iigraction esignor

The World of Modern Input Devices for Research,
Applications, and Game Development

;’
22
O\
— =< Ny S ——
=2 . B
= ' e o
[]

Francisco R. Ortega « Fatemeh Abyarjoo
Armando _Bal'l'l_nu e Naphtali Rishe @ cicrres
Malek Adjouadi

Interaction Design for

a0 Usen Interfaces

The World of Modern Input Devices for Research,
Applications, and Game Development

This page intentionally left blank

Interaction Design for

a0 Usen Interfaces

The World of Modern Input Devices for Research,
Applications, and Game Development

Francisco R. Ortega

Florida International University
Miami, Florida, USA

Fatemeh Abyarjoo

Florida International University
Miami, Florida, USA

Armando Barreto

Florida International University
Miami, Florida, USA

Naphtali Rishe

Florida International University
Miami, Florida, USA

Malek Adjouadi

Florida International University
Miami, Florida, USA

CRC Press

Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

AN A K PETERS BOOK

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion
of MATLAB® software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2016 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20151228

International Standard Book Number-13: 978-1-4822-1695-0 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reason-
able efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza-
tion that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com/
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com

Dedication

To my wife Luz and my baby daughter Sofia Alejandra. This is
also dedicated to my mom and dad, sisters, brothers-in-law,
nieces, and nephews. Y para la mejor Abuela, mama Aida.
—Francisco

To my parents, my grandparents, and my sisters.
—Fatemeh

To my parents and siblings.
—Armando

To my spouse Tajana with love.
—Naphtali

To my family.
—Malek

This page intentionally left blank

Contents

Author Biographies Xix
List of Contributors XXxiii
Foreword XXV
Preface XXVii
Why This Book? XXViii
WhatIsinthe Book? XXiX
Conferences and Journals XXXil
Natural User Interfaces? XXXiii
OtherBooks XXXiV
Looking Forward XXXV
Acknowledgment of Support oL XXXV
AbouttheImages, XXXVi
Personal Acknowledgment XXXVi
Abbreviations XXXiX
| Theory 1
1 Introduction 3
1.1 TheVision 4

1.2 Human—Computer Interaction 5
1.2.1 Usability 6

1.2.2 The Sketchpad 8

1.2.3 TheMouse 8

1.2.4 The Light Pen and the Computer Mouse 10

1.2.5 Graphical User Interfaces and WIMP 12

1.2.6 3D User Interfaces 13

1.3 Definitions L 15
FurtherReading 17

vii

viii

2

CONTENTS

Input: Interfaces and Devices 19
2.1 Imtroduction 19
2.2 Input Technologies 19
2.2.1 Transfer Function 22
222 Direct-Input Devices 23
223 Input Device States 24
224 Input Considerations 25
2.3 UserInterfaces: Input 26
2.3.1 3D User Interfaces: Input Devices 26
24 InputDevices 27
24.1 Keyboard, 27
24.2 The Mouse and Its Descendants 29
243 Joystick and the GamePad 31
24.4 3D Mouse and 3D User-Worn Mice 40
24.5 Audio 42
2.4.6 Inertial Sensing 43
2.4.7 Vision-Based Devices 44
24.8 DataGloves 44
24.9 Psychophysiological Sensing 45
2.4.10 Tracking Devices 45
24.11 Treadmills as Input Devices 45
2.5 InputRecognition 47
2.6 Virtual Devices 47
2.7 Input Taxonomies 49
FurtherReading, 58
Output: Interfaces and Displays 61
3.1 3D Output: Interfaces 61
3.1.1 Human Visual System 61
3.1.2 Visual Display Characteristics 63
3.1.3 Understanding Depth 63
32 Displays 67
3.2.1 Near-Eye Displays 69
322 Three-Dimensional Displays 70
FurtherReading 74
Computer Graphics 75
4.1 Computer Graphics, 75
4.11 CameraSpace 75
4.1.2 3D Translation and Rotations 77
4.1.3 Geometric Modeling 82
4.1.4 Scene Managers 82

4.1.5 Collision Detection 84

CONTENTS

FurtherReading

5 3D Interaction
5.1 Imtroduction
5.2 3D Manipulation oo
5.2.1 Classification of Manipulation Techniques
5.2.2 Muscle Groups: Precision Grasp
523 Isomorphic Manipulations
5.2.4 Pointing Techniques
5.2.5 Direct and Hybrid Manipulations
5.2.6 Non-Isomorphic Rotations
FurtherReading

6 3D Navigation
6.1 3DTravel
6.1.1 3DTravel Tasks
6.1.2 Travel Techniques
6.2 Wayfinding
6.2.1 Training versus Transfer
6.2.2 Spatial Knowledge
6.2.3 NavigationModel
6.2.4 Wayfinding Strategies
6.3 3D Navigation: User Studies
6.3.1 Search during Navigation
6.3.2 Additional User Studies for Navigation
FurtherReading

7 Descriptive and Predictive Models
7.1 Introduction
7.2 Predictive Models L
7.2.1 Fitts’lawo oL
7.2.2 Choice Reaction Time: Hick-Hyman Law
7.2.3 Keystroke-Level Model (KLM)
7.2.4 OtherModels
7.3 Descriptive Models
7.3.1 Bi-Manual Interaction
7.3.2 Three-State Model for Graphical Input
FurtherReading

8 Multi-Touch
8.1 Introduction
8.2 Hardware

8.2.1 Projective Capacitive Technology

85

87
87
87
91
93
94
94
101
108
109

111
111
112
114
122
123
124
126
126
128
130
131
134

137
137
138
138
146
148
152
154
154
156
160

CONTENTS

8.2.2 Optical Touch Surfaces
8.2.3 Vision-Based Optical

8.3 Multi-Touch and Its Applications
8.3.1 Basics of Multi-Touch
8.3.2 Multi-Touch Gestures and Design
8.3.3 Touch Properties
8.34 Multi-Touch Taxonomy
835 Are Multi-Touch Gestures Natural?
8.3.6 Touch: Multi-Modality
8.3.7 More about Touch
8.3.8 Multi-Touch Techniques
8.4 Figures of Large Tabletop Displays
FurtherReading

Multi-Touch for Stereoscopic Displays
Dimitar Valkov

9.1

9.2
9.3

9.4

9.5

Understanding 3D Touch
9.11 Problems with Stereoscopic Touch Interfaces

9.1.2 Parallax Problem
9.1.3 Design Paradigms for Stereoscopic Touch Interaction
Touching Parallaxes
Multi-Touch above the Tabletop
9.3.1 Triangle Cursor
9.3.2 Balloon Selection
9.3.3 Triangle Cursor vs. Balloon Selection
9.3.4 Design Considerations
Interaction with Virtual Shadows
9.4.1 ShadowHand
9.4.2 Shadow Hand vs. Void Shadows
Perceptual Illusions for 3D Touch Interaction
9.5.1 User Interaction States
9.5.2 Manipulation Techniques
953 Scene Shifts while Moving toward the Surface . . .
9.5.4 Object Shifts during Touch
9.5.5 Application Space
9.5.6 Manipulation of Stereoscopic Objects
9.5.7 Generalized Scaled Shift Technique
9.5.8 Discrimination of Stereoscopic Depth
9.5.9 Object Attracting Shift

FurtherReading

172
173
175
175
176
177
180
182
189
197
197
199
203

205

205
206
207
210
212
216
216
218
219
221
223
226
227
229
231
233
236
240
241
241
242
246
248
252

CONTENTS

10 Pen and Multi-Touch Modeling and Recognition

10.1 Introduction
10.2 TheDollar Family
10.2.1 $1Recognizer
10.2.2 $1 Recognizer with Protractor
10.2.3 $NRecognizer.
10.24 $ Family: $PandBeyond
10.3 Proton++andMore
104 FETOUCH
104.1 FETOUCH+
10.4.2 Implementation: FETOUCH++
FurtherReading
11 Using Multi-Touch with Petri Nets
11.1 Background
11.1.1 Graphical Representation
11.1.2 Formal Definition
112 PeNTa: PetriNets
11.2.1 Motivation and Differences
11.2.2 HLPN: High-Level Petri Nets and IRML
11.23 PeNTaand Multi-Touch
11.2.4 ArcExpressions
1125 ATourof PeNTa
11.2.6 Simulation and Execution
FurtherReading

12 Eye Gaze Tracking as Input in Human—Computer Interaction

12.1
12.2
12.3

Principle of Operation
Post-Processing of POG Data: Fixation Identification
Emerging Uses of EGT in HCI: Affective Sensing

FurtherReading

13 Brain—Computer Interfaces: Considerations for the Next Frontier
in Interactive Graphics and Games
Frances Lucretia Van Scoy

13.1
13.2

13.3

Introduction
Neuroscience Research
13.2.1 Invasive Research
1322 EEGResearch
1323 fMRIResearch
Implications of EEG- and fMRI-Based Research for the Brain—
Computer Interface

Xi

255
255
256
258
262
262
264
265
267
270
274
277

279
280
281
281
282
283
285
286
287
289
290
292

293
293
298
300
310

313

313
314
314
315
315

318

Xii

CONTENTS

13.3.1 Implications of Constructing Text or Images from
BrainScanData
13.3.2 Implications of Personality Models for Digital Games

13.4 Neuroheadsets
13.4.1 Some Available Devices
13.4.2 AnExample: Controlling Google Glass with MindRDR
13.5 A Simple Approach to Recognizing Specific Brain Activities
Using Low-End Neuroheadsets and Simple Clustering Tech-
NQUES . . . o o e e e
13.6 Using EEG Data to Recognize Active Brain Regions
13.7 Conclusion
FurtherReading

Il Advanced Topics

14 Introduction to 3D Math for Input Devices
Steven P. Landers & David Rieksts

14.1
14.2
14.3

14.4

14.5
14.6

Introduction
Axis Conventionso e e
Vectors e e e e
143.1 Equality
1432 Addition
14.3.3 Scalar Multiplication
14.3.4 Negation and Subtraction
1435 BasisVectors
143.6 Magnitude
14.3.7 Unit Vector and Normalization
143.8 DotProduct
1439 CrossProductinR3

Matrices e
14.4.1 Transposition
1442 Trace. e

1443 Addition
14.4.4 Scalar Multiplication
14.4.5 Matrix Multiplication
14.4.6 Identity Matrix
14477 Determinant
14.4.8 Transformation Matrices
1449 Reflection Matrices
14.4.10 Eigenvalues, Eigenvectors
Axis Angle Rotations,
Two-Vector Orientation

318
319
321
321
323

323
325
325
325

327

329

329
329
330
332
332
333
333
333
334
334
334
335
335
335
336
336
336
337
338
338
339
340
340
341
342

CONTENTS

14.7 Calibration of Three-Axis Sensors

14.8

Further Reading

14.7.1
14.7.2
14.7.3

14.8.1
14.8.2

Bias
Scale

Cross-Axis Effect and Rotation
Smoothing
Low-PassFilter

Oversampling

15 Introduction to Digital Signal Processing
Introduction
What Is a Signal? . . .
Classification of Signals
Applications of Digital Signal Processing
NOiSe oo

15.1
15.2
15.3
15.4
15.5
15.6
15.7

15.8
15.9
15.10
15.11
15.12

15.13
15.14

15.15

Further Reading

16 Three-Dimensional Rotations

16.1

Signal Energy and Power

Mathematical Representation of Elementary Signals
The Impulse Function
The Unit Step Function
The Cosine Function
Exponential Function

15.7.1
15.7.2
15.7.3
15.7.4
15.7.5
15.7.6

Aliasing

Ramp Function

Gaussian Function
Sampling Theorem . . .
Nyquist-Shannon Theorem

Quantization
Fourier Analysis
15.12.1 Discrete Fourier Transform
15.12.2 Inverse Discrete Fourier Transform
Fast Fourier Transform

z-Transform

15.14.1
15.14.2

Definitions . .
z-Plane

15.14.3 Region of Convergence
Convolution

Introduction
16.2 Three-Dimensional Rotation
16.3 Coordinate Systems . .

16.3.1

Inertial Frame

xii

342
343
343
344
344
345
345
346

347
347
347
349
350
351
352
353
353
353
354
355
355
357
357
360
361
361
362
363
365
365
365
366
368
368
368
371

373
373
373
374
375

Xiv

17

18

19

CONTENTS

16.3.2 Body-Fixed Frame 376

164 EulerAngles 376
16.4.1 Rotation Matrices 376

1642 GimbalLock 378

16.5 Quaternions e 379
16.5.1 What Are Quaternions? 379

16.5.2 Quaternion Rotation 384
FurtherReading 384
MEMS Inertial Sensors and Magnetic Sensors 387
17.1 Introduction 387
17.2 Inertial Sensors, 387
17.2.1 Accelerometers 388

1722 Gyroscopeso 389

17.3 MEMS Inertial Sensor Errors 390
17.3.1 Angle RandomWalk 391

1732 RateRandomWalk 391

17.3.3 FlickerNoise 392

17.3.4 Quantization Noise 392

17.3.5 Sinusoidal Noise 392

173.6 BiasError 392

17.3.7 ScaleFactorError 392

17.3.8 Scale Factor Sign Asymmetry Error 392

17.3.9 Misalignment (Cross-Coupling) Error 393
17.3.10 Non-Linearity Error 393
17.3.11 Dead ZoneError. 394
17.3.12 Temperature Effect 394

17.4 Magnetometerso i 395
17.5 MEMS Magnetometer Errors 397
FurtherReading 401
Kalman Filters 403
18.1 Introduction, 403
18.2 Least Squares Estimator 403
183 KalmanFilters 405
18.4 Discrete Kalman Filters 405
18.5 Extended Kalman Filters 410
FurtherReading, 412
Quaternions and Sensor Fusion 413
19.1 Introduction, 413
19.2 Quaternion-Based Kalman Filter 414

19.2.1 PredictionStep 415

CONTENTS

19.3

19.4

19.2.2 Correction Step
19.2.3 Observation Vector Using Gradient Descent Opti-
mization
19.2.4 Observation Vector Determination Using Gauss—Newton
Method
Quaternion-Based Extended Kalman Filter
19.3.1 Measurement Process
Conversion between Euler and Quaternion

FurtherReading

I Hands-On

20 Hands-On: Inertial Sensors for 3D Input
Paul W. Yost

20.1
20.2

20.3

20.4

20.5

20.6

Introduction oL oo
Motion Sensing and Motion Capture
20.2.1 Motion Sensing
20.2.2 MotionCapture
Types of Motion Sensing Technology
20.3.1 Marker-Based Optical Systems
20.3.2 Marker-Less Optical Systems
20.3.3 Mechanical Systems
20.3.4 MagneticSystems
20.3.5 Inertial Systems
Inertial Sensor Configurations forInput
20.4.1 Single Sensor Configurations
20.4.2 Multiple Sensor Configurations
20.4.3 Full-Body Sensor Configurations
Hands-On: YEI 3-Space Sensors
20.5.1 Overviewo
20.5.2 Using a Single YEI 3-Space Sensor
20.5.3 InstallingaSensor
20.5.4 Communicating with a Sensor Using Command and
Response
20.5.5 Communicating with a Sensor Using Streaming Mode
20.5.6 Using the 3-Space Sensor API
20.5.7 Hands-On: Single 3-Space Sensor Applications
20.5.8 Hands-On: Multiple 3-Space Sensor Applications .
Hands-On: YEI Prio for Whole-Body Input
20.6.1 UsingthePrioAPI
20.6.2 Hands-On: Prio for Full-Body Immersion in Unity .
20.6.3 Hands-On: Prio for Full-Body Motion Capture . . .

XV

417

418

420
422
424
425
425

427

429

429
430
430
431
431
431
432
433
434
434
436
436
437
437
437
437
438
439

441
445
447
448
461
466
467
471
478

XVi

CONTENTS

FurtherReading

21 Simple Hands-On Project with Unity3D and Oculus Rift
Nonnarit O-larnnithipong

21.1
21.2

213
214
21.5
21.6
21.7

Installation and System Requirements
Getting Started
21.2.1 Creating aNew Project
Creating Game Scene
Lighting, Camera, and Skybox
GameObject and Basic Action Script
Graphic User Interface (GUI)
Oculus Rift Integration for Unity
21.7.1 Installation and Package Import
21.7.2 OculusRiftPrefab.

FurtherReading,

22 Hands-On Approach with Leap Motion
Frank E. Hernandez

22.1
222
223

Hands-On Mini-Project

FurtherReading

23 Hands-On Approach with Kinect Sensor v2
Frank E. Hernandez

23.1
23.2
23.3

What Is the Kinect Sensor?
Installation,
Hands-On Mini-Project

Further Reading

24 Creating Home-Brew Devices with Arduino Microcontrollers
Sudarat Tangnimitchok

24.1
24.2
243

24.4

Microcontroller
AnalogSensor
Serial Communication
24.3.1 Universal Synchronous Receiver/Transmitter
Hands-On Project: Ultrasonic Proximity Sensor
24.4.1 Introductionto Arduino
2442 Ultrasonic Sensor
2443 Connecting Circuit
2444 Coding (Sketch)
2445 Testingthe Project.

480

483

483
484
486
486
493
495
501
503
504
505
509

511

511
512
513
519

521

521
523
523
533

535

536
538
539
539
540
540
541
543
545
551

CONTENTS

Further Reading

25 Autonomous Bicycle with Gyroscope Sensor
Panuwat Janwattanapong & Mercedes Cabrerizo

25.1 Introduction

25.2 AU Self-Balancing Bicycle (AUSB)
25.2.1 Mechanical Structure
25.2.2 Controller: dsPIC30F4011
25.2.3 Gyroscope Sensor: MicroStrain 3DM-GX1

253 DataProcessing
25.3.1 Structure of Data Processing
25.3.2 Analog to Digital Converter

254 System Implementation and Results
25.4.1 Control System of AU Self-Balancing Bicycle (AUSB)
25.4.2 Analysis of AU self-balancing bicycle (AUSB) System
2543 Result

255 Conclusion o

FurtherReading

26 Input Implementation Details

26.1 InputDevices,
26.1.1 Device Listeners and Common Interfaces
2612 3DMouse
26.1.3 Inertial Navigation System
26.1.4 Microsoft Kinect
26.1.5 Keyboardand Mouse
26.1.6 GamePad

26.2 Multi-Touch Implementation . . .

26.3 Working with a 3D Graphics Engine: OGRE

26.4

ECHoSS: Experiment Module . . .

Further Reading

IV Case Study: Speech as Input

27 Multimodal Human-Like Conversational Interfaces
Ugan Yasavur & Christine Lisetti

27.1

27.2
27.3

Dialog Management Overview . .

27.1.1 Dialog Management Based on Machine Learning
27.1.2 Dialog Management and Reinforcement Learning .
Dialog Management in Health Dialog Systems

Task-Based Spoken Dialog Systems

XVii

552

555

555
557
557
557
557
558
559
560
561
561
563
564
564
564

567
567
567
570
575
575
578
580
586
592
600
604

605
607

608
610
611
613
615

Xviii CONTENTS

27.4 Embodied Conversational Agents
27.5 Brief Interventions for Alcohol Problems
27.6 Conclusion
FurtherReading

28 Adaptive Dialog Systems for Health
Ugan Yasavur & Christine Lisetti

28.1 Approach.
28.2 Reinforcement Learning Background
28.3 Markov Decision Processes
28.4 Modeling World with Interconnected MDPs
28.5 Agent and Dialog Strategy Learning
28.6 Reward Function Design
28.7 Speech Recognition and Language Model
28.8 DialogCorpus
289 Conclusion
Furtherreading

V' Appendices

A Displays
Jorge H. dos S. Chernicharo

A.l FixedDisplayso
A.l.1 SingleDisplay
A.1.2 Multiple Displays
A.2 Portable Displays
A.2.1 Tablets and Smartphones
A.2.2 Portable Projectors
A3 HybridSystems
A.3.1 Fixed Displays + Smartphones or Tablets
A.3.2 Fixed Displays + Portable Projectors

B Creating Your Own Virtual Reality HeadSet
Karell Muller

B.1 Introduction,
B.2 Google Cardboard

Bibliography

Index

616
618
625
625

627

627
629
629
634
635
637
638
640
640
640

641

643

643
643
644
647
647
647
649
649
649

651

651
652

661

729

Author Biographies

Francisco Raiil Ortega, Ph.D. Dr. Ortega is a postdoc-
toral research fellow at Florida International University. Dr.
Ortega earned his Ph.D. in computer science from Florida
International University (FIU) in 2014, co-advised by Dr.
Naphtali Rishe and Dr. Armando Barreto. His disserta-
tion, which dealt with 3D navigation using multi-touch,
was nominated for an outstanding dissertation award in the
College of Engineering. He was also named Outstanding
Graduate Student for the year 2014 in the School of Com-
puter Science and Information at FIU. Dr. Ortega earned
his bachelor’s degree in computer science, cum laude, in
December 2008 from FIU and a master’s degree in computer science from FIU
in December 2009. He was a member of the Digital Signal Processing (DSP)
Laboratory at FIU. He has over 17 years of experience in software development
and systems integration. His interests are in 3D user interfaces, input interfaces,
human—computer interaction, 3D navigation, and input modeling. Dr. Ortega has
written multiple publications in journals, lecture notes, and conference proceed-
ings. Dr. Ortega was awarded a 3-year fellowship by the Department of Education
of the United States. This fellowship, named GAANN (Graduate Assistance in
Areas of National Need), was renewed for a fourth year. He was also awarded
the McKnight dissertation fellowship for the academic year 2013-2014 with the
Florida Education Fund. The McKnight fellowship was awarded for an additional
semester. Additionally, Dr. Ortega has received small grants during his time as a
student and is currently pursuing grants as a postdoc.

Fatemeh Sara Abyarjoo, Ph.D. Fatemeh earned a bach-
elor of science degree in computer engineering from the
Azad University, Qazvin, Iran, and a master of science
degree in mechatronic engineering from Azad University,
Qazvin, Iran in 2002 and 2005, respectively. She earned a
Ph.D. in 2013 from the Electrical and Computer Engineer-
ing Department at Florida International University. Since
2012,

XiX

XX Author Biographies

she has been working as a research assistant in the Digital Signal Processing
Laboratory. Dr. Abyarjoo’s research work is on sensor fusion for human motion
tracking. Her research interests are sensor fusion, data analysis, and Kalman
filters. She is a former Open Science Data Cloud (OSDC) PIRE National Science
Foundation (NSF) fellow.

Armando Bennett Barreto, Ph.D. Dr. Barreto earned
the Licenciatura en Ingenieria Mecanica y Electrica (BS
EE equivalent) from the National Autonomous University
of Mexico (UNAM) in 1987, with a concentration in elec-
tronics and instrumentation. In 1989 he earned a master of
science in electrical engineering from Florida International

University (FIU) in Miami, Florida, and the Doctor of Phi- ﬁ
losophy in electrical engineering from the University of
Florida, Gainesville, in 1993. His doctoral research focused
on digital signal processing (DSP), with application to epileptic focus localization
from processing of multi-channel electrocorticogram signals. Since 1994, Dr.
Barreto has been a faculty member of the Electrical and Computer Engineering
Department at FIU and the director of FIU’s Digital Signal Processing Laboratory.
At FIU, Dr. Barreto has focused on applying DSP techniques to the facilitation of
human—computer interactions, particularly for the benefit of individuals with dis-
abilities. He has developed human—computer interfaces based on the processing of
signals such as the electroencephalogram, the electromyogram, eye gaze tracking,
etc. Dr. Barreto has also developed a system that adds spatialized sounds to the
icons in a computer interface to facilitate access by individuals with “low vision.”
He is a senior member of the Institute of Electrical and Electronics Engineers
(IEEE) and the Association for Computing Machinery (ACM).

Naphtali David Rishe, Ph.D. Dr. Rishe has authored

three books on database design and geography and edited ,

five books on database management and high-performance S
computing. He holds four U.S. patents on database query-) g

ing, semantic database performance, Internet data extrac- ‘ | s A
tion, and computer medicine. Dr. Rishe has authored 300

papers in journals and proceedings on databases, software engineering, geographic
information systems, the Internet, and life sciences. He has been awarded over
$55 million in research grants by government and industry, including NASA,
NSF, IBM, Dol, USGS. Dr. Rishe is the founder and director of the High Perfor-
mance Database Research Center at FIU (HPDRC); director of the NSF Center
for Research Excellence in Science and Technology at FIU (CREST) and the NSF
International FIU-FAU-Dubna Industry-University Cooperative Research Center
for Advanced Knowledge Enablement (I/UCRC). Dr. Rishe is the inaugural FIU

Author Biographies XXi

Outstanding University Professor and Eminent Chair Professor of Computer Sci-
ence. Dr. Rishe’s TerraFly project has been extensively covered by the worldwide
press, including The New York Times, USA Today, NPR, Science Journal and
Nature Journal, and FOX TV News. Dr. Rishe’s principal projects are TerraFly (a
50 TB database of aerial imagery and Web-based GIS) and medical informatics.

Malek Adjouadi Dr. Adjouadi is a professor with the De-
partment of Electrical and Computer Engineering at Florida
International University. He is the founding director of the
Center for Advanced Technology and Education funded by
the National Science Foundation since 1993. He earned
his B.S. degree from Oklahoma State University and his
M.S. and Ph.D. degrees all in electrical engineering from
the University of Florida. Dr. Adjouadi’s earlier work on
computer vision to help persons with blindness led to his
testimony before the U.S. Senate Committee for Veterans Affairs on the subject of
technology to help persons with disabilities. His research interests are in image
and signal processing with applications to neuroscience and assistive technology
research.

This page intentionally left blank

List of Contributors

Mercedes Cabrerizo
Assistant Professor

Florida International University
Miami, Florida

Jorge H. dos S. Chernicharo
Researcher

Tohoku University

Sendai, Japan

Frank E. Hernandez
Researcher

Game Developer Guild
Miami, Florida

Panuwat Janwattanapong
Ph.D. Student

Florida International University
Miami, Florida

Stephen P. Landers
Senior Research Engineer
YEI Technology
Portsmouth, Ohio

Christine Lisetti

Associate Professor and Director of the
Affective Social Computing
Laboratory

Florida International University

Miami, Florida

Karell Muller

Computer Support Analyst
Florida International University
Miami, Florida

Nonnarit O-larnnithipong

Ph.D. Student in Electrical Engineering
Florida International University
Miami, Florida

David Rieksts
Research Mathematician
YEI Technology
Portsmouth, Ohio

Sudarat Tangnimitchok
Ph.D. Student

Florida International University
Miami, Florida

Dimitar Valkov

Researcher

Visualization & Computer Graphics
Research Group

Department of Computer Science

University of Miinster

Miinster, Germany

Frances Lucretia Van Scoy
Associate Professor

West Virginia University
Morgantown, West Virginia

XXiii

List of Contributors

XXiv

Ugan Yasavur, Ph.D. Paul W. Yost

Research Engineer Chief of Research and Development
IPsoft YEI Technology

New York, New York Portsmouth, Ohio

Foreword

I have no doubt you are aware of the amazing technology that companies are
working on and delivering to the consumer: Microsoft HoloLens, Oculus Rift,
Google Glass (wearable technologies related to virtual and augmented reality),
and Leap Motion (3D motion controller), among others. Many companies have
attempted such technologies over the last couple of decades, but attaining a reliable
and consumer-affordable product has been difficult. Certainly the advancements in
low-power hardware with the capability to support compute-intensive applications
have been necessary for success. However, the complexity of the science (computer
vision, image processing) and the necessity for high-performance hardware (CPU,
GPU, FPGA, ASIC) have been equally challenging.

One might think that providing a convincing mixed-reality world—and the
ability to interact with that world in a natural manner—is not too difficult to
achieve in a commercial engineering environment; as it turns out, this is not the
case. Recognizing hand gestures as input, for example, and translating them
to some desired output in a mixed-reality application is not trivial. Rather than
trying various ad hoc approaches (as engineers are fond of doing) and hoping to
find a simple solution to a complex problem, it is better to rely on the expertise
of those who have studied this field extensively and have a solid grasp on the
approaches that work—and on those that do not. Interaction Design for 3D User
Interfaces: The World of Modern Input Devices for Research, Applications, and
Game Development is exactly the book that you want to read. It is a collaborative
effort by a group of experienced researchers who have distilled the literature to the
most relevant references and presented the material in an easy-to-read discussion
with a historical perspective that helps to understand why input devices and user
interfaces have evolved to their current state.

Part I of the book is about the theory and has a well-written presentation on
the history of input devices. Several chapters are about multi-touch, which is
supported on nearly all devices we have come to rely on. A couple of chapters
are about eye-gaze tracking and brain-computer interfaces. Part II is about ad-
vanced topics including a review of digital signal processing. The chapters on
inertial and magnetic sensors and on Kalman filters are particularly of interest for
understanding how to deal with the noise inherent in hardware measurements of
position and orientation. For the practical-minded developers and researchers, Part

XXV

XXVi Foreword

IIT is a collection of chapters about projects for specific hardware including Oculus
Rift, Leap Motion, Kinect V2, gyroscopes, and Arduino microcontrollers. Part
IV has a couple of case studies that are interesting to see how speech is a useful
input for various applications. A new feature of the book is that the authors have
provided additional chapters via online access, including information on gestures,
multitouch for Windows 8, and multitouch for Windows 10.

Finally, one of my favorite features of the book is the extensive list of references:
over 60 pages of papers and books that the authors have taken the time to identify
as the important results for us to study. The time a single person would spend
trying to read and identify the relevant research will make the book a worthwhile
purchase. The authors have already done that work for you and saved you a lot of
valuable time.

The information in this book is invaluable for the 3D input devices and user
interface projects I work on, both software and hardware. I plan on having a copy
of the book by my side at work. Others on my team will probably try to borrow it,
but I will chain it to my desk and insist they purchase their own copy!

—David Eberly, CTO of Geometric Tools LLC.

Preface

However bad life may seem, there is always something
you can do, and succeed at. While there’s life, there is
hope.

—Stephen Hawking

I started coding when I was 11 years old on a scientific calculator given to my
sister, who was preparing to enter college. I remember my parents’ intrigue at
why I didn’t want to go play football' with my friends. I spent weekends and
weeknights playing with this calculator that had a single one-line display but could
output text and symbols with its alphanumeric keyboard. Later, I received an
Atari 65-XE computer that came equipped with a whopping 64 kilobytes of RAM
memory. This also came with a tape-drive that meant waiting for games for a
half-hour (if it loaded correctly) and an Atari joystick. I was 12 years old and |
was amazed by the power of computing. Early on I was very intrigued with the
Atari joystick but I never knew I would end up researching three-dimensional user
interface (3DUI) or learning human—computer interaction (HCI). However, I knew
that I loved programming. I knew that I loved computers. The movie WAR Games
circa 1983 was the initial motivation for me to become a computer scientist. Just
to be able to change your grade from your house was a reason enough to like it. |
could have used a grade booster in my Castellano? class when I was a kid. I knew
I loved programming, and later in life, computer science was my north. While
computer graphics was a field that looked interesting to me, it was a project offered
to me by my Ph.D. advisor, that led me to this field. I'm forever grateful.

While reading the user manual of this new Atari 65-XE computer, I learned
how to code Basic and to code the joystick to create lines and shapes using
Basic language. The Atari joystick and the Atari paddles allowed for some very
interesting interaction in a computer that didn’t have a mouse. The Atari computer
8-bit, simple yet marvelous graphics for the time (at least that one could afford),
provided imagination for many kids my age. I believe that modern input devices
will let many kids wonder about the possibility of user interaction.

! Also known as soccer.
2What native Spanish is called in some Spanish-speaking countries.

XXVii

XXviii Preface

My journey, described in the previous paragraphs, is what led me to lead the
efforts for this book. This book came about with initial help from David Eberly,
who is one of my favorite technical authors. Not only did he help me but he
also reviewed some of the chapters of this book. This book would have not been
possible without the additional writing and support of my co-authors: Fatemeh
(Sara), Armando, Naphtali, and Malek. I decided to look for authors who were
close to me and had a different take (and expertise) on input devices and user
interaction. This book is also made possible by collaborators who contributed
different chapters that were needed to complement the book. While working on
this book, it was clear that many topics important to user input interfaces were not
able to be covered. This is why I with some of my co-authors, in collaboration with
CRC Press, have decided to compile a Handbook of Input and 3D User Interaction:
Theory and Practice, probably to be completed during 2016.

Why This Book?

While working on my Ph.D., the best book that I found for my work was 3D User
Interfaces: Theory and Practice [Bowman et al. 04]. It aligned with my topic,
which was user interfaces and user interaction by using input devices. However, |
noticed that user interfaces with the lenses of input devices had not been covered
in depth. 3D User Interfaces: Theory and Practice is a fantastic book and we have
learned that they are working on a new edition. However, our objective was to
provide additional information about input, in particular multi-touch (because of
how pervasive it has become), and provide some hands-on chapters. In addition,
we wanted to provide chapters about Kalman filters, which are extremely useful for
input. There are excellent books that cover different topics in 3D User Interfaces,
an amazing chapter title “Input Technologies” [Hinckley and Widgor 12],> and
Human Computer Interaction: An Empirical Research Perspective [MacKenzie 12],
among others ([Dix et al. 04]).

This book talks about user interfaces with an emphasis on the input component
of them. This includes physical devices, virtual devices, the theory behind the
interaction and navigation, which those devices are used for, past and current
techniques, practical topics about input devices, and some advanced topics such as
Kalman filters.

About the Title of This Book

This book’s title evolved over time. The original title included the word “Natural
User Interaction”, and as you read the book, you will notice why I have stayed away
from this term. At a later time, the book was called “3D User Input Interfaces”
because I wanted to give emphasis to input devices while working with user

3Previous editions of this chapter were written by Hinckley [Hinckley 08].

Preface XXiX

interfaces. With the help of the 3DUI community and in particular, Dr. Bowman,
from Virgina Tech, I was able to find the title that best fit this book, in my opinion.
The title finally became Interaction Design for 3D User Interfaces: The World
of Modern Input Devices for Research, Applications, and Game Development,
since interaction design describes techniques triggered by user input with its
proper feedback. The subtitle included makes mention of modern input devices
because of the perspective used for this book. In my mind, when I think about
an interface, I think about the input and output of an interface, and this is why,
the wording input user interfaces (or user input interfaces) made sense. However,
keeping consistent with definitions is very important (as one may claim that is only
semantics). Therefore, the input and output components are parts that make the
interface.

What Is in the Book?

This book is divided into four parts: theory about user interfaces with a large
emphasis on input devices and the input component of interfaces, advanced topics
including Kalman filters and three-dimensional (3D) rotations in the context of
input, hands-on approach to get someone started with a device, and a case study
divided into two chapters.

Part |: Theory

Chapter 1 provides a brief overview of the vision and other topics related to HCI
including 3DUI and some definitions. Chapter 2 provides information about the
input component of user interfaces as well as information about input devices.
Chapters 3 and 4 cover the output components of user interfaces, displays, and,
computer graphics. Output is needed for input interaction to work. While the
input may work without output, the lack of feedback would provide little use to
most users. Chapters 5 and 6 cover 3D interaction and 3D navigation, respectively.
These chapters provide an understanding of user interaction when using input
interfaces. Both of these chapters, in particular Chapter 6, provide additional
state-of-the-art information. For Chapter 6 (navigation), both topics of travel and
wayfinding are covered. Chapter 7 covers some descriptive and predictive models
related to input. The next four chapters deal with different aspects of multi-touch.
Chapter 8 provides an overview of hardware and important multi-touch techniques
and studies. This chapter also provides a look at multi-modal interaction, in
particular touch and pen. Chapter 9 provides an overview of 3D touch. Chapter
10 provides a brief overview of some pen and multi-touch techniques. The last
chapter that covers multi-touch is Chapter 11. This chapter provides a look at
multi-touch modeling using high-level Petri Nets (HLPNs). While, in theory,
this can be applied to other types of input devices, it is done in the context of

XXX Preface

multi-touch. This chapter provides an overview of Petri Nets (PN), which has
remained a very niche topic in computer science. However, we believe that it is
time for PNs to have their place. Chapter 12 deals with Eye Gaze Tracking (EGT),
which provides another dimension for input. Finally, Chapter 13 in this part of
the book is a look at brain—computer interface (BCI) and electroencephalogram
(EEG) in the context of interactive application, providing a look at some recent
publications.

Part II: Advanced Topics

The second part of this book requires a level of knowledge in statistics,
digital signal processing (DSP), and mathematics in general. While not all of
these topics could be covered in this book, we do provide a brief 3D mathematical
overview in Chapter 14. This chapter is also provided with inertial navigation
system (INS) sensors in mind. Some readers may feel that this chapter fits better
in the appendix. However, there are important topics that are useful for this part.
Chapter 14 was originally larger but due to space, we removed some concepts that
we felt were already part of other chapters. Nevertheless, the missing part will be
available on the book’s website. Next, Chapter 15 deals with a basic introduction to
DSP. Chapter 16 describes 3D rotations using quaternions and Euler angles. Then,
Chapter 17 covers topics concerning inertial measurement unit (IMU) sensors,
such as gyroscopes and accelerometers. This is followed by Chapter 18 dealing
with Kalman filters. Chapter 19 provides a look at quaternions and sensor fusion
in more detail, including topics of Kalman filters. It is worth mentioning that the
original idea was to make the topic of Kalman filters and sensors as accessible
as possible. However, after working with Fatemeh (Sara), who has led all the
chapters in this part (except the math chapter), it is very apparent that additional
information is needed to close the gap. One option is a book only about this topic,
which should include background topics, implementation details, and additional
information for dealing with Kalman filters with input devices. While having a
dedicated book looks like the perfect solution and we will attempt to work on it in
the future, the topics provided in this book are useful for people needing to use
Kalman filters, micro-electro-mechanical systems (MEMS) sensors for motion,
and work with complex 3D rotations (e.g., for 3D navigation). The best suggestion
that I have is to read the Kalman filter chapters ignoring the equations at first, if it
is the first time reading them.

Part Ill: Hands-on

The third part of the book deals with basic hands-on approach projects. The
objective of this section is to get someone up and running with a project that may
lead them to enhance an application or do research. In most cases, the chapter will
detail a basic project or at least provide hints to help with the implementation. All
the projects will be available in our book’s website. Chapter 20 provides a detailed

Preface XXXi

explanation about IMU sensors and how to implement them. This information is
meant to be used with the YEI Technology sensor but some concepts are useful for
other IMUs. Next, Chapter 21 provides a look at unity and oculus rift. Chapter 22
provides a look at Leap Motion. The Leap Motion does provide a different set of
data and gestures that makes it a very useful device. Chapter 23 covers the new
Microsoft Kinect v2 for the Microsoft Xbox One and Microsoft Windows. There
are times that the current devices do not satisfy our needs. The simplest way to
create an input device is to use a micro-controller or small form-factor personal
computer (PC) board (e.g., Raspberry Pi). For this book, we provide a chapter
that covers the popular Arduino micro-controller device, which is explained in
Chapter 24. While most of our chapters deal with devices for the desktop (or
mobile) devices, we also wanted to provide a hands-on approach for input devices
using an outdoor automated bicycle in Chapter 25. This provides a look at micro-
controllers and gyroscopes. However, this gyroscope is analog, which makes less
noise than one in a MEMS. Finally, Chapter 26 covers different input devices,
including Microsoft Kinect v1, 3D mouse, and many other considerations that
I have taken during my own input device development. We wanted to provide
additional devices in this section. For example, one device we were hoping to
test was Nimble* VR. During their Kickstarter funding campaign, they decided to
sell their company to Oculus Rift (a division of Facebook). Maybe in the future,
it will become available, unless it becomes bundled with Oculus Rift. Another
device, which we purchased via Kickstarter in late 2013, was the Stem System
by SixSense’. Unfortunately, at the time of this writing (2015), we still have not
received the product but are still hopefull. Finally, we understand that some readers
may want to understand the concepts from the ground up. We are in the process of
creating an input device framework, which we hope in time will provide a unified
input framework.® Therefore, if you want to understand input device development,
we hope to provide a book in the future that covers that. We plan to update the
book’s website with more hands-on projects whenever posssible.

Part IV: Case Study

The last part of the book, which is divided into Chapters 27 and 28 is meant to
cover one case study. The idea of this part of the book is to provide a look at a
case study for a complete system, where natural language processing is a complete
input/output solution.

Appendix

The appendix contains additional information that is relevant to the topic. The first
appendix contains additional information about displays, provided by my good

“http://mimblevr.com
Shttp://sixense.com/
6See an existing one called VRPN. https://github.com/vrpn/vrpn/wiki

http://nimblevr.com
http://sixense.com/
https://github.com/vrpn/vrpn/wiki

XXXii Preface

friend Jorge H. dos S. Chernicharo’. The next appendix covers considerations
when building your own head-mounted display (HMD), which proves very useful
for the Unity chapter for those that don’t have Oculus Rift. While many online
websites have instructions, this appendix covers the experience of building our
own headset and the problems one may face if you have access to a 3D printer.

Exercises

A note about exercises. The book contains a few exercises in most chapters. Most
of them provide a way to extend the knowledge of a given chapter. They are not
(for the most part) meant as a review of the chapter. Most chapters have two to
three questions.

Online Content

Our book’s website, located at http://3DInputBook.com, will serve as a comple-
ment to this book. We plan to model this website as http://www.realtimerendering.
com website, which will provide additional chapters, errata, and new content as it
appears. We also hope to include book recommendations and general news about
input user interfaces. We also invite you to visit our lab’s (OpenHID Lab) website
at http://www.openhid.com.

The online chapters of this book will be provided at no cost to you. The
chapters will be written to complement topics of the book, including theory (e.g.,
gestures), and hands-on project, among others. We know that there are many
additional topics that the reader may be interested in, and we hope to cover the rest
in the 3D User Input Interfaces/Interaction Handbook.

I also recommend the 3DUI mailing list (http://people.cs.vt.edu/~bowman/
3dui-g@vt.edu). This mailing list has helped me to reach the 3DUI community.
The amount of help given by the members of this mailing list has been without
equal.

Finally, I would like to mention that we have plans to prepare power points and
material to make this book ready for classroom.

Conferences and Journals

There are many conferences and journals that cover the topics related to this
book. In the book’s website, I will list the conferences and journals as they
become available. Two conferences from IEEE that are very popular are the 3DUI
symposium and VR. ACM has a few great conferences as well—for multi-touch,
ITS (interactive tabletop surfaces). In addition, UIST (user interfaces software and
technology) and SUI (spatial user interfaces) contain lots of material. Of course,

7I'm still waiting for Jorge to purchase an Xbox One in order to play a match of FIFA.

http://3DInputBook.com
http://www.realtimerendering.com
http://www.realtimerendering.com
http://www.openhid.com
http://people.cs.vt.edu/~bowman/3dui-g@vt.edu
http://people.cs.vt.edu/~bowman/3dui-g@vt.edu

Preface Xxxiii

the flagship conference of HCI is CHI. For ubiquitous computing (not covered
in this book), UbiComp contains very useful publications that can be applied in
this area. HCI International, which may be considered to be a flagship conference,
contains useful information as well. A conference that used to take more user
interface (UI) work is SigGraph®, by far it is the most popular conference from
ACM and an amazing one to attend. SigGraph Asia is its counterpart in the other
part of the world. For journals, IEEE Transactions in Sensors provides cutting edge
information. Another journal found at IEEE, which has lots of virtual reality (VR)
and Ul publications is IEEE TVCG (Transactions in Visualization and Computer
Graphics). Finally, the flagship journal in HCI is ACM TOCHI.

Natural User Interfaces?

The original title of this book was Natural Input User Interfaces. The title was
changed. The world “natural” has become a hype term, and I’'m not sure it belongs
next to user interfaces. In Chapter 8, the question of whether gestures are natural is
explored. While I'm not against anyone using the phrase “natural user interfaces,’
various factors tell me that what we are calling natural gestures today may not
be. One of the definitions of natural is “existing in or caused by nature; not
made or caused by humankind” [Stevenson and Lindberg 10]. I, in my experience
as a multi-touch researcher, and most importantly, the literature by well-known
researchers [Wobbrock et al. 09], have shown that users differ in the type of gesture
for a given action. However, it is true that with learned behavior, people will tend
to produce similar gestures. By now, most of us who have used a smartphone know
that we can enlarge or shrink an image with a pinch gesture. Regardless of whether
the input interaction is natural or learned behavior, the understanding of input user
interfaces is what is important. Therefore, I decided to remove the word natural
from the title, as I'm not convinced that many of the “natural” input devices are
natural at all and the literature supports this. Sometimes, there are references to
“natural” user interfaces but what they are actually referring to is direct interaction.
There are times that mid-air interaction is referred to as “natural” but the lack of
tactile feedback makes me doubt how natural they are. More than creating a debate
about it, it is important to follow the work of researchers in this area and continue
their work. Finally, as I have stated in this book, I prefer to use the word “intuitive”
user interfaces or “modern” user intefaces rather than the word “natural”.

8SigGraph 2016 contained a large amount of Virtual Reality demos.

