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Preface

“If all you have is a hammer, everything looks like a nail.”
—Maslow’s hammer

Purpose of This Book

There were two purposes of writing this book. One was personal and the other
was more “formal.” I will give the personal one first. The primary motivation for
writing this book was to document my own journey in learning structural equation
modeling (SEM) andmeta-analysis. The journey beganwhen I was a undergraduate
student. I first learned SEM from Wai Chan, my former supervisor. After learning
a bit from the giants in SEM, such as Karl Jöreskog, Peter Bentler, Bengt Muthén,
Kenneth Bollen,Michael Browne,Michael Neale, and RoderickMcDonald, among
others, I found SEM fascinating. It seems that SEM is the statistical framework for
all data analysis. Nearly all statistical techniques I learned can be formulated as
structural equation models.
In my graduate study, I came across a different technique—meta-analysis. I

learned meta-analysis by reading the classic book by Larry Hedges and Ingram
Olkin. I was impressed that a simple yet elegant statistical model could be used
to synthesize findings across studies. It seems that meta-analysis is the key to
advance knowledge by combining results from different studies. As I was trained
with the SEM background, everything looks like a structural equation model to
me. I asked the question, “could a meta-analysis be a structural equation model?”
This book summarized my journey to answer this question in the past one and a
half decades.
Now, I will give a more formal purpose of this book. With the advances in

statistics and computing, researchers have more statistical tools to answer their
research questions. SEM and meta-analysis are two powerful statistical techniques
in the social, educational, behavioral, and medical sciences. SEM is a popular
tool to test hypothesized models by modeling the latent and observed variables
in primary research, while meta-analysis is a de facto tool to synthesize research
findings from a pool of empirical studies. These two techniques are usually
treated as two unrelated topics in the literature. They have their own strengths,
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weaknesses, assumptions, models, terminologies, software packages, audiences,
and even journals (Structural Equation Modeling: A Multidisciplinary Journal
and Research Synthesis Methods). Researchers working in one area rarely refer to
the work in the other area. Advances in one area have basically no impact on the
other area.
There were two primary goals for this book. The first one was to present the recent

methodological advances on integrating meta-analysis and SEM—the SEM-based
meta-analysis (using SEM to conducting meta-analysis) and meta-analytic struc-
tural equation modeling (conducting meta-analysis on correlation matrices for the
purpose of fitting structural equation models on the pooled correlation matrix). It is
my hope that a unified framework will be made available to researchers conducting
both primary data analysis and meta-analysis. A single framework can easily trans-
late advances from one field to the other fields. Researchers do not need to reinvent
the wheels again.
The second goal was to provide accessible computational tools for researchers

conductingmeta-analyses. The metaSEM package in theR statistical environment,
which is available at http://courses.nus.edu.sg/course/psycwlm/Internet/metaSEM/,
was developed to fill this gap. Using the OpenMx package as the workhorse,
the metaSEM package implemented most of the methods discussed in this
book. Complete examples in R code are provided to guide readers to fit various
meta-analytic models. Besides the R code, Mplus was also used to illustrate some
of the examples in this book. R (3.1.1), OpenMx (2.0.0-3654), metaSEM (0.9-0),
metafor (1.9-3), lavaan (0.5-17.698), and Mplus (7.2) were used in writing
this book. The output format may be slightly different from the versions that you
are using.

Level and Prerequisites

Readers are expected to have some basic knowledge of SEM. This level is similar
to the first year of research methods covered in most graduate programs. Knowl-
edge of meta-analysis is preferable though not required. We will go through the
meta-analytic models in this book. It will also be useful if readers have some knowl-
edge in R because R is the main statistical environment to implement the methods
introduced in this book. Readers may refer to Appendix at the end of this book for
a quick introduction to R. For readers who are more familiar with Mplus, they may
use Mplus to implement some of the methods discussed in this book.

Mike W.-L. Cheung
Singapore

http://courses.nus.edu.sg/course/psycwlm/Internet/metaSEM/
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1

Introduction

This chapter gives an overview of this book. It first briefly reviews the history and
applications of meta-analysis and structural equation modeling (SEM). The impor-
tance of using meta-analysis and SEM to advancing scientific research is discussed.
This chapter then addresses the needs and advantages of integrating meta-analysis
and SEM. It further outlines the remaining chapters and the data sets used in the
book. We close this chapter by addressing topics that will not be further discussed
in this book.

1.1 What is meta-analysis?

Pearson (1904) was often credited as one of the earliest researchers applying ideas
of meta-analysis (e.g., Chalmers et al., 2002; Cooper and Hedges, 2009; National
Research Council, 1992; O’Rourke, 2007). He tried to determine the relationship
between mortality and inoculation with a vaccine for enteric fever by averaging
correlation coefficients across 11 small-sample studies. The idea of combining and
pooling studies has been widely used in the physical and social sciences. There are
many successful stories as documented in, for example, National Research Council
(1992) and Hunt (1997). The term meta-analysis was coined by Gene Glass in
educational psychology to represent “the statistical analysis of a large collection of
analysis results from individual studies for the purpose of integrating the findings”
(Glass 1976, p.3).
Validity generalization, another technique with similar objectives, was indepen-

dently developed by Schmidt and Hunter (1977) in industrial and organizational
psychology in nearly the same period. Later, Hedges and Olkin (1985) wrote
a classic text that provides the statistical foundation of meta-analysis. These
techniques have been expanded, refined, and adopted in many disciplines.

Meta-Analysis: A Structural Equation Modeling Approach, First Edition. Mike W. -L. Cheung.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/cheung/meta_analysis
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2 META-ANALYSIS

Meta-analysis is now a popular statistical technique to synthesizing research
findings in many disciplines including educational, social, and medical sciences.

A meta-analysis begins by conceptualizing the research questions. The research
questions must be empirically testable based on the published studies. The pub-
lished studies should be able to provide enough information to calculate the effect
sizes, the ingredients for a meta-analysis. Detailed inclusion and exclusion criteria
are developed to guide which studies are eligible to be included in the meta-
analysis. After extracting the effect sizes and the study characteristics, the data can
be subjected to a statistical analysis. The next step is to interpret the results and
prepare reports to disseminate the findings.

This book mainly focuses on the statistical issues in a meta-analysis. Generally
speaking, the statistical models discussed in this book fall into three dimensions:

(i) fixed-effects versus random-effects models;

(ii) independent versus nonindependent effect sizes; and

(iii) models with or without structural models on the averaged effect sizes.

The first dimension is fixed-effects versus random-effects models. Fixed-effects
models provide conditional inferences on the studies included in the meta-analysis,
while random-effects models attempt to generalize the inferences beyond the
studies used in the meta-analysis. Statistically speaking, the fixed-effects models,
also known as the common effects models, are special cases of the random-effects
models.

The second dimension focuses on whether the effect sizes are independent or
nonindependent. Most meta-analytic models, such as the univariate meta-analysis
introduced in this book, assume independence on the effect sizes. When there is
more than one effect size reported per study, the effect sizes are likely noninde-
pendent. Both the multivariate and three-level meta-analyses are introduced to
handle the nonindependent effect sizes depending on the assumptions of the data.
The last dimension is whether the research questions are related to the averaged
effect sizes themselves or some forms of structural models on the averaged effect
sizes. If researchers are only interested in the effect sizes, conventional univariate,
multivariate, and three-level meta-analyses are sufficient. Sometimes, researchers
are interested in testing proposed structures on the effect size. This type of research
questions can be addressed by testing the mediation and moderation models on
the effect sizes (Section 5.6) or the meta-analytic structural equation modeling
(MASEM; Chapter 7).

1.2 What is structural equation modeling?

SEM is a flexible modeling technique to test proposed models. The proposed
models can be specified as path diagrams, equations, or matrices. SEM integrates
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several statistical techniques into a single framework—path analysis in biology
and sociology, factor analysis in psychology, and simultaneous equation and
errors-in-variables models in economics (e.g., Matsueda 2012). Jöreskog (1969,
1970, 1978) was usually credited as the one who first integrated these techniques
into a single framework. He further proposed computational feasible approaches to
conduct the analysis. These algorithms were implemented in LISREL (Jöreskog
and Sörbom, 1996), the first SEM package in the market. At nearly the same time,
Bentler contributed a lot in the methodological development of SEM (e.g., Bentler
1986, 1990; Bentler and Weeks, 1980). He also wrote a user friendly program
called EQS (Bentler, 2006) to conduct SEM. The availability of LISREL and EQS
popularized applications of SEM in various fields. Both Jöreskog and Bentler
received the Award for Distinguished Scientific Applications of Psychology
(American Psychological Association, 2007a, b) “[f]or [their] development of
models, statistical procedures, and a computer algorithm for structural equation
modeling (SEM) that changed the way in which inferences are made from
observational data; namely, SEM permits hypotheses derived from theory to
be tested.”

Many recent methodological advances have been developed and integrated into
Mplus, a popular and powerful SEM package (Muthén and Muthén, 2012). SEM
is now widely used as a statistical model to test research hypotheses. Readers may
refer to, for example, MacCallum and Austin (2000) and Bollen (2002) for some
applications in the social sciences.

1.3 Reasons for writing a book on meta-analysis
and structural equation modeling

There are already many good books on the topic of meta-analysis (e.g., Borenstein
et al., 2010; Card, 2012; Hedges and Olkin, 1985; Lipsey and Wilson, 2000;
Schmidt and Hunter, 2015; Whitehead, 2002). Moreover, meta-analysis has
also been covered as special cases of mixed-effects or multilevel models (e.g.,
Demidenko, 2013, Goldstein, 2011, Hox, 2010; Raudenbush and Bryk, 2002). It
seems that there is no need to write another book on meta-analysis. On the other
hand, this book did not aim to be a comprehensive introduction to SEM neither.
Before answering this question, let us first review the current state of applications
of meta-analysis and SEM in academic research.

Figure 1.1 shows two figures on the numbers of publications using meta-analysis
and SEM in Web of Science. The figures were averaged over 5 years. For example,
the number for 2010 was calculated by averaging from 1998 to 2012. Figure 1.1a
depicts the actual numbers of publications, while Figure 1.1b converts the num-
bers to percentages by dividing the numbers by the total numbers of publications.
The trends in both figures are nearly identical in terms of actual numbers and
percentages. One speculation why the numbers on meta-analysis are higher than
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Figure 1.1 Publications using meta-analysis and structural equation modeling.
(a) Actual number of publications per year and (b) percentage of publications.

those on SEM is that meta-analysis is very popular in medical research, whereas
SEM is rarely used in medical research (cf. Song and Lee, 2012). Anyway, it is
clear that both techniques are getting more and more popular over time.

Although both SEM and meta-analysis are very popular in the educational,
social, behavioral, and medical sciences, both techniques are treated as two
unrelated techniques in the literature. They have their own assumptions, models,
terminologies, software packages, communities, and even journals (Structural
Equation Modeling: A Multidisciplinary Journal and Research Synthesis Meth-
ods). These two techniques are also considered as separate topics in doctoral
training in psychology (Aiken et al., 2008). Users of SEM are mainly interested in
primary research, while users of meta-analysis only conduct research synthesis on
the literature. Researchers working in one area rarely refer to the work in the other
area. Users of SEM seldom have the motivation to learn meta-analysis and vice
versa. Advances in one area have basically no impact on the other area.

There were some attempts to bring these two techniques together. One such topic
is known as MASEM (e.g., Cheung and Chan, 2005b; Viswesvaran and Ones,
1995). There are two stages involved in an MASEM. Meta-analysis is usually
used to pool correlation matrices together in the stage 1 analysis. The pooled cor-
relation matrix is used to fit structural equation models in the stage 2 analysis.
As researchers usually apply ad hoc procedures to fit structural equation models,
some of these procedures are not statistically defensible from an SEM perspective.
Therefore, one of the goals of this book (Chapter 7) was to provide a statistically
defensible approach to conduct MASEM.

Another reason for writing this book was to integrate meta-analysis into the
general SEM framework. This helps to advance the methodological development
in both areas. There are many such examples in the literature. Consider the classic
example of analysis of variance (ANOVA) and multiple regression. Before the
seminal work of Cohen (1968) and Cohen and Cohen (1975), “[t]he textbooks in
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‘psychological’ statistics treat [multiple regression, ANOVA, and ANCOVA] quite
separately, with wholly different algorithms, nomenclature, output, and examples”
(Cohen 1968, p. 426). Understanding the mathematical equivalence between
an ANOVA (and analysis of covariance (ANCOVA)) and a multiple regression
helps us to comprehend the details behind the general linear model that plays an
important role in modern statistics.

SEM is another successful story in the literature. The general linear model, path
analysis, and confirmatory factor analysis (CFA) are some well-known special
cases of SEM. It has been shown that many models used in the social and behav-
ioral sciences are indeed special cases of SEM. For example, many item response
theory (IRT) models can be analyzed as structural equation models with binary
or categorical variables as indicators (e.g., Takane and Deleeuw, 1987). The main
advantage of analyzing IRT models as structural equation models is that many of
the SEM techniques can be directly applied to address research questions that are
challenging in traditional IRT framework. For example, researchers may test IRT
models with multiple traits (multiple factor models in SEM), with covariates as
predictors (multiple indicators multiple causes in SEM), with missing data (full
information maximum likelihood (FIML) estimation in SEM), and with nested
structures (multilevel SEM) (Muthén and Asparouhov, 2013).

Another recent example is the recognition of multilevel models as structural
equation models (Bauer, 2003; Curran, 2003; Mehta and Neale, 2005; Mehta and
West, 2000; Rovine and Molenaar, 2000). Understanding the similarities between
multilevel models and structural equation models helps to develop the multilevel
SEM (e.g., Mehta and Neale, 2005; Muthén, 1994; Preacher et al., 2010). There
are at least two methodological advances of integrating multilevel models and
SEM. First, graphical models, which are popular in SEM, have been developed
to represent multilevel models (Curran and Bauer, 2007). Another advance is that
various goodness-of-fit indices in SEM have been exported to multilevel models
(Wu et al., 2009). Readers may refer to, for example, Bollen et al. (2010), Matsueda
(2012), and Kaplan (2009) for the recent methodological advances in SEM.

The current SEM framework is far beyond the original SEM developed by
Jöreskog and Bentler. Modern SEM framework integrates techniques and models
from several disciplines. For example, Mplus (Muthén and Muthén, 2012)
combines traditional SEM, multilevel models, complex survey analysis, mixture
modeling, survival analysis, latent class models, some IRT models, and even
Bayesian inferences into a single statistical modeling framework. Another general
framework is the generalized linear latent and mixed models (GLLAMM) (Skro-
ndal and Rabe-Hesketh, 2004) that integrate SEM, generalized linear models,
multilevel models, latent class models, and IRT models.

This book provides the foundation of integrating meta-analysis into the SEM
framework. Latent variables in a structural equation model are used to represent
the true effect sizes in a meta-analysis. Meta-analytic models can then be analyzed
as structural equation models. This approach is termed SEM-based meta-analysis
in this book. Many state-of-the-art techniques in SEM are available to researchers
doing meta-analysis by using the SEM-based meta-analysis.
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1.3.1 Benefits to users of structural equation modeling
and meta-analysis

There are several advantages of integrating meta-analysis into the SEM framework.
For the SEM users, the SEM-based meta-analysis extends their statistical tools to
conduct research with meta-analysis. Suppose that their primary research interests
are in studying the training effectiveness with SEM; the SEM-based meta-analysis
allows them to conduct a meta-analysis on the same topic without leaving the SEM
framework. Many of the terminologies in meta-analysis can be translated into the
terminologies in SEM. Software developers may explore the possibilities to develop
an integrated SEM framework for researchers doing primary and meta-analysis. For
example, Mplus can be used to implement many of the SEM-based meta-analysis
introduced in this book (see Chapter 9).

For the meta-analysis users, the SEM-based meta-analysis provides some new
research tools to address research questions in meta-analysis. For example, users
may apply the SEM-based meta-analysis to conduct univariate, multivariate, and
three-level meta-analyses that handle missing values in moderators in the same
SEM framework. Future studies may explore how techniques, such as robust
statistics, bootstrap, and mixture models available in SEM, can be applied to
meta-analysis.

In terms of graduate training in statistics, a single coherent framework can be
introduced to students. This framework includes the general linear model, SEM,
and meta-analysis. It helps student to appreciate the similarities and differences
among the techniques under the same SEM framework. Graduate students may
be more prepared to conduct both primary research and meta-analysis after
their graduation.

1.4 Outline of the following chapters

Chapter 2 gives a brief overview on the key topics in SEM. These topics were
selected in a way that they are relevant to the SEM-based meta-analysis. FIML
estimation, definition variables, and phantom variables play a crucial role in the
SEM-based meta-analysis. Chapter 3 provides a summary on how to calculate
the effect sizes and their sampling variances and covariances for univariate and
multivariate meta-analyses. We also introduce a general approach to derive the
approximate sampling variances and covariances for any types of effect sizes using
a delta method and SEM. Chapter 4 introduces univariate meta-analysis and how
the meta-analytic models can be formulated as structural equation models. This
chapter provides the foundation on understanding the SEM-based meta-analysis.

In Chapter 5, we extend the univariate meta-analysis to multivariate meta-
analysis. We discuss the advantages of multivariate meta-analysis to the uni-
variate meta-analysis. At the end of this chapter, we apply the multivariate
meta-analysis to test mediation and moderation models on the effect sizes. Chapter
6 discusses issues of dependent effect sizes and several common strategies to
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handle the dependence when the degree of dependence is unknown. A three-level
meta-analysis is proposed to handle the effect sizes nested within clusters.
The relationship between a multivariate and a three-level meta-analyses is also
discussed. Chapter 7 focuses on the MASEM. Several common methods for
conducting MASEM are reviewed. The fixed- and random-effects two-stage
structural equation modeling (TSSEM) approach are proposed and discussed in
details. Issues related to the MASEM are discussed.

Chapter 8 addresses two advanced topics in the SEM-based meta-analysis. The
first topic is the pros and cons of the restricted (or residual) maximum likelihood
(REML) estimation and how it can be implemented in the SEM framework. The
second topic is how to handle missing values in the moderators in a mixed-effects
meta-analysis. Several common strategies for handling missing data are reviewed.
Advantages and implementation of FIML to handle missing data are discussed.
Chapter 9 gives an overview on how to implement the SEM-based meta-analysis
in Mplus, a popular SEM software. Most of the SEM-based meta-analysis except
the TSSEM approach can be conducted in Mplus by using a transformed variables
approach. Appendix A gives a very brief introduction to the R statistical environ-
ment, the OpenMx, and the metaSEM packages.

1.4.1 Computer examples and data sets used in this book

Computer examples were provided to illustrate the techniques introduced in this
book. The R statistical environment was mainly used as the platform of data analy-
sis except Chapter 9 that used Mplus as the statistical program. Several real data sets
were used in the illustrations. All data sets are available in the metaSEM package.
Table 1.1 summarizes these data sets. More details of the data sets will be given in
the later chapters.

1.5 Concluding remarks and further readings

This book mainly covers the statistical models in the meta-analysis from an SEM
approach. The SEM-based meta-analysis provides an alternative framework to con-
duct meta-analysis. It is useful to mention topics that will not be covered in this
book. Conceptual issues, such as conceptualization, literature review, and coding
study characteristics for moderator analysis in a meta-analysis, will not be cov-
ered. Readers may refer to, for example, Card (2012) and Cooper (2010) for details.
Moreover, topics such as publication bias (Rothstein et al., 2005), graphical meth-
ods to display data (Anzures-Cabrera and Higgins, 2010), individual participant
data (Whitehead, 2002), network meta-analysis (see Salanti and Schmid, 2012,
for a special issue), correction for statistical artifacts (Schmidt and Hunter, 2015),
and Bayesian meta-analysis (Whitehead, 2002) will not be covered in this book.
These techniques have not been well explored in the SEM-based meta-analysis
yet. Future research may investigate how these topics can be integrated into the
SEM framework. Some matrix calculations are used in this book. Readers who are
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less familiar with them may refer to Fox (2009) or the online appendix of his book
(Fox, 2008).
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2

Brief review of structural
equation modeling

This chapter reviews selected topics in structural equation modeling (SEM) that
are relevant to the SEM-based meta-analysis. It provides a quick introduction to
SEM for those who are less familiar with the techniques. This chapter begins by
introducing three different model specifications—path diagrams, equations, and
matrix specification. It then introduces popular structural equation models such
as path analysis, confirmatory factor analytic (CFA) models, SEMs, latent growth
models, and multiple-group analysis. How to obtain parameter estimates, standard
errors (SEs), confidence intervals (CIs), test statistics, and various goodness-of-fit
indices are introduced. Finally, we introduce phantom variables, definition vari-
ables, and full information maximum likelihood (FIML). These concepts are the
keys to formulating meta-analytic models as structural equation models.

2.1 Introduction

SEM, also known as covariance structure analysis and correlation structure anal-
ysis, is a generic term for many related statistical techniques. Many popular mul-
tivariate techniques, such as correlation analysis, regression analysis, analysis of
variance (ANOVA), multivariate analysis of variance (MANOVA), factor analysis,
and item response theory, can be considered as special models of SEM. Generally
speaking, SEM is a statistical technique to model the first and the second moments
of the data when the data are multivariate normal. The first moment represent the
mean structure, while the second moment represents the covariance matrix of the
variables. If we are only interested in the covariance matrix among the variables,
we may skip the mean structure.

Meta-Analysis: A Structural Equation Modeling Approach, First Edition. Mike W. -L. Cheung.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/cheung/meta_analysis
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SEM is widely used in psychology and the social sciences to test hypotheses
involving observed and latent variables (e.g., Bentler, 1986; Bollen, 2002; Mac-
Callum and Austin, 2000). Latent variables are hypothetical constructs that cannot
be observed directly. They have to be represented by the observed variables known
as indicators. By using the indicators to measure the latent variables, the amount of
measurement errors can be quantified and taken into account when estimating the
relationship among the latent variables.

There are several steps involved in fitting a structural equation model (see, e.g.,
Kline, 2011). A proposed model is specified based on the hypothesized relation-
ship among the observed and latent variables. The proposed model is fitted against
the data. When the solution for the optimization is convergent, parameter esti-
mates, their SEs, and test statistics are available for inspection. Users may deter-
mine whether the proposed model fits the data well. If the proposed model does
not fit the data, we may modify the model to see if the model fit can be improved.
Interpretations on the overall model and the individual parameter estimates can
be made.

2.2 Model specification

There are three equivalent approaches to specify a structural equation model. They
are path diagrams, equations, and matrix specification (e.g., Mulaik, 2009). Let us
illustrate these approaches by using a model on simple regression.

2.2.1 Equations

The first approach is to specify the models by equations. The model for the simple
regression is

y = 𝛽0 + 𝛽1x + ey, (2.1)

where x, y, ey, 𝛽0, and 𝛽1 are the independent variable, dependent variable, the
residual, the intercept, and the regression coefficient, respectively. As equations
only allow us to specify the effects from one variable to another, we need to specify
further constraints on the models. For example, we may need to indicate that x and
ey are uncorrelated, that is, Cov(x, ey) = 0. On the basis of the above model, we
derive the expected means and the expected covariance matrix for the variables:

E
([

y
x

])
=
[
𝛽0 + 𝛽1𝜇x

𝜇x

]
and

Cov
([

y
x

])
=
[
𝛽

2
1𝜎

2
x + 𝜎

2
ey

𝛽1𝜎
2
x 𝜎

2
x

]
,

(2.2)

where 𝜇x, 𝜎2
x , and 𝜎2

ey
are the population mean of x, the population variance of x, and

the population variance of ey, respectively. The expected means and the expected
covariance matrix are used to compare against the observed means and covariance
matrix in order to obtain parameter estimates.
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2.2.2 Path diagram

One of the reasons for the popularity of SEM is its ability to specify models graph-
ically. Path diagrams can be used to represent the mathematical models. Besides
the conventional models, such as path analysis, CFA, and SEM, path diagrams
have been extended to represent multilevel models (Curran and Bauer, 2007;
Muthén and Muthén, 2012; Skrondal and Rabe-Hesketh, 2004) and meta-analysis
(Cheung, 2008, 2013, 2014). Graphical models are convenient devices to represent
the mathematical models.

There are slight variations on how graphical models are presented in SEM
(Arbuckle, 2006; Bentler, 2006; Jöreskog and Sörbom, 1996; Muthén and Muthén,
2012; Neale et al., 2006). For example, some authors prefer to explicitly draw the
means and the latent variables of the measurement errors while others do not. We
follow the conventions in the OpenMx package (see Boker and McArdle, 2005) in
this book.

Rectangles (or squares) and ellipses (or circles) are used to represent the observed
and latent variables, respectively. Triangles represent a vector of constant one that is
used to represent the intercepts. Single and double arrows represent prediction and
covariance among the variables. Strictly speaking, a double arrow (variance) on the
triangle is required to fulfill the tracing rules to calculate the model-implied means
and covariance matrix (Boker and McArdle, 2005). Conventionally, this double
arrow is not shown to simplify the figures.

Figure 2.1 shows two graphical model representations of the simple regression.
The model in Figure 2.1a explicitly includes the error ey and its variance 𝜎

2
ey

. The
main advantage of this representation is that it includes both latent and observed
variables in the figure. Readers may easily map the figure to the equations and
the matrix representation. The main disadvantage is that the latent variables of the
residuals are required in the figure. Suppose that we are fitting a CFA model with
20 observed variables and 4 latent variables; we have to include 20 latent variables
for the residuals. This may make the figure unnecessarily crowded.

Figure 2.1b shows an alternative representation for the same model. The main
difference of this representation is that the latent variables for the residuals are not
shown in the figure. The double arrows are drawn directly on the observed and the
latent variables. When the double arrows are drawn on the independent variables,
they represent the variances; when the double arrows are drawn on the dependent
variables, they represent the error or residual variances. Even though the figure has
been simplified, it essentially carries the same information as the figure with the
explicit errors. The only drawback is that the ey is not explicitly shown in the figure.

2.2.3 Matrix representation

Regardless of whether we specify the models in equations or path diagrams, most
SEM packages convert these models to matrices for analysis. There are several
matrix representations. The most traditional approach is the LISREL model
(Jöreskog and Sörbom, 1996). The other popular model representations are the
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(a)

(b)

μx

μx

β1

β1

β0

β0

σx
2

σx
2

σ2
ey

σ2
ey

1

x

y1

1

x

y

ey

Figure 2.1 Two graphical model representations of a simple regression.

models used in EQS (Bentler, 2006), Mplus (Muthén and Muthén, 2012), and the
reticular action model (RAM) (McArdle, 2005; McArdle and McDonald, 1984).
Although the specifications look different, models specified in one formulation can
be translated to the other formulations. In this book, we mainly use the RAM for-
mulation. Some common structural equation models are introduced in this chapter.

Suppose that there are po observed and pl latent variables in the model and
p = po + pl is the total number of variables; the RAM formulation involves four
matrices: F

po×p
, M

p×1
, A

p×p
, and S

p×p
. We may include the dimensions for the matrices for

the ease of reference. Let v
p×1

be a vector that includes all variables in the model.

The A matrix links the variables by

v
p×1

= A
p×p

v
p×1

, (2.3)
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where A denotes the asymmetric paths, such as the regression coefficients and the
factor loadings, with aij in A representing the regression coefficient from 𝑣j to 𝑣i.
The main purpose of A is to specify the single arrows in path diagrams.
S is a symmetric matrix representing the variances and covariances of v. It is used

to specify the double arrows in path diagrams. The diagonal elements represent
the variances of the variables. If the elements in v are independent variables, the
corresponding diagonals in S denote the variances; otherwise, the corresponding
diagonals in S represent the residuals of the dependent variables. The off-diagonals
in S represent the covariances of the variables. M represents the means or intercepts
of the variables. F is a selection matrix consisting 1 and 0. It is used to select the
observed variables.

Regarding the simple regression example, we stack the variables into a column

vector v =
[
y x ey

]T
, where vT is the transpose of v =

⎡⎢⎢⎣
y
x
ey

⎤⎥⎥⎦. Equation 2.4 shows

the RAM formulation explicitly including ey in the model that is equivalent to the
model in Figure 2.1a.

A =

y x ey

y
x
ey

⎡⎢⎢⎣
0 𝛽1 1
0 0 0
0 0 0

⎤⎥⎥⎦ , S =

y x ey

y
x
ey

⎡⎢⎢⎣
0 0 0
0 𝜎

2
x 0

0 0 𝜎
2
ey

⎤⎥⎥⎦ ,

F =

y x ey

y
x
ey

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 0

⎤⎥⎥⎦ , and M =
⎡⎢⎢⎣

y 𝛽0
x 𝜇x
ey 0

⎤⎥⎥⎦ .
(2.4)

Equation 2.5 shows the RAM formulation with v =
[
y x

]T
. The latent vari-

able for the residual ey is not shown in the model. It is equivalent to the model in
Figure 2.1b. The dimensions of the matrices are smaller than those in Equation 2.4.

y x y x

A = x
y

[
0 𝛽1
0 0

]
, S = y

x

[
𝜎

2
ey

0
0 𝜎

2
x

]
,

y x

F = x
y

[
1 0
0 1

]
, and M = y

x

[
𝛽0
𝜇x

]
,

(2.5)

It can be shown that the model-implied means 𝝁(𝜽) and covariance matrix 𝚺(𝜽)
are

𝝁(𝜽) = F(I − A)−1M and

𝚺(𝜽) = F(I − A)−1S((I − A)−1)TFT
,

(2.6)

where X−1 is the inverse of X with XX−1 = X−1X = I and I is an identity matrix
(McArdle, 2005; McArdle and McDonald, 1984). Applying an inverse to a matrix
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is similar to applying the division operator to a scalar. 𝚺(𝜽) (or 𝝁(𝜽)) means that
the population covariance matrix 𝚺 (or the population mean vector 𝝁) is a function
of the unknown parameters 𝜽. When the models are specified using the RAM
formulation, the model-implied means and covariance matrix of an arbitrary model
can be derived automatically. Given the model-implied means and covariance
matrix, we may obtain the parameter estimates and the test statistics by comparing
the sample moments to the model-implied moments (see Section 2.4.1).

2.3 Common structural equation models

Many multivariate statistics, such as ANOVA, MANOVA, multiple regression,
confirmatory factor analysis, item response theory, and multilevel model, can be
considered as special cases of SEM. We briefly review some of these models in
this section.

2.3.1 Path analysis

Path analysis was developed by Wright (1921) to specify relationships among
observed variables. Wright also developed the tracing rules to calculate the model-
implied correlation elements based on the proposed structural model (e.g., Mulaik,
2009). This provides the foundation of SEM. One of the most popular applications
of path analysis is mediation analysis (MacKinnon, 2008; Preacher and Hayes,
2004). The equations for the regression model are shown in Equation 2.7. As
the means are not involved in estimating the indirect effect, we present the
models without the means. That is, all variables are based on the centered
scores:

y = 𝛽m + 𝛾x + ey and
m = 𝛼x + em.

(2.7)

Figure 2.2 shows the mediation model, while Equation 2.8 lists the model in RAM
formulation.

A =

y m x
y
m
x

⎡⎢⎢⎣
0 𝛽 𝛾

0 0 𝛼

0 0 0

⎤⎥⎥⎦ , S =

y m x
y
m
x

⎡⎢⎢⎣
𝜎

2
ey

0 0
0 𝜎

2
em

0
0 0 𝜎

2
x

⎤⎥⎥⎦ , and

F =

y m x
y
m
x

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ .

(2.8)

The product term 𝛼𝛽 represents the indirect effect via the mediator while 𝛾 is the
direct effect after controlling for the mediator. The total effect between x and y
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m

Figure 2.2 A path model with one mediator.

is 𝛼𝛽 + 𝛾 . Methods on estimating SE or CI on the indirect effect can be found in
MacKinnon (2008). As the indirect effect is based on the product of two random
variables, its sampling distribution is not normally distributed unless the sample
sizes are huge. Bootstrap CI and likelihood-based confidence interval (LBCI) are
preferred to be used to construct the CIs to test the unstandardized and standardized
indirect effects (e.g., Cheung, 2007a, 2009a).

2.3.2 Confirmatory factor analysis

A CFA model specifies how the observed variables are related to the latent vari-
ables (Brown and Prescott, 2006). It is usually used to study the psychometric
properties of the measurements. Many research questions are related to the num-
bers of the latent variables and how the latent factors are related to the items. If
the items are measuring similar constructs, their factor loadings on the same latent
variable should all be reasonably high. Figure 2.3 shows a model with four items.
Conventionally, three matrices are used to specify a CFA model in LISREL. The
model-implied covariance matrix is

𝚺(𝜽) = 𝚲𝚽𝚲T +𝚿, (2.9)

where 𝜽 includes the parameters from the 𝚲, 𝚽, and 𝚿 matrices. 𝚲 specifies the
factor loadings that indicate how the latent variables are related to the items. 𝚽
specifies the factor covariance matrix among the latent factors. 𝚿 is the covariance
matrix among the measurement errors. Because of the identification issue, either
one factor variance or one factor loading per factor has to be fixed at a specific value,
for example, 1. As the mean structure is rarely of interest unless in multiple-group
analysis, it is usually skipped in the model specification.

To specify a CFA model in RAM formulation, we need to combine all the
observed and latent variables together. Equation 2.10 shows the model for
reference. It should be noted that the rows for f1 and f2 are missing in F. As f1 and
f2 are latent variables, there is no real data for them. They have to be filtered out
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φ1,1 = 1

φ2,1

λ3,2λ1,1 λ2,1 λ4,2

ψ3,3ψ1,1 ψ2,2 ψ4,4

f1

x1 x2 x3 x4

f2

φ2,2 = 1

Figure 2.3 A confirmatory factor analytic model.

in the model-implied moments.

A =

⎡⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 f1 f2
x1 0 0 0 0 𝜆1,1 0
x2 0 0 0 0 𝜆2,1 0
x3 0 0 0 0 0 𝜆3,2
x4 0 0 0 0 0 𝜆4,2
f1 0 0 0 0 0 0
f2 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

S =

⎡⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 f1 f2
x1 𝜓1,1 0 0 0 0 0
x2 0 𝜓2,2 0 0 0 0
x3 0 0 𝜓3,3 0 0 0
x4 0 0 0 𝜓4,4 0 0
f1 0 0 0 0 𝜙1,1 = 1 𝜙2,1
f2 0 0 0 0 𝜙2,1 𝜙2,2 = 1

⎤⎥⎥⎥⎥⎥⎥⎦
, and

F =
⎡⎢⎢⎢⎣

x1 x2 x3 x4 f1 f2

x1 1 0 0 0 0 0
x2 0 1 0 0 0 0
x3 0 0 1 0 0 0
x4 0 0 0 1 0 0

⎤⎥⎥⎥⎦ .

(2.10)
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2.3.3 Structural equation model

When there are only associations among the latent variables, the models are called
CFA or measurement models. If there are structural relationships imposed on the
latent variables, they become structural equation models. Supposed that the asso-
ciation between the two latent variables in Figure 2.3 is changed to a direct path,
it is a structural equation model. Figure 2.4 shows this model. As it is difficult to
fix the variances of the latent dependent variables (cf. Steiger, 2002), the factor
loadings of the latent dependent variables are usually fixed at 1 for identification
purposes.

A =

⎡⎢⎢⎢⎢⎢⎢⎣

x1 x2 y1 y2 𝜉1 𝜂1

x1 0 0 0 0 𝜆x1,1 = 1 0
x2 0 0 0 0 𝜆x2,1 0
y1 0 0 0 0 0 𝜆y1,1 = 1
y2 0 0 0 0 0 𝜆y2,1
𝜉1 0 0 0 0 0 0
𝜂1 0 0 0 0 𝛾1 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

S =

⎡⎢⎢⎢⎢⎢⎢⎣

x1 x2 y1 y2 𝜉1 𝜂1

x1 𝜃
𝛿1,1 0 0 0 0 0

x2 0 𝜃
𝛿2,2 0 0 0 0

y1 0 0 𝜃
𝜖1,1 0 0 0

y2 0 0 0 𝜃
𝜖2,2 0 0

𝜉1 0 0 0 0 𝜙1,1 0
𝜂1 0 0 0 0 0 𝜓1,1

⎤⎥⎥⎥⎥⎥⎥⎦
, and

F =
⎡⎢⎢⎢⎣

x1 x2 y1 y2 𝜉1 𝜂1

x1 1 0 0 0 0 0
x2 0 1 0 0 0 0
y1 0 0 1 0 0 0
y2 0 0 0 1 0 0

⎤⎥⎥⎥⎦ .

(2.11)

One cautionary note is about the possibility of equivalent models (e.g., Raykov
and Marcoulides, 2001, 2007). Equivalent models are models with the same model
fit but with different substantive interpretations. They have the same model-implied
mean vector and model-implied covariance matrix, chi-square statistic, degrees
of freedom (dfs), and goodness-of-fit indices. Therefore, we cannot differentiate
which one is better than the others. The main issue is that these models may have
different substantive meanings and interpretations. For example, the CFA model in
Figure 2.3 and the SEM in Figure 2.4 are equivalent models. We cannot tell which
one is better from a statistical point of view. Researchers should specify models
based on theories in order to support the directions of the structural models.
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Figure 2.4 A structural equation model.

2.3.4 Latent growth model

Latent growth model is another popular applications of SEM (e.g., Bollen and
Curran, 2006). It is used to model longitudinal data. Latent growth model can be
formulated as a CFA with patterned factor loadings. Two latent factors are used to
represent the intercept and the slope factors.

Figure 2.5 shows a latent growth model with a linear growth, while Equation 2.12
displays the correspondent RAM formulation. The mean structure is often skipped
in path models, CFA, and even SEM because the mean structure does not carry
useful information on the association among the variables. The mean structure M
is crucial in latent growth model. The means of the intercept 𝜇I and the slope 𝜇S
represent the average intercept and the average slope of the participants. They are
known as the fixed effects in mixed-effects or multilevel models. The variances of
the interceptVar(I) and the slopeVar(S) represent the variation of the intercept and
the slope of the participants (e.g., Cheung, 2007b). They are known as the random
effects in mixed-effects models.

As shown in the factor loadings on the latent factor S, the time measured are
equally spaced from 0, 1, 2, and 3. This approach may not be flexible enough to
handle subjects measured at different time points. This limitation can be easily
released by the use of definition variables. Arbitrary time can be assigned into the
factor loadings S so that different subjects can be measured in different time points
(Mehta and West, 2000). As each subject has his/her model with different param-
eter estimates, it is difficult to define a baseline model for all subjects. This may
complicate the issue in calculating some goodness-of-fit indices, such as the CFI
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and Tucker–Lewis index (TLI), that depend on the baseline model (see Wu et al.,
2009) (see Sections 2.5.2 and 2.5.3).

A =

⎡⎢⎢⎢⎢⎢⎢⎣

y1 y2 y3 y4 I S

y1 0 0 0 0 1 0
y2 0 0 0 0 1 1
y3 0 0 0 0 1 2
y4 0 0 0 0 1 3
I 0 0 0 0 0 0
S 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
,

S =

⎡⎢⎢⎢⎢⎢⎢⎣

y1 y2 y3 y4 I S

y1 Var(ey1) 0 0 0 0 0
y2 0 Var(ey2) 0 0 0 0
y3 0 0 Var(ey3) 0 0 0
y4 0 0 0 Var(ey4) 0 0
I 0 0 0 0 Var(I) Cov(I, S)
S 0 0 0 0 Cov(I, S) Var(S)

⎤⎥⎥⎥⎥⎥⎥⎦
,

M =

⎡⎢⎢⎢⎢⎢⎢⎣

y1 0
y2 0
y3 0
y4 0
I 𝜇I
S 𝜇S

⎤⎥⎥⎥⎥⎥⎥⎦
, and F =

⎡⎢⎢⎢⎣
y1 y2 y3 y4 I S

y1 1 0 0 0 0 0
y2 0 1 0 0 0 0
y3 0 0 1 0 0 0
y4 0 0 0 1 0 0

⎤⎥⎥⎥⎦ .
(2.12)

2.3.5 Multiple-group analysis

SEM can be easily extended to multiple-group (or multi-sample) analysis.
Each group may have its own model and parameters. Equality and nonequality
constraints on some of these parameters can be imposed. This approach enables
researchers to test a variety of research hypotheses. For example, Figure 2.6 shows
a multiple-group model on mediation. Suppose that Groups 1 and 2 represent
males and females, respectively; we can test whether the indirect effect (and
direct effect) are the same in males and females. This is known as a moderated
mediation. The null hypothesis of equal indirect effect can be tested by imposing
the nonlinear constraint 𝛼(1)𝛽(1) = 𝛼(2)𝛽(2), where the subscripts in parentheses
indicate the groups (e.g., Cheung, 2007a). Alternatively, we can estimate the CI
on the difference (𝛼(1)𝛽(1) − 𝛼(2)𝛽(2)). If the CI includes 0, it is not statistically
significant with the predefined significance level.

