

Count Dis�nct*

Group Counts*

Sums or Averages*

Reconcilia�on

Expected Values*

BR SpecificLoad DeltaWhole TableScope:

Surrogate Keys �
Natural Keys �
Foreign Keys �
Replicated, Enumerated �

… Con�nuous � � � � � Imp.

Aggregated �
Derived, Enumerated � � �

… Con�nuous � � � � �
Source Metadata �
EDW Metadata � �

* Techniques amenable to re-usable widget support Imp. : Imprac�cal

Why We Test and What Tests to Run Chapter | 16 451

which will be the case if the delta extract is the only source information available because landing data typically gets

discarded after a successful ETL run. Evaluating the entire loaded column may well encounter a value that was not

contained in the delta extract.

The data scope for the remaining test techniques can vary wildly and is therefore considered context specific.

Whether one can reconcile a given column’s values for just the recently loaded records or the entire table, for example,

will depend on the business rules that govern a given column.

Because the appropriate combination of test techniques for each column type will vary somewhat with the type of

system object being created, a team may well need one of the previous matrices for each major type of object it expects

to build during the project. For the back end of the DW/BI system, the objects were all structures populated by ETL,

such as landing tables, integration layer tables, and presentation layer tables including slowly changing dimensions and

fact tables. For the front end of the system, the team will have to create test technique planning matrices for the set of

objects appropriate for the BI tool employed. These objects include such notions as cross-module menus, query defini-

tion screens and their standardized lists of values for filtering criteria, as well as the individual display components that

make up the reports and dashboards.

EDW team leads should be sure to involve the programmers when they fill out this grid of test types. Because the lea-

ders are driving the QA planning process, they might be tempted to decide for themselves where the check marks will go.

However, each check mark represents additional unit testing work that the team will expect programmers to complete for

every module of a given type. If the collection of check marks adds up to more work than the programmers will reliably

perform, the entire exercise will be counterproductive because it will position the leaders to believe modules are receiving

far more careful testing than is truly the case. For this reason, team leaders can achieve more predictable results if they

ask the programmers to collaborate on or even take the lead in completing this unit test planning grid.

Reusable Test Widgets

Once the teammates complete the unit test planning grids, they will have their detailed, technical testing requirements

well documented. With one small step, they can translate these requirements into the specification of a set of reusable

“test widgets” that will save them a tremendous amount of unit testing time.

First, many of the test techniques contained in these planning grids represent easily repeatable validations. Matching

the distinct values or sums between source and target deltas, for example, involves applying the same logic to the inputs,

no matter how many records exist in a column or which target tables are involved. Tests that will be heavily used and

that execute the same algorithm in all contexts do not have to be hand-crafted each time they are employed. The team can

develop some short, reusable, parameter-driven scripts or test widgets to perform the necessary calculations and com-

parisons. These test widgets can be called easily en masse from a driver script created for each target table.

The asterisks in the column headers of Table 16.7 indicate the test techniques that can be converted to reusable

scripts with little effort. Table 16.8 shows a few of the function prototypes for these parameter-driven routines. For

example, the technique “valid range” would become a “check_valid_range()” widget and would need the programmer

to call it with parameters for the target table and column to be validated plus the minimum and maximum values

allowed. Since match_sum() is scoped to cover just the extract delta, it will require a parameter to indicate what value

to search for in the target table’s column of load timestamps or process identifiers so that only the records just created

will be considered. The match_group_counts() compares the counts of records falling into user-defined “buckets” in

both the source and the target data sets. Naturally, this function will include a parameter that passes an expression

defining the desired buckets, such as one identifying the first letter of each string value.

TABLE 16.8 Sample Function Prototypes for Reusable Test Widgets

check_valid_range(target_table.target_column, min_value_allowed, max_value_allowed)

match_sum(source_table.source_column, target_table.target_column, load_process_id)

match_count_dis�nct(source_table.source_column, target_table.target_column, load_process_id)

match_group_counts(source_table.source_column, target_table.target_column, load_process_id, group_by_expr)

match_to_expected_values(target_table.target_column, load_process_id, reference_table.reference_column, expected_value_set_id)

452 PART | V Agile EDW Quality Management Planning

Match_to_expected_values() ensures that a given set of source records exactly produces a set of predefined target

results. This test can only be run against “canned” source data sets in which the team controls the input records and

outputs completely, making the outputs entirely predictable once the transform logic is programmed correctly. For this

test, the developers will need to add parameters for the target table and columns they want evaluated and another set

for identifying the transformed values they expect to match. Because the developers will probably want to store more

than one set of expected values in that table, they will have to provide a parameter identifying the specific comparison

set for each call of this widget as well.

Note that many ETL modules place unloadable records into a suspense table rather than rejecting the input

altogether. In that situation, the team will need to add parameters to many of the reusable widgets to identify the

suspense tables so that the comparisons will execute against the union of all target objects.

Because of their simplicity, these reusable test widgets cannot catch all the defects a data warehouse will experience.

However, experience has shown that by creating driver scripts that employ reusable widgets against target tables dozens

of times after every ETL run, a great many defects can automatically be revealed, freeing up the team’s time to invest

in more complicated and value-added testing elsewhere.

Test Cases Roll Forward Along the System Dimension

Although the previous discussion focused largely on unit testing, we do not want to leave the higher level validations in

the system dimension unsupported. Teams will find they have already completed much of the work necessary for inte-

gration and system testing if they plan on transferring unit and component tests to the higher-level test scripts.

In general, unit testing validates the objects that a single programmer modifies and that result in an atomic object in

the team’s change control utility. Component tests validate objects that multiple units assemble into, but they often

evaluate very different qualities than the unit test. For many data warehousing projects, an ETL unit is a mapping, and

thus ETL unit tests consider whether the business rules specified on a source-to-target map were properly programmed.

A workflow or sequence of mappings represents the component, and component tests usually consider whether the

component successfully executed the proper number of maps, not the business rules inside the maps.

Integration testing, however, is not entirely unlike the combination of unit and component testing. Integration testing

will run ETL routines that may well invoke dozens of components. To ensure that all component processing completed

as expected, the developers will in fact want to determine whether the correct number of maps executed and whether

some key business rules were properly applied. In other words, they will want the integration test to repeat many of the

unit and component tests.

Similarly, system testing tends to repeat much of an integration test. The goal that the operations team has for

systems testing is to ensure that the application will run as predicted in the machine room with a reasonable amount of

operator involvement. The system will be promoted into a near-production environment such as user acceptance testing

(UAT) for validation. Operations team members will naturally focus on the knockout tests described previously, but

they will also want to see that the application successfully completes its integration test in the new environment.

Thus, many unit and component tests will need to “roll forward” into the integration test suite, as illustrated in

Figure 16.11, which also shows that much of the integration test cases will roll into the system test suite. Knowing that these

test scripts need to consolidate in this way will give the team further incentive to implement as much of the unit and com-

ponent testing as possible using parameter-driven test widgets because they make it particularly easy to collate driver scripts

in the next higher level of testing. Teams can, in fact, configure an integration test by simply creating a super driver script

that calls the driver scripts for unit and component testing, as shown in the diagram. At each progressively higher level, the

new hand-crafted test steps will be the few additional tests that the scripts of the previous level did not entail.

Testing for Convergence

Once EDW teams have completed formulating both a top-down and a bottom-up EDW QA plan, they should consider

whether the two concepts converge well into a single concept. If gaps appear when they try to connect these two plans,

one or both of the plans have overlooked or misconstrued a significant validation concept. The gap provides a team

with the opportunity to search the two plans for weak spots and augment the components until an overall approach

emerges that contains a complete set of accurately targeted validation activities.

Figure 16.12 portrays the stereoscopic style of quality planning that teams employing the elements described in this

chapter can achieve. On the left are the planning realms of quality management, assurance, and control. These link to

the elements of the system dimension, such as unit and integration tests, in the manner indicated by the dashed lines.

Why We Test and What Tests to Run Chapter | 16 453

The system dimension items link in turn to the output of the agile EDW requirements management value chains, as

shown on the right.

The 23 2 planning matrix allowed the team to define these components from the top down. Starting from the top,

Figure 16.12 shows that issues of quality management need to be found in the system test plan. Next, QA objectives

have to be supported by the integration test, which should in turn validate the product owner’s themes and user stories.

Regarding unit tests, the team has to resort to very granular test techniques and then consider how those would roll

up to integration and system tests. At this point, team leaders can ask some demanding questions that will reveal

whether they have a coherent quality plan:

� How well do the integration tests (created by rolling up unit tests) support the validations we planned for user- and

theme-level stories?
� How well do the system tests (created by rolling up the integration tests) support the quality management objectives

we set out for project?

Scripts

Processes

Unit &
component

testing

Integration
testing

System
testing

Modules Application DW/BI ecosystem

Some
cases

Some
cases

Objects

FIGURE 16.11 Many unit tests roll forward into the applications integration test suite.

454 PART | V Agile EDW Quality Management Planning

Once they have resolved any gaps that appeared with these questions, they can further deepen the top-to-bottom

alignment by trying to extend the unit test techniques upward along the system and planning dimensions by asking

questions such as the following:

� How can we use expected results and reconciliations to ensure we are providing accurate information at the theme

and epic level and not just for the actions envisioned by the user stories?
� How do the values we use for edge testing mappings (units) and workflows (components) translate into the bound-

aries we should be testing at for themes and epics?
� Do we need to expand or contract the data set we derived via combinatorial reduction for unit and integration testing

so that we can use it also for themes and epics?

There is, in fact, a third approach visible in Figure 16.12 that the team can tap to further polish its quality plan.

Notice the remaining validation factors listed on the right side of the cube. The team can explore concepts such as

polarity, functionality, and regression testing to judge whether the validation actions identified at each level on the face

of the cube form a truly complete set of tests. Such considerations apply notions such as negativity, regression, and

nonfunctional requirements against the tests already defined and give rise to further questions, such as the following:

� We have planned for negative tests at the unit level, but can we define some negative tests for our themes and epics

as well? What kind of extreme business situations might the executives and directors face that could possibly

destroy the value provided by the data warehouse?
� The current system test plan focuses on restartability for only the modules we have added for the next subrelease.

Shouldn’t we be regression testing restart logic for the subject areas added during past subreleases to ensure they

have not been adversely impacted by our new programming?
� We have plenty of user acceptance test cases for the subject area we just added, but once we have it running on the

UAT host, shouldn’t we validate nonfunctional aspects such as performance and security aspects as well?

Unit test

Component
test

Integration
test

System
test

Quality
control

Quality
assurance

Quality
management

Developer
story

User story

Theme
story

Epic
story

2x
2

P
la

nn
in

g
m

at
rix

Te
st

 te
ch

ni
qu

es

Agile EDW QA planning

Requirement
objects

System
dimension

QA planning
realm

FIGURE 16.12 Overview of an agile QA planning approach.

Why We Test and What Tests to Run Chapter | 16 455

SUMMARY

Deciding what to test for an enterprise data warehouse is challenging because of the complexity of the application.

When one considers the large number of test types that a team could possibly execute, and then the combinations of

those test types with the many modules to be tested, the resulting list far exceeds the quality work that the team has

time or money to pursue. EDW teams need a framework to make quality planning a straightforward process and one

that results in an economical but still robust validation process.

The agile approach is to perform both top-down and bottom-up planning and then to check that the two resulting

plans support each other well. The top-down style asks the team to choose a small set of the most important test types

and place them on a 23 2 matrix that combines the different audiences who wish to see test results versus the funda-

mental purpose of the tests. Teams can then reflect on whether the four quadrants of this 23 2 matrix are balanced.

They can also consider how well it incorporates the six dimensions of testing, which include notions such as positive

versus negative testing as well as progression versus regression tests.

Switching to the bottom-up path, the team should decide where to employ any of a dozen standard techniques for

authoring unit test cases. It should also consider which of these can be implemented as reusable, parameter-driven test

widgets that will save the team significant time in validating the lowest-level components of its warehouse. The team

can also explore whether the test techniques selected for each type of ETL and BI units roll up easily into integration

and system tests.

Finally, agile EDW teams should evaluate how well the two planning paths intersect and reinforce each other. They

can consider whether the top-down notions of quality management, assurance, and control connect effectively with the

integration and system tests that resulted from their bottom-up script consolidations. They can also ask where they can

extend the test techniques employed for unit testing to validate more abstract notions such as epic- and theme-

level stories. They can then factor in the remaining dimensions of testing to discover if notions such as negative and

regression testing reveal oversights spanning the entire QA plan.

By understanding and authoring a quality plan from multiple perspectives, the agile EDW team can be reasonably

assured that their plan is robust, actionable, and economical. This plan lists only test types, however. The next step is to

plan how the test cases falling into those categories will actually get written, a topic we address in Chapter 17 when we

consider the who, when, and where of agile EDW quality assurance planning.

456 PART | V Agile EDW Quality Management Planning

Chapter 17

Designating Who, When, and Where

The stereoscopic view of quality assurance (QA) presented in Chapter 16 provides agile enterprise data warehousing

(EDW) team leaders with a handy framework for choosing a reasonable set of tests for validating the application they

have under development. Although they have answered, “What types of tests shall we use?” they are still far from having

a full QA plan. Given that their team will need to assess the fit-to-purpose of many hundred facets of the product under

construction, the next major question they will need to answer is, “Who will write all the tests we will need?” In answer-

ing this question, agile EDW leaders take a very different approach than that followed with traditional projects. They

spread the responsibility for writing tests across the entire team rather than placing it all on the shoulders of the project’s

system tester. This chapter considers the best allocation of quality duties within an agile EDW team. With the responsibil-

ity for writing test cases distributed across many people, two further questions immediately emerge, namely “When do

team leaders expect their teammates to complete each of their duties?” and, given that they are sharing physical

resources, “Where should they perform their work?” This chapter suggests how team leaders can answer these three cen-

tral planning questions, leaving only “How should they get that work done?” to be answered in Chapter 18.

WHO SHALL WRITE THE TESTS?

Traditional, waterfall projects place a tremendous burden on the role of system tester. Testing usually gets started toward the

end of the project when a large inventory of programmed modules and possibly loaded data exist so that a considerable portion

of the product can be validated. At that point, the system tester(s) begins working with the team. She examines the design spe-

cifications in order to write test cases that will demonstrate whether the application will dependably fulfill its intended purpose.

Whether she will succeed in this effort will depend on her ability to glean intent as well as detailed technical requirements

from the large collection of requirements and design documents the designers provide. This work is difficult because the arti-

facts she will work from are typically incomplete, poorly written, and, by the end of the project, considerably out of date. On

top of these disadvantages, the system tester will probably receive too little support from the designers and programmers as

she struggles with this insufficient documentation. She joined late, so she does not seem truly part of the team. Moreover,

the others largely view testing as a necessary evil that does not help anyone finish programming the application by the time

the looming deadline arrives. Every minute they spend explaining context and coding details to the system tester is another

minute they will have to work during late nights and weekends in order to get their programming assignments finished.

As challenging as it is to write test cases from specifications during a waterfall project, it is completely impossible

to accomplish in an agile setting. Because detailed specifications do not exist until programmers finish building a

module, the agile system tester will not find to-be specifications to guide him in writing test cases. As it sprints through

its development cycles, the team’s goal is to deliver shippable code with each iteration if possible and certainly with

each subrelease. Programmers work from 80/20 specifications (see Part III), so the team does not even pretend there

are detailed specifications for most of the features it is actively adding to the current build. Detailed requirements are

provided eye-to-eye in real time when a module is programmed.

As outlined in Chapter 16, agile teams need to test modules as they emerge from the programming process in order

to keep defects from compounding and consuming developer time and energy that are better invested in creating

additional features for the organization. Unfortunately, the system tester cannot write test cases with all the crucial

information needed for understanding the modules, as built, locked away in the heads of so many other people:

� The product owner provided the intent for a large collection of modules taken altogether.
� The project architect coordinated how that purpose was distributed across subsystems and components.
� The data modeler chose how the target tables would interconnect.

457
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00017-5

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00017-5

� The system analysts supplied guidance on the business rules that should shape the information loaded into each

target column.
� The programmers decided on the logical boundaries between units as they coded each module.

If the agile team is going to steadily execute complete and effective testing on the EDW application as modules

emerge from programming, all of these parties will have to collaborate in writing the test cases, each providing valida-

tion objectives from his or her perspective. The role of the agile system tester, then, is no longer to author the validation

events but instead to orchestrate all his teammates in writing their test scripts. The system tester will need to guide

them and collate the results so that this decentralized test writing eventually amounts to an organized set of test suites

that can be executed and re-executed with reasonable ease.

A Framework for Understanding Who Must Do What

In order to orchestrate distributed test writing, the system tester will need an organizational framework so that she can

clearly express to each teammate his or her role and objectives in creating test cases. To some extent, she needs only to

remind her teammates of the QA activities built into the agile method they are following. Higher levels of testing will

be required, however, and to understand and communicate those responsibilities, she can use two simple tools: the

“V-model” and an updated version of the 23 2 quality planning matrix.

The agile approach has instilled solid quality practices into the software development process that occurs with every

programming iteration. Examples we have seen in this book so far include

� the validation sentence added to user story cards;
� the five-step test-led development pattern;
� code walkthroughs included in a task’s definition of done; and
� the product owner test driving real extract, transform, and load (ETL) results at the end of every iteration.

Although these practices serve as a strong foundation for the quality efforts of an agile team, they focus largely on

unit testing. The project will also need validations from higher-level perspectives such as epics, themes, the whole

application, and the application functioning in its operational environment. The system tester will need to elicit a full

gamut of test cases from his teammates by guiding them across the arch of the six dimensions of testing explored in

Chapter 16.

Test writing must begin with Sprint 1 so that the team will have a successful subrelease candidate during the first few

months of a project. Accordingly, the system tester needs to be part of the team from the very beginning. In fact, much of

the quality planning described in Chapter 16 and in the following section need to be completed during Sprint 0. To coor-

dinate activities of 10 people or more from the very start of the project, the system tester must arrive with ready-to-go

guidelines defining the roles for each member of the team. In my experience, completing two simple artifacts will provide

the necessary guidance:

� Analyze the responsibilities using the classic V-model for QA.
� Document and communicate the conclusions using the 23 2 top-down QA planning matrix from Chapter 16.

Using the Classic V-Model for Analyzing QA Responsibilities

The V-model is a classic analysis linking requirement artifacts to testing activities used for decades to plan QA for

traditionally managed projects. Figure 17.1 depicts the V-model one can find in many QA textbooks [Hull et al. 2011,

pp. 10�11]. Although it is drawn for a general software development project, we can adapt this diagram to understand

how quality should serve as the flip side of requirements management within an agile EDW project.

In the traditional rendering, the major categories of QA work are dictated by the progressive elaboration of the

project’s system requirements. The vertical axis of Figure 17.1 represents the varying levels of abstraction at which

the team works as it analyzes requirements, and the horizontal axis signifies project time.

We can see the requirements management work on the left side of the V. The team begins at the top with stakeholder

requirements and then drops down a level to translate stakeholder requirements into a set of system requirements. From

there, the project definition work continues dropping down, each time to a finer level of abstraction. The team progresses

through subsystem requirements, component requirements, and, finally, detailed design, which we can think of as the

technical requirements for individual modules.

458 PART | V Agile EDW Quality Management Planning

Once the team has arrived at a detailed design at the bottom of the V, a coder can program the unit. At that point, QA

work begins. According to this model, the tester must “dig himself out of the hole” that the tall stack of requirements

management work created. He must perform a unit test to confirm that detailed design has been successfully expressed in

the module’s programming. Component testing confirms that the team has successfully implemented the functional

requirements allocated to a closely related set of modules. Integration testing confirms that the subsystem meets the

functional requirements set out for it, and system test confirms that application-level requirements have been fulfilled.

Finally, the team returns to the top of the V to conduct an acceptance test, which confirms that the stakeholder require-

ments articulated at the start of the entire undertaking have been answered.

Adapted V-Model for Agile DW/BI Test Cases

Figure 17.2 depicts how EDW team leaders, guided by their system tester, can adapt the classic V-model to allocate

test writing responsibilities across the members of the development team. I have kept the same set of testing labels on

the right side of the model, but on the left I have replaced the textbook’s list of requirements artifacts with the ones that

agile EDW teams typically employ. Also, to better support the planning of responsibilities, I have redefined the arrows

connecting each side of the V to document the parties performing the author and consumer roles involved at each level

of abstraction.

Starting with the stakeholder requests, this artifact may have been originally compiled by the project architect, but

at some point it became the “property” of the product owner because he or she is the team’s authority on the services

the business must receive from the data warehouse. From that point on, the project architect is the consumer of the

stakeholder requests, treating the requirements within them as given facts with which she can create or update the pro-

ject’s vision document. To see the implications for QA, we must note that the acceptance test confirms that the

Stakeholder
requirements

System
requirements

Subsystem
requirements

Component
requirements

Optimize cost-benefits

Confirm functional requirements

Allocate functional requirements

Confirm components programming

Precise requirements

Confirm the module programming

Define what the system must do

Confirm application’s ability to run in production

Define results for stakeholders

Confirm the product

Detailed design
Unit
test

Component
test

Integration test

System
test

Acceptance
test

Unit
programming

FIGURE 17.1 V-Model showing quality assurance as the flip side of requirements work. (Adapted from Elizabeth Hull, et al, Requirements

Engineering, 3 ed, Springer, London, 2011)

Designating Who, When, and Where Chapter | 17 459

stakeholder requests have been fulfilled. Which team roles could best write the test cases for the user acceptance pro-

cess? The author and consumer of the stakeholder requests will have the greatest familiarity with this document, and

thus the product owner and project architect will be in the best position to author test cases at this level.

At the next level down, the vision document is a sketch of the system that the team will develop. It provides the

major organizational concepts of the application that system test must assess once it is operating in a near-production

environment. Accordingly, the project architect and system tester, as the respective author and consumer of the vision

document, will be the teammates most familiar with the guidance at this level of abstraction and thus are best positioned

to write system tests. Data warehouses divide their systems into subject areas, which serve as the natural scope for

integration tests. The data modeler defines the subject areas, and the ETL lead decides how to best populate them with

data, making these two roles the author and consumers at this level of abstraction. Consequently, this pair is the most

capable of writing the test cases for the subject area. At the next level down, the ETL lead designs the workflows and

the programmers implement those designs, so these roles are best positioned to write cases for the component tests that

confirm the application’s workflows are properly constructed. Finally, the system analyst authors the source-to-target

mappings that the programmers follow while programming individual modules; thus, as author and consumers of these

mappings, these roles will be the best authors for the unit test cases.

Communicating the QA Assignments

Test writing consumes a tremendous amount of energy, at least until everyone on the team settles into their new QA

responsibilities. EDW team leaders will be wise to record the conclusions derived from the V-model analysis so that the

teammates can hold each other accountable for getting the quality work completed. For communicating the QA at a high

level, the 23 2 top-down planning matrix we built in Chapter 16 will document those decisions well. For the projects I

lead, we display the “who” version of this matrix prominently on the project room wall and update it frequently as the

development iterations show us where we must fine-tune the roles assigned to the various areas of quality work.

Stakeholder
request

Vision
document

Subject area

Workflows

Data modeler

ETL lead

ETL lead

Programmers

Systems analyst

Programmers

Project architect

System tester

Product owner

Project architect

Source-to-
target map

Unit
test

Component
test

Integration test

System
test

Acceptance
test

Unit
programming

Stakeholder
requirements

System
requirements

Subsystem
requirements

Component
requirements

Detailed
design

FIGURE 17.2 V-Model adapted for agile data warehousing and showing the authors and consumers of requirements and specifications.

460 PART | V Agile EDW Quality Management Planning

Using the 23 2 Top-Down Matrix

Figure 17.3 illustrates how the planning matrix from Chapter 16 would appear once it is updated for the conclusions

from the V-model analysis. Of course, there are many types of tests that are not explicitly listed on the V-model, so

EDW team leaders need to invest a further increment of thinking in order to make this update. Story and theme tests,

for example, were not on the V-model, but it is clear with a moment’s reflection that they are directly traceable to

stakeholder requests. Because the product owner is the owner of stakeholder requests, he or she will have the best

knowledge for authoring tests for the project’s theme and users stories. Other tests will require a judgment call, but the

V-model analysis will be a good anchor for the thinking required.

A good example can be found in alpha tests, in which the developers will try out the system before a subrelease,

working with the front end as if they were the end users. This test should demonstrate that the system features will

properly support the new business process that the stakeholders desire for their departmental staff members. Business

processes fit somewhere in between the topics discussed in the vision documents and the data transforms documented

on the source-to-target mapping. Thus, alpha test cases should be created by the authors of these two artifacts, namely

the project architect and the systems analyst. Even better, the team’s business analyst, if one has been assigned, is a

role falling between project architect and systems analyst that focuses explicitly on re-engineering a business process to

utilize a new information system. For these reasons, the system tester might well suggest that alpha test cases be

authored by the business analyst, too.

Using a More Detailed Grid

Listing the responsible roles on the 23 2 quality planning matrix is fine for initial planning, but as the project

progresses, the team will develop a more detailed notion of who should perform quality duties, including those beyond

testing. Table 17.1 shows a more detailed grid for planning out quality roles on an agile EDW team. The quality work

items are listed in the rows, and the roles on the team provide the column headings. The team will borrow many of the

elements for this grid from the 23 2 summary matrix. Check marks indicate for each category of testing who is respon-

sible for authoring the test cases and even ensuring that they get properly executed.

This grid portrays some of the detail that would not fit on the 23 2 planning matrix, especially those test categories

for which more than one teammate is expected to help in writing the test cases. For example, the team preparing this

grid believed that integration tests on Line 4 should result from a collaboration between the project architect, the

systems analyst, and the system tester.

This grid also lists a few additional QA activities that involve some roles outside of the team room. Responsibility

for preparing test data for the integration test data needed by each iteration has been assigned to the project architect,

systems analyst, and system tester on Line 1, for example. The duty of presenting a subrelease candidate and leading

operational readiness reviews has been given to other roles, including some IT support groups, on Lines 15 and 16.

Agile EDW teams usually feel the need for this grid soon after their first. Once drafted, this grid also makes a good ref-

erence artifact to display on the team room wall.

One-Up, One-Down Validation Can Save Time

Focusing on the roles of author and consumer by abstraction level and test cases provides the foundation for a further

important quality practice for agile teams called “one-up, one down validation.” By design, agile teams should be

Support the team
Are we done coding yet?

Critique the product
Product offering maximum value?

Business
facing

Technology
facing

Product owner
Product owner
Business analyst

Product owner
Product owner
System tester
System tester

Developer
ETL lead
Project architect

Operations team
Ops. security
DW architect
DW architect

3

41

2

FIGURE 17.3 Using the 23 2 QA planning matrix updated to communicate test writing responsibilities.

Designating Who, When, and Where Chapter | 17 461

collaborative, but many teams take collaboration to an extreme. They “socialize” every decision regarding requirements,

design, and programming. Such extensive involvement in defining work tasks obviously leaves the teammates mired in

never-ending meetings and slows deliveries to a snail’s pace. To preserve the team’s velocity, agile teammates need a

way to enable individuals to work rapidly on their own and still validate their output. One-up, one-down validation will

allow them to immediately escape the ineffective nature of oversocialization.

When I join a team that is mired in too many review meetings, I suggest they attempt to depict their team using a

diagram such as Figure 17.4. This diagram uses rows to signify the levels of abstraction comprising the software engi-

neering process and columns to indicate the engineering roles on the team. The lozenge shapes drawn in each column

indicate the engineering areas in which each role participates. The thicker the lozenge for a given role, the more that

role naturally understands and cares about the type of work in question.

The wide arrows in Figure 17.4 indicate the handoffs of work between engineering steps, thereby indicating the

author�consumer roles between teammates. For each of these handoffs, the work being transmitted should be validated

as part of the team’s overall quality assurance plan.

These validations need not involve every member of the team, but they can be quite effectively performed by just

three people: the author of the work, the person serving as the subject matter expert, and the other person who will

have to consume the artifact created. In other words, when a teammate completes an artifact, he should validate it with

the person one level up and the individual one level down from his position in the engineering value chain.

Consider, for example, an increment of the data model. The data modeler takes guidance from the project architect

concerning the major changes needed within the warehouse’s data repository to support the next subrelease. He or she

then translates those directions into a data model that will support the desired system functionality. That data model

next serves as the starting point for the systems analyst in writing business rules for the source-to-target maps. The

project architect is one-up from the data modeler, and the systems analyst is one-down, so these two individuals should

be all that is necessary to provide “just good enough” validation for the changes to the data model. These two reviewers

will be able to confirm that the data modeler not only understood the assignment but also expressed himself clearly for

the next person in the value chain. Given how many person-hours large meetings cost a team, the data modeler will

keep the project moving far more quickly by leaving everyone else out of the review.

If this approach often seems too Spartan to many agile practitioners, I encourage them to keep in mind several con-

siderations. First, meetings that serve only to communicate general information to teammates are usually very wasteful.

At large meetings, the Scrum master should always multiply the time spent by the number of people involved by

TABLE 17.1 Quality Assurance Responsibilities Documented by Roles and by Test Type

Type

Who

1 Iteration Integration Test Data Prep

2 Unit Tests

3 Component Tests

4 Integration Tests

5 Story Tests

6 Scenario Tests

7 Alpha Tests

8 Theme Tests

9 Acceptance Tests

10 Usability Tests

11 Beta Tests

12 System Tests

13 Performance Tests

14 Load Tests

15 Subrelease Candidate Presentations

16 Operational Readiness Reviews

System Tester
IT Support

Team

Business

Analyst
Ln

Project

Architect

Product

Owner
Data Modeler

Systems

Analyst
Programmer

462 PART | V Agile EDW Quality Management Planning

a representative wage rate for the team. Ten people costing an average $150 per hour in wages and facilities spending

just 90 minutes in a meeting consumes more than $2,000 of project funds. If most of the people involved with that

meeting have very little to say during the session, the Scrum master should ask, “Isn’t there a way to communicate this

information just as well that doesn’t cost $2,000? How about using the team wiki board included in our document

repository application?”

Second, to maintain their velocity, effective agile teams rely on just-in-time communication to guide detailed work.

When starting work on a module, upstream roles should provide a teammate only an 80/20 artifact to get her started.

When she finds herself stuck, she can call for support in real time across the project room table. She can also announce

at the next daily stand-up meeting that she needs to meet with whomever understands the artifact that is troubling her.

In the same way that upstream roles do not need to provide detailed specifications for the next teammate who will work

on an item, they also do not need to keep everyone completely informed on every detail of the project. As long as the

team has some high-level artifacts to keep all teammates aligned, it is far more efficient to let each team member

request further background and details when they start working on an item.