XXXiV Preface

Other Books

There are other books that have some overlaps with this one. The most important
one is the seminal book 3D User Interfaces: Theory and Practice by [Bowman
et al. 04]. While their book covers different aspects of 3DUI and our book covers
specific topics about input, there is a natural overlap in some of the chapters. We
tried to make sure that this book provided additional information while keeping
some topics for completeness. Our book needed to be self-contained whenever
possible. Furthermore, the topics that may overlap have a different perspective
because this book is input-centric.

Another book that has some overlap with our book is Human-Computer In-
teraction: An Empirical and Research Perspective [MacKenzie 12], a wonderful
book about topics very close to many of us doing research in HCI. This is par-
ticularly true when this book describes predictive and descriptive models in HCI.
A third book that was used for part of Chapter 3 is Displays: Fundamentals and
Applications [Hainich and Bimber 11], among many others.

Book Recommendations

In the book’s website, I will maintain a list of book recommendations for related
topics. There are a few books that I must have near my desk at all times (whenever
possible) and it is not A Song of Ice and Fire (Game of Thrones), which I keep
in my Kindle. The following list of books, book chapters, and articles has been
extremely useful to me for HCI, 3DUI, input user interfaces, computer graphics,
software development, and computer science:

* 3D User Interfaces: Theory and Practice [Bowman et al. 04].

* Human-Computer Interaction: An Empirical Research Perspective [MacKen-
zie 12].

* Displays: Fundamentals and Applications [Hainich and Bimber 11].
* 3D Game Engine Design [Eberly 07].

— Other books by David Eberly which have been very useful include
GPGPU: Programming for Games and Science, 3D Game Engine
Architecture, Game Physics, and Geometric Tools for Computer Graph-
ics.

* Human-Computer Interaction [Dix et al. 04]

* Discovering Statistics Using SPSS [Field 09].
— Also available for R.

* Brave NUI World by Wigdor and Wixon.

Preface XXXV

o Sketching User Experiences: Getting the Design Right and the Right Design
by Bill Buxton.

* Design Patterns [Gamma et al. 94].

* 3D Math Primer for Graphics and Game Development [Dunn and Par-
berry 11].

Looking Forward

Closer to the finish line, before the publication of this book, one always wonders
if there is anything that could have been included but there was either no time or
no space to do so. The answer is always yes and it is the hope of this author that
others may fill the gaps in other books or publications. One particular gap that it
was not filled, was the one of gestures. While I did cover gestures for multi-touch
and pen, there is so much to cover, that may deserve its own book. One late
example that comes to mind is by Dr. LaViola’s team, that has been working with
gestures succesfully. For example, Tarante and colleagues in Exploring the Benefits
of Context in 3D Gesture Recognition for Game-Based Virtual Environments
[Taranta II et al. 15]. Another example is BenDesk, which shows the potential of
working with a curve display and multi-touch [Weiss et al. 10], and the Interactive
Slice WIM [Coffey et al. 12b], among many other great work that was not able to
be included in this book. We ask readers to send us research and important topics
that did not make it into our book. We hope to add them in our next book and to
our book’s website.

There are many developments going on right now as we close this book. The
Microsoft HoloLens, the HP Sprout, among many others. Most of these have come
from the amazing research from the scientific community.

Acknowledgment of Support

We acknowledge the following sponsors, who made it possible in part to write this
book and collect the information.

This material is based in part upon work supported by the National Science
Foundation under Grant Nos. I/UCRC IIP-1338922, AIR IIP-1237818, SBIR
IIP-1330943, III-Large 11S-1213026, MRI CNS-1429345, MRI CNS-0821345,
MRI CNS-1126619, CREST HRD-0833093, [/UCRC IIP-0829576, MRI CNS-
0959985, and U.S. DOT Grant ARI73. Additional sponsors will be mentioned in
our website.

We would also like to acknowledge the grant provided by Taylor & Francis
during the initial development of this book.

XXXVi Preface

In addition, Francisco R. Ortega acknowledges the support from GAANN
during his Ph.D. studies and the Florida Education Fund (McKnight fellowship).

The support of Florida International University (FIU) has been amazing for
the production of this book. It is specially true for the School of Computing and
Information Sciences and the department of Electrical and Computer Engineering
at FIU.

My current lab (OpenHID) inside of our HPDRC center has been great with
the support by Martha Gutierrez, Scott Graham, Karell Muller, and the students in
the OpenHID lab, Alain Galvan, Jason-Lee Thomas, and Ruben Balcazar.

Finally, this would have not been possible without CRC press and everyone
working in this amazing publishing company (see my personal acknowledgements
for more details).

About the Images

Most of the images for chapters in Part II (except Chapter 14) were created
by Bahareh Abyarjoo (abyar.ba@gmail.com). The cover was created by a very
talented student, named Alain Galvan (alaingalvan.com). Figure 7.7 was drawn
by Patty Melo. Original (or adapted) in Chapters 1—8 and 10, were drawn by
Luz Aguilar. All the images are property of their respective copyright holders and
permissions were obtained for all images, either with direct copyright holder’s
permission or using the Copyright Clearance Center.

Personal Acknowledgment

This book would not have been possible without the guidance and support of my
co-authors, Dr. Abyarjoo, Dr. Barreto, Dr. Rishe, and Dr. Adjouadi. Their insight
into their own areas of expertise has made it possible to finish this book. I also
thank my collaborators, without whom certain topics would not have been included
in this book. It is because of the collaborators that this book is more well-rounded.

While all my co-authors and collaborators worked extremely hard and provided
great help, two of them I want to give a special thanks, since they were both my
former Ph.D. co-advisors: Dr. Barreto and Dr. Rishe. Dr. Barreto showed me how
to be a good and integral researcher and has always provided me with help. Dr.
Rishe, who has shown me how to always push further, to be the best version of me
that I can be, has always support me and has provided funding to freely research
and work way beyond my Ph.D.

Another important player in the making of this book is the 3DUI community.
The many emails I sent asking for support were always answered with insight and
support. I thank the research and practitioner community of 3DUI for their help
and ask for their continued support to improve this book.

mailto:abyar.ba@gmail.com
http://alaingalvan.com

Preface XXXVii

There are some friends and colleagues who have made it possible to get to the
finish line: Daisy Lu, Frank Hernandez, Tessa Verhoef, Nacho Mora, Aaron Lebos,
Sergio J. Ceron, Eddie Garcia, and Jose Ignacio (Nacho) Mora. My former lab
mates, who have always supported me, are always present in my thoughts: Daisy,
Raymond, Ong, Amy, Jarr, Jonathan, and Sara.

I’'m grateful for people who helped from a distance: Dr. MacKenzie, Dr.
Hinckley, Dr. Bowman, and Dr. Eberly, who have taken time to reply to my
questions, though most of them have never met me in person. In particular, the
exchanges between Dr. Eberly and me have been extremely rich.

CRC Press (Taylor & Francis) has been of great help. In particular, Rick
Adams, who was always understanding with the delays that this book presented.
I also have to thank Kari Budyk for her help, in particular when dealing with
permissions. Also, Charlotte Byrnes, provided amazing editing help and sent many
emails and was always willing to help. Karen Simon also provided lots of guidance
in the final editing and lots of patience. Finally, I want to thank everyone at CRC
Press for their continued support and amazing help. I chose them because of the
quality of content they currently have. Many of their books in computer science
(in particular computer graphics and HCI), I own and have enjoyed.

Without my family none of this would matter. Their support and understanding
have been priceless. Their love has proven to be the best motivation to continue
the research when there were difficult times. My dad Francisco, mom Patricia,
my grandparents Aida and Pedro, my sisters Marcela, Cecilia, Jimena, for their
continued love and care for my entire life. For my brothers-in-law Roberto,
Kenneth, Eddie, for the love of my sisters and my nephews. For all my nieces and
nephews Fernanda, Francisca, Felipe A., Sebastian, Roberto, Felipe, Nicholas.

I will always be in debt to my father and mother, for their love and support.
For the Atari 65XE and disk drive 1050 that were given to me, and gave me the
gift of coding. Because they let me dream, they let me be, they supported me in
good and bad times, because they believed in me, when I couldn’t do it myself.

I will also be in debt to every person who has helped me in the United States
of America, which I call my own today, but was foreign when I came. Living as
an immigrant at a young age was not always easy but many people have helped
along the way.

Finally, my wife Luz Adriana and my daughter Sofia Alejandra are my north
star, who guide me along this path called life. It is because of them that I keep
striving to be a better person, better professional, and better husband and father. It
is for you and our new family that I continue to move along this path. I love you,
always and forever.

— Francisco R. Ortega

This page intentionally left blank

1D

2D

3D
3DUI
AC
ADC
AHRS
Al
AIC
ANS
API
AR
ARW
ASCII

ATF
AUSB
BCI
BSP
CG
CMOS
CPN
CPU
CR
CRT
CUBE
D-Pad
DC
DFT
DI
DIY
DLP

Abbreviations

One-Dimensional.

Two-Dimensional.

Three-Dimensional.

Three-Dimensional User Interface.
Alternating Current.

Analog-to-Digital Converter.

Attitude and Heading Reference System.
Artificial Intelligence.

Adaptive Interference Canceller.
Autonomic Nervous System.
Application Programming Interface.
Augmented Reality.

Angle Random Walk.

American Standard Code for Information Inter-
change.

Adaptive Transversal Filter.

AU Self-Balancing Bicycle.
Brain—Computer Interface.

Binary Space Partitioning.

Computer Graphics.

Complementary Metal-Oxide-Semiconductor.
Colored Petri Nets.

Central Processing Unit.

Corneal Reflection.

Cathode Ray Tube.

Computer-Driven Upper Body Environment.
Digital Pad.

Direct Current.

Discrete Fourier Transform.

Diffuse Illumination.

Do It Yourself.

Digital Light Processing.

XXXiX

xl

DOF

DPI

DSI

DSP
DTFT
DTMF
ECHoSS
EEG
EEPROM

EGT
EM
F-LCoS
FETOUCH
FFT
fMRI
FOR
FOV
FPS
fps

FS
FSM
FT
FTIR
GamePad
GHz
GML
GOMS
GPS
GPU
GSR
GUI
GWC
HCI
HDTV
HID
HLPN
HMD
HMM
HP

Hz
IDE
IMU

Degrees of Freedom.

Dots per Inch.

Diffuse Surface Illumination.
Digital Signal Processing.
Discrete-Time Fourier Transform.
Dual Tone Multi-Frequency.

Experiment Controller Human Subject System.

Electroencephalograph.

Electrically Erasable Programmable Read-Only

Memory.

Eye Gaze Tracking.

Electromagnetic.

Ferroeletric Liquid Crystal on Silicon.
Feature Extraction Multi-Touch System.
Fast Fourier Transform.

Functional Magnetic Resonance Imaging.
Field of Regard.

Field of View.

First-Person Shooter.
Frames-Per-Second.

Fourier Series.

Finite-State Machine.

Fourier Transform.

Frustrated Total Internal Reflection.
Video GamePad Controller.
Giga-Hertz.

Gesture Markup Language.

Goals, Operators, Methods, and Selection.
Global Positioning System.

Graphics Processing Unit.

Galvanic Skin Response.

Graphical User Interface.
GestureWorks Core.
Human—Computer Interaction.
High-Definition Television.

Human Interface Devices.

High-Level Petri Net.

Head-Mounted Display.

Hidden Markov Models.
Hewlett-Packard.

Hertz.

Integrated Development Environment.
Inertial Measurement Unit.

Abbreviations

Abbreviations

INS
10 port
IR
ITO
KHz
KLM
LCD
LCoS
LED
LED
LLP
LRS
LSQ
MEMS
MIDI
MLM
MRI
NES
NLS
NUI
OAE
OCA
OGRE
OIS
OS
p-cap
PARC
PC
PCB
PD

PD controller
PeNTa
PET
PMPD
PN
POG
POS
Prt Net
PWM
RAM
RBG
RBI
RegEx

xli

Inertial Navigation System.

Input and Output Port.

Infrared.

Indium Tin Oxide.

Kilo-Hertz.

Keystroke-Level Model.
Liquid-Crystal Display.

Liquid Crystal on Silicon.
Light-Emitting Diode.

Organic Light-Emitting Diodes.
Laser Light Plane.

Landmark, Route, Survey.

Least Squares.
Micro-Electro-Mechanical Systems.
Musical Instrument Digital Interface.
Moving Liquid Mirror.

Magnetic Resonance Imaging.
Nintendo Entertainment System.
oN-Line System.

Natural User Interface.

Optical Axis of the Eye.

Optically Clear Adhesive.
Object-Oriented Graphics Rendering Engine.
Object-Oriented Input System.
Operating System.

Projected Capacitive.

Palo Alto Research Center.
Personal Computer.

Printed Circuit Board.

Pupil Diameter.
Proportional-Derivative Controller.
Petri Net Touch.

Polyethylene Terephthalate Film.
Processed Modified Pupil Diameter.
Petri Net.

Point-of-Gaze.

Point of Sale.

Predicate Transition Net.

Pulse Width Modulation.
Random-Access Memory.

Red Green Blue.

Reality Based Interactions.
Regular Expression.

xlii

RLS
ROC
ROM
RRW
RX

SDK
SNR
SONAR
STL
TFT
TUI
TUIO
TV

TX
UART
UbiComp
Ul

USB

VE

VR
VRD
WiiMote
WIM
WIMP
WINAPI
WinRT
XML

Abbreviations

Recursive Least Squares.
Region of Convergence (ROC).
Read-Only Memory.

Rate Random Walk.

Receiver.

Software Development Kit.
Signal-to-Noise Ratio.

Sound Navigation and Ranging.
STereoLithography.

Thin-Film Transistor.

Tangible User Interface.
Tangible User Interface Object.
Television.

Transmitter.

Universal Asynchronous Receiver and Transmitter.
Ubiquitous Computing.

User Interface.

Universal Serial Bus.

Virtual Environment.

Virtual Reality.

Virtual Retina Display.
Nintendo Wii Controller.
World-in-Miniature.
Windows-Icon-Menu-Pointer.
Windows APIL.

Windows Run-Time.
Extensible Markup Language.

Part I

Theory

This page intentionally left blank

Introduction

The most profound technologies are those that disap-
pear. They weave themselves into the fabric of every-
day life until they are indistinguishable from it.

—Mark Weiser

The seminal work known as Sketchpad [Sutherland 63] by Ivan Sutherland
has inspired many researchers in the field of human—computer interaction (HCI)
and three-dimensional user interface (3DUI). Sutherland created an elegant and
sophisticated system, which is considered by some as the birth of computer user
interface studies. The invention of the mouse by Douglas Engelbart in 1963
[English et al. 67] and the invention of the Graphical User Interface (GUI) at
the Palo Alto Research Center (PARC) gave way to one of the most successful
paradigms in HCI: Windows-Icon-Menu-Pointer (WIMP), which has allowed
users to interact easily with computers. The seminal work known as Sketchpad
[Sutherland 63] by Ivan Sutherland has inspired many researchers in the field of
HCI and 3DUI. Sutherland created an elegant and sophisticated system, which is
considered by some as the birth of computer user interface studies. The invention
of the mouse by Douglas Engelbart in 1963 [English et al. 67] and the invention
of the GUI at the PARC gave way to one of the most successful paradigms in HCI:
WIMP, which has allowed users to interact easily with computers.

Today, with the introduction of new input devices, such as multi-touch surface
displays, the Nintendo Wii Controller (WiiMote), the Microsoft Kinect, the Leap
Motion sensor, and Inertial Navigation Systems (INS), the field of HCI finds itself
at an important crossroads that requires solving new challenges.

Humans interact with computers, relying on different input-output channels.
This may include vision (and visual perception), auditory, tactile (touch), move-
ment, speech, and others [Dix et al. 04]. In addition, humans use their (long-
and short-term) memory, cognition, and problem-solving skills to interact with
computer systems [Dix et al. 04]. This computer interaction has a set of challenges
that needs to be addressed. This book covers user input interfaces, the input for
users when working with computer systems.

4 1. Introduction

The areas of HCI and 3DUIs are broad fields, making it difficult for most
books to cover details in depth about a specific topic. This book concentrates on
input technology while other books may focus on other areas. There are some
seminal books that covered more general topics that any developer or researcher
must have. These are the seminal book titled The Psychology of Human Computer
Interaction [Card et al. 83]; User Interfaces: Theory and Practice' [Bowman
et al. 04]; Human-Computer Interaction [Dix et al. 04]; and Human Computer
Interaction: An Empirical Research Perspective [MacKenzie 12]. The challenge
for this book to be at par with the ones mentioned is great, the opportunity is
welcome, and the journey is uphill.

This book deals with user interaction with a perspective on input technologies.
The book is divided into three parts: theory, advanced topics, and hands-on ap-
proach. The book concentrates on concepts; however, whenever possible, complete
source code will be made available on the book’s website. Additional material will
also be found on the website, which includes the online chapters we have provided
with the book. Finally, it is important to note that while the objective is to cover
input devices and user interaction, output devices are critical when using input.
Therefore, this book will cover basic details about output.

The book covers input technology, which in most cases are commodity? devices.
However, it is hard to avoid the topic of virtual reality with the introduction of the
oculus rift or even the Google Cardboard. Many of the topics covered in this book
may be used in different types of environments. This book covers basic concepts
of virtual reality (VR) headset. However, it is important to keep in mind that VR is
outside the scope of this book in its current form.

This chapters offers a brief introduction to HCI and input technologies.

1.1 The Vision

Vannevar Bush was the director of the Office of Scientific Research and Develop-
ment, USA [Packer and Jordan 02] when he wrote “As We May Think” [Bush 4513
which was the inspiration for scientists to come, including Ivan Sutherland.
His vision was prophetic for many scientists that have cited him over 4000
times [MacKenzie 12]. Bush envisioned the personal workstation (which he
called Memex) as an essential tool for researchers and everyday users. He was
ahead of his time saying that “a record if it’s to be useful to science, must be con-
tinuously extended, it must be stored, and above all it must be consulted”(p.37).4
He went on to write that “the human mind does not work that way. It operates by
association”(p.43), which is important for 3D input user interfaces. This article

IThe authors are working a newer edition.

2Off-the-shelf devices. We prefer affordable devices whenever possible.

3 A reprint of this article is found in [Bush 96].

4The quotes were taking from [Bush 96]. For additional comments, see [Simpson et al. 96].

1.2. Human—-Computer Interaction 5

has proven an inspiration for many scientists because of the vision that was laid
and the reminder that collaboration and thinking outside of the box is imperative.
Ahead of his time, Bush wrote:

A touch brings up the code book. Tapping a few keys projects the
head of the trail. A lever runs through it at will, stopping at interesting
items, going off on side excursions. It is an interesting trail, pertinent
to the discussion. So he sets a reproducer in action, photographs the
whole trail out, and passes it to his friends for insertion in his own
memex, there to be linked into the more general trail.

1.2 Human—Computer Interaction

HCl is the field that studies the exchange of information between computers and
their users. The field emerged in the decade of the 1980s, with influences from
many other fields, such as psychology, computer science, human factors, and
others. An alternate definition of HCI is the communication between computer
systems and computer users. How the communication enables the use of the
technology is a central part of the study of HCIL.

A field closely related to HCI is human factors, which is concerned with
the capabilities, limitations, and performance by people when using any type
of systems.> Also, from the perspective of the system design, human factors
studies the efficiency, safety, comfort, and enjoyability when people use a given
system. This seems quite close to HCI if you think of systems as computer
systems [MacKenzie 12]. The HCI field also draws knowledge from psychology.
Some examples are cognitive psychology, experimental psychology, and others.
This is very useful, as it helps us to understand users and tests how they interact
with different types of computer systems. HCI is a very broad field. In HCI, you
can find VR, 3DUI, affective computing (which draws as much as from psychology
as it does from Artificial Intelligence (Al)), and others.

Major events in the HCI community [MacKenzie 12] started with the vision of
Vannevar Bush with “As We May Think,” the development of the Sketchpad by
Ivan Sutherland, the development of the computer mouse by Douglas Engelbart,
and the launch of the Xerox Star system. Then, the first interest group formed
(SIGCHI®) in 1982, followed by the release of the seminal book, The Psychology
of Human-Computer Interaction, and the release of the Apple Macintosh, starting
a new era for computer systems.

3Tt doesn’t have to be a computer system.
6See http://www.sigchi.org.

http://www.sigchi.org

6 1. Introduction

Side Note 1.1: The Mother of All Demos

The seminal talk by Engelbart and colleagues became to be known as “The
Mother of all Demos.” This presentation set the stage for what was to
come. It prepared the way for later innovations at Xerox Parc (see Figure
1.1), the commercial success of the Macintosh, and Microsoft Windows.
It presented collaborated editor, word processing, and video conferencing,
among others. Most importantly, it showcased the use of the mouse in
conjunction with the keyboard to perform cut, copy, and paste, among other
operations.

Wendy Hu, reflected about Engelbart’s demo and said: “Engerlbart was
not wholly prophetic; his obsession with viewing the human as an informa-
tion processor, for example, keeps him even today from appreciating the
mouse’s value for its ease of use” [Ju 08].

Figure 1.1: Xerox PARC System. With permission.

1.2.1 Usability

Usability is defined as the user acceptability of a system, where the system satisfies
the user’s needs [Nielsen 94]. Furthermore, usability is an engineering process that
is used to understand the effects of a given system on the user, in other words, how

1.2. Human—-Computer Interaction 7

the system communicates with the user and vice versa. Usefulness ““is the issue
of whether the system can be used to achieve some desired goal” [Nielsen 94].
This breaks down into utility and usability. Utility addresses the question of the
functionality of the system, which means if the system can accomplish what it was
intended for [Nielsen 94]. Usability in this case refers to “how well users can use
that functionality” [Nielsen 94]. Finally, it is important to understand that usability
applies to all aspects of a given system that a user might interact with [Nielsen 94].
The following list briefly describes the five traditional usability attributes (adapted
from [Nielsen 94]):

* Learnability: The system must have a very small learning curve, where
the user can quickly become adapted to the system to perform the work
required.

* Efficiency: Once the user has learned the system, the productivity level
achieved must be high in order to demonstrate a high efficiency.

* Memorability: The system is considered to have a high memorability if
when the user returns after some time of usage, the interaction is the same
or better than it was the first time.

* Errors: The system is considered to have a low error rate if the user makes
few errors during the interaction. Furthermore, if users make an error, they
can recover quickly and maintain productivity.

* Satisfaction: The interaction with the user must be pleasant.

To Test or Not Test

It is common in HCI to experiment on different prototypes and techniques. This
is very important in HCI. However, there are a few pointers that are important
to have in mind. One of them is the bias toward objective, quantifiable measure-
ments, treated as facts, without the incentive of retesting by others [Greenberg
and Buxton 08]. Also, Greenberg and Buxton provided compelling arguments
about one myth held by some people in the community. Some researchers may
think that to have a successful experiment, the new device must outperform the old
one. A counter example offered by the authors in [Greenberg and Buxton 08] is
Marconi’s wireless radio (1901). This radio would not have passed any usability
test and it was severely criticized at the time. This leads to the question whether
a device is usable or useful (or both)? It is the opinion of this author (and the
authors in [Greenberg and Buxton 08]) that the usefulness at early stages is far
more important. Usability comes later in the process, as has been the experience
in the field [Greenberg and Buxton 08, Buxton 10].

8 1. Introduction

Figure 1.2: Sutherland’s Sketchpad [English et al. 67]. (With permission from
MIT.)

1.2.2 The Sketchpad

In 1962, during Sutherland’s PhD studies,’ he published SKETCHPAD. A Man-
Machine Graphical Communication System. The Sketchpad was an amazing
invention at the time and it has proven to have given birth to modern user interfaces.
This was a new concept, where users were not typing commands in a terminal but
interacting with a light pen. Sutherland’s Sketchpad was able to create circles, arcs
and lines. In addition, the interface could zoom in, zoom out, create instances of
shapes. Furthermore, the user could make lines parallel or perpendicular.® Another
important aspect of Sketchpad was the use of a pen to do the drawings. Figure 1.2
shows Sutherland working with the Sketchpad.

1.2.3 The Mouse

In 1963, Douglas Engelbart invented the mouse (see Figures 1.3 and 1.4). While
the impact of the mouse is evident today, it was not obvious back in the 1970s.
The patent was filed in 1967° with the title X-Y POSITION INDICATOR FOR A
DISPLAY SYSTEM and approved November 17,1970, with US Patent ID 3541541.
In 1968, before Engelbart could even show his invention, a German company

7 At Massachusetts Institute of Technology (MIT).
8Search in youtube for Ivan Sutherland’s Sketchpad to view the demo.
9In Google Patents search for: engelbart 1967 position pot

1.2. Human—Computer Interaction

Figure 1.4: Engelbart with original mouse and three button mouse. (With permis-
sion from SRI.)

(Telefunken) released a variation of the mouse. This mouse had a ball inside as
the typical mouses used during the 1980s and 1990s before the optical mouse.
While Engelbart created the mouse, there was another effort never patented and a

10 1. Introduction

Figure 1.5: Engelbart’s workstation, circa 1965. (With permission from SRI.)

Canadian secret by Cranston, Logstaff, and Taylor in 195210 [Ball and Vardalas 94].
This was a trackball for their Datar System. In 1981, a mouse was released
commercially with the Xerox Star workstation. In 1983, Microsoft released their
first mouse to be used with Microsoft Word (DOS version). The next year, in 1984,
along with the Big Brother ad during the Super Bowl, with the era of the Apple
Macintosh, came the Lisa Mouse. Additional pictures of the first workstation
used with a mouse (Figure 1.5), a later modification of the workstation using a
three button mouse (Figure 1.6), and Engelbart holding the original mouse and
the modified three button mouse (Figure 1.4) are included in this chapter. For
additional images, see http://Digibarn.com, http://www.dougengelbart.org/, and
Bill Buxton’s collection [Buxton 14], among many other sources on the web.

1.2.4 The Light Pen and the Computer Mouse

There are two major events that are critical moments in HCI for people who study
input user interfaces: the Sketchpad by Ivan Sutherland!! and the invention of the
mouse by Douglas Engelbart. This all happened before the explosion of the field
in the 1980s.

Having more than one device prompted English, Engelbart, and Berman [En-
glish et al. 67] to ask: Which device is better to control a cursor on a screen? This

10This was a secret project for the Royal Canadian Navy’s Datar system.
"THe also introduced the VR head-mounted display (HMD).

http://Digibarn.com
http://www.dougengelbart.org/

1.2. Human—Computer Interaction 11

Figure 1.6: 1968 workstation with three-button mouse, keyboard, and chord
keyboard. (With permission from SRI.)

/ B\
Side Note 1.2: Predicting The Future

Bill Buxton said: “Innovation is not about alchemy. In fact, innovation
is not about invention. An idea may well start with an invention, but the
bulk of the work and creativity is in that idea’s augmentation and refine-
ment.” [Buxton 08]. In TechFest 2013, he later said: “Any new ideas by
the time that it reaches maturity, takes 20 years,” adding that if we can’t see
past fifteen years of history leading up to a particular technology, either we
haven’t done our homework or the time predicted for this technology to be-
come mainstream has been miscalculated. Appreciation of the work that has
come before us it is really important to understand where we are heading.
o /

was the first user study dealing with input devices for computing systems that may
have marked a “before and after” in HCI [English et al. 67].

In this study (“Display-Selection Techniques for Text Manipulation™), the
subjects were presented with a computer mouse, a light pen, a joystick with two
modes (absolute and rate), Grafacon,'? and a user’s knee lever (also referred
to as the knee controller). The study used repeated-measures, meaning that all
devices were tested for each subject. The dependent variables that were measured
were: time to acquire target and the error rate when trying to acquire the target.
The combination of both measurements led researchers to the conclusion that the

12Graphical input device for curve tracing, manufactured by Data Equipment Company.

12 1. Introduction

Time (Seconds)

5 5.22
4
3 3.26 3.29
OTime (Seconds)
2.62
) 236 2:43
1
0
Knee Control Light Pen Mouse Grafacon Joystick Joystick Rate

Absolute

Figure 1.7: Mouse study: Time. Adapted from [English et al. 67].

computer mouse was a better device based on the study. This was great news,
because a knee lever doesn’t seem quite exciting to use. Figure 1.7 shows how
the knee controller was faster than the rest of the devices. However, looking at
Figure 1.8, it is clear that the mouse has the lowest error rate compared to the
other devices tested. Another interesting part of the study is that while the light
pen was faster than the computer mouse, it was known to cause discomfort'3 after
prolonged use.!*

1.2.5 Graphical User Interfaces and WIMP

GUI is a type of interface that allows the user to interact with windows or icons,
as opposed to a text interface. The GUI was first seen in the Xerox Star system,
developed at PARC [Hiltzik 09]. The GUI has allowed systems like Microsoft
Windows and Apple Macintosh to become pervasive for day-to-day use in desktop
computers and mobile devices.

The WIMP paradigm'> emerged with the availability of Apple and IBM desk-
top computers. This paradigm refers to the interaction of users with the GUI,
which includes WIMP [Rogers et al. 11]. The windows, which can be scrolled,
overlapped, moved, stretched, opened, closed, minimized, and maximized, among

BWhich was probably known from the times of the sketchpad [Sutherland 63].

14Using a pen while resting a hand on the surface may be more comfortable [Hiilsmann and
Maicher 14].

I5Referred to as interface [Dix et al. 04].

1.2. Human—-Computer Interaction 13

Error Rate
0.35
0.3
0.297
0.25 0.259
0.234
02 0.211 0.213
(]
0.15 Error Rate
0.1
0.099
0.05
0
Mouse Knee Control Joystick Grafacon Light Pen Joystick Rate

Absolute

Figure 1.8: Mouse study: Error rate. Adapted from [English et al. 67].

other operations, were designed to be the core of the visual feedback and inter-
action with the user. The menus allow the user to select different options that
augmented the use of the Window. The menu can be activated by clicking on it.
Once selected, the menu expands down (or in a different direction), which allows
the user to select an option. The icons allow a representation of applications,
objects, commands, or tools that, if clicked, become active. Icons are commonly
found in a desktop area of the display or in a menu. Finally, the central part of
WIMP is the pointing. This allows the user to interact with any of the interface
elements already mentioned, using a mouse with a click button [Rogers et al. 11].
The paradigm, along with the GUI interface, has evolved to allow many new types
of interactions. However, the basic principle remains the same.

1.2.6 3D User Interfaces

A user interface (UI) is the medium of communication between a user and a
computer system. The Ul receives the input (actions) from the users, it delegates the
computation to a designated process, and then it represents the computer’s output
into a representation that the user can understand [Bowman et al. 04]. A 3DUI
is the medium of communication between a user performing three-dimensional
(3D) interaction with a computer. These are tasks “performed directly in a 3D
spatial context” [Bowman et al. 04]. The fact that someone is working in a 3D
environment does not mean that they are doing 3D interaction. For example, if the

14 1. Introduction

user is navigating a 3D landscape of Miami by using commands or menu-driven
actions, they do not constitute 3D interaction. Conversely, 3D interaction does not
have to involve 3D input devices. For example, by using a two-dimensional (2D)
non-stereo display with multi-touch capability, the user performs a 2D gesture
to move along the Z axis. This means that the 2D action has been mapped (or
translated) to a 3D action. There are several reasons why 3DUIs are important
to study. Bowman et al. provided five reasons in their seminal book [Bowman
et al. 04]:

1. Real-world tasks are performed in 3D.
2. 3DUI are becoming mature.

3. 3D interaction is difficult to solve; hence, it provides a challenge to many
researchers. This also means that there are many problems that need to be
solved.

4. 3DUIs require better usability.

5. 3DUIs still have many open questions, leaving space to study and to innovate
as much in academia as in industry.

Directions for 3D User Interfaces

Bowman and colleagues provided a way forward for 3DUI based on the research
that had been accomplished at the time of this publication [Bowman et al. 06].
They proposed four general research directions, based on the observation that lots
of research had concentrated in general methods, such as application-generality,
domain-generality, task-generality, device-generality, and user-generality [Bow-
man et al. 06]. The alternative is to concentrate in specificity [Bowman et al. 06]. In
other words, “explicit considerations of specific domains, tasks, and devices.” Take
for example task-specificity: If the researcher looks at scaling as a special case of
manipulation, then it is generalizing the task; however, if the researcher looks at
the unique properties of resizing, it allows to dig deeper into this task, making it
more specialized. A counter example for task-generality is providing a ray-casting
technique for any type of object without considering specific attributes about the
environment. Similar examples can be found for application-specificity, domain-
specificity, device-specificity, and user-specificity in their publication [Bowman
et al. 06]. They also suggested to look into “flavors,” which means adding com-
plexity, features, tweaking to an existing technique [Bowman et al. 06]. Another
recommendation is that 3DUI research should spawn into emerging technologies.
Finally, implementation issues of 3DUI still need to be addressed.

1.3. Definitions 15

Side Note 1.3: Desktops

Desktops are still important today. Computer graphics cards keep pushing
the boundaries. Even more important, some of us use our laptops as
desktops. To dismiss the desktop, in our opinion is wrong. To dismiss
WIMP and the use of the keyboard or mouse is also wrong. Hinckley
and Wigdor wrote: “Rumors regarding the death of the desktop computer
are greatly exaggerated. After 40 years of iterative design, the personal
computer, driven by a mouse and keyboard and controlling a WIMP GUI,
continues to evolve” [Hinckley and Widgor 12]. They also state that
pointing continues to be the main tool for selection as pointed out by
[Balakrishnan et al. 97]. This is not say that other emerging paradigms and
technologies may surpass WIMP and the keyboard and mouse devices, but
to just overlook them is wrong based on the number of years of research.
Furthermore, the research for WIMP and keyboard and mouse always
serves as a foundation for other emerging technologies.

1.3 Definitions

It is important to cover some definitions that will be used throughout the book.
It is possible that some definitions may differ from other people’s definitions but
we have to try to make it as standard as possible, while making sure we cover the
definition that is used throughout the book. Some more specialized definitions
will be either described or expanded in later chapters. The following are the basic
definitions:

* Virtual environments (VE): This is a synthetic world, usually created for
3D applications and games. The spatial space is used as a first-person
camera. However, this term could be loosely used by some to refer to any
synthetic world regardless of the point of view of the user. This is done in
real-time.

* Virtual reality (VR): Bowman and colleagues state that virtual reality is
a synonym of virtual environments [Bowman et al. 04]. However, it is
commonly viewed as the immersion of the user in a virtual environment.

* Augmented reality (AR): Real-world environments with synthetic informa-
tion form the world.

* Mixed reality (MR): This refers to the combination of virtual reality and
augmented reality.

16

1. Introduction

Input device: This is a physical device (hardware) that can sense physical
properties (people, places, or things) [Hinckley and Widgor 12].

Output device: This is the primary way for computers to communicate
feedback to their users (physical device).

User interface: This is the representation that allows the communications
between users and computers. The user interface is “the summation of all
its input devices, conceptual models, and interaction techniques” [Hinckley
and Widgor 12].

User experience: This is the perception of the user interface from the user’s
cognitive states, emotional states, and social interactions, among others.

Interaction technique: This is the merging of input and output (including
hardware and software) that allows the user to complete a task using the user
interface. The interaction technique is delegated the task of mapping input
to an action of the system, and the output action to the output device.

Conceptual model: This is “coherent model that users visualize about
the function of a system” [Hinckley and Widgor 12]. In other words, this
helps users to visualize a system with metaphors such as the graphical user
interface. These models are meant to be refined over time by the user’s
interaction with the system.

3D interaction technique: User’s interaction in 3D spatial context. Interac-
tion techniques involve selection and manipulation. It is important to note
that using 3D virtual environment (VE) or using 3D input does not constitute
3D interaction [Bowman et al. 04]. It is the action mapping that creates the
3D interaction. For example, a user that manipulates a multi-touch surface
(which is 2D) to navigate in a 3D environment will constitute 3D interaction
because of the mapping from the 2D input to the 3D world.

Ubiquitous computing (UbiComp): This term was coined by visionary
Mark Weiser [Weiser 91]. He talked about technology being pervasive,
everywhere, anytime, where the more we didn’t notice the technology, the
more efficient it would become [Weiser 91].

1.3. Definitions 17

Further Reading

This book does not cover ubiquitous computing (UbiComp) but it is mentioned in
this chapter. UbiComp is the target for many researchers working in 3D interfaces.
The most important paper is the one by [Weiser 91]. Two books that cover this
topics are also very useful, such as the ones written by [Poslad 11, Krumm 09].
The UbiComp conference is one of the major places to find the current research in
this field.

Exercises

1. Watch “The Mother of all Demos.” The video will show how advanced was
Engelbart for his time.

2. Watch The Sketchpad by Ivan Sutherland on YouTube or similar Internet
video repository. The video will show you a visual object-oriented language
way ahead of its time.

This page intentionally left blank

Input: Interfaces and
Devices

The barometer has fallen and a brisk wind blows. Input
and interaction are not what they used to be. Gusts
drift over the line in the sand that separates input from
output.

—~Ken Hinckley and Daniel Wigdor

2.1 Introduction

This chapter deals with input, which is the primary objective of this book. Some
of the best advice for input devices was given by Hinckley and Wigdor in “Input
Technologies and Techniques” [Hinckley and Widgor 12] by stating that to look
at the complete picture of input devices one must go beyond the typical strengths
and weaknesses. This means that “any property of an input device can be turned to
one’s advantage when used appropriately in an interface design” [Hinckley and
Widgor 12].

2.2 Input Technologies

Input devices are the primary tool for providing information to a computer system,
which is essential for the communication between a user and a computer. In
general, input devices can sense different physical properties, such as “people,
places, or things” [Hinckley 08]. When working with input devices, feedback is
necessary. For example, using a brush to paint in mid-air without proper feedback
will be as useless as using the pen without paper, or using a car alarm system
without some feedback from the device or the car. This is why input devices

19

20 2. Input: Interfaces and Devices

are tied to output feedback from a computer system when immediate feedback is
required.

While each device has unique features and it is important to know the limita-
tions and advantages of a given device, there are some common properties that may
apply to most devices. The following is a list of input device properties (adapted
from [Hinckley 08, Hinckley and Widgor 12]):

* Property Sensed: Devices can sense linear position and motion. Some
devices will measure force and others change in angle. The property that is
used will determine the transfer function that maps the input to the output.
Position-sensing devices are absolute input devices, such as multi-touch.
Motion-sensing devices can be relative input devices, with the example of
the mouse as one of them. There is room for ambiguity depending on the
actual design of the transfer function. For example, a multi-touch device can
be used as a relative input device if desired, even though it is a direct-input
system.

* Number of Dimensions: The number of dimensions sensed by the device
can determine some of its use. For example, the mouse senses two dimen-
sions of motion for X and Y coordinates, while a vision-input system may
sense three dimensions of motion for X, Y, and Z axes. While the mouse
does sense two dimensions, the transfer function may be mapped to a higher
degree of dimensions with some additional input, to provide a richer set of
interaction (e.g., 3D navigation). Some other devices have different types
of 3D sensors (e.g., gyroscope, accelerometer, etc.). Understanding the
dimensions of the device can provide a designer with the correct mapping
for the transfer function.

* Indirect versus Direct Devices: Indirect devices provide a relative mea-
surement to be used with the computer system. For example, the motion
of the mouse is relative to the position of the cursor and the movement
of the user. In other words, while the cursor may traverse the complete
screen from left to right, the movements by the user with the mouse may be
confined to a smaller space than the screen. A mouse may even be picked
up and moved to a different location without causing any movement on the
display, using the transfer function to map the movements. Direct devices
provide a different interaction for users. In general, they lack buttons for
state transitions and allow the user to work directly on the display. One
example is the use of a digital pen with a tablet. The user can paint directly
on the screen, having a 1:1 relationship with the surface display. There are
typical problems with direct devices, such as occlusion, i.e., the user may
occlude a part of the display with his/her hand. Direct-input devices are
expanded in Section 2.2.2.

2.2. Input Technologies 21

* Device Acquisition Time: “The average time to move one’s hand to a
device is known as acquisition time” [Hinckley 08]. Homing time is defined
as the time that a user takes to go from one device to another. One example
is the time that it takes to return from a multi-touch desktop to a keyboard.

* Gain: The control-to-display (C:D) gain or ratio is defined as the distance
an input device moved (C) divided by the actual distance moved on the
display (D). This is useful to map indirect devices, such as the computer
mouse. For a more detailed explanation, see Side Note 2.3.

» Sampling Rate: Sampling rate is given by how many samples are processed
each second. For example, if the WiiMote Motion Plus has a sampling rate
of 100 hertz (Hz), this means that for every one second, there are 100 digital
samples from the device. In some devices, the sampling rate will be fixed,
and in others, it may vary. The difference may be due to an actual delay
on the computer system and not to the input device. Understanding the
sampling rate by a designer can provide additional features for the user’s
interactions. For additional information about sampling rate and digital
signal processing (DSP), see [Zolzer 08, Ifeachor and Jervis 02].

* Performance Metrics: Performance metrics are useful to study in order
to understand the interaction of an input device, its user, and the computer
system. One example is seen in the classic study of the mouse versus other
devices [English et al. 67], where the error-rate was a significant factor in
why the mouse was the device found to be most effective. Other metrics
include pointing speed and accuracy, learning time, and selection time,
among others.

* State Sensed: Device events are becoming more important with the current
direct input devices (e.g., multi-touch). While indirect devices have events,
such as out-of-range, tracking, and dragging states, direct input devices
offer different types of states that are important to keep in mind while
designing. The implications of touch-down, touch-move, and touch-up have
implications “in the design of interactions” [Hinckley and Widgor 12].

* Additional Metrics: There are several other metrics, including some that
may be unique to a specific input device. One example is the pressure size in
multi-touch displays.! Understanding all the possible metrics is important.
The recommendation by Bowman et al. is to know the capabilities and
limitations of each device [Bowman et al. 04].

UIf this is available to the device.

22

2. Input: Interfaces and Devices

Side Note 2.1: The Loss of a Closely Held Abstraction

Hinckley and Wigdor talk about the loss of abstraction due to direct in-
teraction [Hinckley and Widgor 12]. The WIMP paradigm has allow a
very useful abstraction for users, where the cursor represents the user’s
center of attention, which separates the input from the output [Hinckley
and Widgor 12]. In the world of direct interaction, either a device needs
its own design or we may need to find a new paradigm post-WIMP. It is
important to remember that WIMP paradigm with the use of GUI is highly
optimized for the keyboard and mouse. However, many modern devices
make use of the WIMP paradigm without the use a keyboard and mouse.

~

2.2.1 Transfer Function

The transformation of the input device data is called transfer function. The idea

is to provide a function that allows for a smooth and stable interaction with the goal

of delivering adequate performance. Adequate understanding and use of transfer
functions requires control theory [Ogata 09] knowledge. An example of a video
gamepad controller (GamePad) input data transformation is shown later in this
chapter (see Section 2.4.3). There are many types of transfer function, including

the control-display gain (see Side Note 2.3) [Hinckley and Widgor 12]:

* Appropriate Mappings: It is important to find mappings that matches “the
properties of the input device” [Hinckley and Widgor 12]. One of them is
force-sensing, where the force produces the velocity. Another one is position-
to-position or velocity-to-velocity functions. One example of inappropriate
mapping, provided by Hinckley and Wigdor is the mapping given by the

“velocity based on the position mouse cursor” [Hinckley and Widgor 12].

experimentation [Zhai and Milgram 93].

dy = Kx° @2.1)

Self-Centering Devices: Devices that return to center (see Section 2.4.3)
allow users to stop quickly. To optimize this movement, a non-linear function
can be used, as shown in Equation 2.1, where the rate (d,) is given by the
gain factor (K) multiplied by the input signal (x) with its non-linear exponent
(a). The values for gain (K) and the non-linear parameter (a) are found via

Other Mappings: Other transfer function mappings include motion-sensing
devices (e.g., “exponential transformation of mouse velocity, known as an
acceleration function” [Hinckley and Widgor 12]), absolute devices (one-to-
one mapping), and relative mappings (e.g., temporarily violate one-to-one).

2.2. Input Technologies 23

2.2.2 Direct-Input Devices

Direct input has become pervasive in technology with devices like multi-touch
and digital pen, among others. The light-pen was used with the Sketchpad by
Ivan Sutherland as mentioned in Chapter 1. Multi-touch has been around for a
long time (see Chapter 8). However, as described in Side Note 1.2, technology
takes time to be adopted by the majority of users (with the exception of early
adopters and researchers). It was the introduction of the iPhone that may have
marked the day before and after of the adoption of multi-touch devices. With this
event, direct-input devices have become a major player for input researchers and
developers. While direct-input devices may perform better in some scenarios, they
are not “necessarily easier to use than indirect devices” [Hinckley and Widgor 12].
For example, direct-input devices may lack buttons or other common properties of
indirect-input devices.

Direct-input has become very active in the research community as well as
among developers. It does provide a way to unify input and output (e.g., multi-
touch) with immediate feedback for users. With the pervasive use of multi-touch
nowadays, sometimes it is forgotten that there is still a need to find a model that
works for multi-touch (or for all direct-input devices). While this is not the case
as of now, Hinckley and Wigdor provide some important questions for everyone
working with direct-input devices [Hinckley and Widgor 12] (and a question about
tangible objects added by us):

* Can the display sense touch? If it does sense touch, is it capacitive (“soft-
touch”) or pressure sensing (“hard-touch”)? If it is “soft-touch,” the interac-
tion requires bare fingers. The fact that pressure is not needed, means that
the interaction will have less fatigue. If it is “hard-touch,” then fatigue will
increase but it allows a different environment, where operators of the device
may use gloves. It is important to note that the scale of “soft-touch” and
“hard-touch” is not bound to a particular technology but to the sensitivy of
the device.