Multiple-group analysis can be used to test the measurement invariance of
the scale (e.g., Byrne and Watkins, 2003; Millsap, 2007; Vandenberg and
Lance, 2000). The key issue is whether the scale is measuring the same construct
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Figure 2.5 A latent growth model.
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Figure 2.6 A moderated mediation model. (a) Group 1 and (b) Group 2.
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to the same extent in different groups. If this is not true, results on simple
comparisons on the means may be misleading. The invariance issue may be
tested within a multiple-group CFA. Restrictions on some of the parameters are
imposed gradually:

(i) configural invariance: the same pattern of fixed and free factor loadings
across groups;

(ii) weak factorial invariance, also known as metric invariance: invariant factor
loadings across groups;

(iii) strong factorial invariance, also known as scalar invariance: invariant factor
loadings and intercepts across groups; and

(iv) strict factorial invariance: invariant factor loadings, intercepts, and factor
variances across groups.

2.4 Estimation methods, test statistics,
and goodness-of-fit indices

After specifying a model, we need to obtain the parameter estimates and the test
statistics by comparing the model-implied moments with the sample moments.
Summary statistics, such as the means and the covariance matrix, were usually
used as input in the past when the computational power was not as powerful as
that of today. Jöreskog (1967, 1969) showed that we could fit structural equation
models based on the sample means and the covariance matrix only. The estimation
is usually based on a discrepancy function (Browne, 1982). A discrepancy func-
tion returns a scalar value of the difference between the sample covariance matrix
(and the means) and the model-implied covariance matrix (and the means). The dis-
crepancy is zero if and only if the sample covariance matrix and the model-implied
covariance matrix are exactly the same; otherwise, the discrepancy is positive. The
parameters are estimated by minimizing the discrepancy function.

There are several discrepancy functions, such as the maximum likelihood esti-
mation (MLE), the generalized least squares (GLS), and the weighted least squares
(WLS) in SEM. It should be noted that the meanings of WLS and GLS are slightly
different in the context of meta-analysis and SEM. In the literature of meta-analysis
and regression analysis, WLS and GLS are used to handle the error structures with
a diagonal and a block-diagonal variance–covariance matrix, respectively. In other
words, WLS is a special case of GLS with uncorrelated residuals. In the context
of SEM, GLS is a special case of WLS. The GLS estimation method is used with
a normality assumption on the data, whereas the WLS estimation method can be
used for data with arbitrary distributions.

2.4.1 Maximum likelihood estimation

MLE is probably one of the most popular estimation methods in statistics.
Under some regularity conditions (e.g., Millar, 2011), maximum likelihood (ML)
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estimators have many desirable properties. For instance, they are consistent,
asymptotically unbiased, asymptotically efficient, and asymptotically normally
distributed. When the data are multivariate normal, the sample means and the
covariance matrix are sufficient statistics. Analysis using the raw data and
summary statistics are equivalent when there is no missing data. The parameter
estimates of the covariance structure can be obtained by minimizing the ML
discrepancy function FML(𝜽):

FML(𝜽) = log ||𝚺(𝜽)|| + tr(S𝚺(𝜽)−1) − log ||S|| − p

− (ȳ − 𝝁(𝜽))T𝚺(𝜽)−1(ȳ − 𝝁(𝜽)),
(2.13)

where tr(X) is the trace of X that takes the sum of the diagonal elements of X and p
is the number of variables in the model. When the mean structure is not involved,
the fit function can be simplified to

FML(𝜽) = log ||𝚺(𝜽)|| + tr(S𝚺(𝜽)−1) − log ||S|| − p. (2.14)

2.4.2 Weighted least squares

When the MLE is used, it is assumed that the data are normally distributed. If
this assumption is questionable, there are several alternatives. These include robust
statistics, bootstrap statistics, and WLS estimation, which is also known as asymp-
totically distribution-free (ADF) estimation method (Browne, 1984). We illustrate
the idea of WLS estimation here.

We only focus on the analysis of the covariance structure here by stack-
ing the p × p sample covariance matrix S into a p̃ × 1 vector s, where
p̃ = p(p + 1)∕2. We may use s

p̃×1
= vech( S

p×p
) to represent this process where

vech() is a function to half-vectorize a square matrix to a column vector

by column majorization. For example, if X =
⎡⎢⎢⎢⎣
1 2 3 4
2 5 6 7
3 6 8 9
4 7 9 10

⎤⎥⎥⎥⎦, vech(X) =

[
1 2 3 4 5 6 7 8 9 10

]T
.

We may then define FWLS(𝜽) as the criterion to be minimized to obtain the param-
eter estimates:

FWLS(𝜽) = (s − 𝝈(𝜽))TV−1
S (s − 𝝈(𝜽)), (2.15)

where 𝝈(𝜽) = vech(𝚺(𝜽)) and VS is a p̃ × p̃ positive-definite matrix (Browne,
1984). Although VS can be any consistent matrix, it is usually chosen to represent
the sampling covariance matrix of s (Jöreskog et al., 1999).

Let us illustrate the above idea with the simple regression model in Equation 2.1.
For the ease of illustration, we exclude the mean structure by focusing on the covari-

ance structure only. The sample covariance matrix is S =
[
Var(y)
Cov(x, y) Var(x)

]
,
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while the model-implied covariance matrix is 𝚺(𝜽) =
[
𝛽

2
1𝜎

2
x + 𝜎

2
ey

𝛽1𝜎
2
x 𝜎

2
x

]
with

𝜽 =
⎡⎢⎢⎣
𝛽1
𝜎

2
x

𝜎
2
ey

⎤⎥⎥⎦ is the vector of the parameters. We may vectorize these matrices by

using s = vech(S) =
⎡⎢⎢⎣
Var(y)
Cov(x, y)
Var(x)

⎤⎥⎥⎦ and 𝝈(𝜽) = vech(𝚺(𝜽)) =
⎡⎢⎢⎣
𝛽

2
1𝜎

2
x + 𝜎

2
ey

𝛽1𝜎
2
x

𝜎
2
x

⎤⎥⎥⎦. Finally,

we also need to estimate the 3 × 3 asymptotic sampling covariance matrix VS of s.
Section 3.3.2 discusses how to estimate it under the assumption of multivariate
normality. We may obtain the parameter estimates ̂𝜽 by minimizing the differences
between s and 𝝈(𝜽) weighted by VS with Equation 2.15.

Most applications in SEM focus on the covariance structure while correlation
structure analysis is less popular. One reason is that SEM was developed to analyze
covariance structure. Sometimes, correlation structure analysis is also of theoretical
and practical interests (Bentler, 2007), especially in the context of meta-analysis
(Hunter and Hamilton, 2002).

If we are analyzing a correlation matrix, the diagonals are always 1. The diagonals
do not carry any useful information. We may stack the p × p sample correlation
matrix R into a p⃗ × 1 vector r where p⃗ = p(p − 1)∕2, that is, r

p⃗×1
= vechs( R

p×p
) where

vechs() is a function to strict half-vectorize a square matrix to a column vector
by column majorization. For example, vechs(X) =

[
2 3 4 6 7 9

]T
in our

previous example.
Similarly, a WLS approach can also be applied to analyze correlation matrix

(Bentler and Savalei, 2010; Fouladi, 2000). The criteria to be minimized for a cor-
relation structure P(𝜸) is

FWLS(𝜸) = (r − 𝝆(𝜸))TV−1
R (r − 𝝆(𝜸)), (2.16)

where 𝝆(𝜸) = vechs(P(𝜸)) and VR is a p⃗ × p⃗ positive-definite matrix. It should be
noted that the dimensions of VR is smaller than that of VS.

Correlation structure analysis is also used to handle binary or ordinal categorical
variables in SEM (Muthén, 1983, 1984). The idea is that the binary or ordinal vari-
ables are indicators of the latent continuous variables. We may use the appropriate
link functions to link the latent continuous variables to the observed variables. The
first step of the analysis is to estimate the polychoric correlation matrix among the
latent continuous variables. WLS or diagonally weighted least squares (DWLS)
may be used as the estimation method with the asymptotic covariance matrix of
the elements of the polychoric correlation matrix as the weight matrix. Robust
statistic is usually used to adjust for the SEs and the test statistics (e.g., Yuan and
Bentler, 2007).

Special care has to be taken to ensure that the diagonals of P(�̂�) are always ones;
otherwise, the fitted model is not a correlation structure any more. More details
regarding these issues are addressed in MASEM in Chapter 7.
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2.4.3 Multiple-group analysis

Multiple-group SEM was first proposed by Jöreskog (1971) and Sörbom (1974).
The fit function to be minimized is the sum of individual fit functions weighted by
the sample sizes:

FMG(𝜽) =
∑k

i=1(ni − 1)Fi(𝜽)∑k
i=1(ni − 1)

, (2.17)

where Fi(𝜽) is the fit function in the ith group. We are usually interested in imposing
some constraints in the model. For example, some of the factor loadings may be
assumed equal in testing the measurement invariance of the data. The point that the
models and the data assumptions can be different in different groups (Bentler et al.,
1987) should be noted.

2.4.4 Likelihood ratio test and Wald test

Once we have fitted the proposed model, we need to evaluate the appropriateness of
the model. There are two objectives in this step. The first one is to evaluate whether
the proposed model, H0 ∶ 𝚺 = 𝚺(𝜽) and H0 ∶ 𝝁 = 𝝁(𝜽) if the mean structure is
present, as a whole fits the data. Under some regularity conditions, the test statistic
T based on the minimum of any of the above fit functions Fmin(𝜽),

T = (n − 1)Fmin(𝜽), (2.18)

has an approximate chi-square distribution with the appropriate dfs if the proposed
model is correct. If the test statistic is not significant, the proposed model is con-
sistent with the data. We will discuss the use of various goodness-of-fit indices to
evaluate the proposed models later.

The second objective is to test whether the individual parameter estimates ̂𝜽 are
statistically significant. There are generally three types of test statistics—the like-
lihood ratio (LR) test, the Wald test, and the Lagrange multiplier test. These test
statistics are asymptotically equal when the sample sizes are large (Buse, 1982;
Engle, 1984). Under small samples, however, they can be different. As the LR test
and the Wald test are more popular in SEM and meta-analysis, we mainly focus on
these two tests here.

Suppose that 𝜽
p×1

is a vector of p parameters of interests in the model. ̂𝜽
p×1

is the

vector of the parameter estimates with ̂V
p×p

as the asymptotic sampling covariance

matrix of the parameter estimates. V indicates the variability in estimating ̂𝜽. If we
are interested in testing a null hypothesis on some parameters, say the ith parameter
𝜽[i] to a specific value 𝜃0, we first obtain the SE of ̂𝜽[i] by taking the square root of

the ith diagonal element in ̂V, that is, SE( ̂𝜽[i]) =
√

̂V[i,i]. Strictly speaking, there is
a “hat” on SE. As it is clear that the SE is estimated rather than known, the “hat” is
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often dropped in the formula. We test the null hypothesis H0 ∶ 𝜽[i] = 𝜃0 by using
the test statistic z,

z =
̂𝜽[i] − 𝜃0

SE( ̂𝜽[i])
, (2.19)

which has an approximate standard normal distribution. The null hypothesis is
rejected at 𝛼 = 0.05 when |z| ≥ z1−𝛼∕2 with z1−𝛼∕2 is the (1 − 𝛼∕2)th percentile
of the standard normal score. As most computer packages provide the SEs as a
by-product after the estimation, the Wald statistic is easy to use to test the signifi-
cance of the individual parameter estimates.

The above test is a special case of the Wald (W) test with only one parameter. If
we want to test multiple or all parameters in the model, for example, H0 ∶ 𝜽

p×1
= 𝜽0

p×1
,

we calculate the W test by

W = ( ̂𝜽 − 𝜽0)
1×p

T
̂V

p×p

−1( ̂𝜽 − 𝜽0)
p×1

, (2.20)

which has an approximate chi-square distribution with p dfs (e.g., Fox, 2008).
Another approach to test H0 ∶ 𝜽 = 𝜽0 is to apply the LR test. We first fit two

models—one with the constraints 𝜽0 and the other without the constraints. We
calculate an LR statistic, the difference of the log-likelihood (LL between these
two models,

LR = 2(log L( ̂𝜽) − log L(𝜽0)), (2.21)

has an approximate chi-square distribution with p dfs. The LR test can be used to
test one or more parameters.

2.4.5 Confidence intervals on parameter estimates

Besides testing the significance of the parameter estimates with a Wald test or an
LR test, we may construct CIs on the parameter estimates. A 100(1 − 𝛼)% CI on
a parameter (𝜃) is a random interval, calculated from the sample, that contains 𝜃

with the prespecified probability in the long run, that is,

Pr(�̂�L < 𝜃 < �̂�U) = 1 − 𝛼, (2.22)

where 𝛼 is the significance level and �̂�L and �̂�U are the estimates of the lower and
upper limits on 𝜃, respectively (e.g., Rice, 2007). It should be noted that both ̂

𝜃L
and �̂�U are random variables. Therefore, they may vary from samples to samples.
Moreover, the test statistic may be approximate rather than exact. The coverage
probability may only approximately equal 95%.

One common method of constructing CIs is by inverting a test statistic with a
known distribution (e.g., Casella and Berger, 2002). This inversion CI principle has
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been frequently used to construct CIs for the effect sizes (see Steiger and Fouladi,
1997). Both the Wald CI and the LBCI can be constructed by this principle. We
first discuss how to construct these CIs. Then we compare their similarities and
differences. This section is based on the work of Cheung (2009b).

2.4.5.1 Wald CIs

From Equation 2.19, we may compute the 100(1 − 𝛼)% Wald CI for 𝜃 with

�̂� ± z1−𝛼∕2SE(�̂�). (2.23)

The Wald CIs are symmetric around �̂�. As the SEs are usually available in most
statistical packages, the Wald CI is probably the most popular method to creating
the CIs. If the parameter of interest is a function of other parameters, the SE may not
be directly obtainable. In these cases, the delta method may be used to approximate
the SE (e.g., Casella and Berger, 2002; Rice, 2007) (see Section 3.4.1).

2.4.5.2 Likelihood-based CIs

Besides inverting a z statistic to form a Wald CI, we may also construct an LBCI
by inverting an LR statistic. When the null hypothesis (H0 ∶ 𝜃 = 𝜃0) is correct,
the LR statistic in Equation 2.21 is asymptotically distributed as a chi-square vari-
ate with p dfs where p is the number of independent constraints imposed by the
null hypothesis. The difference of two LR statistics on two estimates of the same
parameter, where one is the ML estimate (treated as fixed) and the other is varied,
is asymptotically distributed as a chi-square variate with 1 df.

To construct a 100(1 − 𝛼)% LBCI (�̂�L and �̂�U) on a parameter, we move the
parameter estimate (treated as varied) as far away as possible to the right from its
ML estimate such that it is just statistically significant at the desired 𝛼 significance
level. That is, the �̂�U may be obtained by gradually increasing the estimate until

𝜒
2
1,1−𝛼 = 𝜒

2
U − 𝜒

2
ML, (2.24)

where 𝜒
2
1,1−𝛼 is the critical value of the chi-square statistic with 1 df and with a 𝛼

significance level and 𝜒
2
U and 𝜒

2
ML are the chi-square statistics of ̂

𝜃U and the ML
estimate ̂

𝜃, respectively. The ̂
𝜃L may also be obtained by the same procedure except

that the estimate for �̂�L is moving to the opposite direction.
If there is more than one parameter in the likelihood function, the above approach

may be modified by using the profile likelihood method (Pawitan, 2001). The pro-
file likelihood method reduces the likelihood function with multiple parameters to a
likelihood function with a single parameter by treating other parameters as nuisance
parameters and maximizing over them (e.g., Neale and Miller, 1997).

2.4.5.3 Relationship between the Wald test and the likelihood-based test

As both Wald test or its CI and the LR test or LBCI may be used to test hypotheses
on the parameter estimates, we may compare their properties and determine which
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one is preferable. Let us illustrate the relationship between the Wald and the LR
statistics when there is only one parameter. The Wald statistic is an approximation
of the LR statistic by using a second-order Taylor’s expansion of the LL function
around the ML estimate (e.g., Pawitan, 2001, p.33),

LL(𝜃) ≈ LL(�̂�) + d(LL(𝜃))
d𝜃

(𝜃 − �̂�) + 1
2

d2(LL(�̂�))
d𝜃2

(𝜃 − �̂�)2, (2.25)

where d(LL( ̂𝜃))
d𝜃

and d2(LL( ̂𝜃))
d𝜃2

are the first and second derivatives of LL(𝜃) evaluated

at �̂�, respectively. As the first derivative on the LL function evaluated at �̂� is zero
at the MLE, the above equation reduces to

LL(𝜃) ≈ LL(�̂�) − 1
2

I(�̂�)(𝜃 − �̂�)2, (2.26)

where I(�̂�) = −d2(LL(�̂�))
d𝜃2

is the observed Fisher information that indicates the curva-
ture of the quadratic approximation of the LL function. The asymptotic sampling
variance of the parameter estimate Var(�̂�) can be obtained by

Var(�̂�) = 1

I(�̂�)
. (2.27)

From the above equation, we can construct a Wald statistic for testing H0 ∶ 𝜃 = 𝜃0
versus H1 ∶ 𝜃 ≠ 𝜃0,

W =
(�̂� − 𝜃0)2

Var(𝜃)
, (2.28)

which has a chi-square distribution with 1 df.
Figure 2.7 shows the Wald test and the LR test when the LL(𝜃) can be well

approximated by the − 1
2
I(�̂�)(𝜃 − �̂�)2. To test the null hypothesis 𝜃 = 𝜃0, the LR

test compares the vertical differences between LL( ̂𝜃) and LL(𝜃0). If the difference
is sufficiently large, it is statistically significant. In contrast, the W test compares the
horizontal differences between ̂

𝜃 and 𝜃0. As the curvature of the quadratic approxi-
mation of the LL function also influences the appropriateness of the null hypothesis,
we weigh the square difference by I(�̂�) (Equation 2.28 ). If the discrepancy is large,
the null hypothesis is rejected.

The observed (or expected) Fisher information matrix, thus the SE(�̂�), is usually
available after obtaining the MLE. Therefore, the Wald test and the Wald CIs are
usually available in nearly all statistical packages. As shown in Equation 2.26, the
Wald statistic is based on the second-order quadratic approximation of the LL func-
tion. The Wald CI and the likelihood-based CI would be exactly the same in a few
special cases only (see Buse, 1982).

In most cases, the Wald CI and the LBCI will differ. The appropriateness of
using the Wald statistic to approximate the LL function depends on several fac-
tors, such as the model being analyzed, the sampling distribution of the parameter
estimate, and the sample size. In reality, however, it is hard to tell whether the
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Figure 2.7 Relationship between a likelihood ratio and a Wald tests.

quadratic approximation is good or not. One method is to plot the true LL and its
quadratic approximation graphically. Researchers may visually check whether or
not the quadratic approximation is good (see Pawitan (2001) for some examples).

For example, Figure 2.8 shows two LLs of two data sets. The ML estimates for
both data sets are ̂

𝜃 = 0.8. For Figure 2.8a, the sample size is only 10, the quadratic
approximation of the LL (and the SE) is not very good. The �̂�L of the Wald SE is
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x = 80 (b) and with solid lines (true log-likelihood) and dashed lines (quadratic
approximation of log-likelihood).



BRIEF REVIEW OF STRUCTURAL EQUATION MODELING 33

too small, whereas the �̂�U is too big. The sample size for the data in Figure 2.8b is
100. The quadratic approximation of the LL is nearly the same as that of the true
LL. CIs based on the Wald statistic and the LL are nearly identical. We may apply
the Wald test for the data in Figure 2.8b. But we should be careful when applying
the Wald test for the data in Figure 2.8a.

There are several criticisms about the use of Wald CIs in the literature. Wald CIs
based on SEs assume implicitly that the LL function for the quantity of interest can
be closely approximated by a quadratic function and, hence, is symmetric. There-
fore, Wald CIs are always symmetric around the ML estimates. However, in many
cases, the actual likelihood functions are asymmetric, in which cases the quadratic
approximation underlying the Wald CIs may work poorly unless large samples are
involved (Pawitan, 2001). For example, the sampling distributions of the parame-
ters of the variances, correlation coefficients that are close to ±1, and the product
term of two random variables in indirect effects are usually asymmetric. In these
cases, the symmetric Wald CIs are too optimistic in ruling out values of the param-
eter at one end and too pessimistic in ruling out values of the parameter at the other
end (DiCiccio and Efron, 1996).

A related issue with the symmetric CIs is that the CIs may be out of the mean-
ingful boundaries, for example, a negative lower limit for the variance. Although
these CIs may be truncated to the meaningful bounds, say zero for variance and ±1
for correlation, Steiger and Fouladi (1997) warned that the coverage probability for
the truncated CI is maintained; however, the width of the CI may be suspicious as
an indicator for the precision of the measurement because of the truncation of the
nonsensible values.

Another problem with Wald CIs (and the significance tests based on Wald statis-
tics) is that they are not invariant to monotonic transformations on the parameters
(DiCiccio and Efron, 1996; Neale and Miller, 1997). For example, the coverage
probabilities of the Wald CIs on a parameter, say a Pearson correlation, and its
monotonic transformation, say a Fisher’s z transformed score, need not be the same.
This issue is particularly annoying in SEM because there are many equivalent mod-
els formed by different model parameterizations. For example, we may fix either
a factor loading or the factor variance at some specific values, usually 1, in order
to identify a latent variable. Many researchers have shown that the Wald test may
indicate different conclusions (significance vs nonsignificance) depending on how
the models are parameterized (Gonzalez and Griffin, 2001; Neale and Miller, 1997;
Steiger, 2002).

LBCI offers many improvements over Wald CI (e.g., Meeker and Escobar, 1995;
Neale and Miller, 1997; Pawitan, 2001). The LBCI uses the LL function directly
instead of its quadratic approximation. They are asymmetric in capturing the sam-
pling distribution of the parameter estimates; and they are invariant to monotonic
transformations.

LBCIs have been suggested as alternatives to Wald CIs in areas where the Wald
CIs are known to perform poorly. For example, Agresti (2002) recommended
the use of LBCIs over Wald CIs in analyzing categorical data when the sample
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sizes are small to moderate. Similar suggestions have been offered in nonlinear
regressions (e.g., Bates, 1988; Seber, 2003), random effects in meta-analyses
(Hardy and Thompson, 1996; Viechtbauer, 2005), logistic regressions, and
generalized linear models (Agresti, 2002).

Although the properties of the LBCIs seem appealing, there are still issues sur-
rounding their use. First and foremost, researchers need to make distributional
assumptions on the data in order to construct LBCI. The use of LBCIs is ques-
tionable when the specified LL function is inappropriate. For some models, the
LBCIs may be out of the meaningful boundaries. For example, if we do not impose
any restrictions on the variance component T2 on a multivariate meta-analysis, ̂T

2

can be negative definite (see Section 5.3.2). Even ̂T
2

is nonnegative definite, their
LBCIs can be negative definite when there is no boundary imposed on ̂T

2
in the

analysis. As Casella and Berger (2002, p. 430), among others, have cautioned, there
is no guarantee that the LBCIs will be optimal, although they will seldom be too
bad. Despite this, they still “recommend constructing a confidence set based on
inverting an LRT (likelihood ratio test), if possible.”

2.4.6 Test statistics versus goodness-of-fit indices

As summarized by Steiger and Fouladi (1997), there are two general approaches
in statistical analysis. They are the reject-support approach and the accept-support
approach. Most statistical methods, such as t test, regression analysis, and ANOVA,
are based on the reject-support approach. Researchers usually formulate research
hypotheses with an intention to reject the null hypothesis, for example, H0 ∶ 𝜌 = 0,
between two variables. If the null hypothesis is rejected, the finding supports the
researcher’s belief. On the other hand, SEM researchers propose a CFA or an SEM
model, say H0 ∶ 𝚺 = 𝚺(𝜃). Most SEM users have the intention of not to reject
the proposed models. Therefore, SEM applications fall into the accept-support
approach.

2.4.6.1 LR test statistic

The LR test discussed earlier is the most common test statistic in SEM. It indicates
the badness-of-fit of the proposed model. Under the appropriate assumptions, the
LR statistic has an approximate chi-square distribution with the appropriate dfs.
The empirical coverage of the LR statistic is close to the nominal values when
some assumptions are correct. In order for the LR test to behave as a chi-square
distribution, we need the following assumptions:

(i) the distribution assumptions are correct;

(ii) the proposed model is correctly specified; and

(iii) the sample sizes are large enough.

However, some of these assumptions may not be fulfilled in applied research.
For example, Micceri (1989) examined 440 large-sample achievement and
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psychometric measures and found all data were statistically significant in testing the
normality. The issue of nonnormality has been extensively studied in SEM. When
the data are not normally distributed, the general findings are that the LR test will
be inflated, whereas the SEs will be deflated (e.g., Curran et al., 1996). Satorra and
Bentler (1988, 1994) proposed some scaled statistics to correct for this bias. This
is generally known as the Satorra–Bentler scaled statistic (see Yuan and Bentler,
2007). The empirical Type I error of the correction statistic is roughly close to the
prespecified value, for example, 0.05, even the data are not normally distributed.

Another assumption is that the proposed model is correctly specified. When there
are latent variables, it means that the measurement model is literally correct. That is,
the indicators are loaded in the correspondent latent factors and there are no minor
or trial loadings. As most structural equation models are highly restrictive, they are
likely wrong at the population level. Therefore, many SEM users consider their pro-
posed models are only approximation of the reality. They do not expect that the pro-
posed models are literally true at the population. If the LR statistic is used to assess
the model fit in SEM, the test will be significant when there are trivial differences
between the proposed model and the data when the sample sizes are large enough.

The third assumption is that the sample sizes are large enough. Reasonable sam-
ple sizes are required so that the LR statistic behaves as a chi-square distribution
when the proposed model is correct. It should be noted that the empirical Type
I error should be close to the nominal level, for example, 𝛼 = 0.05, when the
proposed model is correct, no matter how large the sample sizes are. This rarely
happens in reality because the proposed models are likely approximation of the
phenomena being studied. When there are trial or minor model misspecification,
the LR statistic tends to reject the proposed models when the sample sizes are
getting bigger.

2.4.6.2 Goodness-of-fit indices

Many goodness-of-fit indices have been proposed to address some of these issues.
We briefly introduce a few here. One popular type of fit indices is the incremental
fit indices. This type of fit indices compares the model fit of a target model with
the test statistic TT and dfT against a baseline model with the test statistic TB and
dfB. A common baseline model is a model with all covariances fixed at 0 (but see
Widaman and Thompson (2003) for suggestions on alternative baseline models).
In other words, the incremental fit indices indicate how good the proposed model
is when it is compared to the worst possible model (the baseline model).

For example, the TLI (Tucker and Lewis, 1973), also known as the non-normed
fit index (NNFI), defined as

TLI =
𝜒

2
B∕dfB − 𝜒

2
T∕dfT

𝜒
2
B∕dfB − 1

. (2.29)

TLI measures the proportion reduction in the chi-square values when comparing
the baseline to the hypothesized model after adjusting the complexity of the model.
The usual range is from 0 to 1; however, it can exceed this range.
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Another popular incremental fit index is the comparative fit index (CFI) (Bentler,
1990). It is similar to the TLI except that it is bounded within 0 and 1,

CFI = 1 −
max((𝜒2

T − dfT), 0)
max((𝜒2

T − dfT), (𝜒2
B − dfB), 0)

. (2.30)

Some researchers, (e.g., Hu and Bentler, 1999), put CFI> 0.95 as an indication that
the proposed model fits the data well.

When the model is correctly specified, the test statistic asymptotically follows
a central chi-square distribution. However, the test statistic follows a noncentral
chi-square distribution when the model is misspecified. The noncentrality parame-
ter 𝜆 depends on the alternative model. It can be estimated by

�̂� =
(𝜒2

T − dfT)
(n − 1)

. (2.31)

Steiger and Lind (1980) proposed to use a modified version of �̂� that is nonnegative
and takes the model complexity (dfT) into account. They proposed the root mean
square error of approximation (RMSEA) which is defined as

RMSEA =

√
max((𝜒2

T − dfT)∕(n − 1), 0)
dfT

. (2.32)

It assesses the misfit of the model per df. When there are more than 1 group, Steiger
(1998) proposed the following modification to calculate the RMSEA,

RMSEA =
√

k

√
max((𝜒2

Total − dfTotal)∕NTotal, 0)
dfTotal

, (2.33)

where k is the number of groups and 𝜒
2
Total, dfTotal, and NTotal are the chi-square

statistic, df, and sample size of all groups, respectively. CIs on RMSEA can be
constructed by iterative procedures (Steiger and Fouladi, 1997). The RMSEA is
bounded at 0. In theory, it does not have a maximum because the alternative model
can be badly deviated from the proposed model.

Browne and Cudeck (1993) suggested that the proposed model can be consid-
ered as “close fit” when the population RMSEA is close to 0.05. If the population
RMSEA is larger than 0.10, the proposed model does not fit the data. They further
suggested using the 90% CI on the RMSEA to test the null hypotheses of “close
fit.” If the 90% CI of the RMSEA includes the null hypothesis of RMSEA = 0.05,
the proposed model is a good fitted model.

Another index based on the residuals is the root mean square residual (RMR),
which was introduced by Jöreskog and Sörbom (1981). The RMR is an index
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of the average discrepancy between the sample covariance matrix S and the
model-implied covariance matrix ̂𝚺. The RMR is defined as

RMR =

√√√√√√√√
p∑

i=1

i∑
j=1

(sij − �̂�ij)2

p(p + 1)
2

, (2.34)

where sij and �̂�ij are the elements in S and ̂𝚺( ̂𝜽), respectively. If the proposed model
is correct, the model-implied covariance matrix ̂𝚺( ̂𝜽) will be very close to the
sample covariance matrix S. As the variables are likely to be on different scales
(variances), it is difficult to interpret the RMR. Bentler (1995) proposed to stan-
dardize the RMR by using sii and sjj. The standardized root mean square residual
(SRMR) for a covariance structure analysis is defined as

SRMRS =

√√√√√√√√√
p∑

i=1

i∑
j=1

(
sij−�̂�ij√

siisjj

)2

p(p + 1)
2

. (2.35)

When a correlation structure analysis is conducted, the diagonal elements of the
sample correlation matrix and the model-implied correlation matrix are always
fixed at 1. There is no need to standardize the residuals. Moreover, we need to
exclude the diagonals from the calculations. The SRMR for a correlation structure
analysis is modified as

SRMRR =

√√√√√√√√
p∑

i=2

i−1∑
j=1

(rij − �̂�ij)2

p(p − 1)
2

, (2.36)

where rij and �̂�ij are the elements in R and ̂P, respectively. The above definitions on
SRMR may be extended to multiple-group analysis with k groups. The SRMR for
the multiple-group analysis is

SRMR =
∑k

i=1(ni − 1)SRMRi∑k
j=1(nj − 1)

, (2.37)

where SRMRi is the SRMR in the ith group. Thus, it is simply a weighted mean of
the individual SRMR. When SRMR is 0, the proposed model perfectly fits the data.
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The theoretical maximum of SRMR is 1, which indicates that the proposed model
fits the data extremely bad. Conventionally, SRMR< 0.05 indicates a reasonable
fitted model.

If the model comparison involves non-nested models, we may use either the
Akaike information criterion (AIC) (Akaike, 1987) or the Bayesian information
criterion (BIC) (Schwarz, 1978) to compare among these models. The AIC is
defined as

AIC = 𝜒
2
T − 2dfT, (2.38)

whereas the BIC is defined as

BIC = 𝜒
2
T − log(n)dfT. (2.39)

They measure the parsimonious fit that considers both the model fit and the
number of parameter estimated. Smaller value indicates that the model fits better
in compromising between the model fit and the model complexity. We may choose
the model with the smallest (better parsimonious fit) AIC or BIC. It should be
noted that different programs may use slightly different formulas to calculate the
AIC and BIC. Therefore, the values may not be comparable across programs.

Even though there are lots of goodness-of-fit indices, there is no universally
accepted ones or cutoffs. Different authors may cite different sources to support the
proposed models using different goodness-of-fit indices. Readers interested in this
topic may refer to Barrett (2007) and the commentaries regarding the arguments
for and against the goodness-of-fit indices.

2.5 Extensions on structural equation modeling

This section addresses three important extensions in SEM. They are the phantom
variables, definition variables, and FIML. These concepts are crucial to formulating
meta-analytic models as structural equation models.

2.5.1 Phantom variables

Phantom variables are “latent variables with no observed indicators” (Rindskopf,
1984, p. 38). Another feature of the phantom variables is that the (error) variances
of the phantom variables are fixed at zero. They are also known as the nodes (Horn
and McArdle, 1980) and the auxiliary variables (Raykov and Shrout, 2002). It is
also similar to the dummy latent variables used by Chan (2007). Applications of
the phantom variables, such as testing dependent correlations, squared multiple R,
standardized regression coefficient, reliability estimates, and mediating effects can
be found in Cheung (2007a, 2009b).

We illustrate what phantom variables are by a simple regression used in Cheung
(2010). Suppose that we would like to conduct a regression analysis by regressing y
on x. On the basis of the theory, the regression coefficient is nonnegative. There are
several methods to ensure that the estimated regression coefficient is nonnegative.
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Most SEM packages, for example, Mplus (Muthén and Muthén, 2012), OpenMx
(Boker et al., 2011), and lavaan (Rosseel, 2012), allow nonlinear constraints on
the parameters. We may set a nonlinear constraint to impose that the estimated
regression coefficient is nonnegative. An alternative method is to use a phantom
variable to ensure that the regression coefficient is nonnegative. Without loss of
generality, we exclude the intercept in the model specification. The model with a
phantom variable is

y = 𝛽P + ey and

P = 𝛽x.
(2.40)

The model is shown in Figure 2.9. As 𝜎2
eP
= 0, P has no impact on the model fit.

The effect of x on y is 𝛽2, which is always nonnegative.

0

β β
yx P

σx
2 σ2

ey

Figure 2.9 A regression model with a phantom variable.

2.5.2 Definition variables

Definition variables can be used to fix subject-specific values to any parameters
in the model. These parameters can be, for example, path coefficients, factor load-
ings, means, and error variables. This means that the implied model may vary across
subjects. Definition variables have been used to implement moderated regression
(Neale, 2000) and multilevel SEM (Mehta and Neale, 2005). Applications of defini-
tion variables in meta-analysis (Cheung, 2008, 2010, 2013, 2014) will be discussed
in details in later chapters.

Let us illustrate the idea of definition variables with a simple regression.
Figure 2.10a shows a simple regression in the SEM literature. The effect from x on
y is estimated via the parameter 𝛽1. It should be noted that x is treated as a variable in
the model. We have to estimate its variance 𝜎2

x and its mean 𝜇x. The model-implied
means and covariance matrix for this model have been shown in Equation 2.2.

Figure 2.10b shows the same simple regression model in the regression literature.
P is a phantom variable with a variance of 0. The mean of P is fixed at xi via a def-
inition variable. As there is a subscript i in xi, the value of xi varies across subjects.
The path coefficient from P to yi is 𝛽1. The error variance 𝜎

2
ey

is the same across
subjects after controlling for xi. This is known as the assumption of homoscedastic-
ity in regression analysis. By using the tracing rules, the model-implied conditional
mean and variance of yi are

E(yi|xi) = 𝛽0 + 𝛽1xi and

Var(yi|xi) = 𝜎
2
ey
.

(2.41)



40 META-ANALYSIS

y

(a)

(b)

μx

β1

β0

σx
2

σ2
ey

σ2
ey

x

1

yi

0

P
β1

β0

1

xi yi

Figure 2.10 A regression model with and without a definition variable.

It is of importance to note that xi is not a variable; there is no estimate on neither
𝜇x nor 𝜎2

x .
The models in Figure 2.10a and b are known as the random-x and the fixed-x

regressions, respectively (e.g., Fox, 2008). Although the parameter estimates are
the same in both panels, there are subtle differences between these two approaches.
The most important one is that there is a subscript in Figure 2.10b indicating that
it is a subject level model. Each subject has his/her own model. There is no a sin-
gle model-implied mean and variance for all subjects. In our example, the mean
of P is xi that varies across subjects. On the other hand, there is no subscript in
Figure 2.10a. There is a single model-implied mean and variance for all subjects.
Summary statistics such as the means and covariance matrix may be used to fit
the model using the discrepancy functions in Figure 2.10a, whereas FIML esti-
mation must be used to analyze the model in Figure 2.10b. Moreover, there is
no distribution assumption on x for the model in Figure 2.10b, whereas distri-
bution assumption (usually normal distribution) is required on x for the model in
Figure 2.10a.



BRIEF REVIEW OF STRUCTURAL EQUATION MODELING 41

2.5.3 Full information maximum likelihood estimation

By assuming that the data are multivariate normal, the −2∗log-likelihood (−2LL)
of the ith subject for the proposed mean structure 𝝁i(𝜽) and the covariance struc-
ture 𝚺i(𝜽) is

−2LLi(𝜽) = ki log(2𝜋) + log ||𝚺i(𝜽)|| + (yi − 𝝁i(𝜽))T𝚺i(𝜽)−1(yi − 𝝁i(𝜽)), (2.42)

where ki is the number of non-missing observed variables in the ith subject; ||X|| is
the determinant of X, which is also known as the generalized variance; and log(x) is
the natural logarithm of x. As there is a subscript i in the quantities in Equation 2.42,
it indicates that raw data are required. As the observations are independent, the
−2LL for all subjects is

−2LL =
∑k

i=1
− 2LLi(𝜽), (2.43)

where k is the number of subjects. The parameter estimates ̂𝜽 are obtained by
minimizing the −2LL. The sampling covariance matrix of the parameter estimates
Cov(𝜽) can be obtained from the observed (or expected) Fisher information. This
approach is usually known as the FIML in the SEM literature in contrast to the
ML approach based on the summary statistics. FIML plays an important role in
handling incomplete data in SEM and the SEM-based meta-analysis.

Another difference between the models in Figure 2.10 is how the model fit is
calculated. When the summary statistics, the means, and the covariance matrix
are used as the input for the model in Figure 2.10a, there are totally five pieces of
information with five unknown parameters. Thus, the model is saturated with 0 df.
Chi-square statistic and goodness-of-fit indices can be easily calculated. Regarding
the model in Figure 2.10b, it is more complicated. As there is no single model for
all subjects, FIML estimation has to be used (e.g., Mehta and Neale, 2005). For
example, the OpenMx package reports the −2LL of the proposed model when raw
data are analyzed. The df reported is the number of pieces of data (number of vari-
ables times number of subjects of the complete data) less the number of parameters.
If there are 100 subjects without missing value in the simple regression example,
the number of pieces of data is 100 = 100 × 1 as x is not treated as a variable.
There are a total of three parameters in the model in Figure 2.8b. Thus, the df is 97.

It should be noted that the −2LL is not the LR test statistic in testing the pro-
posed model. To calculate the LR on the proposed model, we need to calculate
the difference in the −2LL between the proposed model and the saturated model.
The saturated model is the model with all variables correlated and all the means
are estimated. The parameter estimates are simply the sample covariance matrix
and the sample mean. The proposed model is more restrictive than the saturated
model. Suppose that the −2LLT and −2LLS are the −2LL of the proposed model
and the saturated model, respectively, and dfT and dfS are the degrees of freedom
for the proposed model and the saturated model, respectively. From Equation 2.21,
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we may calculate the test statistic LRT as

LRT = 2(LLS − LLT), (2.44)

which has a chi-square distribution with df = dfT − dfS under the null hypothe-
sis that the proposed model is correct. If we want to calculate the incremental fit
indices for the proposed model, we need to calculate the LRB and dfB by applying
Equation 2.44 on the baseline model.