Third, if a particular type of artifact regularly needs more input than one-up, one-down validation can provide,

this fact can be discussed and resolved at the next iteration retrospective. In this way, the team establishes wider

review processes only where necessary, leaving the bulk of their handoffs occurring with the least labor consumed as

possible.

WHEN SHOULD TEAMMATES PERFORM THEIR QA DUTIES?

The core of QA is writing and executing test cases for all the necessary aspects of a system under development. There

are also some higher-level activities that need to be wrapped around this core of testing. When a project begins, agile

EDW teams experience considerable confusion regarding when each role should execute this large collection of

activities. They become significantly more effective at their quality work once they map out the proper sequence and

timing for each event.

Business processes

Functional requirements

Technical requirements

Data requirements

Coding requirements

System
analyst

Programmer

Business facing Technology facing

Product
owner

Project
architect

Data
modeler

FIGURE 17.4 Teams can avoid “over socializing” decisions by employing a “one-up, one-down” validation practice.

Designating Who, When, and Where Chapter | 17 463

Quality Activities Within an Iteration Cycle

Parallel to the way programming iterations provide a strong order in which major development steps should occur, the

iteration cycle can also structure the timing of quality activities. As they progress through the development steps of

each programming iteration, the developers should be cognizant of whether they are in the beginning, middle, or the

end of a QA cycle.

The beginning of the development step is understandably a stressful, confusing time because the clock for delivery has

started ticking, but the objects that must be programmed are only 80 percent defined. By the middle of the sprint, however,

the programmers should have sorted through the unknowns, called for any missing explanations, and be fairly clear on

exactly what each of them must build by the time demo day arrives. During that middle stretch, they should be “heads

down,” coding quickly, and as they approach the end of the cycle they should be getting ready to demo the new software

they have created. EDW project leaders can help their teammates perform their quality work far more smoothly if they

align it with the beginning�middle�end structure of the programming iteration. At the beginning of the cycle, some uncer-

tainty in the iteration’s test plan is acceptable, so a simple sketch of the quality work to come will suffice. During the

middle, however, more actionable plans for the cycle’s final validation should be taking shape. On demo, the team should

execute on the quality plans it has prepared during the past few weeks and get the new software validated and approved.

Figure 17.5 depicts some of the major quality functions found within a development iteration and organizes them

into a pattern that supports the changing nature of the work during the sprint. The rows group activities by the focus of

four important types of activities:

� Getting modules specifications correct enough so that errors do not occur from poor communication
� Getting the modules programmed correctly
� Getting ready for the upcoming product demo
� Re-demonstrating the last build delivered with a more realistic set of data

Because agile EDW projects require that the quality work for one iteration stretch somewhat into the next, I have

depicted Iterations 3 and 4 for this hypothetical project and shaded the activities that belong to Sprint 3. For clarity, I

drew this figure for a team using 4-week iterations, but readers can simply list days of the sprint if it must be adjusted

for a differently sized time box. Similarly, they should add rows when their projects encounter aspects of quality work

needing management within an iteration that are not mentioned here.

Regarding Row 1, we can acknowledge that providing clear guidance for programmers on requirements and design

will be an important consideration having direct impact on the quality of the team’s end product. When the iteration starts,

the programmers will receive an orientation from their EDW leaders including a data model, ETL programming patterns

for the modules they will be coding, and a source-to-target map. The team’s first look at these artifacts occurs during an

Initial

presentation

Churn

allowed

Changes

negotiated
Locked

Initial

presentation

Churn

allowed

Changes

negotiated
Locked

Pay off

tech debt

Code &

unit test

Code &

unit test

Focus on load

for demo

Pay off

tech debt

Code &

unit test

Code &

unit test

Focus on load

for demo

Sketch next

demo

Draft next demo

script

Update next

demo script

Alpha test

next demo

Sketch next

demo

Draft next demo

script

Update next

demo script

Alpha test

next demo

Iteration 2

Small-volume

demo

Iteration 2

Full-volume

load

Iteration 2

Full-volume

alpha test

Iteration 2

Full-volume

demo

Iteration 3

Small-volume

demo

Iteration 3

Full-volume

load

Iteration 3

Full-volume

alpha test

Iteration 3

Full-volume

demo

Work depicted for Iterations 3 and 4, by which time the team should largely understand the structure of a programming iteration.
Shaded items represent the complete set of ac�ons belonging to Itera�on 3

f

t
r

c

u
d

d p
i

FIGURE 17.5 Sequencing QA work within an iteration.

464 PART | V Agile EDW Quality Management Planning

“initial presentation” from their technical leaders, as listed in the first week in row 1. The initial presentation of a module

design will probably include discussions during iteration planning on Day 1 plus design briefings by the system analysts

on a module-by-module basis when a programmer later takes responsibility for creating a particular system object.

The artifacts reviewed during these initial presentation will be 80/20 specifications, so they will only address the

most important aspects of the module to be programmed. As the programmers begin work on a module, questions

regarding the remaining 20 percent of the design will arise, some of them requiring several hours or several days to

answer. The agile work pattern for technical requirements shown in Figure 17.5 indicates that the EDW leaders may

well churn on the specifications originally provided to the programmers during first part of an iteration. I chose the

word “churn” because the project architect, data modeler, and systems analyst may well go back and forth on a few

details as they strive to clarify their thinking and communicate it to the programmer. A bit of churn at the beginning of

the iteration is healthy because everyone needs the details to be correct. Prolonged churn on technical requirements,

however, will seriously undermine the programmer’s ability to build a quality module within the time box allowed.

Accordingly, by Week 3, the leaders need to let the programmers refuse to change their specs if the new guidance is

going to be too disruptive, because the day of product demo is growing close. By Week 4, the specifications need to

be considered “locked” because the priority has shifted to getting whatever can be completed ready to demonstrate.

If, during these last 2 weeks, the specifications are irrecoverably wrong, the EDW leaders should simply pull the devel-

oper story in question from the iteration backlog and substitute one of the iteration’s stretch goals if possible. In cases

in which an appropriate stretch does not exist or cannot be completed in time, then the product demonstration will

simply have a gap in it. Either way, the team will discuss this misfire during the retrospective and create some new

work patterns that will prevent it from happening again.

Viewed from the programmers’ point of view, their focus on quality changes throughout the iteration, as shown in

row 2 of Figure 17.5. During the first week, they should be intent on paying off any “tech debt”—that is, the little cor-

rections they promised the product owner they would make in exchange for him or her accepting a not-quite complete

story during the prior iteration’s product demo. During Weeks 2 and 3, the focus should be on coding, unit testing, and

code walkthroughs so that the maximum number of task cards on the task board land in the “ready to demo” column.

For the last week of an EDW development iteration, the coding should be essentially complete because the team needs

to use that time to load the target tables so that the product owner will have data to review during the upcoming

product demo.

Row 3 pertains to that upcoming product demonstration and recognizes that it will not just spontaneously occur.

Many folks will be attending this ceremony, including the team leaders, often the programmers, and sometimes the

projects’ near stakeholders. Accordingly, the product owner needs to be prepared to conduct his or her test drive

efficiently, so the EDW team leaders would do well to do some light planning for this event. The centerpiece of Week

1 is iteration planning, and the team leaders should use the information surfaced during that session to lightly sketch the

items they hope to evaluate at the demonstration that will occur a few weeks later. Sometime during the next week

the product owner or project architect should take a closer look at the planned demonstration and add details about

what queries the product owner will issue against the warehouse data at each point in the test drive. As the program-

mers start completing modules during the second half of the iteration, these two leaders may well hear of capabilities

added or dropped that will make them want to update their script for the product demo during Week 3. In Week 4, once

the build is complete and the data for the demonstration is being loaded, the development team should determine if

they can execute the product owner’s demonstration script by conducting a mini-alpha test so that the demo will be free

of any nasty surprises.

Row 4 of the “when” grid focuses on re-demonstrating the build from the prior iteration. This aspect of agile QA is

unique to agile data warehousing/business intelligence (DW/BI) projects that include significant data integration.

Throughout the years of trying to build data warehouses in short iterations, teams have learned that it is physically

impossible to prepare 80/20 specs for a module, program the business rules, integrate the code, and load the warehouse

with near-production data all in 3 or 4 weeks. Just loading a realistic slice of operational data can take 3 or 4 days

alone. The workaround that all agile data warehousing teams seem to adopt is executing the iteration’s product demo

using a small, managed data set that can adequately demonstrate the new, functional aspects of the application. This

data set is relatively small so that it loads quickly—for example, in less than 1 hour. It is managed so that it contains a

good illustration of every business rule the product owner needs to review. With this data set in hand, agile EDW teams

typically run the product demo at the end of the iteration using the small data set and then ask the system tester to load

the new build with near-production data sometime during the next iteration.

Our “when” grid reflects this practice. Starting with the last day of Iteration 3, the small-data demo begins. It is

shown stretching into the first week of Iteration 4 because frequently a product owner will take a few days to approve

Designating Who, When, and Where Chapter | 17 465

all the work, even if looking at the small, managed data set. The product owner may want to study the transformed data

more closely, working offline from the rest of the team.

In a perfect world, the small-data demo would be enough for the product owner to accept the work of the iteration

just completed. Unfortunately, he or she knows that just one or two records out of a million can cause a data transform

to fail, so the prior iteration’s build must also be evaluated with the data that represents the size and content of a real

production data set. Only a data set very much like a full snapshot of the production source systems can ferret out a full

set of design and programming defects. For this reason, once the team has concluded the product demonstration on

Row 3 of Figure 17.5, the system test spends the following iteration working in the remaining boxes in Row 4. After

the small-data product demo concludes, the system tester moves the current build to a separate host, which will free up

the development platform so that programmers can start working on the next iteration’s developer stories. He can then

begin loading the prior iteration’s build with full volume data during Week 2. In Week 3, he can repeat the product

demo on his own, searching for any new defects engendered by this larger data set. If the new build seems

acceptable to him, he will then arrange for the product owner to repeat the prior iteration’s demonstration with the full

data set during Week 4.

As the previous discussion highlights, the quality work within an agile iteration changes considerably as the weeks

of a sprint go by. In order to avoid confusion, missed cues, and wasted effort, the team leaders should ensure that a grid

such as that shown in Figure 17.5 gets filled out and displayed on the project room wall. Such guidance will allow all

the roles of the team to properly direct their own efforts as the iteration time box progresses. Rather than drafting it on

their own, however, these leaders should invite the programmers to participate in defining the different combinations of

quality efforts occurring with each week, using Figure 17.5 as a starting suggestion. After programmers have a chance

to define a “when” grid of their own, they will feel they own the plan and will follow it, requiring much less monitoring

and nagging by the team leaders. A new team may need to wait a few iterations before the components illustrated

previously will make sense. However, the grid controls an important aspect of development work and can always be

revisited later, so team leaders should probably plan to hold a collaborative session to draft a first version of this

planning grid no later than the end of Iteration 2.

Quality Duties at the End of a Release Cycle

In Part II, we discussed wrapping development iterations within a set larger risk mitigation cycle. In defining when

teammates should perform their QA work, some thought should be given to these larger cycles as well.

Figure 17.6 repeats a portion of the risk mitigation strategy diagram from Chapter 6. There, I suggested that IT staff

members, because they work in and around software engineering projects, tend to focus largely on errors originating

from application coding concepts. However, by the time coding begins, the stakeholders and business analysts, as well

as the team’s project architect, could all have committed errors with far greater impact regarding the project’s solution

and business concepts. To know that an application is entirely correct, the agile EDW team needs to extend their valida-

tion efforts upward, to the levels involving solution and business concepts. Unfortunately, the agile teammates cannot

touch much of these higher levels during a development iteration, so a robust quality plan will have to arrange for addi-

tional testing efforts when the team presents a subrelease candidate and when a subrelease enters production usage.

The first of these higher-level ceremonies will be the release candidate review, as listed in the middle layer of

Figure 17.6. Although called a “review,” the team should consider this event as a very important test that the applica-

tion’s current build must pass. During this review, the product owner will present the current build to the project’s near

stakeholders, asking them a question such as, “Does this build have enough new features to warrant the $50,000 it

will take to promote it into production usage?” As noted in Table 17.1, the product owner and project architect are

frequently the team members who prepare the script for this type of review. We can consider the elements on that script

as test cases for the subrelease candidate review. If the stakeholders agree that the new features merit the expense,

effort, and distraction of a new subrelease, the team will have passed this very important quality assessment.

The next larger cycle test will be the operational readiness review, during which the operations team will evaluate

whether the subrelease candidate will behave well enough as a member of the company’s IT ecosystem to be installed

into the company’s production computing environment. The operations staff members will want to review not only the

design of the application but also the way that the application was tested, so all of the QA activities leading up to this

review will need to be organized for a summary presentation. As noted in Table 17.1, the system tester and any colla-

borators she can find among the operations team should take the lead in defining the items for this presentation. Those

items will be test cases for the system test represented by the operational readiness review.

466 PART | V Agile EDW Quality Management Planning

If the application passes the readiness review, operation staff members will move the build into the user acceptance

testing (UAT) environment, where they will insist on completing a system test before allowing the business staff to start

acceptance testing. During this system test, the operations team will utilize many of the test cases provided by the

system tester in addition to many from a standard list that they maintain.

Should the application pass system testing, the next validation will be user acceptance testing, where the business

departments waiting for the system will validate the application using a script they authored earlier and then conduct

longer-term reviews that often include beta tests and soak testing. The EDW team leaders should also plan on perform-

ing the additional tests from Quadrant 4, discussed in Chapter 16. These tests include suites such as performance, load

tests, and security tests and usually occur after acceptance testing because they must take place on a near-production

host holding near-production data.

When the subrelease candidate passes user acceptance tests, IT will promote that build into production, placing the

application into the top cycle listed in Figure 17.6, the subrelease. This event will allow the organization to conduct an

even higher class of tests that are essential to determining the success of the EDW project. Only here can the product

owners and business stakeholders validate that the project’s business concepts are correct. To investigate and document

this level of fit-to-purpose, they need to conduct tests such as theme, scenario, and epic tests. The epic tests in particular

will revolve around the leading indicators of business success identified by the project sponsor during the interview for

the sponsor’s concept briefing, as discussed in Part III. These all-important tests need to be placed on the when portion

of the EDW team’s QA plan, with the appropriate role for authoring the test cases indicated as well. These twin

considerations of when and who for the larger cycle tests are illustrated in Figure 17.6.

If a team has successfully thought through all of the higher-level testing described previously, the EDW leaders

should be able to summarize the timing of major quality events using the 23 2 top-down planning matrix started in

Chapter 16. Figure 17.7 illustrates a version of that grid updated to display when the tests selected will occur.

Eventually, the agile EDW quality assurance approach will provide where and how versions of this chart as well. Taken

together, the multiple versions of the 23 2 matrix that the agile EDW validation planning process will generate will

provide a set of easily comprehended artifacts for the project room wall that will express a crisp, complete, and easily

comprehendible overview of the team’s quality plan.

Release
candidate

Subrelease

Application coding

Iteration typeLevel of risk

Business
concepts

Solution
concepts

Application
coding
concepts

Release candidate review (product owner)
Operational readiness review (operations)
System test (system tester)
User acceptance test (product owner)
Performance and load tests (ent. architects)
Security tests (ent. architects)

Product owner:
Theme tests
Scenario test
Epic test (leading indicators)

FIGURE 17.6 Quality assurance work linked to the larger project cycles surrounding development iterations.

Designating Who, When, and Where Chapter | 17 467

WHERE SHOULD TEAMMATES PERFORM THEIR QA DUTIES?

The agile EDW team may adroitly plan the what, who, and when of its QA work, but if it makes no effort to provide

the computing environments necessary, no system validation work will occur. The developers will need multiple work-

spaces for conducting their quality activities, and the considerations regarding where testing need to be coordinated

with the when aspects explored previously. We can provide the EDW team leaders with a simple artifact that should

make planning where quality assessments will happen fairly straightforward.

Distributing Test Activities Across Environments

Figure 17.8 is a simple artifact that EDW team leaders can use to analyze not only how many host environments their

project requires but also where major types of quality work will occur on the servers they do have. The question of how

Support the team
Are we done coding yet?

Critique the product
Product offering maximum value?

Business
facing

Technology
facing

End of sprint
...week later
Before release
Candidate review

Mid iteration
Early UAT
Mid UAT
Late UAT

Mid-iteration
End of sprint
Nightly build

Pre-ORR
Early UAT
Mid UAT
Mid UAT

3

41

2

FIGURE 17.7 The 23 2 QA planning matrix updated to show when test cases will run.

Sandbox DEV SIT UAT PROD

Test source
data repository

Production source
snapshot

Current
build

Last
iteration’s

build

Release
candidate

UAT subset

Manual inspection

Development

Module execution Manual run Scheduled

run

Nightly run

Actual results Actual results

Manual inspection

Analytic script

Actual vs expected

Analytic

script

Actual resultsActual results
Actual results

Scheduled

run

Check
out

Manual inspection

Analytic script

Actual vs expected

Use results on demo
day to support product

owner’s evaluation

When using data
from the test

source repository

Check in
One
only

Full UAT

Manual inspection

Analytic script

Development and small data demos Release candidate cycle Subrelease CycleFull-volume, prior-iteration demos

Operational
systems

Released
version

FIGURE 17.8 Locating QA work among a data warehouse’s execution environments.

468 PART | V Agile EDW Quality Management Planning

many servers is important to address early in a project. I know of some teams that are forced to complete development,

testing, and production services using only two environments. The time-consuming gyrations they must execute in order

to swap different builds and data sets on and off this restricted number of servers essentially kills any hope of appearing

“agile” to their business customers.

Figure 17.8 shows five environments, which is more than most teams can procure but is hardly excessive given

the demanding product validation cycles that an agile team must follow. The diagram also lists the portions of the

development process that will most heavily use these environments, taken from the when discussion in the previous

section. The combinations of where and when illustrated here begin with a sandbox, where individual programmers

can code the module required to fulfill a developer story. Typically, a developer checks out the module he will mod-

ify so that no one else can simultaneously alter that program. When he has finished, he checks the module back into

the development build. DEV (development) is the environment where the programmers can perform integration tests

on the current build and later conduct a product demo at the end of an iteration using a small, managed data set. In

system integration test (SIT), the system tester places the prior iteration’s build on a server where she can load it

with full-volume data, so that she and the product owner can repeat the previous product demo. When this version

accumulates a critical mass of new features, it is moved into UAT, where the team leaders and selected end users

conduct the planned acceptance tests. From there, the build is promoted into PROD (production), where the business

staff can use it to improve company performance and the EDW team leaders can simultaneously test for business-

concept errors.

Figure 17.8 also suggests the class of data and the type of execution that each instance of the application will utilize,

a topic we consider further in Chapter 18. In brief, the team will execute modules in isolation in the sandbox but put

the entire build through a full integration test suite every night in DEV. The system tester will execute manual runs as

needed in SIT, but the application will be driven by a scheduler once it arrives in UAT and PROD.

Figure 17.8 illustrates well the headaches a team can suffer when budgets or IT policies force them to operate with

fewer environments:

� How does a programmer work after hours without a sandbox when DEV is occupied with a nightly testing run?
� If the developers must place DEV and SIT on the same host, how do they demo a build from both the current and

the prior iterations?
� If the developers must use UAT for SIT, how will they demo the next build to the product owner when the business

departments fall behind on user acceptance testing and want the prior subrelease left running undisturbed in the

UAT environment for the next two months?

Platform architects actually have many clever ways of implementing multiple logical servers on one physical

host, but setting up such protean resources requires a good deal of lead time and a high level of testing of its own.

For that reason, EDW team leaders are wise to draft a diagram such as Figure 17.8 during Iteration 0 and send to IT

management the appropriate request for resources so that the necessary environments are present when the team starts

its development iterations. Once IT has provisioned the environments, a diagram such as Figure 17.8 should be

updated with machine names and data schema information and then displayed prominently as a planning reference on

the project room wall.

Distributing Test Techniques Across Environments

Figure 17.8 also displays some important information regarding the styles of test evaluations that the team will employ

to validate each type of build. This topic is considered in greater detail in Chapter 18 when we discuss planning how

tests cases will be executed, but to finish describing this diagram we can summarize that information here. The unit

tests occurring in the sandbox will be evaluated via manual inspection until the programmer believes the module is

ready for integration. The integration tests in the DEV environment will be driven by the automated data warehouse

test engine, if the team has invested in one. Those results will be validated not only through manual inspections but

also through analytical scripts that compare sources to targets, perhaps using the parameter-driven test widgets

described in Chapter 16. They may also be evaluated by comparing actual data output to an expected-results data set.

These same evaluation techniques will be used on the results generated by the manual integration test runs in SIT,

but there the system tester can also employ a subset of the cases planned for acceptance testing, especially just before

that build is promoted into UAT. For builds in UAT, the business staff will employ manual inspection and the full UAT

test suite. Some of those test cases may well involve analytical scripts to automatically compare the release candidate

to information found on the operational source systems. Finally, for subreleases promoted to PROD, the company might

wish to continue running analytical scripts to validate production loads. Often, these scripts perform reconciliations

Designating Who, When, and Where Chapter | 17 469

back to operational sources and also evaluate whether the number of records or sums of numeric columns have varied

excessively compared to the previous load.

When fully detailed, the Test Build by Environment diagram becomes a useful reference for the team, but it does not

list the types of tests that will be executed in each environment. To close the loop with the top-down planning of

Chapter 16, EDW team leaders might take a moment to create a where version of the 23 2 planning matrix, as shown in

Figure 17.9.

KEY QUALITY RESPONSIBILITIES BY TEAM ROLE

Placing test-writing responsibilities on the 23 2 matrix communicates the team’s QA responsibilities at a high level.

Getting that artifact completed in the early days of a project will certainly ensure that the QA planning is underway and

that everyone on the team is participating. Over the long run of the project, however, teammates will need greater details

regarding the precise activities for which they are responsible. In order to fully internalize his or her role in application qual-

ity, each teammate will need a list of the duties required of him or her at every point throughout the development process.

With that need in mind, we can see that the key responsibilities for the system tester should include the following:

1. Maintaining an organized list of the QA duties by role so teammates know what to do

2. Stepping teammates through the quality process while they are learning their roles

3. Monitoring and supporting teammates as they struggle to perform those roles correctly

The agile nature of iterative development may greatly assist the system tester in performing these responsibilities.

Agile teams are collaborative, self-organized groups, so the system tester does not need a perfect or comprehensive list

by which to steer the team. If the system tester can get a conversation regarding roles and responsibilities started and pro-

vide enough ideas to seed the discussion, his teammates should be able to fill in the missing details. This discussion will

go a long way to achieve the team learning mentioned in Step 2, and it will provide the material that should comprise the

list of duties cited in Step 1. This section provides the system tester with a starting notion of how to structure an initial

quality conversation with his or her teammates and the types of duties that should emerge from that discussion.

Guiding the Team to Self-Organized Quality Planning

When the consultants from my company and I introduce agile QA to EDW teams, we first set the context using the arti-

facts discussed so far in these chapters, including the 23 2 top-down planning matrices and the bottom-up test-by-

column-type grid considered in Chapter 16. At that point, we need to get the teammates to start taking ownership of the

quality process, which is best accomplished if they assign themselves to the validation work that needs to be done.

A general sense of ownership works better than having them self-assign detailed duties because then members will con-

tinue searching for the small quality chores that were overlooked during the initial planning rather than ignoring

neglected activities because they were never specifically expected of them.

To get a team started on this habit of “continually scanning for quality plan gaps and taking responsibility to fill

them,” our consultants typically meet with the team and ask the participants to complete the last column in Table 17.2.

This table lists the general aspects of a DW/BI application and its mission, and then it asks who should be responsible

for assuring quality for each aspect. I have listed those considerations here with suggested answers, but the most

Support the team
Are we done coding yet?

Critique the product
Product offering maximum value?

Business
facing

Technology
facing

SIT
SIT
SIT

SIT
early UAT
mid UAT
late UAT

DEV
DEV
SIT

early UAT
early UAT

mid UAT
mid UAT

3

41

2

FIGURE 17.9 23 2 QA planning matrix updated to show where test cases should execute.

470 PART | V Agile EDW Quality Management Planning

important aspect of this exercise is that the team members must collectively select the assignments in the last column

for themselves. Note that the right column focuses on who is responsible for the results being correct, not who needs to

design or program a given component.

Many of the notions listed on the left in Table 17.2 are fairly abstract, so one would think that results from this exer-

cise would quickly be discarded in favor of all the other more precise artifacts offered previously in this chapter.

However, on many of the projects I have led, teammates debating a quality issue have drawn upon the conclusions

from this grid far more frequently than any other part of the quality plan. It seems to provide the big picture for EDW

quality assurance in a more immediate way than any other artifact.

The assignments shown above are only suggestions, but they are typical of what most teams decide upon. A few

aspects of this typical result are notable. First, these topics reach a long way beyond unit testing. True to the agile mind-

set, the focus is predominantly on the value that the warehouse provides the organization. Such an orientation demands

that the team start viewing quality as a goal that emerges out of collaboration across many roles, thus requiring the

team to consider far more than just testing.

Second, the product owner is listed frequently. Product owners often struggle to see their role when they first join

an agile development team. They often ask why they need to allocate as much as half their time to the project. That

uncertainty seems to dissipate quickly once they participate with the team on this exercise.

Third, the system tester is nowhere on this grid. Some teams begin this exercise by nominating the system tester on

every row but quickly rethink that approach when the system tester begins asking, “Without detailed specs to work

from, how am I going to know that a particular item was done right?” The system tester will not have the expertise

needed to perform such assessments. His teammates will have to continue thinking about quality in the categories listed

above. The system tester’s role will focus instead on regularly asking whether this table needs to be updated and then

supporting the individuals assigned to each category.

Suggested Quality Duties by Role

The previous exercise will instill in the agile EDW teammates a high-level notion of who is responsible for quality on

their project. It will move the teammates into the right mindset, but they will need to translate the abstract responsibilities

assigned during the exercise into a checklist of QA responsibilities that each person can refer to as he or she works. The

system tester should follow up the exercise by conferencing with the teammates fulfilling each role to define such check-

lists. The following lists should help get those follow-up conversations started. They are not complete by any means, but

they focus instead on the core quality responsibilities of each role. A system tester should expect his or her teammates to

reshuffle these suggestions between the roles to better match the personalities on their team, their particular skill sets, and

other project circumstances.

TABLE 17.2 Quality Assurance Responsibilities by Key DW/BI Aspect

Who on this team should ensure that the data warehouse and its front end are correct in the following ways?

Things to Get Right Who Will Be Responsible

The bit and the bytes Programmers

The values in the columns System analyst

The rows in the tables Data modeler and systems analyst

The number and types of tables Data modeler

The way end users see those tables Product owner and project architect

The meaning of the data Product owner and data modeler

What customer can learn from the data Product owner and business analyst

The limitations of the system Project architect and ETL lead

The flexibility of the system Project architect

The exceptional circumstances it must handle Product owner

New business situations it should support in the future Product owner

Designating Who, When, and Where Chapter | 17 471

Product Owner
� Participate in defining pro-forma product demos by module type
� As modules begin development, brainstorm specific product demo items
� During each iteration’s product demonstration

� Consider quality when deciding whether to accept or reject each module
� Ask “How do I know I can trust the information this system provides?”

� During the full-data demonstration that follows an iteration demo day
� Validate the data loaded for proper applications of business rules, completeness, and overall reasonableness

� Direct the product demonstration to cover the full functional needs implied by user stories, themes, and epics
� Gather product demo items into a user acceptance test script for the next subrelease
� Prepare and conduct subrelease candidate reviews with the project’s near stakeholders

Project Architect
� Drive quality assurance planning until it is sufficient and correct
� Participate in defining

� Pro-forma unit, component, and integration tests
� Pro-forma product demos by module type

� During development iterations, participate in
� Tech requirements walkthrough, especially discussions of business rules
� Brainstorming integration testing for each iteration’s application build
� Brainstorming specific product demo items

� Facilitate the product demo
� Ensure product owner fulfills his or her quality responsibilities, fill in the gaps as necessary
� For each subrelease candidate, certify that it has the functionality and quality needed to solve the focal business

problems

Data Modeler
� Participate in defining

� Pro-forma integration tests
� Coding patterns for module types, especially metadata and key columns

� During development iterations, participate in
� Tech requirements walkthrough, focusing on referential integrity topics
� Brainstorm integration testing for modules
� Prepare the SQL or BI modules for product demos reviewing the deeper layers of the reference architecture

� Before both small-data and large-data product demos, validate data loaded for referential integrity and overall

reasonableness
� Serve as a steward for test data including

� The scripts that create and re-create test data sets
� The bulk data records in the test source repository
� The data records for test cases requested by others on the team
� Records of expected results, where appropriate

Systems Analyst
� Participate in

� Pro-forma definitions of unit and component tests
� Coding patterns for each module type
� Defining subsetting logic for generating records for the small-data product demo data set

� As modules begin development, participate in
� Tech requirements walkthrough with coders, focusing on source-to-target maps (STMs)
� Brainstorming unit and component testing for modules
� Brainstorming integration testing for each iteration’s application build

� Attend code walkthroughs, focusing on implementation of STM business rules

472 PART | V Agile EDW Quality Management Planning

� Before both small-data and large-data product demos
� Validate that the business rules listed in the STM were properly implemented
� Double-check that unit and component tests were executed properly
� Prepare explanations for defects that will be visible during the product demo

Programmers and Programming Leads
� Project start

� Draft pro-forma unit and component tests for each module type
� Draft coding patterns for each module type

� During development iterations
� Put resolving tech debt ahead of new development
� Draft unit and component test for each module to be built
� Conduct unit and component tests
� Ensure that unit and component tests are repeatable, to support maintenance programming later

� Conduct code walkthroughs to ensure
� Programming meets project standards
� Unit and component tests meet the team’s standards

� Load tables for each small-data product demo
� Determine if the data loaded has high enough quality to demonstrate to the product owner

Scrum Master
� Ensure quality work exists in the team’s definition of “done”
� During development iterations, ensure that teammates

� Include quality tasks in their estimation
� Work off tech debt before turning to new programming
� Remind teammates to follow new quality policies adopted during last retrospective

� During the product demonstrations, ensure
� System tester certifies the demo
� The team reviews the tech debt items before examining the results of new work
� The product owner considers quality before accepting or rejecting work

� During iteration retrospectives, ensure team considers which of its quality practices are working well and which

need to be improved
� Ensure the team invests in automation where it will save time or improve results
� At subrelease candidate reviews, ensure the project architect addresses both features and quality when he or she

certifies the current build as a solution to the company’s business problem

THE OVERARCHING DUTIES OF THE SYSTEM TESTER

Now that we have the quality activities of the other team members in focus, we can turn to the responsibilities of the

system tester. Stated briefly, the system tester’s primary responsibilities are to

� drive the QA planning until everyone understands their duties;
� organize the testing infrastructure;
� mentor and support the team as it pursues those duties;
� visualize progress; and
� attend to the quality activities not assigned or performed by other teammates.