* How many points of contact can the display sense? Some of the laptops
may be limited to few contact points (two, three, or four) while other more
specialized devices will have ten or more contact points. However, this
trend may be shifting. For example, the Hewlett-Packard (HP) multi-touch
notebook (HP Envy 360 Touchsmart) comes with ten contact points. It is true
that not all capacitive multi-touch (or any other type of multi-touch) devices
are made equal. Each device may report the contact points differently. For
example, if a palm or thumb is use to touch the display, the contact point may
be reported differently depending on the hardware. This may be reported as
multiple contact points. The difficulties may come from the hardware itself,
the driver, or the actual application.

24 2. Input: Interfaces and Devices

* Can the area of the contact point be sensed? Is this reported as a bounding
ellipse or is the image of the contact available to the developer? For example,
in Windows Application Programming Interface (API) (WINAPI), the touch
contact area is reported for X and Y axes measured “in hundredths of a pixel
in physical screen coordinates” [Microsoft 09].

* Is a special digital pen needed for the interaction or can any hard object
perform the same function? Does it need batteries (active pen) or does it just
work by inductive coupling?

* Can pen contacts be distinguished from touch-contacts?

 Can pen contacts be sensed while one is touching the display? For example,
The Microsoft PixelSense display can utilize multi-touch and pen at the
same time very efficiently. If the pen is near the display, can the multi-touch
display still sense the contact points? Some devices may disable the contact
points if the pen is near the display to avoid false contact points.

 Can tangible objects be used with capacitive displays? What type of tangible
objects can be utilized? For example, an approach presented by [Voelker
etal. 13a, Voelker et al. 13b] allows the use of tangibles in capacitive displays
like the iPad.

Hinckley and Wigdor made the point that data sheets leave most of this information
out [Hinckley and Widgor 12]. Not only, do some of them leave this information
out, but even contact points are not reported correctly (or at all), or additional
information about hardware. Large vendors like 3M and Microsoft PixelSense do
provide more information, but this is not always true with all devices. It is also
pointed out by them [Hinckley and Widgor 12] that this can be an advantage, as it
has been for us when developing multi-touch solutions. The reason that this can be
an advantage is that without knowing what is supported, one can design for more
universal usage and build from there. For example, it is likely that most devices
will at least provide an identification field for each finger trace with the x and y
coordinates. It can be assumed that at least most devices will support at least two
contact points, with some others supporting four. However, the number of contact
points should be determined at run-time to change the behavior of the gestures if
needed.

2.2.3 Input Device States

Defining the states for modern input devices has proven not to be an easy task. In
the seminal work by Bill Buxton [Buxton 90], he defined that almost any input
device to be used with WIMP could be expressed in three states. His model was
able to model devices, such as personal computer (PC) mouses, digital pens, or
single-touch displays. However, even his model could fail in some instances. One

2.2. Input Technologies 25

example is in the work by Hinckley and colleagues, which demonstrated that a
digital pen required a five-state model [Hinckley et al. 10a].

With the explosion of many new input devices, such as multi-touch, Microsoft
Kinect, and Leap-Motion, among others, the three-state model needs to be ex-
panded. Multiple attempts to define a new model have been made, as will be
described in other chapters. Some of the attempts for modeling multi-touch have
included Regular Expressions (RegEx), Finite-State Machines (FSMs), and high-
level Petri Nets (HLPNSs).

2.2.4 Input Considerations

Six-degrees of freedom (DOF) for input devices have been studied in full detail
by Zhai in his doctoral dissertation [Zhai 95]. The dissertation goes in-depth
into how subjects deal with 6-DOF. The study provided great insight for 3D
navigation [Zhai 95]: The muscle groups involved in a 6-DOF vary depending on
the device used. This in itself helps to design better interfaces. The study also
talks about the transfer function (see Section 2.2.1), which must be compatible
with the characteristics of the actual device. This was also stated by Bowman and
colleagues in their guidelines suggesting to “match the interaction technique to the
device” [Bowman et al. 04, p. 179]. Hinckley and Wigdor also looked at input
technologies in [Hinckley and Widgor 12], as already described in this chapter.
The recommendations by Zhai [Zhai 95] help to emphasize the 3D interaction
design guidelines offered in [Bowman et al. 04] :

1. Use existing manipulation techniques unless an application will benefit
greatly from creating new ones.

2. Match the interaction to the device.
3. Reduce wasted motion (clutching).
4. Use non-isomorphic techniques whenever possible.

5. Reduce the number of degrees of freedom (DOF) whenever possible.

From the previous list, item 4 reminds the designer that it is difficult to model
isomorphic rotation techniques (see Chapter 5), as shown in [Poupyrev et al. 00].
Additional guidelines have been proposed. For example, Jacob and colleagues
proposed interfaces within a post-WIMP framework [Jacob et al. 08]. In this
framework, they tried to find a balance between reality based interactions (RBI)
and artificial features. RBI includes naive physics, body awareness and skills,
environment awareness and skills, and social awareness and skills. Also, Hancock
and colleagues proposed some specific guidelines when dealing with multi-touch
rotations and translation [Hancock et al. 07]. These included the ability to rotate
and scale independently or together by providing more DOF than WIMP. In

26 2. Input: Interfaces and Devices

addition, they suggested that a constant connection between the visual feedback
and the interaction would prevent cognitive disconnect by avoiding actions that the
user may not be expecting [Hancock et al. 07] . In other words, the system needed
to provide a realistic 3D visual feedback to match the interaction. For additional
discussion, see [Bowman et al. 99b, Bowman et al. 06, Hinckley 08, Bowman
et al. 04].

2.3 User Interfaces: Input

This sections deals with the input aspect of a user interface. This is always
achievable by some type of input device. This is a physical or virtual device
working as a unit. For example, a virtual keyboard on a smartphone is the interface
that allows the user to type (using the touch display) any number of characters. The
UT allows the communication to happen between the human and the computer. The
user input interface allows the human to communicate with the computer while
the output user interface allows the opposite. At first, an input device and the input
components of user interfaces may seem similar but an input device is only the
hardware which for a given action sends an appropriate signal to the computer.

2.3.1 3D User Interfaces: Input Devices

3D input devices provide data, direction, or commands to a 3DUI, using different
types of input devices. An input device does not require the user to have 6-DOF
(but some are true 3D input devices with 6 or more DOF) to be considered a 3D
input device. This means that an input device, to be a 3D input device, has to
operate in such a manner that the input is mapped to a 3D action. The distinction
here between the interaction technique and input device is critical when designing
a system. The input device makes reference to a physical system (e.g., computer
mouse) that allows some measurement from the user (or by the user), which is
then forwarded to the computer system. The interaction technique is defined as
how this input device is mapped into the 3DUI system [Bowman et al. 04].

Section 2.2 described characteristics for input technologies which can be
applied to 3D input devices. In addition, there are specific characteristics for 3D
input interfaces. The following attributes are important to consider when working
with 3D input devices [Bowman et al. 04]:

* Degrees of Freedom: The degrees of freedom (DOF) are the most critical
characteristics for a 3DUI interaction. For example, a 6-DOF device can
give you a direct mapping between translations for X, Y, Z axes and rotations
about X, Y, Z axes. A degree of freedom is “simply a particular, independent
way that a body moves in space” [Bowman et al. 04].

2.4. Input Devices 27

* Frequency of Data: The frequency of the data determines how the data
is sent to the computer system. The frequency of data may be continuous
components, discrete components, or both [Bowman et al. 04]. For example,
the button in a GamePad will only return pressed or not pressed. The
thumb-stick found in the GamePad produces continuous values for a given
range.

» Active Devices: Devices are said to be active (or purely active) if they
require the user to perform a physical action with the device. One example
is the multi-touch display, which requires the user to touch the screen before
any action can be taken [Bowman et al. 04].

* Purely Passive: Devices Devices are said to be passive (or purely passive)
if they do not require any physical action from the user to generate data.
This could be a vision-based input system that is reading information from
the environment, without the user input. Nevertheless, the user may work
with this device as an active input system. For example, the device becomes
an active system when the user performs hand gestures in the vision-based
system to issue a command [Bowman et al. 04].

2.4 Input Devices

The vast number of computer input devices is not a new phenomenon but the
adoption of new devices into everyday use has seen a shift from previous decades.
It is the explosion of modern input devices that is giving way to a set of new
interactions and possibilities.

The first person that comes to mind when dealing with input has to be Doug
Engelbart because of the invention of the mouse, which is still the most pervasive
and useful tool for everyday computing. Many inventors, researchers, and prac-
tioners have contributed to input. Two names that come to mind are Bill Buxton
and Ken Hinckley (and their contributions are far beyond input). Bill Buxton has
created an amazing collection of input devices on the web® and has provided a
timeline for early input devices.> Many other great researchers and practitioners
have also contributed to input devices, and some of them are cited in this book.

2.4.1 Keyboard

The computer keyboard originated from its ancestor the typewriter, which allowed
users to type alphanumeric characters and perform special functions on their

Zhttp://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/
3http://www.billbuxton.com/inputTimeline.html

http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/
http://www.billbuxton.com/inputTimeline.html

28 2. Input: Interfaces and Devices

Figure 2.1: QWERTY keyboard.

computer. The most popular keyboard is the one derived from QWERTY Sholes—
Glidden typewriter, as shown in Figure 2.1.

Besides entering commands or typing text with the keyboard, the keyboard
has many other uses. In 3D environments, the keyboard plays an important role in
navigation and control of the system by pressing different keys. For example, in a
game or navigation environment, the arrows (up, down, left, right) or the AWSD
key combinations (A=left, W=up, S=down, D=left), are very common. Other keys
like the space bar are used to trigger certain actions (e.g., shoot a missile). The
keyboard does provide a way to interact with 3D applications.

Chord Keyboard

A chord keyboard is a specialized keyboard that is meant to play keys in combi-
nations as if the user were playing musical chords. We can think of the regular
keyboard as a chord keyboard since there are some combinations of keys used. For
example, the combination of shift a will produced A, or control ¢ (command c)
will be used to copy text or an image into a buffer for later retrieval.

Very early on Engelbart and English in 1968 presented a bi-manual system
named oN-Line System (NLS), which included a chord keyboard [Engelbart
and English 68b]. This came to be known as the “Mother of All Demos” (see
Side Note 1.1) [Engelbart and English 68a]. A very interesting case study is
found in Buxton’s Human Input to Computer Systems: Theory, Techniques and
Technology [Buxton 68].

There are many examples of chord keyboard, including specialized gaming

2.4. Input Devices 29

- ~N
Side Note 2.2: The World of Watches

Bill Buxton showed his 1976’s watch in a conference talk. It had been
manufactured by Orient and was called the Touchtron watch. This is very
likely the first watch with capacitive touch. This watch introduced single
tap for time and double tap for date [Warren 13, Buxton 13] way before it
was used with a PC mouse. Buxton showed different watches in this talk,
finalizing with the 2009 LG smart watch. Buxton, during the talk, finished
the topic of watches by saying: “I’m not trying to say what’s going on today
isn’t interesting, but it becomes actually more interesting if you drop the
hype and view it in context in the history of things and see it as a continuum.
Then you start to see how we’re doing and not get dazzled” [Buxton 13].
Understanding previous research and inventions, helps us not only to avoid
reinventing the wheel, but it allows us to refine the technology, look at it
with different eyes, and understand where it came from. Maybe the most
interesting quote in this talk was: “If you are working in this space and you
don’t know the history, why are you doing this?” [Buxton 13].

For a look at how to perform gestures for smart watches, see the work
by [Perrault et al. 13]. For a collection of digital watches, see http://www.
digital-watch.com and Buxton’s own collection http://research.microsoft.
com/en-us/um/people/bibuxton/buxtoncollection/.

keyset (or keypad). One early example is the first portable word processor (1978),
the Microwriter, as shown in Figure 2.2. Another example of a chord keyboard
is the design by NewO Company, called Writehander (Figure 2.3). This one-
handed chord keyboard had 12 buttons, which represented the ASCII code table
[Buxton 14].

2.4.2 The Mouse and Its Descendants

The computer mouse (see Figures 2.4 and 2.5), invented for the computer era,
signified a milestone in HCI. The mouse, together with the GUI gave way to one
of the most important paradigms in Ul: WIMP. Selecting a target with a joystick is
not a fun endeavor. One of the authors of this book (Francisco) can attest to the
difficulty of using the joystick in his Atari 8-bit computer when selecting menus
and objects. The study conducted by English, Engelbart, and Berman showed why
Francisco was frustrated (see 1.2.4). The mouse was superior in many aspects.
The basic mouse has the moving functionality to operate a cursor and a button
to perform an action. The pervasive mouse of the 1980s operated using a weighted
ball held inside of a small palm-sized box [Dix et al. 04]. The ball is in contact
with rollers which were used to adjust values of potentiometers [Dix et al. 04]. The

http://www.digital-watch.com
http://www.digital-watch.com
http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/
http://research.microsoft.com/en-us/um/people/bibuxton/buxtoncollection/

30 2. Input: Interfaces and Devices

Figure 2.2: Microwriter. With permission from Bill Buxton. See [Buxton 14].

Figure 2.3: NewO Writehander. With permission from Bill Buxton. See [Bux-
ton 14].

mouse has evolved over time giving additional features. It is very pervasive today
to have a mouse that has two or three buttons, a scroll wheel (which may allow for
pressing it as a button), and many other features. The ball has been replaced either
with an optical tracking mechanism (with a light source and light detector) or a
touch (or multi-touch) track pad.

The trackball (Figures 2.6 and 2.7) is an alternative to the regular mouse. While
it has never been as popular as the mouse, it has its niche. Instead of moving

2.4. Input Devices 31

the mouse with the hand across a region (e.g., mouse pad), the user moves the
embedded ball with a finger. Depending on the design of the trackball, the user
will either use the thumb to control the ball or the index finger. While the design
of the ball is similar to the mouse, it does provide a different ergonomic feel. It
also allows the user to spin the ball, which is a feature that the regular mouse
cannot do because of the position of the ball. Some new computer mouses do
come with touch surfaces that mimic the spinning of the ball. The trackball does
offer some interesting applications. This is why smaller trackballs are still popular
(e.g., Blackberry phone) when designing new user input interfaces.

The Apple Magic Mouse, as shown in Figure 2.8, is an example of the evolution
of the original mice, which provides a multi-touch surface to press and perform
gestures, laser tracking for pointing, and uses Bluetooth communication protocol
to connect wirelessly with the system.

While the mouse and the trackball were not designed for 3D user interaction,
they are commonly used for applications and games that required 4-DOF or greater.
In many instances, the keyboard is used in combination with the mouse (or the
trackball). As stated before, the trackball does provide a better interaction for
immerse environments because (depending on the actual design of the device) it
can be held with one hand [Bowman et al. 04].

2.4.3 Joystick and the GamePad

Joysticks, originally created for airplanes [Mirick 24], have been a very common
device for computer systems, in particular video game systems. The first pervasive

‘/

Figure 2.4: Macintosh Model M0100 [Buxton 14] . With permission from Bill
Buxton. See [Buxton 14].

32 2. Input: Interfaces and Devices

Figure 2.5: Microsoft Arc mouse, circa 2010 [Buxton 14] . With permission from
Bill Buxton. See [Buxton 14].

Figure 2.6: Kensington Turbo Mouse 4.0, circa 1983 [Buxton 14] . With permission
from Bill Buxton.

joystick for video games was the Atari joystick, as shown in Figure 2.9. The
joystick, in its original form, was meant to be used for the X and Y axes of a
system. In other words, it was originally designed to work in 2D dimensions.
Joysticks have evolved into different forms. For example, a typical plane simulator
joystick may have an extra DOF already built in (by twisting the joystick from side
to side). Even more interesting is the evolution of the joystick into the thumbstick.

2.4. Input Devices 33

Figure 2.7: Dimentor - Inspector 6DOF trackball mouse, circa 2008 [Buxton 14] .
(With permission from Bill Buxton).

Figure 2.8: Apple Magic Mouse.

The thumbsticks found in most video game controllers (GamePads) are found in
pairs, allowing at least 4-DOF, as shown in Figure 2.10.

Joysticks and GamePad sticks and buttons are either analog or digital. If
they are analog, they provide a range value. For example, the left trigger of the
Microsoft Xbox 360 controller provides a value between 0 to 255. The Y axis of
the left thumbstick of the Xbox 360 controller provides a value between —32768
and 32767.

The GamePad originally was made famous by the Nintendo Entertainment

34 2. Input: Interfaces and Devices

s ™
Side Note 2.3: Control-Display Ratio - CD gain

One of the properties used for relative-mapping devices, such as the mouse,
is the CD gain, as shown in Equation 2.2, where the gain (G) is the inverse
relation between the control (physical device) C divided by the (cursor)
display movement (D). For example, if the mouse moves 4 cm and the
cursor moves 8 cm, then the gain is 2. The CD gain is also known as the
C:D ratio, where G = 2 is equivalent to the 1 : 2 ratio. This represents
that each unit of displacement by the physical device yields two units
of displacement for the display cursor. Another example is a one-to-one
mapping that will yield a ratio of 1 : 1 (e.g., mouse moves two cm and
cursor moves two cm) [MacKenzie 12].

1 C

G D
This setting is available to users. The slower the setting is, the lower the
gain is and vice versa. MacKenzie points out that the trade-off between
getting to a target faster versus a finer acquisition of the target is harder
to optimize given other factors that are available for optimization such as
display size and scale (independent of C:D ratio) bringing the possibility
of confounding factors [MacKenzie 12]. Below is the optimization option
for the Mac OS X:

2.2)

Tracking

System, and contains a couple of buttons and a digital pad (D-Pad) (Figure 2.11),
which is a digital up, down, left, right controller, without any intermediate values
as is common in joysticks (and thumbstick). As time has progressed, the GamePad
has been the perfected for over 40 years. Today, the Xbox One controllers shows
the evolution, with two analog thumbsticks (each with the option to press for an
additional action), a D-Pad, two back analog buttons providing a value from 0 to
255 (left and right triggers), two back digital buttons (left and right shoulder pads),
four fire buttons (A,B,X,Y), two digital function buttons (start and menu), and
a central function button that can be used for turning the GamePad on or off, or
using it as an “interrupt” action button on any game, as shown in the Xbox One
GamePad control (Figure 2.12).

2.4. Input Devices 35

Figure 2.9: Atari joystick.

Figure 2.10: Xbox 360 GamePad.

The Dead Zone

The GamePad or the joystick has a dead zone, like most other input devices with
analog controllers. This means that if the device is at idle position (e.g., center
position) it may report a moving value. This also means that after moving the

36 2. Input: Interfaces and Devices

Figure 2.11: Nintendo GamePad.

Figure 2.12: Xbox One GamePad.

thumbstick (or joystick), and the device returns to center, it may keep reporting a
moving position. There are different strategies to solve this problem. The most
obvious way is to set any value within the dead zone to zero. However, this creates
a strange behavior if the incremental value is used as a multiplier of some action.

2.4. Input Devices 37

The best approach is to normalizethe data. Normalization will transform the
data into a range of —1.0 to 1.0, as shown in Equation 2.3. The value (val) is the
original number which will be transformed into a new value (newval) using the
minimum (minv) and maximum (maxv) values. To have a proper normalization, it
is best to know the minimum and the maximum values (as opposed to guessing
them). There are cases where the desired range may not be between —1.0 to 1.0.
For example, it is common to set the values of the input between 0.0 and 1.0. If
that is the case, then Equation 2.4 is used to obtain newval. Listing 2.1 shows the
normalization function and the scaling function , among other useful functions.

newval = 4L =min_ (2.3)
maxy — miny
—1.0+2.0* (val — minv)
maxv — miny

newval = 2.4

Listing 2.1: Common Math Operations

1 #ifndef COMMONMATHOPERATIONS_H

2 #define COMMONMATHOPERATIONS_H

3 template <typename T, typename R=T>

4 class NMath

5 A

6 public:

7 /// This function assumes data is

8 /// already normalized.

9 /// sets value from a normalized set

10 /// from 0 to 1.0

11 static inline R scaledNormalizedData(R val)

12 {

13 return static_cast<R>(-1.0 + 2.0 *x val);

14 }

15 /// sets value between 0.0 to 1.0

16 static inline R scaledData(T min, T max, T val)

17 {

18 string s = "Hello";

19 return static_cast<R>(-1.0 + 2.0 * (val - min) / (max - min));
20 }
21 static inline R normalizedData(T min, T max, T val)
22 {
23 return static_cast<R>((1.0 *x val - min) / (1.0 x max - min));
24 }
25 /// returns -1 if negative, 1 if positive
26 /// or @ if is neither negative or positive.
27 static inline int sgn(T val)
28 {
29 return static_cast<int>((T(0) < val) - (val < T(0)));
30 }

31 /// rounds value
32 static inline int round(T val)

38 2. Input: Interfaces and Devices

33 {

34 return floor(val + 0.5);
35 }

36 };

37 #endif

A common way to deal with the dead zone, once the data has been normalized,
is to apply a function that provides a smooth value for each input that is not
in the dead zone [McShaffry 13]. Pat Wilson provided a very simple approach
[Wilson 11] shown in Equation 2.5. This formula takes the linear input u, with
the dead zone value (A) and the sign of u (sgn(u)). This yields zero if it is within
the dead zone (|| < A) or an incremental value if it is not. Remember that this
assumes that data has been normalized (—1.0 to 1.0) already.

y_ sgn(p)* (juf=2)
= =)

Game development provides a great insight into input. In the same article, Pat
Wilson provides additional tips for dealing with input. One of them is squaring
the circle. if you look inside of the Xbox 360 GamePad, the thumbstick sits in a
square component with a circle opening, as shown in Figures 2.13, 2.14, and 2.15.
The objective of squaring the circle is to prevent someone who opens the controller
from gaining an unfair advantage. Note, that |u| = 1 when is either at the top, left,

right, or down positions. Equation 2.6 shows how to square the circle.

(2.5)

min (|J| +1.25, 1.0)

d =dx

max (0.0l,max (|Jx|,\a7y|)) 20

If the output desired is non-linear, different functions may be tried depending
on the need of the interface. Using the value (') obtained in Equation 2.5, we can
obtain a new non-linear output using Equation 2.7, where f(x) is continuous over
interval [0, 1], f(0) =0, and f(1) = 1. For example, for the Marble Blast Ultra
game, Pat used fine movements when the stick was slightly pushed and drastic
movement when pushed to the edges by using f(x) = ¢*. Different functions can
be tried as f(x) = x° or f(x) = max(0,/n(x)+ 1, among others. For additional
information about transfer functions see Section 2.2.1.

u" = f(Iw']) *sgn(p) 2.7)

Isometric and Isotonic Devices

Isometric devices are pressure (force) sensing. This means that the user must
apply force to move the device (e.g., joystick). Given this force, the movement

2.4. Input Devices 39

Figure 2.13: Thumbstick.

Figure 2.14: Thumbstick without top.

could be precise (e.g., isometric joystick). Isotonic devices are those with “vary-
ing resistance” [Zhai 95]. In other words, as the “device’s resistive force in-
creases with displacement” [Zhai 95], the device becomes sticky, “elastic, or
spring loaded” [Zhai 95]. For example isotonic joysticks “sense the angle of
deflection” [Hinckley 08], with most isotonic joysticks moving from their center
position [Hinckley 08]. There are also designs of joysticks that are hybrid [Hinck-
ley 08]. An isometric joystick is shown in Figure 2.16 and an isotonic joystick is

40 2. Input: Interfaces and Devices

Figure 2.15: Thumbstick top only.

Figure 2.16: Isometric joystick.

shown in Figure 2.17.

2.4.4 3D Mouse and 3D User-Worn Mice

The 3D mouse was designed to use the popularity of an existing device while
adding a 6-DOF. The 3D Connexion SpaceNavigator, as shown in Figure 2.18, is
the core component of the 3D mouse. This serves as an additional device to perform
bi-manual tasks with a standard mouse or use it to perform 6-DOF. Another version

2.4. Input Devices 41

Figure 2.17: Isotonic joystick.

T

Figure 2.18: SpaceNavigator.

of the 3D mouse is the SpaceMouse Pro (Figure 2.19), with additional features.
A 6-DOF trackball was shown already (see Figure 2.7). Another approach is to
use user-worn 3D mice. This is a device attached to the finger, which includes two
buttons and tracker on the back of the sleeve, as shown in Figure 2.20 [Zeleznik

42 2. Input: Interfaces and Devices

Figure 2.19: SpaceMouse Pro (With permission - 3D Connexion).

Figure 2.20: Finger Sleeve [Zeleznik et al. 02].

et al. 02]. A similar device is the Finger Sleeve Mouse, as shown in Figure 2.21.
This device uses its 6-DOF tracking sensor to provide a 1 : 1 3D mapping if needed.
The button serves as activation and the device is secured with Velcro. A similar
device, called the Ring Mouse uses acoustic tracking to provide 6-DOF [Bowman
et al. 04].

2.4.5 Audio

The most well-known method for an input interface that uses audio is speech recog-
nition. Speech recognition can be used either for systems commands, dictation of
text, or advanced speech recognition fused with natural language processing to
create an advanced input mechanism.

LaViola’s master’s thesis described practical issues when using speech recogni-

2.4. Input Devices 43

Figure 2.21: The Ring Mouse. Courtesy of Joseph J. LaViola, Jr.

tion with Virtual Environment [LaViola Jr. 99, pp. 17-22]. Those issues include the
placing of the microphone(s), external noise, speaker awareness, and recognition
latency. The latter problem is the most critical one for a real-time interactive
system. The recognition must meet the demands of the interactive system that is
being used. Latency is solved by having a faster recognition method and a smaller
set of recognizable words.

Ultrasound Devices

Ultrasound has been around for a long time in our daily lives in the forms of ultra-
sound imaging. Currently, companies like Chirp Microsystems and Elliptic Lab
have begun the commercialization of gesture-based ultrasound devices with work
derived from Berkeley Sensor and Actuator Center (BSAC) and other scholarly
work, such as [Kalgaonkar and Raj 09, Przybyla et al. 15]. The frequencies that
ultrasound devices operate are from 20 kilo-hertz (KHz) up to several giga-hertz
(GHz) [Wikipedia 14]. Gesture devices based on ultrasound can deliver 6-DOF
just like vision-based systems but with less power consumption and less resources
in general. As of this writing, it is too early to tell how the devices will compare to
vision-based systems.

2.4.6 Inertial Sensing

INS has been around for a long time for aerospace, naval ships, and other systems
that require navigational information. However, it has been only recently that the
continued work on micro-electro-mechanical systems (MEMS) has allowed very
small accelerometers, gyroscopes, and magnetometers. During the introduction
of the Nintedo Wii System, the controller (called WiiMote) contained a 3-axis
accelerometer that allowed a new type of game interaction. Later, with the addition

44 2. Input: Interfaces and Devices

of the Nintendo WiiMote MotionPlus add-on device, Nintendo added a 3-axis
gyroscope.* Many smartphones and tablets today also incorporate a 9-axis INS
MEMS. This means that they have a 3-axis accelerometer, 3-axis gyroscope, and a
3-axis compass.

The major limitation for INS is the error accumulation. An error within a
kilometer may be acceptable for a vessel navigating in a large area but when
dealing with user interfaces a large error produces inaccurate measurements, which
will lead to an unsatisfactory experience by the user. This has been discussed
by [Foxlin 02]. A few chapters in this book are dedicated to this technology and
some solutions are provided.

2.4.7 \Vision-Based Devices

Vision-based systems have exploded with the release of Microsoft Xbox 360 Kinect.
With the maturity of computer vision field, the popularity of this depth-sensing
vision device, and its affordable price by many developers, are among the reasons
for the increased interest to use them. The Kinect includes a microphone array, an
Infrared (IR) emitter, an infrared receiver, a color camera (red green blue (RGB)
color system), and a DSP chip. The Leap Motion is another type of vision-based
device. It works by emitting IR light (with three light-emitting diode (LED)s) and
monochromatic IR cameras). Even the WiiMote is a vision-based system because
it has an IR camera, which shows the potential of combining different devices.

2.4.8 Data Gloves

Data gloves provides tracking data about certain actions performed by the user.
Data gloves can be active (using sensors) or passive (using markers). The book by
Bowman and colleagues provides a few pages of detailed information for bend-
sensing gloves, pinch gloves, and the combination of both [Bowman et al. 04]. The
bend-sending feature usually provides joint angle measurements to detect a set of
gestures. Pinch gloves provide information on how many fingertips are touching
together.

Active data glove technology has evolved over time. One of the first data gloves
that emerged was called Sayre Glove. This was developed back in 1977 using
flexible tubes with a light source. Later, in 1983, the Digital Entry Data Glove was
the first to use multiple sensors. By 1987 fiber optic was used for a data glove.
Resistive ink printed on boards has also been used. With MEMS, additional sensors
can be used with data gloves today. The Fifth Dimension Sensor Glove Ultra (5DT)
uses a very high-precision flexor resolution. This advanced data glove provides
a 10-bit flexor resolution, which is aimed for the movie industry [SDT 14]. A

4The new version of the WiiMote has the accelerometer and gyroscope incorporated in the control
without the need for an additional add-on.

2.4. Input Devices 45

complete look at data gloves can be found in [Premaratne 14, Ch. 2] and [Dipietro
et al. 08].

2.4.9 Psychophysiological Sensing

Psychophysiology is a field that emerged during the 1950s led by R.C. Davis and
a group of psychologists but this topic had been studied by many philosophers,
physicists, physicians, and physiologists, even as early as the ancient Greeks [Stern
et al. 01]. Probably one of the major breakthroughs was the understanding of skin
conductivity by the end of eighteenth century. This discovery was led by Luigi
Galvani in Italy and demonstrated that “animals produce electricity that originates
within the organism itself” [Stern et al. 01]. It is important to define the action
potential. This is an event where the electrical membrane potential of a given cell
rises and falls in a consistent trajectory [WIKI 14].

The equipment used can be divided into electrodes and transducers. The
electrodes once attached to the subject’s skin measure electrical activity. Electrodes
help the conversion of ionic potential generated by the nerve, muscle, and gland
cells. Transducers are “used to convert physiological events to electrical potentials”
[Stern et al. 01]. In general, it is preferable to record an action derived by the muscle
or nerve than the action potential. For example, by using light reflected from the
pupil, one can measure the pupil diameter. A great book titled Psychophysiological
Recording provides detailed information that is extremely useful for this type of
input [Stern et al. 01].

These types of devices will gain greater acceptance as they become easier to
wear and more affordable. For example, Emotiv produces two great products that
utilize electroencephalogram (EEG) technology and are easier to wear.> The most
common devices used are galvanic skin response (GSR), EEG, and pupillography
(e.g., pupil size measurement), among others.

2.4.10 Tracking Devices

In many instances, it is important to track the user or objects in real-time 3D
environments. For example, a user enters a room and an optical camera detects the
user, detects the movements of the hands, and it finally detects when the user exits.
There are different types of tracking, which includes motion tracking, eye tracking,
and data gloves. Motion tracking includes: mechanical tracking, acoustic tracking,
inertial tracking, and optical tracking.

2.4.11 Treadmills as Input Devices®

Travel (controlling the position and orientation of the viewpoint) is a core com-
ponent of interaction in virtual environment [Bowman et al. 04, pp.183-226]. It

Shttp://emotiv.com
SWendy Powell provided the information for this subsection.

http://emotiv.com

46 2. Input: Interfaces and Devices

University of Portsmouth

Figure 2.22: Customized treadmill input device. Courtesy of University of
Portsmouth (UK).

can be achieved without physical translation of the user (e.g., joystick) or by direct
user motion. To overcome the space limitations of tracked free walking, treadmills
can be coupled to the interface to allow infinite forward motion. While there are
a number of different types of input treadmill (e.g., self-driven, motorized fixed
speed, motorized self-paced), the underlying principle requires that the walking
motion of the user is translated into digital input (Figure 2.22). This can either
be direct input (sensors record belt motion) or indirect (tracking the motion of
the user). Treadmills are linear input devices with limited dimensions of direct
control (speed, acceleration, distance). Heading changes can be achieved by either
automating the heading direction along a fixed path, or combining the treadmill
with additional input device(s) in order to directly control changes in direction.

2.5. Input Recognition 47

2.5 Input Recognition

This section provides a basic overview of input recognition. This topic is expanded
in other chapters found in this book. Input signals are not always straightforward.
For example, recognizing gestures from a serious of points requires some additional
work. This is one factor that makes input user interfaces very interesting to
work with. Andrew Wilson from Microsoft Research provided a great chapter
about sensor- and recognition-method [Wilson 12]. While each input has its
own strengths and weaknesses, some common issues and considerations can
be described based on the author’s experience (and an example of a frustration
detection device in [Wilson 12]):

* No trivial initial mapping exists with some input technologies.

* Some sensors (e.g., gyroscopes) output noise and create a high level of
eITors.

* In cases where one sensor fails to perform the desired task, a combination
of sensors (or devices) may deliver the desired outcome.

» Users with previous experience expect the input interaction to be the same
as in previous devices. For example, a user accustomed to the iPad tablet
may want to have the same experience when using the multi-touch surface
on a desktop or tabletop display.

* Depending on the interaction, the recognition processed must be performed
in a critical window of time.

* The interaction by the user for a given device may be related to the applica-
tion that is being used more than the device.

2.6 Virtual Devices

Virtual devices allow for software to emulate physical devices (e.g., keyboard). In
addition, as will be discussed in Section 2.7, virtual devices can be used to separate
the functionality of a device from the actual physical device. This allows not
only to create input taxonomies but enables developers to look at the functionality
separate from the actual device, hence allowing the developer to better choose the
correct physical input device because of the interaction that he/she is after, or to
change a device that has similar properties. This section talks about some “‘soft”
devices, which are commonly referred as to virtual devices.

Nielsen and Olsen used a triad mouse to emulate a 3D mouse [Nielson and
Olsen Jr 87]. In this study, they performed 3D rotations, translations, and scaling
(independently of each other). For 3D rotations, they used point P; as the axis

48 2. Input: Interfaces and Devices

s ™
Side Note 2.4: Buxton’s Corollary: Cracker Jack

This corollary used the slogan of the Cracker Jack commercial: “The more
you eat, the more you want.” Buxton provides a path forward to input
devices to continue to be successful without over saturating the industry.
You may want to eat more Cracker Jack, but at some point, you will just be
full. Buxton argues that with input devices, the same phenomenon applies.
He provides two rules for a product to be released: (1) It must work and
flow. In other words, the interaction must be smooth for the user, which
means that not only is a functional device important but it must be pleasant
to the user. He calls this phase 1 (it works), phase 2 (it flows). (2) It is
also required for the product to reduce the complexity and increase the
value of all of the other devices. They must work together. It is becoming
more important to think about the eco-system of input devices and how
they work in tandem. His vision is that we can’t care only about one single
device but the collection of devices as a whole. The reason is that a single
device may not cause frustration but the collection of devices may create
dissatisfaction among users [Buxton 13].

reference, and points P> and P; to define the line forming the rotation angle to be
applied to the object. In more recent work [Hancock et al. 07], one can find subtle
similarities with [Nielson and Olsen Jr 87], in the proposition of defining a point
of reference to allow seamless rotation and translation.

The virtual sphere [Chen et al. 88] was an important development for 3D
rotation methods previously proposed. This study tested the virtual sphere against
other virtual devices. It was found that the Virtual Sphere and the continuous XY+Z
device behaved best for complex rotations (both devices behaved similarly with the
exception that the XY+Z device does not allow for continuous rotations about all X,
Y, Z axes). The virtual sphere simulated a real 3D trackball with the user moving
left-right (X axis), top-down (Y axis), and in a circular fashion (Z axis) to control
the rotation of the device. Related work included the rolling ball [Glassner 93], The
virtual trackball [Arvo 94], and the ARCBALL [Heckbert 94]. The ARCBALL “is
based on the observation that there is a close connection between 3D rotations and
spherical geometry” [Bowman et al. 04].

2.7. Input Taxonomies 49

2.7 Input Taxonomies

Input taxonomies (or classification) provide a very useful way to find out which
device is useful for a given task or how to replace one existing device for a similar
one. Simply stated, this provides input device classification.

Early work was developed by [Foley and Wallace 74] to create a set of virtual
devices (or user interfaces) that helped to separate the physical device with the
actual interaction. They created four virtual devices: pick, locator, button, and
valuator. A pick represents user-defined objects, like a line, resistor, window, or
curve. They used the light pen as the prototype pick. A button is used to select
system defined objects to trigger a given action by the system or to generate a
character. A locator indicates the location and/or orientation in the user’s viewable
space. This is most commonly viewed as the cursor controlled by a mouse or
joystick. A valuator helps the user to provide a single value in a real number
space. “A potentiometer is the classical valuator” [Foley et al. 84]. With the
introduction of the first computer graphics standard (GKS), two additional devices
were added: a stringvaluator is a sequence of characters and a strokevaluator is
a sequence of points [Bono et al. 82, Bowman et al. 04]. A third virtual device
called choice was also added but it is very similar to Foley’s button [Bono et al. 82].
While this approach helps the designer to choose from a smaller set of choices and
then look for the correct physical device, the mapping between the actual device
and the virtual device is not always accurate [Bowman et al. 04]. Furthermore,
this is even more apparent when you compare two physical devices that match a
category in the virtual device section with their physical properties. An example
given by [Bowman et al. 04] is a mouse and trackball, which both are in the same
category of virtual device but they are physically different. An improved version
was later published by [Foley et al. 84]. This version mapped specific tasks: select,
position, orient, path, quantify, text. Due to the type of mapping (task-oriented),
devices can appear more than once in each classification. This taxonomy works
better when the design is task-oriented. The taxonomy is designed to be in a
tree graph, where each of the tasks divides into sub-tasks, and each of those sub-
tasks divides into multiple devices. Note that the tablet device mentioned in this
taxonomy is different from what we think of a tablet today (e.g., iPad) This is
why in some places, the tablet is described as “Data Tablet Overlay.” This was a
tablet pad that contained different keys and shortcuts. The original image is found
in the article by [Foley et al. 84]. Tables 2.1, 2.2, 2.3, 2.4, and 2.5 contained the
taxonomy provided by Foley and colleagues.

Buxton’s “Lexical and Pragmatic Consideration of Input Structures” [Bux-
ton 83] also contributed to the taxonomy of input. Matching a logical device to
many physical devices is not practical. Take a logical device that requires to move
an object left, right, down, and up with the joystick. However, the experience
is not the same when the user is giving the keyboard arrows to move the object,
or a virtual pad on a touch screen. In 3D User Interfaces: Theory and Practice

50 2. Input: Interfaces and Devices

Table 2.1: Selection Techniques. Adapted from [Foley et al. 84].

Technique ID Devices
From Screen with Direct Pick S1,1 Light Pen
Device S1, Touch Panel

S>1 Data Tablet Overlay

S>> Mouse

S>3 Joystick (Absolute)

Sr4 Joystick (Velocity)

S>5 Trackball

S26 Cursor Control Keys

With Character String Name (See Text Input)

S41 Programmed Function Keyboard
S42 Alpha Numeric Keyboard

Ss51 Programmed Function Keyboard
Sso SOFT Keys

Se6,1 Tablet and Stylus

S¢,, Light Pen

Voice Input S71 Voice Recognizer

Indirect with Cursor Match

Time Scan

Button Push

Sketch Recognition

by [Bowman et al. 04] points out two major flows. The first one is that this tax-
onomy does not handle discrete input devices. The second one is that while it is
possible to know that a substitution for one device for another is incorrect, the
taxonomy does not provide a reason why this is incorrect. With this said, we
believe that this taxonomy is very helpful to aid developers or designers when
choosing the right input device. Buxton’s taxonomy is shown in Table 2.6.
Buxton’s work was expanded in “A Semantic Analysis of the Design Space
of Input Devices” [Mackinlay et al. 90]. The elegance in this approach is the way
that input devices are described. The input device is defined as a 6-tuple, as shown
in Equation 2.8. The tuple is described by [Mackinlay et al. 90] as follows: M is a
manipulator operator, which corresponds to a physical property vector in Table 2.7
that the input device senses. In is an input domain set. In other words, the range
sensing for a given device. S is a current state of the device. This is broken into the
external state (input and output) and internal state of the device. R is a resolution
function that maps from the input domain set to the output domain set. Out is an
output domain set, which describes the range of the resolution function. Finally,
W is a general purpose set with a list of production rules, which includes triggers,
internal states, external states, and others. The production list of W offers different
ways to deal with the input device, for example: if (release == true) then In =0
for a joystick that has been released by the user. This taxonomy provides interesting
ways on how to define an input device. Take for example a trigger button, similar
to the one in the Xbox controller. This trigger at idle has a value of zero and when

2.7. Input Taxonomies

Table 2.2: Position Techniques. Adapted from [Foley et al. 84].

51

Technique ID Devices
Direct with Locator Device P11 Touch Panel
P, Data Tablet Overlay
P, Mouse
Indirect with Locator Device gz ;gizgzlﬁ Eézsooclili;)
P>s Trackball
P, Cursor Control Keys with Auto
Repeat
Indirect with Directional P;1 Up-Down-Left-Right Arrows
Commands (See Selection)
With Numerical Coordinates (See Text Input)
. . . . Ps 1 Light Pen Trackin
Direct with Pick Device P6:2 Se(flrch for Light Pin

Table 2.3: Quantify Techniques.Adapted from [Foley et al. 84].

Technique ID Devices
Direct with Valuator Device Qui Rptary Potent.l ometer
Q1. Linear Potentiometer
With Character String Values (See Text Input)
031 Data Tablet Overlay
. . . 032 Mouse
igiftgrgfv(fe“e axis) with 033 Joystick (Absolute)
034 Joystick (Velocity)
QO35 Trackball
. Q41 Light-Pen
Light Handle Qs> Tablet with Stylus
Up-Down Count Controller by QOs.1 Programmed Function Keyboard
Commands 0Os» Alphanumeric Keyboard

it is completely pressed, it has a value of 255. This can be defined as shown in
Equation 2.9, where I is defined by Equation 2.10. In other words, I maps one to

one with its input and its output. It is possible to create a different mapping. For

example, say that to fire a missile, the button has to pass a certain threshold. In

this case, the mapping could be defined 0 to 99 (input) to O (output). Otherwise, if

itis 100 to 255, then the output value is 1. Any mapping is possible from the input
to the output, depending on the function. This mapping just described is shown in

Equation 2.11.

52

2. Input: Interfaces and Devices

Table 2.4: Text-Entry Input. Adapted from [Foley et al. 84].

Technique ID Devices

711 Alphanumeric
Keyboard Ti» Chord
Stroke Character Recognition T, Tablet with Stylus
Voice Recognition 13,1 Voice Recognizer
Direct Pick from Menu with T, Light Pen
Locator Device Ts,; Touch Panel
Indirect Pick from Menu with (See Positioning)
Locator Device

Table 2.5: Orienting Techniques. Adapted from [Foley et al. 84].

Technique ID Devices

. . . 01,1 Joystick (Absolute)
Indirect with Locator Device 01, Joystick (Velocity-Controlled)
With Numerical Value (See Text Input)

<M,In,S,R,Out, W > 2.8)
T=
<Manipulation: T,
InputDomain: [0,255],
State: Z,
. 2.9
ResolutionFN: I,
OutputDomain: [0,2553],
Works: {}>
I =
T,: 1[0,255] — [0,255] (2.10)
fln) =
T; :[0,100) —< 0 >,
(2.11)

T, :[100,255] =< 1 >

53

2.7. Input Taxonomies

uoneso| Ies
ISIM) M poxy -mIoA 108 -zioy Jo8
paxXy [rews [[ews -uy snjk)s -uy sniAls yond Ieaur| A1e101
| | | | -
I I I I 2
Yousfof | | | | ANIEIN m
L OLI)QUWIOST | [[[anbioy, | g
M M M M
[[[[
L ped A/X | , , JeISULIST | z| 3
i it el - - - - T - Ll el - - - - -1 >
=}
[eqyoRIL | , , , s 5
Youskor | [[I 10d K1eyoy | B ,nAb
W | egyoeiL s Sunidg ” ” ” aSNOJN | [[rupeaip, ” snonunuoy) o
” U92I10g ” 191qeL ” ” &
L | yonay, | yonay, | | o
e e R S 1T T T e L R T T T T z.
yonsKor | | snfis yond 10d £
N | ouskor ag OIUOJOST | US JYSIT | 2 I9[QRL | 2 I9[qUL SurprS 1 10 Areloy | B
€ C 1
SUOISUQWI(] JO JOqUINN

‘[¢g uoixng] Awouoxe], s,uoixng :9'g d[qelL

54 2. Input: Interfaces and Devices

Table 2.7: Physical Property [Mackinlay et al. 90]

Linear Rotary
Position
Absolute Position P Rotation R
Relative Movement dP Delta Rotation dR
Force
Absolute Force F Torque T
Relative Delta Force dF Delta Torque dT

The next step in Mackinlay and colleagues’s approach is to connect the devices
with the application. To create the connection, they provided a generic device
[Mackinlay et al. 90]. Therefore, the generic keyword device is used for a general
case and the input device is used for physical devices in this particular context.
Along with physical devices, they also provide definitions for virtual and composite
devices [Mackinlay et al. 90]. It is possible to describe connections and applications
parameters using the complete 6-tuple (in Equation 2.8.) as before. However, it is
convenient to omit some of the tuples for some of the devices. One example is a
device that provides a volume control. This example also shows how the device
is connected using their approach, as shown in 2.12, 2.13, and Equations 2.14.
The connected device can also be defined using the notation shown in Figure 2.15,
where C, is a constant gain.

