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The title of this book is "Indeterminate Structural Analysis", not 

"Structural Analysis" as most of the books on this subject are titled. Many 

textbooks have been written on structural analysis over the past several years 

with a twofold composition. They essentially deal with analysis of statically 

determinate structures followed by analysis of statically indeteuninate 

structures using the force method, displacement methods (classical methods 

such as slope-deflection and moment distribution) and the stiffness method. 

Thus, the material covered in existing textbooks on structural analysis contains 

more than what is necessary to learn indeterminate structural analysis. As a 

result, these books become bulky and all their material cannot, and need not, 

be covered in a single course on indeterminate structural analysis. Moreover, 

these books rarely include an as-needed discussion of the unit load method, 

which is arguably the best method to calculate deflections when solving 

problems by the force method. Hence, the authors set out to create this book. 

This book covers the analysis of indeterminate structures by force 

method, displacement method and stiffness method in a total of six chapters. 

The first chapter deals with application of the force method to analysis of 

beam, frame and truss structures. The unit load method is discussed with 

reference to the analysis of statically indeterminate structures. A few examples 

are discussed to illustrate these concepts. The second and third chapters deal 

with analysis of indeterminate structures by displacement methods. In the 

second chapter, concepts of slope-deflection method are developed and applied 

to beam and frame structures. The third chapter deals with developments of 

concepts of the moment distribution method. These concepts are then applied 

to beam and frame structures. The fourth chapter develops the concepts of the 

stiffness method. These are subsequently applied to beam structures. The fifth 
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and sixth chapters deal with application of the stiffness method to frame and 

truss structures. Throughout the book, few but illustrative examples are 

discussed under each method. The intent is to cover as much material as is 

needed conceptually with minimal, yet sufficient, examples so the student can 

understand indeterminate structural analysis methods without being 

overwhelmed. This way, the book is kept less bulky compared to existing 

books on structural analysis. In addition, keeping the textbook concise will 

reduce the price far below that of existing textbooks, saving money for 

students. We believe this will be a big selling point because the amount of 

material covered is not compromised in covering the material in a concise 

manner. This is in addition to the fact that, this book is written by three 

Professors of Civil Engineering who have had vast experience in teaching and 

research in the area of structural analysis. 

It is hoped that this experience is reflected in the write-up of this book 

so that it serves our twofold objective. The first objective is that we hope the 

instructor following this book as a textbook for his/her course on indeterminate 

structural analysis feels that all the required material is indeed covered in this 

textbook. Secondly, we hope that the students taking this course find the book 

and material covered easy to understand. 

The authors are thankful to Mr. Kyle Anderson and Mr. AnhDuong Le, 

former graduate students in the Department of Civil and Environmental 

Engineering at California State University, Fullerton for going through the 

manuscript and making constructive comments. We also appreciate the editing 

work done by Mr. Alexander Motzny, undergraduate student in the 

Department of Civil and Environmental Engineering at California State 

University, Fullerton. 

KENNETH DERUCHER 

CHANDRASEKHAR PUTCHA 

UKSUN KIM 
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In structural analysis, there are three basics types of methods used for 

analyzing indeterminate structures. They are: 

1. Force Method (Method of Consistent Deformation) 

2. Displacement Methods (Slope-Deflection and Moment Distribution) 

3. Stiffness Method 

General idea about these methods: 

The force method of analysis is an approach in which the reaction 

forces are found directly for a given statically indeterminate structure. These 

forces are found using compatibility requirements. This method will be 

discussed with more detail in Chapter 1. 

The displacement methods use equilibrium requirements in which the 

displacements are solved for and are then used to find the forces through force-

displacement equations. More on these methods can be found in Chapters 2 

and 3. 

The stiffness method is also considered a displacement method because 

the unknowns are displacements, however the forces and displacements are 

solved for directly. In this book, it will be considered separately due to 

procedural differences from the other displacement methods. The stiffness 

method is very powerful, versatile, and commonly used. This method will be 

discussed in Chapters 4, 5, and 6. 





Chapter 1 

Analysis of Statically Indeterminate Structures by the Force 
Method (Flexibility Method or Method of Consistent 
Deformation) 

1.1 Basic Concepts of the Force Method 

The force method (which is also called the flexibility method or the 

method of consistent deformations) uses the concept of structural Static 

Indeterminacy (SI). It is very conceptual in nature. The force method becomes 

cumbersome when the Static Indeterminacy of a structure is large. The results 

obtained by solving the problem using the force method, are all the unknown 

forces (such as reactions at the supports). 

If one is interested in finding rotational or translational displacements of 

an indeterminate structure, they must be obtained separately using any methods 

of finding displacements (unit load method, moment area method or conjugate 

beam method for example). 

This method is applicable for any kind of structure: beam, frame or truss. 

It is to be noted that beam and frame structures are predominantly bending 

(flexure) structures while trusses are predominantly direct stress structures 

(tension or compression) in nature. The truss members are not subjected to 

bending. In other words, all loads are axial. 
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Chapter 1 — The Force Method 

1.1.1 List of Symbols and Abbreviations Used in the Force Method 

Symbols and terms are defined along with equations. However, some are not in 

equations so they are defined below: 

(LA)L: Deflection at point A due to applied loading 

(DA)R: Deflection at A due to redundant loading RA  * Saa 

aaa: Rotational deflection at A due to a unit load at A 

OA : 	Rotational deflection at A due to applied loading 

6.: 	Deflection at A due to a unit load at A 

1.2 Static Indeterminacy 

The Static Indeterminacy (SI) for beams and frames is defined as, 

SI = nu  — ne  

Where, nu  = Number of unknown support reactions 

Tie  = Number of equations of equilibrium 

In general for a two-dimensional structure, there are three equations of 

equilibrium (ne  = 3) and for a three-dimensional structure there are six 

(ne  = 6). The static indeterminacy refers to the number of reactions that are 

unsolvable using basic statics. 

This implies that a structure is statically determinate if SI = 0. An 

example of this would be a simply supported beam (one end pinned and the 

other having a roller support). This structure would have three unknowns, the 

reactions at the pin in both the x and y directions and the reaction at the roller 

in the y direction. The number of equilibrium equations would be three 

(EF, = 0, EFy = 0, and >M = 0). Therefore SI = 0. 
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If SI > 1, the structure is said to be statically indeterminate to that 

degree (value of SI), therefore the degree of Static Indeterminacy is equal to 

the value of (nu  — rte ). It can be also said that the structure has "SI" number of 

redundants. 

To solve a statically indeterminate beam (or frame) using the force 

method we will make use of redundant forces. A redundant force is one, which 

cannot be solved using static equilibrium equations alone. The forces will be 

taken out and reapplied so that the considered structure is always statically 

determinate. Additionally, the principle of superposition is applied and 

deflection will be found as an intermediate step to solving for a given 

redundant. This process will be further explained in the text along with 

examples. 

For a truss, static indeterminacy involves both external and internal 

indeterminacy because of the internal members in a truss. 

Static indeterminacy (SI) in the case of a truss is defined as, 

SI = b + r — 2j 
	

(1.2) 

Where, b = Number of members in the truss 

r = Number of reactions at the supports 

j = Number of joints in the truss 

The analysis of an indeterminate structure is split into a series of 

determinate structures acted on by applied loads (in the original structure) and 

acted on by redundant force(s). In both cases the deflections need to be found. 

Hence, the unit load method for finding deflection will be discussed briefly for 

a determinate structure. 
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1.3 Basic Concepts of the Unit Load Method for Deflection 
Calculation 

The unit load method is also referred to as the method of virtual work. 

The basic equation to calculate displacement (whether translational or 

rotational) at a given point of a beam or frame is given as, 

M m dx 
A = f 	

El 	
(1.3) 

Where, M 	Moment at any point in a structure due to applied loads 

m 	Moment at any point in a structure due to the unit load (force or 

moment) at the point of interest corresponding to the parameter 

of interest (deflection or rotation) 

E 	Modulus of elasticity 

I 	Moment of inertia of the cross section of a member 

Note: The above equation has been derived using energy principles. 

To find in, the applied loads are removed and a unit load (force or 

moment) is applied at the point of interest, or redundancy, in a structure. If one 

is interested in finding a vertical deflection at a point in a structure, then a unit 

vertical force is applied (as it corresponds to vertical deflection). If one is 

interested in finding horizontal deflection at a point, then a unit horizontal 

force is applied at that point as it corresponds to horizontal deflection. 

Similarly, rotational displacement at a point in a structure is found by applying 

a unit moment as it corresponds to rotation. 
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The basic expression for finding displacement at a given point on a truss is 

given as, 

v 
AE  
NnL 

(1.4) 

Where, N = Force in a truss member due to applied loads 

n = Force in a truss member due to unit load applied at the point 

where the deflection is to be obtained 

L = Length of a truss member 

A = Cross sectional area of a truss member 

Note: The summation in Eq. 1.4 includes all truss members. 

To find n in a truss, the applied loads are removed and a unit load is 

applied at the point of interest. For example, if one is interested in finding a 

horizontal deflection at a point in a truss, a horizontal unit load is applied at 

that point. If vertical deflection at a point in a truss is of interest, then a unit 

vertical load is applied at that point. In the force method for a truss, whole 

members are taken as redundant. 

1.4 Maxwell's Theorem of Reciprocal Deflections 

This theorem states that, 

SAB = SBA 
	 (1.5) 

where, b' AB = Deflection at A due to a unit load applied at B 

SBA = Deflection at B due to a unit load applied at A 

Maxwell's theorem reduces the work needed to solve a statically 

indeterminate structure as it relieves several computations of deflection. For 

more details, the reader is advised to read the books by Chajes (1983), Wang 

(1953) and Hibbeler (2012). 
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1.5 Application of Force Method to Analysis of Indeterminate 
Beams 

1. Calculate the Static Indeterminacy (SI) of the structure using Eq. 1.1 or 

Eq.1.2 depending upon whether the structure is beam, frame, or truss. 

2. Choose one of the reaction forces (or internal members of the truss) as 

the redundant force. One at a time if there are multiple redundancies. 

3. Split the statically indeterminate structure into a determinate structure 

(acted upon by applied loads on the structure) and determinate 

structure(s) acted on by the redundant forces (one at a time). 

4. Analyze the determinate structures by the unit load method to find the 

displacement AL, which is the displacement for the applied loading and 

redundant removed. Then find 8, which is the displacement for the unit 

load only, at the point of redundancy. If a moment is taken as 

redundant, the corresponding displacements will be 0 and a. 

5. Finally, formulate equation(s) of displacement compatibility at the 

support(s) (in the case of beams and frames). In the case of trusses, 

displacement compatibility of truss bars will be used. 

6. Solve these equation(s) to get the redundant force(s). 

7. Calculate all the reactions at the supports (in addition to the redundant 

force already determined in step 6) using principles of statics. 

A total of 3 examples are solved in this chapter: one for a statically 

indeterminate beam, one for a statically indeterminate frame, and one for 

statically indeterminate truss. While any of the methods for finding deflection 

(double integration, moment area method, conjugate beam method, unit load 

method, or any other existing method) can be used to find displacements 
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(translation or rotation), the authors recommend use of the unit load method 

because it is conceptually straight forward and easy to use. 

1.5.1 Sign Convention 

The following sign convention will be used for the force method: 

• Counter-clockwise moments and displacements are positive 

This is often referred to as the right hand rule. 

When a member undergoes bending: 

• Compression on a member's top fiber is positive bending 

• Compression on a member's bottom fiber is negative bending. 

• _ ____________ 

a) Positive bending -
top fiber compression 

b) Negative bending -
bottom fiber compression 

Figure 1.1: Bending sign convention 
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1.5.2 Example of an Indeterminate Beam 

An example dealing with the analysis of a statically indeterminate beam using 

the force method is solved below. 

Example 1.5.2.1 

Determine the reactions at the supports for the statically indeterminate 
structure shown in Fig. 1.2 by the force method. Use RB as the redundant. 
Take E = 29000 ksi and I = 446 in4. 

36k 

A 
	

B 
	

C 

10ft 
	

12ft 

Figure 1.2: Statically indeterminate beam 
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Solution: 

A 

loft 	12ft 

a) Actual beam 

36 k 

C Actual Beam 

36 k 

Primary Structure 

b) Primary structure 

RB 

Redundant RB  applied 

RBC5BB 

c) Redundant RB  applied 

Figure 1.3: Two determinate structures 

The given indeterminate structure is split into two determinate 

structures as shown in Fig. 1.3b and 1.3c choosing RB as the redundant force. 

The basic equation used is as given in Eq. 1.3. This is stated again below: 

M m dx 
El 

The procedure will be followed as it is stated earlier in this section. 

Step 1. 

(1.3) 

S/ = u — ne  = 4 — 3 = 1 

Step 2 

Choose RB as the redundant force (in the problem statement). 



12 I Chapter 1 — The Force Method 

Step 3 

The two determinate structures are shown below with Fig. 1.4a 

acted on by the applied loading, and Fig. 1.4c acted on by the redundant 

force RB (unit load). The deflection at B for the statically determinate 

structure (LX B)L  due to applied loads can be obtained from Eq. 1.3 using the 

values of M and in. Figures 1.4a — 1.4d are used to calculate M and in. 

Redundant removed, applied loading 	Redundant applied with unit magnitude 

36k 
	 1 k 

A 
	

B 
	

A 
C 
	

B 

x 	 x x 	 x 

     

a) FBD for M 	 c) FBD for m 
36k 	 1k 

792 k-ft t_ 	 10 k-ft 

Figure 1.4: FBD for M and in (AB) and cut sections 

The values for M and in will depend on the origin chosen and the 

corresponding change in limits. In doing this, it may simplify the 

integration and the final value of deflection will be the same. 

Step 4 

Deflection at B due to the applied loads 

The required values for calculation of deflection are tabulated in. Table 1.1. 

