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Preface

One of the most crucial steps in the research process is at the design stage. In order
to draw valid and reliable conclusions from a social, behavioural or biomedical
study, the design has to meet a number of requirements. These requirements
have been well documented and discussed in various textbooks in these fields,
see, for example, Campbell and Stanley (1963), Cox (1958), Cook and Campbell
(1979) and Cox and Reid (2000). One requirement that seems to lack emphasis
and underappreciated by practitioners is the importance of a well-planned design.
This is because a carefully designed study can provide valid and precise statistical
inference at minimal cost given the constraints in the study.

Optimal design of experiment is a sub-field in statistics that provides the the-
ory and construction of optimal designs in various settings. For many problems,
algorithms are available to generate optimal or highly efficient designs. There
are currently only a few monographs on this important topic and they are largely
concerned with the mathematical treatment of the subject, including the analytical
derivation of the optimal designs. Some examples are Fedorov (1972), Pázman
(1993), Pukelsheim (1993) and Silvey (1980). The monographs by Atkinson and
Donev (1992) and Atkinson, Donev and Tobias (2007) contain many examples
drawn from engineering and pharmaceutical experiments.

This book takes a different route and addresses applied researchers from the
social, behavioral and biomedical areas who have limited mathematical training
and want to learn more about optimal design ideas and methods. Our primary
aim is to present this important topic to our target audience in an expository
manner. The focus is on design issues and methods to find more efficient designs
for their studies using internet tools or otherwise. Using examples from the social
and biomedical sciences, we demonstrate the methods to find efficient designs
and how to compare merits of competing designs, including commonly used
designs in practice. Throughout, we have tried to avoid matrix algebra as much
as possible. For those readers who are familiar with matrix algebra, we have also
included some matrix algebra near the end of the first eight chapters to facilitate
discussion. However, they can be skipped without too much disruption. We were
not able to avoid matrix algebra in Chapters 9–11, but kept its use to a minimum.

The book consists of 11 chapters. Each chapter focuses on the design issues
for a commonly used statistical model. In Chapter 1, we give a short overview
of the general statistical set-up, design methodology and ethical principles in
conducting a study. We discuss the basic design elements and different types of
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research, including different forms of validity. We also discuss control mecha-
nisms of unwanted variation in a study and provide a list of some of the ethical
requirements expected in a scientific study. Finally, we describe examples taken
from the social and biomedical research that will be used in later chapters.

Chapter 2 gives an introduction to design issues for a simple linear regression
model. We describe the concept of simultaneous inference, present commonly
used alphabetic optimality criteria and highlight the pros and cons of each type
of optimal designs. Chapter 3 extends the concept of simultaneous inference to
the multiple linear regression model. Because there are several parameters in the
model, we introduce an optimality criterion for making inference only on a subset
of the model parameters. We present some optimal designs for the polynomial
regression models. Chapter 4 discusses design problems for the analysis of vari-
ance model, where the independent variables are typically qualitative variables.
A two-factorial analysis of variance model is reformulated as a regression model
with dummy variables and we show how the different dummy coding systems
affect the outcomes. Chapter 5 discusses design issues for the logistic regression
model with a binary response. In particular, we focus on designs for the logistic
model with one or two qualitative and quantitative independent variables.

In Chapters 6 and 7, we entertain random parameters in the linear models.
Chapter 6 introduces the multilevel model, along with designs for a cluster ran-
domized and multi-center two-armed trial. When one of the arms is the control
group, we compare efficacy of the treated group under different cost struc-
tures and provide designs with maximal power for testing the treatment effect.
Chapter 7 discusses the design problem for random effect models in a longi-
tudinal repeated measurement model. Here, we consider models with either a
random intercept or a random slope with illustrations in the social and biomed-
ical sciences. We also show that it is instructive to use graphs to display an
optimal design for a longitudinal study as a function of the auto-correlation.
Chapter 8 reviews design issues for a crossover study and discusses confounding
and carry-over effects. We focus on the two-treatment crossover design and use
a mixed-effects model to compare the efficiency of the 2 × 2 crossover design
with competing designs while taking cost into account.

Chapter 9 introduces additional optimality criteria useful in practice for the
linear models. Our discussion here includes Bayesian optimal designs, mini-
max optimal designs and multi-objective designs with illustrations. Chapter 10
addresses design issues for nonlinear models and starts off with the defining dif-
ference between linear and nonlinear models. We explain two core concepts in
designing for a nonlinear model: the Fisher information matrix and local optimal-
ity. We discuss relative merits of using different design strategies for a nonlinear
model and provide exemplary applications in the biological sciences.

Chapter 11 reviews popular sequential procedures and algorithms for obtain-
ing an optimal design numerically. We describe the exchange algorithms and
provide references for some of the more recent algorithms such as the generic
and stochastic evolutionary algorithms. In addition, we provide a short list of
computer programs currently available for finding optimal designs and introduce
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a new web site for generating a variety of optimal designs for selected models.
This chapter concludes with demonstrations on the use of this freely accessible
web site to generate tailor-made optimal designs after the user selects the model
and inputs the design parameters.
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1

Introduction to designs

1.1 Introduction

There are many statistical issues to consider in the design of an empirical study.
Among these problems are the control of unwanted variation and the internal
validity of a study. How can we be sure that a study is internally valid? In other
words, how can we be sure that the treatment effect is attributed to the variables
that are manipulated and not mainly influenced by unwanted variation? These
questions and related problems are well documented and have been discussed
in the social and biomedical literature by Cox (1958), Campbell and Stanley
(1963), Cook and Campbell (1979), Cox and Reid (2000) and Shadish, Cook
and Campbell (2002), among others. However, one important aspect that seems
lacking in the discussion is the question whether the implemented design is
the most efficient one for the objective or objectives of the study. We believe
that researchers should always keep this question in mind when they design their
studies. Doing so can invariably result in improved designs with higher statistical
efficiency at minimal cost. Here and throughout, we use the term statistical
efficiency or simply efficiency to indicate the accuracy of estimators of the model
parameters in terms of the variances of the estimators.

Here is a simple illustration. Consider the 1987 Report of the Second Task
Force on Blood Pressure Control in Children in the journal Pediatrics on the
linear relation between systolic blood pressure and age. This conclusion was
drawn from studies with samples of children with ages ranging from 12 to 18
years. Despite this informative finding, many subsequent studies continue to use
inefficient designs to study the relationship between the two variables. Frequently,
the design ignores existing information from the literature or simply comprises

An Introduction to Optimal Designs for Social and Biomedical Research      M. P. F. Berger & W. K. Wong
© 2009, John Wiley & Sons, Ltd. ISBN: 978-0-470-69450-3



2 OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH

equal number of children from different age groups equally distributed over the
age range. For instance, the design may sample equal number of children at 12,
14, 16 and 18 years old (Design 1 ), or the design may have equal number of
children at 12, 15 and 18 years old (Design 2 ). These are called uniform designs
because they have an equal number of observations from each age group that
are equally spaced over the age of interest. Uniform designs are popular because
they are intuitive and simple to implement. However, these designs can be rather
inefficient in part because (i) they do not incorporate existing information on the
two variables in the study and (ii) no rationale is provided for in the choice of
the age groups included in the study. For instance, why were the age groups of
12, 15 and 18 selected in the second uniform design? Would another design with
age groups of 13, 15 and 17 be equally acceptable?

These two questions often lead to a host of other design questions, for
example: (i) Is Design 1 better than Design 2 ? (ii) Is it a good idea to sam-
ple only two age groups in the study? (iii) What about sampling cost–can I
additionally include cost considerations? (iv) What happens if sampling cost is
proportional to the age of the children? Children older than 18 years are excluded
from the sample, but I want to make inference on the relationship between blood
pressure and children older than 18 as well. Is Design 1 better than Design 2
for this purpose? Can I have a design that is good for studying the relationship
between systolic blood pressure and age of children up to 18 years old and also
for adults as well? Is there a ‘best’ design for the study? These are complicated
questions and sometimes there are no clear answers for a practical design problem
that can have many more constraints and objectives.

Optimal design theory offers a useful foundation answering these and other
design questions. The beautiful framework allows us to find the best design for
a given problem using computer algorithms. For simpler problems, the theory
also enables us to determine the design analytically. This is useful because with
a formula for describing the design, we can study properties of the design a
lot more easily. Although optimal design theory has been available for many
years, social, behavioural and biomedical scientists seem to have little exposure
to its theory and potential applications in their fields. The aim of this book is to
promote interest among researchers from these fields in the use of optimal design
theory and enable them to design more efficient and less expensive studies.

Since the work of Fisher (1925, 1935), statisticians have worked on optimal
design problems. A small sample of useful references over the years are Cox
(1958), Kiefer (1959), Kiefer and Wolfowitz (1959), Fedorov (1972), Box, Hunter
and Hunter (1978), Silvey (1980) and Atkinson and Donev (1992). There was a
surge in research in this area in the early 1960s after the seminal papers by Kiefer
and Wolfowitz (1959, 1960) showing that a design can be simultaneously optimal
under two very different and useful objectives in the study. The monograph by
Kiefer (1985) is a voluminous collection of pioneering work in this area by the
author and provides a good account of the chronological developments of optimal
design theory. However, despite the ubiquity of design issues in all studies,
the number of statisticians working actively in this important area has always
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been relatively small and continue to be so, compared to the larger statistical
community working on data analysis issues. We believe there are several reasons
for this.

Firstly, there has always been a strong focus on analytical solutions for opti-
mal design problems, and the books published on optimal design theory require
readers to have a good mathematical training to appreciate the theory. Although
many social, behavioural and biomedical scientists receive training in statistical
methods, this training does not include basic concepts of optimal design theory.
Still another reason is that many statistics/biostatistics programmes at universities
worldwide tend to give short shrift to design issues in their course curriculum.
Another reason that optimal design ideas are underutilized in research is that
its theory is generally perceived as too limiting. This is incorrect. For example,
a popular criticism is that optimal design strategies are necessarily myopic. A
common cited example is the optimal design for the homoscedastic simple linear
model that requires an equal number of observations to be placed only at the two
extreme ends of the design interval. This design cannot detect curvature and so
why put all the eggs in one basket? Our response is that modern development in
optimal design theory enables the researcher to construct more flexible designs
that can capture the constraints and goals of the studies more realistically. In this
particular example, one can construct an optimal design that balances the dual
goals of estimating the two parameters in the linear model and at the same time
estimates the curvilinear parameter with a user-specified level of efficiency. We
will revisit this issue in Chapter 9.

However, there is increasing interest and realization that the theory can be
more broadly applied to practical problems. Atkinson (1996) gave a compelling
account of the usefulness of optimal designs and their potential applications to
other fields. Some examples of use of optimal designs in social and behavioural
research are McClelland (1997), Raudenbush (1997), Moerbeek, Van Breukelen
and Berger (2000) and Berger (2005). The monograph by Berger and Wong
(2005) is an attempt to show interesting applications of optimal design in different
disciplines.

The use of optimal or highly efficient designs in social, behavioural and
biomedical research has advantages. Fewer observations and therefore smaller
sample sizes are required to find real effects, thus reducing the costs of the study.
Our examples in this book show that optimal designs can reduce the number of
observations from 20% to 40%, and even 50% in some cases when compared
with the traditional or commonly used designs. This is especially beneficial in
light of the ever-rising cost of conducting scientific studies. From an ethical
viewpoint, a smaller sample is also highly desirable. For example, fewer patients
may be required to undergo a controversial treatment or fewer animals need to
be sacrificed in a toxicology study.

In this chapter, we review basic methodological concepts in the design of a
study. We describe design terminology, types of different designs, requirements
for a ‘good’ design and different kinds of validity issues that may arise in a study
and how to control them.
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1.2 Stages of the research process

In social and biomedical research, there are six stages in the research process:

1. Formulation of the research problem. Many research problems may be
formulated as a relationship between a set of variables X and an outcome
variable Y . The main task is to identify the set of variables X to include
in the study and identify the outcome variable Y of interest. For example,
a psychologist wants to study the effect of a systematic desensitization
therapy (X ) on phobic reactions (Y ) of patients or a health scientist wants
to study the relation between sources of job-related stress (X ) and burnout
rate (Y ) of professionals in medicine.

2. Choice of the research design. A research design is used to structure
the research and data collection. A design choice not only includes the
selection of the number of independent variables, a distinction between
qualitative versus quantitative variables, random versus fixed variables
and a crossed or nested relation among variables but also the selection of
the number of measurements, time points and subjects within groups. At
this stage, we decide on the sources and amount of unwanted variation to
control for in the design.

3. Choice of statistical model. For design purposes, the statistical model must
be chosen before the data are collected. The model is a mathematical
relationship posited in Stage 1 and describes the outcome variable Y as a
function of the variables X and the error term.

4. Data collection. In this stage, the data are collected based on the design
chosen in Stage 2.

5. Analysis of data. The data are analysed based on the statistical model
chosen in Stage 3. Regression diagnostics are used to check model assump-
tions and whether the model provides an adequate fit.

6. Conclusions. Conclusions are carefully inferred from the data analysis in
Stage 5 and they may lead to reformulation of the research problem or to
additional research problems.

These six stages are visualized in Table 1.1. The bold horizontal line in
Table 1.1 separates theoretical considerations from practical issues. Since the
choice of a design and the choice of a statistical model are very closely related,
Stage 2 and Stage 3 may sometimes be interchanged in practice. In Stage 4, data
are collected according to the design chosen in Stage 2 and in Stage 5 the data
are analysed based on the statistical model selected in Stage 3. The arrows in
Table 1.1 represent the connection between the activities in Stages 2 and 4, and
between the activities in Stages 3 and 5, respectively. The problem is that in order
to be able to choose a ‘good’ design, information about the true model or the
data generating process is needed and this information is not available in Stage 2.
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Table 1.1 Main stages of the research process.

1. Formulation of the research problem

Theory

2. Choice of research design 3. Choice of statistical model

4. Data collection 5. Analysis of data

Practice

6. Conclusions

1.2.1 Choice of a ‘good’ design

This book focuses on the selection of a research design (Stage 2 of Table 1.1).
The typical aim in social or biomedical research is to evaluate the effects of one
or more independent (treatment) variables on an outcome variable. For example,
we may want to design a study to ascertain whether a new teaching method is
more effective than the current method in raising the average score in mathe-
matics among high school students in the Los Angeles County. As such, it is
important to have a design capable of estimating the treatment effect precisely
and also has maximal power for testing the hypothesis of interest. In practice,
an efficient (‘good’) design is chosen under a set of constraints that usually
adds further complications to the design problem. These restrictions can be cost
constraints, feasibility constraints and ethical constraints. An example of a fea-
sibility constraint could be a study aimed at controlling the increasing obesity
rates among children in the United States. A new method may be potentially
effective in getting children to lose weight, but if the method requires children
to be segregated in classrooms, this may be problematic to implement. Parents
are likely to object and such a design may not be feasible.

Optimal design theory offers a systematic way for finding an optimal or a
highly efficient design using all current information for the problem at hand.
Once the statistical model is specified and the objective or objectives of the
study are clearly stated, along with the constraints, there are proven optimization
methods that will generate the optimal design. In many situations, these numer-
ical procedures can be easily automated. This means that there are computer
programs that can generate tailor-made optimal designs sequentially. Many of
these algorithms are guaranteed to converge to the optimal design; more recent
development includes applying these algorithms to find multiple-objective opti-
mal designs and include cost constraints as well. We postpone discussion of these
algorithms to Chapter 11.
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In the next subsections, we describe the basic elements of research designs,
different types of designs, a brief overview of the methodological and ethical
requirements of a ‘good’ design and give references in the literature.

1.3 Research design

The research design describes how data are to be collected to test whether the
posited relations among variables hold or not. It is a plan for collecting and uti-
lizing data so that information is generated to test hypotheses. A good or poor
research design may be characterized by the amount of information it generates
and its power for testing the hypotheses. Specifically, the research design deter-
mines conditions under which the study is to be carried out. Conditions here refer
to selection of the combination of levels of all the independent variables , includ-
ing how the units of analysis are allocated to each of the conditions and how
many replications are planned. The choice of the design is based on a hypothetical
relation between independent (predictor, explanatory) variables and dependent
(response) variables posited in Stage 1 where it is also assumed that variation
in the independent variables leads to changes in the dependent variable (effect).

1.3.1 Choice of independent variables and levels

A researcher must address the questions of how many independent variables to
use and how many values (levels) of these independent variables are needed
to investigate the relation between the independent variables and the dependent
variable. If a whole range of levels of an independent variable is of interest and
the study only includes a few of these levels, then it is best to randomly select
these few levels from that range. Such independent variables are classified as
random factors . On the other hand, the so-called fixed factors are independent
variables with a fixed number of levels, such that inferences are only limited to
these fixed levels. For example, the factor Age can be either fixed or random.
Age is a fixed factor if persons from a fixed set of age groups are included in
the study and the researcher is only interested in drawing conclusions for these
fixed age groups. The factor Age is random if the age groups are randomly drawn
from the complete range of all ages in the population so that conclusions apply to
the whole range of ages. Fixed and random factors must be clearly identified in
the statistical model because they affect our tests concerning model parameters.
The actual number of selected levels of a factor also influences the quality of
our statistical inferences. For example, we show in the next few chapters that
the variances of the estimated parameters and the power for finding real effects
depend on the number of selected levels of the independent variables.

1.3.2 Units of analysis

The unit of analysis is the entity that is being analysed. Units of analysis are
often referred to as subjects . Examples of the units of analysis are objects,



OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH 7

organizations, general practices, patients, workers, pupils, and nurses. These units
may be nested hierarchically within other units. For instance, a general practice
has its own sample of patients. This sample of patients is nested within this
general practice and not in another general practice. In the same way, nurses are
nested within hospitals where they work, and pupils are nested within their own
schools. Such a nested structure will lead to specific designs and the analysis of
the data will have to take the hierarchical data structure into account.

1.3.3 Variables

A variable is defined as an attribute, property or characteristic of a unit. Examples
are the colour of objects, size of organizations or general practices, blood pres-
sure of patients, income of workers, ability of pupils, and workload of nurses.
Different classifications of variables are distinguished in the scientific literature.
To select both a research design and the proper analysis technique, the types of
variables involved must be known. Variables are considered to be qualitative or
quantitative.

A qualitative variable is a variable in which units are grouped into a set of
mutually exclusive categories. Examples are gender, race, treatments, types of
cancer, and departments in a hospital. Qualitative variables are also referred to
as grouping or categorical variables. The differences are expressed in different
groups or categories, for example, male and female or colon cancer and lung
cancer. Stevens (1951) referred to these variables as nominal variables.

A quantitative variable is one in which units differ in degree. A quantitative
variable is also referred to as a numerical variable and its measurement may
be continuous or discrete. A measurement of such a quantitative variable may
be on an interval scale or on a ratio scale (Stevens, 1951). An example of an
interval-scaled variable is a patient’s temperature. Interval variables are invari-
ant under linear transformations. For example, temperature expressed in degrees
Celsius may be transformed to the Fahrenheit scale without loss of information.
Ratio-scaled variables have an absolute zero point that is meaningful. Examples
of ratio-scaled variables are length, weight, response time, and blood pressure of
patients.

Finally, an ordinal-scaled variable (Stevens, 1951), which merely assigns
numbers to units to reflect the ordering of these units on a variable, cannot easily
be classified as quantitative or qualitative. It is quantitative in the sense that the
direction of any association involving the ordinal variable can be expressed. On
the other hand it may be considered to be qualitative, because the intervals of
the scaled measurement merely represent an ordering.

A quantitative or qualitative variable is usually symbolized by a capital letter
X or Y . The corresponding realization of the measurement is symbolized by a
lower case letter x or y, respectively. The direction of a hypothesized relation
usually coincides with the distinction between the independent (predictor) vari-
able and dependent (outcome) variable. If, for example, one is interested in the
effect of dosages of a drug on the systolic blood pressure of patients, then the
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direction of the relation can be visualized as

X (dosage level) → Y (bloodpressure).

In practice an independent variable X can be measured differently in different
studies. Dosages may be either represented by a rank ordering, that is, x = 1,

2, 3, 4, and so on, or by the actual values of each dosage level, for example,
x = 6, 9, 15, 20 mg/kg, and so on. In the first case, the independent variable
dosage level X is measured on an ordinal scale, while in the latter case dosage
level X is measured on a ratio scale.

1.3.4 Replication

The concept of replication is important in every study, because replications are
needed to estimate the variance of the errors in a statistical model. Typically,
replications are assumed to be independent; if they are not, the error variance
will be underestimated and a Type I error results. We recall Type I error is
the probability of rejecting the null hypothesis when it is true. In micro-array
experiments, a further distinction between technical (within samples) replications
and biological (between samples) replications is often made.

Replications should be distinguished from repeated measurements . Repeated
measurements can also be obtained under the same conditions (same combina-
tions of factor levels), but are not independent and often display a trend over a
period of time. Such repeated measurements should be treated as a separate factor
in the design. An example of a set of repeated measurements is the blood pressure
readings at successive occasions from patients taking the cholesterol-lowering
medication Zocor.

1.4 Types of research designs

Different research designs are used in social and biomedical research. They range
from purely experimental designs to observational types of designs.

An enormous amount of literature is available for conducting experimental
designs in a controlled environment. Examples are factorial designs, cross-over
designs, blocked and Latin square designs. These designs are referred to as exper-
imental designs because the researcher has full control over the design of the
study. Full control means that the experimenter can manipulate the treatment (or
independent) variables and the experimental units are randomly assigned to the
conditions. Further details are in Winer, Brown and Michels (1991), Kirk (1995)
and Montgomery (2000), among others.

In observational designs the researcher does not have full control over
the variation of the variables. Examples of such designs without complete
control in biomedical and epidemiologic research are (prospective) cohort
designs, cross-sectional designs and case–control designs, see Rothman and
Greenland (1998) for details. Examples of observational studies in social
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research are quasi-experimental designs, survey designs, and non-experimental
designs. See Cook and Campbell (1979), Campbell and Stanley (1963) and
Shadish, Cook, and Campbell (2002) for details on the problems connected
with quasi-experimental designs. Quasi-experimental studies may contain a
manipulation of the treatment variable, but they are carried out in existing
environments with existing groups of subjects. In general, observational designs
are more exposed to threats to internal validity mentioned in Section 1.5.2.

One could infer that observational designs have less control over all possible
sources of unwanted variation than experimental designs and as such maintain
less internal validity. On the other hand, observational studies are often cho-
sen because the study cannot be easily carried out in a controlled environment.
Concato, Shah and Horwitz (2000) and Benson and Hartz (2000) conducted
meta-analyses to compare results from observational and experimental studies
and concluded that well-designed observational studies may produce results that
are more or less comparable to those obtained in purely experimental studies.
However, it should always be kept in mind that observational studies are not
experimental and therefore cannot guarantee that treatment effects are unbiased.
Carefully designed randomized controlled studies are always preferable (Pocock
and Elbourne, 2000).

1.5 Requirements for a ‘good’ design

The objectives of a ‘good’ design are to provide interpretable, accurate and valid
conclusions. A number of methodological requirements for a good design have
been described in the literature on the design of experiments and other studies,
see, for example, Cox (1958, Section 1.2), Box and Draper (1987, Chapter 14) and
Atkinson and Donev (1992, Chapter 6), among others. Although these require-
ments were originally only formulated for experimental designs, they also apply
to other types of studies with less control over the independent variables.

A ‘good’ design should provide valid and reliable statistical inference. Camp-
bell and Stanley (1963) were probably the first to distinguish internal validity
from external validity and describe possible threats to both forms of validity.
Cook and Campbell (1979) expanded this classification into four distinct types
of validity, namely, statistical conclusion validity, construct validity, internal and
external validity:

• Statistical conclusion validity is concerned with the validity of the conclu-
sions based on the statistical methods employed. If the statistical analysis
is inappropriate, the conclusions may not be valid.

• Construct validity is the correspondence between the measure and the con-
struct that is being measured. Construct validity is usually investigated by
empirical testing of hypothesized relations.

• Internal validity is concerned with the question whether the effect found
in a study can be attributed to the variables that are manipulated.
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• External validity is the generalizability of the conclusions. Can the conclu-
sions of current study be generalized to other populations?

A ‘good’ design at the very minimum should provide control over the
threats to statistical conclusion validity and internal validity . We focus on these
two types of validity in the following subsection. For a detailed explanation
of construct validity and external validity, we refer the readers to Cook and
Campbell (1979).

1.5.1 Statistical conclusion validity

There are a number of threats to statistical conclusion validity and they can take
on several forms. A good design should guard against these threats. Below is a
short list of these threats and some advice on how one can minimize these threats.

1.5.1.1 Lack of statistical power for finding real effects

A ‘good’ design should have sufficient power for finding real effects. Low power
may lead to the erroneous acceptance of the null hypothesis.

This problem may arise because of inappropriate choice of design, and param-
eters are poorly estimated. A carefully chosen design can improve the parameter
estimates and power of the tests of interest. One way to minimize such a threat is
to make sure that the ranges of the independent variables are properly selected.
In practice, this means that each of the independent variables in the study should
have large enough variance to fully capture the outcome variation as the value
of the independent variable varies. For example, consider the outcome as the
reaction time between application of the stimulus and a response to that stim-
ulus. The reaction time of subjects decreases as young subjects grow older but
then increases as older subjects become older. Consequently, if one limits the age
range by selecting only young subjects in a study, one will not have enough infor-
mation to know and test for the curvilinear relation between age and reaction time.

Another way to minimize the lack of power threat is to have a large enough
sample size in the study. The cost of a study is always an important factor and
so the researcher always has to find a balance between reigning the costs of
the study and having enough power to detect treatment effects. Optimal design
theory offers methods that can find optimal designs with sufficient power and
efficiency at minimum cost.

A way to find out that there is lack of power for finding real effects is when
we observe that the standard errors of the estimates are too large. One possible
cause may be because of inaccurately measured variables. The error variance of
the statistical model becomes large when the independent and dependent vari-
ables have large measurement errors. This may happen, for example, when the
environment of the study is unstable or when the selected subjects have charac-
teristics that cause the dependent variable to have relatively large variation. Such
unreliable measurements can result in a high probability of incorrectly failing to
reject the null hypothesis and loss of power for finding real effects.
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Additional statistical issues on power and sample size calculation are dis-
cussed with examples in basic statistics monographs, such as Pocock (1983) and
Chow, Shao and Wang (2007).

1.5.1.2 Violation of model assumptions

To prevent incorrect inferences, a design should allow the researcher to check
model assumptions and to check for goodness of fit of the model. One way to
infer that the standard errors are small is to check for model fit. This can be
done before the actual study is performed in a so-called pilot study or this can
be done by means of the data in the study itself.

A ‘good’ design should generate data that allow the researcher to perform
a lack of fit test on the postulated model and enable the researcher to check
specific aspects of the model. We emphasize that a design may be efficient for
one statistical model but not for another. Consequently, it is important to keep
in mind that goodness of a design assumes an underlying model. For example,
if the relation between a predictor and a dependent variable can be adequately
described by a linear model, then only two distinct measurement points for data
collection are sufficient to estimate the model parameters. If, however, it is not
certain whether the relation is linear, and one suspects it to be curvilinear, then
more than two distinct measurement points are needed.

1.5.1.3 The model is unnecessarily complicated

In any study, the researcher should first make a concerted effort to decide on the
appropriate level of complexity he or she is willing to entertain in the model and
the design. The key is that the model should not be unnecessarily complicated
and the design should be as simple as possible to meet the study objectives. In
other words, the design should aim at striking a right balance between simplicity
on one hand and statistical efficiency and practicality on the other. If a design is
too simple, this may lead to invalid or weak conclusions, while a highly efficient
design may disguise invalid conclusions. For example, consider a Latin square
design with blocking and matching variables and controls for order effects at
the same time. If the statistical model for the data analysis includes different
covariates as well, then the interpretation of the results can become difficult.
On the other hand, if we simplify the design by not controlling the effects of
extraneous variables, we may end up with false conclusions.

1.5.1.4 Conclusions based on invalid extrapolation

The range of conditions under investigation is one of the requirements for a
design to be externally valid. It is desirable that the study be undertaken in a broad
range of conditions to increase the chance that the conclusions from the current
study are valid for other ranges of values of the independent variable. A random
effect design, where the levels of the independent variable (factor) are drawn
randomly from a population of levels, has the advantage that the conclusions are
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generalizable to other population levels of the factor. See Cook and Campbell
(1979) for a list of threats to external validity. Threats to statistical conclusion
validity arise when conclusions are inferred outside the experimental conditions.

For example, in the study of the relationship between systolic blood pressure
and age of children, any inference drawn from the study for people aged 25
or higher is obtained from extrapolation. We have only data for children up to
18 years of age and yet we attempt to infer blood pressure levels for people
aged 25 or higher. This is risky business because while there may be evidence
that a linear relationship holds for the two variables between 2 and 18, there is
no reason to believe that the same linearity assumption applies to people in the
higher age groups.

1.5.2 Internal validity

Internal validity is concerned with the question of whether the effect can be
attributed to the variables that are manipulated. A ‘good’ design for a study
should always control the threats to internal validity. In this subsection, we pro-
vide a short list of the main threats to internal validity and refer the reader
to Campbell and Stanley (1963) and Cook and Campbell (1979) for a more
in-depth discussion. The main threats are history , maturation , testing , selection ,
regression towards the mean , and mortality .

1.5.2.1 History

Changes in outcome variable may not be caused by the treatment variable but
by an event that took place during the study. For example, in assessing the
effectiveness of the biology lessons given by a teacher, higher grades of pupils
on a biology test may not be attributable to the biology lessons (treatment) taught
by the teacher, but by an on-going television home programme that was seen by
these pupils during the same period of time. The event (television programme)
represents a history threat and can be separated from the treatment effect by
including a control group in the study, which does not receive the treatment
(biology lessons).

1.5.2.2 Maturation

Change of outcome may be caused by changes that people undergo during the
period of a study. This so-called maturation effect can also be controlled by
inclusion of a separate control group of subjects with the same maturation effect.

1.5.2.3 Testing

Change in outcome scores may be induced by the effect of practice or memory.
An example from education is that students being tested twice, may perform better
the second time because they remember what kind of questions were asked the
first time. Such effects are likely to arise in designs with repeated measurements
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and can be controlled by counterbalancing the order of presentation or by the
inclusion of a suitable control group.

1.5.2.4 Selection

In observational studies, subjects are not randomly assigned to groups. Control-
ling extraneous variables is usually difficult to achieve. This problem is referred
to as the selection effect and it may account for variation of the outcome variable
that is not caused by the effect of the treatment that one is interested in. Some
control can be obtained by matching and blocking procedures. The idea behind
blocking is that units are grouped in such a way that all units within the same
block have the same characteristics and are likely to respond in the same way.
Matching is grouping units into pairs, so that in the absence of treatment effects
the pairs of units will produce the same responses.

1.5.2.5 Regression towards the mean

Regression towards the mean is related to the selection effect. This threat to
internal validity can best be explained as follows. Any athlete knows that it is
extremely difficult to beat one’s own record a second time. How can this be
explained? Assume that any measurement y consists of two elements: the true
measurement yT and measurement error e, that is, y = yT + e. The true measure-
ment is assumed to remain the same, while the measurement error changes due
to chance. The record of an athlete is a high score and such a high score can be
caused by a high true score yT, and/or by a high value of the error e. The second
time that the athlete runs under similar conditions, the high true measurement yT

will remain high, while the high error will be expected to become smaller due
to chance. Overall, the measurements y are likely to become smaller the second
time. Control of this effect in a design can be established by random assignment
to groups or by inclusion of a control group.

1.5.2.6 Mortality

Incidental loss of data or dropout and loss of subjects during the process of the
study can differentially affect the dependent variable measurements over different
conditions and treatments. The dropout pattern can influence the internal validity.
In selecting a ‘good’ design, one has to take this threat into account. For example,
in the design of a clinical trial, it should not be longer than it is necessary to
observe a meaningful effect because a longer trial is almost certain to have more
dropouts and missing data than a shorter trial.

1.5.3 Control of (unwanted) variation

It is usually difficult to identify extraneous variables that distort the specific
effects under study. These extraneous variables are often referred to as
confounders and may interact with the independent variables. In general these
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variables can be controlled by inclusion , exclusion , statistical control or by
randomization .

1.5.3.1 Inclusion

Inclusion of an extraneous variable means that the variable is included in the
study and that its specific effects on the dependent and other variables are taken
into account. In fact the extraneous variable is added as an extra factor in an
experimental design. For example, in a medical study, if one assumes that gender
is a confounder and that it could distort the relation between dosage level and
blood pressure, it can be ‘controlled’ by adding it as an extra factor in the design.

1.5.3.2 Exclusion

Exclusion or elimination means that the impact of the extraneous variable is
eliminated from the design. In this way, the variable is held constant for all
the units in the study. A potential distorting covariate may be gender. Holding
a variable constant means that, for example, only male or female patients are
included in a study. Of course, exclusion may affect the generalizability of the
results negatively.

1.5.3.3 Statistical control

Control of extraneous variables is also possible via statistical manipulation.
Examples of such a statistical control are inclusions of extraneous variables as
covariates in a regression model or in an analysis of covariance. Schematically,
the idea behind statistical control can be explained by Figure 1.1a and b.

X2

X1

Y

X2

X1

Y

(a) (b)

Figure 1.1 Two diagrams for the relation between variable X1 and variable Y

influenced by the effect of a third variable X2.

The arrows in Figure 1.1a indicate that the variable X1 affects X2, which
in turn affects Y . The relation between X1 and Y is fully explained by the
successive effects of X1 on X2 and of X2 on Y . In Figure 1.1b, the variables X1

and Y are both affected by X2. One often refers to the relation between X1 and
Y in Figure 1.1b as spurious , because both have a common cause X2. In both
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diagrams, the variable X2 plays a role in the relation between X1 and Y . Any
correlation between X1 and Y would disappear if the variable X2 is excluded
or held constant. Proper handling of the variable X2 in a regression analysis or
analysis of covariance model would also lead to the same results.

1.5.3.4 Randomization as method of control

Randomization was introduced by Fisher (1926) for agricultural experiments
comparing the effect of different fertilizers on the growth of wheat. Randomiza-
tion plays a role in scientific studies in two ways. Firstly, randomization ensures
generalizability of the conclusions. This is because random samples are often
drawn from a finite population to generalize conclusions, and in a simple random
sampling procedure, theoretically every unit in the population is equally likely to
be included in the sample. Secondly, randomization can be applied to control the
effects of extraneous variables. For example, random assignment of subjects to
a treatment group and a control group can be established by flipping a fair coin
for each subject: heads means assigning the subject to the treatment group and
tails means assigning the subject to the control group. This process guarantees a
50–50% chance that each patient is assigned to either group and helps to ensure
that all extraneous variables are equally distributed between the two groups. Of
course, such a process can only be applied in purely experimental studies.

Randomization, however, should not be automatically done in all studies.
Certain combinations of factor levels may not be possible and in some situa-
tions random assignment may not be practical or feasible. For example, random
assignment in quasi- and non-experimental studies is usually not possible and
control must be established by other procedures, such as restricted randomiza-
tion, matching and blocking. See, for example, Box (1990) for a discussion on
randomization.

1.5.3.5 Matching, blocking, restricted randomization and balancing as
methods of control

There are also more or less ad hoc procedures to control for unwanted variation.
For example in a learning study, students with the same age can be grouped into
three treatment groups. The variable age is then matched to ensure that in all
three treatment groups there are students with exactly the same age. In general,
blocking procedures isolate or partition out variation that is attributable to an
extraneous variable, so that it does not influence treatment effects and estimates
of error variance. Blocks of units are homogenous with respect to the extraneous
variable. Balancing is a procedure to obtain groups of subjects with, for example,
the same number of students in the same age category. Restricted randomization
is used to control the randomization in small samples to achieve a balance in
group sizes or a balance between groups on other characteristics. An extension
of balancing is counterbalancing , which is used in designs to control for possible
order effects by changing the order of presentation of treatments. Examples of
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such designs are the so-called cross-over design and the Latin square design.
Cross-over designs are discussed in Chapter 8.

1.6 Ethical aspects of design choice

A ‘good’ research design should also meet a number of ethical requirements.
Although ethical requirements may conflict with the methodological require-
ments, in an ideal situation ethical requirements can be reinforced by the method-
ological requirements of a study. A ‘good’ design in social, behavioural and
biomedical studies should be both ethically and methodologically sound. A dis-
cussion on the benefits of both approaches is given by Palmer (2002).

Ethics codes for social, psychological and biomedical research have been
developed via international consensus over the past 60 years. Starting with
the Nuremberg Code (Nuremburg Code, 1947; Trials of War Criminals, 1949),
research has been ethically guided by the various updates of the Declaration of
Helsinki (2000).

Nowadays professional societies, such as the American Medical and Psycho-
logical Associations , have adopted these codes for the protection of the rights
and interests of humans and animals (American Psychological Association, 2002).
These codes specify what is required and what is forbidden and they are used
by the various human subject research committees at universities and research
institutes as guidelines in assessing research proposals. Apart from the commonly
known principle of informed consent , these codes have quite firm requirements
for the design of a study. Emanuel, Wendler and Grady (2000) proposed seven
ethical requirements in designing clinical studies, which are also applicable to
the design of studies in the social and biomedical field. Without discussing the
ethical requirements in depth, we will briefly list the requirements proposed by
Emanuel Wendler and Grady (2000).

Social and scientific value. The study design should enable evaluation of a
treatment intervention to improve health and increase knowledge.

Scientific validity. A study should use accepted scientific methods, including
statistical techniques to provide valid and reliable data. This requirement
is closely related to the statistical conclusion validity of a study.

Fair subject selection. A study should not specifically select vulnerable indi-
viduals for risky research and reserve the socially strong subjects for the
more beneficial research projects.

Favourable risk-benefit ratio. Potential risks to the subjects should be propor-
tionate to the benefits to the subject and society.

Independent review. Reviewers of the proposed design of a study should be
independent and not affiliated with the research project itself.

Informed consent. Subjects should be informed about the purpose of
the research, its procedures, potential risks and benefits, so that the
individual understands it and can make a voluntary decision whether to
enrol, continue participation or stop.
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Respect for potential and enrolled subjects. The research protocol should
include respect for subjects by permitting withdrawal from research, by
protecting privacy, by informing subjects of newly discovered risks or
benefits and by maintaining the welfare of subjects.

It should be emphasized that the ethical requirements that focus on the well
being of the subjects are important and can easily be overlooked or forgotten
when a study is designed. Designers of research studies sometimes have the
tendency to concentrate on the more methodological requirements of a good
design than on ethical aspects of designing a study.

To summarize, a ‘good’ design for any type of study should ensure suffi-
cient information and power for finding real effects in the region of interest, be
robust against violations of model assumptions, enable adequate check of model
fit, enable adequate check of model assumptions, allow for adequate control of
extraneous variables, ensure simplicity of data patterns and computations, require
minimum costs and sample size and enable valid extrapolation of the conclusions.
In addition to these methodological requirements, ethical aspects should be taken
into consideration as well, especially those that focus on the well being of the
subjects and their informed consent.

1.7 Exact versus approximate designs

This book focuses on the use of optimal or highly efficient designs in social and
biomedical research. Requirements for such optimal and highly efficient designs
have been discussed in the previous sections. In this subsection, we make clear
the distinction between two types of designs: exact and approximate designs .
This distinction is important for understanding the material in the rest of this
book and reasons for our choice to work with approximate designs instead of
exact designs.

To understand the distinction between exact and approximate designs , let us
consider a typical design problem for a dose–response study. The researcher has
to decide in advance how to select from a given dose interval, the number of
dose levels to use, the dose levels , and the number of subjects to assign to each
of these dose levels. Suppose that the available resources allow us to take a fixed
number of subjects, say N , in this study. An exact design tells us how many
subjects to assign to each dose. If N = 60 subjects are available for the study,
an exact design may require two different doses with 20 subjects given to the
first dose level and 40 subjects given to the other second dose. Alternatively, if
resources only allow N = 57 subjects, an exact design may allocate 22 subjects at
a first dose level and 35 subjects at the second dose. Of course, these doses must
all be selected from the dose interval of interest that was specified in advance.

Approximate design is another way to allocate a given number of N subjects.
Such a design may specify that one-third of the subjects be given to a first dose
level and two-third of the subjects be given to the other dose level. If N = 60,
this results in a design that has 20 subjects at the first dose and 40 subjects at
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the second dose. The defining characteristic of an approximate design is that it
is specified by the number of dose levels, the dose levels and the proportion of
subjects or units assigned to each dose. Approximate designs may appear to be
exact designs but there is a key difference. Unlike exact designs, approximate
designs can be specified regardless of the value of N . For instance, if N = 180
in the same example, the allocation scheme is the same, that is, one-third to
the first dose and two-third to the second dose, resulting in the design that has
60 subjects at the first dose and 120 at the second dose, or vice versa. So the
approximate design coincides with the exact design in this specific instance.

What happens if N = 100? The above approximate design then requires
100/3 = 33.3333 subjects at the first dose and 66.6667 subjects at the second
dose. Silly? Well, this is precisely the explanation behind its name. Approxima-
tion is the name of the game. Sometimes these designs are also called continuous
designs suggesting that the allocation scheme has a continuum connotation. In
practice, an approximate design is rounded in some natural way so that it becomes
an exact design before implementation. For the approximate design just discussed,
the implemented (rounded) design can take one of the following forms:

1. 33 subjects at dose 1 and 67 subjects at dose 2 or

2. 34 subjects at dose 1 and 66 subjects at dose 2.

So the design that we use in practice may not be unique, but, nevertheless,
should be very similar to any one of the candidate designs listed above.

Kiefer pioneered the approximate design approach and his extensive work
in this area is well documented in Kiefer (1985). There was criticism of this
approach initially, but it is now widely accepted as a practical way of finding
optimal approximate designs. Kiefer gave three powerful reasons for working
with approximate designs instead of exact designs.

The first reason is that optimal exact designs are very difficult to find and
they depend on the specific value of N in addition to being dependent on the
model and optimality criterion. This means that for each model and each criterion,
we need to have literally an endless list of optimal designs for the practitioners
because each different value of the sample N results in a different optimal design.
In contrast, the optimal approximate design is independent of the value of N

and consequently they are easier to describe and be listed. Second, there is
rounding involved when we implement an approximate design. One can show that
the implemented optimal approximate design is always close to the (unknown)
optimal exact design and the difference between the exact optimal design and
the implemented design vanishes if N gets large. The third reason is that optimal
exact designs usually require complicated mathematical theory and many optimal
exact designs still cannot be found for relatively simple problems. In contrast,
optimal approximate designs are available either in analytical form or they are
found using iterative methods via computer algorithms. In summary, there are
compelling reasons to work with approximate designs in practice and much of
the rest of this book will focus on approximate optimal designs.
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1.8 Examples

In this section, we first illustrate the research process using a simple hypothet-
ical radiation dosage example. We then present studies taken from the social,
behavioural and biomedical literature to illustrate how different types of design
issues can arise in practice. For each study, we describe the problem and design
issues, but defer how one may improve the designs to a later chapter.

1.8.1 Radiation dosage example

Suppose that a radiologist is interested in the linear effect of radiation dosage
(X) on tumour shrinkage (Y ) and assumes that the relation between radiation
dosage levels and tumour shrinkage can be adequately described by the sim-
ple linear regression model. The mathematical relationship can be written as
yi = β0 + β1xi + εi , where β0 is the intercept parameter and β1 is the slope
parameter. The tumour shrinkage for the ith patient is yi and the radiation dose
is xi . We assume each error term εi has mean 0 and constant variance, and
all observations are independent. In clinical practice, the range of dosage levels
must be restricted, because an overdose can harm the experimental units, which
are patients in this case. On the other hand, too small a dosage is likely to be
ineffective. We assume for illustrative purposes here that the radiologist can only
use eight equally spaced dosage levels and that sufficient funding is available to
include only N = 16 patients. If these dosage levels are indicated by the num-
bers 1, 2, 3, . . . , 8, a simple and intuitive design is to allocate n patients to each
dose levels. This implies we must have n = N/8 = 2 patients per dosage level.
Table 1.2 schematically shows this design for the study. The numbers 1 through
8 indicate the dosage levels and these dosage levels are equally spaced between
the minimum and maximum dosage levels.

Table 1.2 A balanced radiation dosage design.

Dosage levels

1 2 3 4 5 6 7 8
n n n n n n n n

Following Section 1.2, we have now covered Stages 1, 2 and 3 of the research
process. We identified radiation dosage as the only variable X to study its effects
on the outcome variable Y , which is tumour shrinkage. That fulfilled Stage 1 of
the process. The posited linear regression model between the tumour shrinkage
and the radiation dose along with the choice of the design in Table 1.2 fulfilled
Stages 2 and 3. In Stage 4, we collect data to test the scientific hypothesis of
interest. In this case, the null hypothesis is that there is no linear relation between
dosage level and tumour shrinkage, that is, H0 : β1 = 0. An important design
question is whether this design is able to estimate β1 efficiently and whether there
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is sufficient power for testing the null hypothesis H0 : β1 = 0 to detect if the data
support a linear relationship between tumour shrinkage and radiation dosage level.

The design issue for this problem is particularly pressing because we know
that we have only a small sample of N = 16 patients and that measurement errors
in radiation studies are usually quite large. This means it is absolutely crucial
to choose the design carefully to minimize cost and maximize efficiency. What
design would that be? Would it be more efficient to assign patients to a smaller
number of dosage levels, such as dosage levels 1, 5 and 8? Or would it be more
efficient to assign patients to the most extreme dosage levels 1 and 8? We will
show in Chapter 2 that the design with one-half of the N = 16 patients assigned
to dosage level 1 and the other one-half to dosage level 8 is the most efficient for
estimating the slope parameter β1. When the linear model assumption holds, this
design that assigns equal proportions of patients to the extreme two dose levels
is also optimal for several other purposes, but we defer further discussion to
Chapter 2. Of course, an optimal design would still have to comply with ethical
requirements. How efficient is the design in Table 1.2 compared to the optimal
design for estimating β1? It can be shown that this design is not efficient; in fact,
its efficiency is only approximately 40%. We explain later on how this percentage
is computed and what the efficiency means in practice.

1.8.2 Designs for the Poggendorff and Ponzo illusion
experiments

Over the years, psychologists and cognitive scientists have been interested in
the so-called Poggendoff and Ponzo illusions. These illusions are displayed in
Figure 1.2. The Poggendorf illusion is that the ends of a straight line segment
passing behind an obscuring rectangle seem to be offset when in fact they are
aligned. The railroad or Ponzo illusion is that the upper horizontal line appears
much longer than the lower horizontal line. In the Ponzo illusion, the subject
is required to adjust the length of the lower horizontal line to match that of
the upper horizontal line. In the Poggendorff illusion, the subject positions the

The Poggendorff illusion

(a) (b)

The Ponzo illusion

Figure 1.2 Graphs of the Poggendorf and Ponzo illusions.
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right-hand bar as a continuation of the bar on the left. The subject’s error in these
adjustments (in inches) is measured and recorded as the magnitude of the illusion.

Bock (1975) reported two experiments conducted by Leibowitz and
Gwozdicki (1967) and Leibowitz and Judisch (1967), which studied the
magnitude of pictorial illusions as a function of age. The original design for each
of the two studies was the same and had 16 children in each of the following age
groups 5.0, 6.0, 7.0, 8.5, 10.5, 12.5, 14.5, 16.5 and 19.5. This design with a total
of 144 children is summarized in Table 1.3. Bock (1975, Chapter 4) showed that
the magnitude of the Poggendorff and Ponzo illusions as a function of age could
be adequately described by a quadratic and cubic regression model, respectively.

Table 1.3 Design of Ponzo and Poggendorff studies.

Age groups

1 2 3 4 5 6 7 8 9

Age 5 6 7 8.5 10.5 12.5 14.5 16.5 19.5
n 16 16 16 16 16 16 16 16 16

Figure 1.3 displays the fitted polynomials. It clearly shows the curvilinear
relationship between age and the magnitude of the illusion. For the Poggen-
dorff illusion, the magnitude of the illusion decreases as the age of the children
increases and the magnitude increases again for older children (Figure 1.3a),
whereas for the Ponzo illusion, the magnitude of the illusion first increases with
the age of the children, then decreases and finally increases again (Figure 1.3b).
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Figure 1.3 Magnitude of the Poggendorff and Ponzo illusions as function of age
(data from Bock, 1975, Chapter 4).

The design for such studies requires selection of the age groups and the
number of children in each of the age groups. One design question can be raised
here is whether the nine age groups used in the original design are all needed to
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estimate the polynomial functions that describe these two magnitudes of illusions.
More specifically, how many distinct age groups are needed to estimate the
quadratic and cubic function for these two illusions as efficiently as possible?
Another question is whether these 144 children all contribute the same amount of
information to estimate the parameters in the two functions. More importantly,
is it possible to choose the number of age groups and the number of children to
include in each of these age groups to obtain the most precise estimate of the
polynomial relationship at minimal cost? In Chapter 3, we provide some answers
to these questions using optimal design theory.

1.8.3 Uncertainty about best fitting regression models

Suppose that an epidemiologist studies the relationship between body weight and
the joint effects of height and age of nutritionally deficient children. This hypo-
thetical example is described in Kleinbaum et al. (1998, Chapter 8, Example 8.1)
using data from 12 nutritionally deficient children with ages lying between 6 and
12 years. The heights of the children were roughly between 50 and 60 cm, and
their weights roughly ranged from 50 to 80 kg.

The design question for this example is as follows: Which design will give
us the most efficient estimate for the relationship between weight and the joint
effects of height and age? This question is difficult and really quite impossible
to answer unless further assumptions are made. For instance, what is the posited
relationship between weight and the two predictors, height and age? Is the
epidemiologist aware of postulated models in the literature or able to perform
a pilot study to obtain a preliminary estimate of this relationship? Clearly, the
answer to the design question depends on the assumed statistical model. What
are plausible models? In the absence of good prior information, one considers
the simplest possible models, and hope that the data will tell us which model
seems most appropriate later on. From the design perspective, one can determine
an efficient design for each plausible model and use these designs to come up
with a reasonable model. In practice, researchers usually begin by considering
simple linear models. Here are some common regression models to consider for
two predictors X1 and X2 and a single outcome Y . For the ith child, we denote
the value of the dependent variable, body weight, by yi and the values of the
independent variables, height and age, by x1i and x2i , respectively:

Model 1: yi = β0 + β1x1i + β2x2i + εi . (1.1)

This model considers only the main effects for age and height on weight.
If, in addition, we entertain an interaction between age and height, the model
becomes

Model 2: yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi . (1.2)
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The epidemiologist may also be interested in a second order effect for height
(X1). In this case, the model is

Model 3: yi = β0 + β1x1i + β2x2i + β3x1ix2i + β4x
2
1i + εi . (1.3)

If a second order effect for age (X2) is also entertained, the model becomes

Model 4: yi = β0 + β1x1i + β2x2i + β3x1ix2i + β4x
2
1i + β5x

2
2i + εi . (1.4)

Model 4 contains linear and quadratic terms for both the independent variables
and also an interaction between these two variables. To complete the list of
possible models for two variables, Model 5 below contains a second order term
for both independent variables, that is, it is the same as Model 4, but without the
interaction effect:

Model 5: yi = β0 + β1x1i + β2x2i + β4x
2
1i + β5x

2
2i + εi. (1.5)

Details on the actual analysis of such regression models can be found in
Kleinbaum et al. (1998, Chapter 8), among others.

From the design viewpoint, we know that the choice of an efficient design
depends on the model specification. The design problem confronting the epidemi-
ologist is that data needs to be collected to validate the assumed model, but it
is impossible to specify how data should be collected without a design. For this
study, the design problem consists of the question what combination of levels of
the independent variables (height and age) will provide the most efficient estima-
tors of the parameters and how many children should be selected for each of these
combinations. This design problem is explained in further detail in Chapter 3.

1.8.4 Designs for a priori contrasts among composite faces

Galton (1878) and Stoddard (1886) were probably the first to compose portraits
of photographic exposures of faces. Langlois and Roggeman (1990) provided
empirical evidence that composite faces seem to be ‘better looking’ than the
original individual pictures. In their study, Langlois and Roggeman found a strong
(curvi)linear relation between attractiveness and the number of faces entering the
mixed or ‘averaged’ composite face. Illustrations of such a morphing effect can
be found on the web site: http://www.beautycheck.de/.

The experiment performed by Langlois and Roggeman (1990) consisted of
five levels of composite faces that were obtained by ‘averaging’, respectively, 2,
4, 8, 16, and 32 faces. The attractiveness was rated by subjects on a five-point
Likert scale. Figure 1.4 shows the mean ratings of the five levels of female
composite faces using data from Table 1 in Langlois and Roggeman (1990). The
vertical lines in Figure 1.4 indicate the standard deviations at the five composite
levels. It is assumed that faces per composite level were rated by different
samples of raters.
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Figure 1.4 Average attractiveness ratings for female composite faces (data from
Langlois and Roggeman, 1990).

Figure 1.4 shows that there is a relation between the composite level of
the faces and their attractiveness. Overall, the trend shows that the faces were
judged more attractive as more faces were entered. There also seems to be more
consensus among raters about the attractiveness of the faces as the composite
level increases. Figure 1.4 shows that the standard deviation tends to decrease as
the composite level increases.

Although a clear trend is shown in the figure, it is not clear how the differences
are manifested. Is this relation between attractiveness and composite level mainly
a linear relation or is it also curvilinear? In the original design, the same number
of raters was used for each composite level. In this study, all five composite levels
are needed and so there is no question about the choice of number of levels to
include. One can, however, take issue with the number of raters needed at each
composite level. What is the optimal number of raters at each level to obtain the
most efficient estimate for the linear or curvilinear effect of the composite level
on the attractiveness? More details about this problem are discussed in Chapter 4.

1.8.5 Designs for calibration of item parameters in item
response theory models

In educational research, a lot of resources are spent on the design of achievement
tests, and various researchers have studied the problem of optimally designing
achievement tests to decrease the costs of measurement. An example is the com-
puterized GRE® General Test (Graduate Record Examinations), which measures
verbal reasoning, quantitative reasoning, critical thinking, and analytical writing
skills that have been acquired over a long period and that are not related to any
specific field of study. The GRE test scores are frequently used as a criterion for
admission to graduate studies in the United States.

Item response theory (IRT) models are usually used to estimate the char-
acteristics of items in such a test. Van der Linden and Hambleton (1997) is



OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH 25

a useful reference for IRT models. An often used model is the two-parameter
logistic (2PL) model, which models the probability of a student with ability θj

to correctly answer an item as a logistic function:

pi(θj ) = exp
[
ai(θj − bi)

]

1 + exp
[
ai(θj − bi)

] . (1.6)

The response probability pi(θj ) for item i is modelled as a function of the
ability level θj in the interval −∞ < θj < ∞. The item parameter bi represents
the location parameter with range −∞ < bi < ∞ and the item discrimination
(slope) parameter is represented by ai with range 0 < ai < ∞. The exponential
function is exp(x) = ex ≈ 2.7184x . It should be noted that this is actually a
logistic model, but with a quantitative latent variable θj . The difference between
the logistic model described in Chapter 5 and the IRT model is that the IRT
model assumes that the ability levels of students are unknown and have to be
estimated as well, whereas the logistic model assumes a manifest independent
variable. Usually, marginal maximum likelihood estimation of the parameters is
applied with a normal density function for the distribution of the θj s (Van der
Linden and Hambleton, 1997).

Figure 1.5a shows a typical set of nine response functions from the 2PL
model. These response functions vary in location and slope. Figure 1.5b shows
one of these nine functions for which the slope ai = 1. The dotted lines show
that the probability of correctly answering the item is pi(θj ) = 0.5 for a person
with ability θj = bi . It is seen that as the ability of the student increases, the
probability of answering the item correctly also increases, and that the steepness
of the probability function depends on the size of the slope parameter ai .
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Figure 1.5 A set of nine typical response functions.

A computerized adaptive testing (CAT) setting is often used to estimate the
ability levels of students and the item parameters as efficiently as possible. For
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example, the GRE General Test is implemented in CAT form where a computer
program sequentially selects items for a student to answer. The CAT procedure
selects items that are not too difficult and not too easy for the student. It uses
the information received from answers of a student to previously administered
items. In this way, the ability of the student can be efficiently estimated with
fewer items than with a traditional paper and pencil test. However, to adopt such
CAT procedures, a sufficient large item bank with calibrated items is needed. To
prevent the item bank from being exhausted by the CAT procedure, that is, when
the items become out of date or over exposed, these item banks usually contain a
huge number of items and builders of item banks have to conduct costly sessions
to calibrate all these items.

Different procedures to build such huge item banks have been proposed. In
many cases, calibration of items takes place by administering the items to a large
fixed sample of students. This may, however, result in large parts of the data with
little or no information on the item parameters. More efficient sampling designs
have been suggested by Berger (1992, 1994), among others. The characteristics
of the items that provide more efficient estimators for the item parameters are
explained in Chapter 5.

1.9 Summary

This introductory chapter reviews the basic elements of a research design and lists
some key requirements of a ‘good’ design. These requirements can be method-
ological, statistical or ethical in nature. The main focus of this book is to construct
research designs that are as efficient as possible at minimal cost. Efficiency here
can refer to the accuracy of the estimates for the model parameters or the power
level of test or tests of interest. We distinguish two types of designs in the liter-
ature: exact and approximate (or continuous) designs. We also provide examples
from the social and biomedical fields to illustrate different types of design prob-
lems we may encounter in practice and what design issues actually entail for
each of the problems.



2

Designs for simple linear
regression

2.1 Design problem for a linear model

Suppose that we are interested in the relationship between two quantitative vari-
ables, that is, we want to know how large the effect is of an independent
(predictor) variable X on a dependent variable Y . For example, we could be
interested in the relation between radiation doses X and the reduction of tumours
Y in a sample of breast cancer patients. Assuming that there are no ethical objec-
tions, we could randomly assign a sample of patients to different dosage levels xi

and afterwards measure the tumour shrinkage yi for each patient. Each individual
subject i in the sample is associated with a pair of values (xi , yi).

The relationship between the random variables X and Y can be visualized by
means of a scatter plot. The first problem that arises is how to determine the type
of relationship between the two variables. What effect of X on Y is of interest?
We will assume in this chapter that the relation between X and Y is linear and
therefore adopt a linear model to describe this relationship. But there is no law
that says that this relation must be linear. In fact, many relations among two
variables are intrinsically nonlinear. The linear function, however, is not only the
most simple function to understand, but is also often an accurate approximation
of the true relation between two variables, especially over a narrow range of
values for the X variable.

In the design problem for a linear model, we can distinguish two questions.
The first question concerns the selection of values or levels of the indepen-
dent variable. To investigate whether radiation dosage has an effect on tumour
reduction, we have to first choose different radiation dosages to observe the
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tumour reduction. Of course, these radiation dosages have to be chosen from a
pre-selected range that meets all feasibility and ethical requirements. The second
question concerns the actual number of patients assigned to each radiation dosage.
Specifically, how many patients do we assign to each of these radiation-dosage
levels?

For the simple linear model, both design questions can be answered defini-
tively if our primary interest is in estimating the intercept or the slope parameter
in the model. Before we present the optimal design for estimating each of the
single parameters, we caution that the optimal design is constructed based solely
on theoretical considerations and so they may not always be feasible in practical
settings, where all kinds of practical and ethical constraints need to be taken into
account. Our constant guiding and over-riding theme in this book is that even
if an optimal design is not implementable in practice, we can use the charac-
teristics of the optimal design to come up with an implementable design that
retains as much features of the optimal design as possible. In other words, we
allow the design to stray from the optimum to meet practical constraints, but
keep constantly in mind the resulting loss in efficiency relative to the optimal
design. In this way, even if the resulting design is not optimal, the design is
informatively chosen. We believe that adopting such a design strategy is likely
to produce a design that meets both practical and theoretical considerations, and
on average, should still outperform many of the frequently used research designs,
where rationale for their use often seems to be lacking.

2.1.1 The design

A design is determined by the choice of the so-called design points or support
points and by the number of subjects assigned to each of these design points. For
example, suppose that we want to study the effect of radiation-dosage levels on
tumour reduction and wish to include eight different dosage levels in our study.
Let us denote these eight different design points by d1, d2, d3, . . . , d8 and the
number of patients to be assigned to each of these design points (dosage levels)
by n1, n2, n3, . . . , n8, respectively. If the total number of patients in the study
is N , then all n’s sum up to N . Different designs rise when we have different
design points and/or different numbers of patients at each of the design points.

For a total sample of N patients, the independent variable X (radiation dosage)
has N values xi(i = 1, . . . , N). Among these N values there are m = 8 distinct
values associated with the radiation-dosage levels. Consider the specific design
in Table 2.1 where the design points dj ’s are displayed together with the scores
xj ’s of the independent variable X. The xj values are equal to the dj values
themselves or equal to some linear transformation of the dj values. For this table,
x1 and x2 are equal to d1, and x3 is equal to d2, and so on. It is plainly visible
that this design has an unequal number of patients assigned to each design point
(dosage level). For example, only two patients are assigned to the first design
point d1, while design point d5 has four patients.
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Table 2.1 An example of a design for the radiation-dosage study.

Design points, dj

1 2 3 4 5 6 7 8

x1 x3 x4 x6 x9 x13 x14 x15
x2 x5 x7 x10 x16

x8 x11
x12

n1 = 2 n2 = 1 n3 = 2 n4 = 3 n5 = 4 n6 = 1 n7 = 1 n8 = 2

Note: The N subjects are usually assigned randomly to the design points dj , j = 1, . . . , m.

2.1.1.1 Choice and scaling of design points

The values of the independent variable X have an upper and a lower limit
xmax and xmin, respectively, that is, xmin ≤ xi ≤ xmax. For the radiation-dosage
design, one can imagine that there will be a lower limit for the radiation dosage
at which there will be no effect on tumour reduction and an upper limit where
the radiation dosage will cause unacceptable damage to the tissue. These upper
and lower limits mean that all design points dj have to be selected within
these two limits and so are bounded between dmin ≤ dj ≤ dmax. The set of
all possible design points is called the design region or design space and is
symbolized by � = [

dmin ≤ dj ≤ dmax
]
. Although the boundaries of the design

space [dmin, dmax] usually coincide with the boundaries [xmin, xmax] of the xi

values, this is not necessarily always the case. The boundaries of the design
space can sometimes be restricted and have a more narrow range of values.

We frequently recode the design points using a linear transformation to facil-
itate interpretability and comparison of the results. A popular scale is to have
the design points constrained between −1 and 1, that is, −1 ≤ d ′

j ≤ +1. This
can be accomplished by the linear transformation of the original design points
dmin ≤ dj ≤ dmax:

d ′
j = dj − d̃

dmax − d̃
, where d̃ = dmin + dmax − dmin

2
. (2.1)

As an illustration, consider the dosage level example with eight different
dosage levels, properly scaled at dosages 1, 2, 3, 4, 5, 6, 7 and 8, that is, we have
1 ≤ dj ≤ 8. These design points can be re-scaled to values within the interval
−1 ≤ d ′

j ≤ +1. To do this, we first verify that the centre of the dosage scale is
d̃ = 1 + 3.5 = 4.5, and upon substitution of d̃ into d ′

j = (dj − 4.5)/(8 − 4.5), we
have the transformed eight design points d ′

j : −1, −0.7143, −0.4286, −0.1429,
0.1429, 0.4286, 0.7143 and 1.

Other transformations of the design points are also possible, but it should be
kept in mind that some characteristics of a design will change after recoding and
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that in many cases the optimal designs may change after recoding. For example,
when we change the design space, one may be unable to deduce the new design
points for the new optimal design from the design points of the optimal design in
the original design space. We will discuss this issue more fully in a later chapter.

2.1.1.2 Choice of number of observations

A study is usually set up by first determining the total sample size N . After
selecting the appropriate values for the independent variable to study, we choose
design points from the pre-selected design space �, that is, choose dj ∈ �, and
the number of observations nj from each design point such that

∑
j nj = N . We

can write such a design with m design points as

ξN =
{
d1 d2 d3 . . . dm

n1 n2 n3 . . . nm

}
. (2.2)

Each design point dj has a corresponding weight nj/N . This notation of a
design stresses the fact that the nj ’s are integers and that the design ξN is called
a discrete or exact design with N observations; see Section 1.7, Chapter 1 or
Atkinson and Donev (1992), among others.

In practice, all designs have to be discrete for implementation. This is because
whole units are assigned to the different design points. However, working with
exact designs is generally not an easy task and usually results in very diffi-
cult optimization problems. Even for relatively simple problems, the optimal
exact design cannot be described in closed form. Therefore it is mathematically
more convenient to work with the so-called continuous or approximate designs ,
generically defined and denoted by

ξ =
{
d1 d2 d3 . . . dm

w1 w2 w3 . . . wm

}
. (2.3)

Here, the continuous design also has m design points, but the key difference is
that the design is formulated with continuous weights such that

∑
j wj = 1, and

0 ≤ wj ≤ 1, for all j . The integral of this design measure ξ over the design space
is equal to 1. The weights in the continuous design approximate the nj/N ’s in
the exact design. Another distinguishing feature between these types of designs
is that continuous designs are defined only in terms of proportions, and so do
not require the total sample size N to be specified in advance.

We emphasize that a continuous design does not necessarily have to be equal
to an exact design even when the two designs have the same support points and
the same sample size. It depends how the approximate design is rounded up to
form an exact design. Typically, an exact design ξN is formed from a continuous
design by multiplying its weights wj ’s by N and by rounding the product to the
nearest integer value. All these rounded integer values should then again sum up
to N . Pukelsheim and Riedel (1992) provided approximation rules with optimal
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properties. When the sample size is large, both the exact and continuous designs
should be close.

The continuous version of the design for the radiation-dosage example with
eight different dosage levels on the design interval � = [1, 8] can be written as

ξ =
{

1 2 3 4 5 6 7 8
w1 w2 w3 w4 w5 w6 w7 w8

}
. (2.4)

If an equal proportion of patients is assigned to each dosage level, all the
weights are equal to wj = 1/8. On the other hand, if patients are only assigned
equally to the upper and lower limits of the radiation-dosage scale, that is, d1 = 1
and d8 = 8, then the corresponding weights are w1 = 0.5 and w8 = 0.5, and all
other weights are zero.

Suppose, as an illustration, we have a total sample size of N = 90 patients
and we would like to assign them equally to each of the eight dosage levels.
Then we have N × 1/8 = 11.25 at each dose, and rounding off to the nearest
integer, 11, gives the following design:

ξ90 =
{

1 2 3 4 5 6 7 8
12/90 11/90 11/90 11/90 11/90 11/90 11/90 12/90

}
,

(2.5)

where the two weights at both ends of the scale are set at 12/90 = 0.1333 to
comply with the design condition

∑
j nj = N . Of course, this rounding off to an

exact design for implementation is not unique; for example, one could have the
middle dosage levels 4 and 5 with 12 patients and all other dosage levels with
11 patients. If we wish to facilitate interpretation and comparison of different
designs, the dj values can be recoded between −1 and 1 by the transformation
d ′

j = (dj − d̃)/(8 − d̃), where d̃ = 1 + (8 − 1)/2. The resulting design is

ξ90

=
{−1 −0.7143 −0.4286 −0.1429 0.1429 0.4286 0.7143 1

12/90 11/90 11/90 11/90 11/90 11/90 11/90 12/90

}
.

(2.6)

2.1.2 The linear regression model

We assume that the relation between the variables X and Y can be described by
a linear regression model. The simple linear regression model is given by

yi = β0 + β1xi + εi, (2.7)

where the intercept β0 and the slope β1 are unknown parameters and the εi’s
are random error terms assumed to be independent and normally distributed with
zero mean and common variance σ 2

ε .
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In Figure 2.1, a scatter plot together with the linear regression function of
tumour reduction on dosage level is visualized. The estimated means are x̄ and
ȳ, respectively. The responses yi and the values of the independent variable xi

together form the N = 16 pairs of artificial data (xi , yi), i = 1, . . . , 16, which
are displayed as points in the scatter plot.
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Figure 2.1 Scatter plot and linear regression of tumour reduction on dosage level.

The slope parameter β1 in the regression equation in Figure 2.1 is the change
in the mean tumour reduction that results from a change of one unit of dosage,
that is, β1 = a/b, where a and b are the lengths of the large dotted lines in
Figure 2.1. The intercept β0 represents the mean tumour reduction for a dosage
level equal to zero, that is, for xi = 0. The point (x̄, ȳ) in Figure 2.1 represents
the means of dosage levels and the tumour reduction, respectively.

2.1.3 Estimation of parameters and efficiency

For the linear regression model in Model (2.7), we can estimate the parameters
β0 and β1 by the least squares method. The least squares estimators β̂0 and β̂1
are found by minimizing the sum of the squared errors εi = y − (

β̂0 + β̂1xi

)
in

the model. In other words, least squares estimates are obtained by minimizing∑N
i ε2

i . Using calculus, one can directly obtain the least squares estimators of β0

and β1 to be

β̂0 = ȳ − β̂1x̄ and β̂1 = cov(x, y)

var(x)
= SSxy

SSx

, (2.8)

where the sum of squares between x and y or covariation is SSxy =∑
(xi − x̄)(yi − ȳ) and the sum of squares of x is SSx = ∑

(xi − x̄)2.
In addition, we have cov(x, y) = SSxy/N and the variance of the x’s is
var(x) = SSx/N .

A useful property of the least squares estimators β̂0 and β̂1 is that they are
unbiased. This means that their expectation is equal to the parameter value, that is,
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E(β̂0) = β0 and E(β̂1) = β1. Under the normality assumption, these estimators
also have minimal variances among all linear unbiased estimators of β0 and β1.
Therefore, these estimators are efficient .

In general, the efficiency of an estimator increases as its variance becomes
smaller. A larger variance of an estimator expresses more uncertainty about the
estimator. In practice, there are three approaches to describe uncertainty about
the estimators.

2.1.3.1 Three measures of uncertainty

The first approach measures uncertainty by the variance of the estimators. The
variances of the two estimators β̂0 and β̂1 for the simple regression model are

var(β̂0) = σ 2
ε

(
1

N
+ x̄2

SSx

)
and var(β̂1) = σ 2

ε

SSx

= σ 2
ε

N var(x)
. (2.9)

These variances are used to test hypotheses on the single parameters. For
example, the null hypothesis that there is no relation between dosage level X

and tumour reduction Y is H0 : β1 = 0. The corresponding test statistic t = β̂1
/

√
v̂ar
(
β̂1
)

is distributed as a t distribution with (N − 2) degrees of freedom,

where v̂ar(β̂1) is an estimate of var(β̂1). To compute v̂ar(β̂1), we require a sample
estimate of σ 2

ε . This estimate is frequently called the mean squared error and is
equal to MSe = ∑N

i (yi − β̂0 − β̂1xi)
2/(N − 2). Because the power of the test

increases as var(β̂1) decreases, we observe from the formula of var(β̂1) that a
more powerful test of this hypothesis or a more efficient estimator of β1 can be
obtained when

• the variance of the error terms in the model σ 2
ε decreases and/or

• the variation SSx or variance var(x) increases and/or

• the sample size N increases.

It can be seen from the formulas that there is a trade-off among these three
components. A simple way to increase power and efficiency is to increase the
sample size N . Although this is often done in practice, it may lead to additional
costs of collecting the data. Therefore, it may be more desirable to reduce mea-
surement error by having more precise measurement of the variables to reduce
the value of σ 2

ε . This second approach is probably more appealing in social
and behavioral research where the error of measurement can sometimes be very
large. These two approaches are commonly used in observational studies. Still
another way to improve efficiency of the estimators in the simple linear model
is to select the levels of the independent variable in such a way that the vari-
ance var(x) increases. Clearly, this approach is feasible only in studies where the
researcher has control over the sampling and selection process. The above dis-
cussion also clearly applies to the case where estimating or testing the intercept
β0 in the simple linear model is of interest.
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A second measure for the uncertainty of the estimators β̂0 and β̂1 is the
confidence interval for the parameters β0 and β1. The smaller the width of the
confidence intervals, the more efficient the estimators are and the more power
for the tests of hypotheses for these parameters. Confidence intervals are based
on the variances of the parameter estimators. This can be seen in the following
confidence interval formulas:

β̂1 − tα/2,N−2

√
MSe

SSx

≤ β1 ≤ β̂1 + tα/2,N−2

√
MSe

SSx

(2.10)

and

β̂0 − tα/2,N−2

√

MSe

(
1

N
+ x̄2

SSx

)
≤ β0 ≤ β̂0 + tα/2,N−2

√

MSe

(
1

N
+ x̄2

SSx

)
,

(2.11)

where we recall that the mean squared error MSe is the sample estimate of
σ 2

ε and tα/2,N−2 is the 100(1 − α/2)th percentile of a t distribution with N − 2
degrees of freedom. Percentiles of the t distribution are widely available either
from statistical tables provided in textbooks or from a statistical programme. The
above formula shows that as MSe decreases or the sum of squares SSx increases,
the width of the confidence interval decreases and our estimators β̂0 and β̂1

become more accurate.
A third approach to express uncertainty of the parameter estimators is to

consider the variance of the predicted value ŷ0 for the response y0 corresponding
to an arbitrary value x0, that is, ŷ0 = β̂0 + β̂1x0 = ȳ + β̂1(x0 − x̄). The variance
of the predicted value for the linear regression model is

var(ŷ0) = σ 2
ε

{
1

N
+ (x0 − x̄)2

SSx

}
. (2.12)

Here, again, the variance of the predicted value ŷ0 is inversely related to both
the sample size and the variation of the independent variable, SSx , and is directly
related to the error variance σ 2

ε . Kleinbaum et al. (1998) gave additional details
on confidence intervals for regression analysis.

It is clear that to estimate the parameters β0 and β1, we need to have the
response data yi’s (Equation 2.8). The variances of the parameter estimators
can be computed without any response data, but in order to estimate the actual
variance of these parameter estimators in Equation (2.9), prior information on
the response data yi’s is needed to estimate the error variance σ 2

ε . The same
holds for the confidence intervals and for the estimation of the variance of the
predicted value ŷ0. Given σ 2

ε , we only need information that is already available
at the design stage of the study, namely, the sample size N , the levels of the
independent variable X and the allocation of the observations to each level of
the independent variable.
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2.2 Designs for radiation-dosage example

Consider again the simple linear model for studying the effect of radiation
dosage on the reduction of tumours in breast cancer patients. Assuming that
there are no ethical objections to assigning N = 16 breast cancer patients to eight
radiation-dosage levels, it is instructive to consider the four designs in Table 2.2.

Table 2.2 Four designs assigning breast cancer patients (N = 16) to eight
different radiation-dosage regimes.

Design points, dj Design 1 Design 2 Design 3 Design 4

1 2 2 3 8
2 1 2 2 0
3 2 2 2 0
4 3 2 1 0
5 4 2 1 0
6 1 2 2 0
7 1 2 2 0
8 2 2 3 8

N 16 16 16 16
SSx 70 84 108 196
var(β̂1) 0.0143 0.0119 0.0093 0.0051(×σ 2

ε )

var(β̂0) 0.3441 0.3036 0.25 0.1658(×σ 2
ε )

The discussion in the previous section and Equation (2.9) tell us that when
both the sample size N and error variance σ 2

ε are fixed and variance of the
dosage levels var(x) is maximized, the variance var(β̂1) will be minimal. This
is the same as saying var(β̂1) is minimized when the sum of squares SSx is
maximized. Table 2.2 shows how the sum of squares SSx and the variance var(x)

influences the variance var(β̂1) using the four designs all with N = 16 patients.
Design 1 is the original design and all 16 patients are randomly assigned to

the eight different dosage levels. The variance var(x) for Design 1 is var(x) =
SSx/N = 70/16 = 4.375. Design 2 has two patients for each of the eight dosage
levels and the variance is var(x) = 84/16 = 5.25. Design 3 is a design with
relatively more patients assigned to the smaller and larger dosage groups than
to the middle dosage groups. The corresponding variance is var(x) = 108/16 =
6.75. The last design, Design 4, equally assigns patients only at the extreme
dosage levels, that is, at d1 = 1 and d8 = 8. The variance of the dosage levels is
var(x) = 196/16 = 12.25. This design has the largest value of var(x), compared
among all the four designs.

For this example, among the four designs , Design 4 is the optimal design for
estimating the slope parameter because it has the largest value for var(x) and this
in turn implies the smallest value of var(β̂1). Table 2.2 shows that this optimal
design consists of two distinct design points and assigns N/2 patients to dosage
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level 1 and N/2 patients to dosage level 8. It can be written as

ξ ∗
16 =

{
1 8
8/16 8/16

}
. (2.13)

The results in Table 2.2 also show that the original Design 1 is the worst
design in terms of efficiency and that as more patients are assigned to the lower
and higher dosage levels, as is the case in Designs 3 and 4, the efficiency
increases. The optimal design in Table 2.2 guarantees that for a fixed sample
size N and a fixed error variance, the power of the single test of the hypothesis
β1 = 0 is maximal.