Having the concept of generic devices, it helps the developer or designer to treat
them as interfaces.” For example, a GenericKnob, = R, : In — I — Out provides a
prototype. With this, one can initiate the device using Instantiate(GenericDevice,
DeviceArguments). With this in mind, a new device can be declared as shown in
Equations 2.16 and 2.17.

7Meaning a prototype.

2.7. Input Taxonomies 55

Volume =
<InputDomain: [0,25] decibels > (2.12)
VolumeKnob =
<Manipulation: R,
InputDomain: [0°,270°],
State: 0,
, (2.13)
ResolutionFN: I,
OutputDomain: [0°,270°],
Works: {}>
VolumeConnect =
InputDomain: [0°,270°],
ResolutionFN: 1 2.14)
OutputDomain: [0,25] decibels >
VolumeConnect =
(VolumeKnob, Volume,
, (2.15)
(0 degrees) = C, x 0 decibels)
GenericBoundedKnob, =
Rz:[Min;,Max;) —f — [f(Min;), f(Max;)] (2.16)
VolumeKnob =
Instantiate(GenericBoundedKnob,, In : [0°,270°]) (2.17)

There are some considerations that must be made for some more complex
devices, such as a multi-touch device or a tablet. The first one is component
acquisition: This is the need for a device to move to a specific location. The
next consideration is persistent state feedback: This is the need for continued
update and feedback of its state. Finally, sensitivity over input domain: This is
the ability to specify a given value for a device.

There are different ways to compose high-dimensional devices. For example, a
multi-touch display has two dimensions as well as a feedback state. Using formal
set theory, one can compose more complex devices. Three important properties
are connection composition, layout, and merge composition. Connection com-
position allows devices to cascade their output into their next device, as shown
in Equation 2.18 (or StationKnob — StationSlider for short). The layout com-
position allows devices “on a panel to be described with a mapping of the local

56 2. Input: Interfaces and Devices

coordinates of a device to the coordinates of the panel, usually involving transla-
tions and rotations” [Mackinlay et al. 90]. The formal symbol used is & to indicate
the composition. For example, LMouseButtonT|® LMouseButtonT,® LMouse-
ButtonT,, where T1, T>, T3 are transform functions. Finally, merge composition
uses standard set theory to classify the device. In our particular opinion, this is
the best option for complex devices and it is compatible with any other modeling
input technique that may use set theory as its foundation. This uses the cross
product x and U. We can now define a single tablet using a pen, as described in
Equation 2.19. In this particular case, the pen has a RestState, which is when the
pen is not touching the surface.

Expanding on the digital pen example, one can begin to formulate a single touch
display. A touch has move, down, and up states, This is shown in Equation 2.20.
The manipulation is for one finger (7,,) with the input domain going from 0 to
Xnax and 0 to Y,,,4¢. The output domain could use a function f that normalizes the
input if needed.

Given that it is possible to define different devices, as already explained,
[Mackinlay et al. 90] were able to provide a taxonomy of input devices and expand
the previous work by [Foley et al. 84] and [Buxton 83]. This taxonomy is shown in
Table 2.8. The linear movements are represented with X, tY, tZ8 , and the rotation
movements represented by rX, Y, rZ. This is the first part of this taxonomy which
refers to six degrees of freedom. The bottom part of this table shows the input
domain set measurement, which is the second part of this taxonomy. Finally, on
the left (for translation) and on the right (for rotations), represents the physical
property of the device. A device is represented by a circle, and the lines between
circles indicate a type of device composition. The merge composition is shown in
Figure 2.23a, the layout composition is shown in Figure 2.23b, and the connection
composition is shown in Figure 2.23c.

The taxonomies presented here allows designers and practitioners to find the
correct device and replace it with another one if needed. In general, we find that the
work by Bill Buxton [Buxton 83], and the extension of this work by [Mackinlay
et al. 90] provides a starting point for modern input devices. We have left some
interesting exercises to be solved about taxonomies in this chapter. Furthermore, we
invite the reader to read the cited paper in this section to find additional examples
and usage. In particular, [Mackinlay et al. 90] offers detailed information about
their taxonomy.

VolumeConnect =
(StationKnob, StationSlider,

2.18
f(0 degrees) = C, x 0 decibels) -18)

8They labeled X,Y, Z in their paper.

2.7. Input Taxonomies 57
(a) Merge Composition (b) Layout Composition (c) Connection Composition

Figure 2.23: Device connectors and devices.

Touch =
<Manipulation: Py,
InputDomain.: [Min,,Max,| x [Miny, Max,| U
< RestStatey, RestStatey >,
State: <X, y,>,

_ (2.19)
ResolutionFN: f,
OutputDomain: [f(Miny), f(Max,)] x [f(Miny), f(Max,))

U < Nully, Null, >,
Works: {>
Touch =

<Manipulation: Ty,
InputDomain: [0, Xinax] X [0, Y] U

< tStategoyn, tStatepoye , tState,, >,

State: {X,Y,1State},

. (2.20)

ResolutionFN: f,
OutputDomain: [£(0, Xinax)] X [f(0, Yipax)] U

< Nullyoon, Nullmove, Nullup >,
Works: {}>

58 2. Input: Interfaces and Devices

Table 2.8: MCR’s Taxonomy of Input Devices [Mackinlay et al. 90]

Linear Rotary
tX ty tZz rxX rY rZ

c

o Qo
=

g P R 2
e <C
= 2
u 2
o | dP dr | <
> 8
= ©
= a
9 g
S| F T| g
2 <}
W [
9 g
= jon
o 5
L | dF daT | +
S ©
—; -
> -
a a

110100inf | 110100inf | 110100inf | 110100inf | 110100inf | 110 100 inf
Measure | Measure | Measure | Measure | Measure | Measure

Further Reading

For input taxonomies and considerations, A very interesting article by Jacob et al.
titled “Integrality and Separability of Input Devices” is an essential read [Jacob
et al. 94]. Another article by the same first author talks about language and
modeling for post-WIMP devices [Jacob et al. 99].

An updated chapter by Hinckley and Wigdor in the current edition (third) of
Handbook of Human-Computer Interaction talks about input technology [Hinckley
and Widgor 12].

For additional information about unconventional devices for 3D interaction,
see [Kruijff 06]. An example is using one-hand pressure-sensitive strips [Blaské
and Feiner 04].

2.7. Input Taxonomies 59

Exercises

1. Implement the dead-zone for a GamePad on your preferred development
environment.

2. Use the dead-zone concept for a different device.

3. Create a taxonomy for a multi-touch surface using the touch surface example
provided in this chapter.

This page intentionally left blank

Output: Interfaces and
Displays

A display connected to a digital computer gives us a
chance to gain familiarity with concepts not realizable
in the physical world. It is a looking glass into a
mathematical wonderland

—Ivan Sutherland

In this chapter we describe the output components of interfaces, which allows the
computer to communicate with the user. In Chapter 27, we describe its counterpart
performing the opposite action. While this book concentrates on input technology,
output is an interconnected piece of the puzzle.

3.1 3D Output: Interfaces

Required components of a 3DUI are the hardware and software that allow the
graphical representation of the output. The hardware devices, which are often
referred to as display devices, surface displays, or just plain displays, are the
focus of this chapter. In addition to displays, it is also important to describe the
perception of the output from the point of view of the user.

3.1.1 Human Visual System

The human eye optical schema, as shown in Figure 3.1, has some similarities with
a camera but rather a more complex optical system [Hainich and Bimber 11]. It is
important to understand the basic principles of human vision when dealing with
the output components of interfaces. The following properties are important about
the human eye and human vision system [Hainich and Bimber 11]:

61

62

3. Output: Interfaces and Displays

retina
cornea

iris lens

B
fovea
optic

aqueous HoRe;
B q

humor

blind spot

vitreous

Figure 3.1: Optical schematic of the human eye [Hainich and Bimber 11]. With
permission from CRC Press.

The diameter of the eye is about 25 mm.

The eye is filled with two fluids, which have a refraction index of approxi-
mately 1.336.

The iris regulates the amount of incident light. This is done by either
expanding or shrinking the aperture of the eye.

The cornea and the elastic biconvex has a refraction index of approximately
1.4.

The process of the lens to adjust its shape to different focal lengths is called
accommodation.

— The focal length accommodation is between infinity and < 100 mm.

— The near accommodation degrades with age.
Since the eye is a biconvex lens, the image is upside down.
The vision is sharpened only at the center of the retina.

— To perceive a large scene, the eye will move toward it. These quick
movements are called saccades.

Flickering can be seen at low frequencies. While flickering is not always
detected with 70 Hz, there are exceptions for high-speed motion of the object
or the eye.

3.1. 3D Output: Interfaces 63

3.1.2 Visual Display Characteristics

There are a few characteristics that visual displays have in common. Some of
the characteristics are field of regard (FOR), field of view (FOV), refresh rate (in
hertz), and spatial resolution.

Field of regard is the measurement of the physical space surrounding the
user, measured in visual angle (in degrees). In other words, it contains all the
available points from the user’s perspective. Field of view is the measurement
of the maximum visual angle observed by the user. The FOV must be less than
200 degrees, which is approximately the maximum for the human visual system
[Bowman et al. 04]. Refresh rate is the speed of the next rendering cycle. Simply,
it is how fast the screen is redrawn. In other words, each rendering cycle produces
new output. Spatial resolution is a measurement of quality given by the pixel size.
The unit for this measurement is dots per inch (DPI). Spatial resolution is also
affected by the distance between the display and the user. There is a proportional
connection between pixels and resolution. As pixels increase, the resolution also
increases, and vice versa. Two different sizes of monitors with the same number of
pixels do not have the same resolution. In other words, the number of pixels is not
equivalent to the resolution [Bowman et al. 04].

Some other important aspects are the different type of screen geometries
(e.g., spheres) and how they are drawn. Light transfer is a characteristic that is
important for the design of user interfaces. How the transfer of light happens is
determined by the type of projection (e.g., front, rear). Finally, how comfortable
the display device is in respect to the user (ergonomics) is very important to
consider when designing 3DUIs.

3.1.3 Understanding Depth

When using a 3DUI, depth plays an important role for human perception [Bowman
et al. 04, Hainich and Bimber 11]. In a regular display, the drawing canvas is
still 2D. It is easy to tell that the moon is far away when looking at it. It appears
small and distant. However, when looking at two far away objects in space, it is
harder to tell the difference in distance from one’s point of view. At near distances,
multiple cues allow users to easily process depth [Bowman et al. 04, Hainich and
Bimber 11]. There are four visual depth cue categories that we will cover here:

e Monocular, static cues.
¢ Oculomotor cues.
* Binocular disparity and stereopsis.

* Motion parallax.

64 3. Output: Interfaces and Displays

Monocular Cues

Monocular cues are present in static images viewed with only one eye. This type
of cue is also called a pictorial cue. These techniques have been employed by
artists for a long time (they were well known before computers) [Hughes et al. 13].
The following techniques are used to convey depth (list adapted from [Hale and
Stanney 02, Bowman et al. 04]):

1. Relative Size: The user can be influenced by apparent sizes. One example
is if you have a set of objects in decreasing size order, this will give an
apparent distance effect.

2. Interposition or Occlusion: Conveys a sense of depth by opaquing and
occluding parts that are farther away.

3. Height Relative to the Horizon For objects above the horizon, the higher
the object is located, the further it appears. For objects below the horizon,
the lower the object is drawn, the closer it seems.

4. Texture Gradients: It is a technique that includes density, perspective,
and distortion. As the density of the surfaces increases, so does the depth
understanding for the user, making the denser objects appear farther away.

5. Linear Perspective: As parallel (or equally spaced) lines are seen farther
away, it appears that the two lines are converging. It is important to note that
lines do not have to be straight but equally spaced. For example, a long train
track.

6. Shadows and Shading: The user can determine depth information based
on lighting. Light will hit the nearest parts of an object, allowing someone to
deduce this information. Any object that has illumination will also produce
shadows on the closer surface.

7. Aerial Perspective: This effect (also called atmospheric attenuation) gives
closer objects the appearance of being brighter, sharper, and more saturated
in color than objects far away.

Binocular Cues

The world is experienced by humans using both eyes but vision is a single unified
perspective. By viewing a scene first with one eye only, and then with the other eye
only, a significant difference can be perceived. This difference between those two
images is called binocular disparity. A clear way to understand this phenomenon
is to hold a pen close to the face and alternate each eye to view this object.

The fusion of these two images with accommodation and convergence can
provide a single stereoscopic image. This phenomenon (stereopsis) provides a
strong depth cue. If the two images cannot be fused, then binocular rivalry will
cause the user to experience just one image or part of both images.

3.1. 3D Output: Interfaces 65

Oculomotor Cues

When dealing with binocular viewing, both eyes diverge with far-away objects and
converge with near objects. This superficial muscle tension is thought to have an
additional depth cue [Hale and Stanney 02] called oculomotor cues. This muscle
tension, in the visual system, is called accommodation and convergence. The
focus of the eye to a given image causes the eye muscle to stretch and relax while
obtaining the target image. This physical stage is called accommodation. The
rotations of the eyes is needed to fuse the image. This muscular feedback is called
convergence.

Motion Parallax

Motion parallax is the change of perspective of the view. This can happen if the
viewer is moving in respect to the target object. The target object moves in respect
to the user, or both [Hainich and Bimber 11]. This phenomenon will make far-away
objects appear to be moving slowly, and near objects will appear to be moving
faster [Bowman et al. 04]. For example, take a race where two cars are traveling
at 200 kilometers per hour. The first car is passing in front of the viewer and the
second car is far away on the opposite side of the track. The second car will appear
to move slower, while the first car will seem to be moving faster. Another example
is a car traveling on the highway, with lights and trees that seem to be moving
faster, and far-away buildings appear to be moving slower.

More about Depth Cues

There are more depth cues than the ones described above. For example, color is
also used as a depth cue. The color blue appears far away because the atmosphere
has a higher absorption for warm colors, giving the horizon a more accentuated
blue color [Hainich and Bimber 11]. Adding blur to blue objects can give the
illusion than an object is farther away. For additional references, see [Hainich
and Bimber 11, Bowman et al. 04]. In particular, Section 4.4 found in the book
Displays — Fundamentals and Applications [Hainich and Bimber 11] provides
very detailed information about depth perception and depth cues.

66

3. Output: Interfaces and Displays

Side Note 3.1: History of Display Technologies

Hainich and Bimber provide a rich history of display technology in their
book [Hainich and Bimber 11]. After the optical era (early 1400s to late
1800s) provided the building blocks to what we have today. This included
projected drawing, light reflection, and the magic lantern [Hainich and
Bimber 11]. There are quite a few debates who invented what during this
era. For example, was it Leonardo Da Vinci, sometime after 1515 who
created the first perspective drawing (proposed by others before him)?
However, it was Albrecht Diirer who demonstrated how to create per-
spective drawing for any shape in 1525, which is the basis for computer
rendering today [Hughes et al. 13, p. 61]. Other debates included whether
Kirchner (1659) invented what he called the magic lantern (device that
passed light from a lamp) or was it Huygens (1671) that presented a similar
device [Hainich and Bimber 11]? It is not clear who the inventor was.
Later, in this era, Gurney demonstrated the limelight effect, which was
an “oxyhydrogen flame heating a cylinder of quicklime (calcium oxide),
emitting a bright and brilliant light” [Hainich and Bimber 11]. Later, the
electromechanical era (late 1800s to early 1900s) provided the groundwork
for the early projects that would lead to the television. This was first de-
scribed by Paul Gottlieb Nipkow in 1884, scanning disks (known as the
Nipkow disk). The next era, is called electromechanical. This Nipkow disk
“is basically a spinning disk with holes at varying lengths from the the disk
center” [Hainich and Bimber 11]. The spinning on the disk caused every
hole to “slice through an individual line of the project image, leading to a
pattern of bright and dark intensities behind the holes that can be picked up
by a sensor” [Hainich and Bimber 11]. Various improvements were made
in the first half of the 20th century. The electronic era (early and mid-1900s)
was marked by the cathode ray tube (CRT) invented by Ferdinand Braun.
The CRT was first used by Boris Rosing to receive a video signal. The CRT
became a commercial product in 1922, replacing the Nipkow disk. The
first color picture tube was invented by John Logie Baird in 1944. Finally,
the digital era replaced many of our CRTs in our homes and desks in the
late 1900s and early 2000s. It is remarkable that a discovery made by
Friedrich Reinitzer in 1888 revolutionized display technology. Of course,
the cholesteric liquid crystal was not the only componenet needed to make
the displays we have enjoyed in the last few years. Semiconductors also
played a role, which enabled advanced signal processing starting in the
1970s, which led to the development of the flat-panel displays. We went
from plasma displays to liquid crystal displays (LCD). In the coming years,
organic light emitting diodes (OLED) are expected to dominate the mar-
ket. Hainich and Bimber provided a more detailed history of technology
displays [Hainich and Bimber 11, ch. 1].

~N

3.2. Displays 67

3.2 Displays

There are multiple types of displays, such as conventional monitors, HMD, virtual
retina display (VRD), and optical HMD, among many others. Near-eye displays
and three-dimensional displays are expanded a bit further later in this chapter.
Multi-touch displays are mentioned in Chapter 8. The following is a partial list of
output interfaces:

* Conventional Monitor is the most pervasive display found today in desktop
computers, notebooks, tablets, and phones. Before the liquid-crystal display
(LCD), the common form was the cathode ray tube (CRT). With the right
equipment, a conventional monitor can achieve stereopsis with a pair of
glasses and refresh rate of at least 100 hertz. A few years ago, most monitors
did not fit the specifications mentioned, except for a few high-end displays.
However, today, there are some affordable options available in the market,
with 100 hertz or greater [Bowman et al. 04].

* Head-Mounted Display or Helmet-Mounted Display is a user-attached
visual display commonly used in VR environments. The most recent and
well-known example to consumers is the Oculus Rift, recently acquired by
Facebook. There is a variety of HMDs with distinct designs; some of them
may include 3D audio and other functionalities. HMD have become very
accessible to the point that Google created a project using a cardboard' to
create one using a smartphone. Appendix B provides guidelines that should
be taken into account when creating your own HMD (with your current
smartphone).

* Virtual Retina Display was invented by the Human Interface Technology
Lab in 1991 [Bowman et al. 04, p. 54]. The first patent was granted to
Thomas A. Furness III and Joel S. Kolin, filed in 1992 [Furness III and
Kolin 92]. Today, with the Google glasses, this technology promises to
become pervasive among users but it faces challenges which will be covered
in Section 3.2.1. VRD works by generating coherent beams of light from
photon sources, which allows the display to render images onto the retina.

* Optical Head-Mounted Display allows the user to see through the device
while still looking at the computer’s graphical-generated images. The most
recent example is Google glasses.

* Surround-Screen Display is an output device with at least three large
projection display screens, which surround the user. The screens are typically
between 8 to 12 feet. The projectors are installed near the screens to avoid
shadows. Front projectors can be used as long as their position avoids the
user’s shadows [Bowman et al. 04].

Uhttps://www.google.com/get/cardboard/

https://www.google.com/get/cardboard/

68

3. Output: Interfaces and Displays

* Autostereoscopic Displays generate 3D images without the need for glasses
or other specialized devices (e.g., 3D glasses).

* Hemispherical Displays allow to display images in a 180° by 180° FOV
using projection-based technology. Spherical mapping techniques are used
in conjunction with a wide-angle lens to distort the output. This allows the
image to be fitted in a curved display.

* Workbenches are designed to bring the interaction into displays on a table
(tabletop), desks, or workbenches. They can provide an intuitive display and
high spatial resolution. Some examples include Microsoft Surface TableTop
and Diamond Touch by Circle Twelve.

* Surround Screen Display is a visual display system with “three or more
large projection-based display screens” [Bowman et al. 04]. A very common
surround display is known as a CAVE, introduced by [Cruz-Neira et al. 93].
The CAVE consist of four screens, the floor, and three walls, which surrounds
the user. Another version of the surround display is called computer-driven
upper body environment (CUBE). The CUBE is a complete 360° display
environment [Bowman et al. 04].

Additional output display devices exist, such as the arm-mounted displays. For

a presentation in detail about the devices and further references, consult [Hainich
and Bimber 11, Bowman et al. 04]. Additional display information is provided in
Appendix A.

h eye
" Display with optics
Virtual Screen e B

Figure 3.2: Basic principle of a near-display [Hainich and Bimber 11].

3.2. Displays 69

3.2.1 Near-Eye Displays

The introduction of near-eye display technology allows for new types of applica-
tions. The basic principle, as explained by Hainich and Bimber, is a miniature
display and optics, which is projected onto a virtual screen [Hainich and Bim-
ber 11], as shown in Figure 3.2. VRD was mentioned already as one of the types
of displays which uses near-eye display technology. While the Google glasses
(see Figures 3.3 and 3.4) and other similar devices have still not become pervasive
among users, it may be a matter of time until it happens. Fighter-jet pilots cur-
rently utilize some type of augmented reality (AR) display, which is a very logical
application for near-eye display technology. For users, this device can also be an
input device. For example, eye steering and eye blinking provide a great input
interface. An important characteristic mentioned by Hainich and Bimber was the
need for a light near-eye display (before the Google glasses came out) [Hainich
and Bimber 11]. “A near-eye display for everyday applications will have to work
without any fixtures to the head exceeding that of simple eyeglasses” [Hainich
and Bimber 11]. The current version of the Google glasses weighs around 43
grams. Therefore, while it is still not the perfect solution, it is a matter of time
before the technology will improve while its pricing will go down. Other important
characteristics are to have a high-resolution display and support for large FOV.?
The near-eye display system must also compensate light intensity, since humans
can see between “ﬁ lux (starlight) up to 1000000 lux (sunlight)” [Hainich and
Bimber 11].

In a perfect world of displays, a resolution of 3600 x 3600 pixels for a 60° x 60°
of FOV would create a sharp display [Hainich and Bimber 11]. This sharpness
will only concentrate in the center of the view while the outer sides become blurry.
For near-eye displays, the clarity of an image only needs to be in the center of
the display. Assuming that the display could adjust itself as the user changes
focus, the actual display sharpness will only need to be in the center of where the
user is looking. In order to create a dynamic system with near-eye displays (for
focus adaptation and geometric correction), a very fast eye tracker is needed (with
frame rates of 200 Hz to 1000 Hz) to be able to keep track of the eye position.
Different types of display technology can be used for near-eye vision, including
LCD, laser, and LED, among others. Table 3.4 shows the different options [Hainich
and Bimber 11].

Some examples of near-eye display technology include view-covering displays,
semicovering displays, and optical see-through displays (e.g., Google glasses).
View-covering displays provide a simple vision technology that covers most of
the FOV even up to the point of blocking any outside view. These are very common
in VR and for personal video experiences (e.g., watching a movie). If video see-
through (capture video from real-world) is integrated into the virtual experience, it
is possible to use it for AR. Semicovering display is a type of near-display system

2Human eye FOV is over 180° horizontally.

70 3. Output: Interfaces and Displays

Figure 3.3: User wearing Google glasses. Courtesy of Eric Johnson.

that covers only a portion of the natural FOV. The display can be configured in
two forms: (1) mounted in front of the eye or (2) as a fixed (see Figure 3.5a), non-
transparent mirror into the FOV (see Figure 3.5b). Because the user is able to tilt
or turn to look at the real world, this can be used outdoors, finding many types of
applications. Finally, Optical see-through displays is an ideal choice for general
purpose applications, providing great value to AR and other types of domains. This
technology works by mirroring the “image of micro-displays into the FOV, without
occluding the view” [Hainich and Bimber 11, p. 449]. A recent announcement by
Microsoft placed great importance on this technology: the HoloLens will allow
a new type of interaction. For more information, including optical design, laser
display, and holographic image generation dealing with near-eye technology, the
reader is invited to see [Hainich and Bimber 11, ch. 10].

3.2.2 Three-Dimensional Displays

Three-dimensional displays are a highly desired commodity but they have many
difficulties. In a regular display pictures that do not appear to be of the right size
or correct perspective, still appear fine to the viewer because our brain is a lot
more tolerant with flat images. However, this is not true with stereoscopic pictures.

3.2. Displays 71

Figure 3.4: Google glasses. Courtesy of Eric Johnson.

Display with optics

Glasses RN

(non \ Y

function -

unctional) _Min'or & -
P

(a) Semicovering (front) (b) Semicovering Display (top)

Figure 3.5: Semicovering displays [Hainich and Bimber 11].
The following basic considerations for three-dimensional displays are important to
keep in mind [Hainich and Bimber 11]:

* Orientation: Classic stereoscopic displays use two cameras separated by a
distance equivalent to the distance of the left and right eye. However, if the

72 3. Output: Interfaces and Displays

Table 3.1: Near-Eye Display Technologies (Adapted from [Hainich and Bim-
ber 11]).

Display Type

Comments

LCD

liquid crystal on silicon
(LCoS)

Ferroeletric Liquid Crystal
on Silicon (F-LCoS)
Micromechanical

digital light processing
(DLP)

moving liquid mirror
(MLM)

Holographic

LED on complementary
metal-oxide-semiconductor
(CMOS)

Organic Light-Emitting
Diode (LED)

LED on CMOS

Laser

Contain small pixels, making it a challenge to
use.

It allows for smaller pixels because they use
reflective basis.

Similar to LCoS but have a fast switching
speed.

This technology allows holographic applica-
tions, and it could perform better with smaller
pixels.

Uses LED or laser illumination and it behaves
similar to normal displays.

It may be useful for holographic applications.
It is able to modulate light.

This application display uses either F-LCoS or
DLP to display holograms.

It allows very small pixels but difficult to pro-
duce.

This can be use for miniature displays. A very
interesting property is that LED can be de-
signed as convex or concave displays. This
is a very popular choice.

This may contain a retina tracker, a light sensi-
tive structure with a camera built into the dis-
play.

This is a technology that presents challenges
but seems to show potential for retinal displays.

user moves, the user can experience dizziness and headaches because the
brain is trying to compensate for the double image that it is looking at.

* Distance: If the viewer’s distance diverges considerably from the original
camera distance, the 3D effect may become useless as images appear unre-
alistic. It is possible to generate different synthetic perspectives to correct
this problem. The strategy is to “enlarge the stereo basis and to increase the
focal length” [Hainich and Bimber 11]. Viewers have shown a tolerance for
enlarged scenes while downscaled depiction is perceived as less realistic.

* Depth perception: This is based on retinal disparity and convergence. For
example, if two projected images are received in two retinas, this creates

3.2. Displays 73

a perceptual difference called stereopsis. If two images (belonging to the
same object) are relatively displaced in 2D to the vision system, this is called
retinal display. If this disparity becomes too large, the object appears twice
(called diplopia or double vision). Finally, if the eyes rotate around their
vertical axis, this is called vergence. If this is inward, it is called convergence
and if it is outward, it is called divergence [Hainich and Bimber 11]. It turns
out that depth perception for 3D content is easier for objects behind the
screen plane compared to objects in front of the screen plane (see work
about disparity constraint by [Lang et al. 10]). A lengthy discussion about
depth perception is found in [Hainich and Bimber 11, pp. 372-377].

* Perspective: This is another basic problem with 3D displays. The reason for
the perspective problem is due to viewers that do not sit within the “center
of the line of the screen” [Hainich and Bimber 11]. This will cause the 3D
object to appear distorted and tilted, making the scene unrealistic.

Viewing in 3D seems to be a desirable feature that users would want but only
recently have 3D movies become popular and 3D displays (e.g., computer displays
or television (TV)) have only been used in very specific applications. Is it that
users prefer 2D for working on their computers? First we know that cinema has
a predictable environment and bigger budgets. Therefore, it is easier to adjust
the different parameters needed to have a better 3D experience. Maybe 3D TVs
make some of the problems described more apparent, such as false perspective.
It is also possible that smaller displays produce the puppet-theater effect and a
“strong disparity between eye convergence and accommodation” [Hainich and
Bimber 11, p. 378]. (Glasses with corrective lenses could provide a better focus
distance.) Classic cinema has used either two individual projectors or a split image
recorded on the film. In general, movie theaters have to accommodate expensive
technology to display 3D movies. However, to make 3D pervasive, costs have to
come down while the technology improves. Two examples provided by Hainich
and Bimber are the color TV and high-definition television (HDTV) [Hainich
and Bimber 11]. Color was very attractive and its initial adoption was still not
affordable. Nevertheless, it was still popular because of how differently the image
was perceived. HDTV did not provide the same difference as the black and white to
color transition for most viewers (while some may disagree). It wasn’t until HDTV
became affordable that it was adopted, becoming a pervasive device in today’s
homes. Therefore, we ,may tend to believe that 3D displays will become pervasive
when they become affordable and the typical problems have been addressed further.
Only time will tell.

There are different technologies and different techniques for 3D vision sys-
tems. [Hainich and Bimber 11, pp. 381-431] provide a lengthy description (with
further references). Some of the 3D systems include stereoscopic displays, au-
tostereoscopic displays, light-field displays, and computer-generated holograms.

74 3. Output: Interfaces and Displays

Further Reading

An excellent source is found in Displays. Fundamentals and Applications [Hainich
and Bimber 11]. Volumetric Three Dimensional Displays Systems provides ad-
ditional information [Blundell and Schwarz 00]. Of course, [Bowman et al. 04]
provides a very detailed chapter about 3D user output interfaces. A very interesting
book is Visual Perception from a Computer Graphics Perspective [Thompson
et al. 13].

Computer Graphics

Any treatment of input devices without considering
corresponding visual feedback is like trying to use a
pencil without a paper.

—~Ken Hinckley and Daniel Wigdor

4.1 Computer Graphics

Computer graphics (CG) is the primary reason that PCs and mobile devices have
become pervasive in today’s society. Furthermore, interactive computer graphics
allows for non-static 2D and 3D images to be displayed on the computer with a
redraw rate higher than humans can perceive. Interactive graphics provides one of
the most “natural means of communicating with a computer” [Foley et al. 96] and
a user. The primary reason is the ability to recognize 2D and 3D patterns, making
graphical representation a rapid way to understand knowledge [Foley et al. 96].

The following chapter covers the essential parts of CG to help understand other
chapters in this book. For example, how CG relates to 3D navigation. There are
additional details, such as global illumination, programmable shaders, and other
advanced features, that are beyond the scope of this book; the reader is referred
to [Hughes et al. 13, Luna 11, Shreiner and Group 13]. For an introduction to
various topics about real-time rendering, see [Akenine-Moller et al. 08].

4.1.1 Camera Space

There are various types of cameras. Two popular types of cameras are first-person
and third-person. A first-person camera' is like viewing the outer space of the
universe from the inside of a spaceship. This has been used in First-Person Shooter

"Popularized by the game Doom and later Quake.

75

76 4. Computer Graphics

i vertex s fragment output U
- . = rasterization -4 : - . - =
processing processing merging

Figure 4.1: Graphics pipeline [Han 11].

Triangle J\ Triangle J\ Pixel J\
Setup _VTraversa] _/ Shader 'V

Vertex J\ Geometry J\
Shader Shader
bl S

Clipping !\Zg;;e‘ ::,g Merger

- =

- =

Figure 4.2: GPU implementation of graphics pipeline [Akenine-Moller et al. 08].

(FPS) games. A third-person camera? is like viewing a spaceship as it interacts
with the universe. For the purpose of this discussion, the camera plays a central
role in 3D navigation.

In CG, a pipeline refers to a “sequence of data processing elements, where
the output of one element is used as the input of the next one” [Han 11]. In
other words, it is a sequential process that adds, modifies, and removes from
the previous input until it creates the desired graphical output. The main steps
in a pipeline include vertex processing, rasterization, fragment processing, and
output merging, as shown in Figure 4.1 The pipeline has kept evolving over time.
In Real-Time Rendering the pipeline shows fully programmable stages (vertex
shader, geometry shader, and pixel shader), configurable but not programmable
(clipping and merger), and fixed stages (screen mapping, triangle setup, and triangle
traversal) [Akenine-Moller et al. 08], as shown in Figure 4.2. To read more about
the current pipeline, see [Shreiner and Group 13, Luna 11].

The pipeline (see Figure 4.1) starts with the vertex process, which operates
on “every input vertex stored in the vertex buffer” [Han 11]. During this process,
transformations such as rotations and scaling are applied. Later, the rasterization
“assembles polygons from the vertices and converts each polygon to a set of
fragments” [Han 11]. Then, the fragment process works on each fragment and
finds the color needed to be applied, as well as applying texture operations. A
fragment is a pixel with its updated color. Finally, the output merging completes
the process and outputs the graphical representation to the user. In general, the
vertex and fragment processes are programmable® and the rasterization and output
merging is fixed (hard-wired) into the software or hardware.

Before covering the space camera, it is important to have the local space and
the world space in context. The local space is the coordinate system used to create

2The famous Nintendo game, Mario Bros, used a third-person camera.
3In older OpenGL, the entire pipeline was fixed.

4.1. Computer Graphics 77

a model, for example, a single mesh in 3DS Max.* The local space is also called
object space or model space. The world space is the coordinate system used for the
entire virtual scene, as shown in Figure 4.4. A simple example is for the world to
remain static while the camera moves. However, there are many instances where
local objects may need to have transformations applied that are not applied to
the entire world. For additional information about transformations, see [Han 11].
The local, world, and camera spaces are right-hand systems (see Figure 4.6) in
most instances. However, there are cases in which the system may use a different
system (left-hand system) or axis orientation. For example, 3ds Max and OpenGL
are both right-handed systems; however, Direct3D is a left-handed system. The
orientation is also different between 3ds Max and OpenGL, as shown in Figure 4.7.
The camera space is shown in Figure 4.3. The following list describes the camera
components (adapted from [Han 11]):

* EYE is the current position of the camera, denoted by a 3D point, in refer-
ence to the world space.

» AT is a 3D point, where the camera is looking toward AT.

» UP is a vector that describes where the top of the camera is pointing. A
common usage is to have this vector set to [0, 1,0]. This indicates that the
top of the camera is pointing to the positive Y axis.

The camera has a view frustum that defines the viewable space. This also helps
the rendering system to clip anything found outside the frustum (see Figure 4.5).
The parameters found in this view volume are (adapted from [Han 11]):

* fovy defines the vertical FOV, which is the visual angle of the camera.
* aspect is the ratio between the height and width of the view volume.
* n is the near plane for the view volume.

* fis the far plane for the view volume.

4.1.2 3D Translation and Rotations

In an interactive computer graphics system, the movements of a camera are accom-
plished using transformations (e.g., affine transformation). There are additional
transformations such as scale and reflection, among others (see [Dunn and Par-
berry 11]). The most common transformations are translations and rotations.
Translations are the simplest to work with. Translation is the linear movement
on X, Y, and Z axes. To perform a translation, simple addition and multiplication

4Other popular 3D modeling tools are Maya and Blender.

78 4. Computer Graphics

Figure 4.3: Camera space [Han 11].

UpP
camera space Yf n
u

“ EYE

world space

Figure 4.4: World space [Han 11].

done to each individual axis is enough. For example, to move the object 30 units
to the left, the translation vector will simply be 7.x = T'.x + 30. The origin is set to
be at [0,0,0].

Orientation is closely related to direction, angular displacement, and rotations.
Direction is usually denoted by a vector and indicates where the vector is pointing;
however, the direction vector has no orientation. If you twist a vector along

4.1. Computer Graphics 79

fovy

Figure 4.5: View frustum [Han 11].

right-hand system (RHS)

,

Figure 4.6: Right-hand system [Han 11].

the arrow, there is no real change. Orientation “cannot be described in absolute
terms” [Dunn and Parberry 11]. An orientation describes a given rotation based
on a reference frame. Angular displacement is the “amount of rotation” [Dunn
and Parberry 11]. Orientation may be described as “standing upright and facing
east” [Dunn and Parberry 11] or by adding angular displacement as “standing
upright, facing north” [Dunn and Parberry 11] and then rotating “90° about the
z-axis” [Dunn and Parberry 11]. There are several ways to describe orientation and
angular displacement such as matrix form, Euler angles, and quaternions. Only
Euler angles and quaternions are covered in this chapter.

Euler Angles

Euler angles are defined as the angular displacements of a “sequence of three
rotations about three perpendicular axes” [Dunn and Parberry 11]. The order of
application of the rotations makes a difference in the final result. This means that

L) £ L

RHS in 3ds Max RHS in OpenGl LHS in Direct3D

Figure 4.7: Left- and right-hand systems [Han 11].

80 4. Computer Graphics

4 N

Side Note 4.1: GPU and GPGPU

With the current video cards that we have in the market, the graphics
processing unit (GPU) has become more capable of producing better 3D
graphics. For most 3DUI developers, working with Unity or similar frame-
works may be sufficient to achieve a goal. However, there are times that
understanding the graphics rendering system will provide an additional
benefit (e.g., using geometry shaders). The graphics pipeline has become
programmable (for quite a while now) and it provides ways to utilize the
GPU that were not possible or practical. In addition to graphics, the GPU
has been used for general purpose applications. In particular, those that
are computationally complex. This is called GPGPU. A book that covers
GPGPU in detail, from a low-level programming perspective and theory,
is the GPGPU: Programming for Games and Science [Eberly 14]. Chap-
ter 4 provides a great background about GPU computing and Chapter 7
provides interesting sample applications for GPGPU. Furthermore, this
book has some chapters that are essential for people who would like to
write more efficient and parallel code. For example, Chapter 3 covers
single-instructions-multiple-data (SIMD) computing, which provides 3D
mathematics. This book contains many gems which are indispensable for
computer graphics and input device developers.

if a rotation about the X axis is applied before the rotation about the Y axis, the
result can be different than the one obtained if the rotation about the Y axis is
applied first. The fact that this method to describe orientation uses three individual
operations for each type makes it very easy to use by humans.

With Euler angles, the definition of pitch, roll, and yaw are quite intuitive. The
easiest way to think about these types of rotations is to think about an airplane, as
shown in Figure 4.8. Yaw is defined as the rotation about the Y axis (also called
heading). Pitch is defined as the measurement of rotation about the X axis (also
called elevation). Roll is defined as the rotation about the Z axis (also called bank).
These are called the principal axes.

There are a few important considerations that must be taken into account when
using Euler angles. First, rotations applied in a given sequence will yield a result
that may be different if the rotations are applied in a different order. For example, a
pitch of 45 degrees followed by a yaw of 135 degrees may yield a different result if
the yaw is applied before the pitch. Second, the three rotations in Euler angles are
not independent of each other. For example, the transformation applied for a pitch
of 135° is equivalent to a yaw of 180°, followed by pitch of 45°, and concluded by
aroll of 180°. A common technique is to limit the roll to £180° and the pitch to

4.1. Computer Graphics 81

Pitch Axis

Yaw Axis

Roll Axis

Figure 4.8: Principal axes. Drawn by Auawise.’

490° [Dunn and Parberry 11].

An additional problem with Euler angles is known as Gimbal lock. This
phenomenon happens when the second rotation angle is £90°, which causes the
first and third rotations to be performed about the same axis. To correct this
problem, one can set the roll to 0° if the pitch is £90° [Dunn and Parberry 11].

Quaternions

Quaternion is a number system used to represent orientation, which is very popular
in CG. A quaternion is represented by a scalar value (w) and a vector (v) with x, y,
and z components, as shown in Equation 4.1. Its popularity is due to some of its
advantages. First, quaternions using the slerp function (see [Dunn and Parberry 11])
provide smooth interpolation. Second, quaternions use only four numbers. This
makes it fairly easy to convert them from and to matrix form. It is very easy to find
the inverse of a given angular displacement. Finally, it provides fast concatenation
using the quaternion cross product. Nevertheless, they have some disadvantages
as well. While four numbers is less than nine numbers in a matrix, quaternions
are larger than Euler angle representation. Also, if the values provided to the
quaternion are invalid, the quaternion may become invalid. This can be overcome
by normalizing the quaternion. Finally, quaternions are not as easy to visualize
as Euler angles. Regardless of the disadvantages mentioned, quaternions are the
preferred method in graphics and game engines (e.g., OGRE [Junker 06]).

w (x y z)]=][cos(0/2) (sin(0/2)ny sin(6/2)n, sin(6/2)n;)] (4.1)

Shttp://commons.wikimedia.org/wiki/File: Yaw_Axis_Corrected.svg.

http://commons.wikimedia.org/wiki/File:Yaw_Axis_Corrected.svg

82 4. Computer Graphics

4.1.3 Geometric Modeling

This use of various polygon meshes® is quite common in 3D games and appli-
cations. The polygon mesh represent a 3D model to be used in a rendering
application [Watt and Policarpo 03]. The polygon representation is not the only
way to model objects. Alternative methods include bi-cubic parametric patches,
constructive solid geometry, and implicit surface representation, among others. In
particular, object-oriented graphics rendering engine (OGRE) uses its own mesh
binary format (and an available Extensible Markup Language (XML) version) to
load 3D models. It is important to note that GPUs have been highly optimized
to use polygon representations [Han 11]. In addition, polygon models can use
hierarchical and spatial representation to define a group of objects working as a
unit (e.g., person with legs and arms).

Polygon models are represented using vertices, faces, and edges. A very com-
mon approach is to use the half-edge data structure [Botsch et al. 10]. For more
information about data structures for polygon meshes, see [Botsch et al. 10, Chap-
ter 2]. A mesh also contains vertex normal and texture coordinates, among other
properties. Sometimes, the mesh may also contain data related to the anima-
tion for the object. A very typical technique is called skeletal animation, where
specific parts of the mesh are defined for movement. The animation topic is
beyond the scope of this book. For more information about animation, see [Par-
ent 08, Pipho 03].

The topic of geometric modeling is quite large. The reader is referred to [Botsch
et al. 10, Mortenson 06, Watt and Policarpo 01].

4.1.4 Scene Managers

Scene managers are useful to handle large virtual worlds . While there are different
ways to approach the design of a scene manager, the “common practice is to
build scenes as ontological hierarchies with spatial-coherency priority” [Theoharis
et al. 08]. Different types of scene managers are available to graphics engines,
such as binary space partitioning (BSP), quadtree, and octree, among others. These
types of hierarchies are called scene graphs. For example, Theoharis et al. define a
scene graph as the set of nodes that “represents aggregations of geometric elements
(2D or 3D), transformations, conditional selections, other renderable entities, (e.g.,
sound),” operations and additional scene graphs [Theoharis et al. 08]. A more
compact definition is that a scene graph is a spatial representation of rendering
objects in a virtual world where operations can be applied to parents or children of
this graph. Mukundan defines a scene graph as a data structure that “represents
hierarchical relationships between transformations applied to a set of objects in
three-dimensional scene” [Mukundan 12]. The general type of graph used in a
scene manager is directed, non-cyclic graphs or trees of nodes [Theoharis et al. 08].

6Commonly referred to as mesh.

4.1. Computer Graphics 83

The definition of a scene graph may vary depending on the actual type. The list
below details some of the items that a scene graph includes in a node [El Oraiby 04]:

* Rendering elements:

Static meshes.

Moving meshes.

Skeletal meshes.

— Materials.
¢ Collision elements:

— Bounding volumes.
— Trigger actions.

— Bullets.
¢ Other elements:

— Al path.
— Game data.

— Sounds.

Three very useful functionalities of a scene manager are instancing, operations,
and culling. Instancing allows the use of existing objects (e.g., meshes) to create
nodes. This means that instead of duplicating all the geometric information, a node
can be created that points to the primary object. For example, this could mean
that a car with certain material and geometric representation could be referenced
100 times, without having to duplicate this information. Later, using different
transformation operations or changing basic details, some of those cars may look
different and be placed in different locations. This is the importance of being able
to perform different types of operations in the node. The most common operation
is to perform geometric transformations to the object. The usefulness of the scene
node is that the operation can be local to the node, without affecting the parents.
Finally, culling allows the scene manager to make a decision about which objects
to render. While this is done by the GPU as well, the scene manager can be highly
optimized to minimize work. An extended study about culling is found in [Foley
et al. 96, Chapter 15].