Table 1.1: Calculation of deflection 	using Fig. 1.3a and b 
Portion of the beam AB BC 
Origin A C 
Limit x = 0 to x = 10 x = 0 to x = 12 
M 36x — 792 —36x 
m x — 10 0 

36k 

C 

x 	 x 

b) Cut section for M 

   

 

C 
x x 

 

d) Cut section for in 
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Calculate M 

Portion AB: 

Reaction forces: RA  = 36 k and 

MA  = 36 * (10 + 12) = 792k-f t  

Equilibrium equation: 

M + 792- 36x = 0 —> M = 36x — 792 

Portion BC: 

Equilibrium equation: —M- 36x = 0 —> M = —36x 

Calculate in 

Portion AB: 

Reaction forces: RA  = 1k and MA  = 1 * 10 = 10k-ft  

Equilibrium equation: m + 10- x = 0 —> m = x — 10 

Portion BC: 

Equilibrium equation: m = 0 

It is to be noted that the value of M (shown in Table 1.1) is 

calculated using Fig. 1.4a & 1.4b while the value of ni is calculated from 

Fig. 1.4c & d. The determinate structure shown in Fig. 1.4c is the same 

determinate structure as shown in Fig. 1.4a but acted on by a unit 

downward load at B (with no given applied loads) as it is assumed that the 

vertical deflection at B is downward. If at the end of the calculation, the 

deflection at B comes out to be positive, that means the actual deflection is 

downward. On the other hand, if the final deflection at B comes out to be 

negative, it means that the actual deflection at B is upward. 

Substituting the values of M and 171 (from Table 1.1) in Eq. 1.3, the 

deflection (AB) L  (deflection at B due to the applied loads) is calculated as, 

AB= E f Mm = f1°(36x — 792)(x — 10)dx El 	El 0 (1.6) 
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33600 
AB= 

 
El 

(1.7) 

The deflection at B due to a unit value of the redundant force RB (ebb) is 
obtained from Fig. 1.5 as shown in Table 1.2 below. 

1k 

A 
B 

x 	 x 

a) FBD for m 

M=m 	M=m 

A 
	

C 

b) Cut section for in 
	x 

Figure 1.5: FBD for m (obb) and cut section 

Table 1.2: Calculation of deflection 	using Fig. 1.4 
Portion of the beam AB BC 
Origin A C 
Limit x = 0 to x = 10 x = 0 to x = 12 
M = m x — 10 0 

Substituting the values of M and m (M = m) in eq. 1.3, 

8bb = 	"M -

dx 

= 10
10 (x — 10)(x — 10)dx 	(1.8) 

El El  

The deflection at B due to a unit value of the redundant force (RB) is 

obtained as, 

ebb = 3E1 
1000 	 (1.9) 

Step 5 

Equation of compatibility of displacement at joint B requires that, 

(LB)L — ('AR = 0 	(1.10) 

Where, 

1k 

10 k-ft 

(LB)R 	RB * (ebb) 
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This equation is essentially saying, the total vertical displacement at B has 

to be zero as it is a roller joint. 

Substituting the values of (MI, and aibb) calculated above, Eq. 

1.10 can be rewritten as, 
33600 	1000  + RB X 	= 0 El 	3E1 

Step 6 

Solving Eq. 1.11 above, RB  can be obtained as, 

RB  = -100.8k T 

This shows that RB is upward, not downward, as assumed in Fig. 1.3c. 

Step 7 

Once the redundant force (RB) is obtained, then the remaining 

reactions at A (RA  and MA ) can easily be obtained from equilibrium 

equations. 

They are calculated using Fig. 1.6 as, 

E Ty  = 0 Ay + 100.8 - 36 = 0 Ay = -64.8 k 

EWA  = 0 MA  + 100.8(10)- 36(22) = 0 -4 MA = -2161{-ft ZJ  

 

Ay 

---- MA B 

36 k 

C 

    

Ax 

^.0 
10 ft 12 ft 

Figure 1.6: Final reactions for the indeterminate beam 
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It has been shown above by solving a simple example that when 

solving a statically indeterminate structure by the force method; first, write the 

correct expressions for M and in, and then integrate the expression to solve for 

deflection within the specified limits (consistent with the chosen origin). 

1.5.3 Structures with Several Redundant Forces 

As stated earlier, it is to be noted that if a structure has several 

redundant forces (i.e. S/ > 1), then indeterminate structural analysis of the 

structure would involve obtaining redundant forces through solution of 

simultaneous equations. This will be followed by obtaining the remaining 

reactions at the supports (other than the redundant forces) through principles of 

statics as done in Ex. 1.5.2.1. 

The reader is advised to see other literature for detailed information 

such as those found in the references of this book. 

1.6 Application of the Force Method to Indeterminate Frames 

The basic procedure for analysis of statically indeterminate frames 

essentially remains the same as outlined in Sec. 1.5, and as illustrated for a 

beam in Example 1.5.2.1 in Sec. 1.5. 

Although the analysis of an indeterminate frame is, conceptually, very 

much similar to that of the beam, a frame consists of beams and columns so the 

analysis is slightly more complicated. After following the example below, it 

will be clear how to apply the force method to indeterminate frames. 
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1.6.1 Examples of an Indeterminate Frame 

A structural analysis dealing with a statically indeterminate frame by the force 

method is shown below in Example 1.6.1. 

Example 1.6.1.1 

Determine the reactions at the supports of the frame shown in Fig. 1.7 
using the force method. A = 100 in2, E = 29000 ksi and I = 833 in4. 

4 k/ft 

A 

8 ft 

10 ft 

Figure 1.7: Statically indeterminate frame 

Solution 

The procedure followed is as stated in Sec. 1.5. 

Step 1 

S/ = nu- ne  = 4 — 3 = 1 

Step 2 

Choose MA as the redundant moment. 

Step 3 

The given statically indeterminate structure is split into two 

determinate structures as shown in Fig. 1.8, with the redundant moment 

removed and with the applied loading as shown in Fig. 1.8b. In Fig. 1.8c, 

the frame is acted on by the redundant moment MA. The rotational 

deflection at A due to applied loads is OA, and due to the unit load, MA, is 
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MA xaAA. These rotations can be obtained from Eq. 1.3 by finding the 

values of M using Fig. 1.8b and respective values of m using Fig. 1.8c. In 

both cases HA and VA are found using static equilibrium equations. 

Note on symbols: In general, (04 HAHA) represents the horizontal deflection 

at A due to a unit horizontal unit load at A (i.e. HA  = 1). Similarly, 

(SVAHA) represents the vertical deflection at A due to a unit horizontal 

unit load at A. Along the same lines, (SHAVA) and ( ,6vAvA) represent 

the horizontal and vertical deflection at A respectively due to a unit 

vertical load at A (i.e. VA  = 1). 

Note: The values for M and m will depend on the origin chosen (with the 

corresponding change in limits). As can be expected, the final value of 

deflection will be the same irrespective of how it is done. 

This frame is statically indeterminate to the first degree. Since we 

chose the moment reaction at A as the redundant, the support at A will 

become a pin as seen in Fig. 1.8. 

4 k/ft 
	

4 k/ft 

MA 

     

OA 

HA A  
A MAann 

 

8 ft 

  

 

10ft  

    

   

VA  

 

a) Actual frame 	b) Primary structure 	c) Redundant MA applied 

Figure 1.8: Given indeterminate and corresponding determinate structures 

Applying the principle of superposition to the frame yields: 

— MA * aAA = 
	(1.12a) 
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In this case, both 0A  and MA  * aAA  are negative because they both 

create a clockwise rotation at joint A. This is negative by the sign 

convention defined in section 1.5.1. Equation 1.12 can also be written as: 

9A + MA * aAA = 
	 (1.12b) 

Eq. 1.12b can also be found by considering that both 6A  and MA  * aAA 

create compression at the top fiber of member AB. 

Step 4 

Use the unit load method to calculate OA: 

4 k/ft 

B 

x 

m 

, x 

A C 
 16 k 

	

+8k 

a) Applied loads 	 b) Unit load MA 

Figure 1.9: Bending moments due to applied and unit loads 

dx 	1 	Et 
—4 

 
6A = f Mine— 	

r 
= (16x — 2x2) (1 — dx = 256  

El El 0 	8 	3E1 

Use virtual work (unit load method) to calculate aAA: 

Table 1.3: Deflection calculation for 
Portion of the beam AB BC 
Origin A C 
Limit x = 0 to x = 8 x = 0 to x = 10 
M 16x — 2x2  0 

1710  
x 

1— —
8 

0 

A 

16k 

k-ft 

B 

x 
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Table 1.4: Deflection calculation for a 
Portion of the beam AB BC 
Origin A C 
Limit x = 0 to x = 8 x = 0 to x = 10 

M = me  
x 

1 - -
8 0 

2 dx 1 i8 
aAA 	f memo El = El = J O 	- -8) dx 3E1 

Step 5 

Equation of compatibility: 

OA + MA * aAA = 0  
Step 6 

Plugging in the values for deflection: 
256 	8 
—3E1 +M- A (3E1) = 0-* MA = -32k-ft 0  

Here, MA is negative, which indicates that the moment is opposite to 

clockwise assumed direction of MA in Fig. 1.8c. 

Step 7 

Use static equilibrium equations to calculate the remaining support 

reactions: 

= 0 H A = 

MA 32(4) + 17c(8) = 0 	= 12 k T 

+TETy  = 0: 

VA + 12 - 32 = 0 V A = 20 k T 
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4 k/ft 

" 1<-"—
A 
iiiiiiiiii 

20 k 

12 k 

Figure 1.10: Final reactions and moments for the indeterminate frame 

This completes solution of the problem. 

1.7 Application of Force Method to Analysis of Indeterminate 

Trusses 

The analysis procedure for a statically indeterminate truss follows the 

same lines of beams and frames, discussed in Sec. 1.3. The basic equation used 

for calculating deflection is given by Eq. 1.4 and stated here again as, 

A = NnL v   
AE 

(1.4) 

An example dealing with the analysis of a statically indeterminate truss is 

solved in Example 1.7.1. 



3ft 
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Example 1.7.1 

Determine the reactions at the supports of the truss shown in Fig. 1.11 
using the force method. AE is constant. 

4ft 

A 

4k 

Figure 1.11: Statically indeterminate truss 

Solution 

Step 1 

Degree of indeterminacy = b + r — 2j 

= 3 + 4 — 2(3) = 1 

Step 2 

Choosing BC as the redundant, this member will be "cut" to make the truss 

statically determinate. 

Step 3 

The given statically indeterminate structure is split into two 

determinate structures as shown in Fig. 1.12. Fig. 1.12b shows the structure 

under the given loading, and Fig. 1.12c shows the truss with the redundant 

unit load applied. 
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C 

IF  BC 
BC 

_ 	I FBC8BC 

Fsct 
A 	B A 	B 	B A 

4k 	4k !i 

a) Actual Truss 	b) Primary structure 	c) Redundant FBC 

Figure 1.12: Statically indeterminate and corresponding determinate trusses 

Applying the principle of superposition to the truss yields: 

FBC * 8BC 	° 
	

(1.13) 

Step 4 

Use the unit load method to calculate ABC: 

Calculate N and 17 for each member in both cases: real load and virtual unit 

load as is shown in Fig. 1.13. 

-FIEF; = 0: 

—4 + FAc = 0 F Ac = 5 k (T) 

--> 	= 0: 

FAR F Ac 	= 0 

F AB = —3 k (C) 4 k 

a) Calculation of FAR and F Ac 

applied 
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5k 
	0 	 ir  1k 

0 	 1 k t 

B 	A 
0 

b) Calculation of N 	c) Calculation of n 

Figure 1.13: Calculation of forces for N and it 

ABC = ""dv nANEL - Ct(A5; 	"A—E3)3 

▪  

1(0)4  

)4 o 

Use the unit load method to calculate SBC: 

8BC = 
n2  L 02(5) 

+ 
02(3) 12 (4) 	4- 

AE AE AE AE AE 

Step 5 

The compatibility equation given by Eq. 1.13 is repeated below. 

/IBC + FRC * 8I3C =° 

(1.14) 

(1.15) 

(1.13) 

Step 6 

From equation (1.13) —4 0 + FBc  * —A4E  = 0 	Fgc = 0 

Using this result, the forces in other members and the support reactions can 

be calculated easily using the method of joints. 
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Step 7 

The method of joints for B and C along with the final reactions are shown 

below in Fig. 1.14: 

5 k Ok 

-FTEFy  = 0: 
C 	5(.4:•) = Y 	5 
Cy  = 4 k T 

+ 5(i) = 
Cx  = 3 k 

+11T;, = 0: 
—By  + 0 = 0 
B = O 

ETX = 0: 

B, — (-3) = 0 

B, = —3 k 

a) Calculation of C, and Cy 
	 b) Calculation of Bx  

3k 

5k 

B 	3k 
A 

-3k 
4 k!  

c) Final reactions 

Figure 1.14: Final reactions and internal forces for the indeterminate truss 



26 I Chapter 1 — The Force Method 

1.8 Summary 

In this chapter, the basic concept of the force method is explained 

briefly but succinctly. This is followed by application of the force method to a 

set of problems dealing with structural analysis of an indeterminate beam, 

frame and truss. It is to be noted that force method uses the concept of Static 

Indeterminacy (SI) and involves a large number of deflection calculations. 

Hence, knowledge of the prerequisite courses dealing with deflection 

calculations is paramount to a strong understanding of this approach. 
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Problems 

Analyze the Problems from 1.1 to 1.3 for all the unknown reactions using the 

force method. 

Problem 1.1  Determine the reactions at the supports of the beam shown in 

this figure. EI is constant. 

8 m • 4 m 

Problem 1.1 

Problem 1.2  Determine the reactions at the supports of the frame shown in 

this figure. EI is constant. 