It is straightforward to construct an interval estimate for β1 in this example.
If one uses the optimal design (i.e. Design 4 in Table 2.2), it can be shown that
a 95% confidence interval for the slope parameter β1 is

β̂1 − 2.145

√
MSe

196
≤ β1 ≤ β̂1 + 2.145

√
MSe

196
, (2.14)

where tα/2,N−2 = 2.145 is the 97.5th percentile of the t distribution with N − 2
= 14 degrees of freedom. With N = 16 and a fixed error variance, the width
of this interval is the smallest possible among all four designs. For instance,
we observe that this width is about one-half the width of the corresponding
confidence interval for β1 constructed from Design 1. Note that a confidence
interval for the intercept β0 can also be similarly constructed and compared.

It is important to note that the optimal design found above was obtained
among four designs. The optimality of the design clearly depends on the class
of designs under comparison. An optimal design found from a smaller class of
designs may be no longer optimal when more designs are included for compar-
ison. In this particular example, we show later on that Design 4 is universally
optimal for estimating the slope parameter. This is a very strong and desirable
property and it means that Design 4 is optimal among ALL designs on the given
design space. In other words, there are no other designs on the same design
space that can produce a smaller variance for the estimated slope parameter than
Design 4. When there is no ambiguity, the universally optimal design is often
simply referred to as the optimal design .

2.3 Relative efficiency and sample size

Let us return to the commonly applied method to increase efficiency, namely, an
increase in sample size. Given the fact that increase in sample size N can have
the same effect on efficiency as an increase of the var(x), a relative efficiency
measure can be formulated. This measure makes it possible to compute how
many patients are needed to ensure that Design 1 has the same efficiency as
the optimal design (Design 4). We can define the relative efficiency (RE) as the
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inverse ratio of the var(β̂1) of that design and the variance var(β̂∗
1 ) of the optimal

design:

RE = var(β̂∗
1 )

var(β̂1)
= N var(x)

N∗ var(x∗)
, (2.15)

with N∗ and var(x∗) being the sample size and variance of x for the optimal
design , respectively. It should be noted that the ratio of the two variances var(β̂∗

1 )

and var(β̂1) in Equation (2.15) is actually a normalized efficiency measure for
continuous designs. This RE is always less than or equal to one and assumes that
N∗ = N .

In the radiation-dosage example, we compare the efficiency of Design 1
relative to the optimal design: RE = 0.51/1.43 = 0.36. To find out how many
patients are needed in Design 1 to have the same efficiency as the optimal
design , the numerator in Equation (2.15) can be set equal to the denomina-
tor, that is, N var(x) = N∗var(x∗). In terms of sample size, we require about
N = N∗var(x∗)/var(x) = 16 × 12.25/4.37 ≈ 45 patients in Design 1 to have
the same efficiency as the optimal design for estimating the slope parameter.
Alternatively, we need about 45/16 = 2.8 times as many patients in Design 1
to obtain the minimum variance of the treatment effect estimator var(β̂∗

1 ). It
can be put differently by saying that based on a sample of N∗ = 16 patients in
the optimal design , about (RE−1 − 1)100% = (0.36−1 − 1)100% = 180% more
patients than for the optimal design will be needed. Of course, these calculations
assume that increasing the sample size will not affect the variance var(x) and
that the (normalized) relative efficiency adequately applies to exact designs for
small samples.

2.4 Simultaneous inference

An optimal design that minimizes the variance of one parameter estimator may
generally not minimize the variances of other parameter estimators in the model.
The estimators of the different regression parameters are often correlated and it
may therefore be more informative to identify uncertainty simultaneously for all
the parameters in the model.

In the linear regression model the slope parameter β1 is usually of main inter-
est, but the intercept β0 also needs to be estimated. We recall that when we have a
100(1 − α)% confidence interval of a single parameter, the coefficient 100(1 − α)

represents the percentage of times that the confidence interval contains the true
parameter with repeated random samplings, and α is the pre-selected Type I
error rate. If several parameters are to be estimated, such an interpretation for
the confidence coefficient no longer holds. If the estimates of both parameters β0

and β1 are independent, and each has a confidence coefficient (1 − α), then the
joint probability will be (1 − α)2, which is smaller than the original confidence
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coefficient (1 − α). The probability that at least one of the hypotheses on the
two parameters is erroneously rejected will then be

{
1 − (1 − α)2

}
, which is of

course larger than the original Type I error probability α. Since the individual
parameter estimates are usually not independent, the confidence coefficient can-
not always be precisely determined. A better way is to construct a simultaneous
confidence interval or ellipse for both parameters β0 and β1. It can be shown that
the quadratic form for β0 and β1

F = N(β̂0 − β0)
2 + 2

∑
xi(β̂0 − β0)(β̂1 − β1) +∑

x2
i (β̂1 − β1)

2

2MSe
, (2.16)

has an F distribution with 2 and N − 2 degrees of freedom, and that

Prob
(
F ≤ Fα,2,N−2

) = 1 − α, (2.17)

where Fα,2,N−2 is the 100(1 − α)th percentile of an F distribution with 2 and
N − 2 degrees of freedom. The expression within the brackets in Equation (2.17)
characterizes a confidence ellipse that contains the parameters β0 and β1 in
100(1 − α)% of the times that the study is replicated. The probability that this
will happen simultaneously is (1 − α). Miller (1966) and Montgomery and Peck
(1992) gave a general review of simultaneous inference and technical details.

Figure 2.2 shows four different ellipses for the two parameters β0 and β1. The
intersection of the dotted axes in these ellipses represents the point estimators
β̂0 and β̂1. The lengths of the axes in the ellipses are related to the variances
of each of the estimators β̂0 and β̂1. Elongation of the ellipse along the axis of
one parameter implies that that parameter is not as well estimated as the other
parameter.

The covariance between these estimators cov(β̂0, β̂1) determines the direc-
tion of the axes. A positive covariance cov(β̂0, β̂1) > 0 indicates that the two
estimates β̂0 and β̂1 are positively correlated. This means if one estimate is large,
the other also tends to be large, and conversely. If we have a negative covari-
ance, that is, cov(β̂0, β̂1) < 0, this means that the two estimates are negatively
correlated and the two estimates tend to move in opposite directions.

Figure 2.2 shows how the covariance between the two estimates influences
the confidence ellipses. Figure 2.2a and b shows the case when both estimators
are negatively correlated, that is, cov(β̂0, β̂1) < 0. Figure 2.2c and d displays the
situation where the intercept and slope estimates β̂0 and β̂1 are uncorrelated.

The confidence ellipses in Figure 2.2 contain all information about the uncer-
tainty of the two parameters β0 and β1. When more than two parameters are
involved, ellipses can be extended to form ellipsoids in more than two dimen-
sions. In general, the information about the uncertainty of such ellipsoids can be
represented by the volume of the ellipsoid or by the contour of the ellipsoid. The
length of the axes is also a measure of uncertainty. In the following section, we
explain how we can base design optimality criteria on various characteristics of
a confidence ellipsoid.
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Figure 2.2 Confidence ellipses for two parameters β0 and β1 in the simple linear
model.

2.5 Optimality criteria

Confidence ellipsoids for the parameters can be used to find an optimal design
for the simultaneous estimation of these parameters. The problem is, however,
what property of these ellipsoids can be used to define an optimal design? Let us
denote the two parameter estimators β̂0 and β̂1 as a vector β̂ = (β̂0, β̂1)

′, where
the prime indicates that this vector β̂ is a 2 × 1 column vector and β̂1 is placed
underneath β̂0. The variance–covariance matrix of the parameter estimators β̂0

and β̂1 is given by

Cov(β̂) = σ 2
ε

NSSx

[∑
x2

i −∑ xi

−∑ xi N

]

. (2.18)

This matrix, by definition, is symmetric and so the off-diagonal elements are
necessarily equal. The variances of β̂0 and β̂1 are on the main diagonal of this
2 × 2 matrix, and the covariance cov(β̂0, β̂1) is the off-diagonal elements. From
this matrix, we note for example, the variance of the estimator β̂1 is var(β̂1) =
σ 2

ε /SSx . See also Equation (2.9).
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The variance–covariance matrix determines the shape and form of the con-
fidence ellipsoid and this motivates us to measure the efficiency of a design
based on its variance–covariance matrix Cov(β̂). In the literature, various dif-
ferent optimality criteria have been put forward. Among them are the so-called
alphabetic optimality criteria (Box, 1982), where each summarizes the variances
and covariances of the estimators of parameters in a unique way. Atkinson and
Donev (1992, Chapter 10) reviewed the most familiar design criteria that include
the D-, A-, G- and the E-optimality criteria.

2.5.1 D-optimality criterion

Uncertainty of a set of parameter estimators can be expressed by the volume of
a confidence ellipsoid; the smaller the volume, the more accurate the estimators.
The determinant or D-optimality criterion minimizes the product of the squared
lengths of the axes of the ellipsoid and is proportional to the volume of the
confidence ellipsoid. It is defined as the determinant of the variance–covariance
matrix Cov(β̂), that is:

D-criterion = Det[Cov(β̂)]. (2.19)

It is relatively easy to calculate the D-optimality criterion for the variance–
covariance matrix in Equation (2.18). Since the determinant for a 2 × 2 matrix[
a c

c b

]
is equal to (ab − c2), the determinant of the matrix in Equation (2.18) is

D-criterion = σ 4
ε

N2SS2
x

[
N
∑

x2
i −

(∑
xi

)2
]

= σ 4
ε

NSSx

. (2.20)

Of course, when this matrix becomes large, one will need a computer program
to calculate the determinant.

It can be seen from Equation (2.20) that an increase of both the sample size
N and the variation SSx will reduce the value of the D-optimality criterion.
Maximizing the sample size or the SSx will minimize the D-criterion value.
Likewise, minimizing the error variance σ 2

ε has the same effect on this criterion.
The D-optimality criterion has some useful properties. Firstly, the D-optimal

design is invariant under linear transformation of the scale of the independent
variable. This means that if we change the design interval, we can deduce the
D-optimal design directly from the one constructed over the original design inter-
val. Such property may not hold for the other optimality criteria, and this is
perhaps one reason why the D-optimality criterion is applied so often. Secondly,
the optimality criterion is proportional to the volume of the confidence ellipsoid
for the parameters. This property gives the criterion a natural interpretation in
terms of a confidence interval for the parameters in the regression model.

There is some evidence that the D-optimality criterion produces optimal
designs that are also highly efficient with respect to other criteria (Goos, 2002,
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p. 37). This is perhaps due to the fact that the alphabetic optimality criteria depend
on the eigenvalues of the variance–covariance matrix Cov(β̂). The D-optimality
criterion does have some drawbacks. The value of the D-optimality criterion may
not be easy to calculate using a pocket calculator when the number of parameters
is larger than two. The second drawback is that minimization of the determinant
of a covariance matrix may lead to elongation in the direction of one axis of the
confidence ellipsoid. This happens, for example, when the length of the confi-
dence interval of only one of the parameters is short and the others are all long,
leading to the situation that only one of the parameters is estimated efficiently
while the others are not. Finally, a D-optimal design may be optimal simulta-
neously for each of the individual parameters in the model, but because of the
correlations among the parameter estimators, the design may be very inefficient
for estimating certain linear combinations of the parameters.

2.5.2 A-optimality criterion

The average or A-optimality criterion minimizes the sum of the squared lengths
of the axes, which indirectly measures the size of the ellipsoid. This is the same
as minimizing the trace of the variance–covariance matrix Cov(β̂):

A-criterion = Trace[Cov(β̂)]. (2.21)

For the 2 × 2 variance–covariance matrix in Equation (2.18), the A-criterion
is just the sum of the two main diagonal elements:

A-criterion = σ 2
ε

N SSx

[∑
x2

i + N
]
. (2.22)

Here, again, an increase in the sample size N or SSx will result in a decrease
of the A-criterion value. Likewise, a decrease in the error variance σ 2

ε will
decrease the criterion value. We iterate that minimizing the A-criterion means
that the quantity

[
var
(
β̂0
)+ var

(
β̂1
)]

is minimized.
A major drawback of the A-optimality criterion is that it is not invariant

under linear transformation of the scale of the independent variables, that is,
each scale may lead to another optimal design. In some applications, however,
this drawback may not be that important. Another problem of this criterion is
that it can be misleading in the sense that the variances of some parameters may
have very different magnitudes, and so simply averaging the diagonal elements
may not accurately reflect the equal interest in each parameter.

2.5.3 G-optimality criterion

A third criterion is the global or G-optimality criterion, which may be useful when
a researcher is interested in predicting the outcome variable Y as efficiently as
possible over the design space. The predicted value ŷ0 at an arbitrary value x0

of the independent variable is given by ŷ0 = β̂0 + β̂1x0, and this predicted value
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is normally distributed with variance equal to

var(ŷ0) = σ 2
ε

{
1

N
+ (x0 − x̄)2

SSx

}
. (2.23)

In practice, this variance is usually standardized as s(x, ξ) = N var(ŷ0)/σ
2
ε .

Clearly, this standardized variance s(x, ξ) depends on x0, the design points
(x values) and the particular design ξ , for which the variance–covariance matrix
Cov(β̂) is computed. To obtain an accurate prediction of the responses across
the design space, we want to have a design that gives us the smallest possi-
ble standardized variance of the predicted response across the design space. A
G-optimal design is a design that minimizes the maximum standardized variance
of the predicted response over the design space �. In other words, it selects a
design that minimizes

G-criterion = max
d∈�

[
N × var(ŷ0)

σ 2
ε

]
. (2.24)

Although this criterion is not frequently used in practice and seems only
relevant when the prediction of the overall responses is desired, it has an
important theoretical property that connects it to the D-optimality criterion. In
a ground-breaking paper, Kiefer and Wolfowitz (1960) showed that D- and
G-optimal designs are the same when the errors all have constant variance. It is
known that the standardized variance for a continuous G-optimal design ξ ∗ is
always less than or equal to the number of parameters p in the model, that is,
s(x, ξ ∗) ≤ p with equality at the design points. This simple inequality can then
be used to check whether a design is D-optimal or not. Figure 2.3 displays the
standardized variance functions for the simple linear model yi = β0 + β1xi + εi

using Design 4 and for the quadratic model yi = β0 + β1xi + β2
2 + εi using the
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Figure 2.3 Standardized variance functions for D- and G-optimal designs.
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design equally supported at −1, 0 and 1. The figure shows that these designs
have standard variance functions that satisfy s(x, ξ ∗) ≤ p with equality at
the design points. Here p = 2 for the simple linear model and p = 3 for the
quadratic model. This confirms that the D- and G-optimal design points are
equally supported at [−1, +1] for the simple linear model and at [−1, 0, +1]
for the quadratic regression model.

2.5.4 E-optimality criterion

We now discuss the E-optimality criterion, where ‘E’ stands for the extreme
axis of a confidence ellipsoid. This criterion minimizes the squared length of the
‘largest’ axis of the confidence ellipsoid. The rationale for this criterion is that
the parameters are estimated least accurately in the direction of the largest axis.
By minimizing the squared length of the largest axis of the ellipsoid, the criterion
minimizes the ‘worst case’ scenario, that is, it minimizes the maximal possible
variance from any standardized linear combination of the two estimated parame-
ters. Here, standardized means that the sum of squares of the two coefficients in
the linear combination should equal 1. Algebraically, it can be shown that mini-
mizing the squared length of the ‘largest’ axis of the confidence ellipsoid is the
same as minimizing the maximum eigenvalue of the 2 × 2 variance–covariance
matrix Cov(β̂). The formula is

E-criterion = Rootmax[Cov(β̂)], (2.25)

where Rootmax is the largest root or eigenvalue of the variance–covariance matrix
Cov(β̂). This criterion is not often applied in practice. It has the disadvantage
that not all information on the parameters in the model is used, because only the
maximum root is considered, and that it is sensitive to the scale of the independent
variable.

2.5.5 Number of distinct design points

Different optimal designs may require different number of design points. It is
clear that in order to estimate p parameters in any model, at least p distinct
design points are needed, and for many models and optimality criteria, the opti-
mal number of distinct design points will be p. An interesting result called
Carathéodory’s theorem (Silvey, 1980, Appendix 2) provides us with an upper
bound on the number of design points needed for an optimal design. For many
design problems with p parameters, this number is p(p + 1)/2. Thus, the opti-
mal number of distinct design points is between p and p(p + 1)/2 (Pukelsheim,
1993, p.190). Serious loss of efficiency may result in designs with more than
p(p + 1)/2 distinct design points and less than p distinct design points may not
enable us to estimate all the p parameters in the model. Finally, it should be noted
that the upper bound does not hold for the Bayesian design criteria (Atkinson,
Donev and Tobias, 2007, Chapter 18).
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2.6 Relative efficiency

Relative efficiency is a measure that enables us to compare the efficiencies
of two designs. For example, if the D-criterion is of interest and the given
model has p parameters, the relative efficiency of a design ξ with respect to the
D-optimal design ξ ∗ is

RED =
{

Det[Cov(β̂∗)]
Det[Cov(β̂)]

}1/p

, (2.26)

where Cov(β̂∗) and Cov(β̂) are the covariance matrices of the estimators from
the optimal design ξ ∗ and the design ξ , respectively. The pth root is used in
the above ratio to facilitate interpretation. In terms of number of subjects, this
expression enables us to determine the number of extra subjects that is needed
for design ξ to have the same efficiency as the optimal design ξ ∗. For example,
if the design ξ has a relative efficiency RED = 0.597, then the sample size has
to be multiplied by RE−1

D = 1.67, to obtain the same efficiency as the optimal
design. This can be rephrased as (0.597−1 − 1)100% more subjects than for the
optimal design will be needed, that is, 67% more subjects.

Similar REs for the other optimality criteria can be formulated, but now
without the power (1/p). The relative efficiency for the A-criterion is

REA =
{

Trace[Cov(β̂∗)]
Trace[Cov(β̂)]

}
, (2.27)

and that for the E-criterion is

REE =
{

Rootmax[Cov(β̂∗)]
Rootmax[Cov(β̂)]

}
. (2.28)

A similar expression for the relative efficiency of the G-optimality criteria
can be given.

It should be emphasized that the relative efficiencies for these three criteria
are generally unequal. They are also not the one presented in Section 2.3, which
was computed for estimating only the single parameter β1. Here, RED, REA and
REE are used for the simultaneous estimation of both regression parameters β0

and β1, and each contains a different amount of information.

2.7 Matrix formulation of designs for linear
regression

In this section, the topics and computations of the previous sections are briefly
explained in terms of matrix algebra. Readers not familiar with matrix algebra
may skip this section.
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The simple linear regression model in Equation (2.7) can be reformulated in
matrix notation as

y = Xβ + ε
⎡

⎢⎢
⎢
⎣

y1

y2
...

yN

⎤

⎥⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎣

1 x1

1 x2
...

...

1 xN

⎤

⎥⎥
⎥
⎦

[
β0

β1

]
+

⎡

⎢⎢
⎢
⎣

ε1

ε2
...

εN

⎤

⎥⎥
⎥
⎦

, (2.29)

where the data vector y is modelled as the product of a design matrix X and
a vector of regression parameters β = (β0, β1)

′. The N × 1 column vector y

consists of the responses on the dependent variable Y for the N subjects in
the study. The N × 1 column vector ε consists of the error terms. The N × 2
design matrix X has two columns: the first consists of 1s, corresponding to
the regression parameter β0 and the second column of X contains the values
of the independent variable X. The design matrices X for the four different
designs in Table 2.2, discussed in the radiation-dosage study, are shown in
Table 2.3.

Table 2.3 Design matrices for the four radiation-dosage designs.

Design 1: X′
1 =

[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 3 4 4 4 5 5 5 5 6 7 8 8

]

Design 2: X′
2 =

[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

]

Design 3: X′
3 =

[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 2 2 3 3 4 5 6 6 7 7 8 8 8

]

Optimal Design: X′
0 =

[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8

]

The least squares estimators β̂ = (β̂0, β̂1)
′ are given by

β̂ = (X′X)−1X′y, (2.30)

and the variance–covariance matrix of β̂ in matrix notation is

Cov(β̂) = σ 2
ε (X′X)−1. (2.31)

We observe from Equation (2.31) that when the error variance is given, the
variance–covariance matrix of the regression parameter estimators can be calcu-
lated without actually knowing the responses y. For example, consider Design 1
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in Table 2.3 with design matrix given by

X′
1 =

[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 3 4 4 4 5 5 5 5 6 7 8 8

]
(2.32)

The variance–covariance matrix of the regression parameters can be com-
puted in two steps:

X′
1X1 =

[
16 71
71 385

]
(2.33)

and

Cov(β̂) = σ 2
ε

[
16 71
71 385

]−1

= σ 2
ε

[
0.3441 −0.0634

−0.0634 0.0143

]
. (2.34)

In Table 2.4, we list the variance–covariance matrices and values of the
optimality criteria. As can be seen, the optimal design has the smallest volume
(D-optimality) and the smallest sum of squared axes (A-optimality) of the confi-
dence ellipse of β0 and β1. This means that if we have a quantitative independent
variable in a simple regression model, the parameters β0 and β1 can simultane-
ously be estimated as efficiently as possible if the design points were chosen at

Table 2.4 Variance–covariance matrices for the four radiation-dosage designs.

Design 1 D-criterion: 8.9367 × 10−4 × σ 4
ε

Cov(β̂) = σ 2
ε (X′

1X1)
−1 A-criterion: 0.3584 × σ 2

ε

= σ 2
ε

[
0.3441 −0.0634

−0.0634 0.0143

] E-criterion: 0.3558 × σ 2
ε

Design 2 D-criterion: 7.4405 × 10−4 × σ 4
ε

Cov(β̂) = σ 2
ε (X′

2X2)
−1 A-criterion: 0.3155 × σ 2

ε

= σ 2
ε

[
0.3036 −0.0536

−0.0536 0.0119

] E-criterion: 0.3131 × σ 2
ε

Design 3 D-criterion: 5.7870 × 10−4 × σ 4
ε

Cov(β̂) = σ 2
ε (X′

3X3)
−1 A-criterion: 0.2593 × σ 2

ε

= σ 2
ε

[
0.2500 −0.0417

−0.0417 0.0093

]
E-criterion: 0.2570 × σ 2

ε

Optimal design D-criterion: 3.1888 × 10−4 × σ 4
ε

Cov(β̂) = σ 2
ε (X′

0X0)
−1

A-criterion: 0.1709 × σ 2
ε

= σ 2
ε

[
0.1658 −0.0230

−0.0230 0.0051

]
E-criterion: 0.1690 × σ 2

ε
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both ends of the x scale and if the observations would be equally divided over
these two design points.

For simplicity sake, it was assumed in the breast cancer example that there
were no ethical objections to assigning patients to each of the different dosage
levels and that each of the four designs would be equally feasible in practice.
However, this is not that simple and clinical reasons may prevent a researcher
from assigning half of the sample of patients to the lowest and half of the sample
to highest radiation-dosage levels. But it should be kept in mind that efficiency
of a treatment effect estimator β̂1 is improved as more patients are assigned
to the lower and higher dosage levels. Moreover, as shown in Section 2.3, it
would require almost three times as many patients in Design 1 to have the same
efficiency for estimating β1 as the optimal design has. A researcher trying to
establish a significant treatment effect could therefore choose an optimal design
that requires fewer patients having to undergo an often very unpleasant radiation
treatment.

In matrix notation, the variance of the predicted response ŷ0 = β̂0 + β̂1x0 for
a linear model is

var(ŷ0) = f ′(x0)Cov(β̂)f (x0), (2.35)

where Cov(β̂) is the 2 × 2 variance–covariance matrix of parameter estimators
in Equation (2.31). For the linear model the function, f ′(x0) is given by f ′(x0) =
[1 x0]. This notation indicates that the x values coincide with the design points.
When we have a quadratic model, the predicted response is ŷ0 = β̂0 + β̂1x0 +
β̂2x

2
0 and the function f ′(x0) in Equation (2.35) is f ′(x0) = [1 x0 x2

0 ]. The
Cov(β̂) is a 3 × 3 variance–covariance matrix for the three parameter estimators
β̂0, β̂1 and β̂2.

In Figure 2.4, the standardized variance function s(x, ξ) for the four radiation-
dosage designs are plotted for all x values. Design 1 has the largest value for
s(x, ξ) and the function is not completely symmetric. The standardized variance
for the first dosage level is s(x = 1, ξ1) = 3.7033, while the standardized variance
for the last dosage level is s(x = 8, ξ1) = 3.9035. This is caused in part by the
fact that the original design is not symmetrically weighted. The functions for the
other three designs are, however, symmetric. The fourth design is clearly the opti-
mal design, having the lowest values for the maximum standardized variance over
the range of dosage levels with a maximum for s(x = 1, ξ4) = s(x = 8, ξ4) = 2.
It should be noted that these design points x = 1 and x = 8 are both G-optimal
and D-optimal. Moreover, it can be shown that for this simple linear model
the equally weighted design at both ends of the design interval is both A- and
E-optimal as well.

Finally, we compare relative efficiencies of these designs under different opti-
mality criteria. Their values for Designs 1, 2 and 3 with respect to the optimal
Design 4 are in Table 2.5. For example, the RED = (3.1888/8.937)1/2 = 0.5973,
where the D-criterion values 3.1888 and 8.937 can be found in Table 2.4.
Table 2.5 shows that the criteria have different RE values. This difference is



48 OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Design 1

Design 2
s(

x,
x)

Design 3

Optimal design

Design points

Figure 2.4 Standardized variance functions for the four radiation-dosage designs.

Table 2.5 Relative efficiencies for three
designs.

RED REA REE

Design 1 0.5973 0.4768 0.4750
Design 2 0.6547 0.5417 0.5398
Design 3 0.7423 0.6591 0.6576

due to the fact that each optimality criterion measures uncertainty about the
parameters in a different way. Recall that the D-optimality criterion is propor-
tional to the volume of the confidence ellipse of the parameters, implemented as
the product of the squared lengths of the axes, while the A-criterion is related to
the sum of the squared lengths of the axes. The E-criterion is based on the largest
axis only. One could generally say that the E-criterion uses less information than
the A- and D-criterion. Note that since the D-criterion is invariant under linear
transformation of the scale of the independent variables, the RED values are also
invariant. It should be emphasized that this property does not hold for REA and
REE values. This means that differences in values for these last two REs will be
encountered when the scale of the independent variable is changed.

Table 2.5 shows that Design 3 has the highest relative efficiency for all three
criteria. Design 1 surely has the smallest relative efficiency values for all three
criteria and if the researcher has a choice, this design should not be chosen,
because it has less power of finding an effect of radiation dosage than the other
designs.
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2.8 Summary

There are at least three ways to design a more efficient study for the simple linear
regression model. First, efficiency can be improved by measuring the dependent
variable more accurately. In this chapter, we show that there is a direct relation
between the measurement error variance σ 2

ε and the variance of the treatment
effect estimator β̂1. Reduction of the range of the errors by one-half will reduce
the var(β̂1) by a factor of four. A second way to improve efficiency is to increase
the total sample size N . But this will of course lead to more costs for collect-
ing the data and running the study. A third way to improve efficiency is to
select the levels of the independent variable X in such a way that their var(x)

will be as large as possible. Careful selection of the levels of the independent
variable can be done in more experimentally controlled studies. The first two
ways (more accurate measurement and sample size increase) can be applied in
observational studies with less control over the levels of the independent vari-
able.

In order to measure efficiency, a number of optimality criteria have been pro-
posed. In general, the D-optimality criterion has a number of advantages. Because
of its invariance under linear transformations of the scale of the independent vari-
able, we recommend the D-optimality criterion, especially when different scales
of the independent variable are implemented in different studies.

Finally, we recommend that we should use small number of design points to
the extent possible. This number should be between p and p(p + 1)/2, where p

is the number of parameters in the linear model.



3

Designs for multiple linear
regression analysis

3.1 Design problem for multiple linear regression

In Chapter 2, we focused on design problems for a simple linear regression model
with two parameters. Multiple regression models have more than two parame-
ters in the mean function and oftentimes include more than one independent
variable. So, instead of looking at the levels of one independent variable, a mul-
tiple regression design problem has to consider selecting levels of more than one
independent variable.

Consider the following example taken from educational research. The
response variable (Y ) is the rate of increase in vocabulary (i.e. vocabulary
growth) among pupils in a certain county. The purpose of the research is to
study how vocabulary growth is related to the school grade (X1) the pupil is
in and to the income (social) class (X2) of the pupil’s parents. A multiple
regression model may be used to study their relationship using X1 and X2 as
predictors (or independent variables) and vocabulary growth (Y ) as the outcome
variable.

There are two immediate key questions for the design of this study. The first
relates to the choice of number of levels for each of the independent variables.
Usually a sample of subjects is selected for each combination of levels of both
independent variables. But how many combinations of levels should we use and
how do we choose the combination levels so that we have an efficient design?
In the vocabulary-growth study, these questions translate to asking how to select
the number of different grades and how many different income (social) classes to

An Introduction to Optimal Designs for Social and Biomedical Research      M. P. F. Berger & W. K. Wong
© 2009, John Wiley & Sons, Ltd. ISBN: 978-0-470-69450-3
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include in the study? Would only choosing high and low income classes be best?
Or would a selection of only the higher income classes and the higher grades be
the most efficient choice?

The second design question, which is closely related to the first question, con-
cerns the number of units assigned to each combination of levels. For example,
for the vocabulary study, how many pupils will be needed from each grade level
and from each income category? Given a fixed total sample size, would it be
more efficient to just select pupils from both the lowest and the highest school
grades or would it be more efficient to select an equal number of pupils from
each available grade level? These two design questions together constitute the
basic design problem for a multiple linear regression model. How many levels
of the independent variables are needed and how many units to sample from
each combination of levels of the independent variables? The goal is to select a
design that meets the objective or objectives of the study. If model parameters
estimation is the main goal, the design should provide smallest possible variances
for the estimated parameters or sufficient power for tests of hypotheses for the
parameters.

3.1.1 The design

We now expand the definition of a design for a simple regression model from
Chapter 2 to a multiple regression model. Suppose that we have two independent
variables X1 and X2, where each has values ranging from –1 to 1 (after suitable
recoding). Figure 3.1 shows a two-dimensional space �2. A design point dj in
Figure 3.1 represents a combination of values of the two independent variables
and is a point in the two-dimensional space, that is, dj ∈ �2.

Figure 3.1 shows six design points for two independent variables X1

and X2: d1 = (−0.55, 0.7), d2 = (−1, 0), d3 = (−0.5, −0.1), d4 = (0.45, 0.25),
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Figure 3.1 A two-dimensional design space �2 scaled to [−1, 1] × [−1, 1] with
six design points d1, d2, . . . , d6.
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d5 = (0.45, −0.7) and d6 = (1, −1). These design points represent different
combinations of values for X1 and X2. For example, the first design point
d1 = (−0.55, 0.7) means the value of X1 is set equal to −0.55 and the value of
X2 is set equal to 0.7. If we have a sample of N = 10 observations from these
design points, we could have two observations from each of the design points
d1 and d2, one observation from each of the design points d3, d4, and d4 and
three observations from d6. This design can be schematically represented as an
exact design:

ξ10 =
{

d1 d2 d3 d4 d5 d6

2/10 2/10 1/10 1/10 1/10 3/10

}
. (3.1)

In general, we may denote an exact design ξN for a multiple regression model
with (p − 1) independent variables with nj observations at the design point
dj , j = 1, . . . , m, by

ξN =
{

d1 d2 d3 . . . dm

n1/N n2/N n3/N . . . nm/N

}
, (3.2)

where dj ∈ �p−1 for j = 1, . . . , m and �p−1 is a (p − 1)-dimensional space of
combinations of levels of (p − 1) independent variables and

∑
j nj = N . This

definition is similar to that for a simple linear regression, except that now each
design points dj represents a different combination of levels from the quantitative
independent variables. The corresponding notation for a generic approximate or
continuous design with m design points is

ξ =
{

d1 d2 d3 . . . dm

w1 w2 w3 . . . wm

}
, (3.3)

where
∑

j wj = 1 and 0 ≤ wj ≤ 1 , for all j ’s.
In practice, the values of each of the independent variables are usually discrete

and take on a few possible values. This means the total number of possible
design points is small and the design problem is simplified. For example, with
two independent variables, X1 with four levels and X2 with three levels, there
are m = 12 different combinations of levels and these combinations form the
candidate set of design points for the problem. Table 3.1 shows the design just
described with d1, d2, . . . , d12 as design points. The design question in this case
consists of how many observations to assign to these design points.

Table 3.1 Twelve different combinations of a
design with two independent variables X1 and X2.

X11 X12 X13 X14

X21 d1 d4 d7 d10

X22 d2 d5 d8 d11

X23 d3 d6 d9 d12
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We remind the reader that the ordering j = 1, 2, . . . , m of these 12 design
points dj is usually arbitrary. This is unlike the case when there is only a single
quantitative independent variable where the ordering may be made according to
the value of the variable. When there are two or more independent variables,
it is less clear how one may order the design points in a meaningful way. In
our example, we assume that each combination of the levels of the two inde-
pendent variables may be independently replicated. In other words, a number
of independent observations nj may be assigned to each combination such that∑

j nj = N .

3.1.2 The multiple linear regression model

The multiple linear regression model with (p − 1) independent variables Xl,

l = 1, . . . , (p − 1), is an extension of the simple regression model with only
one independent variable. Depending on the discipline, the words ‘independent
variables’ may be replaced by ‘predictors’ and vice versa; so are the words
‘response variable’ and ‘outcome variable’. Here and throughout this book, we
do not make a distinction in their terminology.

The multiple linear regression model is usually used as a first approximation
of the true relation between a response variable Y and a set of (p − 1) predictor
variables Xl . This is because multiple linear models are simple to understand and
are quite flexible. In particular, each independent variable Xl may be replaced in
the model by a function of itself when desired. Some frequently used functions
are the logarithmic function (log Xl), the reciprocal function (1/Xl) and the
quadratic function

(
X2

l

)
.

A multiple regression model relating the values yi of a response variable Y

to the (p − 1) values xls of the predictor variables Xl is given by

yi = β0 + β1x1i + β2x2i + · · · + βp−1xp−1,i + εi. (3.4)

The total number of parameters in the model is p. β0 is the intercept and the
remaining (p − 1) regression parameters βl’s are the coefficients of the (p − 1)
independent variables Xl . The intercept coefficient β0 is the mean value of the
responses yi when the values of all the independent variables are set equal to 0.
Depending on the context of the problem, this interpretation may or may not
be meaningful. The regression coefficient βl represents the mean change in the
response variable due to one unit change of the independent variable Xl when the
other independent variables are held constant, l = 1, . . . , (p − 1). The random
errors εi’s are all assumed to be independent and normally distributed with mean
zero and variance σ 2

ε .

3.1.3 Estimation of parameters and efficiency

The least squares method is often used to estimate all the p regression parame-
ters βl, l = 0, . . . , (p − 1). The least squares method selects those estimators β̂l ,
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l = 0, . . . , (p − 1), among all possible estimators, for which the sum of squared
errors is minimized. This is the same as finding estimators β̂l, l = 0, . . . , (p − 1)

that minimize the sum of all squared differences between each observed response
yi and its postulated mean ŷi , that is:

N∑

i

ε2
i =

N∑

i

[
yi − β̂0 − β̂1x1i − β̂2x2i − · · · − β̂p−1xp−1,i

]2 = minimum.

(3.5)

These parameter estimators β̂0, β̂1, β̂2, . . . , β̂p−1 are called least squares
estimators and we denote them collectively using the vector β̂ = (β̂0,

β̂1, β̂2, . . . , β̂p−1)
′. The prime notation indicates that β̂ is a column vector with

the individual parameter estimators stacked underneath each other. The minimum

value of
N∑

i

ε2
i is referred to as the sum of squared errors or residual sum of

squares , SSe. The estimator of the error variance σ 2
ε is MSe = SSe/(N − p),

with p equal to the total number of parameters in the model. Notice that this
estimator for σ 2

ε is a direct generalization of the formula for the simple linear
model when p = 2 in Chapter 2. Other types of estimates are possible. For
example, the method of maximum likelihood (ML) estimation can also be
applied to obtain ML estimators. In this case, it can be shown that the ML
estimators for βl, l = 0, . . . , (p − 1) are the same as least squares estimators,
but the ML estimator for σ 2

ε is (N − p)/N times that of the least squares
estimator given by MSe.

As is in the case for the simple linear model, these least squares estimators
for βl, l = 0, . . . , (p − 1) and σ 2

ε are all unbiased, that is with mean values equal
to the parameter values–E(β̂) = (β0, β1, β2, . . . , βp−1)

′ and E(MSe) = σ 2
ε . The

variance–covariance matrix for the p × 1 vector β̂ is the p × p symmetric matrix
symbolized by

Cov(β̂) =

⎡

⎢⎢⎢
⎣

var(β̂0) cov(β̂0, β̂1) . . . cov(β̂0, β̂p−1)

cov(β̂0, β̂
)
1 var(β̂1) . . . cov(β̂1, β̂p−1)

...
...

...
...

cov(β̂0, β̂p−1) cov(β̂1, β̂p−1) . . . var(β̂p−1)

⎤

⎥⎥⎥
⎦

. (3.6)

The variances of the estimators are on the main diagonal of Cov(β̂) and the
off-diagonal elements are the covariances among the estimators. The elements of
Cov(β̂) contain all information about the uncertainty of the estimators.

We can test the individual effect of each independent variable after adjusting
for the presence of other independent variables in the model. The null hypothesis
for testing whether Xl is a significant variable in the model is formulated as
H0 : βl = 0. The corresponding test statistic is tl = β̂l

√
v̂ar(β̂l), where v̂ar(β̂l) is

the estimated variance of β̂l . Clearly, the power of such a test increases as the
variance of the individual parameter estimator decreases.
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3.1.3.1 Measures of uncertainty

The actual formulas for the elements of the matrix Cov(β̂) are more complicated
than those presented for the simple linear regression model. These formulas all
have the same components, namely, the error variance σ 2

ε , the sample size N ,
the variances of the independent variables var(xl) and the correlations between
the scores of the independent variables. Conclusions similar to those in Chapter
2 can be drawn, namely that the efficiency of the estimators and power of the
test of H0 : βl = 0 increase as

• the variance of the errors σ 2
ε decreases, and/or

• the variances var(xl) increase, and/or

• the sample size N increases, and/or

• the correlation between the scores of the independent variables decreases.

The first three components were discussed in Chapter 2, and they perform
a similar role in multiple linear regression. The last component comprising
pair-wise correlations between the independent variables is added here because
we have now more than one independent variable.

The uncertainty of the estimators of the individual parameters β0, β1,

β2, . . . , βp−1 can also be expressed in terms of individual confidence intervals.
The 100(1 − α)% confidence interval corresponding to the null hypothesis
H0 : βl = 0 is

β̂l − tα/2,N−p

√
v̂ar(β̂l) ≤ βl ≤ β̂l + tα/2,N−p

√
v̂ar(β̂l), (3.7)

where tα/2,N−p is the corresponding critical value of a t distribution. The shorter
the confidence interval, the more efficient the parameter estimator and the more
powerful the test.

Another way to express the uncertainty of the parameter estimators in a
multiple regression model is by using the variance var(ŷ0) of the predicted
response ŷ0. This variance is a function of the sample size, the variation of the
independent variables and the variance of the errors in the multiple regression
model. A decrease in var(ŷ0) can be accomplished by a decrease in SSe and/or
an increase in the variation of the independent variables Xl and an increase in
the sample size N .

In the following sections, we revisit the vocabulary-growth study and use it
to illustrate how the variances and covariances in the matrix Cov(β̂) in Equation
(3.6) can guide us to design a more efficient study. We also develop various ways
of measuring the worth of a design and use them to compare competing designs.

3.2 Designs for vocabulary-growth study

Let us suppose that we sampled pupils from the 8th, 9th, 10th and 11th school
grades in the vocabulary-growth study. This strategy was used in a comparable
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study reported by Bock (1975, p. 449–468). The pupils from each grade are then
divided into three groups depending on the family income levels. For illustrative
purposes, we make a further simplifying assumption that both school grade and
the family income level are quantitative variables, and the three family income
levels are equidistant from one another. Accordingly, we code the three family
income levels as 1, 2 or 3 for low, medium and high income levels, respectively.
This gives a total of 12 different groups of pupils. If the total number of pupils
is N , then the growth in vocabulary of these pupils can be described using a
multiple regression model with two predictors: school grade (X1) and income
category (X2):

yi = β0 + β1x1i + β2x2i + εi, for i = 1, . . . , N. (3.8)

For simplicity, the model does not include interaction between school grade
and family income category. Such a model is called an additive model , and for
convenience we call the two independent variables additive. We will consider
models with interactions later on.

The vector of all parameters of Model (3.8) is β = (β0, β1, β2)
′. Although the

intercept β0 is a parameter in this model, we are often not interested in testing a
null hypothesis for the intercept β0. So, let us assume that we are only interested
in the relationship between school grade and income category and their effect
on vocabulary growth, that is, in testing the null hypotheses H0 : β1 = 0 and
H0 : β2 = 0. The variance–covariance matrix of the three parameter estimators
β̂ = (β̂0, β̂1, β̂2)

′ can be divided into sub-matrices:

Cov(β̂) =
[

Cov11 Cov12

Cov21 Cov22

]
=

⎡

⎢⎢
⎣

var(β̂0)
... cov(β̂0, β̂1) cov(β̂0, β̂2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cov(β̂0, β̂1)
... var(β̂1) cov(β̂1, β̂2)

cov(β̂0, β̂2)
... cov(β̂1, β̂2) var(β̂2)

⎤

⎥⎥
⎦ ,

(3.9)

where the sub-matrix Cov11 reduces to a single number representing the vari-
ance var(β̂0). The variances and covariance of β̂1 and β̂2 are in the lower right
sub-matrix of the covariance matrix in Equation (3.9):

Cov22 =
[

var(β̂1) cov(β̂1, β̂2)

cov(β̂1, β̂2) var(β̂2)

]
. (3.10)

Further algebra shows that

Cov22 = σ 2
ε

N

⎡

⎢⎢⎢
⎣

1

(1 − r2
12)var(x1)

− cov(x1x2)

(1 − r2
12)var(x1)var(x2)

− cov(x1x2)

(1 − r2
12)var(x1)var(x2)

1

(1 − r2
12)var(x2)

⎤

⎥⎥⎥
⎦

,

(3.11)
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where var(x1), var(x2) and cov(x1x2) are the variances of the independent vari-
ables X1 and X2, respectively, and their covariance. The correlation between the
independent variables X1 and X2 is r12 = cov(x1x2)/

√
var(x1)var(x2).

From the elements of Cov22, we observe that the efficiency of the estimator
β̂l(l = 1, 2) increases if one or more of the following conditions hold:

• the variance of the errors σ 2
ε decreases;

• the variance var(xl) increases;

• the sample size N increases;

• the squared correlation r2
12 between the scores of X1 and X2 decreases.

Designs for the regression model are based on combinations of the various
levels of X1 and X2 and on the number of pupils in each of these combinations.
Table 3.2 displays 12 different combinations (m = 12) of levels of the indepen-
dent variables for four different designs. These combinations of levels are the
design points and for this example, all the sample sizes are equal to the number
of design points, that is, N = m = 12. So each of the four designs has only one
observation (score of a pupil) per design point.

Design 1 is the vocabulary-growth design with one pupil in each of the
12 combinations. The variance of the estimator of the effect of school grade

Table 3.2 Twelve combinations of the levels of X1 and X2 for the
vocabulary-growth study.

Design 1 Design 2 Design 3 Design 4

Design points X1 X2 X1 X2 X1 X2 X1 X2

d1 8 1 8 1 8 1 8 1
d2 8 2 8 2 8 1 8 1
d3 8 3 8 3 8 3 8 1
d4 9 1 8 1 8 1 8 3
d5 9 2 8 2 8 2 8 3
d6 9 3 8 3 8 3 8 3
d7 10 1 11 1 11 1 11 1
d8 10 2 11 2 11 2 11 1
d9 10 3 11 3 11 3 11 1
d10 11 1 11 1 11 1 11 3
d11 11 2 11 2 11 3 11 3
d12 11 3 11 3 11 3 11 3

var(xl) 1.250 0.667 2.250 0.667 2.250 0.833 2.250 1.000
r12 0.000 0.000 0.183 0.000
var(β̂l) 0.067 0.125 0.037 0.125 0.038 0.103 0.037 0.083

Note: It is assumed that the error variance σ 2
ε = 1 and that there is a total of N = 12 observations,

one observation for each combination. The var(xl)’s are computed by dividing the sum of squares
by N .
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on vocabulary growth and the variance of the estimator of the effect of income
category on vocabulary growth are var(β̂1) = 0.067 and var(β̂2) = 0.125, respec-
tively. Table 3.2 shows that as the variances of the independent variables increase,
the variances of the estimators of the regression parameters decrease, and vice
versa. In addition, among the four designs, Design 4 is the most efficient for esti-
mating either of the parameters because this design gives the smallest values for
var(β̂1) = 0.037 and var(β̂2) = 0.083. Design 3 does not have an equal number
of replications at the design points and is the only design that has a non-zero
correlation between the two independent variables. The correlation is r12 = 0.183
and we know from the above discussion that the larger this correlation, the less
efficient will Design 3 be for estimating either of the parameters.

Figure 3.2 is a graphical display of the four designs in Table 3.2. The black
rectangles in Figure 3.2 represent the two-dimensional design space �2 and the
black dots in each rectangle represent the location where the N = 12 observations
were taken in each of the designs. This figure, along with Table 3.2, provides
us an insight on how the distribution of the observations affects the efficiency
of the design for estimating the parameters. As discussed above, Design 4 is the
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Figure 3.2 Four designs for the vocabulary-growth study.
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optimal design among the four for estimating the parameters and the design has
all its observations taken at the extreme points in the design space. This suggests
that to have high efficiency for estimating the parameters, design points should
be spread out as far as possible in the design space and all design points should
have equal number of observations.

Design 4 is the most efficient design of these four designs. It can be shown
from optimal design theory that Design 4 is also the optimal design among all
possible designs for a linear regression model with two independent and addi-
tive variables. Design 4 has maximum variances var(xl)’s for both independent
variables and the design is orthogonal in the sense that r12 = 0 with an equal
number of replications at each design point. Sometimes physical or ethical con-
straints may prevent the use of the optimal design in practice. We remind the
reader that when this happens, usually a slight modification of the optimal design
or an alternative design may be used instead of Design 4. For instance, Table 3.2
shows that Designs 2 and 3 are good substitutes for the optimal design, Design
4, because of their high efficiencies for estimating the parameters relative to
Design 1.

3.3 Relative efficiency and sample size

The efficiencies of Design 1 relative to the optimal design for estimat-
ing the parameters are RE(β̂1) = 0.037/0.067 = 0.555 and RE

(
β̂2

) =
0.083/0.125 = 0.667. This means that, depending on the parameter, about
(0.667−1 − 1)100% = 50% or (0.555−1 − 1)100% = 80% more subjects are
needed for Design 1 to be as efficient as the optimal design, Design 4. In terms
of sample sizes required for Design 1 to have the same efficiency as the optimal
design, it means that we require at least N = 18 subjects for estimating β1 or at
least N = 22 subjects for estimating β2 versus N = 12 subjects in the optimal
design. In practice, we may require more than the minimal number of subjects
given above to have the same efficiency as the optimal design. For this problem,
we would have 24 subjects (rather than 22 or 18) so that each combination level
has 2 subjects.

The results in Table 3.2 also show that Design 2 or Design 3 is clearly more
efficient than Design 1. For instance, the efficiencies of Design 1 relative to
Design 3 for estimating the two parameters are RE(β̂1) = 0.038/0.067 = 0.567
and RE(β̂2) = 0.103/0.125 = 0.824, respectively. This means that depending on
which parameter is of interest, about 20% or 76% more subjects are needed by
Design 1 to be as efficient as Design 3. Of course, if cost permits, we should
increase the sample size for Design 1 by at least 76% so that the parameters
are estimated with the same level of efficiency provided by Design 3. One could
also consider the simultaneous estimation of both parameters using an appropriate
optimality criterion. This is the topic in the next section.
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3.4 Simultaneous inference

As mentioned in Chapter 2, when we are interested in more than one parameter
in the statistical model, it is preferable to estimate the parameters simultaneously
so that the covariances among the estimators are also accounted for. Analogous
to the case for the simple linear regression model, we can construct an elliptically
shaped confidence region for estimating the parameters in a multiple regression
model. For a multiple regression model with two independent and additive vari-
ables, the confidence ellipsoid for the vector of parameters β = (β0, β1, β2)

′ is
three dimensional. This makes it a bit harder to visualize and interpret the plot
than a two- or one-dimensional plot. Of course, higher dimensional plots for
more than three parameters are even more difficult to interpret and appreciate.
Fortunately, sometimes all parameters are not of interest, and this allows us to
focus on only the parameters of interest. For example, for this additive model,
estimation of the intercept is usually not of interest, in which case, the ellipsoid is
two dimensional for the parameters βs = (β1, β2)

′. Note that we have a subscript
‘s’ in βs to emphasize that it is a subset of the full set of model parameters β.

Figure 3.3 is an exemplary plot of a confidence ellipse for βs = (β1, β2)
′.

From the design perspective, we want to have a design that provides accurate
joint estimates for β1 and β2 simultaneously, and this is signified by having as
small an area for the ellipse as possible. For this particular ellipse, we observe that
the ellipse is more elongated along the axis of β1 than that of β2. This suggests
that the design has engendered more uncertainty in the estimation of β1 than that
for β2. As always, our interest in this book is concerned with how design can
affect statistical inference and how one can come up with an improved design

Axis 2
Axis 1

Contour of ellipse

b2

b1

Figure 3.3 Contour of an ellipse for the parameters βs = (β1, β2)
′.
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that more accurately reflects reality. The next section presents design optimality
criteria for the multiple linear regression models.

3.5 Optimality criteria for a subset of parameters

In Chapter 2, Section 2.5, we discussed the D-, A- and E-optimality criteria. These
criteria are based on the variance–covariance matrix Cov(β̂) of all p parameters
in the regression model. However, not all parameters are usually of interest. In
the vocabulary-growth study, for example, researchers are often only interested
in inferences about the parameters β1 and β2 because these parameters represent
the effects of the school grade and family income level on vocabulary growth.
The parameter β0 is usually of secondary interest and is typically estimated for
the purpose of predicting the response. In our case, and many other cases as well,
this parameter can also be hard to interpret. This is because the intercept is the
mean response when all the independent variables in the model are set to take on
zero values and for our model, this means β0 is the average vocabulary growth
of pupils from grade 0 and their family income level is 0. The latter quantities
are both undefined and unrealistic.

Accordingly, we should use design optimality criteria that target on the param-
eters of interest. For our example, the subset of parameters of interest is (β1, β2)
and we leave out the intercept term. The variance–covariance matrix of the
estimators β̂1 and β̂2 for the multiple regression model (Equation 3.8) is

Cov22 = σ 2
ε

N

⎡

⎢⎢⎢
⎣

1

(1 − r2
12)var(x1)

− cov(x1x2)(
1 − r2

12

)
var(x1)var(x2)

− cov(x1x2)(
1 − r2

12

)
var(x1)var(x2)

1
(
1 − r2

12

)
var(x2)

⎤

⎥⎥⎥
⎦

.

(3.12)

This 2×2 matrix is the lower right sub-matrix of the 3×3 variance–covariance
matrix of β̂ = (β̂0, β̂1, β̂2)

′ in Equation (3.9). A natural modification of the D-,
A- and E-optimality criteria can now be based on the variance–covariance matrix
Cov22. The D-optimality criterion for estimating a subset of the parameters βs

is referred to as the Ds − optimality criterion (Atkinson and Donev, 1992,
p. 109). The notation Ds means that it is the determinant of a sub-matrix of
the variance–covariance matrix of estimators of all the parameters in the model.
Similarly, we call the corresponding A- and E-optimality criteria for estimating
a subset of the parameters As- and Es-optimality criteria, respectively.

The Ds-criterion for this 2×2 variance–covariance matrix is

Ds-criterion = var(β̂1)var(β̂2) − cov(β̂1, β̂2)
2 = σ 4

ε

N2(1 − r2
12)var(x1)var(x2)

.

(3.13)
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This design criterion for estimating βs = (β1, β2)
′ is the determinant of the

covariance matrix in Equation (3.12), and can be shown to be proportional to the
volume of the confidence ellipse for βs. An advantage here is that the estimators
of the subset (β1, β2) have a 2 × 2 covariance matrix and this makes computation
of the determinant relatively easy. For larger matrices, a computer program is
needed to compute and minimize the determinant.

The D-optimality criterion has a number of interesting properties. First, it
is known that the D-optimal design for estimating all the parameters β in the
linear multiple regression model is also the Ds-optimal design for estimating all
non-intercept parameters in the model; a recent proof is available in Goos (2002,
p.15). For our example, this implies that the D-optimal design for estimating β

is also the Ds-optimal design for estimating βs, and vice versa. Other optimality
criteria do not enjoy this property. Another interesting property of Ds-optimal
design is that the Ds-criterion is not always invariant to scale transformation. This
is unlike D-optimal designs that are invariant to scale transformations mentioned
in Section 2.5.

The As-criterion is similar to the A-criterion and it is simply the sum of
the diagonal elements of the variance–covariance matrix of the two parameter
estimators in Equation (3.12):

As-criterion = var(β̂1) + var(β̂2) = σ 2
ε

N

[
1

(1 − r2
12)Var(x1)

+ 1

(1 − r2
12)Var(x2)

]
.

(3.14)

This criterion is the trace of the variance–covariance matrix and is proportional to
the sum of the lengths of the major axes of the confidence ellipse. Consequently,
minimizing the As-criterion is another measure of the smallness of the ellipse,
and hence the accuracy of the estimates. The As-criterion, like the A-optimality
criterion, is a special case of the linear or L-optimality criterion discussed in
Atkinson and Donev (1992, p. 113–114). In Chapters 9 and 10, we discuss
and apply the L-optimality criterion to design studies to estimate the turning
point in a quadratic regression model and also to estimate the percentile in a
logistic regression model. The A- or As-criterion is not invariant under linear
transformations of the scale of the independent variables.

The E-criterion is also based on the length of the major axes of the con-
fidence ellipsoid. It finds a design that minimizes the maximum length of the
axes in the ellipsoid. The rationale is that if the largest length of the axis in the
ellipsoid is minimized, the volume will also be small, and hence more accurate
estimates for the parameters of interest. Mathematically, this criterion minimizes
the largest eigenvalue or root of the relevant variance–covariance matrix; in our
case, for estimating βs = (β1, β2)

′ in the two-predictor additive model, we use
the variance–covariance matrix in Equation (3.12) and the criterion is

Es-criterion = Rootmax {Cov22} . (3.15)
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When all parameters are of interest, we simply replace the 2×2 matrix Cov22 in
the above equation by the full p × p variance–covariance matrix Cov(β̂). The
E- or Es-criterion is not invariant under linear transformations of the scale of the
independent variables.

It should be noted that the Ds-criterion is defined as the product of the squared
lengths of the axes, which is proportional to the volume of the two-dimensional
ellipse. This enables the lengths of the axes to compensate for each other. The
product of an extreme long axis and a very short one may be the same as the
product of the lengths of two equally long axes. The As-criterion, however, is
defined as the sum of the squared lengths of the axes. It can also compensate
for the differences in axis lengths, but in a different way than the Ds-optimality
criterion. The Es-criterion considers only the longest axis of the ellipse and as
such does not use all variance contained by the ellipse.

Table 3.3 shows the values for the Ds-, As-, and Es -criteria for each of the
four designs in the vocabulary-growth study. The values for these criteria were
computed using the values for var(xl), var(β̂l) and r12, which are copied from
Table 3.2. Table 3.3 shows that the fourth design has the smallest values for all
the three criteria. This means that of these four designs, Design 4 is the most
efficient one for estimating the two parameters simultaneously.

Table 3.3 Characteristics of the four designs for estimating only (β1, β2) in
the vocabulary-growth study with σ 2

ε = 1 and N = 12 observations.

Design 1 Design 2 Design 3 Design 4
X1 X2 X1 X2 X1 X2 X1 X2

var(xl) 1.250 0.667 2.250 0.667 2.250 0.833 2.250 1.000
r12 0.000 0.000 0.183 0.000
var(β̂l) 0.067 0.125 0.037 0.125 0.038 0.103 0.037 0.083

Ds-criterion 0.0083 0.0046 0.0038 0.0031
As-criterion 0.1917 0.1620 0.1418 0.1204
Es-criterion 0.1250 0.1250 0.1054 0.0833

3.6 Relative efficiency

The various efficiencies of a design for estimating a subset of the model param-
eters βs can be quantified in the same way as was done in Chapter 2, Section
2.6. The relative efficiency (RE) compares a criterion value of the design with
that of the Ds-optimal design and sometimes we need to do it in a standardized
way for easy interpretation. If β̂∗

s is the estimate for βs from the optimal design
and β̂s is the estimate from the design ξ under comparison, the various formulae
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for evaluating the different types of REs of a design are

Ds-efficiency: REDs =
(

Det[Cov(β̂∗
s )]

Det[Cov(β̂s)]

)1/ps

,

As-efficiency: REAs = Trace[Cov(β̂∗
s )]

Trace[Cov(β̂s)]
and

Es-efficiency: REEs = Rootmax[Cov(β̂∗
s )]

Rootmax[Cov(β̂s)]
.

(3.16)

The variance–covariance matrices in Equation (3.16) are based on the appropri-
ate sub-matrix of the full variance–covariance matrix. In the formula for REDs,
we use the psth root of the ratio, where ps is the number of parameters in the
subset of interest. These efficiency measures give us an indication of how many
observations a design ξ will need to have the same efficiency as the optimal
design ξ ∗. For example, Table 3.4 shows REs of each of the three designs com-
pared to Design 4 for the vocabulary-growth study designs. The interpretations
are similar to those we had before; for example, for the Ds-criterion, Design 1
needs about (0.6111−1 − 1)100% = 63% more observations to have the same
efficiency as Design 4. We also notice that the three types of REs for the same
design are different. This can be explained by the fact that each criterion is a
different function of the squared lengths of the axes of the confidence ellipsoid,
and so measures the goodness of the design in a different way.

Table 3.4 Relative efficiencies for the vocabulary-growth study designs.

Design 1 Design 2 Design 3 Design 4

REDs 0.6111 0.8209 0.9032 1.0000
REAs 0.6280 0.7432 0.8491 1.0000
REEs 0.6664 0.6664 0.7903 1.0000

3.7 Designs for polynomial regression model

Polynomial models are a special class of multiple regression models. In a polyno-
mial regression model, there are usually only one or two independent variables,
along with higher-order functions of these variables. For example, consider
again the linear regression model expressed by yi = β0 + β1x1i + β2x2i + εi

(Equation 3.8). If the second independent variable in this model is replaced
by x2i = x2

1i , this leads to a quadratic regression model:

yi = β0 + β1x1i + β2x
2
1i + εi. (3.17)
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In general, a (p − 1)th degree polynomial regression model is represented as

yi = β0 + β1x1i + β2x
2
1i + · · · + βp−1x

p−1
1i + εi. (3.18)

Again, it is assumed that the errors in these models are independent and normally
distributed, each with zero mean and variance σ 2

ε . The total number of parameters
in the model is p, but there is only one independent variable X1 involved and it
takes on values x1’s in this model.

In practice, polynomial models are widely used because they are flexible and
usually provide a reasonable approximation to the true relationship among the
variables. We recommend working with polynomial models with low order when-
ever possible. High-order polynomial models may provide a better fit to the data
and hence an improved approximation to the true relationship, but the numerous
coefficients in such models make them difficult to interpret. In addition, work-
ing with high-degree polynomial models may sometimes lead to ill-conditioning
of the variance–covariance matrix of the parameter estimators. This means that
the estimated variance–covariance matrix may be numerically unstable or even
impossible to compute.

Sometimes, polynomial models are used after an appropriate transformation
has been applied on the independent variable to lessen the degree of nonlinearity.
Examples of such transformations are the logarithm and the square transforma-
tions. Box and Cox (1984), Carroll and Ruppert (1984) and Neter, Wasserman
and Kutner (1983) gave a detailed discussion on the use and properties of various
transformations for improving fit in linear regression models.

The D-optimal design points for polynomial regression models with indepen-
dent errors were first given by Smith (1918) and Guest (1958). Table 3.5 lists the
D-, A- and E-optimal designs for polynomial regression models of degree 1, 2,
3, 4 or 5 on the prototype design interval scaled between −1 and +1. Optimal
designs for higher-order polynomials are given in Pukelsheim (1993, Chapter 9),
where the theoretical justifications for these optimal designs are also given. We
emphasize here that these optimal designs are optimal among ALL designs on
the scaled interval [−1, 1] and not just optimal among a few designs. Of course,
if we are only interested in finding the optimal design among a few designs, this
can always be done easily by comparing the criterion value of each design.

Table 3.5 shows that the optimal design points for a linear and quadratic
polynomial are the same for the three optimality criteria, but the distribution of
the weights for each optimal design is different. D-optimal designs are equally
weighted, but A- and E-optimal designs are generally not. When the polynomial
model has degree (p − 1) = 3 or higher, the design points of all three criteria
are different and not equally spaced. For all three criteria, however, the optimal
number of distinct design points is equal to p, the number of parameters in the
polynomial model.

Table 3.6 reports the values of the three optimality criteria Det[Cov ˆ(β)],
Trace[Cov ˆ(β)] and Rootmax[Cov ˆ(β)] for the D-, A- and E-optimal designs when
the degree of the polynomial model is 1, 2, 3, 4 or 5. The table shows that the
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Table 3.5 Optimal designs for polynomial regression models.

Degree (p−1)

Degree (p−1)

Degree (p−1)

D-optimal designs in design interval [−1, 1]

A-optimal designs in design interval [−1, 1]

E-optimal designs in design interval [−1, 1]

1 −1 
(0.5)

1 
(0.5)

2 −1 
(0.333)

1 
(0.333)

0 
(0.333)

0 
(0.20)

0 
(0.29)

0 
(0.50)

3 −0.447 
(0.25)

−0.464 
(0.349)

−0.50 
(0.373)

0.50 
(0.373)

0.464 
(0.349)

0.447 
(0.25)

−1 
(0.25)

1 
(0.25)

4 −1 
(0.20)

1 
(0.20)

−0.655 
(0.20)

−0.677 
(0.25)

−0.707 
(0.248)

0.707 
(0.248)

0.677 
(0.25)

0.655 
(0.20)

5 −1 
(0.167)

−1 
(0.5)

−1 
(0.25)

−1 
(0.151)

−1 
(0.105)

−1 
(0.080)

−1 
(0.5)

−1 
(0.20)

0 
(0.60)

0 
(0.318)

−1 
(0.127)

−1 
(0.093)

−1 
(0.074)

1 
(0.5)

1 
(0.20)

1 
(0.127)

1 
(0.093)

1 
(0.074)

1 
(0.167)

1 
(0.5)

1 
(0.25)

1 
(0.151)

1 
(0.105)

1 
(0.080)

−0.765 
(0.167)

−0.789 
(0.188)

−0.809 
(0.180)

0.809 
(0.180)

−0.309 
(0.246)

0.309 
(0.246)

0.789 
(0.188)

−0.291 
(0.232)

0.291 
(0.232)

−0.285 
(0.167)

0.285 
(0.167)

0.765 
(0.167)

1

2

3

4

5

1

2

3

4

5

Note:  p = number of polynomial parameters 
          Weights are within brackets
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Table 3.6 Values of the three optimality criteria for the polynomial model of
degree p − 1.

Degree (p − 1)
1 2 3 4 5

Det[Cov(β̂)] 1.000 6.752 195.281 2.327 × 104 1.127 × 107

D-optimal
design

Trace[Cov(β̂)] 2.000 9.000 43.994 224.870 1.182 × 103

Rootmax[Cov(β̂)] 1.000 6.843 33.563 174.425 927.394

Det[Cov(β̂)] 1.000 8.000 275.687 3.774 × 104 2.041 × 107

A-optimal
design

Trace[Cov(β̂)] 2.000 8.000 37.520 188.695 982.522

Rootmax[Cov(β̂)] 1.000 5.236 25.856 133.151 702.594

Det[Cov(β̂)] 1.000 10.417 352.103 4.728 × 104 2.499 × 107

E-optimal
design

Trace[Cov(β̂)] 2.000 8.333 38.704 194.533 1.013 × 103

Rootmax[Cov(β̂)] 1.000 5.000 25.000 129.000 681.005

value of the optimality criterion for the optimal design is smallest. For instance,
when we have a quadratic model, the D-criterion value for the D-optimal design
is 6.752 and this value is smaller than the corresponding values of 8.000 and
10.417 for the A- and E-optimal designs. We also observe that for the simple
linear model (with p = 2), the D-, A- and E-optimal designs all have the same
value for the D-, A- or E-optimality criteria. The reason for this is that the D-, A-
and E-optimal designs are all the same, suggesting that when we have a simple
linear model and we want to estimate the parameters, it will be impossible to
outperform the design that places equal observations at the extreme ends.

It is interesting to see how the efficiency of an optimal design varies across
different optimality criteria. Figure 3.4 displays the D-, A- and E REs, each as
a function of the degree of the polynomial. These REs are computed directly
using their definitions. As an illustration, let us compute the A-efficiency of the
D-optimal design of the second degree polynomial. We observe from Table 3.6
that for this model, the A-criterion value for the A-optimal design is 8.0 and
that for the D-optimal design is 9.0. The A-efficiency of the D-optimal design is
therefore given by REA = 8.0/9.0 = 0.8889. Likewise, one can verify that the
E-efficiency of an A-optimal design for the cubic polynomial model is REE =
25.000/25.856 = 0.9669.

From Figure 3.4, we infer that when polynomials have degrees 2 or higher, the
efficiencies remain fairly the same as the degree of the polynomials increases. All
REs are higher than 0.8, except for the E-efficiencies (REE) of D-optimal designs
which can reach 0.7. This may be explained by the fact that the E-optimality
criterion does not use all information because it is only based on the largest root of
the variance–covariance matrix of parameter estimators. The A-optimal designs
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Figure 3.4 Relative efficiency plots for three types of optimality criteria.

are highly efficient in terms of both the D- and E- criteria. Their efficiencies
are all higher than 0.9. The E-optimal designs all seem highly efficient in terms
of both D- and A-optimality criterion; see Wong (1994) for a more extended
comparison of these optimality criteria for polynomial regression models.

3.7.1 Exact D-optimal designs for a quadratic regression model

The optimal designs in Table 3.5 are all approximate designs and are formulated
without any reference to the actual sample size N . For instance, the D-optimal
design for the quadratic model is equally weighted at the extreme points and
at the middle point. If the design interval is [−1, 1], this means that we pick
one-third of the total observations N at −1, one-third at 0 and one-third at 1.
As indicated in the previous chapters, there are compelling reasons to work with
approximate designs in practice. Approximate designs need to be rounded for
implementation, but they are relatively easy to find and study. In contrast, exact
optimal designs are much more difficult to find and describe.
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Here is an example of an analytical description of an N -point exact
D-optimal design. Consider the quadratic model on the design interval [−1,
1] defined by yi = β0 + β1x1i + β2x

2
1i + εi and all the error terms εi’s are

independently distributed with zero mean and constant variance. The exact
design problem of interest here is how to select N values for the X variable
from [−1, 1] to observe the responses y’s, in such a way that we get the best
possible estimates for the three parameters β0, β1 and β2. This design problem
is fully addressed in Gaffke and Krafft (1982) where they used number-theoretic
tools and obtained the following description for the N -point D-optimal design
for the quadratic polynomial model. Let N = 3a + b and let the N -point exact
D-optimum design for the quadratic model be denoted by

ξ ∗
N =

{
d1 = −1 d2 = 0 d3 = 1
n1/N n2/N n3/N

}
. (3.19)

If N = 3a, the N -point D-optimum design takes equal number of observations
at the three design points [−1, 0, 1]. If N = 3a + b with b = 1 or 2, then the
exact D-optimum design is obtained by choosing the design points in such a
way that 3 − b of the points −1, 0 and 1 occur a times and the remaining b
of them a + 1 times. Table 3.7 shows N -point exact D-optimal designs for the
quadratic model on [−1, 1] for selected values of N .

Recall from Table 3.5 that the approximate D-optimal design for the quadratic
regression model simply takes one-third of the observations at each of the design
points −1, 0 and 1. The exact optimal designs in Table 3.7 deviate from the

Table 3.7 N -point exact D-optimal designs for quadratic
regression model.

N a b d1 = −1 d2 = 0 d3 = 1

3 1 0 1 1 1

1 1 2
4 1 1 1 2 1

2 1 1

1 2 2
5 1 2 2 1 2

2 2 1

6 2 0 2 2 2

2 2 3
7 2 1 2 3 2

3 2 2

3 3 2
8 2 2 3 2 3

2 3 3

Note. Entries under the columns of the design points are values for n1, n2

and n3, respectively.
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equally weighted approximate optimal design only by a single observation. The
difference in efficiency between the exact optimal designs and the approximate
optimal design for the quadratic regression model, like all other models, will
decrease as the sample size N increases.

3.7.2 Scale dependency of A- and E-optimality criteria

We have mentioned that the D-optimal designs are invariant under linear
transformation of the scale of the independent variable. This advantage,
however, does not account for the A- and E-optimality criteria. These two
criteria are scale dependent.

To illustrate their scale dependency, compare the A-optimal designs shown
in Table 3.8 for five polynomial models with degree (p − 1) = 1, 2, 3, 4 and
5 on two design intervals [0,1] and [0,10] with those on the interval [−1, 1]
for the same polynomials shown in Table 3.5. We observe that not only the
design points differ, which is of course to be expected, but that the weight
distributions also differ for the three scales. Table 3.5 shows that the weights
for the A-optimal designs on the interval [−1, 1] are symmetrically distributed
around the centre of the scale, that is, around zero, while in Table 3.8 one can
observe that more weight is assigned to the smaller design points. For example,
the table shows that almost 91% of the weight in the A-optimal design on
[0, 10] is given to the smaller design point in the simple linear model (p − 1 = 1).

The weights for a two-point A-optimal design for the simple linear model
(i.e. p = 2) on the interval [a , b] are given by

w∗
1 =

√
(1 + b2)

√
(1 + a2) +

√
(1 + b2)

and w∗
2 = 1 − w∗

1, (3.20)

see Dette (1997, p. 106). For the design interval [0, 1], these optimal weights
are w∗

1 = 0.586 and w∗
2 = 0.414 and for the design interval [0, 10], these

optimal weights are w∗
1 = 0.910 and w∗

2 = 0.090 (Table 3.8). Similar formulas
for higher-order polynomials do not exist and likewise weights for E-optimal
designs are not available analytically. In these cases, one can only compute the
optimal weights numerically. Of course, the weights of the D-optimal designs
are usually easier to determine; in particular, they are equally weighted when
the number of optimal design points is equal to the number of parameters in
the model. To this end, a computer program PSI(p) available on the website
http://optimal-design.biostat.ucla.edu/optimal/, described in Chapter 11, can be
used to generate many types of optimal designs, including A-, D- and E-optimal
designs on an arbitrary interval.

3.8 The Poggendorff and Ponzo illusion study

The Poggendorff and Ponzo illusion experiments were reported by Bock (1975)
and are described in Chapter 1. The original design for the two experiments
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Table 3.8 A-optimal designs for polynomial regression models.

Degree (p−1) Design interval [0, 1]

1 0 
(0.586)

1 
(0.414)

2 0 
(0.322)

0.5 
(0.486)

0.499 
(0.242)

1 
(0.192)

3 0
(0.22)

0.252
  (0.375)

  0.748 
(0.282)

1 
(0.123)

4 0
(0.167)

0.147
  (0.302)

0.096 
  (0.252)

0.955 
  (0.367)

9.035 
(0.061)

3.4 
(0.15)

6.509 
(0.083)

0.346 
  (0.213)

 0.654 
(0.176)

 0.904 
(0.152)

0.853 
  (0.197)

1 
(0.091)

5 0
(0.135)

1 
(0.072)

Degree (p−1) Design interval [0, 10]

1 0 
(0.910)

10 
(0.090)

2 0 
(0.682)

0 
(0.264)

10 
(0.054)

3 0 
(0.5)

2.316 
(0.347)

1.423 
(0.374)

4.921 
(0.131)

8.509 
(0.078)

7.412 
(0.112)

10 
(0.041)

4 0 
(0.384)

10 
(0.033)

5 0 
(0.321)

10 
(0.028)

Note: Designs are computed with PSI(p) program on website: http://optimal-design.biostat.ucla.edu/optimal/
                        p = number of polynomial parameters 
                       Weights are within brackets

consists of nine age groups, each with 16 children. This design can be summarized
as follows:

ξ144 =
{

5 6 7 8.5 10.5 12.5 14.5 16.5 19.5
16 16 16 16 16 16 16 16 16

}
. (3.21)

The Poggendorff illusion and Ponzo illusion can be adequately described
by the quadratic yi = 2.777 − 0.242xi + 0.008x2

i + εi and cubic yi = −1.113 +
0.382xi − 0.031x2

i + 0.001x3
i + εi regression models, respectively. The question

of interest here is whether one can find a more efficient design than the original
design for estimating the model parameters.
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Table 3.5 shows the D-optimal designs for the quadratic and cubic polynomi-
als with the design points scaled between −1 and 1. The corresponding D-optimal
designs for the original two illusion experiments are presented in Table 3.9 with
design points in brackets and displayed as vertical dotted lines in Figure 3.5.
These D-optimal designs with only 3 and 4 design points are most efficient for
estimating the parameters in the quadratic and cubic polynomial models, respec-
tively. This suggests that the original design with nine different age groups may
not be very efficient. To estimate the efficiency loss of the original design, we first
write down its design matrix under the cubic polynomial model. Its transpose is

Xo
′ =

⎡

⎢⎢
⎣

1 1 1 . . . 1
5 6 7 . . . 19.5
52 62 72 . . . 19.52

53 63 73 . . . 19.53

⎤

⎥⎥
⎦ .

Table 3.9 Equally weighted D-optimal design points for the quadratic and
cubic polynomial regression.

Degree (p − 1) Scale

1 −1(5) 1(19.5)
2 −1(5) 0(12.25) 1(19.5)
3 −1(5) −0.4472(9.0078) 0.4472(15.4922) 1(19.5)
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Figure 3.5 Magnitude of the Poggendorff and Ponzo illusions as function of age
(data from Bock, 1975, chapter 4).

For comparison purposes, it is convenient to transform the original scale in
years ranging from 5 to 19.5 years to a scale between –1 and 1. This can
be accomplished by means of the transformation d ′

j = (dj − d̃)/(dmax − d̃) with
d̃ = dmin + (dmax − dmin)/2, where dmax and dmin are the maximum and mini-
mum value of the original scale. For example, the age of the third age group



74 OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH

can be transformed into d ′
3 = (7 − 12.25)/(19.5 − 12.25) = −0.7241. The cor-

responding quadratic and cubic terms are (−0.7241)2 = 0.5243 and (−0.7241)3

= −0.3797. The transposed design matrix of the original design for a cubic
polynomial is

Xo
′ =

⎡

⎣
1 1 1 1 1 1 1 1 1

−1 −0.8621 −0.7241 −0.5172 −0.2414 0.0345 0.3103 0.5862 1
1 0.7432 0.5243 0.2675 0.0583 0.0012 0.0963 0.3436 1

−1 −0.6407 −0.3797 −0.1383 −0.0141 0.0000 0.0299 0.2014 1

⎤

⎦ .

The corresponding design matrices for the D-optimal designs on [−1, 1] under
the quadratic and cubic models are, respectively,

X∗
q
′ =

⎡

⎣
1 1 1

−1 0 1
1 0 1

⎤

⎦ and X∗
c
′ =

⎡

⎢⎢
⎣

1 1 1 1
−1 −0.4472 0.4472 1

1 0.2000 0.2000 1
−1 −0.0894 0.0894 1

⎤

⎥⎥
⎦ .

These design matrices enable us to calculate the variance–covariance matrix
of the estimators Cov(β̂) and the relative efficiencies REDs for these two mod-
els. Table 3.10 lists the variance–covariance matrices of the parameter estimators
from the original design and D-optimal designs under the quadratic and the cubic
regression models, along with the REs of the original design. The results in
Table 3.10 show that the original design is inefficient when compared to the
D-optimal designs. The relative D-efficiency of the original design computed for
the quadratic and cubic models was RED = 0.7243 and RED = 0.8020, respec-
tively. This means that for the Poggendorff experiment, the original design needs
(0.7243−1 − 1)100% = 38% more observations to estimate the parameters as
well as the D-optimal design’s estimates. Likewise, for the Ponzo experiment,
the original design needs to have about (0.8020−1 − 1)100% = 25% more obser-
vations to perform as well as the D-optimal design. The practical implication is
that resources could have been saved if the D-optimal designs were used in both
studies instead of the original design.