One implementation of scene manager can be found in the OGRE system
[Junker 06]. This scene graph (ST_GENERIC) is a basic representation of a
hierarchical tree with parent/child relationships. Another common scene graph
used for large virtual worlds is the spatial hierarchical representation (partitioning
the space), such as octree. For a detailed study on spatial representations, see
[Samet 06]. For additional information, the reader is suggested to consult [Foley

84 4. Computer Graphics

Figure 4.9: AABB bounding box [Han 11].

et al. 96, Eberly 05, Eberly 07]. For a specific formal study about BSP see [Berg
et al. 00, Chapter 12], quadtrees see [Berg et al. 00, Chapter 13], and octrees
see [Langetepe and Zachmann 06, Chapter 1]. Without getting in depth, the
important part to understand about spatial partitioning is how it works. First of all,
the spatial representation can be static or dynamic. If static, it is expected for the
world not to change; otherwise, it is dynamic. One common implementation is the
BSP works by dividing the space in regions, which are represented by a binary
tree. The quadtree recursively divides each region in four, forming a tree with a
root followed by four leaves, and then each of those leaves with an additional four
more, and so forth.

4.1.5 Collision Detection

Collision detection deals with the problem of how to find two objects occupying
the same space at a given time [van den Bergen 04]. For 3D real-time environments
(e.g., games, simulators), this topic defines how to detect the intersection (collision),
and what to do when it happens [Ericson 05]. The latter part, which deals with
the action following the intersection, is up to the designer. A common approach
is to use physics engines (e.g., Bullet) to perform some type of reaction to the
collision (e.g., bounce) [Eberly 10]. Another simpler type is to use bounding boxes
to detect the collision, for example, the built-in simple collision detection functions
provided by OGRE. This collision type is referred to as a bounding volume, where
you can set spheres, boxes, and other 3D shapes that can help with the collision
algorithms [Ericson 05], as shown in Figure 4.9. In systems like Unity or game
engines, this functionality is already-built in.

4.1. Computer Graphics 85

s ™
Side Note 4.2: Game Engine Design

Game engine design can help input designers to understand the behind the
scene that goes on in a real-time 3D application. An excellent resource
about the development of game engine design are the books by David H.
Eberly, 3D Game Engine Design and 3D Game Engine Architecture. The
collection of books by David H. Eberly is full of insightful information
hard to find in other books.

Further Reading

The books by David Eberly (see Side Notes 4.1 and 4.2) provide in-depth in-
formation about game engine design and advanced topics. The Red Book by
OpenGL [Shreiner and Group 13] and the OpenGL Super Bible [Sellers et al. 13]
are very useful. Note that the last three editions of the Super Bible are different.
The fourth edition talks about the fixed pipeline. The fifth edition covers the
programmable pipeline, and the sixth edition removes the intermediate code that
aided users to work with programmable shaders. The classical book by Foley and
colleagues on computer graphics still provides very valuable information [Foley
et al. 96]. A newer edition has been published [Hughes et al. 13]. Real-time
rendering provided a look at various components of computer graphics [Akenine-
Moller et al. 08]. For 3D mathematics used in computer graphics, see [Dunn and
Parberry 11]. Finally, a very unique book that talks about 3D graphics with a
perspective on games provides excellent information [Han 11].

This page intentionally left blank

3D Interaction

If you want to compute in the future, you have to
compute with the power of the future.
—Alan Kay

5.1 Introduction

Computer interaction provides the communication channel that allows the user
to provide feedback to the computer system. This chapter deals with selection,
translation, and rotation of interactive systems, in particular 3D interaction. this
chapter deals (in most cases) with the selection and manipulation of an object or
group of objects. With this said, there are places where 3D navigation and 3D
interaction may overlap because of the interaction required in a navigational system.
Additional user interaction is found in Chapters 6 and 7. Interaction techniques and
design considerations are broad. Additional resources include MacKenzie’s book,
which covers some very important interaction techniques for menus and buttons
(including some 3D techniques) [MacKenzie 12, Ch. 3]. Other important references
include 3D User Interfaces: Theory and Practice [Bowman et al. 04, Ch. 5], and
Computer Graphics - Principles and Practice [Foley et al. 96, Ch. 8], among others
([Foley et al. 84, Dix et al. 04, Rogers et al. 11]).

5.2 3D Manipulation

Manipulation allows the user to interact with an object or multiple objects on the
display. Manipulation includes selection and transformations (e.g., rotations). If
the manipulation “preserves the shape of the object,” then it is said to be spatial
rigid object manipulation [Bowman et al. 04]. Foley and colleagues provided
a guide to interaction techniques applicable to 2D interfaces [Foley et al. 84].
Some of their recommendations and definitions are valid for 3DUI. For example,

87

88 5. 3D Interaction

manipulation is defined by them as: “operations performed on a displayed object
whereby the form of the object remains unchanged” [Foley et al. 84]. There are
interaction techniques that modified an object (e.g., changing the size of a cube
with a pinch gesture — scaling) [Mine 95b].

One of the options to work with manipulation tasks is to use application-specific
methods. These types of methods are very specific to an application and while
useful, they do not provide a general form to classify manipulation techniques
(but generalization may not be the aim for the designer). The other option is to
generalize the manipulations. If so, then we can decompose the task in a subset
of accepted manipulation tasks, also referred to as canonical manipulation tasks.
This subtask allows evaluation to be specific to each of them.

A 3D manipulation task simulates “acquisition and positioning movements
that we perform in the real world” [Bowman et al. 04]. In other words, the ability
to reach, grab, and move, among other manipulations to objects. The break down
of these canonical tasks, described by [Foley et al. 84, Bowman et al. 97, Poupyrev
et al. 97] are selection, positioning, and orientation. These tasks are described next.

Selection is the task that provides target acquisition from a set of targets [Zhai
et al. 94]. This allows the user to select a target or possible group of targets
among a universe of them. Zhai and colleagues offered the cubic silk cursor to
acquired targets in 3D VE. One of the advantages of the silk cursor is that it does
not “block completely the view of any object which it occludes” [Zhai et al. 94]
because of its semi-transparency property. The progression of this 3D cursor is
shown in Figures 5.1, 5.2a, 5.2b, 5.3a, and 5.3b. Another type of cursor is the
bubble cursor. This cursor has been used for 2D target acquisition [Grossman and
Balakrishnan 05]. It is possible to use a regular 2D cursor to pick items in a 3D
environment. A tutorial is available [3D 14], which uses the concept of a ray query
(see [Akenine-Moller et al. 08, pp. 738—756], object picking in [Eberly 07, pp 472—
481], and ray intersection with a cylinder [Heckbert 94, pp. 356-365], among
other [Kirk 92, pp. 275-283]) concepts. Selection provides a metaphor for someone
picking an object in the real world [Bowman et al. 04]. Selection includes the
following properties [Poupyrev et al. 97, Bowman et al. 04]: distance to target,
direction to target, target size, selection count, target occlusion. In addition to the
properties just mentioned, other properties about the objects or method of selection
are important. For example, what type of bounding volume is the target using
(e.g., AABB, see Chapter 4), density of objectsManipulation!selection!density of
objects around the target(s), and method of selection (e.g., ray query).

Positioning is the task that allows the user to position the target in a different
location; in other words, the translation of object (or objects) in the coordinate
systems of a VE. In 3D space, this is translation on X, Y, and Z axes. Positioning
includes the following properties [Poupyrev et al. 97, Bowman et al. 04]: distance
to initial target position and final target position, direction to initial target position
and final target position, distance for target to be translated in space, precision
for the positioning (in particular, the final position), visibility, occlusion of target

5.2. 3D Manipulation 89

Figure 5.1: Cursor and tree object before selection. Note that the silk cursor is
semi-transparent. Adapted from [Zhai et al. 94].

(a) Tree in front of the silk cursor (b) Tree object behind the silk cursor

Figure 5.2: Silk cursor. Adapted from [Zhai et al. 94].

size, and size of the manipulated objects, among others. Positioning provides a
metaphor for someone moving an object from A to B in the real world [Bowman
et al. 04].

Orientation is the task that allows the user to rotate the target object. Orienta-

90 5. 3D Interaction

(a) Tree object partially inside the silk (b) Tree object completely inside the
cursor silk cursor

Figure 5.3: Silk cursor. Adapted from [Zhai et al. 94].

tion, as explained in this book (see Chapter 4), may have different outcomes. In
positioning (translation), regardless of the order of steps taken to get to a final target
destination, rotations do not allow that luxury. Therefore, different considerations
must be taken from the perspective of user and system design. Orientation includes
the following properties [Poupyrev et al. 97, Bowman et al. 04]: rotation amount,
rotation matrix, initial orientation, final orientation, and required precision for
target orientation. Orientation provides a metaphor for someone rotating an object
in the real world [Bowman et al. 04].

In addition to the three canonical manipulation tasks mentioned, Poupyrev and
colleagues provided a few performance metrics for manipulation tasks [Poupyrev
et al. 97] (see also [Foley et al. 84]):

* Completion time: The time duration from start to finish of a given task.
* Accuracy: The actual position versus the desired position (precision).

* Error rate: How many times did the user failed to successfully complete the
task?

* Ease of use: Cognitive load for the user.
* Ease of learning: The improvement over time by the user.

» Sense of presence: The immersion and spatial awareness.

5.2. 3D Manipulation 91

Foley and colleagues, back in 1984, provided very useful guidelines for 2D
interaction [Foley et al. 84]. As stated before, some of their recommendation
are very important as of now. Some of them are aligned with the performance
metric provided by [Poupyrev et al. 97]. The first criteria of performance are
time, accuracy, and pleasure (similar to [Poupyrev et al. 97]). Additional criteria
include learning time, recall time, short-term memory load, long-term memory
load, and fatigue susceptibility, among others [Foley et al. 84]. This shows that
similar criteria applied to both 2D and 3D.

5.2.1 Classification of Manipulation Techniques

Bowman and colleagues described a testbed evaluation for virtual environments.
This included selection, manipulation, and travel experiments [Bowman et al. 99b].
The travel part of this work is described in Section 6.3.1. The taxonomies provided
by Bowman and colleagues offered a way to classify the interaction by decom-
position of tasks [Bowman et al. 97]. Another type of technique is described by
exocentric and egocentric techniques [Poupyrev et al. 98]. Bowman and colleagues
provide additional information about the taxonomies described here [Bowman
et al. 04]. We now describe selection and manipulation taxonomies [Bowman
et al. 99b]:

* Selection

— Feedback:
* Qraphical
+ Force/Tactile
Audio
— Indication of Object:

Object Touching
% Pointing
- 2D
- 3D Hand
- 3D Gaze
* Occlusion/Framing
* Indirect Selection
- From List
- Voice Selection
- Iconic Objects
— Indication to Select:

% Gesture

92 5. 3D Interaction

+ Button
% Voice Command
* No Explicit

* Manipulation

Object Attachment:

% Attach to Hand
Attach to Gaze
Hand Moves to Object
* Object Moves to Hand
User/Object Scaling

*

*

*

Object Position:

* No Control

* 1-to-N Hand to Object Motion
* Maintain Body-Hand Relation
* Other Hand Mappings
Indirect Control

*

Object Orientation:
No Control
* 1-to-N Hand to Object Motion
* Other Hand Mappings
Indirect Control

*

Feedback:
x QGraphical

% Force/Tactile
* Audio

The other taxonomy offered by Poupyrev and colleagues provides a way to
break down classification by points-of-view: egocentric versus exocentric. The
VE manipulation techniques classification is described below [Poupyrev et al. 98]:

* Exocentric metaphors

— World-in-miniature

— Automatic scaling

* Egocentric metaphors

5.2. 3D Manipulation 93

s N
Side Note 5.1: Device Clutching

When a device is not able to provide an atomic manipulation, it is known
as “clutching.” In other words, a given manipulation can’t be performed
in a single motion [Bowman et al. 04]. The metaphor comes from the
real-world example of using a wrench, which requires multiple motions to
tighten a bolt; placing it in the bolt, rotating it, and placing it back in the
bolt [Bowman et al. 04].

— Virtual hand metaphors:

% “Classical” virtual hand
x Go-Go
% Indirect Go-Go

— Virtual pointer metaphors:
* Ray-casting
* Aperture
* Flashlight
* Image Plane

5.2.2 Muscle Groups: Precision Grasp

Zhai study 6-DOF in depth [Zhai 95] (see also 2.2.4). Devices use different muscle
groups. For example, a hand-glove will use the larger muscle groups as opposed to
a device attached to a finger that uses the smaller muscle groups [Zhai 95, Zhai
et al. 96]. The latter type is referred to as precision grasp . Fine movements pro-
vide better results in certain task, such as rotation [Bowman et al. 04], decreasing
device clutching (see 5.1). Zhai found some very interesting results about 6-DOF
manipulation [Zhai 95]:

1. The physical 6-DOF input device “should provide a rich proprioceptive!->
feedback™ [Zhai 95]. The proper feedback to an action will help the user to
learn the task faster.

2. The transfer function (see Section 2.2.1) must match the capabilities of the
physical input device.

!Proprioceptor: “Sensory receptor that receives stimuli from within the body” [Stevenson and
Lindberg 10].

ZProprioceptive: “Relating to stimuli that are produced and perceived within an organism” [Steven-
son and Lindberg 10].

94 5. 3D Interaction

3. Precise movements of smaller muscles (e.g., fingers) must be part of the
interaction whenever possible.

4. The output (visual display) of the user actions should:

(a) provide “immediate exteroceptive®* feedback” [Zhai 95].

(b) provide semi-transparency objects (e.g., silk cursor), which helps to
provide a better relationship of depth between the cursor and the target.

5.2.3 Isomorphic Manipulations

An isomorphic manipulation is defined by a geometrical one-to-one relationship be-
tween the motion in the real world with the motion in the virtual environment [Bow-
man et al. 04]. An isomorphic manipulation provides a more natural interaction.
However, this type of manipulation has some deficiencies [Knight 87, Bowman
et al. 04]:

1. Given the constraints that physical input devices may have, the mapping
may be impractical.

2. Given our own limitations, isomorphic manipulation may be limited.

3. Itis possible to provide better interaction using 3D interfaces, like the WIM
(world in miniature) [Stoakley et al. 95].

Deciding between isomorphic and non-isomorphic manipulation techniques
depends on the application. Non-isomorphic techniques provide a “magic effect”
in a VE [Bowman et al. 04]. It is important than non-isomorphic rotations require
special attention. This will be covered later (see Section 5.2.6).

5.2.4 Pointing Techniques

Pointing is the fundamental operation in 3DUI that allows users to select and later
manipulate objects. In a 2D VE, a very common way to select an object is by
using the mouse cursor and pressing the mouse’s button. One of the earliest works
in this area was published by Bolt, titled “Put-That-There” (with emphasis on
“that” object) [Bolt 80]. This allowed users to select objects by pointing. Once the
object was selected, the user will command the object via voice command (e.g.,
“move that to the right of the green square” [Bolt 80]). There are several pointing
techniques, some of them described in [Bowman et al. 04], which provide the Ul
designer with different options.

3Exteroceptor: “Sensory receptor that receives external stimuli” [Stevenson and Lindberg 10].
“Exteroceptive: “Relating to stimuli that are external to an organism” [Stevenson and Lindberg 10].

5.2. 3D Manipulation 95

Ray-casting allows the user to point at an object using a virtual ray [Bolt 80,
Poupyrev et al. 98]. Poupyrev and colleagues used a virtual hand to define the posi-
tion and the orientation [Poupyrev et al. 98]. One option to attach the virtual hand is
to use a one-to-one mapping to a direct 6-DOF input device. The other option is to
use an indirect input device (e.g., mouse) to move the virtual hand and to select an
object.’ Attaching an infinite ray to the hand provides better visual feedback for the
user to discern if the ray is intersecting an object or not [Bowman and Hodges 97].
This technique, while useful, has problems when selecting objects that are small
(which require high-precision) or far away [Poupyrev et al. 98, Bowman et al. 99b].
One of the problems is the delay measurement, which is the “lag between the
actual sensor position and the position reported” [Liang et al. 91] by the device.
The noise and delay causes a lag that is perceived by the user [Liang et al. 91]. The
increased distance causes the tracker to jitter. Bowman and colleagues summarized
this problem by stating: “ray-casting selection performance erodes significantly
because of the high angular accuracy required and the amplification of hand and
tracker jitter with increased distance” [Bowman et al. 04]. For additional infor-
mation about jitter, see [Liang et al. 91, Forsberg et al. 96, Poupyrev et al. 98]. A
study compared ray-casting selection, 2D-plane technique, and 3D volume for air
pointing (e.g., WiiMote) [Cockburn et al. 11]. This study showed that ray-casting
selection technique was “rapid but inaccurate” [Cockburn et al. 11]. This further
demonstrated some of the problems with ray-casting selection technique, as it was
also shown in [Poupyrev et al. 98]. A possible solution is to use the approach
by Argelaguet and Andujar, which developed a solution for dense VEs which
combines image-plane technique and hand-rotation for ray control, showing their
technique outperforms ray-casting selection [Argelaguet and Andujar 09a]. A
similar approach for 3D games uses different techniques with improved selection
techniques [Cashion et al. 12].

Ray-casting selection technique works by the intersection of the ray with the
object (see Chapter 4). This is estimated by Equation 5.1, where the pointing
direction is given by the virtual ray (p), the 3D position of the virtual hand h, and
the parameter o is between 0 to 4-o. The object selected should be the closest
to the user. Andujar and Argelaguet developed a similar approach to the one
just described using ray-casting (with the flexibility of virtual pointing technique
[Olwal and Feiner 03]) for 2D GUIs embedded in 3D environments [Andujar and
Argelaguet 06]. Riege and colleagues demonstrated the use of a bent pick ray
for multi-users, which allowed users to select and move objects, bending the ray
without locking the objects [Riege et al. 06]. For additional information about
ray-casting methods, see [Bowman and Hodges 97, Poupyrev et al. 98, Bowman
et al. 99b, Bowman et al. 04].

S«clicking with the mouse directly on 3D objects is an easier and more effective method” [Bowman
et al. 04].

96 5. 3D Interaction

aperture cicle

Figure 5.4: Aperture technique: selection cone. Adapted from [Forsberg et al. 96].

p(a)=h+ap 5.1

Two-handed pointing is a variation of the ray-casting technique just described.
This approach uses two virtual hands [Mine et al. 97]: one of the hands determines
the orientation of the virtual ray and the other hand determines the direction of
the ray (where it is pointing). This is described by Equation 5.2, showing the
3D coordinates for the right hand (h,;,,) and the left hand (h;. ;) and where the
o parameter should point away from the user [Bowman et al. 04]. An alternate
approach to the two-hand technique described in [Mine et al. 97] is the virtual
pointing technique [Olwal and Feiner 03]. One hand may provide the length of
the ray and the other hand the curvature of it, which allows us to move around
objects [Olwal and Feiner 03].

p(0) =hyep, + o (hyign —hyep) (5.2)

Bi-manual input is described in detail in Chapters 7 and 8 (see Sections 7.3.1
and 8.3.6). However, there is specific literature about the performance of bi-manual
input for selection. Ulinski and colleagues evaluated four classes of bi-manual
techniques [Ulinski et al. 09] (see [Guiard 87] to read about the different classes.)
They showed that no significant difference was found that would induce fatigue in
experienced users [Ulinski et al. 09]. They also provided some important findings
[Ulinski et al. 09]: (1) Symmetric and synchronous selection provided faster task
completion; (2) asynchronous selection increased cognitive load, in particular when
it was combined with asymmetric interaction; (3) usability significantly decreased
when symmetric-asynchronous actions were taken. Ulinski and colleagues also
looked at two-handed selection for volumetric data [Ulinski et al. 07]. Another
technique that uses both-hands, is balloon selection [Benko and Feiner 07]. This
technique uses a multi-finger approach (with both-hands) to use the real-world
metaphor of controlling a helium balloon [Benko and Feiner 07]. Benko and Feiner
found that the balloon selection technique provided “the user with fast and slightly
indirect interaction, while simultaneously reducing hand fatigue and lowering
selection error-rate” [Benko and Feiner 07] (see Chapter 9).

Another technique is the flashlight or spotlight. This metaphor of a real-life
flashlight [Liang and Green 94] provides selection of an object via illumination,

5.2. 3D Manipulation 97

when the selection requires less precision [Bowman et al. 04]. This approach
replaces the ray with a conic volume with the narrow end of the cone (apex)
attached to the input device. If an object is within the selection cone, then the
object can be selected. It is clear that the most immediate problem for this technique
is to discern between multiple objects (e.g., dense environment) in the selection
cone. Liang and Green offered two rules to select an object in the selection
cone [Liang and Green 94, Bowman et al. 04]: (1) The object closer to the center
of the line of the cone is selected. (2) If the objects shared the same angle between
the center of the selection cone, then the object selected is the closest to the device.
It is important to note that the object is not required to be entirely in the selection
cone. A related technique, called aperture, allows the user to change the spread
of the selection cone in real time [Forsberg et al. 96], as shown in Figure 5.4.
This helps the user to adapt when the environment is dense or contains small
objects [Bowman et al. 04]. The user’s viewpoint is provided by head-tracking
and the virtual hand-position by the input device (e.g., hand-glove), which for this
aperture is represented by a cursor (e.g., a cube). This leads to the Equation 5.3,
where e is the 3D coordinate of the virtual viewpoint, h is the 3D coordinate of the
hand, and o is between 0 to +oo.

p(a)=e+a(h—e) (5.3)

The aperture technique offers some advantages [Forsberg et al. 96]: (1) It
mimics how people point to objects. (2) It offers similar desktop metaphor of
placing a cursor on top of a target. (3) Visual feedback is not required other “than
the aperture cursor itself” [Forsberg et al. 96]. (4) It reduces the noise of the tracker
and the user by using volume selection (used in the spotlight technique). To select
the object, the orientation of the aperture is used. Just like in a real environment,
the orientation of the hands provides the intent of the object to manipulate. In the
particular case of Forsberg’s technique, two plates are used as visual feedback to
select the object. Figure 5.5 shows the entire object being selected because of the
orientation of the plates. Figure 5.6 shows the selection of the middle disk object
because of the orientation of the plates.

Another approach that simplifies selection by requiring the user to control only
2-DOF is called image-plane technique [Pierce et al. 97]. This approach, inspired
by “The id in the Hall”® show, where a character would pretend to “crush people’s
heads using his index finger and thumb” [Pierce et al. 97], provided an alternative
interaction technique. The idea of this approach is to have the user work with 3D
objects using their 2D projection. Pierce and colleagues created four ways for
users to interact with objects [Pierce et al. 97]:

* Head Crusher: The user would use one hand to select the object between
his/her index finger and thumb. The user’s point of view is also taken into
consideration to select the object.

6Canadian Broadcasting Corporation (CBC) 1988-1994.

98 5. 3D Interaction

Figure 5.5: Aperture technique: entire object is selected. Adapted from [Forsberg
et al. 96].

Figure 5.6: Aperture technique: partial object is selected (middle disc). Adapted
from [Forsberg et al. 96].

» Sticky Finger: This approach uses one stretched finger to select the object.
This technique is very useful for large objects and objects close to the user.

* Lifting Palm: This approach uses one of the user’s palms, facing up and
below the object. The way the object is selected is by finding where the
palm is located plus an offset.

» Framing Hands: This uses both hands to select an object. The user finds
opposite corners of the object to select it. This is similar to the head crusher
technique. This technique also allows the user to select a group of objects.

Pierce and colleagues provided some guidelines when dealing with image-
plane techniques [Pierce et al. 97]: (a) The system should provide feedback for
the object to be selected. (b) Using the feedback, the user will choose the correct

5.2. 3D Manipulation 99

object. Also, while the head-crusher is similar to the aperture technique, it offers a
disambiguation method inherent in the gesture but the object must fall within the
index finger and thumb as opposed to the aperture technique that does not require
the entire object to be in the selection cone [Bowman et al. 04]. This technique has
a few problems [Pierce et al. 97]:

* Arm Fatigue: This may be caused by users constantly needing to move
the arm to the level of their eyes. A solution to this problem, which causes
fatigue, is allowing the users to move the object (once selected) to a more
natural position.

* Occlusion: The hand may occlude the object, in particular if the object is
small or far from the user’s point of view. A possible way to correct this
problem is to render the hands semi-transparent.

» Stereo Rendering: Selecting the left or right image plane will change
how the image looks. A possible way to correct this problem is to choose
the default plane view. Pierce and colleagues decided to render the scene
monocularly [Pierce et al. 97].

A more recent technique in selection is called SQUAD [Kopper et al. 11],
designed with cluttered environments in mind. This is a type of selection by
progressive refinement, which means that the user reduces the number of objects
until only the desired target remains. This refinement is done in discrete steps for
SQUAD but it can also be done in continuous steps like cone-casting [Steed and
Parker 05]. This technique was designed to overcome problems with ray-casting
methods, such as hand and tracker jitter. The method uses a modified “ray-casting
that casts a sphere onto the nearest intersecting surface to determine which objects
will be selectable” [Kopper et al. 11]. This is called by the authors of this technique
sphere-casting. The objects found within the sphere will become selectable. The
sphere has a dynamic mode, where the sphere’s radius increases if the user is farther
“from the nearest intersecting surface” [Kopper et al. 11], allowing a larger set of
objects to be selected. The sphere-casting allows selection of occluded objects
while avoiding the typical ray-casting precision issues. Figure 5.7 shows the sphere
with the selected objects. Once this phase is completed, a quad-menu is provided
(see Figure 5.8), where the objects are “evenly distributed among four quadrants
on the screen” [Kopper et al. 11]. The quad-menu reduces the number of objects
to select by pointing each time where the desired object is found. The number
of selections needed is log,(n), where n is the initial number of objects [Kopper
et al. 11]. While there is a trade-off between immediate selection and progressive
refining selection, SQUAD offers some advantages. This technique was found to
be significantly faster for selection in low-density environments and for smaller
objects [Kopper et al. 11]. Another advantage is in the time that it takes to complete
a task, the number of refinements grows linear in comparison to the exponential

100 5. 3D Interaction

Figure 5.7: SQUAD selection technique: Sphere casting at the market. [Kopper
etal. 11].

e @
@
@ v
%2
@
) * *
‘ ° -
)
%
& L
& <
) 2 @
VAl X % X

Figure 5.8: Quad-menu. Note that the target object needs to be visually distinct for
the selection to be feasible. [Kopper et al. 11].

growth of ray-casting method [Kopper et al. 11]. However, it also suffers from
some shortcomings. For example, SQUAD cannot performed well, if the selection
is based on object location [Kopper et al. 11].

Jota and colleagues looked at the effects of ray-casting for very large displays
[Jota et al. 10]. The purpose of this study was to understand the control type and
parallax under large displays. The study looked at four variants: technique for laser
pointing, arrow-pointing, image-planing pointing, and fixed-origin pointing [Jota
et al. 10]. Their study showed that arrow and laser, which are rotational techniques,
performed better than positional techniques, including vertical targeting, suggesting
“that parallax is not important for targeting tasks” [Jota et al. 10]. In general, they
recommend that if targeting is important, laser-style ray-casting technique is most
appropriate [Jota et al. 10]. The study also talks about tracing, which showed that

5.2. 3D Manipulation 101

image-plane and arrow-pointing performed best compared to the other variants
tested [Jota et al. 10].

Additional selection literature is available. For a general classification about
3D mobile interaction, see [Balaa et al. 14]. For 3D selection (see Chapter 9) [Arge-
laguet and Anddjar 09b, Teather and Stuerzlinger 11, Strothoff et al. 11, Stuer-
zlinger and Teather 14], selection techniques for volumetric displays [Grossman
and Balakrishnan 06], in-air pointing technique [Banerjee et al. 11], domain-
specific design techniques [Chen and Bowman 09], selection and realism [Gu-
nasekara and Wimalaratne 13], progressive refinement using cone-casting [Steed
and Parker 05], and Steed’s selection model for VEs [Steed 06], among oth-
ers [Hernoux and Christmann 15, Otsuki et al. 13]. Some other techniques, such as
the triangle cursor [Strothoff et al. 11], are described in Chapter 9. Some additional
techniques are described in the book (e.g., Chapters 6 and 8). Also, direct and
hybrid manipulation techniques are described in Section 5.2.5. A survey of 3D
interaction while dated, is still useful [Hand 97]. Finally, a very detailed recent
survey for 3D object selection contains a list of techniques and further explanation
about the state-of-the-art [Argelaguet and Andujar 13].

5.2.5 Direct and Hybrid Manipulations

Direct manipulation provides a close relationship with the user’s action. This
mapping takes the forms of transfer functions (see Section 2.2.1) or control-display
gain functions (see Side Note 2.3). One of the techniques for direct-manipulation
is called virtual hand.

The simple virtual hand, an isomorphic interaction, allows direct mapping
between the user’s real hand and the virtual hand, which is described linearly
scaled as in Equations 5.4 and 5.5 [Bowman et al. 04], where p, is the 3D position
and R; is the 3D orientation of the real hand, while p, is the 3D position, R, is the
3D orientation of the virtual hand. The scaling factor (¢) is the ratio between the
real hand and the virtual hand. While Equation 5.5 does not include the scaling
factor included in the position equation, in some cases, it may be useful to use it,
yielding R, = aR,.

pyv = Op; 5.4
R, =R, (5.5)

One technique that improves on the virtual hand approach is called the go-go
technique [Poupyrev et al. 96]. The motivation of Poupyrev and colleagues was to
create a virtual arm that changes its length. This imposed several challenges: (1)
How users would specify the desired length. (2) How users would control their
virtual hand. (3) How to make this metaphor intuitive. The solution was to provide
a non-linear mapping between the virtual hand and the user’s hand.

The implementation of the go-go technique included the polar coordinate
[Wikipedia 15k] r,, ¢, 0 in a user-centered coordinate system [Poupyrev et al. 96].

102 5. 3D Interaction

zZ Y

-

Figure 5.9: Go-go technique. Adapted from [Poupyrev et al. 96].

This non-linear mapping function (F(r,)) is shown in Figure 5.9 and Equation 5.6,
where r, is the length of the vector 7. pointing from the origin (o) (drawn at the
user’s position) to the user’s hand, and the direction of vector 7, provided by the
angles ¢ and 6. The virtual hand is located in the environment in position r,, ¢, 0,
where r, is the length of (#,) the virtual hand from the origin. ¥,

if D
R=F(r)=4" , Lrrss (5.6)
rr+o(r,—D)" if otherwise

This mapping provides two different transfer functions. One of them is linear
when r, is less than D. This provides the user a one-to-one mapping that corre-
sponds to the movements of the user’s hand reflected in the environment’s virtual
hand. The constant D is a threshold, which is % the user’s arm length’ [Poupyrev
et al. 96]. Once the value of 7, becomes larger that the threshold (D), then the map-
ping becomes non-linear. It is important to know that the transition between linear
to non-linear is smooth because of the C! continuity [Poupyrev et al. 96]. The
non-linear transfer function means that “as the user moves the hand, r, increases
or decreases faster than r,” [Poupyrev et al. 96], making the virtual hand appear to
increase or decrease as the user move its hands past the D threshold.

This technique is an improvement over the simple virtual hand approach
providing a 6-DOF. Additional studies have shown that this technique is intuitive
[Bowman and Hodges 97, Poupyrev et al. 98]. Bowman and Hodges found that,
while it is a useful technique, the fact that the arm length coefficient must be
adapted to different types of VEs “may lead to imprecision in the user’s ability to
position the virtual arm, so that for quite distant objects, the arm may extend and
retract too quickly to allow easy grabbing and manipulation of objects” [Bowman

7This was the value chosen in their study [Poupyrev et al. 96] because it was found to be the
optimal value for users to work with comfortably.

5.2. 3D Manipulation 103

and Hodges 97]. Like in most 3DUI solutions it is hard to find a one size fits-all
approach. This was noted by Poupyrev and colleagues [Poupyrev et al. 98]. In their
well-documented study, they found that the go-go technique “allows for effective
selection of objects at-a-distance” [Poupyrev et al. 98] yielding better performance
whenever accurate selection is needed. However, ray-casting technique was found
better for larger objects, when accuracy was not important [Poupyrev et al. 98].

A different approach is to provide a miniature view of the VE “within the
user’s reach” [Bowman et al. 04]. This technique is called World-in-Miniature
(WIM) [Stoakley et al. 95]. This approach works well for small and medium VEs.
However, it does not scale well for large environments. Nevertheless, WIM works
well for different types of 3DUISs, such as augmented reality (see [Bowman et al. 04,
Ch. 12]). For actual implementation considerations, see [Stoakley et al. 95].

A different technique is to combine direct (e.g., simple virtual hand) and indi-
rect manipulations (e.g., ray-casting technique). We called this approach hybrid
or combination technique, providing the best of both direct and indirect worlds.
The simplest way to combined techniques is by aggregation. This allows the user
to select the type of interactions to use based on a set of possible interactions. A
more advanced form of creating a hybrid technique is to combine both based on
task context. This approach is called integration technique. The system, based on
different stages of manipulation (e.g., select and then manipulate), provides a way
for the application to select the appropriate technique to be used.

One of these hybrid techniques, is called HOMER (Hand-centered Object
Manipulation Extending Ray-casting) [Bowman and Hodges 97]. This approach
allows the user to select an object in the VE using a ray-casting technique by
attaching the virtual hand to an object once it is selected [Bowman et al. 04]; this
in contrast to the ray-casting, which attaches the object to the ray. Once the object
is selected, HOMER allows the user to move and rotate the object (manipulation
mode).

HOMER is based on previous hybrid techniques [Wloka and Greenfield 95,
Mine 95a]. However those techniques use a one-to-S mapping (S is a scale factor)
not allowing to specify object position and rotation. Bowman and Hodges provides
two extensions to add the feature that was lacking in the previous techniques
[Bowman and Hodges 97]: (1) The object manipulation is relative to the user’s body.
(2) The user may specify the distance of the object using an input device action,
such as mouse button or hand motion. Equation 5.7 shows that this technique
linearly scales, where r, is scaled by constant ¢, yielding r, [Bowman et al. 04].
The constant ¢, is defined by Equation 5.8, where D, is the distance from the
user to the object when selected, and Dy, is the distance between the user and
user’s hand when selected [Bowman et al. 04]. How far the user can reposition
an object is limited by Equation 5.8. Please note that the rotation for the selected
object is controlled using “an isomorphic mapping between the real and virtual
hand” [Bowman et al. 04].

ry = Oy, (5.7)

104 5. 3D Interaction

D,
=D,
Some of the advantages of HOMER over other arm-extension techniques
are [Bowman and Hodges 97]: (1) Grabbing an object is easier for users because
precise position of the virtual hand is not required. (2) No additional physical effort
is needed to select objects regardless of their position in the VE. (3) Manipulation
also requires less physical effort. The one problem refers back to Equation 5.8.
Bowman and colleagues provide an example of the limitation of the equation
[Bowman et al. 04]: Assume that an object is far away and a user decides to grab
it, bring it close to him/her, and then release it. When the user decides to bring
the object back to its original position, this becomes a challenge. The reason is
that the scaling coefficient will become very small because “the object is located
within the user’s reach” [Bowman et al. 04]. There have been newer approaches
to HOMER, for example, HOMER-S for hand-held devices (where 3DTouch and
HOMER-S techniques are compared) [Mossel et al. 13].

A similar approach to HOMER is the scale-world grab technique [Mine
et al. 97]. Instead of using the ray-casting technique, the scale-world grab uses the
image-plane technique for selection. Once the object is selected, the manipulation
mode is activated. The manipulation mode scales down the VE based on the
user’s virtual viewpoint using a scaling factor (). The scaling factor is derived
between the distance from the virtual viewpoint to the virtual hand (D,) divided
by the distance between the same virtual viewpoint and the selected object [Mine
et al. 97, Bowman et al. 04]. This technique has the same problem as HOMER
does, which is that the scaling coefficient will become very small when the object
is at arm’s reach and the user decides to move it further away.

o, (5.8)

o= —~ (5.9)

One of the problems with some of the scaling techniques, such as HOMER
and scale-world grab, is that the scale factor works only in one direction [Bowman
et al. 04]. The Voodoo Dolls technique tries to solve this problem, among other
limitations found in some other techniques, providing additional features [Pierce
et al. 99]: Users can work in multiple scales, visible and occluded objects can be
manipulated, and the “user’s dominant hand works in the reference frame defined
by his non-dominant hand” [Pierce et al. 99], among others. Voodoo Dolls is a bi-
manual technique, which uses pinch gloves combining the image-plane technique
for selection and WIM technique for manipulation. During the manipulation, the
world is miniaturized and placed into objects named “dolls.” For example, say
that you have a football (soccer) ball that the user may want to modify in size
and color. Once the object is selected, the user will have a copy of this ball in
one of his/her virtual hands to operate with. Maybe a magic brush is found in the
environment that allows the other hand to also place it in a “doll” and use their
other hand to manipulate this brush with the ball already placed in the opposite

5.2. 3D Manipulation 105

hand. The technique is very powerful but it does require additional hardware,
which is two 6-DOF degrees of freedom. Nevertheless, the technique itself is
very useful to be duplicated with other hardware or by enhancing the technique.
Additional information is found in the original publication [Pierce et al. 99] and
study that compares this technique versus HOMER [Pierce and Pausch 02], among
others [Bowman et al. 04].

Direct 3D interaction offers an intuitive way for users to work with a VE.
However, as we have described, there are several challenges, such as accuracy.
Frees and colleagues introduced a 3D interaction technique called PRISM: Precise
and Rapid Interaction through Scaled Manipulation [Frees et al. 07]. Their goal was
to increase the control/display ratio (see Side Note 2.3). In other words, improve
accuracy and control. Using the notion derived from Fitts’ law, “as the target
gets smaller” [Frees et al. 07] the user must slow down the movement of his/her
hand. Conversely, as the target gets larger, the user must increase the movement of
his/her hand. This implies that it is quite likely that the goal is to have a “precise
position or orientation in mind” [Frees et al. 07]. Using this notion, PRISM adjusts
the control-display gain, in real time. As the speed decreases, the control-display
gain increases to “filter out hand instability” [Frees et al. 07] and as the speed
increases, the control-gain decreases, providing a direct interaction (C:D = 1).

To select an object in PRISM, the user touches the virtual object with a digital
stylus and presses down on the stylus button. While the button is pressed, the
position and direction can be modified. Once the button is released, the virtual
object is also released. One of the interesting aspects of PRISM is how it uses the
speed of the user’s hand to alter the control-display gain.

PRISM uses different thresholds based on speed, as shown in Figure 5.10,
which determines the control-display gain. There are three control-display ratio
modes, which depend on three constants: (a) minimum-speed (MinS), which is the
least speed needed to be considered valid (otherwise it is noise) (b) scaling-constant
(SC), which is the maximum speed that a user may have while the goal is precision.
(c) MaxS constant is used to trigger offset recovery.

The way that PRISM switches modes provides a better interaction for users.
For example, assume a user is moving his/her hand close to the constant MinS.
The control-display gain becomes larger with the virtual object moving very
slowly [Frees et al. 07]. In the other hand, if the hand is moving closer to the
constant SC, the C:D ratio approaches one. Once it passes SC, the relationship
between the interaction and the user becomes a one-to-one relationship. The third-
constant triggers the offset recovery. “The offset is automatically reduced, causing
the object to catch up to the hand” [Frees et al. 07]. In most cases, MaxS is larger
than SC. It is important to note the relationship that exists between SC and the
user’s sensitivity and precision. The lower SC becomes, the selected object will
become more sensitive to the hand movement and it will scale less. The larger SC
becomes, the selected object will become more resistant to hand motion, providing
more scaling, and the ability to be more precise by the user [Frees et al. 07]. It

106 5. 3D Interaction

C/D Ratio

A
0 |

1 If offset recovery
: is necessary
1
1

T T T /
I
Hand

1
: Velocity

1
|
|
1
|
]
| Scaled Mation 1:1 Motion 1:1 + Recovery

MinS SC MaxS

Figure 5.10: PRISM hand-speed adjustment.

is important to note that each user has his/her own preferences and abilities, for
which the constant values may need to be adjusted. This adjustment is also useful
for the same user that may require different requirements for different types of
applications.

PRISM treats translations and rotations separately. The translation is controlled
by the C:D ratio. To determine the speed of the user’s hand, PRISM takes a sample
of the hand position before each frame, and calculates the speed using the current
location and the location from the sample taken 500 ms before [Frees et al. 07].
Any values in between those samples are ignored. The time was derived based
on observation and the lack of user complaints. However, there are other ways to
lower (or remove) noise [Liang et al. 91, Welch and Bishop 97]. Equation 5.10
shows the constant movement as long as the value is greater than SC and speed is
smoothed out when the value is between MinS and SC.

) 1 if Shang = SC
K=cp= Stand i MinS < Shana < SC (5.10)
0 if Shana < MinS
Dobject = K- Dhang (5.11)

A very interesting approach in PRISM is the offset recovery. During scale
mode (see Figure 5.10), an “offset accumulates between the hand and the controlled
object” [Frees et al. 07]. For the case of translation, there are two sub-cases [Frees
et al. 07]: (a) User is in any mode and it has accumulated offset “in a particular
direction, and then changes direction moving their hand back toward the object.”
When this happens, the “object is not moved until the hand crosses back through

5.2. 3D Manipulation 107

\ - a. User moves hand slowly to the right [> —_— €. User slowly moves to the right and
féig‘-——_____qt@ and down. Some movement is scaled -) i up bac_k towards object, vertical
down in the horizontal direction, nearly offset is recovered. Sca[ﬂd
allis scaled down in the vertical. ﬂfai Eﬁ_ﬂtl(}ﬂ performed in horizontal
T irection.
- g:t?\\‘—“‘.’ b. User maves in the same direction as

et - L . in (&), this time guickly. Since . . d. After accumulating offset, user
_“—“—-—‘.._D?_(J interaction is in direct mode, object \‘2 moves hand quickly up and to the
follows hand to its exact location. right. Offset is eliminated and
e mode has switched into direct.

Figure 5.11: Examples of typical interactions when using the PRISM translation
technique.

the object” bringing the offset to zero. (b) When the speed exceeds MaxS, it is very
likely that the user is not concerned with accuracy and the user is trying to move
an object to a general location. In this case, the speed of the object is increased,
so the object catches to the hand. For the algorithm, see [Frees et al. 07, Table I].
Another aspect that pertains to translation is the axis independent scaling. This
means that PRISM works on each axis independently. For example, the speed
in the X direction affects only the scaling mode for the X direction. This helps
the user move the hand rapidly avoiding drift, helping users move an object in a
straight line. Figure 5.11 shows some typical PRISM translation interactions.

PRISM rotation technique works differently than translation. It uses the hand’s
angular velocity and three constants to find the control-display gain (C:D) needed.
Just like in translation, this works differently depending on the speed of the hand.
If it is below MinS, the object will not rotate. If it is between MinS and SC, the
object is rotated “by an angle proportional to the distance the hand has rotated in
the most recent sampling interval” [Frees et al. 07]. As the value approaches SC,
the “object rotates directly with the hand” [Frees et al. 07], with MaxS triggering
automatic offset recovery. It is important to note that PRISM, instead of using
Euler angles, uses quaternions to represent the orientation of the hand. The rotation
is calculated between the current orientation and the orientation of the previous 200
ms, similar to the translation approach. The rotation is calculated by Equation 5.12,
where the rotational difference is given by current frame (Q;) and the previous
frame (Q;_1), yielding Qgis. Equation 5.13 converts Qgis from radians to degrees,
which is later divided by 200 ms, as shown in Equation 5.14. This aids Equation
5.15 to calculate C:D. For the scale rotation, the inverse of C:D is used. Note that
k is a real number between 0 and 1 [Frees et al. 07]. Finally, the difference in the
offset recovery with translation is that the rotation removes the offset at once (as
opposed to gradually over one second). For additional information, see [Frees
et al. 07].

O

Qdifr = o 0: 07 (5.12)

108 5. 3D Interaction

180
A = (2 xarccos (Qgiff—w)) - o (5.13)
A
RS = 0.20sec .19
1 1 if RS > SC

k=25 = A ifMinS<RS<SC (5.15)

0 if RS < MinS
Onew = Ofitr QObject (5.16)

5.2.6 Non-Isomorphic Rotations

The reasons to create non-isomorphic rotations may vary from hardware limitations
to constraints of the human body [Poupyrev et al. 00]. For example, the joints have
certain constraints that may not allow a full 360°rotation effect. The most basic
form of non-isomorphic mapping is adding a scale factor, as shown in Equation
5.17, where k is the scale factor, D is the displacement of the device, and D, is
the displacement of the visual element [Poupyrev et al. 00]. Note that k could be a
non-linear transformation.

Dy =kxD, (5.17)

Using quaternions (represented by ¢), a series of operations can be done for
non-isomorphic operations (linear zero-order control-display). One of the options
is to amplify the rotation while maintaining the direction of rotation, which is
given by Equation 5.18 where i, is the axis of rotation with angle v..

gec = (sin (%) fic, o8 (%)) = e(Fie) (5.18)

The zero-order control-display “gain should amplify the angle rotation” v,
by k, independent of &, [Poupyrev et al. 00], yielding Equation 5.19. In other
words, the zero-order linear control-display “gain for spatial rotations is a power
function” [Poupyrev et al. 00], as shown in Equation 5.20.

kv, v
qa = (sin <;> ¢, cos (kVCZ)> — (kFac) — qf, (5.19)

94 =4 (5.20)

There are cases where the rotation is relative to an orientation gg. This is
accomplished by “calculating the rotation gg and g., amplifying it, and combining
it with reference orientation gg,” as shown by Equation [Poupyrev et al. 00], which

5.2. 3D Manipulation 109

is similar to the slerp function [Shoemake 85], with Equation 5.22 as an equivalent
formula. To obtain Q, see Equation 5.23.

qd = (chal)kcm (5.21)
~sin((1-k)Q) sin (kQ)

44 =490""gn (Q) 9 gin (Q) (522)

cos (Q) =4gc-qu (5.23)

It is possible to define non-linear non-isomorphic rotations. In order to accom-
plish this, the following definitions are needed [Poupyrev et al. 99]:

* Distance rotation between g, and go. This is the smallest rotation connecting
q. and qo.