8k 

10 ft 

L_.  

B 2 4 ft 

6 ft 

8 ft 

Problem 1.2 
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Problem 1.3  Determine the reactions at the supports of the truss shown in 

this figure. AE is constant. 

4m 
Problem 1.3 



Chapter 

Displacement Method of Analysis: Slope-Deflection Method 

2.1 Basic Concepts of the Displacement Method 

The displacement method refers to the general approach of solving 

indeterminate structural analysis problems with displacements as the primary 

variables. Two displacement methods that will be explained in this book are 

classical methods called slope-deflection and moment distribution. The 

displacement method uses the concept of structural Kinematic Indeterminacy 

(KI). The formula for this is: 

K.I. = (degrees of freedom at all supports in the given structure) 	(2.1) 

Where: Degrees of freedom are unrestrained motions of a joint/support. This 
means a fixed support has zero degrees of freedom and a pin has one (rotation). 

The results obtained using the slope-deflection method are the end 

moments (internal moments) at the supports of the structure. These are found 

through a two-step process of first finding the rotations (slopes), and second 

finding the end moments. In contrast, the moment distribution method, which 

will be discussed in Chapter 3, gives end moments directly as a result of the 

procedure. After finding the end moments, the reactions at various supports 

can be determined using principles of statics. 

In the slope-deflection method, the unknown displacements are usually 

rotational displacements of a pin or roller support. The displacements are 

written in terms of the loads using the load-displacement relationships, also 

known as slope-deflection equations. The resulting equations are then solved 
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for the displacements. Therefore, the main intermediate output resulting from 

the slope-deflection method is displacements. The final output is end moments. 

2.2 Basic Procedure of the Slope-Deflection Method 

2.2.1 Slope-Deflection Equations 

Before the actual procedure is discussed, it is important to introduce the 

slope-deflection equations, which are key to the slope-deflection method. 

Derivation of the slope-deflection equations will not be shown; these are done 

with great detail in the books listed in the references section. 

 

L 

 

MBA 

  

a) Beam Fixed at B 

 

b) Beam Fixed at A 

L 

c) Beam with support settlement 

Figure 2.1: Moments and displacements on typical indeterminate beams 
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With respect to Fig. 2.1, the slope-deflection equations can be written (without 

support settlement) as, 

MAB = MFAB 
2E1 

(29A  + GB) 
	

(2.2) 

2E1 
MBA = MFBA 	(20B + BA) 

	
(2.3) 

Wang (1953) advocates using relative stiffness factors instead of actual 

stiffness factors to simplify the calculations. Modifying Eq. 2.2 and Eq. 2.3 to 

include stiffness factors yields, 

MAB = MFAB KAB(29A + 9

• 

B) 
	

(2.2a) 

MBA = MFBA KBA(26B + O

• 

A) 
	

(2.2b) 

Where, MAB 
MBA 
MFAB 

MFBA 

OA 

= Moment at joint A of member AB 
= Moment at joint B of member AB 
= Fixed-end moment at end A of member AB due to 

applied loading 
= Fixed-end moment at end B of member AB due to 

applied loading 
= Slope at joint A 
= Slope at joint B 

2.2.2 Sign Convention for Displacement Methods 

• Clockwise moments are positive 

▪ Counterclockwise moments are negative 

• Clockwise rotations are positive 

• Counterclockwise rotations are negative 
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2.2.3 Fixed-End Moments 

Fixed-end moments are reactionary moments of a single span beam 

having fixed supports for a given loading. Table 1A give fixed-end moment 

values for various load types. 

2.3 Analysis of Continuous Beams by the Slope-Deflection 

Method 

Before discussing examples, the calculation procedure will be outlined below: 

1. Calculate all the fixed-end moments due to applied loads at the end of 

each span using Table lA found in the appendix. 

2. Calculate the Kinematic Indeterminacy (KI) of the structure. It is 

expressed as, 

K.I. = E (degrees of freedom at all supports in the given structure) 

Degrees of freedom are unrestrained motions of a joint/support. This 

means a fixed support has zero degrees of freedom, a pin has one 

(rotation), and a frame's joint has one (rotation). 

3. Formulate all the slope-deflection equations for each member of the 

continuous beam using Eq. 2.2 and Eq. 2.3. These equations are in 

terms of the unknown rotations at the supports. 

4. Formulate simultaneous equilibrium equations at the joints (not fixed) 

using the basic premise that the sum of the end moments at the support 

(for all the members joining at the support) is zero. The number of 

unknown rotations in the problem is equal to the number of 

simultaneous equations to be solved as well as the KI found in step 2. 

5. Solve the simultaneous equations formulated in Step 4 and obtain 

rotations at the supports. 
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6. Compute end moments by substituting rotations back into the slope-

deflection equations. 

7. Depending on the statement of the problem, calculate all the reactions. 

8. Draw shear and moment diagrams for the continuous beam as needed. 

Example 2.3.1 

Determine the reactions at the supports for the statically indeterminate 
beam shown in Fig. 2.2 by the slope-deflection method. Take E = 29000 ksi 
and I = 446 in4. 

36 k 

A 

	I 

	 C 

10 ft 
	

12 ft 

Figure 2.2: Statically indeterminate beam 

Solution 

Step 1 

Calculate the fixed-end moments using Table 1A found in the 

appendix. The fixed-end moments for AB and BA are both zero because 

there is no loading on the span of member AB. 

MFAB =7- 0 and MFBA = 0 

Step 2 

KI =1 

The unknown displacement is OB. Although the other unknown 

displacements (0c  and Ac) exist, these displacements are unnecessary to 

CT'  
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solve the problem because they do not occur at a support where specific 

unknowns need to be found (B y) . 6B must be found so that we can find the 

reaction at B. In contrast, solving for Oc  would not give us any information 

about the reactions of the structure. 

Step 3 

Slope-deflection equations are formed using Eq. 2.2 and Eq. 2.3 as, 

/ 	, 	El al  

B MAB 0  + L

„ 
E, - LLuA uBJ = — u 10 	5 

(Note: OA = 0 due to the fixed support at A) 

MBA = 0 + 2E -1-1-0- [20B  + OA] = 
25E/ 9B  

Similarly, MBC can be written as, 

MBC =
- 36 * 12 = -432k-f t  

Note: MBC  is negative because the internal moment caused by the loading, 

acts in the counterclockwise direction (opposite to the external moment 

at that point). 

Step 4 

Since KI = 1 for this problem, there is only one unknown, which is 

OB. Hence, there is only one joint equilibrium equation to be solved. This 

is given as, 

MBA + MBC ° 

Step 5 

Substituting the expressions for MBA and MBC from step 3, we have, 

2E1 	 080 
s OB- 432 = 0 --> 	= 

1
El 

(2.4) 

(2.5) 

(2.6) 

(2.7) 



Chapter 2 — Slope-Deflection I 35 

Step 6 

Substituting the value of the rotation back into the slope-deflection 

equations found in step 3, the end moments can be expressed as, 

MAB = 216k- f t  u 
	

(2.8) 

MBA  = 432k- f t  Z.) 	(2.9) 

Step 7 

The reactions at A (Ay) and at B (By) are calculated from principles of 

statics as shown in Fig. 2.3 below: 

216 k-ft 
Ay = 64.8 k 

10 ft 

Bye = 64.8 k 

432 k-ft 

ByR = 36 k 	36 k 

432 k-ft 
12 ft 

a) Reactions for AB 	b) Reactions for BC 

Figure 2.3: Reaction calculation 

—> EF, = 0 —* A, = 0 	+T EFy  = 0: Whole beam +EMB  = 0 : Member AB 	—AY  + BY  — 36 = 0 

216 + 432 — Ay  * 10 = 0 	—64.8+ By -36= 0  

216+432 	B = 100.8 k T Ay= 
10 = 64.8 k 

Step 8 

The bending moment diagram (BMD) can be drawn as needed. 
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2.4 Analysis of Continuous Beams with Support Settlements by 
the Slope-Deflection Method 

The slope-deflection equations including settlement with respect to Fig. 2.4 are 

given as, 
+ _2LE/ (29A  ,„„ 

k,LuA -r uB- MAB MFAB 	3IFAB) 

2E1 
MBA = MFBA L  (20B  + OA- 37-1  BA) 

(2.10) 

(2.11) 

Where, 	MAB = Moment at joint A of member AB 
MBA = Moment at joint B of member AB 
MFAB = Fixed-end moments at the end A of member AB due 

to applied loading 
MFAB = Fixed-end moments at the end B of member AB due 

to applied loading 
OA 	= Slope at joint A 
0B 	= Slope at joint B 
TAB = Rotation of the member AB due to translation 

(settlement) of joint B perpendicular to member AB 

'TAB = A IL 
	

(2.12) 

Where, 	A 	= Translation (settlement) of joint B perpendicular to 
axis of member AB 

L 	= Length of member AB 

P 

A 
	

B 

A 
, 

Figure 2.4: Statically indeterminate beam with support settlement at B 
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It is to be noted that 'I' is treated positive when the rotation is 

clockwise, consistent with the sign convention stated in Sec. 2.2.2. 

Equations 2.10 and 2.11 can be rewritten using the relative stiffness 

factors and relative TAB values as, 

MAB = MFAB KAB(29A OB-34fre1) 
	

(2.10a) 

MBA = MFBA KBA(20B + 0A-34frei) 
	

(2.11a) 

The relative stiffness factors (KAB and KBA) for any general member AB can 

be expressed as 2E1 /L and 'Frei as A /L. 

The procedure for solving continuous beams where joints are subjected 

to vertical translation amounting to settlement of supports remains the same as 

discussed in Sec. 2.3. 

Example 2.4.1 

Determine the reactions at the supports for the statically indeterminate 
beam shown in Fig. 2.4 by the slope-deflection method. Take E = 29000 ksi 
and I = 446 in4. The support at B is displaced downward 1 in.  

36 k 

1 0 ft 
	

12 ft 

Figure 2.4(repeated): Statically indeterminate beam with support settlement at B 
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Solution 

Step 1 

In the slope-deflection method, fixed end moments due to support 

settlement are not considered because support settlement is accounted for 

using II'. 

MFAB = 0 and MFBA = 0 

Step 2 

KI = 1 

Since IF is known, the only unknown displacement is OB. Moreover, 

due to downward displacement at B, it can be seen that the cord of span 

AB rotates clockwise, thus 'If is positive. 

A 

Figure 2.5: Effect of displacement at B 

1 in 
'FAB - LFBA 10(12) in 

= 0.00833 rad 

Step 3 

Slope-deflection equations are formed using Eq. 2.10 and Eq. 2.11. 

MAB = 0 + 2E [MA  + B 31F AB] = (0 B- 3 * 0.00833) 

MAB = 25  (9B-  0.025) 

MBA = 0 + 2E io  [28B  + OA  - 3111BA]= E. 2-5  (20B-3 * 0.00833) 
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MBA = (29B- 0.025) 

In this problem, the fixed support at A inhibits rotation at the joint, 

therefore 0A  = 0. This will be true for all fixed supports, even if there is 

joint translation; the member rotation is accounted for using W. 

From statics: 

MBC = -36 * 12 = -432k-ft 

Note: MBC  is negative because the internal moment caused by the loading, 

acts in the counterclockwise direction (opposite of the external moment 

at that point). 

Step 4 

The only joint equilibrium equation is for joint B and since it is a roller, 

MBA + MBC 

Step 5 

Substituting the expressions for MBA  and MBC  from step 3 we have, 

-> ( 2 B  - 0.025) - 432 = 0 

Solving this equation to find 0B gives, 

E = 29000 ksi * 144 = 4176000 ksf 

I = 446 in4 = 446 f t 4 = 0.0215 ft 4  124- 

-> OB  = 0.02453 rad 

Step 6 

Substituting the value of the rotation back into expressions for end 

moments calculated in step 3, the end moments can be expressed as, 

MAB = 8.44k -f t  (5 

MBA = 432k  -ft 
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Step 7 and Step 8 

The reactions at A (RA) and B (RB) are calculated from principles of statics 

as can be seen below. 

   

ByR = 36 k 

432 k-ft 

 

36 k 

  

Byt. = 42.356 k 

1 • , 432 k-ft 

 

-8.44 k-ft 
Ay = 42.356 k 

10 ft 12 ft 

 

a) Reactions for AB 	b) Reactions for BC 

Figure 2.6: Reaction calculation 

= 0 --> As  = 0 

u.EMB  = 0 : Member AB 

—8.44 + 432 — Ay * 10 = 0 
432-8.44 

Ay = 	= 42.356 k 1 10 

+T EFy  = 0: Whole beam 
—Ay  + By  — 36 = 0 
—42.356 + By — 36 = 0 
B = 78

• 
356 k T Y  

If needed, the bending moment diagrams (BMD) can be drawn. 
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2.5 Application of the Slope-Deflection Method to Analysis of 
Frames Without Joint Movement 

The procedure for solving a statically indeterminate frame is the same 

as a statically indeterminate beam, which was explained in Sec.2.3. An 

example is provided below to clarify the concept and procedure. 

Example 2.5.1 

Determine the moments at each joint of the frame shown in Fig 2.7. 
E = 29000 ksi, A = 16 in2, and I = 446 in4  for all members. 

4 k/ft 

lOft 

A 

8 ft 

Figure 2.7: Indeterminate frame (no side sway) 

Solution 

Step 1 

Since the loading is only on the span BC there will only be fixed-end 

moments in members BC and CB. 

	

wL2 	4(8)2  = -21.33k-ft  -- MFBC = - 12 = 12 
wL2  4(8)2  = 2 1.3 3k-f t  MFCB = - = 

	

12 	12 



42 I Chapter 2 - Slope-Deflection 

Step 2 

KI = 2 

There are two unknown displacements in this problem, which are 

Og  and Oc. They are unknown because these frame joints will rotate as the 

members bend due to the applied loading. The rotations OA  and OD  are zero 

because of the fixed supports at A and D. Due to symmetrical loading, 

there will be no side sway in the frame, therefore W = 0. 