In practice, these D-optimal design points may not be feasible. For instance,
when the design points from the D-optimal designs for the cubic model are
translated to the original scale, we would require children with exact ages of
9.0078 or 15.4922 years and they may not be available. In that case, we make
approximations to the optimal design points. If age groups that were used in the
original design are only available, D-optimal designs for the Poggendorff and
Ponzo experiments can be approximated by rounding off the D-optimal design
points to the nearest year group that was used in the original study. This means
that the designs we recommend for the studies are

Poggendorff experiment: ξ144 =
{

5 12.5 19.5
48 48 48

}
(3.22)
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Table 3.10 Covariance matrices of parameter estimators for the quadratic and
cubic models.

Original design for quadratic model

Cov(β̂) =
[

Xo
′Xo
9

]−1
D-criterion = 17.7616

RED = 0.7243

=
[

2.4859 0.1063 −3.2773
0.1063 2.4097 0.6072

−3.2773 0.6072 7.5238

]

D-optimal design for quadratic model

Cov(β̂) =
[

Xq
′Xq
3

]−1
D-criterion = 6.7500

RED = 1.0

=
[

3.0 0 −3.0
0 1.5 0

−3.0 0 4.5

]

Original design for cubic model

Cov(β̂) =
[

Xo
′Xo
9

]−1
D-criterion = 472.1146

RED = 0.8020

=

⎡

⎢
⎣

2.4881 0.2908 −3.2746 −0.2438
0.2908 17.6336 0.8364 −20.1162

−3.2746 0.8364 7.5272 −0.3028
−0.2438 −20.1162 −0.3028 26.5807

⎤

⎥
⎦

D-optimal design for cubic model

Cov(β̂) =
[

Xc
′Xc
4

]−1
D-criterion = 195.2807

RED = 1.0

=

⎡

⎢
⎣

3.25 0 −3.75 0
0 15.75 0 −16.25

−3.75 0 6.25 0
0 −16.25 0 18.75

⎤

⎥
⎦

Note. The computations assume that the error variance σ 2
ε = 1.

and

Ponzo experiment: ξ144 =
{

5 8.5 16.5 19.5
36 36 36 36

}
. (3.23)

These approximations to the D-optimal designs are extremely good with hardly
any loss in D-efficiency. Their REs for the two studies are 0.9992 and 0.9627,
respectively.

The above illustration shows that if we have prior knowledge on the relation-
ship among the variables of interest, it is desirable to incorporate such information
at the design stage. In this case, the original experimental design for the two stud-
ies could have been chosen more efficiently if we knew that there is a quadratic
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or cubic relation between the magnitude of the Poggendorff and Ponzo illu-
sions and age. The two designs in Equations (3.22) and (3.23) provide improved
D-efficiencies over the original design by roughly 30%.

3.9 Uncertainty about best fitting regression models

Let us revisit the example in Chapter 1, where an epidemiologist is interested
to describe the body weight (Y ) of children with nutritional deficiency by a
regression model with predictors height (X1) and age (X2) and there are five
possible models:

Model 1 : yi = β0 + β1x1i + β2x2i + εi.

Model 2 : yi = β0 + β1x1i + β2x2i + β3x1ix2i + εi .

Model 3 : yi = β0 + β1x1i + β2x2i + β3x1ix2i + β4x
2
1i + εi .

Model 4 : yi = β0 + β1x1i + β2x2i + β3x1ix2i + β4x
2
1i + β5x

2
2i + εi .

Model 5 : yi = β0 + β1x1i + β2x2i + β4x
2
1i + β5x

2
2i + εi .

In the design stage of this study, it is not known which of these five models
will provide the best fit to the data. Since each regression model generally has its
own optimal design, the researcher is faced with the problem to select an efficient
design at the design stage without knowing which model is the best fitting one.
In the sequel, we will refer to the best fitting model as the ‘true’ model. We want
to compare the optimal designs for the five models and to ascertain how much
efficiency is lost when a wrong optimal design is selected.

A first step is to scale the scores of the independent variables height (X1)
and age (X2) between −1 and 1. This will facilitate comparisons among designs.
A second step is to select the optimality criterion. Since we are interested in
finding an optimal design that does not depend on the scales of the independent
variables, we will choose the D-optimality criterion.

Figure 3.6 displays the D-optimal designs for the five models. The bold dots in
the rectangular design space are the design points with the corresponding weights
in brackets. Figure 3.6 also shows that a D-optimal design for one statistical
model may or may not be D-optimal for another. For example, models 1 and 2
differ only by an interaction term, but the D-optimal designs for the two models
are identical with design points at the corners of the design space. This design is,
however, not D-optimal for any of the more complicated models 3, 4 or 5. One
explanation for this is that the latter three models contain one or two quadratic
terms and we need at least three design points to estimate all the three parameters
associated with the variable that has the quadratic term. We also observe that,
depending on the model, the D-optimal design points may not have the same
weight.

In practice, it is not known which of these five models is the most appropriate
model. One simple strategy is to assume that they are all equally likely to be a
good fitting model. This assumption may be checked by consulting the experts
in the field. Even then, the question remains which of the D-optimal designs in
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Figure 3.6 D-optimal designs for five regression models.

Figure 3.6 should we use? Clearly, if model 3 is the best fitting model, then
the optimal designs for models 1 and 2 should not be chosen, because these
designs do not enable estimation of the quadratic term in model 3. Likewise, if
model 5 is the best fitting model, then it would be inappropriate to use the
D-optimal designs for models 1, 2 and 3 because there are not enough design
points to estimate the quadratic terms.

One way to determine which one of the D-optimal designs to use in light of the
competing choices is to measure the performance of the D-optimal design relative
to one another under different model assumptions. To this end, one assumes one
of these models is the true model, and measures the worth of D-optimal design
relative to that of the D-optimal for the assumed true model. The RE is given by

RED =
[

Det
[
Cov

(
β̂∗

True

)]

Det
[
Cov

(
β̂∗

chosen

)]

]1/p

, (3.24)

where Cov(β̂∗
True) is the variance–covariance matrix of the parameter estimators

for the D-optimal design from the assumed true model and Cov
(
β̂∗

chosen

)
is the

corresponding variance–covariance matrix from the model under comparison.
The value of p in Equation (3.24) is equal to the number of parameters in the
model. Table 3.11 presents the relative D-efficiencies for the D-optimal designs
when we sequentially assume one of the five regression models is the true model.
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Table 3.11 Design efficiencies of D-optimal designs under model
mis-specification.

Chosen D-optimal designs
Design 1 Design 2 Design 3 Design 4 Design 5

‘True’ Models
Model 1 (p = 3) 1.0 1.0 0.9086 0.8206 0.7631
Model 2 (p = 4) 1.0 1.0 0.8660 0.7534 0.6667
Model 3 (p = 5) – – 1.0 0.8975 0.8391
Model 4 (p = 6) – – – 1.0 0.9739
Model 5 (p = 5) – – – 0.9773 1.0

Note. Dashes indicate a combination that is not feasible.

For the example at hand, suppose that the epidemiologist believes that model 4
or 5 is the true model. From Figure 3.6, this limits the choice of D-optimal designs
to designs with nine design points. The REs in Table 3.11 show that the D-optimal
design for model 4 has higher efficiency than that for model 5, irrespective of
whether model 1, 2, 3 or 4 is the true one. This implies that the epidemiologist
should choose the D-optimal design for model 4. In the worst case scenario, this
will result in an RE of RED = 0.7534 when model 2 is the true model. In terms
of sample size, this means that the D-optimal design for model 4 will require
about (0.7534−1 − 1)100% = 33% more observations to provide estimates as
accurate as those provided from the D-optimal design for model 2. This may
seem costly, but one should keep in mind that the D-optimal design for model
2 requires only four distinct design points, whereas the D-optimal design for
model 4 has nine distinct design points. On the other hand, if the epidemiologist
decides to choose the D-optimal design for model 5 because he/she prefers a
balanced design, then it is easy to calculate the maximum efficiency loss, which
is (0.6667−1 − 1)100% = 50%.

A second design question to answer here is how we can implement the exact
design when we have the budget to sample a fixed number of units. For illustrative
purposes, let us suppose that our total sample size N is fixed and equals to 100.
Multiplying the weights in Figure 3.6 for the D-optimal design for model 4 by
N = 100 and rounding off to the nearest integer value will give an exact design.
After dropping two observations from the cell (0, 0) to guarantee that the sum
of the weights remains equal to 100, the rounded design is

ξ100 =
{

(−1, −1) (0, −1) (1, −1) (−1, 0) (0, 0) (1, 0) (−1, 1) (0, 1) (1, 1)

15 8 15 8 8 8 15 8 15

}
.

(3.25)

This rounded design is almost as efficient as the D-optimal design for model 4
with a relative D-efficiency of RED = 0.9990. In practice, the exact design has
nine different samples of nutritionally deficient children selected from different
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age groups and different heights as shown in Figure 3.7. These age groups and
height requirements are found by recoding the design points −1, 0 and 1 back
to their original scale with heights ranging from 50 to 60 cm and ages ranging
from 6 to 12 years (Section 1.8.3, Chapter 1).

6 9 12

50

55

60
(n = 15)

(n = 15) (n = 15)

(n = 15)(n = 8)

(n = 8)
(n = 8)

(n = 8)

(n = 8)

H
ei

gh
t

Age

Figure 3.7 Nine sub-samples of nutritionally deficient children.

In summary, in light of model uncertainty for the design problem, it seems
most efficient to choose the exact design ξ100 (Equation 3.25) and select nine
different samples of children for the study. To compensate for possible efficiency
loss when model 4 is not the true model, the epidemiologist may also consider
increasing the total sample size by about 33% if the budget permits. Further
references on designs for these kinds of regression models can be found in
Atkinson and Donev (1992) and Goos (2002).

3.10 Matrix notation of designs for multiple
regression models

The multiple regression model in Equation (3.4) can be reformulated in matrix
notation as

y = Xβ + ε.

or in a more explicit form
⎡

⎢
⎢⎢
⎣

y1

y2
...

yN

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

1 x11 x21 . . . xp−1,1

1 x12 x22 . . . xp−1,2
...

...
...

...
...

1 x1N x2N . . . xp−1,N

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

β0

β1
...

βp−1

⎤

⎥
⎥⎥
⎦

+

⎡

⎢
⎢⎢
⎣

ε1

ε2
...

εN

⎤

⎥
⎥⎥
⎦

, (3.26)
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where y is the N×1 data vector, X is the N × p design matrix, β = (β0,

β1, . . . , βp−1)
′ is the vector of regression parameters and the N × 1 vector ε con-

tains is the errors which are assumed to be normally distributed, each with mean
0 and variance σ 2

ε . The least squares estimators β̂ of β = (β0, β1, . . . , βp−1)
′

are the estimators for which the sum of squares of errors is minimized; that is,

for which
N∑

i

ε̂2
i = ε̂′ε̂ = (y − Xβ̂)′(y − Xβ̂) is minimum. These least squares

estimators are

β̂ = (X′X)−1X′y, (3.27)

and the covariance matrix of the estimators is

Cov(β̂) = σ 2
ε (X′X)−1. (3.28)

3.10.1 Design for regression models with two independent
variables

The linear regression model for the vocabulary-growth example is yi = β0 +
β1x1i + β2x2i + εi . The design matrices corresponding to each of the four designs
described in Section 3.2 are of the order 12 × 3 and are presented in transposed
form in Table 3.12. The first rows of these transposed design matrices correspond
to the intercept β0, the second rows correspond to the variable X1 and the third
rows correspond to the variable X2. The values of the elements of the rows are
the values of the variables as shown in Table 3.2.

Table 3.12 Design matrices for four vocabulary-growth designs.

Design 1: X1
′ =

[
1 1 1 1 1 1 1 1 1 1 1 1
8 8 8 9 9 9 10 10 10 11 11 11
1 2 3 1 2 3 1 2 3 1 2 3

]

Design 2: X2
′ =

[
1 1 1 1 1 1 1 1 1 1 1 1
8 8 8 8 8 8 11 11 11 11 11 11
1 2 3 1 2 3 1 2 3 1 2 3

]

Design 3: X3
′ =

[
1 1 1 1 1 1 1 1 1 1 1 1
8 8 8 8 8 8 11 11 11 11 11 11
1 1 3 1 2 3 1 2 3 1 3 3

]

Design 4: X4
′ =

[
1 1 1 1 1 1 1 1 1 1 1 1
8 8 8 8 8 8 11 11 11 11 11 11
1 1 1 3 3 3 1 1 1 3 3 3

]

The corresponding variance–covariance matrices and optimality criteria for
these designs are displayed in Table 3.13. It can be seen that Design 4 has the
smallest D-optimality criterion value among the four designs.

In fact, Design 4 is D-optimal with the smallest volume of the confidence
ellipsoid among all designs on the given design space. The equivalence theorem
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Table 3.13 Variance–covariance matrices from four designs and values of the
D-, A- and E-optimality criteria for the vocabulary-growth study.

Design 1

Cov(β̂)

σ 2
ε

= (X1
′X1)

−1 =
[

6.6000 −0.6333 −0.2500
−0.6333 0.0667 0.0000
−0.2500 0.0000 0.1250

]
D-criterion = 6.9444 × 10−4

A-criterion = 6.7917
E-criterion = 6.6703

Design 2

Cov(β̂)

σ 2
ε

= (X2
′X2)

−1 =
[

3.9259 −0.3519 −0.2500
−0.3519 0.0370 0.0000
−0.2500 0.0000 0.1250

]
D-criterion = 3.858 × 10−4

A-criterion = 4.0880
E-criterion = 3.9736

Design 3

Cov(β̂)

σ 2
ε

= (X3
′X3)

−1 =
[

3.5182 −0.3410 −0.0977
−0.3410 0.0383 −0.0115
−0.0977 −0.0115 0.1034

]
D-criterion = 3.1928 × 10−4

A-criterion = 3.6600
E-criterion = 3.5540

Design 4

Cov(β̂)

σ 2
ε

= (X4
′X4)

−1 =
[

3.7593 −0.3519 −0.1667
−0.3519 0.0370 0.0000
−0.1667 0.0000 0.0833

]
D-criterion = 2.5720 × 10−4

A-criterion = 3.8796
E-criterion = 3.7996

Note. The values for D-, A- and E- criteria are computed for σ 2
ε = 1.

from optimal design theory gives us an easy way to check whether a design is
D-optimal among all designs. One simply uses the standardized variance function
of the predicted response s(x, ξ) = N var(ŷ0)/σ

2
ε defined in Section 2.5 and uses

the fact that the design ξ is D-optimal if and only if it satisfies s(x, ξ) ≤ p for
all points in the design space with equality at the design points (Kiefer and
Wolfowitz, 1960; Kiefer, 1974). Figure 3.8 shows these plots for Design 4 and
the original Design 1 and confirms that Design 4 is D-optimal.

8 9 10 11
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1

2

3

4

5

8 9 10 11
0

1

2

3

4

5
Design 1 Design 4

s(
x,
x)

Variable X1 Variable X1

Figure 3.8 Standardized variance functions for Design 1 and Design 4.

It is interesting to note that among the four designs shown in Table 3.13,
Design 3 has the smallest A-criterion value. This means in terms of the
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A-criterion, Design 3 is the most efficient for estimating the regression
parameters β0, β1 and β2 simultaneously. This is in contrast with the results
presented in Table 3.3, where Design 4 has the smallest A-criterion value for
estimating only the parameters β1 and β2. A similar observation can be made
for the E-optimality criterion. These observations for the A- and E-optimal
designs, however, do not apply to D-optimal designs that remain invariant under
linear transformation of the scales of the independent variables and also remain
invariant for estimating all parameters or all but the intercept term in linear
regression models.

Table 3.14 lists the D-, A- and E REs for the four designs. For the D-criterion,
Design 4 is used as the reference design, and for the A- and E-optimality criteria
Design 3 is used as the reference design. The REs show that Design 1 is the least
efficient design. Depending on the criterion used, Design 1 will need between
40 and 80% more observations to become as efficient as the optimal design.
Although Design 2 has relatively high efficiencies, the most efficient designs are
Designs 3 and 4. However, if a researcher needs a scale-independent optimal
design, Design 4 is the best choice.

Table 3.14 Relative D-, A- and E-efficiencies of the four designs.

Design 1 Design 2 Design 3 Design 4

RED 0.7181 0.8736 0.9305 1.0000
REA 0.5389 0.8953 1.0000 0.9434
REE 0.5328 0.8944 1.0000 0.9354

3.10.2 Design for regression models with two non-additive
independent variables

In multiple regression analysis, we have more than one independent variable and
the model usually includes interaction terms. It is helpful to recode variables to
the prototype range with values between −1 and 1 for easy comparison among
designs. This recoding is established by the transformation

d ′
j = dj − d̃

dmax − d̃
, where d̃ = dmin + dmax − dmin

2
. (3.29)

In the vocabulary-growth study, two variables were considered, namely, the
school grade (X1) variable and the family income variable of pupils (X2).
The school grade variable can be recoded as d ′

j = (dj − d̃)/(11 − d̃), where
d̃ = 8 + (11 − 8)/2 = 9.5. For the family income variable, the recoding is
established by d ′

j = (dj − d̃)/(3 − d̃), where d̃ = 1 + (3 − 1)/2 = 2.0.
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Suppose that a researcher is now interested to find an efficient design to
estimate all the parameters in the model:

yi = β0 + β1x1i + β2x2i + β12x1ix2i + εi . (3.30)

The corresponding design matrices of the four vocabulary-growth designs for
the recoded variables are presented in Table 3.15.

Table 3.15 Design matrices for four designs and the regression model with
interaction.

Design 1: X1
′ =

⎡

⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 1
−1 −1 −1 −1/3 −1/3 −1/3 1/3 1/3 1/3 1 1 1
−1 0 1 −1 0 1 −1 0 1 −1 0 1

1 0 −1 1/3 0 −1/3 −1/3 0 1/3 −1 0 1

⎤

⎥
⎦

Design 2: X2
′ =

⎡

⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 1 1 1 1 1 1
−1 0 1 −1 0 1 −1 0 1 −1 0 1

1 0 −1 1 0 −1 −1 0 1 −1 0 1

⎤

⎥
⎦

Design 3: X3
′ =

⎡

⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 1 1 1 1 1 1
−1 −1 1 −1 0 1 −1 0 1 −1 1 1

1 1 −1 1 0 −1 −1 0 1 −1 1 1

⎤

⎥
⎦

Design 4 : X4
′ =

⎡

⎢
⎣

1 1 1 1 1 1 1 1 1 1 1 1
−1 −1 −1 −1 −1 −1 1 1 1 1 1 1
−1 −1 −1 1 1 1 −1 −1 −1 1 1 1

1 1 1 −1 −1 −1 −1 −1 −1 1 1 1

⎤

⎥
⎦

The first rows of the transposed design matrices all contain 1s for the intercept.
The second rows of all design matrices contain the scaled codes for variable X1

(school grades with four levels) and the third rows contain the codes for variable
X2 (family income category with three levels). Finally, the last rows of the
transposed design matrices contain the products of the corresponding codes for
variables X1 and X2 to represent the interaction between these two variables.
The model contains four parameters β = (β0, β1, β2, β12)

′ and so the covariance
matrices Cov(β̂) = σ 2

ε (X′X)−1 for the four designs are of the order 4 × 4. These
covariance matrices are all presented in Table 3.16 along with the values of the
optimality criteria. Because Design 4 has the smallest D-, A- or E-criterion values
among all four designs, Design 4 is optimal for all three criteria. Table 3.16 also
shows that although Design 3 has an unequal number of observations assigned
to the 12 design points, Design 3 is more efficient than the original Design 1
and should be preferred over Design 1.
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3.11 Summary

In summary, the following conclusions and recommendations can be drawn from
this chapter.

The efficiency of a design for estimating parameters in a linear regression
model increases as σ 2

ε decreases. The same is true as var(x) increases and/or as
the variance var(β̂) decreases. We do not have much control over the value of
σ 2

ε , but we do have over var(x) and var(β̂) by careful design. Optimal design
selects design points and allocates the required number of subjects to each level
combination of the independent variables to attain the smallest possible value of
var(β̂) as measured by the optimality criterion of interest. In addition, we observe
that efficiency of a design tends to increase as the correlation between the levels
of the independent variables decreases.

The design points of a D-optimal design for a linear regression model with
main effects and interactions are placed at the corners of the design space. If
quadratic terms are added to the model, then additional design points are placed
in the centre of the scales of the corresponding independent variables. In general,
the optimal number of distinct design points for a linear regression model does not
exceed the number of parameters p in the model. This information is helpful when
we search for an optimal design. Simplification in the search for an optimal design
may be possible depending on the criterion. For instance, with D-optimality, we
can frequently limit our search within the class of equally weighted designs with
number of design points equal to the number of parameters in the model.



4

Designs for analysis
of variance models

4.1 A typical design problem for an analysis
of variance model

In experimental designs, a quantitative (continuous) dependent variable is usu-
ally measured from different groups or combinations of groups. Changes in the
measurements are considered to be the result of the effects of one or more of
the groups and measurement error. In analysis of variance (ANOVA) terminol-
ogy, these different groupings are often referred to as factors and the different
categories of the factor are referred to as its levels .

There are two parts in the choice of a design for an ANOVA model. The
first part concerns the selection of the number of factors and the number of
levels for each factor to be used in the design. Here is an example. Worchel
and Shackelford (1991) were interested in the group performance of ‘groups of
students’ in stressful and non-stressful environments while working together on
a task. ‘Groups of students’ were assigned to a positive and a negative working
environment, where students were informed that the environment would inhibit
performance. In this case, the environment variable has only two levels, a posi-
tive and a negative level or a non-stressful and stressful environment condition.
The ‘groups of students’ are the (experimental) units of analysis and the group
performance of these units while working on a task is the dependent variable.
Worchel and Shackelford (1991) extended this design by including a third noisy
environment condition and a fourth crowded environment condition. The work-
ing environment variable now has four levels. In addition to these four working

An Introduction to Optimal Designs for Social and Biomedical Research      M. P. F. Berger & W. K. Wong
© 2009, John Wiley & Sons, Ltd. ISBN: 978-0-470-69450-3
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environment conditions, Worchel and Shackelford (1991) also included another
factor, namely, a group structure factor, where groups were either given structure
or left unstructured before starting to work on the task. Both the ‘group structure’
and ‘working environment’ factors are nominal variables.

Figure 4.1 shows six designs that may be used for an ANOVA model. The
top three designs have one Factor B (one-way design) with two-, three- and four
levels, respectively, and the bottom three designs are two-factorial (two-way)
designs with an additional Factor A with only two levels.

Design I Design II Design III

B1 B2 B1 B2 B3 B1 B2 B3 B4

Design IV Design V Design VI

B1 B2 B1 B2 B3 B1 B2 B3 B4

A1

A2

Figure 4.1 Analysis of variance designs.

The second part of the design problem for ANOVA models concerns the
number of units assigned to each level of the independent variable or combina-
tion of levels of the independent variables. Specifically, how many experimental
units are to be included in the study and how to distribute them to the various
combination levels? Usually such studies are set up by assigning the same num-
ber of units to each condition, but in practice the groups may have unequal sizes
because of missing observations and dropouts that cannot be easily controlled
by the investigator. For the Groups under Stress study, the experimental units
(groups of students) were assigned to a total of eight combinations of the levels
of the ‘working environment’ and ‘group structure’ factors.

In principle, the ANOVA design problem is similar to the design problem
for a regression analysis model in Chapters 2 and 3. The difference here is that
the independent variables are not quantitative but qualitative and that there is no
natural ordering among the different levels of these factors. The codes for the
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levels of factors A and B in Figure 4.1 are only used to distinguish the different
levels from each other, and they may be reversed or changed without much harm.

4.1.1 The design

In the Groups under Stress study, Factor B has four conditions (positive, nega-
tive, noisy and crowded environment) and they are crossed with the two group
structure levels (structured and unstructured) of the Factor A. This 2 × 4 facto-
rial design is shown as Design VI in Figure 4.1. Table 4.1 shows that the design
has a total of m = 8 distinct levels (design points) with nj observations (within
brackets) at the j th combination level, j = 1, 2, . . . , 8.

The exact design is given by

ξN =
{

d1 d2 d3 d4 d5 d6 d7 d8

n1/N n2/N n3/N n4/N n5/N n6/N n7/N n8/N

}
, (4.1)

and the total number of observations is equal to N = ∑
j nj . We emphasize

that although variable B (environment conditions) may be considered to have
an ordering, we will assume that variable B is a qualitative variable and that
the combinations d1 through d8 do not have any natural ordering. The symbols
d1 through d8 are only used to distinguish the eight combinations of levels of
Factors A and B.

Table 4.1 Eight design points of a design with two qualitative independent
variables.

Variable B (working environment)
Variable A
(group structure) Positive Negative Noisy Crowded

Structured d1 (n1) d3(n3) d5(n5) d7(n7)
Unstructured d2(n2) d4(n4) d6(n6) d8(n8)

Note. Number of observations are in brackets.

With this design, the social psychologist can at least investigate three effects:
(i) the main effect of environment on the performance of the units (groups
of students); (ii) the main effect of the group structure on the performance of
the units and (iii) the differential effect of environment on the performance of
structured and unstructured groups. The latter is the interaction effect between
environment and group structure. For such a design, the ANOVA model is a
common and appropriate statistical technique to analyse the data.

We next briefly explain how to formulate the ANOVA model as a regres-
sion model. The parameters and the variances of their estimators depend on the
specific formulation of the model, and we explain the differences and common-
alities of the parameters in the ANOVA model and the corresponding regression
formulation with different dummy coding schemes.
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4.1.2 The analysis of variance model

ANOVA is a statistical technique for comparing the group means. Frequently,
we simply compare the group means using the estimated variance of an effect
and the estimated error, but sometimes, depending on the problem at hand, more
complicated ways may be required. ANOVA models can always be written as
a regression model and one might even conclude that an ANOVA model is a
special case of a regression model.

In an ANOVA model, the independent variables are usually nominal or
qualitative variables, whereas in regression models these independent variables
are often quantitative. An important distinction between ANOVA and regres-
sion models is that linear regression analysis assumes a linear relation between
the dependent and independent variables, whereas ANOVA does not necessarily
assume such a linear relation.

The factors in an ANOVA model may be crossed or nested. Factors are
crossed if all levels of one factor are combined with all levels of the other factor,
and factors are nested if each level of one factor appears with one and only
one level of the other factor. Nested factors have a hierarchical relationship. In
addition, we may distinguish a random factor from a fixed factor. In the former
case, the levels of the factor are assumed to be a random sample from a larger set
of levels. The implication is that we can study only a few levels of the factor but
we want to make inferences on the population levels for the factor. On the other
hand, fixed factors include only a specific number of levels and inferences are
desired only for these specific levels; see for example, Kleinbaum et al. (1998)
and Kirk (1995) for more details.

The observations in each level combination of an ANOVA model can be
represented as deviations from the cell mean. Figure 4.1 shows six typical designs
for an ANOVA model. Each design, I through III, has C different conditions,
where C = 2, 3 and 4, respectively. The score yic of the ith subject in condition
c can be modelled as the sum of the mean response from condition c, that is,
μc, and an error term:

yic = μc + εic. (4.2)

This model has one factor and can be expressed in terms of ANOVA effects as

yic = μ + bc + εic, (4.3)

where μ is the overall mean of all scores and bc = (μc − μ) is the effect of
condition c defined as the difference between the mean response from condition
c and the overall mean response μ. The error εic incurred for the ith subject
in condition c is assumed to be normally distributed with mean 0 and variance
σ 2

ε . Because the model is over-parameterized, it is not possible to estimate the
overall mean μ and all the effects bc separately. For this reason, we follow
convention and impose a constraint such as

∑C
c bc = 0 so that we can estimate

all the parameters of interest.
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Designs IV through VI in Figure 4.1 are exemplary designs for a two-factor
ANOVA model. Here, the score yirc of the ith subject in cell rc is expressed as
the sum of the mean μrc of cell rc and the error term:

yirc = μrc + εirc . (4.4)

This model can be rewritten in terms of ANOVA effects as

yirc = μ + (μr − μ) + (μc − μ) + (μrc − μr − μc + μ) + εirc

or (4.5)

yirc = μ + ar + bc + abrc + εirc,

where ar = (μr − μ) is the effect of the rth level of Factor A and bc = (μc − μ)

is the effect of the cth level of Factor B. Design VI has 2 × 4 = 8 cells and the
ANOVA model has eight interaction effects abrc = (μrc − μr − μc + μ), where
μr and μc are the row and column means of level r of Factor A and level c of
Factor B, respectively. As usual, we assume that the error terms εirc in each cell
are normally distributed with mean 0 and common variance σ 2

ε . For estimating
main and interaction effects, restrictions must be imposed on the effects. The
following restrictions are commonly used:

R∑

r

ar = 0,

C∑

c

bc = 0,

R∑

r

abrc = 0, for all c,

C∑

c

abrc = 0, for all r.

(4.6)

More details are available in Chapters 16–19 in Kleinbaum et al. (1998) and
Kirk (1995).

4.1.3 Formulation of an ANOVA model as a regression model

ANOVA models can be written as a regression model by means of dummy
variables. The model parameters and the estimated variances and covariances
depend on the specific formulation of a model. This means that the design will
also have to take into account the specific formulation of the model. To improve
the efficiency of the design for an ANOVA model, we first explain the differences
between the sets of parameters that arise from two different but common dummy
coding schemes.

A dummy variable is a variable that enables identification of different cate-
gories of a nominal or qualitative variable. The values of a dummy variable are
usually coded as ‘0’, ‘1’ or ‘−1’. In a regression model with intercept β0, a total
of (C − 1) dummy variables are needed to describe one nominal variable with
C distinct categories. Therefore, the regression model with an intercept and a
nominal variable with C categories has a total of C parameters.

Consider, for example, Design II in Figure 4.1, where Factor B has three
levels, namely a positive, noisy and negative environment. For the single-factor
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ANOVA model in Equation (4.3), we have C = 3 effects, namely, b1 = (μ1 −
μ), b2 = (μ2 − μ) and b3 = (μ3 − μ). A total of (C − 1) = 2 dummy variables
D1 and D2 is then needed. The expected value of the scores for this design can
be expressed in terms of an ANOVA model notation and a regression model
notation:

ANOVA model : E(yic) = μ + bc (4.7)
Regression model: E(yi) = β0 + β1D1 + β2D2.

In both models, we assume that the expected values of the error terms are
E(εic) = E(εi) = 0.

The dummy variables D1 and D2 may be coded in different ways. The two
most commonly used coding schemes are the so-called dummy coding and the
effect coding scheme shown in Table 4.2.

Table 4.2 Two coding schemes for qualitative Factor B in Design II of
Figure 4.1.

Dummy coding Effect coding

D1 =
{

1 if score yi belongs to
level B1

0 otherwise
D1 =

⎧
⎪⎨

⎪⎩

1 if score yi belongs to level B1
−1 if score yi belongs to the

last level B3
0 otherwise

D2 =
{

1 if score yi belongs to
level B2

0 otherwise
D2 =

⎧
⎪⎨

⎪⎩

1 if score yi belongs to level B2
−1 if score yi belongs to the last

level B3
0 otherwise

The dummy coding scheme assigns dummy values ‘1’ or ‘0’ to each level.
A ‘1’ is assigned to the dummy variable when the score yi belongs to the corre-
sponding level of the independent variable. The last (third) level does not require
another dummy variable because it is already accounted for when both dummies
take on zero values, that is D1 = 0 and D2 = 0. This last level is often called
the reference group. This reference group is usually selected in some meaningful
or natural way. For example, in dose–response studies where a few treatment
groups are compared with the control group, the reference group is usually the
control group.

An alternative way for coding the qualitative variable is to use contrasts
as in the effect coding scheme for the ANOVA model. In this coding scheme
contrasts are formulated between each level and the reference level. Although
some computer programs use other coding schemes by default, the dummy coding
scheme is the most often applied. In the following sections, we show that effect
coding is especially useful for obtaining a one-to-one relation between ANOVA
effects and regression parameters.
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The two coding schemes reformulate the original ANOVA effects in terms
of the regression parameters β0, β1 and β2. Table 4.3 shows these relationships
between the two sets of parameters in the ANOVA and in the regression set-up
for the model in Equation (4.7) with one qualitative variable having 3 levels.
The dummy coding scheme results in an intercept β0 being equal to the mean
of the scores in the reference (third) level. The regression parameters β1 and β2

correspond to the dummy variables D1 and D2, and they can be expressed as
the difference between the effects of level 1 and the reference level 3 and the
difference between levels 2 and 3, respectively. Under the effect coding scheme,
the intercept term β0 is equal to the overall mean μ and the regression parameters
β1 and β2 are the group effects b1 and b2, respectively.

Table 4.3 Correspondence between
regression parameters and ANOVA
effects of Design II in Figure 4.1.

Dummy coding Effect coding

β0 = μ + b3 β0 = μ
β1 = (b1 − b3) β1 = b1
β2 = (b2 − b3) β2 = b2

As another illustration of the two coding schemes, consider the 2 × 4 factorial
Design VI in Figure 4.1 for the two-factor ANOVA model with interaction. The
expected value of the dependent variable score in cell rc is

E(yirc) = μrc = μ + ar + bc + abrc . (4.8)

The model includes R = 2 effects ar = (μr − μ) for Factor A and C = 4
effects bc = (μc − μ) for Factor B. There are 2 × 4 = 8 cell means μrc with
corresponding interaction effects abrc = (μrc − μr − μc + μ), where μ is the
overall mean of all scores.

To reformulate this ANOVA model into a regression model, we need (R − 1)

= 1 dummy variable D(g) for Factor A (group structures) and (C − 1) = 3
dummy variables, D

(s)
1 , D

(s)
2 and D

(s)
3 for Factor B (stressful environment

conditions). The expected value of the scores expressed in dummy variables
is equivalent to the expected value formulated in terms of ANOVA effects in
Equation (4.8):

E(yi) = β0 + β1D
(g) + β2D

(s)
1 + β3D

(s)
2 + β4D

(s)
3

+ β5D
(s)
1 D(g) + β6D

(s)
2 D(g) + β7D

(s)
3 D(g). (4.9)

For this regression model, β0 is the intercept, β1 is the regression parameter
for Factor A, and β2, β3 and β4 are the regression parameters for the three dummy
variables of Factor B. The parameters β5, β6 and β7 are the regression parameters
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for the interactions between the dummy variables, that is D
(s)
1 D(g), D

(s)
2 D(g), and

D
(s)
3 D(g). A total of eight regression parameters are thus needed to describe the

deviation of each observation from the cell mean score. These dummy variables
can be coded either with dummy coding or with effect coding. Both coding
schemes are given in Table 4.4.

Table 4.4 Two coding schemes for the 2 × 4 factorial ANOVA model of
Design VI in Figure 4.1.

Dummy coding Effect coding

D(g) =
{

1 if score yi is in
level A1

0 otherwise
D(g) =

{
1 if score yi is in level A1

−1 if score yi is in last
level A2

D
(s)
1 =

{
1 if score yi is in

level B1
0 otherwise

D
(s)
1 =

⎧
⎪⎨

⎪⎩

1 if score yi is in level B1
−1 if score yi is in last

level B4
0 otherwise

D
(s)
2 =

{
1 if score yi is in

level B2
0 otherwise

D
(s)
2 =

⎧
⎪⎨

⎪⎩

1 if score yi is in level B2
−1 if score yi is in last

level B4
0 otherwise

D
(s)
3 =

{
1 if score yi is in

level B3
0 otherwise

D
(s)
3 =

⎧
⎪⎨

⎪⎩

1 if score yi is in level B3
−1 if score yi is in last

level B4
0 otherwise

The dummy coding scheme assigns a value ‘1’ to the dummy variable if the
score is in the corresponding level of the independent variable, and a ‘0’ to the
scores in all other levels of that independent variable. The effect coding scheme
assigns a ‘1’ if the score is in the corresponding level of the independent variable
and a ‘−1’ if the score is in the last level of the independent variable. Otherwise,
a ‘0’ is assigned.

The two coding schemes lead to different interpretations of the regression
parameters in Model (4.9) and different relations between the regression parame-
ters and the ANOVA effects. These relations for the two dummy coding schemes
are shown in Table 4.5.

Table 4.5 shows the correspondence between the regression parameters and
ANOVA effects is more complex with dummy coding than with effect coding.
For effect coding, the intercept β0 is equal to the overall mean of all scores
and the other regression parameters have a one-to-one relation with the original
ANOVA effects. This particular reformulation is based on the assumption that
all eight cells have an equal number of observations. If the cells do not have an
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Table 4.5 Correspondence between regression
parameters and ANOVA effects for Design VI in
Figure 4.1.

Dummy coding Effect coding

β0 = μ + a2 + b4 + ab24 β0 = μ
β1 = a1 − a2 + ab14 − ab24 β1 = a1
β2 = b1 − b4 + ab21 − ab24 β2 = b1
β3 = b2 − b4 + ab22 − ab24 β3 = b2
β4 = b3 − b4 + ab23 − ab24 β4 = b3
β5 = ab11 − ab21 − ab14 + ab24 β5 = ab11
β6 = ab12 − ab22 − ab14 + ab24 β6 = ab12
β7 = ab13 − ab23 − ab14 + ab24 β7 = ab13

equal number of observations (replications), the above correspondence between
regression parameters and ANOVA effects will not hold.

In general, different coding schemes will lead to a different correspondence
between ANOVA effects and regression parameters. The dummy coding scheme
is the most popular, but the effect coding scheme is more likely to produce
a one-to-one relationship between ANOVA effects and regression parameters,
especially for models with interactions. Researchers interested in estimating and
testing the separate ANOVA effects in a regression analysis may therefore be
better off by using effect coding instead of dummy coding.

4.2 Estimation of parameters and efficiency

In principle, the reformulation of an ANOVA model into a regression model
should yield similar conclusions. As has been shown in the previous section, the
parameters in the regression model depend upon the particular coding system
that is used for the dummy variables. This means that inferences on individual
regression parameters depend on these coding systems. However, the overall
explained variance from the regression model and the ANOVA models is the
same. The effects in an ANOVA model can be estimated by the method of least
squares described in the earlier chapters. Consider the factorial ANOVA model
with two factors A and B:

yirc = μ + ar + bc + abrc + εirc . (4.10)

To estimate the parameters in this model, we minimize the sum of squared
deviations of scores from their estimated cell means, that is we want the least
squares estimators μ̂, âr , b̂c, and ab̂rc to satisfy

∑

i

∑

r

∑

c

ε2
irc =

∑

i

∑

r

∑

c

(yirc − μ̂ − âr − b̂c − ab̂rc)
2

= minimum, (4.11)
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where the minimization in Equation (4.11) is taken over all values of the param-
eters μ, ar, bc, and abrc . According to the Gauss–Markov theorem, these estima-
tors enjoy good statistical properties. Two important properties of least squares
estimators are that they are unbiased and their variances are not larger than the
variances of any other linear unbiased estimators for the same model.

4.2.1 Measures of uncertainty

We now consider Design VI for the two-way ANOVA model in terms of
ANOVA effects and in terms of dummy variables for the corresponding
regression model. The expected value of the scores from the rc cell is
E(yirc) = μrc = μ + ar + bc + abrc and there are nrc observations in the rc cell
to estimate the cell mean. Under the assumption that all error terms have equal
variance σ 2

ε , the variance–covariance matrix of the cell mean estimators μ̂ =
(μ̂11, μ̂21, μ̂12, . . . , μ̂24)

′ can be schematically displayed as a diagonal matrix:

Cov(μ̂) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

σ 2
ε

n11
0 0 . . . 0 0

0 σ 2
ε

n21
0 . . . 0 0

0 0 σ 2
ε

n12
. . . 0 0

...
...

...
...

...
...

0 0 0 . . .
σ 2
ε

n14
0

0 0 0 . . . 0 σ 2
ε

n24

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

. (4.12)

The matrix Cov(μ̂) is a diagonal matrix because each estimator for a cell
mean is independent of the other cell mean estimators. Obviously, the cell mean
estimators depend only on:

• the common error variance σ 2
ε and

• the number of independent observations in each cell nrc , where∑
r

∑
c nrc = N .

This implies that the smaller the error variance is, the more efficient the
parameter estimators will be. Again, we remind readers that here and throughout
the book, efficient estimators mean estimators with small variances. A larger
sample size N and more observations in each cell will also decrease the variances
of the estimators. If one is only interested in estimating a certain cell mean,
the number of observations in that cell should be chosen as large as possible.
When the total sample size N is fixed and all cell means need to be estimated
simultaneously as efficiently as possible, it is best to have an equal number of
observations per cell.

Similar conclusions can be drawn from the variance–covariance matrix of
the estimators in the corresponding regression model with effect coding. The
p = 8 regression parameters are β = (β0, β1, β2, β3, β4, β5, β6, β7)

′, where β1
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corresponds to the first ANOVA effect a1 for Factor A and (β2, β3, β4)
′ corre-

spond to the three first ANOVA effects for Factor B. The parameters (β5, β6, β7)
′

are the interactions between the dummy variables. When all cells have an equal
number of observations, the variance–covariance matrix of the estimators of
these parameters is a blocked diagonal matrix:

Cov(β̂)

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

var(β̂0) 0 0 0 0 0 0 0

0 var(β̂1) 0 0 0 0 0 0

0 0 var(β̂2) cov(β̂2, β̂3) cov(β̂2, β̂4) 0 0 0

0 0 cov(β̂2, β̂3) var(β̂3) cov(β̂3, β̂4) 0 0 0

0 0 cov(β̂2, β̂4) cov(β̂3, β̂4) var(β̂4) 0 0 0

0 0 0 0 0 var(β̂5) cov(β̂5, β̂6) cov(β̂5, β̂7)

0 0 0 0 0 cov(β̂5, β̂6) var(β̂6) cov(β̂6, β̂7)

0 0 0 0 0 cov(β̂5, β̂7) cov(β̂6, β̂7) var(β̂7)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎦

.

(4.13)

In summary, different coding schemes for the ANOVA model will lead
to re-parameterization of the cell means. The structure and elements of the
variance–covariance matrix Cov(β̂) may be quite different from that in Equa-
tion (4.13) if other coding schemes are used. The effect coding of the ANOVA
effects will lead to the re-parameterization β = (β0, β1, β2, β3, β4, β5, β6, β7)

′,
where the regression parameters have a one-to-one relation with the ANOVA
effect parameters, as shown in Table 4.5.

4.3 Simultaneous inference and optimality criteria

To find an optimal design, we first have to select a suitable optimality criterion
function of the variance–covariance matrix Cov(β̂) of the estimators. The
choice should reflect the objective or objectives of the study as close as possible.
For models with quantitative independent variables, the usual D-, A- and
E-optimality criteria come to mind.

One of the most appealing properties of the D-optimality criterion is that
it is invariant under linear scale transformation of the independent variable.
This makes the D-optimality criterion especially attractive because a D-optimal
design remains the same for different scaling of the independent variables. This
property does not hold in general for the A- and E-optimality criteria. They are
scale dependent and A- or E-optimal designs can vary considerably for different
scaling of the independent variables and coding of the dummy variables.

The advantage of the A-optimality criterion is its relative ease in use. For
example, when a researcher is only interested in estimating the main effects
b1 = β2, b2 = β3 and b3 = β4 of a suitably parameterized model the optimal
design can be found from the sub-matrix of the total variance–covariance matrix
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in Equation (4.13):

Cov(β̂s) =

⎡

⎢
⎣

var(β̂2) cov(β̂2, β̂3) cov(β̂2, β̂4)

cov(β̂2, β̂3) var(β̂3) cov(β̂3, β̂4)

cov(β̂2, β̂4) cov(β̂3, β̂4) var(β̂4)

⎤

⎥
⎦ , (4.14)

where β̂s = (β̂2, β̂3, β̂4)
′ is a subset of β̂. In this case, we add up the diagonal

elements and minimize the sum by choice of a design. The D-optimality crite-
rion for such a 3 × 3 covariance matrix is more complicated to compute. We
recall that in Chapter 3, the sum of the diagonal elements of the sub-matrix in
Equation (4.14) is referred to as the As-optimality criterion , and a D-optimal
design for a subset of the parameters in a model is referred to as Ds optimal .
In this case where a subset of parameters (main effects only) is considered, both
the As- and Ds-optimal designs are not scale independent.

4.4 Designs for groups under stress study

The design for the Groups under Stress study performed by Worchel and Shack-
elford (1991) is a 2 × 4 factorial design, where Factor A (group structures) has
two levels and Factor B (stressful environment conditions) has four levels, that
is, a positive, a negative, a noisy and a crowded environment. The ANOVA
model with interaction between group structure and environment is yirc = μ +
ar + bc + abrc + εirc . The corresponding regression model has eight parameters.
The design problem is how to determine the most efficient design for estimating
the eight parameters. This question can be answered in the following steps.

First, the two factors are qualitative variables and there are eight different
combinations of levels. We want each cell to have at least one observation and
the design problem is to select an optimal number of observations for each of
the eight cells. A generic design with nj observations in each cell is shown in
Table 4.1. Table 4.6 shows the corresponding weights wj = nj/N, j = 1, . . . , 8
for all the cells with N = ∑8

j nj .
The next step is to select an optimality criterion to use. Suppose we choose

the D-optimality criterion and want the design to have as many design points
as the number of cells in the ANOVA model. In this case, it is straightforward

Table 4.6 Weights of eight combinations of a 2 × 4 factorial design with
qualitative independent variables.

Factor B (environment)
Factor A
(group structure) Positive Negative Noisy Crowded

Structured w1 w3 w5 w7
Unstructured w2 w4 w6 w8
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to show that the minimization of the D-optimality criterion depends only on the
product of the number of observations in the cells. The diagonal form of Cov(μ̂)

in Equation (4.12) shows that minimizing Det[Cov(μ̂)] is equivalent to

minimize
8∏

j

n−1
j . (4.15)

A formal justification for the equivalence can be found in Silvey (1980,
Lemma 5.1.3, p. 42). A minimum in Equation (4.15) is reached when all cells
have an equal number of observations. Thus, the volume of the confidence ellip-
soid for the eight parameters is minimized when all cells in the 2 × 4 design
have an equal number of observations.

To show how much efficiency is lost when cells do not have an equal number
of observations, consider the four 2 × 4 designs in Table 4.7. The first design
has an equal number of observations in the cells and is D optimal. The rest have
unequal sample sizes, which may be a priori planned or may be caused by loss
of subjects during the course of the study.

Table 4.7 Weights for 2 × 4 factorial designs with corresponding relative
efficiencies.

Factor B

Factor A

1 2 3 4 RED

(8 par.)

REDs

(5 par.)

1 0.125 0.125 0.125 0.125
Design 1

2 0.125 0.125 0.125 0.125
1.000 1.000

1 0.175 0.175 0.175 0.175
Design 2

2 0.075 0.075 0.075 0.075
0.916 0.966

1 0.200 0.150 0.100 0.050
Design 3 2 0.200 0.150 0.100 0.050 0.885 0.907

1 0.250 0.200 0.150 0.100
Design 4

2 0.125 0.100 0.050 0.025
0.816 0.902

4.4.1 A priori planned unequal sample sizes

A researcher may find it necessary to randomly assign relatively more subjects
to some combinations of levels in a study, and fewer to other combinations of
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levels. The reason may be that there are not enough subjects available for all
conditions or that the treatment in one condition is potentially harmful to the
subjects and the researcher does not want to expose too many subjects to this
treatment.

Design 2 in Table 4.7 reflects such a case with 70% of the total sample size
assigned to the first level of Factor A and 30% assigned to the second level.
Design 3 is also an example of such a case, where 40, 30, 20 and 10% of the
total sample size is assigned to each of the four levels of Factor B, respectively.
Such a priori designed or planned unequal sample sizes are not expected to be a
great threat to the internal validity of the study. See Cook and Campbell (1979)
for more details on threats to internal validity.

4.4.2 Not planned unequal sample sizes

Unequal sample sizes in a study may arise due to subject attrition. The reasons for
such a dropout are diverse. These reasons are often related to the subjects them-
selves, such as illness, non-response and lack of motivation. Cook and Campbell
(1979) referred to this threat to the internal validity of a study as ‘mortality’.
Non-response is a form of self-selection and often casts doubts upon the rep-
resentativeness of the samples. Unequal sample sizes may also be caused by
the conditions of the study itself, such as errors in coding the scores and by
the complexity of the treatment or task involved, causing subjects to stop their
participation. This artificial selection or loss of subjects has often an irregular
pattern and is considered to be not only a potential threat to the internal valid-
ity but also a threat to external validity. Design 4 in Table 4.7 displays such
an irregular pattern of sample sizes. In this case, the researcher should take the
validity threats into account when drawing conclusions.

The loss in D efficiency for designs with unequally sized cells is summarized
by their relative efficiencies RED for estimating the eight parameters. These
efficiencies are also presented in Table 4.7. In Design 2, the number of
observations differs only with respect to the levels of Factor A; that is, for the
Groups under Stress study, 70% of the data come from the structured group
condition and 30% from the unstructured group condition. The loss of efficiency
is moderate. Design 2 will need (0.9165−1 − 1)% = 9.1% more observations
than the D-optimal Design 1 to achieve the same efficiency. This efficiency
loss is due to the many more units in the structured group condition than in the
unstructured group condition.

A similar effect is found in Design 3, where the proportions of the total
number of observations for Factor B are 0.4, 0.3, 0.2 and 0.1, respectively. This
imbalance causes the relative efficiency (RE) to drop to RED = 0.8853. The
greatest efficiency loss occurs in Design 4, where the number of observations in
each cell varies from 2.5 to 25% of the total sample size. The RED = 0.8160
and about 22% more observations are needed for Design 4 to be as efficient as
the D-optimal design.
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As an illustration, Table 4.7 shows the loss of efficiency for an ANOVA
model with only main effects for Factors A and B. The ANOVA model with only
main effects has five parameters to be estimated, namely, μ, a1, b1, b2 and b3.
Design 1 is Ds optimal, because it is formulated on the subset of five parameters
and Table 4.7 shows that the corresponding REs are a little higher than those
for the model with eight parameters.

In conclusion, when a researcher plans a factorial design with qualitative
factors, the design should have an equal number of observations in each cell.
When this is not possible because subjects are expected to drop out, either planned
or not planned, then one should aim for a design that is as balanced as possible.
RE is an effective way to compare designs and arrive at an informed decision.
For instance, among the designs in Table 4.7, Design 4 is the least efficient
for estimating all eight parameters in the model and will require 22% more
observations to guard against efficiency loss. The other three designs require
fewer observations to guard against the efficiency loss.

4.5 Specific hypotheses and contrasts

The optimal designs and RE computations in the previous section were con-
cerned with estimating the whole set of parameters and ascertaining whether
there is a significant relationship between the response and the independent vari-
ables. For testing purposes, an overall F test may be used, but the test does not
answer specific research questions. Guided by theory or by previous research,
a researcher may be more interested in testing the so-called a priori hypotheses
about the parameters. In that case, the optimal design with equal weights may
not be optimal.

Suppose that a researcher is a priori interested in one or more specific
differences between the performances of the units (groups of students) in the
four different working environments. The single-factor ANOVA model is yic =
μ + bc + εic. The null hypothesis that the means (or ANOVA effects bc’s) for
the environment conditions are equal in the population can be tested with an
overall ANOVA F test. More specifically, a priori questions about the environ-
ments can be formulated by means of a contrast, which is defined as a weighted
sum of means of all conditions, that is ψ = (∑

c γcμc

)
, where the μc’s are the

population means and the γc’s are the user-selected contrast coefficients such that∑
c γc = 0. The hypothesis that this contrast is zero can be tested by the statistic

Fψ =

(
∑

c

γcȳc

)2

MSe

(
∑

c

γ 2
c

nc

) , (4.16)

which under the null hypothesis has a F distribution with numerator 1 degree
of freedom and denominator error degrees of freedom equal to df e. In the test
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statistic, ȳc is the estimated mean score of condition c with sample size nc and the
mean squared error MSe is the ANOVA estimator for the error variance σ 2

ε . The
sum of squares for the contrast ψ is the ratio SSψ = (∑

c γcȳc

)2/(∑
c γ 2

c /nc

)
.

For the Groups under Stress study, a researcher may, a priori, be interested to
compare the performances in a positive environment and all three other (negative,
noisy and crowded) environments. The interest then is to test the null hypothesis
that there is no difference in performances among these groups. The contrast ψ1

in Table 4.8 may be used to test this hypothesis. A second hypothesis may be
to compare the groups in a negative environment with groups in a noisy and
crowded environment. The contrast ψ2 in the same table serves this purpose.
Finally, a comparison between groups in a noisy and crowded environment may
be formulated using contrast ψ3 in Table 4.8.

Table 4.8 Contrasts and optimal weights for comparisons between the four
environment conditions.

Levels

B1 B2 B3 B4

Positive Negative Noisy Crowded
Contrast environment environment environment environment

ψ1
γ1 = 3 γ2 = −1 γ3 = −1 γ4 = −1

w∗
1 = 0.5 w∗

2 = 0.1667 w∗
3 = 0.1667 w∗

4 = 0.1667

ψ2
γ1 = 0 γ2 = 2 γ3 = −1 γ4 = −1
w∗

1 = 0 w∗
2 = 0.5 w∗

3 = 0.25 w∗
4 = 0.25

ψ3
γ1 = 0 γ2 = 0 γ3 = 1 γ4 = −1
w∗

1 = 0 w∗
2 = 0 w∗

3 = 0.5 w∗
4 = 0.5

The design problem for estimating or testing a contrast is to select the optimal
sample size for each working environment in such a way that the Fψ statistic for
that contrast becomes as large as possible. This can be done by maximizing the
SSψ or by minimizing the term

∑
c (γ 2

c /nc). Intuitively, we expect that when
we compare two means of group performances in two working environments,
an equal number of units from each condition is optimal. So, for contrast ψ1,
which compares the first mean with the other three means, the first environ-
ment condition should have the same sample size as the three other environment
conditions together have, that is n1 = 3n2 = 3n3 = 3n4, where

∑
c nc = N . The

optimal weights defined as w∗
c = nc/N for contrast ψ1 then become w∗

1 = 0.5,
w∗

2 = 0.1667, w∗
3 = 0.1667 and w∗

4 = 0.1667, respectively. A similar line of
reasoning for contrast ψ2 leads to n2 = 2n3 = 2n4 with n1 = 0, and for contrast
ψ3 to n3 = n4 with n1 = n2 = 0. Table 4.8 lists the optimal weights for these
contrasts.
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Table 4.8 shows that the optimal sample size (weight) can be quite different
for estimating or testing each a priori contrast. For example, for contrast ψ3, no
units (groups of students) need to be assigned to the positive and negative work-
ing environment condition, while for contrast ψ1, units need to be assigned to all
four working environment conditions, with three times as many units assigned
to the positive environment condition than to the other three environment condi-
tions.

Considering these contrasts, the researcher is faced with the problem of select-
ing the most efficient number of units (sample sizes). If the researcher is only
interested in contrast ψ3, there is no need to assign units to the positive and
negative environment conditions. However, if the researcher is interested in all
three contrasts in the same study, then it is not clear which design is preferable.
Although a design with an equal number of units assigned to each of the four
conditions is D optimal for the simultaneous estimation of all parameters in the
model, it is generally not optimal if these three contrasts are of interest.

4.5.1 Loss of efficiency and power

Since each contrast has its own design with optimal weights, finding a design
that is highly efficient for all three contrasts is the best thing a researcher can
do when all three contrasts are equally important; that is, a design that yields
the same (small) loss of efficiency for the three contrasts. A measure to express
efficiency loss is the RE. For a given contrast ψ , the RE of a design is defined as

REψ =

(
∑

c

γ 2
c

w∗
c

)

(
∑

c

γ 2
c

wc

) , (4.17)

where wc and w∗
c are the weights for that contrast and the optimal weights,

respectively. Clearly, the value of REψ in Equation (4.17) lies between 0 and 1.

4.5.1.1 Set of all possible designs

It is instructive to consider the set of all possible designs for the four conditions.
This is characterized by the set of weights [w1 w2 w3 w4] such that

∑
c wc = 1

and wc ≥ 0 for all c. Among all these designs, there are three designs that are
optimal for estimating the three contrasts ψ1, ψ2 and ψ3 in Table 4.8. Table 4.9
lists eight designs out of the set of all possible designs, including the three optimal
designs for estimating the three contrasts.

The REs of these designs for estimating each of the three contrasts are also
given. For example, the REψ1 value for the design with the first set of weights
(Set 1) is 1 because those weights are optimal for estimating the first contrast.
The RE of this design for estimating the second contrast ψ2 is REψ2 = 0.4445,
which is not very high. Dashes in the cells of Table 4.9 mean that the RE is not
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Table 4.9 Designs and their relative efficiencies for the three contrasts.

Design weights Relative efficiency

Set w1 w2 w3 w4 REψ1 REψ2 REψ3

1 0.5000 0.1667 0.1667 0.1667 1.0000 0.4445 0.3333
2 0.0000 0.5000 0.2500 0.2500 – 1.0000 0.5000
3 0.0000 0.0000 0.5000 0.5000 – – 1.0000
4 0.2500 0.2500 0.2500 0.2500 0.7500 0.6667 0.5000
5 0.2000 0.2000 0.3000 0.3000 0.6353 0.6000 0.6000
6 0.1667 0.2222 0.3055 0.3055 0.5535 0.6518 0.6110
7 0.2500 0.3333 0.2084 0.2084 0.7407 0.7407 0.4167
8 0.3000 0.3000 0.2000 0.2000 0.8308 0.6857 0.4000

computed for that design. For example, the RE of contrast ψ1 corresponding to
the second set of weights (Set 2) is not computed because of the zero weight in
the first group.

The first three sets of weights are the optimal weights for the three contrasts,
respectively. This implies that their RE values are one. The fourth set of weights
represents the design where all samples have an equal number of observations,
that is, n1 = n2 = n3 = n4. This design is optimal for simultaneous estimation
of all parameters. The REs of this design compared to the designs with opti-
mal weights for contrasts ψ1, ψ2 and ψ3 are REψ1 = 0.75, REψ2 = 0.6667 and
REψ3 = 0.50, respectively. We observe that the largest efficiency loss is found
for contrast ψ3 because half of the total sample is not used for estimating this
contrast.

The remaining sets of weights in Table 4.9 represent four specific designs,
namely a maximin design for the three contrasts (Set 5), a design with averaged
weights (Set 6), a maximin design for only the first two contrasts (Set 7) and
a special weighted design (Set 8). In the following subsections, each of these
designs will be explained in more detail.

4.5.1.2 Maximin procedure

A procedure to find a design that is highly efficient for all these three contrasts is
the maximin procedure. The name ‘maximin’ indicates that the procedure selects
the best of all worst cases; that is, it selects the maximum out of all the smallest
REs of the three contrasts per set of weights. As such, the procedure searches for
a design with a sufficiently high level of efficiency for all three contrasts. This
can be done in three steps:

1. Compute for the three contrasts the relative efficiencies REψ1 , REψ2 and
REψ3 over all possible designs with weights [w1 w2 w3 w4], such that∑

c wc = 1 and wc ≥ 0, for all c.

2. Select the smallest of these three REs for each design.
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3. Select from the whole set of smallest REs the largest RE value. This largest
RE value is referred to as the maximin value (MMV ) and the corresponding
design is the maximin design for these three contrasts.

The MMV is defined as

MMV = max
all designs

{min(REψ1, REψ2 , REψ3)}, (4.18)

For the three contrasts in Table 4.8, the MMV is RE = 0.60 and the maximin
design is the one with weights in Set 5. This maximin design was found numer-
ically by computing the REs for the set of all possible designs with different
weights. This MMV = 0.6 is higher than REψ3 = 0.50 for the weights in Set 4,
but may still be unsatisfactorily low in practice.

4.5.1.3 Averaging optimal weights

An alternative (heuristic) procedure is to average the optimal weights for the
three contrasts. Although this procedure is easier to apply than the maximin
procedure, it is in general not a satisfactory procedure. This can be seen by
considering the sixth set of weights in Table 4.9, which are the averaged weights
of the three optimal designs for the three contrasts, that is the first three weight
sets in Table 4.9. The average optimal weight for the first condition is quite low
because of the two zero weights for the second and third contrasts and this may
be partly responsible for the smallest relative efficiency REψ1 = 0.5535, which
is also smaller than the MMV = 0.6.

The only way to improve efficiency is to decrease the number of contrasts to
be considered in the maximin procedure. Since the third contrast actually does
not use the observations of the first two conditions, it is reasonable to just restrict
interest to the first two contrasts. The seventh set of weights in Table 4.9 is found
by the maximin procedure for estimating the first two contrasts. The MMV for
both contrasts is MMV = 0.7407. It should be emphasized that for only two
contrasts, the maximin design is equal to averaging the optimal weights for the
two contrasts. Finally, the eighth set of weights is added to show that compared
to Set 7, putting a little more weight on the first contrast increases its RE value
to REψ1 = 0.8308 at the expense of the second contrast.

4.5.1.4 Loss of power

Loss of efficiency can also be explained in terms of power. Figure 4.2 displays
the power for testing the prior contrast hypotheses H0 : ψ1 = 0 and H0 : ψ2 = 0
as a function of the non-centrality parameter of the F distribution. As an example
to show how the power differs for the different sets, the power functions of some
of the sets of weights from Table 4.9 are shown in Figure 4.2.

It can be seen that Sets 1 and 2 have the most power for testing contrasts ψ1

and ψ2, respectively. However, Set 1 has the least power for testing contrast ψ2.
This can of course be explained by the fact that 50% of the total sample in Set 1 is
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Figure 4.2 Power Functions for the designs in Table 4.9.

not used for testing contrast ψ2. Set 1 would need (0.4445−1 − 1)100% = 125%
more observations in the study to produce the same power as Set 2 for testing
contrast ψ2.

The functions also show that the power for testing the hypothesis H0 : ψ2 = 0
is overall a little lower than the power for H0 : ψ1 = 0. Testing the hypothesis
H0 : ψ2 = 0 does not use observations (information) from the first (positive envi-
ronment) condition. Sets 7 and 8 have relatively high power for contrasts ψ1 and
ψ2, respectively, and this is in agreement with the REs of these sets of weights.
Set 8 needs about (0.8308−1 − 1)100% = 20% and (0.6857−1 − 1)100% = 46%,
respectively, more observations in the total sample to have optimal power for
testing the two contrasts. This may be acceptable for testing contrast ψ1, but
probably not for ψ2.

In conclusion, efficiency for estimating and testing a priori contrasts can be
improved by carefully selecting the number of observations for each condition.
As the number of a priori contrasts increases, it will become more difficult to
obtain a highly efficient design for these contrasts. Eventually, as more contrasts
are considered in a single study, the researcher may be better off by applying a
design with equal weights that is optimal for the simultaneous estimation of all
group parameters.

4.6 Designs for the composite faces study

The study with composite faces (Langlois and Roggeman, 1990) described in
Chapter 1 distinguishes five different composite levels. These composite levels
are ordered and we will assume that composite levels are scaled from 1 to 5.
We could also have considered the actual number of faces that were used in
the study by Langlois and Roggeman (1990) as coding for the composite levels,
namely 2-, 4-, 8-, 16- and 32 faces, but then the analysis would have been more
complicated because these codings are unequally spaced. We note that a simple
log2 transformation can be applied to equalize the two different scales.
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The exact design for the composite faces study can be displayed as

ξN =
{
d1 = 1 d2 = 2 d3 = 3 d4 = 4 d5 = 5
n1/N n2/N n3/N n4/N n5N

}
, (4.19)

where the design points dj ’s are the five composite levels and the nj ’s are the
sizes of the samples of raters such that

∑
j nj = N . The corresponding one-way

ANOVA model is yij = μj + εij .
The design problem is now to choose the number of raters for each composite

level so that the estimator of the linear or nonlinear effect of the composite level
on the attractiveness score is estimated as efficiently as possible. This problem
can be dealt with by fitting polynomials to the data. A polynomial of degree
(p − 1) has the form β0 + β1x + β2x

2 + β3x
3 + · · · + βp−1x

p−1 and requires at
least p distinct levels of X to estimate the parameters β0, β1, β2, β3, . . . and
βp−1. For example, to fit a second (p − 1 = 2) degree polynomial, we need to
have at least p = 3 levels of the independent variable X.

Sometimes researchers use orthogonal polynomials to describe the relation
between the response and the quantitative variable X. The total amount of varia-
tion between the levels of the independent variable X can be divided into separate
pieces of variation connected to the linear and curvilinear relations. The between
composite face levels sum of squares SSB, which contains all the linear and curvi-
linear relations between Y and X, is equal to the sum of squares of the separate
linear and curvilinear effects, that is SSB = SSlin + SSquad + SScubic + · · · .

Orthogonal polynomial coefficients have been extensively tabulated for dif-
ferent numbers of levels of the independent variable. Fisher and Yates (1963) is
the original source, but tabulations can also be found in Bock (1975) and Kirk
(1995), among others. An example of orthogonal polynomial coefficients for five
levels is given in Table 4.10.

An orthogonal polynomial contrast among means is ψ =
(∑

j γjμj

)
, where

the μj ’s are the attractiveness group means for the different composite levels and
the γj ’s are the corresponding contrast coefficients such that

∑
j γj = 0. For the

levels of the composite faces (design points), the following estimated contrasts

Table 4.10 Orthogonal polynomial coefficients γ for
five levels.

Levels of composite faces

Polynomials 1 2 3 4 5

Linear −2 −1 0 1 2
Quadratic 2 −1 −2 −1 2
Cubic −1 2 0 −2 1
Quartic 1 −4 6 −4 1
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are of interest:

ψ̂lin = (−2)ȳ1 + (−1)ȳ2 + (0)ȳ3 + (1)ȳ4 + (2)ȳ5,

ψ̂quad = (2)ȳ1 + (−1)ȳ2 + (−2)ȳ3 + (−1)ȳ4 + (2)ȳ5,
(4.20)

ψ̂cubic = (−1)ȳ1 + (2)ȳ2 + (0)ȳ3 + (−2)ȳ4 + (1)ȳ5,

ψ̂Quartic = (1)ȳ1 + (−4)ȳ2 + (6)ȳ3 + (−4)ȳ4 + (1)ȳ5,

where ȳj is the estimated group mean of the attractiveness scores for composite
level j based on nj observations. Similar to the standard test of a contrast in
ANOVA, the hypothesis that a polynomial contrast is zero can be tested with the
F statistic in Equation (4.16). A simple rule can be used to check whether two
contrasts are orthogonal. Two contrasts ψ1 and ψ2 are orthogonal if the weighted
sum of products of their contrast coefficients is zero, that is, if

∑
j γ1j γ2j /nj = 0,

where nj is the number of observations in group j . For example, if we assume
that the groups all have an equal sample size, then the polynomial contrasts
ψ̂lin and ψ̂quad in Equation (4.20) are orthogonal because (−2)(2) + (−1)(−1) +
(0)(−2) + (1)(−1) + (2)(2) = 0.

As indicated in Section 4.5, the variance of an estimated contrast ψ̂ is mini-

mized when the term
(∑

j γ 2
j

/
nj

)
is minimized. This term is minimized if the

sizes of the weights wj = nj/N are in the same proportion as the corresponding
γj values. For example, the linear contrast coefficients for the five composite lev-
els are γ1 = −2, γ2 = −1, γ3 = 0, γ4 = 1 and γ5 = 2, respectively (Table 4.10).
The corresponding optimal weights are in the same proportions: 0.3333, 0.1667,
0, 0.1667, and 0.3333. The weight 0.3333 is to 0.1667 and 0, as the coefficient
2 is to 1 and to 0. These optimal weights are presented in Table 4.11.

Table 4.11 Optimal weights for the polynomial coefficients of five levels.

Polynomials 1 2 3 4 5

Linear 0.3333 0.1667 0 0.1667 0.3333
Quadratic 0.25 0.125 0.25 0.125 0.25
Cubic 0.1667 0.3333 0 0.3333 0.1667
Quartic 0.0625 0.25 0.3750 0.25 0.0625

The optimal weights in Table 4.11 show that there are different optimal
weights for different polynomial contrasts. For instance, if the main interest is
in the linear contrast, then 67% of the raters should be evenly assigned to the
first and last composite level and 33% to the second and fourth levels. This set
of weights is different from the optimal allocation of raters for the quadratic
polynomial contrast. If two or more contrasts are equally important, the maximin
procedure described in the previous section can be used. It should, however, be
kept in mind that if the samples of raters for each of the composite levels are not
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equally sized, the polynomial contrasts will not be orthogonal anymore and by
focusing on specific contrasts the sizes of optimal samples will become unequal,
thus loosing efficiency for the simultaneous estimation of all the parameters
involved in the model.

Another problem that is not incorporated here is that, as shown in Figure
1.4 (Chapter 1), the ratings for the second composite level (four composite
faces) have a much higher standard deviation than the ratings for the other
levels. In order to increase efficiency, relatively more raters should be
assigned to the second composite level to compensate for this high standard
deviation.

4.7 Balanced designs versus unbalanced designs

The results in the previous sections suggest that the overall efficiency of parameter
estimators is improved when we have an equal number of observations (subjects
and replications) per group or combination of levels. This is the same as saying
that a balanced design has an equal number of observations in each cell. However,
studies with unequal sample sizes are frequently encountered in both experimental
and non-experimental research. In the literature, these designs are often referred
to as unbalanced , that is cells have unequal sample sizes. In this case, it is gen-
erally not easy to determine how much of the total sum of squares is attributed
by the individual main effects and interactions separately, and the analysis of the
data from such unbalanced studies is more complicated. In the ANOVA literature,
different procedures to analyse such data have been discussed; see for example,
Winer, Brown and Michels (1991) and Kirk (1995). The simultaneous estimation
of the parameters will become less efficient when the samples are unequally
sized.

4.8 Matrix notation for Groups under Stress study

In this section, we use matrix algebra to explain how the optimality criteria can
be applied to the Groups under Stress example. The regression formulation of
the ANOVA model in matrix notation is

⎡

⎢⎢⎢
⎣

y1

y2
...

yN

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

1 x11 x21 . . . xp−1,1

1 x12 x22 . . . xp−1,2
...

...
...

...
...

1 x1N x2N . . . xp−1,N

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

β0

β1
...

βp−1

⎤

⎥⎥⎥
⎦

+

⎡

⎢⎢⎢
⎣

ε1

ε2
...

εN

⎤

⎥⎥⎥
⎦

, (4.21)

where y is the N × 1 data vector, X is the N × p design matrix for p × 1
regression parameters in the column vector β = (β0, β1, . . . , βp−1)

′ and the N×1
vector ε consists of errors, which are assumed to be normally distributed with
mean 0 and variance σ 2

ε . Table 4.12 shows the design matrix with effect coding
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Table 4.12 Design matrix with effect coding for the 2 × 4 Groups under
Stress study.

Factor A Factor B Interaction effects

n11 rows 1

b0 = m b1 = a1 b2 = b1 b3 = b2 b4 = b3 b5 = ab11 b6 = ab12 b7 = ab13

1 1 0 0 1 0 0
n21 rows 1 −1 1 0 0 −1 0 0
n12 rows 1 1 0 1 0 0 1 0
n22 rows 1 −1 0 1 0 0 −1 0
n13 rows 1 1 0 0 1 0 0 1
n23 rows 1 −1 0 0 1 0 0 −1
n14 rows 1 1 −1 −1 −1 −1 −1 −1
n24 rows 1 −1 −1 −1 −1 1 1 1

for the 2 × 4 design for the Groups under Stress study. The number of rows of
the design matrix is N = ∑

r

∑
c nrc and the number of columns is p = 8.

The covariance matrix of the parameter estimators is

Cov(β̂) = σ 2
ε (X′X)−1. (4.22)

With an equal number of observations in the cells and effect coding, Cov(β̂)

is a blocked diagonal:

Cov(β̂) = σ 2
ε

N

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 3 −1 −1 0 0 0
0 0 −1 3 −1 0 0 0
0 0 −1 −1 3 0 0 0
0 0 0 0 0 3 −1 −1
0 0 0 0 0 −1 3 −1
0 0 0 0 0 −1 −1 3

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

. (4.23)

We caution the reader that when the eight cells do not have an equal number
of observations, the matrix Cov(β̂) will generally not have this blocked diagonal
structure.

Table 4.13 shows the efficiencies for the D-, A- and E-optimality criteria of
Designs 2, 3 and 4 shown in Table 4.7 for the Groups under Stress study relative
to the efficiency of Design 1, because it has the smallest value for each criterion.
We remind the reader that the A- and E criteria depend on the scaling of the
variables and other coding schemes may produce different optimal designs for
these two criteria.
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Table 4.13 Relative efficiencies of designs
of the Groups under Stress study.

RED REA REE

Design 1 1.0000 1.0000 1.0000
Design 2 0.9165 0.8400 0.6000
Design 3 0.8853 0.9412 0.9078
Design 4 0.8160 0.7583 0.4746

4.9 Summary

We discussed design problems for the ANOVA model where the independent
variables are qualitative. In general, when we want to estimate the main and
interaction effects from different groups, we recommend using a balanced design
for ANOVA models. However, when it is impossible to implement a balanced
design, a properly chosen unbalanced design may be just as effective. In our
case, the unbalanced design shows a maximum efficiency loss of about 20%.

A second conclusion is that optimality depends on the criterion that is used.
This is not a surprise because the same finding holds true for regression models
also. The estimated parameters in the model and their variances and covariances
depend on the specific coding of the dummy variables, and the criteria for finding
optimal designs may be scale dependent. This is especially true when inferences
are based only on a subset of the parameters in the model.

A balanced design is optimal for estimating model parameters, but it may
not be efficient for making inference on a specific contrast among the groups of
interest. Similarly, the optimal design for estimating a specific contrast may not
be optimal for estimating another contrast. In either of the above cases, we have
multiple objectives. We showed in this chapter that a simple maximin procedure
may be used to find a design that is highly efficient for the two objectives. In
Chapters 9 and 10, multiple-objective optimal designs are discussed in greater
detail.



5

Designs for logistic regression
models

5.1 Design problem for logistic regression

Dichotomous response variables are often encountered in social and biomedical
research. For example, many studies seek to investigate the effect of a treatment
for a disease and the outcome is whether the patient is cured or not. Other studies
may want to estimate the effect of an intervention programme on whether subjects
change behaviour or the effect of a new instructional method on the performance
of the students and the outcome is whether the students pass the examination or
not. It is convenient to denote the binary outcome as simply a ‘success’ or a ‘fail-
ure’. If the treatment cures the patient of the disease, the outcome is a ‘success’;
otherwise, it is a ‘failure’. ‘Success’ is usually coded with the value ‘1’ and ‘Fail-
ure’ is usually coded with a value ‘0’ but other values are possible. The research
questions usually concern on the relation between such dichotomous outcomes
and one or more predictors, and in our case, we focus on a few design issues.

As in linear regression models, there are two main design questions for the
logistic regression models. The first question concerns the selection of the lev-
els of the independent variables. If the independent variable is quantitative, the
ordering of the levels must be taken into account. As an example, consider an
educational psychologist who wants to study the effect of ‘hours of practice’ on
the ‘mastery of a difficult task’. The dependent variable is binary and may take
on the value ‘1’ if the student has mastered the difficult task and ‘0’ otherwise. In
the study, each student is allowed only up to six practice hours before trying to
master a difficult task and so the level is the number of practice hours received.

An Introduction to Optimal Designs for Social and Biomedical Research      M. P. F. Berger & W. K. Wong
© 2009, John Wiley & Sons, Ltd. ISBN: 978-0-470-69450-3
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The design questions comprise what is the optimal number of levels to use in the
study, what are these levels and how many students to assign to each of these
levels. For example, should the design include an equal number of students who
have practised for 0, 2, 4 and 6 hours or an equal number of students who have
practised for only 0, 3 and 5 hours? Which is a better design for estimating the
effect of ‘hours of practice’? Is there an optimal design for estimating the effect
of ‘hours of practice’ on the mastery of the task?

When the independent variable is qualitative, all the levels of the independent
variable may be included in the design. We may use dummy variables to indicate
the various levels, as was done in Chapter 4 for the analysis of variance model.
For example, if students are assigned to one of two different instructional methods
(directive and nondirective), these two instructional methods form the two levels
of a qualitative independent variable.

The second question concerns the allocation of the subjects (patients and
students) to the different level combinations of the independent variables. For
instance, in designing a dose–response study, we need to know how many
patients are going to be allocated to the different dose levels, and in our example
on the instructional methods, we need to know how many students are assigned
to each of the two methods. In an experimental study, we allocate the units
(subjects, students or patients) to different combinations of levels (conditions)
at random. However, when we have quasi-experimental or observational studies,
we may not be able to assign units to various conditions at random.

5.2 The design

An exact design for the logistic regression model is characterized by the fixed
total sample size N , the levels of the independent variables and the number of
units assigned to each combination of levels. As in the case for linear models,
we may denote a two-point exact design by

ξN =
{

d1 d2

n1/N n2/N

}
. (5.1)

There is only one qualitative independent variable and the design points d1

and d2 may represent the instructional methods. The sample sizes for the two
treatments are n1 and n2 with

∑
j nj = N . Because the independent variable is

qualitative, the codes for the design points d1 and d2 are arbitrary and we can
change or reverse them with no harm. Clearly, the notation in Equation (5.1) can
be easily generalized to a design including more than two instructional methods.