2.6 Concluding remarks and further readings

This chapter briefly reviewed some key concepts in SEM. Several common struc-
tural equation models and how to specify these models were introduced. How to
conduct statistical inferences in SEM was also reviewed. Because of the space con-
straint, the topics covered were very selective. Readers may refer to the textbooks,
for example, Bollen (1989), Kline (2011), and Mulaik (2009) for the general con-
cepts and more applications in SEM. The concepts of FIML (e.g., Enders, 2010),
definition variables (Mehta and Neale, 2005), and phantom variables (Rindskopf,
1984) are crucial in understanding the SEM-based meta-analysis. The RAM for-
mulation is also useful in fitting MASEM (McArdle, 2005). Readers who are new
to SEM may be benefited by reading some of these readings before moving to the
SEM-based meta-analysis.
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Computing effect sizes for
meta-analysis

This chapter covers how to estimate common effect sizes and their sampling
variances in a meta-analysis. We begin by introducing the formulas to compute
effect sizes and their sampling variances for a univariate meta-analysis. Formulas
to calculate effect sizes for a multivariate meta-analysis are then introduced. This
chapter then introduces a general approach to calculate the sampling variances for
the univariate effect sizes and the sampling covariance matrices for the multivariate
effect sizes. The delta method is used to the approximate sampling variances
of the effect sizes by considering the effect sizes as functions of the summary
statistics. We show how structural equation modeling (SEM) can be used as a
computational device to simplify the procedures on estimating the approximate
sampling variances and covariances. Examples are used to illustrate the procedures
in the R statistical environment.

3.1 Introduction

The main difference between a narrative review and a meta-analysis is that effect
sizes are explicitly calculated and synthesized in a meta-analysis. An effect size
summarizes the result of a study. A meta-analysis cannot be conducted without the
effect sizes and their sample variances. This chapter introduces how to calculate
some common effect sizes and their sample variances. These effect sizes serve as
the ingredients for the statistical modeling that will be introduced in later chapters.

There are many definitions of an effect size. One common definition is that an
effect size is a quantitative measure of the magnitude of some phenomenon that is
used for the purpose of addressing a question of interest (see Kelley and Preacher
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(2012) for a review). The effect size has to be scaled properly. It is sometimes
appropriate to use the raw scores, whereas some forms of standardization are
required in many settings.

There are several properties for the effect sizes in a meta-analysis. First, the effect
size should be directional. As the effect can be either positive or negative, the effect
size should indicate the direction of the effect size. For example, the percentage
of variance explained R2 is a popular index to summarize the effect of prediction
in regression analysis. It is rarely used in the meta-analysis because R2 does not
indicate the directions of the predictors. R2 is always nonnegative regardless of
the signs of the regression coefficients. Moreover, it combines the effects of all
predictors, while different studies may include different numbers of predictors. It
is difficult to synthesize R2 based on different numbers of predictors. Similarly, the
percentage of variance explained in analysis of variance (ANOVA), such as 𝜂2 and
𝜔

2, is usually not appropriate to be used as effect sizes in a meta-analysis.
The effect size should also be relatively independent of the sample size. In other

words, the measured effect size should not get larger (or smaller) simply because a
large sample size is used. If the effect sizes are biased at the small samples, some
corrections may be applied to adjust for the bias. In this book, we let fi be a pop-
ulation or true effect size, and yi be its observed effect size in the ith study. The
effect size can be a mean difference, a correlation coefficient, or a (log) odds ratio
(OR). The theory behind the meta-analysis is general enough to be applied to any
type of effect size. Besides extracting the effect sizes, we also need to calculate the
sampling variance 𝑣i of yi. 𝑣i quantifies the precision of yi. As most meta-analytic
procedures need to weigh the studies by their precision, it is of importance to obtain
𝑣i in a meta-analysis. It should also be noted that it is usually the 𝑣i, not the sample
size, is used in the meta-analysis (cf. Schmidt and Hunter, 2015). Although 𝑣i is
primarily determined by the sample size, 𝑣i may also be affected by other factors for
some effect sizes. Once we have calculated 𝑣i, the sample sizes are rarely involved
in the meta-analysis.

When the sample sizes in the primary studies are reasonably large, it is assumed
that yi is normally distributed around the true effect size fi in the ith study with a
known sampling variance 𝑣i, that is, yi ∼  (fi, 𝑣i). This is known as the conditional
sampling variance. Another way to express it is

yi = fi + ei, (3.1)

with Var(ei) = 𝑣i. We assume that yi is unbiased in estimating the true effect size fi
or E(yi) = fi. As we are going to assume that yi is normally distributed in this book,
it is necessary to discuss when this assumption is appropriate. The appropriateness
of the normality assumption depends on several factors, for example,

(i) the sample size in the primary studies;

(ii) the distribution of the raw data;

(iii) the type of effect size; and

(iv) the population value of the true effect size.
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Sample size is the most obvious factor to determining the distributions of the effect
sizes. Effect sizes are usually calculated from the summary statistics, such as the
means, variances, and covariances. Because of the central limit theorem, the effect
sizes will be normally distributed when the sample sizes are getting larger and
larger. If the sample sizes in the primary studies are sufficiently large, all effect
sizes will be normally distributed. However, how large is the sample sizes depends
on other factors.

The second factor is the distribution of the raw data. When the raw data are
normally distributed, the effect size will approach normal distribution much faster
than the cases in which the raw data are not normally distributed, given the same
conditions. The third factor is the type of effect size. For example, the raw mean dif-
ference (RMD) approaches a normal distribution faster than that based on the stan-
dardized mean difference (SMD), given the same data. In order to make some effect
sizes approach normal distribution faster, some transformations may be applied. For
example, we may apply a Fisher’s z transformation on the correlation coefficient
and a logarithm transformation on the OR. This is known as the variance stabiliz-
ing transformation. The last factor is the population value of the true effect size.
For example, a correlation coefficient tends to be skewed when the population cor-
relation is away from 0. Fisher’s z transformation can be applied to normalize its
sampling distribution.

3.2 Effect sizes for univariate meta-analysis

In some research settings, a single effect size is sufficient to summarize the effect of
the study. Most published studies on meta-analysis were based on one single effect
size. This section reviews some common effect sizes used in the literature. There
are generally three types of effect sizes. They are the mean differences, correlation,
and binary data. When different studies report different types of effect sizes, it
is sometimes possible to convert the effect sizes from one type to another (e.g.,
Borenstein, 2009; Borenstein et al., 2009).

3.2.1 Mean differences

Many outcome measures are continuous. When there are a treatment and a con-
trol groups, the mean difference may be used to quantify the treatment effect. In
educational settings, for example, researchers may want to compare the teaching
effectiveness of class size by comparing small class size (treatment) versus nor-
mal class size (control). The dependent variable can be the academic performance
at the end of the intervention. Both the RMD and SMD can be used as the effect
sizes, depending on whether the meanings of the scales are clearly defined and
comparable across studies.

3.2.1.1 Raw mean difference

When the scales are comparable across studies, the raw (or unstandardized) mean
difference may be used as the effect size. The key feature of the RMD is that its
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meaning is the same as that of the raw data. For example, if the dependent variable is
the grade point average (GPA) in educational research or blood pressure in medical
research, the RMD refers to the differences on GPA or blood pressure, respectively.
Bond Jr. et al. (2003) argued that the RMD is preferable because results based on
the SMD may be distorted when the meanings of the scales are comparable across
studies. As it is understood that we can calculate the effect size for each study, we
do not include the subscript i in yi and 𝑣i in the following formulas to simplify the
notation. The population RMD is defined as

fRMD = 𝜇T − 𝜇C, (3.2)

where 𝜇T and 𝜇C are the population means in the treatment and control groups,
respectively. The so-called treatment and control are just for the ease of reference.
It is possible that there is no intervention or control in the studies. For example, we
may use the same formula to calculate the gender difference on some objective test
such as the Graduate Record Examinations (GRE).

The sample RMD (yRMD) is estimated by

yRMD = ȲT − ȲC, (3.3)

where ̄YT and ̄YC are the sample means in the treatment and control groups, respec-
tively. Positive values indicate that the treatment effect is higher than that of the
control group. If we assume that the population variances are the same (the assump-
tion of homogeneity of variances), we may pool the variances together to increase
the precision of the estimated variance. The pooled variance is

s2
p =

(nT − 1)s2
T + (nC − 1)s2

C

nT + nC − 2
, (3.4)

where s2
T and s2

C are the sample variances in the treatment and control groups,
respectively, and nT and nC are the sample sizes in the treatment and control groups,
respectively. By applying the central limit theorem, we may estimate the sampling
variances of ȲT and ȲC by

Var(ȲT) =
s2

p

nT
and

Var(ȲC) =
s2

p

nC
.

(3.5)

As YT and YC are independent, the sampling variance of yRMD is simply the sum of
their sampling variances, that is,

𝑣RMD = Var( ̄YT) + Var( ̄YC)

=
(

1
nT

+ 1
nC

)
s2

p.
(3.6)
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If we do not assume the homogeneity of variances, the sampling variances of ̄Y1
and Ȳ2 are

̃Var( ̄YT) =
s2

T

nT
and

̃Var( ̄YC) =
s2

C

nC
.

(3.7)

Then, the sampling variance of yRMD is

�̃�RMD =
s2

T

nT
+

s2
C

nC
. (3.8)

It appears that �̃�RMD is more appealing because it does not require the assumption
of homogeneity of variances. However, �̃�RMD is less accurate than 𝑣RMD when the
assumption of homogeneity of variances is appropriate. A larger sample size may
be required in order to treat �̃�RMD as known in a meta-analysis. Therefore, most
published meta-analyses are based on the homogeneity of variances in calculating
the sampling variances.

3.2.1.2 Standardized mean difference

If the scale is less clear or the measures are different across studies, an SMD may
be used. In educational settings, for example, different schools may use their own
internal grading systems. It is difficult to directly compare the performance across
schools. An SMD may be used as a scale-free measure. As the mean difference is
divided by a standard deviation, SMD does not carry any unit. Strictly speaking, the
unit of SMD is measured in terms of standard deviation in the primary studies. If
the raw scores are meaningful, for example, GRE scores in educational settings, the
effect sizes calculated based on the RMD and SMD can be totally different when
the standard deviations are different in the primary studies (Bond Jr. et al., 2003).
Researchers should determine whether the scales are comparable across studies
before deciding which one to use as the effect size.

The population SMD is defined as

fSMD =
𝜇T − 𝜇C

𝜎

, (3.9)

where 𝜎 is the population variance in both groups by assuming the homogeneity
of variances. One of the most popular estimators was proposed by Cohen (1992),
which is generally known as the Cohen’s d,

yd =
̄YT − ̄YC

sp
. (3.10)
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yd is interpreted as the mean difference between these two groups in terms of a
standard unit (sp). The approximate sampling variance of yd is

𝑣d =
nT + nC

nTnC
+

y2
d

2(nT + nC)
. (3.11)

Hedges (1981) showed that the estimator in Equation 3.10 is slightly overestimat-
ing the absolute value of the population parameter in Equation 3.9 in small samples.
Hedges (1981) further proposed a modification to minimize the bias, which is gen-
erally known as the Hedges’ g. The correction factor c(df) is calculated as

c(df) = 1 − 3
4df − 1

, (3.12)

where df = nT + nC − 2 for two independent groups. The Hedges’ g is calculated
as

yg = c(df)yd and
𝑣g = [c(df)]2𝑣d.

(3.13)

As the correction factor c(df) is always less than 1, yg is usually smaller than yd. In
practice, the differences are usually small unless the sample sizes are very small.

3.2.1.3 Repeated measures

The above formulas are not appropriate when the data are not independent. For
example, data based on pre-post scores or matched data (e.g., husbands and wives)
are likely correlated. The effect size and its sampling variance should take the
correlation into account. Let 𝜇pre and 𝜇post be the population means of the pretest
and posttest scores. If the scale is comparable across studies, for example, age
difference between husbands and wives, we may define the population difference
score as

fDiff = 𝜇post − 𝜇pre. (3.14)

The sample estimate based on the sample means of the pretest (ȳpre) and posttest
(ȳpost) scores is

yDiff = ȳpost − ȳpre. (3.15)

The variance of the difference score s2
Diff of the subjects (not the sampling variance

of yDiff) can be calculated from the correspondent summary statistics,

s2
Diff = s2

post + s2
pre − 2spostsprerpre,post, (3.16)

where s2
post, s

2
pre, and rpre,post are the sample variance of ypost, the sample variance

of ypre, and the correlation between them, respectively. The sampling variance of
yDiff is estimated by the central limit theorem,

𝑣Diff =
s2

Diff

n
, (3.17)

where n is the number of pairs of the data.
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When the scale is not clear or its meaning is different across studies, we may
standardize the mean difference with an appropriate standardizer so that the cal-
culated effect sizes are comparable across studies. One obvious choice is the stan-
dard deviation of the change score (CS) (𝜎Diff , the population parameter of sDiff in
Equation 3.16). We may define the population mean difference on the CS (Gibbons
et al., 1993) as

fCS =
𝜇post − 𝜇pre

𝜎Diff
. (3.18)

By using the standard deviation of the difference score in Equation 3.16 as the
standardizer, the sample effect size is calculated as

yCS =
ȳpost − ȳpre

sDiff
. (3.19)

Positive values on yCS are interpreted as the improvement (ȳpost − ȳpre) in terms of
standard deviation on the difference score (sDiff).
yCS is standardized by the standard deviation of the CS, whereas yd and yg are stan-

dardized by the standard deviation of the groups; it is of importance to note that yCS
is not comparable to those of yd and yg calculated from independent groups. When
the correlation between ypre and ypost is larger than 0.5, which is the typical case
in repeated measures (RM), yCS is larger than that calculated from the independent
groups. In contrast, yCS is smaller than that calculated from the independent groups
when the correlation is smaller than 0.5.

Studies may involve both between study and within study designs. Researchers
may want to combine the effect sizes based on independent groups and RM.
Researchers can compare whether the design predicts the effects by the use of
a mixed-effects meta-analysis (see Morris and DeShon (2002) for a thorough
discussion). We can define the population effect size for a RM that is comparable
to the independent groups as

fRM =
𝜇post − 𝜇pre

𝜎com
, (3.20)

where 𝜎com = 𝜎pre = 𝜎post is the common population standard deviation in the
pretest and posttest scores. As the standardizers have similar meanings for the
independent groups and the repeated measures, the calculated effect sizes are
comparable.

From Equation 3.16, the common variance for the pretest and posttest scores s2
com

can be computed as

s2
com =

s2
Diff

2(1 − rpre,post)
. (3.21)
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The sample estimate similar to the Cohen’s d for the repeated measures and its
sampling variance are

yRM(d) =
ȳpost − ȳpre

sDiff

√
2(1 − rpre,post) and

𝑣RM(d) =

(
1
n
+

y2
RM(d)

2n

)
2(1 − rpre,post).

(3.22)

Similar to the SMD, we may obtain a less biased effect size that is similar to the
Hedges’ g by

yRM(g) = c(df)yRM(d) and
𝑣Rm(g) = [c(df)]2𝑣RM(d),

(3.23)

where c(df) = 1 − 3
4n−5

in repeated measures.

3.2.2 Correlation coefficient and its Fisher’s z transformation

Correlation coefficient is probably one of the most popular effect sizes in applied
research. As it is standardized, its value can be compared and pooled across studies.
Let r be the sample correlation coefficient with n sample size. Some approaches, for
example, Schmidt and Hunter (2015), the pooled correlation coefficient is obtained
by weighting the sample correlations by their correspondent sample sizes. Another
approach is to weight the sample correlations by their correspondent sampling vari-
ances. The approximate sampling variance of yr can be obtained by

yr = r and

𝑣r =
(1 − r2)2

n
.

(3.24)

As the sampling distribution of the correlation coefficient is skewed unless the pop-
ulation correlation is close to zero or the sample size is sufficiently large, some
researchers (e.g., Hedges and Olkin, 1985) prefer to use the Fisher’s z transformed
score, which is defined as

yz = 0.5 log
(1 + r

1 − r

)
and

𝑣z =
1

n − 3
.

(3.25)

There are two advantages of this transformation. First, yz is approximately normally
distributed regardless of the population value of r. Therefore, yz usually approaches
a normal distribution faster than that for yr does. Second, 𝑣z does not depend on r;
the bias or sampling error in estimating r does not accumulate in estimating 𝑣z.
Readers may refer to Field (2001, 2005) and Hafdahl and Williams (2009) for the
simulation results comparing these two approaches.
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3.2.3 Binary variables

In many research settings, the outcome of interest is binary, for example, pass or
failure in educational research and survived or dead in medical research. We first
discuss the effect size when there is only one binary variable of interest. We then
discuss the case with two binary variables.

3.2.3.1 Proportion

The prevalence or the base rate probability of a disease or a psychological disorder
plays an important role in medical research and clinical psychology. Researchers
are interested in synthesizing and comparing the prevalence in different studies,
countries, or even regions. Let X be distributed as a binary variable with 𝜋 as the
population probability. Suppose that we observe x counts of success from n trials;
the maximum likelihood (ML) estimate is p = x∕n. When n is sufficiently large,
the sampling variance of p is p(1 − p)∕n. As p approaches normal distribution very
slowly unless 𝜋 is around 0.5, it is rarely used in meta-analysis. We usually normal-
ize the distribution by the log-odds transformation. The log-odd of the population
proportion is

flog(odds) = log
(

𝜋

1 − 𝜋

)
, (3.26)

where log() is the natural logarithm. The sample effect size and its sampling vari-
ance are

ylog(odds) = log

(
p

1 − p

)
and

𝑣log(odds) =
1

np(1 − p)
.

(3.27)

When ylog(odds) is zero, it indicates that the probability is 0.5. When ylog(odds) is
positive, it indicates that the probability is higher than 0.5. As we are usually inter-
ested in the probability p rather than the log-odds, we backtransform the log-odds
into p after the analysis for ease of interpretations.

3.2.3.2 Odds ratio

When there are two binary variables, we are usually interested in the association
between them. Suppose that the two binary variables represent the treatment group
versus the control group and the outcome variable (yes versus no). Let 𝜋T and 𝜋C be
the population probability of yes in the treatment and control groups, respectively.
There are several measures to compare these two probabilities (see Fleiss and Berlin
(2009) for a comparison). OR is usually recommended in meta-analysis because it
is meaningful for both experimental and observational studies (Keith et al., 1998).
The OR is 1 when the probabilities are the same in both groups. When the treatment
group has a higher probability, the OR is larger than 1. To normalize the sampling
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distribution, we take the logarithm on the OR. The population OR is defined as

flog(OR) = log

(
𝜋T∕(1 − 𝜋T)
𝜋C∕(1 − 𝜋C)

)
. (3.28)

Let pT and nT be the probability of yes and the sample size in the treatment group,
respectively, and pC and nC be the probability of yes and the sample size in the
control group for the sample data, respectively. The sample log of the OR and its
sampling variance can be estimated by

ylog(OR) = log

(
pT∕(1 − pT)
pC∕(1 − pC)

)
and

𝑣log(OR) = Var
(

log

(
pT∕(1 − pT)
pC∕(1 − pC)

))
= Var

(
log

(
pT

(1 − pT)

)
− log

(
pC

(1 − pC)

))
as log

(a
b

)
= log(a) − log(b)

= 1
nTpT(1 − pT)

+ 1
nCpC(1 − pC)

as pT and pC are independent.

(3.29)

3.3 Effect sizes for multivariate meta-analysis

There are usually more than one dependent variables or treatment conditions in
the primary studies. One single effect size may not be sufficient to summarize the
results for a study. Researchers conducting a meta-analysis may need to synthe-
size multiple effect sizes rather than a univariate effect size. This section extends
the calculations of univariate effect sizes to multiple effect sizes in a multivari-
ate meta-analysis. We first introduce how to calculate the multiple effect sizes
for the mean differences. Then we discuss how to calculate correlation matrices
and the effect sizes for binary variables. It should be noted that this section focuses
on the cases with more than one effect sizes per study rather than the effect sizes for
a multivariate statistics. As the effect sizes for a multivariate statistic, for example,
the Wilks’s lambda 𝜆 in multivariate analysis of variance (MANOVA) (e.g., Kline,
2013), are usually nondirectional, they are not suitable for a meta-analysis.

3.3.1 Mean differences

There are two typical scenarios for the needs of using multiple effect sizes for the
mean differences (Gleser and Olkin, 1994, 2009). They are the multiple treatment
studies and the multiple-endpoint studies. The multiple treatment studies compare
more than one treatment groups against the same control group. As the same control
group is used in the comparison, the calculated effect sizes are nonindependent. The
multiple-endpoint studies report more than one effect sizes in each primary studies.
Again, these multiple effect sizes are not independent.
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3.3.1.1 Multiple treatment studies

For most experimental or intervention studies, there are usually more than one
experimental groups with different levels of manipulations, whereas there is only
one control group in order to minimize the cost and the number of participants. This
is reflected by the fact that analysis of variance (ANOVA) is usually more popular
than the independent sample t test in experimental design. Suppose that there are a
total of k treatment groups with one control group; let 𝜇Tj and 𝜇C be the population
means of the jth treatment group and the control group, respectively, and ȳTj and ȳC
be the sample means of the jth treatment group and the control group, respectively.
We further assume that the variances are homogeneous with a common variance 𝜎2

p
for all groups. With a slight abuse of notation (cf. Equation 3.4), we may calculate
the pooled variance as

s2
p =

∑k
i=1(nTi − 1)s2

Ti + (nC − 1)s2
C∑k

i=1(nTi − 1) + (nC − 1)
, (3.30)

where s2
Ti and nTi are the sample variance and sample size in the ith group, respec-

tively.
As there are more than one effect size, we use the notations 𝝁MT(d) and yMT(d) to

represent the k × 1 vectors of the population and sample Cohen’s d for the multi-
ple treatment (MT) studies and VMT(d) to represent its k × k sampling covariance
matrix. The jth treatment and its sampling variance can be estimated similarly to
those in Equations 3.10 and 3.11,

yMT(d)j =
ȳTj − ȳC

sp
and

VMT(d)jj =
1
nTj

+ 1
nC

+
y2

MT(d)j

2nTotal
,

(3.31)

where nTotal =
∑k

i=i nTj + nC is the total sample size in the study. Gleser and Olkin
(1994, 2009) showed that the approximate sampling covariance between the ith and
jth treatment groups can be estimated by

VMT(d)ij =
1
nC

+
yMT(d)iyMT(d)j

2nTotal
. (3.32)

3.3.1.2 Multiple-endpoint studies

Another type of multiple effect sizes is known as the multiple-endpoint (ME)
studies. Researchers may calculate the SMDs between two independent groups.
For example, when comparing the gender differences on academic performance,
researchers may report gender differences on both mathematical achievement and
language achievement. We may calculate the SMDs on mathematical achievement
and language achievement independently. However, this practice does not take
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into account the mathematical achievement and language achievement that are
usually positively correlated and so does the calculated SMDs.

Suppose that there are p dependent variables in the treatment and control groups.
By assuming that the covariance matrices are homogeneous across these two groups
with a common population covariance matrixΣp, we may calculate a pooled covari-
ance matrix

Sp =
(nT − 1)ST + (nC − 1)SC

nT + nC − 2
, (3.33)

where ST and SC are the sample covariance matrices in the treatment and control
groups, respectively, and nT and nC are the sample sizes in the treatment and control
groups, respectively. It is of importance to note that s2 and its population counter-
part 𝜎2 and S and its population counterpart 𝚺 are usually used to represent the
variance and the covariance matrix, respectively. Therefore, we need to use

√
Sii

when referring to the standard deviation in the ith variable.
yME(d) and VME(d) are used to denote the p × 1 vector of the Cohen’s d for the

ME studies and its p × p sampling covariance matrix. The jth endpoint (dependent
variable) can be estimated similar to that in Equations 3.10 and 3.11 by

yME(d)j =
ȳTj − ȳCj√

Spjj

and

VME(d)jj =
1
nT

+ 1
nC

+
y2

ME(d)j

2(nT + nC)
.

(3.34)

Gleser and Olkin (1994, 2009) showed that large sample approximation of the sam-
pling covariance between the ith and jth endpoints (effect sizes) is

VME(d)ij =
(

1
nT

+ 1
nC

)
rij +

yME(d)iyME(d)j

2(nT + nC)
r2
ij, (3.35)

where rij is the correlation between the ith and jth variables. Sometimes, the corre-
lation between the variables may not be available in the primary studies. We need
to estimate them from other sources of information.

3.3.2 Correlation matrix and its Fisher’s z transformation

When there are more than two variables, a correlation or a covariance matrix is
used to indicate their linear association. Many of the multivariate statistics, such as
regression analysis, path analysis, exploratory and confirmatory factor analyses,
and even SEM can be conducted based on the correlation or covariance matri-
ces under the normality assumption. Correlation matrices are also the data for a
meta-analytic structural equation modeling (MASEM) introduced in Chapter 7.

The sampling variances of the correlation coefficients can be estimated by
Equation 3.24. As the correlation coefficients within the same study are likely
correlated, we also need to estimate their sampling covariances. Several authors
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(e.g., Nel, 1985, Olkin and Siotani, 1976) have shown that the approximate sam-
pling covariance between two correlation coefficients rij and rkl can be estimated by

Cov(rij, rkl) = (0.5𝜌ij𝜌kl(𝜌2
ik + 𝜌

2
il + 𝜌

2
jk + 𝜌

2
jl) + 𝜌ik𝜌jl + 𝜌il𝜌jk−

(𝜌ij𝜌ik𝜌il + 𝜌ij𝜌jk𝜌jl + 𝜌ik𝜌jk𝜌kl + 𝜌il𝜌jl𝜌kl))∕n.
(3.36)

We may also convert the correlation vector into a vector of Fisher’s z scores and
their sampling variances with Equation 3.25. The sampling covariance between zij
(the Fisher’s z score of rij) and zkl (the Fisher’s z score of rkl) can be estimated by
(e.g., Hafdahl, 2007; Steiger, 1980)

Cov(zij, zkl) =
nCov(rij, rkl)

(n − 3)(1 − r2
ij)(1 − r2

kl)
. (3.37)

3.3.3 Odds ratio

Similar to continuous outcome variables, multiple treatment studies are also pop-
ular in studies with binary outcome variables. For example, there may be sev-
eral intervention groups in testing the effectiveness of different types of therapies,
whereas there is only one control group.

Suppose that there are a total of k intervention groups with one control group;
ylog(OR) and Vlog(OR) represent the k × 1 vector of effect sizes and its k × k sampling
covariance matrix. The jth treatment and its sampling variance can be estimated by
Equation 3.29,

ylog(OR)j = log

(pTj∕(1 − pTj)
pC∕(1 − pC)

)
and

Vlog(OR)jj =
1

nTjpTj(1 − pTj)
+ 1

nCpC(1 − pC)
.

(3.38)

As the control group is used as the reference in all treatment groups, Gleser and
Olkin (2009) (see also Bagos, 2012) showed that the sampling covariance between
the ith and jth treatment groups is simply

Vlog(OR)ij =
1

nCpC(1 − pC)
. (3.39)

3.4 General approach to estimating the sampling
variances and covariances

The above sections reviewed some popular effect sizes and their sampling vari-
ances or covariances in a meta-analysis. Gleser and Olkin (1994, 2009) provided
formulas to estimating the sampling covariance matrix for many common multiple
effect sizes. There are cases in which the standard formulas are not sufficient for
the researchers to calculate the sampling variance covariance matrix of the multiple
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effect sizes. For example, there may be studies involving both MT and ME studies.
That is, there are multiple dependent variables per study and more than one treat-
ment groups. Although it is still possible to extend the above formulas to this case,
the derivations are complicated and prompted to errors.

On the other hand, there may be more than one definition of effect sizes for a
particular research setting. Researchers may want to explore how sensitive the con-
clusions are when different definitions of effect sizes are used. This is an important
part of the judgment calls in meta-analysis (e.g., Aguinis et al., 2011; Aytug et al.,
2012). In calculating the SMD, for example, we may test the robustness of the
results by considering with or without the assumption of homogeneity of variances
in calculating the effect sizes in the between-group studies.

There are at least three different standardizers in calculating the effect sizes for
repeated measures—(i) the standard deviation of the change score; (ii) the common
standard deviation assuming the homogeneity of the pre- and posttest scores; and
(iii) the standard deviation of the pretest score. This situation becomes even more
complicated for multiple effect sizes. The calculated effect sizes and their sampling
variances may be different in the multiple treatment studies if we do not assume
the homogeneity of variances.

This section introduces a general approach to derive the required sampling vari-
ances and covariances. As most effect sizes are functions of the basic summary
statistics, such as the means and covariance matrices, we use the delta method to
estimate their sampling variances or covariance matrices. Moreover, we also intro-
duce the use of SEM to do the numerical calculations. Researchers do not need to
analytically derive the formulas. It should be noted that both the delta method and
the applications of SEM are based on large samples. The calculated sampling vari-
ances or covariance matrices are approximately correct when the sample sizes are
reasonably large. Simulation studies may be used to verify the accuracy of these
estimates in typical sample sizes.

3.4.1 Delta method

We need both the effect size yi and its sampling variance 𝑣i (or yi andVi for multiple
effect sizes) to conduct a meta-analysis. It is usually easy to compute yi, whereas it
is more challenging to estimate its sampling variance. The delta method can be
used to derive the sampling variance of arbitrary functions (e.g., Bishop et al.,
1975, Section 14.6). We illustrate the key ideas with the examples of log-odd on the
probability (Equation 3.27) and the Fisher’s z-transformed score on the correlation
(Equation 3.25).

Suppose that there is a random variable x with the mean 𝜇 and variance 𝜎
2. We

would like to calculate a function f (x) on it. We may approximate the function with
the first-order Taylor series,

f (x) ≈ f (𝜇) +
df (𝜇)
dx

(x − 𝜇), (3.40)
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where df (𝜇)
dx

is the derivative of f (x) evaluated at 𝜇. As we rarely know the population
mean, we substitute it by the sample mean.

Taking the expectations on both sides, we have

E(f (x)) ≈ f (𝜇) and

Var(f (x)) ≈
(
df (𝜇)
dx

)2

Var(x − 𝜇)

≈
(
df (𝜇)
dx

)2

𝜎
2
.

(3.41)

Suppose that an effect size y is a function of a parameter xwith its sampling variance
𝑣x; we may estimate the effect size and its sampling variance 𝑣y by

y = f (x) and

𝑣y =
(
df (x)
dx

)2

𝑣x.
(3.42)

Let us illustrate the idea with the example on sampling variance of log-odds
from Millar (2011). We derive the sampling variance of ylog(odds), which is a
function of p, shown in Equation 3.27 using the delta method. We first calculate
df (p)
dp

by

df (p)
dp

=
d log(p∕(1 − p))

dp

=
1 − p

p

d(p∕(1 − p))
dp

as
d log(u)

dx
= 1

u
du
dx

=
1 − p

p

(1 − p) + p

(1 − p)2
as

d
dx

(u
𝑣

)
=

𝑣
du
dx

− udv
dx

𝑣
2

= 1
p(1 − p)

.

(3.43)

The sampling variance is then calculated by

𝑣log(odds) =
(
df (p)
dp

)2

Var(p)

=
(

1
p(1 − p)

)2 p(1 − p)
n

= 1
np(1 − p)

.

(3.44)
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As a second example, we derive the sampling variance of the Fisher’s
z-transformed score, which is a function of r. We first calculate df (r)

dr
,

df (r)
dr

=
d(0.5 log((1 + r)∕(1 − r)))

dr

= 0.5
1 − r
1 + r

d((1 + r)∕(1 − r))
dr

as
d log(u)

dx
= 1

u
du
dx

= 0.5
1 − r
1 + r

(1 − r) + (1 + r)
(1 − r)2

as
d
dx

(u
𝑣

)
=

𝑣
du
dx

− udv
dx

𝑣
2

= 1
(1 + r)(1 − r)

.

(3.45)

We calculate the approximate sampling variance of the Fisher’s z-transformed score
by

𝑣z =
(
df (r)
dr

)2

Var(r)

=
(

1
(1 + r)(1 − r)

)2 (1 − r2)2

n

=
(

1
(1 + r)(1 − r)

)2 ((1 + r)(1 − r))2

n
as x2 − y2 = (x + y)(x − y)

= 1
n
.

(3.46)

This result is the same as that in Equation 3.25 when the sample sizes are large.
Using (n − 3) is preferred to n when the sample sizes are not large.

The delta method can be generalized to functions of more than one variable and
to more than one functions e.g., Millar, (2011). We focus on the general case of
more than one functions, which is also known as the multivariate delta method.
Suppose that x

g×1
is a vector of g random variables that has the mean vector 𝝁

g×1
and

variance–covariance matrix Vx
g×g

. We are interested in calculating p functions from

these g random variables, that is, y
p×1

= f (x). For example, x includes the means

and covariance matrices, while y = f (x) is a vector of effect sizes for ME studies.
More importantly, we also want to estimate the sampling covariance matrix of the
multiple effect sizes Vy

p×p
.

Similar to the applications of univariate delta method, the multivariate delta
method is based on the first-order Taylor series,

f (x)
p×1

≈ f (𝝁)
p×1

+
𝜕f (𝝁)
𝜕x
p×g

(x − 𝝁)
g×1

, (3.47)

where 𝜕f (𝝁)
𝜕x

is the partial derivatives evaluated at 𝝁. As we rarely know the pop-
ulation parameters, we substitute it by the sample values. Suppose that a vector
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of effect size y is a function of some parameter estimates x with its sampling
covariance matrix Vx; we may estimate the effect size and its sampling covariance
matrix by

y
p×1

= f (x)
p×1

and

Vy =
𝜕f (x)
𝜕x
p×g

Vx
g×g

(
𝜕f (x)
𝜕x

)T

g×p

.

(3.48)

Let us illustrate the ideas with the RMD that is defined as f (x) = ̄YT − ̄YC. As
there is only one function, the 𝜕f (𝝁)

𝜕x p×g
is

𝜕f (x)
𝜕x

=
[
𝜕( ̄YT− ̄YC)

𝜕
̄YT

𝜕( ̄YT− ̄YC)
𝜕
̄YC

]
=
[
1 −1

]
.

(3.49)

As the two groups are independent, the sampling covariance is zero. From
Equation 3.5, the sampling covariance matrix of ȲT and ȲC with the assumption of
homogeneity of variances is

Vx =
⎡⎢⎢⎣
s2

p

nT

0
s2

p

nC

⎤⎥⎥⎦ . (3.50)

Then the sampling variance of yRMD in Equation 3.6 can be estimated by

𝑣RMD =
[
1 −1

] ⎡⎢⎢⎣
s2

p

nT

0
s2

p

nC

⎤⎥⎥⎦
[

1
−1

]
=

nT + nC

nTnC
s2

p.

(3.51)

When the variances are involved in the calculations of the effect sizes, such as the
SMD, we may need to obtain the approximate sampling variances of the variances.
When the data are normally distributed, the sampling variance of the variance s2

can be calculated by (e.g., Tamhane and Dunlop, 2000)

Var(s2) = 2s4

n − 1
. (3.52)

3.4.2 Computation with structural equation modeling

The delta method is very useful to deriving the sampling variance and covariance
matrix of the effect sizes. However, we still need to calculate the 𝜕f (x)

𝜕x
and the

sampling covariance matrix of the parameter estimates Vx. The calculations
are usually not trivial and subjected to errors. Many authors have demonstrated
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how SEM can be used to conduct many multivariate statistics, such as ANOVA,
MANOVA, regression analysis, and reliability analysis (e.g., Cheung, 2009,
Cheung and Chan, 2004; Preacher, 2006; Raykov, 2001). After fitting the proposed
model, the SEM packages provide the parameter estimates and their sampling
covariance matrix as the standard outputs. More importantly, some SEM packages,
for example, LISREL, Mplus, and lavaan, can be directly used to compute
functions of parameter estimates and their sampling covariance matrix using the
delta method. Researchers only need to specify the functions without the need
to derive the 𝜕f (x)

𝜕x
and Vx. Another advantage of the SEM approach is that the

constraints, for example, assumptions of homogeneity of variance or covariance
matrices, can be tested with the use of a likelihood ratio (LR) statistic. We are
going to illustrate the idea with some examples.

3.4.2.1 Repeated measures

Figure 3.1 shows a structural equation model for repeated measures. The latent
variables 𝜂pre and 𝜂post represent the standardized variables for xpre and xpost with
𝜎pre and 𝜎post as the standard deviations. 𝜇pre and 𝜇post represent the population
means for xpre and xpost, respectively. 𝜌pre,post is the correlation between the pre-
and posttest scores.

Several definitions of effect sizes can be calculated. If the scale is meaningful,
we may calculate an effect size on the mean difference,

fDiff = 𝜇post − 𝜇pre. (3.53)

ρpre,post

0.0

σpre

μpre

0.0

1.0

σpost

μpost

1.0

xpost

ηpre ηpost

xpre

1

Figure 3.1 A structural equation model for repeated measures.
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When the scale is arbitrary, we may calculate several standardized versions of
the mean differences. The first effect size is to use the 𝜎pre as the standardizer. This
effect size is useful when the standard deviations on the pre- and posttest scores are
different. The function is

fPre =
𝜇post − 𝜇pre

𝜎pre
. (3.54)

The second effect size is based on the homogeneity of variances at the pre- and
posttest scores. As 𝜎pre and 𝜎post are parameters, we may impose an equality con-
straint 𝜎com = 𝜎pre = 𝜎post in the SEM packages. Therefore, the function with the
constraint is

fRM =
𝜇post − 𝜇pre

𝜎com
with the constraint

𝜎com = 𝜎pre = 𝜎post.

(3.55)

The third effect size is to use the standard deviation of the change score as the
standardizer.

fCS =
𝜇post − 𝜇pre√

𝜎
2
pre + 𝜎

2
post − 2𝜎pre𝜎post𝜌pre,post

. (3.56)

3.4.2.2 Multiple treatment studies

Figure 3.2 shows a structural equation model for a multiple treatment study with
two treatment groups and one control group. 𝜇(T2)

1 , 𝜇(T1)
1 , and 𝜇

(C)
1 are the means

of the treatment groups and control group, respectively whereas 𝜎2(T2)
1 , 𝜎2(T1)

1 , and
𝜎

2(C)
1 are the variances of the treatment groups and control group, respectively.

Treatment 2 Treatment 1 Control

μ1
(T2)

σ1
2(T2) σ1

2(T1) σ1
2(C)

μ1
(T1) μ1

(C)

1 11

x1
(T2) x1

(T1) x1
(C)

Figure 3.2 A structural equation model for multiple treatment study.
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If the scales are comparable, we may calculate the two RMDs by[
fRMD1
fRMD2

]
=
[
𝜇
(T1)
1 − 𝜇

(C)
1

𝜇
(T2)
1 − 𝜇

(C)
1

]
. (3.57)

If the scales are arbitrary, we may standardize the mean differences by the standard
deviations. If we do not assume the homogeneity of variances, we may use the 𝜎(C)

1
as the standardizer, [

fSMD1
fSMD2

]
=
⎡⎢⎢⎢⎣
𝜇
(T1)
1 −𝜇(C)

1√
𝜎

2(C)
1

𝜇
(T2)
1 −𝜇(C)

1√
𝜎

2(C)
1

⎤⎥⎥⎥⎦ . (3.58)

If we assume the homogeneity of variances, we may estimate the effect sizes by
imposing the equality constraints on the variances,

[
fSMD1
fSMD2

]
=
⎡⎢⎢⎢⎣
𝜇
(T1)
1 −𝜇(C)

1√
𝜎

2
1

𝜇
(T2)
1 −𝜇(C)

1√
𝜎

2
1

⎤⎥⎥⎥⎦ with the constraint

𝜎
2
1 = 𝜎

2(C)
1 = 𝜎

2(T1)
1 = 𝜎

2(T2)
1 .