Step 3 

The slope-deflection equations are formulated below using Eq. 2.2 and Eq. 

2.3 as, 

MAB = 2E [20A  + B] 

MBA = 2E [20B  + BA] 

MBC = -21.33 + 2E [2013  + ed 

MCB = 21.33 + 2E [20c  + Old 

MCD = 2E -1-0-[20c  + OD] 

MDC = 2E [20D  + BC] 

= 5 
= 2E1 61B  

5 

= -21.33 + -E14  (20B  + BC) 

= 21.33 +(9B  + 20c) 4 

Step 4 

The corresponding joint equilibrium equations are written as, 

MBA + MBC = 0 and MCB  MCD = 

Step 5 

Substituting the expressions for MBA, MBC, 3 MCB, and MCD from step 3, we 

have, 
2E1 -B  21.33 + -E-1-(29B  + Oc) = 0 	(1) 4 

21.33 + -E-L (0B + 29c) 3±-7- Oc  = 0 	(2) 4 	5 



Dx = 1.97 k 

4 kJft 

-13.126 k-ft 	ifilifiii 	13.126 k-ft 
B 	C 

16 k 	16 k 

b) Reactions for BC - 	 Ax - 1.97 k 

1-  6.573 k-ft 

16 k 

13.126 k-ft 	N  
V 	
i 
	fit 1.97 k 

B 

a) Reactions for AB 

13.126 k-ft 
= -1.97 k 

C 

f ... -. 6.573 k-ft 

16k 

c) Reactions for CD 
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Simplifying these equations to isolate 8B and Oc  gives: 

From (1) --> 	0.9E/OB  + 0.25E/Oc  = 21.33 

From (2) —> 	0.25EI0B  + 0.9E10c  = —21.33 

Solving (1) and (2) yields: 

O 	
32.815 	32.815 

B 	 and 0 
El 	c  = 	El 

This step of solving the simultaneous equations can be greatly 

simplified by using a calculator with this capability. Otherwise, hand 

calculations can be used, but these will not be shown in the text. 

Step 6 

Substituting the value of the rotation back into expressions for end 

moments calculated in step 3, the end moments can be expressed as, 

MAB = 6.563 k - f t  

MBA = 13.126kt- f t  

MBC = —13.126k -f t  

MCB = 13.126k -ft  

MCD = —13.126k -ft  

MDC = —6.563 k - f t  

Based on the moments of each joints, we can easily compute the reactions 

at support: 

16k 
	

16 k 

Figure 2.8: Reactions for the frame 
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Alternatively,  the relative stiffness factors could have been used to 

solve this problem. If one were to use this concept, the relative stiffness 

factors for AB and BC would be as follows: 
2* / 

KAB—rei = — so (20) = 4 

2*I 
KBC—rel = 8  (20) = 5 

Here, the relative stiffness factors (-2Z) have been multiplied by the 

LCM (Least Common Multiple) to simplify the calculations. Also, E and I 

are not included in the relative stiffness factors because they must be 

constant in all members to use Krei . The rotations obtained using this 

concept are different than those found using the actual stiffness factors 

because they are modified according to the LCM. The point to be noted is 

that, the final end moments remain the same and calculation is facilitated. 

If one was to use these relative stiffness factors and modified slope-

deflection equations, 2.2a and 2.2b, the value of OB comes out to be 

1.6408. However, the actual end moments remain the same. 

El 	El 32.815  
ME = OB 	* 	— 6.563k-ft  A  El 

MAB—rei = 4[0B] = 4 * 1.6408 = 6.563k-ft 



MAB A 

F1  

Ls* MBA 
B (---- HB 

b) Column AB 

HD 

MDC 
D< HD 

c) Column CD 

w 

UlUU U141,1 ,1, 

Yi 

F1 

B 

1  VD 

h2 

VD 

A 
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2.6 Derivation of Shear Condition for Frames (With Joint 
Movement) 

When analyzing frames with joint movement, an extra unknown (A or 

`11) is added to the usual unknown displacements. This means an extra equation 

is needed. The equation is obtained from what is known as the "shear 

condition" at the base supports of the frame. 

a) Frame with side sway 

Figure 2.9: Frame with sidesway — Basic concept illustration 

For a typical frame (Fig. 2.9), the shear condition obtained from the 

basic equation IF, = 0 is given as, 

Fl  — HB  — HD  = 0 	(2.13) 

Where HB  and HD  can be found by taking E MA  = 0 and E Mc  = 0 using 

Figures 2.9b and 2.9c. 
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This would yield the flowing two equations. 

HB 	 MAB+MBA 

hi 
(2.13a) 

CD+MDC  HD = 

	

	 (2.13b) 2 11 
Equations 2.13a and 2.13b are written with the assumption that the end 

moments of a column are clockwise (positive). Figure 2.9b and 2.9c show the 

free body diagrams for columns AB and CD with which the expression for HB 

and HD are derived. Equation 2.13 has to be solved in addition to the other 

joint equilibrium equations. 

The rest of the procedure remains same as outlined in Sec. 2.3. 

2.7 Application of the Slope-Deflection Method to Analysis of 
Frames With Joint Movement 

An example is solved below to illustrate the analysis of a frame with sidesway 

using the slope-deflection method. 

Example 2.7.1 

Determine the reactions at the supports of the frame shown in Fig. 2.10. 
A = 100 in2, E = 29000 ksi and I = 833 in4. 

4 k/ft 

8 ft 

1 0 ft 

Figure 2.10: Indeterminate Frame (sidesway) 



4 k/ft 

8 ft 

10ft 

A 
Figure 2.11: Bending of frame in Ex. 2.7.1 
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Solution 

Step 1 

The fixed-end moments are calculated using Table 1A found in the 

appendix. 

4*8 2  
MFAB = 12 = _2133k-f t 

4*82  
MFBA 12 

2133k-f t  

Step 2 

The unknown displacements are Om  Oc  and WBc. KI = 3 

Step 3 

The slope-deflection equations for this structure can be written as, 

MAB = 2E18- [2(0) + OB ] — 21.33 = •T:OB  —21.33 	(1) 

(Note: OA  = 0 due to fixed support at A) 

MBA = 2E1.8- [20B  + 0] + 21.33 = 512  OB  + 21.33 	(2) 

MBC = 2E7-1-6[20B  + 9C —  'BC] 1 3)  ( 

McB  = 2E3/-0- [20c  + OB  — tif BC] 4)  ( 
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Step 4 

Moment equilibrium required: 	MBA + MBC 
	

(5) 
Roller support at C ---> 	MCB 	0 

	
(6) 

Due to symmetrical loading there is no moment in member BC, but the 

structure will still sidesway. Hence, 

MBC 0 	(7) 
Step 5 

From Equations (5) and (7) ---> 	MBA ° 

Substitute in (2) --> 

2
OB  + 21.33 = -> OB  = 

Step 6 

Substituting the value of the rotation back into expressions for end 

moments calculated in step 3, the end moments can be expressed as, 

MAB = -32k-ft 

Step 7 and Step 8 

The reactions at A (A, and Ay) and C (Cy) are calculated from principles of 

statics: 

-4 ET, = 0 --> A x  = 0 

EWA  = 0: 

-32+32 * 4- Cy * 8 = 0 -> C = 12k (T) 

+TET"), = 0: 

Ay + 12 - 32 = 0 -) Ay = 20k (T) 

42.66 
El 

After the reactions are obtained, the Bending Moment Diagram (BMD) and the 

Shear Force Diagram (SFD) can be drawn as needed. 
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2.8 Summary 

In this chapter, the fundamentals of a classical method, called the slope-

deflection method, were discussed. This was followed by examples applying it 

to beams and frames. The slope-deflection method essentially consists of 

solving a set of simultaneous equations where the unknown values are 

displacements. Finally, end moments are calculated using these displacements. 

This method is easy to use; and unlike the force method, does not require 

knowing how to do deflection calculations. 
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Problems 

Analyze Problems 2.1 to 2.3 using the slope-deflection method. 

Problem 2.1  Determine the reactions at the supports of the beam shown in 

this figure. El is constant. 

1.5 k/ft 

A 
	

C 

	

10 ft 
	

12 ft 

Problem 2.1 

Problem 2.2  Determine the reactions at the supports of the frame shown in 

this figure. A = 100 in2, E = 29000 ksi and I = 833 in4. 

.4, 32k 

	

8 ft 	 

10 ft 

Problem 2.2 
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Problem 2.3  Determine the reactions at the supports of the frame shown in 

this figure. A = 100 in2, E = 29000 ksi and I = 833 in4  

32 k 

Br 

2ft 

*NO 

 

8ft 

Problem 2.3 2.3 

c 

loft 





Chapter 

Displacement Method of Analysis: Moment Distribution Method 

3.1 Basic Concepts of Moment Distribution Method 

Hardy Cross originally developed the moment distribution method in 

1930. It is a classical and iterative method. It essentially consists of locking 

and unlocking each joint consistent with the actual boundary conditions. This 

means the whole procedure of moment distribution is carried out in such a way 

that at the end of it, the final end moments for a hinge (pin) joint should be 

zero while a fixed joint can have any amount of moment. Analysis of a 

structure essentially involves finding the end moments for each member. It will 

be interesting to compare the moment distribution method with another 

classical method — the slope-deflection method (discussed in Ch. 2). In the case 

of the slope-deflection method, finding end moments of members is a two-step 

process. The first step is finding the slopes at each joint and the second is 

finding end moments for each member. On the other hand, the moment 

distribution method directly gives the end moments for each member. The 

moment distribution method, like the slope-deflection method, uses fixed-end 

moments and stiffness factors. Additionally, the moment distribution method 

uses distribution factors. It is through the distribution factors that the moment 

distribution is essentially carried out because they dictate how much moment a 

specific joint will transfer. Distribution factors are obtained using the stiffness 

factors for each member in such a way that it reflects the property of the joint. 

Thus, since the total moment at a hinge joint is zero, the distribution factor at a 

hinge joint is one. Similarly, the distribution factor at a fixed joint is zero as 
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the fixed joint can carry any amount of moment. The distribution factor will be 

discussed with more detail in section 3.2.3. 

3.2 Stiffness Factor, Carry-Over Factor and Distribution Factor 

Three important factors used in the moment distribution method are the 

stiffness factor (K), Carry-Over factor (CO) and the Distribution Factor (DF). 

These will be described in the following sections. 

3.2.1 Stiffness Factor 

L 

Figure 3.1: Beam with moment applied at B 

Fig. 3.1 shows a beam with a moment applied at B. It can be proven that, 

Or, 

Where, 

4E1  
MBA = L u 

oi 
B 

MBA = KOB 

K= 4E1 
L 

(3.1) 

(3.2) 

(3.3) 

In Eq. 3.3, K is the stiffness factor for member AB, which is defined as 

the amount of moment needed at B to induce a unit rotation (BB  = 1 rad). 

Other books sometimes modify the stiffness factors based on support 

conditions, but in this book the authors will advocate using the stiffness factor 

K = 4EI/L for all members. Using K = 4E1 /L for all members will simplify 

the analysis and provide the same answers. 
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3.2.2 Carry-Over Factor (CO) 

In Fig 3.1, it can be proven that the moment induced at A is, 

2E1 al  
MAB 	L  uB (3.4) 

From Eq. 3.1 and Eq. 3.4 it can be seen that the carry-over moment, 

moment induced at A, is 1/2 of the applied moment at B. This implies that the 

carry-over factor, which is the ratio of MA to MB, is 0.5. Thus it can be stated 

that for a beam simply supported at one end and fixed at the other, the CO is 

0.5. This concept will be applied in the moment distribution procedure. 

3.2.3 Distribution Factor (DF) 

(DF)lnember 
	Kmeniber  

nmember 
	 (3.5) 

Where, Km ember  includes all members connected to the joint considered. 

   

   

    

A 

  

       

       

       

       

       

       

        

a) 	 b) 

Figure 3.2: Concept of distribution factors 
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Using Fig. 3.2a, the distribution factors can be defined as, 

(DF)AB = KAB I (KAB KAC KAD KAE) (3.5a) 

(DF)AC = KAC I (KAB KAC KAD KAE) (3.5b) 

(DF)AD = KAD l(KAB KAC KAD KAE) (3.5c) 

(DF)AE = KAE I (KAB KAC KAD KAE) (3.5d) 

The distribution factor at a fixed support is zero because it "absorbs" 

moments rather than distributing them. Applying Eq. 3.5 at joint E proves this 

as can be seen below: 

DFEA  KEA 	0 

KEA+ °° 
(Fixed support) 

In theory, a fixed support is "infinitely" stiff because it could take a 

moment of any size. This makes the denominator of the above equation co, 

therefore DF = 0 for all fixed supports. Similarly, DF = 1 for pin and roller 

support at the end of a beam. Considering joint C in Fig. 3.2b, the distribution 

factor would be calculated as follows: 

KCA DFcA 	1 
KCA 

(End-pin support) 

Here, you can see that since there is only one member attached to end 

joint C, the stiffness factor is 1. This is true for all pin and roller supports at the 

ends of continuous beams. 
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3.3 Analysis of Continuous Beams by Moment Distribution 
Method 

The basic procedure for solving problems containing continuous beams 

using the moment distribution methods will be explained first followed by an 

example. 

3.3.1 Basic Procedure for Moment Distribution 

The general procedure for analysis of beams and frames is the same. 

Therefore, the procedure listed below is applicable to beams and frames (i.e. 

structures essentially in flexure or bending): 

1. Calculate the stiffness factors (K) for each span using the following 

equation: 
4E1 K = — 	 (3.3) 

2. Calculate the Distribution Factor (DF) for each member using the 

following relation: 
K member  

DFmember 
Kmember 

Where, E Kmember includes all members connected to the joint considered. 