When the exact design has a quantitative independent variable and there are
m design points, we can likewise denote such a design by

ξN =
{

d1 d2 d3 . . . dm

n1/N n2/N n3/N . . . nm/N

}
. (5.2)
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Exact designs, such as ξN in Equation (5.2) for the logistic model, assign
n1, n2, n3, . . . , nm units to the m design points such that

∑
j nj = N . These

exact designs can be replaced by their continuous counterparts with weights
wj ’s (0 ≤ wj ≤ 1) instead of fractions nj/N at the design points, and the sum
of the wj ’s is 1.

5.3 The logistic regression model

The logistic regression model is commonly used to describe the relation between
a dichotomous dependent variable Y and one or more independent variables
X1, X2, . . . , Xp−1. The responses of Y are usually coded as y = 1 for occurrence
(success) and y = 0 for no occurrence (failure) and modelled using the logistic
model given by

Prob(y = 1) = p(z) = exp(z)

1 + exp(z)
, (5.3)

where z = β0 + ∑p−1
l βlxl, xl is the value of the independent variable Xl, l = 1,

2, . . . , (p − 1) and the exponential function is exp(z) = ez ≈ 2.7184z. The func-
tion in Equation (5.3) represents the probability of an occurrence when the z

takes on a specified value determined from the linear combination of the inde-
pendent variables. The probability of no occurrence is q(z) = [1 − p(z)]. All
observations are assumed to be independent in the logistic model.

Figure 5.1 displays the probability p(z) as a function of z. The logistic model
has an S shape and flattens off as z approaches plus or minus infinity. For z = 0,
we have probability p(z) = q(z) = 0.5. Each of the binary outcomes y has a

0
0

0.5

1

p(
z)

+ ∞− ∞

z = b0 +    l
p−1

 blxlΣ

Figure 5.1 The logistic function p(z).
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binomial distribution with mean p(z) and variance is var(y) = p(z)q(z). This
means that, unlike linear regression models, the mean and variance of the binary
outcome y now depend on the values of the independent variables through z.

The logistic regression model can be linearized by using a so-called logit
transformation. The odds are

odds = p(z)

[1 − p(z)]
= exp(z) = exp

(
β0 +

∑p−1

l
βlxl

)
,

and the logarithm of the odds that are called logits are

logit(p) = ln

[
p(z)

[1 − p(z)]

]
= z = β0 +

p−1∑

l

βlxl, (5.4)

where ‘ln’ symbolizes the natural logarithm with e ≈ 2.7184. The logit is often
symbolized as logit(p) and is a linear function of the independent variables.
Hosmer and Lemeshow (1989) and Kleinbaum and Klein (2002) give further
details.

In the following sections, design issues for logistic regression models with
one or more quantitative or qualitative independent variables are illustrated using
simple examples.

5.3.1 Design for a single dichotomous independent variable

Consider the study to investigate the effect of two instructional methods (directive
and nondirective) on the ability of students to solve a complex problem. Both the
dependent and the independent variables are dichotomous. The logistic regression
model with two parameters is

p(z) = exp(z)

1 + exp(z)
= exp(β0 + β1x)

1 + exp(β0 + β1x)
, (5.5)

where z = β0 + β1x. This equation represents the probability that a student will
solve the problem correctly given the fact that the student has received one of
the instructional methods. The two instructional methods are arbitrarily coded
as x = 1 and x = −1. The dependent variable, problem solving, is coded as
y = 1 for success and as y = 0 for failure. We use the zero–one coding for the
dependent variable because it is commonly used in logistic regression analysis,
and for consistency we retain the same coding for the independent variable with
x = 1 and x = −1 as we have for the other chapters.

Table 5.1 shows the model and the design with the four conditions given. n1

and n2 are the number of observations for the two conditions of the independent
variable x = 1 and x = −1, respectively. Following convention, we use the odds
ratio (OR) as a suitable measure for the association between two dichotomous
variables.
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Table 5.1 The design for the logistic model with a dichotomous independent
variable.

Independent variable

(instructional methods)
x = 1 (Method 1) x = −1 (Method 2)

y = 1 (success) p1 = eβ0+β1

1+eβ0+β1
p2 = eβ0−β1

1+eβ0−β1

Dependent variable

(problem solving) y = 0 (failure) q1 = 1
1+eβ0+β1

q2 = 1
1+eβ0−β1

Total N n1 n2

The odds of a student from the first method group (x = 1) solving the problem
are

odds(y = 1; x = 1) = p1

(1 − p1)
= exp(β0 + β1), (5.6)

and the odds for the second method group (x = −1) are

odds(y = 1; x = −1) = p2

(1 − p2)
= exp(β0 − β1). (5.7)

The ratio of these two odds is the OR and for this example this value is given
by OR = exp(β0 + β1 − β0 + β1) = exp(2β1). Although there are two regression
parameters, the association between the independent and dependent variable is
dependent only on the parameter β1. A positive value of β1 indicates a positive
association between the two variables and a negative value of β1 indicates a
negative association. When β1 = 0, there is no association between the number
of practice hours and the ability of solving the difficult task.

We now construct an interval estimate for the parameter β1 using a confidence
interval and use it to capture the uncertainty of the estimate. A 100(1 − α)%
confidence interval for β1 is given by

β̂1 ± z1−α/2

√
v̂ar(β̂1), (5.8)

where β̂1 is the estimator of β1 and
√

v̂ar(β̂1) is its estimated standard error. The
critical value is z1−α/2, which is the 100(1 − α/2)th percentile of the standard
normal distribution. The confidence interval for the OR can be directly found
from the end points of the confidence interval for β1. Since OR = exp(2β1), the
endpoints of the 100(1 − α)% confidence interval for OR have limits given by
exponentiating both limits of the interval given in Equation (5.8). The width of
the interval is 2 z1−α/2

√
v̂ar(β̂1) and we want this width to be as short as possible

for accurate inference for the regression parameter β1 or equivalently, the OR.
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One way to ensure that we have a short confidence interval is through careful
design of the study. An optimal design for estimating β1 gives us the smallest
possible variance of β̂1 and hence the shortest possible confidence interval for
OR or β1.

Suppose the coding for the independent variable in logistic regression model
in Equation (5.5) is x1 = 1 and x2 = −1 and the sample sizes at these levels are n1
and n2, respectively, with n1 + n2 = N . If the probabilities of a response at these
levels are p1 and p2, respectively, it can be shown that the variance–covariance
matrix of the estimators of the two regression parameters β0 and β1 is

Cov(β̂) =
[

var(β̂0) cov(β̂0, β̂1)

cov(β̂0, β̂1) var(β̂1)

]

(5.9)

= D

[
n1p1q1 + n2p2q2 n1p1q1 − n2p2q2

n1p1q1 − n2p2q2 n1p1q1 + n2p2q2

]
,

where D = (4n1 n2 p1 q1 p2 q2)
−1 is the determinant of the matrix Cov(β̂).

A D-optimal design minimizes the expression D = (4n1n2p1q1p2q2)
−1 and

because we have independent samples, the determinant D is minimized when
n1 = n2, regardless of the values of p1 and p2. This means that for the logis-
tic model with one qualitative variable, equal sample sizes for both groups are
D-optimal for estimating the two regression parameters.

In practice, a researcher may not be interested in the efficient estimation
of the intercept β0, but only in the efficient estimation of the parameter β1, or
alternatively, in the OR. Then, instead of minimizing the determinant of Cov(β̂)

in Equation (5.9), we want to minimize var(β̂1). From Equation (5.9), we have

var(β̂1) = n1p1q1 + n2p2q2

4n1p1q1n2p2q2
= 1

4

(
1

n1p1q1
+ 1

n2p2q2

)
. (5.10)

When the probabilities are equal, that is p1 = p2 or when p1 = (1 − p2),
the minimum of var(β̂1) is reached when we have equal sample sizes n1 = n2.
If the probabilities are not equal, p1 �= p2 or if p1 �= (1 − p2), Dette (2004)
provided the optimal weights for minimizing var(β̂1) and they are functions of
the probabilities p1 and p2:

w∗
1 =

√
p2(1 − p2)√

p1(1 − p1) + √
p2(1 − p2)

and w∗
2 = (1 − w∗

1). (5.11)

This means the optimal design for estimating β1 requires Nw∗
1 units at x1

and Nw∗
2 units at x2 subject to Nw∗

1 + Nw∗
2 = N . Table 5.2 shows the optimal

weights computed for a few different combinations of probabilities p1 and p2.
The minimal values of var(β̂∗

1 ) from the optimal design for estimating β1 and the
value of var(β̂1) from the equally weighted design are also shown in Table 5.2.

Table 5.2 also shows that the variances var(β̂1) of designs with equal weights
are not that much larger than the minimum values of var(β̂∗

1 ) suggesting that
equally weighted designs are quite efficient.
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Table 5.2 Optimal weights for efficient estimation of β1 in the logistic model.

p1 p2 w∗
1 w∗

2 var(β̂∗
1 ) w1 = w2 var(β̂1)

0.3 0.5 0.5218 0.4782 4.3727 0.5 4.3810
0.1 0.6 0.6202 0.3798 7.2215 0.5 7.6389
0.1 0.8 0.5714 0.4286 8.5069 0.5 8.6806
0.3 0.1 0.3956 0.6044 7.6052 0.5 7.9365

5.3.1.1 Local optimality and maximin designs

Table 5.2 shows that the weights depend on the unknown parameters β0 and β1
through the probabilities p1 and p2. These parameters are of course not known
before the actual data have been obtained. This phenomenon is usually referred to
as local optimality ; that is, the optimal design is only optimal for specific values
of p1 and p2, and not for other values. Since in most studies the real values of
p1 and p2 are not known before the actual data have been gathered, it may be
problematic to apply these optimal designs in practice. The results in Table 5.2
show that a design with equal weights is quite efficient for the tabulated values
of p1 and p2 because the two variances for the estimated β1 from the equally
weighted design and the optimal design are about the same. This suggests that
equally weighted designs may be a good alternative to using a locally optimal
design for estimating β1 when no reliable estimates of β1 are available.

It is sometimes possible to find a non-optimal design for estimating β1 that
is even more efficient than the equally weighted designs. One such strategy is to
employ a maximin design for the logistic model. A maximin design is a design
that is based on a relative efficiency (RE) measure computed for a whole range
of values of p1 and p2. Suppose that p1 and p2 are in a rectangular sub-region P

of unknown probabilities such that P ⊂ [0 1] × [0 1]. Then, for a specific design
with weights w1 and w2, the REs for all combinations of values of p1 and p2

can be computed:

RE = var(β̂∗
1 )

var(β̂1)
, (5.12)

where var(β̂∗
1 ) and var(β̂1) are the variances of β̂1 from the optimally weighted

design and the specific design with weights w1 and w2, respectively. The smallest
RE for all combinations of p1 and p2 values is selected, that is the worst case
in terms of efficiency. These smallest REs are computed for all possible designs
with weights w1 and w2 (w1 + w2 = 1, 0 < wj < 1). From the set of minimal
REs for all possible designs, the design with the largest minimum RE is selected
and referred to as the maximin design . This design performs best in terms of
the ‘worst case’ scenario (minimal RE). The RE of the maximin design is called
maximin value (MMV) and is

MMV = max
all designs

{
min

P
(RE)

}
. (5.13)
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The search for such a maximin design may be tedious, but fortunately Dette
(2004) provides expressions for the weights of the maximin design for all com-
binations of probabilities in P . The maximin design has weights:

w1 =
(
2 + √

pmin + √
pmax

)

2
(√

pmin + √
pmax

) + 2
(
1 + √

pmin × pmax
) and w2 = 1 − w1, (5.14)

where

pmin = min
P

{
p1(1 − p1)

p2(1 − p2)

}
and pmax = max

P

{
p1(1 − p1)

p2(1 − p2)

}
.

The performance of a maximin design depends on the range of probability
values for p1 and p2. In order to apply a maximin design, a researcher must a
priori specify the range of p1 and p2 values. To illustrate how a maximin design
behaves for different ranges of the probabilities, consider again the example of the
two instructional methods and the probability of solving a problem by students
who have received one of the two instructional methods. Suppose that the first
method is a new method and that we want to investigate whether the probability
of successfully solving the complex problem p1 with method 1 is greater than
the success probability p2 of method 2. In order to apply the maximin procedure,
we will first need to specify a range for p1 and p2 values.

In Table 5.3, four sets of ranges of p1 and p2 values are presented. The
first set reflects a situation where there is not much prior knowledge available
for the p1 and p2 values. Almost the full range of possible values for p1 and

Table 5.3 Maximin designs for efficient estimation of β1 under different
assumptions on the response probabilities.

Range of probabilities ORmin MMV Weights Probabilities REequal

Set 1
p1 = [0.05–0.95]

0.028 0.8663
w1 = 0.5000 p2 = 0.5

0.8663
p2 = [0.05–0.95] w2 = 0.5000 p2 = 0.05

Set 2
p1 = [0.2–0.8]

0.0625 0.9878
w1 = 0.5000 p1 = 0.5

0.9878
p2 = [0.2–0.8] w2 = 0.5000 p2 = 0.8

Set 3
p1 = [0.3–0.9]

0.2857 0.9012
w1 = 0.4643 p1 = 0.9

0.9412
p2 = [0.05–0.6] w2 = 0.5357 p2 = 0.5

Set 4
p1 = [0.4–0.9]

0.4444 0.9577
w1 = 0.5208 p1 = 0.9

0.9412
p2 = [0.15–0.6] w2 = 0.4792 p2 = 0.5
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p2 is considered, namely [0.05, 0.95]. Because of the monotonicity of the odds
and the inverse odds, this in turn implies that the smallest possible value of the
OR for the study is 0.028. Expressed in another way, this means that all values
of the OR > 0.028 are assumed to be possible outcomes for this study. The
corresponding maximin design has equal weights and a minimum RE of MMV
= 0.8663 (Table 5.3, Set 1).

The second set is a little more restrictive in range, but also reflects a situation
where little prior information about the possible values of p1 and p2 is available.
The corresponding MMV is equal to 0.9878, and the weights are also equal.
Actually, the weights of the maximin design can be shown to be equal if the
ranges of p1 and p2 values are equal. As can be seen in Table 5.3, this is the
case for Sets 1 and 2.

The third set reflects the situation where we assume that the OR is > 0.2857,
but now the range of p1 values is chosen to be generally much higher than that
for p2 and with some overlap. In practice, this means that we expect that students
who have the first instructional method will have a higher probability of correctly
solving the problem than the students who have received the second instructional
method. Since the ranges of p1 and p2 values are different, the maximin design
also has different weights. These weights were computed using Equation (5.14)
and are given in Table 5.3. The maximin design has MMV = 0.9012 when
p1 = 0.9 and p2 = 0.5. If we compute the RE of an equally weighted design for
these probabilities, we have REequal = 0.9412, which is a little higher than the
MMV = 0.9012. A similar comparison can be made for Set 4, but now we have
MMV = 0.9577 which is a little higher than REequal = 0.9412.

The results in Tables 5.2 and 5.3 show that the REs of an equally weighted
design are always very high. In cases where almost no a priori knowledge about
the actual p1 and p2 values is available, a maximin design can be computed,
but this design is also equally weighted when the ranges of p1 and p2 values
are equal. If more specific information about the ranges of p1 and p2 values is
available and these ranges are unequal, then the maximin design may be a little
more efficient than an equally weighted design.

Dette (2004) also provided optimal weights for relative risk and attributable
risk and showed that in cases where costs are different for sampling the two
groups, the locally optimal designs can be rather inefficient when the parameters
are miss-specified. More details on attributable and relative risks can be found
in Walter (1976, 1977).

In conclusion, equally weighted designs for the logistic model with one
dichotomous independent variable are D-optimal for the whole variance–
covariance matrix Cov(β̂), and they are highly efficient when the efficient
estimation of only the effect parameter β1 is taken into account. It should be
mentioned that although the elements of Cov(β̂) change for another coding of
the independent variable, the equally weighted design will remain D optimal.
Therefore, for a logistic model with one dichotomous independent variable, we
recommend using an equally weighted design.
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5.3.2 Design for multiple qualitative independent variables

Students from the social and medical sciences often find it difficult to solve
problems in their statistical courses. Statistics education is generally focused on
methods to improve the learning process of these students. Among the factors
that are inferred to improve the problem solving abilities of students are directive
instructions, motivation and the inclusion of practical exercises in a course. Take
as example, an experiment where students are assigned to combinations of the
following conditions: directive/nondirective instruction, enhanced/not enhanced
motivation, inclusion/no inclusion of practical exercises. It is inferred that the
probability of solving a statistical problem will increase when the instruction
is more directive, when motivation of the students is enhanced by providing
additional information about the importance of finding the right solution to that
problem and when practical exercises are included in the problem solving pro-
cess. The dependent variable is binary, indicating whether a student has correctly
solved the statistical problem or not. A logistic regression model is applied to
describe the relation between the effects of instruction (X1), motivation (X2) and
practical exercises (X3) on problem solving. All variables are dichotomous vari-
ables and the logit of the probability of solving the problem is linearly related to

z = β0 + β1x1 + β2x2 + β3x3, (5.15)

where β0 and β1, β2, β3, are the intercept and the three effect parameters,
respectively. The design of this study is displayed in Table 5.4, where the dj ’s
are the eight design points and the nj ’s within brackets are the number of
students assigned to each condition or design point, such that

∑
j nj = N . For

consistency, we choose the coding of the independent variables to be 1 and −1,
respectively, but other coding schemes are also possible.

Table 5.4 Design for the problem solving study with three independent
variables.

Directive instruction

Motivation x1 = 1 (yes) x1 = −1 (no)

x3 = 1 (yes)
x2 = 1 (yes) d1 (n1/N) d2 (n2/N)

x2 = −1 (no) d3 (n3/N) d4 (n4/N)

Working exercises

x3 = −1 (no)
x2 = 1 (yes) d5 (n5/N) d6 (n6/N)

x2 = −1 (no) d7 (n7/N) d8 (n8/N)
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The odds of successfully solving the problem for the first two design points
d1 and d2 in Table 5.4 are

odds(y = 1; x1 = 1, x2 = 1, x3 = 1) = exp(β0 + β1 + β2 + β3)

and (5.16)
odds(y = 1; x1 = −1, x2 = 1, x3 = 1) = exp(β0 − β1 + β2 + β3).

Here, the OR = exp(2β1), and depends only on the parameter β1 because it
describes the association between directive instruction and problem solving. The
uncertainty of the parameter estimator β̂1 can again be expressed in terms of a
(1 − α)100% confidence interval, namely: β̂1 ± z1−α/2

√
v̂ar(β̂1). The odds for

the other design points in Table 5.4 can be obtained in a similar way.
Equation (5.15) has four parameters that describe the effects on the prob-

lem solving ability of students. The variance–covariance matrix of these four
parameter estimators is

Cov(β̂) =

⎡

⎢⎢
⎣

var(β̂0) cov(β̂0, β̂1) cov(β̂0, β̂2) cov(β̂0, β̂3)

cov(β̂0, β̂1) var(β̂1) cov(β̂1, β̂2) cov(β̂1, β̂3)

cov(β̂0, β̂2) cov(β̂1, β̂2) var(β̂2) cov(β̂2, β̂3)

cov(β̂0, β̂3) cov(β̂1, β̂3) cov(β̂2, β̂3) var(β̂3)

⎤

⎥⎥
⎦ . (5.17)

These variances and covariances of the parameter estimators depend on the
actual values of the parameters and on the coding of the independent variables.
So, in order to minimize the variances of the parameters, one has to have an
accurate estimate of the parameters.

Suppose that in the problem solving study, we believe a value of at least
OR = 2.5 for any one of the three factors is sufficient evidence that students’
ability to correctly solve the problems has improved. From Equation (5.16),
this happens when all estimated parameter values of β̂1, β̂2 or β̂3 are at least
ln(2.5)/2 = 0.4581. Assuming that β̂0 = 1, the variances of the responses
var(yi) = p(zi)[1 − p(zi)] can be estimated by substituting these parameter
values in Equation (5.15), using the codings of the x values corresponding to the
eight different design points. These estimated variances are presented in Table 5.5

Table 5.5 Response variances, D-optimal weights and samples for the problem
solving study.

d1 d2 d3 d4 d5 d6 d7 d8 RED

v̂arj (yi) 0.0775 0.1529 0.1529 0.2326 0.1529 0.2326 0.2326 0.2412

w∗
j 0.0000 0.1216 0.1216 0.1533 0.1216 0.1533 0.1533 0.1751 1.0000

wcb
j 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.9565

w
pb
j 0.0000 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.9960
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together with the D-optimal weights w∗
j from minimizing the determinant of

the variance–covariance matrix of the parameter estimators Cov(β̂) in Equation
(5.17). It is interesting to see that the D-optimal weights are monotonically
related to v̂ar(yi), and that the smallest v̂ar(yi) from the first design point
receives zero weight. Such a relation was also noted by Tekle, Tan and Berger
(2008a), who proposed a restricted optimal design based on this relation.

Table 5.5 lists the weights of the D-optimal design, the weights of a completely
balanced design and a third design called a partially balanced design. The latter
design has all cells with equal weights, except the cell with the smallest value for
the v̂ar(yi). This partially balanced design must not be confused with the partially
balanced incomplete block design mentioned in Goos (2002, p.34). Table 5.5
displays the weights wcb

j of a completely balanced design (with equal weights

for all the design points) and the weights w
pb
j of the partially balanced design that

has zero weight for the first design point and equal weights for all the remaining
design points. Their REs are 0.9565 and 0.9960, respectively, which are actually
very high. This means that there is not much efficiency loss when a completely
or partially balanced design is used instead of the D-optimal design.

But, even such small efficiency loss can lead to a contradictory decision
about a null hypothesis; that is, the D-optimal design may lead to rejection of a
null hypothesis while the completely balanced and partially balanced designs
may not. This can be illustrated by returning to the confidence interval for
a single parameter given by β̂1 ± z1−α/2

√
v̂ar(β̂1). Suppose that a sample of

N = 90 students is available for this study. The optimal number of students for
the design points can be obtained by rounding the products n∗

j = 90 × w∗
j off to

the nearest integers in such a way that their sum remains equal to N = 90. The
optimal sample sizes n∗

j and the sample sizes ncb
j for completely balanced design

and n
pb
j for a partially balanced design are given in Table 5.6. The 95% confi-

dence intervals for the parameters based on the D-optimal, completely balanced
and partially balanced designs can be obtained from

D-optimal design:

0.4581 ± 1.96/
√∑

j n∗
j v̂arj (y) = 0.4581 ± 0.4565,.

Completely balanced design:

0.4581 ± 1.96/

√∑
j ncb

j v̂arj (y) = 0.4581 ± 0.4818 and

Partially balanced design:

0.4581 ± 1.96/

√∑
j n

pb
j v̂arj (y) = 0.4581 ± 0.4618, respectively.

These 95% intervals imply that with β̂1 = 0.4581 and a total sample size of
N = 90, the optimal design will probably reject the null hypothesis H0 : β1 = 0,
whereas the completely balanced design and the partially balanced design would
probably fail to reject this hypothesis. However, it must be emphasized that for
this example, the differences are quite small at the significance level of α = 0.05.
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Table 5.6 D-optimal and (partially) balanced sample sizes for the problem
solving study.

d1 d2 d3 d4 d5 d6 d7 d8 N

v̂arj (y) 0.0775 0.1529 0.1529 0.2326 0.1529 0.2326 0.2326 0.2412

n∗
j 0 11 11 14 11 14 14 15 90

ncb
j 12 11 11 11 11 11 11 12 90

n
pb
j 0 13 13 13 12 13 13 13 90

Note. The term completely balanced design does not really apply here for this exact design due
to the conditions that the samples sizes ncb

j and n
pb
j were rounded and adjusted to ensure that

∑
j ncb

j = ∑
j n

pb
j = 90.

We end this section with a remark that for a logistic model, that with num-
ber of parameters equal to the number of design points, the D-optimal design
is always a balanced design (Silvey, 1980, p.42). For example, if the logistic
model has three main effects and all interaction terms, the linear predictor is
z = β0 + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + β6x2x3 + β7x1x2x3, and the
D-optimal design for this model is completely balanced.

5.3.3 Design for a single quantitative independent variable

Consider the study on the effect of the number of hours practice on the ability
to master a difficult task. The probability that a student will ‘master the task’
(y = 1) is a logistic function of the number of ‘hours practice’ (X):

p(z) = exp(z)

1 + exp(z)
= exp(β0 + β1x)

1 + exp(β0 + β1x)
. (5.18)

Suppose that the design of the study consists of groups of students, each
allowed to have a different amount of practice time and that the independent
variable ‘hours of practice’ (X) is a continuous variable. In this case, the design
points have a one-on-one relation with the values of X, that is d1 = x1, d2 =
x2, . . . , dm = xm. In other words, the design region dmin ≤ dj ≤ dmax and the
region of x values xmin ≤ x ≤ xmax coincide. The design points are bounded
between 0 and 6 hours and the binary dependent variable is coded as y = 1 if
mastery of the task is achieved, and y = 0 otherwise. A design for this study is
characterized by the design points dj ’s and the weights wj ’s at these points. For
example, a design equally spread out at 0, 1, 2, 3, 4, 5 and 6 hours is written as

ξ =
{

d1 = 0 d2 = 1 d3 = 2 d4 = 3 d5 = 4 d6 = 5 d7 = 6
w1 w2 w3 w4 w5 w6 w7

}
,

(5.19)

where 0 ≤ wj ≤ 1 and
∑

j wj = 1. With a pre-determined sample of N students,
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this design roughly allocates Nwj students to dj , j = 0, 1, 2, . . . , 6, subject to∑
j Nwj = N .
The odds of ‘mastering the task’ after 6 hours of practice are

odds(y = 1; x7 = 6) = exp(β0 + 6β1), (5.20)

while the odds of ‘mastering the task’ after 3 hours practice are

odds(y = 1; x4 = 3) = exp(β0 + 3β1). (5.21)

The corresponding OR is equal to exp(β0 + 6β1 − β0 − 3β1) = exp(3β1),
which again depends only on the parameter β1. When the parameter β1 > 0,
the odds increase as the hours of practice increase, while for β1 < 0, the odds
decrease with increasing hours of practice. No association exists when OR = 1
and β1 = 0. Efficient estimation of the OR is equivalent to efficient estimation
of the parameter β1.

The variance–covariance matrix of the estimators of the parameters β0 and
β1 is

Cov(β̂) =
[

var(β̂0) cov(β̂0, β̂1)

cov(β̂0, β̂1) var(β̂1)

]

= D

⎡

⎢
⎣

∑

j

wjx
2
j p(xj )q(xj ) −∑

j

wjxjp(xj )q(xj )

−∑

j

wjxjp(xj )q(xj )
∑

j

wjp(xj )q(xj )

⎤

⎥
⎦ , (5.22)

where

D =
⎧
⎨

⎩

[
∑

j

wjp(xj )q(xj )

][
∑

j

wjx
2
j p(xj )q(xj )

]

−
[
∑

j

wjxjp(xj )q(xj )

]2
⎫
⎬

⎭

−1

is the determinant of Cov(β̂).
Abdelbasit and Plankett (1983), Minkin (1987), Khan and Yazdi (1988) and

Mathew and Sinha (2001) are just a few among many others who have reviewed
D-optimal designs for estimating the parameters β0 and β1 in the logistic model
with one continuous independent variable. The D-optimal design is characterized
as follows:

ξN
∗ =

{
d∗

1 d∗
2

w∗
1 w∗

2

}

. (5.23)

If N is even, then the optimal weights w∗
1 = w∗

2 = 0.5N . If N is odd
w∗

1 = 0.5(N − 1) and w∗
2 = 0.5(N + 1). The optimal design points d∗

1 and d∗
2

satisfy d∗
1 = (−1.5434 − β0)/β1 and d∗

2 = (1.5434 − β0)/β1, respectively.
Figure 5.2 shows a plot of the determinant of Cov(β̂) as a function of the

probabilities p(x1) and p(x2) of two equally weighted design points under the
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Figure 5.2 The D-optimality criterion as a function of the response probability
function p(x).

condition that p(x1) = 1 − p(x2). Among these two design points, the mini-
mum value for the determinant of Cov(β̂) is attained for the two D-optimal
design points with p(d∗

1 ) = 0.176 and p(d∗
2 ) = 0.824. The figure also shows that

the determinant function roughly remains small for probabilities in the intervals
0.1 < p(x) < 0.3 and 0.7 < p(x) < 0.9. Outside these intervals, the determinant
function increases rapidly and approaches infinity as p(x) → 0, p(x) → 0.5 or
p(x) → 1. This indicates that a relatively small mis-specification of the proba-
bility will lead to large variances of the parameter estimators. Figure 5.2 shows
that for probabilities close to 0, 0.5 and 1, one cannot expect to obtain efficient
parameter estimators, even if an extremely large sample is used.

Given the optimal probabilities p(d∗
1 ) = 0.176 and p(d∗

2 ) = 0.824, the
two D-optimal design points d∗

1 and d∗
2 can be obtained. For example, if the

parameters of the logistic model that describes the relation between ‘hours of
practice’ and the probability of ‘mastering a task’ have values β0 = −4 and
β1 = 1.3333, the optimal design points can be computed from d∗

1 = (−1.5434 +
4.0)/1.3333 = 1.8425 and d∗

2 = (1.5434 + 4.0)/1.3333 = 4.1577, respectively.
Figure 5.3 shows the logistic function with these parameter values and the

optimal design points d∗
1 and d∗

2 associated with the optimal probabilities 0.176
and 0.824.

When the total sample size N is fixed for this problem and the initial values
for the logistic model parameters are β0 = −4 and β1 = 1.3333, the D-optimal
design for estimating the two parameters is to divide students into two equally
sized samples, one having a little less than 2 hours and the other having a bit
more than 4 hours of practice. Neither inclusion of students in this study having
less than 1 hour or more than 5 hours of practice nor inclusion of students having
about 3 hours of practice will improve the efficiency of the parameter estimators
very much. If one is only interested in efficient estimation of the single parameters
β0 or β1, different designs will be required.

Figure 5.4 shows the variances of the two estimated parameters given in the
main diagonal of the variance–covariance matrix Cov(β̂) in Equation (5.22).
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Figure 5.3 Probability function of mastering the task for the logistic model with
β0 = −4 and β1 = 1.3333.
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Figure 5.4 Variances var(β̂0) and var(β̂1) as functions of the response probability
function p(x).

These plots show that the location parameter β0 is most efficiently estimated
when p(x) = 0.5. This is in contrast to the plot for the variance of the slope
parameter estimator, which becomes extremely large as p(x) reaches 0.5. The
smallest variance for the estimator of β1 is attained when p(x1) = 0.09 and
p(x2) = 0.91.

In summary, as the probability p(x) → 0 or p(x) → 1, both parameters are
estimated with very large variances. A contradiction arises when p(x) → 0.5.
Here, the location parameter β0 is estimated with minimum variance while the
slope β1 cannot be reliably estimated. These plots in Figure 5.4, however, do
confirm the conclusion that was drawn from the D-optimality criterion plot in
Figure 5.2, namely that the variances of both estimators β̂0 and β̂1 remain rela-
tively small in the probability intervals 0.1 < p(x) < 0.3 and 0.7 < p(x) < 0.9,
respectively.
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5.3.3.1 Bounded and unbounded design regions

In the cases considered up to now, the design regions have been assumed
to be bounded, that is dmin ≤ dj ≤ dmax. Likewise, the values of the indepen-
dent variable have been assumed to lie between an upper- and a lower bound
xmin ≤ x ≤ xmax. In the ‘hours of practice’ example, the design region is bounded
between 0 and 6 hours. However, the D-optimal design characterized in Equation
(5.24) actually holds when the design region is unbounded and the design points
lie between −∞ ≤ dj ≤ ∞. The D-optimal design points d∗

1 and d∗
2 associated

with the probabilities p(d∗
1 ) = 0.176 and p(d∗

2 ) = 0.824 are shown in Figure 5.5
for an unbounded design region.

0
0

0.176

0.5

0.824

1

− ∞ dmaxdmin + ∞

d*
2d*

1

Figure 5.5 Response probability function p(d∗
1 ) < p(dmin) < p(dmax) < p(d∗

2 ).

In practice, researchers may want to study a design region that is more
restricted. In pharmaceutical research, for example, such a restriction of the design
region is often necessary to avoid high doses to prevent unwanted effects. Such
a restricted region may also be needed to avoid uniform responses from very
low or very high doses. In these cases, not much information about the shape
of the response curve is going to be available. We now consider two interesting
conditions for the design region and we call them Case I and Case II .

Case I: Design region {dmin ≤ d∗
1 < d∗

2 ≤ dmax}
When the lower bound dmin → −∞ and the upper bound dmax → +∞, the region
is said to be unbounded. Silvey (1980, p. 59) and Sebastiani and Settimi (1997),
among others, described the D-optimal design points for this case. They can be
derived from d∗ = (±1.5434 − β0)/β1, and are associated with the probabilities
p(d∗

1 ) = 0.176 and p(d∗
2 ) = 0.824, respectively.

Case II: Design region {d∗
1 < dmin < dmax < d∗

2 }
For this bounded region, it has been shown (Silvey, 1980; Sebastiani and Settimi,
1997) that the D-optimal design points will become equal to dmin and dmax. In



130 OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH

Figure 5.5, this case is plotted. It can be easily seen that this case resembles that
of the D-optimal design case for the linear regression model. The response curve
for the interval [dmin, dmax] approximately becomes linear. If we would expand
the width of the design region [dmin, dmax], and thus increase the variance of X,
we would obtain more efficient parameter estimators. As the width of the design
region increases and becomes larger than the interval [d∗

1 , d∗
2 ], the optimal design

points will not be at the boundaries of the design region anymore and Case I
will then apply.

It is interesting to note that the magnitude of the slope parameter β1 deter-
mines where the optimal design points are. A moderate slope results in a more
linear shape of the response function and leads to optimal design points closer
to the boundaries of the design region, whereas a steeper slope requires that the
optimal design points be more in the interior of the design region. For more
insights, we refer the reader to Silvey (1980) and Sebastiani and Settimi (1997),
who also considered cases where the design region is only bounded on one side.

5.3.4 Design for two independent quantitative variables

When a bank considers whether to provide a loan or not to a business firm, it
is important that the bank carefully estimates the risk of bankruptcy. A logis-
tic regression analysis that describes the relation between the probability of
bankruptcy of 66 firms and their retained earnings is presented by Chatterjee
and Price (1991, p. 147–148). The dependent variable Y is coded as y = 0 if a
firm went bankrupt after two years and y = 1 if a firm remained solvent in that
period. The probability of remaining solvent is

p(z) = exp(z)

1 + exp(z)
, where z = β0 + β1x1 + β2x2. (5.24)

The variable X1 represents the retained earnings divided by the total assets of
the firm and X2 represents the earnings before interest and taxes divided by the
total assets of the firm. The estimated parameters are β̂0 = −0.550, β̂1 = 0.157
and β̂2 = 0.194. The OR for X1 given X2 is

OR = odds(y = 1; x1 = 2, x2)

odds(y = 1; x1 = 1, x2)
= exp(β1), (5.25)

and this ratio can be interpreted as the change of the odds for the firms becoming
bankrupt when their retained earnings (X1) increase 1 point on the X1 scale. The
estimated OR for the association between retained earnings (X1) and remain-
ing solvent is 1.170. The predicted probabilities of the 66 firms for remaining
solvent are shown in Figure 5.6 as a function of the estimated linear predictor
ẑ = −0.550 + 0.157x1 + 0.194x2. It can be seen from this figure that the prob-
abilities of remaining solvent become extremely small when ẑ < −6 and these
probabilities are close to 1 when ẑ〉6.
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Figure 5.6 Predicted probabilities of remaining solvent for the bankruptcy
example.

The design question is now how can the probability of remaining solvent be
estimated as efficiently as possible? Or, which combination of values [x1, x2] will
provide the most information for the simultaneous estimation of the parameters
β0, β1 and β2? Of course, strictly speaking, this is not an experimental study and
we cannot manipulate firms beforehand to produce certain combinations of values
[x1, x2] that provide the most information for modelling bankruptcy. However,
banks want to estimate the model parameters as efficiently as possible using an
efficient design. In particular, including firms in the sample that do not provide
much information is a waste of resources. A proper choice of the design space
is therefore in order.

The first step is to find proper bounds for the design region of the two inde-
pendent variables. Since very little information is available when the probability
of remaining solvent is very low or very high, it makes sense to restrict the
probabilities of remaining solvent to 0.1 < p(x) < 0.9. This means that we have
−2.2 < z < +2.2.

Figure 5.7 is a two-dimensional plot of the estimated probability function for
variables X1 and X2 with values ranging from −40 to +40. Clearly, the probabil-
ity of remaining solvent decreases when the firm has negative retained earnings
and negative earnings before taxes and interest; in particular, this probability is
less than 0.1 when both the predictor variables X1 and X2 have large negative
values. In contrast, this probability exceeds 0.9 when both variables have very
large positive values. These combinations of x values are thus not very informa-
tive. In terms of the linear predictor, the same conclusions apply when z < −2.2
and z > 2.2 (Figure 5.6).

Figure 5.8 shows a two-dimensional design space �2 for the bankruptcy
example. The upper and lower bounds of the restricted design space are drawn for
z = 2.2 and z = −2.2. The region between these two parallel lines is the region
where the probability of remaining solvent lies between 0.1 and 0.9. To reflect



132 OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH

−40 −20 0

Variable X1

Variable X220 40 −40
−20

0
20

400

0.2

0.4

p(
x)

0.6

0.8

1

ˆ

Figure 5.7 Estimated probability of remaining solvent as a function of X1 and X2

for the bankruptcy data.
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Figure 5.8 A two-dimensional design space for the bankruptcy example with four
optimal design points.

reality, we impose a second constraint that banks frequently use. Ordinarily,
banks prefer firms not to have too much difference in retained earnings (X1)
and earnings before taxes and interest (X2), and we assume that the maximum
difference between x1 and x2 values is about 50. A convenient difference function
between x1 and x2 is diff (x1, x2) = 0.157x1 − 0.194x2 + 0.058. It can be shown
that if we set diff (x1, x2) = ±9, the difference between the two variables is
approximately (x1 − x2) ≈ ±50.

Sitter and Torsney (1995) used a canonical form to express the design problem
for two independent variables and numerically found that there are four distinct
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optimal design points, namely:

ξ ∗ =
{

d∗
1 d∗

2 d∗
3 d∗

4

0.25 0.25 0.25 0.25

}
. (5.26)

These D-optimal design points all have an equal weight of 0.25 and are
graphically displayed in Figure 5.8. They are the four intersection points of the
two lines diff(x1, x2) = ±9 with the two lines for z = ±1.22, respectively. See
Sitter and Torsney (1995), for more details. So, the optimal design point d∗

1 is the
intersection of diff(x1, x2) = +9 and z = 1.22, while the optimal design point
d∗

4 is the intersection between the lines diff(x1, x2) = −9 and z = −1.22. For
the bankruptcy example, the D-optimal design points are d∗

1 = [34.11;−18.48],
d∗

2 = [26.34;−24.77], d∗
3 = [−23.21; 27.91] and d∗

4 = [−30.98; 21.62]. The
response probabilities at design points d∗

1 and d∗
3 are 0.7721 and the response

probabilities at design points d∗
2 and d∗

4 are 0.2279. This D-optimal design
depends on the user-selected restrictions imposed on the design space and differ-
ent optimal designs will emerge with different restrictions on the design space.

5.3.4.1 Number of support points

The procedure of Sitter and Torsney (1995) resulted in a D-optimal design with
four equally weighted design (support) points for the logistic model with only
three parameters, namely β0, β1 and β2. It is known that for a model with p

parameters, we can find a non-singular D-optimal design among designs with
at least p points and at most p(p + 1)/2 points. This is a consequence of
Charathéodory’s Theorem described in Silvey (1980, p.72). In our case, we have
a model with three parameters and this means that we can restrict our search for
the D-optimal design among designs with at least three and at most six support
points. Illustrative examples and details are available in Sebastiani and Settimi
(1998). We end this section with a note that D-optimal designs can have unequal
weights, and whether this happens or not depends on the restrictions on the
boundaries of the design space and the values of the model parameters.

5.4 Approaches to deal with local optimality

The variances of the parameter estimators in the logistic model are functions of
the values of the parameters that we are trying to estimate. The practical impli-
cation is that if we want to design a study to estimate the model parameters as
efficiently as possible, one must actually know the parameter values beforehand.
Here, and elsewhere, we remind the reader that efficient estimators are estimators
with minimal variance. This problem is comparable to the problem faced by the
legendary Baron von Münchhausen when he got stuck in a swamp. How can you
design a study to optimally estimate the parameters of your model without know-
ing the actual values of the model parameters? Baron von Münchhausen solved
his problem by pulling himself up from the swamp by his own hair. Surely we
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cannot do this here, but fortunately, there are several approaches to circumvent
the parameter dependency problem. Here are some strategies for overcoming the
dependency problem:

• If a researcher has initial values or ‘best guesses’ for the model parameters,
the optimal design can be constructed based on these initial values. Such
optimal designs are referred to as locally optimal designs .

• If a researcher is able to update estimates of the model parameters in
successive stages, the resulting design is called a sequential optimal design .
Starting with initial values in the first stage, the locally optimal designs
are modified using estimated parameters from data obtained in that stage.
At each stage, the current optimal design is updated to incorporate the
new information from the latest data and improved designs are constructed
from the latest estimates for the model parameters. This process continues
until convergence is reached. Such sequential two- and multi-stage design
procedures have been suggested by Wu (1985) and Sitter and Wu (1999),
among others.

• A Bayesian approach assumes a prior distribution for the parameters of
interest and uses it to construct the optimal design by averaging over the
prior information. Chaloner (1984) and Chaloner and Verdinelli (1995)
reviewed the Bayesian approach and design issues for linear and nonlinear
models and constructed several types of Bayesian optimal designs. Addi-
tional illustrative examples of the Bayesian approach are given in Chapters
9 and 10.

• Another approach to overcome the local optimality problem is the maximin
approach. This approach can also be inversely formatted as a minimax
approach. Both methods generally require a specification of a certain range
of the unknown parameters. A more detailed explanation of the maximin
method is given in Section 5.3.1.1 and Chapters 9 and 10.

5.5 Designs for calibration of item parameters in
item response theory models

In educational testing, large-scale administrations of tests are conducted every
year. For example, the scholastic assessment tests (SAT) in the United States are
administered to a couple of million students annually. Such large-scale adminis-
trations require a lot of test items to be calibrated. Calibration in this context
means that the item parameters, such as item discrimination and item diffi-
culty, have to be estimated. Computerized adaptive testing (CAT) has become an
alternative to such large-scale testing programmes, but CAT administration also
requires a large item bank of calibrated items. As such, an enormous amount of
resources is required to calibrate items on such a large scale. Because CAT is
not only used in education but is also used in the military and companies such as
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Microsoft and Oracle, it is important to have efficient sampling designs to cali-
brate the items and estimate the item parameters accurately at minimal cost. An
overview of these issues in computer-based testing is given in Wainer (2000) and
Van der Linden and Glas (2000). See also Van der Linden (2005) who described
optimal test design models with constraints for efficient estimation of students’
abilities.

Among all item response theory (IRT) models used in practice, the two-
parameter logistic model is probably the most often applied. Its most common
form is

pi(θj ) = exp[ai(θj − bi)]

1 + exp[ai(θj − bi)]
, (5.27)

where θj is a random ability parameter for student j and ai and bi are the item
discrimination and difficulty parameter, respectively. In order to calibrate the
item parameters ai and bi , we first calculate Fisher’s information given by

M =
[

M11 M12

M12 M22

]

=

⎡

⎢
⎣

∑

j

wj (θj − bi)
2p(θj )q(θj ) −∑

j

wjai(θj − bi)p(θj )q(θj )

−∑

j

wjai(θj − bi)p(θj )q(θj )
∑

j

wja
2
i p(θj )q(θj )

⎤

⎥
⎦ .

(5.28)

Here, M11 and M22 are Fisher information for the item parameters ai and
bi , respectively, and M12 is the joint information. The probability q(θj ) = [1 −
p(θj )] and the weights wj ’s are connected to each distinct ability level θj , such
that

∑
j wj = 1. The inverse of the information matrix M−1 is proportional to

the asymptotic variance–covariance matrix of the parameter estimators of ai

and bi . This variance–covariance matrix is comparable to the form given in
Equation (5.22) for the estimators of the regression parameters in Model (5.18).
In Chapter 9, the inverse relation between Fisher information and the asymptotic
variance–covariance matrix of the parameter estimators is further elaborated.

It was shown in Section 5.3.3 that the minimum of Det(M−1) or the maxi-
mum for Det(M) is attained at two distinct equally weighted values of abilities
θ∗ = bi ± 1.5434/ai . The corresponding probabilities of correctly answering the
item are p(θ∗) = 0.824 and q(θ∗) = 0.176, respectively. This means that the
D-optimal sampling design for estimating both the item parameters ai and bi is
to have an equal number of students with probabilities of 0.824 and 0.176 of
answering the item correctly. In practice, the abilities of students are unknown
and only their estimates are available. In some cases, a teacher may be able to
select only two groups of students, one for which the particular item would be
too difficult and one for which the item would be too easy. Compared to a single
sample of students, such a mixture of two samples with two modes is more likely
to improve the efficiency of the parameter estimators.
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Figure 5.9 shows a normally distributed sample of abilities and three different
bimodal samples. For all four samples, the location parameter bi = θ̄ , which
we assume is 0. The standard deviations sθ of these samples are also more
or less equal. We calculate REDs, the efficiencies of these samples relative to
the D-optimal design with two equally sized samples of students with abilities
θ∗ = bi ± 1.5434/ai . This D-optimal design has mean θ̄ and standard deviation
sθ = 1.5434/ai .
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Figure 5.9 Unimodal and bimodal samples of students with same sample size N

and approximately the same mean θ̄ and standard deviation sθ .

The plots show that the (unimodal) normally distributed sample has the small-
est RED = 0.8613, and that this normal sample would have to be increased
by about (0.86−1 − 1)% = 16% to come up with the same efficiency as the
D-optimal sampling design. However, this efficiency loss is relatively small in
part because D-optimality criterion includes information on both parameters ai

and bi . The D-optimal design has a contradicting effect on each of the separate
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item parameter estimators. A normally distributed sample is usually not very
efficient for the slope parameter ai , while it is very efficient for the location
parameter if bi = θ .

In practice, calibration of item parameters is infeasible for single items. Usu-
ally, a whole test is administered to a sample of students and the scores are
used to calibrate all item parameters together. The optimal form of the sampling
design depends on the form of the distributions of the set of location and the
slope parameters for all items in the whole achievement test. Interestingly, it has
been found that a more or less uniformly distributed sample of abilities generally
contains more information about a set of the items parameters in a test than a
normally distributed sample of abilities (Stocking, 1990; Berger, 1994). See also
Lima Passos and Berger (2004) and Lima Passos, Berger and Tan (2007, 2008)
who studied item calibration designs for the nominal response model for CAT
administration.

5.6 Matrix formulation of designs for logistic
regression

In this section, we use matrix notation to describe the statistical set-up for the
logistic regression model with one or more independent variables. We use the
‘hours of practice experiment’ and the ‘problem solving study’ examples to
demonstrate the matrix calculation involved and display their design matrices
and the variance–covariance matrices of the estimated parameters. The reader
may skip this section without too much interruption.

Suppose we decide to take a fixed number of N observations in the study
and we have a logistic model with p − 1 independent variables X1, . . . , Xp−1.
For the ith case, let yi be the binary response and let the linear predictor be
zi = β0 + ∑p−1

l=1 βlxli , where xli is the ith value of the independent variable
Xl, l = 1, 2, . . . , p − 1. In matrix form, we write

z = Xβ
⎡

⎢⎢⎢
⎣

z1

z2
...

zN

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

1 x11 . . . xp−1,1

1 x12 . . . xp−1,2
...

...
...

...

1 x1N . . . xp−1,N

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

β0

β1
...

βp−1

⎤

⎥⎥⎥
⎦

(5.29)

where z is the N × 1 vector of linear predictors, X is the N × p design matrix and
β = (β0, β1, . . . , βp−1)

′ is the column vector of logistic regression parameters.
If L is the likelihood function, the log likelihood function of N dichotomous

responses y1, y2, . . . , yN can be written as

ln(L) =
N∑

i=1

{yi ln p(zi) + (1 − yi) ln[1 − p(zi)]} , (5.30)
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where p(z1), p(z2), . . . , p(zN) are the probabilities of observing the responses
y1, y2, . . . , yN as successes.

Some of the rows of the design matrix X may be the same. This happens
when there are replicates; that is, we take observations at the same condition
or at the same combination levels of the independent variables. Without loss
of generality, we assume that there are m conditions or m distinct combination
levels of the independent variables and there are nj observations (replications)
at each of these conditions. This implies that nj = Nwj where wj ’s are the
weights at the m conditions, such that all wj > 0,

∑m
j wj = 1 and

∑m
j nj = N .

Assuming replicates are grouped in conditions, the log likelihood function for the
N dichotomous responses y1, y2, . . . , yN in Equation (5.30) can be formulated as

ln(L) = N

m∑

j=1

{
wjyj ln p(zj ) + wj(1 − yj ) ln[1 − p(zj )]

}
. (5.31)

The maximum likelihood estimators for β = (β0, β1, . . . , βp−1)
′ are usually

obtained by maximizing ln(L) with a Gauss–Newton type of algorithm (Lange,
1999, p. 135). The estimators β̂ have an asymptotic variance–covariance matrix
given by

Cov(β̂) = (X′ŴX)−1, (5.32)

where the design matrix X now is of order m × p and Ŵ is an m × m diagonal
matrix given by

Ŵ = Diag {w1p̂(z1)[1 − p̂(z1)], . . . , wmp̂(zm)[1 − p̂(zm)]} . (5.33)

Note that the p(z1), p(z2), . . . , p(zm) are the response probabilities for the
m distinct conditions with corresponding weights w1, w2, . . . , wm indicating the
replications at each of these conditions. The asymptotic variance–covariance
matrix Cov(β̂) is inversely related to the information matrix:

M = X′ŴX, (5.34)

and so minimizing the determinant Det[Cov(β̂)] is equivalent to maximizing
Det[M].

5.6.1 Hours of practice experiment

In Figure 5.3, the estimated probability of mastering a difficult task is plotted as
a function of hours of practice for the logistic regression parameters β0 = −4
and β1 = 1.3333. Students are divided into seven groups each having a different
number of hours practice, that is dj = 0, 1, 2, 3, 4, 5 and 6 hours. The design
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matrix with corresponding diagonal matrix of response variances Ŵ is

X =

⎡

⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎣

1 0

1 1

1 2

1 3

1 4

1 5

1 6

⎤

⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎦

and

Ŵ =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎣

0.0177w1 0 0 0 0 0 0

0 0.0607w2 0 0 0 0 0

0 0 0.1651w3 0 0 0 0

0 0 0 0.2500w4 0 0 0

0 0 0 0 0.1651w5 0 0

0 0 0 0 0 0.0607w6 0

0 0 0 0 0 0 0.0177w7

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎦

,

(5.35)

where the wj ’s are weights for each of the practice groups, such that
∑

j wj = 1.
If these weights are all equal to w, the variance–covariance matrix of parameter
estimators is

Cov(β̂) = (X′ŴX)−1 = 1

w

[
9.2906 −2.6446

−2.6446 0.8815

]
, (5.36)

and the D-optimality criterion is Det[Cov(β̂)] = 1.1959/w2. Note that an equal
number of students is assigned to each of the practice groups and that all weights
are equal to w = 1/7.

To see how much efficiency can be gained by using the D-optimal design
for this study with D-optimal design points d∗

1 = 1.8425 and d∗
2 = 4.1577 and

corresponding weights w∗ = w1 = w2 = 0.5, we must set up the correspond-
ing design matrix with corresponding diagonal matrix with estimated response
variances:

X =
[

1 1.8425
1 4.1577

]
, Ŵ =

[
0.1451w∗ 0

0 0.1451w∗

]
. (5.37)

The variance–covariance matrix of the parameters estimators now becomes

Cov(β̂∗) = (X′ŴX)−1 = 1

w∗

[
26.5920 −7.7153
−7.7153 2.5718

]
(5.38)

with determinant Det[Cov(β̂∗)] = 8.8635/w∗2.
We can now evaluate the efficiency of the design that evenly divides students

into seven practice groups with 0, 1, 2, 3, 4, 5 and 6 hours of practice. We do
so by computing its efficiency relative to the D-optimal design with an equal
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number of students with d∗
1 = 1.8425 and d∗

2 = 4.1577 hours of practice. This
RE is

RED =
{

Det[Cov(β̂∗)]
Det[Cov(β̂)]

}1/2

=
{

8.8635 × 4

1.1959 × 49

}1/2

= 0.7778. (5.39)

This means that compared to the D-optimal design, the original design with
seven distinct practice groups would require (RE−1

D − 1)100% = 28% more stu-
dents to have the same efficiency as the D-optimal design has.

5.6.2 Problem solving study

In the problem solving study, students could be assigned to any one of the
N = 23 = 8 conditions. Table 5.4 shows the design for this study, which has
eight design points dj with corresponding weights nj/N, j = 1, . . . , 8. The cor-
responding design matrix X now has dimension 8 × 4 and is shown below.
Each of the independent variables, instruction type, motivation level and practical
exercise level is coded as 1 and −1, as discussed in Section 5.3.2.

The first column of X consists of 1’s only for the intercept and the second,
third and fourth columns correspond to levels of the three variables, respectively:

X =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

1 1 1 1
1 −1 1 1
1 1 −1 1
1 −1 −1 1
1 1 1 −1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 −1

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

. (5.40)

Table 5.7 shows the matrices Ŵ for the D-optimal design, the completely
balanced and the partially balanced design. For completeness, the weights for
the three designs are also provided, along with their corresponding determinants
Det[Cov(β̂)]. The table also includes the D efficiencies of the other designs rela-
tive to the D-optimal design (REDs). As expected, the D-optimal design obviously
has the smallest determinant criterion value. It is interesting to note that the REDs
of the completely balanced and the partially balanced designs are very high. The
completely balanced design with N = 23 = 8 cells is D optimal if the logis-
tic model contains p = 8 parameters. Table 5.7 also shows that the completely
balanced design is also an efficient alternative for a model with only p = 4
parameters. Moreover, an even more efficient design is the partially balanced
design, where the cell corresponding to the smallest response variance has no
observations and all the other cells have equal numbers of observations.
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Table 5.7 The matrices Ŵ and weights w for three designs of the problem
solving study.

D-optimal design

Ŵ = Diag [0.0000 0.0186 0.0186 0.0358 0.0186 0.0358 0.0358 0.042]
w∗ = [0.0000 0.1216 0.1216 0.1533 0.1216 0.1533 0.1533 0.1751]′

Det[Cov(β̂)] = 797.6874, RED = 1

Completely balanced design:

Ŵ = Diag [0.0097 0.0191 0.0191 0.0291 0.0191 0.0291 0.0291 0.0301]
wcb = [0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250]′

Det[Cov(β̂)] = 952.8497, RED = 0.9565

Partially balanced design:

Ŵ = Diag [0.0000 0.0219 0.0219 0.0332 0.0219 0.0332 0.0332 0.0345]
wpb = [0.0000 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429]′

Det[Cov(β̂)] = 810.5884, RED = 0.9960

5.7 Summary

In this chapter, we have described design problems for logistic regression mod-
els. For simplicity, we focused on D-optimal designs estimating all or specific
parameters in the model; other types of optimal designs for the logistic model
are discussed in Chapter 10. Optimal designs for logistic models depend on
the specific values of the regression parameters. This means that the regression
parameters have to be known in advance, before an optimal design can be imple-
mented. For a logistic model with a single dichotomous independent variable, the
weights of the optimal design are a function of the proportions in each category.
In particular, the locally D-optimal design has equal weights (i.e. equal number
of observations) assigned to the conditions of the independent variable only if
the proportions are equal. When the logistic model has several qualitative inde-
pendent variables, the D-optimal design is usually unbalanced, but completely
balanced and partially balanced designs tend to have high efficiency. Optimal
designs for a logistic model with a single quantitative independent variable can
be found in terms of the response probabilities. We also discussed optimal designs
for two independent quantitative variables using an example and we explained
the difference between bounded and unbounded design regions.
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Designs for multilevel models

6.1 Design problem for multilevel models

Multilevel studies have a design where the factors (effects) are hierarchically
related and are assumed to be either fixed or random. A classical example of such
a hierarchically structured design is the split-plot design. In contrast to studies
that assume the outcomes of different subjects to be independent, a multilevel
study assumes that the outcomes of subjects depend on the particular groups
that contain these subjects. In cases where subjects are nested within groups or
clusters, it is plausible to assume that subjects within a group are more alike.
For example, in a study that is set up to evaluate the effect of an instruction
programme to improve the arithmetic performances of students within schools,
the outcomes of the students within a school may be influenced by the school
environment and the policy of the school towards arithmetic education. Moreover,
their relation with one another may lead to correlated outcomes. In a study on
the development of pressure ulcers of patients within nursing homes, the risk of
developing pressure ulcers was found to depend on the differences in the rules
and regulations that these nursing homes maintain to prevent the development
of pressure ulcers. In the first example, the students are said to be nested within
schools and in the pressure ulcer example, the patients are nested within nursing
homes. In this chapter, we treat the words cluster and group as synonyms and
the word subjects as a synonym for units within the groups. For simplicity, we
also restrict our discussion to two levels of the multilevel structure.

The statistical analysis of nested or hierarchically structured data is known
as multilevel regression analysis . See Goldstein (1995), Snijders and Bosker
(1999), Hox (2002) and Raudenbush and Bryk (2002), among others, for details.

An Introduction to Optimal Designs for Social and Biomedical Research      M. P. F. Berger & W. K. Wong
© 2009, John Wiley & Sons, Ltd. ISBN: 978-0-470-69450-3
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Multilevel regression analysis assumes that both the groups in the study and
the subjects within groups are random samples from a certain population. The
more dependent the outcomes within a group or cluster are, the more the results
of a multilevel analysis will differ from the traditional regression analysis that
assumes independent outcomes.

Multilevel studies usually require large samples of subjects and groups and
are therefore often expensive. The sampling of the data has to be done at different
levels, that is, at the group level and at the subject level. This means that the
design of a multilevel study is characterized by the levels of the independent
variables and by the sampling of units at the different levels of the study. For
the arithmetic instruction study, not only the students within schools but also
the schools themselves are sampled. Likewise, in the pressure ulcer study, the
nursing homes as well as the patients within the nursing homes are sampled. This
makes the design of multilevel studies more complicated, especially if the costs
of sampling subjects and the costs of sampling groups or clusters are taken into
account.

6.1.1 The design

Randomization of a treatment can, in principle, be done at any level of the
multilevel design. If a design consists of patients within nursing homes, then a
treatment can be assigned in two different ways.

First, the treatment can be randomly assigned to the patients within each nurs-
ing home. Assuming that we want a balanced design, about half of the patients in
each home will receive the treatment and the rest will not receive the treatment.
Such a randomization at the patient level is referred to as subject randomization
and the design is often called a multi-center trial . The second way is that the treat-
ment is randomly assigned to the nursing homes as a whole, where all patients
within a home receive the same treatment. In the latter case, all patients in about
half of the nursing homes are treated, whereas all patients in the rest of the nurs-
ing homes are not treated. Such a design is usually called a cluster randomized
trial , because the treatment is randomized at the cluster or group level.

A schematic representation of these two designs is given in Figure 6.1, where
we assume that we have four groups of nursing homes. The shaded areas indicate
the data obtained under the treatment condition and the blank areas indicate
the data obtained under the control condition. The two designs in Figure 6.1
distinguish the treatment and the control groups by having two distinct design
points d1(k) and d2(k) for k = 1, . . . , 4 groups. The two values of d1(k) and
d2(k) are coded as xik = 1 for treatment and xik = −1 for control. Here, xik is
the value of the independent variable in the model. We assume that the total
sample of subjects for the study is N and we plan to sample nk subjects from
the cluster k, k = 1, 2, . . . , K . This means N = ∑K

k nk. The two types of trials
of interest in this chapter can now be described succinctly as follows.
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Figure 6.1 Schematic representation of subject and cluster level randomization of
treatment.

The exact design for the multi-center trial in Figure 6.1 can be denoted by

ξN =
⎧
⎨

⎩

d1(1) d2(1) d1(2) d2(2) d1(3) d2(3) d1(4) d2(4)

n1

2N

n1

2N

n2

2N

n2

2N

n3

2N

n3

2N

n4

2N

n4

2N

⎫
⎬

⎭
. (6.1)

The two design points d1(k) and d2(k) in cluster k have nk/2 subjects in each
group and the corresponding weight is nk/2N .

On the other hand, the exact design for the cluster randomized trial can be
denoted by

ξN =
⎧
⎨

⎩

d1(1) d2(1) d1(2) d2(2) d1(3) d2(3) d1(4) d2(4)

n1

N
0 0

n2

N

n3

N
0 0

n4

N

⎫
⎬

⎭
. (6.2)

Cluster randomization of the treatment is visualized by the fact that only one
design point in cluster k has weight nk/N , while the other design point has zero
weight. That is, all nk subjects in cluster k are connected to only one of the two
design points d1(k) or d2(k).

In the next section, we describe the potential advantages and disadvantages
of multi-center and cluster randomized designs.
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6.1.2 Validity considerations

A multi-center trial has the advantage that the interaction between clusters and
treatment or control effect can be estimated, because subjects within every cluster
are assigned to both a treatment and a control condition. In a cluster random-
ized trial , a whole cluster receives either a treatment or no treatment, and no
interaction between cluster and treatment effect can thus be estimated. Another
advantage of the multi-center trial , and, in general, of randomization at the sub-
ject level, is that this design leads to more efficient estimates of the treatment
effect than when the treatment is randomized at the group level. This will be
discussed in a later section.

In some cases, however, randomization cannot be done at the subject level.
One reason may be ethical, when it is considered ethically unacceptable that
some patients in a group are treated and others are not. Another reason for not
randomizing the treatment at the subject level is treatment contamination . This
is also referred to as control group contamination . If we give a new instruction
method to half of the pupils in a class, then these children may inform each other
about the treatment and thus contaminate the corresponding effect. In those cases
where the subjects within a group are able to exchange information about the
treatment, contamination may be large and influence the size of the treatment
effect estimate. A procedure to estimate contamination is given by Moerbeek
(2005b), who also discusses cost considerations.

Sometimes, blinding procedures may prevent contamination of a treatment
effect, but in those cases where this is not possible and serious contamination of
the treatment is expected, group or cluster randomization may be preferred. Group
randomization may also be preferred in those cases where it is logistically more
efficient to give a treatment to whole groups. One can imagine that it may be less
expensive to randomly select half of the schools/teachers to implement a new
instruction method, than to have all schools/teachers implement the new method.
Finally, it may sometimes not be very interesting for schools and nursing homes
to participate in a study where they are assigned as a whole to a control condition
and they do not expect to profit from a new treatment. In that case, they may
decline participation in the study. It should be noted, however, that contamination
of a treatment effect may also play a role in a cluster randomized design. This
especially occurs when the groups (wards, schools) are located physically close to
each other and the subjects within these groups are able to exchange information
about the research project. Thus, cluster randomized designs may also suffer from
potential contamination effects.

When choosing a design with cluster or subject randomization, a researcher
has to weigh the advantages against potential disadvantages. If a cluster random-
ized design is chosen, the researcher must be aware of efficiency loss that the
cluster randomized design will have. The researcher may then possibly increase
the sample size to reach the desired power for finding real differences. In addi-
tion, potential threats towards internal validity, such as selection bias, should also
be taken into account.
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6.1.2.1 Potential internal validity threats for cluster randomized trials

Both types of designs are based on identifiable groups, where members share
social, physical or geographical characteristics. This implies that both designs
may have potential sources of bias that threaten the validity of the study. This is
especially true for cluster randomized trials. For example, when the number of
groups is small, randomly assigning a treatment to the groups often cannot ensure
that potential sources of bias are evenly distributed across the groups. Possible
sources of threats towards internal validity have already been briefly summarized
in Chapter 1. Among them are selection, (differential) maturation, (differential)
history and (differential) regression towards the mean and contamination.

Selection bias may arise in cluster randomized trials when a limited number
of clusters is randomly assigned to a treatment. A difference in clusters may
then be misinterpreted as a difference due to treatment. Intact groups or clusters
may have a different historical background that may cause bias in the results.
The same accounts for a differential regression towards the mean when one
(treated) group is more extreme in response than the other (non-treated) group.
A detailed description of these threats for cluster randomization is given by
Murray (1998, Chapter 2). Cook and Campbell (1979) and Kish (1987) provide
a general discussion on validity threats with possible solutions, and a recent
review of design issues for cluster randomized trials is given by Murray, Varnell
and Blitstein (2004).

6.2 The multilevel regression model

Suppose that a treatment is evaluated by means of a randomized trial with K

clusters or groups (k = 1, . . . , K) and let nk people be nested within cluster or
group k. The total sample size is then N = ∑K

k nk . The treatment can be either
randomly assigned to the clusters or to the subjects within a cluster. Thus, as
discussed before, two designs can be distinguished, namely, a cluster randomized
trial and a subject randomized design or a multi-center trial .

6.2.1 Cluster randomization of treatment

In a cluster randomized trial, whole clusters or groups are randomly assigned to
a treatment and a control condition. For example, a cluster randomized trial – to
evaluate the effect of an instruction program to improve the arithmetic perfor-
mances of students in schools – would randomly assign whole schools to the
instruction program so that all the students in a treatment school would receive
the same instruction and all students in a control school would not receive the
instruction. A simple regression model can be applied to model the relation
between the response yik of subject i in cluster k and the treatment variable xk:

yik = a0k + β1xk + εik = (β0 + b0k) + β1xk + εik, (6.3)
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where a0k = (β0 + b0k) represents the random variation of the K clusters (k =
1, . . . ,K). The treatment variable is coded as xk = +1 if cluster k receives the
treatment and it is coded as xk = −1 if it did not receive the treatment. The
parameter β0 is the overall intercept and the parameter β1 is equal to one half
of the treatment effect. Again, we assumed a balanced design with K/2 of the
K clusters being given the treatment and the rest of the K/2 clusters are control
clusters.

The random cluster effect parameter b0k and the random errors εik are
assumed to be independently distributed with variances σ 2

0 and σ 2
ε , respectively.

This means that the variance of the responses yik can be expressed as the sum
of the two variances σ 2

0 and σ 2
ε :

var(yik) = σ 2
0 + σ 2

ε . (6.4)

A more detailed explanation of the multilevel model is given in Snijders and
Bosker (1999) and Hox (2002), among others.

6.2.1.1 Estimation of parameters in a cluster randomized design

The multilevel model in Equation (6.3) has a random effect b0k and random
errors εik with variance component parameters σ 2

0 and σ 2
ε , respectively. In total,

four parameters need to be estimated, namely, two fixed parameters β0 and β1

and two variance components σ 2
0 and σ 2

ε .
The maximum likelihood (ML) method is appropriate to use for this model.

If the variance components are known, the ML estimators of β0 and β1 are
the generalized least squares estimators and the estimators for the fixed param-
eters become β̂0 = (ȳ1 + ȳ2)/2 and β̂1 = (ȳ1 − ȳ2)/2, with ȳ1 and ȳ2 being the
weighted means of the scores under the treatment and the control condition,
respectively. If, on the other hand, the variance components are unknown, then
their estimates can be obtained by restricted maximum likelihood (REML). See
Searle, Casella and McCulloch (1992) and van Breukelen, Candel and Berger
(2007, 2008), among others, for more details. In the following we restrict our-
selves to the case that the variance components are known.

When K/2 of the clusters receive the treatment and the rest of the K/2 clusters
do not receive the treatment, that is, K/2 control groups, the variance–covariance
matrix of the fixed parameter estimators, with var(β̂0) and var(β̂1) on the main
diagonal, is

Cov(β̂) = 1

4

[
[var(ȳ1) + var(ȳ2)] 0

0 [var(ȳ1) + var(ȳ2)]

]
, (6.5)

with var(ȳ1)=
[
∑K/2

k=1
nk

nkσ 2
0 +σ 2

ε

]−1

and var(ȳ2)=
[
∑K

k=K/2+1
nk

nkσ 2
0 +σ 2

ε

]−1

, where

for the treatment condition the index k runs from k = 1, . . . , K/2 and for the
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control condition the index runs from k = K/2 + 1, . . . ,K . When the sample
size in all clusters is equal, that is nk = n, for all k, the expression for the vari-
ances of β̂0 and β̂1 in a cluster randomized design becomes var(β̂0) = var(β̂1) =
nσ 2

0 +σ 2
ε

Kn
.

As indicated in Section 6.1, the outcomes within the cluster of a multilevel
data structure are dependent and a well-known measure for this dependency is
the intra-class correlation. It is also referred to as intra-cluster correlation:

ρ = σ 2
0

σ 2
0 + σ 2

ε

. (6.6)

This intra-class correlation represents the proportion of total variance that is
accounted for by the groups or clusters. The intra-class correlation forms the basis
for the so-called design effect = 1 + (n − 1)ρ, where n is the common sample
size of the clusters.

The variance of the treatment effect can now be rewritten in terms of the
design effect as follows:

var(β̂1) = nσ 2
0 + σ 2

ε

Kn
= σ 2

0 + σ 2
ε

Kn
[1 + (n − 1)ρ]. (6.7)

It can be seen that, as the sample size n increases, the variance of the treatment
effect var(β̂1) will decrease, while as the intra-class correlation ρ increases, the
var(β̂1) will increase. This means that the more dependent the observations within
a cluster or group are, the larger var(β̂1) will become and the less efficient the
treatment parameter can be estimated. A similar line of reasoning is given in the
next section for a multi-center trial.

6.2.2 Subject randomization of treatment

When the treatment is randomly assigned to the subjects within a cluster, the
model relates the response variable yik of subject i in cluster k to the predictor
variable xik by means of the simple regression equation

yik = a0k + a1kxik + εij , (6.8)

where εik is normally distributed with mean zero and variance σ 2
ε . The treatment

variable has two xik values, one for the treatment and the other for the control.
We have assumed that these values are +1 and −1, respectively. The regression
parameter a0k is the mean of the responses yik within cluster k and with this
particular coding of xik , the treatment effect parameter a1k is half of the difference
in outcome variable within cluster k. The regression parameters a0k and a1k vary
across the clusters so that each cluster has its own (distinct) regression model.
If β0 and β1 are the overall mean and overall (half of the) treatment effect,
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respectively, then the regression parameters a0k and a1k can be written as

a0k = β0 + b0k

and (6.9)

a1k = β1 + b1k,

where b0k and b1k are random effects that are assumed to be independently
and normally distributed with mean zero and with a 2 × 2 variance–covariance
matrix D:

D =
[

σ 2
0 σ01

σ01 σ 2
1

]
. (6.10)

The parameters σ 2
0 , σ 2

1 and σ01 are the variances of b0k and b1k with their
covariance, respectively. If the random effects b0k and b1k are assumed to be
independent of the random errors εik in Model (6.8), the variance of the responses
yik becomes

var(yik) = σ 2
0 + σ 2

1 x2
ik + 2σ01xik + σ 2

ε . (6.11)

This equation shows that the variance of the responses depends on the vari-
ances and the covariance of the random effects b0k and b1k, and on the variance
of the random errors. The covariance σ01 causes the variance of the responses
var(yik) between treatment and control to be heterogeneous.

6.2.2.1 Estimation of parameters and efficiency

Apart from the individual random effects b0k and b1k and the random errors εik ,
the model in Equation (6.8) is based on a total of six parameters, namely, the
two fixed regression parameters β0 and β1 and four (co)variance parameters, that
is, σ 2

0 and σ 2
1 with covariance σ01 and σ 2

ε , respectively. These can be estimated
by ML and by REML methods. Asymptotically, the ML estimators of β0 and
β1 lead to generalized least squares (GLS) estimators. Technical details for this
subsection are given in Searle, Casella and McCulloch (1992) and van Breukelen,
Candel and Berger (2007, 2008), among others.

For the special case that the X-variable is coded as xik = +1 for treatment
and xik = −1 for control and σ01 = 0, the GLS estimators β̂ = [β̂0, β̂1]′ become

β̂0 =
K∑

k

[
nk(ȳ1k + ȳ2k)/2

nkσ
2
0 + σ 2

ε

]/
var(β̂0)

and (6.12)

β̂1 =
K∑

k

[
nk(ȳ1k − ȳ2k)/2

nkσ
2
1 + σ 2

ε

] /
var(β̂1),
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where ȳ1k and ȳ2k are the estimated response means for the subjects that are
treated and not treated in cluster k. The sample size of cluster k is nk. The 2 × 2
variance–covariance matrix of β̂ is

Cov(β̂) =
[

var(β̂0) cov(β̂0, β̂1)

cov(β̂0, β̂1) var(β̂1)

]

, (6.13)

and each element contains information on the uncertainty of these parameters.
If the covariance of the random effects σ01 = 0, the covariance between β̂0 and
β̂1 will also be zero, that is, cov(β̂0, β̂1) = 0. The following expressions for the
variances of both estimators have been shown by van Breukelen, Candel and
Berger (2007) to hold

var(β̂0) =
[

K∑

k=1

nk

nkσ
2
0 + σ 2

ε

]−1

and (6.14)

var(β̂1) =
[

K∑

k=1

nk

nkσ
2
1 + σ 2

ε

]−1

.

If the sample sizes are equal over all clusters (i.e. nk = n, for all k), then
these expressions can be simplified to

var(β̂0) = nσ 2
0 + σ 2

ε

Kn
and (6.15)

var(β̂1) = nσ 2
1 + σ 2

ε

Kn
,

where n is again the common sample size for the clusters and K is the number
of clusters in the design.

6.3 Cluster versus subject randomization

Four combinations of cluster and subject randomization versus a fixed and
random treatment effect (i.e. a fixed and random slope) can be distinguished. In
Table 6.1, the variances of the parameter estimators β̂ = (β̂0, β̂1)

′ for each of
these four conditions are summarized, assuming that the K clusters have equal
sample sizes n.

Table 6.1 shows that subject randomization of the treatment leads to a smaller
variance var(β̂1) than cluster level randomization. For a multilevel model with
a random intercept and a fixed slope, the relative efficiency for cluster versus
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Table 6.1 Variances of the estimators β̂0 and β̂1 for two levels of
randomization.

Random intercept Random intercept
Fixed slope Random slope

Subject randomization
var(β̂0) = nσ 2

0 + σ 2
ε

Kn
var(β̂0) = nσ 2

0 + σ 2
ε

Kn

var(β̂1) = σ 2
ε

Kn
var(β̂1) = nσ 2

1 + σ 2
ε

Kn

Cluster randomization
var(β̂0) = nσ 2

0 + σ 2
ε

Kn
var(β̂0) = nσ 2

0 + σ 2
ε

Kn

var(β̂1) = nσ 2
0 + σ 2

ε

Kn
var(β̂1) = nσ 2 + σ 2

ε

Kn
Note. For cluster randomization and random slope, only the sum of the variances σ 2 = σ 2

0 + σ 2
1 can

be estimated because all subjects within a cluster are in the same treatment condition. It is assumed
that the covariance σ01 = 0.

subject randomization is

REβ̂1
= σ 2

ε

nσ 2
0 + σ 2

ε

= 1 − ρ

1 + (n − 1)ρ
, (6.16)

where ρ is the intra-class correlation. The relative efficiency is REβ̂1
≤ 1, and

compares the efficiency of β̂1 in a cluster randomized trial with that of a
multi-center trial, for the same total number of observations Kn . Note that the
REβ̂1

is independent of the number of clusters K .
In Figure 6.2, the relative efficiencies REβ̂1

are plotted for six different values
of the intra-class correlation, namely, ρ = 0.01, 0.03, 0.05, 0.10, 0.15 and 0.20,
and for sample sizes 0 < n ≤ 45. These plots show that the efficiency drops very
fast as the intra-class correlation increases and as the sample sizes increase.

The inverse of the REβ̂1
indicates how many times the cluster randomized

trial has to be replicated to become as efficient as the multi-center trial with
randomization at the subject level. Figure 6.2 shows that if we are prepared to
accept a maximum efficiency loss of (1 − REβ̂1

) = 0.20 (horizontal dotted line
in the figure), and we assume that ρ = 0.01, the cluster randomized trial with
n × K = 25K observations will require about

( 1
0.8 − 1

)
% = 25% more clusters

each with n = 25 subjects to become as efficient as a multi-center trial with 25K

observations.
Figure 6.2 also shows that for a given REβ̂1

, the sample size n decreases
as the intra-class correlation ρ increases. This means that if the responses within
the clusters become more correlated, it will not be very efficient to increase
the number of subjects in the clusters. Instead one should try to increase the
efficiency by increasing the number of clusters.
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Figure 6.2 Relative efficiency for randomization at the cluster level versus subject
level.