Because of the agile approach to requirements and design, the system tester cannot author or execute the unit and

component tests himself, so his role evolves to where he guides those who can specify and perform the detailed level of

validations necessary. He can build upon the work performed by others, however, collating the low-level tests as appro-

priate into higher-level integration and system test suites.

The system tester will use the integration test in particular as a regular “moment of truth” that both teammates

and business stakeholders can understand. If the project has only five test cases defined for the integration test by the

Designating Who, When, and Where Chapter | 17 473

end of Iteration 10, everyone can see that the team is not fulfilling its commitment to deliver a quality application.

Similarly, if the 900 out of 1,000 integration test cases are failing by the end of Iteration 15, both IT and business

will know that although the developers have certainly defined quality for the project, they have not yet committed to

achieving it.

Table 17.3 provides a typical list of duties for the system tester. Readers will certainly think of additional items they

would like to add, so EDW team leaders should consider this list as a starting point to begin the conversation with

whomever is assigned to be their team’s system tester.

Certifying the User Demo’s Data

EDW teams frequently wonder why I suggest in the previous list that the system tester certify the data loaded in the

current build just before the product owner reviews it during an iteration’s product demo. Most of the EDW professionals

I have had the pleasure to work with have been highly principled individuals. That said, there are also scoundrels present

in our profession. The developers on a few of the teams I have led have responded to the steady deadline pressure

TABLE 17.3 Key Responsibilities for the Agile EDW System Tester Role

� Drive the initial draft and ongoing revisions of the project’s quality assurance plan
� Ensure the validations are balanced between

� Customer- and technology-facing tests
� Supporting the development team and critiquing the product

� Ensure the validations are balanced along the six dimensions of testing, including
� Positive and negative testing
� Progression and regression testing
� Functional and nonfunctional testing

� Ensure the validations address the three domains of project risk, namely
� Application coding concepts
� Solutions concepts
� Business concepts

� Guide team in defining quality duties and activities using top-down and bottom-up planning devices
� Document the current quality plan with easy-to-comprehend artifacts and display them prominently for frequent reference during

development
� Support the data modeler and system analyst in the definition, derivation, and categorization of the test source data and any necessary

collection of expected result records
� For each iteration planning session, provide an outline of

� The integration testing plan
� The test source data and expected results to be used

� Mentor and support teammates on test case writing
� Attend design sessions during the iterations to ask, “How do you plan to test that object?”
� Attend code walkthroughs to review the effectiveness of unit and component testing
� Implement nightly integration testing

� Report findings at the team’s daily stand-up meeting
� Track defects discovered and defects resolved for the current build

� Certify the data considered at each iteration’s product demo, assuring the product owner that the application was loaded
� From a reasonable collection of source data
� Using a single, successful run of the data transforms
� Contains no manual edits during or after ETL runs

� Repeat each iteration’s small-data demo for the product owner using full-volume, near-production data
� Add tests for departmental standards regarding

� System installation
� Operations and help desk
� Metadata
� Enterprise architecture

� Plan and prepare formal system test runs for each subrelease
� Represent team and the current build of the application at the operational readiness review
� Support product owner in planning and preparing for

� Release candidate reviews with business stakeholders
� User acceptance testing

� Drive execution of formal systems test for each release candidate
� Propose improvements to the quality plan and activities during iteration retrospectives

474 PART | V Agile EDW Quality Management Planning

imposed by the iteration time box by cobbling together a set of source data that steers around the defects they knew were

in the code. In other situations, the ETL was so flimsy that they had to resurrect it a half dozen times in order to complete

a single data load, signaling that the application was not yet truly integrated. Worse yet, a few have actually hand-edited

the output data in order to mask the records that would cause the product owner to reject the current build.

To safeguard against such dubious practices, the system tester needs to watch developer activity toward the end of an

iteration to the point that she can state with conviction that no one is attempting to spoof the product owner. She must assure

the product owner that the integrity of the data presented for the product demo warrants the time it will take to review it.

With the duties envisioned in the previous list, the system tester role clearly changes from the “doer,” as it exists on

waterfall projects, to one consumed more with planning, mentoring, preparing, collating, watching, and certifying. On

an agile EDW project, then, the system test role is a leadership position, one that demands that the person taking

this responsibility not only have a clear idea of what good quality practices are but also can persuasively communicate

that notion to his or her teammates and inspire them to complete the difficult work that quality requires.

HOW MANY TESTERS ARE NEEDED?

Quality assurance costs money. Done right, it will consume a very tangible proportion of a project’s budget. EDW team

leaders will need to request a reasonable level of testing resources, and the most important of those will be system

testers. Estimating how many system testers a project will need is difficult, especially before the development iterations

begin. To assist readers in formulating such an estimate, Table 17.4 offers the ratios of testers to programmers with

which most of my company’s projects have been able to succeed. Keep in mind that the number of testers required

should increase with the level of risk involved in the project, as illustrated by the line at the bottom for chip-embedded

software, which I included for comparison. When the software is very difficult to change or small errors can cause a

large amount of harm, more testers should be added to the project, to the point where they will outnumber the program-

mers, if that is what it takes.

Many of my colleagues on waterfall projects use the 1:3 ratio as a rule of thumb for their projects. Because agile

projects drive teams hard with time-boxed iterations and proceed with just-in-time specifications, iterative delivery pro-

jects require an even higher ratio of 1:2 if the QA duties are not distributed as described previously. Note that as the

quality responsibilities become distributed across the team, the ratio of system testers to programmers improves. That

trend reflects the fact that several EDW team leaders will be writing the test cases. Test automation, which is discussed

in Chapter 18, helps improve the ratio by 50 percent, but it is not a panacea for the high cost of quality because test

cases still have to be authored by the human mind.

Finally, we can see in Table 17.4 one measure of the cost of poor-quality practices. In my experience, a team that

fails to plan its QA efforts and distribute the test-authoring roles will find it needs a 1:2 tester-to-programmer ratio,

equivalent to that of a new team in which the system tester is performing all the quality duties. Compared to the 1:4 or

1:6 ratio of a team that has invested in planning, that first team will need two or three times the labor from system

testers to achieve the same level of quality. In other words, agile EDW teams that want to dump responsibility for QA

on some poor tester should expect to triple their testing budget if they want to get the system right. Such a bump in

head count is an expensive proposition, usually costing enough to convince IT management to support the approach to

quality advocated here.

TABLE 17.4 Typical Tester-to-Programmer Ratios for Agile Enterprise Data Warehousing Projects

Situation Reasonable Tester-to-Programmer Ratio

New teams with system tester performing all the QA duties 1:2

Newer teams with distributed QA duties 1:3

Established teams without test automation 1:4

Established teams with test automation 1:6

Test automation with automatic use of parameter-driven unit tests 1:7

Significant coordination between multiple projects Add one tester for cross-system integration

Chip-embedded software (for comparison) 3:1

Designating Who, When, and Where Chapter | 17 475

SUMMARY

The techniques discussed in Chapter 16 for identifying the type of tests developers should execute address only part of

the QA planning a team should perform. Agile teams need to consider the who, when, and where of testing as well. The

agile development approach requires team leaders to distribute test writing responsibilities across all the members of

the development team. The V-model technique for matching the author and consumer of specifications provides a

handy way to begin planning who should write which kind of tests. Although quality is essential to any data

warehousing project, agile teams need to be careful not to lose velocity by oversocializing design and testing decisions.

Following a one-up, one-down validation technique can save a tremendous amount of time.

Answering who should assume various quality responsibilities immediately leads to needing to specify when they

should perform their duties. Listing quality activities by iteration week will allow the team to discuss how to organize

validation work so that it meshes well with the changing demands placed on each team role throughout the development

iteration’s time box. Revisiting the way that application coding iterations roll up into release candidates, and how those

in turn flow into release cycles, gives the team a second perspective on timing—one that accommodates many of the

higher-level test types that do not fit within an iteration.

Once all teammates understand their responsibilities for QA, they will want to know where they should perform

each type of work. The build-type by environment chart provides a good way for developers to envision and document

the distinct testing areas they need, providing ammunition for requesting additional environments if the analysis shows

they have too few. The findings from the discussions regarding who, when, and where can all be added to the 23 2

quality planning matrix we started in Chapter 16 to provide a quick summary of the project’s system validation plan

that teammates can follow as they pursue design and programming work during the remainder of the project. The agile

context transforms the system test role from a “doer” into a leadership position—one that provides the planning, guid-

ing, mentoring, collation, support, and review services necessary to ensure that the QA work captured on the many

planning artifacts described here actually occurs.

Now that the why, what, who, when, and where of quality work have been addressed, it should be clear that an

effective plan for agile EDW projects will involve a tremendous number of tests. The remaining challenge will naturally

be, “How will we get all these tests executed?”—a question that Chapter 18 will strive to answer.

476 PART | V Agile EDW Quality Management Planning

Chapter 18

Deciding How to Execute the Test Cases

The framework presented in the past two chapters will provide an enterprise data warehousing (EDW) team with nearly

a complete quality assurance (QA) plan that lists what types of tests to execute, who will write the test cases, when

they will perform their validations, and where those assessments will run. Such a solid test plan will allow teams to per-

form some important calculations regarding the level of effort the QA plan will require. For example, the plan will

show how many types of tests the team desires per module. Multiplying by an estimated number of modules will fore-

cast the number of test cases their quality plan will entail. Many EDW teams will be impressed to see this number

exceeds 10,000. Multiplying that number again by the number of workdays in an iteration, and most agile EDW teams

are truly alarmed to see the estimated number of test case executions approach 1 million, a fact that brings them to one

last, crucial question regarding their quality plan: “How on Earth are we going to get that many test cases to actually

run given our limited time and resources?”

This final chapter on agile QA planning for EDW suggests answering that question with the following 11 action

steps:

1. Update the top-down plan with decisions about manual and automated test execution.

2. Start building the parameter-driven widgets.

3. Plan out the test data sets.

4. Implement the engine, whether manual or automated.

5. Define the project’s set of testing aspects.

6. Build and populate the test data repository.

7. Quantify the testing objectives.

8. Begin creating test cases.

9. Start up the test engine.

10. Visualize the team’s progress with quality assurance.

11. Document the team’s success.

If the resulting plan proves larger than the team or the organization can sustain, then this last step of quality plan-

ning has revealed an important gap in the business concept driving the project. Revealing that the business concept calls

for an application that is far larger than the overall organization can or is willing to test gives sponsors and the EDW

development team the opportunity to realign expectations and resources. After perhaps a couple of iterations with the

stakeholders, a team following the execution planning steps listed here will arrive at an appropriately sized project with

a well-organized and actionable quality plan. This last bit of planning will have positioned them to quickly deliver a

trustworthy information system that will make an important and positive impact on their company’s competitive

capabilities.

GOOD AGILE QUALITY PLANS INVOLVE NUMEROUS TEST EXECUTIONS

In order to build a realistic notion regarding how an agile team will execute its EDW testing plan, team leaders need to

first estimate the size of the challenge. Table 18.1 provides a “back of the envelope” estimate of the number of test

cases for a medium-sized data warehouse. The top half of the table views the project in terms of requirements objects

such as epics and themes, and the bottom focuses on the physical objects the EDW will need, such as units and compo-

nents. For the hypothetical project portrayed here, the team promised to deliver the six new competitive capabilities

(epics) requested by the sponsor over the span of 1 year. The left side of the table focuses on estimating the number of

objects, and the right side translates those estimates into the number of required test types.

477
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00018-7

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00018-7

Starting from the top, each epic decomposed into six analyses for directors (themes), each of which broke down

further into six business-level data checks for the managers and financial analysts (user stories), for a total of 216 user

stories. Translating this into programmed modules began by noting that the six epics would require a data warehouse

with 12 subject areas. Each subject area needed modules in at least three architectural layers: landing, integration, and

presentation. The architectural layers averaged a dozen data transforms, each of which required three extract, transform,

and load (ETL) modules for the initial and incremental data loads plus an archiving routine to roll off data that has

outlived its usefulness. Multiplying out these parameters revealed that the warehouse will require the team to build

nearly 1300 objects, each of which needs to be quality assured.

The right half of Table 18.1 calculates the number of test cases that will be needed to validate this collection of

objects. This modest plan employs the 14 test types listed in the 23 2 planning matrix of Figure 16.8. Column 5 groups

TABLE 18.1 Estimating the Number of Test Cases Needed for a Modest Level of EDW Testing

Looking from the Requirements Side / Mostly Manual Executions

Requirements Object
Items Per

Level
Cumulative

Number
Typical

Deliverable Planned Test Type*
Test Cases

per Test Type
Total Test

Cases Execution Frequency

[1] [2] [3] [4] [5] [6] [7] [8]

User Acceptance Test 12 72

Usability Test 12 72

Beta Test 12 72

Performance Test 1 6 once before promotion to UAT

Load Test 1 6 once while in UAT

Alpha Test 48 288

Scenario Test 12 72

System Test 12 72

Security Test ? ?

Themes 6 36
Analyses, Dashboards,

Report Packages
Theme Test 4 144

once in mid iteration then
repeated along with epic testing

User Stories 6 216 Data Checks Story Tests 2 432
once during product demos then
repeated with epic testing

Subtotal for Manually Executed Test Cases 1,236

Looking from the ETL Design Side / Mostly Automatable

Requirements Object
Items Per

Level
Cumulative

Number
Typical

Deliverable Planned Test Type*
Test Case

per Test Type
Total Test

Cases Execution Frequency

[1] [2] [3] [4] [5] [6] [7] [8]

Subject Areas 12 12 n/a
Consolidated
Integration Test

6 72 Nightly regression testing

Architectural Layers 3 36 Workflows / Sequences Integration Test 6 216 Nightly regression testing

Data Transforms 12 432 Mappings Component Test 6 2,592 Nightly regression testing

Modules 3 1,296
Initial loads, incremental
loads, archiving routines

Unit Test 6 7,776 Nightly regression testing

Subtotal for Automatable Test Cases 12,468

* Taken from example outlined in Figure 16.8

Epics 6 6 Subreleases

478 PART | V Agile EDW Quality Management Planning

these test types with the appropriate object, Column 6 provides reasonable counts for the number of test cases per

object, and Column 7 multiplies that value by the number of objects calculated earlier in Column 3. The resulting esti-

mates for the number of test cases might be surprising. For this modestly sized data warehouse, the team will need to

conduct more than 1000 tests for the major requirement items (the first subtotal) and over 12,000 test cases for design

objects (the second subtotal).

Surprise may turn into alarm when EDW team leaders realize that the previous calculations estimate only test cases.

Only when we consider test case executions does the enormity of the QA work needed for enterprise data warehousing

become truly visible. Most test cases are executed numerous times during the long arch of an EDW project. As dis-

cussed in Chapter 16, continuous testing enables teams to minimize the effort lost to root cause analysis of defects, pre-

serving the bulk of their resources for building new features. With their fast pace of programming, most agile EDW

teams implement this continuous testing as nightly, full regression testing so that new defects can be detected and

resolved within a daily work cycle. Table 18.2 reveals what daily testing implies for test case execution counts. It

extends the bottom half of Table 18.1 by the number of workdays in a 3-week iteration and then tallies the total number

of executions for the 16 iterations that would make up a development project lasting 1 year. One can see the number of

unit, component, and integration test cases is growing steadily toward the upper limits identified in Table 18.1 as the

iterations progress (see bolded numbers in the last row). These numbers hold steady at four points throughout the proj-

ect when the team promotes a subrelease iteration into production and therefore does not create a new code needing

progression testing.

With these assumptions, the number of test case executions begins at slightly less than 900 for the first iteration.

By the time the project concludes 16 iterations later, the number of executions has grown to more than 130,000 per

iteration, with more than 90% of that amount representing regression testing of features from previous development

sprints. By totaling the numbers in the last column of Table 18.2, we can see that a robust QA plan for even a modestly

sized enterprise data warehousing project will entail more than 1 million test executions. Readers are invited to re-draft

the previous estimates using the particulars of their own projects. Their results will certainly differ, but because of the

multipliers, the order of magnitudes will be approximately the same. Clearly, one of the major challenges in the entire

QA planning process will be for agile EDW team leaders to devise a strategy for conducting such a large number of test

events with the labor resources they have and recording that many results in an intelligible manner.

TABLE 18.2 Estimating the Number of Low-Level Test Case Executions for Four Subreleases

Unit Comp. Integ. Unit Comp. Integ. Unit Comp. Integ.

1 Dev. 648 216 24 0 0 0 648 216 24 888 0.0% 13 11,544

2 Dev. 648 216 24 648 216 24 1,296 432 48 1,776 50.0% 13 23,088

3 Dev. 648 216 24 1,296 432 48 1,944 648 72 2,664 66.7% 13 34,632

4 Sub Rel. 1 648 216 24 1,296 432 48 1,944 648 72 2,664 66.7% 13 34,632

5 Dev. 648 216 24 1,944 648 72 2,592 864 96 3,552 75.0% 13 46,176

6 Dev. 648 216 24 2,592 864 96 3,240 1,080 120 4,440 80.0% 13 57,720

7 Dev. 648 216 24 3,240 1,080 120 3,888 1,296 144 5,328 83.3% 13 69,264

8 Sub Rel. 2 648 216 24 3,240 1,080 120 3,888 1,296 144 5,328 83.3% 13 69,264

9 Dev. 648 216 24 3,888 1,296 144 4,536 1,512 168 6,216 85.7% 13 80,808

10 Dev. 648 216 24 4,536 1,512 168 5,184 1,728 192 7,104 87.5% 13 92,352

11 Dev. 648 216 24 5,184 1,728 192 5,832 1,944 216 7,992 88.9% 13 103,896

12 Sub Rel. 3 648 216 24 5,184 1,728 192 5,832 1,944 216 7,992 88.9% 13 103,896

13 Dev. 648 216 24 5,832 1,944 216 6,480 2,160 240 8,880 90.0% 13 115,440

14 Dev. 648 216 24 6,480 2,160 240 7,128 2,376 264 9,768 90.9% 13 126,984

15 Dev. 648 216 24 7,128 2,376 264 7,776 2,592 288 10,656 91.7% 13 138,528

16 Sub Rel. 4 648 216 24 7,128 2,376 264 7,7767,776 2,5922,592 288 10,656 91.7% 13 138,528

Total Executions During the Project: 1,246,752

Total

Nightly

Executions

Progression Test Cases Regression Tests Total Cases Nightly Test

Runs per

IterationIteration

Iteration

Type

Total

Test

Cases

Regression

Testing

Percent

Deciding How to Execute the Test Cases Chapter | 18 479

Alternatives to Sufficient Testing Unattractive

When first confronted with the magnitude of QA effort before them, many EDW team leaders try to argue with fate,

claiming they simply do not want to invest in such an intensive level of testing. Certainly, many data warehouses have

been promoted into production usage during the past few decades with far less testing than suggested here. Such prac-

tices may well be the reason that our industry has been plagued with project failure rates of 50% or higher, depending

on the size of the project [Ericson 2006]. As discussed in Chapter 16, choosing the correct level of QA for a project

should be a question of economics, balancing costs against benefits. What if a team wanted to proceed with a level of

testing far less than implied by the estimate sketched above? The compromises its leaders might consider would include

the following.

Test Fewer Items

Perhaps not every aspect of the programmed units and components have to be tested. Using the vernacular of quality

engineers, they could reduce the level of their plan’s “test coverage.” Of course this option always exists, but the team

leaders should first consult project sponsors and other business stakeholders, letting them know that the developers

believe robust QA is too expensive and that they are going to only test a quarter or so of the application. The stake-

holders should rightly respond by asking what will happen if the application goes into production usage and the end

users find some significant defects that undermine the value of the project. The implied answer is that members of the

EDW team will probably be fired. Do the EDW team leaders want to stake their careers on how serious the defects that

will slip into production might be? The answer is usually no.

Test Only a Few Times

The previous estimate assumes that many of the lower-level tests will be executed nightly in order to support the fast

development pattern of agile teams. EDW leaders could decide that nightly tests are excessive and switch to executing

the lower-level test suites just before a product demo. To accurately appraise this proposal, teammates should ask

themselves what will happen when they execute those tests at the end of an iteration and find so many defects that

demonstrating the current build would be pointless. It is true that they will have only lost one iteration’s worth of work,

but if they maintain this policy the next iteration may be scuttled by product flaws, too. Moreover, teams that rarely test

lose considerable time as they are forced to program around the defects they have not analyzed or resolved. The soft-

ware engineering profession has extensively documented that keeping a project code clean equals faster delivery.

Further reflection reveals that testing only once in a while would do little to relieve the burden of QA. Say the team

only executed its lower-level test suites once per iteration. As can be seen in Table 18.2, this policy would only reduce

the amount of test executions by a factor of approximately 10. The resulting number would still be in the hundreds of

thousands. If the team needs to gear up for 100,000 executions, it might as well plan for 1 million and capture the bene-

fit of daily defect summaries so that the programmers can keep their code defect-free.

Build a Smaller Scope

As a third option, EDW team leaders could present their estimate of the testing required by the project plan and propose

that the sponsor and business stakeholders reduce the scope of the project. Frankly, this is the most appealing of three

bad options. Because they will base crucial business decisions on the information provided by the data warehouse, com-

panies should not invest in building more analytical features than they can afford to quality assure.

In a sense, the estimate outlined in the previous tables is a good example of test-led development applied to the

higher planning levels of a project. When the business stakeholders ask for a given scope and the EDW team responds

with an estimate of the labor it will take to quality assure the implied application, the team is actually testing whether

all the features requested by the business are truly necessary. If the stakeholders stick by their request, the entire project

may well be as important as they say. If instead they reconsider and reduce the scope of the project, the EDW team’s

test of the requirements just uncovered the project’s first error. Given that the project leaders are speaking with execu-

tives during this early planning, the flaw uncovered probably resides in the business-concept level, which contains

some of the most expensive mistakes possible, as discussed in Part II.

480 PART | V Agile EDW Quality Management Planning

Facing Up to Test Automation

At this point in the planning process, EDW team leaders have realized that the number of test executions required by

their project is worrisomely large and that alternatives to full testing are unattractive. When confronting this dual real-

ity, agile data warehousing teams usually come to the same conclusion: Their project needs to invest in test automation

in order to make the required level of system validation affordable. With that realization, the project leaders should

discuss where automation can help.

The team can use the top-down planning matrix from the previous chapters to record its conclusions regarding

automation, as shown in Figure 18.1, which labels each test type with the degree that it can be automated. Quadrant 1

focuses on the test types suggested by the system dimension identified in Chapter 16. Note that the entries here make a

distinction between the degree of automation possible for progression testing versus regression testing. In general, unit

test cases lend themselves to reusable, parameter-driven test widgets, so they can be automated fairly easily. Moreover,

many unit tests roll up into component and integration tests, so a predominant portion of the tests found in the systems

dimension can be automated.

The only nuance will concern the new features that a team creates during a development iteration. Trying to simulta-

neously program a module and automate its testing ends up doubling the number of technical items that a coder has to

keep aligned. Most programmers prefer to build and unit test a module by hand until the module has been accepted and

they know the code will no longer be changing. After the module is accepted, of course, programmers never want to

think about its unit testing again, so they are happy to add that module to the regression test driver then. The system

tester has a different outlook because he is receiving rather than programming modules. His goal is to build a

repeatable integration testing script so his preference will be to automate every test case sent his way. As keeper of the

regression test script, he will automate as many of those test cases as possible so that he can configure each one once

and not have to think about it again for the rest of the project. For that reason, Quadrant 1 labels the progression testing

conduct by programmers as manual and the remaining test cases, executed by the system tester, as automated.

In practice, many of the story and scenario tests listed in Quadrant 2 can be automated for regression testing as well.

For example, the product owner will naturally want to conduct a story test manually when deciding whether to accept a

newly programmed module. The system tester can watch how the product owner evaluates that story during the product

demo and then create a script that closely approximates that same evaluation for the regression testing suite. For this

reason, many test items landing in Quadrant 2 will be labeled “manual” for progression testing and “automated” for the

regression test suite.

Quadrant 3 tests will have to remain manual because they involve presenting a new subrelease to the business stake-

holders and collecting their impressions. Referring back to Figure 17.7, we can see that these tests are run only during

subrelease evaluations and acceptance testing cycle, and therefore would not benefit from automation much even if it

were possible.

Lastly, some of the tests in Quadrant 4 will have some manual testing, but many will be tool driven. As discussed

previously, the first item listed in our sample matrix, system test, has two components. The first repeats integration test-

ing in a near-production environment, so that portion can be automated. The other portion is driven by the operations

Support the team
Are we done coding yet?

Critique the product
Product offering maximum value?

Business
facing

Technology
facing

Manual
Manual
Manual
Manual

Mid- / end sprint
Manual Automated
Manual Automated
Automated Automated

Mid- / End sprint
automated automated
automated automated
automated automated

Manual & automated
Tool
Tool
Tool

Progress / regress
Manual Automated
Manual Automated
Manual Manual

3

41

2

FIGURE 18.1 23 2 QA planning matrix communicating how team will execute test cases.

Deciding How to Execute the Test Cases Chapter | 18 481

team, which can think up new validation criteria at any time. Moreover, this team’s evaluations occur only once per

subrelease cycle, so automating this spontaneous and occasional validation will yield little benefit. Many of the remain-

ing tests in this quadrant, however, concern nonfunctional requirements that nearly every application, whether front-end

or data warehousing/business intelligence (DW/BI), must meet. For decades now, the information technology (IT)

industry has provided utilities for validating these nonfunctional requirements, such as security and performance.

Security tests, for example, can be tool-assisted using widely available, open-source tools available from associations of

system administrators. (See, for example, the list provided on http://sectools.org.) Similarly, utilities called “emulators”

can simulate the processing loads that thousands of users and ETL routines will impose on a host server. For these

reasons, many of the tests falling into Quadrant 4 can be labeled as “tool assisted,” and whether that results in full auto-

mation will depend on the tool that the company chooses for each validation.

All told, test automation is highly desirable for agile EDW projects, and many of the tests will lend themselves to a

machine-driven approach. Fortunately, rudimentary test automation scripts are fairly straightforward to write, as will be

shown later, and even better, ready-made test automation engines for DW/BI applications exist in the marketplace

today. Still, we should be careful not to let the question of whether to automate testing derail the conversation concern-

ing how to execute a validation plan. Even manual testing has to be organized so that it is a repeatable process. EDW

leaders who do not want to automate can still plan and manually execute their validation scheme by following the same

step-by-step approach suggested in the remainder of this chapter.

STEP 1: UPDATE THE TOP-DOWN PLAN

As a first step in planning how to fulfill a quality plan, agile EDW teams need to arrive at a working decision about

how they will execute the tests they need to conduct. Updating their 23 2 top-down planning matrix for “manual” or

“automated” as done in Figure 18.1 often provides the visual focus a team needs to structure the conversation they must

have. (EDW teams choosing not to automate testing can record their decisions in terms of “occasional execution” and

“constant repetition” instead.) The portions of the execution plans slated for manual execution will need the system

tester to write out an execution plan that a human can follow. The portions destined for automation will need a driver

script, one that calls the reusable test widgets discussed previously.

STEP 2: START BUILDING THE PARAMETER-DRIVEN WIDGETS

While discussing what types of tests to run for an EDW project in Chapter 16, I noted that EDW teams will find them-

selves repeating a handful of common assertions thousands of times throughout the long arc of their development project.

I suggested that teams convert these assertions into reusable, parameter-driven “test widgets”—such as match_count(),

match_sum(), and match_expected_values() —and provided function prototypes for them in Table 16.8.

As a second step in implementing a testing plan, agile EDW teams will need to begin programming these reusable

test widgets. Getting an early start on these assets will provide two important benefits. First, although each widget is

a short, simple script, altogether they do require appreciable time to design, program, and validate. Getting them

programmed during Iteration 0 would ensure they will exist to provide valuable services throughout the entire project.

Second, the act of getting them coded will provide a clear list of available test widgets to the team’s system analyst,

who can then reference them in his or her source-to-target mappings. Table 18.3 shows a sample mapping with such

references making up the right half of the table. Here, the systems analyst has echoed the set of reusable widgets that

the team plans to program across the column headings. The rows list the target data columns. In the intersection of test

types and data columns, the analyst has indicated which widgets the programmers should use to validate each transform

and even the parameter values they should employ. By settling on a collection of test widgets early in the project, the

team allows the system analyst to incorporate quality into his or her specification work, achieving an important level

test-led development even before programming begins.

STEP 3: PLAN OUT THE TEST DATA SETS

As a third step in planning agile EDW test execution, the team leaders need to invest some serious thought into the

types of source data sets the tests they desire will require. Too many teams attempt to test their applications with just a

few data sets when the true number they need is more like two or three dozen.

482 PART | V Agile EDW Quality Management Planning

http://sectools.org

TABLE 18.3 Sample Source-to-Target Mapping Referencing Reusable Test Widgets

Source Table Source Field Target Table Target Field

Target
Column Category

no_emp�es()
all_unique()

within_range()
match_uniques()

match_group_counts()

match_sum()

match_median ()

valid_codes()

match_results()

n/a n/a STG_ISSUED POLICY_ISS_SID Surrogate Keys Y Y
IP_COMMON POL_NBR STG_ISSUED ISSUED_PRODUCT_ID Natural Keys Y Y
IP_COMMON IN_FORCE_DT STG_ISSUED COVERAGE_START_DT Natural Keys Y Y
IP_HSHOLD IP_HSHOLD_NBR STG_ISSUED PARTY_SID Foreign Keys Y Y
IP_HSHOLD BILL_POST_CD STG_ISSUED BILLING_POSTAL_CODE Replicated, Enumerated Y Y
IP_COMMON RCLSS_CD STG_ISSUED RATING_CLASS_CODE Replicated, Enumerated Y
n/a n/a STG_ISSUED POLICY_MAX … Con�nuous 10000, 9999999 Y Y
IP_DEPOSIT FIRST_PRMN_APPIED STG_ISSUED BINDING_DEPOSIT Aggregated 0, 10000 Y

n/a n/a STG_ISSUED STATUS_CD Derived, Enumerated Y master_code,

corp_party_status, code

n/a n/a STG_ISSUED MONTHLY_RESERVE_ACCR … Con�nuous 0, 50000
view_test_

reserve_calc

IP_COMMON LAST_UPDATE STG_ISSUED SOURCE_UPDATE_DTM Source Metadata Y parm_bus_date - 1,

parm_bus_date

n/a n/a STG_ISSUED EDW_PROCESS_SID EDW Metadata Y Y

Identifying How Many Data Sets are Required

The need for so many data sets becomes clear when one considers Figure 18.2, which shows how test data will progress

across the layers of the EDW reference architecture. All teams validate their coding with at least a set of nominal data,

which is a collection of data records that should load without errors once the application’s ETL is programmed

correctly. Interestingly, most teams need at least three data sets for nominal test cases. A “Day 0” data set will simulate

the initial load the team plans for the data warehouse. Initial-load source records often come from entirely different

systems than those that will provide the data warehouse’s incremental-load data. Initial sources are often archive tapes

or legacy data marts that will be retired after the new warehouse goes online. A Day 1 data set will simulate the first

incremental load with a structure appropriate for the ongoing source systems that will feed the warehouse. A Day 2

data set will provide a second incremental load. We need two incremental data sets because data warehouses regrettably

encounter a very different set of error conditions when applying an incremental load on top of a previous incremental

load than they do when attempting an incremental load against an initial load.