Note: 

	

	Distribution factors that are unknown must be solved using 

Equation 3.5, but those that are known, fixed supports and end-

pin supports, can be found immediately. 

3. Calculate the fixed-end moments using Table lA in the Appendix. This 

step means locking all the joints. The sign convention used is: clockwise 

moments and rotations are considered positive. 

4. Set up the moment distribution table by entering the calculated fixed-end 

moments for each member and the distribution factors for each joint. The 

(3.5) 
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table will need to include all the members, and will look similar to the 

following depending on the amount of joints: 

Joint 
Member 
DF 

A 
AB 

B 
BA BC CB 

C 
CD 

D 
DC 

MF 
Bal 
CO 
Bal 

i 1 1 1 1 I I 

Final 

5. Start the 1st cycle of moment distribution by unlocking each joint. Sum 

up the MF for all members connected at each joint to get the unbalanced 

moment (M .--(unbalanced))• Multiply this moment by the respected DF and 

invert the sign to get the Bal for that member. The following relationship 

can be utilized: 

B al  Al(unb alanced) * DF 

At a pin support, when summing the MF and Bal of each cycle, both 

members will be delivering the same moment with opposite direction 

(sign) to the joint. This means the joint is balanced. Fixed supports will 

have a residual moment. 

6. Find the CO by carrying Bal values across members (from joint to joint) 

with a factor of 1/ 2. Then get the new unbalancing moments by using the 

CO. Step 5 and 6 involve locking and unlocking the joints. The first 

locking moments are due to fixed moments (caused by the given loads). 

The successive locking moments are obtained through CO. 

7. Continue the balancing until the final unbalance at each joint is about I% 

of the initial unbalance moment at any joint. 
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3.3.2 Example for a Continuous Beam 

The procedure discussed above will now be applied to a multi-span continuous 

beam. 

Example 3.3.2.1: 

Analyze the continuous beam shown in Fig. 3.3 using the moment 
distribution method. 

36 k 

	 C 

10ft 
	

12ft 

Figure 3.3: Continuous beam 

Solution 

Step 1 

Stiffness Factors are not needed here because all the distribution factors are 

known. 

Step 2 

DFAB  = 0 	(Fixed support) 

DFBA  = 1 	(End-pin support) 

DFBc  = 0 	(No moment is transferred from B to C) 

Step 3 

MFAB = 	MFBA - 	MFBC 	36 * 12 = -432 k- f t  

Note: MFBc  is negative because the internal moment caused by the loading, 

acts in the counterclockwise direction (opposite to the external moment 

at that point). 

A 
	 B 



60 Chapter 3 — Moment Distribution 

Step 4 — 7 

The moment distribution table is set up as shown in Table 3.1. First, 

the joints A and B are added to the table along with the corresponding 

members. Joint C is not part of the table because there is no support. Then, 

the distribution factors of each member are added based on their support 

type, and whether they are intermediate or end supports. In this case, joints 

A and B are end supports because the cantilever portion can be simplified 

into a moment acting at the BC location. Members AB and BA have no 

fixed-end moments because there is no loading on the span of the member. 

The balance for the first cycle in member BA needs to be 432 to satisfy 

joint equilibrium at joint B. This number can be found either by inspection 

(-432 + x = 0) or by the standard procedure of: 

Bal = — M(unbalanced) * DF 

BalBA  = —(MBc. + MBA) *1 

BalBA  = — (-432) * 1 = 432f t k  

The carry over only occurs from joint B to A because moments are 

not carried to C (cantilever), or from joint A because it is fixed (DF = 0). 

In this problem, the process is repeated only one more time because the Bal 

in the second iteration was all zero. Other problems will require more 

iteration so that the Bal is 1% of the initial unbalanced moment. 

Table 3.1: Moment distribution table 
Joint 

Member 
A 

AB BA 

B 

BC 

DF 0 1 0 

MF 0 	0 -432 

Bal 0 	432 0 

CO 
..< 

216 	0 0 
Bal 0 	0 0 

Final 216 	432 -432 
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The answers found here, M -AB = 216ft-k- MBA = 432f t-k  

and MBC = -432f t-k  (.5 are the same as found by the force method in 

Chapter 1 (Ex. 1.5.2.1) and by the slope-deflection method in Chapter 2 

(Ex. 2.3.1), but with less work. This is a good example of how powerful 

the moment distribution method is; yet the true power of this method will 

be seen once more complicated examples are solved. 

3.4 Analysis of a Continuous Beam with Support Settlement by 
Moment Distribution Method 

The procedure for moment distribution discussed in Sec. 3.1 is now 

applied to a continuous beam with support settlements and no other load. The 

fixed-end moments at each end are obtained using Equation 3.6a or 3.6b. 

A 

(3.6a) 

MFBA 

Figure 3.4: Effect of displacement at B 

From the right column of Table 1A, when considering the far end piimed then, 

-3E1A 
MFAB = L2 

From Table 1A, when considering both ends fixed then, 

-6EIA 
MFAB = MFBA = L2 	 (3.6b) 

When solving problems where the far end is pinned, it is possible to 

take advantage of the right column of Table 1A, which gives fixed-end 

moments for a structure where the far end is pinned. An example of a far end 

pinned member is member AB. Although this method can reduce the number 
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of calculations in the moment distribution table, it is not the only way to solve 

the problem. Alternatively, the standard fixed-end moments can be used for all 

joints, no matter the given support condition (fixed, pin, or roller). The 

difference between the two methods is that assuming all joints are fixed (using 

the left side of Table 1A) can be easier to set up, but it will often involve more 

iteration in the moment distribution table. In the next example both methods 

will be used to show that both methods provide the same answer without a 

great deal of difference in procedure. 

Example 3.4.1: 

Determine the reactions at the supports of the beam shown in Fig. 3.5 by 
the moment distribution method. Take E = 29,000 ksi and I = 446 in4. The 
su s port at B is displaced downward 1 in.  

A 

10 ft 
	12 ft 

Figure 3.5: Statically indeterminate beam with support settlement 

Solution 

Method 1  

Step 1 

Stiffness Factors are not needed here because the distribution factors are 

known. 

Step 2 

D FA B 
	(Fixed support) 

D FB A 1 
	

(End-pin support) 

DFBc  = 	(No moment is transferred from B to C) 
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Step 3 

Find MFAB due to settlement downward of support B 

3E/A 	3(4176000(0.0215)N 
MFAB 	12  —224.46k-ft  L2 	(102  

MFBC = —36(12) = — 432k-f t  

Note: MFBC  is negative because the internal moment caused by the 

loading, acts in the counterclockwise direction (opposite to the external 

moment at that point). 

Step 4 — 7 

Now the moment distribution table is filled in using the distribution 

factors and fixed-end moments found in steps 1 through 3. In this moment 

distribution table, the unbalanced moments are equal to the fixed-end 

moments at each joint. Just as was done in the first problem, the 

unbalanced moment is multiplied by the respected DF and the Bal is found. 

Only one carry over takes place, which is from BA to AB. After only two 

cycles the moment distribution table is finished because all Bal values are 

zero. 

Table 3.2: Moment distribution table (method 1) 
Joint 

Member 

A 

AB 

B 

BA BC 

DF 0 1 0 

MF -224.46 0 -432 

Bal 0 432 0 

CO 216 0 0 
Bal 0 0 0 

EM -8.46 432 -432 

The answers found here, MAB = —8.46ft-k MBA  = 432ft-k  

and MBC  = —432f t-k  0 are the same as found by the force method in 

Chapter One (Ex. 1.5.2.1) and by the slope-deflection method in Chapter 

Two (Ex. 2.3.1), but with less work. 
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Method 2  

Step 1 

Stiffness Factors are not needed because the distribution factors are known. 

Step 2 

DFAB 0 	(Fixed support) 

DFBA - 1 	(End-pin support) 

DFBC = 0 
	

(No moment is transferred from B to C) 

Step 3 

MFAB = MFBA 

Step 4 

6EIA 	6(4176000)(0.0215)(1 
- 
	12)  = 488.92k-f t  L2 	(10)2 

Since the left column fixed-end moments are used, member BA 

now has the same moment as member AB. The unbalanced moment for 

joint B is found by summing up MFBA and MFBC. This value is then 

multiplied by the distribution factor of members BA and BC as seen below: 

Bal = --M(unbalanced) * DF 

BaIBA = -(MBC + MBA) * 1  

BalBA  = -(-432 + (-448.92) ) * 1 = 880.92ft-k  

Next, the carry-over factor (1/2) is applied from joint B to Joint A, 

as indicated by the arrows. From here all balances are zero so the moments 

are summed up and the table is complete. 

Table 3.3: Moment distribution table (method 2) 
Joint 

Member 
DF 

A 
AB 
0 

BA 
1 

B 
BC 
0 

MF -448.92 	-448.92 -432 

Bal 0 	880.92 0 
.>< 

CO 440.46 	0 0 
Bal 0 	0 0 

EM -8.46 	432 -432 
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When comparing the two methods, the final moments are exactly the 

same, and found in only two cycles. This proves that both methods can be used 

for a given problem based on preference. The authors of this book prefer 

method 2 due to the simplicity of finding the fixed-end moments. It should also 

be noted that the results are identical to those obtained using the slope-

deflection method in Ex. 2.4.1 which can be seen in the chapter summary in 

Section 3.7. 

3.5 Application of Moment Distribution to Analysis of Frames 
Without Sidesway 

The analysis of frames without sidesway is similar to that of continuous 

beams. The procedure described in Sec. 3.3 will be used to analyze frames 

without side sway. An example is discussed below to illustrate this concept. 

Example 3.5.1: 

Determine the moments at each joint of the frame shown in Fig. 3.6 by the 
moment distribution method. E = 29,000 ksi, A = 16 in2  and I = 446 in4  
for all members. 

4 k/ft 

10 ft 

8 ft 

Figure 3.6: Indeterminate frame (no sidesway) 
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Solution 

Step 1 
4E1 	4E1 	4E1 

	

KAB = KBC = 	and 	= 10 	8 	10 

Step 2 

In this problem we must find the distribution factors for the members at 

joints B and C using Equation 3.5 because they are unknown. At joint B, 
4E1 

0  DFBA = 4E1
1 
 4E1 = 0.444 

10 8 

-> DFBC  = 1- 0.444 = 0.556 

Similarly at joint C, 
4E1 

- 8  -> DF CB — 4E1 4E1 = 0.556 
10 8 

-4  DFcD = 1- 0.556 = 0.444 

Step 3 

The fixed-end moments are found using Table 1A. 

	

wg 
= 	12 

4(8)2 
MFBC 	

21.33k-ft 
12  

4(8)2  21.33k-f t  MFCB 12 

Step 4-7 

All the joints, members, distribution factors, and fixed-end 

moments are filled in based on steps 1 - 3. A sample calculation for the 

balance of the first cycle for members BA and BC is given below: 

Bal  = -M(unbalanced) * DF  

BalBA — (MBC+ MBA) * 0.444 

BalBA  = -(-21.33 + 0) * 0.444 = 9.48f t-k  

Ba1BC = -(M.Bc + MBA) * 0.556 

Ba/Bc  = -(-21.33 + 0) * 0.556 = 11.85f t-k 
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Carly-over is applied between joints B and C, from B to A, and 

from C to D. This process is repeated until the balance is about 1% of the 

original unbalanced moment. Lastly, values for the internal end moments 

of each member are found by summing up all the entries in each members 

column starting with the fixed-end moment. 

Table 3.4: Moment distribution table 
Joint 

Member 

DF 

A 

AB 

0 

BA 

0.444 

B 

BC 	CB 

0.556 	0.556 

C 

CD 

0.444 

D 

DC 

0 

M F 0 0 -21.33 	21.33 0 0 

Bal 0 9.48 11.85 	-11.85 -9.48 0 
CO 4.74 0 -5.925 	5.925 0 -4.74 
Bal 0 2.633 3.292 	-3.292 -2.633 0 

CO 1.317 0 -1.646 	1.646 0 -1.317 
Bal 0 0.731 0.914 	-0.914 -0.731 	0 
CO 0.366 0 -0.457 	0.457 0 	-0.366 
Bal 0 0.  203 0.254 	-0.254 -0.203 0 
CO 0.102 

><. 
0 -0.127 	0.127 0 -0.102 

Bal 0 0.056 0.071 	-0. 071 -0.056,, 0 

CO 0.028 
?‹. 

0 -0.0361
..?‹ 

0.036 
deA 

0 	-0.028 
Bal 0 0.016 0.02 -0.02 -0.016 0 
EM 6.55 13.12 -13.12 13.12 -13.12 -6.55 

The answers for the reactions at the base would be the moments, 

MAB 6.55k-f t  Z..) and MDC = -6.55k-f t  0 . These values of end 

moments are very similar to the results of slope-deflection method. 

Note: MAB is the internal moment at joint A in member AB and is also 

the reaction at the support, MA. MA has the same magnitude and 

direction as MAB 

The vertical reactions at the base can be found using basic statics 

because the loading is symmetrical (half of the total distributed load force 
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applied to each support acting upward). Also the horizontal forces at the 

base can be found in the following fashion: 

13.12k-  f 
B 

B 

6.55k-f t  A 

Figure 3.6.1: Member AB 

= 0 : 

13.12 + 6.55 — 10A, = 0 
A, = 1.97 k -+ 

For the whole frame: 

= 0 : 
A, + = 0 
D„ = —A„ = —1.97 k 

-I- 

10 ft 

A, 

3.6 Application of Moment Distribution to Analysis of Frames 
with Sidesway 

In this section, the basic concept involved in analysis of a frame with 

sidesway by moment distribution will be discussed followed by an example. 