In conclusion, randomization of a treatment is always more efficient when it
is done at the lowest level of a multilevel design. The drop of efficiency when
randomization of the treatment is done at the cluster level is substantial, even for
very small intra-class correlations and moderate sample sizes.

6.4 Cost function

In the previous section, we assumed that no special costs were connected to the
sampling of clusters in a multilevel data structure. In practice, however, the costs
of sampling clusters can be quite different from the costs of sampling subjects
within clusters. In the following, simple cost function for a two-level design, the
costs of recruitment of clusters (schools, nursing homes) are distinguished from
the costs of sampling students or patients:

C ≥ Knc1 + Kc2,

where K ≥ 2, c1 > 0 and c2 > 0. (6.17)

The parameters c1 and c2 are the costs of sampling one subject and one cluster
(nursing home, school), respectively. To maintain the multilevel data structure,
it is assumed that the number of clusters will be K ≥ 2. The total budget C is
greater than or equal to the sum of the costs of sampling n subjects in K clusters,
that is Knc1, and the costs connected to sampling K clusters (homes, schools),
namely, Kc2. Because the total budget may include other costs, such as the costs
of maintaining the research staff and the costs of analysing the final data set, we
used the greater than or equal sign for the total budget C. The costs c1 and c2 may
vary, and the optimal sample sizes may also vary a great deal for different costs.
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The optimal design problem is now to find the minimum variance of the
treatment effect estimator β̂1, given a maximum budget C. For equal cluster
sizes, this problem can be formulated as

Minimize var(β̂1), subject to

C ≥ Knc1 + Kc2, with K ≥ 2, c1 > 0 and c2 > 0. (6.18)

The solution to this problem is presented in Table 6.2, where the minimum
variance var(β̂1)

∗ is given together with the optimal sample sizes n∗ and the
optimal number of clusters K∗.

Table 6.2 Optimal var(β̂1)
∗, sample sizes n∗ and clusters K∗ as function of

the costs c1 and c2.

Random intercept Random intercept
Fixed slope Random slope

var(β̂1)
∗ = c1σ 2

ε

C−2c2
var(β̂1)

∗ =

(√
c2σ 2

1 +
√

c1σ 2
ε

)

C

Subject
randomi-
zation

n∗ = C − 2c2

2c1
n∗ =

√
c2σ

2
ε

c1σ
2
1

K∗ = 2 K∗ = C

c2 +
√

c1c2σ
2
ε

σ 2
1

var(β̂1)
∗ =

(√
c2σ

2
0 +

√
c1σ 2

ε

)2

C
var(β̂1)

∗ =

(√
c2σ 2 +

√
c1σ 2

ε

)2

C
Cluster

randomi-
zation

n∗ =
√

c2σ
2
ε

c1σ
2
0

n∗ =
√

c2σ
2
ε

c1σ 2

K∗ = C

c2 +
√

c1c2σ
2
ε

σ 2
0

K∗ = C

c2 +
√

c1c2σ
2
ε

σ 2

Notes. For cluster randomization and random slope, only the sum of the variances σ 2 = σ 2
0 + σ 2

1
can be estimated because all subjects within a cluster are in the same treatment condition.
In practice the non-integer optimal sample sizes are rounded off to the nearest integers.
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The optimal values for var(β̂1)
∗ can be made smaller by increasing the total

budget C. An increase of C for cluster randomization will lead to an increase of
the optimal number of clusters and an increase of C for subject randomization
will lead to an increase of the optimal number of subjects within a cluster for
the model with a random intercept and a fixed slope.

A number of papers have been published on the design of multilevel studies.
Snijders and Bosker (1993) and Cohen (1998) investigated the relationships of
optimal sample sizes with cost constraints. Moerbeek, van Breukelen and Berger
(2000) gave sample size formulae of multilevel designs with three levels of
nesting and Mok (1995) compared different large sample designs via simulation.
Donner, Birkett and Buck (1981) and Hsieh (1988) gave formulas of sample sizes
for power calculations. Recent work include Liu (2003) who considered different
costs for treatment and control and Moerbeek et al. (2003) and Moerbeek, van
Breukelen and Berger (2008) who gave an accessible discussion on this topic,
including a review of different approaches to the design problem in multilevel
modelling.

In the next section, we illustrate how the optimal sample sizes and the optimal
number of clusters are determined in practice using an example. We also evaluate
the loss of efficiency when non-optimal values of n’s and K’s are used instead
of the optimal ones.

6.5 Example: Nursing home study

Although very little information is available about the effect of massage on
the prevention of pressure ulcers, massage is still one of the most often used
preventive methods in nursing homes (Duimel-Peeters et al., 2004). To evaluate
the preventive effect of massage, two designs are possible, namely, a cluster
randomized trial, similar to the one conducted by Duimel-Peeters et al. (2007)
with a random assignment of the treatment (massage) to nursing homes and a
multi-center trial, where the treatment is randomly assigned to the individual
patients within a nursing home.

In Table 6.3, the optimal number of nursing homes K∗ and optimal number
of patients within the nursing homes n∗, together with the minimum variance of
the treatment effect var(β̂1)

∗, are presented for a number of different values of
the costs c1 and c2, respectively. It is assumed that C ≥ Knc1 + Kc2 and that the
maximum budget is C = ¤20 000 The costs c1 vary from ¤100 to ¤500 and the
costs c2 vary from ¤100 to ¤400.

The optimal values are computed for both a cluster randomized trial and
a multi-center trial. Throughout the following sections, we will assume that the
multilevel model includes a random intercept and a fixed slope, that is, the model
is yik = β0 + b0k + β1xik + εik. In practice, the optimal values for K∗ and n∗ are
rounded off to the nearest integers. To maintain a multilevel structure for subject
randomization, the minimum value for K in Table 6.3 is set at K = 2. It should
be noted that the optimal values for n∗ under cluster randomization are sometimes
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n∗ < 2. In this case, no estimate of the variance σ 2
ε can be obtained from the

data, but will have to be supplied from other sources of information. Because
each nursing home is expected to have its own regime with rules and regulations
to prevent patients from developing pressure ulcers, it is not unrealistic to assume
that the intra-home correlation in this study is relatively high, that is, ρ = 0.20
and that σ 2

ε = 20 and σ 2
0 = 5, respectively. In the following, it is helpful to note

that (1 − ρ)/ρ = σ 2
ε /σ 2

0 . This means that if we assume a value of σ 2
0 = 5 for

the variance of the random intercept, the error variance becomes σ 2
ε = 20.

6.5.1 Cluster randomization

For cluster randomization, it can be seen from Table 6.3 that the optimal number
of homes K∗ not only tends to become very large, but also decreases as the
costs c1 and c2 increase. This is of course to be expected. From the formula in
Table 6.2, it is seen that both c1 and c2 are in the denominator of the optimal
number of clusters. If sampling nursing homes becomes more expensive, then
this will lower the optimal number of nursing homes and if sampling patients
becomes more expensive, then this will also lead to a reduction of the optimal
number of nursing homes. It can also be seen that the optimal number of patients
tends to become very small. However, to estimate the error variance σ 2

ε , the
sample size n should be at least 2.

For example, consider the case that the cost of sampling a patient is c1 = ¤100
and that the cost of sampling a nursing home is c2 = ¤400. The optimal number
of nursing homes for this case will be K∗ = 25, with an optimal number of
patients per home being equal to n∗ = 4. In total, 100 patients will then be
sampled with a total cost equal to C = K∗n∗c1 + K∗c2 = ¤20 000. The optimal
(minimal) variance is then var(β̂1)

∗ = 0.4.
Although these optimal numbers of nursing homes and patients within a home

lead to a minimal variance var(β̂1)
∗, this optimal design may not have sufficient

power for finding a real treatment effect. In that case, the only thing that can be
done is to increase the total budget C. The formulas in Table 6.2 show that a
larger total budget C will directly lead to more clusters K∗ but will not directly
increase the n∗. But an increase of the number of nursing homes may become
a problem in practice. Even the smallest optimal number of clusters K∗ = 15
for the case that c1 = 500 and c2 = 400 (Table 6.3) may be too large in many
practical cases. Reduction of the number of nursing homes together with an
increase of the number of patients within nursing homes, however, will not be
an efficient alternative in all cases.

Given the specific costs of sampling patients c1 and nursing homes c2 and
the restriction that the total budget cannot exceed C = 20 000, decreasing the
number of nursing homes with an increase of the number of patients will lead
to loss of efficiency. The relative efficiency of a cluster randomized design with
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alternative choices for K and n is a measure for efficiency loss:

REβ̂1
= var(β̂1)

∗

var(β̂1)
, (6.19)

where var(β̂1)
∗ is the minimum variance of the parameter estimator for the opti-

mal design with K∗ and n∗.
In Figure 6.3, the relative efficiency REβ̂1

is plotted as a function of K ,
for the same values of c1 and c2 as displayed in Table 6.3, namely, c1 = 100,

200, 300, 400, 500 and c2 = 100, 200, 400. The restriction is Knc1 + Kc2 =
20 000. The maximum relative efficiency is REβ̂1

= 1, and is, of course,
connected to the optimal numbers K∗ and n∗ displayed in Table 6.3. In general,
the REβ̂1

increases rapidly with an increase of the number of clusters K .
Figure 6.3 shows that for all the displayed cases, it will not be very efficient to
design a cluster randomized trial with less than K ≤ 10.
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Figure 6.3 Relative efficiency REβ̂1
for cluster randomized trials.
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For c1 = 100 and c2 = 400, the figure shows that the optimal is K∗ = 25,
and the optimal number of patients can then be computed from n∗ = (20 000 −
25c2)/25c1 = 4, as is shown in Table 6.3. If it is not feasible to sample 25 nursing
homes for our study, then given the same cost parameters, it may be possible
to sample fewer nursing homes and more patients without too much efficiency
loss. Figure 6.3 gives us an indication of how much efficiency is lost if only few
nursing homes are sampled.

The third plot (c2 = 400) in Figure 6.3 shows that for approximately K = 14,
the relative efficiency will become

REβ̂1
= var(β̂1)

∗

var(β̂1)
= 0.4

0.5
= 0.8, (6.20)

with n ≈ (20 000 − 14c2)/14c1 = 10. The variance var(β̂1) can be obtained
from var(β̂1) = (nσ 2

0 + σ 2
ε )/Kn = 0.5. Therefore, instead of sampling 25

nursing homes with four patients in each, one can sample 14 nursing homes
with 10 patients in each, with a moderate efficiency loss of 20%. Sampling
less than 14 nursing homes and more patients will not be efficient because the
relative efficiency will then drop rapidly.

Figure 6.3 also shows that with these cost parameters, the number of selected
clusters should not become too large. It can be seen that for c1 = 100 and c2 =
400, the number of clusters can become K > 25 at the expense of the sample
size n, but then the relative efficiency will drop a little.

6.5.2 Subject randomization

For randomization at the subject level, see Figure 6.4. Here, the (optimal) number
of clusters tends to be small (minimum K = 2, to maintain the multilevel data
structure) and the optimal cluster sizes tend to become large. The optimal number
of patients n∗ decreases as the costs of sampling patients c1 increase, and does not
decrease very much as the costs c2 increase (Table 6.3). Of course, the total costs
should not exceed C ≥ K∗n∗c1 + K∗c2. In practice, K∗ and n∗ are rounded off.

In Figure 6.4, the relative efficiencies are plotted against the sample size n,
again for c1 = 100, 200, 300, 400, 500 and c2 = 100, 200, 400. It can be seen
that at first the REβ̂1

increases rapidly as the cluster size n increases, but that
eventually the increase levels off.

Given a certain REβ̂1
value, Figure 6.4 shows that as the costs c1 increase,

the cluster size n will decrease, and that as the costs c2 increase, one will need
a larger sample n to maintain the same REβ̂1

level.
Now, consider the same case as before, where the cost parameters are c1 =

100, c2 = 400 and C = 20 000. For these values, the optimal number of nursing
homes and the optimal sample size are K∗ = 2 and n∗ = 96 (Table 6.3). In
practice, it may, however, not be feasible to sample 96 patients from each nursing
home because many patients and caregivers may not submit an informed consent
or that the nursing homes simply do not have enough patients with pressure ulcer
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Figure 6.4 Relative efficiency REβ̂1
for subject randomized trials.

problems. If only n = 20 patients are available per home, then given the cost
parameters, the number of nursing homes will be K = 20 000/(2000 + 400) =
8.333 (rounded off to 8). Figure 6.4 shows that for n = 20 (and K ≈ 8), the
relative efficiency remains relatively high, namely, REβ̂1

> 0.8.
Finally, Table 6.3 shows that the variance var(β̂1)

∗ for cluster randomization
is much larger than for randomization at the patient level, given the same total
cost C = ¤20 000. This means that with the same resources, randomization at
the patient level will always provide a more powerful test of the treatment effect
hypothesis H0 : β1 = 0. Because power computations for such multilevel models
are more complicated than for an ordinary regression model, the next section
will explain power computations for multilevel models in more detail.

6.6 Optimal design and power

The power of a test is the probability that a null hypothesis is correctly rejected.
In a multilevel design, where the total sample consists of K clusters each with



OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH 161

n subjects, the power of a test depends on the total sample size Kn , the treat-
ment effect, the variance of the estimator of the treatment effect var(β̂1) and the
Type I error probability α. Indirectly, via var(β̂1), the power also depends on the
intra-class correlation ρ, representing the dependency of the observations within
the clusters. For multilevel designs, variation of the number of clusters K and the
number of observations n within each cluster makes computation of the power a
little more complicated than in the usual independent sample case. Additionally,
it also becomes more complicated when different costs of obtaining clusters and
observations are taken into account.

Economically, a researcher who is planning to design a multilevel study would
want to select a design that has maximum power for finding real differences, for
a total maximum budget. This can actually be done in two steps:

1. Given a cost function with maximum total costs C, choose the optimal
design with optimal n∗ and K∗ (Table 6.2), which will lead to a minimum
variance var(β̂1)

∗ of the treatment effect estimator. A minimum variance
var(β̂1)

∗ leads to maximum power for finding real effects.

2. If the computed power is not sufficiently high, then (if possible) the total
budget is increased to obtain the desired power.

Suppose that the null hypothesis of no treatment effect H0 : β1 = 0 is tested
against the alternative hypothesis H1 : β1 �= 0. Given the null hypothesis and a
known var(β̂1), the test statistic z = β̂1/

√
var(β̂1) is normally distributed. The

power of this test can be expressed as the sum of two probabilities

Power =
{

�

(

zα/2 − β1√
var(β̂1)

)

+
[

1 − �

(

z1−α/2 − β1√
var(β̂1)

)]}

,

(6.21)

where �(.) is the cumulative standard normal distribution function with zα/2 and
z1−α/2 being the 100α/2 and 100(1 − α/2) standard normal percentile, respec-
tively (note that zα/2 = −z1−α/2). When the variance var(β̂1) is unknown, then
it will have to be estimated and the test statistic will then have a non-central
t-distribution. In that case, the power will be a little lower because the variance
var(β̂1) has to be estimated as well. For large samples, however, the normal
distribution will still provide an accurate approximation.

Because this is a two-sided test, the power is the sum of two areas under
the standard normal distribution function, which are graphically displayed in
Figure 6.5. The two probabilities summed in Equation (6.21) correspond to the
two areas in Figure 6.5.

The left area in Figure 6.5 is extremely small, while the right area is larger
than 0.5. This means that for this case, the first expression in Equation (6.21) can
be ignored and the second expression is sufficient for accurate approximation of
the power. However, if the effect β1 is negative, then the first (left) part of the
equation will be large, whereas the second (right) part will be ignorably small.
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Figure 6.5 Graphical display of standard normal distribution under H0 and H1

with power.

The phenomenon that one of the two parts in Equation (6.21) can be ignored
is especially encountered when the effect β1 is relatively large with a relatively
small variance var(β̂1). Finally, for a one-sided test, the power can be computed
from only one of the tails of the distribution with zα (or z1−α) as percentile.

As can be seen from Figure 6.5, the power of the test increases as the effect
β1 increases, as the type I error probability α increases and as the variance
var(β̂1) decreases. This latter quantity decreases with an increasing sample size.
The power of cluster randomized trials and multi-center trials can be computed
with Equation (6.21) or by using the software program OPTDES (Raudenbush
et al. 2004), which uses a non-central F-distribution because the variance var(β̂1)

has to be estimated.

6.6.1 Power for cluster randomized design

In Table 6.3 of the previous section, the optimal number of clusters and subjects
within clusters were computed for different costs. For the nursing home example,
it was shown that with a maximum budget of C = ¤20 000 and with c1 = ¤100
and c2 = ¤400, the optimal number of clusters would be K∗ = 25 together with
the optimal number of patients within the clusters being equal to n∗ = 4. The
corresponding minimum variance is equal to var(β̂1)

∗ = 0.4. It is assumed that
the following parameters remain the same: σ 2

ε = 20, σ 2
0 = 5 and ρ = 0.2, and that

the computations are done for a multilevel model containing a random intercept
and a fixed slope, that is, yik = β0 + b0k + β1xik + εik . These optimal values
K∗ = 25 and n∗ = 4 for C = 20 000, guarantee that the power of the test of the
hypothesis of no treatment effect will be as large as possible. To see how much
power the test would actually have, the power function is computed.

In Figure 6.6 the power for α = 0.05, K∗ = 25, n∗ = 4, and C = 20 000 is
plotted as a function of the effect β1. Recall that the treatment effect is equal to
half of the difference between weighted average outcomes in the treatment and
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Figure 6.6 Power functions for cluster randomized trials.

control group. For example, if one expects the treatment effect to be 3, that is,
β1 = 1.5, the power will be approximately 0.65. Because this is the maximum
power attainable with a budget of C = 20 000, any small increase of the number
of clusters together with a decrease of patients within nursing homes will lead
to a drop of power. This can be seen in Figure 6.6 that also shows a power
function for K = 33, n = 2, so that C = Knc1 + Kc2 = 20 000. This drop of
power corresponds to the small decrease of the REβ̂1

in Figure 6.3.
For the nursing home example, it may be practically difficult or even impos-

sible to find more than 8–10 nursing homes to participate in a study. The optimal
number of homes K∗ = 25 may really not be feasible. Figure 6.6 also shows a
power function for K = 8, n = 20 and C = 20 000. Although these values for
the number of homes and the number of patients within a cluster seem more
realistic in practice, extremely low power indicates that such a design is not
recommendable.

In case that the power of 0.65 found for α = 0.05, K∗ = 25, n∗ = 4, and C =
20 000 and β1 = 1.5, is considered to be too small, the only option a researcher
has is to increase the total budget and to sample more homes. As indicated in
the formulas in Table 6.2, it would not increase power if the sample size n were
increased in a cluster randomized design. If the maximum budget is increased
by 50% (C = 30 000), the optimal design will have K∗ = 37 homes and n∗ = 4
patients within a home. The corresponding power function is also displayed in
Figure 6.6. This plot indicates that for an effective size β1 = 1.5, the power
would become acceptably high at 0.80. But again such a large number of homes
may not be feasible in practice. Alternatively, recruitment strategies in terms of
costs for choosing between designs with a few large clusters and designs with
many small clusters have been discussed by Flynn, Whitley and Peters (2002).

The above example illustrates a major problem with cluster randomized
designs. To increase the power of a treatment effect, a larger number of clus-
ters must be sampled. But in many practical cases, the number of clusters is
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limited and it may not be possible to increase the number of clusters in the
design. Another potential problem with cluster randomized trials, not found in
multi-center trials, is that they are not able to sample enough subjects from a clus-
ter to guarantee sufficiently high power. This is explained in the following section.

6.6.2 Power for multi-center design

A much more powerful design is the multi-center trial, where the treatment
is randomly assigned to subjects within a cluster. As has been shown in the
previous section, the optimal number of clusters and subjects within a cluster
for a multi-center trial with c1 = 100, c2 = 400 and C = 20 000 are K∗ = 2
and n∗ = 96, respectively. The approximate power for these optimal values and
α = 0.05 is plotted in Figure 6.7 as a function of the treatment effect β1. It can be
seen that even for a smaller effect, for example, β1 = 1, the power is almost 0.9.
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Figure 6.7 Power functions for multi-center trials.

If the optimal number of n∗ = 96 patients within the homes is considered to
be too large, and instead a reduced number of n = 20 is chosen, with an increased
number of nursing homes equal to K = 8, then the power will drop moderately.
For an effect of β1 = 1, the power will be about 0.8.

For comparison reasons, the power is also plotted in Figure 6.7 for the
optimal number of clusters and subjects in case the treatment was randomly
assigned to the clusters, namely, K∗ = 25 and n∗ = 4. For a treatment effect
equal to β1 = 1, the power is now approximately 0.6. This is not high, but still
even higher than the power for the same number of clusters and subjects in a
cluster randomized trial (Figure 6.6), which is a little lower than 0.4. Finally,
increase of the total budget will lead to an increase of the optimal number of
subjects within a cluster. The optimal number of clusters for C = 30 000 remains
equal to K∗ = 2, while the optimal number of subjects increases to n∗ = 146.
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In conclusion, in terms of efficiency and power, a multi-center trial, with a
treatment randomly assigned to subjects within clusters or groups, will always be
more efficient and more powerful in finding real effects than a cluster randomized
trial. The optimal number of clusters in a cluster randomized trial may become
unfeasibly large. But, even if such a large number of clusters could be included in
a study, the random assignment of a treatment to subjects within clusters would
be much more efficient than the random assignment of treatments to clusters as
a whole.

6.6.3 Increase of efficiency and power by including covariates

We can increase the efficiency and power for finding real differences between
two groups by including carefully selected covariates. For randomized trials, it
has been shown by Allison et al. (1997) and Porter and Raudenbush (1987),
among others, that it is often worthwhile to include a covariate to increase power
when the correlation between a covariate and the outcome is high and when the
costs of measuring the covariate are relatively low.

Inclusion of covariates to increase efficiency and power in a cluster random-
ized trial is more complicated, because their inclusion may change the variances
of the errors in the model. Another difficulty is that covariates may vary at the
subject level or at the cluster level and that covariates may differ in their costs
of being measured. Moerbeek (2006) provided formulas to decide whether it is
worthwhile to add covariates to increase efficiency and power in a cluster ran-
domized trial. The conclusion of this study is that when the costs of measuring
the covariate are small and the reduction of the variance components is large, it
will be more efficient in terms of costs to include a covariate instead of increasing
the number of clusters. The covariate should not be included if the correlation
between the outcome and the covariate is not high enough.

We emphasize that covariates should only be included in the design of a
cluster randomized trial after careful consideration of the relation between the
covariate and the outcome. Adding a covariate to increase efficiency is likely to
increase the probability of non-response or drop-out. This is especially true when
the measurement of the covariate is a burden on the subjects. The complication
that arises from the dropouts may further threaten the internal validity of the
study.

6.6.4 Unequal sample sizes

In the previously presented computations, it was assumed that the sample sizes
within the clusters were all equal. Formulas assuming equal sample sizes have
been given by Raudenbush (1997), Raudenbush and Liu (2000), Moerbeek, van
Breukelen and Berger (2000, 2001), Liu (2003) and Headrick and Zumbo (2005).
Equal cluster sizes are optimal for estimating the treatment effect β1 with mini-
mum variance and for testing β1 = 0 with maximum power (Ankerman, Aviles
and Pinheiro, 2003).
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In most cases, however, especially in quasi-experimental studies, the sam-
ple sizes are not equal due to non-response and drop out. These multilevel
designs, with cluster randomization or subject randomization of the treatment,
will therefore show loss of efficiency. The amount of efficiency loss depends on
the variation of the sample sizes over the clusters and on the intra-class corre-
lation, but not on the number of clusters K . van Breukelen, Candel and Berger
(2007) showed numerically that the loss of relative efficiency in most com-
monly encountered designs with unequal sample sizes is usually less than 20%
(i.e. RE ≥ 0.8), and in most cases, less than 10% (i.e. RE ≥ 0.9). This actually
indicates that increasing the number of clusters by (0.9−1 − 1)100% = 11% can
compensate for such loss of efficiency and power due to unequal sample sizes.
Similar conclusions were drawn by Candel et al. (2008) for small samples and
different estimation methods for multilevel analysis.

In summary, the comparison in this chapter between a cluster randomized
and a subject randomized design shows that in terms of efficiency and power, a
subject randomized design or multi-center design should be preferred.

6.7 Design effect in multilevel surveys

Because social and economic data often have a multilevel structure, similar prob-
lems as those of the multilevel design discussed in previous sections are also
encountered in these fields. For example, in the Los Angeles Family and Neigh-
borhood Survey (L.A.FANS, Sastry et al., 2006), which is designed to support
analysis of child development, residential mobility and welfare reform, house-
holds are nested within neighbourhoods. The design of this study is a stratified
random sample of 65 neighbourhoods, where an average of 41 households were
randomly selected and interviewed within each neighbourhood. See Sastry et al.
(2006) for more details on this sampling design. Although the actual design also
included adults, children and caregivers, we will restrict ourselves to only two
levels, namely, the neighbourhoods and the households.

In survey sampling, the optimal sampling design would be a sample that
is completely randomly drawn from a specific population. Such a simple ran-
dom sample (SRS) is, however, generally not very efficient in terms of costs,
because it is generally very expensive to first completely list all households
within the different neighbourhoods and then visit and interview the randomly
selected households scattered all around the different neighbourhoods. To reduce
the amount of effort and fieldwork, that is, to reduce the costs of sampling,
survey researchers usually first sample a smaller number of primary sampling
units (neighbourhoods) and then randomly select the secondary sampling units
(households) via simple random sampling from these primary sampling units.
Such two-stage sampling designs distinguish two levels and variables and char-
acteristics are measured at each of these levels. The most suitable way to analyse
these data is to apply multilevel analysis (Snijders and Bosker, 1999; Hox, 2002).
The design problem for these large scale surveys is to find a design that will
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have sufficient power to estimate the fixed effects and the random effects with
the lowest possible sampling costs.

Up to date, very little work has been done to find optimal survey designs.
Owing to the different number of levels and variables measured at each level, this
problem is often very complex, for which no general solution probably exists. A
simple and heuristic method to estimate the effect of sampling relative to the costs
of sampling is based on the so-called design effect . A design effect compares the
variance of the effect of a sampling design with that of an SRS (Kish, 1965).

Suppose that we have obtained a simple random sample of N households,
where households are selected with equal probability and where all possible
sets of N distinct households from a population with size Npop are equally
likely to have been sampled. Then the variance of the sample mean ȳSRS can be
estimated by

v̂ar(ȳSRS) = s2

N
, (6.22)

where s2 = ∑N
i (yi − ȳSRS)

2/(N − 1) is the unbiased estimator of the pop-
ulation variance of y. Note that we have assumed that the sampling fraction
N/Npop is very small, so that the difference between sampling with or without
replacement can be ignored.

A design effect is the ratio of the variance of a parameter estimator β̂ for a
particular sampling design with the variance of that parameter estimator from an
SRS design (Kish, 1965). In formula it is

Design effect = var(β̂Design)

var(β̂SRS)
. (6.23)

Because the variance var(β̂SRS) is the smaller of the two, this design effect is
larger than one. As such, it is inversely related to the relative efficiency measure,
which lies between zero and one. But its interpretation in terms of sample size
is similar. Using this design effect , the effective sample size can be formulated
as the size of an SRS design that has the same variance of the estimator as the
particular (clustered) sampling design with N households. This so-called effective
sample size is given by

Neff = N

Design effect
. (6.24)

Now if we consider the two-stage sampling design, where first K neigh-
bourhoods are randomly sampled and then within each neighbourhood a random
sample of n households is drawn, and we wish to estimate the overall mean
ȳc = ∑K

j

∑n
i yij /N , with N = Kn, then the variance of this estimator is esti-

mated by

v̂ar(ȳc) = s2

N
[1 + (n − 1)ρ], (6.25)
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where v̂ar(ȳSRS) = s2/N and the corresponding design effect is equal to
[1 + (n − 1)ρ]. The symbol ρ stands for the intra-class correlation coefficient
that is a measure of the homogeneity of the y – scores in the neighbourhoods
(clusters).

6.7.1 Values of intra-class correlation ρ

It is clear that the size of the design effect depends on two quantities, namely,
the intra-class correlation and the size of the neighbourhoods (clusters). The
difference in sample size N and effective sample size Neff also depends on these
two quantities. Because the intra-class correlation ρ is usually not known in
advance, some kind of estimate from previous research must be used to estimate
the design effect .

The values of ρ depend on the type of variable and lie between zero and
one. Although estimates of ρ may become negative, this is rather unlikely for
most variables in multilevel data structures. For natural variables, such as height,
weight, age or gender, the dependency of their observations in a group may be
very low and ρ can be assumed to be approximately equal to zero. However,
for other kinds of variables, ρ may become quite high. For example, in a new
neighbourhood with mainly young families with small children and with excellent
health care and educational facilities, the opinions of the households about these
facilities may be very homogeneous, resulting in a relatively high value of ρ.
On the other hand, in an older neighbourhood, the opinions about these facilities
may vary significantly because older households with no (small) children may
differ quite a lot in their opinion about these facilities, thus causing the intra-class
correlation to be relatively small. But even for relatively small ρ’s, the design
effect may become quite large. For example, if ρ = 0.05 or 0.10, and n = 10
households, the design effect will be 1.45 or 1.90, respectively.

6.7.2 Cluster randomized sampling versus simple random
sampling

In Figure 6.8, the ratio Neff/N , which is equal to the inverse of the design effect ,
is plotted against the number of neighbourhoods with a constant sample size of
N = Kn = 2000. Four plots are displayed for ρ = 0.001, 0.01, 0.05 and 0.1. It
can be seen that when the number of neighbourhoods K increases and the number
of households n within the clusters decreases, the effective sample size Neff will
increase. For small values of ρ, the effective sample size Neff approaches the
sample size N .

We also observe that when the correlation ρ is larger than 0.05, we will need
a lot more neighbourhoods in a cluster sampling design to even approach the
information that is obtained from a simple random sample. In fact, if we have
K = 100 neighbourhoods and ρ = 0.05, the effective sample size of a cluster
sampling design is about Neff = 0.51 × 2000 = 1025 households, instead of the
2000 households that were actually sampled.
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Figure 6.8 The ratio Neff/N by number of clusters with a total sample size
N = 2000.

These computations were done without any cost considerations. Now suppose
that we consider the simple cost function C = c1Kn + c2K from Section 6.4, with
c1 and c2 being the costs of sampling a household and a neighbourhood respec-
tively. Hansen, Hurwitz and Madow (1953, p. 172-173) developed a formula for
the optimal number of households and neighbourhoods for estimating the means
and Cohen (1998, 2005) provided an approximation as follows:

n∗ =
√

c2(1 − ρ)

c1ρ
, and K∗ = C

c2 + c1n
∗ . (6.26)

We note that these formulas are equal to the formulas in Table 6.2 for the
cluster randomization of the treatment condition. This is due to the fact that for
the multilevel model in Equation (6.3), the intercept β̂0 is equal to the mean and
var(β̂0) = var(β̂1); see also Equation (6.5).

Finally, it is important to mention that estimation of several parameters is
often the case in survey sampling and that the above simple situation will gen-
erally not hold when several parameters are to be estimated simultaneously. For
this situation, Cohen (1998) proposed minimizing a linear combination of the
variances of the several estimators, but the efficacy of this method has not been
well studied. More research is needed on this topic. At present, the above formu-
las for determining the optimal number of households and neighbourhoods can
only serve as a guide in planning a survey study.

6.8 Matrix formulation of the multilevel model

To facilitate the understanding of designs for the multilevel models for cluster
randomized trials and subject randomized trials, this section uses matrix algebra.
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Readers not familiar with matrix algebra can skip this section without much
loss of information.

The multilevel models for cluster and subject randomization are special cases
of the general linear mixed model described by Laird and Ware (1982), among
others. These models can be written in matrix form as

y = Xβ + Zb + ε. (6.27)

The Kn × 1 vector y contains the n observations, stacked for the K clusters.
Corresponding to the linear model with two fixed parameters in the 2 × 1 column
vector β = (β0 β1)

′, the design matrix X is of order Kn × 2. The Kn × 2 matrix
Z is the design matrix for the two random parameters in the 2 × 1 vector b. The
errors connected to each response in y are stacked in the same order in the vector
ε. For general linear mixed models, it is assumed that the random parameters in
b are normally distributed with mean 0 and variance–covariance matrix D and
that the errors in ε are normally distributed with mean 0 and variance–covariance
matrix 	ε. For the models in this chapter, the error variance–covariance matrix is
assumed to be 	ε = σ 2

ε I . The b’s and ε’s are independently distributed. It should
be noted that this linear mixed model (Laird and Ware, 1982) is a member of the
class of generalized linear mixed models as described by McCulloch and Searle
(2001).

6.8.1 Cluster randomization of treatment

To illustrate how matrices are formed for the cluster randomized trial, consider
the model for the cluster randomization of a treatment as given in Equation (6.3):
yik = β0 + b0k + β1xk + εik . For illustrative purposes, we consider K = 2 clus-
ters and n = 4 subjects within each cluster. This model can be written in matrix
form as

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

y11

y21

y31

y41

−−
y12

y22

y32

y42

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 1
1 1
1 1
1 1
− −
1 −1
1 −1
1 −1
1 −1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[
β0

β1

]
+

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0
1 0
1 0
1 0
− −
0 1
0 1
0 1
0 1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[
b01

b02

]
+

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ε11

ε21

ε31

ε41

−−
ε12

ε22

ε32

ε42

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(6.28)

In the second column of the design matrix X, the coding for all subjects
in the treatment group is xk = +1 and for all subjects in the control group is
xk = −1, respectively. The first column of X consists of all ones and corresponds
to the intercept β0. The design matrix Z for the random intercepts in the two
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groups is structured with zeros and ones, to ensure that the random intercept
b01 is included in the model for the responses of the treatment group and b02

is included in the model for the control group. The horizontal dotted lines in
Equation (6.28) separate the two groups. The variance–covariance matrix of the
responses in y is given by

Cov(y) = (ZDZ ′ + σ 2
ε I ), (6.29)

where D = σ 2
0 I , with a common variance of the random parameters b0k on the

main diagonal, σ 2
ε I is a diagonal matrix with error variances σ 2

ε and I is an iden-
tity matrix. For the example with K = 2 and n = 4, the elements of Cov(y) are

Cov(y)

=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

σ 2
0 + σ 2

ε σ 2
0 σ 2

0 σ 2
0 0 0 0 0

σ 2
0 σ 2

0 + σ 2
ε σ 2

0 σ 2
0 0 0 0 0

σ 2
0 σ 2

0 σ 2
0 + σ 2

ε σ 2
0 0 0 0 0

σ 2
0 σ 2

0 σ 2
0 σ 2

0 + σ 2
ε 0 0 0 0

0 0 0 0 σ 2
0 + σ 2

ε σ 2
0 σ 2

0 σ 2
0

0 0 0 0 σ 2
0 σ 2

0 + σ 2
ε σ 2

0 σ 2
0

0 0 0 0 σ 2
0 σ 2

0 σ 2
0 + σ 2

ε σ 2
0

0 0 0 0 σ 2
0 σ 2

0 σ 2
0 σ 2

0 + σ 2
ε

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎦

.

(6.30)

This model is a random intercept model, which implies that the variances of
the responses are constant and equal to (σ 2

0 + σ 2
ε ). The covariances among the

responses within the clusters are also constant and equal to σ 2
0 . This structure

of the covariance matrix of the responses within each cluster is often referred
to as compound symmetry , and the previously given intra-class correlation that
defines the amount of correlation among the responses within the clusters is
ρ = σ 2

0 /(σ 2
0 + σ 2

ε ). The covariance matrix in Equation (6.30) also shows that the
covariance of the responses between the two clusters is zero. This is of course to
be expected because the responses come from subjects in different clusters and
they are assumed to have nothing in common. The variance–covariance matrix
of the parameter estimators Cov(β̂) is now

Cov(β̂) = {X′[Cov(y)]−1X}−1 =

⎡

⎢⎢
⎣

4σ 2
0 + σ 2

ε

4 × 2
0

0
4σ 2

0 + σ 2
ε

4 × 2

⎤

⎥⎥
⎦ . (6.31)

It must be emphasized that this formula assumes known variance compo-
nents σ 2

0 and σ 2
ε . As indicated in Subsection 6.2.1.1 estimation of these variance

components is done by REML. Asymptotically, the estimators of the variance
components are orthogonal to the fixed effects estimators β̂ (Searle, Casella and
McCulloch, 1992 and van Breukelen, Candel and Berger, 2007, 2008).
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The diagonal elements of Cov(β̂) are the variances var(β̂0) and var(β̂1),
respectively, and it can be seen that they are the same as the formula

var(β̂0) = var(β̂1) = nσ 2
0 +σ 2

ε

Kn given in Subsection 6.2.1.1 for K = 2 and n = 4.
The off-diagonal elements of Cov(β̂) are zero, but this is due to the fact that
we assume an equal number of subjects in the two clusters for this example. In
general, the off-diagonal elements cov(β̂0, β̂1) may not be zero. Finally, for this
model, the variances of the two parameters are equal, that is, var(β̂0) = var(β̂1).
Therefore, we do not need to work with the D-, A- or E-optimality criteria
to summarize variances and covariances of the two parameter estimators.
Minimizing the sum or product of the main diagonal elements of Cov(β̂) is
equivalent to minimizing only one of these elements. But if other multilevel
models are used, these optimality criteria can, of course, also be applied to
optimize the multilevel design.

6.8.2 Subject randomization of treatment

The model for subject randomization as given in Section 6.2.2 is

yik = β0 + b0k + β1xik + b1kxik + εik. (6.32)

Here, we distinguish two random parameters b0k and b1k with known variance
components σ 2

0 and σ 2
1 , respectively. Suppose again, that there are K = 2 clusters

and n = 4 subjects within each cluster. Then this model can be written in matrix
form as

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

y11

y21

y31

y41

−−
y12

y22

y32

y42

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 1
1 1
1 −1
1 −1
− −
1 1
1 1
1 −1
1 −1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

[
β0

β1

]
+

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 1 0 0
1 1 0 0
1 −1 0 0
1 −1 0 0
− − − −
0 0 1 1
0 0 1 1
0 0 1 −1
0 0 1 −1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

b01

b11

b02

b12

⎤

⎥⎥
⎦+

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ε11

ε21

ε31

ε41

−−
ε12

ε22

ε32

ε42

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(6.33)

For subject randomization of the treatment, half of the subjects in each cluster
will receive the treatment; therefore, n/2 = 2 subjects in each cluster will have
the coding xk = +1 and the other half will have the coding xk = −1, as shown
in the design matrix X. The design matrix Z corresponds to the two random
parameters b0k and b1k for the two clusters. If we assume that these parameters
are not correlated, that is, σ01 = 0, and that the parameters b0k and b1k have the
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same variances σ 2
0 and σ 2

1 in each cluster, then the variance–covariance matrix
of the random parameters is a diagonal matrix

D =

⎡

⎢⎢
⎣

σ 2
0 0 0 0
0 σ 2

1 0 0
0 0 σ 2

0 0
0 0 0 σ 2

1

⎤

⎥⎥
⎦ , (6.34)

with variances σ 2
0 and σ 2

1 on the main diagonal. The variance–covariance matrix
of the responses Cov(y) = (ZDZ ′ + σ 2

ε I ) now becomes

Cov(y) =
[

A 0
0 A

]

where

A =

⎡

⎢⎢
⎣

σ 2
0 + σ 2

1 + σ 2
ε σ 2

0 + σ 2
1 σ 2

0 − σ 2
1 σ 2

0 − σ 2
1

σ 2
0 + σ 2

1 σ 2
0 + σ 2

1 + σ 2
ε σ 2

0 − σ 2
1 σ 2

0 − σ 2
1

σ 2
0 − σ 2

1 σ 2
0 − σ 2

1 σ 2
0 + σ 2

1 + σ 2
ε σ 2

0 + σ 2
1

σ 2
0 − σ 2

1 σ 2
0 − σ 2

1 σ 2
0 + σ 2

1 σ 2
0 + σ 2

1 + σ 2
ε

⎤

⎥⎥
⎦ , (6.35)

This covariance structure is not simply compound symmetric, due to the
inclusion of the random intercept b1k in the two clusters, causing the covariances
of the responses within the clusters to differ. Because of the specific coding
xk = +1 and xk = −1, the covariances of the responses in the same clusters
under the same conditions (treatment or control) are equal to(σ 2

0 + σ 2
1 ), while

the covariances of the responses in the same cluster under the two different
conditions are equal to(σ 2

0 − σ 2
1 ). The variance–covariance matrix of the fixed

parameter estimators is given by

Cov(β̂) = {X′[Cov(y)]−1X}−1 =

⎡

⎢
⎢
⎣

4σ 2
0 + σ 2

ε

4 × 2
0

0
4σ 2

1 + σ 2
ε

4 × 2

⎤

⎥
⎥
⎦ , (6.36)

and contain the variances var(β̂0) and var(β̂1) for the intercept and slope parame-
ter estimator on the main diagonal. Their expressions are the same as the formulas
given in Equation (6.15) with K = 2 and n = 4 substituted. Here again, the
covariance of the fixed parameter estimators is zero, that is, cov(β̂0, β̂1) = 0.

It should be noted that if we assume a model with randomization at the
subject level, but only assume the intercept to vary across clusters (σ 2

0 > 0) and
the slope to be fixed (σ 2

1 = 0), then the variance of the fixed slope parameter in
Equation (6.36) will become var(β̂1) = σ 2

ε /Kn; see also the corresponding entry
in Table 6.1.
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6.9 Summary

In this chapter, two different multilevel designs are described, namely, the
multi-center trial with a treatment randomly assigned to subjects within clusters
and a cluster randomized design with a treatment randomly assigned to the
clusters. It is shown that in terms of efficiency, the multi-center trial is always
more efficient than the cluster randomized trial, even if the intra-class correlation
is small. This advantage of a multi-center trial over a cluster randomized design
remains when different costs for sampling clusters and subjects within a cluster
are taken into account. The example in this chapter also shows that power for
testing a treatment effect is always higher in a multi-center trial than in a cluster
randomized trial. Therefore, we recommend using a multi-center design unless
the problem of treatment contamination cannot be adequately dealt with at the
design stage by blinding procedures or otherwise. In that case, researchers are
advised to use a cluster randomized design. In terms of efficiency increase, a
multi-center trial will generally benefit more from an increase of the number
of subjects than from an increase of the number of clusters. For a cluster
randomized trial, the reverse is true.

Although inclusion of covariates in the multilevel model may sometimes lead
to more powerful tests, such an inclusion is not recommended in general without
verifying that there is a strong relation between the covariate and the outcome and
without a check whether such an inclusion will not threaten the internal validity
of the study. One of the problems that may arise due to inclusion of covariates is
that the probability of non-response may rise. Results from the literature indicate
that in most cases, unequal cluster sizes lead to an efficiency loss of about 10%.
To compensate for such a moderate small efficiency loss, it is recommended to
add an extra 11% of the number of clusters to the multilevel design.



7

Longitudinal designs
for repeated measurement
models

7.1 Design problem for repeated measurements

Repeated measurements are measurements that are obtained on an outcome or
response variable from a unit or subject on a number of different occasions.
Repeated measurements occur frequently in both experimental and observational
studies. In this chapter we will distinguish repeated measurement designs from
longitudinal designs.

A repeated measurement design is a design in which one or more variables are
repeatedly measured at different occasions. Here, the occasion is not necessarily
strictly time-structured. Different occasions may entail experimental conditions
such as treatment and no treatment or different dosage levels of a drug. The
ordering of the occasions in time may not be the same for the different units (sub-
jects). In a crossover design, for example, a patient may first receive a treatment
and then a placebo, or vice versa. The focus of repeated measurement studies is
on inference about the differences among experimental conditions. Questions on
treatment effects and differences in responses among dosage levels are usually
of main interest in these studies. An often encountered repeated measurements
design is the crossover design, which we will discuss separately in Chapter 8.

The term longitudinal design is usually used when the occasions at which
measurements are taken are time-structured. On the basis of the ordering of the
measurements in time, the main focus in longitudinal studies is on the modelling
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of responses as a function of time. Research questions may be centred on the
basic level of the responses or on the increase or decrease of the response func-
tion over time. In the latter case, the term growth curves is often used and the
corresponding statistical models are generally called growth curve models . The
generalized multivariate analysis of variance (MANOVA) model is an example
of a growth curve model. See Kshirsagar and Smith (1995), among others, for a
review. In this chapter we focus on longitudinal designs.

In longitudinal designs as well as in repeated measurement designs, the inde-
pendent variables can be classified as within-subject and between-subject vari-
ables or factors. The variable Time is of course a within-subject variable. These
variables distinguish different sources of variation in the study. For example, the
variation of repeated measurements of a subject over time can be modelled as a
function of the within-subject variable Time. If, on the other hand, a distinction
is made between two groups of subjects, one receiving treatment A and the other
receiving treatment B, then the treatment variable is a between-subject variable
because it explains variation between the subjects in the two groups.

There are several textbooks on the analysis of longitudinal (repeated) mea-
surements. Some examples are Lindsey (1993), Diggle, Liang and Zeger (1994),
Kshirsagar and Smith (1995), Hand and Crowder (1996), Vonesh and Chinchilli
(1997) and Verbeke and Molenberghs (2000). Monographs on this topic from a
multilevel perspective include Goldstein (1995) and Snijders and Bosker (1999).
However, research on design issues for longitudinal studies is relatively scarce
perhaps because the issues are more complicated to address.

The problem of ‘best’ allocation of the repeated measurements in time is often
circumvented by choosing equally spaced time points to measure the response
variable. In some cases, however, unequally spaced time points may prove to be
more efficient in terms of parameter estimation. It is sometimes recommended to
cluster the time points at which measurements are taken in an interesting area of
the time scale. For example, Matthews et al. (1990, p.235) proposed that extra
observations could be taken in the area where a particular feature, such as a peak
in the response, is known to occur. However, whether this would lead to extra
information depends on the particular situation and on the method of analysis.
Obtaining more observations at the point where the peak is likely to occur can
be more informative for estimating the mean peak value if the location of the
peak is roughly known. However, if we have no specific knowledge when the
peak occurs in time, it is generally better to obtain observations in such a way
that the variance of the time points at which the measurements are taken is as
large as possible.

Clustering repeated measurements close to each other in time, that is, taking
measurements with shorter time intervals between the measurements, will tend
to increase the correlations among these measurements and in turn decrease effi-
ciency. As an illustration, the effect of clustering repeated measurements on the
variance of the estimator of a population mean is displayed in Figure 7.1. Let m

be the number of repeated measurements and r be a correlation parameter. Let
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Figure 7.1 Relative efficiency plot for correlated repeated measurements (r = ρt ).

var(ȳI ) and var(ȳC) be the variances of the means ȳI and ȳC when we have inde-
pendent observations and when we have correlated observations, respectively.
These two variances can be compared using a relative efficiency (RE) measure
defined by the inverse of the so-called design effect : RE = var(ȳI )/var(ȳc) =
1/(1 + (m − 1)r). In Figure 7.1 the REs are plotted as a function of the number
of repeated measurements m. The plots assume that the correlations among the
repeated measurements are ruled by an auto-regressive process r = ρt , where t

is the difference between two time points. For example, t = 1 for adjacent time
points lying one unit apart on the time scale.

Figure 7.1 shows that it is not very efficient to take repeated (correlated)
measurements with shorter time intervals between the measurements. As the
observations are obtained closer to each other in time and their correlations
increase (i.e. ρt increases), the RE values decrease. This decrease in efficiency
becomes more prominent as the number of repeated measurements increases.
Moreover, the RE plots decrease more sharply as the correlation ρ increases in
value. Overall, Figure 7.1 suggests that it is desirable to spread out the repeated
measurements as much as possible because in so doing, the correlations among
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the repeated measurements are likely to decrease and this in turn is likely to
increase the efficiency of our estimates.

The efficiency loss when repeated measurements are closer to each other in
time is also encountered when the correlations among the repeated measurements
are not ruled by an auto-regressive process. For example, when all correlations
are equal to ρ = 0.6, no matter how far apart they are measured in time, the
RE plots will all be equal to the plot for which t = 1, showing sharp decrease
in RE values as the number of repeated measurements increases. Winkens et al.
(2006, Figure 2) found a similar observation in their longitudinal study to find
linear divergent treatment effects. They showed that for a certain sample size, the
addition of repeated measurements decreases the efficiency of a linear divergent
treatment effect further as the correlations among the repeated measurements
become higher.

Another important design issue for a longitudinal study is the number of
distinct time points or the number of repeated measurements to include in the
study. Too few time points (repeated measurements) will not enable an accurate
description of the functional relation between the responses and the time variable.
This may happen when only two time points are included, while the functional
relation is based on more than two parameters. For these reasons, Willett, Singer
and Martin (1998, p. 408) gave a rule of thumb and recommended including at
least one more time point than the number of parameters in the model. Vickers
(2003) argued that although increase of the number of repeated measurements
from a single measurement to three or four measurements, will increase the power
of a test, the benefit of an additional repeated measurement rapidly decreases as
the number of measurements rises. His results support the conclusion that it is
not very efficient to include too many repeated measurements (time points) in a
study. Too many repeated measurements will be a waste of money and effort in
many cases. Moreover, in clinical trials, especially where patients are exposed to
strenuous measurement procedures, too many repeated measurements will also
raise ethical objections.

On the other hand, increasing the number of time points (and measurements)
will decrease the standard errors and increase reliability of the measurements.
Especially when repeated measurements are obtained for a more precise estimate
of an end point, it is often worthwhile from a statistical point of view, to obtain
as many repeated measurements as feasible.

In deciding on the number of repeated measurements, the costs of data col-
lection should also be taken into account. The costs of sampling subjects may
be quite different from the costs of obtaining repeated measurements for each of
these subjects. Usually, there is some kind of trade-off between the number of
sampled subjects and the number of repeated measurements. Sometimes it may be
more efficient in terms of parameter estimation and in terms of costs, to increase
the sample of subjects at the expense of the number of repeated measurements.

A key feature of repeated measurements is that they are typically corre-
lated. The actual correlation structure may be different for a longitudinal design
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and a repeated measurement design. A longitudinal design with time-structured
measurements often has a serial- or auto-correlated covariance structure of the
data, because correlations among repeated measurements tend to decrease when
measurements are taken further apart in time. On the other hand, a repeated mea-
surement (crossover) design may have a more compound symmetric structure,
with more or less equal variances and equal covariances among the repeated mea-
surements. In general, the efficiency of a design depends on the structure of the
variance–covariance matrix of the responses and on the size of the correlations
among the repeated measures. In particular, Berger and Tan (2004), Winkens et
al. (2005) and Ortega-Azurduy, Tan and Berger (2009) studied the robustness of
optimal designs against mis-specification of the parameters in the linear mixed
effects model.

7.2 The design

We are interested in two types of designs: a longitudinal design, where the
repeated measurements are obtained in a specific order of time, and, a repeated
measurement design, where the measurements are not obtained in a fixed order
for all subjects. This latter design is also referred to as a crossover design or
counter-balanced design and will be discussed in Chapter 8. In this chapter we
focus on the longitudinal design.

Consider a longitudinal design where m repeated measurements are obtained
from a sample of n subjects. Such a longitudinal design can be schematically
represented by the form:

ξN =
{

d1 d2 d3 . . . dm

n/N n/N n/N . . . n/N

}
. (7.1)

The design points dj (for j = 1, . . . ,m) are the time points at which the repeated
measurements are taken with corresponding fractions n/N . This form represents
an exact design where n is the (integer) sample size and N is the total number
of observations, that is, N = m × n. In some cases where for fixed values of N

the sample size n turns out to be not an integer, integer approximation can be
applied. See Pukelsheim and Rieder (1992) for rules on integer approximation.

Planners of repeated measurement studies usually start with the assumption
that a design with repeated measurements is complete, that is, there are no missing
data in the study. The design in Equation (7.1) assumes that all planned repeated
measurements are actually available for analysis. Of course, this is not realistic
in practice because patients are unlikely to show up at all occasions (time points)
for examination, or they may drop out, or data can be simply lost or erroneously
coded. Nevertheless, for simplicity, we will continue to assume that we have
complete data at the end of the study for analysis. We refer the reader interested
in analysing data with missing values to Little and Rubin (1987), where a full
treatment of this topic is available.
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7.3 Analysis techniques for repeated measures

Various statistical methods to analyse repeated measurements have been sug-
gested. They range from relatively simple and easy to apply methods to more
sophisticated statistical models. Here is an incomplete list of methods employed
in other fields for analysing repeated measurements:

• Separate t tests of differences among groups at each occasion (repeated
measurement).

• Use of a number of different summary measures to describe the response
profile for each subject. Two often suggested summary measures are the
mean of the repeated measurements per subject and the area under the
curve (AUC).

• Analysis of the differences between mean changes from pre-treatment to
the post-treatment measurements. This method is often referred to as the
analysis of change scores .

• Analysis of covariance (ANCOVA).

• Analysis of variance (ANOVA) for repeated measurements and MANOVA.

• Linear mixed effects models.

Each of these methods has its own advantages and disadvantages. Everitt
(1995) discussed the pros and cons of each method with illustrative
examples.

Separate t tests for each of the repeated measurements are easy to apply, but
do not take into account the multiple testing problem and do not use information
from the correlations among the repeated measurements. For these reasons, the
t-test approach is not recommended to analyse repeated measurements.

The use of summary measures as suggested by Matthews et al. (1990) has
a potential disadvantage that summary measures do not use all information con-
tained by the repeated measurements. Although a summary measure, such as the
mean, may be more reliable than the individual repeated measurements, it may
be quite difficult to select the most informative summary measure for a partic-
ular study. For example, the AUC of two response functions may not contain
sufficient information to distinguish the response curves if they have different
shapes.

In randomized studies, where pre-treatment observations are available, the
ANCOVA is more efficient and powerful than the analysis of change scores
and it is therefore usually recommended. Frison and Pocock (1992) showed that
ANCOVA becomes increasingly more efficient than change score analysis as
the mean correlation among the repeated measurements increases. However, in
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non-randomized trials, ANCOVA seems to be more biased than change score
analysis (Van Breukelen, 2006).

The ANOVA for repeated measurements requires that the variance–covariance
matrix of the repeated measures meets the so-called circularity or sphericity
condition. This condition can be tested (e.g. Mauchly, 1940), and if the
variance–covariance matrix departs from this assumption, the degrees of freedom
for the test can be adjusted (Greenhouse and Geisser, 1959; Huynh and Feldt,
1976). A special and often considered case of sphericity is the compound
symmetric covariance matrix with a ‘common’ variance on the main diagonal and
a ‘common’ covariance as the off-diagonal element. Such a compound symmetric
structure can be estimated by using the mean variance of the responses σ̄ 2 and
mean covariance σ̄jj ′ among the responses as estimates of the ‘common’ variance
and ‘common’ covariance of the repeated measurements.

An alternative approach to circumvent the assumption about the sphericity
structure of the variance–covariance matrix is to use MANOVA. The main dis-
advantage of MANOVA, however, is that for relatively small sample sizes, many
repeated measurements and small departures from the sphericity assumption, this
procedure will have less power than the ANOVA procedure (Rouanet and Lepine,
1970; Davidson, 1972).

There are many ways to analyse repeated measurements or longitudinal data;
and while there is no agreement across disciplines on the best method, the linear
mixed model is one of the most flexible methods to use for analysing such data.
A key reason for this is that the linear mixed effects models are able to account
for the different sources of variation from the fixed and random effects, and are
also able to easily cope with unequally spaced time points and missing data.

7.4 The linear mixed effects model for repeated
measurement data

Linear mixed effect models have been discussed by Diggle, Liang and Zeger
(1994) and Verbeke and Molenberghs (2000), among others. The linear mixed
effects model for repeated measurement data can be described in two steps. The
measurement yij of the ith individual or subject at occasion j (j = 1, . . . , m)
can be represented by the regression model:

yij = a0ix0ij + a1ix1ij + a2ix2ij + · · · + ap−1,ixp−1,ij + εij , (7.2)

where x0ij , x1ij , x2ij , · · · , xp−1,ij are p quantitative covariates that model the ith
individual responses over the m occasions and a0i , a1i , · · · , ap−1,i are the corre-
sponding parameters. The errors εij are assumed to be normally distributed with
a mean of zero and a certain variance–covariance matrix. The second step relates
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the fixed parameters to the random parameters:

a0i = β0 + b0i

a1i = β1 + b1i

· · ·
· · ·

aq−1,i = βq−1 + bq−1,i (7.3)

aq,i = βq

· · ·
· · ·

ap−1,i = βp−1.

The q coefficients b0i , b1i , . . . , bq−1,i are random (subject-specific) param-
eters, which describe the variation between the subjects. We assume that they
are normally distributed with means equal to zero and that they are independent
of the error terms εij . The p parameters β0, β1, . . . , βp−1 are fixed parameters
that describe the overall effects. Equation (7.3) displays the case where the
number of fixed parameters is larger than or equal to the number of random
parameters, that is, p ≥ q. If the number of fixed parameters is equal to the
number of random parameters, that is, if p = q, then the last (p − q) fixed
parameters βq, βq+1, . . . , βp−1 are zero. A direct substitution of Equation (7.3)
into Equation (7.2) results in the so-called linear mixed effects model. In the
next subsections, we focus on two special cases of the linear mixed effects
model, namely, the random intercept (RI) model and, the RI and slope model.

7.4.1 Random intercept model

Consider, as an example, a longitudinal study (Lloyd et al., 1993) to investigate
the effect of daily calcium supplementation on bone gain in adolescent women
over a 2-year period. The total body bone mineral density (TBBMD, gr/cm2) was
measured at m = 5 successive visits scheduled every 6 months. Although these
visits were not exactly 6 months apart, we will assume that all visits were equally
spaced in time and at 6-month intervals. Suppose that the specific profiles of the
women and their mean profiles are all assumed to be linear and that the TBBMD
profiles of the women are parallel and only vary in height. This means that
we assume the variation of the TBBMD scores among women can be adequately
described by a RI parameter a0i = β0 + b0i . The slopes a1i of the individual pro-
files are assumed to be equal, that is, a1i = β1, for all i. The model in Equations
(7.2) and (7.3) now reduces to a so-called RI model which is given by:

yij = a0ix0ij + a1ix1ij + εij
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or

yij = (β0 + b0i ) + β1tj + εij , (7.4)

where the covariate x0ij = 1 for all (i, j ), and the covariate x1ij = tj describes
the time schedule of the five visits and is numbered as x1ij = tj = 1, 2, 3, 4
or 5 (for all i). The interval between two adjacent time points (tj − tj−1) is 6
months (for j = 2, 3, 4, 5). The parameters β0 and β1 are the mean intercept
and slope, respectively, while the parameter b0i represents the deviation from
the mean intercept for the ith woman.

Now suppose that the error terms are independently distributed with variance
σ 2

ε . If the variance of the RI b0i is denoted by σ 2
0 , then the variance of

the responses at each time point tj is equal to var(yij ) = (σ 2
0 + σ 2

ε ) and the
covariance between measurements at time points tj and tj ′ is cov(yij , yij ′) = σ 2

0 .
This means that there is an equal correlation between any pair of repeated
measurements over time:

ρ = σ 2
0

σ 2
0 + σ 2

ε

. (7.5)

This quantity is known as the intra-class (intra-woman) correlation coefficient .
The variance–covariance structure of the repeated measurements under this RI
model is characterized by a common variance and a common covariance among
the measurements over time. This variance–covariance structure is known as a
compound symmetry structure.

7.4.2 Random intercept and slope model

An extension of the RI model is the RI and random slope model. If the profiles
of the adolescent women are not parallel over time and each profile has its own
slope, then the model in Equations (7.2) and (7.3) can be written as:

yij = (β0 + b0i ) + (β1 + b1i )tj + εij , (7.6)

where the RI, b0i and random slope, b1i represent deviations from the mean
intercept and slope for the ith girl. The variance of the responses over time is now
var(yij ) = (σ 2

0 + σ 2
1 t2

j + 2σ01tj + σ 2
ε ), where σ 2

1 is the random slope variance
and σ01 is the covariance between the RI and random slope. The covariance
between measurements at distinct time points tj and tj ′ is given by:

cov(yij , yij ′) = (σ 2
0 + σ 2

1 tj tj ′ + σ01tj + σ01tj ′). (7.7)

This formula indicates that the covariance structure of the responses over time
consists of covariances that are different for different pairs of time points. When
the five time points are coded as tj = 1, 2, 3, 4 or 5, the covariance structure of
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the five responses in the vector yi from the ith patient is

Cov(yi)

=

⎡

⎢⎢⎢⎢⎢
⎣

σ 2
0 + 2σ01 + σ 2

1 + σ 2
ε

σ 2
0 + 3σ01 + 2σ 2

1 σ 2
0 + 4σ01 + 4σ 2

1 + σ 2
ε

σ 2
0 + 4σ01 + 3σ 2

1 σ 2
0 + 5σ01 + 6σ 2

1 σ 2
0 + 6σ01 + 9σ 2

1 + σ 2
ε

σ 2
0 + 5σ01 + 4σ 2

1 σ 2
0 + 6σ01 + 8σ 2

1 σ 2
0 + 7σ01 + 12σ 2

1

σ 2
0 + 6σ01 + 5σ 2

1 σ 2
0 + 7σ01 + 10σ 2

1 σ 2
0 + 8σ01 + 15σ 2

1

Symmetric

σ 2
0 + 8σ01 + 16σ 2

1 + σ 2
ε

σ 2
0 + 9σ01 + 20σ 2

1 σ 2
0 + 10σ01 + 25σ 2

1 + σ 2
ε

⎤

⎥⎥
⎥⎥
⎦

(7.8)

This structure holds under the assumption that the errors are independently
distributed. The linear mixed model with such a covariance matrix is sometimes
called a conditional independence model because, conditional on the random
parameters, the responses are independent (Verbeke and Molenberghs, 2000). The
above two random effects models can be extended straightforwardly to describe
a quadratic (curvilinear) fixed time effect, together with a quadratic function
describing the subject-specific profiles. The structure of the variance–covariance
matrix will be more complicated than the one presented in Equation (7.8).

7.5 Variance–covariance structures

The variance–covariance structure of repeated measurements for the linear mixed
effects model in Equations (7.2) and (7.3) is composed of two sources of varia-
tion, namely, the within-subject or intra-subject variation and the between-subject
or inter-subject variation. We note that measurement error can also be a third
source of variation in a linear mixed effects model (Diggle, Liang and Zeger,
1994, p.80; Verbeke and Molenberghs, 2000, p.28), but for simplicity, we will
restrict attention to only the first two sources of variation in this book.

These two sources of variation give rise to a variety of different variance–
covariance structures for the repeated measurements. All are special cases of the
general structure proposed by Diggle, Liang and Zeger (1994). See Jennrich and
Schluchter (1986), Diggle (1988), Chi and Reinsel (1989) and Rochon (1992)
for further discussion on covariance structures for repeated measurements.

7.5.1 Compound symmetry structure

A popular variance–covariance structure is the compound symmetry matrix, with
equal variances and equal covariances. This structure arises for the RI model
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in Section 7.4.1. Its variances and covariances are var(yij ) = (σ 2
0 + σ 2

ε ) and
cov(yij , yij ′) = σ 2

0 , respectively. Here, σ 2
0 is the between-subject variance and

σ 2
ε is the within-subject variance of the independent errors.

Such a compound symmetry structure can also be found when the model is
assumed to be a fixed effects (FE) model with errors having equal variances and
equal covariances among the time points. These two models with a compound
symmetric variance–covariance matrix of the repeated measurements are pre-
sented as illustration in Table 7.1 as Case I and Case II. It can be seen that these
two models can be regarded as two parameterizations of the same model. As
stated before, the compound symmetric structure is a special case of the more
general sphericity variance–covariance structure (Greenhouse and Geisser, 1959;
Huynh and Feldt, 1976), with equality of the variances of the differences between
each pair of repeated measurements.

Table 7.1 Two models with a compound symmetric variance–covariance
structure.

Case I: Random intercept model with independent errors
yij = (β0 + b0i ) + β1tj + εij , with σ 2

ε and cov(εij , εij ′) = 0, for all j �= j ′

Covariance structure:

Cov(yi) =

⎡

⎢⎢⎢
⎢
⎣

σ 2
0 + σ 2

ε σ 2
0 . . . σ 2

0

σ 2
0 σ 2

0 + σ 2
ε . . . σ 2

0
...

...
...

...

σ 2
0 σ 2

0 . . . σ 2
0 + σ 2

ε

⎤

⎥⎥⎥
⎥
⎦

Case II: Fixed effects model with correlated errors ρ

yij = β0 + β1tj + εij , with σ 2
ε and cov(εij , εij ′) = ρσ 2

ε , for all j �= j ′

Covariance structure:

Cov(yi) =

⎡

⎢⎢⎢
⎣

σ 2
ε ρσ 2

ε . . . ρσ 2
ε

ρσ 2
ε σ 2

ε . . . ρσ 2
ε

...
...

...
...

ρσ 2
ε ρσ 2

ε . . . σ 2
ε

⎤

⎥⎥⎥
⎦

Note. ρ is the correlation among the errors.
σ 2

0 and σ 2
ε are the variances of the random intercept and errors, respectively.

yi is vector of responses for subject i.

7.5.2 Auto-correlation structure

In many practical situations where repeated measurements are time-structured,
the assumption of independent errors is not realistic and a model with correlated
errors is likely to provide a better fit to the data. Often times, one assumes that
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the errors follow a first-order auto-regressive, AR(1), correlation pattern. This
pattern seems to be justified in many studies especially when the repeated mea-
surements are obtained over a long period (Chi and Reinsel, 1989; Jones, 1990).
Other relevant types of covariance matrices for repeated measurements include
higher order auto-regressive variance–covariance structures studied by Jones and
Boardi-Boteng (1991) and Rochon (1992) and the so-called Toeplitz matrices
used by Jennrich and Schluchter (1986). Verbeke and Molenberghs (2000, p.99)
reviewed different covariance structures and their uses in their monograph on
linear mixed models.

The auto-correlation between errors from two time points tj and tj ′ has the
form ρ

|tj −tj ′ |, where ρ is a correlation parameter (0 < ρ < 1). Hence, the cor-
relations between the errors depend on how far apart they are in time. The
correlation between the errors decreases as the time points lie farther apart. For
the time coding tj = 1, 2, 3, . . . ,m, the auto-correlation matrix of the errors has
the form:

Corr(εij , εij ′) =

⎡

⎢⎢
⎢⎢⎢
⎣

1 ρ ρ2 . . . ρm−1

ρ 1 ρ . . . ρm−2

ρ2 ρ 1 . . . . . .
...

...
...

...
...

ρm−1 ρm−2 . . . . . . 1

⎤

⎥⎥
⎥⎥⎥
⎦

. (7.9)

Table 7.2 displays the variance–covariance matrices for the repeated measure-
ments of the same two models in Table 7.1, but now with an AR(1) covariance
structure for the errors. From the variance–covariance structure of the RI model
(Case III), it can be seen that the variances of the responses are the sum of
two elements, namely, the variance of the RI σ 2

0 and the variance of the errors
σ 2

ε . The covariance between the responses also depends on these two variance
components and on the correlation parameter ρ. It is equal to the sum of σ 2

0 and
the covariance of the errors σ 2

ε ρ
|tj −tj ′ |.

Changes in values of σ 2
0 (between-subject variance) and σ 2

ε (within-subject
variance) will change the form of the variance–covariance matrix Cov(yi)

in Table 7.2 (Case III). If the variance σ 2
0 is very large relative of σ 2

ε , the
auto-correlation pattern of the errors is less pronounced in Cov(yi). Likewise,
if the variance σ 2

0 is small or near zero, the auto-correlation structure of the
errors will become more pronounced in the covariance pattern of Cov(yi). The
size of the auto-correlation parameter also influences the covariance pattern. If
ρ is very small, the correlation among the errors will also be very small and
so the covariance matrix is nearly diagonal. In other words, the covariance
matrix becomes similar to the covariance pattern of uncorrelated errors. The FE
model with auto-correlated errors is also presented in Table 7.2 as Case IV.
Actually, the variance–covariance matrix of the responses of Case III is equal
to the variance–covariance matrix of the responses of Case IV with the variance
component σ 2

0 added to each element.
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Table 7.2 Two models with first-order auto-regressive correlated errors.

Case III: Random intercept model with auto-correlated errors

yij = (β0 + b0i ) + β1tj + εij , with σ 2
ε and cov(εij , εij ′) = σ 2

ε ρ
|tj −tj ′ |,

for all j �= j ′

Covariance structure:

Cov(yi) =

⎡

⎢
⎢⎢⎢
⎣

σ 2
0 + σ 2

ε σ 2
0 + σ 2

ε ρ . . . σ 2
0 + σ 2

ε ρm−1

σ 2
0 + σ 2

ε ρ σ 2
0 + σ 2

ε . . . σ 2
0 + σ 2

ε ρm−2

...
...

...
...

σ 2
0 + σ 2

ε ρm−1 σ 2
0 + σ 2

ε ρm−2 . . . σ 2
0 + σ 2

ε

⎤

⎥
⎥⎥⎥
⎦

Case IV: Fixed effects model with auto-correlated errors

yij = β0 + β1tj + εij , with σ 2
ε and cov(εij , εij ′) = σ 2

ε ρ
|tj −tj ′ |, for all j �= j ′

Covariance structure:

Cov(yi) =

⎡

⎢⎢⎢
⎣

σ 2
ε σ 2

ε ρ . . . σ 2
ε ρm−1

σ 2
ε ρ σ 2

ε . . . σ 2
ε ρm−2

...
...

...
...

σ 2
ε ρm−1 σ 2

ε ρm−2 . . . σ 2
ε

⎤

⎥⎥⎥
⎦

Note. ρ is a correlation parameter.
σ 2

0 and σ 2
ε are variances of the random intercept and errors, respectively.

yi is vector of responses for subject i.

7.6 Estimation of parameters and efficiency

In the general linear mixed model there are two different kinds of param-
eters to be estimated. The fixed parameters are β = (β0, β1, . . . , βp−1)

′
and the variance components associated with the random parameters are
σ 2 = (σ 2

0 , σ 2
1 , . . . , σ 2

01, . . . , σ
2
jk , σ

2
ε )′. For example, the RI model in Table 7.1

(Case I) has two fixed parameters β = (β0, β1)
′, a variance component

σ 2
0 for the RI and a variance component σ 2

ε for the errors. In what is to
follow, it is convenient to let θ be the vector containing all the parameters
in the linear mixed model. For the simple linear model with an RI, we have
θ = (β, σ 2)′ = (β0, β1, σ

2
0 , σ 2

ε )′.
The parameters in the general linear mixed model can be estimated by max-

imizing the likelihood function based on all the fixed parameters and variance
components in the model. The usual approach is to obtain estimators by max-
imizing the likelihood function L(θ) with respect to the parameters θ . For the
case where the variance components are assumed to be known, the maximum
likelihood (ML) estimators of the fixed parameters β are equivalent to the gener-
alized least squares estimators given by Laird and Ware (1982). However, when
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the variance components are not known, suitable estimates of these variance
components will be needed to obtain estimates of the fixed parameters β.

The variance components are usually estimated via ML or via restricted max-
imum likelihood (REML). The ML estimator for the variance components is
obtained by maximizing the likelihood function after the fixed parameters β are
substituted by their estimates β̂. The REML estimators for the variance com-
ponents are obtained by maximizing the likelihood function of a set of error
contrasts; see Harville (1974), Searle, Casella and McCulloch (1992) and Verbeke
and Molenberghs (2000), among others, for more details. Because ML estimation
of the variance components produces (downward) biased estimates, the variances
of the fixed effect parameter estimators will become smaller than those obtained
by means of REML estimation. The differences in ML and REML estimates of
the variance components will be more pronounced when the sample size is small.
For large samples both methods will approximately lead to the same results.

For the RI model in Table 7.1 (Case I), the asymptotic variance–covariance
matrix of the parameter estimators θ̂ = (β̂0, β̂1, σ̂

2
0 , σ̂ 2

ε )′ can be schematically
represented as:

Cov(θ̂ ) =

⎡

⎢
⎢
⎣

var(β̂0) cov(β̂0, β̂1) 0 0
cov(β̂0, β̂1) var(β̂1) 0 0

0 0 var(σ̂ 2
0 ) 0

0 0 0 var(σ̂ 2
ε )

⎤

⎥
⎥
⎦ . (7.10)

In the upper left part of this matrix the 2 × 2 variance–covariance matrix of the
fixed parameters estimators β̂ = (β̂0, β̂1)

′ is given. The remaining elements on
the main diagonal are the variances of the variance components estimators σ̂ 2

0
and σ̂ 2

ε , respectively. The structure of Cov(θ̂ ) shows that the fixed parameter
estimators β̂ = (β̂0, β̂1)

′ and the variance component estimators σ̂ 2 = (σ̂ 2
0 , σ̂ 2

ε )′
are asymptotically orthogonal (Ankerman, Aviles and Pinheiro, 2003; Searle,
Casella and McCulloch, 1992).

Since the variances of the estimators of the fixed parameters β are a function
of the variance–covariance matrix of the responses, that is, they depend on the
specification of the variance components in σ 2, it is important to correctly specify
the model and the form of the variance–covariance matrix Cov(yi). Inaccurate
estimates of the variance components in σ 2, will in turn lead to inaccurate and
biased estimates of the fixed parameters in β̂. This will be illustrated in the
following sections by means of an example.

7.6.1 Small sample behaviour of estimators

The ML and REML estimators of fixed and random parameters and the corre-
sponding (likelihood ratio, Wald) tests in linear mixed models are all based on
asymptotic theory and very little is known about their small sample properties.
Crainiceanu, Ruppert and Vogelsang (2003) showed that asymptotic results can
fail for the likelihood ratio tests. To reduce small sample bias, Kenward and
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Rogers (1997) proposed a scaled Wald statistic with an adjusted estimator of the
variance–covariance matrix, but Vallejo and Livacic-Rojas (2005) showed that
compared to the method of Brown and Forsythe (1974), the Kenward and Rogers
statistic did not perform overall best in small samples.

For the design problem of linear mixed models it is important to know
whether the asymptotic variance–covariance matrix Cov(β̂) is a good approx-
imation to the one that is obtained from a small sample with estimates of the
variance components. Goos (2002, p. 98–101) gave some evidence that for linear
mixed effects models with a compound symmetric variance–covariance structure,
the determinants of the asymptotic Cov(β̂) and the corresponding small sam-
ple variance–covariance matrix estimator with REML estimates and educated
guesses based on prior studies are not very different, but noted that the small
sample determinants almost always are larger than the asymptotic determinants.

7.7 Bone mineral density example

Consider again, the study on the effect of calcium supplementation on the rate
of bone gain in girls during early adolescence. Lloyd et al. (1993) gave results
from a clinical trial in which adolescent women were given a daily calcium
supplement. The TBBMD (gr/cm2) was measured every 6 months over a 2-year
period. Five repeated TBBMD measurements were collected in five successive
visits, including a base line measurement. Further details of the study are available
in Lloyd et al. (1993) and the data set is available in Vonesh and Chinchilli (1997,
p. 229–230). For our purpose here, we ignore subjects with incomplete data and
only use data from 44 women with complete records.

In Figure 7.2 the individual TBBMD profiles of the women who received
the daily calcium supplement are displayed in the right plot. The mean profile
is presented on the left plot, together with the 95% confidence intervals, which
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Figure 7.2 Plots of mean and individual TBBMD profiles for adolescent women
with calcium supplementation (vertical dotted lines are 95% confidence intervals).
(Data from: Vonesh and Chinchilli, 1997, p. 228–230).
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are displayed as vertical dotted lines. These plots seem to indicate that a linear
function would summarize both the individual development of bone mineral
density in these women and their average profile very well. Moreover, the
variation between the profiles of these women is mainly explained by the
difference in height of TBBMD scores. The individual profiles are all rather
parallel, and only differ in height.

Given these observations three different models can be selected to describe
these data. An FE model with an unstructured covariance matrix for the error
terms and two RI models, one assuming independent errors and the second assum-
ing auto-correlated errors:

Model 1 : FE model with unstructured covariance matrix for errors :

yij = β0 + β1tj + εij , with unknown σ 2
ε and unknown cov(εij , εij ′),

for all j �= j ′;
Model 2 : RI model with independent errors :

yij = (β0 + b0i ) + β1tj + εij , with σ 2
ε and cov(εij , εij ′) = 0,

for all j �= j ′; (7.11)

Model 3 : RI model with auto-correlated errors :

yij = (β0 + b0i ) + β1tj + εij , with σ 2
ε and cov(εij , εij ′) = σ 2

ε ρ
|tj −tj ′ |

for all j �= j ′.

These three models contain a common slope parameter β1. The two RI models
have an additional term, the RI b0i to describe the differences in height among
the profiles. Note that Model 2 is the same as Case I in Table 7.1 and Model 3
is the same as Case III in Table 7.2.