Unfortunately, nominal loads are not enough to validate a data warehouse. The EDW leaders must ask themselves

how they will prove that their ETL can handle situations in which the data extracts arrive in the wrong order (incoher-

ent data). Similarly, they must demonstrate the application’s ability to respond gracefully when entire tables, essential

records, and crucial column values are absent from the source extracts (missing data). Moreover, the ETL must be able

to manage extracts that contain human-intelligible formatting and semantic errors (dirty data). In fact, there are several

additional classes of source data errors beyond the three shown in Figure 18.2. Table 18.4 provides a full listing of

the error classes my company’s consultants typically include in their QA plans. The data warehouse must be able to

transcend errors from all of these classes.

Each class of error can require multiple data sets in order to validate that the ETL is programmed correctly. Consider

the dirty data case, for example. The formatting errors it submits to the ETL may well be caught when the data set is

landed or at least during integration, but there will be other errors that will not be apparent until the data is moved to the

presentation layer and meshed with reference information provided by the business departments. Assume for the moment

that the ETL is coded to simply halt when it encounters such a data defect. Each layer of the architecture will then need

its own data set because errors halting the ETL in one layer will prevent the warehouse from ever seeing the errors that

were meant to be caught in the next layer down. If the ETL is designed to check for missing data in three locations, as

shown in Figure 18.2, then the team will need one data set for each location. These may be very small data sets with very

few records besides those that will trigger the intended error condition, but they will still have to be separately loaded and

transformed, with the results individually evaluated. Moreover, each class of error will need a “sweeper” data set to dem-

onstrate that the ETL can be restarted and finish normally once the data defects that caused the abnormal ends of previous

runs have been corrected. These sweeper data sets are shown in Figure 18.2, labeled as SI, SM, and SD.

Integration
(normalized)

Landing

Presentation
(dimensional)

Semantic

Nominal data

NØ N1 N2

Dirty data

SD

D1

D2

D3

Incoherent

SI

I1

Missing data

SM

M1

M2 M3

W
a
re

h
o

u
s
e
 d

a
ta

 la
y
e
rs

FIGURE 18.2 Full regression testing for an EDW requires many data sets.

484 PART | V Agile EDW Quality Management Planning

Many teams design their ETL to respond to challenges such as missing information and faulty semantics by placing

the offending records into a suspense table. This approach envisions that when the ETL later encounters an extract that

has the data errors corrected, the suspended records will be located and flagged as “loaded.” Such an approach can

slightly reduce the number of data sets required, but each class of errors will need to be represented by a distinct set of

records within the combined data set. Flagging and maintaining many records that speak to different error situations

when they are all located in a single data set creates a management challenge. Teams trying this approach will discover

it requires carefully tracking and jiggling record type indicators within that shared data set. Most teams eventually real-

ize that these record type indicators are more work than they are worth, and they decide it is far easier just to place

each major type of defect in its own source table.

Regardless of which approach they take, the teammates will need either many or “many, many” extracts to address

all of the class of errors required to fully evaluate a data warehousing application. Moreover, this number will further

increase when the team considers the demands of special time points. End-of-month processing often involves signifi-

cantly different business rules than do mid-month data loads, as do time points for the end of quarters and the end of

years. Often, the testing plan will call for a separate data set for each time point that must be evaluated. Considering

just the four error classes illustrated in Figure 18.2, the developers will need 13 data sets to cover the intended error

detection points. When they factor in special time points, that number could easily grow past three dozen. Extend that

calculation by the additional data set types listed in Table 18.4 and fully regression testing an enterprise data warehouse

may require close to 100 data sets.

Planning to Create Dozens of Data Sets

EDW team leaders need to plan carefully for managing and processing such a large number of test data sets. A few of

the data sets will be large, such as those needed for nominal loads and those modeling application performance under

high data volumes. The rest can contain only a few hundred records each, so teams will be investing in filtering and

subsetting data from the source systems and then adding in records to test special circumstances by hand. These data

sets must be carefully created. Simply grabbing a random set of records from the production system as the foundation

for each data set will be counterproductive. Instead, the EDW team will have to invest in building repeatable subsetting

routines that it can apply against the production source systems.

Must Subset Production Data

Most of the test data sets need only a few hundred records, so the first choice a team must make is whether to create

the test data records by hand or derive them from a production data source using a subsetting script. Source systems are

TABLE 18.4 Typical Test Data Sets for Agile EDW Projects

Data Set Type Situation Addressed

Classes of Errors

Nominal (“happy path”) Normal loading when data is error-free

Incoherent Data Data arriving in the wrong order

Missing Data Insufficient tables, files, and column values

Dirty Data Human-visible syntax and formatting flaws

Corrupted Data Machine-detectable formatting flaws

Duplicate Data Same data with different wrappers

Other Data-Based Testing Scenarios

End-of-Period Time points for end of month, quarter, year

Archiving Data past expiry that should be removed

Catch-Up Loading higher volumes to make up for a system outage

Performance Modeling Representative subset with enough records to reveal if ETL is too slow

Deciding How to Execute the Test Cases Chapter | 18 485

complex with many nuances hidden within the data, so, in practice, synthesizing the records by hand usually requires

too much time and leads to poor results. Most EDW teams decide to subset the production data instead.

Common techniques for subsetting production data are to first filter the master data elements such as customer and

product and then extract the records from the remaining source tables that join to these “driver records.” These extracts

can be re-executed once for each time point the team desires to have in its source test data sets.

Often, the test data must have source records that represent a complete set of business situations that the ETL is designed

to handle. These business cases are indicated by a combination of flags and code values found in the source. In order to min-

imize the number of records in each test source subset, teams can use the combinatorial reduction technique introduced in

Chapter 16 to generate a representative set of these flags and codes to search for when subsetting source data.

Data Will Need to be Re-Created

Although it is tempting the think that each data set needs to be created only once, agile EDW teams would be wise to

design their subsetting routines as a repeatable processes. In the agile context, the team proceeds with 80/20 require-

ments, meaning it has only a mid-level notion of the overall application design at the start of the project. Moreover,

business requirements can change for any project, necessitating the team to update the design in order to include data

from new source systems. Either way, the data sets created at the beginning of the project will need to be expanded

later.

Most teams find it difficult to simply add selected records from the newly required source tables to the existing data

sets and still maintain referential integrity. They will achieve more coherent data sets by rerunning the subsetting script

against the entire production source, identifying a full complement of related records at a single time. When the data

has to be updated for new requirements, the developers simply add more queries to the script and re-execute it to gener-

ate in one stroke a new subset from which to work.

Once the source data has been subsetted, the defects that the test cases are designed to catch need to be introduced

into the resulting records by such actions as dropping necessary records or mangling crucial column values. The defects

injected into each data set will be different, of course, because each data set pertains to a different class of errors. These

alterations should be added to the data preparation scripts so that they too become repeatable actions. Without scripting,

it is too easy to forget to insert a few of these deliberate defects, and when these defects disappear, it can make the

ETL appear to be running better than it is in reality.

The Refresh Must Leave the Data Set Unchanged as Much as Possible

Repeatability must be achieved for record identifiers and key column values as well in order to avoid developer frustra-

tion. Developers get to know their test data, memorizing such items as order numbers, customers’ personal identifiers, and

product numbers. If the subsetting routine reloads the test repository’s source data tables based on a new set of driver

records, a completely different cohort of records will land in the test data set. The programmers will be forced to start

re-memorizing their landmarks, leading to frustration, mistakes, and lost time. Similarly, the defects injected into the test

data sets by the subsetting routine must each land on the same record as before in order to maintain the developers’

familiarity with error triggers for which they are programming a response.

All told, the team needs to design a subsetting facility that generates with each run the same records and the same

defects, except for additional records the new tables that prompted rerunning the script.

Must Use Repeatable Masking

We must add one further degree of constancy to the subsetting routine so that it provides repeatable masking for sensi-

tive information. Many data sets contain protected information for customers and employees and sometimes trade

secrets belonging to vendors. These values need to be masked out of the test data somehow so that the protected infor-

mation is no longer visible. The subsetting routine should be designed to utilize repeatable masking so that the key

values that developers use to locate their favorite test records no longer represent sensitive information but also do not

change with each refresh of the test data. If this constancy of masked key values is not achieved, each refresh will force

the team members to begin rememorizing the landmarks of their favorite test records. All told, the data creation routines

will have to be elegantly programmed modules in their own right, making it important for the EDW teams to begin

planning and developing them early in the project.

486 PART | V Agile EDW Quality Management Planning

Planning Storage for Dozens of Data Sets

As each testing data set emerges from the subsetting routine, the team will need to place it in a test data repository.

This data repository will need some design effort as well. First, the team will need to choose the physical format in

which the test source data will be stored. A successful approach can involve a mix of data tables, XML files, SQL

“INSERT” commands, and simple text. Data stored outside of a database frequently needs to have loader routines

created that will place it in the landing tables from which the ETL will pull it.

For test data that will be stored using a database, the team must decide whether to store each data set in a separate

data schema or place all of them in a shared set of tables. The latter case has the advantage of keeping the number of

objects in the test data repository to a reasonable number, but it requires metadata tags to allow the separate cohorts of

records belonging to each data set to be identified.

If the team opts for placing the data in a shared set of tables, these tables will be structured very much like the

sources from which the data is pulled. As new tables are needed from source, corresponding tables must be added to

the test data repository. These tables will be slightly different than the operational tables they are modeled after,

however, because they will need some metadata columns. The typical metadata columns record where data was

gathered from and when, as well as probably a serial number so that successive instances of each test record can be

distinguished. Metadata columns that record the particular runs of the subsetting routines will allow the developers to

store record sets from different extract sessions so that they can simultaneously test the ETL belonging to different

builds. This feature will be crucial for flexible regression testing of past subreleases.

The metadata columns added will also need to support the many ways that the test data will need to be fetched from

the repository. Chapter 16 touched on these “testing aspects” that allow EDW teams to distinguish between parameters

that define test scenarios such as error class, time point, and layers of the reference architecture. Table 18.5 lists these

aspects of data subsetting along with several others that agile EDW projects have found useful for managing and

retrieving test data during test execution. This table organizes the testing aspects into hierarchies that offer a progressive

decomposition path. These testing aspects will also play a crucial role in the execution of tests, the management of

expected values, and the analysis of actual results, so that we will revisit this table later.

Planning also for Expected Results

When previously discussing what test types an EDW project will need, we saw that many test assertions cannot be evalu-

ated with analytical approaches. They require instead that the test consider whether a particular business rule produced the

exact set of expected records. EDW team leaders can use much of the planning steps discussed so far to also specify how

to properly create and store the data representing these expected results. Expected results will need to be accurately

refreshed each time the team re-runs the source subsetting routines so that source and expected records stay aligned. To

what extent expected results can be refreshed via scripts or table lookups rather than by hand will depend on the exact

business rules being employed. In either case, the refresh mechanism needs to be added to the test data management plan.

Usually, expected values are stored in a separate repository from test source data. As we saw with source data, the

expected value repository will need to simultaneously hold multiple version of the data, necessitating the same metadata

tags, so that the various cohorts of records can be distinguished, managed, and retrieved independently.

In summary, test data for validating agile DW/BI has to be well derived, flexible, and dynamic. EDW teams are

wise to invest a good deal of thought early in the project regarding the test data they will need, the means by which

they will obtain it, and the repository in which they will keep it.

STEP 4: IMPLEMENT THE ENGINE, WHETHER MANUAL OR AUTOMATED

As a fourth step in implementing the EDW testing plan, the team needs to implement an engine, whether manual or

automated. A manual engine is nothing more than a documented pattern that teammates will follow in executing by

hand a test of a given type. Automation simply translates most of such patterns into machine-executable pieces,

although the highest layer of the procedure will remain manual.

As illustrated by Figure 18.3, every test involves five major steps, as follows. Note that the use of the word scenario

here is independent of its use in the term “scenario test” from Chapter 16.

� Discern the test scenario that should be executed.
� Locate the test source data and place it where the ETL process being validated can access it.

Deciding How to Execute the Test Cases Chapter | 18 487

� Execute a script of actions that accomplishes the data transform.
� Evaluate the actual results of the data transforms against expectations.
� Record the findings from that evaluation.

Manual engines consist of instructions for the team to follow in order to complete this cycle. It will include mechanisms

for coordinating the actions of multiple teammates so that they can run their individual tests simultaneously with shared

resources without undermining each other’s efforts. It will also require writing up a “definition of done” cards for each type of

test so that the team can be assured that all the test runs included comparable steps for preparation, execution, and evaluation.

A manual process will also include instructions about where to find expected results and how to record the findings of the eva-

luations so that the system tester can review which tests are passing and assess the application’s current level of quality.

Automated engines encapsulate much of the above. Their configuration tables have pointers to the source data and

expected results that the team leaders have prepared, making these resources easy for reviewers to locate. They also record

all test runs and outcomes in a repository of their own, making it possible to use a business intelligence tool to present

aggregate test results, which can then be sliced and diced by testing aspects to identify the application’s problem areas.

The best of these automated test engines provide the ability to define data staging, script execution, and results evaluations

as reusable actions so that the EDW team members mix and match these components into a plethora of test cases.

TABLE 18.5 Commonly Employed Testing Aspects

Aspect Comments

Test Scenario Aspects

Structural Hierarchy

Project e.g. Finance External Reporting Warehouse, Revenue Assurance Data Mart

Subject Area e.g. Customer, Product, Sales, Standardize Cost, Fulfillment

Architectural Layer e.g. Landing, Integration, Presentation, Semantic, Front-End

Requirements Hierarchy

Epic

Theme

User Story

Developer Story

Business Rule
e.g. Customers with receivables aged greater than 120 days will lose 25 percent of their
value score

Data Type e.g. Replicated, Derived, EDW Metadata, Business Metadata, Process Metadata

QA Dimensions

Data Error Class e.g. Nominal, Dirty, Missing, Incoherent

Polarity e.g. Positive, Negative

Functionality e.g. Functional, Non-Functional

Test Case Aspects

Project Hierarchy

First Subrelease Target subrelease when test case first defined, e.g. 1, 2, 3, …

First Iteration Project iteration when test case first defined, e.g. 1, 2, 3, …

First Usage Category from system dimension when first authored, e.g. Unit, Integration

Author Role

Author Name

Identifiers often taken from the agile project management software package team employs
to provide task boards and burndown charts,
e.g. Ep 6, Th 6.12, US 6.12.4, DS 6.12.4.9

Teammate who understands derivation of test and the data required to execute it,
e.g. Data Modeler / ABaker, System Analyst / CDaniels

488 PART | V Agile EDW Quality Management Planning

Teams that opt for a manual approach will need some lead time to get their testing standards defined and instruc-

tions written up. Teams that invest in an automated test engine may need even more lead time to select, install, and

train on the tool they will be using. In either case, this work is best accomplished before Iteration 1 so that the team can

start using a single pattern for QA from the moment that development begins.

Defining Test Scenarios

Most EDW projects are so large and complicated that manual approaches usually cannot scale enough to meet the

team’s QA objectives. Thus, the remainder of this chapter focuses on projects employing automated test engines.

Figure 18.4 depicts the main algorithm that an automated EDW test engine needs to follow. It also provides a visible

definition for the very important concept of a test scenario.

A test scenario is a combination of test aspects that controls the particular source data, ETL calls, and results evalua-

tions a given test case will include. In Figure 18.4, various testing aspects such as subject area, error class, and data

time point combine into a hyper cube representing all the test scenarios that must be executed in order to completely

quality assure an EDW application. The figure shows only three aspects, but my company has clients that have

employed 50 or more for categorizing the test cases they run.

When performing QA, the automated engine iterates through a user-selected subset of the test-scenario hyper cube.

For each scenario, the engine executes the four steps shown in Figure 18.3 by staging the correct data, calling the

proper components of the ETL, evaluating assertions concerning the actual results, and logging the defects found.

The team can then use its BI tools against the engine’s repository to learn whether the test cases detected a defect and

then to research the conditions that made the ETL application fail.

STEP 5: DEFINE THE PROJECT’S SET OF TESTING ASPECTS

Once the test engine is in place, the EDW team needs to configure it for the testing aspects that will define the scenar-

ios. This configuration involves entering into reference tables the actual values the team wants to employ for each

aspect.

Hypercube of test
scenarios

Locate scenario components

Evaluate & record results Invoke the ETL

Stage the source data

EDW landing area

EDW target tables

Expected results
repository

EDW
landing area

Test source
repository

EDW
landing

area

Pass / fail
log

4 3

1 2

Hypercube of test
scenarios

Locate scenario components

Evaluate & record results Invoke the ETL

Stage the source data

FIGURE 18.3 Automated testing cycle for a single testing scenario.

Deciding How to Execute the Test Cases Chapter | 18 489

Table 18.5 provides a starter set of aspects for the team leaders to consider, along with examples of the values that

each aspect will take. As can be seen from the examples, this collection of testing aspects would allow the team mem-

bers to define test runs that execute all the validations in the test engine’s repository for very specific test suites. For

instance, they could request a full regression test for the integration layer of the Revenue Assurance data warehouse’s

finance subject area, executing only the functional tests using the data set containing dirty data. Programmers could

request this test for just a particular developer story of the current build that they are working on, whereas the system

tester could run the same test suite for the entire build that the product owner evaluated at the last product demo.

In Step 3 discussed previously, the leaders planned which aspects the test source data and expected results will

require. Once they configure the test engine to support the desired aspects, the test results it will generate will also be

tagged with the same metadata values so that programmers will be able to examine their test outcomes without getting

them confused with those belonging to others on the team.

STEP 6: BUILD AND POPULATE THE TEST DATA REPOSITORY

Now that the EDW team members have decided on the structure of the test data repository and the testing aspects that will

tag the records it will hold, it is time for them to build the repository and populate it with the data generated by the subset-

ting scripts created in Step 3. Table 18.6 lists the structure of a source data table that employs the testing aspects identified

in Table 18.5. Note that the columns for testing aspects have all been prefixed with “TMD_” (testing metadata). One can

instruct the test engine to omit transferring values for all columns with a given prefix when staging data for a test run, mak-

ing it possible to simply use a SQL command similar to “select * from PROPERTY.INFORCE_POLICY where.. . .” If the
test engine did not have this omit-prefix feature, teammates configuring staging steps would have to name every column

required from the repository table rather than simply using an asterisk to indicate “all source table columns.”

While populating the repository for the test scenarios, the team will frequently need to decide on the scope of each

test case. A given test case will utilize a specific cohort of source records from the repository that will support a specific

set of assertions when evaluating the results. At this point, the developers need to decide how large to make their test

cases. At one extreme, they could create a test case that contains all the assertions to be used in evaluating a given sce-

nario. At the other extreme, they could choose to place only one assertion in each test case, which will require many

more test cases to achieve the full evaluation.

The right compromise between these two extremes will vary from scenario to scenario. For example, the developers

may decide to combine the assertions for both positive and negative tests into one test case for the customer master

data subject area but break out positive and negative tests into separate cases for the revenue-assurance ETL.

Subject areas

Finance

Sales

Operations

HR

Nominal

Dirty data

Incoherent

Missing data

Mid month

End of month

End of quarter

End of year

Test

source

data

Expected

resultsETL host

Resources

Test automationTest scenarios

Daily summary

Pass / fail

log

Test aspects

(See Figure 18.3)

Error types

Time points

FIGURE 18.4 Overview of automated testing by scenario for an EDW.

490 PART | V Agile EDW Quality Management Planning

The correct answer usually depends on the size of the data needed and the complexity of the business rules. The team’s

system tester needs to be ready to advise the developers on which factors favor more granular test cases.

As illustrated in Figure 18.5, there is a dividing line between where a given set of assertions manifests itself as sim-

ply different sets of records employed during a test case and where they should be relegated to a separate test case of

their own. In this diagram, the multiple considerations involved in splitting a given validation idea into separate test

cases are ranked by the number of instances involved in each. In the figure, the split between one versus many single

test cases is as high up in the stack as is usually possible. Teams naturally need to define separate scripts for restart

points because the first defects in the test source data set will cause the data transformation to stop, preventing process

from reaching the remaining defects. Whether or not a given set of business rules or ETL logic points justify separate

scripts will be a case-by-case decision.

STEP 7: QUANTIFY THE TESTING OBJECTIVES

By the time a team reaches this step, the test engine is configured with data ready to employ. We want to use the test

engine to constantly inform the developers and business stakeholders regarding the progress of the project. Thus, before

diving into creating tests for the next iteration, the team leaders should take a moment to define the quality objective

for the sprint (and later for the subrelease) so that every morning queries against the test engine’s repository can show

how close the team has come to achieving its QA objectives.

Teams following the planning framework provided by this part of the book will have invested time in not only QA

planning but also in estimating how many tests the team will need to execute. With one small additional effort at the

TABLE 18.6 Sample Test Source Data Structure

Data Center.System.Table: Western.Property.Inforce_Policy
COLUMN_NAME* TYPE LEN NULLABLE COMMENT

TMD_ARCH_LAYER CHAR 48 N Test metadata: Architectural Layer

TMD_SUBJ_AREA CHAR 48 N Test metadata: Subject Area

TMD_ERR_CLASS CHAR 48 N Test metadata: Error Class

TMD_POLARITY CHAR 48 N Test metadata: Polarity

TMD_FUNCTION CHAR 48 N Test metadata: Functionality

TMD_1ST_SUB_REL CHAR 48 N Test metadata: First Subrelease

TMD_1ST_ITERATION CHAR 48 N Test metadata: First Iteration

TMD_PROJECT CHAR 48 N Test metadata: Project

TMD_PROGRAMMER CHAR 48 N Test metadata: Programmer

TMD_REQUIREMENT CHAR 48 N Test metadata: Requirement

TMD_BUS_TIME_POINT DATE-TIME N Test metadata: identifies different collections of records subsetted from source

POL_NBR CHAR 12 N Source system data column

IN_FORCE_DT DATE N Source system data column

IP_HSHOLD_NBR NUMERIC 12 N Source system data column

BILL_POST_CD CHAR 2 N Source system data column

RCLSS_CD CHAR 2 N Source system data column

FIRST_PRMN_APPIED NUMERIC 12 N Source system data column

LAST_UPDATE DATE N Source system data column

META_SID NUMERIC 24 N Test repository row-level metadata: record's unique identifier

META_INSERT_DATE DATE-TIME N Test repository row-level metadata: record's creation timestamp

META_SOURCE_SYSTEM CHAR 48 N Test repository row-level metadata: source system providing the record

* TMD = "test metadata"

Deciding How to Execute the Test Cases Chapter | 18 491

beginning of each iteration, the team leaders can use that existing information to forecast how many tests of each type

will be needed to evaluate the modules listed on the current iteration backlog. With that number in hand, the leaders

will be able to use a BI tool against the test engine’s data repository to create buildup charts such as shown in

Figure 18.6, illustrating how close the integration tests for the current iteration have come to the desired level of

testing.

The graph in Figure 18.6 depicts exactly this idea, with the horizontal line at the top representing the agreed upon

goal. The first buildup line represents the number of tests defined and executing in the test engine, which is a good

indicator of how hard the team is trying to reach its quality goal. The bottom line shows the number of tests that are

actually passing, an accurate measure of the quality that the team has actually achieved. This graph makes a good com-

panion to the team’s burndown chart, providing an evidence-based measure of progress for all stakeholders to review at

the developer’s daily stand-up meeting. Similar buildup charts can be created for visualizing progress for the current

subrelease and the project as a whole, although the forecasts for the number of tests that teams should achieve will not

be as accurate.

0

50

100

150

200

250

1 2 3 4 5 6
Iteration days

Executing Passing Goal

FIGURE 18.6 Test case build-up chart for a single iteration.

Error classes

Architectural layers

Subject areas

Restart points

Business rules

ETL / BI application logic points

A few

Several

A dozen

A few dozen

Scores

Hundreds

Testing aspects Relative number

A set of records within a scenario’s source data set

A few rows within a source record set

Test case

Subset of source data need to execute the scenario
defined by the values set for each of these test aspects

Scope of test data

Test assertions 1,000sPerhaps one record per target table

FIGURE 18.5 Relationship between test case, test assertions, and the data required for each.

492 PART | V Agile EDW Quality Management Planning

STEP 8: BEGIN CREATING TEST CASES

At this point, the testing infrastructure is in place and an objective for an iteration has been set. The team should begin

development work, using the test engine not only to validate its programming but also to measure and display its progress

within the iteration.

As a developer completes programming each module, she can enter its unit and component test cases into the test

engine, tagging them with her name, the developer story she is working on, the project’s current iteration number, and

the other testing aspects that her teammates have agreed on. As each test case is added, the engine will be able to

provide not only an increasingly comprehensive regression test for the current build but also a quality buildup chart that

illustrates the team’s progress toward its goal. The metadata values added to the test cases will allow the team to

constrain the reports generated by the test engine’s repository so that it shows the success of test cases for individual

programmers, allowing each to demonstrate when she has completed his programming assignments for the iteration.

As they create ETL and reporting modules, the programmers should find the system analyst’s suggestions for reus-

able test widgets in the source-to-target maps they are following. They can call those widgets using the validation

scripts they enter into the test engine. These activities will be complex at first, so the system tester will be busy instruct-

ing programmers and supporting them as they create the test cases. When not supporting the programmers in this way,

however, the system tester can enter integration test cases for the current and previous application builds into the test

engine so that the team can demonstrate success when measuring the quality of the application as an assembled whole.

The best test engines allow test cases to be defined with reusable staging statements, test scripts, and evaluations.

As the iterations progress, then, both the system tester and the programmers will be able to draw upon steadily more

test components that are already defined, making the work of this step progressively easy to accomplish.

STEP 9: START UP THE ENGINE

At this point, the programmers can invoke the test engine during the day to execute unit and component tests. The sys-

tem tester should also connect the test engine to a scheduling package so that the combined systems can execute a full

integration test on the team’s current build during the evening hours. This latter test run will provide important feedback

to the developers on a daily basis, helping them keep their code extremely clean.

Figure 18.7 depicts the type of summary information that automated, nightly integration test runs can provide. In

this figure, each row represents a different subject area in the data warehouse. The components of the reference archi-

tecture are listed along the top of the columns in bold, arranged in the order that data for each subject area will follow

during the loading process. Listed in the column heading for each reference architecture area are the error classes that

the EDW team has decided to employ in its QA program. For clarity, this figure lists only a few that a typical team

would employ, namely those for nominal, missing, and dirty data. In the graph, happy faces indicate test suites that are

Landing Integration Presentation Corp BI Dept BI

Nom. Missing Dirty Nom. Missing Dirty Nom. Missing Dirty Nom. Missing Dirty Nom. Missing Dirty

Products

Geographies

Sales

Fulfillment

Billings

Corp. ref. tables

Party – customer

Party – other

FIGURE 18.7 Visualizing quality via summary test results by subject area and architectural layer.

Deciding How to Execute the Test Cases Chapter | 18 493

passing without error. Bombs label test suites for which actual results do not match expectations, and the skull and

crossbones symbol shows where the test script itself had an execution error.

The system tester would employ a BI tool to display this graphic daily at the team’s stand-up meeting. With this

particular display, the system tester could provide the following summary during his or her check in:

� “Today all the landing area jobs are completing successfully, so ‘Yay, Team.’
� In the integration layer, the Party subject area is failing on the dirty data set, which is causing that same data set to

fail for the remainder of the subject area.
� That’s a new bug. . . . It was working fine yesterday morning.
� Who did anything yesterday that might have possibly caused the Party subject area to start failing?? Raise your

hands. OK, looks like Terry and Pat. Could you two conference after our check in and see if you can figure out

what caused these ETLs to start to fail?
� Product is still failing when it comes to missing data. Sam’s working on that one. We’ll see it switch to happy face

once he gets it done.
� Here’s a new one: The scripts for geographies are so messed up they can’t even execute. Who was working those

scripts yesterday? Sandy? OK, looks like you’ve got to track down what’s making that test case so unhappy.”

Being able to supply the team with this level of insight on a daily basis enables the system tester to provide the

team with real leadership. With steady feedback of this caliber, the team can easily keep its code extremely free of

defects, leading to better product demos, less time wasted coding around programming flaws, and fewer defects sneak-

ing through subrelease testing into the production instances with which end users will work.

STEP 10: VISUALIZE PROJECT PROGRESS WITH QUALITY ASSURANCE

At this point, the team is fully executing on the QA plan, and the automated test engine is providing a large amount of

useful information on what the team has achieved. The system tester needs to assemble that feedback into a dashboard

that depicts the team’s progress for the project sponsor and the other business stakeholders to monitor. EDW team

leaders can use this same display to detect when and where the team might be struggling, empowering it to better

keep development effort on track.

Tests Implemented by Environment

Figure 18.8 shows a project quality dashboard that is easy to assemble using the information already being tracked by

the team’s Scrum master and its automated test engine. The table in the upper left is the same as the one just discussed.

The graph in the upper right provides an aggregate look at the same test events, this time in a trending format. We saw

this graph in a larger format in Figure 16.2. This Tests Implemented by Environment graph depicts the state of testing

across the weeks and iterations of the project. The horizontal time line is divided into four areas representing the next

few incremental subreleases the team leaders have decided on. One can tell from this particular chart that the project is

just past the expect completion date for Release 1, so they are running a bit behind.