3.6.1 Basic Concepts: Application of Moment Distribution to Analysis 
of Frames with Sidesway 

To solve a frame with side sway, the principle of superposition will be 

utilized, Fig. 3.7. This analysis involves two steps: 1) Analyze the frame with 

sidesway being restrained and with the applied loading, see Fig. 3.7b and 2) 

Analyze the frame with only sidesway and no applied loads, Fig. 3.7c. In both 

steps the moment distribution table will need to be used. 
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F2 F3 

MDC 

VD 

a) Given frame showing sidesway 

b) Sidesway restrained 	c) Sidesway allowed 

Figure 3.7: Principle of superposition applied to a frame with sidesway 

The basic superposition equation for the moment at can be derived as, 

MNF 	NF kW !  NF 	 (3.7) 

Where, 

k = R/R' 
	

(3.8) 

N = Near joint of a member 

M = Far joint of a member 
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The single prime denotes the moments on the restrained frame, Fig. 

3.7b, and the double prime denotes the moments due to sidesway only, Fig. 

3.7c. The expressions for sidesway moments are given in Eq. 3.6a and 3.6b. 

The solution of frames with sidesway using the moment distribution 

methods essentially involves solving two moment distribution tables. The first 

table is for the frame restrained against sidesway having the given loading, and 

the second table is for the frame with sidesway only and no applied loads. The 

last portion of the superposition is relating the two sets of results through the k 

factor, Eq. 3.8. The process of filling in the moment distribution table will not 

change for frames with sidesway. 

3.6.2 Example of Moment Distribution: Analysis of Frames with 
Sidesway 

An example in which a frame with sidesway, or joint translation, is 

solved using the moment distribution method will be discussed below in 

Example 3.6.2.1 
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Example 3.6.2.1: 

Analyze the frame shown in Fig. 3.8 using the moment distribution 
method. Determine the reactions at the supports of the frame shown in 
this figure. A =100 in2, E = 29000 ksi and I = 833 in4. 

II l 1
14

1
k/ft

llllllllllll 
 

:A 

8ft 

10ft 

Figure 3.8: Frame with sidesway 

Solution 

Step 1 

Here we need to calculate the stiffness factors of the members connected to 

joint B, because we do not know DFBA  or DFBC. 
4E1 

Step 2 

KAB = KBA 

KBC = KCB 

8 
=0.5E1 

—  
4E1 
10 = 0.4E1 

—  

The distribution factors for members BA and BC are calculated 

below. DFBc  is found by 1 — DFBA  because the sum of the distribution 

factors at joint B must be 1. Also, since C is an end-pin support, DFCB  
0.5EI 

DFBA = 	= 0.556 
0.5E1 + 0.4E1 

DFBc  =1 — 0.556 = 0.444 

DFCB  = 1 (end-pin support) 

is 1. 



72 Chapter 3 - Moment Distribution 

Step 3 - Restrained frame 

The restrained frame includes an artificial support to inhibit 

sidesway at joint C. R is the reaction force at the artificial joint, C, due to 

the given loading. This is the first part of the principle of superposition 

applied to the frame. 

R 

Figure 3.8: Restrained frame (no sidesway) 

The fixed-end moments for member AB are calculated using Table 

lA and are shown below. There are no fixed-end moments on member BC 

because there is no external loading on the member's span. 
4.82 	 4.82  	= -2 1.3 3R-f t  and MFBA 	= 21.33k- f t  12 	 12 

Step 4 

Table 3.5, the moment distribution table for the restrained frame, is 

set up using the distribution factors and the fixed-end moments found in 

the first three steps. Then, iteration of Bal and CO are carried out, making 

sure that joint equilibrium is satisfied in each cycle. The carry-over factor 

of 1/2  is applied between joints where possible. Summing up each column 

yields the moments at each end of the members. 

MFAB 



= 0 • B 	• 
-8.008 + 10C, = 0 
C„ = R = 0.8008 k 
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Table 3.5: Moment distribution table for the restrained frame 

Joint 

Member 

DF 

A 

AB 

0 

B 

BA 

0.556 

BC 

0.444 

C 

CB 

1 

MF -21.33 21.33 0 	0 

Bal 0 -11.859 -9.471 	0 
CO -5.930 0 

1?‹. 
0 	-4.736 

Bal 0 0 0 	4.736 
CO 0 0 2.368 	0 
Bal 0 -1.316 -1.051 0 
CO -0.658 0 0 	-0.526 
Bal 0 0 0 	0.526 
CO 0 0 0.263 	0 
Bal 0 -0.146 -0.117 	0 

Final -27.918 8.008 -8.008 	0 

The results obtained here are, M'AB = -27.918k-ft (.5, 

M I  BA = 8.008k- f t  J, and M'BC = -8.008k-f t  (5. 

Calculate R: 

Using the internal moments found for the restrained frame in Table 

3.5, we can now find the force R. 

8.008k-f t  

0.8008 k 

10 ft 

4--- 
0.8008 k 

Figure 3.9: Calculation of R using member BC 



10 ft 
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Using Figure 3.9, the following calculation can be made: 

8.008f t-k  
Required couple = 	= 

10ft 	0.8008 k 

In order to satisfy equilibrium on this member, the couple must be acting in 

the opposite direction as the MBC, therefore: 

R = 0.8008 k 

Note: R is positive because it is acting in the direction assumed, Fig. 3.8. 

Frame with sidesway and artificial joint removed 

Again, the fixed-end moments on the members need to be found. 

Member BC will have a fixed-end moment due to deflection at C. 

Typically this would involve using Table I A found in the appendix, but if 

the columns have the same displacement (s'), E, I, and L, then an arbitrary 

value can be used with the correct direction. In this problem there is only 

one column and one moment so no problems will be encountered using an 

arbitrary moment of 100k-f t  applied clockwise at B. 

..\100 k- f t  

8 ft 

Figure 3.10: Frame with sidesway and artificial joint removed 

To set up Table 3.6, all we need are the distribution factors and the 

single MF for member BC. Then, the typical procedure of Bal and CO are 

used to fill in the rest of the table and find the end moments at each 

member. 



62.46k-f t  
6.246 k 4- 

B 

10 ft 

6.246 k 
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Table 3.6: Moment distribution table for the frame with side sway 
Joint 

Member 
OF 

A 
AB 
0 

B 
BA 

0.556 
BC 

0.444 

C 
CB 
1 

MF 0 0 100 0 
Bal 0 -55.6 -44.4 0 
CO -27.8 0 0 -22.2 
Bal 0 

2  
0 0 22.2 

CO 0 0 11.1 0 
Bal 0 -6.172 -4.928 0 
CO -3.086 0 0 -2.464 
Bal 0 0 0 2.464 
CO 0 0 1.232 0 
Bal 0 -0.685 -0.547 0 

Final -30.886 -62.457 62.457 0 

The results obtained here are, M"AB = -30.886k- ft (-5, 

M"BA = -62.457k- ft  (5, and Mif  Bc  = 62.457k-ft Z.). 

Calculate R': 

Now we will find the value of R', which is the amount of force 

required to make the displacement, 	at joint C using the moments found 

in Table 3.6. This is the second part of the principal of superposition for the 

frame. 

EM = 0 B 	• 
62.46 - 10C, = 0 
C, = = 6.246 k 

Figure 3.11: Calculation of R' using member BC 
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Using the figure above, the following calculation can be made: 

62.46f t—ic  
Required couple = 	

10ft 
= 6.246 k 

In order to satisfy equilibrium on this member, the couple must be acting in 

the opposite direction as the MBC, therefore: 

R' = 6.246 k 

Note: R' is positive because it acts in the direction assumed in Fig. 3.10 

Final moments: 

Using the ratio of R/R, we can complete the superposition and find 

the amount of moment that needs to be added or subtracted from the 

original moments found for the restrained frame. 

R 
MAB = Mi  AB (restrained) + R, M AB(sidesway) 

0.8008 
—27.918 + 	 30.886) = —32k-ft  MAB  	6.246 (  

0.8008 
MBA 	( 

= 8.008 + 	 62.46) = Ok-f t  
6.246  
0.8008 

= —8.008 + 	(62.46) = Ok-f MBC 	 t 6.246 
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The reactions at A (Ax  and Ay), at C (Cy) are calculated from principles of 

statics: 

F =O— A= 0 
+EMA  = 0 : —32 + 32 * 4 — Cy * 8 = 0 

Cy  = 12k(T) 

+I .EFy  = 0: Ay + 12 — 32 = 0 

Ay = 20 k (T) 

4k/ft 

32 k-fLA  

20 k 

12 k 

Figure 3.12: Final reactions for the frame 
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3.7 Summary 

A concise description of the concept of the moment distribution is 

presented in this chapter. This is followed by few problems dealing with 

continuous beams, frame without joint movements (sidesway) and with joint 

movements. It should be noted that moment distribution method directly gives 

moments. 

Table 3.7 shows a summary of the solutions to example problems from 

Chapter 1 to 3. The answers for each method are very close if not exactly the 

same, showing that any method may be used to analyze an indeterminate 

structure. The moment distribution method was the only method that showed 

slight differences. These can usually be minimized with more iteration. 

Table 3.7: Comparison of example problem solutions from Ch. 1- 3 

Chapter 1 

(Force Method) 

Chapter 2 

(Slope-Deflection) 

Chapter 3 

(Moment 

Distribution) 

Beam 
BY 	' =100 8k T 

A 	= -64.8 k I Y 	' 
MA = 216k-ft  Z.) 

By = 100.8 k T 

A 	= -64.8k I Y 
MAR = 216k- f t  Z) 

By = 100.8 k T 

AY  = -64.8 k I 

MAR = 216k-f t  Z.) 

Beam With 

Settlement 

B = 78 356 k T By 	• 
AY  = -43.356 k I 

MAB = 8.44k-f t  0 

B = 78 354 k T y 	• 
AY  = -43.354 k I 

MAR = 8.46k- f t  (.5 

Frame No 

sidesway 

MAB = 6.573k-f t  Z.) 

MAR = 6.573k-f t  (5 
Ay = Dy = 16 k T 

MAR = 6.55k-f t  Z.) 

MAB = 6.55k-  f t  (.5 

Ay = Dy = 16 k T 

Frame 

With 

Sidesway 

A = 20 k T Y 
C = 12 k I y 

MA = 32k-f t  0 

A 	= 20 k T Y 
CY  = 12 k I 

MAB  = 32k- f t  0 

AY  = 20 k T 

C3, = 12 k I 

MAR  = 32k- f t  0 
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Problems 

Analyze Problems 3.1 to 3.3 using the moment distribution method. 

Problem 3.1  Solve Problem 2.1 by using the moment distribution method 

Problem 2.1 repeated  Determine the reactions at the supports of the beam 

shown in this figure. El is constant. 

1.5 k/ft 

A 

10ft 	12ft 
.11*/10 

Problem 3.1 

Problem 3.2  Solve Problem 2.2 by using the moment distribution method 

Problem 2.2 repeated  Determine the reactions at the supports of the frame 

shown in this figure. A = 100 in2, E = 29000 ksi and I = 833 in4. 

32k 

A 	B 
8  ft  

10 ft 

Problem 3.2 



_ - 
2 ft 

10ft 
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Problem 3.3  Solve Problem 2.3 by using the moment distribution method 

Problem 2.3 repeated  Determine the reactions at the supports of the frame 

shown in this figure. A = 100 in2, E = 29000 ksi and I = 833 in4  

32 k 

8ft 

Problem 3.3 



Chap er 

Direct Stiffness Method: Application to Beams 

4.1 Basic Concepts of the Stiffness Method 

The stiffness method is the most powerful method used for analysis of 

structures. Almost all the computer codes written to analyze structures use the 

stiffness method. One reason for the wide use is because the general procedure 

of the stiffness method can be applied to any type of structure — beam, frame, 

truss, or any structure for that matter. Also, it is very easy to use and can be 

coded for analysis of entire structures. 

4.2 Kinematic Indeterminacy 

A structure's Kinematic Indeterminacy (KI) must be established before 

solving a problem by the stiffness method. Again, Kinematic Indeterminacy is 

defined as the total number of degrees of freedom for all the joints in a given 

structure. Another method similar to the stiffness methods is the flexibility 

method. The flexibility method is a matrix equivalent of the force method. 
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4.3 Relation Between Stiffness Method and Direct Stiffness 
Method 

While the stiffness method and the direct stiffness method are 

essentially the same, well-known authors have drawn a distinction (Weaver 

and Gere, 1990). Although the distinction is slight, it is important that this be 

explained, especially for the undergraduate students in civil engineering for 

whom this book is aimed at. In the stiffness method, the elements of a stiffness 

matrix are derived from the basic principles of engineering mechanics 

corresponding to the unknown displacements in the structure. In the case of the 

direct stiffness matrix, the standard stiffness matrix for each element (whether 

beam element, truss element or frame element) is used to assemble a structure 

stiffness matrix. This matrix is then used to solve for displacements. Thus, the 

direct stiffness method is more mechanical, to put it in plain tem.'s, and is very 

easy to use. For this reason, the direct stiffness method is very popular and 

widely used for analysis of any type of structure. The details of the direct 

stiffness method will be discussed in the text and also applied to beam, frame 

and truss structures with specific examples of each in this Chapter, Chapter 5, 

and Chapter 6 respectively. 

4.4 Derivation/Explanation of the Beam-Element Stiffness Matrix 

A typical beam element, or member, is shown in Fig. 4.1. As can be 

seen in Fig. 4.1, the action (A) and the displacement (D) are shown at the ends 

of a typical beam element. {D) represents a generalized displacement 

(translation or rotation) and {A} represents a generalized force (force or 

moment). In the stiffness method, all loads will be distributed to the nodes. An 

assembly of the various actions of a structure will constitute an action vector. 