Model 1 with only FE assumes an unstructured covariance matrix for the
errors. The estimated correlation matrix for the responses from the five visits
shown below was computed using data from the 44 women with complete data:

Corr(yi) =

⎡

⎢⎢⎢
⎣

1.0000
0.9610 1.0000 Symmetric
0.9205 0.9632 1.0000
0.8929 0.9493 0.9731 1.0000
0.8666 0.9294 0.9443 0.9625 1.0000

⎤

⎥⎥⎥
⎦

. (7.12)

The corresponding variance–covariance matrix is

Ĉov(yi) = 10−2

⎡

⎢⎢⎢
⎣

0.2978
0.3091 0.3473 Symmetric
0.3085 0.3486 0.3771
0.3240 0.3720 0.3974 0.4422
0.2973 0.3443 0.3646 0.4024 0.3953

⎤

⎥⎥⎥
⎦

. (7.13)
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The variances of the measurements at the five successive visits are on the main
diagonal of Ĉov(yi). It can be seen that the correlations among the repeated
measurements are quite high and that they tend to decrease as the visits lie farther
apart in time. Moreover, the variances of the measurements seem to increase a
little over time.

Model 1 is a FE model and hence all variation of the responses in Equa-
tion (7.13) is due to the variation of the errors in the model. Accordingly,
Cov(yi) = Cov(εi). The variance–covariance matrix Cov(yi) is called unstruc-
tured , because its elements are computed from the data without assuming any
specific structure. For the bone mineral example with five time points, there are
5(5 + 1)/2 = 15 parameters (variance components of the errors) that need to be
estimated. This rather unwieldy situation can be improved by assuming a struc-
tured variance–covariance matrix. In this way, the number of unknown variance
components can be reduced, which in turn will generally increase efficiency of the
fixed parameters and increase the power of statistical tests on these parameters.

Model 2 and Model 3 in Equation (7.11) assume a structured variance–
covariance matrix of the errors and reduce the number of variance components to
two, namely, the RI variance σ 2

0 and the error variance σ 2
ε . In most cases, we need

a computer program to estimate these variance components via REML (Harville,
1977; Searle, Casella and McCulloch, 1992). However, our small sample size
(n = 44) in this example is likely to be too small to meet the large sample
requirements for ML or REML estimation. Therefore, in what is to follow, we will
illustrate using heuristic estimators of the variance components. These estimators
can be easily computed using a desk calculator.

Model 2 in Equation (7.11) only needs estimates for two variance compo-
nents, namely, σ 2

0 and σ 2
ε and is the same as Case I in Table 7.1. The variances

of the responses (elements on the main diagonal) are assumed to be equal to
(σ 2

0 + σ 2
ε ) and the covariances among the responses (elements off the main

diagonal) are assumed to be equal to σ 2
0 . We use the average covariance of

the unstructured variance–covariance matrix in Equation (7.13) as a heuris-
tic estimate of σ 2

0 and the average variance as an estimate of (σ 2
0 + σ 2

ε ). The
heuristic estimates for the two variance components are σ̄ 2

0 = 0.3468 × 10−2 and
σ̄ 2

ε = 0.0251 × 10−2, respectively. Table 7.3 displays the resulting estimate of the
variance–covariance matrix of the responses and also the variance–covariance
matrix of estimates for the two fixed parameters.

Model 3 in Equation (7.11) is the same as the RI model with auto-correlated
errors in Table 7.2 (Case III). The variance–covariance matrix of the responses
has the special structure given in Table 7.2. For this model, there are two
variance components σ 2

0 and σ 2
ε , and one correlation ρ to be estimated. As

before, the estimates for σ 2
0 and σ 2

ε are σ̄ 2
0 = 0.3468 × 10−2 and σ̄ 2

ε = 0.0251 ×
10−2. To estimate ρ, we first recall that the covariance of the auto-correlated
errors is cov(εij , εij ′) = σ 2

ε ρ
|tj −tj ′ |. Now, let r̄1 be the average correlation of

the responses yj among adjacent time points (lag 1 correlations), that is, r̄1 =
(0.9610 + 0.9632 + 0.9731 + 0.9625)/4 = 0.9649, and set this average correla-
tion equal to r̄1 = (σ̄ 2

0 + σ̄ 2
ε ρ)/(σ̄ 2

0 + σ̄ 2
ε ) = 0.9649. Solving this last equation
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yields an estimate for the correlation parameter ρ, that is, ρ̂ = [r̄1(σ̄
2
0 + σ̄ 2

ε ) −
σ̄ 2

0 ]/σ̄ 2
ε = 0.4845.

We emphasize that we use heuristic estimators for estimating the variance
components because they are simple and easy to compute. In most situations, it
is of course easier to obtain ML or REML estimates with the help of a computer
program. For this example with balanced data and no missing data or drop out, it
turns out that these heuristic estimators are all very close to the ML and REML
estimators, even though the sample size is small.

There is quite a large difference in values of the correlations between the
responses and the correlation between the corresponding errors. The correlation
of the errors associated with the measurements between two adjacent visits is
ρ̂ = 0.4845 and the correlation of the errors incurred at the first and last visits
is ρ̂4 = 0.0551. The latter correlation is very small, while the correlation of the
responses themselves between the first and last visit is very high, namely, 0.8666.
This difference between the correlation of the errors and the responses can be
explained by the variance of the RI, which is relatively large compared to the
variance of the errors.

Table 7.3 displays estimates for the two FE parameters β0 and β1 along
with their estimated variance–covariance matrices Ĉov(β̂) for the unstructured
variance–covariance model and for two RI models, one with independent errors
and the other with auto-correlated errors. It can be seen that the parameter esti-
mates and their variances and covariances are different for these three models.
Although the differences among the parameter estimates β̂0 and β̂1 seem small,
there are clear differences among the variances and covariances from the three
models. The efficiency of the fixed parameter estimators of these three models
can be summarized using the determinant of the variance–covariance matrices
of the FE estimators. We recall that estimators with a smaller determinant for
the variance–covariance matrix are more efficient estimators. For this problem,
the RI model with independent errors (Model 2) has the smallest determinant
value Det[Ĉov(β̂)] = 2.2099 × 10−6. This implies that estimators from Model 2
for the two FE parameters are the most efficient.

Estimators of the fixed parameters from the RI model with auto-correlated
errors (Model 3) are less efficient and we also need to estimate the auto-
correlation parameter ρ. Compared to the determinant value for the FE model
(Model 1) with unstructured variance–covariance matrix, the estimators of the
FE parameters from the RI model (Model 2) with uncorrelated errors are much
more efficient. This improvement of efficiency can be quantified by the relative
efficiency RED = (2.2099/3.7895)1/2 = 0.76.

The above result supports the conclusion that among the three models, the
RI model with independent errors is probably the best fitting model. It should
however be kept in mind, that it is generally not an easy task to decide on
the choice of a best fitting model. Approximate statistical tests and likelihood
ratio tests for the parameters and the fit of these models exist, and have been
implemented in computer programs; see for example, Verbeke and Molenberghs
(2000, Chapter 6). Moreover, one can use information criteria, like the Akaike’s
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Ĉ
ov

(y
i)

=
10

−2

⎡ ⎢ ⎢ ⎢ ⎢ ⎣

0.
37

20
0.

35
90

0.
37

20
Sy

m
m

et
ri

c
0.

35
27

0.
35

90
0.

37
20

0.
34

97
0.

35
27

0.
35

90
0.

37
20

0.
34

82
0.

34
97

0.
35

27
0.

35
90

0.
37

20

⎤ ⎥ ⎥ ⎥ ⎥ ⎦

Ĉ
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information criterion (Akaike, 1974; Bozdogan, 1987) to compare goodness of
fit among models. These procedures, of course, are only valid asymptotically and
hence we should have a large sample when we assess model adequacy.

7.7.1 Improvement of the longitudinal design

The design problem for repeated measurements focuses on the choice of the
number of time points (design points) at which the measurements are taken and
on the allocation of these time points. The original design for the bone mineral
density example has five visits (time points). For simplicity we have assumed
that the five visits are equally spaced in time and that the coding of the design
points is 1, 2, 3, 4 and 5. The original exact design for a sample of n = 44
women can now be schematically represented as follows:

ξ220 =
{

d1 = 1 d2 = 2 d3 = 3 d4 = 4 d5 = 5
n/N n/N n/N n/N n/N

}
. (7.14)

The fractions are all equal to n/N = 0.2 when the total number of observations
is N = 220. This design is displayed in Table 7.4 as ξ1.

The design used in the bone mineral density study can be improved from
both the cost and efficiency perspectives. To show how the efficiency of ξ1 can
be increased, let us consider four other designs ξ2, ξ3, ξ4 and ξ5 also displayed in
Table 7.4. We are going to study the performance of these designs for estimating

Table 7.4 The Det[Ĉov(β̂)] (generalized variance) of five different designs for
the three models in Table 7.3.

Designs Model 1 Model 2 Model 3

ξ1 =
{

1 2 3 4 5
0.2 0.2 0.2 0.2 0.2

}
378.9471 220.9945 260.4963

ξ2 =
{

1 2 3 4 5
0.25 0.25 0 0.25 0.25

}
11.7039 11.9416 7.2606

ξ3 =
{

1 2 3 4 5
0.3333 0 0.3333 0 0.3333

}
2.11056 5.7945 1.7759

ξ4 =
{

1 2 3 4 5
0.5 0 0 0 0.5

}
1.4627 2.6052 1.2873

ξ5 =
{

1 2 3 4 5
0.3333 0 0 0.3333 0.3333

}
3.4729 5.3487 3.3933

(Det[Ĉov(β̂)] values ×10−8)

Note. Model 1: Fixed effects model with unstructured variance–covariance matrix.
Model 2: Random intercept model with independent errors.
Model 3: Random intercept model with auto-correlated errors.
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the model parameters for the three models in Table 7.3. For this purpose, all
five designs in Table 7.4 are assumed to have the same total observations, that
is, N = n × m = 220. This implies that any decrease in the number of repeated
measurements m would require an increase of the number of subjects n to main-
tain the same total number of observations N , and vice versa. This necessitates
us to consider approximate designs, because a fixed sample size N and a given
fraction n/N may require a non-integer value of n. For example, designs ξ3 and
ξ5 result in non-integer values for n = 0.3333 × 220 = 73.3333. In practice, we
round the non-integers to the nearest integer before we implement the design.

Table 7.4 lists the generalized variances of β̂ from the five designs for the
three models. The Det[Ĉov(β̂)] values (generalized variances) of the fixed param-
eter estimators for the three models with different variance–covariance structures
using design ξ1 from Table 7.3 are reproduced in Table 7.4. The rest of the gen-
eralized variances of β̂ in the table are computed using designs ξ2, ξ3, ξ4 and ξ5.

Table 7.4 shows that there is a clear increase in efficiencies of the estimators
when the design has fewer design points. For instance, design ξ1, with five
equally weighted design points, has the largest value for Det[Ĉov(β̂)] for all
three models, while design ξ4, with two equally weighted design points, has the
smallest value. This seems to be in line with the fact that a D-optimal design
for the simple homoscedastic linear model requires only two design points as
far apart from each other as possible (Chapter 2). The computations in Table 7.4
suggest that such a design would also be D-optimal for a model with an RI and
with auto-correlated or independent errors.

From Table 7.4, we also observe that design ξ3 seems to be a second best choice
for Model 1 and Model 3, and nearly so for Model 2 as well. Further, we notice
that the Det[Ĉov(β̂)] values for ξ3 are not that much larger than the Det[Ĉov(β̂)]
values of design ξ4, but ξ3 has one more support point than ξ4. Hence, even though
ξ4 is the ‘best’ design in Table 7.4 for estimating β, ξ3 is a strong competitor
because having an extra point allows model checks to be performed and is also
likely to make ξ3 potentially more robust than ξ4 to model assumptions violation.

7.7.1.1 Correlated errors versus random effects

Repeated measurements frequently exhibit an auto-correlated structure in a longi-
tudinal study. As the time points lie farther apart in time, the correlation between
measurements at these time points decreases. Such a structure is also found
in the correlation matrix of the responses of the bone mineral example given
in Equation (7.12). For the FE model the variance–covariance structure of the
responses is completely explained by the variances and covariances of the errors
in the model. In many cases, however, when random parameters are added to
the model, the variance–covariance matrix of the responses is not completely
explained by the variance–covariance matrix of the errors. Parts of these vari-
ances and covariances are then explained by the random parameters.

Jones (1990) discussed the phenomenon that the auto-correlation is
partially confounded with random between-subject effects in the model. The
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variance–covariance structure of the responses yi in linear mixed effect models
can be partially explained by the variance–covariance structure of the random
effects and partially by the variance–covariance structure of the error terms
in the model. The more (between subjects) random effects are added to the
model, the more variance is explained by the random effects. In other words,
the variances and covariances of the responses can be increasingly explained
by adding random effects to the model, hence that relatively less remains
unexplained.

A similar phenomenon is seen in the bone mineral example. We saw that
more efficient parameter estimators β̂ were obtained when an RI was added
to the model (Model 2 and Model 3) and that Model 2 with independent errors
gave the most efficient estimators. In this case the correlated variance–covariance
structure of the responses can apparently be completely explained by an RI. This
effect is often found in small samples, where there is simply not enough variation
to be explained by more random parameters. In larger samples, however, more
random parameters are often needed to fully describe all variance of the responses
(Jones, 1990).

The trade-off between random effects and the correlation of the errors will also
affect the optimality of a longitudinal design. If a model fits the data, the optimal
design will usually need as many distinct design points m as fixed parameters
p in the model, that is, m = p. If a model does not fit the data well and more
parameters are needed to adequately describe the data, the number of distinct
design points will probably have to be larger than the number of parameters, that
is, m > p.

7.8 Cost function

The results in Table 7.4 assume an equal total number of observations for all
five designs. If there is a one-to-one relation between the costs and the number
of observations N , then these five designs will all have the same total costs of
performing the study. In practice, the costs of sampling a subject in a longitudinal
design may be quite different from the costs of obtaining a repeated measurement
for that subject. It is therefore reasonable to make a distinction between these two
costs and incorporate the cost structure in the study when we compare designs.

Suppose that the total costs of a study are denoted by C, and that the costs
of an initial set-up of a study are c0. The costs c0 may include the salary of
the research staff and other costs, which are not directly connected to the actual
sampling of observations. Let the costs of sampling one subject be c1 and let the
costs of obtaining one repeated measurement per subject be c2. The total costs
of a longitudinal design can be written as the sum of the initial setup costs, the
costs of sampling the n subjects, and the costs of obtaining a total of n × m

repeated measurements:

C = c0 + nc1 + nmc2. (7.15)
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When c1 is zero, the cost function reduces to C − c0 = nmc2, and there is a
one-to-one relation between the total costs C and the N = n × m observations.

Let us first consider the simple case when c0 and c1 are both zero in the bone
mineral density example. The original design ξ1 in Table 7.4 measures n = 44
women at five different visits. Hence, the costs of obtaining the N1 = n1 ×
m1 = 44 × 5 = 220 observations are C = (44 × 5)c2. The other four designs in
Table 7.4 contain fewer than five repeated measurements, but use a larger sample
of women to keep the total number of observations the same. For instance, design
ξ3 has only m3 = 3 repeated measurements and hence we have to increase the
number of women in this design to n3 = 44 × 0.3333/0.2 = 73.3333, to ensure
that the total number of observations remains the same, that is, N = n3 × m3 =
73.3333 × 3 = 220. We reiterate that the non-integer sample size n3 = 73.3333
is not feasible in practice, and is only used here to enable a fair efficiency
comparison among the designs. In practice such sample sizes are rounded to the
nearest integer value; so n3 = 73 in this case.

In most practical applications, the costs c0 and c1 are both not zero. An
approach to account for the possibly unequal non-zero costs in c0 and c1 is to
standardize or normalize the variance–covariance matrix of the fixed parameter
estimators with respect to the sampling costs of a design. See Fedorov, Gagnon
and Leonov (2002), Fedorov and Leonov (2005) and Gagnon and Leonov (2005)
for details. Such a normalization was applied to find D-optimal cohort designs
in Tekle, Tan and Berger (2008b).

If one wants to compare the sample size requirement for a design ξ2 with a
design ξ1 having n1 subjects using the same cost structure and total budget, it is
easy to show that the desired sample size n2 for design ξ2 is

n2 = n1(c1 + m1c2)

(c1 + m2c2)
. (7.16)

Table 7.5 presents the sample sizes of the five designs for different combina-
tions of c1 and c2, expressed by means of a cost ratio f = c1/c2, where f = 0,
1, 5 and 10. This cost ratio represents the relative costs of sampling a subject
with respect to the costs of obtaining one repeated measurement per subject. All
sample sizes are related to the sample size of the original design ξ1 and assume
that the costs of obtaining the observations are equal to those of the original
design. In the column with heading f = 0, the sample sizes are given for the
case where only the costs of obtaining repeated measurements are taken into
account. These are actually the sample sizes that are used in Table 7.4.

It can be seen that as the cost ratio f increases, the relative costs of sampling
subjects increases, and the differences between the sample sizes n1 and n2 becomes
smaller. The loss of efficiency in designs with less repeated measurements can be
compensated by increasing the sample of subjects. But as the costs of sampling
subjects become relatively higher, this may not be a very efficient option anymore.
It may then be more efficient to apply a design with many repeated measurements.

Table 7.4 shows design ξ4 seems the most efficient design for estimating
the fixed parameters in Models 1, 2 and 3. We therefore choose design ξ4 as



198 OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH

Table 7.5 Sample sizes for five designs and different cost ratios under the
condition that all designs have the same total costs.

Designs f = 0 f = 1 f = 5 f = 10

ξ1 n1 = n1 n1 = n1 n1 = n1 n1 = n1

ξ2 n2 = 5

4
n1 n2 = 6

5
n1 n2 = 10

9
n1 n2 = 15

14
n1

ξ3 n3 = 5

3
n1 n3 = 6

4
n1 n3 = 10

8
n1 n3 = 15

13
n1

ξ4 n4 = 5

2
n1 n4 = 6

3
n1 n4 = 10

7
n1 n4 = 15

12
n1

ξ5 n5 = 5

3
n1 n5 = 6

4
n1 n5 = 10

8
n1 n5 = 15

13
n1

Note. Sample sizes of five designs are n1, n2, n3, n4 and n5, respectively.

reference design and evaluate efficiencies of the other four designs relative to
ξ4. Specifically, for each model of interest we define RED equal to the square
root of the ratio given by dividing the generalized variance of ξ4 with that of the
comparison design. These REDs are displayed in Figure 7.3 for the three models
and four cost ratiosf = 0, f = 1, f = 5 and f = 10.

The fourth design ξ4 is the reference design and therefore has an RED value
equal to one. It is the most efficient design for Model 2. It is, however, not always
the most efficient design for Model 1 and Model 3. The plots for Model 1 and
Model 3 show an RED value of design ξ3 that is greater than 1 if the cost ratios
are f = 5 and f = 10.

It seems that for Models 1 and 3, it is more efficient to use design ξ3 with
three design points instead of the two design points of design ξ4 when the costs
of sampling subjects becomes relatively high compared to the costs of obtaining
repeated measurements. Model 2 seems to fit the data best and gives us the most
efficient parameter estimators for the original design ξ1 (Figure 7.3). Design ξ4

is the D-optimal design for this model. The original design ξ1 seems to produce
less efficient parameter estimators in Model 1 and Model 3, in part because
these models do not seem to fit the data well. In this case, it appears that we can
improve the efficiency of the parameter estimators by including an extra design
point (design ξ3) when the cost ratio is high.

From this example, the following recommendations can be offered to design
a longitudinal study for a linear mixed effects model with polynomial fixed and
random parameters:

• Since design efficiency strongly depends on the specified model, it is impor-
tant to know what model will fit the data best.
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Figure 7.3 Relative efficiency RED plots for five designs and three models.

• Choose a design with as less repeated measurements as possible. If one
is sure that the model with p fixed polynomial parameters fits the data, a
rule of thumb is to select no more repeated measurements m than there
are fixed polynomial parameters in the model; thus the number of repeated
measurements should be m = p. If, on the other hand, the model is sus-
pected not to fit the data well, one or two extra design points should be
added to cope with the unexplained variance, that is, the number of repeated
measurements should be m = p + 1 or m = p + 2.

• It is surely unnecessary to design a study with a lot more repeated mea-
surements than fixed parameters. This is not only inefficient in terms of
parameter estimation but also in terms of costs and may also raise ethical
objections.

• Money can be better spent and efficiency can be improved by sampling
more subjects instead of obtaining more repeated measurements.
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7.9 D-optimal designs for linear mixed effects models
with auto-correlated errors

D-optimal designs for polynomial regression models with independent errors are
well known. D-optimal design points for polynomial regression models with
independent errors were first derived by Smith (1918) and Guest (1958), and
these and other types of optimal designs are tabulated in optimal design texts,
such as Pukelsheim (1993) and Atkinson and Donev (1992), among others (see
also Table 3.5 in Chapter 3).

D-optimal designs in mixed effects models were studied in the literature. Abt
et al. (1997, 1998) studied optimal designs for linear and quadratic growth curve
models with auto-correlated errors, Atkins and Cheng (1999) investigated designs
for an RI quadratic polynomial model with independent errors, Bischoff (1993)
studied D-optimal designs for linear models with correlated errors, Cheng (1995)
derived results on optimal designs for random block effects models, Mentré,
Mallet and Baccar (1997) proposed an algorithm for finding D-optimal designs for
random effects models and Tan and Berger (1999) presented balanced D-optimal
designs for RI models under an AR(1) error correlation structure. These optimal
designs are all constructed under the assumption that there are no missing data.
We will also make this assumption in our discussion on optimal designs for linear
mixed effects models.

Optimal designs for FE polynomial regression models have certain charac-
teristics. From Table 3.5 (Chapter 3) we deduce that a D-optimal design depends
on the degree of the polynomial. The optimal number of distinct design points
is equal to the number of polynomial parameters in the model, that is p = m,
and although the m design points are equally weighted, the optimal design points
are not necessarily equally spaced. For example, D-optimal design points are not
equally spaced when p ≥ 4. Table 3.5 of Chapter 3 shows that A-optimal and
E-optimal designs also have unequally spaced design points for p ≥ 4, but in
addition are also unequally weighted for p ≥ 3.

A mixed effects model with polynomial description of longitudinal data can
be derived from the general form in Equations (7.2) and (7.3). The measurement
yij of the ith subject at time point tj (j = 1, . . . ,m) can be represented by the
following mixed effects model:

yij = β0 + β1tj + β2t
2
j + · · · + βp−1t

p−1
j

+ b0i + b1i tj + b2i t
2
j + · · · + bq−1,i t

q−1
j + εij . (7.17)

The p parameters β0, β1, . . . , βp−1 are the fixed polynomial parameters. The
q random (subject-specific) parameters b0i , b1i , . . . , bq−1,i are assumed to
be normally distributed with mean zero and a q × q variance–covariance
matrix, which reflects the dependencies among these random parameters.
The errors in Model 7.17 are assumed to be normally distributed with mean
zero and variance–covariance structure σ 2

ε �. For time-structured data the
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variance–covariance structure of the errors is often auto-correlated with
correlation parameter ρ such that the correlation between the errors at two time
points tj and tj ′ is ρ

|tj −tj ′ |. Such a structure is often referred to as AR(1) (see
also Equation (7.9)). In addition, we assume that the errors and the random
parameters are independent.

The model in Equation (7.17) includes the already described models in
the previous subsections. For example, the RI model in Equation (7.4) can be
obtained by assuming that there are p = 2 fixed parameters β0 and β1 and that
there is only q = 1 RI b0i . Similarly, the FE model with auto-correlated errors in
Table 7.2 (Case IV) is also a special case of Model 7.17 with p = 2 fixed param-
eters β0 and β1, no random parameters and the errors have an auto-correlated
variance–covariance structure.

D-optimal designs for mixed effects models with polynomial terms are not
well known. These models not only vary in the number of parameters, they also
make a distinction between fixed and random parameters and assume different
covariance structures for the errors. D-optimal designs for linear mixed effects
models not only depend on the degree of the polynomial, as was the case for
a fixed effect model with independent errors but also depend on several other
features in the model, such as:

• the number of fixed parameters p and the number of random parameters
q (q ≤ p),

• the form of the covariance structure of the random parameters and the
covariances among their estimates and

• the form of the covariance structure of the errors in the model and the
correlations among the error terms.

Formally, a D-optimal design for a linear mixed effects model with p FE
parameters β = (β0, β1, . . . , βp−1)

′ is a design that minimizes the generalized
variance of the estimators of β. This is the same as finding a design that min-
imizes the determinant of the p × p variance–covariance matrix of parameter
estimators, that is:

min{Det[Cov(β̂)]}. (7.18)

The minimization is over all designs on the design interval of interest. The
D-optimal design is, strictly speaking, locally optimal because it depends on the
correlations among the distinct time points, which are unknown. Hence, nominal
values for all non-FE parameters are required to compute the D-optimal design.
These nominal values may be available from pilot studies or related studies. This
situation is similar to the case when we want to find optimal designs for nonlinear
models in Chapter 10.

Analytical descriptions of D-optimal designs for linear mixed models are very
difficult and probably impossible to obtain (Hungerford, 1990, p. 363). The usual
approach is to compute optimal designs for linear mixed models numerically
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using optimization routines. Figures 7.4, 7.5 and 7.6 display D-optimal designs
for four different types of models defined on the time-scaled interval [−1, 1]:

• FE model, with no random parameters;

• RI model, with only RI parameters b0i ;

• Random intercept-random slope (RI-RS) model, with RI parameter b0i and
random slope (RS) parameter b1i ;

• Correlated random intercept-random slope (RI-RSC) model, with RI param-
eter b0i and RS parameter b1i , which are correlated.

All four types of models assume that the errors have an auto-correlated (AR(1))
variance–covariance structure. The D-optimal design points are plotted for values
of the correlation parameter within the interval 0 ≤ ρ ≤ 0.95, and each plot
represents a combination of the number of polynomial parameters p and the
number of repeated measurements m ≥ p, for p = 2, 3 and 4, and m = 2, 3,
4, 5, 6 and 7. The weights are all equal and sum up to one. Similar plots of
D-optimal designs were presented in Tan and Berger (1999) and Ouwens, Tan
and Berger (2002).

Figure 7.4 displays the D-optimal design points for linear models with p = 2
polynomial parameters. Figures 7.5 and 7.6, respectively, display similar plots
for a quadratic model with p = 3 parameters and for cubic polynomial mod-
els with p = 4 parameters. The figures show that D-optimal design points for
the same combination of values of p and m are very similar for the different
models. D-optimal design points depend strongly on the correlation ρ. In gen-
eral, they are not equally spaced and tend to be a bit more spread out as the
correlation increases. Another observation is that as the correlation parameter
ρ approaches zero, the optimal number of distinct design points approaches p.
This is because D-optimal design points for ρ = 0 are equal to D-optimal design
points for polynomial models with independent errors. The D-optimal design
points are also not necessarily symmetrically placed on the time scale [−1+1],
especially when the correlation is smaller than ρ ≤ 0.2. For example, consider
the D-optimal design points for cubic polynomial models where (p − 1) = 3 and
m = 5. If five D-optimal time points are (−1 − t2 t3 t4 1), then the time points
(−1 − t2 − t3 t4 1) are also D-optimal.

In practice, many repeated measurement studies have equally spaced time
points. These figures show that the optimal design points become more equally
spaced over the time scale as the correlation parameter increases. The differences
between the D-criterion values for designs with equally spaced time points and
D-optimal designs is very small for correlations ρ > 0.1, and this difference
becomes even smaller as the number of time points m increases compared to p.
In other words, when the correlation is large, an equally spaced design with an
appropriate number of design points should approach the D-optimal design.



OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH 203

0

0.
2

0.
4

0.
6

0.
81 0

0.
2

0.
4

0.
6

0.
81 0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

0

0.
2

0.
4

0.
6

0.
81

m
 =

 2
m

 =
 3

m
 =

 4
 m

 =
 5

FE RI RI-RS RI-RSC

D
es

ig
n 

po
in

ts

0

0.
2

0.
4

0.
6

0.
81 0

0.
2

0.
4

0.
6

0.
81 0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81 0

0.
2

0.
4

0.
6

0.
81 0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

D
es

ig
n 

po
in

ts

0

0.
2

0.
4

0.
6

0.
81 0

0.
2

0.
4

0.
6

0.
81 0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

−1
−0

.5
0

0.
5

1

0

0.
2

0.
4

0.
6

0.
81

0

0.
2

0.
4

0.
6

0.
81

0

0.
2

0.
4

0.
6

0.
81

D
es

ig
n 

po
in

ts
D

es
ig

n 
po

in
ts

rr r r

F
ig

ur
e

7.
4

D
-o

pt
im

al
de

si
gn

s
fo

r
m

ix
ed

ef
fe

ct
m

od
el

s
w

it
h

p
=

2
(l

in
ea

r)
an

d
A

R
(1

)
st

ru
ct

ur
e.



204 OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

m
 =

 3
m

 =
 4

m
 =

 5
 m

 =
 6

FE RI RI-RS RI-RSC

D
es

ig
n 

po
in

ts

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

D
es

i g
n 

po
in

ts

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

D
es

i g
n 

po
in

ts

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

D
es

i g
n 

po
in

ts

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

rr r r

F
ig

ur
e

7.
5

D
-o

pt
im

al
de

si
gn

s
fo

r
m

ix
ed

ef
fe

ct
m

od
el

s
w

it
h

p
=

3
(q

ua
dr

at
ic

)
an

d
A

R
(1

)
st

ru
ct

ur
e.



OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH 205

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

m
 =

 4
m

 =
 5

m
 =

 6
 m

 =
 7

FE RI RI-RS RI-RSC

D
es

ig
n 

po
in

ts
−1

−0
.5

0
0.

5
1

0

0.
2

0.
4

0.
6

0.
81

D
es

ig
n 

po
in

ts
−1

−0
.5

0
0.

5
1

0

0.
2

0.
4

0.
6

0.
81

D
es

i g
n 

po
in

ts
−1

−0
.5

0
0.

5
1

0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

−1
−0

.5
0

0.
5

1
0

0.
2

0.
4

0.
6

0.
81

D
es

ig
n 

po
in

ts

rr r r

F
ig

ur
e

7.
6

D
-o

pt
im

al
de

si
gn

s
fo

r
m

ix
ed

ef
fe

ct
m

od
el

s
w

it
h

p
=

4
(c

ub
ic

)
an

d
A

R
(1

)
st

ru
ct

ur
e.



206 OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH

The most striking effect of the D-optimal designs in these figures is their
loss of efficiency as the number of distinct time points m increases. This effect
is shown in Figure 7.7 where the relative efficiencies of D-optimal designs with
m > p distinct time points compared to the D-optimal design with m = p dis-
tinct time points, are displayed as a function of the auto-correlation 0 ≤ ρ ≤ 0.95.
Plots are given for the four types of models with p = 2, p = 3 and p = 4 param-
eters, while maintaining the same sample size n in these plots.

We observe two other interesting observations from these figures. The first
observation is that as the auto-correlation approaches 1, the RE approaches p/m.
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Figure 7.7 Relative efficiencies of D-optimal designs compared to the D-optimal
design with m = p distinct design points.
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Actually this asymptotic result holds for any model (Tan and Berger, 1999).
The ratio p/m can actually be seen as a lower bound for the efficiency of a
D-optimal design with m distinct time points. The second observation is that as
the auto-correlation approaches zero, the RE of a D-optimal design with m time
points will approach 1. In other words, when the auto-correlation approaches
zero, the D-optimal design tends to the D-optimal design with m = p distinct
time points. Figure 7.7 shows that the efficiency drop is largest in the range
0 ≤ ρ ≤ 0.1. This is also the same set of ρ values for which the D-optimal time
points are least equally spaced on the design interval.

Our last commentary for this subsection is that even when the auto-correlation
ρ is small, the correlation between the error terms at two close time points can be
quite large. For example, consider a small value of ρ, say ρ = 0.01 and a small
absolute difference between two time points: |tj − tj ′ | = 0.1. Then the correlation
between the errors at these two time points is ρ

|tj −tj ′ | = 0.010.1 = 0.6309. And
if the model is an FE model, then the correlation between the measurements at
the two closely located time points is also 0.6309. For a model with random
parameters, the correlation between the measurements at the two closely located
time points is greater than 0.6309.

In summary, a design with equally spaced time points approaches the
D-optimal design very well for ρ ≥ 0.2. In addition, taking observations at
many time points will result in loss of efficiency. Generally, it is preferable to
use a design with relatively few time points from the ethical, cost and statistical
considerations. From the sole perspective of parameter estimation, the number of
time points should be p + 1 or p + 2 where p is the number of FE polynomial
parameters in the model.

7.10 Miscellanea

7.10.1 Homoscedasticity

In the previous section, the optimal designs for linear mixed effects models were
found when the correlation structure of the errors is AR(1) with homogeneous
variances of the errors. In practice, this assumption may not hold and the
variances of the errors at different time points may be quite different. The
effect of heterogeneity of the error variances on the optimality of a design has
been studied for linear models with independent errors by Wong and Cook
(1993), Wong (1995), Atkinson and Cook (1995) and Montepiedra and Wong
(2001), among others. Heterogeneity of the error variances for linear mixed
models has been studied by Ortega-Azurduy, Tan and Berger (2008a). Their
preliminary results suggest that the D-optimal time points for models with an
AR(1) structure and heterogeneous error variances show moderate deviations
from the D-optimal time points with homogeneous error variances. The time
points tend to shift in the direction of the time scale where the errors have
smaller variances. They also found that an incorrect specification of the error
variances in the model is likely to overestimate the optimal sample size.
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7.10.2 Uninformative dropout

Another problem encountered in a longitudinal study is missing information and
dropouts. This happens frequently when the design has many repeated measure-
ments and the total time interval for the study is large. The reason for this is
more patients tend to miss scheduled visits or drop out altogether in long-term
clinical trials. The effect of dropout on the optimality of designs for linear mod-
els with independent errors has been studied by Imhof, Song and Wong (2002,
2004). Galbraith and Marschner (2002) discussed unanticipated dropout for linear
mixed models. Dropout did not seem to affect power for a first-degree polyno-
mial mixed effects model. A framework for power calculation in the presence
of dropout is given by Moerbeek (2008) and Ortega-Azurduy, Tan, and Berger
(2008b) showed for different dropout functions with about 70% dropout at the
last time point, that the D-optimal design points for linear mixed effects models
tended to be displaced in the direction of the time scale where the probability
of encountering dropout is smallest. Moreover, for the dropout functions that
were studied, the maximum efficiency loss due to dropout is smaller than 15%.
These results seem to suggest that for estimating parameter purposes, dropout
is not a very serious problem in a repeated measurement study and that design
efficiency can be maintained by increasing the planned sample size in advance
by 15%.

7.11 Matrix formulation of the linear mixed effects
model

In matrix notation, the linear mixed effects model can be formulated as:

yi = Xiβ + Zibi + εi, (7.19)

where the m × 1 vector yi contains the m repeated measurements for the ith
subject, the p × 1 column vector β contains the fixed parameters and the q × 1
vector bi contains the individual random parameters. The matrices Xi and Zi are
the known m × p and m × q design matrices for the fixed and random effects
and the errors εi’s are normally distributed each with mean zero and a common
positive-definite variance–covariance matrix σ 2

ε �. The matrix � can have any
form, including the independent error case and the auto-correlated error case.

The random effects parameter vector bi describes the deviation of the indi-
vidual responses from the overall average response pattern and it is assumed that
bi is normally distributed with mean zero and q × q variance–covariance matrix
D. The random effects bi and the errors εi are also assumed to be independent.

The variances and covariances of the repeated measurements are the weighted
sum of the variances and covariances of the random effects parameters and
variances and covariances of the errors. Thus,

Cov(yi) = ZiDZ i
′ + σ 2

ε �. (7.20)
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Let the vector θ = (β, σ 2)′ contain all the fixed parameters β and variance com-
ponents σ 2 of the linear mixed model. Then ML estimates can be obtained
by maximizing the likelihood function L(θ) or by minimizing −2 times the
logarithm of the likelihood, that is:

−2ln(L(θ)) =
n∑

i

{
m ln(2π) + ln(Det[Cov(yi)])

+(yi − Xiβ)′Cov(yi)
−1(yi − Xiβ)

}
. (7.21)

The expression ln(.) stands for the natural logarithm, and Det[Cov(yi)] is
the determinant of Cov(yi). When the variance components are known, the ML
estimators of β are equal to the generalized least squares estimators for the fixed
parameters:

β̂ =
(

n∑

i

Xi
′[Cov(yi)]

−1Xi

)−1 n∑

i

Xi
′[Cov(yi)]

−1yi, (7.22)

When the variance components are not known but estimates are available,
Equation (7.22) can still be used as an estimator of β. ML estimates of the
variance components are obtained by minimizing −2 ln(L(θ)) in Equation (7.21)
with respect to the variance components, after β is replaced by β̂. REML
estimates of the variance components are obtained by minimizing a similar
function with respect to a set of error contrasts. See Verbeke and Molenberghs
(2000, Chapter 5) and Diggle et al. (2002, Chapter 4) for more details on ML
and REML estimation of the parameters.

The asymptotic variance–covariance matrix of the estimator β̂ is equal to

Cov(β̂) =
(

n∑

i

Xi
′ Cov(yi)

−1Xi

)−1

, (7.23)

and by means of the fixed parameter estimators β̂, the estimator of σ 2
ε can be

obtained from

σ̂ 2
ε = 1

N

n∑

i

[
(yi − Xiβ̂)′Cov(yi)

−1(yi − Xiβ̂)
]
. (7.24)

To illustrate the analysis of the bone mineral example, the RI model in
Equation (7.4) (Table 7.1, Case I) has the form:

⎡

⎢⎢⎢
⎣

yi1

yi2

yi3

yi4

yi5

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

1 t1
1 t2
1 t3
1 t4
1 t5

⎤

⎥⎥⎥
⎦

[
β0

β1

]
+

⎡

⎢⎢⎢
⎣

1
1
1
1
1

⎤

⎥⎥⎥
⎦

[b0i] +

⎡

⎢⎢⎢
⎣

εi1

εi2

εi3

εi4

εi5

⎤

⎥⎥⎥
⎦

(7.25)



210 OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH

For this model, the vector bi reduces to a scalar, that is, an RI parameter b0i ,
having variance σ 2

0 . The variance–covariance matrix of the responses for this
model has a compound symmetric structure and is

Cov(yi) = ZiDZ i
′ + σ 2

ε �

=

⎡

⎢⎢⎢⎢⎢
⎣

σ 2
0 σ 2

0 σ 2
0 σ 2

0 σ 2
0

σ 2
0 σ 2

0 σ 2
0 σ 2

0 σ 2
0

σ 2
0 σ 2

0 σ 2
0 σ 2

0 σ 2
0

σ 2
0 σ 2

0 σ 2
0 σ 2

0 σ 2
0

σ 2
0 σ 2

0 σ 2
0 σ 2

0 σ 2
0

⎤

⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢
⎣

σ 2
ε 0 0 0 0
0 σ 2

ε 0 0 0
0 0 σ 2

ε 0 0
0 0 0 σ 2

ε 0
0 0 0 0 σ 2

ε

⎤

⎥⎥⎥⎥
⎦

.

(7.26)

The inverse of this variance–covariance matrix is

Cov(yi)
−1

= 1

σ 2
ε (5σ 2

0 + σ 2
ε )

⎡

⎢⎢⎢⎢⎢
⎣

4σ 2
0 + σ 2

ε −σ 2
0 −σ 2

0 −σ 2
0 −σ 2

0

−σ 2
0 4σ 2

0 + σ 2
ε −σ 2

0 −σ 2
0 −σ 2

0

−σ 2
0 −σ 2

0 4σ 2
0 + σ 2

ε −σ 2
0 −σ 2

0

−σ 2
0 −σ 2

0 −σ 2
0 4σ 2

0 + σ 2
ε −σ 2

0

−σ 2
0 −σ 2

0 −σ 2
0 −σ 2

0 4σ 2
0 + σ 2

ε

⎤

⎥⎥⎥⎥⎥
⎦

.

(7.27)

The variance–covariance matrix of the FE parameters is now obtained by pre-
and post-multiplication of the Cov(yi)

−1 by Xi
′ and Xi , respectively, and this

product is weighted by n/N. Finally, after inverting the weighted product, we
obtain the 2 × 2 variance–covariance matrix of the FE parameters:

Cov(β̂) =
( n

N

)−1

⎡

⎢
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σ 2
0 + 11

10
σ 2

ε − 3

10
σ 2

ε

− 3

10
σ 2

ε

1

10
σ 2

ε

⎤

⎥
⎦ . (7.28)

Substituting n/N = 0.2, and the heuristic estimates σ̄ 2
0 = 0.3468 × 10−2 and

σ̄ 2
ε = 0.0251 × 10−2 into Equation (7.28) results in

Ĉov(β̂) = 10−1
[

0.1872 −0.0038
−0.0038 0.0013

]
. (7.29)

A straightforward calculation shows the determinant criterion value is
Det[Ĉov(β̂)] = 2.2099 × 10−6. To compute the generalized least squares
estimator β̂, we now use Equation (7.22), so that β̂ ′ = [0.8559, 0.0269] (see
also Table 7.3).
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7.12 Summary

The design of longitudinal studies is more complicated than the design of
cross-sectional studies, because the efficiency of longitudinal designs depends
on the correlation among the repeated measures. One of the most often applied
and most flexible statistical models to analyse longitudinal data, is the linear
mixed effects model. This model is flexible, because it can easily incorporate
dropout and include measurements from subjects taken at different time points.
Of course, optimal designs for longitudinal studies still require that the assumed
linear mixed effects model provides an adequate fit for the data.

In general, efficiency of polynomial parameter estimators increases more by
increasing the sample size than by increasing the number of repeated measure-
ments. It is not very efficient to measure the outcome variable at too many
different time points. A rule of thumb is to select no more repeated measure-
ments than there are fixed polynomial parameters in the model, that is, the number
of repeated measurements should be m = p. If, however, the linear mixed effects
model with p polynomial parameters is suspected not to adequately fit the data,
then one of two additional time points should be added to the design, and the
design should have m = p + 1 or m = p + 2 distinct time points. It is surely
not very efficient to design a longitudinal study with a lot more time points than
fixed polynomial parameters in the model. It should be noted that this rule of
thumb only applies to polynomial parameters in the model.

Unnecessary inclusion of extra time points would not only lead to a large loss
of efficiency, but also to spending money, which could have been better used to
increase the sample size. Moreover, if the measurement procedure is stressful or
painful, or the treatment is controversial, then ethical objections may be raised
as more repeated measurements are taken. Finally, inclusion of many repeated
measurements may increase the probability of dropout. Even if non-informative
or missing at random (MAR) dropout is encountered, the efficiency of a design
will decrease as the number of repeated measurements increases. But, in general,
the efficiency will show a small loss of about 15% for dropout patterns having
up to 70% dropout at the last time point, and such a moderate efficiency loss can
easily be compensated by increasing the sample size by about 15%.



8

Two-treatment crossover
designs

8.1 Design problem for crossover studies

A crossover (CO) design is a repeated measures design in which different treat-
ments are applied to the same subjects or experimental units in different time
periods. We will use the term experimental units in general and subjects or
patients for special examples. The term ‘crossover’ is used to emphasize that
experimental units are crossed over from one treatment to another during the
study. CO designs have been applied in psychological, biomedical and industrial
experimental research, and are described in Ratkowsky, Evans and Alldredge
(1993), Senn (2002) and Jones and Kenward (2003), among others. The CO
design can be seen as a form of the traditional row–column design when the
experimental units are considered to be blocks of units that are assigned the same
sequences of treatments. Bailey (2008) provides a review of row–column design.

CO designs have been proven to be particularly suitable for medical studies
investigating chronic diseases, where a treatment is not expected to cure a disease
but is intended to diminish symptoms. CO designs are also extensively used in
pharmacokinetics. For example, Soria et al. (2002) performed a bioequivalence
study to compare the effectiveness of two different types of inhalers for asthma
patients using a CO design. The reason for this was that very young or elderly
asthma patients are often not able to use a press-and-breath inhaler , because the
inhaler requires simultaneous inhalation and pressing action. For these patients,
a breath actuated inhaler may be easier. To investigate whether the medication
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delivery of the two inhalers is equivalent, Soria et al. (2002) employed a CO
design in which patients administered their own treatment using the two different
inhalers during four separate periods of time.

CO designs have also been applied in social science research. For example,
Parkes (1982) used a CO design in an experimental study on occupational
stress. In a training programme, student nurses were randomly assigned to four
sequences of ward types A, B, C and D. These sequences were AB, BA, CD and
DC over two training periods. Similarly, Jensen, Watanabe and Richters (1999)
used a CO design to study the effect of the order of presentation of two modules
A and B of a structured interview schedule for use in the diagnosis of child and
adolescent psychopathology. Families were randomly assigned to two sequences
AB and BA of the modules.

An alternative design to the CO design is the parallel-group (PG) design ,
where subjects are randomly assigned to sequences with a single treatment instead
of sequences with different treatments. The main advantage of CO designs over
PG designs is that CO designs require fewer subjects (patients) to achieve the
same level of efficiency and statistical power. The reason for this is that in a
CO design, treatments are compared within subjects and not between subjects
as is the case in PG designs. Since every subject in a CO design receives all
the treatments successively, the variance between the subjects does not play a
role in the treatment comparison. This implies that the variance between the
subjects can be separated from the variance of the estimated difference between
treatments, resulting in less noise in the comparison. Consequently, less resources
are required in CO designs to perform as well as the PG designs.

There are drawbacks with CO designs, and assumptions in the CO designs
must be met before their benefits can be realized. CO designs produce the
so-called carry-over effects as nuisance effects. We speak of a carry-over effect
when the effect of a treatment on the outcome from a specific period of time
extends into the subsequent time periods. If two treatments are given in two suc-
cessive periods of time and treatment A is offered before treatment B, the effect
of treatment A on the outcome may continue to be present during the second
period where treatment B starts to take effect. Thus, any variation in outcome
during the second period could be a direct effect of treatment B, and also an
indirect carry-over effect related to treatment A. The simultaneous occurrence of
the effects of treatments A and B in the second period will complicate analysis
and interpretation.

Carry-over effects are generally classified according to the number of time
periods involved. The so-called first-order carry-over effects occur between two
adjacent time periods. Higher-order carry-over effects refer to effects ranging
across time periods that are more than one period apart. Higher-order carry-over
effects can usually be neglected if there is no first-order carry-over effect and a
non-significant test for first order carry-over effects is often sufficient to conclude
that higher-order carry-over effects are not present. Even more severe problems
can happen when the carry-over effects are different for different treatments; that
is, when treatment A has a carry-over effect that differs from the carry-over effect
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of treatment B. Such carry-over effects are referred to as differential carry-over
effects .

A carry-over effect may reveal a period × treatment interaction in the data
analysis and this may in turn lead to biased conclusions about treatment effects.
This means that CO designs cannot be applied routinely and certainly not in
studies where treatments are known to change the ‘state’ that experimental units
are in.

A drawback of CO designs is that their use can be limited either on ethical
grounds or in terms of practical implementation. For example, CO designs may
take longer to carry out because of the unknown duration of the carry-over effects
or one of the treatments under investigation has to be administered immediately
to save the patient when the patient becomes sick.

Another disadvantage of CO designs is that the effect of a particular treatment
can cause experimental units to drop out of the study. In this case, the effects of
other treatments cannot be measured for these experimental units and vital infor-
mation will be missed. Dropout complicates the analysis of such designs. It can
be argued that since treatment sequences are randomly assigned to experimental
units, the dropout process of a unit due to a treatment effect may be thought
to be missing at random (MAR) and so the usual methods of data analysis are
still valid. However, one must always remain cautious, because the probabil-
ity of dropout may be different in different treatment regimes. Of course, both
carry-over effects and dropout may also be a problem in a PG design where the
effect of one treatment is measured at different occasions. This is especially so
when carry-over effects are different for different treatments and when dropout is
caused by specific characteristics of a treatment. The end result is that estimators
of treatment effects are biased and the internal validity of the study becomes
questionable (Cook and Campbell, 1979).

These problems are well documented in the literature for the two-treatment
and two-period CO design (AB and BA), and various solutions to overcome the
problems have been proposed. Ebbutt (1984) and Laska and Meisner (1985),
among others, suggested extending the number of periods from two to three
or more periods. Earlier on, Wallenstein (1979), Kershner and Federer (1981),
Laska, Meisner and Kushner (1983), Patel (1983), and Pocock (1983) proposed
including baseline measurements in the design. Fleiss (1989), however, pointed
out that these solutions have problems of their own and recommended that a
two-treatment CO design be only used if equality or near equality of carry-over
effects can a priori be assumed. Otherwise, a PG design, with each group of units
receiving only one treatment, with possible baseline measurements as covariates,
should be preferred. Cox (1958) already described CO designs under the specific
assumption of no carry-over effects. We will discuss CO designs under the a
priori assumption that carry-over effects are equal or nearly equal. Preferably,
carry-over effects should be zero for a valid analysis of data from CO designs.

It should be clear by now that carry-over effects are a key issue with CO
designs. An often applied method to decrease carry-over effects is the inclu-
sion of a washout period between the successive occasions. Such a washout
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period is meant to make sure that the treatment effect of a previous period is
no longer active in the current period. If a set washout period proves sufficient
to guard against first-order carry-over effects, it can usually safely be assumed
that higher-order carry-over effects are not present. However, it is difficult to
determine how long a washout period should be. A long washout period may
not be manageable or ethically justified, while if the washout period is too short
it will miss the mark. In studies that involve medication, the life time of a drug
often determines the length of the washout period. A drug’s half-life is the time
necessary for the drug levels in the blood to decrease by half in the population of
interest. The length of a washout period is usually a multiple of a drug’s half-life.
In other fields, such as psychotherapy or education, there are no criteria to estab-
lish the length for an effective washout period. Although a washout period can
be extended, there is no guarantee that a previous treatment does not still affect
the experimental units in such a way that future responses remain influenced by
that treatment.

Carry-over effects raise questions in data analysis as well. One of the most
frequently applied procedures in a two-treatment and two-period design is the
two-step procedure proposed by Grizzle (1965, 1974), which first tests for pos-
sible carry-over effects. If the test reveals significant carry-over effects, then
only the data from the first period are analysed to test for treatment effects. If,
however, the first test does not reveal significant carry-over effects, then the anal-
ysis is carried out on the complete data set. This procedure has been criticized
by Freeman (1989), Senn (2002) and Senn and Lee (2004) as being potentially
misleading because the first test and the final test in the procedure are highly
dependent and the overall type I error rate of the procedure is not adequately
controlled.

8.2 The design

A CO design can be denoted by the triplet (t, s, m), and is characterized by
the number of different treatments (t), the sequences of treatments (s) and the
number of occasions or periods in time (m), where the repeated measurements are
taken (see also Hedayat and Afsarinejad, 1975). The location of a treatment can
be symbolized as d(j, k), where the index j = 1, . . . , m represents the periods
in time and the index k = 1, . . . , s represents the different sequences. The total
number of experimental units in an arbitrary CO design is N = ∑s

k nk, where nk

is the number of experimental units (subjects) that receive sequence k. The total
number of observations is N × m.

Apart from the treatment effects , which are of main interest for the study,
a CO design also harbours the so-called nuisance effects , such as sequence,
period and carry-over effects . Two features of a CO design can be used to
distinguish treatment effects from nuisance effects. The first feature is uniformity
and the second feature is (strongly) balancedness (Afsarinejad, 1990). A CO
design (t, s,m) is said to be uniform in periods if each treatment is administered
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the same number of times in each period. A CO design (t, s,m) is said to be
uniform in sequences if each treatment is administered the same number of times
within each sequence. Such uniformity of a CO design enables us to disentangle
period and sequence effects from treatment effects.

A balanced CO design with respect to (first-order) carry-over effects has
each treatment preceding each other treatment the same number of times. A
design is strongly balanced when each treatment precedes every other treatment,
including itself , the same number of times. So, in a strongly balanced design
with t treatments, all t2 sequences of treatments occur the same number of times,
while in a balanced design only the t (t − 1) sequences of different treatments
arise. A strongly balanced CO design enables control of carry-over effects. In a
later section, we explain how uniformity and balancing of CO designs affect the
confounding of treatment effects with nuisance parameters.

In Table 8.1, three designs with two treatments A and B and two periods are
displayed. The first design is a CO design (2, 2, 2), with s = 2 sequences, each
with t = 2 differently ordered treatments, namely AB and BA. The number of
periods is m = 2. In this design, the total sample of units is randomly divided into
two groups with nk units, each receiving the treatments in a different order. The
(2, 2, 2) CO design is both uniform in periods and sequences and is also balanced
because each treatment precedes the other treatment the same number of times
(only once). The second design is a PG design. The PG design also has s = 2
sequences, t = 2 treatments and m = 2 period, but the treatments are not crossed
over. Each group of experimental units receives only one of the two treatments
and units are randomly assigned to each group. The PG design is uniform in
periods but not uniform in sequences. Finally the third design combines a CO
with a PG design. It distinguishes four sequences, namely AB, BA, AA and BB.
The total sample of experimental units is randomly divided into four groups,
each receiving the treatments in one of four-sequence orders. This design, called
Balaam (BM )’s design (Balaam, 1968), is uniform in periods, but not within
sequences and it is also strongly balanced, because each treatment precedes the
other treatment, including itself, equally often. The treatment sequences AB, BA,
AA and BB occur equally often (only once).

Table 8.1 Two-treatment and two-period designs.

Cross-over Parallel-group Balaam’s
design (2, 2, 2) design (2, 2, 2) design (2, 4, 2)

Period Period Period

1 2 1 2 1 2

Sequence 1 A B A A A B
Sequence 2 B A B B B A
Sequence 3 A A
Sequence 4 B B
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As indicated before, a CO design contains the problem that treatment effects
cannot be separated from carry-over effects. Because of the problem of carry-over
effects in (2, 2, 2) CO designs, Senn (2002), among others, questioned its use-
fulness and advised first investigating whether the PG design would be a better
alternative.

The two-period designs in Table 8.1 can be extended with an extra period. For
t = 2 treatments and m = 3 periods there are 23 possible sequences of treatments:
ABB, BAA, AAB, BBA, ABA, BAB, AAA and BBB, and a three-period design
can in principle consist of combinations of these sequences. In Table 8.2, three
designs with m = 3 periods and t = 2 treatments are presented. Note that if the
third period is deleted from each of these designs, they will reduce to one of the
designs in Table 8.1.

Table 8.2 Two-treatment and three-period designs.

Design (2, 2, 3) Design (2, 4, 3) Design (2, 4, 3)

Period Period Period

1 2 3 1 2 3 1 2 3

Sequence 1 A B B A B A A B B
Sequence 2 B A A B A B B A A
Sequence 3 A A A A A B
Sequence 4 B B B B B A

The three designs in Table 8.2 are not uniform within sequences because of
the addition of an extra period, but they remain uniform within periods and they
are balanced because each treatment precedes every other treatment the same
number of times. Moreover, these designs are also strongly balanced , that is,
each treatment precedes the other treatment, including itself, the same number
of times. This can be checked by verifying that the combinations AB, BA, AA
and BB occur equally often in the sequences of each design.

8.3 Confounding treatment effects with nuisance
effects

We use the commonly used analysis of variance parameterization for CO designs
to explain confounding treatment effects with nuisance effects. We say that a
treatment effect and a nuisance effect are confounded if they cannot be separated
from each other. The practical implementation of confounding is that we have
biased estimates for the treatment effect. To elaborate on this important concept,
consider the two-treatment and two-period CO design presented in Table 8.3. As
indicated before, this design distinguishes different effects. Let μ represent the
overall population mean of the outcome scores and let τA and τB be the direct
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effects of two treatments A and B, respectively. The nuisance parameters π1

and π2 represent the period effects for periods 1 and 2 and ζ1 and ζ2 are the
sequence effects for sequences AB and BA, respectively. The carry-over effect
from treatment A to treatment B is λA and from B to A is λB. In Table 8.3, the
expected values of an outcome variable of each of the four cells for a (2, 2, 2) CO
design are now represented as the sum of direct treatment effects and nuisance
parameters.

Table 8.3 Expected values of (2, 2, 2) cross-over design.
Period 1 Period 2

Sequence AB μ + τA + ζ1 + π1 μ + τB + ζ1 + π2 + λA

Sequence BA μ + τB + ζ2 + π1 μ + τA + ζ2 + π2 + λB

The expected values of the treatment estimators τ̂A and τ̂B are obtained from
the averages of the cells that contain τA and τB, respectively:

E(τ̂A) = 1
2 [(μ + τA + ζ1 + π1) + (μ + τA + ζ2 + π2 + λB)]

= μ + τA + 1
2 (ζ1 + ζ2) + 1

2 (π1 + π2) + 1
2λB

and

E(τ̂B) = 1
2 [(μ + τB + ζ2 + π1) + (μ + τB + ζ1 + π2 + λA)]

(8.1)
= μ + τB + 1

2 (ζ1 + ζ2) + 1
2 (π1 + π2) + 1

2λA.

The expected difference between these two treatment estimators is

E(τ̂A − τ̂B) = (τA − τB) − 1
2 (λA − λB). (8.2)

It can be seen that the treatment differences are confounded with carry-over
effects. The estimator of this treatment difference is biased and will only be
unbiased when the two carry-over effects are equal, that is when λA = λB.

Although the parameterization in Table 8.3 is straightforward and easy to
explain, all the parameters cannot be estimated independently. In total, nine
parameters are distinguished, while there are only four cells. Therefore, some
restrictions have to be imposed upon the parameters. Commonly applied restric-
tions in analysis of variance are

∑
j πj = 0 and

∑
k ζk =0, so that the period

effects in Table 8.3 are π2 = −π1 and the sequence effects are ζ2 = −ζ1. But
these restrictions will not change the confounding of the expected difference of
treatment estimators with carry-over effects in Equation (8.2). The fact that in the
(2, 2, 2) CO design, sequence effects ζk and period effects πj are not confounded
with the difference of treatment estimators is due to the feature that this design
is uniform in both periods and sequences.
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A design that is not uniform in sequences is BM’s design shown in Table 8.1.
This design is, however, uniform in periods and is also strongly balanced. To
see how these features affect the confounding with nuisance effects, the expected
outcome values for BM’s design are given in Table 8.4.

Table 8.4 Expected values of (2, 4, 2) cross-over design (Balaam’s
design).

Period 1 Period 2

Sequence AB μ + τA + ζ1 + π1 μ + τB + ζ1 + π2 + λA

Sequence BA μ + τB + ζ2 + π1 μ + τA + ζ2 + π2 + λB

Sequence AA μ + τA + ζ3 + π1 μ + τA + ζ3 + π2 + λA

Sequence BB μ + τB + ζ4 + π1 μ + τB + ζ4 + π2 + λB

The parameterization in Table 8.4 is the same as that of Table 8.3. In addition
it is assumed that the carry-over effect λA of A onto B (sequence AB, period 2) is
equal to the carry-over effect of A onto A (in sequence AA, period 2). Likewise,
the carry-over effect λB of B onto A (in sequence BA, period 2) is equal to the
carry-over effect of B onto B (sequence BB, period 2). The expected values of
treatment estimators for A and B are the averages of the cells that contain the
corresponding treatment effect:

E(τ̂A) = μ + τA + 1
4 (ζ1 + ζ2 + 2ζ3) + 1

4 (2π1 + 2π2) + 1
4 (λA + λB)

and (8.3)

E(τ̂B) = μ + τB + 1
4 (ζ1 + ζ2 + 2ζ4) + 1

4 (2π1 + 2π2) + 1
4 (λA + λB).

For this design, the expected difference between the treatment estimators
reduces to

E(τ̂A − τ̂B) = (τA − τB) + 1
2 (ζ3 − ζ4). (8.4)

From Equation (8.4), it is seen that the difference between the treatment effect
estimators is not confounded with carry-over effects. This is due to the fact that
the design is strongly balanced. Since the design is not uniform within sequences,
the difference in treatment effect estimators is confounded with sequence effects
ζk . This confounding will only disappear if ζ3 = ζ4 or ζ3 = ζ4 = 0.

The three designs in Table 8.2 have the same features as BM’s design. They
are uniform in periods, but not uniform in sequences, and they are strongly bal-
anced, meaning that they do not suffer from confounding of treatment differences
with carry-over effects. Because the difference of treatment estimators is con-
founded with sequence effects, it is important to assume that these sequence
effects are negligible. Although random assignment of experimental units to
sequences is a method to increase the validity of this assumption, it may not
completely guarantee zero-sequence effects for small samples.
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In summary, here are a few conclusions about uniformity and balancing of
CO designs. Afsarinejad (1990) and Vonesh and Chinchilli (1997) explained
that a uniform and strongly balanced CO design is the best safeguard against
confounding of treatment differences with nuisance parameters:

• A CO design that is uniform in periods will not have treatment differences
confounded with period effects. This is important, because period effects
are quite often influenced by natural or physical (daily, seasonal) rhythms
of subjects. For example, learning processes of students or adaptation of
patients to a treatment in later periods can cause the results in later periods
to increase or decrease.

• A CO design that is uniform in sequences will not have treatment differ-
ences confounded with sequence effects. Random assignment of experi-
mental units to sequences may protect against confounding with sequence
effects.

• A CO design that is strongly balanced will not have treatment differences
confounded with first-order carry-over effects. Protection against confound-
ing of higher-order carry-over effects is more complicated.

8.4 The linear model for crossover designs

In a CO design, treatment effects are distinguished from sequence and period
effects. Throughout it is assumed that only one measurement per period is
obtained from an experimental unit. Although actually more measurements per
period can be obtained, we assume that these measurements are adequately rep-
resented by just one score per period per experimental unit. The standard linear
model for a measurement yijk of the ith experimental unit in period j receiving
the kth sequence of treatments is

yijk = μ + τd(j,k) + ξik + πj + λd(j−1,k) + εijk , (8.5)

where μ is the overall mean, τd(j,k) is the effect of treatment d(j, k) in period
j (j = 1, . . . ,m) and sequence k (k = 1, . . . , s) and ξik is the effect of the ith
experimental unit or subject in sequence k, with i = 1, . . . , nk, where nk is the
number of experimental units receiving the treatments according to sequence
k. The period effect is πj and λd(j−1,k) is the residual or first-order carry-over
effect of treatment d(j − 1, k) in the (j − 1)th period. For period j , the notation
d(j − 1, k) refers to the treatment in the preceding period, that is the (j − 1)th
period. If (j − 1) = 0, the expression d(j − 1, k) indicates no treatment and
λd(j−1,k) = 0. Finally, the errors εijk are usually assumed to be independently
and normally distributed as N(0, σ 2

ε ).
There are two assumptions for this model. The first assumption is that the

subject-specific parameters ξik are fixed parameters. In this case, the model
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is referred to as a fixed effects model because all (treatment and nuisance)
parameters are fixed. The second assumption is that the subject-specific param-
eters ξik are random parameters, which are normally distributed as N(ζk, σ

2
ξ ). It

is often convenient but not necessary to assume that E(ξik ) = ζk = 0. Under the
assumption of random subject-specific parameters ξik , the model is referred to
as a linear mixed-effects model , with both random subject parameters and fixed
parameters. Currently, analyses for CO designs typically assume a linear mixed
model with random subject parameters.

For the random subject model, the variance of the responses in Model (8.5)
is equal to the sum of the variances between subjects σ 2

ξ and within subjects
σ 2

ε , that is var(yijk ) = σ 2
ξ + σ 2

ε , while the covariance of the responses between
period j and j ’ is cov(yijk , yij ′k) = σ 2

ξ . This means that the variance–covariance
matrix of responses has a compound symmetric structure:

Cov(yi) =

⎡

⎢
⎢⎢⎢
⎣

σ 2
ξ + σ 2

ε σ 2
ξ . . . σ 2

ξ

σ 2
ξ σ 2

ξ + σ 2
ε . . . σ 2

ξ

...
...

...
...

σ 2
ξ σ 2

ξ . . . σ 2
ξ + σ 2

ε

⎤

⎥
⎥⎥⎥
⎦

. (8.6)

Let us return to the simple (2, 2, 2) CO design. In Table 8.5, the model in
Equation (8.5) describes the observations in the four cells of a (2, 2, 2) CO design,
with s = m = 2 and two treatments A and B, that is d(1, 1) = d(2, 2) = A, and
d(1, 2) = d(2, 1) = B. We note that the expected values of the random subject
parameter ξik in the kth treatment sequence are equal to the sequence effect, that
is E(ξik ) = ζk , where ζk is the kth sequence effect.

Table 8.5 Model for (2, 2, 2) cross-over design.
Period 1 Period 2

Sequence AB yi11 = μ + τA + ξi1 yi21 = μ + τB + ξi1 + π2

+π1 + εi11 +λA + εi21

Sequence BA yi12 = μ + τB + ξi2 yi22 = μ + τA + ξi2 + π2

+π1 + εi12 +λB + εi22

To be able to estimate these parameters, we impose restrictions. In total,
we have seven parameters and four independent cells. This means that three
restrictions must be imposed to obtain a saturated model where the number of
estimated parameters is equal to the number of cells.

Several different restrictions can be imposed to estimate the parameters. If
we assume that there are carry-over effects such that λ = λA = −λB, and that
the period effects are π2 = −π1, but that there are no sequence effects (expected
subject parameters within a sequence), that is ζ1 = ζ2 = 0, then four remaining
parameters can be estimated independently, namely (μ + τA), (μ + τB), π1 and
λ. It should be noted that under this set of restrictions, the carry-over effect λ is
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confounded with the difference between treatment estimators, that is (τ̂A − τ̂B)

− λ = 1
2 (ȳ11 + ȳ22 − ȳ12 − ȳ21), where ȳjk is the mean of observations in the

cell (jk ).
On the other hand, we can assume that there are no carry-over effects, that is

λA = λB = 0, and that the period effects are π2 = −π1. If we would also want to
distinguish sequence parameters as ζ2 = −ζ1, then there are four parameters to
be estimated independently, namely two treatment effects (μ + τA) and (μ + τB)

and two nuisance parameters π1 and ζ1. An unbiased estimator of the treatment
difference in Table 8.5 is then (τ̂A − τ̂B) = 1

2 (ȳ11 + ȳ22 − ȳ12 − ȳ21).

8.5 Estimation of parameters and efficiency

The model in Equation (8.5) has fixed (treatment) parameters and fixed nui-
sance parameters for periods, sequences and carry-over effects. It also includes
subject-specific parameters that are often assumed to be random. The usual way of
estimating the fixed (treatment, period and carry-over) parameters along with the
random (subject-specific) parameters or their variance components (between- and
within-subject variances) is by means of restricted maximum likelihood (REML).
This method consists of two steps. In the first step, we eliminate the fixed parame-
ters from the likelihood function. The resulting marginal likelihood function does
not depend on the fixed parameters but only on the variance components σ 2

ξ and
σ 2

ε . The estimates of these variance components are found by maximizing the
marginal likelihood. In the second step, generalized least squares (GLS) is applied
with an estimate of the variance–covariance matrix Cov(yi) based on the REML
estimates of σ 2

ξ and σ 2
ε . See Harville (1974), Searle, Casella and McCulloch

(1992), Diggle, Liang and Zeger (1994) and Verbeke and Molenberghs (2000),
among others, for details on maximum likelihood (ML) and REML estimation
of the fixed and random parameters in a mixed effects model. Chinchilli and
Esinhart (1996) gave details on ML and REML estimation for CO experiments,
and showed that closed form expressions for ML and REML estimators of the
variance components exist when the CO design is uniform in terms of sequences.
REML estimates are usually less biased downwards than ML estimates, but the
differences disappear when sample sizes become large.

8.6 Cost and efficiency of the crossover design

The main argument for using a CO design is that treatment effects can be esti-
mated more precisely than using a completely randomized (CR) design or a PG
design. We demonstrate this by studying the efficiency and cost efficiency of
a (2, 2, 2) CO design with two treatment sequences AB and BA in compar-
ison to three alternative designs; namely, a CR design with two groups, each
receiving a single treatment (A or B) only once, a PG design with two treatment
sequences AA and BB and BM’s design with four treatment sequences AB, BA,
AA and BB. Note that the CR design has no repeated measurements, while the
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CO, PG and BM designs have two repeated measurements. Also note that BM
has four different treatment sequences, while the other three designs only have
two treatment sequences (groups).

In order to make a valid comparison, we must assume that the carry-over
effects in the CO design are zero or at least equal for both treatments. Equation
(8.2) shows that for the CO design, the difference of treatment effects estimators
and carry-over effects are confounded. For the PG design, a similar confounding
of treatment differences with carry-over effects is encountered, but in this case the
carry-over effects appear in the second period where the same treatment is given
(i.e. within the same treatment) while in CO designs the carry-over effects emerge
between different treatments. We will assume that the carry-over effect λA from
A to B into the second period is the same as the carry-over effect λA from A to A
in the second period. Likewise, the carry-over effect λB from B to A in the second
period is identical to the carry-over effect λB from B to B in the second period.
This assumption is especially important in BM’s design, where it is assumed
that the carry-over effect of A in the second period is equal for the sequences
AB and AA, and the carry-over effect of B in the second period is identical for
the sequences BA and BB. Finally, we note that the expected estimate of the
treatment difference in a CR design does not contain carry-over effects.

Table 8.6 shows the expected values of the differences between treatment
effect estimators for the four designs and their corresponding variances. The
total number of subjects is divided randomly and equally over the groups. For
the CO, CR, PG and BM designs the total number of subjects is denoted as
NCO, NCR, NPG and NBM, respectively. Each group (sequence of treatments) in
the CO, CR and PG designs contains NCO /2, NCR /2 and NPG /2 subjects, respec-
tively. The total number of subjects NBM for BM’s design is equally divided over
four treatment sequence groups, that is, each sequence group contains NBM/4
subjects. Because of the random assignment of subjects to sequences, we will
assume that the sequence effects are zero.

Table 8.6 Expected differences of treatment estimators and their variances.

Designs Expectation Variance

CO E(τ̂A − τ̂B) = (τA − τB)

− 1
2 (λA − λB)

varCO(τ̂A − τ̂B) = 2σ 2
ε

NCO

CR E(τ̂A − τ̂B) = (τA − τB) varCR(τ̂A − τ̂B) = 4(σ 2
ξ + σ 2

ε )

NCR

PG E(τ̂A − τ̂B) = (τA − τB)

+ 1
2 (λA − λB)

varPG(τ̂A − τ̂B) = 2(2σ 2
ξ + σ 2

ε )

NPG

BM E(τ̂A − τ̂B) = (τA − τB) varBM(τ̂A − τ̂B) = 2(σ 2
ξ + σ 2

ε )

NBM

Note. (i) Within-treatment and between-treatment carry-over effects are equal; (ii) the variances
assume equal carry-over effects λA = λB; (iii) all sequence effects are assumed to be zero.
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The expected values of the differences between treatment effect estimators in
Table 8.6 include distinct carry-over effects λA and λB, but the variances of these
differences in treatment effect estimators assume the two carry-over effects to be
equal. For example, the difference of the treatment estimators for the CO design
is unbiased only if λA = λB. The corresponding variance of the difference of the
treatment effect estimators is then

varCO(τ̂A − τ̂B) = σ 2
ε

2

(
2

NCO
+ 2

NCO

)
= 2σ 2

ε

NCO
, (8.7)

where σ 2
ε is the variance of the error term.

From Table 8.6, we observe that if the total sample sizes of the four designs
are equal, that is if NCO = NCR = NPG = NBM, the variances of the difference
of treatment effect estimators are related as follows:

varCO(τ̂A − τ̂B) ≤ varBM(τ̂A − τ̂B) ≤ varPG(τ̂A − τ̂B) < varCR(τ̂A − τ̂B). (8.8)

Given equal sample sizes, the CO design is the most efficient design with the
smallest variance of the estimator of a treatment difference and the CR design
is the least efficient with the largest variance. The variance varCO(τ̂A − τ̂B) is
only equal to the variance varBM(τ̂A − τ̂B) or the variance varPG(τ̂A − τ̂B) if the
between-subject or between-unit variance σ 2

ξ = 0, that is if the model is a fixed
effects model. The reason why the CR design is the least efficient is because
the CR design has only N = NCR observations, while the other designs all have
twice as many observations, that is 2 × N .

The relative efficiency (RE) of a design compared to another design is the ratio
of the two variances of the estimators of the treatment effect differences. Table 8.7
shows the six REs obtained from the pair-wise comparison of the CO, CR, PG
and BM designs. If the between-subject variance σ 2

ξ = 0 (fixed effects model),
the formulas show that the REs depend only on the sample sizes. However, if the
between-subject variance is greater than zero, that is, if σ 2

ξ > 0 (random effects
model), the RE can be formulated as a function of the corresponding sample sizes
and the between-subject variance σ 2

ξ together with the within-subject variance σ 2
ε .

These REs indicate how many observations are needed in one design to
be equally efficient as the other design. Table 8.7 also shows the relationships
among the sample sizes for any two of the CO, CR, PG and BM designs to be
equally efficient. These relationships may or may not depend on the variances σ 2

ξ

and σ 2
ε . For example, a two-group CR design with a total of NCR experimental

units will require at least twice as many experimental units to have the same
efficiency as the CO design with a total of NCO units: NCR = 2NCO

/
(1 − ρ). If

the between-subject variance σ 2
ξ = 0 and the intra-class correlation ρ = 0, then

NCR = 2NCO. Further discussion on this relationship is given in Chassan (1970)
and Brown (1980). Likewise, the two-group CR design will need at least twice
as many experimental units as needed in the BM’s design where the total of NBM

units are evenly divided over the four groups, that is NCR = 2NBM.
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Table 8.7 Relative efficiency and sample sizes under equal efficiency.

Design Relative efficiency Sample size under equal efficiency
pairs

CO/CR RECO/CR = NCRσ 2
ε

2NCO(σ 2
ξ + σ 2

ε )
NCR = 2NCO(σ 2

ξ + σ 2
ε )

σ 2
ε

= 2NCO

(1 − ρ)

CO/PG RECO/PG = NPGσ 2
ε

NCO(2σ 2
ξ + σ 2

ε )
NPG = NCO(2σ 2

ξ + σ 2
ε )

σ 2
ε

= NCO(1 + ρ)

(1 − ρ)

PG/CR REPG/CR = NCR(2σ 2
ξ + σ 2

ε )

2NPG(σ 2
ξ + σ 2

ε )
NCR = 2NPG(σ 2

ξ + σ 2
ε )

(2σ 2
ξ + σ 2

ε )
= 2NPG

(1 + ρ)

CO/BM RECO/BM = NBAσ 2
ε

NCO(σ 2
ξ + σ 2

ε )
NBM = NCO(σ 2

ξ + σ 2
ε )

σ 2
ε

= NCO

(1 − ρ)

BM/PG REBM/PG = NPG(σ 2
ξ + σ 2

ε )

NBM(2σ 2
ξ + σ 2

ε )
NPG = NBM(2σ 2

ξ + σ 2
ε )

(σ 2
ξ + σ 2

ε )
= NBM(1 + ρ)

BM/CR REBM/CR = NCR(σ 2
ξ + σ 2

ε )

2NBM(σ 2
ξ + σ 2

ε )
NCR = 2NBM

Note. Intra-class correlation: ρ = σ 2
ξ /(σ 2

ξ + σ 2
ε ).

In this pair-wise comparison of efficiency of designs, we assume that there
is no distinction between the costs of sampling subjects and the costs of treating
and measuring them. However, if the cost of recruiting subjects and the cost
of measuring and treating subjects are different, we should account for the cost
differential when we compare the four types of designs. This is the topic of the
next section.

8.6.1 Cost function

Consider the cost function that was used in previous chapters. Let c0 represent
the initial cost for setting up a study and let c1 and c2 be the costs of sampling an
experimental unit and the costs of treating and measuring that unit, respectively.
Then the total cost of performing a study with each of the designs is the sum of
the costs for the initial set-up of the study, the costs of sampling all experimental
units and the costs of treating and measuring these units:

CO design: CCO = c0 + NCOc1 + 2NCOc2,

CR design: CCR = c0 + NCRc1 + NCRc2, (8.9)

PG design: CPG = c0 + NPGc1 + 2NPGc2 and

BM design: CBM = c0 + NBMc1 + 2NBMc2.

Here, we assume that c0, c1 and c2 are the same for all designs. When two
designs are equally efficient, a relative cost function R can be used to compare
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the costs of two designs. For example, when we compare the CO design with
the CR design, the relative cost is

RCO/CR = CCO − c0

CCR − c0
= NCOc1 + 2NCOc2

NCRc1 + NCRc2
= NCO(f + 2)

NCR(f + 1)
, (8.10)

where f = c1/c2. The relative cost RCO/CR is a function of c1, c2, NCO and
NCR. Because the RE of two designs is unity, the sample size formula NCR =
2NCO/(1 − ρ) from Table 8.7 can be substituted into the relative cost func-
tion RCO/CR in Equation (8.10), giving RCO/CR = ((1 − ρ)(f + 2))/(2(f + 1)).
Table 8.8 shows the relative cost function together with the relative cost func-
tions of the other pairs of designs. Additionally, the table shows that when any
two of the four designs are equally efficient, the relative cost is a function of the
intra-class correlation ρ or the function f = c1/c2. Figure 8.1 shows the relative
costs RCO/CR, RPG/CR and RBM/CR as functions of f = c1/c2, where 0 < f < 10
and ρ > 0.