(3.59)

3.4.2.3 Multiple-endpoint studies

Figure 3.3 shows a structural equation model for the ME study with two outcome
variables (x1 and x2). With this model parameterization, 𝜎1 and 𝜎2 are the standard

Treatment Control

1.0 η1
(T)

μ1
(T) μ1

(C) μ2
(C)

σ1
(C) σ2

(C)

μ2
(T)

σ1
(T) σ2

(T)

ρ2,1
η2

(T) η1
(C) η2

(C)1.0 1.01.0

0.00.0 0.0 0.0

11

(T)
ρ2,1

(C)

x1
(T) x2

(T) x1
(C) x2

(C)

Figure 3.3 A structural equation model for multiple-endpoint study.
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deviations of x1 and x2, respectively, whereas 𝜌2,1 is the correlation between these
two outcome variables. The main feature of the model is that the standard deviations
(not the variances) are available for calculations.

If the scales are comparable across studies, we may define the RMDs as[
fRMD1
fRMD2

]
=
[
𝜇
(T)
1 − 𝜇

(C)
1

𝜇
(T)
2 − 𝜇

(C)
2

]
. (3.60)

When the scales are not comparable across studies, we may calculate the SMDs to
represent the effects. If we do not assume the homogeneity of covariance matrices,
we may use the standard deviations in the control group as the standardizers,

[
fSMD1
fSMD2

]
=
⎡⎢⎢⎢⎣
𝜇
(T)
1 −𝜇(C)

1

𝜎
(C)
1

𝜇
(T)
2 −𝜇(C)

2

𝜎
(C)
2

⎤⎥⎥⎥⎦ . (3.61)

If we also assume the homogeneity of covariance matrices, we may estimate the
effect sizes by imposing the equality constraints on the covariance matrices,[

fSMD1
fSMD2

]
=
⎡⎢⎢⎣
𝜇
(T)
1 −𝜇(C)

1

𝜎1
𝜇
(T)
2 −𝜇(C)

2

𝜎2

⎤⎥⎥⎦ with the constraints

𝜎1 = 𝜎
(C)
1 = 𝜎

(T)
1

𝜎2 = 𝜎
(C)
2 = 𝜎

(T)
2

𝜌2,1 = 𝜌
(C)
2,1 = 𝜌

(T)
2,1.

(3.62)

3.4.2.4 Correlation matrix

Figure 3.4 shows a structural equation model for a correlation matrix. As the stan-
dard deviations are explicitly modeled as the factor loadings, the factor correlations
represent the sample correlation coefficients when there is no constraint (Cheung
and Chan, 2004). The input matrix can be either a correlation or a covariance
matrix. We may analyze this model to obtain the parameter estimates (the sample
correlation coefficients) and their sampling covariance matrix. A similar approach
can be used to model the covariance matrix to obtain the sampling covariance
matrix of the covariance matrix (Cheung and Chan, 2009).

3.5 Illustrations Using R

The previous section provides an outline on how to use the SEM approach to cal-
culate the effect sizes and their approximate sampling variances and covariances.
The metafor package (Viechtbauer, 2010) in R has implemented functions to
calculate a variety of univariate effect sizes. Readers are recommended to use this
package to calculate the univariate effect sizes. When the required effect sizes are
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1.0

ρ2,1 ρ3,2

ρ3,1

0.0 0.0 0.0

1.0 1.0

x1

σ1

η1 η2 η3

σ2 σ3

x2 x3

Figure 3.4 A structural equation model for a correlation matrix.

not available in the metafor package, we may use the SEM approach to approx-
imate the sampling variances or covariance matrices. This section illustrates the
SEM approach with the lavaan (Rosseel, 2012) and the metaSEM (Cheung,
2014) packages. The statistics reported in the illustrations were captured by using
the Sweave function in R (Leisch, 2002). The numbers of decimal places may be
slightly different for those reported in the selected output and in the text.

3.5.1 Repeated measures

Suppose the sample means for the pre- and posttest scores are 10 and 13,
respectively; the sample covariance matrix between them and the sample size are[

10
8 12

]
and 50, respectively. The following R code fits the model showed in

Figure 3.1. All the relevant parameter estimates are labeled so that they can be used
to compute the effect sizes. When the labels are the same for the parameters, these
parameters are constrained equally. Diff, SMD.cs, and SMD.pre are calculated
based on the parameters defined earlier. After fitting the model, we may obtain the
calculated effect sizes, their standard errors (SEs), and the approximate 95% Wald
confidence intervals (CIs) with the parameterEstimates() function.

R> ## Library for the SEM
R> library("lavaan")
R> ## Sample covariance matrix on pre- and post-test scores
R> lower <- '10

8 12'
R> ( Cov <- getCov(lower, diag=TRUE, names=c("x_pre","x_post")) )
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x_pre x_post
x_pre 10 8
x_post 8 12

R> ## Sample means for the pre- and post-test scores
R> Mean <- c(10, 13)
R> ## Sample size
R> N <- 50
R> model1 <- '# Label the sds with sd_pre and sd_post

eta_pre =̃ sd_pre*x_pre
eta_post =̃ sd_post*x_post
# r: correlation betwen pre- and post-test
eta_pre ̃̃ r*eta_post
# Fix the error variances at 0
x_pre ̃̃ 0*x_pre
x_post ̃̃ 0*x_post
# Label the means with m_pre and m_post
x_pre ̃ m_pre*1
x_post ̃ m_post*1
# Calculate the effect sizes
# Diff: change score
Diff := m_post - m_pre
# SMD.cs sd on change score as the standardizer
SMD.cs := (m_post - m_pre)/sqrt(sd_pre ̂ 2+sd_post ̂ 2

-2*sd_pre*sd_post*r)
# SMD.pre: sd_pre as the standardizer
SMD.pre := (m_post - m_pre)/sd_pre'

R> ## Fit the model
R> fit1 <- cfa(model1, sample.cov=Cov, sample.mean=Mean,

sample.nobs=N, std.lv=TRUE,
sample.cov.rescale=FALSE)

R> ## Display the summary
R> ## summary(fit1)
R>
R> ## Display the selected output
R> parameterEstimates(fit1)[c(12,13,14), -c(1,2,3)]

label est se z pvalue ci.lower ci.upper
1 Diff 3.000 0.346 8.660 0 2.321 3.679
2 SMD.cs 1.225 0.187 6.547 0 0.858 1.591
3 SMD.pre 0.949 0.145 6.547 0 0.665 1.233

The above output shows that the yDiff and SEDiff =
√
𝑣Diff are 3.0000 and 0.3464,

respectively. The SMDs (and their SEs) using the change score and the pretest
score standard deviations as the standardizers are 1.2247 (SE = 0.1871) and 0.9487
(SE = 0.1449), respectively.

We can also calculate the yRM using a common standard deviation on the pretest
and posttest scores. In the following model, we impose the equality constraint on
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the standard deviations of the pretest and posttest scores by using the same label
sd for the standard deviations.

R> model2 <- '# Label the common sd
eta_pre =̃ sd*x_pre
eta_post =̃ sd*x_post
# r: correlation between pre- and post-test
eta_pre ̃̃ r*eta_post
# Fix the error variances at 0
x_pre ̃̃ 0*x_pre
x_post ̃̃ 0*x_post
# Label the means with m_pre and m_post
x_pre ̃ m_pre*1
x_post ̃ m_post*1
# Calculate the effect sizes
# Common sd
SMD.common := (m_post-m_pre)/sd'

R> ## Fit the model
R> fit2 <- cfa(model2, sample.cov=Cov, sample.mean=Mean,

sample.nobs=N, std.lv=TRUE,
sample.cov.rescale=FALSE)

R> ## Display the selected output
R> parameterEstimates(fit2)[12, -c(1,2,3)]

label est se z pvalue ci.lower ci.upper
1 SMD.common 0.905 0.131 6.904 0 0.648 1.161

The above output shows that the effect size for the repeated measure yRM (and its
SERM) by assuming the same standard deviation on the pretest and posttest scores
is 0.9045 (0.1310).

3.5.2 Multiple treatment studies

Suppose that the sample variances for the control and the two treatment groups are
10, 11, and 12, respectively; the sample means for them are 5, 7, and 9, respectively.
The sample sizes for these groups are 50, 52, and 53, respectively. We fit the model
with MT studies in Figure 3.2. As there are three groups, we need to create a list of
variances as input (Var in the following example). We impose the homogeneity of
variances by using the same label s2 for the variances in these groups, whereas the
means are labeled as m1, m2, and m3 in these groups. When the labels are different,
the parameter estimates can be different. Then, we define the effect sizes for the MT
studies.

As there are two effect sizes, some extra steps are required to obtain the sampling
covariance matrix of multiple effect sizes with the multivariate delta method.

R> ## Group 1 (control group): variance
R> var1 <- matrix(10, dimnames=list("x","x"))
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R> ## Group 2 (treatment 1): variance
R> var2 <- matrix(11, dimnames=list("x","x"))
R> ## Group 3 (treatment 2): variance
R> var3 <- matrix(12, dimnames=list("x","x"))
R> ## Convert variances into a list
R> Var <- list(var1, var2, var3)
R> ## Means for the groups
R> Mean <- list(5, 7, 9)
R> ## Sample sizes for the groups
R> N <- c(50, 52, 53)
R> ## Assuming homogeneity of variances by using the same label "s2"
R> model3 <- 'x ̃̃ c("s2", "s2", "s2")*x

x ̃ c("m1", "m2", "m3")*1
# SMD for treatment 1
MT1 := (m2-m1)/sqrt(s2)
# SMD for treatment 2
MT2 := (m3-m1)/sqrt(s2)'

R> fit3 <- sem(model3, sample.cov=Var, sample.mean=Mean,
sample.nobs=N, sample.cov.rescale=FALSE)

R> ## Obtain the free parameters in the model
R> ( x <- fit3@Fit@x )

[1] 11.02 5.00 7.00 9.00

R> ## Obtain the sampling covariance matrix of the parameter
R> ## estimate
R> ( VCOV <- vcov(fit3) )

s2 m1 m2 m3
s2 1.567
m1 0.000 0.220
m2 0.000 0.000 0.212
m3 0.000 0.000 0.000 0.208

R> ## Compute the multiple effect sizes
R> ( MT <- fit3@Model@def.function(x=x) )

MT1 MT2
0.6025 1.2050

R> ## Compute the jacobian for the 'defined parameters'
R> JAC <- lavaan:::lavJacobianD(func=fit3@Model@def.function, x=x)
R> ## Compute the sampling covariance matrix using delta method
R> MT.VCOV <- JAC %*% VCOV %*% t(JAC)
R> ## Add the variable names for ease of reference
R> dimnames(MT.VCOV) <- list(names(MT), names(MT))
R> MT.VCOV

mailto:fit3@Model@def.function
mailto:fit3@Model@def.function
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MT1 MT2
MT1 0.04040 0.02234
MT2 0.02234 0.04355

The computed multiple effect sizes and its sampling covariance matrix are[
0.6025
1.2050

]
and

[
0.0404
0.0223 0.0436

]
, respectively.

3.5.3 Multiple-endpoint studies

Suppose that there are two groups (control vs treatment groups) with two dependent
variables (x1 and x2). The sample covariance matrices for the control and the

treatment groups are

[
11
5 10

]
and

[
12
6 11

]
, respectively. The sample means for

the control and the treatment groups are
[
10 11

]T
and

[
12 13

]T
, respectively.

The sample size for both groups is 50. We can implement the model for ME studies
in Figure 3.3 in SEM. We impose the homogeneity of covariance matrices in the
control and treatment groups by using the same labels on the variances (sd1 and
sd2) and correlation (r). The two means in the control group are labeled with
m1_1 and m2_1 and the two means in the treatment group are labeled with m1_2
and m2_2.

R> lower <- '11
5, 10'

R> ## Convert a lower triangle data into a covariance matrix
R> Cov1 <- getCov(lower, diag=TRUE, names=c("x1", "x2"))
R> lower <- '12

6, 11'
R> ## Convert a lower triangle data into a covariance matrix
R> Cov2 <- getCov(lower, diag=TRUE, names=c("x1", "x2"))
R> ## Convert covariance matrices into a list
R> Cov <- list(Cov1, Cov2)
R> ## Means for the two groups
R> Mean <- list(c(10,11), c(12,13))
R> ## Sample sizes for the groups
R> N <- c(50, 50)
R> ## Assuming homogeneity of covariance matrices by
R> ## using the same labels: "sd1", "sd2", and "r"
R> model4 <- 'eta1 =̃ c("sd1", "sd1")*x1

eta2 =̃ c("sd2", "sd2")*x2
eta1 ̃̃ c("r", "r")*eta2
x1 ̃ c("m1_1", "m1_2")*1
x2 ̃ c("m2_1", "m2_2")*1
x1 ̃̃ 0*x1
x2 ̃̃ 0*x2
# Multiple endpoint effect size 1
ME1 := (m1_2 - m1_1)/sd1
# Multiple endpoint effect size 2



74 META-ANALYSIS

ME2 := (m2_2 - m2_1)/sd2'
R> fit4 <- sem(model4, sample.cov=Cov, sample.mean=Mean,

sample.nobs=N, std.lv=TRUE,
sample.cov.rescale=FALSE)

R> ## Obtain the free parameters in the model
R> ( x <- fit4@Fit@x )

[1] 3.3912 3.2404 0.5005 10.0000 11.0000 12.0000 13.0000

R> ## Obtain the sampling covariance matrix of the parameter
R> ## estimates
R> ( VCOV <- vcov(fit4) )

sd1 sd2 r m1_1 m2_1 m1_2 m2_2
sd1 0.058
sd2 0.014 0.053
r 0.006 0.006 0.006
m1_1 0.000 0.000 0.000 0.230
m2_1 0.000 0.000 0.000 0.110 0.210
m1_2 0.000 0.000 0.000 0.000 0.000 0.230
m2_2 0.000 0.000 0.000 0.000 0.000 0.110 0.210

R> ## Compute the multivariate effect sizes
R> ( ME <- fit4@Model@def.function(x=x) )

ME1 ME2
0.5898 0.6172

R> ## Compute the jacobian for 'defined parameters'
R> JAC <- lavaan:::lavJacobianD(func=fit4@Model@def.function, x=x)
R> ## Compute the sampling covariance matrix using delta method
R> ME.VCOV <- JAC %*% VCOV %*% t(JAC)
R> ## Add the variable names for ease of reference
R> dimnames(ME.VCOV) <- list(names(ME), names(ME))
R> ME.VCOV

ME1 ME2
ME1 0.04174 0.02048
ME2 0.02048 0.04190

The computed multiple effect sizes and its sampling covariance matrix are[
0.5898
0.6172

]
and

[
0.0417
0.0205 0.0419

]
, respectively.
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3.5.4 Multiple treatment with multiple-endpoint studies

The power of the SEM approach is that it is easy to define and compute new
effect sizes and their sampling covariance matrix. Suppose that there are two
treatment groups and one control group with two dependent variables per group;
this study involves both MT (two treatment groups vs one control group) and ME
(two dependent effect sizes). Suppose that the sample covariance matrices for the

control and the two treatment groups are

[
11
5 10

]
,

[
12
6 11

]
, and

[
13
7 12

]
,

respectively; the sample means for the control and the two treatment groups
are

[
10 11

]T
,
[
12 13

]T
, and

[
13 14

]T
, respectively. The sample size for all

groups is 50. Although it is still possible to derive it analytically, it is tedious
and subject to human errors. We can easily compute the effect sizes with their
sampling covariance matrix with the SEM approach. By using the control group
as the reference, the SMDs for treatment 1 are defined by ES1_1 and ES2_1,
while the SMDs for treatment 2 are defined by ES1_2 and ES2_2.

R> ## Covariance matrix of the control group
R> lower <- '11

5, 10'
R> ## Convert a lower triangle data into a covariance matrix
R> Cov1 <- getCov(lower, diag=TRUE, names=c("x1", "x2"))
R> ## Covariance matrix of the treatment group 1
R> lower <- '12

6, 11'
R> Cov2 <- getCov(lower, diag=TRUE, names=c("x1", "x2"))
R> ## Covariance matrix of the treatment group 2
R> lower <- '13

7, 12'
R> Cov3 <- getCov(lower, diag=TRUE, names=c("x1", "x2"))
R> ## Convert covariance matrices into a list
R> Cov <- list(Cov1, Cov2, Cov3)
R> ## Means for the three groups
R> ## 10 and 11 are the means for variables 1 and 2
R> Mean <- list(c(10,11), c(12,13), c(13,14))
R> ## Sample sizes for the groups
R> N <- c(50, 50, 50)
R> ## Assuming homogeneity of covariance matrices
R> model5 <- 'eta1 =̃ c("sd1", "sd1", "sd1")*x1

eta2 =̃ c("sd2", "sd2", "sd2")*x2
eta1 ̃̃ c("r", "r", "r")*eta2
## The subscripts 0, 1 and 2 represent the means
## of the control and two treatment groups
x1 ̃ c("m1_0", "m1_1", "m1_2")*1
x2 ̃ c("m2_0", "m2_1", "m2_2")*1
## The measurement errors are fixed at 0
x1 ̃̃ 0*x1
x2 ̃̃ 0*x2
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## Multiple endpoint effect size 1 for
## treatment group 1
ES1_1 := (m1_1 - m1_0)/sd1
## Multiple endpoint effect size 2 for treatment
## group 1
ES2_1 := (m2_1 - m2_0)/sd2
## Multiple endpoint effect size 1 for
## treatment group 2
ES1_2 := (m1_2 - m1_0)/sd1
## Multiple endpoint effect size 2 for treatment
## group 2
ES2_2 := (m2_2 - m2_0)/sd2'

R> fit5 <- sem(model5, sample.cov=Cov, sample.mean=Mean,
sample.nobs=N, std.lv=TRUE,
sample.cov.rescale=FALSE)

R> ## Obtain the free parameters in the model
R> ( x <- fit5@Fit@x )

[1] 3.4641 3.3166 0.5222 10.0000 11.0000 12.0000 13.0000 13.0000
[9] 14.0000

R> ## Obtain the sampling covariance matrix of the parameter
R> ## estimates
R> ( VCOV <- vcov(fit5) )

sd1 sd2 r m1_0 m2_0 m1_1 m2_1 m1_2 m2_2
sd1 0.040
sd2 0.010 0.037
r 0.004 0.004 0.004
m1_0 0.000 0.000 0.000 0.240
m2_0 0.000 0.000 0.000 0.120 0.220
m1_1 0.000 0.000 0.000 0.000 0.000 0.240
m2_1 0.000 0.000 0.000 0.000 0.000 0.120 0.220
m1_2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.240
m2_2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.120 0.220

R> ## Compute the multivariate effect sizes
R> ( ES <- fit5@Model@def.function(x=x) )

ES1_1 ES2_1 ES1_2 ES2_2
0.5774 0.6030 0.8660 0.9045

R> ## Compute the jacobian for 'defined parameters'
R> JAC <- lavaan:::lavJacobianD(func=fit5@Model@def.function, x=x)
R> ## Compute the sampling covariance matrix using delta method
R> ES.VCOV <- JAC %*% VCOV %*% t(JAC)

mailto:fit5@Model@def.function
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R> ## Add the variable names for ease of reference
R> dimnames(ES.VCOV) <- list(names(ES), names(ES))
R> ES.VCOV

ES1_1 ES2_1 ES1_2 ES2_2
ES1_1 0.04111 0.02121 0.02167 0.01092
ES2_1 0.02121 0.04121 0.01092 0.02182
ES1_2 0.02167 0.01092 0.04250 0.02160
ES2_2 0.01092 0.02182 0.02160 0.04273

The computed SMDs for treatment group 1 are 0.5774 and 0.6030, while the SMDs
for treatment group 2 are 0.8660 and 0.9045. The asymptotic sampling covariance
matrix for the effect sizes is shown in ES.VCOV.

3.5.5 Correlation matrix

The sampling covariance matrix of the correlation matrix plays an crucial role in
MASEM discussed in Chapter 7. The metaSEM package has an asyCov() func-
tion to calculate the sampling covariance matrix of the correlation matrix. If the
cor.analysis=FALSE argument is specified, asyCov() calculates the sam-
pling covariance matrix of the covariance matrix. The following examples illustrate
the procedures.

R> library("metaSEM")
R> ## Sample correlation matrix
R> ( C1 <- matrix(c(1,0.5,0.4,0.5,1,0.2,0.4,0.2,1), ncol=3,

dimnames=list(c("x1","x2","x3"),
c("x1","x2","x3"))) )

x1 x2 x3
x1 1.0 0.5 0.4
x2 0.5 1.0 0.2
x3 0.4 0.2 1.0

R> ## Standard deviations
R> SD <- diag(c(1.2, 1.3, 1.4))
R> ## Convert the correlation matrix to a covariance matrix
R> C2 <- SD %*% C1 %*% SD
R> dimnames(C2) <- list(c("x1","x2","x3"),

c("x1","x2","x3"))
R> C2

x1 x2 x3
x1 1.440 0.780 0.672
x2 0.780 1.690 0.364
x3 0.672 0.364 1.960
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R> ## Calculate the sampling covariance matrix of
R> ## the correlation matrix with n=50
R> asyCov(C2, n=50)

x2x1 x3x1 x3x2
x2x1 0.011480 0.001286 0.005235
x3x1 0.001286 0.014400 0.007714
x3x2 0.005235 0.007714 0.018808

R> ## Calculate the sampling covariance matrix of
R> ## the covariance matrix with n=50
R> asyCov(C2, n=50, cor.analysis=FALSE)

x1x1 x2x1 x3x1 x2x2 x3x2 x3x3
x1x1 0.08464 0.045845 0.03950 0.024833 0.02139 0.018432
x2x1 0.04584 0.062082 0.02139 0.053804 0.02897 0.009984
x3x1 0.03950 0.021394 0.06682 0.011589 0.03619 0.053760
x2x2 0.02483 0.053804 0.01159 0.116575 0.02511 0.005408
x3x2 0.02139 0.028971 0.03619 0.025109 0.07030 0.029120
x3x3 0.01843 0.009984 0.05376 0.005408 0.02912 0.156800

3.6 Concluding remarks and further readings

This chapter introduced several common effect sizes in univariate and multivariate
meta-analyses. Readers may refer to, for example, Borenstein (2009), Fleiss and
Berlin (2009), and Gleser and Olkin (2009) for more details. The delta method
and the SEM approach were introduced as general methods to approximate the
sampling variances and covariances for both univariate and multiple effect sizes.
Researchers can calculate different types of effect sizes to address different research
questions. Readers should be reminded that the results of the delta method are only
approximately correct when the samples are reasonably large.
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4

Univariate meta-analysis

This chapter begins by introducing the basic ideas of the fixed-effects model.
The extension to the random-effects model is then introduced. Conceptual and
statistical differences between the fixed-effects and the random-effects models
are discussed. By including study characteristics as moderators, we extend the
random-effects model to the mixed-effects model. Key concepts in a meta-analysis
are introduced, such as testing the homogeneity of effect sizes, estimating hetero-
geneity variance, quantifying the degree of heterogeneity in the random-effects
model, and quantifying the explained variance in the mixed-effects model.
These models are then formulated under the structural equation modeling (SEM)
framework. This SEM-based meta-analysis provides the foundation for more
advanced analyses such as the multivariate and the three-level meta-analyses
introduced in later chapters. Graphical models are proposed to represent the
meta-analytic models. Several applications are used to illustrate the procedures in
the R statistical environment.

4.1 Introduction

We begin this chapter by considering a model with only one variable y that is nor-
mally distributed with a mean of 𝜇y and a variance of 𝜎2

y , that is, y ∼  (𝜇y, 𝜎
2
y ).

As we are going to show later, this simple model has many similarities to those of
a fixed-effects meta-analysis in terms of mathematical and graphical models. It is
well known that the unbiased estimators for 𝜇y and 𝜎

2
y based on a random sample

of n data points are

ȳ =
∑n

i=1yi
n

and

s2
y(unbiased) =

∑n
i=1(yi − ȳ)2

n − 1
.

(4.1)
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y

σ2
y

μy

1

Figure 4.1 A model with one variable y.

Many statistical techniques such as SEM are meant to model the mean structure
and the covariance structure of the data. If we fit the model in SEM with only one
observed variable, the model-implied mean and the model-implied variance are

𝜇i(𝜽) = 𝜇y and
Σi(𝜽) = 𝜎

2
y .

(4.2)

Figure 4.1 shows the graphical model that includes 𝜇y and 𝜎
2
y as the parameters.

The triangle labeled with 1 represents the constant 1. It is used to represent either
the means of the independent variables or the intercepts of the dependent variables.
Simplifying Equation 2.42 for one observed variable here, the −2 ∗log-likelihood
(−2LLi) of the ith data point is

−2LLi(𝜽) = log(2𝜋) + log(Σi(𝜽)) +
(yi − 𝜇i(𝜽))2

Σi(𝜽)
, (4.3)

where log(x) is the natural logarithm of x.
As the data are independent, the −2LL of all data is −2LL(𝜽) = −

∑n
i=1 2LLi(𝜽).

When maximum likelihood (ML) estimation, the default estimation method in SEM
packages, is used, the estimators for 𝜇y and 𝜎

2
y are

ȳ =
∑n

i=1yi
n

and

s2
y(ML) =

∑n
i=1(yi − ȳ)2

n
.

(4.4)

The ML estimate of variance in Equation 4.4 is slightly negatively biased in small
samples. The choice between the s2

y(ML) and s2
y(unbiased) is similar to the issues in

choosing between the ML and the restricted or (residual) maximum likelihood
(REML) estimation. We will discuss this issue in more details in Section 8.1. As
the ML estimation method is generally used in this book, we assume that the sam-
ple size (the number of studies in the meta-analysis) is not too small or that the
degree of the bias on the variance is not a major concern in the research questions.
This example shows how SEM is usually used to analyze the data. The research
questions are translated into either equations or graphical models representing the
interrelationship of the variables. The proposed model is converted into the mean
structure and the covariance structure. This model is fitted in the SEM software.
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The models are then interpreted. In this chapter, we show how the SEM-based
meta-analysis can be used to conduct univariate meta-analysis.

4.2 Fixed-effects model

We now consider the fixed-effects meta-analysis with one effect size yi. yi repre-
sents a generic effect size in the ith study. It can be an (log) odds ratio, a raw mean
difference, a standardized mean difference, a correlation coefficient, a Fisher’s z
transformed score of the correlation coefficient, or some other effect sizes. When
the sample sizes are reasonably large, it is assumed that yi has a known sampling
variance 𝑣i, that is, yi ∼  (fi, 𝑣i), where fi is the true population effect size in the
ith study (see the details in Chapter 3 on how to estimate 𝑣i for various effect sizes).
The true effect size fi indicates what the population effect size is when there is no
sampling error.

Under the fixed-effects model, the population effect sizes are usually assumed to
be equal, that is, 𝛽F = f1 = f2 = · · · = fk is the common effect (readers may refer to
Bonett (2008, 2009) for an alternative fixed-effects model without the assumption
of a common effect). The univariate fixed-effects model for the ith study is

yi = 𝛽F + ei, (4.5)

where Var(ei) = 𝑣i is the known sampling variance. Under this model, the
differences in the observed effect sizes are only due to the sampling error. The
population effect sizes for all studies are the same once the sampling error has
been taken into account.

4.2.1 Estimation and hypotheses testing

By treating 𝑣i as known, we estimate 𝛽F by minimizing the criterion FWLS using
the weighted least squares (WLS) estimation method,

FWLS =
k∑

i=1

𝑤i(yi − 𝛽F)2, (4.6)

where 𝑤i = 1∕𝑣i. To solve the above equation, we take the derivative of FWLS with
respect to 𝛽F,

dFWLS

d𝛽F
=

d
∑k

i=1(𝑤iy
2
i − 2𝑤iyi𝛽F +𝑤i𝛽

2
F)

d𝛽F

= −2
k∑

i=1

𝑤iyi + 2
k∑
i=1

𝑤i𝛽F.

(4.7)

We set dFWLS

d𝛽F
= 0 in order to find the inflation point. The solution of the above

equation is simply the weighted mean of yi achieved by using 𝑤i (the reciprocal of
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the precision) as the weight:

𝛽F =
∑k

i=1𝑤iyi∑k
i=1𝑤i

. (4.8)

The idea behind the above formula is to put more weight on the observed effect
sizes with higher precision (smaller 𝑣i). To show that the solution is a local
minimum (because we are minimizing FWLS), we take the second derivative with
respect to 𝛽F,

d2FWLS

d𝛽2
F

= 2
k∑

i=1

𝑤i. (4.9)

As 𝑤i is always positive, 2
∑k

i=1 𝑤i > 0. Therefore, the solution is a local mini-
mum. After estimating ̂

𝛽F, we also need to quantify the precision of the estimate by
estimating the standard error (SE) or the confidence interval (CI). The estimated
SE or CI can be used to test the null hypothesis and to draw statistical inferences.

Before introducing how to estimate the sampling variance on 𝛽F, it is instruc-
tive to first introduce the following formula. Suppose X is a weighted mean of
x1, x2,… , xk, where x1 to xk are independent variables;

X =
a1x1

A
+

a2x2

A
+ · · · +

akxk
A

, (4.10)

where ai is a constant and A =
∑k

i=1 ai. We calculate the variance of X as

Var(X) = Var
(a1x1

A
+

a2x2

A
+ · · · +

akxk
A

)
= 1

A2
Var(a1x1 + a2x2 + · · · + akxk)

= 1
A2

k∑
i=1

a2
i Var(xi) because x1 to xk are independent.

(4.11)

As 𝛽F is a weighted mean of yi, we apply the above formula to obtain the sampling
variance of ̂

𝛽F by treating 𝑤i∕(
∑k

i=1 𝑤i) as constant,

Var(𝛽F) = Var

(∑k
i=1𝑤iyi∑k
i=1𝑤i

)
= 1

(
∑k

i=1𝑤i)2

k∑
i=1

Var(𝑤iyi)

= 1

(
∑k

i=1𝑤i)2

k∑
i=1

𝑤
2
i

1
𝑤i

as Var(yi) =
1
𝑤i

=
∑k

i=1𝑤i

(
∑k

i=1𝑤i)2

= 1∑k
i=1𝑤i

.

(4.12)
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Therefore, the SE ̂
𝛽F

of ̂
𝛽F is simply

√
Var( ̂𝛽F). ̂𝛽F is an unbiased estimate of the pop-

ulation effect size if yi is unbiased and the population effect sizes are homogeneous.
Moreover, 𝛽F has the smallest sampling variance among all possible weighted esti-
mators in the class of unbiased estimators when the sampling variances are truly
known (Hedges, 2007). We may test whether H0 ∶ 𝛽F = 𝛽0 by using

z =
𝛽F − 𝛽0

SE ̂
𝛽F

. (4.13)

Under the null hypothesis, z has an approximate standard normal distribution. We
reject the null hypothesis at 𝛼 = 0.05 when the absolute value of z is equal or
larger than 1.96. Alternatively, we can also construct a Wald CI as discussed in
Section 2.4.5.

4.2.2 Testing the homogeneity of effect sizes

Under the fixed-effects model, the differences in the observed effect sizes are
only due to the sampling error. We test whether the data are consistent with the
fixed-effects model by computing a Q statistic (Cochran, 1954):

Q =
k∑

i=1

𝑤i(yi − ̂
𝛽F)2. (4.14)

Under the null hypothesis of the homogeneity of effect sizes H0 ∶ 𝛽F = f1 = f2 =
· · · = fk, theQ statistic has a chi-square distribution with (k − 1) degrees of freedom
(dfs). When the weight 𝑤i is a true constant, the Q statistic has an exact chi-square
distribution. As 𝑤i is estimated in a meta-analysis and most effect sizes are approx-
imately distributed as normal distributions, Equation 4.14 is only approximately
distributed as a chi-square distribution.

On the basis of computer simulation studies, the Q statistic has been generally
found to have Type I error rates that are close to the nominal 𝛼 value, for example,
0.05 for 𝛼 = 0.05, whereas the power of the test in detecting the heterogeneity of
effect sizes is low, especially when the number of studies is small, the sample
size per study is small, and the degree of the heterogeneity of the effect sizes is
low (e.g., Harwell, 1997; Huedo-Medina et al., 2006; Oswald and Johnson, 1998;
Sánchez-Meca and Marín-Martínez, 1997; Viechtbauer, 2007).

4.2.3 Treating the sampling variance as known versus
as estimated

Before moving to the random-effects model, we discuss the implications of treating
𝑣i as known rather than as estimated. Let us illustrate the differences between the
two approaches by using the sample mean as an effect size. Suppose that we are
conducting a meta-analysis on the intelligence quotient (IQ); the sample mean and
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the standard deviation for one study (n = 100) are x̄IQ = 110, and sIQ = 14. On the
basis of the central limit theorem, the sampling variance of x̄IQ is s2

IQ∕n. Thus, the
effect size (the raw mean) and its sampling variance for this study is yIQ = 110 and
𝑣IQ = 142∕100 = 1.96. 𝑣IQ = 1.96, which is treated as known in a meta-analysis,
is used to quantify the precision of yIQ = 110.

But how accurate is 𝑣IQ? When the data are normally distributed, the sampling
variance of the variance s2

IQ isVar(s2
IQ) = 2𝜎4

IQ∕(n − 1) (e.g., Tamhane and Dunlop,
2000). As we rarely know the population variance, we replace it with its sample
statistic, that is, Var(s2

IQ) = 2s4
IQ∕(n − 1). As 𝑣IQ = s2

IQ∕n, it follows that Var(𝑣IQ)
= Var(s2

IQ)∕n
2. In our example, the sampling variance of 𝑣IQ is 2(144∕99)∕1002

= 0.0776. Therefore, 𝑣IQ in the meta-analysis is actually a random variable with an
estimated variance of 0.0776. When the sample sizes are large enough, it is reason-
able to treat 𝑣i as known. When the sample sizes are small, however, this assumption
may not be appropriate. Treating 𝑣i as fixed may then affect the accuracy of the
meta-analysis.

On the other hand, it should be noted that the formula to estimate the sampling
variance (and SE) on 𝑣i is not very stable unless the sample sizes are huge. Thus,
it has limited applications. Besides the sample size, the other factors affecting
the accuracy of treating 𝑣i as known are (i) the types of effect sizes and (ii) the
values of the effect sizes if 𝑣i depends on yi. Because 𝑣i is usually estimated, the
accuracy of Equation 4.12 depends on how accurate the estimated value of 𝑣i is
(e.g., Hedges, 2007).
𝑣i is usually a function of the true effect size and the sample size. As the true

effect size is unknown, we replace it with the observed effect size yi in calculating
𝑣i. Sometimes, it may be easier to justify treating 𝑣i as known in a fixed-effects
model than in a random-effects model. Under a fixed-effects model, all population
effect sizes are assumed the same. Some authors prefer to obtain a better estimate

on the true effect size by using the average effect size, for example, y̆ =
∑k

i=1 yi
k

(or

ý =
∑k

i=1 niyi∑k
i=1 ni

) to calculate 𝑣i. We may estimate �̆�i (or �́�i) by replacing yi with y̆ (or

ý) (e.g., Hafdahl, 2007; Schmidt and Hunter, 2015). Please note that all studies
use the same y̆ (or ý) to calculate the individual sampling variances. As y̆ (or ý)
is based on a larger sample size than yi does, the calculated value will be more
accurate than 𝑣i which is based on yi. In principle, this approach is not appropri-
ate for random-effects model because fi varies across studies. However, Schmidt
and Hunter (2015) argued that the above approach is still valid in estimating the
sampling variances under a random-effects model.

Ideally, we may develop models that quantify the accuracy in estimating 𝑣i. How-
ever, this is challenging because such models are effect size specific. Researchers
would, therefore, need to develop different models to handle different effect sizes.
For example, Malzahn et al. (2000) developed a nonparametric approach to ana-
lyze standardized mean differences by treating 𝑣i as estimates rather than known.
For binary data, it is also possible to directly apply a generalized mixed-effects
model on frequency counts (e.g., Brown and Prescott, 2006). The first stage of the
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two-stage structural equation modeling (TSSEM) based on a fixed-effects model
in synthesizing correlation or covariance matrices takes the sampling covariance
matrix of the effect sizes into account (see Section 7.3.1).

4.3 Random-effects model

The fixed-effects model assumes that all studies share the same common effect.
Studies may vary in terms of samples, measures, and quality. It may not be rea-
sonable to expect all studies to have the same common effect. A random-effects
model allows studies to have their own population effect sizes. We may write the
equations for the observed effect size yi and its true population effect size fi in the
ith study as a two-level model:

Level 1: yi = fi + ei,
Level 2: fi = 𝛽R + ui,

(4.15)

where 𝛽R is the average population effect size under a random-effects model and
ui ∼  (0, 𝜏2) is the heterogeneity variance that has to be estimated. As 𝜏

2 is the
variance of the true effect sizes, it is not affected by the sampling error in theory.
Alternatively, we may combine the two levels into one single-level equation:

yi = 𝛽R + ui + ei. (4.16)

When ui and ei are independent, which is the usual assumption in a meta-analysis,
it is clear from Equation 4.16 that

Var(yi) = 𝜏
2 + 𝑣i. (4.17)

It should be noted that 𝑣i depends on the sample size, whereas 𝜏2 does not. Given
the true effect size fi, the observed effect size yi varies around fi with the sampling
variance 𝑣i orVar(yi|fi) = 𝑣i. If we randomly select one effect size and do not know
the true effect size, the best guess is 𝛽R. We expect that the observed effect size yi is
centered around 𝛽R with a sampling variance of the sum of 𝜏2 and 𝑣i. In the litera-
ture, (𝜏2 + 𝑣i) and 𝑣i are known as the unconditional and the conditional variances,
respectively. There are two unknown parameters, 𝛽R and 𝜏

2, in a random-effects
model, whereas there is only one parameter 𝛽F in a fixed-effects model.

It is of relevance to discuss the roles of the normality assumption in the random-
effects model. The observed effect size yi is conditionally distributed around fi with
a variance of 𝑣i. When the sample sizes in the studies are large enough, yi tends to
be normally distributed as shown by the central limit theorem regardless of what
the distribution of the original data was. On the other hand, the assumption of nor-
mality on the random effects ui is a true assumption. Increasing the number of
studies and/or sample sizes in the studies does not help to improve the normality
assumption of the random effects.

In estimating the heterogeneity variance, some estimation methods, for example,
unweighted method of moments (UMM) and weighted method of moments
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(WMM), do not required the normality assumption of the random effects, whereas
the ML and the REML estimation methods do. Although estimating the variance
component with the method of moments does not assume normality of the effect
sizes, testing and constructing CIs on the variance component require such an
assumption. Moreover, the testing and constructing of CIs on the averaged effect
size also rely on the assumption of normality on the part of the effect sizes.
Therefore, most methods, including the method of moments, ML, and REML,
implicitly or explicitly assume normality of the random effects.

4.3.1 Estimation and hypothesis testing

Except for ML estimation, two steps are usually required in fitting a random-effects
model. In the first step, the variance component 𝜏2 is first estimated. In the second
step, the fixed effect 𝛽R is estimated by treating the estimated 𝜏2 as known. There are
several common methods for estimating 𝜏

2. We briefly review some of them here.

4.3.1.1 Unweighted method of moments

Hedges (1983) proposed an UMM approach to estimate 𝜏2. The idea of the method
of moments is to equate the expected value of a statistic to its sample value. We
may define the variance of yi as

s2
y =

∑k
i=1(yi − ȳ)2

k − 1
, (4.18)

where ȳ =
∑k

i=1 yi∕k. From Equation 4.17, Hedges noted that the expected value of
s2
y is

E(s2
y) = 𝜏

2 +
∑k

i=1𝑣i

k
. (4.19)

By equating the moments (Equation 4.18 with Equation 4.19), an unbiased estima-
tor of 𝜏2 based on the UMM method is

𝜏
2
UMM = s2

y −
∑k

i=1𝑣i

k
. (4.20)

If 𝜏2
UMM is negative, it is usually truncated to 0. As this estimator is easy to calculate,

it looks attractive. However, when s2
y is less than

∑k
i=1 𝑣i

k
, 𝜏2

UMM can be negative even
though the Q statistic is large or even statistically significant (Friedman, 2000).
Therefore, 𝜏2

UMM may be inconsistent with the inferences based on the Q statistic.