* @ =2arccos (g - qo)-

* Replace coefficient k with non-linear function F (®).

1 ifo < ay

f(®) =1+c(o—ap)* otherwise 24

k:F(a)):{

— Where ay is “the threshold angle and c is a coefficient” [Poupyrev
et al. 99].

Equation 5.24 shows that there is a one-to-one mapping if ® is less than
ay. However, when @y exceeds the rotation, the control-display ratio becomes
larger. Poupyrev and colleagues recommended that to have a smooth transition
between the cases in Equation 5.24, ¢ should be “continuous in @y and f (@) =17
[Poupyrev et al. 99].

Non-isomorphic rotations provide the “magic” needed to improve the rotation
experience. This was shown by the findings of Poupyrev and colleagues, which
demonstrated that for a larger range of rotations, non-isomorphic techniques were
13% faster [Poupyrev et al. 00]. For a small range of rotations, the results were
the same. In addition, subjects showed a strong preference for non-isomorphic
rotations. Another interesting finding was that the mapping had no effect on the
accuracy of rotation [Poupyrev et al. 00]. Additional information can be found
in [Poupyrev et al. 99, Poupyrev et al. 00, Bowman et al. 04].

Further Reading

There is a large set of publications on the topic of selection and manipulation. In
addition to the one described in this chapter, the reader is referred to an example

110 5. 3D Interaction

of augmented reality (for object manipulation) [Kato et al. 00], multi-finger cursor
[Moscovich and Hughes 06], and volumetric 3D interaction [Gallo et al. 08] using
the WiiMote controller, among others.

Also, A very interesting chapter in Mine’s Ph.D. dissertation [Mine 98, Chap-
ter 2] describes manipulations using 2D input. A technical report by the same
author provides information about manipulation and selection [Mine 95b].

Wolfgang Stuerzlinger, a professor in the School of Interactive Arts and Tech-
nology at Simon Fraser University, has a rich publication history in the field of
3DUL In particular to this chapter, he has published about 3D pointing and 3D
manipulation [Stuerzlinger and Teather 14, Teather and Stuerzlinger 14, Teather
and Stuerzlinger 11, Liang et al. 13, Pfeiffer and Stuerzlinger 15]. His publication
site is located at http://ws.iat.sfu.ca/publications.html.

As you can see from the citations in this chapter and their 3D user interfaces
book [Bowman et al. 04], Bowman and colleagues are very active in similar topics.
Visiting their site to see their publications can be very helpful.

Finally, for a brief look at 3D interactions (up to 1996), see [Hand 97].

Exercises

1. Implement the precise and rapid interaction though scaled manipulation
(PRISM) described in this chapter. Use the text and equations as guides.
Perform a small pilot study to compare PRISM (or your modified version of
PRISM) with regular control-display ratio (see Side Note 2.3). Field pro-
vides excellent examples for different types of statistical analyses [Field 09].

2. Implement two pointing techniques described in Section 5.2.4. Perform a
small pilot study to compare the different techniques. A t-test should be
enough to make the comparison. See [Field 09].

3. Implement three pointing techniques, with at least one described in Section
5.2.4. Perform a small pilot study to compare the different techniques. Use
ANOVA to see if there is any significant difference. See [Field 09].

http://ws.iat.sfu.ca/publications.html

3D Navigation

The voyage of discovery is not in seeking new land-
scapes but in having new eyes.
—NMarcel Proust

This chapter covers 3D navigation, which includes travel (motion) and wayfind-
ing. It is important to make certain distinctions about navigation, travel, and
wayfinding. Travel is the engine component of navigation, which is the motion
from one location to another. Darken and Peterson call this component of the
navigational system motion [Darken and Peterson 15]. Wayfinding is the “cog-
nitive process of defining a path through an environment” [Bowman et al. 04].
This cognitive process is aided by different cues, which allow the user to utilize
the cues to create a path (or mental map) as well as acquire new cues. Some of
these cues were discussed in Chapter 3. Therefore, navigation is composed of
travel and wayfinding components. 3D navigation concentrates on the actions of
a 3D VE. Both components of navigation are important when dealing with input
devices. It is a driving force for many of the types of interaction needed. Finally,
it is important to note that while travel and wayfinding are part of navigation, if
someone is working on the travel engine, the user will still be performing both
tasks. The difference is that the objective of the researcher or practitioner may
have been one of the two components of navigation but the line between both
becomes blurry once they are being used. This chapter will expand on travel and
wayfinding. In particular, the definition just offered for wayfinding is not complete
without expanding it.

6.1 3D Travel

The action of moving around in a virtual environment is called travel (or motion),
which is a component of 3D navigation. It is possible to find reference to 3D
navigation when the primary objective was travel. While it is reasonable to call it

111

112 6. 3D Navigation

navigation, it is best to use the correct term for this component of navigation. Of
course, travel goes with wayfinding in many instances.

3D travel is critical for 3DUI, given that it is a common interaction task
[Bowman et al. 04]. Travel is also important because it usually supports a primary
task. An example is when a user is searching for objects in a game. The travel
allows the user to search for the object (primary task). For this reason, 3D travel
must be designed correctly. If the user needs to think how to navigate for too
long, then he or she will be distracted from the primary task, which may be to find
objects in a virtual world. There are different types of travel tasks. For the purposes
of this chapter, it is important to understand exploration, search, maneuvering tasks,
and travel characteristics.

6.1.1 3D Travel Tasks

The most common travel task is exploration. In this type of task, the user has
no specified or required goal to complete. The user will only travel through the
environment while building knowledge of the objects around and the locations of
those objects. The most common example is navigating around a new city that
the user has not known yet, to build knowledge of places and monuments, for a
future visit. It is important in the exploration task that users are allowed to travel
without constraint (other than outer limits or object collisions) around the virtual
world [Bowman et al. 04].

Another type of task is called search. This type of task has a goal or target
location within the virtual world. The user knows the final location of the required
task. The user may or may not know how to get to the location, but he or she
knows the objective. The search task can be divided into sub-categories. The
first one is called naive search, where the “user does not know the position of
the target or path to it in advance” [Bowman et al. 04]. This type of search starts
out as a basic exploration. The number of clues given to the user to complete the
goal are limited and focused on the exploration. The second sub-category of a
search task is called primed search. In the primed search task, the user “has
visited the target before or has some other knowledge of its position” [Bowman
et al. 04]. In this type of task, the user may know the final location; however, the
user may still need to explore the virtual world, or the user may know the path to
the target. In other words, the primed search provides more information to the
user about the environment, in order to complete the assigned task. While there
are clear differences between naive search and primed search, the line dividing
these two categories of search tasks can become blurred, depending on the design
of the 3DUI and the user.

One task, often overlooked in the discussion of travel, is called maneuvering.
This task is meant to take place “in a local area and involves small, precise
movements” [Bowman et al. 04]. One example of this type of task is a user who
may need to read a sign. In this scenario, the user moves slightly down and rotates

6.1. 3D Travel 113

10° on the Y axis. The small-scale movements are critical for certain applications.
A possible approach to facilitate maneuvering is to use vision-based systems that
provide fine reading of the face (as it turns) or devices that provide physical motion
with little or no error in the readings.

Another task to travel, quite useful in maps or large sets of data, is travel-by-
scaling [Bowman et al. 04]. This technique allows intuitive zoom-in or zoom-out
of a given portion of the virtual world. However, it is important to note that
there are several challenges with this technique. For example, does the user
understand their current position when they scaled the world? The view may be
closer but the user is probably at the same location (before the zoom). Does the
user understand the visual feedback when the virtual world has scaled in or scaled
out? There are different solutions to these challenges, such as using a virtual body
to understand the dimensions of the scale. Another major issue is that users may
have trouble performing finer movements because when scaling the virtual world,
the movements are larger.

3D Travel Task Characteristics

3D travel tasks have characteristics that may be used to classify them. It is also
a good idea to have these characteristics in mind when designing a system. The
following list contains a few important characteristics (adapted from [Bowman
et al. 04]):

* Distance to be traveled: This is the distance that it takes to go from location
A to location B. This may require velocity control in some instances.

e Turns: A travel task can also look into the number of turns taken (or the
number of turns required) in a given task.

* Required DOF: The number of DOF required for the travel task. It is
important to only use the required DOF for a given task. It also important
to constrain some of the movements. For example, some rotations may be
constrained to 90°. For example, if the system emulates a person walking in
a real environment, it is common to restrict some of the rotations to 90° or
180°. This is very common in many games.

* Accuracy of movements: Travel task may need a very accurate movement
(e.g., maneuvering) or use realistic physics.

» Easy to use: Given that 3D navigation in most cases is a secondary task, the
user’s interaction must be intuitive.

* Visibility: Some environments required objects to be visible. An example
is gaze-directed tracking.

114 6. 3D Navigation

6.1.2 Travel Techniques

There are different travel techniques [Bowman et al. 04]. The most important
techniques that must be taken into consideration when designing a system are:
active versus passive, and physical versus virtual. The active technique is where the
user has complete control of the movement of the scene. Passive technique is where
the system has control of the movements. A middle ground is a semi-automated
system, where the user has some level of control while the system automates
the rest. The physical technique refers to the actual body of the user involved
in performing the movements in the virtual scene (e.g., walking). The virtual
technique allows the user to utilize a virtual device to control the movements.

Task Decomposition

Task decomposition for travel was offered by [Bowman et al. 97] providing a
taxonomy for travel sub-tasks, which included direction or target selection, veloci-
ty/acceleration, and conditions of input. The following list expands the descriptions
of those sub-tasks [Bowman et al. 97, Bowman et al. 04]:

* Direction target selection: This is how the user steers or moves around VE.
This includes the following types:
— Gaze-direction steering.
— Pointing/Gesture steering.
— Discrete selection.
* Lists (e.g., menus).

x Direct targets.

* Velocity/acceleration selection: Describes how users control their speed.

Constant velocity/acceleration.

Gesture-based.

Explicit selection.

x Discreet.
x Continuous range.

User/environment scaling.

Automatic/adaptive.

* Input conditions: The events which marked the initial and final times, yield-
ing the duration time.

— Constant travel/no input.

— Continuous input.

6.1. 3D Travel 115

— Start and stop inputs.

— Automatic start and stop.

This taxonomy provides a way to break down travel for navigation. Some of these
sub-tasks can be combined. For example, a gesture-based technique can be adaptive
and have selection tasks based on velocity or acceleration [Bowman et al. 97] while
others may not be feasible to combine. Bowman and colleagues also identified
quality factors for the effectiveness of travel, which include speed, accuracy (to
target), spatial awareness, ease of learning, ease of use, information gathering
(user’s ability to continuously obtain information from the VE), and presence
(immersion or having a feeling of being within the VE) [Bowman et al. 97].

Bowman and colleagues provided another taxonomy a few years later [Bowman
et al. 99a]. This taxonomy subdivides the travel tasks in order: start moving,
indicate position, indicate orientation, and stop moving. Each taxonomy provides
its own advantages and it is up to the practitioner or researcher to pick the one
that fits best on a case-by-case scenario. This taxonomy offers the advantage of
classifying the sub-task by order of occurrence, while the actual events may not
be in the order expected. For example, it may be possible to specify orientation
and position before moving. Bowman and colleagues provided the following
taxonomy [Bowman et al. 99a]:

* Start travel.
* Indicate position.

— Specify position.
* Discrete target specification: The user provides destination target
and the system proceeds to move to this target.

* One-time route specification: The user defines a path and the
system moves along the path.

x Continuous specification: The user is constantly steering.
— Specify velocity.

— Specify acceleration.
* Indicate orientation.

 Stop travel.

While classifications that breaks down the interaction in sub-tasks are very useful,
it is also possible to make classification by metaphor. This type of classification
does not allow to break the task into a sub-task but they are easier to understand
[Bowman et al. 04]. For example, one could think of metaphors like “flying carpet”
and “spaceship travel,” among others.

116 6. 3D Navigation

Figure 6.1: Omni (by Virtuix) immersive system. With permission from Virtuix.

Physical Techniques

Physical locomotion provides users in immersive environments a more realistic
feeling. These techniques try to mimic locomotion of our daily activities, such as
walking. Some of the physical movements can be constrained, as with Omni (by
Virtuix) immersive system, as shown in Figure 6.1.

The most common action for physical locomotion is walking. It is an activity
that is intrinsic in our daily lives. The most important attribute to this modality is the
spacial understanding as we walk because of the vestibular cues [Bowman et al. 04].
The vestibular cues provide understanding about the size of the environment.
Walking can be challenging for the user. In immersive environments the space
where the user walks should have no obstacles. It is true that more and more
devices are wireless but not all devices are. For example, the Oculus Rift (version
one and two) has a video cable and a Universal Serial Bus (USB) cable that
connects to the computer, which makes walking a challenge. Also, in the case
of devices like the Oculus Rift, the user is not able to see the real world, making
walking a very difficult task. This could be alleviated by having either external
cameras that capture the outside world and then render it back in the Oculus
Rift. However, this still can pose problems for the users. The HoloLens from
Microsoft allows the user to see-through, where walking may be easier than

6.1. 3D Travel 117

lab-mounted (fixed) 1) o o "
optical sensor o - . : .

head-mounted landmarks / e ey o R
ﬁ;: sy o Lub-mountied Y Sy
b e [fxed) landmarks E head-mounted sensor

Outside-Looking-In Inside-Looking-Out

Figure 6.2: Wide-area tracking [Welch et al. 01].

using Oculus Rift.! Having said this, Google glasses is the only device that we
have tested that allows the user to walk and get augmented information about
the environment. The University of North Carolina (UNC) has been working on
large-area tracking for a while now. One of their milestones is the HiBall [Welch
et al. 99, Welch et al. 01], currently marketed by UNC and 3rdTech. HiBall
provides two different ways of tracking: outside-in and inside-out [Welch et al. 01],
as shown in Figure 6.2. The idea of the outside-in technique is to provide fixed
optical (or ultrasound) sensors and the tracking markers in the user’s head. The
other technique, inside-out fixes the camera in the user’s head, while providing the
markers around the world. For additional information about tracking research by
UNC see their website (see [UNC 14]). Meyer and colleagues provided a survey
with additional information about tracking [Meyer et al. 92].

Walking in place is another alternative, as has been demonstrated by Omni
immersive system (see Figure 6.1). Walking in place does not produce any trans-
lation, removing any problems that you have with free walking. The Nintendo
Entertainment System (NES) Wii Balanced Board is another example. While it
does not constrain users, it does provide a way to walk in a smaller space using
the board, and providing a smaller translation among X, Y, and Z axes. Of course,
this can also be seen as a virtual technique. Of course, the NES Wii Balanced
Board will be very difficult to use if the user is wearing a HMD (like the Oculus
Rift). Usoh and colleagues showed that there is a correlation between the virtual
body and the degree that the users associate presence [Usoh et al. 99]. In addition,
walking in place was higher than virtual travel, but walking was higher than any of
those [Usoh et al. 99]. Additional devices have been used, which includes tread-
mills and cycling devices to emulate immersion. Bowman and colleagues provide a
larger discussion about these techniques, including additional references [Bowman
et al. 04].

LAt the time of this writing, we have not been able to acquired a HoloLens to test it.

118 6. 3D Navigation

Virtual Techniques

While physical techniques provide a more “realistic” feeling for users, the majority
of users still rely virtual locomotion techniques. It is true that prices are coming
down, whereas before there were only affordable by big research labs, government,
and industry. For example, the price of the Omni is around $US 500 for an in-place
walking system, the Oculus Rift for under $US 400, and the new Samsung for
under $US 200 (plus a Samsung phone). This is helping to make these types
of devices and systems more accessible. Prices will keep going down while
the technology will keep improving. However, there are still instances where
physical locomotion is not the ideal solution, either because of environment space,
budget, or domain-specific requirements, among other reasons. This is why virtual
locomotion techniques are still very important. An example of this is navigating in
a 3D VE using a multi-touch surface (or other common devices, such as GamePad
and wiiMote Motion Controllers, among others), which are pervasive in today’s
technological landscape. In addition to this book, 3D User Interfaces: Theory and
Practice [Bowman et al. 04, pp. 199-222] outlines various techniques. A direction
of motion overview is found in [Mine 95b]. For completeness, we cover some of
those techniques in this chapter (adapted from [Bowman et al. 04, pp. 199-222]).

A common virtual locomotion approach is the steering technique. One of
those techniques is called gaze-directed steering. This technique works by mov-
ing the VE’s view into the direction g, which is the user’s viewing direction. There
are different ways to obtain the user’s viewing direction. The ideal one is to use
eye-gazed tracking (see Chapter 12) but in the absence of this tracking device, other
computer vision techniques can be used. For example, using a head tracker. The
eye-gazed tracking can be used by calculating a ray from the current position of the
camera to the center of the viewing window. Bowman and colleagues provided a
gaze-equation (Equation 6.1), which represents the current user’s position (s) plus a
translation along normalized gaze-direction (%) multiplied by a constant velocity
(v) [Bowman et al. 04]. Another option is to modify the up vector from the camera
coordinate system (see Chapter 4). The gaze-directed steering technique can also
used specific triggers (e.g., GamePad buttons) to start and stop the desired tracking.
With this technique it is possible to add strafe, which is the ability to translate in all
three X, Y, and Z axes (up, down, left, right, in, out). Bowman and colleagues point
out two difficulties with this technique: (1) It is difficult to travel in the horizontal
plane because it is difficult to know if the user’s head is upright. (2) It is also
uncomfortable to travel up or down, in particular when using a HMD [Bowman
et al. 04]. In addition, in a user study, it was found that pointing significantly
outperforms gaze-directed steering for relative motion (“travel to a target located
relative to a reference object” [Bowman et al. 97]). One primary explanation for
this is that it is difficult for users to travel to a location while looking a different
target when using gaze-directed steering.

6.1. 3D Travel 119

Snew = s—l—l]l 6.1)

H gll

Pointing is another technique that allows the user to direct the navigation.
A common practice is to have a tracker in the user’s hand to obtain the vector
p. This vector is transformed into the world’s coordinates (see Chapter 4) and
then normalized. Equation 6.2 for pointing is very similar to the gaze-directed
equation. A common practice is to combine the keyboard for the travel direction
and the mouse for the gaze direction. Mine offered an extension for pointing
by using two hands [Mine 97]. This method was implemented using a pinch
glove, which allowed to select the forward hand by knowing the left from the
right hand [Bowman et al. 01] (a user has a left and right glove at all times). In
addition, the distance between the hand can be calculated into &, providing an
additional factor for the velocity factor y. Equation 6.3 shows a general equation
for the pinching hand £, and the other hand h,,,. If the pinch is performed with the
right hand, then the difference is hg — hz. With multi-touch displays, we can see
similarities to the pointing and pinch, as both operations are commonly available
in touch systems.

Snew = 5+ WH%H 6.2)

(hp — np)
|hp —

Spew =S+ W0 ———"— T
np

(6.3)
|
There are additional steering techniques described in [Bowman et al. 04]: (1)
Torso-directed steering where a tracker is attached to the user’s torso (e.g., in the
user’s belt). This technique allows the user to have his/her hands free to perform
another action. It also frees the eyes since the gaze-direction technique is not
being used. (2) Camera-in-hand technique uses a tracker in the hand providing
an absolute position and orientation. The tracker becomes the camera. This can
be calculated with ¢ = T p, where T is the transformation between the tracking
coordinate system and the world coordinates system, providing a mapping between
the camera position (c¢) and tracking position (p). This technique provides a third-
person perspective of the VE for the user. Additional steering devices can also help
with navigation, like a video game steering wheel with an accelerator and brake
(buttons or pedals). An example is the Virtual Motion Controller (VMC), which
allows a user to move around its region (see additional examples in [Bowman
et al. 04]. Finally, semiautomated steering allows the application to take some
control of the navigation while leaving some up to the user.
Another virtual technique is route planning technique. This technique pro-
vides a path (or route) for the user to navigate. For a given path, the navigation
may allow interruptions (e.g., start/stop). In general, this technique is based on

120 6. 3D Navigation

Figure 6.3: Blue button widget.

previous planning (the path) and execution (the navigation along the path). Maps
can be used for route planning. 3D maps are useful because of the direct access to
the complete VE but some users may find working with this type of map harder
to visualize. 2D maps are simpler but certain assumptions must be made to cre-
ate the mapping to the 3D environment. Maps can be used if needed in certain
route-planning techniques. The following list provides a brief look at some path
planning strategies:

* Drawing a path: Allows users to draw the path in the VE. Different tech-
niques of drawing in a 3D environment can be used for this approach. One
option is for the user to draw a free 2D stroke directly into the VE to create
a path [Igarashi et al. 98]. The user can either create a long or short stroke
depending on the route they try to create. Long strokes are useful “in how to
get to the target position” [Igarashi et al. 98]. The short strokes are useful
to specify camera direction or to specify a goal position. Other sketching
techniques can serve to extend this type of route-planning, such as [Cohen
et al. 99]. This technique can also use 2D or 3D maps.

* Points along a path: This technique allows the user to mark points in the
VE. One option is to use 2D or 3D maps. Another option is to use keyboard
and a mouse to mark the points. How the points are connected depends on
the implementation (e.g., straight lines, curves, etc.).

» User representation: This technique allows the user to use some type of
representation to create a path. For example, a spaceship or a person could
be used in third person to represent the navigation direction desired. For
example, a small creature was used in World-in-Miniature (WIM) to provide
the user with position and orientation [Stoakley et al. 95]. A map can also
be used with this technique.

Steering and route-planing techniques offer interesting options on how to
navigate in a VE. In addition to those techniques, target-based techniques offer
a different approach to navigation. Once the user has selected the target, one

6.1. 3D Travel 121

option is for the system to jump immediately to the object selected, which is
called teleportation. However, this method was shown to “reduce the user’s
spatial awareness” [Bowman et al. 97]. Therefore, moving toward the object in a
continuous way may improve the user’s spatial awareness. Some of the types of
target-based techniques are (described in more detail in [Bowman et al. 04, pp. 210-
214]:

* WIM-based: This technique allows the user to use a 3D object (e.g., minia-
ture figure). The user manipulates the object toward the desired target. The
system must create a valid path for the navigation to move toward this tar-
get. The difference with the latter technique (placing target object) is that
a path is created here and the other one provides only the final coordinates.
However, one can see blurry lines between both of these methods.

* Map-based: Similar to the previous technique described, the map-based
technique allows the user to manipulate an icon to create a path. For example,
Bowman et al. used a stylus (pen) to create the path needed in the map shown
in Figure 6.4 [Bowman et al. 98]. It is assumed that the point 0 = (X,, Y,, Z,)
is known, the %(x,z) function is implemented, which provides a way to
calculate y,4rge; since the map input is 2D (see Equation 6.6), and the scale
factor 0. Equations 6.4 and 6.5 provide a very straightforward way to
calculate the target for both of theses axes. For y;qrq¢; the /i function is needed.
Finally, to calculate the movement vector, the target point is subtracted by
the user’s position. In addition, the velocity scalar y multiplies the vector
and the factor 0 is used to normalized the move vector, as shown in Equation

6.7.
Xnoi — X,
pointer — Xo
Xtarget = (6.4)
o
Zpointer — 2o
Ztarget = (65)
(o)
Ytarget = h(xlargeta Ztarget) (6.6)
4 6
m= g [xmrget — X, Ytarget — Y, Ztarget — Z] (6.7)

* ZoomBack: This technique, introduced by Zeleznik and colleagues, “allows
the user to select a target point on the surface of an object in a virtual
environment” [Zeleznik et al. 02]. Ray-casting is a common selection
technique (see Chapter 5) that can be used with ZoomBack. The interesting
fact about this technique is that it retains previously visited locations to allow

122 6. 3D Navigation

the user to return to those. One possible implementation for ZoomBack is to
use a user-worn 3D mouse (see Section 2.4.4). It is also possible to use a
regular mouse to implement this technique but it may not be as convenient.
This technique was used to look at paintings by selecting them, looking at
them up close and then returning to a previous location.

* Object Selection: This technique allows the user to select a target using
any type of selection technique, for example, selecting the object with the
mouse or by touching the object on a multi-touch surface display.

* Placing Target Object: This technique allows the user to place an object
in the desired target using manipulation to set the target’s position.

* Menu-based: This technique allows the user to select a target based on a
menu or a list (e.g., dropdown). Besides a typical one-dimensional menu
(e.g., radial menu), other options include 2D menus and 2D or 3D widgets.
An approach we have taken is to use visual widgets to return to a specific
location (e.g., start point of navigation). This widget can be a simple push
button that can be pressed with a multi-touch interface or the mouse, as
shown in Figure 6.3.

* Manual Entry: This technique allows the user to enter the coordinates of
the VE that he/she wants to travel to. It is also possible to have pre-defined
keys to travel to specific places. A common-approach we have used is to
provide an external keypad to travel to desired objects by pressing the correct
key.

There are many more techniques that can be used for travel, such as non-
isomorphic rotations (see Section 5.2.6) and the virtual sphere (see Section 2.6),
among others found in this book (see Section 6.3). Bowman and colleagues provide
additional techniques [Bowman et al. 04], such as grabbing the air technique
([Ware and Osborne 90, Mapes and Moshell 95]), which allows the user to make
the grab gesture and move the world around it.

6.2 Wayfinding

Darken (who has worked in wayfinding and related areas for many years [Darken 93,
Darken 96]) and Peterson define wayfinding as the cognitive process of naviga-
tion [Darken and Peterson 15]. It is important to note the difference between
the actual motion (as described earlier) and wayfinding. Motion is an engine of
navigation, which is usually called travel. However, wayfinding does not “involve
movement of any kind only the thoughtful parts that guide movements” [Darken
and Peterson 15]. Wayfinding and motion are intertwined in a “complex negotia-
tion that is navigation” [Darken and Peterson 15]. It is also important to understand

6.2. Wayfinding 123

Tree Rock Grass

Figure 6.4: Map for stylus pen [Bowman et al. 98].

the mental map (also called cognitive map). This is the representation of the spatial
understanding of the subject [Darken and Peterson 15].

6.2.1 Training versus Transfer

Wayfinding can be very useful to transfer spatial understanding to real-life cases.
In particular, when dealing with 3D VE to aid real-world scenarios. The type of
information provided for wayfinding applications can be divided in two categories
[Bowman et al. 04, Darken and Peterson 15]: (1) Navigate through complex
environments. It is important to allow the users to view the environment in its
entirety. (2) Transfer of spatial knowledge to a real-world scenario: In other words,
the ability to use a VE to transfer the spatial layout learned to be used later in the
physical world.

In the first category, the notion of large environments will have problems
because of its size. The primary reason is that any environment that cannot be
viewed from a single vantage point will lack spatial comprehension; that is, the
ability to “perceive, understand, and recall for future use” [Darken and Peterson 15].
When this problem occurs, it is important to aid the user with cues that yield
better spatial understanding. It is important to understand that this problem will
occur regardless if the environment was designed for real-world transfer of spatial
knowledge or not. The second category of application deals with training that helps
real-world scenarios. The fact that VE can be used to help train users for physical

124 6. 3D Navigation

environments can be very useful and it has been applied in different domains.
However, it is important to understand that there are differences between both
types of wayfinding application and the trade-off of training versus performance
must be taken into account when designing the VE.

6.2.2 Spatial Knowledge

There are different ways to obtain spatial knowledge about an environment. In
a VE, it is possible to introduce many types of cues that are harder to add in the
real-world (unless aided by an augmented reality application). How we acquire
spatial knowledge is critical for wayfinding. There are three categories: landmark
knowledge (or direct environmental knowledge), survey knowledge (e.g., maps),
and procedural knowledge [Bowman et al. 04, Darken and Peterson 15].

The first type of spatial knowledge is landmark knowledge. Lynch’s book, The
Image of a City provided ways to decompose a city”> [Lynch 60]. The different
elements that provide direct environmental exposure are [Lynch 60, Bowman
et al. 04, Darken and Peterson 15]:

* Landmarks are important objects that provide information about the envi-
ronment. They are also directional, as the object itself may represent a cue
“from one side but not another” [Darken and Peterson 15]. Examples of
landmarks are the US White House, the Eiffel Tower, Big Ben, and the
Washington monument. For example, “La Moneda” (presidential house of
the government of Chile) provides a cue that a person is in the middle of
Santiago, also known as “el centro” (downtown or city center). In a VE,
artificial landmarks can provide clues to the user.

* Routes (or paths) connect landmarks either directly or indirectly via other
routes.

* Nodes are the joints between routes.

* Districts are independent regions within a city, separated from other parts of
the city.

» Edges are the the city boundaries. Examples of edges are rivers or a fence
line [Darken and Peterson 15].

The second type of spatial knowledge is survey knowledge [Bowman et al. 04].
There are different sources that can be used for this type of spatial understanding,
such as video, maps, images, sound (e.g., speech), and VEs. For example, maps
can be used either for planning or concurrent with the navigation. One of the first
questions a user may have is “where am 1?7, where am I facing?” [Darken and
Peterson 15]. Planning a trip, beforehand, requires geocentric perspective. For

2Lynch published a follow-up article [Lynch 84].

6.2. Wayfinding 125

this type of case, there is no need to go from egocentric to geocentric perspective
because this happens outside of the environment. However, when the map is needed
to be used within the environment, there are a few considerations that are needed
and the problem is not trivial. For example, tasks that require only an egocentric
reference frame, such as targeted search tasks, are best when using a forward-up?
map [Aretz and Wickens 92, Darken and Cevik 99, Darken and Peterson 15]. In
contrast, when performing tasks that require “information from the world reference
frame” [Igarashi et al. 99], it is best to use a north-up* alignment [Aretz and
Wickens 92, Darken and Cevik 99, Darken and Peterson 15]. People with high
spatial abilities can perform well with any type of map [Darken and Cevik 99].
The study by Darken and Cevik provided additional recommendations, which are
complemented by previous studies [Levinew et al. 84, Peruch et al. 86, Rossano and
Warren 89]. The transformation from egocentric to geocentric perspective is not
the only problem when dealing with maps but it is “the biggest part of it” [Darken
and Peterson 15]. Additional research about maps and navigation has been done,
including topics about teleoperated robots [Chen et al. 07], 3D mobile maps
[Nurminen 08], and 3D virtual environments [Burigat and Chittaro 07], among
others [Bowman et al. 99b, Chittaro et al. 05, McGahan 14]. Additional survey
knowledge is available, such as Google StreetView™ and the possibilities that
devices such as augmented glasses (Google Glass™) provide additional methods
of spatial understanding [Darken and Peterson 15].

The third category is called procedural knowledge. This plays a role in spatial
knowledge, which describes the “sequence of actions required to follow a certain
path or traverse paths between different locations” [Bowman et al. 04]. For exam-
ple, a user learning the steps needed to go from his/her house to the supermarket.
Munro and colleagues provide additional information about spatial knowledge,
including locomotion spatial understanding and other relevant information [Munro
et al. 14].

Reference frames are also important to understand in relation to spatial knowl-
edge for egocentric and exocentric (where the cognitive map is located [Thorndyke
and Hayes-Roth 82]) information transfer, and how theses points of view affect
the judgments and decisions of users, as described below [Bowman et al. 04]:

» Egocentric: This is a first-person point of view. This point of view provides
useful information, which includes distance and orientation. The decisions
made during this type of reference frame are [Bowman et al. 04]:

— Station Point (from the perspective of the eye).

— Retinocentric (retina).

3Forward-up map: “The top of the map shows the environment in front of the viewer” [Darken
and Peterson 15]. In other words, this map is always rotated to align with the forward position of the
user [Darken and Cevik 99].

4The north-up alignment approach has the north always on top [Darken and Cevik 99].

126 6. 3D Navigation

— Headcentric (head).
— Bodycentric (torso).

— Proprioceptive, visual and non-visual cues from body parts.

* Exocentric: This is a third-person point of view. In this reference frame, the
coordinates are defined external to the body. The coordinates are [Bowman
et al. 04]:

— Shape of object.
— Orientation of object.

— Motion of object.

Finally, once spatial knowledge is understood, there is still a question of
how this information is organized in the mental model of the user [Darken and
Peterson 15], which is called the cognitive map [Tolman 48]. The most com-
mon spatial knowledge model is Landmark, Route, Survey (LRS) [Siegel and
White 75, Thorndyke and Goldin 83]. The LRS model has been extended to have
a hierarchical model [Stevens and Coupe 78, Colle and Reid 98]. For additional
information about cognitive maps, including additional citations see [Darken and
Peterson 15].

There are articles about spatial understanding, which includes topics such
as large-scale virtual environments [Darken et al. 98], route knowledge [Gale
et al. 90], spatial knowledge in virtual mazes [Gillner and Mallot 98], spatial
understanding from maps and navigation [Richardson et al. 99], and misaligned
maps [Rossano and Warren 89], among others [Pick and Acredolo 83].

6.2.3 Navigation Model

Decomposing tasks may lead to better assistance or training. However, as Darken
and Peterson pointed out, the attempt to find a general model for any task is
difficult [Darken and Peterson 15]. Jul and Furnas do have a “relative complete”
[Darken and Peterson 15] model, in particular, the inclusion of motion components
into the process [Jul and Furnas 97]. This model, shown in Figure 6.5, provides
a way to plan for navigation and demonstrates that this is not a serial process.
At any point, a user may change the goal and proceed to another place. Finally,
additional work has been attempted to model navigation (in some cases specific
to an environment) [Darken 96, Spence 99, Chen and Stanney 99, Calton and
Taube 09].

6.2.4 Wayfinding Strategies

There are different strategies to support wayfinding from the user-centered and
environment-centered perspectives. Some strategies can be used in a regular desk-
top or mobile 3DUI while others are more useful in immersive systems [Bowman

6.2. Wayfinding 127

What should I find?

e Goal forming —
K Strategy Selection M-

How should I find it?

1 give up. Look for
something else. /

Look around

This isn’t working.

Motion Assessment

Walk down the hall. B
Am I making any progress?

This hall connects to that one.

Figure 6.5: A model navigation adapted from [Jul and Furnas 97, Darken and
Peterson 15].

et al. 04]. One of the support strategies is environment-centered wayfinding. The
environment design includes legibility techniques and real-world principles. The
legibility technique, drawn from The Image of the City [Lynch 60], provides a way
to decompose an environment (see Section 6.2.2), among other design consider-
ations. Another important design feature is to include real-world ideas, such as
natural environments, architecture design patterns, and color and texture, as it is
described in [Bowman et al. 04]. The environment-center has artificial cues that
can aid wayfinding, such as maps, compasses, signs, reference objects, artificial
landmarks, audio, and olfactory cues, described further in [Bowman et al. 04]. The
other support strategy is user-centered wayfinding, which aids human-sensory
systems. The cues for user-centered strategies are:

* Field of view: A larger FOV in complex environments becomes more useful.
While it is not conclusive if a smaller FOV will inhibit wayfinding [Bowman
et al. 04], the amount of head turns to search for a target may increase when
less information is available to the user. Roy and colleagues noted that
increased familiarity of the VE may help to adapt when “reduced amount
of navigational information is provided and lead to an increase in the rate
at which spatial knowledge is developed” [Ruddle et al. 98]. Péruch and
colleagues showed that there was little difference between different degrees
of FOVs (40°, 60°, and 80°) [Péruch et al. 97].

» Motion cues: These types of cues provide the ability for users to judge depth
and direction of movement [Bowman et al. 04]. Motion cues are visual,
such as real-motion objects observed with the user’s peripheral vision, as

128

6. 3D Navigation

well as non-visual motion cues. Vestibular® cues, which provide real-motion
information, are important for users in the egocentric point of view. Lack
of these cues may negatively impact the cognitive map [Bowman et al. 04].
Harris and colleagues, based on their finding, suggested to add vestibular
cues (at least 25% of visual cues) [Harris et al. 99]. Lécuyer and colleagues
concluded, based on their user studies, that combining visual and haptic cues
required longer processing time; however, they also found that it did improve
the perception of self-motion and reduced underestimation “of the angles
that the turns made in the visual navigation” [Lécuyer et al. 04]. Finally, it is
important to note that some of the motion cues may be harder to implement
in a 3D desktop system in comparison to an immersive system.

Presence: This is the notion of being there, immersed in the VE. Usoh
and colleagues showed that the awareness of presence increases when the
user associates himself with the virtual body avatar [Usoh et al. 99]. In
their study, they also found that real walking provides a better immersion
feeling. A case for neuro-scientist to take this problem of immersion has
been proposed [Sanchez-Vives and Slater 05]. For additional information,
see [Schilbach et al. 06, Riva et al. 07, Blanke and Metzinger 09].

Multisensory: Providing cues using different types of output can be use-
ful [Bowman et al. 04]. Audio can provide additional spatial understand-
ing about the environment [Davis et al. 99]. For a user study comparing
unimodal visual condition versus audio-visual conditions, see [Frassinetti
et al. 02].

Search strategies: Bowman and colleagues provide excellent points as dif-
ferent techniques to aid the user when searching content [Bowman et al. 04].
One example is to use search patterns like search-and-rescue pilots perform.
For additional information, see [Bowman et al. 99a, Bowman et al. 04].

Additional information for related topics are suggested to the reader, such as

exploration with HMD in limited space [Williams et al. 07], body-based informa-
tion during navigation [Ruddle 13], and moving in cluttered space [Ruddle and
Jones 01], among others [Witmer and Singer 98, Williams et al. 06, Ruddle and
Lessels 06, Ruddle and Lessels 09].

6.3 3D Navigation: User Studies

Since the days of the animated film, “A Computer Animated Hand,” the devel-
opment of the Sensomora Simulator by [Heilig 62, Burdea and Coiffet 03], and

3The vestibular system provides the sensory system, which provides balance and spatial orientation
to most mammals [Lowenstein 74, Wikipedia 15m].

6.3. 3D Navigation: User Studies 129

e N
Side Note 6.1: Navigation Terminology

As stated in the early part of this chapter, navigation is made of two com-
ponents. The engine of navigation, called travel, which allows the user
to move around the virtual environment. The wayfinding is a cognitive
process (aided by different cues) which allows the user to create a men-
tal map. Terminology is important to keep a standard definition across
publications and applications. In the case of navigation, there are times
that the terminology is misused, as happens to all of us at times, creating
confusion for the reader or user of the application. While route finding is
related to wayfinding because users will look for cues and understanding to
determine a route, they are not interchangeable. The same is true for travel.
While navigation includes travel and wayfinding, travel is just the engine
that allows the movement. Having said this, it is true that navigation, in
most cases applies to both components (travel and wayfinding), making
it difficult to break them down. Therefore, if one refers to navigation,
even if both components are clearly active, it is suggested to determine the
primary goal: travel or wayfinding. Darken and Peterson provid additional
information in their recent chapter [Darken and Peterson 15].

the contributions by Ivan Sutherland [Sutherland 63, Sutherland 65], the field of
CG® led practitioners and researchers to look for ways to push the envelope further.
One of these challenges has been to push the state-of-the-art for 3D navigation.

3D navigation (some work overlaps with 3D interactions) has been used in a
variety of domains. Note that not all the 3D navigation studies include 6-DOF. In
some domains, having 4-DOF may be enough, as already described in Section 6.1.1.
For example, [Sultanum et al. 13] studied 3D navigation for geological outcrops
with only 4-DOF.

This section covers different examples of 3D navigation, in particular 3D travel.
Some of the interaction techniques discussed in Chapter 5 can serve as a foundation
for 3D navigation. We described a partial list of relevant literature on the topic
of navigation. The following partial list covers some that have been used for 3D
navigation:

* Medicine.
» Large-scale virtual environments.
» Geographical environments.

* Geological environments.

6See http://design.osu.edu/carlson/history/lessons.html.

http://design.osu.edu/carlson/history/lessons.html

130 6. 3D Navigation

* Astronomy.

* Other types of scientific visualization.
* Dynamic 3D worlds.

* City models.

* Energy management systems.

* Video games.

6.3.1 Search during Navigation

One of the common tasks in 3D navigation is to search for objects. As it is
described in Section 6.1.1, there are two types of search: naive and primed. This
was first studied for large virtual worlds by [Darken and Sibert 96]. The study
looked at wayfinding (see Section 6.2) for search and exploration. They found
that if no visual cues or directional guides are given, users will tend to become
disoriented [Darken and Sibert 96]. Another important finding was that users tend
to follow natural paths (e.g., coast line). This work was followed up by [Bowman
et al. 99b].

[Bowman et al. 99b] described a testbed evaluation for virtual environments.
This included selection, manipulation, and travel experiments. In the travel ex-
periment, which is of interest to this chapter, they performed naive search and
primed search, as described in [Darken and Sibert 96, Bowman et al. 04]. In
this study [Bowman et al. 99b], users were provided with flags, with numbers
1-4. In addition, the target was marked with a painted circle consisting of a 10-
meter radius (large) or a 5S-meter radius (small). For the naive search, the targets
were in numerical order, with a low accuracy (large circle) required. The tar-
gets were not all visible during the naive search. In the primed search, all the
objects were visible and they were not sorted in numerical order. The required
accuracy was changed to a 5-meter radius (small circle). Seven different travel
techniques were used in this between-subjects experiment. For the naive search,
the gaze-directed technique [Bowman et al. 97] was the fastest out of the seven
techniques tested. Right after the gaze-directed technique, pointing [Bowman
et al. 97] and go-go [Poupyrev et al. 96] techniques came second. For the primed
search, gaze-directed and pointing techniques were significantly faster than the
HOMER [Bowman et al. 04] approach. In both cases, the map technique was
found to be the slowest one [Bowman et al. 99b]. At the end of the experiment,
the authors concluded that pointing gave the best results for navigation [Bowman
et al. 99b].

6.3. 3D Navigation: User Studies 131

6.3.2 Additional User Studies for Navigation

3D navigation has benefited from previous work in related areas. The most closely
related areas are 3D interaction and virtual devices. The Sketchpad provided a way
forward for Uls [Sutherland 63]. Also, early studies by Nielson and Olsen [Nielson
and Olsen Jr 87], which provided direct “Manipulation Techniques for 3D Objects,”
and Chen and colleagues, who studied 3D rotations, provided the groundwork for
more recent developments [Chen et al. 88]. Multi-touch interactions and techniques
are described in Chapter 8§ and virtual devices in Chapter 27. This section describes
user studies in reference to 3D navigation.

When working in large-scale environments, with multiple displays, [Ruddle
et al. 99] looked at the effect between head-mounted and desktop displays. Each
participant, a total of 12 subjects, traveled long distances (1.5 km) [Ruddle et al. 99].
Two interesting findings were found in this study. First, participants “developed
a significantly more accurate sense of relative straight-line distance” when using
the HMD [Ruddle et al. 99]. Second, when subjects used the desktop display,
they tended to develop “tunnel vision,” which led to missing targets [Ruddle
et al. 99]. Santos et al. studied the difference between 3D navigation with a
non-stereo, desktop display versus a HMD’ [Sousa Santos et al. 08]. In this
comparison study (42 subjects), the subjects were divided into non-experienced
and experienced gamers, as well as three levels for their stereoscopic usage (none,
moderate, experienced). The experienced gamers group performed differently,
with respect to how many objects were caught in the game when using the desktop
display [Sousa Santos et al. 08]. This indicated that their previous skills helped this
group of subjects to perform the task. This is due to their familiarity with similar
environments. No statistical difference for the groups were found when they used
the HMD. Santos et al. found that users preferred the desktop display [Sousa Santos
et al. 08].

A usability study conducted by [Fu et al. 10] looked at large-scale 3D as-
trophysical simulations. Their navigation approach used different gestures and
touch widgets to allow different actions in a multi-dimensional world, to study
astrophysics. Users found tasks using multi-touch very intuitive and useful for
the specific-domain tested. This study did not include a quantitative analysis, but
did show that users (16 participants) found the use of multi-touch intuitive. The
rotations were performed with one finger, with a movement that was horizontal
for the rotation about the Y axis, vertical for the rotation about the X axis, and
diagonal pan to rotate about an arbitrary axis on the XY-plane. Rotations were also
performed with different gestures, with five (or four) fingers in the same direction.
Translations and scale gestures were also provided.

The WiiMote has been a popular device for 3D navigation. A study using
Google Earth compared two different configurations for the WiiMote [Sousa San-
tos et al. 10]. To move front/back, left/right, the first configuration used the

THMD are stereo.