Table 8.8 Relative cost for paired CO,
CR, PG and BM designs when the paired
designs are equally efficient.

Design pairs Relative costs

CO/CR RCO/CR = (1 − ρ)

2

(f + 2)

(f + 1)

CO/PG RCO/PG = (1 − ρ)

(1 + ρ)

PG/CR RPG/CR = (1 + ρ)

2

(f + 2)

(f + 1)

CO/BM RCO/BM = (1 − ρ)

BM/PG RBM/PG = 1

(1 + ρ)

BM/CR RBM/CR = 1

2

(f + 2)

(f + 1)

Note. Intra-class correlation ρ = σ 2
ξ /(σ 2

ξ + σ 2
ε ), f =

c1/c2 (for c2 > 0).

The relative cost function RCO/CR compares the CO design with the CR
design and it approaches unity when the ratio f and the intra-class correlation ρ

become increasingly small, that is RCO/CR → 1 as f → 0 and ρ → 0. See also
Brown (1980) for a slightly different form of RCO/CR. When both CO and CR
designs are equally efficient, the CO design will always cost less than the CR
design. The cost is the same for both designs only when we can recruit subjects
freely (i.e. f = 0) and the variance between subjects is zero (or ρ = 0). Another
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way of interpreting this comparison is that the CR design will become more
expensive than the CO design as the costs of recruiting units relative to the costs
of treating and measuring them increase, and as the correlation ρ becomes larger.

The relative cost function RPG/CR compares the PG design with the CR design,
and it shows that as f → 0 and ρ → 0, the relative cost RPG/CR → 1. This effect
is plotted in Figure 8.1b. Unlike the RCO/CR function, the RPG/CR may or may
not exceed unity implying that the CR design is sometimes more and sometimes
less expensive than the PG design. For high ρ values, the CR design is generally
less costly, while for low ρ values the PG is generally less costly; the latter is
especially true when f = c1/c2 is high.

The relative cost RBM/CR compares the BM design with the CR design and
it does not depend on the intra-class correlation ρ. It is only a function of f ,
and the plot in Figure 8.1c shows that RBM/CR → 1 as f → 0. Figure 8.1d
shows the relative cost functions RCO/PG, RCO/BM and RBM/PG versus values of
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Figure 8.1 Relative costs of design pairs as function of cost ratio and intra-class
correlation.
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the intra-class correlation. We observe that as ρ → 0, these relative costs all
approach 1.

In summary, this cost–efficiency comparison shows that resources can be
saved by proper choice of the design. When all four designs are equally efficient,
the CO design is always preferable because it is also the cheapest of them all.
Figure 8.1d shows that savings of more than 50% can be obtained for moderate
and high ρ values by using the CO design instead of the PG design. However,
deciding whether a CR or PG design is more cost efficient is less straightforward.
The CR design is cheaper than the PG design for high ρ values and low f values,
but for low ρ values and high f values the PG design is cheaper.

Our cost–efficiency comparison is restricted to the CO, CR, PG and BM
designs. This procedure can be applied to other designs as well, as long as we
are willing to assume equal carry-over effects for the treatments and assume that
the model has independent errors. Kunert (1991) described two-treatment CO
designs with correlated errors and Carriere and Huang (2000) investigated the
impact of auto-correlated errors for a variety of CO designs. They compared
the cost savings of CO designs relative to CR designs and found that the CR
design was only better than the CO design in terms of cost, if the model has
very high (positive and negative) auto-correlated errors and small cost ratios and
small intra-class correlations (f < 1, ρ < 0.5).

8.7 Optimal crossover designs for two treatments

Hedayat and Afsarinejad (1978) were probably the first to consider optimal CO
designs. Since then, there has been extensive work on this topic by Cheng and Wu
(1980), Laska, Meisner and Kushner (1983) and Kushner (1997, 1998), among
others. Additional references are given in Matthews (1988), Afsarinejad (1990)
and Stufken (1996).

Two popular models for analysing a CO design with two treatments are the
so-called fixed effects model and the random subject model. The fixed effects
model distinguishes treatment effects from fixed nuisance parameters, and the
random subject (unit) model in addition to the fixed nuisance parameters assumes
random effects for the subjects or experimental units. Recall from Equation (8.5)
that the basic model of interest here is given by

yijk = μ + τd(j,k) + ξik + πj + λd(j−1,k) + εijk , (8.11)

where, as before, yijk are the responses of the ith experimental unit in period
j receiving the kth sequence of treatments. The symbols μ, τd(j,k), πj , λd(j−1,k)

and εijk are the overall mean, the effect of treatment d(j, k), the period effect,
the first-order carry-over effect and the random error, respectively.

The only difference between the fixed effects and the random subject model
is that the subject parameters ξik are assumed to be either fixed or random. In
the latter case, ξik is assumed to be normally distributed with a zero mean and
variance σ 2

ξ . The variance–covariance matrices of the responses in the fixed
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effect and random subject models are compound symmetric, and it can be shown
that the best linear unbiased estimators of the treatment effect differences and the
difference between the carry-over effects of the two treatments are the same for
the two models. Likewise, optimal designs with minimum variance for the esti-
mators of both treatment differences and differences in carry-over effects are the
same for both the fixed effects model and the random subject model. In general,
designs that are ‘good’ when the subject effects ξik are fixed, will also be ‘good’
when model contains random subject effects (Hedayat, Stufken and Yang, 2006).

Cheng and Wu (1980) and Laska, Meisner and Kushner (1983) found the fol-
lowing properties of optimal CO designs. The results do not depend on whether or
not carry-over effects exist or whether the design includes baseline measurements.

• Among all designs with s sequences, m periods and t treatments, a strongly
balanced and uniform (in periods and sequences) design is optimal for
estimating treatment effects and carry-over effects.

• A design that is balanced and uniform (in periods and sequences) in the
first (m − 1) periods and that is given the same treatment in the mth period
as in the (m − 1)th period for every sequence is optimal for estimating
treatment effects and carry-over effects.

These two statements can be used to check the optimality of the CO designs
with two treatments A and B shown in Table 8.9. The optimality of these designs
was established by Cheng and Wu (1980) and Laska, Meisner and Kushner
(1983). Matthews (1990) gave a method for constructing the optimal designs.
The optimal designs in Table 8.9 assume that an equal number of experimental
units is randomly assigned to each of the sequences of treatments. So, for the
optimal designs with two distinct sequences and a total sample of N experimental
units, N /2 units are assigned to each sequence, while for a four-sequence design,
N /4 units are assigned to each sequence. All four designs are strongly balanced
designs and uniform within periods. Design 3, however, is not only strongly
balanced but also uniform both in periods and sequences.

Table 8.9 Optimal cross-over designs for two treatments.

Design 1 Design 2 Design 3 Design 4
(2, 4, 2) (2, 2, 3) (2, 4, 4) (2, 2, 5)

Period Period Period Period

Sequence 1 2 1 2 3 1 2 3 4 1 2 3 4 5

1 A B A B B A B B A A B B A A
2 B A B A A B A A B B A A B B
3 A A A A B B
4 B B B B A A

Note. The triplet (t, s,m) represents a cross-over design with s sequences, m periods and t treatments.
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8.7.1 Some further observations

We provide here further remarks on the optimality of the designs in Table 8.9.
Design 1 with triplet (2, 4, 2) was proposed by Balaam (1968) and combines a
simple two-treatment CO design (2, 2, 2) with a PG design. Design 1 is optimal
for estimating both treatment and carry-over effects, but it is not optimal when
carry-over effects are not present. In this case, the (2, 2, 2) CO design is optimal.
A potential problem with the AA and BB sequences in Design 1 is that there
may be clinical and ethical objections to giving patients the same treatment twice,
especially if the efficacy of a treatment is unknown or a treatment is burdensome
or stressful. These objections can be addressed by relaxing the rule of assigning
equal numbers of patients to each of the four sequences. Carriere and Reinsel
(1992) studied the unequal assignment of patients to the four treatment sequences
of the (2, 4, 2) CO design (Design 1) under different model assumptions. They
recommend using the (2, 4, 2) CO design (Design 1), with or without baseline
measurements, and allocating 80% of patients to the AB and BA sequences and
20% of patients to the AA and BB sequences. Moderate efficiency can then be
maintained under different model assumptions.

A second remark concerns the increase of the number of periods. One way
to deal with the carry-over effect problem of the (2, 2, 2) CO design, and avoid
the clinical and ethical objections against giving only one treatment to the same
patients twice as in the (2, 4, 2) design, is to increase the number of periods. The
(2, 2, 2) CO design can be expanded to include more periods such as in a (2,
2, 3) design or (2, 2, 5) design. This increase has the advantage that carry-over
effects can be estimated more efficiently. A cost–efficiency comparison by Yuan
and Zhou (2005) showed that among a number of m = 3 and m = 4 period CO
designs, the (2, 2, 3) and (2, 4, 4) CO designs in Table 8.9 perform the best in
terms of cost efficiencies. These designs are also optimal within the class of same
period designs without cost constraint (Cheng and Wu, 1980; Laska, Meisner and
Kushner, 1983). The (2, 4, 2) design (BM’s design) performed overall worst in
terms of cost efficiency. However, a disadvantage of including extra periods is
that the trial will last longer, which in turn increases the probability of dropout
and the occurrence of a significant treatment × period interaction, both of which
can hinder interpretation (Matthews, 1988).

Carriere (1994) studied the gain in efficiency of using m = 3 period CO
designs with t = 2 treatments. She found that high efficiency is maintained for
these designs as long as the optimal sequences ABB and BAA are included.
Moreover, under the assumption that dropout is random, her results showed that
the (2, 2, 3) design was still more efficient than the (2, 2, 2) design, even if
there was a high level (80%) of missing data in the third period. Carriere and
Reinsel (1993) and Carriere (1995) also studied m = 2 period CO designs with
t ≥ m treatments and showed that for a model with random subject parameters,
balanced designs perform almost as well as strongly balanced designs.

In general, optimal designs are strongly model dependent and a design chosen
on the basis of one model is likely not to be efficient for other models. The
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optimal designs in Table 8.9 are based on the model in Equation (8.5). Fleiss
(1988) and Senn and Hildebrand (1991) argued that the model in Equation (8.5)
does not make a distinction between different carry-over effects from A on to B
and from B on to B in a sequence ABB, and that a treatment-by-carry-over effect
interaction is likely to occur. Another deficiency of the model is that it assumes
independent errors, which means that the variance–covariance matrix of the
responses is compound symmetric. Since these designs are repeated measurement
designs, this assumption may not be valid. These designs are not optimal in cases
where the compound symmetry assumption does not hold. The assumption of
auto-correlated errors may seem more realistic in designs with more than two
periods. Matthews (1987) considered auto-correlated errors for two-treatment CO
designs in the presence of carry-over effects and fixed subject effects, and showed
that the three- and four-period designs in Table 8.9 are also highly efficient when
the errors in the model are auto-correlated. Matthews (1987) concluded that
the best all-round m = 3 period design is one that allocates equal numbers of
experimental units to the sequences AAB, BBA, ABB and BAA. Among the
m = 4 period CO designs, Design 4 with sequences ABBA, BAAB, AABB
and BBAA, from Table 8.9, is perhaps the most efficient for the estimation
of treatments effects and carry-over effects. Matthews (1987) found that the
efficiency of these two designs is at least 82% across the range of auto-correlated
values −0.8 < ρ < 0.8.

8.8 Matrix formulation of the mixed model
for crossover designs

The random subject model that is commonly applied to analyse data from CO
designs can be formulated in matrix form as

yik = Xik β + Zik ξik + εik , (8.12)

where the m × 1 vector yik contains repeated measurements in m periods for
subject i in a kth treatment sequence. The p × 1 vector β contains fixed parame-
ters. The random parameter for subject i in sequence k is ξik and Zik is an m × 1
vector of ones. The design matrix Xik is of the order m × p. The errors εik ’s
are assumed to be normally distributed each with mean zero and an arbitrary
positive-definite variance–covariance matrix σ 2

ε �. For simplicity, we assume
to have independently distributed errors with the same constant, that is � = I ,
where I is an identity matrix.

The random effects parameter ξik describes the deviation of the response of
the ith subject from the overall average response, and it is assumed that ξik

is normally distributed as N(0, σ 2
ξ ). Finally, the subject parameters ξik and the

errors are assumed to be independently distributed.
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The variances and covariances of the repeated measurements are the weighted
sum of the variances and covariances of the random effects parameters and
variances and covariances of the errors. Thus,

Cov(yik ) = σ 2
ξ ZikZik

′ + σ 2
ε I. (8.13)

When the variance components σ 2
ξ and σ 2

ε are known and recalling that nk is
the number of subjects in the kth sequence, k = 1, 2, . . . , s, the ML estimators
of β are equal to the GLS estimators of the fixed parameters:

β̂ =
(

s∑

k

nk∑

i

Xik
′[Cov(yik )]

−1Xik

)−1 s∑

k

nk∑

i

Xik
′[Cov(yik )]

−1yik . (8.14)

If the variance components are not known but their ML or REML estimates
are available, these estimates can be substituted in Equation (8.13) instead (Ver-
beke and Molenberghs, 2000, Chapter 5; Diggle et al., 2002, Chapter 4). The
asymptotic variance–covariance matrix of the estimator β̂ is equal to

Cov(β̂) =
(

s∑

k

nk∑

i

Xik
′Cov(yik )

−1Xik

)−1

. (8.15)

To illustrate the analysis of a CO design, consider the parameterization for
the expected cell values in Table 8.3, where there are nine parameters in β, that is
β = (μ, τA, τB, ζ1, ζ2, π1, π2, λA, λB). To be able to estimate these parameters,
we impose the following restrictions. Let the two treatment effect parameters
be (μ + τA) and (μ + τB), and let the period effects be related as π = π1 =
−π2. Further, the sequence effects are ζ1 = ζ2 = 0 and the carry-over effects
are λ = λA = −λB. The upper half of Table 8.10 presents the expected values
for the cells with these restrictions. Notice that the difference between treatment

Table 8.10 Expected values of (2, 2, 2) cross-over design for
two different parameterizations.

Period 1 Period 2

Sequence AB (μ + τA) + π (μ + τB) − π + λ

Sequence BA (μ + τB) + π (μ + τA) − π − λ

E(τ̂A − τ̂B) = (τA − τB) − λ

Period 1 Period 2
Sequence AB (μ + τA) + π + ζ (μ + τB) − π + ζ

Sequence BA (μ + τB) + π − ζ (μ + τA) − π − ζ

E(τ̂A − τ̂B) = (τA − τB)
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parameter estimators is biased, that is E(τ̂A − τ̂B) = (τA − τB) − λ, because the
two carry-over effects are not equal (Equation 8.2).

The 4 × 1 column vector of fixed parameters with four parameters is
β = (μ + τA, μ + τB, π, λ)′, and the model for the ith subject in two-treatment
sequences AB and BA can now be written as

AB (k = 1) :

[
yi11

yi21

]
=

[
1 0 1 0
0 1 −1 1

]
⎡

⎢⎢
⎣

μ + τA

μ + τB

π

λ

⎤

⎥⎥
⎦ +

[
1
1

]
[ξi1] +

[
εi11

εi21

]

and (8.16)

BA (k = 2) :

[
yi12

yi22

]
=

[
0 1 1 0
1 0 −1 −1

]
⎡

⎢⎢
⎣

μ + τA

μ + τB

π

λ

⎤

⎥⎥
⎦ +

[
1
1

]
[ξi2] +

[
εi12

εi22

]
.

These equations show that the variance within subjects (units, patients) is
due to the variance σ 2

ε between the errors at different periods. The variance of
responses to treatments is the sum of the between-subject variance σ 2

ξ and the
within-subject variance σ 2

ε .
A second set of restrictions leads to the parameterization as shown in the lower

half of Table 8.10. This time it is assumed that there are no carry-over effects,
that is λA = λB = 0, so that the difference between treatment effect estimators
(τ̂A − τ̂B) will be unbiased (Equation 8.2). Further, it is assumed that period
effects and sequence effects are restricted by π = π1 = −π2 and ζ = ζ1 = −ζ2,
respectively. The corresponding models for a subject i in sequence k are

AB (k = 1) :

[
yi11

yi21

]
=

[
1 0 1 1
0 1 −1 1

]
⎡

⎢⎢
⎣

μ + τA

μ + τB

π

ζ

⎤

⎥⎥
⎦ +

[
1
1

]
[ξi1] +

[
εi11

εi21

]

and (8.17)

BA (k = 2) :

[
yi12

yi22

]
=

[
0 1 1 −1
1 0 −1 −1

]
⎡

⎢⎢
⎣

μ + τA

μ + τB

π

ζ

⎤

⎥⎥
⎦ +

[
1
1

]
[ξi2] +

[
εi12

εi22

]
,



OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH 235

and again the variance of the responses is var(yik ) = σ 2
ξ + σ 2

ε . The variance–
covariance matrix of the responses of the ith subject for this model has a com-
pound symmetric structure:

Cov(yik ) = σ 2
ξ ZikZik

′ + σ 2
ε I =

[
σ 2

ξ σ 2
ξ

σ 2
ξ σ 2

ξ

]
+

[
σ 2

ε 0
0 σ 2

ε

]

=
[

σ 2
ξ + σ 2

ε σ 2
ξ

σ 2
ξ σ 2

ξ + σ 2
ε

]
. (8.18)

There are three options for estimating the fixed effect parameters β:

• Substitution of ML or REML estimators in place of the variance compo-
nents σ 2

ξ and σ 2
ε in Equation (8.18) and the use of the estimate of Cov(yik )

to estimate the fixed parameters β by means of Equation (8.14).

• Computation of the unstructured variance–covariance matrix of the
responses and its use to estimate the fixed parameters β in Equation
(8.14).

• Assume that the between-subject variance is σ 2
ξ = 0, so that Cov(yik ) =

σ 2
ε I , and estimate the fixed parameters in β by means of Equation (8.14)

with Cov(yik ) = σ 2
ε I substituted. This option actually reduces the GLS

estimator of β to the ordinary least squares (OLS) estimator of β.

Since both models for the designs in Table 8.10 are saturated (four parameters
and four cells), the above described options for estimating the fixed parameters
in β will result in the same estimates β̂. But the variances and covariances in
Cov(β̂) will, generally, not be the same.

8.9 Summary

This chapter discusses the two-treatment CO designs that are commonly used in
the social and biomedical disciplines. A key advantage CO designs have over PG
designs is that CO designs are more efficient for estimating treatment effects when
there are no carry-over effects. Our efficiency and cost comparison shows that,
among the four two-treatment designs, namely the CO, CR, PG and BM designs,
the CO design is preferable in terms of cost and efficiency. In particular, savings
up to 50% can be obtained by using a CO design instead of the PG design when
the intra-class correlations are moderately high or high. However, we emphasize
that the CO design has the strong assumption that there are no carry-over effects.

The CO design that is strongly balanced and uniform (in terms of periods and
sequences) is optimal for estimating both treatment effects and carry-over effects.
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This CO design assumes random assignment of an equal number of experimental
units to the various treatment sequences. In this chapter, we have also considered
a few two-treatment optimal CO designs with an extended number of periods.
These optimal designs will require additional time to collect the data, but their
main advantage is that they can estimate carry-over effects more efficiently than
two-period CO designs.



9

Alternative optimal designs
for linear models

9.1 Introduction

We recall from Chapters 2 and 3 that a D-optimal design minimizes the volume of
the confidence ellipsoid for the model parameters and so such designs produce the
most accurate estimators of all model parameters simultaneously. For example,
in the simple linear regression model (Chapter 2), the confidence region for the
intercept and slope parameter from a D-optimal design has the smallest area
compared with those from any other designs. Consequently, D-optimal designs
provide the most accurate estimators for both parameters simultaneously.

An appealing feature of D-optimal designs is that for many problems, they can
be described analytically. This means that the optimal design can be described
using a formula. This is highly desirable because for these design problems,
no iterative methods are required to find the D-optimal designs and so we can
easily study the properties of D-optimal designs. In particular, we can deduce
how the D-optimal designs will change if certain design parameters are changed.
For example, the formula usually will enable us to determine the new design
points when the design space is changed. The formula may also allow us to
deduce how the weights in a D-optimal design change when certain aspects of
the design problem are changed.

However, there are many instances where D optimality is not applicable. The
researcher may be interested in estimating only some of the parameters, and not
all parameters, which is what D optimality is based on. The researcher may also
be interested in predicting the response at some point or region, which may or

An Introduction to Optimal Designs for Social and Biomedical Research      M. P. F. Berger & W. K. Wong
© 2009, John Wiley & Sons, Ltd. ISBN: 978-0-470-69450-3
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may not be in the design space; in the latter case, we have an extrapolation design
problem. Extrapolation design problems are common in dose–response studies
where it is desired to model at dose levels that may be unsafe or untested.

In this chapter, we present alternative optimal designs for linear models. Many
of the ideas and methods we employ here can be applied directly to design prob-
lems for nonlinear models, and we will elaborate upon them further in the next
chapter. Throughout this chapter, we assume that all errors are independently and
normally distributed with mean zero and constant variance. As before, the simple
linear model that we will frequently refer to is the straight-line model with both
the intercept and slope terms and the error terms are independent with zero mean
and constant variance. Unlike design books currently available, we choose not
to deal with technical details; instead, we present design issues and concepts for
a few linear models and refer the readers to references for mathematical details.

9.2 Information matrix

In the previous chapters, we focused on the variances and covariances of the
parameter estimators to explain the problems in finding optimal and highly effi-
cient designs. In this and the following chapters, we use the information matrix to
study and construct optimal designs. In general, the information matrix is inverse-
ly related to the asymptotic variance–covariance matrix of parameter estimators
and as such is a convenient alternative form to describe the design problem.

Let us consider the linear model for a single response: y = f ′(x)β + ε. This
model contains the vector of parameters β and a single independent variable
with values x. The function f ′(x) is the transpose of a function of values of the
independent variable. For each observation at xj , the information is given by the
product f (xj )f

′(xj ) under the normality assumption. When the observations are
independent, the total information is found by adding the contribution from each
level. More generally, the information matrix for any design ξ is given by

M(ξ) =
∑

j

wjf (xj )f
′(xj ), (9.1)

where the weights wj correspond to the distinct values xj and
∑

j wj = 1. For
example, for the simple linear model f ′(xj ) = (1, xj ), the information matrix
becomes

M(ξ) =
∑

j

wjf (xj )f
′(xj ) =

∑

j

wj

[
1 xj

xj x2
j

]

. (9.2)

The inverse of the information matrix is proportional to the asymptotic
variance–covariance matrix for the parameter estimators β̂ using design ξ .
A ‘large’ information matrix implies more efficient estimators for β. Here,
‘large’ can take several forms. For example, one popular measure of large is
the magnitude of the determinant of the information matrix. Using calculus,
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one can show that a design with a large determinant for its information matrix
always has a small volume of the confidence ellipsoid for β. Consequently,
between two competing designs, we prefer the one with a larger determinant for
its information matrix because it has a smaller volume for the confidence region
between the two designs. Alternatively, in terms of the inverse of the inform-
ation matrix, we want a design that has a small determinant for the inverse of
the information matrix. This is so because the determinant of the inverse of a
matrix is the reciprocal of the determinant of the matrix.

The diagonal elements of the inverse of the information matrix M(ξ) are
proportional to the asymptotic variance of parameter estimators β̂. In particular,
the ith diagonal element of the inverse of the information matrix is proportional
to the variance of the ith component of β̂. So, another way to find a good design
for estimating all parameters in the model is to minimize the sum of the variances
of all the β̂’s. We discuss this option further in Section 9.5.

In the next few sections, we present other types of optimal designs for linear
models that are useful for different purposes.

9.3 DA- or Ds-optimal designs

Sometimes, not all the parameters β in the model are of interest. There are
nuisance parameters in the model and research interest is on estimating only a
couple of selected parameters or only a few linear combinations of parameters.
When designing for such a study, it is therefore natural to allocate resources
for estimating only parameters of interest. When only a subset of the model
parameters is of interest, the D-optimality criterion can be straightforwardly
modified to reflect the practitioner’s interest. The names for optimal designs
for estimating only a subset of the model parameters are variously called Ds

optimal or DA optimal . Similar to D-optimality, the DA- or Ds-optimal design
is found by minimizing the determinant of a matrix with components that are
submatrices extracted from the information matrix M (ξ ), where σ 2

ε is the usual
variance of the independent errors in the model.

The variance–covariance matrix for A′β is proportional to [A′ M(ξ)−1A] and
the D-optimality criterion becomes

DA-criterion = Det[A′ M(ξ)−1A], (9.3)

where the symbol DA indicates the dependence of the determinant on the matrix
A. If the interest is only on a subset of s parameters in β, we have the Ds-criterion,
where ‘s’ stands for subset and the matrix A now contains only zeros and ones
in the right places to capture the subset of β of interest. See also Section 3.5 in
Chapter 3.

In the simple linear model with parameters β = (β0, β1)
′, for example, the

researcher may be interested in only the slope parameter β1 and not the intercept
β0. Resources should therefore be used to estimate only the slope parameter.
In terms of the linear combinations A′β, the parameter of interest is β1 = A′β
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where A′ = (0 1). The Ds-optimal design for this case is unique and is simply
the design that takes equal observations at both ends of the design space. If the
intercept term β0 is the only parameter of interest, then in terms of A′β we have
the intercept β0 = A′β where A′ = (1 0). When the design interval is [−1, 1], it
is interesting to note that the optimal design for estimating the slope parameter is
also an optimal design for estimating the intercept. However, the optimal design
for estimating the intercept term is no longer unique. Any design on the design
space, such that the average value of the design points is zero, is also optimal
for estimating the intercept. So, there are infinitely many optimal designs for
estimating the intercept. Some examples are the uniform design supported at
[−1, 0, 1] and the design equally supported at [−1, −0.5, −0.5, 1, 1].

The same approach for estimating a subset of the model parameters can
be applied directly to other models. For instance, Preitschopf and Pukelsheim
(1987) provided optimal designs for estimating all possible subsets of the three
parameters in the quadratic model. In particular, they showed that by setting

A′ =
(

0 1 0
0 0 1

)
for the model y = {1, x, x2}β + ε, the optimal design for esti-

mating the coefficients of the linear and quadratic terms is equally supported at
[−1 0 1].

We mention here two other examples of Ds-optimal designs given in Atkin-
son and Donev (1992, p. 110). They first considered the homoscedastic quadratic
model on the design interval [−1, 1] and found the Ds-optimal design for estimat-
ing the coefficient β2 for the quadratic term. This coefficient reflects curvature in
the model and is often included in the linear model, as a first step, when there is
doubt about the linearity assumption. The optimal design is to take 25% of the

Table 9.1 D-, Ds- and extrapolation optimal designs for polynomial regression
models.

Design Optimal
Model Estimation interval design

yi = β0 + β1x1i (β0, β1, β2) [−1, 1] ξ =
{ −1 0 1

1/3 1/3 1/3

}

+β2x
2
1i + εi

yi = β0 + β1x1i (β2) [−1, 1] ξ =
{ −1 0 1

1/4 1/2 1/4

}

+β2x
2
1i + εi

yi = β1x1i + β2x
2
1i (β2) [0, 1] ξ =

{ √
2 − 1 1

1/
√

2 (
√

2 − 1)/
√

2

}

+εi

yi = β0 + β1x1i Response at
x0 = 2

[−1, 1] ξ =
{ −1 1

1/4 3/4

}

+εi

yi = β0 + β1x1i Response at
x0 = 2

[−1, 1] ξ =
{ −1 0 1

1/7 3/7 3/7

}

+β2x
2
1i + εi
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observations at each of the extreme design points, that is x = −1 and x = 1 and
the rest at x = 0. This design is different from the D optimal design in terms of
simultaneous estimation of all the three parameters. Atkinson and Donev (1992,
p. 94) also provided another example using the quadratic model without inter-
cept on the design interval [0, 1], and again interest was only in estimating the
coefficient β2 for the quadratic term. The optimal design for estimating only this
term is a two-point design and takes 100/

√
2 percentage of the observations at

x = √
2 − 1 and the rest of the observations at x = 1. Both these Ds designs

are summarized in Table 9.1. We do not provide technical details here and refer
the reader to the cited monograph. An interesting application of a Ds-optimal
design to sequentially estimate treatment effects in a multi-group trial was given
by Atkinson (1982). An example for formulating the D-, A- and E-optimality
criteria for estimating a subset of the model parameters is also given in Chapter 3.

9.4 Extrapolation optimal design

Let us assume that our model is y = f ′(x)β + ε, where y is the outcome
and f (x) is a known regression function defined on the given design interval
[xmin, xmax]. Sometimes, we may want to estimate the mean or predicted response
at some value x0. This frequently happens in dose–response studies where the
value x0 is outside the typical dose range for the drug, that is x0 < xmin or
x0 > xmax.

The objective is to find a design that estimates f ′(x0)β as accurately as
possible. If x0 is in the design interval, that is, xmin ≤ x0 ≤ xmax, the design
problem is trivial; one simply takes all observations at x0 and this is the optimal
design for estimating f ′(x0)β. Of course, this design is of very limited use other
than just being able to estimate f ′(x0)β with minimum variance. If x0 is outside
the design interval [xmin, xmax], it is not possible to observe the outcome at x0, and
so the design problem is more difficult. A typical situation is in dose–response
study where the design interval is the known safety dose limits of the drug or any
subset of the safety dose limits of the drug and the researcher wants to model the
outcome at a possibly unsafe dose; see for example, Krewski and Kovar (1982)
and Gaylor, Chen and Kodell (1985) for extrapolation design issues in cancer
research. The extrapolation optimal design is to find an allocation scheme on the
design space so that the variance of the estimated f ′(x0)β is minimized.

Some simple examples of extrapolation optimal designs for the linear and
quadratic models are given in Wong and Lachenbruch (1996). They considered
homoscedastic models on the prototype design interval [−1, 1]. We recall that
such prototype intervals are obtained after rescaling the actual drug dose levels.
These optimal designs minimize the variance of the estimated response at the
extrapolated dose. For instance, consider finding a design to make inference
on the response at x0 = 2 for the linear and quadratic regression model when
the design interval is [−1, 1]. It can be shown that the extrapolation optimal
design for the simple linear model is to take one-fourth of the observations
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at x = −1 and the rest at x = 1. For the quadratic model, the extrapolation
optimal design for the point x0 = 2 is to take one-seventh of the observations at
x = −1 and the rest of the observations at x = 0 and x = 1 in equal proportions.
These extrapolation designs are presented in Table 9.1. The theory behind the
construction of extrapolation optimal design is complex, and interestingly for
many problems the weights of the support points of the optimal design depend
on the extrapolated point of interest and the support points of the optimal design
do not depend on the extrapolated point.

We emphasize that extrapolation design problems are particularly risky
because the statistical assumptions of the model over the design space may no
longer apply outside the design space. For example, the mean function may
take on a different form outside the design space or errors may have varying
variances outside the design space. Therefore, the researcher must proceed with
great caution when making inference outside the design space.

9.5 L-optimal designs

A less well known but very flexible optimality criterion is the so-called
L-optimality criterion. This criterion is defined as

L-Criterion = Trace[LM(ξ)−1], (9.4)

where the matrix L is a user-selected matrix. A design that minimizes the
L-optimality criterion is an L-optimal design. The L-optimality criterion is actu-
ally a class of criteria because it contains several other optimality criteria as
special cases. How do we choose the matrix L? We choose L to reflect the
researcher’s interest in the study. For instance, if estimation of all model param-
eters is of interest, one may choose L to be the identity matrix. In this case, the
L-optimality criterion becomes Trace[M(ξ)−1] and the L-optimal design min-
imizes the sum of the variances of all estimated parameters in the model. Of
course, this is the same as minimizing the average of the variances of the esti-
mated parameters and this criterion is therefore sometimes called A optimality
with the ‘A’ standing for average. For simultaneous estimation of the two param-
eters in the simple linear model on the design space [−1, 1], it is easy to verify
that the design equally supported at the extreme points x = −1 and x = 1 is the
A-optimal design. For the quadratic model on [−1, 1], the A-optimal design is
the symmetric design that assigns weight 0.5 at x = 0 and the rest equally at
x = −1 and x = 1.

The matrix L can also be chosen to include only the sum of the variances
of a subset of parameters β. For example, if we have a quadratic model and we
only want to estimate the coefficients associated with the linear and quadratic
terms, we set L to be the 3 × 3 zero matrix but with 1 in both the (2, 2) and
(3, 3) entries. For any matrix L that can be written as L = AA′, the following
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property holds:

Trace[LM(ξ)−1] = Trace[AA′M(ξ)−1] = Trace[A′ M(ξ)−1A]. (9.5)

This means that when we can write the matrix L = AA′, we can specify the
matrix A instead of L. For the simple linear regression model with β = (β0 β1)

′,
we set A′ = (1 0) or A′ = (0 1) when we are interested to estimate only the
parameter β0 or β1, respectively.

The L-optimality criterion is versatile and can also be used in other ways. For
an interesting use of this criterion, consider the situation where it is known that
the average of a continuous response can be adequately described by a quadratic
model on a known design space [xmin, xmax] and the goal is to estimate the turning
point in the mean response curve. Here, y = f ′(x)β + εi with f ′(x) = (1, x, x2)

and β = (β0, β1, β2)
′. By differentiating the mean function and setting it equal

to zero, it is easy to show that the turning point depends on the model parameters
and occurs when the value of x is equal to

g(β) = − β1

2β2
. (9.6)

Let L = A(β)A′(β), where A′(β) is the derivative vector of g(β) with respect
to the three parameters, that is A′(β) = [0,−1/(2β2), β1/(2β2

2 )]. Then, using a
first-order Taylor’s expansion, the asymptotic variance of the maximum likeli-
hood estimator of g(β) is approximately equal to

Trace[LM(ξ)−1] = Trace[A′(β) M(ξ)−1A(β)]. (9.7)

Chaloner (1989) showed that when the design space is [−1, 1], the locally
D-optimal design for estimating the turning point depends on the value of g(β)

and has the following complex structure:

1. if g(β) > 1/2, take one-half of the observations at x = 0, 1/4 + 1/(8g(β))

of the observations at x = 1 and the rest at x = −1;

2. if 0 ≤ g(β) ≤ 1/2, take one-half of the observations at x = 1 and the rest
at x = 2g(β) − 1;

3. if −1/2 ≤ g(β) ≤ 0, take one-half of the observations at x = 1 and the rest
at x = 2g(β) + 1.

We end this section by noting that the problem considered here also has an
application to designing a study for the quadratic logistic regression model when
interest is in maximizing the probability of a response. Fornius (2008) is perhaps
the latest among several others who used this idea to use a sequential design to
estimate the value of x that gives the optimum operating conditions when the
response is a binary outcome.
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9.6 Bayesian optimal designs

In practice, there is usually some information available at the beginning of a
scientific study. Some may come from similar studies or from different experts
in the field. The researcher may also carry out pilot studies when it is feasible
to do so. We recall that pilot studies are small studies with the same subjects or
experimental units to be used for the main study and carried out with the purpose
to obtain preliminary estimates of key parameters in the proposed studies. For
example, it is common to conduct a pilot study to determine estimates for param-
eters for the sample size calculation in the main study. A main research question
here is how to use prior information at the onset to construct a better design.

Frequently, the source of the information is not unique and several similar
studies may provide different information. This information may take on dif-
ferent forms, such as information on the model parameters or only as a certain
function of the model parameters. A design strategy for dealing with this sit-
uation is to use a Bayesian framework. To fix ideas, we suppose we have a
simple linear model and earlier studies suggest that there are several plausi-
ble values for the slope parameter β1. The first step in the Bayesian approach
is to capture all prior information in the form of a probability distribution for
the slope parameter. This distribution is often referred to as the prior distri-
bution . The choice of the prior distribution is subjective and depends on the
subject matter. In a simple situation say with three equally probable values for
the slope parameter, the prior distribution p(β1) may be the discrete prior uni-
formly distributed at the three values. On the other hand, if these values came
from three experts and the third expert is deemed to be twice as reliable as the
other two equally reliable experts, the mass distribution for the discrete prior
becomes 1/4, 1/4 and 1/2. In general, information that is deemed to be more reli-
able should have a higher weight in the prior distribution. Of course, how to
quantify how reliable the information is from one source versus another is a
subjective matter.

The second step in the Bayesian paradigm is to combine information in the
prior distribution and our model assumptions, expressed in the likelihood func-
tion. Bayesian inference is then based on the posterior distribution obtained by
multiplying the prior distribution with the likelihood function. The reason for
basing inference from the posterior distribution is that this distribution captures
the prior information and information from the current data. There are other
justifications for the Bayesian paradigm but we do not go into them here.

For design purposes, the Bayesian design criterion averages the proposed
design criterion over the prior distribution. One can use a formal criterion and
seek to optimize the criterion. Some possibilities for Bayesian design criteria
are E ln Det[M(ξ)], E Det[M(ξ)] or ln E Det[M(ξ)], where in each case, the
expectation E is over the prior distribution and ln represents the natural logarithm.
The Bayesian optimal design is the one that maximizes the criterion over all
designs on the design space. We do not discuss the pros and cons of these criteria,
but note that the Bayesian optimal designs for the above criteria can be different.
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Among the three, the most popular one is E ln Det[M(ξ)] for estimating model
parameters when prior information is available.

Let us follow up with an example of a Bayesian optimal design using the
example in the previous section. The problem was to find a design to estimate
the turning point for the quadratic linear model. Suppose that a prior distribution
is now available for the x value of the turning point g(β), and not for β. The
matrix L and the vector A in the L-optimality criterion now depend on β and
the Bayesian L-optimality criterion is

E Trace[LM(ξ)−1] = σ 2
ε E Trace[A(β)A′(β)M(ξ)−1],

= σ 2
ε Trace[EA(β)A′(β)M(ξ)−1].

(9.8)

Here L = A(β)A′(β) with A(β)′ = [0,−1/(2β2), β1/(2β2
2 )] and E is the

expectation with respect to the prior distribution for g(β). If we further make a
simplifying assumption that σ 2 and β2 are independent of g(β), then the opti-
mization problem becomes minimize Trace[LM(ξ)−1] where the matrix L now
takes on the form:

L =
⎡

⎣
0 0 0
0 1 2E[g(β)]
0 2E[g(β)] 4E[g(β)2]

⎤

⎦ , (9.9)

and the expectation is taken with respect to the prior distribution of g(β). For
instance, if we believe that the uniform distribution on the interval [−1/2, 1/2] is
a reasonable prior distribution for g(β), we have E[g(β)] = 0 and E[g(β)2] =
1/12 and L becomes

L =
⎡

⎣
0 0 0
0 1 0
0 0 1/3

⎤

⎦ . (9.10)

Computer algorithms for generating L-optimal designs are discussed in
Chapter 11. Alternative approaches to designs for estimating the turning point
in the quadratic model are given in Mandal and Heiligers (1992) and Fedorov
and Mueller (1997). The former adopted a minimax approach and the latter
re-parameterized the model to obtain more insights into the design problem
using Bayesian, minimax and sequential techniques.

Bayesian optimal designs rarely have a formula capable of describing the
optimal design points and the proportion of observations to be taken at each of
the points. This is because the mathematical formulation of a Bayesian design
problem is complicated and closed form solutions to the optimization problem
rarely exist unless the model is very simple. As a consequence, properties of
Bayesian optimal designs and their sensitivities to the prior distribution are dif-
ficult to study. In practice, Bayesian optimal designs are usually found from
self-written algorithms using ideas from standard algorithms for finding opti-
mal designs for linear models. Foundational work on algorithms for finding an
optimal design is available in Wynn (1972), Atwood (1976) and Wu and Wynn
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(1978a,b), among others. We describe computer algorithms for searching optimal
designs in Chapter 11.

To implement a Bayesian approach for finding an optimal design, the fol-
lowing questions have to be addressed up front. As an illustration, consider the
simple regression model and that we wish to find a Bayesian optimal design for
estimating the slope parameter β1. The first decision is to pick a suitable prior
distribution for the slope parameter β. For example, should I use a uniform prior
on [βL, βU] for selected values of βL and βU? Or should I use a Gamma distri-
bution on [βL, βU] for the slope parameter, and if so, what are the parameters for
the Gamma distribution? In the latter case with the Gamma distribution, how do I
estimate the parameters for the Gamma distribution given the prior information?
How do I know that I have chosen an appropriate prior? How do I know if the
resulting design is very dependent on my choice of the prior distribution?

There are rarely definitive answers or strategies to the above questions; elicit-
ing a prior distribution is part art and part science and unfortunately this important
topic has been consistently given short shrift in the Bayesian literature. The bulk
of the Bayesian work does not discuss or justify the choice of the prior distribu-
tion, even though it is well known that the choice of the prior distribution can be
highly subjective and can affect the final results substantively. In the early devel-
opment of Bayesian statistics, conjugate prior distributions were popular – these
are prior distributions that ensure that the posterior distributions also belong to
the same class of distributions. For instance, if one uses a normal prior distribu-
tion for the mean of a normally distributed variable, then the posterior is also a
normal distribution. However, their popularity comes mainly from convenience
and also from the fact that a closed form expression for the posterior distribution
is possible. However, conjugate priors are less used now in part because they
may not be realistic in practice and also as more powerful computing techniques
become available to generate the posterior distribution.

Bayesian optimal design requires that the researcher comes up with a prior
distribution that captures all existing information for the model parameters. As
mentioned before, this task is invariably subjective and different researchers can
arrive at quite different prior distributions. Part of the problem is that there is no
standard way of quantifying the information available. The resulting Bayesian
optimal design depends on the prior distribution and can vary substantially when
different prior distributions are used. For instance, we see in the next chapter
that if independent uniform priors are jointly used for the two parameters in
the logistic model, the number of design points in the Bayesian optimal design
depends on how spread out each of the prior distributions is. Chaloner and Larntz
(1989) gave several examples to show how the prior distribution affects the design
points in different types of optimal designs for the logistic model. The upshot
is that it is important to check the sensitivities of the Bayesian optimal design
to the prior distribution before the design is implemented. We prefer a Bayesian
optimal design that is more robust to the prior distribution.

We conclude this section by emphasizing that the choice of the prior distri-
bution must be deliberate and carefully selected. van Dongen (2006) used three
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real examples in the biological sciences and showed that great caution must be
used in choosing the prior distribution. Unfortunately, very few papers discussed
this important topic on prior elicitation. Chaloner and Duncan (1983, 1987) and
Chaloner et al. (1993) are among the only couple of exceptions; the former con-
sidered prior elicitation for a hyper-parameter in a Binomial distribution while
the latter dealt with prior elicitation for a toxoplasmosis prophylaxis trial con-
ducted through the Community Programs for Clinical Research on AIDS. See also
Gavasakar (1988) who compared two elicitation methods for a prior distribution
for a Binomial parameter and Hahn (2005) who proposed a new method for prior
elicitation using Markov Chain Monte Carlo methods. Practitioners can greatly
benefit if Bayesians provide more illustrations and fully demonstrate how a prior
distribution is constructed in practice using real examples and available data.

9.7 Minimax optimal design

An alternative to the Bayesian approach is to elicit information on only the
plausible extreme values of the quantity or quantities of interest. Frequently, the
quantity or quantities of interests are model parameters or functions of model
parameters. To fix ideas, we discuss only the case where we wish to construct
a minimax optimal design to estimate model parameters. This task is usually
easier to do in practice than trying to elicit information from the researcher to
construct a prior distribution for the Bayesian optimal design. In the minimax
approach, we only need to specify a plausible region where we believe the true
values of the model parameters lies. This region can be complicated where some
parameters depend on values of other parameters in the model. For our purpose
here, we focus on simpler plausible regions where we assume that the range
of each parameter can be specified independent of other parameters. This means
that when we wish to estimate, say β ′ = (a, b, c), the plausible region takes
on the form [a1 < a < a2] × [b1 < b < b2] × [c1 < c < c2] for user-selected
values ai, bi and ci, i = 1, 2.

Our experience is that for many applications it is easier to elicit information on
the extreme values of each parameter. The theory for the construction of minimax
optimal design is the same regardless of the complexity of the plausible region.
The only effect of a more complex plausible region on finding the minimax opti-
mal design is the additional computational burden imposed on the optimization
problem. Wong (1992) gave technical details for finding minimax optimal designs
in general and noted that an analytical description for a minimax optimal design is
notoriously difficult unless in very simple cases. Computer algorithms are required
to generate minimax optimal designs for most problems, see, for example, Brown
and Wong (2000). Unfortunately, proven general-purpose algorithms for finding
minimax optimal design in practice are not available. The problem is somewhat
simplified if one restricts the search to a smaller class of designs rather than the
set of all designs on the given interval. For example, several types of minimax
optimal designs are presented in Chapter 11 using tools from a web site, and these
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optimal designs are found within the class of all designs with number of design
points equal to the number of parameters in the model for the mean response. Such
optimal designs are called minimally supported optimal designs .

Here is a simple motivating example for using the minimax approach. Consider
the design problem for predicting the response in a dose–response study using
the simple linear regression model in the given protocol design interval properly
scaled to [−1, 1]. If the only purpose is to predict the response at a particular
dose level, say x0 = 0.5, the optimal design is to take all observations at x0 = 0.5.
This optimal design is clearly unattractive for other purposes. In this case, it can
be shown from the variance expression for the fitted response in Equation (2.23)
of Chapter 2 that the optimal design is not unique and any design that allocates
observations such that the average value of the x is equal to 0.5 is optimal for
predicting the response at x0 = 0.5. An example of such a design is to take 75%
of the observations at x = 5/6 and the rest at x = −0.5. Another one is to take
one-third of the observations at x = 3/4 and the rest at x = 3/8. It is easy to
see that there are infinitely many optimal designs for predicting the response at
x = 0.5.

The above example assumes that we know for sure that we wish to predict
at x0 = 0.5 before we construct the design. What happens if it is not known in
advance that x0 = 0.5 is the only dose level of interest to predict? The researcher
may have a general idea where prediction is needed, but unable or unwilling to
specify specific dose level or levels in advance of data collection. Under such a
situation, one can design so that no matter which dose level in the plausible region
is of ultimate interest, the prediction variance is not too large. The motivation for
the minimax approach is based on the worst-case scenario. Within the plausible
region where the researcher thinks prediction is needed later on, we consider the
worst possible outcome case and attempt to minimize its effect. In other words,
we look at all variances of the predicted values within the plausible region and
find a design to minimize the largest of these variances. This way we have some
global protection against the worst-case scenario where we really need to predict
at the dose level that has the largest predicted variance. The reader may recall
that we discussed such a design criterion in Section 2.5 of Chapter 2 under G
optimality, with G standing for global.

So far, we have always assumed that the variance of the error term is constant.
In practice, the variance of the response may vary as experimental conditions
change. Wong and Cook (1993) applied a minimax approach to find an effi-
cient design to estimate the overall mean response function when errors are
heteroscedastic. This means that the variance of the error depends on where the
observation is observed. In traditional design terminology, this dependence is
usually represented by the inverse of a known positive function called the effi-
ciency function, that is we assume that the var(y) is proportional to 1/λ(x). In
this case, the information matrix is given by

M(ξ) =
∑

j

λ(x)f (xj )f
′(xj ). (9.11)
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We recall that the G-optimality criterion for estimating the mean response
f ′(x)β first focuses on the region where the largest variance of the fitted response
occurs over the design space using design ξ , that is

max
x∈�

var(f ′(x)β̂) = max
x∈�

f ′(x)M−1(ξ)f (x), (9.12)

and the G-optimal design is the design that minimizes this quantity over all
designs ξ on the design space �. Designs that minimize the above expression are
called heteroscedastic G-optimal designs . The key difference here is that we are
minimizing the variance of the fitted response given above, and not the weighted
variance of fitted response itself, which is given by max

x∈�
λ(x)f ′(x)M−1(ξ)f (x).

Designs that minimize this weighted variance are just the D-optimal designs
(Fedorov, 1972, p. 71). Illustrative examples of differences in these two types
of minimax optimal designs are given in Wong (1990). Here, we provide two
examples when we have a simple linear model defined on the space � = [−1, 1]
where (i) λ(x) = c − x2 and (ii) λ(x) = 1/(c + x). Evidently, we require c > 1
in both cases. We may use case (i) to model the variance of the response if
we feel that the variance varies in the form of a symmetric parabola about 0
and reaches its maximum at the extreme ends of the design space. Case (ii)
is more appropriate when we expect the variance of the response to vary lin-
early and reaches its minimum at x = −1. It can be shown that in case (i) the
heteroscedastic G-optimal design is equally supported at x = −1 and x = 1 if
c ≥ 3; otherwise, it is supported equally at x = ±

√√
1 + c − 1. In case (ii), the

heteroscedastic G-optimal design is no longer symmetric and requires observa-
tions at x = −1 and x = 1. The proportion of observations allocated at x = 1
is (c + 1)/(2c) for c > 1. In contrast, the D-optimal designs for both cases are
always equally supported at two points. In case (i), the points are at x = −1 and
x = 1 if c ≥ 3; otherwise, the points are at x = ±√

c/3. In case (ii), the points
are always at x = −1 and x = 1. The function λ(x) can also contain parameters
that may be distinct from the parameters in the mean function as well. Dette
and Wong (1996) discussed these design issues and the web site in Chapter 11
generates optimal designs for a few forms of λ(x).

In summary, the minimax design strategy is simpler to implement in practice
because only the extreme possible values of each parameter in the model have to
be elicited. It does not require the subjective construction of a prior distribution
that can impact the final design in important ways. The main drawback is that
minimax optimal designs do not have closed form descriptions and they have
to be found numerically. Despite this limitation, the minimax design strategy is
useful and popular in situations where little information on the model parameters
is available at the design stage.

We end this section with the remark that maximin optimal designs operate
in a similar way as minimax optimal designs. Instead of minimizing the worst
possible outcome, which the minimax optimal design seeks to do, a maximin
optimal design maximizes the minimal benefit. For example, in the motivating
example for the minimax design strategy, the maximin optimal design is the
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design that maximizes the minimum efficiency for predicting the response at the
point x0 where the minimum is taken over all possible points x in the plausible
region.

9.8 Multiple-objective optimal designs

This section discusses a formal and versatile design strategy for designing a study
with multiple objectives. In pharmacokinetic studies, for example, estimation of
different bioavailabilities of a drug is often of interest. Oftentimes, they include
micro- and macro variables such as time to maximum concentration, the peak
concentration and average time of the drug in the organ compartment. Some
of these goals may be of different levels of interest to the researcher, and so
the design should provide higher efficiencies for more important objectives in
the study. Even when the overall objective is estimation, it may be desirable to
use different criteria in the study to gauge the goodness of the design for that
purpose. For example, Dette (1995) considered an optimality criterion that mixed
D- and E optimality and Lee (1987, 1988) and Wong (1995b) combined D- and
A criteria to find efficient designs for low-order polynomial models. The goal of
a multiple-objective optimal design is to meet the several objectives of the study
and provide efficiencies according to the importance of the objectives.

Multiple-objective optimal designs can also be used to address important con-
cerns arising from model assumptions. Throughout, we assumed we have a fully
specified statistical model and then proceeded to construct an optimal design for
the assumed model and the given objective. In practice, model assumptions may
be questionable and the researcher wants to design with this in mind. The con-
sequence of constructing a design based on erroneous model assumptions can
be devastating. For instance, if the simple linear model is correctly assumed, the
design that places equal observations at both extremes on the design interval is
an excellent design for many purposes; in particular, this design is universally
D optimal , meaning that this design provides the smallest volume of the confi-
dence area for the intercept and slope parameters among all designs on the given
design interval. However, if there is doubt whether there is curvature in the mean
response, this design is useless for checking whether the additional quadratic term
is needed. This is because the optimal design for the linear model has only two
points, and so does not provide enough degree of freedom to carry out a lack of
fit test (Montgomery, 2000, p. 83). On a more intuitive level, to detect curvature,
we need to have at least three distinct points to assess whether the values of the
responses at these three points fall roughly in a straight line or not.

An obvious design strategy for dealing with concerns on adequacy of model
assumptions is to find the optimal design for each of the different models and
average them, with the hope that the resulting design is nearly optimal for each
of the models at hand. The averaging can be done in a way that reflects the
prior belief that each model has a certain chance of being the true model (Läuter,
1974, 1976). Another way is to find the optimal design for the ‘largest’ model
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and hope that the design is also relatively efficient for all other possible models.
Here, ‘largest’ usually assumes a hierarchical class of possible nested models
such as the class of polynomial models with degrees up to degree (p − 1), where
p is user selected. A Bayesian design strategy that incorporates the prior belief
on the validity of each model may be used as well.

In this section, we describe a formal and effective way of designing a study
with multiple objectives. We will use a simple example to demonstrate the
design strategy to formally incorporate competing objectives and show how
a multiple-objective optimal design is determined. Multiple-objective optimal
designs are sometimes called compromised designs for obvious reasons. They
are also related to constrained optimal designs and compound optimal designs as
discussed below.

9.8.1 Constrained optimal design

Consider the situation where the researcher wants to use the simple linear model
but now there is doubt whether the model is adequate. The researcher is concerned
whether there is curvature in the mean response, and so he or she is also interested
to use the quadratic model. The problem is that the optimal design for the simple
linear model is equally supported at both ends of the design space, and so with
only two points the researcher is unable to check whether there is curvature in
the model. On the other hand, if we design for the quadratic model and the
simple linear model proves to be the more appropriate model, the estimates for
the simple linear model may be inefficient.

For this problem, our goals are to estimate the two parameters in the linear
model and also be able to estimate whether a quadratic term is needed in the
model. To fix ideas, assume that the more important objective is to estimate
the coefficient for the quadratic term. This is the primary objective. The sec-
ond objective is to estimate the slope and intercept coefficients in the simple
linear model. The practitioner then quantifies the relative importance of the two
objectives; this can be meaningfully accomplished by specifying the minimum
efficiency required for the primary objective. The plan is to construct a design
that will provide the specified minimum efficacy for the primary objective, and
subject to this constraint does as best as possible for the secondary objective.
Operationally, we proceed as follows.

We first formulate each of the objectives as a function of the information
matrix. One can work with concave or convex functionals. Of course, when
we work with a convex functional, we want to find a design that minimizes it,
whereas we seek a design to maximize a concave functional. Our first task is
to formulate the two goals in terms of convex or concave functionals. Tech-
nically, either formulation is the same. To fix ideas, let us work with concave
functions and let φ1(ξ) be the primary criterion for estimating the coefficient in
the quadratic term and let φ2(ξ) be the secondary criterion for estimating the two
parameters in the linear model. Assume that the design space is given and ξ is
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an arbitrary design on the design space. Define

f ′
1(xj ) = (1, xj , x

2
j ) and f ′

2(xj ) = (1, xj )

M1(ξ) =
∑

j

wjf1(xj )f
′
1(xj ) and M2(ξ) =

∑

j

wjf2(xj )f
′
2(xj ). (9.13)

The two information matrices M1(ξ) and M2(ξ) are inversely proportional
to the asymptotic variance–covariance matrices of the parameter estimates in
the quadratic and linear models, respectively. In particular, the (3, 3) element
in M1(ξ)−1 is proportional to the variance of the estimate for coefficient of the
quadratic term in the quadratic regression model. This element is c′M1(ξ)−1c

with c′ = (0, 0, 1), and we want this positive quantity to be small or equivalently
want [−c′M1(ξ)−1c] to be large.

The design sought is the one that maximizes Det[M2(ξ)] over all designs
on the given design space, subject to the constraint that [c′M1(ξ)−1c] is suf-
ficiently small. Equivalently, because the logarithmic function (log) is a con-
cave increasing function, we want to maximize log Det[M2(ξ)] subject to the
constraint that [−c′M1(ξ)−1c] is sufficiently large. Accordingly, we formulate
our primary criterion as φ1(ξ) = −c′M1(ξ)−1c and our secondary criterion as
φ2(ξ) = log Det[M2(ξ)]. Both are concave functions over the space of informa-
tion matrices. The optimization problem can now be succinctly formulated as

Maximize φ2(ξ) = log Det[M2(ξ)]

subject to φ1(ξ) = [−c′M1(ξ)−1c] ≥ Constant. (9.14)

An immediate question is what is the constant in the above formulation.
Should it be 12? Should it be 0.4? This constant is difficult to specify as it is. To
overcome this problem, we rewrite the objective function and constraint in terms
of efficiency, which is easier to interpret and quantify. Let the optimal designs
under the primary and secondary criteria be ξ ∗

1 and ξ ∗
2 , respectively, and assume

that the design interval is [−1, 1] for illustration. The optimal design ξ ∗
1 for

estimating just the coefficient in the quadratic term is a Ds-optimal design and
as pointed out in Section 9.3, this design has support at {−1, 0, 1} with weight
at x = 0 equal to 1/2 and the rest equally supported at x = −1 and x = 1. The
optimal design under the secondary criterion, ξ ∗

2 , for estimating the parameters
in the simple linear model is equally weighted at {−1, 1}. In terms of efficiencies
of ξ under the two criteria, we have E1(ξ) = c′M1(ξ

∗)−1c/[c′M1(ξ)−1c] and
E2(ξ) = {Det[M2(ξ)]/Det[M2(ξ

∗)]}1/2. The value of the constant in the above
optimization problem may now be chosen as φ∗

1/e1, where φ∗
1 is the optimal

value of φ1 and e1 is the user-specified minimum efficiency required of the design
under the primary objective. Clearly, φ∗

1 is computable because φ∗
1

= φ1(ξ
∗
1 ). For

example, if we want a design to ensure that we can estimate the coefficient of
the quadratic term with 95% efficiency, we set e1 = 0.95. Typically, we would
want to choose e1 close to unity to obtain an optimal design with high efficiency
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for the primary criterion φ1(ξ). This formulation of the constrained optimization
problem is appealing to practitioners, but unfortunately does not yet offer a clue
on how to find such an optimal design. The next section on compound optimal
design describes an indirect way of finding constrained optimal designs.

9.8.2 Compound optimal design

Cook and Wong (1994) considered a compound optimality criterion that is a
convex combination of the two concave criteria φ1(ξ) and φ2(ξ). For each λ ∈
[0, 1], define

φλ(ξ) = λφ1(ξ) + (1 − λ)φ2(ξ). (9.15)

Then for each fixed λ value, φλ(ξ) is still concave and so we can find the
optimal design directly as if this is a single objective optimal design problem.
Denote this design that maximizes φλ(ξ) by ξλ and call it a compound optimal
design .

How does one choose λ and what is the practical interpretation of λ? Does
choosing λ = 0.5 mean we are equally interested in the two objectives? It turns
out that the choice of λ depends on the value of e1 specified in the constrained
optimization problem. Their analytical relationship is often complicated and not
necessarily insightful. In practice, we construct an efficiency plot to solve the
constrained optimization problem by solving the compound optimal design prob-
lem indirectly. Procedurally, we first determine compound optimal designs ξλ

for values of λ starting from 0 to 1 in small increments of, say 0.1 or 0.05. Of
course, at the extreme values when λ takes on the values 0 and 1, we obtain ξ ∗

2
and ξ ∗

1 and they correspond to the optimal designs for φ2 and φ1, respectively.
The next step to find the desired constrained optimal design is to construct an

efficiency plot using the compound optimal designs. The efficiency plot graphs
E1(ξλ) and E2(ξλ) versus values of λ in the interval λ ∈ [0, 1]. The graph of
E1(ξλ) is always an increasing function of λ and the graph of E2(ξλ) is always
a decreasing function as λ increases. They usually cross at some point and the
value of λ for which it does is the value λ∗ that should be used in the compound
optimality criterion if we want to have a constrained optimal design that provides
equal efficiencies under both objectives. This situation corresponds to the case
when both objectives are equally important. Otherwise, corresponding to the
user-specified value of e1, a horizontal line is drawn across the efficiency plot
when E1(ξλ) = e1 and the value of λ that corresponds to where the horizontal line
meets E1(ξλ) is the value that should be used to generate the desired constrained
optimal design. The technical details are given in Cook and Wong (1994).

The efficiency plot for this example is displayed in Figure 9.1. From the figure,
one concludes that setting λ = 0.25 ensures an equal-interest dual-objective opti-
mal design with an efficiency of 84% under both criteria. If the user wants to
have a design that will guarantee an efficiency of 96% or higher for estimating
the quadratic term coefficient, we set e1 = 0.96, and from the plot the con-
strained optimal design sought is the compound optimal design with λ = 0.5.
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Figure 9.1 Plot of efficiencies E1(ξλ) and E2(ξλ) versus λ.

As expected, E1(ξ0.5) = 0.96, the minimum efficiency required. The efficiency
under the secondary criterion of this compound optimal design is given by where
the vertical dotted line at λ = 0.5 meets E2(ξλ); this value is 0.78. This implies
that under the user-specified constraint, the best we can do is to estimate the two
parameters in the simple linear model with about 78% efficiency.

The above approach for finding a multiple-objective optimal design is attrac-
tive in several ways. Without going into details, we note that the advantages of
this approach include the following:

1. if the primary and secondary roles of the criteria are reversed, one can
deduce corresponding results from the efficiency plot by replacing λ by
(1 − λ) on the λ axis;

2. the approach relies on existing methods for finding a single-objective
design;

3. the efficiency plot is informative as it illustrates the trade-off between
the two goals visually; if the slopes in the efficiency plots are steep, this
suggests the goals are competitive meaning that much of one has to be
given up for a gain in the other criterion;

4. this approach generalizes directly to situations when we have more than
two objectives because a convex combination of concave functionals
is still concave and no new theoretical issues arise; however, the
multi-dimensional efficiency plot makes it harder to use and interpret.

We end this chapter with some very brief remarks on optimal designs for
model discrimination when the researcher wants to find the best fitting model
among a few possible models. Early work on finding an optimal design to dis-
criminate among competing models includes Hill, Hunter and Wichern (1968),
Atkinson and Fedorov (1975a,b) and Hill (1978a). Sometimes, in rare instances,
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different models have the same optimal design so that discrimination among the
models is no longer a problem. Hill (1978b) provided an example where there are
three very different rival linear models and they all have the same optimal design.

We mention this topic in passing only because we feel model discrimination
by itself is often not the end goal in the study. For example, model discrimination
is typically followed by estimating parameters or functions of parameters in
the selected model. Hence, the problem can be subsumed more generally as a
multiple-objective optimal design problem.

9.9 Summary

In this chapter, alternative optimal designs commonly used in practice are
described. They include optimal designs for estimating only selected parameters
in the model, extrapolation optimal designs for making inference outside the
design space and L-optimal designs useful for estimating functions of model
parameters. The Bayesian framework for designing a study, including its
advantages and potential difficulties, is also discussed. Minimax optimal designs
provide yet another design strategy when prior information is minimal and
we are concerned about the ‘worst-case’ scenario. Finally, a formal design
approach for handling multiple objectives in the study is provided. Naturally,
the objectives are competitive, meaning that one has to give up efficiency
under one criterion to gain efficiency for another criterion. Therefore, these
multiple-objective optimal designs are sometimes referred to as compromised
designs or multipurpose designs as well. We recall that the efficiency plot is
constructed from evaluating efficiencies of compound optimal designs under
different criteria and the plot provides an effective visual assessment of the
trade-off between the competing objectives. The sought constrained optimal
design is then found indirectly from the efficiency plot.
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Optimal designs for nonlinear
models

10.1 Introduction

Most of the previous chapters were concerned with linear models. We now turn
our attention to designing for nonlinear models. Nonlinear models are widely
used in the biological sciences and health sciences. The interested reader may
want to refer to several monographs where there are plenty of examples of use
of nonlinear models and their analysis in various fields, see Lindsey (2001) and
Motulsky and Christopoulos (2004), for example. However, design issues for such
models were not much discussed historically largely because of their difficulty to
solve. An early paper on designs for nonlinear models is Box and Lucas (1959).

Most of the current approaches to design a study for a nonlinear model sim-
ply linearize the nonlinear mean function via a first-order Taylor’s approximation
and work with the simplified model. Pázman (1993) is one among a handful who
did not linearize the mean function and chose to work with the curvature of the
nonlinear function. This approach is theoretically more appealing than the lin-
earization approach, but results in a very difficult optimization problem from the
mathematical point of view. To date, only very limited useful results are available
from this approach, which also appears to be workable only for simple models.
For many realistic models involving several parameters, this approach has techni-
cal difficulties. Accordingly, in the following sections, we adopt the linearization
approach and illustrate how this method works for a very simple nonlinear model.

There are a few articles that review design issues and optimal designs for non-
linear models. Ford, Kitsos and Titterington (1989) is an early one. Wong (1999)
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reviewed optimal designs for multiple-objective design problems that included
models with continuous or binary outcomes, and Khuri et al. (2006) reviewed
design issues for generalized linear models.

Throughout this chapter, we assume all errors are independently and normally
distributed with mean zero and constant variance. Unlike design books currently
available, we choose not to deal with technical details; instead, we present design
issues and concepts for nonlinear models and refer the interested reader to refer-
ences for mathematical details. The next chapter introduces a web site that allows
visitors free access to generate optimal designs for a variety of nonlinear models.

10.2 Linear models versus nonlinear models

Linear models are appropriate if the mean response can be expressed as a linear
combination of the covariates. One way to determine whether we have a linear
model is to differentiate the mean function with respect to the vector of model
parameters and see if the derivative is free of the parameters. If it is, we have a
linear model; otherwise, we have a nonlinear model.

For example, consider the model yi = β0 + β1x1i + β2x2i + εi (Model 1.1,
Chapter 1) where we have three parameters β = (β0, β1, β2)

′. The derivative
of the mean function with respect to each of these parameters is dE(yi)/dβ =
(1, x1i , x2i)

′, which is free of model parameters. So this model is linear, as
expected. On the other hand, suppose we have a study where the outcome yi is
modelled as

yi = exp(axi) + ei . (10.1)

Clearly, the parameter a controls the shape of the response curve. If the
parameter a is positive, the mean response increases when the control variable
xi increases. On the other hand if the parameter a is negative, the mean response
decreases as the control variable decreases in value. When a = 0, the response is
independent of the control variable and is expected to take on the value of unity
on average. In this model, the mean response function is not a linear combina-
tion of xi and the model parameter. One can verify this by differentiating the
mean response E(yi) = exp(axi) with respect to the parameter a. The deriva-
tive dE(yi)/da = xi exp(axi) is dependent on the parameter a. Model (10.1) is
therefore a nonlinear model.

There are many popular nonlinear models in the biological and health sci-
ences. We briefly mention four nonlinear models here and describe their use in
practice. The first one is commonly called the Arrhenius equation .

10.2.1 The Arrhenius equation

A Swedish chemist Svante Arrhenius discovered the following relation between
temperature and reaction rate:

yi = a exp(−b/ti) + εi. (10.2)
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The reaction rate yi is the product of a factor a, representing the collision
frequency between two molecules and an exponential term exp(−b/ti), which
describes the fraction of molecules with a minimum energy required to react.
The parameter b is usually expressed implicitly as b = (Ea/R), where Ea is the
activation energy and R is a gas constant. The variable ti is the temperature
reading in the Kelvin scale. The Arrhenius equation is plotted in Figure 10.1a
for degrees ranging from 273 to 373 (0–100 ◦C). The parameters are a = 10 and
R = 8.314 J mol−1, and four different values for the activation energy are plot-
ted, namely Ea = 65, 75, 85 and 95 J mol−1. Applications of the Arrhenius
equation to pharmaceutical stability testing are quite common and straightfor-
ward; an example is in measuring shelf-life of vitamins or drugs on display in a
pharmacy store.
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Figure 10.1 Four typical nonlinear models: (a) Arrhenius equation, (b) compart-
ment model, (c) Michaelis–Menten model and (d) Emax model.

10.2.2 The compartmental model

Another example of a nonlinear model is the compartmental model. Compartmen-
tal models in various forms have been widely used in pharmacokinetic research
(see, e.g. Wise, 1985 and Faddy, 1993). For instance, if yi is the amount of drug
in a compartment (or organ) at time ti after administration into the body, then
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a common form of the compartmental model to study the flow of drug through
the body is

yi = a exp(b ti) + c exp(d ti) + ei. (10.3)

The parameters a and c are ‘linear’ parameters and the main parameters
of interest are b and d . These are all macro parameters meaning that they
by themselves may not have any physical interpretation but are functions of
micro parameters that have biological meanings. Because each macro parame-
ter is usually a very complicated function of the micro parameters, sometimes
macro parameters are estimated first. Landaw (1980) gave details and discussed
various types of related models. Figure 10.1b shows mean response from the
compartmental model for four sets of parameters displayed in Table 10.1.

Table 10.1 Four sets of parameters for the compartmental
model.

a b c d

Parameter set 1 0.2020 0.0180 0.3450 0.0881
Parameter set 2 0.0093 0.0003 0.1620 0.0181
Parameter set 3 0.0108 0.0002 0.3870 0.0168
Parameter set 4 0.5220 0.0071 0.8370 0.0339

10.2.3 The Michaelis–Menten model

The third example of a nonlinear model we give is a popular one used in the
biological sciences and concerns enzyme-kinetics studies. The Michaelis and
Menton (1913) model is widely used because of its simplicity and effectiveness
in describing properties of saturation effects. Some examples of its use are given
in Houston and Kenworthy (2000), Holmberg (1982) and Yu and Rappaport
(1996), Dunn (1988) and Lopez-Fidalgo, Tommasi and Trandafir (2008), among
others. The statistical analysis of the model has also been frequently discussed,
see Raaijmakers (1987) and the references therein. The model is given by

yi = a xi

b + xi

+ ei. (10.4)

Here, yi is the velocity of a response and xi is the substrate concentration.
The parameters a and b are assumed to be positive, and while theoretically xi is
positive and unbounded, there is usually an upper bound placed in the substrate
concentration in practice. The parameter a is the maximum value that the
velocity (reaction rate) can reach and the parameter b is the so-called Michaelis–
Menten constant.

Figure 10.1c shows a saturation curve for an enzyme. The velocity (reaction
rate) is plotted against the substrate concentration using different values of the
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Michaelis–Menten constant b: 1, 5, 9 and 15. The parameter a for this plot is
equal to 1.0.

10.2.4 The Emax model

A very often used model in pharmacodynamics to relate the drug concentration to
the observed effect is the sigmoid Emax model. Derendorf and Meibohm (1999)
gave a review of this model and it is given by

yi = a xh
i

b + xh
i

+ ei. (10.5)

The effect yi is a function of the concentration of the drug xi and depends on
the maximum effect a and the parameter b = Ch

0.5, where C0.5 is the concentration
of the drug that produces half the maximal effect. The parameter h is called
the shape factor . Figure 10.1d shows the mean response from the Emax model
when a = 10 and C0.5 = 5 for different values of the shape parameter h = 1, 2,
3 and 4. From the figure, we observe that as the h value increases, the mean
function becomes more S shaped.

10.3 Design issues for nonlinear models

We now use the simple nonlinear model in Equation (10.1) to illustrate design
issues that arise for a nonlinear model: yi = exp(axi) + ei . The response yi may
represent the weight of the substance left after it is exposed to a reactant and xi is
the time since exposure. A common application of such a model is in modelling
decay of a chemical substance over time. In this case, the shape parameter a is
negative and the design space is [0, ∞].

One important consideration in optimal design theory is to focus on the nor-
malized information matrix. For simplicity, let us consider Model (10.1) and
show how the information is arrived at for an arbitrary design ξ for the param-
eter a. As explained in Section 10.2, the derivative of f (xi) = exp(axi) with
respect to the parameter a is ∇f (xi) = xi exp(axi). The formula for the (nor-
malized) information matrix for a design ξ supported with weight wi at xi on
the design space is

M(ξ) =
∑

i

wi∇f (xi)∇f ′(xi) =
∑

i

wi[x
2
i exp(2axi)]. (10.6)

The information matrix M(ξ) is a scalar in this example because there is only
one parameter a in the mean function. If the model has two or more parameters,
then M(ξ) is a square matrix. As a numerical example, suppose that ξ is a
two-point design with half of its observations at xi = 0.75 and the rest at xi = 2.0.
For a = 0.3, a direct calculation shows that the numerical value of the information
is M(ξ) = 1/2[0.752 exp(2 × 0.3 × 0.75)] + 1/2[22 exp(2 × 0.3 × 2)] = 7.0813.
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It is clear from this computation that the amount of information depends on the
xi- and wi values.

A noticeable feature, however, is that the information matrix depends on
the unknown parameter a, which we are trying to estimate! Therefore, strictly
speaking, the information matrix M(ξ) should be written as M(ξ, a). Here, we
retain the former notation for simplicity, but in general, we write the information
matrix as M(ξ, β) with β being the vector of model parameters in the mean
response function.

10.3.1 Local optimality

A main distinguishing feature in designing for linear or nonlinear models is that
the information matrix depends on unknown parameters. As such, an optimal
design for a nonlinear model is only optimal locally for given values of the
parameters (Chernoff, 1953). This is in contrast to the case for linear models
where the optimal design does not depend on the model parameters. However,
we caution the reader that if the variance of the response in the linear model
depends on unknown parameters in a known way, then the information matrix
of the linear model for an arbitrary design will also depend on the unknown
parameters. Some examples for this situation are given in the next chapter when
we introduce a web site for generating a variety of optimal designs for nonlinear
models.

It is instructive to consider Model (10.1) again, with only a single unknown
parameter a. Because there is only one parameter, one may just want to take
observations only at a single time point to observe the response. This strategy
is attractive especially if it is expensive to take observations at different sites.
For our purpose here, we assume the design ξ is a one-point design, and, say,
it takes all observations at the point x0. The information matrix for ξ becomes
M(ξ) = x2

0 exp(2ax0).
If a is positive, the information is a strictly monotonic increasing function of

x0, and so the best one-point design is to take all observations at a time point
as far from zero as possible. In practice, the design space is truncated at some
time point representing when the study ends. This is the time point where one
should allocate all resources to observe the outcome yi . The interesting case is
when a is negative, representing that the mean response decreases over time.
Differentiating M(ξ) with respect to x0 and setting it equal to 0 yields

2x0 exp(2ax0) + 2ax2
0 exp(2ax0) = 0

or (10.7)

2 exp(2ax0)[x0 + ax2
0 ] = 0.

The solution to this equation is either x0 = 0 or x0 = −1/a, suggesting that
the optimal one-point design to estimate the negative parameter a is to take all
observations at x0 = 0 or x0 = −1/a. To determine which of these two points is
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optimal, we verify whether the second derivative of M(ξ) is negative at x0 = 0
and x0 = −1/a. A simple calculation shows that the second derivative is negative
only when x0 = −1/a. This means that the one-point optimal design is to observe
the response only at x0 = −1/a.

The interesting feature here is that the optimal design depends on a, the
parameter which is what we want to estimate. The design that takes observations
only at x0 = −1/a for Model (10.1) cannot be implemented because we do not
know the value of a, and if we know the value of a, we would not have a design
problem in the first place.

Design problems for nonlinear models are much harder than that for linear
models in large part because, as just noted above, the optimal design for
nonlinear models depends on model parameters, which we are trying to estimate.
Much of the recent research work in optimal design for nonlinear models
involves different ways of making the optimal design less dependent on the
values of the model parameters. However, not all parameters in the nonlinear
model influence our choice of the optimal designs. In fact, some parameters
have no effect on the optimal design at all. These parameters are sometimes
called partially linear parameters (Hill, 1980; Khuri, 1984), and they can be
ignored from the design perspective. A simple example is the Arrhenius model
in Equation (10.2) with two parameters, and the parameter a enters the model
linearly. This is verified by noting that the information matrix for this model for
any design depends on a in an unimportant way. Specifically, this means that
the optimization problem is independent of the value of a. For instance, if one
is interested in the D-optimality criterion, the determinant of the information
matrix for Model (10.2) for any design is proportional to a2, and so maximizing
the determinant involves picking design points only for a given value of the
parameter b.

Up to now we have explained information for a model with only one
parameter. If the nonlinear model contains p parameters in β and the mean
response function is f (xi, β), then the gradient of f (xi, β) is the p × 1 vector
∇f (xi, β) whose components are equal to the derivative of f (xi, β) with
respect to each of the p parameters in β, that is:

∇f (xi, β) =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

df (x, β)

dβ1

df (x, β)

dβ2

...

df (x, β)

dβp

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

. (10.8)

The information matrix of a design supported with weight wi at xi is then
defined by M(ξ) = ∑

i wi∇f (xi)∇f ′(xi). Unlike linear models, this matrix now
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depends on some or all the parameters in β. We recall from the previous chapter
that when we have a large sample in the design, this information matrix is
inversely proportional to the covariance matrix of the estimator of β.