4.3.1.2 Weighted method of moments

DerSimonian and Laird (1986) proposed a WMM approach to estimate 𝜏
2. These

authors noted that the expected value of Q is

E(Q) = c𝜏2 + k − 1, (4.21)
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where c =
∑k

i=1 𝑤i −
∑k

i=1 𝑤
2
i∑k

i=1 𝑤i

. When 𝜏
2 = 0, the expected value of Q is k − 1. Thus,

the Q statistic has an approximate chi-square distribution with k − 1 df under the
assumption of 𝜏2 = 0 in Equation 4.14. We may derive an unbiased estimator of 𝜏2

based on the WMM as
𝜏

2
WMM = Q − (k − 1)

c
. (4.22)

If 𝜏2
WMM is negative, it is usually truncated to 0. An attractive feature of the WMM

approach is that it is consistent with the significance test on the Q statistic. When
the Q statistic is larger than its df, 𝜏2

WMM is positive.

4.3.1.3 Maximum likelihood estimation

On the basis of the model in Equation 4.16, the −2LLi for the random-effects
meta-analysis is

−2LLi(𝛽R, 𝜏
2) = log(2𝜋) + log(𝜏2 + 𝑣i) +

(yi − 𝛽R)2

𝜏
2 + 𝑣i

. (4.23)

The ML estimates of 𝛽R(ML) and 𝜏
2
ML are obtained by solving the partial derivative

of −2LL(𝜽) = −
∑n

i=1 2LLi(𝜽) set to zero (Hardy and Thompson, 1996). It should
be noted that both 𝛽R(ML) and 𝜏

2
ML are estimated simultaneously in the ML estima-

tion method. One attractive property of 𝛽R(ML) is that it is unbiased even in small
samples (Demidenko, 2013). However, there are still issues surrounding the use
of ML estimation in a meta-analysis. The first one is that 𝑣i is treated as known
versus estimated (see Section 4.2.3). The second issue is that 𝜏2

ML is slightly nega-
tively biased (see Section 8.1). The SEM-based meta-analysis mainly uses the ML
estimation as the estimation method.

4.3.1.4 Restricted maximum likelihood estimation

The ML estimator of 𝜏
2 tends to underestimate the population heterogeneity in

finite samples because it does not take into account the fact that 𝛽R is estimated
rather than known when estimating 𝜏

2. The REML estimation attempts to correct
this bias by taking into account the loss of df in estimating the fixed effect. More
details on the REML estimation is provided in Section 8.1.

4.3.1.5 Comparing among the estimation methods

Several authors have compared the empirical performance of these estimators.
Friedman (2000) compared the efficiency of the UMM and WMM estimators.
She found that the WMM estimator is more efficient when the population hetero-
geneity is small, while the UMM estimator is more efficient when the population
heterogeneity is large. Similarly, Demidenko (2013) found no estimator to be
uniformly better, in terms of mean squares error, over the whole range of 𝜏2 even in
the case of normal distribution. Viechtbauer (2005) compared the performance of
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the above four estimators and another estimator proposed by Hunter and Schmidt
(1990) by deriving the mean squares error of the estimators and by a computer
simulation. He found that there is no estimator that is universally better than
others in terms of bias, efficiency, and mean squares error. Generally, Viechtbauer
(2005) recommended the REML estimator, as it shows a good balance between
unbiasedness and efficiency.

4.3.1.6 Estimation of the average population effect

After estimating the heterogeneity variance, we can compute the unconditional
sampling variance using �̃�i = 𝑣i + 𝜏

2 as the weight. We treat �̃�i as known and min-
imize the criterion FWLS with the WLS estimation method:

FWLS =
k∑

i=1

�̃�i(yi − 𝛽R)2, (4.24)

where �̃�i = 1∕�̃�i.
The solution, which is similar to that for the fixed-effects model, is the weighted

mean of yi using �̃�i (the reciprocal of the precision) as the weight:

𝛽R =
∑k

i=1�̃�iyi∑k
i=1�̃�i

. (4.25)

The sampling variance of ̂
𝛽R may also be derived in a similar way as that in

Equation 4.12:

Var(𝛽R) =
1∑k
i=1�̃�i

. (4.26)

As 𝜏2 is nonnegative, 𝑣i in the fixed-effects model cannot be larger than �̃�i in the
random-effects model. This suggests that Var(𝛽R) ≥ Var(𝛽F). In other words, the
calculated CIs under a fixed-effects model are usually shorter than those calculated
under a random-effects model. If a fixed-effects model is incorrectly applied to
studies where 𝜏

2 is not zero, both the SEs and CIs are likely to be underestimated.
Schmidt et al. (2009) found that most meta-analyses published in Psychological
Bulletin used the fixed-effects model rather than the random-effects model. These
authors argued that the random-effects model should be routinely used. If the esti-
mated 𝜏

2 is zero, the random-effects model automatically becomes a fixed-effects
model. In estimating Var( ̂𝛽R), it should also be noted that 𝜏2 is treated as known
rather than as estimated. Therefore,Var(𝛽R) is smaller than the true variability of 𝛽R
(see Sánchez-Meca and Marín-Martínez (2008) for some alternative approaches).

4.3.2 Testing the variance component

The fixed-effects model in Equation 4.5 is nested within the random-effects model
by setting 𝜏

2 = 0. Statistically, we may compare a fixed-effects model and a
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random-effects meta-analysis by testing H0 ∶ 𝜏
2 = 0. As the difference on the

numbers of parameters is 1, it is reasonable to expect that the difference between
the likelihood ratio (LR) statistics of these two models follows a chi-square
distribution with 1 df when H0 ∶ 𝜏

2 = 0 is true. However, this is not true because
the null hypothesis H0 ∶ 𝜏

2 = 0 is tested on the boundary.
Let us illustrate the concept of testing on a boundary condition by considering the

random-effects model in Equation 4.16. Suppose that we want to test H0 ∶ 𝛽R = 0;
we fit two models—one with 𝛽R being free and the another with the constraint 𝛽R =
0. When H0 ∶ 𝛽R = 0 is true, there is a 50:50 chance that the sample estimates on
𝛽R are positive (or negative) because of a sampling error. The difference in the LR
statistics between the two models asymptotically follows a chi-square distribution
with df = 1 when H0 ∶ 𝛽R = 0 is true.

This is not the case when we are testing H0 ∶ 𝜏
2 = 0. As 𝜏2 cannot be negative,

there is a 50% chance that the sample estimates on 𝜏
2 will be positive and another

50% chance that 𝜏2 is 0. When 𝜏
2 = 0, the difference in the LR statistics between

these two models is 0. Therefore, the difference in the LR statistics between these
two models is distributed as a 50:50 mixture of a degenerate random variable with
all of its probability mass concentrated at 0 (𝜒2

df=0) and𝜒2
df=1 (Self and Liang, 1987).

Figure 4.2 shows the distributions of 𝜒2
df=1 and a 50:50 mixture of 𝜒2

df=0 and 𝜒
2
df=1.

As shown in the figure, the critical value of 𝜒2
df=1 and a 50:50 mixture of 𝜒2

df=0 and
𝜒

2
df=1 are 3.84 and 2.71, respectively. If we incorrectly refer the test statistic to

𝜒
2
df=1, the empirical (or true) Type I error will be smaller than 0.05 if 𝛼 = 0.05 is

used. If it is really necessary to test whether 𝜏
2 = 0, we should use 2.71 as the

critical value for 𝛼 = 0.05. An alternative strategy is to use 2𝛼 instead of 𝛼 as the
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alpha level (Pinheiro and Bates, 2000). That is, we may reject the null hypothesis
when the observed p value is larger than 0.10 for 𝛼 = 0.05. Readers may refer to
Viechtbauer (2007) and Stoel et al. (2006) for a discussion on this issue in the
context of a meta-analysis and an SEM.

4.3.3 Quantifying the degree of the heterogeneity of effect sizes

Although the Q statistic may be used to test the homogeneity of effect sizes, it does
not indicate the degree of heterogeneity. The Q statistic may be significant sim-
ply because of the large number of studies involved. Conversely, a large Q statistic
may be nonsignificant because of the small number of studies involved. The het-
erogeneity variance 𝜏

2 can be used to indicate the heterogeneity of studies. One
major limitation of 𝜏2 is that it depends on the types of effect sizes. For example,
𝜏

2 = 0.1 may mean different degrees of heterogeneity in a raw mean difference or
a correlation coefficient.

Higgins and Thompson (2002) proposed three indices to quantify the heterogene-
ity of effect sizes that do not depend on the types of effect sizes. They are the H,
R, and I2 indices. H is the square root of the Q statistic divided by its dfs; R is the
ratio of the SE of the ̂

𝛽R to the SE of ̂
𝛽F, and I2 is the between-study heterogeneity

to the total variation of studies.
Among these three indices, I2 is the most popular. We focus on it here. Its general

formula is

I2 = 𝜏
2

𝜏
2 + �̃�

, (4.27)

where �̃� is a typical within-study sampling variance. I2 can be interpreted as the
proportion of the total variation of the effect size that is due to the between-study
heterogeneity. There are several advantages of I2 (Higgins and Thompson, 2002).
First and most important, it is general enough to be applied to different types of
effect sizes. Second, the value of I2 does not depend on the number of studies. As
a rule of thumb, Higgins et al. (2003) suggested that an I2 of 25%, 50%, and 75%
can be considered as low, moderate, and high heterogeneity, respectively. It should
be noted that these suggestions were based on meta-analyses in medical research.
They may or may not be applicable to other fields. Readers should exercise caution
and not treat these suggestions as standards. As the extent of the sampling error
depends on the sample sizes used in the primary studies, I2 becomes larger when
the sample sizes in the primary studies become larger.

As 𝑣i likely varies across studies, there are several possible definitions of
the typical within-study sampling variance. Takkouche et al. (1999) suggested
using the harmonic mean of 𝑣i as the typical within-study sampling variance in
Equation 4.27, that is,

�̃�HM = k∑k
i=11∕𝑣i

. (4.28)

The I2 calculated using �̃�HM is called RI in Takkouche et al. (1999, 2013).
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Higgins and Thompson (2002) preferred to define the typical within-study
sampling variance in Equation 4.27 using the Q statistic:

�̃�Q =
(k − 1)

∑k
i=11∕𝑣i

(
∑k

i=11∕𝑣i)2 −
∑k

i=11∕𝑣2
i

. (4.29)

One advantage of using �̃�Q as the typical within-study sampling variance is that I2

can be simplified to I2
Q = (Q − (k − 1))∕Q.

Besides these two estimators, Xiong et al. (2010) also discussed an estimator of
I2 that is based on the arithmetic mean of 𝑣i:

�̃�AM =
k∑

i=1

𝑣i

k
. (4.30)

It should be noted that, in general, I2 is not used to estimate any population quan-
tities. This is because it contains the �̃� that is calculated based on specific studies.
Were a different set of studies to be selected, �̃� would likely be different. As the
sample sizes per study get larger and larger, I2 approaches 1 as �̃� approaches 0.
Therefore, I2 is used as a descriptive statistic rather than an inferential statistic.
Even though we are not testing any population parameters, CIs on I2 may still
be useful for quantifying the precision of I2. Higgins and Thompson (2002) and
Takkouche et al. (2013) discussed several methods of constructing CIs on I2. As
I2 is a function of 𝜏2 by treating �̃� as a constant in Equation 4.27, the metaSEM
package has implemented the likelihood-based confidence interval (LBCI) on I2.

4.4 Comparisons between the fixed- and the
random-effects models

After introducing both the fixed-effects and the random-effects models, this section
discusses their similarities and differences. The definitions of fixed and random
effects are not consistent in the literature. According to Gelman (2005, p. 20),
“different—in fact, incompatible—definitions are used in different contexts.” Gel-
man further listed five different definitions of fixed and random effects. We use the
conventional definitions in a meta-analysis here.

4.4.1 Conceptual differences

It is generally recommended that the decision on whether to use the fixed- or
random-effects model should depend on the research questions. The fixed-effects
model is used when we are only interested in studies with the same characteristics
as those selected in the meta-analysis. For example, a medical researcher may only
be interested in the effectiveness of a new drug in a few well-controlled studies
rather than in all possible studies. A fixed-effects model may be used to synthesize
a few well-controlled studies.
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By using a random-effects model, researchers may estimate the average effect on
all possible studies and the variability of the effect sizes. A common assumption in
the random-effects model is that the k studies that are included in the meta-analysis
are randomly sampled from a large superpopulation. For many reasons, for
instance, publication bias, the selected studies are unlikely to have been randomly
sampled from the so-called superpopulation. Therefore, this random sampling
assumption will almost never be satisfied in practice.

On the basis of the above criticism, Bonett (2008, 2009) proposed a fixed-effects
model without this random sampling assumption. He argued that this model
is preferable to the random-effects model. The usual assumption under the
fixed-effects model is the homogeneity of effect sizes, 𝛽F = f1 = f2 = · · · = fk.
Because of this assumption, this (fixed-effects) model is sometimes called the
common effect model. Bonett’s fixed-effects model does not assume that there
is a common effect. He proposed to estimate the average population effect
by 𝛽A = f1+f2+···+fk

k
. There are two key features to quantify this. First, it is a

fixed-effects model because researchers are only interested in these k studies.
Second, no random sampling assumption is required for these k studies. Readers
may refer to Bonett (2008, 2009) for details.

On the other hand, Higgins et al. (2009) and Raudenbush (2009) argued from
a Bayesian perspective that the random sampling assumption is not necessary
for the random-effects model. These authors argued that only the concept of the
exchangeability of the studies is required. Exchangeability represents a judgment
of the researchers that the effect sizes may be nonidentical, but their magnitudes
cannot be differentiated before the data analysis is conducted. In other words, the
researchers have no reason to believe that the effect of one study is larger than that
of other studies.

4.4.2 Statistical differences

Figure 4.3 illustrates the concepts of fixed- and random-effects meta-analysis. Let
us first consider the fixed-effects model in Figure 4.3a. All studies have the same
common effect, which is 𝛽F in the figure. As studies are likely to have different 𝑣i,
the sampling variances of different effect sizes may be different. Because of the
sampling error, it happens that y1 ∼  (𝛽F, 𝑣1) and y2 ∼  (𝛽F, 𝑣2) are observed by
the researchers even though their population values are the same.

Regarding the random-effects model in Figure 4.3b, the average population effect
is 𝛽R. Two studies are randomly selected from  (𝛽R, 𝜏

2) (the shaded area). It
happens that f1 and f2 (not observable to the researchers) were selected. Given
that f1 and f2 are the true population values, it happens that y1 ∼  (f1, 𝑣1) and
y2 ∼  (f2, 𝑣2) are observed by the researchers.

There are several points to note when comparing the random-effects model in
Equation 4.16 and the fixed-effects model in Equation 4.5. First, the conditional
sampling variance 𝑣i is the same, regardless of whether a fixed-effects or a
random-effects model is used. The conditional sampling variance 𝑣i is usually
a function of the true effect size and the sample size. As the true effect size is
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Figure 4.3 (a) Fixed-effects versus (b) random-effects meta-analyses.

usually unknown, the sample effect size is used to replace the true effect sizes in
calculating the conditional sampling variances. Therefore, 𝑣i is usually estimated
based on the sample effect size. Second, the validity of the normality assumption
on yi depends on the type of effect size, the population value of the effect size, and
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the sample size per study. When the sample size per study is sufficiently large, yi
is approximately distributed with a normal distribution, regardless of the type of
effect size.

However, the assumption that fi is normally distributed under a random-effects
model is a true assumption. If the distribution of fi is non-normal, collecting more
studies does not help to improve the normal approximation. Therefore, this assump-
tion is independent of the sample sizes used in the studies and the number of studies
used in the meta-analysis. Several models based on alternative parametric distribu-
tions have been suggested for the true effect sizes. For example, a t-distribution
or skewed distribution have been proposed to minimize the effect of outliers (see
Higgins et al., 2009) under a Bayesian approach. Demidenko (2013) proposed a
robust/median meta-analysis to handle the presence of outliers in a meta-analysis.
Böhning (2000) used a mixture approach to account for the non-normality of the
true effect sizes.

Third, the random-effects model becomes the fixed-effects model when
𝜏

2 = 0. Although mathematically the fixed-effects model is a special case of the
random-effects model, interpretations of these two models differ. As a fixed-effects
meta-analysis is a special case of the random-effects meta-analysis when the
population heterogeneity is zero, it is intuitive to decide between a fixed-effects
or a random-effects model by testing whether the population heterogeneity is
zero. That is, a fixed-effects model is used when the test of homogeneity is not
significant; otherwise, a random-effects model is used. Hedges and Vevea (1998)
termed this approach the conditionally random-effects model. However, it is
generally not advisable to use this approach to choose between a fixed-effects and
a random-effects model. The choice of model should be based on specific research
questions rather than on the result of the test (Borenstein et al., 2010).

4.5 Mixed-effects model

The mixed-effects meta-analysis extends the random-effects meta-analysis by
using study characteristics as the moderators. Assuming that xi is an (m + 1) × 1
vector of moderators, including a constant of 1 where m is the number of predictors
in the ith study, the mixed-effects model is

yi = xT
i 𝜷R + ui + ei, (4.31)

where 𝜷R is an (m + 1) × 1 vector of regression coefficients including the intercept
and 𝜏

2 = Var(ui) is the variance of the residual heterogeneity (Goldstein, 2011;
Raudenbush and Bryk, 2002; Stram, 1996). Although xi (excluding the constant)
predict the outcome variable yi, xi are usually called moderators in the literature
of meta-analysis. It is because xi moderate the strength of the effect on yi at the
study level.

If we assume that the between-study heterogeneity is purely due to differences
in the study characteristics (e.g., Hedges and Olkin, 1983), Equation 4.31 can be
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simplified to

yi = xT
i 𝜷F + ei. (4.32)

This model is a fixed-effects model, as it includes only the regression coefficients
without the random effects. Conceptually, it allows studies with different popula-
tion effects. After controlling for the predictors xi, the only uncertainty left is the
sampling error ei. As this model is a special case of the more general mixed-effects
model listed in Equation 4.31, we will only focus on the mixed-effects model.

4.5.1 Estimation and hypotheses testing

In order to estimate the parameters of the mixed-effects meta-analysis, it is easier
to stack all data into vectors and matrices for ease of calculations. The model in
Equation 4.31 becomes

y = X𝜷R + u + e, (4.33)

where y is a k × 1 vector of effect sizes, X is a k × (m + 1) design matrix including
1 in the first column, u is a k × 1 vector of the random effects of residual hetero-
geneity, and e is a k × 1 vector of sampling error. Consider a meta-analysis with
one predictor x; the model is

y
⏞⏞⏞⎡⎢⎢⎢⎣

y1
y2
⋮
yk

⎤⎥⎥⎥⎦ =

X
⏞⏞⏞⎡⎢⎢⎢⎣
1 x1
1 x2
⋮ ⋮
1 xk

⎤⎥⎥⎥⎦
𝜷R

⏞⏞⏞[
𝛽0
𝛽1

]
+

u
⏞⏞⏞⎡⎢⎢⎢⎣
u1
u2
⋮
uk

⎤⎥⎥⎥⎦ +

e
⏞⏞⏞⎡⎢⎢⎢⎣

e1
e2
⋮
ek

⎤⎥⎥⎥⎦ , (4.34)

where 𝛽0 is the intercept and 𝛽1 is the expected change in y when x increases by
1 unit.

As the studies are independent, T2 = Var(u) = Diag(𝜏2
, 𝜏

2
,… , 𝜏

2) =⎡⎢⎢⎢⎣
𝜏

2 0 · · · 0
0 𝜏

2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 · · · 0 𝜏

2

⎤⎥⎥⎥⎦ and V = Diag(𝑣1, 𝑣2,… , 𝑣k) are both diagonal matrices

where the off-diagonal elements are all 0. The estimation methods discussed
in Section 4.3.1 can be modified to the mixed-effects model. Generally, the
heterogeneity variance 𝜏

2 in Equation 4.31 is first estimated (for the calculations,
see Raudenbush (2009) and Viechtbauer (2008)).

By treating the unconditional sampling variance VR = T2 + V as known, we
estimate 𝜷R by minimizing the criterion FWLS with the WLS estimation method
(Hedges and Olkin, 1985):

FWLS = (y − X𝜷R)TV−1
R (y − X𝜷R). (4.35)
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The solutions for ̂𝜷R and its asymptotic sampling variance are

̂𝜷R = (XTV−1
R X)−1XTV−1

R y and
̂𝛀R = Var( ̂𝜷R) = (XTV−1

R X)−1
.

(4.36)

The diagonals of ̂𝛀R indicates the sampling variances of the parameter estimates.
We may test the significance of the ith parameter ̂𝜷R[i] by

z ̂𝜷R[i]
=

̂𝜷R[i] − 𝛽0√
̂𝛀R[i,i]

, (4.37)

which has an approximate standard normal distribution under H0 ∶ 𝜷R[i] = 𝛽0 (see
Huizenga et al. (2011), for other approaches to test the moderator effects). If we
want to test whether some of the parameters in ̂𝜷R are zero, we may construct a
Wald test on a linear contrast based on the ̂𝜷R and ̂𝛀R (see Fox (2008), for details).
An alternative approach is to use an LR statistic to compare two models with and
without the constraints. This approach is discussed Section 4.6.3 under the SEM
approach. Approximate CIs may also be constructed based on the estimated SEs.

4.5.2 Explained variance

Besides testing whether the moderators are significant, researchers may want to
quantify the degree of prediction with R2 like indices. As the sampling variance
𝑣i is known in a meta-analysis, the variation owing to 𝑣i should not be included
in calculating the R2 (e.g., Raudenbush, 2009). To simplify the presentation, we
take the intercept out of the regression coefficients. With a slight abuse of notation,
we consider two models—Model 0 without any moderator and Model 1 with the
moderators:

Model 0: y0 = 𝛽0 + u0 + e,
Model 1: y1 = 𝛽0 + X𝜷 + u1 + e,

(4.38)

where 𝛽0 is the intercept, 𝜷 is the vector of regression coefficients, X is a design
matrix for the moderators, 𝜏2

0 = Var(u0) is the heterogeneity variance of the random
effects without the moderator, 𝜏2

1 = Var(u1) is the residual variance of the random
effects with the moderators, and e is the sampling error.

The population percentage of the explained variance P2 by including the predic-
tors can be calculated by comparing the 𝜏

2
0 and 𝜏

2
1 (Aloe et al., 2010; Borenstein

et al., 2009; Raudenbush, 2009),

P2 =
𝜏

2
0 − 𝜏

2
1

𝜏
2
0

. (4.39)

As the population values are rarely known, we estimate them by their sample
statistics,

R2 =
𝜏

2
0 − 𝜏

2
1

𝜏
2
0

. (4.40)
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In a regression analysis, the computed R2 is always non-negative. However, the
calculated R2 can be negative. If this happens, it is truncated to zero. When there
are missing values in the moderators, these studies are removed in calculating 𝜏

2
1 .

It is of importance also to remove the studies with missing data in calculating 𝜏
2
0 ;

otherwise, 𝜏2
0 and 𝜏

2
1 are calculated based on different numbers of studies.

López-López et al. (2014) conducted a simulation study to evaluate the empirical
performance of Equation 4.40. As different estimators may lead to different esti-
mates of 𝜏2

0 and 𝜏
2
1 , these authors evaluated seven estimates of R2. On the basis of

their results, none of the studied estimators performed accurately when the number
of studies was small (k < 20). When the number of studies was moderate (20–40
studies), they found that the REML and the empirical Bayes methods performed
best when the bias and efficiency criteria were jointly considered.

An alternative way to define the percentage of variance explained is based on
Model 1 only:

̃P2 =
𝜷T𝚺X𝜷

𝜷T𝚺X𝜷 + 𝜏
2
1

, (4.41)

where 𝚺X is the population covariance matrix of the moderators. Its sample
estimate is

̃R2 =
̂𝜷

T
SX ̂𝜷

̂𝜷
T
SX ̂𝜷 + 𝜏

2
1

, (4.42)

where SX is the sample covariance matrix of the moderators. R̃2 is always non-
negative as long as 𝜏

2
1 is nonnegative. As ̃R2 is rarely used in meta-analysis, it is

unclear about its empirical properties. Further research may compare the empirical
performance of these two estimators.

4.5.3 A cautionary note

Although a mixed-effects meta-analysis looks similar to a typical regression
analysis, special care has to be taken to avoid an ecological fallacy—incorrectly
interpreting findings from the aggregated statistics as findings from the individuals.
Take the proportion of females as an example. If it positively predicts the odds ratio
of having a disease, it is tempting to take the interpretation that females are more
likely to get the disease than males do. This interpretation would be incorrect.
As the predictor (or the moderator) is the proportion of females (not gender at
the individual level), there are still males in studies with a high proportion of
females. What the result suggests is that studies with more females are more
likely to have larger odds ratios. This effect may or may not be attributed to the
female participants in these studies. Findings at the study level cannot directly be
translated into findings at the individual level. Readers may refer to Petkova et al.
(2013) for some discussion on this issue.
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4.6 Structural equation modeling approach

After reviewing the meta-analytic models, this section introduces how the
SEM-based meta-analysis can be used to model the univariate meta-analytic
models (Cheung, 2008). The SEM-based meta-analysis is mathematically equiv-
alent to that of the conventional meta-analysis using ML (or possibly REML)
estimation. The main difference is that the meta-analytic models are formulated
as structural equation models. Therefore, the power of SEM can be extended to
meta-analysis. As ML estimation is used in the SEM-based meta-analysis, both the
fixed and the random effects are simultaneously estimated. We first begin with
the fixed-effects model and then extend the discussion to the random-effects and
the mixed-effects models. The techniques introduced in the previous sections can
be applied in the SEM-based meta-analysis.

4.6.1 Fixed-effects model

As indicated in the previous section, there is only one parameter 𝛽F under a
fixed-effects model, while the sampling variance 𝑣i is assumed to be known. The
fixed-effects meta-analytic model can be formulated as a structural equation model
displayed in Figure 4.4. The observed effect size in the ith study is represented by
the variable yi, while the variance of the measurement error is fixed as the known
sampling variance 𝑣i. As 𝑣i is fixed in the model, the only parameter in this model
is 𝛽F.

When comparing the fixed-effects meta-analytic model and the model with
only one variable in Figure 4.1, it is clear that the fixed-effects meta-analytic
model is a very simple model with only one parameter. Although the fixed-effects
meta-analytic model is a simple model, it is not straightforward to handle it under
conventional SEM packages. This is because 𝑣i varies across subjects (or across
studies in a meta-analysis), whereas most SEM packages were not developed to
handle subject-specific models.

There are two approaches to incorporate the known 𝑣i under the SEM framework
(Cheung, 2013). The first approach is to transform the effect sizes so that they
have a common known sampling distribution with a variance of 1 (see Cheung,
2008). As all effect sizes have the same known sampling distribution, conventional
SEM packages may be used to model the meta-analytic models by fixing the error
variance at 1. The second approach is to assign the known 𝑣i as the known sampling

βF
yi

υi

1

Figure 4.4 A univariate fixed-effects meta-analytic model.
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error with the use of definition variables (see Section 2.5.2). Each subject (or each
study in a meta-analysis) may has its own known 𝑣i in the model in Figure 4.4.
The definition variable approach is introduced here, while Chapter 9 introduces the
transformed variables approach that can be implemented in Mplus.

To conduct the fixed-effects meta-analysis in SEM, we fit the following
model-implied mean and variance matrix:

𝜇i(𝜃) = 𝛽F and
Σi(𝜃) = 𝑣i.

(4.43)

After fitting this model, 𝛽F is reported. We test the significance ofH0 ∶ 𝛽F = 𝛽0 by

z
𝛽F
=

𝛽F − 𝛽0

SE(𝛽F)
, (4.44)

which has an approximate standard normal distribution under H0. We reject the null
hypothesisH0 ∶ 𝛽F = 0 at 𝛼 = 0.05 if the absolute value of z ̂

𝛽F
is larger than or equal

to 1.96. We may construct an approximate 95% Wald CI on 𝛽F using ̂
𝛽F ± 1.96 ∗

SE ̂
𝛽F

. Alternatively, we may construct an LBCI on 𝛽F (see Section 2.4.5).

4.6.2 Random-effects model

The random-effects model allows studies to have their own study-specific random
effects. Study-specific random effects are unobservable and latent in nature. In the
context of SEM, we may treat the study-specific random effects ( fi in Equation
4.15) as a latent variable. Figure 4.5 shows two equivalent graphical representa-
tions of a random-effects model. Figure 4.5a shows the graphical model of the
random-effects model. The latent variable fi ∼  (𝛽R, 𝜏

2) represents the true effect
size in the ith study, while the error variance 𝑣i is known and varies across studies.
Conceptually, the random-effects model can be viewed as a one-factor CFA model
with only one indicator. The measurement error in conventional CFA models is
used to represent the sampling error in a meta-analysis. This model is similar to the
CFA model used to model multilevel data (e.g., Mehta and Neale, 2005).

Unlike conventional CFA models, the variances of the measurement (sampling)
error are fixed according to the studies in a meta-analysis. One attractive fea-
ture of this presentation is that it mirrors Equation 4.15 by showing all of the
elements—𝛽R, fi, ei, 𝜏

2, and 𝑣i in the figure. Level 1 and level 2 can be considered
as the measurement and structural models in conventional SEM. As the true effect
size in the ith study is represented by the latent factor fi, the true effect size may
be used as the independent variable or the dependent variable in more complex
analyses, such as the mediation and moderation analyses in Section 5.6.

On the basis of Equations 4.16 and 4.17, we may write yi ∼  (𝛽R, 𝜏
2 + 𝑣i).

All studies have the same expected mean (𝛽R), whereas the expected variance
(𝜏2 + 𝑣i) varies across studies. Figure 4.5b shows a model that is equivalent to the
random-effects model. The latent variable fi is not shown in the figure. The key
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Figure 4.5 A univariate random-effects meta-analytic model.

feature of this presentation is that each study has its own distribution (𝜏2 + 𝑣i).
The advantage of this presentation is its simplicity, as the latent variable fi and the
residual ei are not shown in the figure.

To conduct the univariate random-effects meta-analysis in SEM, we fit the fol-
lowing model-implied moments:

𝜇i(𝜽) = 𝛽R and
Σi(𝜽) = 𝜏

2 + 𝑣i.
(4.45)

We have to estimate both 𝛽R and 𝜏
2 simultaneously. After the estimation, the SEs

on 𝛽R and 𝜏2 may be used to test the significance of these estimates. As 𝜏2 is unlikely
to be normally distributed, a Wald CI is not recommended. LBCI is preferred for
quantifying the precision of 𝜏2 (Hardy and Thompson, 1996).

4.6.3 Mixed-effects model

We may easily extend the random-effects model to a mixed-effects model by
including study characteristics as moderators. Similar to a regression analysis (see
Section 2.5.2), there are two representations for a mixed-effects meta-analysis. We
may treat the moderators as either variables or design matrices (Cheung, 2008,
2013).
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Figure 4.6 A univariate mixed-effects meta-analytic model treating themoderator
as a variable.

We first discuss the approach by treating the moderators as variables. Figure 4.6
shows two equivalent models of a mixed-effects model with one moderator.
Figure 4.6a explicitly displays the true effect size, which is represented by
fi = 𝛽0 + 𝛽1xi + ui. The observed effect size is then defined by yi = fi + ei.
Figure 4.6b displays the same model without showing fi. As the moderator xi is a
variable, its mean 𝜇x and its variance 𝜎

2
x have to be estimated. The expected mean

vectors and the expected covariance matrix are

E
([

yi
xi

])
=
[
𝛽0 + 𝛽1𝜇x

𝜇x

]
and

Cov
([

yi
xi

])
=
[
𝛽

2
1𝜎

2
x + 𝜏

2 + 𝑣i
𝛽1𝜎

2
x 𝜎

2
x

]
. (4.46)

The second approach is to treat the moderators as a design matrix or fixed values
(Cheung, 2010, 2013). Figure 4.7 shows two equivalent models of the mixed-effects
meta-analysis. Figure 4.7a includes the true effect size. A phantom variable P with
a variance of 0 is created to implement the predictors. The mean of P is fixed at xi by
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Figure 4.7 A univariate mixed-effects meta-analytic model treating themoderator
as a design matrix.

using a definition variable, meaning that each study has a different value of xi. The
effect of regressing fi on P is 𝛽1. Therefore, fi = 𝛽0 + 𝛽1xi + ui. As xi is treated as a
fixed value, there is no estimate of the mean and variance of xi. Figure 4.7b shows
the same model without the true effect size or the latent variable. The following are
the model-implied conditional mean and variance for m moderators:

𝜇i(𝜽|xi) = xT
i 𝜷 and

Σi(𝜽|xi) = 𝜏
2 + 𝑣i.

(4.47)

When there is more than one moderator, we may want to test the composite
hypothesis that all of the regression coefficients (excluding the intercept) are zero,
H0 ∶ 𝛽1 = 𝛽2 = · · · = 𝛽m = 0. When the scales of the predictors are comparable,
for example, dummy or standardized variables, we may want to test whether some
or all of the regression coefficients are the same, for example, H0 ∶ 𝛽1 = 𝛽2 = · · · =
𝛽m. To test the above hypotheses, we may fit two models—one with the constraint
that all regression coefficients are fixed at zero or that all or some regression coef-
ficients are equal and the other without any constraint. As these two models are
nested, we may use an LR test to test the above null hypothesis.
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4.7 Illustrations using R

This section illustrates how to conduct the univariate meta-analysis using the
metaSEM package. Readers may refer to Appendix A for an introduction on the
metaSEM package and on how to read external data in R. Two examples are
used to demonstrate the fixed-, random-, and mixed-effects meta-analyses. The
fixed-effects meta-analysis is a special case of the random-effects model by fixing
the heterogeneity variance at 0 in the metaSEM package. Therefore, we first show
how to conduct a random-effects meta-analysis. Then we illustrate how to conduct
a fixed-effects meta-analysis by imposing the appropriate constraints. Moreover,
examples on applying constraints and constructing LBCI are also demonstrated.
The statistics reported in the illustrations were captured by using the Sweave
function in R. The numbers of decimal places may be slightly different for those
reported in the selected output and in the text.

4.7.1 Odds ratio of atrial fibrillation between bisphosphonate
and non-bisphosphonate users

Eight studies were selected from Mak et al. (2009). The objective in Mak et al.
(2009) was to compare the incidents of atrial fibrillation among bisphosphonate
and non-bisphosphonate users. The odds ratio between the bisphosphonate and
non-bisphosphonate users was calculated as the effect size. There are substan-
tial differences in data and statistical analyses between Mak et al. (2009) and the
present illustration. As an illustration, we combine studies from both randomized
controlled trials and observational studies (RCT and Obs in the variable type in
the data set) (see also Cheung et al., 2012). It is generally not advisable to do this.
A preferred approach is to use a Bayesian meta-analysis, which was employed by
Mak et al. (2009). Under a Bayesian approach, results from the observational stud-
ies are used as the prior for analyzing the randomized controlled trials (e.g., Sutton
and Abrams, 2001). The findings of the present study may not be directly compa-
rable to those reported by Mak et al. (2009).

The data was stored in the object Mak09. We first show the full data set by typing
the name of the data set. The effect size and its sampling variance are yi (log of
the odds ratio) and vi, respectively.

R> #### Load the metaSEM library
R> library("metaSEM")
R> ## Display the full dataset
R> Mak09

Study type AF.BP Tot.BP AF.non.BP Tot.non.BP yi
1 Black (2007) RCT 94 3862 73 3852 0.25575
2 Cummings (2007) RCT 81 3236 71 3223 0.13082
3 Karam (2007) RCT 189 10018 94 5048 0.01331
4 Lyles (2007) RCT 29 1054 27 1057 0.07633
5 Papapoulous (2008) RCT 57 6830 18 1924 -0.11526



106 META-ANALYSIS

6 Abrahamsen (2009) Obs 797 14302 1280 28731 0.23558
7 Heckbert (2008) Obs 47 87 672 1598 0.48188
8 Sorensen (2008) Obs 724 3862 12862 77643 0.15019

vi age.mean study.duration
1 0.024867 73.0 3.0
2 0.027064 69.3 3.6
3 0.016233 73.5 NA
4 0.073466 74.5 5.0
5 0.073772 66.9 2.5
6 0.002146 74.3 10.0
7 0.048845 72.7 3.0
8 0.001793 76.1 6.0

4.7.1.1 Random-effects model

We conduct a random-effects meta-analysis by using the meta() command withy
and v as the arguments for the effect size and its sampling variance. After running
the analysis, we may store the results in an R object, say mak1. We extract the
results by calling up the summary() function.

R> mak1 <- meta(y=yi, v=vi, data=Mak09)
R> summary(mak1)
R> #### Alternative specification without storing the results
R> summary( meta(y=yi, v=vi, data=Mak09) )

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 1.81e-01 2.89e-02 1.24e-01 2.38e-01 6.25 4.2e-10
Tau2_1_1 9.98e-11 2.22e-03 -4.34e-03 4.34e-03 0.00 1

Intercept1 ***
Tau2_1_1
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 7.16
Degrees of freedom of the Q statistic: 7
P value of the Q statistic: 0.4124

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0

Number of studies (or clusters): 8
Number of observed statistics: 8
Number of estimated parameters: 2



UNIVARIATE META-ANALYSIS 107

Degrees of freedom: 6
-2 log likelihood: -10.27
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

----------------------- Selected output -----------------------

Before interpreting the results, we should check whether there are any estimation
problems in the analysis. We check the OpenMx status1 at the end of the out-
put. If the status is either 0 or 1, the optimization is fine; otherwise, the results are
not trustworthy. If there are problems in the optimization, we may try to rerun the
analysis with the rerun() function (see Section 7.6.3 for an example).

The test statistic of the homogeneity of effect sizes is Q(df = 7) = 7.1598,
p = 0.4124, which is statistically nonsignificant. Both 𝜏

2 (Tau2_1_1 in the
output) and I2 are approximately 0. The results suggest that the between-study
heterogeneity is trivial. Results based on the fixed- and the random-effects models
are nearly identical.

4.7.1.2 Fixed-effects model

As a demonstration, we fitted a fixed-effects model. A fixed-effects meta-analysis
is a special case of the random-effects meta-analysis by fixing the heterogene-
ity variance at zero. We may fix the heterogeneity to any value by using the
RE.constraints argument in meta(). It expects a matrix as input. In this
example, the dimension of the matrix is 1 × 1. If we specify a scalar, the value will
be automatically converted into a matrix.

R> ( mak2 <- summary(meta(y=yi, v=vi, data=Mak09,
RE.constraints=0)) )

R> #### Alternative specification
R> ( mak2 <- summary(meta(y=yi, v=vi, data=Mak09,

RE.constraints=matrix(0, ncol=1, nrow=1))) )

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 0.1808 0.0287 0.1245 0.2372 6.29 3.2e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0

----------------------- Selected output -----------------------
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There is no estimate on 𝜏2 because it is fixed at zero. The estimated average effects
(Intercept1 at the output) based on either a fixed- or a random-effects model are
the same. The estimated common effect with their 95% Wald CIs are equal: 0.1808
(0.1245, 0.2372). The results are identical (up to several decimal places) because
𝜏

2 ≈ 0. The analyses were based on a log of the odds ratio. After the analyses, we
can convert the estimated Intercept1 and its 95% lbound and ubound back
to an odds ratio.

R> ## Get the estimate and its 95% CI
R> ( Est <- mak2$coefficients["Intercept1",

c("Estimate","lbound","ubound")] )

Estimate lbound ubound
Intercept1 0.1808 0.1245 0.2372

R> ## Convert them into odds ratio
R> exp(Est)

Estimate lbound ubound
Intercept1 1.198 1.133 1.268

From the above calculations, the transformed odds ratio with its 95% Wald CI is
1.1982 (1.1326, 1.2677).

4.7.2 Correlation between organizational commitment
and salesperson job performance

Jaramillo et al. (2005, Table 1) conducted a meta-analysis of 61 studies on the
relationship between organizational commitment and salesperson job performance.
The effect size was a correlation coefficient. Jaramillo et al. (2005) corrected for
unreliability before conducting the analysis. As an illustration, we use the reported
(uncorrected) correlation coefficients here. We first show the first few cases by using
the head() command.