132 6. 3D Navigation

accelerometer and the second configuration used the IR sensor. The rest of the
movements in Google Earth were shared by both configurations. The study found
that the accelerometer configuration showed a statistically significant improve-
ment, with respect to the other configuration [Sousa Santos et al. 10]. A similar
study used the WiiMote to compare three different techniques for video game
navigation [Williamson et al. 10]. The objective was to navigate while avoid-
ing some objects. The first technique used the accelerometer sensor, the second
technique used the WiiMote for head-tracking using the IR sensor, and the third
technique combined the prior techniques, adding a Kalman filter [Zarchman and
Musoft 09]. Techniques two and three were also modified to provide alternate ver-
sions, which used the Nintendo WiiMote MotionPlus (gyroscope sensor). The third
method (hybrid) was preferred when performing the maneuver and aversion tasks.
When comparing the techniques with or without the MotionPlus, users preferred
the MotionPlus for the evasion task but not for the maneuver tasks [Williamson
et al. 10].

In a comparative study, Lapointe et al. [Lapointe et al. 11] looked at the
interactions of 3D navigation with 4-DOF. The devices compared for this study
were a keyboard, a mouse, a joystick, and a GamePad. Their quantitative study
showed that the mouse significantly outperformed the other devices [Lapointe
et al. 11]. In another comparison study, [Beheshti et al. 12] studied the difference
between a mouse using a desktop display and a multi-touch tabletop.® In their
study, the tabletop (multi-touch) outperformed the desktop (mouse); however, this
difference was not statistically significant [Beheshti et al. 12]. Furthermore, there
was no spatial difference between genders [Beheshti et al. 12]. This result is in
contrast to other studies that have showed a significant difference between genders
in similar environments [Czerwinski et al. 02, Chai and Jacobs 10, Lawton 94, Astur
et al. 98].

In a game study by Kulshereshth and LaViola Jr., they evaluated performance
benefits when using a head-tracking device [Kulshreshth et al. 13]. From a total of
40 subjects, half of them used the head-tracking device to assist them in playing
four games given by the experimenters. The other half did not use the head-
tracking device. The games tested were Arma II, Dirt2, Microsoft Flight, and
Wings of Prey [Kulshreshth et al. 13] using a PC and an Xbox 360 controller.
The subjects were divided into two groups: Casual and experienced gamers. The
casual gamers reported a significant preference for the head-tracking device when
playing Dirt2, providing a more engaging user experience. The experienced
gamers reported a significant preference for the head-tracking device when playing
Microsoft Flight, providing a more engaging user experience. The study also
showed that experienced gamers showed a significant improvement when using
the head-tracking device for Arma II and Wings of Prey compared to a traditional
game controller. Their analysis found that experienced gamers may benefit by

8Meicrosoft Surface, first generation.

6.3. 3D Navigation: User Studies 133

using a head-tracking device in certain scenarios, such as FPS and air combat
games [Kulshreshth et al. 13].

Yu and colleagues conducted an experiment, titled “FI3D: Direct-Touch In-
teraction for the Exploration of 3D scientific Visualization Spaces,” where they
studied 3D navigation using touch [Yu et al. 10]. The technique used in [Yu
et al. 10] allowed users to navigate in 3D. The virtual world was a representation
of scientific data. Users navigated using single-touch gestures or the mouse. The
objective was to test a 7-DOF that included X, Y, Z translations; yaw, pitch, and
roll rotations; and scaling (the 7th degree) to zoom in or out of the screen. Their
approach [Yu et al. 10] limited the touch to one finger interaction in most instances
and provided the use for an additional touch to create specific constraints to aid
the movement. Their study showed that the mouse had a faster time for translation
and rotation, but only the improvement in rotations was statistically significant for
the mouse. The case of the scale (zoom in/out), showed a significant difference be-
tween both input devices, with the mouse having a faster action time [Yu et al. 10].
Their method concentrated on visualization of data, consisting of visualization
spaces where (most) data had pre-determined spatial meaning [Yu et al. 10]. This
required the user to support the mental model of a dataset [Kosara et al. 03].

Some contributions provided interesting techniques for 3D navigation, which
are worth mentioning in this section. For example, in 1997, Hanson and Wernert
developed methods for constrained 3D navigation using 2D controllers [Hanson
and Wernert 97]. Another technique was to use Tangible User Interfaces (TUI),
as shown by [Wu et al. 11].° The NaviRadar, a pedestrian feedback system for
navigation, provided tactile feedback to the users [Riimelin et al. 11]. A very
interesting approach for WIM! is the work by [Coffey et al. 12a]. Their approach
used WIM slices to interact with sections of the world [Coffey et al. 12a]. Real-
world methaphors have also been used. For example, the Segway PT, two-wheel
ride,'! was used as inspiration in [Valkov et al. 10] for 3D traveling. There
have also been techniques to explore cities [Ropinski et al. 05]. A different
approach was to use sketching for 3D navigation. Hagerdorn and Do6llner studied a
sketch-based approach to accomplish navigation tasks [Hagedorn and Déllner 08].
McCrae and colleagues studied a multi-scale 3D navigation approach [McCrae
et al. 09]. Different camera techniques have been used for 3D navigation, such as
the two-handed Through-The-Lens technique [Stoev et al. 01], HoverCam [Khan
et al. 05], controlled camera animation [Santos et al. 11], and Navidget [Hachet
et al. 09]. Navigation for time-scientific data was studied by Wolter et al. [Wolter
et al. 09]. Visual memory for 3D navigation was also explored [Remazeilles
et al. 06]. Many other studies have proposed techniques for 3D navigation tasks
[Russo dos Santos et al. 00, Sommer et al. 99, Bowman et al. 97, Edelmann

9See also [Guéniat et al. 13].

105ee [Bowman et al. 04, Chapter 5]. For additional references about related work about this topic,
see [Coffey et al. 12a].

lSee http://www.segway.com.

http://www.segway.com

134 6. 3D Navigation

et al. 09, Hachet et al. 06, Tan et al. 01, Vallance and Calder 01, Yu et al. 12, Jackson
et al. 12, Boyali and Kavakli 11, Fitzmaurice et al. 08, Chen et al. 88, Nielson and
Olsen Jr 87, Saona-Vazquez et al. 99].

Medicine visualization requires navigation in some cases. There have been
different types of work in this area. In “3D Navigation in Medicine” [Haigron
et al. 96] provided some very interesting pointers for domain-specific navigation.
For example, the FOV needed in endoscopy is different from a generic VE. The
reason is that an endoscopy visualization requires a wide-angle camera to study a
region in detail. Another interesting approach was to use a 2D colon to guide the
navigation inside of a 3D colon by [Meng and Halle 04]. Some of the 3D interaction
in medicine can provide a foundation to develop further travel interaction, such as
the examples described in [Gallo et al. 08, Lundstrom et al. 11].

We have covered different examples of 3D navigation and how some of those
have been used to validate the navigation with subject experiments. We have
also covered in this section that even 3D interaction techniques can serve as
a foundation of 3D navigation systems. We covered different domains, which
included: medicine [Haigron et al. 96, Kosara et al. 03, Meng and Halle 04,
Gallo et al. 08, Lundstrom et al. 11], large-scale virtual environments [Ruddle
et al. 99], geographical and geological environments [Camiciottoli et al. 98, Chen
et al. 08, Sousa Santos et al. 10, Beheshti et al. 12, Sultanum et al. 13, Doulamis
and Yiakoumettis 13], other scientific visualizations [Wolter et al. 09, Fuchs
and Hauser 09, Yu et al. 10, Yu et al. 12, Coffey et al. 12a, Kosara et al. 03],
astronomy [Fu et al. 10], dynamic 3D worlds [Russo dos Santos et al. 00], city
models [Ropinski et al. 05], energy management systems [Naef and Ferranti 11,
Apostolellis et al. 12], video games12 [Williamson et al. 10], TUIs [Wu et al. 11],
and others [Abdsolo and Della 07, Trindade and Raposo 11, Robertson et al. 97,
Darken and Banker 98].

Further Reading

There are several publications about wayfinding, some of them already cited in this
chapter [Darken 96, Darken and Sibert 96, Lawton 94, Chen and Stanney 99, Chen
and Stanney 99, Darken and Peterson 15]. For travel, some additional information
is found in [Bowman et al. 04]. Also, in the first edition of the Handbook of
Virtual Environments, there is a chapter that talks about locomotion interfaces
[Hollerbach 02].

12See games such as Doom, Quake, and Microsoft Flight Simulator.

6.3. 3D Navigation: User Studies 135

Exercises

1. Implement a 3D scene in your favorite game engine (or graphics rendering
library) that allows users to find multiple targets (see Chapter 21 to create
the scene with Unity).

2. Following the previous exercise, implement at least two devices that provide
the engine of navigation (travel). Also, record different 3D characteristics
that are quantifiable (e.g., time to find an object.)

3. Once both previous exercises have been completed, add visual cues to
aid wayfinding for the subjects (see Chapter 3). Perform a pilot-study.
Field provides excellent examples for different types of statistical analyses
[Field 09].

This page intentionally left blank

Descriptive and Predictive
Models

On the other side I landed in a wilderness. I came
to the open gate of mathematics. Sometimes I think
I have covered the whole area, and then I suddenly
discover a new path and experience fresh delights.
—M.C. Escher

7.1 Introduction

Modeling is important in the development of any human-computer interaction.
For the particular topic of the book, it is also quite useful to use existing models
or create new models for input interaction. For example, say you want to model
multi-touch interaction. How can this be achieved? What method to use? Before
creating a new model, it is important to understand the most-used models in HCIL.

A model allows a real problem (physical or non-physical) to be a represen-
tation of a real entity. In simpler words, as described by MacKenzie, a model
is a simplification of reality [MacKenzie 12]. A descriptive model is a “loose
verbal analogy and methaphor” [Pew and Baron 83], which describes a phe-
nomenon [MacKenzie 12]. A predictive model (e.g., bimanual control) is ex-
pressed by “closed-form mathematical equations” [Pew and Baron 83], which
predict a phenomenon [MacKenzie 12] (e.g., Fitts’ law).

Given the topic of the book, the models described in this chapter deal with
input devices interaction and the models that are used for input devices. A few
predictive and descriptive models are described and further reading is provided.

137

138 7. Descriptive and Predictive Models

7.2 Predictive Models

Some important predictive models for input interaction are Fitts’ law, Hick-Hyman
law, linear regression model, keystroke-level model (KLLM). The most important
predictive model in HCI is Fitts’ law and it is very active in the current research
work.

Information theory in the 1940s gave rise to information models of psycho-
logical processes in the 1950s, giving rise to terms like probability, redundancy,
bits noise and channels for experimental psychologists that needed to measure and
model human behavior [MacKenzie 92, MacKenzie and Buxton 92].

7.2.1 Fitts’ law

Fitts’ law is one of the most used works in HCIL. Fitts’ law is given by Equation 7.1.
Gary Olson summarized the law by saying: “The law states that the time it takes
to move to a target is a function of the length of the movement and the size of the
target” [Olson 08]. In other words, the bigger the target and the closer the target,
the faster it is acquired [MacKenzie 92, MacKenzie and Buxton 92]. This has
given rise to many findings like the importance of items along the edges [Walker
and Smelcer 90]. Equation 7.1 describes that the movement time (MT) is equal to
logarithmic result of twice the distance (2A) divided by the width of target (W),
multiplied by the sum of empirical constants (@ + b). Olson provides some very
interesting facts about findings that were guided by Fitts’ law [Olson 08]:

» The edge of the display is infinite size, therefore accessing items on the edges
is always faster. The Mac Operating System (OS) has used their top menu
on the edge for a long time but it wasn’t the case for Microsoft Windows.
However, we can see the evolution of Windows. Walker and Smelcer
said that the “system that maximizes the percentage of menu items with
borders will have a decided advantage over other menu systems” [Walker
and Smelcer 90].

* Pop-up menus make the movement cost to get to the menu zero. To minimize
the movement inside of the pop-up menu, a pie menu or linear menu is ideal.
The most common one is the linear menu that we see by right clicking the
mouse either on Windows or Mac OS X. Walker and Smelcer concluded that
“it may be more efficient to place menus at the top of the window, backed by
an impenetrable border, in multi-tasking” [Walker and Smelcer 90]. For an
optimization of walking-menus and pop-up menus, see [Walker et al. 91].

Selection becomes faster and easier as expanding items are closer, which is
the example of the Mac OS X dock bar, as shown in Figure 7.1. McGuffin
and Balakrishnan found that “when users expect the target to expand, they
can select a single, isolated expanding target faster than a non-expanding
static target” [McGuffin and Balakrishnan 05].

7.2. Predictive Models 139

Figure 7.1: Dock bar (Mac OS X) with magnification.

2A
MT =a+b log, <W> (7.1)

Other than Fitts himself, the expert on Fitts’ work is Scott MacKenzie,! as
he has shown in his body of work, including his Ph.D. dissertation [MacKen-
zie 91], his book, Human-Computer Interaction: An Empirical Research Perspec-
tive [MacKenzie 12], and “Fitts’ law as a Research and Design Tool in Human-
Computer Interaction” [MacKenzie 92], among others [MacKenzie 89, Soukoreff
and MacKenzie 04]. In the past decade, Soukoreff and MacKenzie looked at the
impact of 27 years of research and how to use this law in HCI [Soukoreff and
MacKenzie 04].

Fitts proposed that the human motor system is analogous to a communication
channel. Fitts used the communication channel capacity using Shannon’s theorem
17 [Shannon 63, pp. 100-103], where the information capacity (C in bits/s) “of
a communication channel of bandwidth” (B in 1/s or Hz) multiplied by the
logarithmic result of the signal power (S) divided by the noise power (N) plus
one [MacKenzie 89, MacKenzie 92, MacKenzie 12], as shown in Equation 7.2.

C =B log, (;—H) (7.2)

Fitts’ law was presented in two studies. In the first study, in 1954, users
alternated tap on target of a given width (W) separated by a given amplitude
(A) showing target acquisition [Fitts 54], as shown in Figure 7.2. The idea was
for users to tap each plate as fast as possible, hitting the center part of the plate
(black) [Fitts 54, MacKenzie 92]. The subjects were tested for 2 days using a 1-o0z
stylus and 1-1b stylus. Each subject performed the test 16 times, with four different
width measurements (0.25, 0.50, 1.00, 2.00 inches). Using the width and amplitude,
Fitts calculated the binary index of difficulty? (ID), as shown in Equation 7.3. For
example, for W =0.25 and A = 2, the result is 4. A modified version of the previous
equation was introduced by [MacKenzie 92] to improve the information-theoretic
analogy, as shown in Equation 7.4, which is the recommended index of difficulty
to use [Soukoreff and MacKenzie 04]. To obtain the binary index of performance?
(IP), using the base two logarithmic result of the width (W) divided by twice the
amplitude (A), multiply by %, which is the average movement time [Fitts 54], as

Vhttp://www.yorku.ca/mack/
2 Notice that Fitts refers to ID as I, and IP as I, » in his 1954 publication.

http://www.yorku.ca/mack/

140 7. Descriptive and Predictive Models

shown in Equation 7.5. We can also see that the index of difficulty (ID) divided by
the movement time (MT) equals the binary index performance (/P), as shown in
Equation 7.6. Using the data provided in [Fitts 54], MacKenzie used regression
analysis to find the correlation between MT on ID, yielding r = .9831 (p < 0.001).
In general, the model consistently correlated above 0.9000 [MacKenzie 92]. It is
also important to note that the mean value of the index of performance (IP) was
10.10 bits/s in Fitts’ experiment [Fitts 54], which is claimed to be “the information-
processing rate of the human motor system” [MacKenzie 92]. Note that it is
more commonly called throughput (7P in bits/s). Using regression (MT on ID), a
prediction equation was derived by [MacKenzie 92], as shown in Equation 7.7.

ID = —log, <§;> = log, <2V;/4> (7.3)
ID = log, (21;/4 + 1) (7.4)

IP = —%log2 (Z;) = %log2 (2‘;‘) (7.5)
IP = % (7.6)

MT =12.8494.7ID (7.7

In the experiment conducted by Fitts in 1964, he asked the participants to hit
the center of the left or right plate according to the stimulus light, as shown in
Figure 7.3. Fitts concluded that “processing feedback in serial tasks introduced a
small delay” [Fitts 64]. Using an adjustment of accuracy for the width (W,) after
adjusting the percentage of error, it is possible to calculate the throughput using
the index difficulty with its adjustment (ID,), as shown in Equation 7.8. The width
after adjusting the error rate is calculated by Equation 7.9, which is a 4% error
rate multiplied by the standard deviation (SDy) of the selection coordinates of a
subject [MacKenzie 12, pp. 251-252]. This “captures what a participant actually
did, rather than what he or she was asked to do” [Mukundan 12, p. 252]. The
effective target width (W,) “derives from the distribution of hits” [MacKenzie 92],
as it is expressed by Welford in Fundamentals of Skill [Welford 68, pp. 147-148].
The basic concept for having this correction is because of the noise that is produced,
as explained by [Fitts 64, Shannon 63, Welford 68, MacKenzie 92]. Finally, The
effective index of difficulty adjustment is given by Equation 7.10. The effective
index is recommended but there are arguments against using it, as expressed
by [Zhai et al. 04].

D,
MT

TP =

(7.8)

7.2. Predictive Models 141

Target

Widt}%

Target
Amplitude

Figure 7.2: Fitts serial task. Adapted from [Fitts 54] and [MacKenzie 92].

Stimulus Lights

v N

Oo+0O
/ Targets \

25

Figure 7.3: Fitts discrete task. Adapted from [Fitts 64] and [MacKenzie 92].

W, = 4.133 x SD, (7.9)

A
D, = log, (We+ 1) (7.10)

142 7. Descriptive and Predictive Models

Soukoreff and MacKenzie published “Towards a standard for pointing device
evaluation, perspective on 27 years of Fitts’ law research in HCL,” which describes
recommendations for using Fitts’ law [Soukoreff and MacKenzie 04]. They provide
seven recommendations [Soukoreff and MacKenzie 04]:

1. Researches should use the Shannon formulation of the index of difficulty, as
shown in Equation 7.4.

2. A variety of distances (D) and target widths (W) are needed to have a
representative and wide range of ID values (2 to 8). It is recommended that
each subject is presented between 15 to 25 times. Finally, it is important to
collect movement time (MT).

3. Itis important to collect movement end-point and error rates. This suggests
that no filtering of data should be performed, except for outliers. Typical
outliers includes a subject double-clicking the target by accident.

4. Tt is suggested to use the end-point data collected (see previous item) for ad-
justment. Using the end-point position standard deviation (o), the effective
width (W,) is calculated as W, = 4.1330. Another option is to use the error
rate collected (see previous item) to approximate accuracy as shown in the
Equation 7.11, shown below:

e —

z2(1—Err/2) (711)

W x =206 if Err > 0.0049%
W x 0.5089 otherwise

The index of difficulty can be used with the adjusted width and distance. The
distance (D) can be computed as the effective distance (DE) if movement
end-point data was collected. The index of difficulty is shown below, in
Equations 7.12 and 7.13, depending on if the effective distance is available:

D
ID, = log> <We+l) (7.12)

D,
ID, = log» <W/e+1) (7.13)

5. Use least-square linear regression to find the intercept (a) and the slope
(b) in the Fitts’ formula MT = a+ b x ID,. This helps to find if there is
a relationship between MT and ID,, which is called the goodness of fit.
It is recommended that a positive intercept should be 400 ms or less. A
negative intercept should not exceed —200 ms. Most statistical packages
can perform the test to see if the intercept is statistically different from
zero [Field 09, pp. 198-207].

7.2. Predictive Models 143

6. For movement time prediction, the movement time should use /D and not
ID,, which was used to find the a and b values (see previous item), as shown
in the formula below:

MTpredicted =a+bxID (7.14)

7. It is recommended to use throughput (TP), if the analysis required is to
compare “two more experiment conditions” [Soukoreff and MacKenzie 04].
Use the mean of means to calculate the dependent measurement of TP, as
shown in Equation 7.15, where “y is the number of subjects, and x represents
the numbers of movement conditions” [Soukoreff and MacKenzie 04], as
shown below:

13 (1 & D,
TP = ; (xj_ZIMT) (7.15)

These recommendations just covered the surface of the suggestions made
by [Soukoreff and MacKenzie 04], where they provide further explanation, which
includes the reason behind each of the seven suggestions. Their recommendation
to go forward with the standard (ISO9241-9) [International Organization for Stan-
dardization 00, International Organization for Standardization 07, International
Organization for Standardization 12] is understood by their statement: “One way
or another, meaningful progress in this field with regards to Fitts’ law will be
hampered until, one way or another, we all conform to a standard kind” [Soukoreff
and MacKenzie 04].

There have been some different takes on Fitts’ law and its use ([Zhai et al. 04,
Drewes 10]). In 2013, Hoffman said that MacKenzie’s formulation was invalid
[MacKenzie 89, MacKenzie 92], in a published article in the Journal of Motor
Behavior [Hoffmann 13]. This researcher claimed that MacKenzie’s formulation
[MacKenzie 89, MacKenzie 92] was invalid providing a series of arguments,
such as “the use of effective target width may have (but not always) the effect
of improving regression correlation, and dominates the effects of the additive +1
term” [Hoffmann 13], which is in Shannon’s formulation proposed by MacKenzie
[MacKenzie 89, MacKenzie 92]. In 2013, MacKenzie published a response to
Hoffman, where he debunked the arguments provided by Hoffmann, showing
the problems with the arguments [MacKenzie 13]. Some of the deficiencies of
Hoffman’s arguments [Hoffmann 13] mentioned by MacKenzie [MacKenzie 13]
include: (a) “Human movements are not electronic signals” [MacKenzie 13] as
stated by Hoffman. (b) The argument that 41 term [Shannon 63] is invalid versus
the 4-0.5 term [Welford 68] as valid, has no merit. MacKenzie provides concrete
evidence about the invalid assumptions in [Hoffmann 13], concluding that “the
Shannon formulation is reaffirmed to provide better predictions than the Fitts or

144 7. Descriptive and Predictive Models

Welford formulation” [MacKenzie 13] and the standard in HCI. While there may
be some different takes, MacKenzie’s formulation has prevailed in HCI and it has
demonstrated its use in many user studies.

An interesting discussion is Fitts’ law (that uses distance and width) versus
Woodworth (that uses form and scale) [Woodworth 99]. Woodworth’s work is
beyond the scope of this book (see [Meyer et al. 88]) but a comparison is discussed
by [Guiard 09], where he puts into perspective the differences of both, with
certain favoritism (based on his evidence) that the F' x S approach seems more
appropriate than the D x W approach. Both of them have certain deficiencies
as perceived by [Guiard 09]. Following the work by [Guiard 09] and previous
Fitts’ law literature (already described in this section), Wobbrock and colleagues
looked at effects for F' x S versus D x W (or A x W, where A is distance and W is
size) [Wobbrock et al. 11] and concluded that Fitts’ dimensionality (1D vs. 2D)
is largely invariant. It also concluded that bivariate end-point deviation (SDy)
models 2D data better, while univariate (SD;) can be used in both but “ignores
deviation in the orthogonal task dimension” [Wobbrock et al. 11]. Wobbrock and
colleagues provide a few formulas, which are then also recommended in their
guidelines

i The univariate standard deviation is shown in Equation 7.16, as described by
[MacKenzie 92, MacKenzie and Isokoski 08, Soukoreff and MacKenzie 04],
which states that “SD, is the standard deviation of end-point coordinates
along the axis of motion” [Wobbrock et al. 11].

SD; (7.16)

it The bivariate standard deviation for two dimensions, shown in Equation
7.17.

> (¢<x,-—x>2+<yi—y>2)2

i=1
N—1

SD,, = (7.17)

iii An example from the bivariate standard deviation shown in Equation 7.17,
increased to 3D, as shown in Equation 7.18.

2
gl (\/(xi —%’+ (i =)+ (@ —Z)2>
SDy, .=\ = N

(7.18)

7.2. Predictive Models 145

iv Throughput (bits per seconds) designated as TP,,, [Wobbrock et al. 11,
Soukoreft and MacKenzie 04], as described in Equation 7.19. This formula
provides the entire throughput over all the subjects [Wobbrock et al. 11].

1 & /D,
TPug =Y <MT,.

) , where N = |A| x |W| (7.19)
i=1

Based on their finding, Wobbrock and colleagues provide the following recom-
mendations [Wobbrock et al. 11]:

1. Either use F x S design by “choosing one level of [size] A” [Wobbrock
et al. 11] while modifying width W or A x W design isolating “a middle
[size] A while retaining all [width] W values” [Wobbrock et al. 11].

2. In the case of 2D pointing, calculate the bivariate deviation SD, ,. However,
if there is a significant difference in the univariate deviation SDy, it must be
reported as well.

3. When comparing a one-dimensional (1D) task with a 2D task, use TPy,
using univariate end-point deviation SD, to make sure “throughputs across
dimensionalities agree best” [Wobbrock et al. 11].

4. “Comparisons should generally not be drawn across throughput calculations
approaches” [Wobbrock et al. 11].

5. Tt is recommended to use ring-of-circles found in the ISO 9241-9 for 2D
pointing, as shown in Figure 7.4.

Fitts’ law, as already stated, is the most widely used model in HCI. Some of
these include: Mackenzie and Buxton that extended Fitts’ law to 2D [MacKenzie
and Buxton 92], Zhai and colleagues looked at 3D target acquisition [Zhai et al. 94],
Klochek and MacKenzie looked at the difference performance of a mouse and a
GamePad in 3D VE [Klochek and MacKenzie 06], and haptics and 3D stereoscopic
[Chun et al. 04], among others [Kabbash et al. 93, Campbell et al. 08]. Recent
work includes FittsTilt by MacKenzie and Teather that looked at the application
of Fitts’ law with tilt-based devices [MacKenzie and Teather 12], the modeling of
finger touch using Fitts’ law [Bi et al. 13], 3D selection by pointing [Teather and
Stuerzlinger 14], and Paul Lubos who showed “that the main factor causing errors
in 3D selection is the visual perception and not, as presumed, the motor movement
direction during selections” [Lubos 14], among others [Fares et al. 13, Teather and
MacKenzie 14, Zeagler et al. 14].

MacKenzie noted in his book [MacKenzie 12] that the success of Fitts’ law is
in great part because of the early endorsement in the seminal book The Psychology
of Human-Computer Interaction [Card et al. 83].

146 7. Descriptive and Predictive Models

-~ ®

O O

O O
O

Figure 7.4: Ring-of-circles. Adapted from ISO 9241-9.

7.2.2 Choice Reaction Time: Hick—Hyman Law

The Hick-Hyman law, developed by Hick in 1952 [Hick 52] and Hyman in 1953
[Hyman 53], is another important model in HCI but not as widely used as Fitts’
law. Hick-Hyman law can be described as the average reaction time given a set
of choices with equal probability. In other words, it can be said that this law
shows the time it takes a user to make a decision based on the set of choices. The
Hick-Hyman law is a prediction model, where each stimuli n; has a one-to-one
relationship with a response 7;, as described® by Equation 7.20, where a and b are
empirically determined constants [MacKenzie 12]. Card and colleagues found that
reasonably constant values where a ~ 200 ms and b ~ 150 [Card et al. 83, p. 76].
Note that RT has units of bits, similar to Fitts’ law [MacKenzie 12]. Figure 7.5
illustrates an example where this law is applicable, where each key is connected to
a light bulb and the user can turn on/off each of those light bulbs.

3The model is sometimes described as RT = a + b log, (1), or without an intercept [MacKenzie 12,
Card et al. 83, Welford 68].

7.2. Predictive Models 147

Eﬂﬂw%m

Figure 7.5: Reaction time. Adapted from [MacKenzie 12].

RT=a+blog,(n+1) (7.20)

Choice reaction time provides a way to calculate the information H when
there are some choices more likely to happen than others. The information (H) is
calculated as shown by Equation 7.21. An example provided by [MacKenzie 12]
is an English keyboard system with 26 letters. The probability of typing a (p =
0.0810) is more likely to happen than the letter q (¢ = 0.0010) in the English
language [MacKenzie 12]. Silfverberg and colleagues study text prediction on
mobile phones using the British national Corpus*> [Silfverberg et al. 00]. Recently,
Liu and Riihé studied text prediction speed for Chinese characters [Liu and
Riihd 10]. The Hick-Hyman law has not gained momentum as Fitts’ law has
because the model has limited use [MacKenzie 12].

“4Ftp site: ftp:/ftp.itri.bton.ac.uk/
SWeb site:http://www.nltg.brighton.ac.uk/nltg/

http://www.nltg.brighton.ac.uk/nltg/
ftp://ftp.itri.bton.ac.uk/

148 7. Descriptive and Predictive Models

1
H=Y pilog, (p_+1> (7.21)
i 1

7.2.3 Keystroke-Level Model (KLM)

Card and colleagues designed Keystroke-Level Model (KLM), a predictive model
that analyzes human performance [Card et al. 80]. This was later described
in their seminal book The Psychology of Human-Computer Interaction [Card
et al. 83, ch. 8]. This model predicts error-free expert behavior completion times
using task or series of sub-tasks, method used, command language of the system,
motor skill of the user, and responsive time of the system [MacKenzie 12]. KLM
only predicts the time to execute a given task, not the time that it takes to acquire
it [Card et al. 83, p. 260]. While the KLM cannot predict the method (it just
predicts the time), another model by Card et al. is able to predict the method,
which is called Goals, Operators, Methods, and Selection (GOMS) [Card et al. 83].
This book will not cover GOMS but for further information about this model,
see [Card et al. 83, Chapter 5] or [Dix et al. 04, Chapter 12].

KLM provides an analysis tool for “the time it takes a user to perform a
task with a given method on an interactive computer system” [Card et al. 80].
However, there are many types of performance metrics that are important when
looking at performance, which includes time, errors, learning, functionality, recall,
concentration, and acceptability [Card et al. 80] (see [Nielsen 94]). Therefore,
KLM provides one of the dimensions of human—computer performance. There is
also no single type of task, as it depends on the interactive system. Finally, it is
also important to know that there are different types of users, with different skills
and expertise [Card et al. 80]:

» Knowledge about different types of tasks.

* Knowledge about other systems.

Motor skills for different input devices.
* Technical abilities.

» Experience with the system.

A task in its most basic form is composed of a time to acquire plus the time to
execute, as shown in Equation 7.22. However, KLM only predicts the execution
time unit. The acquisition time “depends on the characteristics of the larger
task situation in which it occurs” [Card et al. 83, p. 261]. The execution time
depends on the system command language but it “rarely takes over 20 sec” [Card
et al. 83, p. 261]. Two assumptions are made in this model [Card et al. 83]: (1) The

7.2. Predictive Models

Table 7.1: KLLM Operators and Values [Card et al. 80].

149

Operator

Description

Time (sec)

K

PRESS A KEY OR BUTTON

Pressing a modifier key (e.g.,) counts as
a separate operation. Times varies with
typing skills:

Best typist (135 wpm)

Good typist (90 wpm)

Average skilled typist (55 wpm)
Average non-secretary typist (40 wpm)
Typing random letters

Typing complex letters

Worst typist (unfamiliar with keyboard)

0.08
0.12
0.20
0.28
0.50
0.75
1.20

POINT WITH A MOUSE

Empirical value based on Fitts’ law. Range
from 0.8 to 1.5 seconds. Operators do not
include the button click at the end of point-
ing operation.

H

HOME HAND(S) ON KEYBOARD OR
OTHER DEVICE

0.40

D(np.Ip)

DRAW rnp STRAIGHT-LINE SEG-
MENTS OF TOTAL LENGTH Ip.
Drawing with the mouse constrained to a
grid.

0.9np +0.161p

MENTALLY PREPARE

1.35

R(t)

RESPONSE BY SYSTEM

Different commands require different re-
sponse times. Counted only if the user
must wait.

execution time is the same regardless of how the task is acquired. (2) Acquisition
time and execution time are independent.

Tunit-task = Tacquire + Toxecute

KLM: Operators and Encoding Methods

(7.

22)

The operators are part of KLM. The operators provided by Card and colleagues
were designed primarily for text-editing and document management [Card et al. 80].
Later, we will look at some modern ways to use KLM proposed by [MacKenzie 12],
in Section 7.2.3. The operators are shown in Table 7.1. This includes motor control

150 7. Descriptive and Predictive Models

operators: keystroking (K), pointing (P), homing (H), and drawing (D), one mental
(M) operator, and a system response operator (R). The operators added together
yield the total task execution time (Tpxecure), @s shown in Equation 7.23, for example,
Tx = nk X tg, which is the number of ng keystrokes multiplied by the time #.
The pointing (P) operator can be calculated using Fitts’ law. The homing® (H)
operator is the time that it takes to go from one device to another device. With the
data from their own experiments, using GOMS in [Card et al. 83, Ch. 5] and [Card
et al. 83, Ch. 7], they determined the constant for ¢ty was 0.4 seconds for the
movement that it takes to go from the keyboard to the mouse. The drawing (D)
operator represents the user drawing a set of straight-line segments with a mouse
device. For this, the drawing (D) operator takes two arguments: “the number of
segments (np and the total length of all segments (Ip” [Card et al. 83, p. 263].
The mental operator (M) describes the time it takes the user to prepare to perform
a task. This is a simplification of the mental process and the suggested time of
1.35 seconds is based on the experiments found in other experimental data they
had [Card et al. 80, Card et al. 83]. Finally, the response time R(¢) operator is the
time that the user waits for the system to perform the operator.

Toxecute = T + Tp + T+ T+ T+ T, (7.23)

Methods represent a sequence of operators. To illustrate how to encode a
method with its operators, take for example a command LIST in a computer system.
To access the LIST command, the user needs to type it and hit the RETURN key.
This method is encoded as MK[L] K[I] K[S] K[T] K[RETURN], which can be
abbreviated as M SK[LISTRETURN)] [Card et al. 83]. Another example that
demonstrates how to encode a method is shown in Table 7.2 [Card et al. 83]. In
this example, to accomplish Task 77, the user has to reach for the mouse, select a
word, switch both hands to keyboard (homing), press the F1 key to replace the text,
modify “WORLD” into “World” and save the changes with the F2 key. If we look
at the execution time of this task, then we can aggregate the keystrokes to produce:
Toxecure = 2ty + 8tx + 2ty +tp. In other words, the user had to switch devices
twice (2ty), think twice (mental operator) about the replace and saving action
(2t31), point once (tp), and a total of 8 keystrokes 8tg, which included the selection
of the word. Note that in this model, the keyboard is used for the word selection, a
task nowadays delegated to the mouse in most cases. One may decide to encode
the method only with the physical actions or include the mental operators. Card
and colleagues provide a heuristic in [Card et al. 83, p. 265], with five rules:

* Use Rule 0 to encode the candidate mental operator (M).

Rule 0: Insert each mental operator (M) in front of each keyboard operator
(K), if they are not part of a proper string, such as text or numbers.
Place M before P for select commands only.

OReferred to in [Card et al. 83] as “home.”

7.2. Predictive Models 151

Table 7.2: Task Ty [Card et al. 83].

Grab mouse: H[mouse|
Point word: Plword|
Select word: K[WORLD)
Home on keyboard (switch): H{keyboard)
Replace word: K[F1]

Type new word: S5K[World|
Save: K[F2]

Rule 1: Delete the mental operator (M) if the operation is anticipated. In
other words, if M is between two physical operators where the
operation is anticipated.

Rule 2: Delete all mental operators (M) except for the first one, if a string
is part of a cognitive unit, such as the name of a command.

Rule 3: If the keyboard operator (K) is the command terminator (e.g., EN-
TER key), delete the mental operator (M) in front of K.

Rule 4: If the keyboard operator terminates a constant string, such as a
command name, delete the M in front of K. Otherwise, if the
keyboard operator terminates a variable string, keep the mental
operator.

KLM: Modern Use

The seminal paper by Card and colleagues was published more than 35 years
ago [Card et al. 80]. It is quite understandable that the operators needed at
that time were limited compared the type of operators needed today because of
user interfaces available now. Therefore, newer research has adapted operators
to fit newer devices. This makes KLM still a valid model today as it was 35
years ago. For example, in 2006, Hinckley and colleagues demonstrated the
use of a “springboard” interface for the use of tablet computers using the KLM
model [Hinckley et al. 06]. MacKenzie provided some updated equations for
the pointing operator using Fitts’ law [MacKenzie 12], as shown in Equation
7.24 (where a = 0.159 and b = 0.204). MacKenzie provided very insightful
information about a modern approach to KLM and used it with predictive text in
his book [MacKenzie and Teather 12] (among articles co-authored by MacKenzie).

A
lP:a+b><10g2 (W+]> (724)

152 7. Descriptive and Predictive Models

7.2.4 Other Models

There are additional models in HCI. Some of the models are described below
[Hinckley and Widgor 12, MacKenzie 12]:

* Linear regression: This model describes the relationship between an inde-
pendent predictor variable (x), a dependent human-response variable (y),
where the slope of the relationship is m, and the y intercept is b [MacKen-
zie 12], as shown in Equation 7.25. The objective is to “find the coefficients
m and b” [MacKenzie and Teather 12], which minimizes “the squared dis-
tances (least squares) of the points from the line ” [MacKenzie 12]. This
process is called linear regression. For additional information, see [MacKen-
zie 12, Field 09, Wilcox 11].

y=mx+b (7.25)

* Steering law: Accot and Zhai proposed this law that describes the movement
time for a cursor to move in a narrow tunnel [Accot and Zhai 97, Hinckley
and Widgor 12]. One example where this law can be applied is a pull-
down menu for navigation. The general steering law is given by Equation
7.26, where v(s) is the tangential velocity, p is the radius of curvature, and
W (s) is the width of the path. Given that this law is used for GUIs, the
authors [Accot and Zhai 97] provided a concrete example. Figure 7.6 shows
the menu with a width (w) and a height (h), where the user starts navigating
at top (MENU) and moves to an menu option (option n) at which point the
user scrolls to the right to the next menu. Using their experiment results,
they derived that the time it takes (7;,) to select the n'" sub-menu is given
by the vertical part of the equation: a + b%, plus the horizontal part of the
equation: a+ b¥, which yields Equation 7.27. Finally, if the user navigation
is a straight line in a pull-down menu, it can be expressed as a “linear
function of A and W” [Hinckley 08], as shown in Equation 7.28. Additional
reading about minimum-jerk law, which describes “dynamics of motions
that lack a continuous accuracy constraint” [Hinckley and Widgor 12] is
found in [Viviani and Flash 95], among other related publications [Viviani
and Terzuolo 82, Viviani and Flash 95, Lank and Saund 05].

v(s) =kp(s)W(s) (7.26)

h
= 2a+b (g +x) where x = % (7.27)

h
T, = a—i—bn——l—a—l—b
w

7.2. Predictive Models 153

ME\\IU

Optidn 1

Optidn 2

Optiolﬁlf \
o\

Figure 7.6: Pull down menu. Steering law. Adapted from [Accot and Zhai 97].

A
MT = bx — 7.28
a+ W (7.28)

* Skill acquisition (power law): [Newell and Rosenbloom 80]. This law
dates back to the 1920s, as far as Newell was able to find [Newell 94].
The automation of skills procedural memory is usually given in the form
of T = aP” [Hinckley and Widgor 12], where T is the time to perform a
task and P is the amount of practice, with observed data of factor a and
exponent b. The law describes the non-linear relationship between skill
and practice. MacKenzie provides the equation using y = b x x%, where x
is the practice-independent variable (regressor) and y is the performance-
dependent variable [MacKenzie 12]. MacKenzie has used the power law for
mobile input text [MacKenzie et al. 01].

— If we are looking for the time 7}, that it takes to complete the task
(“time per task” [MacKenzie 12]) then the equation can be expressed
as shown in Equation 7.29, where 7] is the time for the first trial, n is
the trial number, and a is a negative constant (given that acquisition
time decreases with practice) [MacKenzie 12].

T, =T xn" (7.29)

154 7. Descriptive and Predictive Models

— If we are looking for the speed, which describes “the task per unit
time” [MacKenzie 12], then the equation can be reformulated to S,
as the speed of the n'" trial, S| as the speed of the first trial, n as the
trial number, and a is a constant between 0 and 1 (which reflects that
with longer practice, the learning return decreases) [MacKenzie 12],
as shown in Equation 7.30.

Sy =81 xn® (7.30)

— A final note about the two previous equations is that the constant a is a
“constant setting the shape of the curve” [MacKenzie 12].

7.3 Descriptive Models

This section covers descriptive models. In many publications words like “design
space, framework, taxonomy, and classification” [MacKenzie 12] are used. As
noted in the beginning of this chapter, we are concerned with models that can be
used for input devices. A small subset of the models in HCI are covered. The
reader is referred to [MacKenzie 12, Dix et al. 04, Jacko 12] among others.

7.3.1 Bi-Manual Interaction

Humans have used both hands when needed to perform some specific task [MacKen-
zie 12]. While typing is possible with one hand, both hands seems to be the most
effective way to type for most users, when using a PC keyboard. For example,
when using a hammer a user may need to hold the nail with the non-dominant
hand, while hitting the nail with a hammer, in the dominant hand. While both
hands are very useful, it is also important to mention that users prefer to do some
tasks only with one hand, as it is with multi-touch gestures (see Chapter 8) as
opposed to performing a two-hand gesture. This topic is expanded in Chapter 8
(see Section 8.3.6).

Psychology researchers studied bi-manual behavior years before HCI re-
searchers. For example, in 1979, Kelso et al. studied the coordination of two-
handed movements [Kelso et al. 79]. In their work, they found that while the
kinematic movements of the hands are different, the movements of both hands
are synchronized for certain tasks. In their own words: “The brain produces
simultaneity of action as the optimal solution for the two-handed task by or-
ganizing functional groupings of muscles,” which act as a single-unit [Kelso
et al. 79]. Another example of psychology that deals with two hands is the work
by Wing [Wing 82]. He studied the timing and coordination of repetitive tasks
using both hands. While he used only four subjects, the study led to the con-
clusion that there may be a difference between synchronous movements versus

7.3. Descriptive Models 155

asynchronous movements [Wing 82]. The users did report that synchronous move-
ments in bi-manual tasks were easier [Wing 82]. In general, studies have shown
that most tasks are asymmetric [MacKenzie 12]. Studies have also shown that
while hands work together, they have different roles to “perform different type of
tasks” [MacKenzie 12].

Later, in 1987, Guiard proposed a model for bi-manual action [Guiard 87].
His model makes two assumptions: First, the hand represents a motor (people
having two motors), which serve to create a motion. Second, the motors cooperate
with each other, forming a kinematic chain; one hand articulates the movement
of the other hand. Guiard’s model describes the “inter-manual division of labor”
[Guiard 87]. Guiard’s model is the basis for much of the HCI research work about
bi-manual interaction.

In 1986, Buxton and Myers published a study for bi-manual input [Buxton
and Myers 86]. They found that users benefited by using both-hands, because of
the efficiency of hand motion in bi-manual actions [Buxton and Myers 86]. Later,
in 1993, Kabbash, MacKenzie, and Buxton [Kabbash et al. 93] studied the use
of preferred and non-preferred hands. They found that the non-preferred hand
performs better in tasks that do not require action (e.g., scrolling). The preferred
hand was found to be better for fine movements. This meant that each hand has “its
own strength and weakness” [Kabbash et al. 93]. Figure 7.7 shows an example of
a bi-manual task and the difference between both hands. The following describes
the roles and actions for each hand [MacKenzie 12, Kabbash et al. 93, Guiard 87]
(adapted from table in [MacKenzie 12, Chapter 7]):

* Non-preferred hand:
— Leads the preferred hand.

— Provides a spatial frame of reference for the preferred hand.

— Achieves non-fine movements.
¢ Preferred hand:

— Follows the other hand.
— Utilizes a frame of reference set by the non-preferred hand.

— Achieves fine movements.

Later, in 1994, Kabbash, Buxton, and Selen published “Two-Handed Input
in a Compound Task” [Kabbash et al. 94]. This is a significant contribution, as
it is the first publication to adapt the bi-manual model by Guiard [Guiard 87].
The experiment had four modes when using the computer: one uni-manual, one
bi-manual, with each hand having independent tasks, and two bi-manual, requiring
asymmetric dependency. The study found that one of two bi-manual asymmetric
modes performed better (as expected by them) than the other methods. This

156 7. Descriptive and Predictive Models

Figure 7.7: Bi-manual interaction [MacKenzie 12]. Drawing courtesy of Patty
Melo.

method is called the toolglass technique, previously published by Bier et al. [Bier
et al. 93], which provided the use of additional widgets for the user’s interactions.
The reader should look at [Leganchuk et al. 98] to read more about the benefits of
two-handed input.

The bi-manual model has been used for multi-touch devices, such as [Benko
et al. 06, Yee 04, Moscovich and Hughes 08b]. Benko et al. showed that the dual
finger stretch technique was found to provide a simple and powerful interaction
[Benko et al. 06]. Moscovich and Hughes found that indirect mapping of multi-
touch input was compatible (one hand versus two hands) in most cases [Moscovich
and Hughes 08b]. They also found that “two hands perform better than one at
tasks that require separate control of two points” [Moscovich and Hughes 08b].
Mackenzie provided some very interesting notes about the fact that scrolling is
well suited for the right hand [MacKenzie 12]. However, the early introduction
of Microsoft’s IntelliMouse provide too hard for people to abandon. The reader
is invited to see a very interesting personal note in MacKenzie’s book, which
describes his trip to Microsoft in 1998 with an idea for left-handed buttons to
perform difference actions [MacKenzie 12]. In Chapter 8, we cover bi-manual
input for pen and multi-touch.