The top line represents the number of tests passing in the DEV environment. The team was doing well at the beginning

of the project, but it got distracted halfway to the first subrelease, as indicated by the fact that the test cases running in DEV

line stayed flat, meaning no new test cases were added. Fortunately, the project architect and system tester were watching

this graph and were able to gently insist that the developers resume creating test cases as part of their programming work.

The second line from the top represents the tests that have been transferred from the DEV environment to system

integration testing (SIT). This line should track the DEV line with a lag because it takes time for the system tester to

convert the unit and component tests used by programmers into appropriate test cases for SIT. For the project shown in

this graph, the gap was too large during the work for the second subrelease, and it even stalled out altogether as the

team approached promotion time. This gave the project architect the information needed to encourage the system tester

to put more effort into integration testing and catch up with the rest of the team.

The bottom line in the graph depicts the number of SIT tests that are passing. Theoretically, this line should touch

the line above it, especially before a subrelease, indicating that all the tests defined in SIT are completing successfully.

This team had considerable challenges on both sides of the Subrelease 2 line, alerting the project architect and even IT

management to call a meeting to discuss the situation. In this particular instance, the organization owning the primary

source system had upgraded its system without warning. The new structures of the source tables had broken the data

494 PART | V Agile EDW Quality Management Planning

FIGURE 18.8 A sample project quality dashboard showing four measures of quality achieved by a development team.

warehouse’s ETL, requiring a major rewrite of the data transform modules. Once this graph revealed the disruption, the

EDW department was able to instigate an executive-level intervention with the source system team so that the DW/BI

developers quickly received new documentation and extra support, getting the project back on track.

Connect Top-Down and Bottom-Up Quality Planning

The BI graphics employed in the project quality dashboard provide EDW team leaders a perfect opportunity to prove

that their quality planning has produced a coherent approach. Once these displays are available, they should test

whether they can drill down through the data using the testing aspects defined in Step 5.

Take the Test Implemented by Environment graph in the upper right of the dashboard as an example. The normal display

would show all tests runs for a given project. Yet, at the end of Iteration 13 or so, the EDW team leaders would surely want

to know more about why the number of SIT tests passing has strayed so far away from the line representing the tests execut-

ing in that environment. Fortunately, the system tester has been tagging test cases and outcomes using test aspects, such as

those suggested in Table 18.5. With those tags in place, the leaders will be able to drill down into the graph—for example,

right click on the line for SIT Tests Passing and have it redrawn to break out the data stored in the test engine’s repository for

a particular architectural layer of the warehouse. That analysis might reveal that the integration layer is where the numbers

start to dip. The leaders can then continue to drill down by additional testing aspects, such as error class, polarity, author role,

and requirements hierarchy. This analysis could reveal that the root cause of the gap in the overall graph stems from the fact

that the tests defined by the systems analyst for running Epic #3’s nominal data are failing all of the negative test cases.

Testing aspects provide visibility into the numbers behind the numbers for quality assurance, giving the team leaders the guid-

ance needed to detect quality problems quickly and to get them resolved before they cost the team any significant velocity.

EDW team leaders should strive to define at the start of the project the drill-down paths they will need. Once the test-

ing aspects have been defined, team leaders should carefully scan the list for places it does not support the drill-down

paths they desire. If both their top-down and bottom-up planning produced a coherent QA strategy, they should be able to

drill all the way down from the highest testing aspects (e.g., project) to the lowest (e.g., developer story) without encoun-

tering any gaps. This gap analysis therefore provides a robust validation of whether quality planning is complete and

should be repeated frequently during the early portions of the project until the team’s current quality plan passes this test.

Defects Over Time

The bar chart in the lower left of Figure 18.8 displays the number of defects present in the application’s current build

over the past several iterations. These defects include those detected by the automated test engine and those discovered

by other, manual validation activities. These defects are color coded by the iteration during which they were first seen.

Such a format allows the team to not only discern how quickly it is resolving the defects uncovered for each iteration

but also determine whether defects that were previously resolved have crept back into the system.

The defects uncovered during Iteration 10, for example, took three iterations to resolve. The project architect was

somewhat concerned about the fact that cleaning up those particular product flaws took so long. However, everyone on

the team was extremely concerned when some of those flaws reappeared three iterations later, suggesting that someone

had either undermined earlier work with new programming or actually added new logic to those modules even though

they were supposedly “done.” In either case, this chart revealed some problems with design or coding discipline that

the team leaders need to get resolved very soon.

Current Iteration Burndown Chart

The bar chart in the lower right in Figure 18.8 is a standard iteration burndown chart, with the dark color showing the total

number of hours-to-go listed on the task cards for the current iteration. Here, the system tester has added the tech debt left

over from the previous iterations. Tech debt represents the little fixes that the developers promised to make in exchange

for the product owner accepting developer stories that were not quite done at the time of the previous product demo. The

developers should work off the tech debt at the beginning of every iteration so that the new programming is not applied to

a faulty code base. Teams lacking good discipline often move on to new coding first because often those tasks are more

interesting than cleaning up the last iteration’s mistakes, so tech debt is an important quality measurement that EDW team

leaders should watch assiduously. Here, the team did not resolve all of the tech debt until Day 13 of the three-week sprint,

revealing an important issue in team discipline that should be discussed at the next iteration retrospective.

Taken together, the four charts on this dashboard clearly depict the real events occurring in the project room. The

task board and regular burndown charts that agile teams employ to communicate progress to themselves and

496 PART | V Agile EDW Quality Management Planning

stakeholders are good first looks at the current state of an iteration, but EDW team leaders should keep in mind that

both of those artifacts reflect the tasks that developers say they have completed. The information displayed on the QA

dashboard in Figure 18.8 is derived from the testing process, representing the work that the programmers have both

completed and gotten to pass quality assurance. Such information is evidence-based and is not vulnerable to the over-

sights or spin that the developers might insert into the status information they report, making the quality dashboard a

far more dependable measure of the team’s true progress toward stakeholder goals.

STEP 11: DOCUMENT THE TEAM’S SUCCESS

To succeed at quality assurance, an EDW development team must do more than get its application to pass all the tests

thrown at it. It must document that the application has fulfilled its QA plan, especially the benefit of stakeholders such as

the project sponsor and the operations team. The test engine previously envisioned can greatly assist with this final effort,

but making that effort easily manageable may well require a further adjustment to the EDW team’s quality platform.

Figure 18.9 depicts the process that meets the quality-fulfillment documentation required in many large organiza-

tions. This pattern focuses on the communication between a quality management system and the automated test engine.

Agile quality planning

Top-down
plan

Bottom-up
plan

Developer story
+ error class

Overall plan
(manual & automated cases)

Match by
hashed

identifiers

Quality
management

system

Fulfilled plan
elementsUnfulfilled plan

elements

Test engine’s
result repository

Cases
passing

Cases
failing

Corrective
action

EDW
ETL

Automated
test engine

Add hashed
identifiers

Fulfillment
loop

Testing
loop

Manual
testing

Fulfilled
plan elements

FIGURE 18.9 Supporting quality fulfillment documentation with an automated test engine.

Deciding How to Execute the Test Cases Chapter | 18 497

The process begins with the agile quality assurance planning, as outlined in this and the previous two chapters. This

planning results in top-down and bottom-up planning artifacts that represent the overall quality plan. This plan encom-

passes both the automated lower-level testing and the higher-level validations such as theme tests that will have to be

executed manually. Both of these categories of testing are then entered into the quality management system (QMS),

which is essentially a database that holds a validation plan and a log of events that demonstrate each plan element has

been fulfilled.

When manual testing elements are successfully completed, the team records that fact in the QMS database. For the

automated test elements, the team can configure the test engine to automatically update the QMS, which is extremely

convenient given how many automated test elements an EDW quality plan usually entails.

One extra step is required to enable this integration. The team needs to add hash identifiers in the QMS for the qual-

ity elements that will be validated through the automated test engine. These identifiers are typically MD5 hashes on the

aspects of each test case that make it unique. Combining the developer story number and the architectural layer is often

a good candidate for such an identifier.

As the EDW’s ETL is validated by the automated testing engine, some tests pass and others fail. The tests that fail

lead to corrective updates to the EDW application, as shown on the left side of Figure 18.9. For the tests that pass, an

extra process in the test engine calculates the hash identifiers for each case and then attempts to find them among the

records still marked as unfulfilled in the QMS. When it finds a matching hash value, this process updates the attributes

of the QMS’s image of the test, documenting that the test case has in fact passed. Later, the team can retrieve a report

from the QMS that documents the degree to which the combined manual and automated test elements have been ful-

filled. When enough of the plan has been sufficiently completed, the organization can opt to promote the application to

the next operating environment.

SUMMARY

The intensive QA planning outlined in this and the previous two chapters yields a testing plan that is very ambitious. In

fact, even medium-sized data warehouses with a modest quality plan will require tens of thousands of test cases and

hundreds of thousands of test case executions. Because of the large number of quality events involved, EDW team

leaders need to seriously plan for how such a large number of test case runs can be invoked and tracked.

For this last segment of QA planning, EDW practitioners employ an 11-step approach. These steps start with revisit-

ing the 23 2 top-down planning matrix to record where test automation might assist in getting the validations com-

pleted. It next calls for the team to get started programming the reusable, parameter-driven test widgets identified

previously when they decided on the types of tests that would make up their EDW quality program. The planning for

how to execute tests next includes enumerating the two or three dozen data sets that an EDW team will require to fully

validate its application. The following step considers how to arrange for these data sets to be generated from the pro-

duction systems in a repeatable manner.

Next, the team should specify and implement the test “engine” it will use, whether the engine will be a completely

manual process or include substantial automation. With the engine defined, the team leaders will need to articulate the

values they wish to employ for the multiple testing aspects their teammates will use to categorize test data, test scripts,

and test results. At that point, the leaders can define the likely number of test cases that the next iteration will involve,

allowing them to display for their teammates charts of tests executing and passing that build up toward this known goal.

With all the previously mentioned preparation, the team’s coders can now begin entering test cases into the test

engine and invoke that engine to validate the ETL modules they are programming. The results can be displayed via sev-

eral graphs that not only allow the programmers to keep their code defect-free but also enable the leaders to provide

evidence-based progress reporting to the developers and project stakeholders. By adding hash identifiers to the tests

identified in the quality plan, the team can configure the automated test engine to programmatically register successful

lower-level testing cases in the quality management system that IT is using to document the fulfillment of the EDW

application’s overall QA plan.

The planning described in this and the past two chapters provides a sound platform for measuring the quality of data

warehouse objects. By organizing and tracking product quality so aggressively, the agile EDW team can move forward,

rapidly coding in increments, assured that any mistakes undermining product integrity will quickly come to the surface

so that the team can get them resolved. As discussed in the next and final chapter of this book, a sound quality assurance

platform is absolutely necessary to interconnect the work that agile EDW teams perform in all three software engineering

arenas we have discussed: iterative risk mitigation, just-in-time requirements, and incremental data engineering.

498 PART | V Agile EDW Quality Management Planning

Part V References

Chapter 16

Charantimath, P.M., 2011. Total Quality Management, second ed.

Pearson India, Chennai, India.

Crispin, L., Gregory, J., 2009. Agile Testing. Addison-Wesley, Waltham,

MA.

Marick, B., 2003, August 21. My Agile testing project. Exploration

by Example (blog). ,http://www.exampler.com/old-blog/2003/08/21/

#agile-testing-project-1..

Page, A., Johnston, K., Rollison, B.J., 2009. How we Test Software at

Microsoft. Microsoft Press, Redmond, WA.

Ramu, G., 2010, April. Introduction to Six Sigma. Presentation before

the Silicon Valley chapter of the American Society for Quality.

,http://www.slideshare.net/Sixsigmacentral/introduction-to-sixsigma.

(accessed November 2014).

Weinberg, G., 1993. Quality Software Management, vol. 2. Dorset

House, New York.

Zairi, M., 2010. Benchmarking for Best Practice. Routledge, New York.

Chapter 17
Hull, E., Jackson, K., Dick, J., 2011. Requirements Engineering, third ed.

Springer-Verlag, London.

Chapter 18
Ericson, J., 2006, April 1. A simple plan. Information Management. ,http://

www.information-management.com/issues/20060401/1051182-1.html..

499
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00030-8

© 2015 Elsevier Inc. All rights reserved.

http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref1
http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref1
http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref2
http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref2
http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/
http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref3
http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref3
http://www.slideshare.net/Sixsigmacentral/introduction-to-sixsigma
http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref4
http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref4
http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref5
http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref6
http://refhub.elsevier.com/B978-0-12-396464-9.00030-8/sbref6
http://www.information-management.com/issues/20060401/1051182-1.html
http://www.information-management.com/issues/20060401/1051182-1.html
http://dx.doi.org/10.1016/B978-0-12-396464-9.00030-8

Chapter 19

The Agile EDW Subrelease Cycle

I began this book with what was perhaps a brazen claim—that agile techniques have solved the fundamental problem

of enterprise data warehousing (EDW). I suggested that our profession’s fundamental problem is that enterprise data

warehouses take so long to deliver and cost so much to build that they end up providing too little value to the

businesses to justify their construction. The root cause for this lamentable state of affairs was the risk that even a simple

mistake in requirements or design would obviate months of data transform programming and system implementation.

The four practice elements that solve this fundamental problem are

� agile coding techniques;
� agile requirements management;
� agile data engineering; and
� agile quality assurance.

My previous books presented the first element in detail, showing how the development team can work with the

business staff in small increments, regularly validating the project’s accomplishments one small piece at a time. This

book provided new iterative approaches to the remaining practice elements, showing how EDW teams can quickly

define a project, deliver data repositories that can be readily adapted to new business requirements even after they

have been loaded with operational information, and repeatedly validate a fast stream of data warehousing/business

intelligence (DW/BI) deliverables with a reasonable amount of labor.

Implementing four new practice elements while simultaneously managing the frenetic engineering activities that make

up an EDW development project is a tough assignment. EDW team leaders new to agile will need an overarching approach

that allows them to evenly pursue the four agile practices despite the chaos occurring in the project room. At the start of this

book, I offered the subrelease cycle as a convenient means of managing project risk. We can augment the notion of the sub-

release cycle in order to make it a single, repeatable process that forges together the four practice elements of agile EDW.

This chapter presents the agile EDW subrelease cycle as a continuing series of eight major steps that can be centered around

the crucial concepts of data governance and application quality assurance. The resulting development process will be

extremely transparent and responsive to the EDW team’s business customers, so this chapter will build upon the integrative

subrelease cycle by presenting an EDW customer’s bill of rights that describes the dramatically improved service levels

that DW/BI departments can offer their project sponsors once they convert to agile methods. In order to succinctly express

how DW/BI professionals can achieve the lofty goal set forth by this customer’s bill of rights, I close this book with an

extended version of the agile manifesto—one that accommodates the many innovations discussed in previous chapters.

MAKING THE RELEASE CYCLE A REPEATABLE PROCESS

Chapter 1 suggested that EDW projects are slow and expensive because their leaders fear making a mistake in

requirements or design that will wipe out months of extract, transform, and load (ETL) programming. Non-agile

DW/BI teams believe they should mitigate this risk by compiling a complete set of requirements and design specifica-

tions up front, before any coding commences. Unfortunately, this “big-spec up-front” approach causes a long delay

between the day the business staff members describe what they need and the moment they can begin solving their press-

ing problems with a business intelligence application. Big specifications up front also prevent frequent business reviews

of completed work so that mistakes in application coding, solution mapping, and business concepts creep into the appli-

cation, letting development teams invest months into building an inadequately designed application.

We have seen in the preceding chapters that agile versions of requirements management, data modeling, and quality

assurance can eliminate the risks that call for big specifications up front. However, we have discussed the agile EDW

503
Agile Data Warehousing for the Enterprise. DOI: http://dx.doi.org/10.1016/B978-0-12-396464-9.00019-9

© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396464-9.00019-9

practice elements only one at a time, each in isolation. New agile EDW team leaders will benefit from a step-by-step list of

actions that places all these techniques into a single, repeatable process, making them easier to deploy evenly during their

first several projects. For me, the best packaging for such a step-by-step approach has always been the subrelease cycle.

Why package the agile EDW practice areas into the cycle for a subrelease rather than for a complete release or

perhaps something shorter, such as an iteration? The cycle for building a complete application release is too lengthy—it

transpires only once per project and thus does not provide team leaders with frequent enough checkpoints to dependably

validate developer progress. At the other extreme, the development iterations are so small in scope that they would

force the team to overlook data management issues that play out across the multimonth arc of an EDW project.

Occurring three or four times per year, the agile EDW subrelease cycle fits well between these two extremes and

will provide the development team with just enough feedback to fine-tune its implementation of the agile practices to

match the situation at hand.

In Chapter 6, we explored how the development teams can employ the subrelease cycle to drive adverse risk out of

EDW development projects. After every few development iterations, the team should present the application’s current

build as a release candidate to the project’s near stakeholders in order to get vital, constructive criticism of the product

from the company’s departmental directors. Should these directors accept the candidate, the team can promote it into

production usage and then receive further feedback from the all-important end users.

Throughout the years, I have found that subrelease cycles are more effective if, during the months that they take to

complete, teams pursue them through a particular set of steps:

1. Workflow-driven data governance and prototyping

2. Associative data discovery

3. Collaborative source-to-target mapping

4. Live data prototyping

5. Hyper-modeled key integration points

6. Enriched hyper-modeled solution

7. Collaborative analytics

8. Model-driven solutions

This recommended progression of topics guides the team in steadily answering some major questions concerning the

subrelease as a whole—questions that do not fit comfortably within a single development iteration, such as the following:

� What are the company-wide definitions for the data elements that the data warehouse will provide?
� How will company staff members interact with the data warehouse in order to maintain the proper encodings for

fundamental data items?
� What should be the key integration points between the diverse subject areas within the data warehouse?
� How will the users actually use the information that the EDW team has proposed to supply them?
� Which of the business rules creating new data elements should be implemented in the warehouse, the business

intelligence application, or left to the end users to calculate for themselves?

The subrelease cycle described previously provides a structured means for teams to derive just good enough answers

to these questions—which revolve around issues of data governance, data integration, and data derivations—to allow

the next several development iterations to proceed without getting waylaid by major, unanswered questions.

In practice, many EDW teams must center their development practices on both data governance and application

quality. Data governance enables them to deliver information sufficiently standardized so that all business departments

can use it, and quality assurance allows them to confirm that they have followed those guidelines. Though we explored

quality assurance extensively in Part V, we should take a moment to clarify what we mean by data governance so that

we can properly define a subrelease cycle to support it as well.

TRADITIONAL NOTIONS OF DATA GOVERNANCE

Throughout the years I have spent presenting agile data warehousing techniques to DW/BI managers, many of them

have scoffed at the agile approach, claiming that an incremental method will crash and burn upon the rocks of data

governance. These skeptics do not believe a data warehousing team can appropriately plan a company-wide information

management process working one small piece at a time, and they therefore dismiss agile data warehousing completely.

504 PART | VI Integrating the Pieces of the Agile EDW Method

I certainly understand their concerns, but I believe they are misinterpreting the concept of data governance so that it is

an impossible task to begin with. By reframing the notion of data governance so that it matches the best practices of

enterprise information management, I believe we can easily craft an incremental approach that will support it.

For the large enterprise, standardized metrics and master data are essential for understanding the relative

performance of the business units and reallocating resources between them as they struggle to meet market threats and

opportunities. Standardized metrics are typically numerical quantities that all business departments understand and will

acknowledge as honest representations of their situation and performance. Master data elements are standard labels and

categorizations of crucial corporate entities, such as customers, locations, and product, that allow the business depart-

ments to analyze and aggregate standardized metrics in a way that others will readily understand and accept. “Data

governance” is the overarching efforts within a company to achieve high-quality master data and link it to standardized

business metrics. More precisely, we can define it as the exercise of decision making and authority to ensure the

availability, usability, integrity, and security of the data employed in an enterprise (a consolidation of definitions taken

from [Rouse 2007] and [Thomas 2014]).

Without effective data governance, standardized metrics and master data are impossible to achieve. Poor data

governance leads to data disparities—that is, situations in which comparable questions generate conflicting answers

depending on where and how a person retrieved the information used to answer them. Data disparities can severely

disrupt corporate decision making in at least three ways. First, executives will struggle to agree on simple facts such as

how well certain products are selling or how many customers the company has gained and lost. With data disparities,

meetings can degenerate into arguments about whose spreadsheets are correct. Second, departments will maintain their

own data marts because they cannot understand or trust the information in the enterprise data warehouse. Third, chang-

ing the data warehouse for a new requirement takes months just to research and plan because the impact on master data

elements cannot be readily assessed [Eckerson 2001].

Note that these definitions imply an enormous undertaking for the company’s staff members. A sound data

governance program requires a governing body or council, a defined set of procedures, and a plan to execute those

procedures [Rouse 2007]. To achieve high data quality within master data and standardize metrics, the business depart-

ments must not only harmonize the definitions they employ for the hundreds of data elements they wish to share but

also adopt complementary business processes for populating their information systems with values that comply with

these definitions. With data quality so dependent on the thinking and actions of the business staff, data governance

must be a business-led endeavor. With data governance requiring such a widescale change in business work patterns, it

should be no surprise that only 1 out of 10 companies have implemented an enterprise data strategy [Fisher 2009]. IT in

general and an EDW team in particular are not in a position to dictate to the business that they will undertake a data

governance program. Instead, they can only be facilitators of data governance, aligning the information systems they

manage with the data governance policies the business staff has decided it wants to follow. Formulating a data gover-

nance program as an IT-led effort invariably leads to failure because if the business staff are not enthused and dedicated

to standardizing their thoughts and actions as they create operational data, IT will not be able to force them to maintain

the quality of the company’s information.

For these reasons, rejecting agile data warehousing because one cannot imagine how the EDW team will achieve

effective data governance is unreasonable. This dismissal assumes that IT could drive the data quality effort within a

company. With business involvement absolutely essential and business enthusiasm for data governance so limited,

EDW development teams cannot pursue data governance on its own, whether or not they use incremental delivery

methods to construct the enterprise data warehouse. A far more realistic goal would be to require agile EDW techniques

to effectively support those data governance activities that the business side of the company has decided to pursue.

Fortunately, that goal is easily achieved.

A Life Cycle for Data Governance

Data governance is actually just one component of a larger discipline called enterprise information management (EIM),

which was introduced in Chapter 11 when considering how agile EDW teams can best support nonfunctional require-

ments coming from the company’s enterprise architecture group. EIM is the disciplined activities a company must take

to manage its data and all other types of enterprise information as an asset [Ladley 2010]. EIM is comprised to two

complementary practices: data governance and information management.

As shown in Figure 19.1, an informal way to describe the division of labor between these two practices is that

“data governance is defining and planning the right things to do, information management is actually doing those things

The Agile EDW Subrelease Cycle Chapter | 19 505

right” [Ladley 2013]. Data governance is the business-led portion of the EIM effort. Information management

comprises the systems design and implementation work that IT must provide to achieve the data governance the

business has defined.

In his 2010 book, John Ladley provides an iterative approach for the business side of a company to pursue

when it decides to invest in EIM [Ladley 2010]. I believe this cycle provides a reliable, step-by-step process that

companies should follow in order to achieve effective data governance. During the previous chapters on requirements

management, this book described an enterprise-capable requirements management (ERM) process for defining the

application an agile EDW team intends to build. This project definition process started with sponsor concept briefings,

included a vision document, and resulted in a current estimate. Not only does this ERM value chain of artifacts enable

a team to move smoothly into the development iterations of a subrelease cycle but also it links quite well with the EIM

process Ladley proposes, as shown in Figure 19.2. Because this linkage is so extensive, the agile EDM project startup

process provides a strong sequencing for the information management activities needed to support a company’s data

governance program, should one exist. I summarize the complementary nature of these two processes level by level, as

each progresses through its own particular form of planning, approaching the moment when a team can execute upon

those plans. The dividing line between steps 5 and 6 in Figure 19.2 indicates where both of these linked cycles

transition from planning activities to putting their plans into action.

The EIM cycle begins with alignment, which Ladley describes as an effort to understand the goals and objectives

needed to articulate a direction for enterprise information management within a company [Ladley 2010]. Alignment

includes a discovery process to uncover the primary drivers that determine the performance of the business. Examples

of these drivers are the executives’ desire to improve market share, increase customer interactions, or achieve faster

product innovation. This discovery process will identify the same high-level goals and objectives that the agile EDW

team leaders uncover when they draft their sponsor’s concept briefing and stakeholder requests, artifacts created as part

of Iteration �1 of the ERM project-definition process.

The next level in the EIM cycle is vision, during which the data governance team proposes information

management goals in terms that the business staff can understand so that they can achieve buy-in for particular

area of the enterprise where the EIM program has decided to improve the company’s management of information

assets. The EIM vision artifacts include business cases for the proposed policy changes, a preliminary set of infor-

mation requirements, and an initial business model. These elements closely match the solution statements, feature

and benefits listing, and target business model called for by the agile EDW project definition process’s vision

document.

Level 3 of the EIM process is an increasingly detailed business model. This model consists of a more complete

expression of the company’s conceptual data model, information requirements, usage scenarios, and information taxon-

omy. These elements align very well with the work product that the EDW team leaders will deliver as part of their

Iteration 0 startup work, which includes a 80/20 logical data model for the warehouse, a supporting data dictionary,

ETL design patterns, and the first set of source-to-target mappings.

Enterprise information
management

Data
governance

Information
management

Identifying the
right things to do

Do those things in
the right way

Business-led program IT-led program

FIGURE 19.1 Enterprise information management includes a business-led data governannce program and an IT-led information managment

program.

506 PART | VI Integrating the Pieces of the Agile EDW Method

Next, the data governance team invests in an architecture, during which the team drafts the following artifacts in a

business-intelligible format [Ladley 2013]:

� Enterprise metric architecture
� Information application framework
� Business data management architecture
� Data governance architecture
� Data quality architecture
� Information value chain architecture
� Community social network architecture
� Detailed taxonomy

Many of these components will provide crucial requirements for the data warehousing applications that the

EDW team has been asked to develop. The previous list is daunting if one views it as a set of artifacts that must be

complete and perfect before the data governance team moves on to the next level of the EIM process. Providing 100%

complete versions of these artifacts is counter to EIM best practices, however. Ladley urges EIM teams to never

implement more data governance than they can sustain [Ladley 2013]. He defined the EIM cycle so that companies can

approach information management iteratively, implementing with each effort only the policies that the business staff

will be able to support with the changes in their thinking and daily work actions.

Alignment

Vision

Business
model

Architecture

Sustain

Road map

Sponsors concept briefing
stakeholder requests

Vision document

Iteration 0

Elaboration iterations
(1 & 2)

Subrelease cycles

Current estimate

Enterprise information
management

Agile enterprise data
warehousing project start-up

1

Level

2

3

4

5

6

P
rep aration

Sustain

FIGURE 19.2 Agile EDW project start-up aligns well with the data governance cycle. Adapted from [Ladley 2013].

The Agile EDW Subrelease Cycle Chapter | 19 507

The fact that the data governance team will be pursuing the EIM architecture incrementally essentially mandates that

the enterprise data warehouse be constructed iteratively as well. Fortunately, agile EDW practices will accelerate IT’s

ability to support iterative EIM, to the point that slow development of DW/BI applications will no longer limit how much

EIM the company can achieve. The philosophies and techniques offered in this book are thus perfectly aligned with the

realities of the business-led data governance process in which EDW’s customers will be immersed. When starting a pro-

ject, the agile EDW team pursues an elaboration phase during the first couple of iterations. Those iterations are dedicated

to proving out the architecture of the new areas being added to the enterprise data warehouse. As the data governance team

works through each increment of the EIM architecture, the agile EDW team leaders can utilize the resulting EIM artifacts

as business and technical requirements for the modules their teams will build during their elaboration development work.

The last prep step in the EIM cycle before the company executes its data governance plan is to provide a roadmap. This

roadmap prescribes milestones for rolling out the newly defined data governance process as well as the order in which the

company’s major business applications should align with the data governance plan. Here, the agile EDW method can enable

the data governance team to be more precise. Working in isolation, the EIM roadmap can depict the desired alignment of

business applications only in terms of EIM maturity phases [Ladley 2013]. Because they are not close enough to the IT

work required to align these systems, the EIM team cannot provide a roadmap with the likely dates when these systems will

be adapted to support the data governance plan. The agile EDW team, however, will prepare a current estimate once it has

completed the elaboration-phase iterations. Using the development team velocity established during these iterations, the

team can story point the entire backlog of work and then calculate the number of iterations that will be required to achieve

the target changes in the enterprise data warehouse. Of course, this calculation is a rough estimate, and the team’s velocity

can later change, but at least this estimate of the number of iterations needed will be evidence-based and can thus provide

meaningful dates for when the features called for by the EIM roadmap will be available.

Finally, the EIM team needs to put the data governance plan into action and then sustain the corporate data quality.

The sustain activities include training business staff in the new work patterns required, the development or modification

of the information systems that the staff will use, plus metrics-gathering activities and corrective actions when data

quality does not meet the goals laid out in the roadmap. For the agile EDW team, the sustain level of the EIM process

translates directly to iterative DW/BI application development. The subrelease cycle will provide the small doses of

requirements, design, development, and quality assurance work necessary to evolve the corporate data warehouse to

support the master data, standardized measures, and data quality metrics the EIM plan needs in order to track business-

unit compliance with the data governance policies adopted.

Data Governance Actions for the EDW Team

The agility of the EDW team to deliver evolving business analytics systems will translate directly into fast feedback

loops for the data governance team, making the EIM process all the more effective at detecting and correcting data

quality issues. To this end, the agile EDW team leaders can support the EIM program as they work with the company’s

various business units to develop the enterprise-level data integration and reporting applications:

� They can familiarize themselves with the standards defined by the current version of data governance regulations,

notify data governance when they encounter source systems that do not comply, and ensure that new EDW designs

do align with those standards.
� Because they are working closely with many business staff members, they can collect end-user opinions regarding

the effectiveness and accuracy of the data governance regulations.
� They can document cross-business-unit data elements encountered within their work on individual projects and bring

them to the data governance board for inclusion in the EIM standards.
� They can provide the repositories and data transformations needed to implement the data governance decisions in

existing or new portions of the enterprise data warehouse.
� The can prototype proposed EDW features in a way that allows business staff to see and evaluate each element’s

impact on data fields included in the data governance plan.
� When application prototypes are approved, they can implement those enhancements to the EDW in a business-

reasonable time frame.

In essence, the EDW team can provide an important service for detecting discrepancies between the corporate data

as it exists and EIM’s data governance standards. When those gaps reside in the enterprise data warehouse, the EDW

team can work quickly to resolve them.