R> head(Jaramillo05)

Author Sample_size Sales Country IDV
1 Aryee et al. (2002) 179 mixed India 48
2 Balfour and Wechsler (1991) 232 nonsales USA 91
3 Bashaw and Grant (1994) 560 sales USA 91
4 Benkhoff (1997) 181 sales Germany 67
5 Brett et al. (1995) 156 sales USA 91
6 Brett et al. (1995) 180 sales USA 91

OC_scale OC_alpha JP_alpha r r_v
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1 Porter or Mowday 0.87 0.89 0.02 0.005582
2 other 0.82 NA 0.12 0.004187
3 Porter or Mowday 0.83 0.76 0.09 0.001757
4 Porter or Mowday NA 1.00 0.20 0.005092
5 Porter or Mowday 0.83 NA 0.08 0.006328
6 Porter or Mowday 0.83 NA 0.04 0.005538

The effect size and its sampling variance are r and r_v, respectively. We use r as
the effect size in this illustration. If a Fisher’s z score is required, we can calculate
it by

R> z <- with( Jaramillo05, 0.5*log((1+r)/(1-r)) )
R> z.v <- with( Jaramillo05, 1/(Sample.size-3) )

4.7.2.1 Random-effects model

We employ a random-effects model with the following syntax. By default, the I2

is calculated based on the Q statistic (with the I2="I2q" argument in calling the
meta() function). Readers can also use either the harmonic mean (I2="I2hm")
or the arithmetic mean (I2="I2am") to calculate the I2 (see Section 4.3.3).

R> summary( meta(y=r, v=r_v, data=Jaramillo05) )

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 0.18662 0.01933 0.14874 0.22451 9.65 < 2e-16 ***
Tau2_1_1 0.01703 0.00414 0.00893 0.02514 4.12 3.8e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 339.4
Degrees of freedom of the Q statistic: 60
P value of the Q statistic: 0

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0.81

Number of studies (or clusters): 61
Number of observed statistics: 61
Number of estimated parameters: 2
Degrees of freedom: 59
-2 log likelihood: -55.44
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OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

----------------------- Selected output -----------------------

The homogeneity test of effect sizes is statistically significant with Q(df = 60) =
339.3886, p < 0.001. The 𝜏

2 = 0.0170 and I2 = 0.8144. These indicate that there
is a high degree of heterogeneity. The between-study effect explains 81.44% of the
total variation. The estimated average population correlation coefficient (with its
95% Wald CI) based on a random-effects model is 0.1866 (0.1487, 0.2245).

4.7.2.2 Likelihood-based CI

The above CIs are based on the Wald approximation (labeled as a z statis-
tic approximation in the output). When the number of studies is small,
LBCI (labeled as a Likelihood-based statistic in the output; see
Section 2.4.5) is preferred. We may request the LBCI by specifying the inter-
vals.type="LB" argument. As I2 is a function of 𝜏2 (see Section 4.3.3), LBCI
on I2 is also reported.

R> summary( meta(y=r, v=r_v, data=Jaramillo05,
intervals.type="LB") )

----------------------- Selected output -----------------------

95% confidence intervals: Likelihood-based statistic
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 0.1866 NA 0.1480 0.2251 NA NA
Tau2_1_1 0.0170 NA 0.0106 0.0276 NA NA

Heterogeneity indices (I2) and their 95% likelihood-based CIs:
lbound Estimate ubound

Intercept1: I2 (Q statistic) 0.732 0.814 0.88

----------------------- Selected output -----------------------

The 95% LBCIs on 𝜏
2 and I2 are (0.0106, 0.0276), and (0.7319, 0.8767), respec-

tively.

4.7.2.3 Mixed-effects model

The moderators can be included by specifying the x argument in the meta() func-
tion. When there is more than one moderators, they can be combined using the
cbind() command. The explained variance R2 on the effect size with Equation
4.40 is also reported.
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4.7.2.4 One moderator

Let us consider the individualism index of the studies (IDV in the data set) as a
moderator. Individualism refers to the degree to which individuals are integrated
into groups (Hofstede, 2001). People in individualistic societies tend to focus on
personal achievements and individual rights, while people in collectivist societies
tend to think and act as members of a group. This variable is often used to explain
cross-cultural behavioral and psychological differences. We use the individualism
index to predict the variation of the effect sizes. We usually center the predictors to
improve numerical stability and ease of interpretations of the results.

R> ## Center IND: scale(IND, scale=FALSE)
R> ## scale=TRUE: standardize the variable
R> ## scale=FALSE: not standardize the variable
R> summary( meta(y=r, v=r_v, x=scale(IDV, scale=FALSE),

data=Jaramillo05) )

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 0.185963 0.019030 0.148664 0.223262 9.77 < 2e-16
Slope1_1 -0.001321 0.000977 -0.003236 0.000593 -1.35 0.18
Tau2_1_1 0.016341 0.004020 0.008461 0.024220 4.06 4.8e-05
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explained variances (R2):
y1

Tau2 (no predictor) 0.02
Tau2 (with predictors) 0.02
R2 0.04

----------------------- Selected output -----------------------

The estimated regression coefficient for IDV (Slope1_1 in the output) is not
statistically significant with ̂

𝛽IDV = −0.0013, SE = 0.0010 and p = 0.1762. The
𝜏

2s for the models with and without IDV are 0.0163, and 0.0170, respectively.
Thus, R2 = 1 − 0.0163∕0.0170 = 0.0407. The IDV can only explain about 4% of
the variation on the effect size of the correlation between organizational commit-
ment and job performance.

4.7.2.5 Two moderators

The data set includes the coefficient alpha of the scales on measuring organizational
commitment and job performance (OC_alpha and JP_alpha in the data set).
Besides correcting the correlations for unreliability with the approach advocated
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by Schmidt and Hunter (2015), Hox (2010) proposed an alternative approach to
adjust for measurement unreliability. Hox argued that the relationship between the
reliability coefficient (e.g., coefficient alpha) and the observed correlation can be
approximated by an additive model as long as the reliability is not too low (e.g.,
coefficient alpha > 0.70). The model for the ith study is

ri = 𝛽0 + 𝛽1r(xx′)i + 𝛽2r(yy′)i + ui + ei, (4.48)

where ri is the observed correlation, r(xx′)i is the reliability coefficient of the
predictor, r(yy′)i is the reliability coefficient of the dependent variable, ui is the
study-specific random effects, and ei is the sampling variance. One advantage of
this approach is that we can statistically test whether the reliabilities are significant
in predicting the effect size.

If the above model is correct, we may estimate the average population correlation
𝜌cor corrected for measurement unreliability by using r(xx′)i = r(yy′)i = 1.0, that is,

�̂�cor = 𝛽0 + 𝛽1(1.0) + 𝛽2(1.0). (4.49)

As an illustration, we include both OC_alpha and JP_alpha in the model. We
save the results to an object, say model1, that will be used later for model com-
parisons.

R> model1 <- meta(y=r, v=r_v, x=cbind(OC_alpha, JP_alpha),
data=Jaramillo05,
model.name="Unequal coefficients")

R> summary(model1)

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 -0.57554 0.50152 -1.55849 0.40742 -1.15 0.25114
Slope1_1 0.13110 0.45872 -0.76797 1.03018 0.29 0.77503
Slope1_2 0.80442 0.43038 -0.03912 1.64796 1.87 0.06161 .
Tau2_1_1 0.01873 0.00565 0.00765 0.02981 3.31 0.00092 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explained variances (R2):
y1

Tau2 (no predictor) 0.02
Tau2 (with predictors) 0.02
R2 0.00

----------------------- Selected output -----------------------

The estimated regression coefficients for OC_alpha and JP_alpha
(Slope1_1 and Slope1_2 in the output) are ̂

𝛽OCalpha
= 0.1311, SEOCalpha

=
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0.4587, pOCalpha
= 0.7750, and 𝛽JPalpha

= 0.8044, SEJPalpha
= 0.4304, pJPalpha

= 0.0616,
respectively. Neither of them are statistically significant at 𝛼 = 0.05 and R2 = 0.
Therefore, there is no evidence indicating that the reliabilities of the measures
are correlated with the effect size. Although the above approach is simple and
intuitive, there are limited studies comparing its performance against the con-
ventional approaches in correcting for unreliability. The main objective of this
example was to demonstrate how to impose equality constraints on the regression
coefficients in the metaSEM package. Further studies may investigate how useful
this approach is.

4.7.2.6 Testing the equality of all coefficients

Although both coefficients are nonsignificant in the above analysis, we test
H0 ∶ 𝛽equal = 𝛽OCalpha

= 𝛽JPalpha
as an illustration. First, we need to fit a model

with an equality constraint on the regression coefficients by specifying the
coef.constraints argument. The argument expects a p × m matrix, where p
is the number of effect sizes and m is the number of predictors. In this example,
it is 1 × 2 matrix, where the first and second elements refer to the regression
coefficients of OC_alpha and JP_alpha, respectively.

We may impose the equality constraint by using the same label in the constraint.
In this example, 0* represents the starting value for the regression coefficients
while Slope_equal is the name of both coefficients. We further call this model
model.name="Equal slopes" for ease of comparison and save the results
to an R object called model2.

R> ( constraint <- matrix(c("0*Slope_equal", "0*Slope_equal"),
nrow=1, ncol=2) )

[,1] [,2]
[1,] "0*Slope_equal" "0*Slope_equal"

R> model2 <- meta(y=r, v=r_v, x=cbind(OC_alpha, JP_alpha),
data=Jaramillo05, coef.constraints=constraint,
model.name="Equal coefficients")

R> summary(model2)

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 -0.60367 0.50745 -1.59826 0.39092 -1.19 0.23420
Slope_equal 0.48630 0.29531 -0.09249 1.06509 1.65 0.09961 .
Tau2_1_1 0.01937 0.00582 0.00796 0.03079 3.33 0.00088 ***
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explained variances (R2):
y1

Tau2 (no predictor) 0.02
Tau2 (with predictors) 0.02
R2 0.00

----------------------- Selected output -----------------------

The estimated constrained regression coefficient is 𝛽equal = 0.4863,SEequal =
0.2953, pequal = 0.0996. To test H0 ∶ 𝛽OCalpha

= 𝛽JPalpha
, we compare model1

against model2 with the anova() function.

R> anova(model1, model2)

base comparison ep minus2LL df AIC
1 Unequal coefficients <NA> 4 -31.01 31 -93.01
2 Unequal coefficients Equal coefficients 3 -30.02 32 -94.02

diffLL diffdf p
1 NA NA NA
2 0.9943 1 0.3187

The LR statistic is Δ𝜒2(df = 1) = 0.9943, p = 0.3187. Therefore, there is not
enough evidence to reject the null hypothesis of equal regression coefficients.

4.7.2.7 Testing categorical predictors

There are three types of samples: sales, nonsales, and mixed in the variable
Sales. A typical approach is to use one group, say nonsales, as the reference
group. We may then create two dummy variables (Dsales and Dmixed) with only 0
and 1 for sales and mixed to represent the differences between these groups to
the reference group, the nonsales. The model

y = 𝛽0 + 𝛽1Dsales + 𝛽2Dmixed + u + e, (4.50)

where 𝛽0 is the population effect size for nonsales, 𝛽1 is the difference between
sales and nonsales, and 𝛽2 is the difference between mixed and nonsales.

Although the model can be used to test the differences among the groups, it does
not provide the estimates for all groups. An alternative approach is to create three
indicator variables. We may fit a model without an intercept:

y = 𝛽1Dsales + 𝛽2Dmixed + 𝛽3Dnonsales + u + e, (4.51)

where 𝛽1, 𝛽2, and 𝛽3 now represent the average population effect sizes for sales,
mixed, and nonsales, respectively. In order to estimate the means for all three
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groups, the intercept must be fixed at 0; otherwise, the model is not identified. To
test whether all group means are the same, we compare the above model against
the intercept model. Under the null hypothesis H0 ∶ 𝛽1 = 𝛽2 = 𝛽3, the test statistic
has a chi-square distribution with df = 2.

First, we show the frequency table of the variable Sales. Then, we create three
indicator variables by using the ifelse() command.

R> table(Jaramillo05$Sales)

mixed nonsales sales
6 27 28

R> sales <- ifelse(Jaramillo05$Sales=="sales", yes=1, no=0)
R> nonsales <- ifelse(Jaramillo05$Sales=="nonsales", yes=1, no=0)
R> mixed <- ifelse(Jaramillo05$Sales=="mixed", yes=1, no=0)

To fit the model without an intercept, we fix the intercept at 0 by specifying the
intercept.constraints=matrix(0, ncol=1, nrow=1) argument.
As the original starting values assume that there is an intercept, there were
estimation problems in the model without the intercept. We provide starting values
for the regression coefficients by using the coef.constraints argument:

R> ( startvalues <- matrix(c("0*Slope1_1", "0*Slope1_2",
"0*Slope1_3"), nrow=1, ncol=3) )

[,1] [,2] [,3]
[1,] "0*Slope1_1" "0*Slope1_2" "0*Slope1_3"

R> model3 <- meta(y=r, v=r_v, x=cbind(sales, mixed, nonsales),
data=Jaramillo05, coef.constraints=startvalues,
intercept.constraints=matrix(0, ncol=1, nrow=1),
model.name="Indicator variables")

R> summary(model3)

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Slope1_1 0.22830 0.02759 0.17421 0.28238 8.27 2.2e-16 ***
Slope1_2 0.14659 0.06328 0.02257 0.27061 2.32 0.021 *
Slope1_3 0.15196 0.02794 0.09720 0.20672 5.44 5.4e-08 ***
Tau2_1_1 0.01573 0.00385 0.00818 0.02328 4.08 4.4e-05 ***
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explained variances (R2):
y1

Tau2 (no predictor) 0.02
Tau2 (with predictors) 0.02
R2 0.08

----------------------- Selected output -----------------------

The estimated average effects and their 95% Wald CIs for the sales, mixed,
and nonsales are 0.2283 (0.1742, 0.2824), 0.1466 (0.0226, 0.2706), and 0.1520
(0.0972, 0.2067), respectively. All are statistically significant at 𝛼 = 0.05.

When the null hypothesis H0 ∶ 𝛽1 = 𝛽2 = 𝛽3 is true, this model is equivalent to
the model with only an intercept. As the model with only an intercept model4
is nested within the model with predictors model3, we compare them with the
following code:.

R> model4 <- meta(y=r, v=r_v, data=Jaramillo05)
R> anova(model3, model4)

base comparison ep minus2LL df AIC
1 Indicator variables <NA> 4 -59.56 57 -173.6
2 Indicator variables Meta analysis with ML 2 -55.44 59 -173.4

diffLL diffdf p
1 NA NA NA
2 4.114 2 0.1278

The LR statistic is Δ𝜒2(df = 2) = 4.1140, p = 0.1278. Therefore, there is not
enough evidence to reject the null hypothesis of equal population correlations.

4.8 Concluding remarks and further readings

This chapter introduced and compared the basic ideas of fixed- and random-effects
meta-analyses. A fixed-effects model is used when researchers are mainly
interested in the collected studies, whereas a random-effects model is used
when researchers want to generalize the findings to other potential studies. The
conventional assumption of common effects (homogeneity of effect sizes) is used
for the fixed-effects model. Readers may refer to, for example, Bonett (2008, 2009)
and Shuster (2010) and the comments followed for alternative models without the
assumption of a common effect. The meta-analytic models can be formulated as
structural equation models by fixing the known sampling variances as variance
of measurement error via definition variable. Future studies may explore how the
techniques in SEM can be applied in the SEM-based meta-analysis.
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5

Multivariate meta-analysis

This chapter extends univariate meta-analysis to a multivariate meta-analysis that
allows researchers to analyze more than one effect size per study. We begin the
chapter by discussing different types of dependence in the effect sizes and the need
for a multivariate meta-analysis to handle multiple effect sizes. Several conven-
tional approaches to conducting multivariate meta-analysis are briefly mentioned.
The structural equation modeling (SEM) approach to conducting fixed-, random-,
and mixed-effects multivariate meta-analyses is introduced. We then extend the
multivariate meta-analysis to mediation and moderation models among the true
effect sizes. Several examples are used to illustrate the procedures in the R statisti-
cal environment.

5.1 Introduction

Most meta-analytic procedures assume independence among the effect sizes.
Because of the research design of the primary studies, many effect sizes reported
in publications are not independent. The assumption of independence among the
effect sizes may not be tenable in many research settings. Moreover, many research
questions are multivariate in nature. A single effect size may not be sufficient to
summarize the outcome effect. Multivariate meta-analysis is required to address
the complexity of the research questions.

5.1.1 Types of dependence

There are several types of dependence in a meta-analysis (e.g., Hedges et al., 2010).
The first type is the dependence owing to sampling error. This type of dependence
is introduced using the same participants to calculate the effect sizes, for example,
the standardized mean differences (SMDs) on the verbal subtest (SAT-verbal) and
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the math subtest (SAT-math) of the Scholastic Aptitude Test (SAT) calculated from
the same participants (Kalaian and Raudenbush, 1996) and the correlation matrices
calculated from the same participants (Cheung and Chan, 2004). The key feature of
this type of dependence is that we may estimate the degree of dependence for each
study when sufficient information, such as the correlation among the original vari-
ables, is given (see Section 3.3 for details). Besides the sampling variances, we also
need to estimate the sampling covariances. The estimated dependence (the condi-
tional sampling covariance matrix Vi in Equation 5.4 introduced later) is treated as
known values in a multivariate meta-analysis. This type of dependence is always
present even though a fixed-effects model is used.

The second type of dependence is the dependence on the true effect sizes. Using
the SMDs on SAT-verbal and SAT-math calculated from the same participants as
an example, the true effect sizes on SAT-verbal and SAT-math may be positively
correlated at the population level. That is, studies with a larger true effect on the
SAT-verbal also tend to have a larger true effect on the SAT-math. This type of
dependence (correlation) is the nature of the phenomenon being studied, which is
not caused by using the same participants to calculate the effect sizes. It is rep-
resented by the between-study variance component T2 in Equation 5.13. When
we are only given the information on one study, we are not able to estimate this
type of dependence even if the raw data are given. It has to be estimated with a
random-effects model based on all studies. Even the effect sizes are conditionally
independent (the off-diagonal elements of Vi are zero), the true effect sizes can still
be correlated (the off-diagonal elements of T2 are nonzero) (see Section 5.7.1 for
an example).

The third type of dependence is due to the observed effect sizes nested within
some hierarchies. For example, multiple effect sizes are reported by each study.
Unlike the types of dependence introduced earlier, the degree of dependence is
usually unknown. When we are synthesizing the multiple effect sizes, we need to
take the dependence into account by estimating the degree of dependence.

Both this chapter and Chapter 6 address nonindependent effect sizes. This chapter
applies a multivariate meta-analysis to address the first and second types of depen-
dence when the conditional sampling covariances Vi among the effect sizes are
known (e.g., Arends et al., 2003; Becker, 1992, 1995, 2007; Cheung, 2013b; Jack-
son et al., 2011; Kalaian and Raudenbush, 1996; Raudenbush et al., 1988). When
the sampling covariances in Vi are not available, it may be difficult to apply the
multivariate meta-analysis. Chapter 6 uses a three-level model to address the third
type of dependence when the conditional sampling covariances among the effect
sizes are unknown (Cheung, 2014c).

5.1.2 Univariate meta-analysis versus multivariate
meta-analysis

Before introducing the multivariate meta-analysis, one obvious but crucial question
is whether the multivariate approach is always better than the univariate approach.
We compare these two approaches from a missing data perspective. As the primary
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studies are conducted by different researchers, it is reasonable to expect that the
numbers of effect sizes reported in each study may be different. Let us consider the
meta-analysis reported by Kalaian and Raudenbush (1996) as an example. These
authors reported 47 studies on the SMDs of SAT-verbal and SAT-math. Among
these studies, 20 studies reported both effect sizes, while 18 and 9 studies reported
only the effect sizes on SAT-verbal and SAT-math, respectively (see Table 1 in
Kalaian and Raudenbush (1996) for the data).

One option to handle the data is to conduct two separate univariate meta-analyses
on the SAT-verbal and the SAT-math. This approach is similar to the pairwise
deletion in a primary data analysis, where the means and variances of the vari-
ables are independently calculated for each variable (effect size in a meta-analysis).
The correlation between SAT-verbal and SAT-math is ignored in separate univari-
ate analyses. The univariate approach assumes that the mechanism of the missing
effect sizes in each study is missing completely at random (MCAR) (see Section 8.2
for more details on missing data). This assumption implies that the missingness is
unrelated to the values of the missing data and other effect sizes in the data set.

MCAR is rather restrictive with regard to applied research. A less restrictive
assumption is missing at random (MAR), which assumes that the missing data can
be related to other effect sizes included in the analysis. In other words, the miss-
ingness on SAT-verbal can be related to the observed effect size on SAT-math (and
vice versa). When there are moderators in a mixed-effects meta-analysis, the miss-
ing values can be related to the moderators, such as the year of publication and the
study characteristics. The MAR is assumed on the missing values under a multi-
variate meta-analysis. The missing data can be handled by the use of the maximum
likelihood (ML; also known as full information maximum likelihood or FIML in
SEM literature) estimation method or multiple imputation (MI). The literature on
analyzing missing data analysis consistently shows that ML and MI are better than
pairwise deletion in handling missing data when the missing data mechanism is
either MCAR or MAR (Enders, 2010). Section 8.2 compares and contrasts the ML
and MI in handling missing data. We mainly focus on ML in this chapter.

When the missing value is related to the value of the missing data, which is sim-
ilar to publication bias in a meta-analysis, it is known as not missing at random
(NMAR) or nonignorable missingness. Neither the pairwise deletion nor ML is
unbiased (e.g., Schafer, 1997). However, the bias of the ML is still less than that on
the pairwise deletion (Jamshidian and Bentler, 1999); (Muthén et al., 1987). There-
fore, ML is generally recommended to be used to handle missing data (e.g., Enders,
2010; Schafer and Graham, 2002). When we put these findings in the background
of a meta-analysis, it is clear that the multivariate meta-analysis should be used to
handle multiple effect sizes.

On the other hand, Ishak et al. (2008) argued that we may conduct several uni-
variate meta-analyses without any significant risk of bias or loss of precision in
the estimates if our interest is only on estimating the fixed effects. However, Riley
(2009) showed that the estimated fixed effects in a multivariate meta-analysis gen-
erally have smaller standard errors (SEs) and mean square errors than those based
on separate univariate meta-analyses. Demidenko (2013) also demonstrated similar
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results. The SEs for the multivariate meta-analysis and several univariate analyses
will only be equal when either (i) the known sampling variances are the same for all
studies, that is, V1 = V2 = · · · = Vk, or (ii) the effect sizes are conditionally inde-
pendent, that is, Vi is a diagonal matrix. Hafdahl (2007) showed another condition
for the equivalence of both the approaches under a fixed-effects model. Besides
these scenarios, the estimates based on the multivariate meta-analysis are more
precise than those based on the separate univariate meta-analysis. Moreover, the
multivariate meta-analysis allows us to estimate the degree of dependence (cor-
relation) between the true effect sizes that is also informative in a meta-analysis.
Therefore, a multivariate meta-analysis is generally recommended over several uni-
variate meta-analyses (Jackson et al., 2011).

5.2 Fixed-effects model

When all of the studies share the same population or true effect sizes, a fixed-effects
model may be used. Let p be the number of effect sizes per study involved in a
multivariate meta-analysis and pi be the number of the observed effect sizes in the
ith study. As the primary studies are conducted by different researchers, it is likely
that different numbers of effect sizes are reported in each study. When there is no
missing effect size, pi is the same as p; otherwise, pi is smaller than p. It is more
convenient to use the vector notation to handle multiple effect sizes. The multiple
effect sizes in the ith study may be stacked into a pi × 1 vector of yi. The model for
the ith study is

yi
pi×1

= Xi
pi×p

f i
p×1

+ ei
pi×1

, (5.1)

where yi is the pi × 1 vector of the observed effect sizes, Xi is a pi × p design matrix
with 0 and 1 to select the observed effect sizes, f i is a p × 1 vector of true or
population effect sizes, and ei is a pi × 1 vector of the sampling error. When the
sample sizes are reasonably large, ei is assumed to be multivariate normally dis-
tributed with a mean vector of zero and a known covariance matrix Vi, that is,
ei ∼  (0,Vi) (see Section 3.3 for the formulas for the common effect sizes for
multivariate meta-analysis).

Suppose that there are k studies involved in a meta-analysis; all the true effect
sizes are assumed the same, that is, 𝛽F = f 1 = f 2 = · · · = f k. This model is also
known as the common effects model. The model for the ith study is

yi = Xi𝛽F + ei. (5.2)

Suppose that we are conducting a multivariate meta-analysis with two effect sizes.
Study 1 is complete without missing data, while Studies 2 and 3 report only the
first and second effect sizes, respectively. The model is

Study 1:

[
y1
y2

]
(1)

=
[

1 0
0 1

]
(1)

[
𝛽1
𝛽2

]
F

+
[
e1
e2

]
(1)
,
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Study 2:
[
y1

]
(2) =

[
1 0

]
(2)

[
𝛽1
𝛽2

]
F

+
[
e1

]
(2),

Study 3:
[
y2

]
(3) =

[
0 1

]
(3)

[
𝛽1
𝛽2

]
F

+
[
e2

]
(3),

where the subscripts outside the parenthesis indicate studies. We may stack all
effect sizes and write the model as

y = X𝛽F + e, (5.3)

where y =
⎡⎢⎢⎢⎣
y1
y2
⋮
yk

⎤⎥⎥⎥⎦, X =
⎡⎢⎢⎢⎣
X1
X2
⋮
Xk

⎤⎥⎥⎥⎦, and e =
⎡⎢⎢⎢⎣
e1
e2
⋮
ek

⎤⎥⎥⎥⎦. As the effects are likely to be correlated

within a study, the off-diagonals of Vi are usually nonzero, while ei and ej from two
studies are independent, that is, Cov(ei, ej) = 0. Therefore, the conditional sam-
pling covariance matrix V is a block diagonal (symmetric) matrix,

V =
⎡⎢⎢⎢⎣
V1
0 V2
⋮ ⋱ ⋱
0 · · · 0 Vk

⎤⎥⎥⎥⎦ . (5.4)

In our example, the stacked matrices with a study index in parenthesis are

⎡
⎢⎢⎣

y1(1)

y2(1)

y1(2)

y2(3)

⎤
⎥⎥⎦ =

X

⎡
⎢⎣

1 0
0 1
1 0
0 1

⎤
⎥⎦

βF

β1

β2
+

ey

⎡
⎢⎢⎣

e1(1)

e2(1)

e1(2)

e2(3)

⎤
⎥⎥⎦ and

V =

⎡
⎢⎢

V11(1) V21(1)

V21(1) V22(1)

0 0 V11(2)

0 0 0 V22(3)

⎤
⎥⎥

,

(5.5)

where the numbers in parentheses in the subscripts indicate the studies.

5.2.1 Testing the homogeneity of effect sizes

We may generalize the Q statistic proposed by Cochran (1954) in the univariate
meta-analysis to multivariate meta-analysis (see Becker, 1992; Demidenko, 2013;
Hedges and Olkin, 1985). For a multivariate meta-analysis, the Q statistic is
defined as

Q = (y − X ̂
𝛽F)TV−1(y − X ̂

𝛽F), (5.6)
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where �̂�F is estimated common effect sizes under a fixed-effects model by
Equation 5.9. As there are likely missing effect sizes in a multivariate
meta-analysis, we may filter out the missing effect sizes before testing the
null hypothesis H0 ∶ 𝛽F = X1f 1 = X2f 2 = · · · = Xkf k. Under the null hypothesis,
the Q statistic is approximately distributed as a chi-square distribution with
(
∑k

i=1 pi − p) degrees of freedom (dfs) in large samples.

5.2.2 Estimation and hypotheses testing

By treating V in Equation 5.4 as known, we may estimate 𝛽F by minimizing the
criterion FGLS with the generalized least squares (GLS), which is a direct general-
ization of the univariate meta-analysis in Equation 4.6 (Becker, 1992, 1995; Hedges
and Olkin, 1985):

FGLS = (y − X𝛽F)TV−1(y − X𝛽F)
= yTV−1y − yTV−1X𝛽F − 𝛽

T
FX

TV−1y + 𝛽
T
FX

TV−1X𝛽F

= yTV−1y − 2𝛽T
FX

TV−1y + 𝛽
T
FX

TV−1X𝛽F.

(5.7)

To solve the above equation, we take the partial derivative of FGLS with respect
to 𝛽F,

𝜕FGLS

𝜕𝛽F
=

𝜕(yTV−1y − 2𝛽T
FX

TV−1y + 𝛽
T
FX

TV−1X𝛽F)
𝜕𝛽F

= −2XTV−1y + 2XTV−1X𝛽F.

(5.8)

By setting 𝜕FGLS

𝜕𝛽F
= 0, the solution for ̂

𝛽F is

�̂�F = (XTV−1X)−1XTV−1y. (5.9)

As 𝜕
2FGLS

𝜕𝛽
2
F

= 2XTV−1X, which is positive definite, the solution is a local minimum.

Similar to the asymptotic sampling variance in the univariate meta-analysis
(Equation 4.12), we may derive the asymptotic sampling covariance matrix
̂ΩF = Cov(�̂�F) by treating (XTV−1X)−1XTV−1 as a constant matrix:

̂ΩF = Cov((XTV−1X)−1XTV−1y)
= (XTV−1X)−1XTV−1Cov(y)V−1X(XTV−1X)−1

= (XTV−1X)−1XTV−1VV−1X(XTV−1X)−1 as Cov(y) = V
= (XTV−1X)−1(XTV−1X)(XTV−1X)−1

= (XTV−1X)−1
.

(5.10)

The diagonal elements of ̂ΩF represent the sampling variances of the parameter
estimates in ̂

𝛽F, while the off-diagonal elements represent the sampling covariances
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among the parameter estimates. We may use the sampling variances to test the
significance of the parameter estimates. Suppose that we want to test the ith effect
size in �̂�F, that is, H0 ∶ 𝛽F[i] = 𝛽0; we may use a Wald statistic to test it:

z
�̂�F[i]

=
�̂�F[i] − 𝛽0√

̂ΩF[i,i]

, (5.11)

where ̂ΩF[i,i] is the ith diagonal element in ̂ΩF. Under the null hypothesis, z
�̂�F[i]

has
approximate standard normal distribution. Approximate Wald confidence intervals
(CIs) on the parameter estimates may also be constructed.

5.3 Random-effects model

In applied research, it is reasonable to expect that each study may have its own
study-specific effect sizes because of the differences in samples, design, and mea-
sures. Besides the sampling error, the random-effects model includes the random
effects. We may use two levels to represent the model:

Level 1: yi = f i + ei,
Level 2: f i = 𝛽R + ui,

(5.12)

where 𝛽R is the average population effect vector under the random-effects model
and ui ∼  (0,T2) is the heterogeneity variance–covariance matrix that has to be
estimated.

The above two-level model can be combined into a single equation with all of the
data stacked together. Two selection matrices (X for the fixed effects and Z for the
random effects) are required to filter the missing effect sizes. The random-effects
model is

y = X𝛽R + Zu + e, (5.13)

where Z = Diag(Z1,Z2,… ,Zk) is selection matrix of 1 and 0 to select the random
effects, u = [uT

1 |uT
2 | · · · |uT

i ]
T is the stacked random effects for all studies, 𝛽R is the

average population effect sizes under the random-effects model, and y, X, and e
are defined in Equation 5.3. ui ∼  (0,T2) is the study-specific random effects in
the ith study, where T2 is a p × p nonnegative definite matrix. Loosely speaking,
a nonnegative definite matrix means that the diagonals of T2 (variances) cannot
be negative and the off-diagonals in terms of correlations must stay within the
meaningful range, that is, −1 to +1. Moreover, the values of the correlations are
constrained by the triangular inequality condition. The triangular inequality con-
dition states the possible range of correlation between variables x and y when the
correlations with a third variable, say z, are fixed (Wothke, 1993). We will address
the issue of nonpositive definite matrix later. Using our previous example as an
illustration, the random-effects model with a study index in parenthesis is
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y

⎡
⎢⎢

y1(1)

y2(1)

y1(2)

y2(3)

⎤
⎥⎥ =

X

⎡
⎢

1 0
0 1
1 0
0 1

⎤
⎥

βR

β1

β2
+

Z

⎡
⎢

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤
⎥

u

⎡
⎢⎢⎢⎢⎢

u1(1)

u2(1)

u1(2)

u2(2)

u1(3)

u2(3)

⎤
⎥⎥⎥⎥⎥+

e

⎡
⎢⎢

e1(1)

e2(1)

e1(2)

e2(3)

⎤
⎥⎥ , (5.14)

In fixed-effects models, there is only one source of variation—the condi-
tional sampling covariance Vi. Besides the conditional sampling covariance,
random-effects models include an extra between-study variance component T2.
Although both Vi and T2 are related to the dependence of the effect sizes, their
meanings are different. The sampling covariances (dependence) in Vi are inherited
from the measures and sampling error. The correlation among the effect sizes
in Vi is due to the use of the same samples to calculate the multiple effect sizes
in the same studies or due to the use of the same control group to calculate the
treatment effect sizes. Even under a fixed-effects model, where the population
effect sizes are fixed (i.e., constant) at the population, the observed effect sizes are
still correlated. When the sample sizes get larger and larger, Vi approaches zero.
On the other hand, T2 refers to the dependence at the population level, regardless
of the sample sizes.

5.3.1 Structure of the variance component of random effects

The off-diagonals of T2 indicate the covariance among the true effect sizes. When
the covariances are positive, it indicates that studies with a positive effect on one
effect size tend to have a positive effect on the other effect size at the population
level. There are several choices for the structure of T2. The most obvious choice is
that T2 is simply a nonnegative definite unstructured matrix,

T2
Un =

⎡⎢⎢⎢⎢⎣
𝜏

2
11

𝜏
2
21 𝜏

2
22

⋮ ⋱ ⋱
𝜏

2
p1 · · · 𝜏

2
p(p−1) 𝜏

2
pp

⎤⎥⎥⎥⎥⎦
. (5.15)

This is the default choice for most multivariate meta-analyses, especially when the
number of effect sizes per study is small. The main advantage of this structure is
that all covariances among the true effect sizes are empirically estimated. This gives
us useful information on how the true effect sizes are correlated. The heterogeneity
variances can be different for different effect sizes.

The use of an unstructured matrix in T2 may not always be feasible. When
the number of studies is small, there may not be sufficient data to estimate all
p(p + 1)∕2 elements in T2. ̂T

2
may be negative definite, which is not acceptable in

theory. This may happen quite often in meta-analytic structural equation modeling
(MASEM; see Chapter 7), where the number of effect sizes per study is the
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number of correlation coefficients. For example, Cheung (2014a) illustrated a
random-effects MASEM on the higher-order factor structure of the five-factor
model from a data set from Digman (1997). The effect sizes were 10 correlation
coefficients (a 5 × 5 correlation matrix). Thus, there were a total of 55 elements in
T2. As there were only 14 studies, the estimated T2 was negative definite when an
unstructured matrix was used in T2.

One way of working around this is to use a diagonal structure on T2, meaning
that the true multiple effect sizes are uncorrelated at the population,

T2
Diag =

⎡⎢⎢⎢⎣
𝜏

2
11
0 𝜏

2
22

⋮ ⋱ ⋱
0 · · · 0 𝜏

2
pp

⎤⎥⎥⎥⎦ . (5.16)

This reduces the number of parameters in T2 from p(p + 1)∕2 elements to
only p elements. Although this model is similar to running several univariate
meta-analyses on individual effect sizes, there are still advantages in using it.
First, the multivariate meta-analysis still takes the conditional sampling covariance
Vi into account, whereas the univariate meta-analyses further assume that the
diagonals of Vi are zero. Second, the multivariate meta-analysis, including all
multivariate effect sizes in the model, allows comparisons of models involving
the fixed or the random effects. For example, researchers may compare whether
the average effect sizes are the same or whether the heterogeneity variances
are the same in different effect sizes by using likelihood ratio (LR) statistic. It
should be noted, however, that the covariance structure is misspecified because
the off-diagonal elements are fixed at zero. The test statistics may be inaccurate.
Further studies may address the empirical performance of this approach.

Another possible choice is the compound symmetry structure. This structure may
be useful if we want to test whether the heterogeneity variances are the same for
the true multiple effect sizes and whether the correlations among the true multiple
effects are the same,

T2
CS =

⎡⎢⎢⎢⎣
𝜏

2
11

𝜏
2
21 𝜏

2
11

⋮ ⋱ ⋱
𝜏

2
21 · · · 𝜏

2
21 𝜏

2
11

⎤⎥⎥⎥⎦ . (5.17)

The compound symmetry structure may also be used to analyze a three-level
meta-analysis within the multivariate meta-analysis framework (see Section 6.4).
A final option is a zero matrix, T2

Zero = 0. The random-effects model is then
equivalent to a fixed-effects model.

5.3.2 Nonnegative definite of the variance component of random
effects

When we calculate a covariance matrix S from p observed variables with n > p,
where n is the sample size and there is no missing data, S is usually nonnegative
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definite, that is, xTSx ≥ 0 for any p × 1 vector of x with x ≠ 0. A nonnegative
covariance matrix means that

(i) the variances are always nonnegative;

(ii) the correlation coefficients are within the ±1 boundary; and

(iii) the combinations of the correlations meet some conditions so that they are
real correlations (e.g., Wothke, 1993).

As ̂T
2

is estimated from the true effect sizes (latent scores in the SEM framework)
and there are usually incomplete effect sizes, some or all of the above conditions
may not meet. If ̂T

2
is negative definite, it may not be appropriate to be interpreted

as a covariance matrix. Several approaches have been suggested to handle this sit-
uation (e.g., Demidenko, 2013; Pinheiro and Bates, 1996). There are two general
approaches—the parameterized approach and the constrained approach.

The parameterized approach uses a set of new parameters in the optimization.
After the optimization, T2 is calculated. One popular choice is based on the
Cholesky decomposition using

T2 = LLT
, (5.18)

where L is a lower triangular matrix. Let us illustrate the idea of the Cholesky
decomposition on a single variable. If we want to ensure that the estimated vari-
ance is nonnegative, we may use the standard deviation 𝜎 as the parameter in the
model. This is an unconstrained optimization because we do not put any restric-
tion on 𝜎. After the optimization, �̂� can be positive, zero, or even negative. As we
take the squared of �̂� as the estimate of 𝜎2, �̂�2 is always nonnegative. Conceptually,
the Cholesky decomposition is similar to taking the square root of the covariance
matrix. In the analysis, we replace T2 by LLT. After fitting the models, ̂L is esti-
mated instead of ̂T

2
. We compute ̂T

2
from Equation 5.18. By using the Cholesky

decomposition, we can guarantee that ̂T
2

is always nonnegative.
Although the Cholesky decomposition is attractive in ensuring ̂T

2
to be nonnega-

tive definite, this approach has several limitations. First, there is no unique solution
on the Cholesky decomposition. Similar to the case that �̂� can be negative, there
may be multiple solutions for the Cholesky decomposition. Although the presence
of multiple solutions may not affect the calculated ̂T

2
, the computer algorithm may

switch between different solutions. This may make it slow to converge to the final
solution. Another issue is that ̂L bears no meaning. Therefore, the constructed SEs
and CIs on ̂L are basically useless. Extra steps are required to translate these SEs
(or CIs) into the correspondent elements in ̂T

2
. Finally, the analysis becomes com-

plicated when there are equality constraints on some of the elements in T2. For
example, extra care has to be applied to the Cholesky decomposition on T2 for the
compound symmetry structure.
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A second approach is to impose nonlinear constraints on T2 such that the esti-
mated matrix is always nonnegative. One option is to parameterize T2 as

T2 = DPD, (5.19)

whereP andD are the correlation matrix and the matrix of standard deviations of the
random effects, respectively. Then, we set the upper and lower bounds on P within
the ±1 boundary. This approach can ensure conditions (i) and (ii) listed earlier.
Although the correlation coefficients are within the ±1 boundary, the matrix can
still be negative definite (e.g., Wothke, 1993). Similar to the Cholesky decomposi-
tion, this method cannot be easily implemented when there are constraints in T2.