7.3.2 Three-State Model for Graphical Input

Bill Buxton developed the three-state model [Buxton 90]. The elegance of this
model is at par with the great models and law that we have in HCI. His motivation
at the time is best expressed with a small fragment of his paper that said: “All input
devices are not created equal in their capabilities, nor input techniques” [Buxton 90,
p- 1]. With this said, he showed that it was possible to express certain types of

7.3. Descriptive Models 157

Raise Mouse Button Up

Out Of Range Tracking Dragging

Figure 7.8: Three state model. Adapted from [Buxton 90].

input devices with three states, where some states may have multiples of them. The
three states mentioned in [Buxton 90] as shown in Figure 7.8 are the following:

State 0: Out of range. For example, picking the mouse up and placing it back
down in the middle of the mouse pad.

State 1: Tracking. For example, the tracking of the mouse cursor as it moves on a
display.

State 2: Dragging. For example, moving an object or set of objects on the display
with the mouse, possibly by having one of the mouse buttons pressed.

It is possible to have multiple states of the same type. For example, if it is
desired to move a set of files from one folder to another, the user may press the left
button while dragging the mouse, representing one of the multiple State 2. The
other option maybe to duplicate the items with the right button while dragging
the objects into another folder, making this another State 2, as shown in 7.9. Bill
Buxton provided additional information about the type of states that a device may
use [Buxton 90]. In addition, Buxton described the type of operations (like drag)
with their allowable states. For example, the mouse drag operation uses State 1
and State 2; in contrast, writing with a digital pen uses the three states [Buxton 90].
Bill Buxton also has additional information in his manuscript’ to describe this
model and many additional topics that he has worked on over the years [Buxton 11].
As expressed in Chapter 27, the three-state model has proved to be very useful
with some instances where it has fallen short [Hinckley et al. 10a].

7Online only: http://www.billbuxton.com/inputManuscript.html

http://www.billbuxton.com/inputManuscript.html

158 7. Descriptive and Predictive Models

Side Note 7.1: About Paul M. Fitts

Little is known about Paul M. Fitts. He was born in 1912 and died at
an early age (1965). We were able to dig some information by asking
around different organizations where he studied or worked as well as some
sites [Staal 14, Wikipedia 15g], including an image provided by the US
Air Force (see Figure 7.10). He obtained his doctoral degree from the
University of Rochester (1938). He was a psychologist (lieutenant colonel)
in the US Air Force from 1941 until 1946. During his time in the US Air
Force, Fitts was given the post of psychology branch director of “Wright
Field’s Aeromedical Laboratory and was charged with coordinating the
study of engineering psychology” [Staal 14] in 1954. Paul M. Fitts may
have been one of the most important contributors to HCI. Other interests
included pilot attention (early work on eye-tracking) [Staal 14]. He was the
president of division 21 of the American Psychological Association (1957-
1958) and the president of the Human Factors and Ergonomics Society
(1962-1963).

With the help of the United States Air Force History division, we were
able to find additional information about Paul M. Fitts. He was a high
school science teacher during 1934-1935 and an assistant professor at the
University of Tennessee 1938-1941. Before entering the US Air Force, he
worked one year as a test construction analyst. After his military service,
he worked at the AeroMedical Laboratory between 1946-1949. Right
after that, between 1949-1958, he went back to academia as a professor
of psychology and Director of the Aviation Psychology Laboratory, Ohio
State University. He was the major advisor for 21 Ph.D students. In 1958,
he moved to the University of Michigan, as a professor of psychology. This
was his last full-time position before his death. During the early 1960s, he
received two awards: Exceptional Service Award (US Air Force) in 1960
and the Franklin V. Taylor award (Society of Engineering Psychologist)
in 1962. He also consulted for many external companies between 1946
and 1963, including Boeing Aircraft Company, IBM, Lockheed, Office of
Naval Research, General Electric, and General Motors, among others. He
co-authored at least 45 journal articles and books and 36 government and
other reports.

Continues on next page

7.3. Descriptive Models 159

Side Note 7.2: About Paul M. Fitts Part I (Continued)

He died at an early age but left us with his work [Fitts 54, Fitts 64, Fitts
and Radford 66]. Posthumously, in March 1979, a request came to rename
the BioTechnology Laboratory in his name: Paul M. Fitts Biotechnology
Laboratory, which was approved on August 13, 1982. The news made the
press in The Gazette Midweek, April 17, 1985 [Hum 85]. At the time of his
death, he was working on the Manned Orbiting Laboratory. The documents
provided by our sources will be made available in our book site, including
new information we gather after the book is finished. We believe that so
little is known about Fitts yet we have used his law in HCI for so long, that
it is only fair to know more about the person behind the law.

Figure 7.9: Three-state model with multiple states. Adapted from [Buxton 90].

160 7. Descriptive and Predictive Models

Figure 7.10: Paul M. Fitts (Courtesy of US Air Force).

Further Reading

A recently published article by MacKenzie talks more about the Shannon index of
difficulty [MacKenzie 13]. Additional information about models are found in [Dix
et al. 04, MacKenzie 12]. Additional information about Paul M. Fitts, including
newly found documents are available on our site.

Exercises

1. Implement the ring of circles using Figure 7.4 as an example. Use two
different devices to conduct a small pilot study. Field provides excellent
examples for different types of statistical analyses [Field 09].

2. Implement a similar Dock Bar, as shown in Figure 7.1. A an interesting pilot
study would be to compare the magnified icon bar versus a non-magnified

one.

Multi-Touch

Everything, including touch, is best for something and
worst for something else.
—Bill Buxton

8.1 Introduction

With the release of the Apple iPhone in 2007, a new mark in multi-touch was set.
This phone alone may have marked the beginning of multi-touch “everywhere”
— pervasive multi-touch in our daily lives. However, multi-touch has a long and
rich history of development that is important to mention. It is also important to
mention current trends in multi-touch as well as the technology behind some of
the multi-touch hardware.

Multi-touch displays come in many flavors. The most representative type of
multi-touch has been the smartphone, with the introduction of the Apple iPhone.
Other types seen in daily use are tablets, such as the Apple iPad. The introduction
of Microsoft Windows 7 and Windows 8 opened a possibility to use multi-touch
displays with a desktop PC. For public spaces, vertical displays can be a solution
for multi-user interaction. Finally, another modality is to have tabletop displays
(horizontal) that will act just as a desk (e.g., Microsoft Surface). Multi-touch has
even been extended to work with stereo vision [Hachet et al. 11].

To take into perspective the history of multi-touch, Table 8.1 provides a look at
the milestones in multi-touch technologies1 [Microsoft 14e]. Additional entries
can be found in Bill Buxton’s “Multi-Touch Systems that I Have Known and
Loved” [Microsoft 14e] and Geoff Walker “Touch Sensing” [Walker 14].

IThe table is built in its majority using the history notes from Bill Buxton (http://www.billbuxton.
com/multitouchOverview.html) and some entries from [Walker 14].

161

http://www.billbuxton.com/multitouchOverview.html
http://www.billbuxton.com/multitouchOverview.html

162

8. Multi-Touch

Table 8.1: History of Multi-Touch. Adapted from [Microsoft 14e].

Year

Name

Description

1960

1965

1972

1978

1979

1981

1982

1983

1983

1983

1984

Single Touch

Royal Radar

PLATO IV Touch

Screen Terminal

Vector Touch

Camera-based

Tactile Array Sensor
for Robots
Flexible Machine In-

terface

Soft Machines

Video Place - Video
Desk

Infrared Touch

Multi-Touch Screen

Single Touch (not pressure-sensitive), developed at
IBM, the University of Illinois, and Ottawa, Canada.
The development occurred in the second part of the
1960s.

The Royal Radar Establishment in United Kingdom
(E.A Johnson) published applications for a transpar-
ent touch screen using multi-capacitance (projected
capacitive) on a CRT monitor for air-traffic control.
The invention of flat-panel plasma display, which in-
cluded a 16x16 single touch (not pressure-sensitive)
touch screen. This machine included real-time
random-access audio playback and many other fea-
tures. The touch panel worked by using beams of
infrared light in horizontal and vertical directions.
When the infrared light was interrupted at a point,
it triggered the touch [Ebeling et al. 73].

One-Point Touch Input of Vector Information for
Computer Displays [Herot and Weinzapfel 78]. It
included the ability to detect 2D position of touch, 3D
force, and torque.

Sperry Rand developed a touch display using a
camera-based optical system.

Multi-touch sensor for the use of robotics to enable
different attributes, such as shape and orientation.
This consisted of an array of 8x8 sensors in a 4-inch-
square pad [Wolfeld 81].

The first multi-touch system developed by Nimish
Mehta at the University of Toronto. The system con-
sisted of a frosted-glass panel, producing black spots
in the back of the panel. This allowed simple image
processing, marking white spots as non-touch and
black spots as touch.

Soft Machines: A Philosophy of User-Computer In-
terface Design by Nakatani et al. provides a full dis-
cussion about the properties of touch screen. The
attributes discussed outline certain contexts and ap-
plications where they can be used [Nakatani and
Rohrlich 83].

A multi-touch vision-based system [Krueger et al. 85],
allowing the tracking of hands and multiple fingers.
The use of many hand gestures currently ubiquitous
today, was introduced by Video Place. These included
pinch, scale, and translation.

Hewlett-Packard used the infrared touch in one of its
products, as shown in Figure 8.1

Multi-touch screen using capacitive array of touch
sensors overlaid on a CRT. It had excellent response.
This machine was developed by Bob Boie and pre-
sented at SIGCHI in 1985.

Continued on next page

8.1. Introduction

163

Table 8.1 — Continued from previous page

Year

Name

Description

1984

Mid-1980s

1985

1985

1985

1986

1991

1991

1992

1992

1995

mid-1990s

Window KeyPad

MicroTouch
tems
Zenith

Sys-

Multi-Touch Tablet

Sensor Frame

Bi-Manual Input

Bidirectional Dis-

plays

Digital Desk Calcu-
lator

Simon

Wacom Tablet

Graspable Comput-
ing

Dynapro Thin Films

Advertisement of Projected Capacitive by Ronald Bin-
stead. He provides a history and a series of patents,
which were later acquired by 3M [Binstead 07]. See
Figure 8.2.

MicroTouch (later acquired by 3M) introduced their
first commercial surface-capacitive touch system.
Robert Adler, who invented the TV remote control
“clicker” in 1956, also invented a surface acoustic
wave.

Lee, Buxton, and Smith developed a multi-touch
tablet with the capability of sensing not only location
but degree of touch for each finger. The technology
used was capacitive [Lee et al. 85]. It is important
to note that the development of this tablet started in
1984, when the Apple Macintosh was released.

Paul McAvinney at Carnegie-Mellon University. This
multi-touch tablet, which read three fingers with good
accuracy (errors could occur if there were shadows),
had optical sensors in the corners of the frame. The
sensors allowed the system to detect the fingers when
pressed. In a later version, the system could detect
the angle of the finger when coming in contact with
the display.

Buxton and Meyers studied the effect of bi-manual
multi-touch. One task allowed positioning and scal-
ing, while the hand performed the selection and nav-
igation task. The results reflected that continuous
bi-manual control provided a significant improvement
in performance and learning [Buxton and Myers 86].
The control was very easy to use.

Buxton and colleagues, Xerox PARC used a high-
resolution 2D a-SI scanner technology with an added
layer to make them displays.

Wellner developed a front projection tablet top system
that sensed hands and fingers, as well as a set of
objects. He demonstrated the use of two-finger scaling
and translation [Wellner 91].

IBM and Bell South introduced the first smartphone
that operated with single-touch.

Wacom released digitizing tablets, which included
multi-device and multi-point sensing. The stylus pro-
vided position and tip pressure, as well as the position
of the mouse-like device, enabling commercial bi-
manual support [Leganchuk et al. 98].

The foundation of what has become graspable or
tangible user interfaces to use with multi-touch de-
vices. [Fitzmaurice et al. 95]. The work by Fitzmau-
rice included Active Desk as well.

Dynapro started commercializing mutual-capacitance
(projected capacitive). The technology was later re-
named by 3M as near-field imaging.

Continued on next page

164 8. Multi-Touch
Table 8.1 — Continued from previous page
Year Name Description
1997 The metaDESK metaDesk was developed by Ullmer et al. [Ullmer
and Ishii 97], which demonstrated the use of tangible
user interfaces(TUI). This addressed the problem that
“dynamic assignment of interaction bricks to virtual
objects did not allow sufficient interaction capabilities”
[Miiller-Tomfelde 10].
1998 Zyntronic Commercialization of large-format self-capacitive
(projected capacitive). Invented by Ronald Beinstead.
1999 Infrared Touch Invention of waveguide infrared touch between 1997
and 1999 by [Sana 99].
early 2000s SoundTouch Sampled bending-wave touch invention, later to be
known as Acoustic Pulse Recognition™ by Tony
Bick-Hardie.
early 2000s Sensitive Object Sampled bending-wave touch invention, later to be
known as ReverSys™. It is not clear if SoundTouch
or Sensitive Object came first or if they were simulta-
neous.
2001 Diamond Touch Diamond Touch addressed the multi-user problem
with its multi-touch system [Dietz and Leigh 01].
2003 Planar Technical paper about in-cell light sensing [Boer
et al. 03].
2004 Wacom TouchKO Multi-touch technology that uses proprietary ap-
proach called Reversing Ramped-Field Capacitive
(RRFC™) [Microsoft 07].
2005 FTIR Han introduced FTIR [Han 05].
2006 NXT PLC Commercialization of real-time bending wave touch
called Dispersive Signal Technology™(DST).
2007 Apple iPhone Apple introduced the iPhone, a smartphone with
multi-touch capabilities.
2007 Microsoft Surface Microsoft released an interactive tabletop surface for
Computing multiple fingers, hands, and tangible objects. This led
to the later introduction in 2011 of Surface 2.0.
2009 PQLabs Commercialization of multi-touch infrared
2011 Surface Computing Second generation of the Microsoft Surface.
2.0
2012 iPhone 5 iPhone 5 with in-cell mutual capacitance (projected
capacitive).
2013 Tangible for Capaci- Voelker et al. developed PUCs. A tangible device for
tive capacitive multi-touch displays [Voelker et al. 13b,
Voelker et al. 13a].
2014 Houdini Hiillsmann and Maicher demonstrated the use of LLP
[Hiilsmann and Maicher 14].

8.2 Hardware

This section covers different types of hardware devices for multi-touch technology.
In particular, capacitive touch is covered with more detail because of the availability

8.2. Hardware 165

. Touchscreen makes the HP 150 the casiest-to-learn,
Announan i e M e i ¢ I et
‘personal simply touching the screen, Whether you're finding an
computer. Personal Card File or making a phone call?
nal Computer will respond to
commands. No mouse. Just

your finger.

PERSONAL COMPUTER.
The Hewlett-Packard 150.

“Touch the screen and edit.
“To deletea line,edit 4 sentence of to move a paragraph
just touch the screen. Actually touch the words that you

ange as you g0 along and they are alwsays
1y step of the way, WordStar® word
wver been easier to use.

literally touch the number on
cls appearing on the screen. And

: ' G o e,
We're going to change the way yo
personal T try yo

reen Personal Computer
Packard dealer. Call

i HP 150, you might

e new you.

computers. et in (o
(800) FOR
getin touch with a w

Setting you free.

Hewlett-Packard Personal Compuers

Figure 8.1: HP 150 Magazine advertisement.

and pervasive use today. The largest emphasis is given to projected capacitive
technology as it is the most used today with a lesser emphasis on optical and vision
technologies for touch. Some touch technologies are not covered but additional
information can be found in [Walker 14].

8.2.1 Projective Capacitive Technology

Projected capacitive (p-cap) technology has become pervasive in the day-to-day
use of consumer electronics with the introduction of the Apple iPhone and all the
smartphones and tablets thereafter. Geoff Walker (currently at Intel), an expert on
multi-touch technologies, has predicted” p-cap significant growth in the coming
years for commercial applications [Walker 14, p. 99]. This is in addition to the
adoption that it has enjoyed since the introduction of the iPhone in 2007.

We cannot be certain if touch input was measured using capacitive technology
before the 1960s but it is the earliest record we were able to find. The first p-cap
display was used for air-traffic control in the United Kingdom (see Table 8.1) in

2We don’t like to make predictions with technology but rather see the amount of work that has
come before it. This tells us that the technology may be on good ground. However, new technologies
are coming online every day so it is hard to be sure what will be the most adapted technology in years
to come. With this said, we do take Walker’s prediction very seriously because of his experience.

166 8. Multi-Touch

Window Keypad

Allows customers to interact with your computer from outside the
shop at any time of the day or night.

Now they can ask detailed
questions about prices, stock,
destinations etc., or just play
games — even when the shop
is closed. They may even use
it to place orders.

The keypad simply sticks to
the inside of the window and
connects to your computer
with a single lead. It's 50 slim
a security grill can be pulled
down behind it.

Ideal for computer shops,
Estate Agents, Travel Agents,
Information Centres, Job
Centres, Insurance Brokers,

or any shop that wants to
improve its competitivencss
and provide a better service [l
forits customers.

Figure 8.2: Window keypad 1984. (With permission from Ronald Binstead and
BinsteadDesigns.com).

1965. For an additional time line of different touch technologies and major events,
see Table 8.1. Projected capacitive technology (in particular, mutual-capacitance)
has created certain expectations by users since the introduction of the iPhone,
such as multi-touch capabilities, extremely light-touch, extremely smooth and
fast scrolling,3 and effortless, among others [Walker 14]. One of the trends with
capacitive displays is to improve the use of multi-touch p-cap and digital pen. For
example, Microsoft has used p-cap for multi-touch with the electromagnetic (EM)
pen-digitizer* [Walker 14]. Touch and pen are not the only multi-modal input
found with p-cap. For example, a point of sale (POS) uses IR technology for the
touch while combining it with pressure-sensing piezoelectronics. This helps the
system to know that the user is touching the display and it removes false-positive
touches. Additional mid-air approaches (e.g., Leap Motion) is another option of
making touch a multi-modal input device.

P-cap detects the touch “by measuring the capacitance at each addressable
electrode” [3M 13], as shown in Figure 8.4. In other words, if a finger or a

3This is not always the case due to problems with hardware or software.
4Wacom is the dominant vendor of EM pen-digitizers.

http://BinsteadDesigns.com

8.2. Hardware 167

-
Drive " Drive Electrode Y Receive Electrode
Buffer
Collected Charge
No Touch (steady state)
Field Coupling
>>>>> .
Dielectric Front Panel
Touch g:&:r ctrode ‘ Receive Electrode
Collected Charge
(a) Self-capacitance (b) Mutual-capacitance
Figure 8.3: Multi-touch capacitance technology.
+: ©2014 3M.AI righs reserved.
3M, the 3M logo, and
other 3M marks are owned by 3M.
4 I\

Side Note 8.1: Piezo Electronics

A piezoelectric sensor is used to measure changes in pressure, acceler-
ation, force, or strain using the piezoelectronic effect [Wikipedia 15h].
This measurement is done by converting those changes into electrical
charges, which is called piezoelectricity, which is the electric charge that
accumulates in certain solid materials after applying mechanical force to
them [Wikipedia 15j].

conductive stylus gets closer to the electrode, it disturbs the electromagnetic field.
When this occurs, the change in capacitance allows the touch to be detected with a
specific location, with coordinates X and Y. P-cap has two main forms of sensing
the touch: Self-capacitance and mutual-capacitance, shown in Figures 8.3a and
8.3b, respectively.

Self-Capacitance

In the case of self-capacitance, the measurement of the electrode is with the ground.
One option is to use a multi-pad with addressable electrodes (single layer), with
a connection for each of them, as shown in Figure 8.5b. While this allows a
multi-touch approach, screens greater than 3.5 inches become challenging because

168 8. Multi-Touch

Finger
_1Gk
C1[[_-E-— 11 G2 Panel
Lo '
Driver Receiver
electrode electrode
L

S

Figure 8.4: Projected capacitive working principle [Hainich and Bimber 11].

of the individual connection between the electrode and the controller. A second
option is to use the row and column approach (dual layer), as shown in Figure 8.8a.
However, this approach has “ghost” points, as shown in Figure 8.8b, because the
electronics are not able to measure each individual intersection (the electronics can
only measure each electrode). This limits the approach to a single or dual touch
screen because it can provide false positive points, known as “ghost” points. When
using the row and column approach, the system can determine which is the closest
location. Then, using interpolation, the system can determine the location of a
touch. The fact that self-capacitance is not ideal for multi-touch does not mean it
cannot be used. Given its lower cost, if the device requires two finger interactions
for basic gestures, it is possible to remove the “ghost” points at the software level.
For example, a zoom gesture can be recognized because the points will be moving
toward or away from each other (zoom in or out).

The p-cap sensor provides the information to the controller (explained in
Section 8.2.1) to determine the contact point. In self-capacitance touch displays, a
single or dual layer of transparent conductors is configured with electrodes. It is
important to remember that each electrode is measured individually. Figure 8.6
provides a view of a dual-layer approach.

Mutual Capacitance

Mutual capacitance exists when two objects hold charges. Projected capacitance
displays create mutual capacitance between columns and rows, where each inter-
sects the other object, as shown in Figure 8.5b. In other words, an intersection
between the electrodes measures the contact point. This is “accomplished by
driving a single X electrode, measuring the capacitance of each Y (intersecting)

8.2.

Hardware
| | - -
— - L | b
- - 1 P 4

ololelolelelelelelelelelelele!
YOO

(a) Self-capacitance (b) Mutual-capacitance

Figure 8.5: Multi-touch capacitance technology.

F: ©2014 3M.All rights reserved.
3M, the 3M logo, and
other 3M marks are owned by 3M.

Figure 8.6: Projected capacitive touch panel [Hainich and Bimber 11].

169

electrode” [Walker 14, p. 40], repeating it for each X electrode until is complete.
The system is able to measure multiple touches simultaneously during each screen
scan. When the finger touches down near an intersection, the mutual capaci-
tance is reduced, causing the threshold to indicate that a touch has occurred. The
correct measurement of mutual-capacitance makes it very reliable and the pre-
ferred technology for multi-touch interaction. This avoids the “ghost” points from

self-capacitance and provides accurate point detection as shown in Figure 8.7.
Each p-cap surface works with a controller. This controller excites the X

electrode and measures the capacitance of the Y electrode. The analog values are
converted using an analog-to-digital converter (ADC) running on a DSP chip. This
DSP chip runs algorithms to remove undesired touches near the edges of the display

170 8. Multi-Touch

(“grip suppression”) and removal of unintended” touches (“palm rejection”) [Wang
and Blankenship 11, Walker 14]. Some of the examples driven by innovations on
p-cap controllers are the significant increase in signal-to-noise ratio (SNR), which
allows to use a passive stylus of 2mm tip [Walker 14]. The largest vendors of these
types of controllers are Atmel, Cypress, and Synaptics.

The p-cap sensor in a self-capacitance touch display uses a single or dual
layer of transparent conductors configured with electrodes. The most common
approaches for placing the electrodes are [Walker 14]:

* Rows and columns: This approach utilizes an insulating layer, film, or
glass substrate to spatially separate rows and columns of the electrode.

* Diamond pattern: This approach utilizes a diamond pattern of squares
rotated at a 45°angle. These are connected “at two corners via a small bridge”
[Walker 14]. It is important to note that the diamond pattern approach
may use two spatially separated layers making the process straightforward.
However, to make the displays thinner, a solution is to use a single co-planar
layer but this requires additional processing [Walker 14].

There are different approaches on how to stackup mutual-capacitance. The
most common case is to start (on top) with the cover glass (“lens”), decoration
layer, optically clear adhesive (OCA) layer, diamond shape spatially separated Y
electrodes (for sensing), touch-panel glass, diamond shape spatially separated X
electrodes (for driving), LCD top polarizer, color filter glass, color filter, liquid
crystal, thin-film transistor (TFT), and TFT array glass (at the bottom of this stack)
[Walker 14]. Additional layers below that last layer mentioned (TFT array glass)
are also present, such as bottom polarizer and backlight, among others [Walker 14].
Glass substrate is used for the touch screen but in some larger mobile devices,
two layers of polyethylene terephthalate film (PET) film are used for each set of
electrodes (X and Y) [Walker 14].

One of the problems for mobile devices, with the stack just described is the
number of layers of glass, in particular, the fourth sheet of glass. The first two
sheets are used for the LCD and the next layer is the protective and decorative
sheet covering the LCD. The fourth layer of glass can be avoided by either using
the “one-glass-solution” or the “on-cell” (also known as embedded touch) solution.
As Walker describes, both of these are in direct competition [Walker 14]. The
“one-glass-solution” adds the touch module to the decorative sheet. The “on-cell”
solution removes the fourth sheet by placing the electrodes on the color-filter sheet,
which is below the LCD’s top polarizer [Walker 14]. Both solutions provide a
lighter and thinner device using different techniques. In the commercial side,
the “one-glass-solution” provides a continue streamline of revenue for touch

SHowever, having the ability to have access to those points may be a feature that a developer may
want. See Section 2.2.2.

8.2. Hardware 171

Self Capacitance Mutual Capacitance

“Real” touches . “Ghost” touches @ “Real” touches

Figure 8.7: Self-capacitance and mutual-capacitance. (With permission from Geoff
Walker).

=)

|

ATETEY)

I EEENTEEEEEE NI EEEE]
 EEEEIEEETETET NN
| EEEETESEEETETETEY]

T EEETEEET TN EENT]
1
BERER

ATETET R

7 |

 EEEEIEEETEENTENENE]
I EEEETEEREET NI NENE]

SRERIBRERAER

s

(a) Self-capacitance rows and columns (b) Ghost points

Figure 8.8: Multi-touch capacitance technology.

F: ©2014 3M.All rights reserved.
3M, the 3M logo, and
other 3M marks are owned by 3M.

manufactures while the “on-cell” solution provides a continued streamline of
revenue for the LCD manufacturers [Walker 14].

Finally, it is important to mention that while p-cap technology uses transparent
conductors with indium tin oxide (ITO), there is another alternative. This is the
use of 10-micron copper wire. The copper wire is not transparent but for larger
displays, the current diameter becomes harder to be seen by the user. This is the
primary reason that is used, since building large displays (40 inches or larger)
with ITO increases the cost, reduces the quality of touch, and it really becomes
unfeasible to do it at this time. For additional information and informative figures,
the reader is referred to [Walker 14].

Surface Capacitive

Surface capacitive was introduced by MicroTouch Systems, which later was ac-
quired by 3M and integrated into the 3M Touch Systems division. This technology

172 8. Multi-Touch

is currently phasing out but there are places where it is still in use. For example,
the gambling industry uses surface capacitive displays for their games.® This tech-
nology has advantages as its drag performance with their smooth surface is ideal
and it is highly sensitive [Walker 14]. However, it does not support multi-touch, it
is not as durable compared to other glass-based touch devices, and cannot be used
with mobile devices [Walker 14].

The technology uses a conductive coating driven by an alternating current
(AC) signal (1-2 volts in the range of 30-100 KHz) to each of the corners of the
layer [Walker 14]. When the user touches the display, a small amount of current
flows to the four corners. The contact point is determined by the current supplied
to each of the corners, providing the magnitude proportional to the location of the
contact point [Walker 14]. An improved version, invented by Touch Konnection
Oasis (see Table 8.1) and commercialized by Wacom, is called reversing ramped
capacitive (RRFC™), This technology solves the problems of surface-capacitive
touch but it is still a single-touch device. To read more about surface capacitive,
see [Walker 14, pp. 47-50].

8.2.2 Optical Touch Surfaces

Optical touch surfaces provide an alternate way to detect contact points. Optical
approaches use image processing to determine the location and type of interaction
with the surfaces. The basic concept of optical touch surfaces is to emit IR light and
determine the X and Y position that is being covered by the finger. The case for the
multi-touch, while similar, uses additional information to obtain the simultaneous
multi-touch, which will be described later in this section.

The first type of optical touch was the PLATO IV (see Table 8.1), which
provided a small grid for touch interaction. In 1983, HP introduced a 9-inch model
CRT with touch capabilities, using optical touch technology. This technology
has evolved, but there are some common advantages that it has offered. Most
importantly, it scales well for larger displays, it can withstand direct sunlight (great
for outdoors), and it does not require any substrate [Walker 14]. The evolution
of the optical touch started with single-touch, moved to a 1.5-touch’ from ELO
TouchSystems [TouchSystems 09], and finally evolved into a multi-touch system.
The latter is described in more detail next.

The optical (IR) multi-touch supports over 32 simultaneous contact points.
While the concept is similar to the one for single-touch, the controller will use
all the information available from all the receivers to capture the shadows of the
objects [Walker 14]. PQ Labs® is one of the vendors of this technology and the
one that holds a patent describing the functioning of their system [Lu 13]. The

This may change over time as multi-touch games are desired in this industry; however, the
gambling regulations makes the adoption of new technology slow.

"1t provides some limited 2D interactions.

8http://pglabs.com

http://pqlabs.com

8.2. Hardware 173

system works by emitting light from an IR LED while detecting it with two IR
receivers (or photo-detectors). This produces a one pixel image (usually converted
to gray-scale), which shows the shadows of the objects between the IR emitted
and the IR receivers [Walker 14]. By repeating this in extremely short intervals,
simultaneous objects can be tracked with mathematical functions, such as the
one described in PQ Labs patent [Lu 13]. The experience of the multi-touch will
be determined by the implementation of the recognition algorithms provided by
the controller. This technology offers object recognition, simultaneous contact
points, and the system can scale to a larger display with less effort than other
technologies. Nevertheless, there are some problems with optical multi-touch
systems [Walker 14]: (1) performance issues (jitter and slower response, among
others). (2) pre-touch problems. (3) minimum size for touch object. (4) inadequate
use for some applications, such as a white-board, because of the low-resolution;
(5) issues 1-3 also prevent optimal use for white-boards (or similar applications).
PQ Labs does claim to have overcome some of these issues. However, neither
[Walker 14] nor us have been able to verify those claims. Like in any decision
when purchasing technology, it is important to understand, in our opinion, that
marketing claims may not always go hand-in-hand with the actual specifications
of the product. With this said, optical multi-touch technology does offer value
and it should be explored further as one option, if the use requires the use of large
displays. Additional approaches to optical tracking includes PIN-Diode Optical
by Baanto®? (ShadowSense™) and Planar Scatter Detection (in-glass solution) by
FlatFrog.'?

8.2.3 Vision-Based Optical

Another alternative to touch, popular in universities and large displays, is vision-
based multi-touch technology, which utilizes cameras to obtain the contact-points
(and other) objects positions. Vision-based optical technology provides additional
features not available in regular multi-touch systems. One example is the ability
to use tangible objects of any type. It is important to note that there have been
advances in tangible technology for capacitive displays [Voelker et al. 13a]. In
addition, depending on the configuration of the camera and the implementation
of the computer-vision algorithms, it is also possible to detect objects and people
beyond the normal use of a surface touch (e.g., mid-air interactions).

Frustrated Total Internal Reflection

The frustrated total internal reflection (FTIR) approach [Han 05] is based on the
optical total internal reflection within an interactive surface. The electromag-
netic waves are transmitted into the transparent surface given the following two
conditions:

“http://flatfrog.com
Ohttp://flatfrog.com

http://flatfrog.com
http://flatfrog.com

174 8. Multi-Touch

1. If the refractive index of the inner material is higher than the outer material.

2. If “the angle of incidence at the boundary of the surface is sufficiently
small” [Miiller-Tomfelde 10].

A common FTIR configuration uses a transparent acrylic pane. This pane
injects infrared light using strips of LEDs around its edges. When the user touches
down, the light escapes, and therefore, it reflects the surface display to be captured
by a camera set perpendicular to the panel. In other words, the infrared light
is “brought into the surface from the side where it is trapped” [Hiilsmann and
Maicher 14] until a user presses down onto the surface. Also, since the acrylic
is transparent, the projector can be in the back of the panel. A computer vision
algorithm is applied to obtain location and other features of the touch [Miiller-
Tomfelde 10].

Diffused lllumination

The diffuse illumination (DI) approach produces infrared light below its surface.
DI uses a projector and an infrared-sensitive camera on the back of the surface.
The infrared lighting is also placed behind the projection surface (opposite in this
case to FTIR) “to be brightly lit in the infrared” [Miiller-Tomfelde 10]. Given this
configuration, DI technology allows for robust tracking of fingers and physical
objects (tangibles). The advantage of physical objects, which use fiducial markers
or size of their shape, gives a clear edge to DI technology. This approach also has
the potential for hovering interaction.

A similar approach is called diffuse surface illumination (DI) that distributes
the IR light across a surface with the acrylic containing “small reflective particles”
[Walker 14]. DSI provides a similar approach to DI but with an uniform effect.

Laser Light Plane

The laser light plane (LLP) is another approach of an optical multi-touch system
(see a variation to this approach, called LLP+ [Park and Han 10]). The LLP dates
back to 1972 by Johnson [Fryberger and Johnson 72]. One of the major advantages
that it has over DI and FTIR is that it is the most inexpensive system to build, as
seen in [Hiilsmann and Maicher 14], while remaining very effective.

The LLP system directs the infrared light above the surface. This gets “scattered
at every touch point” [Hiilsmann and Maicher 14]. The major advantage to infrared
light is that it gets scattered above the display during the user’s interaction. This
enables fast and reliable tracking of fingers and tangibles, regardless of how fast
the movements are from the user. This is because the image is rich in contrast.

The LLP can use acrylic surfaces as well, such as stable glass panes, which are
less expensive than acrylic panes. Also, by using lasers, the “illumination becomes
independent from the tabletop size” [Hiillsmann and Maicher 14].

8.3. Multi-Touch and Its Applications 175

s N
Side Note 8.2: The Buxton Chess Player’s Syndrome

Some multi-touch devices, in particular optical- and vision-based devices,
can recognize a touch before the user makes contact with the surface.
While this may be a desired outcome for a hover gesture, it is not a feature
desired for a touch event. This is what Bill Buxton calls the chess player’s
syndrome. This refers to the lack of agreement between the human and the
computer on whether you have touched the screen or not (provided by Ken
Hinckley).

The approach described in this section makes reference to the system used in
Houdini [Hiilsmann and Maicher 14]. There are alternative approaches to LLP,
which can be found in Exploring Multi-Touch Interaction [Kaindl 10].

Integrated Cameras

MultiTouch!! Ltd. developed an integrated camera system for multi-touch called
MultiTaction™. This high-performance display is bulky and expensive but it has
its niche applications given the strengths of this system [Walker 14]: immunity
to external light, unlimited number of touch points and users, object-recognition
(either with markers or shape-recognition), IR-emitting stylus ready, and it is great
for multi-user interactive walls.

8.3 Multi-Touch and Its Applications

This section covers different techniques for multi-touch or techniques that can be
extended for multi-touch. It also explains basic concepts of multi-touch implemen-
tation that are commonly found in different platforms.

8.3.1 Basics of Multi-Touch

It is important to understand traces before thinking about gestures. There are
libraries that supply a limited number of gestures built-in.!?> Nevertheless, it is
important to understand how to work with points and traces to create new APIs and
move the state-of-the-art forward when it comes to multi-touch gesture recognition.

The fundamental concept of multi-touch, at the programming level is that
it works with the basic notion that a finger or multiple fingers move across the
display. This is usually denoted by three states (events): down, moving, and up.

http://www.multitaction.com
12Some third party libraries may claim to have multiple gestures but failed to recognize the gestures
(which we experienced in one of our projects).

http://www.multitaction.com

176 8. Multi-Touch

The complete movement is considered a trace, which starts at the moment the user
touches the surface (down), moves the finger (moving), and lifts the finger (up).
This mode is usually called raw touch to make a distinction of gesture recognition.
Depending on the driver of the multi-touch system, or the software layer for the
raw multi-touch API, there may be some small differences, including additional
states (events) and data. For example, The WINAPI (Microsoft Windows 7 and
higher!?) provides the x and y coordinate of the display, the contact size (c, and
¢y), timestamps, and most importantly, an identification number (id) that identifies
the trace, among other data fields [Kiriaty et al. 09]. The most important data
fields required for a multi-touch system to be effective are the identification (id)
and the screen coordinates (x and y). Each driver (or API if working at a higher
level) will handle multi-touch data, therefore it is important to know your device.
For example, a driver may report every point even if the user is not moving their
fingers. This is great because it will allow the higher-level API or the application
to know that the user is not moving and decide upon that information.

8.3.2 Multi-Touch Gestures and Design

After working with raw data, it is possible that the system may required gestures.
Building your own gesture is a very interesting process because it allows different
techniques and algorithms to be used, created, or modified.

It is important to know what a multi-touch gesture is before building it. If we
look at the dictionary, a gesture is “a movement of part of the body, especially a
hand or the head, to express an idea or meaning” [Stevenson and Lindberg 10].
Lii and Li defined a gesture in Gesture Coder (see Chapter 10) as “A multi-touch
gesture consists of a sequence of finger configuration changes, and each finger
configuration might produce a series of repetitive motions. A motion is repetitive
when any of its segments triggers the same type of action as its whole” [Lii and
Li 12]. Additional definitions can be found, for example the one provided by
Apple in one of their patents [Apple Inc., Elias, John, Greer, Haggerty, Myra, Mary,
Westerman, Wayne, Carl 07].

It is important to know that the definition should be decided on by the developer
or designer but in time, it is likely that an accepted definition will emerge as the
primary one. While it is possible for this book to give a definition for a multi-touch
gesture, it is more interesting for the designer or developer to define what the
gesture is. Some possible definitions are:

1. A multi-touch gesture starts when a user touches the surface and continues
until the last finger has been lifted, as long as it has been recognized.

2. A multi-touch gesture starts when it is recognized and lasts until the gesture
hits a value of decay {if (g < decay(g)) g = nullptr;}.

B3 Microsoft Windows 8 has new functionality not available in Windows 7.

8.3. Multi-Touch and Its Applications 177

3. A multi-touch gesture starts when it is recognized and lasts until a new
gesture is detected by a value of strength {if (g < strength(gnew)) & = &new’ }-
This allows for continued strength.

4. A gesture is only recognized when the user has completed the gesture.

The most common gesture definition for strokes (e.g., letters and symbols) is 4.
For multi-touch gestures where the fingers are involved (no pen or tangible objects),
definitions 2 and 3 provide a clear path for good design. However, definition 3
proves to be more difficult to program. The first definition, while valid, is the most
trivial definition, and in practice makes the interaction less fluid because if the
user wants to do pinch and later swipe without lifting their fingers, the second
interaction will not be recognized. At the end of the day, it all depends on the
design of the application or the options provided by the API being used. Of course,
the definition may change as soon as you introduce multi-modal interaction, for
example, the use of multi-touch with either a pen, tangibles, or INS sensors. One
of the recommendations by [Bowman et al. 04, p. 179] is to “match the interaction
technique to your device,” which is also explained further in [Zhai 95]. Several
other questions when designing multi-touch gesture interactions are important,
such as: (1) Do we impose a set of fixed gestures for the user or let the user
create their own gestures? (2) Do we treat taps as gestures or a different entity all
together? (3) Are multi-touch gestures natural or learned? The answers depend
on the application and the needs of the developer. Question 3 is described in
Section 8.3.5.

8.3.3 Touch Properties

Previously, we explored basic aspects of a multi-touch device and multi-touch
gesture design. It is important to expand on some properties, as explained by
Hinckley and Wigdor [Hinckley and Widgor 12]:

* Touch versus multi-touch: A touch device will only allow one touch as
opposed to a multi-touch device that will allow two or more touches. The
type of a touch device also varies as described in Section 8.2.

* Touch data: In Section 8.3.1, we described the typical raw data for multi-
touch devices. However, this is not always the case. Some devices only
provide a limited amount of information, such as the DiamondTouch surface
[Dietz and Leigh 01]. Devices like the DiamondTouch only provide 1.5 DOF,
such as bounding box. While some devices may not offer 2 DOF, they still
can implement multi-touch gestures [Forlines and Shen 05].

* Pressure and contact area: The sensing of pressure and contact area are
related. While contact area may be a surrogate of pressure, it is not equiv-
alent. Pressure is the physical force applied onto the surface by the user.

178

8. Multi-Touch

The contact area, as the name implies, is the measurement of the user’s
surface area when the finger touches the surface. If the user presses hard
onto the surface, it is likely to produce a larger area size; however, a user
may produce a large area size by pressing softly. Take for example, placing
the entire hand, very softly, onto the display. This will produce a large area
size but will not determine if the user did it softly or hard. Another example
offered by Hinckley and Wigdor is someone with long nails. His or her
touch will produce a large area size but the actual force applied may have
been light [Hinckley and Widgor 12]. While they are not equivalent, the fact
that area size can be a delegate for pressure is a useful feature. For example,
Benko and colleagues used the contact area to simulate pressure [Benko
et al. 06], called SimPress (Simulated Pressure). This technique required
users to “apply a small rocking motion with their finger in order” [Benko
et al. 06] to click. Other examples include [Forlines and Shen 05, Davidson
and Han 08]. There are touch devices that can sense pressure. Ramos
and colleagues found that six pressure levels are optimal with appropri-
ate visual feedback for users to discern [Ramos et al. 04]. An application
created by Ramos and Balakrishnan includes Zliding (fluid zooming and
sliding) [Ramos and Balakrishnan 05], among others [Ramos and Balakr-
ishnan 07]. The new Apple Mac Book is built-in with “force touch” for the
trackpad, which will provide a new dimension to developers.

Hand postures and shape-based input: The ability to recognize shapes
beyond the normal contact points of multi-touch is important. Early work by
Krueger explored the interaction of the user’s hands by using their silhouettes
[Krueger 91]. However, this is not a trivial problem, in particular when
dealing with capacitive multi-touch surfaces. For example, when using
tangible objects, capacitive devices have problems maintaining contact size
points, let alone the inability to recognize the gesture. An excellent effort
and possibly a way forward with tangibles in capacitive multi-touch displays
is the work by [Voelker et al. 13b, Voelker et al. 13a]. It is true that with
vision-based systems, shape recognition presents less of a challenge but
capacitive multi-touch is pervasive today (e.g., iPad). For example, Cao
and colleagues created ShapeTouch, a prototype that allows the system to
respond to an event of each individual'# shape, as opposed to a centralized
event system as a typical multi-touch system would operate [Cao et al. 08].
An approach to handle different types of inputs, such as shape-recognition,
is found in “A Framework for Robust and Flexible Handling of Inputs with
Uncertainty” [Schwarz et al. 10].

Beyond the display: With devices like Microsoft Kinect, and Leap Mo-
tion among others, the extension of multi-touch is a critical design feature,

14This is an excellent approach to event recognition.

8.3. Multi-Touch and Its Applications 179

when available. In particular, with work being done with mid-air interac-
tion [Walter et al. 13, Ni et al. 11], it is also important, as different types
of displays and projections start working in tandem [dos S Chernicharo
et al. 13]. Wilson and Benko expanded the interaction using depth cameras
in [Wilson and Benko 10a]. Another example is multi-point feedback with
mid-air gestures [Carter et al. 13a]. The most critical aspect is “to provide
new capabilities that are differentiated well from direct touch and other
inputs” [Hinckley and Widgor 12].

Additional information about the finger: In an effort to enrich the user
interaction, obtaining additional information about the type of finger being
used [Lepinski et al. 10], the orientation of the finger [Wang et al. 09], and
which user it belongs to [Holz and Baudisch 10, Holz and Baudisch 13], is
additional information that can enhance the user’s experience. The effort
to recognize properties has primarily used vision-based touch devices or
complementary cameras. For example, Murugappan and colleagues used
depth cameras to differentiate users and recover touch posture [Murugappan
et al. 12]. While vision-based has been used, efforts to find information
using capacitive displays have also tried to obtain additional information.
One example of the use of finger identification and capacitive touch displays
is the effort by Harrison and colleagues, which employed the Touché [Sato
et al. 12], which is a swept frequency capacitive sensing (SFCS) [Harrison
et al. 12]. Additional information can be found in “Understanding Touch”
[Holz and Baudisch 11].

Parallax: Parallax error is a mismatch between the position sensed by the
input device and the position perceived by the user. Display parallax “is
the displacement between the sensing and display surfaces” [Hinckley and
Widgor 12]. In general, 2 mm or less parallax error is acceptable. Transducer
parallax is “any additional parallax error that may result from the offset
between the tip of a mechanical intermediary and the actual component that
is sensed” [Hinckley and Widgor 12].

Latency: Input delays on an interactive system will produce a frustrating
user experience. This is even more apparent on direct interaction, such as
multi-touch display. Latency is the measurement of time that occurred since
the initial physical action by the user is executed and the time that the system
executes the action. It is important to keep the latency as small as possible to
prevent the degradation of the user’s experience. In general, between 75 ms
to 100 ms is recommended for the user’s experience not to degrade [Card
et al. 91, MacKenzie and Ware 93, Hinckley and Widgor 12]. Additional
information can be found about the user’s perception about time and latency
in the book titled Designing and Engineering Time: The Psychology of Time
Perception in Software [Seow 08].

180