508 PART | VI Integrating the Pieces of the Agile EDW Method

Machine-Assisted Data Governance for the Subrelease Cycle

So that the agile EDW team can provide the invaluable services outlined above, I have defined Step 1 on the subrelease

delivery cycle proposed below to support data governance. The EDW team can execute this step manually, but my

experience shows that the development team will be far more effective if it leverages its efforts with a workflow-driven

data governance and prototyping tool. Whether manual or machine-assisted, the four actions within this data governance

step will be as follows:

1. Seek out and define shareable data elements while working with subject matter experts.

2. Model standardized BI metrics and qualifiers for business staff review.

3. Assemble some sample data that can illustrate these shared elements.

4. Load sample data into the data model proposed for the BI solutions so that end users can review a prototype of the

requested capabilities.

5. Adjust that prototype until subject matter experts approve of proposed features for the warehouse.

Products currently on the marketplace enable agile EDW teams to pursue this work with many times the productivity

compared to manual techniques [Balanced Insight 2011].

Consider Action 1, for example. EDW teams defining data elements manually would call for large meetings of staff

members from multiple business units at the beginning of a project, asking them to agree on common definitions for a

long list of potentially shareable data items. Often, these meetings would consume days of the participants’ time because

marketing, sales, fulfillment, billing, and warranty all have inherently different definitions for common business concepts

such as customer, product, and cost. For example, “Customer” to the marketing staff is any head of household in the

company’s service area because marketing is most interested in contacting potential buyers. For sales, a customer is

anyone who has inquired about the company’s goods and services, whereas fulfillment and billing consider a customer as

a person who has placed an order. These differences become ever more extreme when considering the contrasting

perspectives of the business units dedicated to unique segments of the marketplace, such as commercial, consumer, and

wholesale merchandising. Ironing out shared definitions for the company’s master data elements often takes weeks of

meetings, generating a large collection of notes created by the EDW staff, not all of which will be processed, reviewed,

and correctly incorporated into the design of the conformed dimensions included in the next application release.

Workflow-driven data governance products make this business-input gathering work far easier, faster, and more

effective. Instead of calling for long meetings, the business analyst on the EDW team can interview one or two subject

matter experts, type their definition for a master data element or standardized metric into a data governance repository, and

then submit that definition for approval by the other stakeholders within the company. The workflow engine alerts these

stakeholders to the new definitions waiting for their review and then regularly reminds them of any waiting items until they

process each submitted definition. To review a submission, the stakeholder clicks on the URL in the email to see that parti-

cular term in the tool’s user interface, reads the proposed definition of the shared item, and then either approves the defini-

tion or types in how one could improve upon it. Later, the business analyst can review the comments from all respondents

in the data governance repository and update the candidate definition using the input from the stakeholders. He or she can

then resubmit each element to the workflow engine for recirculation and review among the stakeholders.

Eventually, the stakeholders will either arrive at a consensus on a definition or suggest that an element be divided

into two or more parallel definitions in order to allow for variations by business unit. By utilizing a workflow-driven

data governance utility, the entire company has (1) avoided many hours of expensive meetings, (2) arrived at a set of

usable definitions and stored them in an online corporate data dictionary, and (3) documented the evolution and

approvals of each definition in that dictionary.

With approved items in the repository, the EDW team can begin modeling standardized BI qualifiers and metrics

(Action 2) by using this data governance tool to visually stack the defined items into hierarchies, combine the hierar-

chies into proposed dimensions, and connect those dimensions to the standardized metric definitions also residing in the

repository. Using the same workflow engine, the team would send out this candidate dimensional model to the business

stakeholders, again letting them approve or send back comments until they reach a consensus on the proposed design.

Once the organization has a working business design for standard metrics and dimensions, the EDW leaders can

then collaborate with their product owner to search through source systems for good examples of the data to place in

this new dimensional model (Action 3). Once they have identified a modest number of usable data records, the EDW

team would use the tool to load the sample data into the dimensional prototype. Using the workflow engine again, they

would send out the URL to the stakeholders so that they can see the hierarchies they agreed on previously, this time

The Agile EDW Subrelease Cycle Chapter | 19 509

with representative data displayed within them. Based on the comments fetched by the workflow engine on this

data-enriched prototype, the EDW team leaders will evolve the proposed dimensional solution until the stakeholders

decide whether it is worth building.

At this point, the EDW developers possess

� a rock-solid, tangible expression of business requirements for those upcoming aspects of the next EDW subrelease

that will support data elements under data governance;
� approved definitions for the entities and attributes involved; and
� sample data that the company can use for testing and demonstrations once the necessary data transform modules

have been programmed.

All this was accomplished via asynchronous workflow with little time spent in meetings listening to the business

staff argue over definitions and little or no time spent performing ETL programming.

THE AGILE EDW SUBRELEASE VALUE CYCLE

With the proper role for an DW/BI team in data governance outlined previously, we can now assemble a

repeatable value cycle for an agile EDW team that will guide it in defining, coding, and validating the multiple sub-

releases needed to build an application. Figure 19.3 presents the eight steps that my colleagues and I typically

employ once we reach Level 6 of the startup process illustrated in Figure 19.2. With this cycle, the team steadily adds

value to either the company’s understanding of the application it wants to build or the current subrelease candidate of

that application.

Integration specs

Full analytic specs

Count-based analytics

3

Collaborative

source-to-target

mapping

Bus

80/20 specifications

Dev

2

Computer assisted

data discovery

Dev

Bus

Data sourcesBusiness-level designs

1

Workflow-driven

data governance

& prototyping

Dev

Bus

Stakeholders

Full analytics

4

Live-data

prototyping

Dev

Bus

5

Hyper-modeled key

integration points

Dev

Bus

8

Hand-crafted

business rules

Dev

Bus

6

Enriched hyper

modeled solution

Dev

Bus

Enriched
attribution

Fast delivery

Fast requirements

Production usage

7

Dev

Collaborative

analytics

Bus

Stakeholders

FIGURE 19.3 Agile EDW subrelease cycle.

510 PART | VI Integrating the Pieces of the Agile EDW Method

This cycle naturally divides into two sets of steps: (1) those that allow the team to quickly gather the

requirements needed to guide the programming of the next subrelease and (2) those that allow them to rapidly

deliver upon those requirements. Each of the steps in these two groups can be iterative, allowing the team to make

more than one pass as needed to accomplish the objectives for each of them. For most, the iterations will involve

expressing information gathered from business subject matter experts and then validating it with them. The fact

that the team may need to iterate on many of these steps makes it difficult to portray how this cycle progresses

across time because the activities may actually split and recombine multiple times as the team works its way around

the process. For example, the product owner and the project architect may accomplish enough data governance

during the first step to enable the systems analyst to start working on Step 2 while they return to invest more time

in the field definitions called for by Step 1. In this case, two streams of work will be making their way around

the cycle and may not resynchronize until the moment the programmers begin coding complex business rules in

Step 8.

The point of the subrelease cycle is to provide EDW project leaders with a clear notion of a value chain of activities

that will allow their teams to repeatedly define and create new subrelease candidates, saving time through accuracy and

well-timed precision. As long as the team leaders can derive from this cycle a handful of well-articulated developer

stories for the programmers to code every iteration, no one will care whether the project leaders have one or many cycle

steps simultaneously active.

When seeing the subrelease cycle for the first time, some agile practitioners have been disquieted that I describe

many of its steps in terms of both the human activities involved and the productivity tools the developers would use.

These practitioners believe that methodological steps should be defined purely with activities because each team may

employ a very different tool for a given work activity. Fortunately, a team could perform the steps of the recommended

value cycle nearly as described, even if its developers want to conduct all the suggested work by hand, so mentioning a

tool type for each step will not weaken the presentation. Although mentioning tools makes the descriptions a tad less

theoretical, I still identified the appropriate tool type(s) for each step because developers do in fact work somewhat

differently (usually better) when they employ a productivity tool for a given task.

The Fast Requirements Portion of the Subrelease Cycle

Steps 1�4 of this subrelease cycle allow the team to progressively define the data elements that the target subrelease

will deliver and the business rules required to properly load them.

Step 1: Workflow-Driven Data Governance and Prototyping

As described in the previous section, one or two business analysts can perform the data governance and prototyping

step using a workflow-driven tool. They repeatedly send out candidate definitions of key business terms for comment

and approval by the members of various data governance committees. The business staff members may have to iterate a

bit on their own as they consult with others in the company in order to decide how each business unit wants to define

the requested terms.

After defining the business terms, the EDW analysts assemble them into hierarchies, dimensions, and facts and then

use the workflow engine again to elicit stakeholder comments and approvals for these modeled constructs. The analysts

next provide sample data matching the proposed star schemas, which the tool then places in a sample semantic layer it

has generated for the company’s preferred business intelligence front-end tool. Finally, after building a few illustrative

graphs and pivot tables on this data-enriched semantic layer, the analysts can once more employ the workflow engine

to circulate these dashboard components among the end users. With just this first step of the agile value cycle complete,

DW/BI arrives at an approved concept of the subrelease it proposes to build over the next few programming iterations.

Without consuming any funds for programmer time, the EDW team leaders were able to visualize for end users the

entire increment of the data warehouse’s design, from the business terms to be used to a good sample of what the end-

user dashboard will contain.

Step 2: Associative Data Discovery

With the basic target structures now defined and approved, the EDW leaders can deploy the data cowboy discussed in

Chapter 11. The data cowboy’s objectives will be two-fold: (1) Vet the data in the source systems from which the

project architect proposes to feed the data warehouse, and (2) work with the product owner to further elaborate the busi-

ness rules that the programmers should follow while transforming that source data. Here, the data cowboy will proceed

The Agile EDW Subrelease Cycle Chapter | 19 511

fastest if he or she uses a BI visualization tool such as an associative query engine that will provides machine-assisted

join discovery when fed a large number of source records. These engines allow the team to easily build candidate joins

between source tables and try out proposed transformation rules, quickly zeroing in on the precise logic that the ETL

modules should utilize.

Step 3: Collaborative Source-to-Target Mapping

Guided by the findings of the computer-assisted discovery work, the team’s product owner and system analysts can

now begin spelling out the source-to-target maps (STMs) that the developers should follow when they program the data

warehouse’s ETL modules. This work can be performed by hand if the effort is small enough for one or two systems

analysts to finish. When many analysts are required and/or this step will entail a steady, high volume of STM entries,

my colleagues and I have found that we produce far more useful mappings using a collaborative source-to-target author-

ing tool. These tools are multiuser and provide good version tracking, enabling EDW teams to easily resolve those

moments of high confusion that occasionally beset enterprise-scale projects. Moreover, these tools streamline the STM

authoring process so that analysts can redirect their energy into developing more accurate and precise mapping speci-

fications, sometime to the point where they are machine actionable and can be transferred directly to the ETL and

automated test engines, saving considerable development time [Norris 2012]. The STM authoring tool also provides a

permanent repository of detailed to-be specifications that the current team can later use for code walkthroughs and

future teams can use for impact analysis when the data warehouse’s design must be updated.

Step 4: Live Data Prototyping

Armed with a good notion of how the source data must be joined and transformed to create value for the company, the

EDW team can now configure a trial integration of the source objects using one of the data virtualization servers

(DVSs) discussed in the agile data engineering section of this book. As described in Chapter 13, a DVS will allow the

developers to simultaneously join a wide variety of relational and nonrelational data across many brands of database

management systems. These DVS-performed joins will allow the team to validate many of the integration and trans-

formation rules identified in the previous steps using operational data or replicas of them, thus providing a “live-data

prototype.” The team leaders should vet this prototype with not only the product owner but also the project’s near stake-

holders so that this step results in a validated, fairly detailed design ready to program. The team will not be able to

confirm all of the business rules and integration points using this virtual star schema because the DVS tools have some

performance and transformation limitations. They will be able to validate the core of the subrelease’s solution concept,

however, making the output of this step and the entire fast requirements portion of the value cycle a very strong 80/20

specification.

The Fast Delivery Portion of the Subrelease Cycle

At this point, the team now understands well the nature of the next subrelease and can pivot to the labor-intensive

portion of the value cycle in which it has to program the data transforms identified by the fast requirements steps. The

first part of the cycle has made the risk that a major requirement or design point has been overlooked exceedingly

small. The programmers will be able to resolve the remaining 20 percent of the specification by working in real time,

eye-to-eye with the team leaders and the product owner.

The next four steps steadily work their way through the remaining unknowns, each time chipping away at the

uncertainties and risks. They start with the core of the desired data integration and then drape details and derived

columns over that backbone, with the team validating the results of each step with the product owner. Notice that at

any point during the remaining steps, the product owner can declare the existing build “good enough” and request

that it be presented as a subrelease candidate to the project’s near stakeholders and then promoted into production

usage if approved. Not every set of features has to be programmed if, for example, a touch of data integration

augmented by a large dose of data virtualization will suffice. In this way, many subrelease cycles end in success far

earlier than anyone imagined, a fact that makes the agile EDW team appear to be delivering value to the customer

all that much faster.

Step 5: Hyper-Modeled Key Integration Points

In this step, the team employs either a hyper normalized data modeling technique or a hyper generalized data warehouse

generator to quickly implement the major entities and the key integration points specified by the first half of the

512 PART | VI Integrating the Pieces of the Agile EDW Method

subrelease cycle. Seeing the backbone of the proposed target data often enables the product owner to point out major

conceptual mistakes before the developers have invested a large amount of time into a particular solution concept. This

step focuses on linking together the primary and foreign keys between the target entities. For attributes, the developers

can replicate many of them straight from source. Because the data warehouse’s fact tables will have only basic dimen-

sional qualifiers attached, the end users may be limited to only rudimentary analyses, perhaps only “things you can

count and sum, sliced and diced by text values taken straight from the source systems.” Even with this basic functional-

ity, the product owner should be able to address many of the user stories from the project backlog and even perform

some of the theme-level actions the department directors have requested.

Step 6: Enriched Hyper-Modeled Solution

Once the business has validated the key integration points utilized in the previous step, the EDW can leverage the

hyper-modeled technology to quickly enrich the warehouse’s data repository with the easier business rules found in

the project backlog. The hyper-modeled data repository allows the EDW team to deliver these enhancements without

expensive re-engineering of tables, even if the business had opted to put the results of the last release candidate into

production usage. During this step, the team typically adds the derived values whose formulas are well understood and

therefore represent little risk. If the source systems offer competing versions of key business entities such as customer,

product, and location, this step can begin to resolve those conflicts by creating “golden records” in those areas in which

the business rules are clear. With this step in the value cycle, the team will add a far richer set of “slice and dice” capa-

bilities to the previous build, often augmenting the basic counts and sums with some beginning master data elements

and the easier derived metrics the business has asked for.

Step 7: Collaborative Analytics

Now that the end users have moderately rich analytics to work with, the EDW team leaders should place a version of the

subrelease into production (or at least the user acceptance environment) and step back for a while. They need to let

the business departments work on their own with the real data in the warehouse to determine if the information and insights

it provides are substantive and accurate. This temporary version of the warehouse will contain only replicated columns and

the easier portion of the requested derived values and master data elements. It will still serve to let the product owner

and business users finish researching the exact logic needed for the remaining, complex data transformations required.

A good set of productivity tools exist for this step of the release cycle. Collaborative analytics environments allow

end users to query the warehouse; then filter, sort, and combine results sets; and finally communicate with each other

about what they have found in the data [Devlin 2009]. These environments provide a web-based interface for working

with the warehouse data so that they can build their own derived columns using any of the basic and advanced com-

mands found in mainstream spreadsheet packages. With this level of capability, the end users can build the analyses

they need to get real work done using this preliminary version of the warehouse and thus pursue a good deal of the

theme- and epic-level stories from the project backlog. Moreover, these tools provide a social-networking environment

that allows end users to share their results, polling each other and rating the analyses they have built on top of the data

warehouse information.

Best of all, when the end users finally inform the EDW team that they have identified the full solution to the

business problems, the developers do not need to ask them to explain what they have done. The collaborative analytic

environment recorded every query, derivation, and discussion that the end users had while working with the temporary

data warehouse so that the specifications for the last set of user-requested features are now largely documented in the

tool’s event repository.

Step 8: Model-Driven Solutions

With this last step in the subrelease cycle, the EDW team needs to build the value-added loops discussed in the chapters

on agile data engineering. This value-added processing will deliver on the specifications discovered and documented

during the previous steps of the subrelease cycle. There may be a few specifications still requiring discussions with the

product owner, but the preceding steps of this agile value cycle will ensure that their scope will be small. On the rare

occasion that a new specification emerges during this step that requires a major modification to the structure of the data

warehouse, the hyper-modeled technology employed by the agile EDW team will in nearly all cases keep the impact of

the changes localized. In fact, teams using a hyper generalized EDW generator and management tool will be able to

accomplish most of those structural changes and the data conversion required by working solely with the project’s

business model rather than having to interpret the changes at the logical and physical level, too.

The Agile EDW Subrelease Cycle Chapter | 19 513

All told, the combination of agile work methods, techniques, and tools described previously allows the EDW team

to follow this iterative subrelease cycle while collaborating closely with the business, vetting designs before investing

expensive programming resources, and thereby steadily chipping away at the unknowns that could undermine an

enterprise data warehousing project.

CENTERING THE VALUE CYCLE ON DATA GOVERNANCE AND QUALITY

The version of the subrelease value cycle previously presented focused on accelerating the team and mitigating the risk

of the project. We can extend this diagram by placing additional concepts at its center, allowing it to provide guidance

regarding the data governance and quality assurance goals that the team must also achieve.

Deepening the Support for Data Governance

Figure 19.4 enhances the previous value cycle diagram to address the needs of the company’s EIM program by placing

data governance at the center of the EDW subrelease development process. By doing so, we will guide the EDW team

in focusing its contribution to the business-side of EIM, especially the data definition aspects of data governance.

In Figure 19.4, the dotted arrows pointing toward the center represent contributions that EDW team leaders can

make during each step of the value cycle to a company’s data governance process. Taken together, these flows will

Data governance

Integration specs

Full analytic specs

Count-based analytics

3

Collaborative

source-to-target

mapping

Bus

80/20 Specifications

Dev

2

Computer assisted

data discovery

Dev

Bus

Data sourcesBusiness-level designs

1

Workflow-driven

data governance

& prototyping

Dev

Bus

Stakeholders

Full analytics

4

Live-data

prototyping

Dev

Bus

5

Hyper-model-driven

integration points

Dev

Bus

8

Hand-crafted

business rules

Dev

Bus

7

Dev

Collaborative

analytics

Bus

Stakeholders
6

Enriched hyper

modeled solutions

Dev

Bus

Enriched
attribution

Fast delivery

Fast requirements

Production usage

Definitions added & updated
in enterprise data dictionary

Definitions referenced from
enterprise data dictionary

FIGURE 19.4 Agile EDW subrelease cycle showing support for data governance.

514 PART | VI Integrating the Pieces of the Agile EDW Method

contribute a rich collection of target column definitions, which will be extremely reliable given the multiple validations

they will receive from both business and the EDW developers during the many steps of the value cycle. The solid

arrows indicate areas where referencing the data governance information collected during early steps of the subrelease

assists either business or EDW team members in completing their work. These flows consist of the following:

Step 1: Column and star schema object definitions vetted by the business while examining the data governance prototype

Step 2: Further target column definitions and initial business rules stemming from the data cowboy’s discovery work

Step 3: Detailed business rules and target column definitions gleaned from the system analyst’s source-to-target

mappings

Step 4: Additional details on the meaning, usefulness, and limitations of the proposed analytical application’s

components (e.g., a star schema’s metrics and dimensions) given the stakeholder’s review of the live data prototype

Step 5: Further documentation regarding the basic set of metrics and dimensional attributes the business considered

while reviewing the backbone of the proposed data solution

Step 6: End-user refinements on the meaning and usefulness of the derived columns defined during previous steps

Step 7, outflow from center: The data definitions for data warehouse elements to date, which will guide the end

users as they utilize the candidate version of the data warehouse to solve business problems

Step 7, inflow to center: Refined definitions for both existing and newly requested features of the analytic

application, based on the innovations that end user created while using the candidate version of the warehouse

Step 8, outflow: Data governance definitions that will guide the EDW developers as they build the remaining

components requested by end users

Step 8, inflow: Definitions for the last set of derived columns just programmed into the subrelease candidate

Achieving World-Class Quality Assurance

We can also extend the original version of the agile subrelease value cycle diagram to emphasize the quality assurance

aspects of the EDW team’s development work. Figure 19.5 places quality assurance at the center of the cycle and uses

inflow arrows to indicate the steps at which the team should be contributing test cases to the test suites for the sub-

release. Similarly, the outflow arrows document where the EDW team should be heavily utilizing the integration test

suites to detect coding and design errors. Steps 1�5 focus on subrelease requirements and an initial design. By and

large, these activities define the next version of the application. The diagram encourages the team leaders to generate

validation cases for the test engine during each fast requirement step so that when the second half of the cycle focuses

on delivery, the team can use those test cases for test-led development. If they keep quality assurance in mind during

the first half of the cycle, the EDW developers will indeed find the test repository full of test cases for their modules

when they begin development in earnest during steps 5�8. Generic agile textbooks define test-led development for the

programming iterations. This diagram instills the practice for the next higher delivery process—that of an entire sub-

release. In my experience, teams that conscientiously pursue test-led quality assurance at both these levels will find

themselves delivering applications that are nearly defect-free.

GUIDING THE AGILE EDW TRANSITION

Now that we have defined a step-by-step process for the subrelease cycle, we can reflect on the overall impact that agile

thinking and development techniques should have on the craft of enterprise data warehousing. With the eight steps

presented above, I believe the agile EDW practitioner’s toolkit is now complete enough to solve the fundamental problem

of enterprise data warehousing, as set forth in the introduction of this book. To the basic notions of Scrum and Kanban

that one can find in the average agile textbook, we have added some adapted coding techniques, advanced requirements

management, agile data modeling, and iterative quality assurance planning. Transitioning simultaneously to all four of

these agile EDW practices will indeed represent an enormous change for DW/BI departments currently employing tradi-

tional development methods. It can easily take a waterfall-oriented DW/BI department 2 years or more to incorporate the

full extent of these practices and tools into its delivery methods. When embarking upon such an extensive voyage, it is

good to have a polar star by which to steer. I offer two such guides to assist the readers’ journey. The first is a “EDW cus-

tomer’s bill of rights” that approximates the world-class level of service that project sponsors and business stakeholders

should receive from their DW/BI departments once the developers have acclimated to an agile delivery approach. The

second is an EDW-specific extension of the agile manifesto that will allow teams to remind themselves of the philoso-

phical tenets that will empower them to achieve the speed and transparency called for by the customer’s bill of rights.

The Agile EDW Subrelease Cycle Chapter | 19 515

The DW/BI customer’s Bill of Rights

In the chapter on risk management, I listed some of the horror stories of failed DW/BI projects related to my colleagues and

I by companies seeking our help in turning around those challenged data warehousing programs. Whether out of

incompetence or ill intent, these customers were, in my opinion, abused by their previous systems integrators. It should go

without saying that every DW/BI customer has the right to be treated honorably, but now that books exist that explain how

to implement an agile EDW delivery effort step-by-step, customers should be able to demand more than just fairness.

I believe they have the right to expect the speed, quality, and lower expense that iterative development methods can offer.

With agile EDW techniques in hand, the outside vendors and internal development teams with which companies contract

should offer their customers a bill of rights. My company shares the following statement with our prospective clients:

Agile quality assurance
(including automated testing)

Integration specs

Full analytic specs

Count-based analytics

3

Collaborative

source-to-target

mapping

Bus

80/20 Specifications

Dev

2

Computer assisted

data discovery

Dev

Bus

Data sourcesBusiness-level designs

1

Workflow-driven

data governance

& prototyping

Dev

Bus

Stakeholders

Full analytics Defect
reports

Test casesDefect
reports

Test cases
4

Live-data

prototyping

Dev

Bus

5

Hyper-model-driven

integration points

Dev

Bus

8

Hand-crafted

business rules

Dev

Bus

7

Dev

Collaborative

analytics

Bus

Stakeholders
6

Enriched hyper

modeled solutions

Dev

Bus

Enriched
attribution

Fast delivery

Fast requirements

Test cases

Production usage

Definitions added & updated
in enterprise data dictionary

Definitions referenced from
enterprise data dictionary

FIGURE 19.5 Agile EDW subrelease cycle showing support for quality assurance.

As a data warehousing/business intelligence application development cus-
tomer, you have a right to work with a vendor that provides:
� Intelligible solutions
� Continuous benefits realization
� Adaptable designs
� World-class quality assurance

516 PART | VI Integrating the Pieces of the Agile EDW Method

Taking these points in order, we can point out first that agile EDW requirements management revolves around

single-sentence statements of business needs, all expressed in the language of end users. There is no reason, then, that

80% or more of a project backlog should not be readily intelligible to the business people who will be paying and

waiting for the data warehouse to be built.

Second, iterative, time-boxed development methods and the agile EDW subrelease cycle provide a straightforward

means for both coding and validating an application one small piece at a time. Therefore, there is no reason the

customer should not see a steady stream of compelling accomplishments pouring out of the project room.

Third, agile data engineering removed the last hurdle to incremental EDW delivery by making it possible to design

and populate an enterprise data warehouse a few tables at a time without risking large re-engineering tasks or ruinously

expensive data conversations when confronted with new business requirements. For this reason, customers should

be able to incrementally refine the information service they request from their BI applications and change directions

altogether when the business they are running must suddenly change.

Finally, automated test engines exist, enabling teams to economically collect and run extensive, detailed test suites

that will achieve full regression testing on a nightly basis. With that level of testing power available, there is no reason

why a production release should not be free from all but the most insignificant defects when it is received by a customer.

The Need for a Business-Side Project Architect

Listing a bill of rights for DW/BI customers raises several challenging questions. An agile EDW toolkit, such as the one out-

lined in this book, is complex, with many interlocking components. How does a project sponsor know whether or not the

development team with which he or she is working understands the toolkit well enough to be able to follow its precepts? If

the development team pays only lip service to the method and neglects to honor crucial portions of its guidance, its business

partners may be unaware that the project is heading toward slow deliveries, high costs, and unacceptable levels of risk—

until it is too late to save the development effort from failure. How can the business sponsor and his or her staff acquire

enough clarity on what the developers are actually doing so that they can be assured that the project in on track to succeed?

I witnessed the advent of the certified Project Management Professional (PMP) in the IT industry starting in the

mid-1980s. Although business partners seemed happy at first that the IT project managers were now following a base-

line concept of how projects should be run, they also found all the new language and diagramming techniques PMPs

employed to be fairly opaque. Although they might have felt some assurance that their projects were under better

control, they also experienced that control belonged entirely to IT, and many of them did not care for that state of

affairs. The business sponsors realized they needed someone on their side who understood both the baseline method

and whether the IT team was following it. Many business units now employ project managers of their own, not to run

the development effort but, rather, to work alongside of IT, tracking events and communicating a project’s intent and

performance to the business sponsors in a language they can understand.

If agile EDW has become more complicated as it establishes a baseline approach, perhaps the customer needs to

employ a similar strategy. IT provides a project architect to lead development projects—someone who can certify that

the money being spent will solve the intended business problem. The business unit footing the bill for the development

effort would be completely in its rights to hire a project architect of its own and insist that he or she be able to work

alongside the IT’s lead architect. The business project architect must have built a data warehouse before using an

iterative method so that he or she will understand what the IT side of the project should be doing, when IT should have

done it, and whether IT really got it done.

The IT project architect must certify the solution built by the team, giving him the responsibility to drive require-

ments, design, and quality assurance. The business project architect would not be responsible for driving these functions

but would need to be active enough in the project’s high-level planning and reviews functions to know that require-

ments, design, and testing were all pursued in a manner that ensures they produced solid, 80/20-level artifacts. Because

he would be observing rather than driving the process, the business-side project architect would have the band width to

monitor two or more projects, so the additional cost of this safeguard for the business sponsor would be relatively small

compared to the size of the EDW development budget.

With a business-side project architect in place, the business sponsor will have two independent voices informing her

that the development team is spending the project’s funds effectively—one from IT and one reporting directly to her. When

these two voices cannot jointly certify that the project was defined, designed, and validated following the agile EDW base-

line, the sponsor will know that something in the project room has gone very wrong. As we have seen throughout this

book, early detection is the key to positioning oneself to overcome a challenge. Adding a second project architect reporting

to the business is an effective way to ensure that problems in project execution get pushed to the surface early and often.

The Agile EDW Subrelease Cycle Chapter | 19 517

Toward an Agile EDW Manifesto

Of course, the flip side of offering a higher level of service is delivering on the promise, a goal that will require a new

mindset on the part of the developers on the EDW team. The mindset for generic agile delivery was encapsulated by

the agile manifesto, posted to the Internet in 2001. Agile EDW teams will need their own version of that proclamation,

one that extends the original in a style that accommodates the ways DW/BI is different from general application devel-

opment. I therefore conclude this book by offering a set of four philosophical tenets that I posted to the Internet on the

10th anniversary of the agile manifesto. They form an “agile data warehousing manifesto” for readers to consider as

they examine the techniques described in my books and begin applying them to projects of their own.

Offering the DW/BI customer a bill of rights will engender a very high level of customer expectations. Setting

lofty expectations can be constructive because it requires the EDW team to be serious and disciplined about

building business intelligence solutions. However, the team may not be emotionally ready to redouble the ardor

with which it pursues development projects. How can EDW team leaders be assured that their teammates will rise

to the occasion?

If a few lines spoken to the customer can create the challenge, then perhaps another short statement spoken to the

developers will instill in them the attitude for success. The agile manifesto encapsulated the new mindset that program-

mers should adopt for iterative and incremental delivery of general software applications. Its four philosophical tenets,

listed in Chapter 2, still readily apply to business intelligence projects. However, the data integration aspects of EDW

applications make data warehousing considerably different from general application development. For this reason,

I have long believed that EDW developers need a few agile tenets of their own that will properly orient them to the big

ideas needed to overcome the difficulties involved in iterative data integration.

Throughout the years, I have offered the extension of the agile manifesto listed in the sidebar below to my custo-

mers, teammates, and students. These four bullets always seem to encourage the high level of open-mindedness, cour-

age, and innovation that agile EDW requires. Because they incorporate the spirit of the method’s new solutions for

risks, requirements, data design, and quality, I believe they will provide readers a handy way to illustrate the new out-

look that EDW development teams will need when they transition to iterative delivery. I provide some explanation for

each of these tenets, expressing the ideas in the same way that my colleagues and I introduce them to the new teams

that we start coaching. Of course, these four short maxims do not convey the entirety of the agile EDW approach, but

they should communicate to new teammates what is different about the agile approach and give team leaders the stage

needed to present the remaining elements of the incremental delivery method they have chosen.