Another option is to set the lower bounds on the diagonals ofT2 to be nonnegative,
that is, Diag(T2) ≥ 0. One advantage of this option is that it works fine even when
there are equality constraints on T2. Condition (i) can be easily fulfilled. However,
there is no guarantee that conditions (ii) and (iii) can be met. The current version of
the metaSEM package (0.9-0) has only implemented this option. Future versions
may explore other methods to ensure the positive definiteness of ̂T

2
.

5.3.3 Estimation and hypotheses testing

Similar to the univariate random-effects meta-analysis, there are several methods
to estimate the heterogeneity variance component matrix of T2. Becker (1992)
proposed an unweighted and weighted methods of moment approach to estimate
the variance components for data without missing values. Demidenko (2013) dis-
cussed the methods of moment approach to estimate the variance component in
the presence of missing values. The popular DerSimonian–Laird (DL) estimator
(DerSimonian and Laird, 1986) in a univariate meta-analysis has been extended
to a multivariate meta-analysis, (Chen et al., 2012; Jackson et al., 2010). Both
ML and restricted (or residual) maximum likelihood estimation (REML) estima-
tion methods implemented in a conventional multilevel modeling framework (e.g.,
Arends et al., 2003; Kalaian and Raudenbush, 1996; van Houwelingen et al., 2002)
and an SEM framework (Cheung, 2013a, b) can also be used to conduct the mul-
tivariate meta-analysis. Hafdahl (2008) investigated the misspecified multivariate
case of fixed-effects methods for heterogeneous correlation matrices. Besides the
frequentist approach, the Bayesian approach may also be used (e.g., Bujkiewicz
et al., 2013; Nam et al., 2003; Wei and Higgins, 2013).

Assuming that we have estimated T2, we may calculate the unconditional sam-
pling covariance matrix for the ith study ̃Vi = Zi

̂T
2
ZT
i + Vi, where Zi is used to

select the random effects. We stack the conditional sampling covariance matrix ̃Vi
together as we did in Equation 5.4:

̃V =
⎡⎢⎢⎢⎣
̃V1
0 ̃V2
⋮ ⋱ ⋱
0 · · · 0 ̃Vk

⎤⎥⎥⎥⎦ . (5.20)
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We treat ̃V as known and estimate 𝛽R by minimizing the criterion FGLS with GLS:

FGLS = (y − X𝛽R)T ̃V
−1(y − X𝛽R). (5.21)

Similar to the solutions in Equation 5.9, the fixed-effects and their asymptotic
sampling covariance matrix for the random-effects model can be estimated by

�̂�R = (XT ̃V
−1
X)−1XT ̃V

−1
y and

̂ΩR = (XT ̃V
−1
X)−1

.

(5.22)

̂ΩR can be used to test the significance of the individual parameters in ̂
𝛽R.

z
�̂�R[i]

=
̂
𝛽R[i] − 𝛽0√

̂ΩR[i,i]

(5.23)

has an approximate standard normal distribution in testingH0 ∶ �̂�R[i] = 𝛽0. Approx-
imate Wald CIs on the parameter estimates can also be constructed based on the
estimated SEs.

5.3.3.1 Testing the variance component

Under the random-effects model, we sometimes want to test H0 ∶ T2 = 0. We may
create two models for comparison—one model with no restriction on T2 and the
other model with T2 = 0. As these two models are nested, an LR statistic may be
used to compare these two models. Because of the boundary condition as discussed
in Section 4.3.2, the test statistic is not distributed as a chi-square distribution.
Generally, it is difficult to derive the exact distribution because it is a mixture of
chi-square variates (see Stoel et al., 2006).

When the multivariate effect sizes are similar in scale, for example, SMDs on
SAT-verbal and SAT-math in Kalaian and Raudenbush (1996), it is of interest to
test whether the heterogeneity variances are the same in the multivariate effect
sizes. This can be tested by comparing two nested models—one model without
any constraint on the diagonals and the other model with equality constraints on
the diagonals. Under the null hypothesis H0 ∶ 𝜏

2
11 = 𝜏

2
22 = · · · = 𝜏

2
pp, the difference

on the LR statistics has a chi-square distribution with (p − 1) dfs. We illustrate some
examples in Section 5.7.

5.3.4 Quantifying the degree of heterogeneity of effect sizes

Equation 4.27 defines an I2 (Higgins and Thompson, 2002) based on the estimated
heterogeneity with the typical within-study sampling variance that can be used
to quantify the degree of between-study heterogeneity to the total variance
of the effect sizes in univariate meta-analysis. In the case of the multivariate
meta-analysis, the estimated variance component of the heterogeneity is T2. Jack-
son et al. (2012) proposed several multivariate extensions to the I2 that may be used
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to quantify the degree of heterogeneity in a multivariate meta-analysis. The I2
Q(Uni)

in a univariate meta-analysis based on the Q statistic is I2
Q(Uni) = 1 − df(Uni)∕Q(Uni),

where Q(Uni) and df(Uni) are the Q statistic and its degrees of freedom in testing
the homogeneity of effect sizes in Equation 4.14, respectively. One of them is the
multivariate generalization of the I2

Q(Uni):

I2
Q(Mul) = 1 −

df(Mul)

Q(Mul)
, (5.24)

where Q(Mul) and df(Mul) are the Q statistic and its dfs in testing the homogeneity of
effect sizes in Equation 5.6, respectively. When the estimated I2

Q(Mul) is negative, it
is truncated to zero.

When the heterogeneity varies across the effect sizes, it is not clear how useful a
single index on the multiple effect sizes is. Alternatively, we may apply the I2 on
each effect size. This gives us insights on the heterogeneity of the individual effect
sizes. There may be a high degree of heterogeneity on some effect sizes, while the
heterogeneity on the other effect sizes may be very low. The metaSEM package
(Cheung, 2014b) uses this approach to quantify the degree of heterogeneity in a
multivariate meta-analysis.

5.3.5 When the sampling covariances are not known

Models for multivariate meta-analyses usually assume that the sampling variances
and covariances of the effect sizes are known. The sampling variances of the effect
sizes are usually available, whereas the sampling covariances or correlations of the
effect sizes may be missing in some studies. Several strategies have been suggested
for handling the missing correlations among the effect sizes (see Jackson et al.,
(2011) for a discussion).

The first approach is to conduct univariate meta-analyses on separate effect
sizes by ignoring the dependence of the effect sizes (see Section 5.1.2). The
second approach is to estimate the sampling correlation from other sources.
For example, Raudenbush et al. (1988) illustrated a multivariate meta-analysis
on the SMDs of the SAT-verbal and SAT-math. As the correlation between
SAT-verbal and SAT-math was not reported in the original studies, the authors
assumed that 𝜌 = 0.66, the population correlation between SAT-verbal and
SAT-math reported by the Educational Testing Service. Another approach is
to use the correlation between the observed effect sizes to approximate the
within-study correlation (Hox, 2010). However, Hox (2010) reminded readers that
the estimated correlation is based on an ecological analysis that may confound the
within-study correlation and the between-study correlation.

The fourth approach is to provide a range of correlations for a sensitivity anal-
ysis. If the results are similar for different values of correlation used, the results
are robust for the correlation used in the analysis. The fifth approach is to apply
an alternative model proposed by Riley et al. (2008). These authors proposed a
model that combines both the within- and between-study correlations into a single



134 META-ANALYSIS

parameter. Therefore, there is no need to provide the within-study correlation in
the analysis. There are two limitations to this approach, however. First, we cannot
estimate the between-study heterogeneity variances, although some estimates can
be used to approximate them. Second, this approach only works for models with
two effect sizes per study. It has yet to see how it can be extended to meta-analysis
with more than two effect sizes per study. The other approaches are to handle the
dependence with a robust variance estimation (Hedges et al., 2010) or to approxi-
mate the multivariate meta-analysis with a three-level model (see Section 6.4.2).

5.4 Mixed-effects model

When there is substantial heterogeneity, it is of interest to test how the effect sizes
vary by including the study characteristics as moderators. The random-effects
model in Equation 5.13 can be extended to the mixed-effects model by defining
suitable matrices for X and 𝛽R. There are two formats for representing multivariate
data: the long format and the wide format. The long format is usually used in the
multilevel modeling approach or the GLS approach, while the wide format is used
in the SEM-based meta-analysis.

Tables 5.1 and 5.2 display some sample data for the long and the wide formats,
respectively. The moderators can be either study or effect size specific. For example,
if year of publication is used as a moderator, the moderator is the same for both
effect sizes in a study. An example is the x1 in Tables 5.1 and 5.2. The moderators
may also be effect size specific. For example, the moderator may refer to different
types of intervention for y1 and y2. An example is the x2 in Tables 5.1 and 5.2.

The following model shows the design matrices for our previous example in
Tables 5.1 and 5.2 with x2 as the moderator by stacking all studies together.

y

⎡
⎢⎢⎣

y1(1)

y2(1)

y1(2)

y2(3)

⎤
⎥⎥⎦ =

X

⎡
⎢⎢⎢⎣

1 0 x2,1(1) 0
0 1 0 x2,2(1)

1 0 x2,1(2) 0
0 1 0 x2,2(3)

⎤
⎥⎥⎥⎦

βR

⎡
⎢⎢⎢⎣

β1,0

β2,0

β1,1

β2,1

⎤
⎥⎥⎥⎦

+

Z

⎡
⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤
⎥⎦

u

⎡
⎢⎢⎢⎢⎢

u1(1)

u2(1)

u1(2)

u2(2)

u1(3)

u2(3)

⎤
⎥⎥⎥⎥⎥+

e

⎡
⎢⎢

e1(1)

e2(1)

e1(2)

e2(3)

⎤
⎥⎥,

(5.25)

where 𝛽R is the vector of the intercepts and regression coefficients. In this example,
𝛽1,0 and 𝛽2,0 are the intercepts for the effect sizes 1 and 2, respectively, whereas
𝛽1,1 and 𝛽2,1 are the regression coefficients from x2 on the effect sizes 1 and 2,
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Table 5.1 Long format data for a multivariate meta-analysis.

Study Effect size x1 (Study level) x2 (Effect size level)

1 y1(1) x1(1) x2,1(1)
1 y2(1) x1(1) x2,2(1)
2 y1(2) x1(2) x2,1(2)
3 y2(3) x1(3) x2,2(3)

Table 5.2 Wide format data for a multivariate meta-analysis.

Study y1 y2 x1 (Study level) x2 for y1 x2 for y2

1 y1(1) y2(1) x1(1) x2,1(1) x2,2(1)
2 y1(2) NA x1(2) x2,1(2) NA
3 NA y2(3) x1(3) NA x2,2(3)

Abbreviation: NA, Not available.

respectively. T2 = Cov(ui) is the variance component of the residual heterogeneity
after controlling for x2.

Several points are worth mentioning here. xi represents the moderators for the
effect sizes. x1 and x2 can be different if they are representing different values for
different effect sizes. If xi is a study-level covariate, such as year of publication,
the values will be the same for the same study. Second, it may be of interest to
test H0 ∶ 𝛽1,1 = 𝛽1,2. This null hypothesis states that the effects of the moderators
are the same on the effect sizes. The null hypothesis can be tested by formulat-
ing two models—one model without any constraint and the other model with the
constraint 𝛽1,1 = 𝛽1,2. As these two models are nested, the difference on the LR
statistics follows a chi-square distribution with 1 df under the null hypothesis.

The unweighted and weighted methods of moment approach for the
random-effects model has been extended to the multivariate mixed-effects
model (e.g., Demidenko, 2013). Once the variance component matrix of the
residual heterogeneity ̂T

2
has been estimated, we can estimate the fixed effects

with Equations 5.20 and 5.22 and a design matrix X that includes the moderators.
Moreover, ML or REML implemented in multilevel modeling (e.g., Kalaian
and Raudenbush, 1996) and SEM (Cheung, 2013a, b) may be used to obtain the
estimates on the fixed-effects and the random-effects.

5.4.1 Explained variance

When there are moderators, it is of interest to see how much variation the mod-
erators explain. Jackson et al. (2012) extended the concept of explained variance
to multivariate meta-analyses. Alternatively, the concept of R2 in the univariate
meta-analysis in Section 4.5.2 can be applied to individual effect sizes. We may
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calculate R2 for each effect size that indicates the percentage of explained variance
on that effect size. This may provide information on how useful the predictors are
in explaining the heterogeneity of the effect sizes.

5.5 Structural equation modeling approach

In this section, we extend the univariate SEM-based meta-analysis to the multi-
variate meta-analysis. The key idea is to treat the true effect sizes as the latent
variables under the SEM framework. The known sampling covariance matrices are
imposed as the covariance matrices of the measurement errors via definition vari-
ables. We first begin with the fixed-effects model and then extend the discussion to
the random- and mixed-effects models.

5.5.1 Fixed-effects model

Similar to the SEM approach conducting a univariate meta-analysis, we treat the
observed effect sizes as raw data. Figure 5.1 shows the model for the multivariate
fixed-effects model with two effect sizes per study. The two observed effect sizes
in the ith study are represented by the variables y1,i and y2,i. 𝛽1,0 and 𝛽2,0 repre-
sent the common population effect sizes for the first and second effect sizes under
a fixed-effects model. The elements of the known sampling variance–covariance
matrix of the effect sizes in the ith study are imposed as the known covariance
matrix, 𝑣1,1,i, 𝑣2,1,i, and 𝑣2,2,i via the definition variables.

When there are missing effect sizes, the missing values are handled using the
FIML estimation method. The treatment of the missing values in Vi deserves some
explanation. Suppose that there are missing values in some of the effect sizes, say
y1,4 in the fourth study, and that of its associated variance and covariances are also

β2,0

υ2,1,i

υ1,1,i

β1,0

υ2,2,i

y1,i

y2,i

1

Figure 5.1 A multivariate fixed-effects model with two effect sizes.
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missing, that is, 𝑣1,1,4 = NA and 𝑣2,1,4 = NA. As the elements of V4 are imposed as
known values via definition variables in Figure 5.1, missing values are not allowed
in the definition variables. To address this issue, we have to replace the missing
values, for example, 𝑣1,1,4 and 𝑣2,1,4 in this example, with some arbitrary values. As
the missing value y1,4 in this example will be filtered out, the values on 𝑣1,1,4 and
𝑣2,1,4 will not be entered into the analysis.

To fit the multivariate fixed-effects meta-analysis in SEM, we use the following
model-implied conditional mean vector and the covariance matrix:

𝜇i(𝜃) = 𝛽F and
Σi(𝜃) = Vi.

(5.26)

After fitting this model, the parameter estimates on 𝛽F and its asymptotic covari-
ance matrix Cov(�̂�F) are estimated. Hypothesis testing on 𝛽F may be carried out as
discussed in Section 5.2.2.

5.5.2 Random-effects model

The fixed-effects model can be extended to the random-effects model by includ-
ing study-specific random effects. Figure 5.2 shows two graphical models that are
equivalent to the random-effects model with two effect sizes per study. Figure 5.2a
displays the model using Equation 5.12. The true effect sizes are represented by
the latent variables f1,i and f2,i. The heterogeneity of the effect sizes T2 is repre-
sented by the variance–covariance matrix of f , while the conditional known error
variance–covariance matrix Vi is treated as the known variance–covariance matrix
of the measurement errors. Conceptually, the random-effects meta-analysis can be
viewed as a confirmatory factor analytic (CFA) model—the true effect sizes and
the known sampling variances in a meta-analysis are treated as the latent variables
and the measurement errors with known variances in the CFA. As the observed
effect sizes are correlated, the measurement errors are also correlated.

Figure 5.2b, which is equivalent to Equation 5.13, shows the same model by
skipping the latent variables. T2 and Vi are combined to form the unconditional
variance–covariance matrix. Therefore, the model-implied conditional mean vec-
tor and the variance–covariance matrix are

𝜇i(𝜃) = 𝛽R and
Σi(𝜃) = T2 + Vi.

(5.27)

After fitting this model, the parameter estimates on 𝛽R and T2, and their asymp-
totic covariance matrix, are available. Hypothesis testing on ̂

𝛽R may be carried out.
For instance, we may test the significance of the individual parameter estimates by
using either an SE or an LR test. We can also test the composite hypothesis of sev-
eral parameter estimates by comparing the models with and without the constraints
with an LR test. When an SEM approach is used, it is straightforward to impose a
special covariance structure on T2. For example, we may impose a diagonal matrix
on T2 if there are too many effect sizes per study and/or there are not enough studies
to estimate an unstructured T2.
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Figure 5.2 A multivariate random-effects model with two effect sizes.

5.5.3 Mixed-effects model

We may extend the random-effects model to a mixed-effects model by using study
characteristics as moderators. The moderators are treated as either variables or a
design matrix (see Section 4.6.3). Following the practice in meta-analysis, we treat
the predictors as a design matrix here. Figure 5.3 shows two equivalent models of
a mixed-effects model with two effect sizes per study and one moderator. Without
the loss of generality, the moderator xi is the same for both effect sizes in the ith
study. Figure 5.3a explicitly shows the true effect sizes or the latent variables f1,i
and f2,i, while Figure 5.3b skips the true effect sizes.

A phantom variable P is created to store the values of the moderators. 𝛽1,1 and
𝛽2,1 are the regression coefficients indicating the effects from xi to y1,i and y2,i in
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Figure 5.3 A multivariate mixed-effects model with two effect sizes and one
moderator.

the ith study, respectively. 𝛽1,0 and 𝛽2,0 are the intercepts of the first and the second
effect sizes, respectively, when xi = 0.

By using the tracing rules (e.g., Mulaik, 2009), it can be shown that the condi-
tional implied mean vector and covariance matrix for the model in Figure 5.3 are

𝜇i(𝜃|xi) = [
𝛽1,0 + 𝛽1,1xi
𝛽2,0 + 𝛽2,1xi

]
and

Σi(𝜃|xi) = T2 + Vi.

(5.28)

Several research hypotheses on both the fixed effects and the random effects dis-
cussed in previous sections can be easily tested under the SEM approach. For
example, we may test whether the regression coefficients are the same H0 ∶ 𝛽1,1 =
𝛽2,1, or whether the intercepts are the same H0 ∶ 𝛽1,0 = 𝛽2,0 after controlling for the
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effect of xi. An LR statistic with 1 df may be used to test these hypotheses by com-
paring two nested models—one with the constraint and one without the constraint.

5.6 Extensions: mediation and moderation models
on the effect sizes

Using the meta-analysis in psychotherapy as an example, Shadish and Sweeney
(1991) argued that knowing the average effect is generally insufficient in a
meta-analysis. Researchers would like to know more about when, where, why,
and how the theory works. These last questions are related to testing the models
of mediation and the moderation. A mediator is a variable that explains the
mechanism between two variables, while a moderator influences the direction or
the strength of the relation between two variables (Baron and Kenny, 1986). Both
mediation and moderation serve important roles in testing research hypotheses in
the social sciences (e.g., Aguinis, 2004; MacKinnon, 2008). This section extends
the multivariate meta-analysis to testing mediation and moderation models on the
effect sizes.

Shadish (1996) classified two types of association in a meta-analysis. The first
type is the within-study association, which indicates the association at the subject
level. For example, a positive correlation on the SAT-verbal and SAT-math means
that subjects with higher scores on the SAT-verbal tend to have higher scores on the
SAT-math. MASEM (Chapter 7 in this book) provides a framework to test models
on the within-study association. The second type is the between-study associa-
tion, which indicates the association across studies. For example, if the duration of
coaching positively predicts the correlation between the SAT-math and SAT-verbal,
this indicates that studies with a longer duration of coaching tend to have a higher
correlation between the SAT-math and SAT-verbal. Mixed-effects meta-analysis
addresses research questions related to the between-study association.

Shadish (1992, 1996) and Shadish and Sweeney (1991) further extended the
above mediation models on correlation matrices and moderation models in
mixed-effects meta-analysis to any generic effect size, such as the SMD. He
also provided theoretical justifications and examples for these models. In his
work, Shadish used the coded study characteristics as the variables in testing
mediation, moderation, and even structural equation models. We show in this
section that the true effect sizes may also be used as mediators and moderators.
This section provides the necessary statistical techniques to model the mediation
and moderation on the effect sizes.

As both mediation and moderation involve a regression analysis of the effect
sizes, it is of importance to discuss why it is not preferable to conduct a
mixed-effects meta-analysis on one effect size, say y1, by treating the other effect
size, say y2, as the predictor (or moderator). In a regression analysis, the predictors
are assumed to be measured without measurement error. When y2 is treated as
a predictor, this practice violates this assumption because the precision of y2 is
𝑣2,2. There is a clear consensus in the literature on regression analysis and SEM



MULTIVARIATE META-ANALYSIS 141

that the parameter estimates are biased when the predictors are measured with
measurement error (e.g., Bollen, 1989; Buonaccorsi, 2010; Fuller, 1987). Findings
of these studies are directly applicable to meta-analysis. The issue is even more
complicated in a meta-analysis where the effect sizes are measured with different
degrees of precision. For example, the baseline risk y2 is sometimes used as a
predictor to control for possible differences across studies in synthesizing the
treatment effect y1 in a meta-analysis (e.g., Arends et al., 2000; Ghidey et al.,
2013). The parameter estimates are likely to be biased when the observed baseline
risk is directly used to predict the treatment effect.

It is well known that SEM may be used to correct for the unreliability of the mea-
surement error. When there is only one indicator, say y1, we may fix the error vari-
ance of the item to the estimated error variance (e.g., Hayduk, 1987). Suppose that
there are two variables y1 and y2 with their estimated reliability coefficients (coef-
ficient alphas) �̂�y1 and �̂�y2. We may fix the error variances as shown in Figure 5.4.
The latent factors f1 and f2 represent the true scores without measurement error.
Thus, 𝜙1,2 is the covariance (correction) corrected for unreliability.

The main drawback of this approach is that the error variances Var(y1)(1 − �̂�y1)
andVar(y2)(1 − �̂�y2) are considered to be fixed rather than estimated. Thus, the SEs
of the parameter estimates are likely to be underestimated when the sample sizes
are small. Oberski and Satorra (2013) proposed a method to adjust for this bias.

The above approach may also be applied in the SEM-based meta-analysis to con-
duct mediation and moderation analyses. The key point is to treat the true effect
sizes as latent variables in SEM, whereas the known sampling covariance matrix
is fixed as known values on the measurement errors via definition variables. As the
variances of the sampling errors are treated as known in a meta-analysis, there is no
need to adjust for the uncertainty by treating the variances of the sampling errors
as known.

5.6.1 Regression model

We first illustrate a regression model between two effect sizes. After showing how
to model the true effect size as a predictor, we extend the analysis to the mediation
and the moderation models. Let us consider y1,i and y2,i as the dependent and the

1

Var(y2)(1 – α̂y2)
1

φ1,2

φ1,1

φ2,2

y1f1

f2 y2

Var(y1)(1 – α̂y1)

Figure 5.4 A structural equation model to correct for unreliabilities.
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independent variables, respectively. The measurement (or level 1) model and the
structural (or level 2) model for the ith study are

Measurement model:

[
y1,i
y2,i

]
=
[
f1,i
f2,i

]
+
[
e1,i
e2,i

]
and

Structural model:

[
f1,i
f2,i

]
=
[
𝛽1,0
𝛽2,0

]
+
[

0 𝛽1,2
0 0

] [
f1,i
f2,i

]
+
[
u1,i
u2,i

]
.

(5.29)

The measurement (or level 1) model is used to handle the known sampling covari-
ance matrix among the effect sizes. The true effect sizes are represented by the
latent variables f1,i and f2,i. The structural (or level 2) model is used to specify the
relationship between the true effect sizes.

Figure 5.5 shows the SEM. The conditional sampling covariance matrix is known,

that is, Cov
([

e1,i
e2,i

])
=
[
𝑣1,1,i
𝑣2,1,i 𝑣2,2,i

]
, whereas the covariance matrix between the

true effect sizes is Cov
([

u1,i
u2,i

])
=
[
𝜏

2
1,1
0 𝜏

2
2,2

]
, which has to be estimated from

the data. 𝜏2
2,2 is the heterogeneity variance of f2,i, while 𝜏

2
1,1 is the heterogeneity

residual variance of f1,i. An R2 indice defined by

R2 =
𝛽

2
1,2𝜏

2
2,2

𝛽
2
1,2𝜏

2
2,2 + 𝜏

2
1,1

(5.30)

can be used to indicate the percentage of the heterogeneity in f1,i that can be
explained by f2,i. It should be noted that u1,i and u2,i are conditionally independent
because their dependence has already been accounted for by the regression
coefficient 𝛽1,2.

1

β1,0

β2,0

β1,2

υ1,1,i

υ2,2,i

υ2,1,i

1

τ2
1,1

τ2
2,2

y1,if1,i

f2,i

1

y2,i

Figure 5.5 A regression model between two effect sizes.
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Another point that should be noted is that this model is an equivalent model
to the one displayed in Figure 5.2. This means that both models have the same
model fit (−2LL). The parameter estimates can be directly transformed between
the models in Figures 5.2 and 5.5. Let us denote the parameters in the multivariate
meta-analysis in Figure 5.2 and in the mediating model in Figure 5.5 with subscripts
(Mul) and (Med) in parentheses. The parameters are related by Equation 2.2:

𝛽1,0(Mul) = 𝛽1,0(Med) + 𝛽1,2(Med)𝛽2,0(Med),

𝛽2,0(Mul) = 𝛽2,0(Med),

𝜏
2
1,1(Mul) = 𝛽

2
1,2(Med)𝜏

2
2,2(Med) + 𝜏

2
1,1(Med),

𝜏
2
2,1(Mul) = 𝛽1,2(Med)𝜏

2
2,2(Med), and

𝜏
2
2,2(Mul) = 𝜏

2
2,2(Med).

(5.31)

5.6.2 Mediating model

Suppose that there is a study characteristic xi. On the basis of the theories, for
example, researchers may want to test whether the effect from xi to the true effect
size f1 is mediated by the true effect size f2. As an example, Cheung (2009b)
illustrated how to test a mediation model between two effect sizes. Data from 42
countries (World Values Study Group, 1994) were considered for the studies in a
cross-cultural meta-analysis. The true effect size of the SMD on happiness between
males and females was treated as the dependent variable, while the true effect size
on the SMD on life control between males and females was considered as the medi-
ator. The gross national product (GNP) of the country was treated as xi.

The model in Equation 5.29 can be extended to handle the indirect effect between
the true effect sizes. The measurement (or level 1) model and the structural (or level
2) model in the ith study are

Measurement model:

[
y1,i
y2,i

]
=
[
f1,i
f2,i

]
+
[
e1,i
e2,i

]
and

Structural model:

[
f1,i
f2,i

]
=
[
𝛽1,0
𝛽2,0

]
+
[

0 𝛽1,2
0 0

] [
f1,i
f2,i

]
(5.32)

+
[
𝛾1
𝛾2

]
xi +

[
u1,i
u2,i

]
.

The measurement model is formulated to handle the conditional sampling covari-
ance matrix between the effect sizes, while the structural model is used to model
the indirect effect. Under the above model, the direct effects from xi to the true
effect size f1,i is 𝛾1, while the indirect effect via the true effect size f2,i is 𝛾2𝛽1,2. The
total effect is 𝛾2𝛽1,2 + 𝛾1. Standard procedures, such as the Sobel test, the bootstrap
CI, or the likelihood-based confidence interval (LBCI), can be used to construct the
CIs on the indirect effect (e.g., Cheung, 2007, 2009a).

Similar to the previous sections, there are two models to fit the mediation models.
Figure 5.6 shows two models with the true effect size of y2,i as the mediator and
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Figure 5.6 A mediation model with two effect sizes.

the true effect size of y1,i as the dependent variable. Figure 5.6a uses the phantom
variable P to impose the effects from xi to the dependent variable. Figure 5.6b fits
the mediation model by introducing xi as an observed variable. The main difference
between these two models is that Figure 5.6a treats xi as a design matrix, whereas
Figure 5.6b considers xi as a variable. Under both the models, the effects from xi to
the true effect sizes f2,i and f1,i are shown as 𝛾2 and 𝛾1, respectively. As a reminder,
the mediation model is an equivalent model to the mixed-effects model discussed
in Section 5.4. Thus, the mediation model should only be fitted based on theories.

5.6.3 Moderating model

Moderation is often used to test how the independent variables relate to the depen-
dent variables where the relationship depends on a third variable called a moderator
(Aguinis, 2004; Aiken et al., 1991). As an illustration, Cheung (2009b) showed how
to test the moderation between two effect sizes. The author tested the effect of the
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true effect size of the SMD on life control to the true effect size of the SMD on
happiness by considering GNP as the moderator. Statistically speaking, we cannot
distinguish which variable is the independent variable and which variable is the
moderator. As we are testing the model with one true effect size as the independent
variable, we consider the study characteristic xi as the moderator.

We may also extend the regression model in Equation 5.29 to test the moderation
effect among the effect sizes. The measurement (or level 1) model and the structural
(or level 2) model in the ith study are

Measurement model:

[
y1,i
y2,i

]
=
[
f1,i
f2,i

]
+
[
e1,i
e2,i

]
,

Structural model:

[
f1,i
f2,i

]
=
[
𝛽1,0
𝛽2,0

]
+
[

0 𝛽1,2
0 0

] [
f1,i
f2,i

]
+
[
𝛾1
0

]
xi (5.33)

+ xi

[
0 𝜔1,2
0 0

] [
f1,i
f2,i

]
+
[
u1,i
u2,i

]
.

From the above equations, the equation for f1,i is

f1,i = 𝛽1,0 + 𝛾1xi + (𝛽1,2 + 𝜔1,2xi)f2,i + u1,i. (5.34)

In the above equation, the effect from f2,i to f1,i is 𝛽1,2 + 𝜔1,2xi. Therefore, xi mod-
erates the effect from f2,i to f1,i. There is a moderating effect when 𝜔1,2 is nonzero.
We usually center the moderator xi to facilitate the interpretations. After centering
xi, 𝛽1,2 represents the effect from f2,i to f1,i when xi is at its average value, that is,
zero. Figure 5.7 shows two models with the effect from the true effect size f2,i to
the true effect size f1,i moderated by xi. The main difference between these two
models is that Figure 5.7a treats xi as a design matrix, while Figure 5.7b considers
xi as a variable. Figure 5.7a tests the moderation effect by introducing two phantom
variables, while Figure 5.7b displays the same model by treating xi as an observed
variable.

Before closing this section, we need to mention how the missing values in xi
are handled in the mixed-effects meta-analysis, the mediation, and the moderation
models. Regardless of whether xi is treated as a design matrix or a variable, the
whole study will be deleted when there are missing values in xi. If we want to keep
the studies with missing values in xi in the analysis, we may formulate the models
so that xi is treated as a dependent variable. FIML can then be used to handle the
missing values in xi (see Section 8.2 for details).

5.7 Illustrations using R

This section illustrates how to conduct a multivariate meta-analysis using the
metaSEM package. The first data set tests the effectiveness of the Bacillus
Calmette–Guerin (BCG) vaccine for preventing tuberculosis (Colditz et al., 1994).
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Figure 5.7 A moderation model with two effect sizes.

This data set has been used by several researchers (e.g., Berkey et al., 1998; Viecht-
bauer, 2010). It is used to illustrate the multivariate random-effects meta-analysis.
The second data set was extracted from the World Values Survey II (World Values
Study Group, 1994). It has been used to demonstrate the SEM-based multivariate
meta-analysis in Cheung (2013b). This data set is also used to illustrate the
mediation and the moderation analyses. The statistics reported in the illustrations
were captured by using the Sweave function in R. The numbers of decimal places
may be slightly different for those reported in the selected output and in the text.

5.7.1 BCG vaccine for preventing tuberculosis

When we conduct a meta-analysis on contingency tables, we usually calculate the
logarithm of the odds ratio between the treatment group and the control group as the
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effect size. A univariate meta-analysis is applied to the data because there is only
one effect size. van Houwelingen et al. (2002) argued that this practice may hide a
lot of information, especially when there is a high degree of variation on the control
and the intervention groups. They illustrated how a multivariate meta-analysis may
be applied to the effect sizes of the control and the treatment groups.

The BCG data was stored in the object BCG in the metaSEM package. The effect
sizes are ln_Odd_V (natural logarithm of the odds of the vaccinated group) and
ln_Odd_NV (natural logarithm of the odds of the nonvaccinated group), while
their sampling variances arev_ln_Odd_V (sampling variance ofln_Odd_V) and
v_ln_Odd_NV (sampling variance ofln_Odd_NV). As the control group and the
treatment group are independent, the sampling covariance between the effect size
is 0 (cov_V_NV). Therefore, these two effect sizes are conditionally independent.

We display a few cases of the data by typing head(BCG).

R> #### Load the metaSEM library
R> library("metaSEM")
R> ## Display the dataset
R> head(BCG)

Trial Author Year VD VWD NVD NVWD Latitude
1 1 Aronson 1948 4 119 11 128 44
2 2 Ferguson & Simes 1949 6 300 29 274 55
3 3 Rosenthal et al 1960 3 228 11 209 42
4 4 Hart & Sutherland 1977 62 13536 248 12619 52
5 5 Frimodt-Moller et al 1973 33 5036 47 5761 13
6 6 Stein & Aronson 1953 180 1361 372 1079 44
Allocation ln_OR v_ln_OR ln_Odd_V ln_Odd_NV v_ln_Odd_V cov_V_NV

1 random -0.9387 0.357125 -3.393 -2.454 0.25840 0
2 random -1.6662 0.208132 -3.912 -2.246 0.17000 0
3 random -1.3863 0.433413 -4.331 -2.944 0.33772 0
4 random -1.4564 0.020314 -5.386 -3.930 0.01620 0
5 alternate -0.2191 0.051952 -5.028 -4.809 0.03050 0
6 alternate -0.9581 0.009905 -2.023 -1.065 0.00629 0
v_ln_Odd_NV

1 0.098722
2 0.038132
3 0.095694
4 0.004112
5 0.021450
6 0.003615

5.7.1.1 Random-effects model

As the effect sizes are conditionally independent, the covariance between these two
effect sizes is zero. We conduct a random-effects meta-analysis using the meta()
command with y and v as the arguments for the effect size and its sampling vari-
ance. We use the cbind() function to combine the effect sizes, as there is more
than one effect size.
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R> ## Covariance between the effect size is 0.
R> bcg1 <- meta(y=cbind(ln_Odd_V, ln_Odd_NV),

v=cbind(v_ln_Odd_V, cov_V_NV, v_ln_Odd_NV),
data=BCG, model.name="Random effects model")

R> summary(bcg1)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 -4.834 0.340 -5.501 -4.167 -14.21 <2e-16 ***
Intercept2 -4.096 0.435 -4.948 -3.244 -9.42 <2e-16 ***
Tau2_1_1 1.431 0.583 0.289 2.574 2.46 0.014 *
Tau2_2_1 1.757 0.724 0.338 3.177 2.43 0.015 *
Tau2_2_2 2.407 0.967 0.511 4.303 2.49 0.013 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 5270
Degrees of freedom of the Q statistic: 24
P value of the Q statistic: 0

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0.99
Intercept2: I2 (Q statistic) 1.00

Number of studies (or clusters): 13
Number of observed statistics: 26
Number of estimated parameters: 5
Degrees of freedom: 21
-2 log likelihood: 66.18
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

Before interpreting the results, we should check whether there are any esti-
mation problems in the analysis. We check the OpenMx status1 at the
end of the output. If the status is either 0 or 1, the optimization is fine; other-
wise, the results are not trustworthy. The test of homogeneity of effect sizes is
Q(df = 24) = 5270.3863, p < 0.001, which is statistically significant. The esti-
mated I2 for the vaccinated and the nonvaccinated groups are 0.9887 and 0.9955,
respectively. These indicate an extremely high degree of heterogeneity on the
population effect sizes. We will discuss the estimated variance component soon.
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5.7.1.2 Testing the average effects

The estimated average effect sizes for the vaccinated and the nonvaccinated
groups (and their approximate 95% Wald CIs) are −4.8338 (−5.5005,−4.1670)
and −4.0960 (−4.9481,−3.2439), respectively. We test whether the average pop-
ulation effect sizes are the same for these two groups by fitting a model with the
equality constraint on the average population effect sizes and using the argument
intercept.constraints=c("0*Intercept","0*Intercept"). As
the label (Intercept) is the same for both intercepts, the intercepts are equally
constrained.

R> bcg2 <- meta(y=cbind(ln_Odd_V, ln_Odd_NV), data=BCG,
v=cbind(v_ln_Odd_V, cov_V_NV, v_ln_Odd_NV),
intercept.constraints=c("0*Intercept",
"0*Intercept"),
model.name="Equal intercepts")

R> summary(bcg2)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept -5.3750 0.4584 -6.2735 -4.4765 -11.72 <2e-16 ***
Tau2_1_1 1.7003 0.8551 0.0243 3.3763 1.99 0.047 *
Tau2_2_1 2.4556 1.3113 -0.1145 5.0257 1.87 0.061 .
Tau2_2_2 4.1087 1.9902 0.2079 8.0094 2.06 0.039 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0.99
Intercept2: I2 (Q statistic) 1.00

------------------------ Selected output -----------------------

This model is nested within the model without the constraint; we compare them
with the LR statistic.

R> anova(bcg1, bcg2)

base comparison ep minus2LL df AIC diffLL
1 Random effects model <NA> 5 66.18 21 24.18 NA
2 Random effects model Equal intercepts 4 77.06 22 33.06 10.88
diffdf p

1 NA NA
2 1 0.0009708
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The LR statistic is Δ𝜒2(df = 1) = 10.8825, p = 0.001. Therefore, the null
hypothesis of equal average population effect sizes is rejected. The odds for the
vaccinated and the nonvaccinated groups are different. As they are based on
the logarithm, the results may be difficult to interpret. We convert the results
back into odds. The vaccinated group has smaller odds than the nonvaccinated
group. It should be noted, however, that this is a nonlinear transformation. The
transformed average values and their CIs may not represent the average odds
of the experimental and control groups very well (see Hafdahl (2009) for more
details).

R> ## Extract the coefficient table from the summary
R> Est <- summary(bcg1)$coefficients
R> ## Only select the first 2 rows and the columns
R> ## related to estimate, lbound, and ubound
R> ## Convert them into odds
R> exp( Est[1:2, c("Estimate", "lbound", "ubound") ] )

Estimate lbound ubound
Intercept1 0.007957 0.004085 0.01550
Intercept2 0.016639 0.007097 0.03901

Following van Houwelingen et al. (2002), we also calculate the logarithm of the
odds ratio between the vaccinated and the nonvaccinated groups that is equivalent to
log_OR = ln_Odd_V - ln_Odd_NV. The sampling variance of log_OR is

Var(log OR) =Var(log _Odd_V) + Var(log _Odd_NV)
− 2Cov(log _Odd_V, log _Odd_NV),

where Var(log _Odd_V) and Var(log _Odd_NV) are the sampling variances
of ln_Odd_V and ln_Odd_NV, and Cov(log _Odd_V, log _Odd_NV) is the
sampling covariance between them. Therefore, we estimate the fixed-effects on
the logarithm of the odds ratio as

R> ## Extract the fixed effects
R> ( fixed <- coef(bcg1, select="fixed") )

Intercept1 Intercept2
-4.834 -4.096

R> ## Extract the sampling covariance matrix on the estimates
R> ( omega <- vcov(bcg1)[c("Intercept1","Intercept2"),

c("Intercept1","Intercept2")] )

Intercept1 Intercept2
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Intercept1 0.1157 0.136
Intercept2 0.1360 0.189

R> ## Calculate the logarithm on the odds ratio
R> ( log_OR <- fixed[1] - fixed[2] )

Intercept1
-0.7378

R> ## Calculate the standard error on log_OR
R> ( se_log_OR <- sqrt(omega[1,1]+omega[2,2]-2*omega[2,1]) )

[1] 0.1811

The estimated effect size (with its SE) in terms of the logarithm of the odds ratio is
−0.7378 (SE = 0.1811). The results are similar to those based on a random-effects
meta-analysis on the logarithm of the odds ratio ln_OR as the effect size and
v_ln_OR as the sampling variance.