Similarly, an assembly of the various displacements of a structure will 
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constitute a displacement vector. The reactions at the supports will also be 

considered part of the generalized action vector. In Fig. 4.1, the actions and 

displacements share a common number. To simplify things, one number and 

symbol are often written to represent both entities (See Fig 4.3). 

AI, DI 	 A3, D3 

Figure 4.1: Typical Beam Element 

Note: The sign convention used in the stiffness method follows the right hand 

rule. This means when curling the fingers on your right hand so that they 

point in the direction of the moment or rotation, if your thumb points up, or 

at you, then it is positive. Likewise, if it points down, or away from you, 

then it is negative. 

The basic definition of stiffness can easily be obtained from the 

following equation which is the basic relationship used in the stiffness method, 

(A) [K]{D} 	 (4.1) 

Where, 	{A} = Action vector 

{D} = Displacement vector 

[K] 	= Stiffness matrix 

From Eq. 4.1, if {D} = 1 then [K] = {A}. This implies that the force 

required to cause a unit displacement, is the stiffness. This is a very 

important definition. This basic relation is used in the analysis of every 

structure. If there is only one displacement, then [K] will be an element instead 

of a matrix. [K] will be different from element to element when the length (L), 

material (E), or cross section (I) are changed . 
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The matrix [K], used to relate the actions at joint A (near end) and joint 

B (far end) to the displacements at joint A and B for a beam element, can be 

expressed as (Weaver and Gere, 1990), 

 	Di D2 D3 D4 	 

12E1 6E1 12E1 6E1 
Al 

L3  L2  L3  L2  

6E1 4E1 6E1 2E1 
A2 

L2  L L2  [K] = (4.2) 
12E1 6E1 12E1 6E1 

A3 
L3  L2  L3  L2  

6E1 2E1 6E1 4E1 
A4 

L2  L L2  

Note: [K] is a symmetric matrix. 

The action and displacement vectors for the beam element shown in 

Fig. 4.1 can be expressed as, 

Al  

I 	

Di} 

	

A-, 	D-) 

	

(A} = A; 	and {D} = D3 ./../3 

	

A4 	D4 

(4.3a & 4.3b) 

The [K] matrix in Eq. 4.2 is written in structure coordinates (global x, 

y, z axes), which is the same as member axes for a beam element. The member 

axis changes with respect to the angle of the member. For example, the 

member axis of a column (vertical member) would be rotated 90° 

counterclockwise from the structure axis. Frame and truss elements that are not 

horizontal will have different member and global axis. Hence, [K] can also be 

called [Kmsi], which means stiffness matrix of the element in structure (global) 

coordinates. It is to be noted that the way the stiffness matrix [K] is written in 

Eq. 4.2 has to properly correspond with the action and displacement vectors in 
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Eq. 4.3. As can be seen by the markings D1  through D4 in Eq. 4.2, the rows and 

columns of [K] correspond to the translational and rotational displacements of 

a given member. The pattern used in Eq. 4.2 is not arbitrary. The first row 

corresponds to the translational displacement at the near (typically left) end of 

the member and the second row corresponds to the rotational displacement at 

the near end of the member. The third and fourth rows correspond to the 

translation and rotation of the far (typically right) end of the member 

respectively. This pattern must be followed for all members. Otherwise, the 

[K] will be wrong and erroneous results will be obtained. The displacement 

vector has to consist of translations and rotations at the near end followed by 

translations and rotations at the far end. The same order is to be followed for 

the corresponding actions when determining the action vector. 

Another point to be noted is that some of the displacements in the 

displacement vector will be unknown because they are free to displace. These 

will be called {DA because they are the free displacements. On the other hand, 

some displacements will be known because they are zero, or move a certain 

amount (support settlement). These are designated as {DR } because they are the 

restrained displacements. The free displacements are the ones to be obtained. 

The actions corresponding to the free displacements are denoted {AF}. They 

are known because they are the given applied loads. The unknown required 

forces (such as reactions) are designated as {AR } because they correspond to 

the restrained displacements. 

To summarize, we want to find the unknown free displacements {DF } 

and the unknown required forces {AR } using the known restrained 

displacements {DR } and the known given loads {As). 
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4.4.1 Global/Structure Stiffness Matrix 

In addition to the element stiffness matrix [K], there is the structure 

stiffness matrix [Ks], which links each individual member to the whole 

structure. To make the member stiffness matrix for a given structure, the 

following formula will need to be used: 

Kjij ET KAi _ Di 	 (4.4) 

Where, 	n 	= Number of terms with the same i-j location. 

KAi-D;  = Value in the element stiffness matrix [K] 

corresponding to Ai  and D1  

This formula is used to find each term of [K1] using the i-j location in the 

element stiffness matrix. 

4.5 Application of the Direct Stiffness Method to a Continuous 

Beam 

Here, the basic analysis procedure of the direct stiffness method for 

continuous beams will be explained followed by an example. 

4.5.1 Basic Procedure of the Direct Stiffness Method for Beams 

1. Number the joints. 

2. Number and define the members (with respect to how the member is 

connected and to which joints). Follow the same order when defining 

the displacements and the corresponding actions. 

3. Determine KI (Kinematic Indeterminacy) and identify the unknown 

displacements for the given structure. Then, number the displacements 

starting from the free (unknown) displacements followed by the 
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restrained displacements. Within the free displacements any order can 

be followed. 

4. Write down the element stiffness matrix [K] from Eq. 4.2 connecting 

the action vector and the displacement vector (from Eq.4.3) for all the 

members in the given structure. Again, make sure that the translational 

displacements are to be followed by rotational displacements (follow 

the same corresponding order for action vector as well). 

5. Assemble the structure stiffness matrix [K1] by combining the elements 

of the same kind using the following equation. 

Kfij 
	 (4.4) 

Where, 	n 	= Number of terms with the same i-j location 
KA L —Di  = Value in the element stiffness matrix [K] 

corresponding to Ai  and D. 

KAL _ Di  corresponds to all elements of the member stiffness matrix [K] 

that relate to a specific action, Ai, and displacement, Di. The above 

equation generates all the elements of the structure stiffness matrix [Ks ] 

by combining all the elements corresponding to suffix i-j for all the 

members. 

If the numbering of the displacements is done starting from the free 

displacements, the constitution of [K1], the joint structure stiffness 

matrix, as it relates to structure action and displacement will be as 

shown in Eq. 4.5 below. 

{AF} — [ KFF  KFR ] [DF1 
(4.5) 

AR 	KRR KRR DR 

Where: KFF 	Portion of the structure stiffness matrix containing the 
known actions {AF } and the corresponding free 
displacements [M. 

KFR = Portion of the structure stiffness matrix containing the 
known actions (AF) and the restrained displacements 
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KRF = Portion of the structure stiffness matrix containing the 
unknown forces [AR ) and the free displacements {Dr). 

KRR = Portion of the structure stiffness matrix containing the 
unknown forces {AR) and the restrained displacements 
(DR }. 

6. The unknown displacements {DO can be obtained from the following 

equation (which is derived from Eq.4.5), 

(DA [KFF] l{AFN) 
	

(4.6) 

Where fil FN ) denotes the net actual and equivalent joint loads 

corresponding to free displacements. Equivalent joint loads are member 

loads that are distributed to the joints. 

7. The unknown reactions {AR} can be obtained from the following 

equation: 

{AR} = [KRF]tDFI {ARO 
	

(4.7) 

Where {Am} denotes the net actual and equivalent joint loads 

corresponding to restrained displacements. Using the above equation, 

one can easily obtain (AR) knowing [K] and tD) obtained in previous 

steps. 

4.5.2 Example of a Continuous Beam Using the Stiffness Method 

A continuous beam is solved below using the stiffness method described 

above. 
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Example 4.5.2.1 

Determine the reactions at the supports of the beam shown in Fig. 4.2 
using stiffness method. E = 29000 ksi, I = 446 in4. 

36 k 

	10 ft 
	

12 ft 

Figure 4.2: Continuous Beam 

Solution 

Steps 1-3 

Fig. 4.3 shows the beam after executing steps 1 through 3. Member 

1 is defined as node number 1-2 and member 2 is defined as node number 

2-3. This order needs to be used when writing the [K] matrix using the 

action and displacement vector using Eq. 4.2 and Eq. 4.3 respectively. Note 

that it could have been defined differently; like member 1 could have been 

defined as 2-1. 

The Kinematic Indeterminacy of this structure is 3 and the 

unknown displacements are D1, D2 and D3 (translation at joint 1 and 

rotations at joint 2 and 3). Figure 4.3 shows the displacement numbering is 

done starting with the free displacements followed by the restrained 

displacements. In this problem D1, D2 and D3 are free displacements 

(unknowns) while D4 through D6 are the restrained displacements, which 

are zero in this problem. As explained earlier, the actions {AF } 

corresponding to {DF } are known (which can easily be obtained from the 

fixed end moments). The {AR} corresponding to the known {DR} are the 

unknowns. 
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D6 	D2 

D3  
D1 

1 	2 

Figure 4.3: Beam showing displacements 

Step 4 

The stiffness matrix [K1] for member 1 is obtained from Eq. 4.2 as 

using the given properties of the beam element in the given problem. 

Table 4.1: Stiffness matrix for member 1 
5 4 6 3 

89.82 5389.17 -89.82 5389.17 
5389.17 431133.33 -5389.17 215566.67 
-89.82 -5389.17 89.82 -5389.17 

5389.17 215566.67 -5389.17 431133.33 

The above matrix, [K1], relates the action vector (,45, A4, A6, A3}t  to 

the displacement vector {D5, D4, D6, D3}t  . As pointed out earlier in the 

basic procedure, displacements numbering follows the order of translation 

followed by rotations. The same order is followed by the corresponding 

actions as well. This is very important as noted earlier. 

A derivation of some terms used in calculating the stiffness matrix 

[K] is shown below. 

K55 K66 = K65 = K56 = 
12 El 	12 (29000)(446)  

= 89.82 
L3 	(10 * 12) 

Similarly, other terms in the stiffness matrix [Ki] can be calculated. 

In exactly same way, [K2], the stiffness matrix for member 2 can be 

assembled using Eq. 4.2 and Eq. 4.3 as, 
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Table 4.2: Stiffness matrix for member 2 

[K2] 

6 3 
3742.48 

359277.78 
-3742.48 

179638.89 

2 

-51.98 
-3742.48 

51.98 
-3742.48 

1 
3742.48 

179638.89 
-3742.48 

359277.78 

51.98 
3742.48 
-51.98 

3742.48 

The above [K] matrix relates the action vector tA6, A3, A2, Ai}t to 

the displacement vector tD6, D3, D2, DY. Again, translations are numbered 

first followed by rotations. 

Step 5 

The structure stiffness matrix for this problem [K1] can be 

assembled using Eq. 4.4 and the assembled matrices [K1] and [K2]. 

Table 4.2: Global/Structure stiffness matrix 
1 	2 	3 

359277.8 -3742.5 179638.9 
-3742.5 	51.98 	-3742.5 

179638.9 -3742.5 790411.1 

0 	0 	215566.7 
0 	0 	5389.2 

3742.5 	-51.98 	-1646.7  

4 	5 	6 
0 	0 	3742.5 
0 	0 	-51.98 

215566.7 5389.17 -1646.7 

431133.3 5389.17 -5389.2 

	

5389.2 	89.82 	-89.82 

	

-5389.2 	-89.82 	141.8 

[Ki ]= 

From the given condition, we can calculate, 

0 4 
CAEN) = 1-36 5 

0 .16 

From the above, the [KFF ] can be written as, 

[KFF] 
359277.8 -3742.5 179638.9 
-3742.5 51.98 -3742.5 
179638.9 -3742.5 790411.1 
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We can solve the displacement: 

pp} = [KFF] 	* fAFN) - 
—0.04088 
—4.50183 
—0.01202 

Calculate the reaction forces: 

A 4 
A5.[KRF],DF,_ 

—2592k—in 
—64.8 k 

—216kl 
—64.8 k 

A6  - 	100.8 k - 	100.8 k 
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4.6 Summary 

This chapter described the basic concepts of one of the most powerful 

methods of structural analysis — the direct stiffness method. A general 

procedure for solution of problems by the direct stiffness method is described 

with application to continuous beams. The method, as described in this 

chapter is general enough so that it can be applied to truss and frame as well. 
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Problems 

Analyze Problem 1.1 in Chapter 1 and Problem 2.1 Chapter 2 using the direct 

stiffness method. 

Problem 4.1  Solve Problem 1.1 using the direct stiffness method. 

Problem 1.1 repeated  Determine the reactions at the supports of the beam 
shown in this figure. Take EI constant. 

20 kl 

8m 	4m 

Problem 4.1 

Problem 4.2  Solve Problem 2.1 using the direct stiffness method. 

Problem 2.1 repeated  Determine the reactions at the supports of the beam 
shown in this figure. EI is constant. 

1.5 k/ft 

A 

10ft 	12ft 
1111■-■11 

Problem 4.2 
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Direct Stiffness Method: Application to Frames 

5.1 Derivation/Explanation of the Stiffness Matrix for a Frame 
Element 

The basic procedure of the direct stiffness method has been explained 

in Chapter 4. The explanation is essentially a general procedure, which is also 

applicable to frames. The only difference is that in the case of a frame, the 

element stiffness matrix [K] for a frame element has to be used instead of for a 

beam element. This is explained below. 