Prompt, Sponsor-Appreciated Results Over Technical Perfection

The original manifesto’s four tenets advocated software developers to concentrate on customer collaboration, working

software, the interactions between individuals, and responding to change as a means to accelerating the delivering of

working software. Whereas these maxims certainly point to a better alternative than process-heavy approaches based on

comprehensive documentation, contract negotiation, and slavishly following a plan, they omit the unifying goal of agile

development and are therefore too weak to depict the new way EDW developers must pursue their projects. What is the

benefit in the abstract notion of “working software”? The challenge facing EDW teams is that data warehousing con-

sumes months and years of time before providing any new competitive capabilities to the company, so our first exten-

sion to the agile manifesto must focus squarely on remedying that predicament. As agile EDW practitioners, we will

provide fast deliveries that delight the people paying for these inordinately expensive projects. In other words, our team

will drive hard toward prompt, sponsor-appreciated results.

Sidebar: The Agile DW/BI Manifesto

A Supplement to the Four Tenets of the Agile Manifesto

(http://www.agilemanifesto.org)

Using Agile techniques, we are finding ways to break through

the problems which used to make data warehousing projects

frequently fail: high cost, slow delivery, and excessive risk.

Through this work we have come to value the following

notions in addition to the tenets of the Agile manifesto:

� Prompt, sponsor-appreciated results over technical

perfection
� Evolving data over iterating on application code
� Managing risk over eliminating uncertainty
� Appropriate technology over maintaining an infrastruc-

tural monoculture

518 PART | VI Integrating the Pieces of the Agile EDW Method

http://www.agilemanifesto.org

Given that today agile techniques have been well pioneered, what is the anti-pattern that DW/BI teams follow that

keeps them from achieving this goal? It is still the desire for a big design up front, particularly a perfect data model.

Today’s development tools for front-end and back-end programming make those portions of an EDW project fairly

predictable. The data model, however, instills our team leaders with great fear because small changes there can under-

mine months of BI and ETL programming. The traditional EDW mindset will not allow our developers to start

programming until the data model is perfect.

We can no longer ask our sponsors to wait months and years while we slowly fine-tune the target data schema until

it obtains a bullet-proof, third normal form. Our customers need business intelligence now, so we must let go of this

notion of the technically perfect data model. The value of the opportunities lost far exceeds the cost of the applications

we are building. If we can deliver in the next few weeks only the most important 5 percent of our customers’ business

needs by patching together landed data with a data virtualization tool and a small bit of data transform programming,

we are going to do it. We will then move on to deliver the next most valuable increment until eventually the customer

has received the business intelligence necessary to enable the company to compete and thrive in its particular industry.

Evolving Data Over Iterating on Application Code

Veteran DW/BI professionals will instantly ask what our team will do if our series of small data warehouse increments

adds up to an unsupportable mess. We will prevent this undesirable outcome by refusing to layer data on top of data

without a plan. Instead, we will utilize the agile hyper modeling techniques that allow us to progressively elaborate our

EDW’s data model.

For the most part, these new data modeling techniques enable us to add the next subject area to a warehouse without

having to restructure or convert existing tables and their already loaded data records. Our front-end tools are already

incredibly nimble enough with regard to providing new visualizations or adapting to new sources. The hyper modeling

techniques bring that same adaptability to the back-end portions of the warehouse. The hyper normalized or hyper

generalized data models they support eliminate the majority of the programming required to create the basic data ware-

house transformations, so throughout the project we will be able to focus on getting the data right instead of coding the

ETL.

On the rare occasions when new requirements make some of our existing EDW structures obsolete, these hyper

modeling paradigms greatly constrain the impact that the necessary design changes will have, thereby keeping the labor

required to re-engineer and reload data to a minimum. Whereas in the past an EDW project would start with a long-

delayed, perfect data model and then spend months trying to get the ETL code correct, agile EDW teams employ

techniques that allow us to (1) focus on meeting immediate needs with our best guess regarding table design and then

(2) progressively update data structures and content so that the warehouse supports the shifting needs of our sponsors.

We can indeed achieve our goal of fast, sponsor-appreciated deliverables because the agile data modeling paradigms

allow us to continuously evolve the data rather than fuss with the ETL code.

Managing Risk Over Eliminating Uncertainty

Veteran DW/BI professionals will scoff at the notion of evolving data structures that will not need constant widescale

re-engineering. Our agile EDW team will counter this skepticism by following the original manifesto’s counsel to

emphasize customer collaboration. Every few iterations, we will present the current build to project stakeholders as a

ready-to-consume business intelligence application and ask for permission to put that build into production usage.

These stakeholders can evaluate the release candidate in all the ways that matter, including functional capabilities,

aesthetics, and nonfunctional quality such as security and performance.

Of course, they may reject this release candidate because we have misunderstood the design and capabilities they

require, but we do not fear this uncertainty because, in our method, stakeholder review is either a success or an opportu-

nity to resolve shortcomings. If the business stakeholders agree to promote the build, we will know that we have

correctly perceived the important aspects regarding requirements. If they refuse the build, we will have identified

misunderstandings and deficiencies in our work, and we will be in a position to fix them. Within another subrelease

cycle or two, we will have a new EDW version that the business will want. And with another subrelease or two, our

DW/BI colleagues who doubt that enterprise data warehouses can evolve one step at a time will see that indeed

adaptive data modeling truly works.

Each of these release candidates will steadily reduce the potential that our team has either misunderstood the

customer or tackled a design that exceeds our programming capabilities or the source data available. Instead of fearing

the uncertainty about what to build for customers, we will follow a strategy of “fail fast and fix quickly.” Instead of

The Agile EDW Subrelease Cycle Chapter | 19 519

trying to eliminate uncertainty with a perfect up-front design, we will manage the risk of failure with a steady stream of

release candidates, each one zeroing in on the application that the business needs.

Appropriate Technology Over Maintaining an Infrastructural Monoculture

In order to steadily evolve the business intelligence solutions we offer, the agile EDW team will need an expanded

toolkit. Various combinations of products, such as fast data visualization tools, hyper modeling utilities, data virtualiza-

tion servers, data warehouse generators, and big data repositories, will allow us to move fast and adapt quickly. This

may well conflict with a strategy of traditional IT management to maintain an infrastructural monoculture—that is, the

smallest feasible technical platform. Small technical platforms minimize software licensing and support costs, as well

as the expense of hiring and training staff. Those concerns have merit, so our EDW team will not be extreme in its

requests for non-standard tooling. Instead, we will build a solid business case for each product we wish to use, but be

aware that we will be estimating the opportunity cost of delivering business intelligence solutions 3�10 times more

slowly when evaluating scenarios in which the agile team is forced to use the traditional toolset. Because these opportu-

nity costs will include the impact of losing crucial business opportunities, the business case for the agile toolset will be

far more compelling than many people might first assume. We will also distinguish between tools that we will use for

production applications and the tools we need for discovery and prototyping because the latter category has much lower

costs for licensing, support, and training. A rational balancing of costs and benefits will lead IT to an expanded toolset

for DW/BI development that includes a set of technologies that are appropriate for the company’s business situation,

and one that steadily evolves as that situation changes, rather than clinging to a static infrastructural monoculture.

SUMMARY

The many innovative techniques introduced in this book can be assembled into an easy-to-follow and repeatable value

chain that fits perfectly inside the subrelease cycle that previous chapters identified as a robust risk mitigation strategy.

This value chain provides eight steps that EDW teams should follow as they define and program each subrelease. The

overall agile EDW project startup process aligns well with the enterprise information management (EIM) work patterns

that many companies follow. Moreover, the subrelease cycle, once structured to include all eight steps, delivers the IT

support needed to sustain a company’s EIM initiative. In fact, EDW teams can embed the data governance portion of

an EIM program in the center of the subrelease value cycle so that the process will feed the data governance program

with a steady stream of definitions and also alert data governance stewards to unaligned business applications and harm-

ful departmental data practices. Moreover, the agile EDW team can embed system validation in the center of the value

cycle in order to generate a similar stream of test cases that will then form the heart of a world-class quality assurance

effort.

All told, agile techniques for enterprise data warehousing offer many ways to accelerate and improve the delivery

of crucial business intelligence applications. DW/BI service providers need to offer their customers the full benefits of

these agile approaches. They need to offer them an EDW customer’s bill of rights so that project sponsors will know

what they can reasonably demand from their DW/BI development teams. In turn, the development teams will need to

acquire a new mindset that will guide them in meeting the expectations nurtured by the customer’s bill of rights. They

need to adopt a version of the agile manifesto updated for DW/BI so that everyone on the delivery team will have a

concise strategy statement to follow. This agile DW/BI manifesto emphasizes several philosophies and techniques that

allow a team to work in ways that are faster, better, and cheaper, enabling them to better service their business partners

and deliver to their companies far greater value than ever before.

Do the new approaches to risk, requirements, data modeling, programming, and quality assurance espoused in this

book combine effectively into a workable solution to the fundamental problem of enterprise data warehousing? Readers

will have to decide for themselves, but I have formed an opinion based on the EDW projects my colleagues and I have

supported during the past 15 years: Agile EDW techniques work amazingly well. If a team transitioning from a water-

fall method is not delivering EDW modules two or three times faster after implementing all of these practice elements,

then the call for help should go out to other agile EDW practitioners. We will need to rally around this challenged

program to identify which incremental EDW practices have been overlooked or misapplied, because if a team of devel-

opers has not at least tripled its effectiveness over traditional methods within 6 months of switching to iterative and

incremental delivery, there is surely another powerful technique waiting for them in the agile enterprise data warehous-

ing toolkit.

520 PART | VI Integrating the Pieces of the Agile EDW Method

Part VI References

Chapter 19

Balanced Insight, 2011, June. Transforming BI: Subway IPC turns to

balanced insight consensus. Balanced Insight Case Studies

(website). ,http://www.balancedinsight.com/wp-content/uploads/

2011/06/Balanced-Insight-Inc-IPC-Subway-Case-Study.pdf. (accessed

January 2015).

Devlin, B., 2009. Collaborative Analytics: Sharing and Harvesting Analytic

Insights Across the Business (white paper). 9sight Consulting, Cape

Town, South Africa, ,http://www.9sight.com/collaborative_analytics_

white_paper.pdf. (accessed January 2015).

Eckerson, W., 2011. Creating an Enterprise Data Strategy (white paper).

Business Applications and Architecture Group, TechTarget, Newton,

MA.

Fisher, T., 2009. The Data Asset: How Smart Companies Govern Their

Data for Business Success. Wiley, New York.

Ladley, J., 2010. Making Enterprise Information Management (EIM)

Work for Business. Morgan Kaufmann, Waltham, MA.

Ladley, J., 2013. Planning Your Enterprise Data Strategy (course book).

DataVersity, Studio City, CA, ,www.dataversity.net..

Norris, D., 2012, June. AnalytiX Mapping Manager: The missing link in

moving data around. Bloor (website). ,http://www.bloorresearch.

com/analysis/analytix-mapping-manager-missing-link-moving-data.

(accessed January 2015).

Rouse, M., 2007. Essential guide. TechTarget (website). ,http://search-

datamanagement.techtarget.com/definition/data-governance.

(accessed December 2014).

Thomas, G., 2014. Definitions of data governance. The Data

Governance Institute (website). ,http://www.datagovernance.com/

adg_data_governance_definition. (accessed December 2014).

521

http://www.balancedinsight.com/wp-content/uploads/2011/06/Balanced-Insight-Inc-IPC-Subway-Case-Study.pdf
http://www.balancedinsight.com/wp-content/uploads/2011/06/Balanced-Insight-Inc-IPC-Subway-Case-Study.pdf
http://www.9sight.com/collaborative_analytics_white_paper.pdf
http://www.9sight.com/collaborative_analytics_white_paper.pdf
http://refhub.elsevier.com/B978-0-12-396464-9.00026-6/sbref2
http://refhub.elsevier.com/B978-0-12-396464-9.00026-6/sbref2
http://refhub.elsevier.com/B978-0-12-396464-9.00026-6/sbref2
http://refhub.elsevier.com/B978-0-12-396464-9.00026-6/sbref3
http://refhub.elsevier.com/B978-0-12-396464-9.00026-6/sbref3
http://refhub.elsevier.com/B978-0-12-396464-9.00026-6/sbref4
http://refhub.elsevier.com/B978-0-12-396464-9.00026-6/sbref4
http://www.dataversity.net
http://www.bloorresearch.com/analysis/analytix-mapping-manager-missing-link-moving-data
http://www.bloorresearch.com/analysis/analytix-mapping-manager-missing-link-moving-data
http://searchdatamanagement.techtarget.com/definition/data-governance
http://searchdatamanagement.techtarget.com/definition/data-governance
http://www.datagovernance.com/adg_data_governance_definition
http://www.datagovernance.com/adg_data_governance_definition

Index

Note: Page numbers followed by “b,” “f,” and “t” refer to boxes, figures, and tables, respectively.

23 2 planning matrix, 481�482, 481f

for top-down test selection, 441�444

framework for assessing QA plan’s

coverage, 441�443

linking test planning to requirements and

risk management, 443�444

3NF data model, hyper normalizing, 332f

80/20 specifications, 90�92, 142, 148�149

231 swamps

derive from command and control strategy,

110�111

enterprise data warehouse slip into, 109�111

A
Accuracy, 137�138, 143

vs. precision, 137f, 138t

Add-mod instance widget, 391, 404

Administrative metadata, 65�66

Agile data engineering, 8, 257, 286�287, 517

Agile DW/BI project

cost impacts, investigating, 106�107, 106t

evidence-based service level agreements,

102�104, 103f

proof for working, 104�107

Agile EDW transition, guiding, 515�520

agile DW/BI manifesto, 518b

agile EDW manifesto, 518�520

appropriate technology over maintaining

infrastructural monoculture, 520

evolving data over iterating on application

code, 519

managing risk over eliminating

uncertainty, 519�520

prompt, sponsor-appreciated results over

technical perfection, 518�519

DW/BI customer’s bill of rights, 516�517

business-side project architect, need for, 517

Agile manifesto, 9, 13�15, 15f, 17f, 18f,

19�20, 24, 26, 29, 31�33, 49�51, 85,

89, 111, 145t, 242, 441�442, 503, 515,

518, 520

revised for agile EDW. See Agile EDW

transition, guiding

Agile methods, 14�15, 17f, 31

definition of, 13�19

elements by origin, 16t

Extreme Programming. See Extreme

Programming (XP)

Scrum. See Scrum method

values and principles of, 18f, 19�20

Agile notions and quality assurance, 430�432

Agile practices, 3�7, 20, 432, 503�504

Agile principles, 6, 18f, 19�21, 24, 26, 47, 49,

53, 88, 430

Agile quality assurance, 8, 516f

Agile quality planning, 477�482

alternatives, 480

test automation, 481�482

Agile requirements gathering, 63, 149, 174

Agile software development

fundamental problem of, 1

in nutshell, 1�3

Agile teams, quality assurance and, 426�427

Agile values, 19�20, 243t, 321, 443, 511, 513

Alternative to agile EDW, 5

Analysis, 173

Analysis paralysis, 235

Analytical systems, 13, 63t, 66, 77�78, 279, 371

Anchor modeling, 331, 343�344

Apache Hive, 321

Apache Software Foundation, 317

Application Builds, 70

Application coding (AC), 3, 4f, 66

Application coding concept errors, 115�116

examples, 115t

risk mitigation of, 116

Architectural frameworks, 76�79

Zachman enterprise, 76

DAMA functional framework, 76�77

Hammergren DW planning matrix, 77�79

Architectural review, clearing, 361

Architectural uncertainties, 229

Architecture. See also specific types of

architectures

data, 71�74

enterprise, 75�76

reference, 74�75

system, 70�71

Artifacts. See specific types

Association for Computing Machinery (ACM),

68�69

Associative data model, 381�383

Attribute tables and agility, 340�342

Automated engines, 488�489

Automation, 389, 481�482, 487

requirement of, 386�387

B
Balancing between two extremes, 123

Baseline method for agile EDW, 5�7

Big data technologies, 308�327

to enhance EDW agility, 325�327

Hadoop, 311�313

Hadoop MapReduce, 312�313

and Hive, 324�325

Hive, making MapReduce look like SQL

with, 317�324

tempered view of Hive, 320�324

need for, 309�310

“schema-on-read”, 310�311

SQL and MapReduce, notable contrasts

between, 314�317, 317t

surface solutions leveraging big data, 326f

and traditional RDBMSs, 325f

Big spec up front approach, 130�131

Blivit factor, 129

Boehm multiplier, 128�129

Bottom-up quality planning, 444�455

agile-specific test techniques, 449�451

epic stack testing, 449�450

exploratory testing, 450�451

data warehousing testing techniques,

444�446

data corners, 445�446

examples and expected results,

446

reconciliation, 446

referential integrity test, 445

low-level validations, easy-to-follow test

technique matrix for, 451�452

reusable test widgets, 452�453

test cases roll forward along system

dimension, 453

testing for convergence, 453�455

top-down planning and, 496

traditional application testing techniques,

446�449

boundary value analysis, 447�448

combinatorial reduction, 448�449

equivalence class partitioning, 447

Boundary value analysis, 447�448

Bridging tables, 359�360

Broader architectural activities, agile EDW

supporting, 219�221

Business analysts, 189

implicit in two project lead roles, 149

Business application, 66

Business concept errors, 115�116

examples of, 115t

risk mitigation of, 119�120

523

Business conceptual model, 71, 72f, 258�259

Business department, 64, 172�173

Business intelligence (BI), 7, 61, 293, 520

hierarchy of needs, 172�174, 172f

iterative coding improving, 85�86

Business key tables and agility, 339

Business models, 52t, 71�72, 258�259, 381,

382f, 386�391, 390f, 393, 397, 399f,

404f, 407f, 411f, 417�418, 506, 513.

See also Target business model

Business partners, adverse to traditional

requirements efforts, 138�139

Business process reengineering (BPR), 131,

135�136, 135f, 136f

Business process supported, 202�207

business-level data validation steps,

205�207

sample business queries, 207

use case model, 202�203

Venn diagram, 203�205

Business professionals, 64�65

Business queries, sample, 207

Business rules, 65, 237, 446

complex business rules, conquering,

235�239

discovery, 238�239

Business solution, 190, 194f

Business unit, 63�64

Business value, 159, 228

Business vault, 339

Business-intelligible data retrieval, enabling,

393�395

Business-level data validation steps, 205�207

Business-side project architect, need for, 517

C
CAGE code, 289

Case history, lessons from, 296

Certified Business Intelligence Professional

(CBIP) certification program, 60

Certified Data Management Professionals

(CDMP), 60

Change cases, 281

for appraising data modeling paradigm,

286�291

case 1, 287, 366�368, 390f, 392f, 403�406,

404f, 405f, 406t, 409

case 2, 287�289, 367�368, 368f, 406�409,

406t, 407f, 408f, 409f

case 3, 289�290, 406t, 409�410

case 4, 290�291, 406t, 410�413, 411f, 412f,

413f

Chaos Report, 13�14

Close stakeholders, meaning of, 69t

CM21DU, 383

Collaborative analytics, 513

Collaborative source-to-target mapping, 512

Combinatorial reduction, 448�449

Commercial, off-the-shelf software (COTS), 66

Commercial Marketing business unit, 179�180

Communication gaps, 428

Competency centers, 67

Complex business rules, conquering

with embedded method, 235�239

Complex integration layers, standard normal

forms leading to, 251�253, 252f

Complex presentation layers, conformed

dimensions leading to, 253�255, 254f

Components, definition of, 69�70

Computer programming, 66

Conceptual data model, 196

Configuration items, 69�70

Configuration management, 70

Conformed dimensional form (CDF), 250

Conformed dimensions. See Conformed

dimensional form (CDF)