Here is an illustrative calculation for the information matrix of an arbitrary
design for the Michaelis–Menten model. Let f (xi, β) = axi/(b + xi), where
β = (a, b)′. The derivatives of the mean response in the Michaelis–Menten
model with respect to a and b are elements in the 2 × 1 vector:

∇f (xi, β) =

⎛

⎜⎜
⎝

df (x, β)

da

df (x, β)

db

⎞

⎟⎟
⎠ =

⎛

⎜
⎝

xi

b + xi

−axi

(b + xi)2

⎞

⎟
⎠ . (10.9)

The information matrix M(ξ) is now

M(ξ) =
∑

i

wi

(
xi/(b + xi)

−axi/(b + xi)
2

)
(
xi/(b + xi) −axi/(b + xi)

2
)

and

M(ξ) =
∑

i

wi

(
x2

i /(b + xi)
2 −ax2

i /(b + xi)
3

−ax2
i /(b + xi)

3 a2x2
i /(b + xi)

4

)

(10.10)

Upon inversion, the resulting matrix is proportional to the asymptotic
variance–covariance matrix of the parameter estimators of a and b. Ignoring
an unimportant multiplicative constant, the first and second diagonal elements
in M(ξ)−1 are the variances of the estimators of a and b, respectively. The
off-diagonal element in M(ξ)−1 is proportional to the covariance of the
estimators of a and b. There are two remarks about the Michaelis–Menten
model, which are worth mentioning here:

1. It is clear that if the design space is [0, xmax] for some user-specified xmax,
we should not take observations at xi = 0 because all elements in the infor-
mation matrix are 0 and no new information is obtained. For this design
space, we note that taking observations at two points including 0 still does
not help in terms of estimating the two parameters. This is because the
information matrix provides no information at xi = 0 and with only one
non-zero value for xi , the resulting information matrix is not invertible.
As a result, a two-point design including a design point at 0 is not able
to estimate the two parameters in β. For the information matrix to be
invertible, we need to have support at least at two non-zero design points.

2. The information matrix is usually complicated enough so that software
is required to do the calculation. We see here that even when we use a
design supported at two non-zero points for the simple model with two
parameters, each element in the information matrix is a sum of two terms
that do not simplify easily. So, in general, information matrix computed
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under a nonlinear model is complicated and this partially explains why
design problems for nonlinear models are hard and closed form solutions
rarely exist.

In practice, designing for nonlinear models is an interactive process. In the
first place, one should have some rough idea about what the model parameters
are. These supposed values are called nominal values or best guesses in the
literature and they are typically available from pilot studies or experiments with
similar units. One then designs sequentially; an optimal design is found based on
the nominal values and the next study will use nominal values found from the
estimates from the previously designed study. One then hopes that after a couple
of iterations, the estimated model parameters become stable.

10.4 Alternative optimal designs with examples

We now describe optimal designs for nonlinear models other than locally D-
optimal designs for estimating the full set of parameters in the model. Locally
D-optimal designs are widely used and arguably overused because of their sim-
plicity and ease of construction. We must, however, keep in mind that we design
the study to attain a given set of objectives in an efficient manner. In particular,
when the goal of the study is not to estimate all parameters in the model, our
design criterion has to be modified appropriately to reflect reality.

10.4.1 DA or Ds-optimal design

A compelling case for use of a DA- or Ds-optimal design is in the biological
sciences where research interest is naturally targeted on a selected parameter
in some nonlinear models. For example, consider the Michaelis–Menten model
yi = axi/(b + xi) + εi discussed earlier. The observation errors εi are assumed
to be independent and have mean zero and constant variance. The parameter a is
the maximum velocity theoretically attainable, and as noted earlier the parameter
a enters the model linearly so that design issues are not affected by the nominal
value of a. The Michaelis–Menten parameter b is the value of the substrate at
which the velocity is one-half the maximum velocity and this parameter is of
primary biological interest. This constant is frequently used as a defining char-
acteristic of the substance under study or for comparison purposes. In practice,
we may not always want to find the optimal design for estimating both a and b.
We may just be interested in finding an efficient design for estimating only b.

The locally D-optimal for estimating both a and b can be found directly using
calculus. The optimal design for estimating a alone or b alone can be found using
Elfving’s theorem, which is widely discussed in design monographs, see Atkin-
son and Donev (1992), Silvey (1980) and Pukelsheim (1993), for example. The
theorem uses a geometrical but old argument that works very well for estimating a
linear combination of parameters in a two-parameter model. Indeed, mathematical
formulae for all these optimal designs are available. We do not list the DA-optimal
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designs here, but refer the reader to the next chapter where we provide a web site
that generates a variety of optimal designs for the Michaelis–Menten model after
the design parameters are supplied. In this case, the design parameters are the
design space, the nominal value for b and also the form of the parameterization
of the Michaelis–Menten model itself. The nominal value of a is optional and
is only used to generate the plot of the mean response function versus values of
the substrate concentration. As we just mentioned, the locally D-optimal designs
for estimating each parameter or both the parameters in the Michaelis–Menten
model do not depend on the nominal value of a.

In practice, design problems are not always concerned with parameter
estimation. There are many studies whose aims are to estimate not simply model
parameters, but functions of model parameters. We describe a few examples in
the next few sections.

10.4.2 Extrapolation optimal design

The same rationale for using extrapolation optimal design discussed in Chapter 9
applies for nonlinear models as well. The theory is similar once the nonlinear
model function is replaced by its first-order linear approximation. In particular,
we first formulate the extrapolation design problem as one for seeking an
L-optimal design. The extrapolation optimal design is usually found using com-
plicated mathematics, and in many cases formulae for the optimal designs are
possible. Examples of extrapolation optimal designs for the Michaelis–Menten
model can be generated directly from the web site described in Chapter 11. For
instance, if the two parameters are a = b = 1 and the design space is [0, 10],
then the optimal extrapolation design for x0 = 12 is supported at two points:
x1 = 0.604 and x2 = 10 with weight at x2 = 10 equal to w2 = 0.942 and the rest
at x1 = 0.604. The accompanying plot in the output on the webpage confirms
the optimality of two-point extrapolation optimal design. Dette, Kiss and Wong
(2008) discussed extrapolation optimal designs for the Michaelis–Menten model
and investigated its robustness under a variation of optimality criteria. The web
site in Chapter 11 also generates extrapolation optimal designs for other models.

10.4.3 Optimal design for estimating percentiles

In toxicology experiments with mice, it is of frequent interest to estimate the dose
that produces a certain percentage of occurrence of an event. The interest is on
observing a binary outcome, such as whether fetal death has occurred or whether
fetal malformation of limbs has occurred and what dose will result in say 5% of
the animals experiencing the event. For example, there has been ongoing interest
in estimating LD5, which is the dose that results in 5% animal death; sometimes
LD2 or lower doses may also be of interest. On the other extreme, for efficacy
studies, interest is in estimating high percentiles, such as ED90; this dose is
expected to produce 90% success rate. Here, ED represents effective dose while
LD represents lethal dose (Kalish, 1990). These percentiles have very different
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motivations, but the method for finding an optimal design for estimating either
of them is the same.

We assume a statistical model with a binary outcome and find an expression
for the percentile in terms of the dose level. We focus on the popular logistic
model, for simplicity, and recall that the probability of a response (occurrence
of an event) at dose level xi is given by

p(xi) = 1

1 + exp[−β1(xi − β0)]
. (10.11)

Here, β0 and β1 are the model parameters, and we assume that their nomi-
nal values are available. The independent variable, dose level, is assumed to be
defined on a user-selected region, which is sometimes a log scale. A discussion
on whether to work with dose or log dose is given in Motulsky and Christopou-
los (2004). If this model holds, the median dose is the value of the independent
variable that results in 50% response rate. Setting p(xi) = 1/2 implies immedi-
ately that the median dose is given by xi = β0, independent of the value of β1.
The same procedure can be used to find the dose that results in a user-specified
percent of response p = p(xi). The dose that results in 100p% of response is

xp = β0 + logit(p)

β1
, (10.12)

where logit(p) = p/(1 − p). This dose xp is also called the 100pth percentile for
the logistic distribution, and we note that it is a function of the model parameters.
Consequently, to find the optimal design for estimating the 100pth percentile,
we first apply the delta method to obtain the asymptotic variance of the esti-
mated xp and then show that the design problem is similar to the one for finding
an L-optimal design discussed in the previous chapter. Wu (1988) gave details
and many examples of locally optimal designs for estimating percentiles in
this and related models.

10.5 Bayesian optimal designs

Bayesian optimal design requires that the researcher comes up with a prior distri-
bution that captures all existing information for the model parameters. This task
is invariably subjective and different researchers can arrive at quite different prior
distributions. Part of the problem is that there is no standard way of quantifying
the information available. The resulting Bayesian optimal design depends on the
prior distribution and can vary substantially when different prior distributions are
used. For instance, if independent uniform priors are jointly used for the two
parameters in the logistic model, the number of design points in the Bayesian
optimal design depends on how spread out each of the prior distributions is.
Chaloner and Larntz (1989) gave several examples using different types of opti-
mal designs for the logistic model. The upshot is that different prior distributions
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can affect the optimal designs substantially, and so it is important to check the
sensitivities of the Bayesian optimal design to the prior distribution before the
design is implemented. For the reason given in the next paragraph, we prefer a
Bayesian optimal design that is more robust to the prior distribution. See Chaloner
and Verdinelli (1995) for a review on Bayesian optimal design problems.

Here are some examples of Bayesian optimal designs for estimating per-
centiles. In toxicology, there is often interest in estimating low percentiles. Recall
that these are percentiles or dose levels that result in a certain percent of animals
experiencing an event of interest after administration of an agent. Typical events
could be death or malformations at birth. The optimal designs for estimating these
threshold values are usually found from an iterative algorithm. For example, Zhu,
Ahn and Wong (1998) found Bayesian optimal designs for estimating the LD1,
LD5 and LD10 for the logistic model in Equation (10.11) using two indepen-
dent uniform priors for the two parameters. The design space was standardized
to [−1, 1]. The prior distribution for β0 was uniform on [−0.1, 0.1] and the
prior distribution for β1 was uniform on [6.9, 7.1]. Table 10.2 shows the optimal
designs and their relative efficiencies for estimating the other two percentiles.
All optimal designs are two points requiring a lot more observations near the
dose level xi = −0.3 than the other design point. The reason for the two-point
designs is in part due to the fact that both uniform priors have a relatively small
range and so information is deemed to be reliable. Consequently, the optimal
design does not require additional points to sample information on other possible
parameter values. We also note that the relative efficiency of the LD10 optimal
design for estimating LD1 is about 66%, suggesting that these optimal designs
are not robust for estimating other percentiles in the study.

Table 10.2 Bayesian optimal designs for estimating low percentiles in a
two-parameter logistic regression model and their relative efficiencies for
estimating LD1, LD5 and LD10. The independent prior distributions for the
two parameters β0 and β1 are U[−0.1, 0.1] and U[6.9, 7.1].

Criterion Design points w1 RELD1 RELD5 RELD10

LD1 −0.346, 0.319 0.756 1 0.921 0.794
LD5 −0.341, 0.265 0.881 0.883 1 0.923
LD10 −0.311, 0.145 0.916 0.662 0.904 1

Note. Data from Table 1 in Zhu, Ahn and Wong (1998).

Table 10.3 is similar to Table 10.2 except that now a more diffuse set of
prior distributions is used for both parameters. The prior distribution for β0 was
uniform on [−1, 1] and the prior distribution for β1 was uniform on [6, 8].
The range of the prior distribution of β1 is much wider than before, suggesting
that prior information is not precise. In fact, the variance for the prior for β1 is
(8 − 6)2/12 = 4/12, which is 100 times larger than the previous case when the
variance for β1’s prior is (7.1 − 6.9)2/12 = 0.04/12. The optimal design points
for the set of more diffuse priors are now six versus two for the less diffuse set of
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Table 10.3 Bayesian optimal designs for estimating low percentiles in a
two-parameter logistic regression model and their relative efficiencies for
estimating LD1, LD5 and LD10. The independent prior distributions for the
two parameters β0 and β1 are U[−1, 1] and U[6, 8].

Criterion Designs (weights) RELD1 RELD5 RELD10

LD1 −1.05,−0.567, −0.165, 0.214, 0.575, 1.09 1 0.977 0.961
(0.207, 0.181, 0.211, 0.223, 0.126, 0.051)

LD5 −1.04, −0.575,−0.196, 0.150, 0.451, 0.751 0.943 1 0.975
(0.231, 0.184, 0.192, 0.204, 0.146, 0.043)

LD10 −1.03,−0.573, −0.194, 0.154, 0.465, 0.77 0.938 0.990 1
(0.243, 0.189, 0.184, 0.176, 0.141, 0.067)

Note. Data from Table 2 in Zhu, Ahn and Wong (1998). Weights are in brackets.

priors as shown in Table 10.2. In other words, the number of support points in an
optimal design may change as the uncertainty in the postulated model changes.
In this case, the more diffuse the prior distribution is, the more points the optimal
design will need to have. Table 10.3 also shows that, unlike the optimal designs
in Table 10.2, these three optimal designs constructed under a set of more diffuse
priors are also relatively robust for estimating the other two percentiles. In all
cases, the minimal relative efficiency of any one of these optimal designs for
estimating the two other percentiles is at least 93%.

10.6 Minimax optimal design

The minimax optimality concept described for linear models in Chapter 9 can be
straightforwardly applied for nonlinear models. There will be additional compu-
tational burden simply because the optimization problem is more complex. This
is particularly true when the plausible region for the parameters is quite involved.
We should first, however, emphasize that maximin optimal designs operate in a
similar way as minimax optimal designs do. Instead of minimizing the worst pos-
sible outcome, which is what the minimax optimal design seeks to do, a maximin
optimal design maximizes the minimal benefit.

King and Wong (2000) employed a minimax approach to design an opti-
mal design for estimating the two parameters in the logistic model in Equation
(10.11): p(xi) = {1 + exp[−β1(xi − β0)]}−1. Note that this model is equal to
the model in Equation (1.6) of Chapter 1 and is also described in Chapter
5 with a different notation. King and Wong (2000) assumed that the plausi-
ble region for the two parameters can be split independently of one another
into [β0,min ≤ β0 ≤ β0,max] × [β1,min ≤ β1 ≤ β1,max], for user-selected constants
β0,min, β0,max, β1,min and β1,max. Table 10.4 compares minimax D-optimal design
with Bayesian D-optimal design in two cases: (i) We used independent uniform
priors with β0 ∼ U[−0.3, 0.3] and β1 ∼ U[6, 8] versus a small plausible region
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given by [−0.3, 0.3] × [6, 8] for the minimax criterion. (ii) We used independent
uniform priors with β0 ∼ U[−1, 1] and β1 ∼ U[6, 8] versus a large plausible
region [−1, 1] × [6, 8] for the minimax criterion.

Table 10.4 shows both the Bayesian and minimax optimal designs for the two
cases. The Bayesian optimal designs were obtained from Chaloner and Lartnz
(1989) and the minimax optimal designs were obtained from King and Wong
(2000). Both types of optimal designs have more points in case (ii) than in
case (i). This is as expected because a larger plausible region or a more diffuse
prior distribution reflects greater uncertainty in the possible values for the two
parameters. This observation has been reported in the literature for other set-
tings as well, see, for example, Chaloner and Larntz, (1989). The proximity of
the two types of designs can be measured using the efficiency. If one chooses
the Bayesian D-optimal design as the base design to compare with, one can ver-
ify the efficiencies of the minimax D-optimal designs relative to the Bayesian
optimal designs for the two situations presented below are 0.936 and 0.887.

Table 10.4 Bayesian optimal designs and minimax optimal designs for
estimating the two parameters in a logistic model with two sets of priors and
two sets of plausible regions. The numbers in the brackets are the weights
associated with the design points.

Plausible region Bayesian D-optimal design Minimax D-optimal design

Case (i) −0.308 (0.368) −0.436 (0.269)
−0.3 ≤ β0 ≤ 0.3 0.000 (0.264) 0.000 (0.462)

6 ≤ β1 ≤ 8 0.308 (0.368) 0.436 (0.269)

Case (ii) −0.953 (0.118) −1.151 (0.152)
−1 ≤ β0 ≤ 1 −0.566 (0.156) −0.738 (0.179)

6 ≤ β1 ≤ 8 −0.267 (0.153) −0.313 (0.118)
0.000 (0.146) 0.000 (0.102)
0.267 (0.153) 0.313 (0.118)
0.566 (0.156) 0.738 (0.179)
0.953 (0.118) 1.151 (0.152)

Note. Data from Table 2 in King and Wong (2000).

In summary, the minimax design approach offers another practical way to
design a study that takes into account available information on the model param-
eters. This design strategy is conceptually appealing because only the extreme
possible values of each parameter in the model have to be elicited. It does not
require the subjective construction of a prior distribution that can impact the final
design in important ways. The main drawback is that minimax optimal designs
do not have closed form and have to be found numerically using algorithms that
are not widely available. Despite this limitation, the minimax design strategy is
useful and popular in situations where little information on the model parameters
is available at the design stage.
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We end this section by noting that logistic models are very popular for
modelling binary outcomes, and Chapter 5 is devoted solely to discussing design
issues for logistic regression models. Various design strategies for the logistic
regression models have been proposed by Begg and Kalish (1984), Chaloner and
Larntz (1989), King and Wong (2000), Minkin (1987), Ouwens, Tan and Berger
(2006), Sitter (1992), Tsutakawa (1972), Tekle, Tan and Berger (2008) and Zhu
and Wong (2000a,b), among many others. See Chapter 5 for further references.

10.7 Multiple-objective optimal designs

The concept and construction of a multiple-objective design discussed in Chap-
ter 9 for linear models apply to nonlinear models as well. As such, we will
provide only examples of these designs for nonlinear models.

Huang and Wong (1998) used a simple model suggested by Neter, Kutner
and Wasserman (1985) to study the relationship between a prognosis index for
long-term recovery yi and the number of days of hospitalization xi . The range
of hospitalization days under investigation was from 0 to 90 days, and so we set
the design space as [0, 90]. The proposed two-parameter model is an extension
of the model in Equation (10.1) and is given by

yi = b exp(−axi) + ei for 0 ≤ xi ≤ 90. (10.13)

The nominal parameter values are b = 56.66 and a = 0.038. To estimate
the parameters, Neter, Kutner and Wasserman (1985) sampled records randomly
across 15 different number of days of hospitalization: 2, 5, 7, 10, 14, 19, 26, 31,
33, 38, 45, 52, 53, 60 and 66. This means that if the total number of observations
to be sampled is N = 150 observations, then they are sampled so that we have
10 patients’ record for each of the 15 x values. If other values of N were used
and N is at least 15, then approximately N /15 records are sampled at each of
the x values.

This design could be optimized as shown in Section 10.4. But multiple-
objective optimal design provides more flexibility. Suppose that in addition to
estimating the parameters, we also want to estimate the mean recovery index
value of patients who are hospitalized between 2 and 10 days. In this case, one
may choose D optimality as one criterion and L optimality as the other. Following
Huang and Wong (1998), we call the latter optimal design an integrated optimal
design, and we want to design a study to balance the trade-off between the two
objectives by compromising on the D-optimal design and the integrated optimal
design. For this purpose, we set f (xi) = b exp(−axi) and differentiate f (xi)

with respect to a and b to obtain its gradient ∇f (xi). It is straightforward to
verify that

∇f (xi) =
(

exp(−axi)

−xi exp(−axi)

)

. (10.14)
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The normalized information matrix for a design ξ on the design space is

M(ξ) =
∑

i

[wi∇f (xi)∇f ′(xi)]. (10.15)

The L optimality is φ1(ξ) = ∑ ∇f (xi)M(ξ)−1∇f ′(xi) = Trace[AM(ξ)−1]
and the user-selected matrix is A = ∑∇f (xi)∇f ′(xi). L-optimal designs may
be found analytically; otherwise, they can be found using computer algorithms
discussed in Fedorov (1972). Table 1 in Huang and Wong (1998) is partly repro-
duced in Table 10.5, in which the different efficiencies of the single-objective
optimal design under the two objectives are shown.

Table 10.5 Relative efficiencies of the original design ξo, the integrated
optimal design ξI and the compound optimal design ξλ with λ = 0.65.

Design points and
Design weights D-efficiency Integrated efficiency

ξo 2,5,7,10,14,19,26,31,
34,38,45,52,53,60,65

(mass 1/15)

0.580 0.355

ξI 1 15.66 0.865 1
(0.535 0.465)

ξλ 1 24.36 0.987 0.95
(0.554 0.446)

Note. Data from Table 1 in Huang and Wong (1998).

For this particular problem, we wanted a compromised design that will pro-
vide an efficiency of at least 95% for estimating the mean recovery index for
patients hospitalized between 2 and 10 days, and subject to this requirement,
the design estimates the two parameters in the model as accurately as possible.
Proceeding as in Chapter 9, we first construct the efficiency plot and then use it
to deduce the desired design. We omit this plot for space consideration, but note
that the desired design is given by the compound optimal design with λ = 0.65.
This design tells us to sample records from patients hospitalized for 1 and 24.36
days only and about 55.4% of the records should come for patients hospitalized
for 1 day only. This multiple-objective design has a D-efficiency of 98.7% and
an L-efficiency of 95%, as expected. In contrast, the corresponding efficiencies
for the implemented design are only 58% and 35.5%, showing once again that
careful design of the study can increase the overall efficiency by providing more
accurate estimates at the same cost.

Multiple-objective designs were also used in Rosenberger and Grill (1997)
who conducted a psychophysical experiment where subjects sequentially received
different levels of a stimulus, and data were recorded on response or non-response
to the stimulus. The goal of the study was to elicit information efficiently



OPTIMAL DESIGNS FOR SOCIAL AND BIOMEDICAL RESEARCH 273

about the relationship between stimulus levels and responses by simultaneously
estimating the 25th, 50th and 75th quantiles of the stimulus–response curve.
Using a logistic model, Zhu and Wong (2000b) applied a Bayesian approach and
designed a psychophysical study to estimate the three percentiles simultaneously
with possibly unequal interest.

10.8 Optimal design for model discrimination

A common design strategy for discriminating among competing models is to
assume that we have a class of nested models, which contains the ‘true’ model.
The hope is that one of the models in the class will provide an adequate fit to the
data. These models are usually nested, meaning that the models get increasingly
large in terms of the number of parameters in the mean function, and when other
models in the class can be obtained by setting some of these parameters equal to
specific values, zero being the most common. A simple example of such a class
is polynomial models of degrees up to (p − 1). There are p such models in the
class beginning with the ‘smallest’ having degree equal to 0 to the ‘largest’ of
degree (p − 1). The intermediate models are obtained by setting more and more
coefficients associated with the highest terms in the polynomial terms equal to 0.

Here are a few simple illustrations of nested nonlinear models. The first is
concerned with the logistic model described in Equation (10.11). An immediate
generalization or ‘larger’ model is the power logistic model defined by

p(xi) = 1

{1 + exp[−β1(xi − β0)]}s . (10.16)

This model was introduced by Prentice (1976) and described by Gaudard
et al. (1993) to model skewed binary responses. We recall the simple logistic
model is symmetric in the sense that the probability of a response is the same
at two points equally spaced from the median. When this symmetry assumption
is questionable, skewed binary responses can be modelled using values of s

other than unity. If s > 1, responses are skewed to the right and if s < 1, the
responses are skewed to the left. Of course, in practice, the true value of s is
usually unknown and will have to be estimated from the data.

In enzyme-kinetics studies, another example of such a nested class may con-
sist of just two models: the well-known Michaelis–Menten model and the Emax
model, both described in Section 10.2. The larger model is the Emax model
defined in Equation (10.5). The extra parameter h in the Emax model permits
the shape of the response curve to be skewed and takes on different steepness as
the concentration of the substrate varies. Clearly, when h = 1, the Emax model
reduces to the Michaelis–Menten model. For design purposes, one assumes the
Emax model and one seeks to design to estimate h as accurately as possible
and at the same time also have efficient estimates for the parameters in the
selected model. Dette, Melas and Wong (2005) discussed this design problem
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and provided an algorithm for generating a variety of optimal designs for this
model.

Another nesting of models involving the Michaelis–Menten model is con-
sidered by Lopez-Fidalgo, Tommasi and Trandafir (2008). They discriminated
between the Michaelis–Menten model and what they called the ‘modified’
Michaelis-Menten (MMM) model defined by

yi = a xi

b + xi

+ Fx i + ei. (10.17)

Clearly, when F = 0 in the MMM model, we have the Michaelis–Menten
model. The problem for us is to find a design to estimate the parameter F in
the MMM model accurately and at the same time provide good estimates for the
parameters (a, b). In such design problems, one may also wish to weigh in on the
competitive goals; clearly, having a more precise estimate of F requires more
resources. With a fixed amount of resources N , the total number of observations
available, these additional resources have to come at the expense of resources
required for estimating (a, b). A similar situation arises if the researcher feels
estimating (a, b) is more important than F . How does one design to account
for these competitive needs when they exist and are of unequal interest to the
researcher? One answer is to use a multiple-objective approach discussed in the
previous section and come up with a compromised optimal design.

More complicated examples involving more than two models in the nested
class abound in the literature. The strategy is to embed the postulated model into
‘larger’ models with more parameters with the caveat that these larger models
reduce to successively simpler models when the parameters take on specified
values. Sigmoidal models provide an excellent illustration. These models are
widely used in studies that involve a ‘growth equation’ such as in botany, animal
science, medical studies, immunoassay and bioassays. For example, consider the
exponential regression model and the Weibull regression model defined by

yi = a − b exp(−cti ) + ei

and

yi = a − b exp(−cthi ) + ei, (10.18)

respectively. Baba (2002) aptly applied the exponential regression model with
a = 0 to study the relationship between minute ventilation and oxygen uptake
during incremental exercise. Manifestly, when h = 1 in the Weibull regression
model, we obtain the exponential regression model. So estimating and subse-
quently testing whether h = 1 is of interest here to discriminate between the two
models. An optimal design should minimize the variance of the estimated parame-
ter h. Design issues are further discussed in Dette and Pepelyshev (2008) and their
methods for finding these and other types of optimal designs are implemented in
our web site discussed in the next chapter.
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Models that extend the logistic model are called 3PL (three-parameter
logistic), 4PL (four-parameter logistic) or 5PL (five-parameter logistic) model ,
and sometimes more generally they are referred to as generalized logistic model .
We will not display these models because of their mathematical complexity,
but note that there is specialized software for working with these models.
Some examples are the (i) NLREG Software at http://www.nlreg.com, (ii)
GraphPad Prism at http://www.graphpad.com and (iii) StatLIA Software at
http://www.brendan.com. These sites provide background, estimation issues and
applications of the models to real problems. For example, NLREG that mainly
performs nonlinear regression and curve fitting has an illustrative 4PL model for
studying heart rate and its relation to blood pressure. Some exemplary papers in
this area are Volund (1978) and Gottschalk and Dunn (2005).

10.9 Summary

In this chapter, several types of optimal designs for different nonlinear models
were discussed. The key message here is that after the nonlinear mean response
function in the nonlinear model is approximated by a linear function, design
techniques that we used for linear models can be applied. As emphasized in this
chapter, the search for optimal designs for nonlinear models is more difficult
than for linear models in large part because optimal designs for nonlinear models
depend on the very values of the parameters that we want to estimate. Bayesian
methods and minimax or maximin design methods are possible alternatives but
they may be complicated to apply and do not usually result in closed form
solutions. Numerical computations may be difficult and sometimes algorithms
for generating minimax optimal designs may not converge. In the next chapter,
we review some algorithms for computing optimal designs and present a web
site that freely generates optimal designs for some linear and nonlinear models
discussed in Chapters 9 and 10.



11

Resources for the construction
of optimal designs

11.1 Introduction

One of the reasons why optimal design techniques have not been frequently used
in practice is that design issues tended to be treated lightly in the curriculum
of many statistics programmes and emphasis has always been on data analysis.
As such, statisticians may not be very familiar with the use of optimal design
techniques. Another reason is that computer programs for general purpose are not
available for handling the often complicated and time-consuming computation of
optimal designs. This is especially so in social and biomedical research.

Computer algorithms are increasingly used to generate optimal designs. Some
are more successful than others. In practice, however, whether the algorithm
converges to a theoretical optimal design or not is less of an issue; what is
useful is that the algorithm finds a design close to the optimum. There are the-
oretical methods of determining the efficiency of the generated design without
knowing the optimum. If the efficiency is close to 100%, we use the generated
design as the optimal design for all practical purposes. The generated optimal
design also provides very helpful hints how the theoretical optimal design looks
like – how many design points and where they are roughly distributed, along
with the weights at these points. This information often allows us to then use
Mathematica, Scientific Workplace or Maple software to find the optimal design
analytically. Without information from the generated design, we can only guess
on the structure of the optimal design, and if we are wrong, then it is difficult to

An Introduction to Optimal Designs for Social and Biomedical Research      M. P. F. Berger & W. K. Wong
© 2009, John Wiley & Sons, Ltd. ISBN: 978-0-470-69450-3
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find an analytical description for the optimal design, especially for complicated
models.

The origin of the computation of optimal designs lies in the exchange algori-
thm (Fedorov, 1972). The theory behind this algorithm is more or less based on
common sense and actually starts with the sequential selection of optimal design
points.

In the following section, we first describe the sequential construction of a
design using an example and then we follow up with a short description of the
exchange algorithm. We also discuss different algorithms with some technical
details, along with optimal design software. In Section 11.6 we introduce a web
site for generating several types of tailor-made optimal designs for a variety of
models.

11.2 Sequential construction of optimal designs

The method of finding an optimal design sequentially is a fast and easy to under-
stand procedure. One could say that the method is actually a greedy procedure,
which tries to obtain as much information as possible in the shortest possible
time. We will first describe and illustrate the sequential procedure in detail for
a linear regression model. This involves matrix algebra, but we will try to keep
notation as simple as possible.

Suppose that we have a linear model y = XNβ + ε, where an N × 1
response vector y is modelled as the product of an N × p design matrix XN and
a p × 1 parameter matrix β. The N rows of XN represent the N experimental
conditions under which the responses were observed and the p columns of XN

represent the values of the p variables for each experimental run. There are
p unknown parameters in β. For example the quadratic polynomial regression
model yi = β0 + β1x1i + β2x

2
1i + εi in Equation (3.17) of Chapter 3 can be

written in matrix form as

⎡

⎢⎢⎢
⎣

y1

y2
...

yN

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

1 x1 x2
1

1 x2 x2
2

...
...

...

1 xN x2
N

⎤

⎥⎥⎥⎥
⎦

⎡

⎣
β0

β1

β2

⎤

⎦ +

⎡

⎢⎢⎢⎢
⎣

ε1

ε2

...

εN

⎤

⎥⎥⎥⎥
⎦

. (11.1)

As has been noted before, apart from an unimportant multiplicative constant,
the asymptotic variance–covariance matrix of the parameter estimators Cov(β̂)

is equal to the inverse of the information matrix for the parameters β:

MN =
∑N

i
f (xi)f

′(xi) = XN
′XN, (11.2)
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where f ′(xi) = [1 xi x2
i ] is the ith row vector of XN . For the quadratic polyno-

mial regression model, the information matrix reduces to

MN =

⎡

⎢
⎣

N
∑

i xi

∑
i x2

i∑
i xi

∑
i x2

i

∑
i x3

i∑
i x2

i

∑
i x3

i

∑
i x4

i

⎤

⎥
⎦ . (11.3)

In previous chapters, we explained that in order to find a D-optimal design
we have to minimize the determinant of the asymptotic variance–covariance
matrix Cov(β̂). Because the determinant of a matrix has the property Det[A] =
1/Det[A−1], where A is any non-singular square matrix, we can also obtain
a D-optimal design by maximizing the determinant of the information matrix,
since asymptotically the variance–covariance matrix is Cov(β̂) = σ 2

ε M−1
N . The

determinant of the information matrix can be expressed as

Det[MN ] = Det[XN
′XN ]. (11.4)

The sequential procedure of finding an optimal design consists of the
sequential addition of design points to the current design. After a single design
point xa is added, the design matrix XN will have an extra row f ′(xa) for
that design point xa . For the quadratic model in Equation (11.1), this row is
f ′(xa) = [1 xa x2

a ] and the order of the new design matrix XN+1 becomes
(N + 1) × p. The information matrix for an (N + 1)-point design can be written
as the sum of the information matrix of the N -point design and the information
matrix of the additional point xa :

MN+1 = XN
′XN + f (xa)f

′(xa). (11.5)

It can be shown that the determinant of the information matrix after addition
of the row f ′(xa) can now be written as

Det[MN+1] = Det[MN ]{1 + f ′(xa)[XN
′XN ]−1f (xa)}, (11.6)

see Rao (1973, p. 32, complement 2.5), for example. This equation shows that as
design points are added sequentially, the D-criterion value can be expressed as a
function of the D criterion of the preceding design and the standardized variance
of the predicted new observation, that is s(xa, ξ) = Nf ′(xa)[XN

′XN ]−1f (xa).
The sequential procedure searches for a design point xa in the region xmin ≤

xi ≤ xmax that maximizes s(xa, ξ) in every step and expands the design matrix
by adding the corresponding row f ′(xa) to the current design matrix. The new
design matrix with the added row f ′(xa) is then used in the next step to compute
s(xi , ξ ) again. This sequential procedure is basically the same as the algorithm
proposed by Dykstra (1971), Wynn (1970, 1972) and Wu and Wynn (1978a,b),
who showed that the resulting design converges to the optimal design as N → ∞.
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Let us return to the quadratic regression model. Suppose that we start with a
three-point design with x values x1 = −1, x2 = −0.5 and x3 = 0.75. The corre-
sponding 3 × 3 design matrix for a quadratic polynomial model is

X3 =
⎡

⎣
1 −1 1
1 −0.5 0.25
1 0.75 0.5625

⎤

⎦ . (11.7)

It should be noted that the procedure requires a sufficient number of observa-
tions to start with, because we have to ensure that the inverse [XN

′XN ]−1 exists.
A simple condition that will guarantee the inverse exists is to have the number
of different design points greater than or equal to the number of parameters, that
is N ≥ p.

In Figure 11.1, the sequential procedure is visually displayed in six steps
(plots). The design points are selected within the region −1 ≤ xi ≤ 1. The stan-
dardized variances are plotted for numbers of observations ranging from N = 3
to N = 8. In each step (plots of Figure 11.1), a design point xa is added that has
the largest s(xa, ξ) value, that is the design point that ensures the largest increase
of the Det[MN ] value in Equation (11.6). For example, after the N = 3 starting
points, the largest s(xa, ξ) value is found for xa = 1. So, the design point xa = 1
is added to the design matrix X3 and the design matrix is now

X4 =

⎡

⎢⎢
⎣

1 −1 1
1 −0.5 0.25
1 0.75 0.5625
1 1 1

⎤

⎥⎥
⎦ . (11.8)

In the next plot for N = 4, the largest s(xa, ξ) value is found for xa = 0.02, and
so on.

The plots in Figure 11.1 show that the maximum s(xa, ξ) value decreases
as N increases. These maximum s(xa, ξ) values are plotted in Figure 11.2 as a
function of the first 100 steps (N = 100). According to the general equivalence
theorem (Kiefer and Wolfowitz, 1960), a D-optimal design satisfies the condition
that s(xa, ξ) ≤ p. Figure 11.2 shows that the maximum s(xa, ξ) values decrease
rapidly to p = 3 (dotted horizontal line) indicating that we are very close to the
D-optimal design after N = 100 steps. The corresponding s(xa, ξ) function is
also plotted in Figure 11.2, and shows that a D-optimal design for the quadratic
model has three distinct design points [−1 0 1]. The frequencies of design points
are shown as histograms in Figure 11.3. It can be seen that after N = 100 runs,
the generated design approaches the equally weighted D-optimal design very
well. We also display the starting points x1 = −1, x2 = −0.5 and x3 = 0.75,
together with the design point xi = 0.02 that was selected as the fifth point in
Figure 11.3.
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Figure 11.1 Sequential construction of a D-optimal design for a quadratic model
yi = β0 + β1xi + β2x

2
i + εi . (Plots of s(xi, ξ ) in the region −1 ≤ xi ≤ 1).
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Figure 11.3 Histogram of sequentially obtained design after N = 100 runs for
the second degree polynomial model.

Of course, this sequential procedure may not converge to the optimal design
as fast as the one shown here; in many cases, convergence may take a longer
time to achieve because the drop of the max{s(xa, ξ)} values may take many
more steps (iterations). This is especially so for more complicated models such
as linear mixed models. The success of the procedure also depends on the grid of
the design points in the region xmin ≤ xi ≤ xmax, which is used to compute the
s(xi , ξ ) function. Too large a grid may lead to inaccurate selection of the design
points, and a grid that is too small will require more computing time to converge.
Moreover, because design points are added sequentially, the final design may be
quite different from the optimal design. In particular, the generated design tends
to have many more points than the theoretical optimal designs because the values
of the sequentially added points tend to cluster around the optimal design points
and we will need a rule to collapse these surrounding points to a few points. This
drawback of the procedure led to the notion that improvements may not only be
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obtained by addition of most informative designs points but also by substitution
of less informative design points by more informative ones.

11.3 Exchange of design points

The sequential procedure in Figure 11.1 started with three arbitrarily chosen
design points x1 = −1, x2 = −0.5 and x3 = 0.75. However, two of these points
are rather poor and not very informative. It may now be worthwhile to select
better starting design points or to delete these starting points from the design
after the first few runs. Equation (11.6) can be expanded (Harville, 1997,
Theorem 18.1.1) as

Det[MN±1] = Det[MN ]{1 ± f ′(xa)[XN
′XN ]−1f (xa)}. (11.9)

Improvements of the Det[MN ] value are established not only by adding rows
f ′(xa) with the largest values of s(xa, ξ) to the design matrix X but also by
deleting rows f ′(xa) with the smallest s(xa, ξ) values from X. This suggests an
exchange algorithm. Suppose that a row f ′(xa) of X is substituted by another
row f ′(xb). Then it can be shown that the determinant of the information matrix
will change by a factor:

{f ′(xa)[XN
′XN ]−1f (xb)}2 + {1 + f ′(xa)[XN

′XN ]−1f (xa)}
{1 − f ′(xb)[XN

′XN ]−1f (xb)}. (11.10)

If after N = 100 we would want to replace the two starting points x2 = −0.5
and x3 = 0.75 together with the fifth design point x5 = 0.02 by one of the
D-optimal design points [−1 0 1] in such a way that all three D-optimal design
points are equally weighted, then the determinant of the information matrix
will increase by a factor 1.0197. It is clear that exchanging these three design
points by three D-optimal design points will not improve the Det[MN ] value
very much. But, if relatively more design points are exchanged, this factor
will increase in value. The factor in Equation (11.10) forms the basis for the
so-called exchange algorithms.

11.3.1 Exchange algorithms

The first exchange algorithm was proposed by Fedorov (1972). Deletion and
addition of design points is combined by evaluating all possible exchanges of
pairs of design points. Each pair of the already selected design points and the
candidate design points in the design space are evaluated in each step or iter-
ation and those that result in the largest increase in criterion value Det[MN ]
are selected. Improvements to speed up the algorithm have been suggested by
Cook and Nachtsheim (1980) and Johnson and Nachtsheim (1983). Nguyen and
Miller (1992), among others, concluded that the speed of convergence of these
algorithms depends on the starting designs. Galil and Kiefer (1980) gave ideas to
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select a good starting design and Miller and Nguyen (1994) provided a computer
program for the Fedorov exchange algorithm. Recently, Pronzato (2003) and
Harman and Pronzato (2007) suggested refinements of the method of deleting
non-informative points to accelerate the search for D-optimal designs. Modifi-
cations of the exchange algorithm for designs with correlated errors have been
suggested by Ucinski and Atkinson (2004) and Stehlik (2006).

A well-known search algorithm that also adds and deletes design points in
the DETMAX algorithm was proposed by Mitchell (1974). This algorithm sepa-
rates the search procedure that adds the most informative design points from the
search procedure that deletes the least informative design points. The DETMAX
algorithm uses separate clusters of steps in which more than one design points are
added and deleted, and the size of the clusters increase as the algorithm proceeds.

Another often used algorithm is the BLKL exchange algorithm proposed
by Atkinson and Donev (1992). It is now implemented in the computer package
GENSTAT (http://www.vsn-intl.com/genstat/). The search is made faster by locat-
ing the most likely to be exchanged design points and the most likely candidate
design points in advance based on the variances of the predicted responses. The
BLKL algorithm can also handle problems with both qualitative and quantitative
variables. Further details can be found in Atkinson and Donev (1992).

Standard designs can be constructed using SAS (1999), where the FACTEX®
procedure can be used to obtain fractional factorial designs. An algorithm to gen-
erate large D-optimal factorial designs is presented by Kuhfeld and Tobias (2005).
The SAS (1999) OPTEX® procedure offers a variety of search algorithms to eval-
uate D- and A-optimal designs, ranging from a simple sequential search to the
more computer intensive exchange algorithms. For linear models with indepen-
dent errors, its use is straightforward. Adjustments can be made on the initializa-
tion method and the number of iterations. See Atkinson, Donev and Tobias (2007)
for more details on the OPTEX coding for various optimal design problems.

Finally, we note that exchange algorithms cannot guarantee that a global
optimum is found. Although such optimal designs can be found by exhaustive
combinatorial optimization methods, these combinatorial methods are useful in
practice only for a few types of small design problems. For large design problems,
combinatorial optimization can be very computer intensive. In most cases, how-
ever, exchange algorithms will produce a design that is close to the optimal one.

11.4 Other algorithms

A variety of optimization algorithms have been proposed in different fields. Sim-
ulated annealing (Kirkpatrick, Gellat and Vecchi, 1983; Meyer and Nachtsheim,
1988), for example, is a generic probabilistic algorithm that attempts to locate a
good approximation to the global optimum of a given function. It is an adaptation
of the Metropolis–Hastings algorithm and has been used by Haines (1987) and
Lejeune (2003) to construct optimal experimental designs. Because simulated
annealing may converge slowly, Atkinson (1992) proposed a segmented search
to speed up convergence.
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Another class of algorithms to construct optimal designs originates from
genetics. Recently, Jin, Chen and Sudjianto (2005) proposed a stochastic evo-
lutionary algorithm, which seems very fast in terms of computer time. Heredia-
Langner et al. (2003) proposed a generic algorithm from computer science
for the construction of D-optimal designs. Sexton et al. (2006) compared a
genetic algorithm with an exchange algorithm for the D-optimality criterion and
concluded that the genetic algorithm at first gives a rapid drop of the D-criterion
value, but subsequently converges slower than the exchange algorithm. Poland
et al. (2001) showed that although genetic algorithms may be slower, they can
improve the final design. More research, however, is needed to decide on the
most efficient algorithm for optimal designs.

The statistical toolbox in Matlab and the Matlab unconstrained optimization
algorithms (Matlab, 2004) can also be used to find optimal designs. The fmin-
search algorithm, for example, uses the Nelder–Mead simplex search described
by Lagarias et al. (1998). This algorithm is a direct search method that does not
use numerical or analytic gradients. A simplex is an m-dimensional regularly
sided figure characterized by m + 1 distinct vertices. For example, when m = 2
the simplex is a triangle and when m = 3, the simplex is a pyramid. In each step
of the search, a new point in or near the current simplex is generated. The objec-
tive function value at the new point is compared with the value of the objective
function at the vertices of the simplex. Usually, the new point replaces one of
the vertices and leads to a new simplex. Steps are repeated until the diameter
of the simplex is less than a priori specified tolerance level. Finally, the algo-
rithms mentioned in this section are not designed to handle nonlinear models or
mixed-effects models. However, with adjustments most of these algorithms can
be used for nonlinear models (Dror and Steinberg, 2006).

We remind readers that the optimality criteria are generally complex functions
with several local optima and most multidimensional optimization algorithms
may stop at a local optimum. The standard treatment of this problem is to repeat
the process with different starting values and see whether we obtain the same
result. If we do, we may conclude with some confidence that a global optimum is
found. Otherwise, the optimum we find may very well be only locally optimum.

11.5 Optimal design software

GOSSET. This is a general purpose program for designing experiments. Sloane
and Hardin (2003) developed the program Gosset which is a powerful and
flexible computer program for the construction of optimal designs. It can be
used to find optimal designs, such as D-, A- and E-optimal designs. It does
not, however, run on all operating platforms. It can only be run on Mac, Unix
or Linux operating systems.

AlgDesign Package. This package calculates exact and approximate theory
experimental designs for D-, A- and I-optimality criteria. It consists of a num-
ber of routines written by Wheeler (2004). Among others, it contains routines
for Fedorov’s exchange algorithm, full factorial optimal designs and blocked
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experimental designs. Further information can be found on http://www.
r-project.org/ and from the author R.E. Wheeler at bwheeler@echip.com.

Design-Expert® 7.1. The package contains a variety of design creation tools
to compose factorial designs with a large number of factors, response sur-
vey designs and mixture designs. Fractional factorial designs can also be
specified with multiple constraints to obtain a restricted design region. See
www.statease.com.

MINITAB® version 15. The recent version of MINITAB (2008) offers
D-optimal response survey designs and mixture designs. The corresponding
command is OPTDESIGN. Minitab gives various tools to create experimental
designs and analyse and plot the results.

OPTIMAL DESIGN. Software for longitudinal and multilevel research. This
software is developed with support from the National Institute of Mental
Health and the William T. Grant Foundation. It can assist researchers in their
computation of optimal sample sizes for linear and logistic multilevel models
with two and three levels of nesting and repeated measurements. Power func-
tions are also supplied. The software is regarded as a ‘beta version’, meaning
that it is distributed for use under the condition that those who use it are asked
to promptly report difficulties or errors to Andres Martinez (amzzz@umich.
edu), Stephen W. Raudenbush (sraudenb@uchicago.edu) and/or Jessaca Spy-
brook (jessacah@umich.edu). The program is available on http://sitemaker.
umich.edu/group-based/optimal design software (Raudenbusch et al , 2004).

POLS. This is an interactive computer program for optimal designs of longitu-
dinal cohort studies. Large-scale longitudinal studies are carried out in many
different fields of science. This computer program helps planners to design
their longitudinal study by identifying the optimal cohort design, the opti-
mal number of repeated measurements per subject and the optimal allocation
of time points within a given study period (design space). Further, users
can specify costs of sampling and measuring subjects, and compute loss of
efficiency of any alternative design (Tekle, Tan and Berger, 2009).

ODMixed. A tool for heterogeneous longitudinal studies with dropout. Apart
from the computation of optimal designs for longitudinal studies with the
linear mixed-effects model, this program computes D-optimal designs for
studies with a heterogeneous error variance structure and with anticipated
dropout. The loss of efficiency is computed to facilitate researchers in deciding
which optimal design they should use for their study when the heterogeneous
error structure and the percentage of random dropout are not known in the
design stage (Ortega-Azurduy, Tan and Berger, 2009).

11.6 A web site for finding optimal designs

Optimal design ideas are increasingly used in various fields to provide more
efficient estimates at the same or reduced cost. This is in part due to rising
experimental cost and an increasing awareness of usefulness of optimal designs,
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see Atkinson (1996). To facilitate use of optimal design ideas in practice, the
second author and his team of researchers have constructed a web site where
users can freely generate a variety of optimal designs for a list of linear and
nonlinear models available on the site.

The site contains introductory material on design issues for practitioners,
background information on the construction of optimal designs and frequently
asked questions and answers. We plan to continue to add programs and sometimes
modify current programs when necessary on the web site. As such, there will
be down time and when this happens, we ask the reader to return to the site at
a later time. The reader should also be warned that the site is brand new and
is not fully tested yet at this time when the book goes to the press. As always,
we appreciate feedback and all comments be sent to the second author at email
address wkwong@ucla.edu.

The web site address is at http://optimal-design.biostat.ucla.edu/optimal/.
The main purpose of the site is to educate and inform the visitor of statistical
design issues, including basic ideas of optimal designs and their construction.
The other purposes of the site are to (i) make optimal designs in the literature
easily accessible to practitioners and researchers and (ii) develop new programs
for generating cost-effective designs in the biomedical sciences. The target
audience is practitioners interested to incorporate optimal design ideas in their
search for an efficient design for their problem. The user selects the model of
interest and provides design parameters of their choice. The model can be linear
or nonlinear and sometimes we permit the design problem to have multiple
objectives with different degrees of interest. The site also evaluates efficiency
of any user-specified design relative to the optimal design. Some algorithms are
iterative in nature and for complicated models they are quite time consuming
to run. In a few of these cases, we have also provided stand alone versions for
the visitor to download and run the programs on their own computers. Doing so
will free up running time on the server for other programs. We also expect this
site to be a useful resource to experienced researchers in design because this
site contains many optimal design results that are otherwise scattered all over
the literature in statistical and non-statistical journals. This site also enables
researchers to find the optimal design and investigate its sensitivities to changes
in design parameters with a few keystrokes on the keyboard.

The most important page on the site is the one entitled ‘Web Based Design
Programs’. This is where all programs for generating optimal designs are kept.
On this page, there are several programs for finding a variety of optimal designs
for a list of models. Many of these models are widely used in the biomedical
sciences. When the program is run, the site returns the optimal design, and
also the efficiency of the user-supplied design if the ‘additional options’ box is
checked. Specifically, the support points of the user-supplied design have to be
entered in the box ‘design points’ with each point separated by a comma. Then
the corresponding weight for each is entered in the same order and separated
by a comma as well. Note that these weights have to sum to unity, and if they
do not, the program automatically performs this task. For example, if ‘1, 2’ is
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entered in the ‘corresponding weights’ box signifying that weight at the second
point is twice the weight at the first point, the program automatically normalizes
the weights to be 1/3 and 2/3.

Sometimes, when it is not too difficult to do so, we provide an accompanying
plot to confirm the optimality of the generated design. In essence, this plot graphs
the derivative of the optimality criterion. The main feature to examine in this plot
is whether the graph peaks at the support points of the generated design and all
peaks take on some common value. If the plot exhibits this feature, the generated
design is optimal; otherwise, it is not. Therefore, when such a plot is provided,
the visitor should use this plot to confirm the optimality of the generated design.
In some of these programs, we also provide a plot of the mean response curve
over the design space and ‘nearby’ models. References and related papers for the
construction of each type of optimal designs are provided at the bottom of the
webpage.

We now demonstrate how to use the site for finding optimal designs for a
couple of popular models.

11.6.1 Optimal designs for the Michaelis–Menten and Emax
models

On the webpage ‘Web Based Design Programs’ there is a list of optimal designs
that can be generated for a model. For instance, we notice that there are a variety
of optimal designs for the Michaelis–Menten model, including A-, D-, E-, DS-
or extrapolation optimal design. For illustrative purposes, let us suppose we
wish to find a locally A-optimal design for the Michaelis–Menten model. We
click on the A-optimal key and notice that there are default values in the boxes
where input parameters are required. The default values are just for illustrative
purposes. We also notice that there are three forms of parameterization for the
Michaelis–Menten model. We provide three because some of the forms seem
to be more popular than others, depending on the discipline. For instance, the
third parameterization seems to be more frequently used in marine biology and
in studying the health of the lakes and oceans. The practitioner first selects one
of the forms and then inputs the design parameters in the given boxes; some are
required and some are optional parameters. For example, the input parameter for
a in the Michaelis–Menten model is needed only to graph its mean response
curve and is not needed in the calculation of the optimal design. The site also
provides the efficiency of a user-input design relative to the optimal design.

As an illustration, suppose we choose the second parameterization for the
Michaelis–Menten model, which is most frequently used. Suppose further that
we choose the design interval to be [0, 4] and input a = b = 1 to find the locally
A-optimal design. We recall that an A-optimal design minimizes the sum of the
variances of the estimated parameters. The results are

Design Results
Design Space = [0, 4]
YOUR DESIGN IS
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N/A
THE OPTIMAL DESIGN IS
Design points = [0.504, 4.000]
Design weights = [0.670, 0.330]

There are two accompanying plots in the output. The first is the plot of the
derivative function of the optimality criterion. The plot for this case shows that
the plot takes on its maximum value at both the support points of the locally
A-optimal design, thus confirming the generated design supported at 0.504 and
4.0 with weight at 4 equal to 0.330 is locally A optimal. The second plot simply
shows the mean response function along with some neighbouring models.

Here is another simple illustration for finding the locally D-optimal designs
for the Emax model commonly used in the pharmaceutical sciences. The visitor
clicks on the Emax model key entitled ‘D-optimal design’ of the ‘Web Based
Design Programs’ page. As before, there are default values on the page that we
provided mainly for illustrative purposes. Suppose our design interval of interest
is [0, x0] = [0, 10] and the set of nominal values for (a, b, h) is (1, 2, 1). We input
x0 = 10 and also check the box that evaluates the efficiency of a user-selected
design. What design is of interest? Well, uniform design is popular because of
its simplicity. Let us evaluate the efficiency of a uniform design to see if it
performs well and choose a three-point uniform design supported at three points
and equally spread out at 0.5, 5 and 10. We type ‘1, 1, 1’ in the ‘corresponding
weights’ box signifying that weights at these points are equal. When we click
‘okay’, the program runs and returns the following:

Design Space = [0, 10]
YOUR DESIGN IS
Points = [0.500, 5.000, 10.000]
(normalized) Weights = [0.333, 0.333, 0.333]
Input weights = [1.000, 1.000, 1.000]
Efficiency = 0.816

THE OPTIMAL DESIGN IS
Optimal design points = [0.423, 2.597, 10.000]
Optimal design weights = [0.333, 0.333, 0.333]

The output prints some of the input parameters for the design problem including
the user-selected design for evaluation. The locally D optimal design for esti-
mating the parameters (a, b, h) = (1, 2, 1) is equally supported at 0.423, 2.597
and 10.00, and the efficiency of the input design is 81.6%. The output includes
the plot of the derivative function. This plot is bounded above by 3, which is
the number of parameters in the model and the graph attains the maximal value
3 at the support points of the generated design. This confirms the D optimality
of the generated design. The output also includes a plot of the mean response
function for the input nominal parameters, along with a couple of other sets of
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parameters. A reference and related papers for the construction of the optimal
design are given at the bottom of the output page.

The web site also has a program for finding the optimal design for estimating
only the parameter h. We recall that this is a Ds-optimal design discussed earlier
in Chapters 3 and 9. If one clicks on the Emax model key entitled ‘D1-optimal
design’, a similar page shows up and one can input parameters as we did for
finding the locally D-optimal design. We use the same set of parameters we
used for finding the locally D-optimal design, and now decide to evaluate how
well the locally D-optimal design is for estimating only the parameter h. We
can do this easily by checking the box and inputting the design points of the
locally D-optimal design, that is 0.423, 2.597, 10 and followed by 1, 1, 1 in the
‘corresponding weights’ box. This is the locally D-optimal design we just found.
The output from the site is

Design Space = [0, 10]

YOUR DESIGN IS
Points = [0.423, 2.597, 10.000]
(normalized) Weights = [0.333, 0.333, 0.333]
Input weights = [1.000, 1.000, 1.000]
Efficiency = 0.718

THE OPTIMAL DESIGN IS
Optimal design points = [0.231, 2.699, 10]
Optimal design weights = [0.576, 0.293, 0.130]

This shows that for the nominal values specified, the D1-optimal design for
estimating h is supported at 0.231, 2.699 and 10 and the weights at these points
are 0.576, 0.293, and 0.130, respectively. Graphical plots and references are also
provided as in the D-optimal page. We notice that the efficiency of the locally
D-optimal design for estimating h is 71.8%.

11.6.2 Optimal designs for discriminating among toxicological
models

Slob and Pieters (1998), Slob (2002) and Slob et al. (2005) proposed this nested
class for studying continuous toxicological endpoints. In this series of papers, the
authors gave cogent arguments that models in this class are sufficiently flexible
to accommodate most continuous endpoints in the toxicological sciences. The
assumption is that the mean of the continuous response outcome yi at dose level
xi can be modelled by η(xi, θ) where θ is a p-dimensional vector of parameters.
The function η(xi, θ) may take on one of the following forms:

Model 1: η(xi, θ) = a exp(−bxi); θ = (a, b)′, a > 0 and b > 0.
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Model 2: η(xi, θ) = a exp(−bxd
i ); θ = (a, b, d)′, a > 0, b > 0

and d ≥ 1.

Model 3: η(xi, θ) = a[c − (c − 1) exp(−bxi)]; θ = (a, b, c)′, (11.11)

a > 0, b > 0 and 0 ≤ c ≤ 1.

Model 4: η(xi, θ) = a[c − (c − 1) exp(−bxd
i )]; θ = (a, b, c, d)′,

a > 0, b > 0, 0 ≤ c ≤ 1 and d ≥ 1.

The parameters in θ indicate different characteristics of these models. The
parameter a represents the background level of the endpoint, b is the relative
efficacy of dose, c is the maximum effect relative to a and d is the shape param-
eter. These models are hierarchically related to each other as follows: Model 4
reduces to Model 3 if d = 1; Model 4 reduces to Model 2 if c = 0; Model 3
reduces to Model 1 if c = 0 and Model 2 reduces to Model 1 if d = 1.

Figure 11.4 illustrates how these toxicological models differ in shape. It
should be noted that depending on the values of the parameters in θ , these
models can have various shapes other than the ones plotted here.

 Model 1 Model 2 

Dose levels Dose levels

Model 3 Model 4

Dose levels Dose levels

h(xi, q)

h(xi, q)

Figure 11.4 The shapes of the four toxicological models (a = 1, b = 0.8,

c = 0.5, d = 3).
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Slob and Pieters (1998) introduced the terms critical effect size (CES) and
critical effect dose (CED) for continuous data. The CES reflects the quantitative
change in a particular endpoint considered as non-adverse or acceptable at the
individual level. The motivation for the CES comes from a biological point of
view where it is felt that the most natural way of measuring an effect size is
in terms of a percent change relative to the background value of the particular
endpoint (Slob, 2002). The CES sought in a study with a continuous outcome
is the minimal standardized change expected to be significant by the researcher
(Moerbeek, Piersma and Slob, 2004; Slob, 2002; Woutersen et al. 2001).

More specifically, assume that the mean response η(xi, θ) decreases as the
doses increase, the CED is the dose that will result in observance of the CES.
For a given CES and a given mean response function, the CED is estimated from
the equation

CES = η(0, θ) − η(CED, θ)

η(0, θ)
. (11.12)

Here, η(0, θ) is the mean response when the dose xi = 0. Estimating the CED
that results in a user-specified CES is an analogue for a continuous outcome
similar in spirits to estimating a percentile or a threshold dose when the outcome
is binary, which is discussed in Chapter 10.

Slob (2002) gave an example involving cholinesterase (ChE) activity, and
ChE with CES = 0.20 when inhibition of ChE of less than 20% was postulated
as non-adverse for an individual. Our interest here is to find an efficient design
for estimating CED by minimizing the asymptotic variance of the estimated CED
when η(xi, θ) is known. This is a relatively straightforward problem similar to the
design problem for estimating the turning point in a quadratic model discussed
in Chapter 9. The main challenge here is that we do not know the model in
advance; we are assuming that there are a few plausible models at the onset and
we want to design the study with this in mind.

This is a rather complicated design problem and we discuss it only to show
that there are very difficult design problems in practice and how one may design
when there are multiple concerns. See Dette et al. (2008a,b) for the compli-
cated theory behind the construction of such optimal designs. On the web site,
we provide three types of optimal designs for this particular problem: maximin
CED-optimal designs, maximin discriminating designs and maximin compound
designs. The maximin here refers to maximizing the minimal efficiency of the
optimal design regardless of which one of the models in the nested class is the
‘true’ model. This means that we construct an optimal design under a supposedly
‘true’ model and evaluate its efficiency under all the other models. The optimal
design that maximizes the minimum of these efficiencies is the sought maximin
optimal design. Throughout, errors are assumed to be independent, and either
(i) normally distributed or (ii) log normally distributed. The latter assumption is
especially popular in toxicology studies.

On the webpage entitled ‘Optimal Designs for Toxicology Studies’, we pro-
vide three types of optimal designs after the design parameters are supplied:
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1. the optimal design that maximizes the minimal efficiency of the estimated
CED from the different models;

2. the optimal design that maximizes the minimum of D- or D1 efficiencies
taken over all models in the given class and under a set of user-specified
range of plausible values for the nonlinear parameters;

3. the dual-objectives optimal design that selects the most appropriate model
using a maximin approach and provides the best estimate for the CED of
the selected model at the same time.

In addition, if the box for additional option is checked, the site reports the
efficiencies of the user-supplied design for the four models in the above listed
order. The input parameters are the type of optimal design desired, the design
space, the error distribution and nominal values for the model parameters. Addi-
tionally, the researcher has to specify the number of support points desired for the
optimal design and this number ranges from four to eight points. If this number
is smaller than four, estimation problems may arise, and if it is larger than eight,
the time required to generate the optimal design becomes quite long. For optimal
designs described in 1 and 3 above, the user has to input the CES level as well.
On this webpage, the format for inputting the design parameters is shown below,
along with the default values:

Number of design points: 4.
Optimality criterion: maximin CED-optimal designs.
Assumption on errors: normality assumption.
Design interval: lower bound = 0, upper bound = 1.
CES = 0.05
a = 1,b = 1,c = 0.1,d = 1.1.

The output results are
YOUR DESIGN IS
Design points = [0.000, 0.250, 0.500, 1.000]
(normalized) design weights = [0.250, 0.250, 0.250, 0.250]
Input weights = [1.000, 1.000, 1.000, 1.000]
Design efficiencies = [0.553, 0.807, 0.760, 0.433]
THE OPTIMAL DESIGN IS
Design points = [0.000, 0.212, 0.626, 1.000]
Design weights = [0.273, 0.224, 0.267, 0.236]
Design efficiencies = [0.625, 0.640, 0.625, 0.625]

As a comparison, here are the corresponding results when we assumed errors are
log normally distributed.

YOUR DESIGN IS
Design points = [0.000, 0.250, 0.500, 1.000]
(normalized) design weights = [0.250, 0.250, 0.250, 0.250]
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Input weights = [1.000, 1.000, 1.000, 1.000]
Design efficiencies = [0.547, 0.774, 0.642, 0.478]

THE OPTIMAL DESIGN IS
Design points = [0.000, 0.218, 0.624, 1.000]
Design weights = [0.341, 0.210, 0.207, 0.243]
Design efficiencies = [0.636, 0.677, 0.635, 0.635]

We end this section with a note on minimally supported optimal designs
available on the web site. These are optimal designs found only among the
designs on the design space with number of design points equal to the number
of parameters in the mean response function. As such, these designs may or may
not be optimal among all designs on the design space. Analytical formulae for
the minimally supported optimal design may exist when they are not available
for the optimal design found among all designs on the design space. Minimally
supported optimal designs are particularly appealing in situations where it is
expensive to take observations at different sites. Use the web site and have fun!

11.7 Summary

For complicated models, it can still be a challenging task to find an optimal
design theoretically or computationally. We believe this is a rapidly developing
area of research as exemplified by the computer programs and the web site
described in this chapter. A second point to be emphasized is that sometimes
social and biomedical researchers may feel that it is not feasible or interesting
to implement an optimal design in practice. However, this does not mean that it
is useless for them to study or compute optimal designs. On the contrary, even
if a theoretically established optimal design is not feasible in practice, it is still
illuminating to study and understand characteristics of the optimal design in the
best-case scenario where ideal model assumptions were made. Researchers should
find optimal design techniques and the computational developments described in
this chapter useful in their search for more efficient designs. At the very minimum,
it is helpful to view optimal designs as calibration designs that measure trade-off
between competing designs and at the same time also enable researchers to
sensibly deviate from the optimum to meet their practical needs in the study.
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Longitudinal design, 175, 179
L-optimal design(s), 242, 245, 266
L-optimality criterion, 63
L-optimality, 271, 272, See also

Optimality criteria and
optimal designs

Los Angeles Family and
Neighborhood survey, 166

Macro parameters, 260
Magnitude of the illusion, 21
Maple Software, 277
(Marginal) likelihood function, 223
Markov Chain Monte Carlo

methods, 247
Mass distribution, 244
Mathematica, 277
Matlab unconstrained optimization

algorithm, 285
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Matrix algebra, 44, 109, 169
Matrix notation, 208

Maturation, 147
Maximin,

Maximin procedure, 104
Maximin value (MMV), 105,

119
Maximin design, 104, 105, 119,

120, 121
Maximin approach, 134
Maximin CED-optimal designs,

292
Maximin compound designs,

292
Maximin discriminating designs,

292
Maximin optimal designs, 249

Maximum efficiency, 78
Maximum likelihood (ML)

estimation, 55, 187, 191, 192
Maximum likelihood (ML) method,

148
Maximum likelihood estimates, 209
Maximum likelihood (ML)

estimator(s), 138, 233, 235,
243

Maximum power, 163, 165
Maximum total costs, 161
Mean,

estimators, 96
profiles, 182
response (function), 262, 292

Mean squared error, 33, 34
Measurement error, 184
Measures of uncertainty, 33, 34,

56, 76, 96, 117
Methodological concepts, 3
Metropolis-Hastings algorithm, 284
Michaelis-Menten constant

(parameter), 260, 265
Michaelis-Menten model, 260, 264,

266, 274, 273
Micro parameters, 260
Minimal (relative) efficiency, 269,

292

Minimally supported optimal
designs, 248, 294

Minimax criterion, 269
Minimax D-optimal design, 269,

270
Minimax optimal design(s), 247,

248, 249, 269
Minimax or maximin methods, 275
Minimize cost, 20
Minimum variance, 158, 161
MINITAB, 286
Missing at random (MAR), 215

Non-informative MAR, 211
Missing data, 179, 181
Mixed effects model, 200, 201, See

also linear mixed effects
model

ML and REML estimation, 223,
233, 235

ML estimates, 192, 209
ML-estimator, 55
MMM-model, 273, 274
Model assumptions, 4

Adequacy of, 250
discrimination, 258
parameters, 261

Mortality, 100
Multi-center trial, 144, 145, 146,

147, 149, 155, 162, 164, 174
Multidimensional optimization

algorithm, 285
Multilevel data structure, 159
Multilevel design, 160
Multilevel (regression) model(s),

143, 147, 169
Multilevel regression analysis, 143,

144
Multilevel surveys, 166
Multiple linear regression, 51, 54
Multiple maxima (minima), 277
Multiple objective optimal

design(s), 5, 250, 271, 272
Multiple-objective design problems,

258
Multipurpose designs, 255
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Multivariate analysis of variance
(MANOVA), 180, 181

Natural logarithm, 244
Nelder-Mead simplex search, 285
Nested nonlinear models, 273
Nominal parameter values, 270,

271
Nominal response model, 137
Non-informative MAR, 211
Non-additive, 82
Non-central t-distribution, 161
Non-experimental studies, 109
Nonlinear design problems, 264
Nonlinear model(s), 238, 257
Non-response, 100
Normal distribution, 149
Normal prior distribution, 246
Normality assumption, 33, 238
Normalized efficiency measure, 37
(Normalized) information matrix,

261, 271, See also
information matrix

Normally distributed errors, 238
Normally distributed sample of

abilities, 136
Normally distributed, 232
N-point D-optimum design, 70
Null hypothesis, 33, 100, 161
Numerical variable, 7
Nursing home study, 159

Observational studies, 114
Observations,

Correlated, 177
Independent, 96

Odds ratio (OR), 116, 123, 126
Odds, 116, 117, 123, 126
ODmixed, 286
One-point design, 262
One-sided test, 162
OPTDESIGN, 286
OPTEX procedure, 284
Optimal cross-over design, 229
Optimal design (problem), 154,

157, 160

Optimal design for estimating
percentiles, 266

Optimal design points, 268
Optimal design theory, 5, 22, 60,

261
Optimal design(s), 44, 258, 277,

278, 284, 286
A-optimal design, 285
D-optimal design, 42, 283, 284,

285
DA-optimal design, 239, 265
E-optimal design, 285
Extrapolation optimal design,
G-optimal design, 42
L-optimal design(s), 242, 245,

266
Optimal number of clusters, 155,

164
Optimal sample sizes, 155
Optimal sampling design, 166
Optimal sequences ABB and BAA,

231
Optimal weights, 108, 118
Optimality criteria, 39, 62, 97, 110,

172, 241, 242
Alphabetic optimality criteria, 40
A-optimality criterion, 41, 44,

46, 48, 63, 71, 82, 83,
As-optimality criterion, 62, 63,

98
DA-optimality criterion, 239,

265
D-optimality criterion, 40, 42,

48, 97, 110, 241
Ds-optimality criterion, 62, 98,

101
E (optimality) criterion, 43, 44,

48, 71, 82, 97, 110, 241
Es-optimality criterion, 6
G (optimality) criterion, 41, 44
L-optimality criterion, 63, 242,

Optimization methods, 5
Optimization problem, 247, 252
Orthogonal polynomial contrast,

107
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Parallel-group (PG) design, 214,
217, 224, 227, 235

Parameter estimators, 47, 77
Parameterization, 234
Partially balanced design, 124, 140
Partially confounded, 195
Partially linear parameters, 263
Peak concentration, 250
Percentile, 34, 38, 162
Period x treatment interaction, 215,

231
Pharmaceutical sciences, 288
Pharmacodynamics, 261
Pharmacokinetic research, 259
Pharmacokinetic studies, 250
Pharmacokinetics, 213
Poggendorff and Ponzo illusion

(study), 20, 71
POLS, 286
Polynomial (regression) models,

65, 73, 200, 272
Polynomial contrast, 107
Polynomial functions, 22
Power, 35, 160, 162, 163, 165,

178
for finding real effects, 10
functions, 105, 286
loss, 105

Power logistic model, 273
Power, for tests of hypotheses, 52,

55
Practical & ethical constraints, 28
Practice hours study, 125, 138
Prior distribution, 134, 244, 267
Probability of bankruptcy, 130
(Probability of) occurrence, 115
Problem solving study, 123, 140

Problem solving abilities, 122
Proportion of total variance, 149

Quadratic (polynomial) regression
model, 65, 69, 74, 73, 278,
280

Quadratic function, 54, 184
Quadratic linear model, 245

Quadratic term(s), 241, 242,
243, 252

Quasi-experimental studies, 114,
166

Radiation dosage study, 19, 35, 45
Random ability parameter, 135
Random cluster effect, 148
Random effects model, 225, See

linear mixed effects model
Correlated RI and random slope

model, 202
Random effects, 149, 150, 195,

196
Random errors, 54, 148
Random intercept (parameter),

152, 210
Random intercept (RI) and

random slope model, 183
Random intercept (RI) model,

182, 183
Random parameters, 182, 187,

208
Random slope, 152, 183
Random subject model, 222,

229, 232
Random variation, 148
Randomization, 144, 160

Cluster randomization, 157, 160,
163, 170

Subject randomization, 144, 147,
149, 155, 159, 172

Randomized trials, (studies), 180
Ratio scale, 7
Reaction rate, 258
Rectangular sub-region, 119
Reference group, 92
Regression model(s), 22, 76, 181

Multiple regression model, 54
Polynomial regression model, 65
Quadratic regression model, 65,

69, 74
Regression parameters, 54, 92, 93,

94, 96, 149
Regression towards the mean, 147
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Relative efficiencies, 152, 158, 166
Relative efficiency (RE), 37, 60, 64,

100, 103, 104, 119, 177, 225
Minimal RE, 121, 140
RE, 68, 206, 207
REA (values), 44, 48
RED (values), 44, 48, 198
REE (values), 44, 48

Relative risk, 121
REML methods, 171
Reparameterization, 97
Repeated measurement design, 175,

213
Repeated measurements, 8, 216,

232, 286
Number of, 176, 177

Replication(s), 6, 8
Biological, 8
Technical, 8

Research design, 4, 6
Research problem, 4
Response curve, 130
Response probability, 138
Restricted maximum likelihood

(REML) estimation, 188, 191,
192, 209, 223

Restrictions, 91, 219, 222
Row-column design, 213
Rule of thumb, 211

Sampling fraction, 167
Sample size, 10, 33, 56, 60

Not planned sample size, 100
Planned sample size, 99

Scale dependency, 71
Scaling of design points, 29
Scientific Workplace, 277
Second derivative, 263
Secondary criterion, 252
Sensitivity, 267
Sequences of treatments, 216

AA and BB, 217
AB and BA, 214, 217

Sequential procedure, 278, 279,
280, 282

Sequential optimal design, 134
Sequentially updated estimates, 134
Shape factor, 261

S-shape(d), 115, 261
Sigmoid, 261
Simple linear (regression) model,

147, 244, 251
Simple random sampling (SRS),

166, 168
Simplex, 285
Simulated annealing, 284
Simultaneous confidence interval,

38
Simultaneous confidence ellipsoid,

99
Simultaneous estimation, 104, 242
Simultaneous inference, 37, 61, 97
Single objective design, 254
Slope parameter estimator, 174
Slope (parameter), 25, 32, 37, 130,

183, 190, 238,
Small sample behavior, 188
Small sample bias, 188
Social and behavioural research, 3
Speed of convergence, 283
Sphericity condition, 181
Split-plot design, 143
Spurious relation, 14
Stages of research process, 4
Standard designs, 284
Standard errors, 178
Standard normal percentile, 161
Standardized variance of expected

predicted response, 42, 279
Statistics education, 122
Stochastic evolutionary algorithm,

285
(Strongly) balanced(ness), 216,

217, 218, 220, 221, 230, 235
Structured covariance matrix of

errors, 191
Subject specific profiles, 184
Subjects within groups, 143

Allocation of subjects,
114
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Number of subjects, 17
Subject-specific parameters, 182,

200
Substrate concentration, 260
Sum of squares, 32, 35

Sum of squared deviations, 95
Sum of squared errors, 55
Sum of the squared residuals,

32
Sum of variances, 239
Summary measure, 180
Support points, 28, 133, 287
Survey sampling, 166

Taylor’s approximation
(expansion), 243, 257

TBB MD profiles, 189
t-distribution, 36
Temperature, 258
Test statistic, 33
Threats to internal validity,

History, 12
Maturation, 12
Testing, 12
Selection, 13
Regression towards mean, 13
Mortality, 13

Time points, 179, 194
Number of distinct time points,

178
Toeplitz matrices, 186
Total budget, 153, 157
Toxicological endpoints, 290
Toxicological experiments, 266
Trace, 63
Traditional research design, 28
Transformation, 64 (linear)

Logarithm transformation, 66
Square root transformation, 66

Treatment by carry-over effect
interaction, 232

Treatment effect (parameters), 149,
161, 233

Triplet (t ,s,m), 216
Tumor reduction, 32

Turning point (in mean response
curve), 245

Two- dimensional ellipse, (volume
of), 64

Two levels of the multilevel
structure, 143

Two parameter IRT model (2PL
model), 24, 135

Two-dimensional design space, 52,
59

Two-point design, 261, 264
Two-stage sampling designs, 166,

See also designs
Two-step procedure, 216
Two-treatment two period

cross-over design, 218, See
designs

Type I error probability, 37, 161

Unbalanced designs, 109
Unbiased, 55
Uncertainty (measures of), 76, 96,

117
Uncorrelated errors, 186
Unequal sample sizes, 165
Uniform design, 240
Uniform distribution, 245
Uniform prior, 246, 268
Uniformity, 221

Uniform in periods, 216, 220,
221, 230, 235

Uniform in sequences, 217, 220,
221, 230, 235

Units of analysis, 6
Universally D-optimal, 250
Universally optimal, 36
Unstructured covariance matrix of

errors, 190
User specified value of e1

Validity,
Construct validity, 9
External validity, 9, 10
Internal validity, 1, 10, 12
Statistical conclusion validity, 9,

10
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Variables, 7
Qualitative variable, 7, 88, 91,

116
Fixed variable, 4, 82, 88,

113
Predictor variable, 7
Categorical variable, 7
Interval scale, 7
Ratio scale, 7
Ordinal scale variable, 7
Random variables, 27
Continuous, 126
Dichotomous response, 113
Quantitative variable, 4, 7, 27,

88, 116
Nominal variable, 7, 91
Outcome variable, 4, 5
Dependent variable, 6, 27
Independent variable, 4, 5, 6, 23,

27, 28, 51, 53,
Variance components estimators,

188
Variance components, 171, 172,

187, 191, 223, 233
Variance,

of errors, 33, 56, 208
of estimators, 33
of measurements, 191
of predicted value, 34, 41,

47
of response, 249
of the estimator of the treatment

effect, 161
within subjects, 234

Variance-covariance matrices, 186
Variance-covariance matrix (of

estimators), 110, 118, 123,
126, 135

Asymptotic, 138, 188, 189, 209,
228, 252, 264, 278

Variance-covariance matrix of
responses, 183, 210

Variance-covariance matrix, 39, 42,
43, 45, 46, 47, 55, 63, 64, 77,
80, 96, 97, 135, 148, 170,
173, 181, 222, 235

Variance-covariance structure,
183, 184, 185, 202

Variances and covariances of
random effects, 150

Variances of the mean, 177
Variation of errors, 191
Variation of responses, 191
Velocity (reaction rate), 260

Velocity of a response, 260
Vocabulary growth study, 56
Volume of (simultaneous)

confidence ellipsoid, 99, 237

Wald statistic, 189
Wash-out period, 215
Web Based Design Programs, 287
Web site Optimal-design, 262, 286
Weibull regression model, 274
Within subject variable, 176
Within subject variation, 184, 186
Working environments, 87
Worst case scenario, 119
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