Consider the general frame element shown in Fig. 5.1 

A5, D5 

A3, D3 

Figure 5.1: Typical frame element with free and restrained supports 
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The member stiffness matrix for the frame element in structural 

(global) coordinates, [Kmsi ] is given as, 

Equation 5.1: Frame element stiffness matrix 

1 

AE 

2 

0 

3 

0 

4 

AE 
0 0 

L — L 

0 
12E1 6E1 

0 
12E1 6E1 

L3  L2  L3  L2  

0 
6E1 4E1 

0 
6E1 2E1 

L2  L L2  L 

Ucsii= AE AE (5.1) 
0 0 0 0 -- 

  L L 

12E1 6E1 12E1 6E1 
0 0 

L3  L2  L3  L2  

0 
6E1 2E1 

0 
6E1 4E1 

L2  L L2  

The global element stiffness matrix [Kmsi ] shown in Eq. 5.1 relates the 

action 	vector 	f.A.1, A2, A3, A4, A5, A6}t 	to 	displacement 	vector 

tD1, D2, D3, D4, D5, D6}t. 

Again, like in the case of the beam, some of the elements of the 

displacement vector will be zero. These will correspond to the restrained 

displacement vector {DR }, which is subset of the {D} vector. Similarly, the 

unknown, or free, displacements will be part of the free displacement vector 

{DO, which is also a subset of the total displacement vector {D}. 
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5.2 Application of the Direct Stiffness Method to a Frame 

The process used to solve for the reactions of an indeterminate frame 

using the direct stiffness method is explained below using Example 5.2.1. 

Example 5.2.1 

Determine the reactions at the supports of the frame shown in Fig. 5.2 
using the direct stiffness method. A = 100 in2, E = 29000 ksi and 
I = 833 in4. 

4
ll
k/ft

llllllllll 
 

1111 

8 ft 

10 ft 

Figure 5.2: Indeterminate frame 

Solution 

Before starting the solution of the problem, it is to be noted that this 

frame has side sway (joint translation). However, an important point is that 

in the case of stiffness method, the procedure of analysis of a frame with or 

without joint translation is the same except that when the frame has side 

sway, the Kinematic Indeterminacy increases. This will, in essence, involve 

more equations to be solved. 
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Figure 5.3: Frame showing displacements 

Step 1-3 

The numbering process is shown in Fig. 5.3. As can be seen from 

Fig. 5.3, KI (Kinematic Indeterminacy) of this structure is 5. So, the {DA 

vector is: {D1, D2, D3, D4, Ds} . In this problem again, as in the beam 

problem, the numbering of the displacements is done from the free 

displacements. The restrained displacement vector, {DR }, for this problem 

is {D6, D7, D8, D9}. Only the free displacements are to be obtained, from 

[KFF ] and {AFN }, as a solution to the problem. Then, the forces (actions) 

corresponding to the {DR} vector need to be calculated. 

Step 4 

The member stiffness matrix [K1] for member 1 is obtained using 

Eq. 5.1. It is given as, 
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Table 5.1: Stiffness matrix for member 1 

[K1] —  

7 8 

0 

327.7 

15727 

0 

-327.7 

15727 

9 

0 

15727 

1006542 

0 

-15727 

503271 

1 

-30208 

0 

0 

30208 

0 

0 

2 

0 

-327.7 

-15727 

0 

327.7 

-15727 

3 

0 

15727 

503271 

0 

-15727 

1006542 

30208 

0 

0 

-30208 

0 

0 

Similarly, the stiffness matrix for member 2 [K2] is given as, 

Table 5.2: Stiffness matrix for member 2 
4 6 

0 

24167 

5 

-10065 

0 

1 

-167.8 

0 

2 

0 

-24167 

3 

-10065 

0 

167.8 

0 

[K21=  -10065 0 805233 10065 0 402617 

-167.8 0 10065 167.8 0 10065 

0 -24167 0 0 24167 0 
-10065 0 402617 10065 0 805233 

Step 5 

Since only the unknown displacements are to be obtained in this 

problem, we need only [KFF ] and {AFN) corresponding to the free 

displacements. 

Here, [KFF ] can be written as, 
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Table 5.3: Global/Structure stiffness matrix of the frame 
1 2 

0 

3 

10065.4 

4 

-167.8 

5 

10065.4 

6 

0 

7 

-30208.3 O 

9 

0 30376.1 

0 24494.3 -15727 0 0 -24166.7 0 -327.7 -15727 

10065.4 -15727.2 1811775 -10065.4 402617 0 0 15727 503271 

-167.8 0 -10065.4 167.8 -10065.4 0 0 0 0 

[K] = 10065.4 0 402617 -10065.4 805233 0 0 0 0 

0 -24166.7 0 0 0 24166.7 0 0 0 

-30208.3 0 0 0 0 0 30208.3 0 0 

0 -327.7 15727 0 0 0 0 327.7 15727 

0 -15727.2 503271 0 0 0 0 15727 1006542 
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The (AFN ) can be written as, 

0 1 
—16 2 
256 3 
0 4 
0 5 

{AFN} 

In this problem there is a uniformly distributed load on element I. 

If there are member loads acting on a particular structure (the way we had 

in the beam problem in Ch.4), then fixed end moments have to be 

calculated and the corresponding {AFN } vector can be assembled without 

any problem. The fixed end moments will be reverse (opposite sign). 

Solving the above matrix (which essentially consists of solving 5 

simultaneous equations), all the unknown displacements can be obtained in 

the following way as, 

 

0 
—4.95 x10-4  
2.47 x10-4  

0.02959 
2.47 x10-4  

[DO = [KFF] 1  * {-AFN} 

Calculate the reaction forces 

-A6-  0 11.96 k - 11.96 k 
A7 0 0 0 
A8  =-: [KR.F]{pF} 16 k 20.04 k 20. 04 k 

-256k-in - 387.9k-in_ 32.325k-ft 

This completes solution of the given problem. 
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5.3 Summary 

In this chapter, the powerful method called the direct stiffness method 

was applied to a frame problem. The beauty of the direct stiffness method, as 

applied to frames, is that no distinction is to be made for frames with or 

without joint movements. The only difference is that the problem has to be 

solved for additional unknowns, but the procedure remains same. 
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Problems 

Analyze Problem 1.2 in Chapter 1 and Problems 2.3 and 2.4 in Chapter 2 using 

the direct stiffness method. 

Problem 5.1  Solve Problem 1.2 using the direct stiffness method. 

Problem 1.2 repeated  Determine the reactions at the supports of the frame 
shown in this figure. EI constant. 

8k 

B 2ft 4ft 

8 ft 
10ft 

6ft 
Problem 5.1 

Problem 5.2  Solve Problem 2.2 using the direct stiffness method. 

Problem 2.2 repeated  Determine the reactions at the supports of the frame 
shown in this figure. A = 100 in2, E = 29000 ksi and I = 833 in4. 

10 ft 

Problem 5.2 
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Problem 5.3  Solve Problem 2.3 using the direct stiffness method. 

Problem 2.3 repeated  Determine the reactions at the supports of the frame 
shown in this figure. A = 100 in2, E = 29000 ksi and I = 833 in4  

32 k 

B 

2 ft 

10 ft 

8 ft 

Problem 5.3 



Chapt2 6 

Direct Stiffness Method: Application to Trusses 

6.1 Derivation/Explanation of the Stiffness Matrix for a Truss 
Element 

As stated earlier, the basic procedure of direct stiffness method has 

been explained in Chapter 4. The explanation is essentially a general 

procedure, which is also applicable to trusses. The only difference is that in the 

case of a truss, the element stiffness matrix [K] for a truss element has to be 

used instead of that for a beam element. It should also be noted that the 

members of a truss are subjected to tension or compressive forces only as all 

the loads on the truss are nodal loads and not member loads. This means that 

the members of the truss are not subjected to any bending. While this doesn't 

make any difference in application of the direct stiffness method, it is an 

important point to be noted. This concept will be clearer once an example of a 

truss is solved using the direct stiffness method. Consider the general truss 

element shown in Fig. 6.1. 

A4, D4 

A3, D3 

Figure 6.1: Typical truss element with free and restrained supports 
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The member stiffness matrix for the truss element in structural (global) 
coordinates, [Kmsi ] is given in Eq. 6.1 as, 

Equation 6.1: Truss element stiffness matrix 

DI D2 D3 D4 

Cx2  Cx  Cy -Cx 2  Cx  Cy  Al 

AE Cx Cy  Cy 2  Cx  Cy -Cy2  A2 
[Kmsi] = T (6.1) 

—Cx 2  —Cx  Cy  Cx  2  Cx  Cy  A3 

— Cx  Cy  — Cy  2  Cx  Cy  Cy  2  A4 

Where, Cx  and Cy are the direction cosines of the members given as (see Fig. 

6.1 for reference), 

Cx 
	(xk - x j) 	 (6.2) 

C = 
(Yk - Yj) 	 (6.3) 

EA is the usual axial rigidity of the truss member. The global stiffness 

matrix [KMSI ] shown in Eq. 6.1 relates the action vector {Ai, A2, A3, A4}t  to the 

displacement vector {D1, D2, D3, DJ. 

Again, like in the case of the beam, some of the elements of the 

displacement vector will be zero and will correspond to {DR }, the restrained 

displacement vector, which is subset of the {D) vector. Similarly, the 

unknown, or free, displacements will be part of the free displacement vector 

(DF), which is also a subset of the total displacement vector (D). 
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6.2 Application of the Direct Stiffness Method to a Truss 

The process used to solve for the reactions of an indeterminate truss using the 

direct stiffness method is explained below using Example 6.2.1. 

Example 6.2.1 

Determine the reactions at the support of the truss shown in Fig. 6.2 using 
direct stiffness method. AE is constant. 

4 ft 

Figure 6.2: Indeterminate truss 

Step 1-3 

These steps are shown in Fig. 6.3. Figure 6.3 shows that the KI 

(Kinematic Indeterminacy) of this structure is 2. Thus, the (DF} vector is: 

(Di, D2}. In this problem, just as in the beam and frame problem, the 

numbering of the displacements is done starting with the free 

displacements. The restrained displacement vector for this problem [DR } is 

Ws, D4, D5, D6, D7, D8). Only the free displacements are to be obtained 

from [KFF ] and the fAFN) as a solution of the problem. 
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4k 

Figure 6.3: Truss showing displacements 

Step 4 

The member stiffness matrix [K1] for member 1 is obtained using Eq. 6.1. 

It isgiven as, 

Table 6.1: Truss member stiffness matrix for member 1 
1 2 3 4 

0.333 0 -0.333 0 

0 0 0 0 
[K1] = AE 

-0.333 0 0.333 0 

0 0 0 0 

Similarly, the stiffness matrix for member 2 [K2] is given as, 

Table 6.2: Truss member stiffness matrix for member 2 
1 2 5 6 

0.072 0.096 -0.072 -0.096 

0.096 0.128 -0.096 -0.128 
[K2] = AE 

-0.072 -0.096 0.072 0.096 

-0.096 -0.128 0.096 0.128 
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Finally, the stiffness matrix for member 3 [K3] is given as, 

Table 6.3: Truss member stiffness matrix for member 3 

[K3] = AE 

3 

0 

0 

0 

0 

4 

0 

0.25 

0 

-0.25 

5 

0 

0 

0 

0 

6 

0 

-0.25 

0 

0.25 

Combining the three member stiffness matrices yields the structure 

stiffness matrix given below in Table 6.4. 

Table 6.4: Truss structure stiffness matrix 
1 2 3 5 6 

0.405 0.096 -0.333 0 -0.072 -0.096 

0.096 0.128 0 0 -0.096 -0.128 

-0.333 0 0.333 0 0 0 
[Kj i = AE 

0 0 0 0.25 0 -0.25 

-0.072 -0.096 0 0 0.072 0.096 

-0.096 -0.128 0 -0.25 0.096 0.378 

Step 5 

Since just the unknown displacements are to be obtained in this 

problem, we only need [KFF ] and {AFN) corresponding to the free 

displacements. 

From the given condition, we can calculate: 

{AFN} — t 04) 21 



110 I Chapter 6 — Direct Stiffness Method: Trusses 

From [K], we can derive [KFF ]: 

AE  10.405 0.0961 
[KFF] 	I-0.096 0.1281 

We can solve the displacement: 

[KFF]_'  {AFN) = ATI"  {__9381 

Calculate the reaction forces: 

-A3-  
A4 
A5  

_A6_ 

 

—3 kips- 
() 

3 kips 
4 kips _ 

- [KRF] PA.  - 

 

In this problem there is only one nodal load (at joint 4). So, the 

assembly of (AFN ) is rather simple. However, if there are other loads at 

other nodes or if there are some support settlements, the corresponding 

{AFN } vector should be assembled accordingly. 

This completes the solution of the problem. 
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6.3 Summary 

In this chapter, the powerful method called the direct stiffness method 

has been applied to a truss problem. The point to be noted about the direct 

stiffness method is that it can be applied to structures that are mainly in flexure 

(bending) like beams and frames, as well as structures in tension or 

compression (like a trusses). The method essentially is the same except that the 

truss element stiffness matrix is used in analysis of trusses as opposed to a 

beam or frame element stiffness matrix. 

Hence, the direct stiffness method is so powerful and popular that it is 

used for almost all the computer codes prevalent in structural analysis. 
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Problems 

Analyze Problem 1.3 in Chapter 1 using the direct stiffness method. 

Problem 6.1  Solve Problem 1.3 using the direct stiffness method. 

Problem 1.3 repeated  Determine the reactions at the supports of the truss 
shown in this figure. AE is constant. 

10 kN 

D 

C 

  

  

4m 
Problem 6.1 



L2  

Pab 2  Pa2b 
L2  MFBA = MFAB = 

2PL 
MFAB = 

2PL 
MFBA = 9 

6EIL 
MFBA = L2  

L 

MFAB = (7,7)(b2a +c) 

P 

wL2  
MFAB = 12 

wL2  
MFBA = 12 

WL2  
MFAB = 20 

wL2  
MFBA = 38  

6E/A 
MFAB = 	L2 3E/A 

MFAB = L2 

L 
wL2  

MFAB = 8  

wL2  
MFAB = —15  

.•• 
ppen©ii 

Table 1A: Fixed-End Moments 

Both Ends Fixed Far End Pinned 
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