Construction phase, 221

Context diagram, 194�195, 263f

Continuous flow, 15f, 16t, 29, 31�32, 34,

41�44, 47

Continuous flow work management approach,

42�43

visualizing and maintaining, 43�44, 43f

Contracting Party, 283

Convergence, testing for, 453�455

Corner test. See Data corners test

Corporate information factory (CIF), 82

Corporate Party, 406

Corporate-level planning functions that

generate architectural requirements,

218f

Count distinct, 445t

Cowboy role. See Data cowboy role

Cross-Industry Standard Process for

Data Mining (CRISP-DM), 237, 237f,

238t

Current estimate, 95�97, 96f, 144

Current record indicators, 356

Customer experience, 188

Customer’s Bill of Rights, 9

Cycle-time analysis

cumulative time in learning cycles, 324f

cumulative time in usage cycles, 324f

fundamentals, 322f

D
Data, definition of, 65

Data access, 172�173

Data architect, 258

Data architecture, 71�74, 257�258, 257f

Data caches, of DVS, 300

Data conversions, hyper generalization tools

and, 396�397

Data corners test, 445�446, 445f

Data cowboy role, 235�236, 511�512

modified data mining method, 236�238

placing business rules discovery and analysis

into the effort curves, 238�239

special skills and tools required, 236

Data dictionary, 81

Data engineering (DE), 3, 4f, 8

Data governance (DG), 217�218

for EDW team, 508

life cycle for, 505�508

machine-assisted data governance for

subrelease cycle, 509�510

support for, 514�515, 514f

traditional notions of, 504�510

Data Governance and Stewardship

Professionals (DGSP), 60

Data integration, 61, 85�86

Data loads, 80

Data Management Association (DAMA), 60,

62t

functional framework, 76�77, 78f

Data management paradigms, relative strengths

of, 318t

Data mart, 82

Data model, 257f, 258�259

associative, 381�383

conceptual, 196

dimensional, 82

hyper generalized, 256, 256f

hyper normalized, 255�256, 255f

logical, 72

normalized, 81�82

physical, 72�74, 259

Data modeler (DM), 258, 472

role for DW/BI, 88

Data modeling paradigms, 247

Data modeling techniques, 2�3, 8

Data modeling vs. architecture, 259�260

Data normalization, 261, 262t, 280

Data schema, 81

Data services, 200�201

Data sets, planning storage for dozens of, 487

“Data spanker”, 235

Data transform specification analyst, 235

Data validation steps for subrelease

description, 206f

Data vaulting, 330, 334, 343�344, 371

blending styles to achieve agility, 365

case study, 372

classic style, 330

enhanced style, 330, 363�364

raw vault style, 364�365

reference tables in, 343

simple style, 362�363

source vault style, 364

Data virtualization server (DVS), 81, 296�307,

301f, 353, 512

basic use case, 297�299, 298f

data virtualization, defining, 297

dynamic delivery approach using, 304�305

EDW’s reference architecture becoming

dynamic, 303f, 306�307

performance features, 299�300

surface solutions, and progressive

deployment, 302�304, 304f, 307f

value proposition, 305�306, 306f

virtual solutions, economics of, 300�302,

301f

Data warehouse, definition of, 61

Data Warehouse Appliance, 82

Data warehouse automation systems, 387

Data warehousing/business intelligence (DW/

BI), 7, 35

current estimates, 95�97

customer’s bill of rights, 516�517

developer stories in, 92�95, 92f, 94f

modules, 169

new roles for, 86�90

524 Index

primary source for standards, 60�62

Rational Unified Process (RUP) for, 52�53

Scrum method for, 85�86. See also Agile

DW/BI project

testing, six dimensions of, 433�436, 441,

456, 458

functional dimension, 439

planning dimension, 436�437

point-of-view dimension, 440�441

polarity dimension, 439�440

system dimension, 437�439

time frame dimension, 440

Database management system (DBMS), 79,

297, 359

DEV (development), 469

Developer stories, 92�95, 156

business-valued, 159

demonstrable, 156�158

estimateable, 159

in data warehousing/business intelligence,

92f, 93�94, 94f

independent, 158

layered, 158

primary technique for decomposing user

stories into, 158f

refinable for, 159

testable for, 159

testing of, 156�159

and values, 94�95

Developers. See also Developer stories

meaning of, 69t

work-in-progress limits for, 100

Development iterations, 23

Development team, meaning of, 69t

Diffs, 445t

DILBERT’S test, 156, 158f

Dimensional data model, 82

Dimensional objects, loading, 390�391

Dimensions, of DW/BI testing, 433�435

“Dimensions of value” diagram, 200

front-end dimensions of value diagram,

subrelease plan summary on, 201f

subrelease scope drawn on, 201f

Documentation of team’s success, 497�498

Dollar value at risk, 140, 141f

Dummy attribute records, 356

Dutch school of data vaulting, 330�331

E
Edge testing, 447�448

Effort curves, placing business rules discovery

and analysis into, 238�239

Elaboration phase, 221, 226�228

choosing developer stories for, 226�227

“steel thread”, proving out architectures

using, 227�228

Embedded method, conquering complex

business rules with, 235�239

End users, 66, 400

business intelligence applications, 75

and data virtualization servers, 307

hierarchy of needs, 171�174, 176

analysis, 173

data access, 172�173

prediction, 173

reporting, 173

research, 173

End-to-end tests, 439

Engine implementation, 487�489

test scenarios, defining, 489

Enhanced vault style, 363�364

Enriched hyper-modeled solution, 513

Ensemble modeling

and hyper normalization, 329�331, 330f

light integration and agility, 339�342

attribute tables, 340�342

business key tables, 339

linking tables, 339�340

Enterprise, definition of, 63

Enterprise architecture (EA), 75�76, 217�218

Enterprise data bus (EDB), 82

Enterprise data warehouse planning, hierarchy

of, 220t

Enterprise data warehousing (EDW), definition

of, 61�62

Enterprise information management (EIM),

217�218, 505�508, 506f

Enterprise requirements management,

147�148, 150f

vs. generic requirements management, 183t

Enterprise requirements value chain, artifacts

for, 181

ERM as a flexible RM approach, 183�184

generic value chain, 181�183

identifying project objectives stakeholder’s

requests, 189�191

business system challenges, 189

current manual solution, 189�190

dependent systems, 190�191

desired business solution, 190

volume requirements and end-user census,

190

module use cases, providing developer

guidance with, 209�212

alternative flow of events, 210�212

goal, 209

nonfunctional requirements as

supplemental specifications, 212

source-to-target mappings as supplemental

specifications, 212

special requirements, 212

standard flow of events, 209�210

project requirements, enterprise aspects of,

184�186

functionality dimension, 184�185

orientation dimension, 185�186

polarity dimension, 185

streamlined ERM templates, 186

sketching the solution with a vision

document, 191�198

context diagram, 194�195

features and benefits list, 191�194

high-level data flow, 197

nonfunctional requirements, 197�198

solutions statements, 191, 193f

target business model, 196�197

sponsor’s concept briefing (SCB), 186�189

customer experience impacts, 188

functional area impacts assessments, 188

justification type, 187�188

program success metrics, 189

value of the program, 188

subrelease overview, segmenting the project

with, 198�209

business process supported, 202�207

nonfunctional requirements, 208�209

subrelease identifier, 200

subrelease scope, 200�202

technical description, 207�208

Enterprise resource planning (ERP) system, 66,

94

Enterprise-capable requirements management,

144�149, 183, 186, 506

Entrepreneurs and venture capitalists, 309

Epic and theme, testing, 443

Epic decomposition framework, 151�156, 152f

aligning the epic stack to the company’s

hierarchy, 152�154

backlog hierarchy’s structure, defining,

151�152

clearly defining each level within epic stack,

154�156

Epic stack, 151

aligning company’s hierarchy, 152�154, 153f

defining levels, 154�156, 155t

revenue assurance example, 157t

testing, 449�450

Epic trees, 151�152, 156, 163�165

Epics, allocating value to, 164

Equivalence class partitioning, 447

Error management logic, 211

Estimating project value, 164

Evidence, 7, 29, 44�45, 97, 102�104, 179,

189, 191, 281�282, 371�373,

402�403, 416�420, 428�429, 492,

496�498, 508

Expected results (testing), 446, 451, 455, 469,

472, 487�488, 490

Exploratory testing, 450�451

Extract, load, and transform (ELT), 397

programming, 79�80

Extract, transform, and load (ETL) module,

79�80, 190, 253, 330, 339, 348�350

parameter-driven ETL module prototypes,

346�348

process, 235

programming, 79�80

self-validating, 350�352

Extreme Programming (XP), 3, 32

contributions from, 26�29

principles of, 18f, 27�29

values of, 18f, 27�29

F
Facebook Hive data warehousing example,

solution architecture for, 320f

Fact qualifier matrix (FQM), 202

for a subrelease description, 203t

Fishbone diagrams, 174�176

Five-step collaborative effort, example of,

294�296

Five-step delivery iteration, 23�26

Index 525

Flow, 27�29, 243t, 260

Flow of events

alternative, 210�212

standard, 209�210

Foreign key, 80

Formal document control, 241

Fortune 500, 109

Free University (case study), 372�373

Freeze�fridge�countertop metaphor, 242

Fulfillment Channel code, 265

Fulfillment Channel Management System, 263

Fulfillment Channel table, 271

Functional dimension, 439

Functional tests, 439

Functionality dimension, 184�185

“Funding waypoints”, 229

Fuzzy logic, 399

G
Generalization, 260, 271�279

advantages and disadvantages of, 271�274

of sales table for the party entity (example),

274�279

Generic requirements management (GRM) value

chain, 144, 147�149, 169, 170t, 183, 215

business intelligence (BI) hierarchy of needs,

173�174

end users’ hierarchy of needs, 171�174

analysis, 173

data access, 172�173

prediction, 173

reporting, 173

research, 173

and enterprise requirements management

value chains, contrast between, 183t

mind maps and fishbone diagrams,

174�176, 175f

product roadmaps, 178�180, 178f, 179f

requirements churn, 169�170

user modeling/personas, 170�171

vision boxes, 176, 177f

vision statements, 176�178, 177f

Generic Scrum, 86

Generic value chain, 181�183

Google Ngram, 52, 53f

Grain of fact table, increasing, 410�413

“Green team estimating problem”, 223

Group counts, 445t

H
Hadoop, 309, 311�313

Hadoop distributed file system (HDFS), 309,

311�312

Hadoop MapReduce, 312�313

Hammergren DW planning matrix, 77�79, 79f

Helper tables, 393, 394f

High-level data flow, 197

Hints, of DVS, 300

Hive, 321, 323

big data and, 324�325

making MapReduce look like SQL with,

317�324

tempered view of, 320�324

Hyper generalized data modeling, 256, 256f, 375

demonstrating agility, 403�414

change case findings, recap of, 413�414

consolidating entities into the party model,

406�409

increasing the grain of a fact table,

410�413

new trigger for a slowly changing

dimension, 409�410

upgrading attributes to entities, 403�406

derived elements, supporting, 397�402

model-driven master data components,

398�402

value-added loops, 397�398

evidence of success, 416�420

hyper generalized data warehousing in

specialty retail, 417�420

model-driven development in

pharmaceuticals, 416�417

HGF-powered agile solutions, 414�416

surface solutions, easier backfills for,

415�416

hyper generalized integration layer, loading

data into, 390�391

dimensional objects, 390�391

transactional objects, 391

mix of modeling strategies, 375�387

adding time-oriented object classification,

380�381

automation tool, requirement of, 386�387

extreme generalization, 377�380

leaving transactions data in

dimensionalized format, 385�386

managing things and links with

associative data model, 381�383

storing attributes as name�value pairs,

384�385

model-driven development and fast

deliveries, enabling, 387�389

controlling EDW design from business

model diagram, 387�388

driving design changes using business

model, 389

eliminating most logical and physical data

modeling, 387

model-driven evolution and fast adaptation,

395�397

data conversions, facilitating, 396�397

impact of model changes on existing data,

395�396

performance concerns, addressing, 402�403

retrieving information from hyper

generalized EDW, 391

business-intelligible data retrieval,

enabling, 393�395

performance sublayer maintenance,

392�393

Hyper generalized form (HGF), 250, 385�386,

397

HGF-powered agile solutions, 414�416

hyper generalized data management in,

386�387

maintenance of performance sublayer,

392�393

Hyper modeled forms (HMF), 250�251

Hyper normalization, 329�344, 336f, 338f, 353

Hyper normalization modeling, 255�256, 255f,

260, 274, 329

common data retrieval challenges, 352�361

architectural review, clearing, 361

audit layer’s goal, 354

integration layer, addressing, 353�354

retrieving data from HNF repository

doubly difficult, 354�356

Solution 0: Focus on Presentation Layer

Objects, 356

Solution 1: Dummy Attribute Records,

356

Solution 2: Current Record Indicators, 356

Solution 3: Point-in-Time Tables, 356�357

Solution 4: Table Pruning, 358�359

Solution 5: Bridging Tables, 359�360

Solution 6: Retrieval Query Writers,

360�361

concepts, 331�344

attribute entities, 335�337

business key entities, 333�334

ensemble modeling components allow

light integration and agility, 339�342

insert-only paradigm, 342�343

lightly integrated, persistent staging area,

337�339

linking entities, 334�335

Swedish variation, 343�344

EDW reference architecture, 362f

enabling evolution of existing EDW

components, 366�368

splitting out entities, 366�367

upgrading to a party model, 367�368

ensemble modeling, 329�331

evidence of success, 371�373

Free University, 372�373

online financial services, 372

HNF-powered agile solutions, 368�371

re-architecting EDW for, 361�365

blending styles to achieve agility, 365

enhanced vault style, 363�364

raw vault style, 364�365

simple vault style, 362�363

source vault style, 364

reusable ETL modules accelerating new

development, 344�352

calling the reusable ETL modules, 348�350

comparative development effort, 352

parameter-driven ETL module prototypes,

346�348

self-validating reusable ETL Modules,

350�352

varieties of, 330�331

Hyper normalized data model, 255f, 331�344

Hyper normalized form (HNF), 250, 361, 375

aiding leading edge of the integration layer

only, 353�354

HNF-powered agile solutions, 368�371

hyper generalization, 377, 377f

repository, retrieving data from, 354�356

Hyper-modeled key integration points,

512�513

526 Index

I
Inception phase, 221

iterations �1 and 0 fitting into, 221�222

Incremental delivery methods. See Agile

software development

Incremental precision, managing, 229�232

freezer, fridge, counter metaphor, 230�232

progressive requirements, framework for

visualizing, 230

Indexes, on database tables, 80

Information, definition of, 65

Information management (IM), 217�218

Information technology (IT), 66

Initial load of data, 210�211

Inmon, William, 82, 279, 361

“Inmon vs. Kimball” debate, 286, 383

Insert-only paradigm, 342�343

Integration layer, 82, 251, 280

hyper generalized, 390�391

with hyper normalization, 329

traditional, 281�285

Integration testing, 68, 453

Interproject milestones, meeting, 229

INVEST test, 156, 158f

Ishikawa fishbone diagram, 176

IT project architect, 517

Iteration �1 and 0, 100�101, 221�222

Iteration burndown chart, 496�497

Iteration product review, 25

Iteration retrospective, 23, 26

Iterations, smoothing out, 229

Iterative delivery, 114

K
Kanban, 3, 6�8, 31�32, 41�47

adding techniques from, 97�101

comparison with Scrum, 45�47, 46t

cycle time distribution analysis for team,

44f

evidence-based service levels, 44�45

sketch of, 41�43

transition from Scrum to, 48f

work board, 42f

Key performance indicators (KPIs), 105f, 173

Kimball, Ralph, 82, 207�208, 286, 289�291

Kimball group, 286

Knockout tests, 438�440

L
Landing area, 156�158, 227, 286, 289, 295,

295f, 302�303, 306�307, 334, 370f,

392, 393f, 399, 399f, 401, 415�416,

438, 489f, 494

Leading indicators, 189

Lean

principles, 33�41, 33f

tools (techniques), 32�41, 33f

values, 33f

Lean software development, 31�41

as long-term destination, 32�33

origins, 31�32

principles, 33�41, 33f

tools, 33�41, 33f

Learning Cycles, 323

“Level 0” data flow diagrams. See Context

diagram

Lightly integrated area, 337�339

Lightweight programming techniques, 14�15

Line Item Number, 333

Line Item table, 264�265

Linking tables and agility, 339�340

Live data prototyping, 512

Logical and physical data modeling,

eliminating, 387

Logical data model (LDM), 72, 72f, 259, 387

M
Machine-assisted data governance, 509�510

Manual engines, 487�488

Many-to-many (M�M) relationships,

334�335, 336f

Map/Reduce join operation, 314f, 316f

MapReduce, 309, 311�313

and SQL, 314�324, 317t

Massively parallel processing (MPP), 308

Master data management (MDM), 399�401

Metadata, definition of, 65�66

Mind maps and fishbone diagrams, 174�176,

175f

Minimal viable products (MVPs), 119�120

Model-driven evolution and fast adaptation,

395�397

data conversions, facilitating, 396�397

impact of model changes on existing data,

395�396

Model-driven master data components,

398�402

Module, definition of, 70

Module use cases, providing developer

guidance with, 209�212

flow of events

alternative, 210�212

standard, 209�210

goal, 209

special requirements, 212

supplemental specifications

nonfunctional requirements as, 212

source-to-target mappings as, 212

Motivation, 39

to take requirements seriously, 128�130

through value buildups by environment,

165�166

Motivation to agile EDW, 5�7

Multivalued dependencies, 266�267, 270�271

N
Name�value pairs, attributes storage as, 377,

379f, 384�385

Natural keys, 80, 346�347, 391

Negative feedback loop, 1�2, 2f

Negative test, 439�440

Net income, 196�197

Nonfunctional requirements, 40, 74, 78,

126�127, 182, 184�186, 197�198,

232, 481�482, 505

addressing, 217�221

broader architectural activities, agile EDW

supporting, 219�221

proper problem domain for agile EDW,

217�219

allocating time for, 234�235

as supplemental specifications, 212

Nonfunctional tests, 439

Normalization, 260�271, 261f

context diagram for, 263f

data normalization, history of, 262t

designing databases to eliminate update

anomalies, 260�262

first to fifth normal form (example),

262�271

hyper normalization, 329�344, 336f, 338f,

353

re-architecting the EDW for, 361�365

Normalized data model, 81�82

Notabe Apache Hadoop software components,

312f

O
Object identifiers (OIDs), 381�382, 385�386,

391

Online analytical processing (OLAP)

applications. See Analytical systems

Online financial services (case study), 372

Online transaction processing (OLTP)

applications. See Operational systems

Open source software (OSS) projects, 66,

308�309

Operational systems, 66, 83

Order Number, 60, 333, 363�364, 391

Orientation dimension, 185�186

P
Paradigm. See also Data modeling paradigm

vs. data modeling, 259�260

Parameter-driven widgets, building, 482

Party model, 274, 275f, 276f, 277f, 367�368

consolidating entities into, 281�282

generalizing to, 287�289

upgrading to, 367�368

Performance concerns, addressing, 402�403

Persistent staging area, 331�332, 337�339

Personal protected information (PPI), of

customers, 198

Personas, 170�171

Physical data model (PDM), 72�74, 259

Pipelined delivery approach, 98�100, 99f

Planning dimension, 436�437

Point-in-time tables, 356�357, 358f

Point-of-view dimension, 440�441

Polarity dimension, 185, 439�440

Portfolio, of programs, 83

Positive test, 439�440

Precision, 137�138, 138t

Predecessor/successor dependencies, 228

Pre-development estimate

managing, 225�226

preparing, 224f

Pre-development iterations, fitting RM artifacts

into, 223f

Index 527

Predevelopment project estimate, arriving at,

223�225

Prediction, 173

Presentation layer, 280�281, 286, 295

Presentation layer objects, 355�356

Primary key, 80

Principles, 19

Problem statements, 191

Product owner, 20�22, 25�26, 116�117,

119�120, 142, 148�149, 153, 161,

169�170, 174, 182�183, 185, 207,

216, 450, 465�466, 472

meaning of, 69t

proxy product owner, 89�90

Product roadmaps, 178�180, 178f, 179f

Production data, subsetting, 485�486

Production environments, 165�166

Program vs. project manager, 84

Programmers, 5, 25, 68�69, 92, 222,

427�428, 433, 465, 493

meaning of, 69t

and programming leads, 473

Programming leads, 473

Programs, 83

Progression testing, 440, 481

Progressive elaboration, 230�232, 235, 242

Progressive requirements

elaboration pattern, 231t

framework for visualizing, 230

Project, definition of, 83

Project architect (PA), 100�101, 120, 149,

160, 164, 183, 188�189, 191, 194,

196�200, 202, 207�209, 213, 215,

230�232, 372, 472, 517

role of, 87�88, 149

Project backlog, 95, 171, 176, 228�229

architectural uncertainties, 229

business value, 228

“funding waypoints”, 229

interproject milestones, meeting, 229

predecessor/successor dependencies, 228

prioritizing, 228�229

resource scheduling, 229

smoothing out iterations, 229

Project charter, 84

Project governance, 164, 225

interfacing with, 239�241, 240f

Project leaders, 111, 114, 127�130, 136�137,

143�144, 151, 161�164, 185�186,

190, 194, 199, 217, 221, 225�229, 232,

235�237, 242, 261�262, 274, 281,

296, 321, 442�443

Project Management Institute (PMI), 186

Project management office (PMO), 84, 162

Project portfolio management, 83

Project quality dashboard, 494, 495f, 496

Project requirements, enterprise aspects of,

184�186

functionality dimension, 184�185

orientation dimension, 185�186

polarity dimension, 185

streamlined ERM templates, 186

Project value, 164

Proper problem domain for agile EDW, 217�219

Proxy product owner (PPO), role for DW/BI,

89�90

Pull-based system, 37�38, 42�43

Pushdown processing, of DVS, 299�300

Q
Quality, definition of, 426

Quality activities within an iteration cycle,

464�466, 464f

Quality assurance (QA), 3, 4f, 8, 425

agile approach to, 429�433

agile notions, 430�432

striving for balance, 429�430

test-led development, 432�433

bottom-up quality planning, 444�455

agile-specific test techniques, 449�451

data warehousing testing techniques,

444�446

low-level validations, easy-to-follow test

technique matrix for, 451�452

traditional application testing techniques,

446�449

“fit to purpose”, 444

plan, 477

top-down planning, 433�441

functional dimension, 439

planning dimension, 436�437

point-of-view dimension, 440�441

polarity dimension, 439�440

preliminary definitions, 435�436

six dimensions of DW/BI testing, 433�435

system dimension, 437�439

time frame dimension, 440

top-down test selection, 23 2 planning

matrix for, 441�444

Quality control, 436�437

Quality duties at the end of a release cycle,

466�467, 467f

Quality fulfillment documentation, 497�498,

497f

Quality management, 436�437

Quality management system (QMS), 497�498

Quality responsibilities, by team role, 470�473

self-organized quality planning, guiding the

team to, 470�471

suggested quality duties by role, 471�473

data modeler, 472

product owner, 472

programmers and programming leads, 473

project architect, 472

scrum master, 473

systems analyst, 472�473

Query injection, of DVS, 300

Query substitution, of DVS, 300

Query writers, 360�361, 410

R
RASCI chart, 284

Rational Unified Process (RUP), 3, 67�68,

144�146, 181, 183, 221

for data warehousing/business intelligence,

52�53

Google Ngram of, 52, 53f

overview of, 49�51

phases borrowed from, 221

principles, 50f

techniques, 49�50, 221, 226

templates used with, 52t

values, 50f

values and principles of, 50f

whale chart, 51f

Raw vault style, 364�365

Reconciliation test, 446

Reference architecture, 73f, 74�75, 75f,

249�251, 306�307, 326f, 354, 362f

Reference Model for Open Distributed

Processing (RM-ODP), 70�71

Referential integrity, 81

Referential integrity test, 445

Regression testing, 89, 440

Relational database management system

(RDBMS) servers, 299�300, 308, 311,

325, 325f, 397

Release cycle, 221�226, 466�467, 503�504

Release cycle of organization, supporting,

221�226, 222f

iterations �1 and 0 fitting into inception

phase, 221�222

predevelopment estimate, managing, 225�226

predevelopment project estimate, arriving at,

223�225

rational unified process, phases borrowed

from, 221

release cycle, completing, 226

Repeatability, 486

Repeatable masking, 486

Reporting, 173

Requirements churn, 169�170

Requirements management (RM), 3, 4f, 125,

130�136. See also specific types

for agile enterprise data warehousing,

126�130, 127f

agile objectives for, 141�143, 145t

disadvantages to traditional, 139, 139t

easy to overinvest in, 130�136

effective, building the case for, 126�130

enterprise-capable requirements management

(ERM), 183�184, 186

formal definition of, 130

generic requirements management (GRM)

value chain, 183

inherently complex, 132�134, 132t, 133f,

134t

process, 174

process agile, 144

RM demands, visualizing

with effort curves, 232�234, 233f, 234f

team motivation to, 128�130

two intersecting value chains, 144�149

waterfall-style, 131f

Requirements specification document (RSD),

130�131

Requirements traceability, agile EDW’s version

of, 215�217

Research capabilities, 173

Residential Marketing, 179�180

Resource scheduling, 229

528 Index

Retrieval query writers, 360�361

Reusable ETL modules, 348�350

accelerating new development, 344�352

calling, 348�350

comparative development effort, 352

parameter-driven ETL module prototypes,

346�348

self-validating, 350�352

Reusable test widgets, 351f, 352, 444,

452�453, 452t, 482, 483t, 493

Risk calculation framework, 233f

Risk management, 519�520

Risk mitigation, 111�113

application coding concept errors, 116

of business concept errors, 119�120

extended, for agile enterprise data

warehouse, 114�120

fundamental, for agile enterprise data

warehouse, 111�114

solution concept errors, 116�119

value accounting, 162

Root cause analysis, 427�428

S
Sales Channel Monitoring System, 263

Sales Fact, 387�388

Sales Order, 263

Sales Order Header table, 264�265, 287

Sandbox, 70, 469

Scenario testing, 450

“Schema-on-read”, 310�311

Scrum

principles, 20

techniqes, 27, 32, 45

values, 20

Scrum master, 6, 21, 24�26, 86, 90, 95, 104,

462�463, 473

Scrum method, 3, 6�8, 20, 31�32, 34, 52�53,

86t, 426�427

burndown chart, 25f

for data warehousing/business intelligence,

85�86

essence of, 21f

five-step delivery iteration, 23�26

Google Ngram of, 53f

in nutshell, 20�26, 22f

steps in transition from, to Kanban, 48f

task board, 24, 24f

Scrum’s collaboration model, 181�182

Scrumban approach, 47�49

comparison with Kanban, 45�47, 46t

two-tiered task board, 48f

Scrum-But, 6

Security tests, 481�482

Self-organized quality planning, guiding the

team to, 470�471

Self-service BI, 173, 202, 296�297

Shadow IT, 67

leveraging, 294�296, 295f

case history, lessons from, 296

five-step collaborative effort, example of,

294�296

Ship joins, of DVS, 300

Simple vault style, 362�363

Slowly changing dimension, new trigger for,

289�290, 409�410

Small Trucks, 380�381

Soap opera tests, 450

Software, 66

Software development life cycle (SDLC),

67�68

Software engineering, 23, 47, 67�70

Software release cycle, 221�226

Solution concept errors, 115�116

examples of, 115t

risk mitigation of, 116�119

Solutions architect. See Project architect

Solutions statements, in vision document, 191,

193f

Sort-merge joins, of DVS, 300

Source vault style, 364

Source-to-target map (STMs), 89, 185, 212,

461�462, 512

example of, 213f

as supplemental specifications, 212

Sponsor’s concept briefing (SCB), 186�189,

187f

customer experience, 188

functional area impacting assessments, 188

justification type, 187�188

program success metrics, 189

project goals and, 186�189

value of the program, 188

Sponsor-appreciated results, 518�519

Sprints iterations, 23

Stakeholder requests (SHRs), 146, 186, 189,

213, 216

Stakeholder’s requests, project objectives,

189�191

business system challenges, 189

current manual solution, 189�190

dependent systems, 190�191

desired business solution, 190

volume requirements and end-user census,

190

Stakeholders, 83

meaning of, 69t

Standard normal form (SNF) data model, 250,

252f, 283f, 361

leading to complex integration layers,

251�253

Standard risk analysis, 140f

Standish Group’s analysis, 13�14

Star schemas, 174, 286, 410�411

Statistical data, of DVS, 300

“Steel thread”, proving out architectures using,

227�228

Story cards, 22�23

Story conference, 23

Story points, 23�24, 95, 225

Story testing, 450

“Straight-to-star” as a controversial alternative,

286

Streamlined ERM templates, 186

Streamlined Stakeholder Request (SHR),

template for, 190f

Streamlined Vision Document (VDoc),

template for, 192f

Structured query language (SQL), 79, 236, 299,

315�317, 394, 397

and MapReduce, notable contrasts between,

314�317, 317t

override, of DVS, 300

Subrelease candidate reviews, 117, 118b

Subrelease description

data validation steps for, 206f

use case model for, 202�203

Venn diagram for, 203�205

Subrelease overview (SRO), streamlined

template for, 205f

Subject matter experts, 142, 149, 196, 212,

236�237, 271

meaning of, 69t

Subrelease cycle, 481�482, 501

agile EDW transition, guiding, 515�520

agile DW/BI manifesto, 518b

DW/BI customer’s bill of rights, 516�517

toward an agile EDW manifesto, 518�520

centering the value cycle on data governance

and quality, 514�515

deepening the support for data

governance, 514�515

world-class quality assurance, achieving,

515

data governance, traditional notions of,

504�510

data governance actions for the EDW

team, 508

life cycle for data governance, 505�508

machine-assisted data governance for the

subrelease cycle, 509�510

fast delivery portion of, 512�514

“fast requirements” portion of, 511�512

making the release cycles a

repeatable process, 503�504

value cycle, 510�514

Subrelease overview, segmenting the project

with, 198�209

business process supported, 202�207

business-level data validation steps,

205�207

sample business queries, 207

use case model, 202�203

Venn diagram, 203�205

nonfunctional requirements, 208�209

subrelease identifier, 200

subrelease scope, 200�202

data services, expressed as, 200�201

fact qualifier matrix (FQM), expressed

using, 202

target business model, expressed as, 202

technical description, 207�208

data sourcing details, 208

non-reusable target dimensions details,

208

reusable target dimensions details,

207�208

target fact tables details, 207

Subthemes, 176

Sums, averages, medians, 445t

Superoptimizer, 297

Superthemes, 176

Index 529

Supplemental specifications

nonfunctional requirements as, 212

source-to-target mappings as, 212

Surface solution patterns, 370f, 415�416, 415f

Surface solutions, 293, 365, 370f

big data technologies, 308�327

to enhance EDW agility, 325�327

Hadoop, 311�313

and Hive, 324�325

Hive, making MapReduce look like SQL

with, 317�324

need for, 309�310

“schema-on-read”, 310�311

SQL and MapReduce, notable contrasts

between, 314�317, 317t

data virtualization server (DVS), 296�307

basic use case, 297�299, 298f

defining data virtualization, 297

dynamic delivery approach using,

304�305

EDW’s reference architecture becoming

dynamic, 306�307

performance features, 299�300

surface solutions, and progressive

deployment, 302�304

value proposition, 305�306

virtual solutions, economics of, 300�302,

301f

Shadow IT, leveraging, 294�296, 295f

case history, lessons from, 296

five-step collaborative effort, example of,

294�296

with raw data vault, 370

using shadow IT vs. data virtualization

servers, contrast between, 305t

Surrogate ID (SID), 334, 336

Surrogate keys, 80

Swedish anchor modeling technique, 343�344

System architecture, 70�71

System dimension, 437�439

System integration test (SIT), 70, 165�166,

429, 469, 494�496

System test cases, 438

System tester(s), 5, 9, 68, 70, 89�90, 91f, 98,

100�101, 107�108, 221, 233�234,

234f, 431, 457�463, 481�482, 488,

490�491, 493�494, 496

organizational framework, 458�463

adapted V-model for agile DW/BI test

cases, 459�460

classic V-model for analyzing QA

responsibilities, 458�459

communicating the QA assignments,

460�461

one-up, one-down validation, 461�463

overarching duties of, 473�475

role for DW/BI, 89

System testing, 43, 68, 100, 453

Systems analyst (SA), 88�89, 129�130, 212,

233�234, 242, 472�473

T
Table pruning, 358�359

Taiichi Ohno, 31�33

Tao Teh Ching, 32

Target business model, 196�197, 196f, 199,

202�203, 208

for subrelease description, 199f

Task planning, 23�24

Team leaders, 69t, 188�189, 194, 216�217,

249, 253

Team motivation, 128�130

Team roles, effort levels by, 232�235

nonfunctional requirements, allocating time

for, 234�235

visualizing requirements management

demands with effort curves, 232�234,

233f, 234f

Team’s progress, visualizing, 494�497

defects over time, 496

iteration burndown chart, 496�497

tests implemented by environment,

494�496

top-down and bottom-up quality planning,

connecting, 496

Team’s success, documentation

of, 497�498

Technical platforms, 520

Test activities distribution across environments,

468�469

Test assertions, 487, 492f

Test automation, 481�482

Test case, 436, 440, 443�444, 446�448, 447f,

448t, 449t, 453, 459�460, 468f, 477,

516f

Test cases, execution of, 477

agile quality planning, 477�482

alternatives to sufficient testing, 480

automation, 481�482

beginning of creating test cases, 493

documentation of team’s success, 497�498

engine, starting up, 493�494

engine implementation, 487�489

test scenarios, defining, 489

parameter-driven widgets, building, 482

team’s progress, visualizing, 494�497

defects over time, 496

iteration burndown chart, 496�497

tests implemented by environment,

494�496

top-down and bottom-up quality planning,

connecting, 496

test data repository, building and populating,

490�491

test data sets, 472, 477, 482�487, 485t

identifying required data sets, 484�485

planning for expected results, 487

planning storage for dozens of data sets,

487

planning to create dozens of data sets,

485�486

testing aspects, configuring, 489�490

testing objectives, quantifying, 491�492

top-down plan, updating, 482

Test executions, 431, 477�482, 487

Test scenario, 89, 435f, 436, 487, 488t,

489�490, 490f

defining, 489

Test suite, 98, 433, 435�436, 435f, 440, 444,

449�450, 453, 454f, 458, 469�470,

473, 480�481, 490, 493�494, 515, 517

Test techniques, 429, 444, 445f, 445t,

446�447, 451�452, 454�456, 455f,

469�470

Test widgets, 351�352, 453, 456, 469,

481�482, 498

reusable, 452�453

Testing

and agile teams, 426�427

and better requirements, 428

integration of teamwork across pipeline, 428

need of, 426�429

progress, visibility of, 428�429

root cause analysis, 427�428

Testing techniques, 444�446, 445t

data corners, 445�446

distribution, across environments, 469�470

examples and expected results, 446

reconciliation, 446

referential integrity test, 445

Test-led development, 24, 432�433

The Data Warehousing Institute (TDWI), 60, 62t

Theme-level testing, 450

Themes, 176

allocating value to, 164�165

Time frame dimension, 440

Time-boxed iteration, 23

Time-oriented object classification, adding,

380�381

Top-down planning, 433�441

and bottom-up quality planning, connecting,

496

DW/BI testing, six dimensions of, 433�435

functional dimension, 439

planning dimension, 436�437

point-of-view dimension, 440�441

polarity dimension, 439�440

preliminary definitions, 435�436

system dimension, 437�439

time frame dimension, 440

updating, 482

Total test suite, 436

Toyota Production System, 31�32

Traditional data modeling paradigms and their

discontents, 247

change cases, for appraising a data modeling

paradigm, 286�291

data architecture, 257�258, 257f

data model, 257f, 258�259

data modeling paradigm, 257f, 259�260

enterprise data warehouse (EDW), 249�257

agile alternatives, 255�257

conformed dimensions leading to complex

presentation layers, 253�255, 254f

reference architecture, reviewing, 249�251

standard normal forms (SNF) leading to

complex integration layers, 251�253,

252f

generalization, 260, 271�279

advantages and disadvantages of, 271�274

of sales table for the party entity

(example), 274�279, 275f, 276f, 277f

530 Index

normalization, 260�271, 261f

designing databases to eliminate update

anomalies, 260�262

first to fifth normal form (example),

262�271

standard approach and its data modeling

paradigms, 279�281

“straight-to-star” as a controversial

alternative, 286

traditional integration layer as a challenged

concept, 281�285

entailing high maintenance conversion

costs, 283�285

expensive hidden layer, involving,

281�282

results, understanding, 282�283

Traditional project management, 82�84, 239

“Traditionally modeled forms” (TMF),

250

Transaction capture systems. See Operational

systems

Transactional objects, loading, 391

Transition phase, 51, 221

Transitive dependencies, 265

Triples, 382�383

Two-pass testing, 101

U
Uncertainty

architectural, 229

eliminating, 519�520

Unified Anchor Model, 332

Unified Modeling Language (UML), 50

Unique values, 445t

Unit testing, 453�455

Units, definition of, 69�70

Usage Cycles, 323

Use case model, 202�203, 205f

Use cases, 16t, 53, 202�203, 209�212,

323�324, 327, 413�414. See also

Rational Unified Process (RUP)

User acceptance testing (UAT), 43, 68, 70,

165�166, 453

User demo, 23, 25�26, 474�475

User modeling, 170�171, 171f

User stories, 21�22

allocating value to, 164�165

hiding data integration work, 92�93

V
Valid range, 445t

Value, project, 164

Value accounting, 151, 159�162, 160f

basics of, 160�161

making effective developers, 161�162

risk mitigation, 162

Value chains intersection for stereoscopic

project definition, 215

conquering complex business rules with

embedded method, 235�239

data cowboy role, adding, 235�236

effort curves, placing business rules

discovery and analysis into, 238�239

modified data mining method, 236�238

special skills and tools required, 236

elaboration phase, 226�228

choosing developer stories for, 226�227

“steel thread”, proving out architectures

using, 227�228

incremental precision, managing, 229�232

freezer, fridge, counter metaphor, 230�232

progressive requirements, framework for

visualizing, 230

nonfunctional requirements, addressing,

217�221

agile EDW supports broader architectural

activities, 219�221

proper problem domain for agile EDW,

217�219

project backlogs, prioritizing, 228�229

architectural uncertainties, 229

business value, 228

“funding waypoints”, 229

meeting interproject milestones, 229

predecessor/successor dependencies, 228

resource scheduling, 229

smoothing out iterations, 229

project governance, interfacing with,

239�241, 240f

supporting the organization’s software

release cycle, 221�226

arriving at predevelopment project

estimate, 223�225

iterations �1 and 0 fitting into the

inception phase, 221�222

phases borrowed from rational unified

process, 221

predevelopment estimate, managing,

225�226

release cycle, completing, 226

team roles, effort levels by, 232�235

nonfunctional requirements, allocating

time for, 234�235

visualizing requirements management

demands with effort curves, 232�234,

233f, 234f

two value chains, intersecting, 215�217

requirements traceability, agile EDW’s

version of, 215�217

waterfall approach, 242

Value cycle (VC), productivity-tool driven, 3,

4f, 8�9

Value cycle for agile EDW team, 510�514

data governance and quality, centering the

value cycle on, 514�515

deepening the support for data

governance, 514�515

world-class quality assurance, achieving,

515

fast delivery portion of, 512�514

Step 1: Workflow-Driven Data Governance

and Prototyping, 511

Step 2: Associative Data Discovery,

511�512

Step 3: Collaborative Source-to-Target

Mapping, 512

Step 4: Live Data Prototyping, 512

Step 5: Hyper-Modeled Key Integration

Points, 512�513

Step 6: Enriched Hyper-Modeled Solution,

513

Step 7: Collaborative Analytics, 513

Step 8: Model-Driven Solutions, 513�514

Value proposition, of data virtualization,

305�306

Value stream mapping, 34�35, 34f

Value-added loops, 397�398

Values, definition of, 19

Venn diagram, 203�205

for subrelease description, 206f

Views, definition of, 81

Virtual solutions, economics of, 300�302, 301f

Vision boxes, 176, 177f

Vision document

sample context diagram for, 195f

sample high level architecture diagram for,

198f

sample target business model for, 196f

sketching the solution with, 191�198

context diagram, 194�195

features and benefits list, 191�194

high-level data flow, 197

nonfunctional requirements, 197�198

solutions statements, 191, 193f

target business model, 196�197

Vision statements, 176�178, 177f

V-model, 459f, 460f

for agile DW/BI test cases, 459�460

for analyzing QA responsibilities, 458�459

Vrije Universiteit Amsterdam (VU), 372�373

W
Waterfall method, 13, 17�19, 17f, 242

Waterfall projects, 457

Westwood Rec Center, 264

Whale chart, 51, 90, 91f

Workflow-driven data governance and

prototyping, 511

Workflow-driven data governance products,

509

World-class quality assurance, achieving, 515

X
XP

principles, 27�29

techniqes, 27, 32

values, 27�29

Z
Zachman enterprise architectural framework,

76

Zeroth law of quality, 426�427

Index 531