R> summary( meta(y=ln_OR, v=v_ln_OR, data=BCG) )

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 -0.74197 0.17863 -1.09208 -0.39185 -4.15 3.3e-05 ***
Tau2_1_1 0.30246 0.15663 -0.00453 0.60944 1.93 0.053 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 163.2
Degrees of freedom of the Q statistic: 12
P value of the Q statistic: 0

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0.91

Number of studies (or clusters): 13
Number of observed statistics: 13
Number of estimated parameters: 2
Degrees of freedom: 11
-2 log likelihood: 26.15
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OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

5.7.1.3 Testing the variance component of the random effects

𝜏
2
1,1 and 𝜏

2
2,2 of the vaccinated group and the nonvaccinated group are 1.4314 and

2.4073, respectively. It seems that the nonvaccinated group has a higher degree
of heterogeneity than the vaccinated group. We test the null hypothesis H0 ∶ 𝜏

2
1,1

= 𝜏
2
2,2 by comparing the models with and without the equality constraint. We fit the

model with the equality constraint on the variances with the following syntax.

R> bcg3 <- meta(y=cbind(ln_Odd_V, ln_Odd_NV), data=BCG,
v=cbind(v_ln_Odd_V, cov_V_NV, v_ln_Odd_NV),
RE.constraints=matrix(c("0.1*Tau2_Eq","0*Tau2_2_1",

"0*Tau2_2_1","0.1*Tau2_Eq"),
ncol=2, nrow=2),

model.name="Equal variances")
R> summary(bcg3)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 -4.837 0.392 -5.606 -4.067 -12.33 <2e-16 ***
Intercept2 -4.083 0.389 -4.845 -3.320 -10.49 <2e-16 ***
Tau2_Eq 1.920 0.738 0.474 3.365 2.60 0.0092 **
Tau2_2_1 1.765 0.739 0.317 3.214 2.39 0.0169 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0.99
Intercept2: I2 (Q statistic) 0.99

------------------------ Selected output -----------------------

As this model is nested within the model without the constraint, we compare them
with the LR statistic.

R> anova(bcg1, bcg3)

base comparison ep minus2LL df AIC diffLL
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1 Random effects model <NA> 5 66.18 21 24.18 NA
2 Random effects model Equal variances 4 71.25 22 27.25 5.071
diffdf p

1 NA NA
2 1 0.02433

The LR statistic is Δ𝜒2(df = 1) = 5.0712, p = 0.024. Therefore, the null hypoth-
esis of equal heterogeneity variances is rejected. The nonvaccinated group has a
higher degree of heterogeneity than the vaccinated group. We extract the variance
component by using the coef() function with the select="random" argu-
ment. We convert the values into a matrix using the vec2symMat() function. As
it is difficult to inspect the covariance, we convert it into a correlation matrix.

R> ( T2 <- vec2symMat(coef(bcg1, select="random")) )

[,1] [,2]
[1,] 1.431 1.757
[2,] 1.757 2.407

R> cov2cor(T2)

[,1] [,2]
[1,] 1.0000 0.9467
[2,] 0.9467 1.0000

The estimated correlation between the random effects is 0.9467, which is extremely
high. This indicates that studies with high odds in the nonvaccinated group also
have higher odds in the vaccinated group. As special care has to be taken to interpret
meta-analyses involving both baseline risk and between-treatment effect, readers
are advised to refer to Arends et al. (2000), Ghidey et al. (2013), and van Houwelin-
gen et al. (2002). The following plot (Figure 5.8) will graphically display the effect.

5.7.1.4 Plotting the figures

We may plot the effect sizes and their confidence ellipses with theplot() function
for a multivariate meta-analysis (Cheung, 2013b). Figure 5.8 displays the average
effect sizes and the individual effect sizes.

R> plot(bcg1, xlim=c(-8,0), ylim=c(-8,0))

Some explanations of the figure are required. The x- and the y-axes represent the
first and the second effect sizes for the vaccinated group and the nonvaccinated
group, respectively. The small circle dots are the observed effect sizes, whereas
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Figure 5.8 Confidence ellipses on the vaccinated and the nonvaccinated groups.

the dashed ellipses around them are the 95% confidence ellipses. A confidence
ellipse is the bivariate generalization of the CI (see Friendly et al., 2013). If we
were able to repeat Study i by collecting new data, 95% of such ellipses constructed
in the replications will contain Study i’s true bivariate effect sizes. The confidence
ellipses around the studies are not tilted in the figure, showing that the effect sizes
are conditionally independent.

The solid square in the location (−4.8338,−4.0960) represents the estimated
average population effect sizes for the vaccinated and the nonvaccinated groups.
The small ellipse in a solid line is the 95% confidence ellipse of the average effect
sizes. It indicates the best estimates of the average population effect sizes for the
vaccinated and the nonvaccinated groups in the long run. The large ellipse in a
dashed line indicates the random effects for the 95% of studies that may fall inside
this ellipse. It is constructed based on the estimated variance component of the ran-
dom effects, which is a bivariate generalization of the 95% plausible value interval
(Raudenbush, 2009). If we randomly select studies, 95% of the selected studies
may fall inside the ellipse in long run. Therefore, the true population effect sizes of
the studies vary greatly. Moreover, we also calculate the average effect size for the
vaccinated group (−4.8338 in the x-axis) and the average effect size for the nonva-
ccinated group (−4.0960 in the y-axis) and their 95% CIs. They are shown by the
diamonds near the x-axis and the y-axis. The arrows represent the 95% plausible
value intervals.
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We may combine the forest plots provided by the metafor package (Viecht-
bauer, 2010) with the confidence ellipses. We specify the diag.panel=TRUE
argument in the plot() function to generate the diagonal panels for the forest
plots. We use the forest() and the rma() functions in the metafor package
to generate the forest plots.

R> ## Load the metafor package
R> library("metafor")
R> plot(bcg1, xlim=c(-8,0), ylim=c(-8,0), diag.panel=TRUE)
R> ## Forest plot for the vaccinated group
R> forest( rma(yi=ln_Odd_V, vi=v_ln_Odd_V, method="ML", data=BCG) )
R> title("Forest plot for the vaccinated group")
R> ## Forest plot for the non-vaccinated group
R> forest( rma(yi=ln_Odd_NV, vi=v_ln_Odd_NV, method="ML",

data=BCG) )
R> title("Forest plot for the non-vaccinated group")

The forest plots visually display the strength of each effect size and its
approximate 95% Wald CI and the average effect sizes. Figure 5.9 provides more
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Figure 5.9 Confidence ellipses on the two effect sizes with forest plots.
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information on the univariate and multivariate nature of the data. More specifically,
researchers may get some insights on how the effect sizes are correlated when
comparing the forest plots and the confidence ellipses. In this example, the high
correlation (0.9467) between the random effects is mainly due to the base rate
differences on the vaccinated and the nonvaccinated groups. It is not possible to
get this information from two separate univariate meta-analyses.

5.7.2 Standardized mean differences between males and females
on life satisfaction and life control

A data set from the World Values Survey II (World Values Study Group, 1994) was
used to illustrate the procedures and analyses using the multivariate meta-analysis
and the mediation and moderation analyses. Between 1990 and 1993, 57,561 adults
aged 18 and above from 42 nations were interviewed by local academic institutes in
Eastern European nations and by professional survey organizations in other nations.
Au and Cheung (2004) tested a theory on how job control predicts job satisfaction
at the cultural level. GNP was used as a control variable in their analyses.

As an illustration to demonstrate the techniques introduced in this chapter, we
extended Au and Cheung’s theory to gender differences on life satisfaction and
life control. SMD between males and females on life satisfaction (SMDlife_sat) and
on life control (SMDlife_con) were calculated in each country as the effect sizes for
a cross-cultural meta-analysis. Positive values on these effect sizes indicate that
males have higher scores than females do. GNP was used as a study characteristic
in the mixed-effects meta-analysis.

The data set was stored in the object wvs94a in the metaSEM package. The
variables lifesat and lifecon in the data set are the effect sizes for SMDlife_sat
and SMDlife_con, respectively. The variables lifesat_var, inter_cov, and
lifecon_var are the known sampling covariance matrix of the effect sizes
(see Section 3.3.1 on how to calculate the sampling covariance between SMDs
of multiple-endpoint studies). We display a few cases of the data set by using the
head() command. The country represents the country where the data were
collected.

R> #### Load the metaSEM library
R> library("metaSEM")
R> ## Display the dataset
R> head(wvs94a)

country lifesat lifecon lifesat_var inter_cov lifecon_var
1 Argentina -0.032093 0.057608 0.004043 0.0014075 0.004158
2 Austria 0.080096 0.008893 0.002888 0.0009337 0.002894
3 Belarus 0.041979 0.074087 0.004010 0.0013359 0.004011
4 Belgium 0.007755 0.127995 0.001456 0.0004050 0.001513
5 Brazil 0.148138 0.182106 0.002266 0.0007891 0.002290
6 Britain 0.020048 0.044455 0.002724 0.0011858 0.002746

gnp
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1 2370
2 4900
3 3110
4 15540
5 2680
6 16100

5.7.2.1 Random-effects model

We employ a random-effects model with the following syntax.

R> ## Random-effects model
R> wvs1 <- meta(y=cbind(lifesat, lifecon),

v=cbind(lifesat_var, inter_cov, lifecon_var),
data=wvs94a, model.name="Random effects model")

R> summary(wvs1)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 0.001350 0.013856 -0.025808 0.028508 0.10 0.92239
Intercept2 0.068826 0.016820 0.035860 0.101792 4.09 4.3e-05
Tau2_1_1 0.004727 0.001762 0.001275 0.008180 2.68 0.00728
Tau2_2_1 0.003934 0.001687 0.000628 0.007241 2.33 0.01970
Tau2_2_2 0.008414 0.002537 0.003441 0.013387 3.32 0.00091

Intercept1
Intercept2 ***
Tau2_1_1 **
Tau2_2_1 *
Tau2_2_2 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 250
Degrees of freedom of the Q statistic: 82
P value of the Q statistic: 0

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0.61
Intercept2: I2 (Q statistic) 0.73

Number of studies (or clusters): 42
Number of observed statistics: 84
Number of estimated parameters: 5
Degrees of freedom: 79
-2 log likelihood: -161.9
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OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

R> ## Extract the variance component of the random effects
R> ( T2 <- vec2symMat(coef(wvs1, select="random")) )

[,1] [,2]
[1,] 0.004727 0.003934
[2,] 0.003934 0.008414

R> ## Convert the covariance matrix to a correlation matrix
R> cov2cor(T2)

[,1] [,2]
[1,] 1.0000 0.6238
[2,] 0.6238 1.0000

First, we check whether there are any estimation problems in the analysis.
The OpenMx status1 is 0, indicating that everything is fine. The test of
homogeneity of effect sizes is Q(df = 82) = 250.0303, p < 0.001, which is statis-
tically significant. The I2 for SMDlife_sat and SMDlife_con are 0.6129 and 0.7345,
respectively. These indicate that the gender differences on life satisfaction and
life control vary across different cultural groups. A random-effects model is more
appropriately employed to describe the data. The estimated variance component is

T̂2 =
[

0.0047
0.0039 0.0084

]
. As it is difficult to interpret the covariance, we convert

it into a correlation matrix. The correlation between the random effects is 0.6238,
which is moderate. This indicates that countries with higher SMDlife_sat tend to
have higher SMDlife_con.

The estimated average population effect sizes for SMDlife_sat and SMDlife_con
(and their approximate 95% Wald CIs) are 0.0013 (−0.0258, 0.0285) and 0.0688
(0.0359, 0.1018), respectively. The results suggest that there is a gender difference
on life control but not on life satisfaction. On an average, males and females have a
similar perception of life satisfaction, whereas males perceive themselves as having
more control over their life.

We plot the average effect sizes with their confidence ellipses and the individual
effect sizes with the plot() function. As there are too many studies involved,
we skip the confidence ellipses on the individual effect sizes by specifying the
study.ellipse.plot=FALSE argument.

R> plot(wvs1, axis.labels=c("SMD on life satisfaction",
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Figure 5.10 Confidence ellipses on the SMDs of life satisfaction and life control.

"SMD on life control"),
study.ellipse.plot=FALSE,
xlim=c(-0.3, 0.2), ylim=c(-0.3,0.4))

Figure 5.10 displays the plot. The figure shows that the average SMDlife_sat (the
x-axis) is centered around zero, whereas the average SMDlife_con (the y-axis) is
above zero. The confidence ellipse for the random effects (the dashed ellipse) is
quite large, showing that there is a high degree of heterogeneity. Most of the studies
are located within this confidence ellipse.

When there are multiple dependent variables, it is preferable to simultaneously
test both effect sizes. The multivariate test controls the overall Type I error better
in testing the means. If the overall test is significant, we may test the individ-
ual effect sizes. We fit a model by fixing 0 at both average effect sizes with the
intercept.constraints argument. As there are two effect sizes per study,
the intercept.constraints argument expects a 1 × 2 matrix as input. This
model is nested within the model without the constraints; we compare the models
with an LR statistic.

R> ## Random-effects model with both effect sizes fixed at 0
R> wvs2 <- meta(y=cbind(lifesat, lifecon),
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v=cbind(lifesat_var, inter_cov, lifecon_var),
data=wvs94a,
intercept.constraints=matrix(0, nrow=1, ncol=2),
model.name="Both effect sizes fixed at 0")

R> summary(wvs2)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Tau2_1_1 0.004632 0.001744 0.001214 0.008050 2.66 0.00790 **
Tau2_2_1 0.004131 0.001922 0.000363 0.007898 2.15 0.03165 *
Tau2_2_2 0.013083 0.003554 0.006116 0.020049 3.68 0.00023 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0.61
Intercept2: I2 (Q statistic) 0.81

------------------------ Selected output -----------------------

R> ## Compare the nested models
R> anova(wvs1, wvs2)

base comparison ep minus2LL df
1 Random effects model <NA> 5 -161.9 79
2 Random effects model Both effect sizes fixed at 0 3 -143.5 81

AIC diffLL diffdf p
1 -319.9 NA NA NA
2 -305.5 18.45 2 9.86e-05

The LR statistic is Δ𝜒2(df = 2) = 18.4488, p < 0.001. Therefore, the null hypoth-
esis that both effect sizes are zero is rejected.

5.7.2.2 Mixed-effects model

We test the mixed-effects model by using GNP as a moderator. To improve the
numerical stability of the results, GNP was centered and divided by 10,000 in the
analyses.

R> ## Mixed-effects model
R> ## gnp is divided by 10000 and centered by using
R> ## scale(gnp/10000, scale=FALSE)
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R> wvs3 <- meta(y=cbind(lifesat, lifecon),
v=cbind(lifesat_var, inter_cov, lifecon_var),
x=scale(gnp/10000, scale=FALSE), data=wvs94a,
model.name="GNP as a predictor")

R> summary(wvs3)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 0.001300 0.014575 -0.027266 0.029866 0.09 0.9289
Intercept2 0.070591 0.017136 0.037004 0.104178 4.12 3.8e-05
Slope1_1 -0.024051 0.015305 -0.054049 0.005947 -1.57 0.1161
Slope2_1 -0.037204 0.017948 -0.072382 -0.002027 -2.07 0.0382
Tau2_1_1 0.004600 0.001798 0.001076 0.008123 2.56 0.0105
Tau2_2_1 0.003592 0.001681 0.000297 0.006886 2.14 0.0326
Tau2_2_2 0.007479 0.002471 0.002635 0.012323 3.03 0.0025
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explained variances (R2):
y1 y2

Tau2 (no predictor) 0.00473 0.01
Tau2 (with predictors) 0.00460 0.01
R2 0.02697 0.11

------------------------ Selected output -----------------------

From the above output, we may write down the equations on predicting the aver-
age true effect sizes:

f̂life_sat = 0.0013 − 0.0241GNP and
f̂life_con = 0.0706 − 0.0372GNP.

GNP was significant in predicting flife_con but not in flife_sat. The estimated residual

variance component is T̂2 =
[

0.0046
0.0036 0.0075

]
after controlling for GNP. The R2

on flife_sat and flife_con are 0.0270 and 0.1111, respectively. The gender difference on
life control is larger for countries with lower GNP. In other words, females tend to
perceive lower life control in countries with lower GNP.

5.7.3 Mediation and moderation models

Following the illustrations by Cheung (2009b), we formulate a mediation model
and a moderation model using the SMDlife_sat as the dependent variable. As func-
tions to fit mediation and moderation models among the true effect sizes have not
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been implemented in the metaSEM package, we use the OpenMx package (Boker
et al., 2011) to fit these models. In the following sections, we first illustrate the steps
involved in fitting the regression model between two effect sizes. We then extend
the steps to fit the mediation and moderation models.

5.7.3.1 Regression between two effect sizes

We fit a regression model by regressing the true effect size flife_sat on the true effect
size flife_con. This is equivalent to the model in Figure 5.5 by using SMDlife_sat and
SMDlife_con as y1,i and y2,i, respectively. We delete the missing values in GNP before
the analysis.

We specify the structural equation models in OpenMx via the reticular
action model (RAM) specification (McArdle and McDonald, 1984; see also
Section 2.2.3). Four matrices are required to specify the model. All of the latent
and observed variables are combined together: f_lifesat, f_lifecon,
lifesat, and lifecon. The A matrix is used to specify the regression
coefficients or factor loadings among the variables. The S matrix is used to specify
the variance–covariances of the variables or the residuals. The M matrix is used
to represent the means or the intercepts of the variables. The F matrix is used to
select the observed variables (see Section 2.2.3 for details). The followings are the
complete syntax for the analysis.

R> ## Remove the missing values in gnp
R> ## and exclude the first column "country"
R> my.df <- wvs94a[!is.na(wvs94a$gnp), -1]
R> ## Center gnp and divide it by 10000 to
R> ## improve numerical stability
R> my.df$gnp <- scale(my.df$gnp, scale=FALSE)/10000
R> head(my.df)

lifesat lifecon lifesat_var inter_cov lifecon_var gnp
1 -0.032093 0.057608 0.004043 0.0014075 0.004158 -0.8528
2 0.080096 0.008893 0.002888 0.0009337 0.002894 -0.5998
3 0.041979 0.074087 0.004010 0.0013359 0.004011 -0.7788
4 0.007755 0.127995 0.001456 0.0004050 0.001513 0.4642
5 0.148138 0.182106 0.002266 0.0007891 0.002290 -0.8218
6 0.020048 0.044455 0.002724 0.0011858 0.002746 0.5202

The observed effect sizes arelifesat andlifecon. We create two latent vari-
ables, f_lifesat and f_lifecon, to represent the true effect sizes. We may
use the matrix() function to create a character matrix and convert this matrix
into the mxMatrix class using the as.mxMatrix() function. If the elements
are numeric, they are treated as fixed parameters fixed with the specific values as the
numeric inputs. If the elements are characters, they are treated as free parameters.
For example, "0.1*beta_1_2" in the A matrix means that the regression coef-
ficient from flife_con to flife_sat is a free parameter with the label beta_1_2 and 0.1
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as the starting value. If we want to impose an equality constraint on some parame-
ters, we use the same label for both parameters. The factor loadings from the latent
variables to their observed variables are fixed at 1.

R> ## A: asymmetric paths for regression coefficients
R> ## and factor loadings
R> A <- matrix(c(0, "0.1*beta1_2", 0, 0,

0, 0, 0, 0,
1, 0, 0, 0,
0, 1, 0, 0),

ncol=4, nrow=4, byrow=TRUE)
R> dimnames(A) <- list(c("f_lifesat","f_lifecon",

"lifesat","lifecon"),
c("f_lifesat","f_lifecon","lifesat",

"lifecon"))
R> ## Show the content of A
R> A

f_lifesat f_lifecon lifesat lifecon
f_lifesat "0" "0.1*beta1_2" "0" "0"
f_lifecon "0" "0" "0" "0"
lifesat "1" "0" "0" "0"
lifecon "0" "1" "0" "0"

R> ## Convert it into OpenMx matrix
R> A <- as.mxMatrix(A)

We may also directly create the matrices using the mxMatrix() function. As the
sampling covariance matrix on lifesat and lifecon are known, we need to fix
these values by using the definition variables. If the label begins with “data.,” this
parameter will be fixed with the observed variable from the data set. For example,
the label data.lifesat_var means that the error variance on lifesat will
be fixed using the values of lifesat_var in the data set. As the values of life-
sat_var may vary in the data set, the error variance of lifesat may also vary
across subjects (or studies).

R> ## S: symmetric covariances and variances
R> S <- mxMatrix(type="Symm", nrow=4, ncol=4, byrow=TRUE,

free=c(TRUE,
FALSE,TRUE,
FALSE,FALSE,FALSE,
FALSE,FALSE,FALSE,FALSE),

values=c(0.1,
0,0.1,
0,0,0,
0,0,0,0),

labels=c("tau2_1_1",
NA,"tau2_2_2",
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NA,NA,"data.lifesat_var",
NA,NA,"data.inter_cov","data.lifecon_var"),

name = "S")
R> ## Show the labels of S
R> S@labels

[,1] [,2] [,3] [,4]
[1,] "tau2_1_1" NA NA NA
[2,] NA "tau2_2_2" NA NA
[3,] NA NA "data.lifesat_var" "data.inter_cov"
[4,] NA NA "data.inter_cov" "data.lifecon_var"

We need to create a selection matrix F to select the observed variables lifesat
and lifecon.

R> ## F: select observed variables
R> F <- matrix(c(0, 0, 1, 0,

0, 0, 0, 1), nrow = 2, ncol = 4, byrow = TRUE)
R> dimnames(F) <- list(c("lifesat","lifecon"),

c("f_lifesat","f_lifecon","lifesat",
"lifecon"))

R> ## Show the content of F
R> F

f_lifesat f_lifecon lifesat lifecon
lifesat 0 0 1 0
lifecon 0 0 0 1

R> F <- as.mxMatrix(F)

We also need to create a matrix to represent the means (and the intercepts) of the
variables. As shown in Figure 5.4, only the mean (and the intercept) of the latent
variables are estimated, while the mean (and the intercept) of the observed variables
are fixed at 0.

R> ## M: intercepts or means
R> M <- matrix(c("0*beta1_0","0*beta2_0",0,0), nrow=1, ncol=4)
R> dimnames(M)[[2]] <- c("f_lifesat","f_lifecon",

"lifesat","lifecon")
R> M

f_lifesat f_lifecon lifesat lifecon
[1,] "0*beta1_0" "0*beta2_0" "0" "0"

R> M <- as.mxMatrix(M)
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When fitting a regression analysis, we may want to compute the R2 (see
Equation 5.30), the percentage of variance that can be explained by the predictor.
We create an object called R2 for the calculations using the mxAlgebra()
function.

R> ## Formula for R2
R> R2 <- mxAlgebra(beta1_2̂2*tau2_2_2/(beta1_2̂2*tau2_2_2 + tau2_1_1),

name="R2")

Now, we build a model called reg by putting all of the matrices together.
The function mxExpectationRAM() converts the RAM formulation into the
model-implied matrices with Equation 2.6, while the function mxFitFunc-
tionML() fits the data against the model-implied matrices. We conduct the
analysis by calling the mxRun() function. As we are going to calculate the
R2, we also request the LBCI on the R2 by calling the mxCI() function in
mxModel(). We also need to specify the intervals=TRUE argument in the
mxRun() function. When we check the OpenMx status[[1]], it is “6,”
indicating that the optimizer could find no way to improve the estimate. We rerun
the analysis by calling up the mxRun() function again to see if we can get rid
of this error; otherwise, we cannot trust the results. In this example, the OpenMx
status[[1]] is fine after rerunning the model.

R> ## Build the model
R> reg <- mxModel("Regression",

mxData(observed=my.df, type="raw"),
A, S, F, M, R2, mxCI("R2"),
mxExpectationRAM(A="A", S="S",

F="F", M="M",
dimnames = c("f_lifesat","f_lifecon",

"lifesat","lifecon")),
mxFitFunctionML())

R> ## Run the analysis
R> reg.fit <- mxRun(reg, intervals=TRUE, silent=TRUE)
R> ## Check the status of the results
R> reg.fit@output$status[[1]]

[1] 6

R> ## Rerun the analysis
R> reg.fit <- mxRun(reg.fit, intervals=TRUE, silent=TRUE)
R> ## Check the status of the results
R> reg.fit@output$status[[1]]

[1] 0
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R> summary(reg.fit)

------------------------ Selected output -----------------------

free parameters:
name matrix row col Estimate Std.Error lbound ubound

1 beta1_2 A 1 2 0.498821 0.152612
2 tau2_1_1 S 1 1 0.002902 0.001341
3 tau2_2_2 S 2 2 0.008731 0.002771
4 beta1_0 M 1 f_lifesat -0.033950 0.016493
5 beta2_0 M 1 f_lifecon 0.070645 0.018110

confidence intervals:
lbound estimate ubound

Regression.R2[1,1] 0.0657 0.4281 0.7727

observed statistics: 74
estimated parameters: 5
degrees of freedom: 69
-2 log likelihood: -142.5
number of observations: 37

------------------------ Selected output -----------------------

The estimated regression coefficient (beta1_2 or A[1,2] in the output) from
the true effect size flife_con to the true effect size flife_sat is 0.4988,SE = 0.1526, z =
0.4988∕0.1526 = 3.2685, and p = 0.0011. The equation on predicting the average
true effect size flife_sat is

f̂life_sat = −0.0340 + 0.4988flife_con.

The estimated R2 and its 95% LBCI is 0.4281 (0.0657, 0.7727). This indicates that
flife_con is quite strong in predicting flife_sat.

5.7.3.2 Mediation model

We fit a mediation model similar to the one in Figure 5.6 by considering GNP as
xi and the true effect size flife_con as the mediator f2,i. As shown in the previous
sections, we may either treat xi as a design matrix or a variable. We consider GNP
as a variable in this illustration. The variables are arranged as gnp, f_lifesat,
f_lifecon, lifesat, and lifecon.

R> A <- matrix(c(0,0,0,0,0,
"0*gamma1",0,"0*beta1_2",0,0,
"0*gamma2",0,0,0,0,
0,1,0,0,0,
0,0,1,0,0), ncol=5, nrow=5, byrow=TRUE)



MULTIVARIATE META-ANALYSIS 167

R> dimnames(A) <- list(c("gnp","f_lifesat","f_lifecon",
"lifesat","lifecon"),

c("gnp","f_lifesat","f_lifecon",
"lifesat","lifecon"))

R> A

gnp f_lifesat f_lifecon lifesat lifecon
gnp "0" "0" "0" "0" "0"
f_lifesat "0*gamma1" "0" "0*beta1_2" "0" "0"
f_lifecon "0*gamma2" "0" "0" "0" "0"
lifesat "0" "1" "0" "0" "0"
lifecon "0" "0" "1" "0" "0"

R> A <- as.mxMatrix(A)

R> S <- mxMatrix(type="Symm", nrow=5, ncol=5, byrow=TRUE,
free=c(TRUE,

FALSE,TRUE,
FALSE,FALSE,TRUE,
FALSE,FALSE,FALSE,FALSE,
FALSE,FALSE,FALSE,FALSE,FALSE),

values=c(1,
0,0.01,
0,0,0.1,
0,0,0,0,
0,0,0,0,0),

labels=c("sigma2_x",
NA,"tau2_1_1",
NA,NA,"tau2_2_2",
NA,NA,NA,"data.lifesat_var",
NA,NA,NA,"data.inter_cov","data.lifecon_var"),

name="S")
R> S@labels

[,1] [,2] [,3] [,4]
[1,] "sigma2_x" NA NA NA
[2,] NA "tau2_1_1" NA NA
[3,] NA NA "tau2_2_2" NA
[4,] NA NA NA "data.lifesat_var"
[5,] NA NA NA "data.inter_cov"

[,5]
[1,] NA
[2,] NA
[3,] NA
[4,] "data.inter_cov"
[5,] "data.lifecon_var"

R> F <- matrix(c(1,0,0,0,0,
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0,0,0,1,0,
0,0,0,0,1), nrow=3, ncol=5, byrow=TRUE)

R> dimnames(F) <- list(c("gnp","lifesat","lifecon"),
c("gnp","f_lifesat","f_lifecon",

"lifesat","lifecon"))
R> F

gnp f_lifesat f_lifecon lifesat lifecon
gnp 1 0 0 0 0
lifesat 0 0 0 1 0
lifecon 0 0 0 0 1

R> F <- as.mxMatrix(F)

R> M <- matrix(c("0*mu_x","0*beta1_0","0*beta2_0",0,0),
nrow=1, ncol=5)

R> dimnames(M)[[2]] <- c("gnp", "f_lifesat","f_lifecon",
"lifesat","lifecon")

R> M

gnp f_lifesat f_lifecon lifesat lifecon
[1,] "0*mu_x" "0*beta1_0" "0*beta2_0" "0" "0"

R> M <- as.mxMatrix(M)

We define the indirect, direct, and total effects using the mxAlgebra() func-
tion. We also obtain the 95% LBCI on these estimates by specifying the inter-
vals=TRUE argument in calling up the mxRun() function.

R> ## Define the direct effect
R> direct <- mxAlgebra(gamma1, name="direct")
R> ## Define the indirect effect
R> indirect <- mxAlgebra(gamma2*beta1_2, name="indirect")
R> ## Define the total effect
R> total <- mxAlgebra(gamma1+gamma2*beta1_2, name="total")
R> med <- mxModel("Mediation",

mxData(observed=my.df, type="raw"),
A, S, F, M, direct, indirect, total,
mxCI(c("direct","indirect","total")),
mxExpectationRAM(A="A", S="S", F="F", M="M",
dimnames=c("gnp","f_lifesat","f_lifecon",

"lifesat","lifecon")),
mxFitFunctionML())

R> med.fit <- mxRun(med, intervals=TRUE)
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R> med.fit@output$status[[1]]

[1] 0

R> summary(med.fit)

------------------------ Selected output -----------------------

free parameters:
name matrix row col Estimate Std.Error lbound ubound

1 gamma1 A 2 1 -6.185e-03 0.014694
2 gamma2 A 3 1 -3.720e-02 0.017948
3 beta1_2 A 2 3 4.802e-01 0.167966
4 sigma2_x S 1 1 9.195e-01 0.213771
5 tau2_1_1 S 2 2 2.875e-03 0.001324
6 tau2_2_2 S 3 3 7.479e-03 0.002471
7 mu_x M 1 gnp -8.795e-10 0.157640
8 beta1_0 M 1 f_lifesat -3.260e-02 0.017158
9 beta2_0 M 1 f_lifecon 7.059e-02 0.017136

confidence intervals:
lbound estimate ubound

Mediation.direct[1,1] -0.03609 -0.006185 0.0232042
Mediation.indirect[1,1] -0.04482 -0.017867 -0.0004997
Mediation.total[1,1] -0.05506 -0.024051 0.0065157

observed statistics: 111
estimated parameters: 9
degrees of freedom: 102
-2 log likelihood: -45.01
number of observations: 37

------------------------ Selected output -----------------------

The structural equation for the predicted average effect sizes with the parameter
estimates as shown in Equation 5.32 is[

f̂life_sat

f̂life_con

]
=
[
−0.0326
0.0706

]
+
[

0 0.4802
0 0

] [
flife_sat
flife_con

]
+
[
−0.0062
−0.0372

]
GNP.

The estimated indirect, direct, and total effects (with their 95% LBCI) are −0.0179
(−0.0448,−0.0005), −0.0062 (−0.0361, 0.0232), and −0.0241 (−0.0551, 0.0065),
respectively. Although the estimated indirect effect is statistically significant, the
effect size is very small. Both the direct effect and the total effect are not significant.
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5.7.3.3 Moderation model

In this section, we illustrate how to analyze the moderating effect between two
true effect sizes by treating the GNP as the moderator. We treat the GNP as a
variable in the analysis (see Figure 5.7b). The variables are arranged as gnp,
f_lifesat, f_lifecon, lifesat, lifecon, and P. As shown in the figure
and Equation 5.33, the regression coefficient from flife_con to flife_sat depends on
the value of xi. We create a phantom variable P to account for this moderation.
The regression coefficient from flife_con to P is fixed by the value xi via a definition
variable. GNP is used twice—one as the predictor and the other in the definition
variable. We may specify the A matrix using the mxMatrix() function. Alterna-
tively, we may prepare the A matrix as usual. Then we may change the elements
related to the definition variable in an ad hoc way, for example,

R> A <- matrix(c(0,0,0,0,0,0,
"0*gamma1",0,"0*beta1_2",0,0,"0*omega1_2",
0,0,0,0,0,0,
0,1,0,0,0,0,
0,0,1,0,0,0,
0,0,"0*data_gnp",0,0,0),

ncol=6,nrow=6,byrow=TRUE)
R> dimnames(A) <- list(c("gnp","f_lifesat","f_lifecon",

"lifesat","lifecon","P"),
c("gnp","f_lifesat","f_lifecon",

"lifesat","lifecon","P"))
R> A

gnp f_lifesat f_lifecon lifesat lifecon
gnp "0" "0" "0" "0" "0"
f_lifesat "0*gamma1" "0" "0*beta1_2" "0" "0"
f_lifecon "0" "0" "0" "0" "0"
lifesat "0" "1" "0" "0" "0"
lifecon "0" "0" "1" "0" "0"
P "0" "0" "0*data_gnp" "0" "0"

P
gnp "0"
f_lifesat "0*omega1_2"
f_lifecon "0"
lifesat "0"
lifecon "0"
P "0"

R> A <- as.mxMatrix(A)
R> ## Change the elements related to the definition variable
R> ## A[6,3] is fixed by the variable gnp in the data
R> A@labels[6,3] <- "data.gnp"
R> ## A[6,3] is a fixed parameter
R> A@free[6,3] <- FALSE
R> A



MULTIVARIATE META-ANALYSIS 171

FullMatrix 'A'

$labels
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] NA NA NA NA NA NA
[2,] "gamma1" NA "beta1_2" NA NA "omega1_2"
[3,] NA NA NA NA NA NA
[4,] NA NA NA NA NA NA
[5,] NA NA NA NA NA NA
[6,] NA NA "data.gnp" NA NA NA

$values
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 0 0 0
[2,] 0 0 0 0 0 0
[3,] 0 0 0 0 0 0
[4,] 0 1 0 0 0 0
[5,] 0 0 1 0 0 0
[6,] 0 0 0 0 0 0

$free
[,1] [,2] [,3] [,4] [,5] [,6]

[1,] FALSE FALSE FALSE FALSE FALSE FALSE
[2,] TRUE FALSE TRUE FALSE FALSE TRUE
[3,] FALSE FALSE FALSE FALSE FALSE FALSE
[4,] FALSE FALSE FALSE FALSE FALSE FALSE
[5,] FALSE FALSE FALSE FALSE FALSE FALSE
[6,] FALSE FALSE FALSE FALSE FALSE FALSE

$lbound: No lower bounds assigned.

$ubound: No upper bounds assigned.

As the phantom variable P is only introduced to impose the moderating effect, its
variance is fixed at zero.

R> S <- mxMatrix(type="Symm", nrow=6, ncol=6, byrow=TRUE,
free=c(TRUE,

FALSE,TRUE,
TRUE,FALSE,TRUE,
FALSE,FALSE,FALSE,FALSE,
FALSE,FALSE,FALSE,FALSE,FALSE,
FALSE,FALSE,FALSE,FALSE,FALSE,FALSE),

values=c(1,
0,0.01,
0,0,0.1,
0,0,0,0,
0,0,0,0,0,
0,0,0,0,0,0),

labels=c("sigma2_x",
NA,"tau2_1_1",
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"cov_x_lifecon",NA,"tau2_2_2",
NA,NA,NA,"data.lifesat_var",
NA,NA,NA,"data.inter_cov","data.lifecon_var",
NA,NA,NA,NA,NA,NA),

name="S")
R> S@labels

[,1] [,2] [,3] [,4]
[1,] "sigma2_x" NA "cov_x_lifecon" NA
[2,] NA "tau2_1_1" NA NA
[3,] "cov_x_lifecon" NA "tau2_2_2" NA
[4,] NA NA NA "data.lifesat_var"
[5,] NA NA NA "data.inter_cov"
[6,] NA NA NA NA

[,5] [,6]
[1,] NA NA
[2,] NA NA
[3,] NA NA
[4,] "data.inter_cov" NA
[5,] "data.lifecon_var" NA
[6,] NA NA

R> F <- matrix(c(1,0,0,0,0,0,
0,0,0,1,0,0,
0,0,0,0,1,0), nrow=3, ncol=6, byrow=TRUE)

R> dimnames(F) <- list(c("gnp","lifesat","lifecon"),
c("gnp","f_lifesat","f_lifecon","lifesat",

"lifecon","P"))
R> F

gnp f_lifesat f_lifecon lifesat lifecon P
gnp 1 0 0 0 0 0
lifesat 0 0 0 1 0 0
lifecon 0 0 0 0 1 0

R> F <- as.mxMatrix(F)

R> M <- matrix(c("0*mu_x","0*beta1_0","0*beta2_0",0,0,0),
nrow=1, ncol=6)

R> dimnames(M)[[2]] <- c("gnp","f_lifesat","f_lifecon",
"lifesat","lifecon","P")

R> M

gnp f_lifesat f_lifecon lifesat lifecon P
[1,] "0*mu_x" "0*beta1_0" "0*beta2_0" "0" "0" "0"
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R> M <- as.mxMatrix(M)

We build the model by putting all matrices together. We also request the 95% LBCI
on the parameter omega1_2 that indicates the moderating effect.

R> mod <- mxModel("Moderator",
mxData(observed=my.df, type="raw"),
A, S, F, M,
mxCI("omega1_2"),
mxExpectationRAM(A="A", S="S", F="F", M="M",

dimnames=c("gnp","f_lifesat","f_lifecon",
"lifesat","lifecon","P")),

mxFitFunctionML())

R> mod.fit <- mxRun(mod, intervals=TRUE, silent=TRUE)
R> ## Check the optimization status
R> mod.fit@output$status[[1]]

[1] 0

R> summary(mod.fit)

------------------------ Selected output -----------------------

free parameters:
name matrix row col Estimate Std.Error lbound

1 gamma1 A 2 1 -1.021e-02 0.017521
2 beta1_2 A 2 3 4.707e-01 0.169707
3 omega1_2 A 2 6 7.284e-02 0.171198
4 sigma2_x S 1 1 9.195e-01 0.213771
5 tau2_1_1 S 2 2 2.803e-03 0.001322
6 cov_x_lifecon S 1 3 -3.463e-02 0.018333
7 tau2_2_2 S 3 3 8.720e-03 0.002764
8 mu_x M 1 gnp -2.082e-10 0.157640
9 beta1_0 M 1 f_lifesat -2.930e-02 0.018795
10 beta2_0 M 1 f_lifecon 7.044e-02 0.018089

confidence intervals:
lbound estimate ubound

omega1_2 -0.2734 0.07284 0.4315

observed statistics: 111
estimated parameters: 10
degrees of freedom: 101
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-2 log likelihood: -45.19
number of observations: 37

------------------------ Selected output -----------------------

The optimization status code is “0,” indicating that the optimization is fine. From
the above outputs, the equation on predicting the average flife_sat is

f̂life_sat = −0.0293 − 0.0102GNP + (0.4707 + 0.0728GNP)flife_con.

The estimated moderating effect (with its 95% LBCI) is 0.0728 (−0.2734, 0.4315),
which is not significant at 𝛼 = 0.05. Thus, the analysis does not support the claim
that GNP is a moderator of the relationship from flife_con to flife_con.

5.8 Concluding remarks and further readings

This chapter introduced why multivariate meta-analysis was preferred to handle
multiple effect sizes. We briefly discussed the benefits of multivariate meta-analysis
to several univariate meta-analyses from a missing data perspective. Readers may
refer to Jackson et al. (2011) and the commentaries for more advantages and issues
of the multivariate meta-analysis. This chapter also introduced the basic models
of multivariate meta-analysis and how the multivariate meta-analysis could be for-
mulated under the SEM-based meta-analysis (Cheung, 2013b). One common issue
when applying multivariate meta-analysis is missing information on the correlation
of the multiple effect sizes. This chapter briefly discussed some of the common
methods to handle the missing correlation. As there is still a lack of clear con-
sensus on what the best method is to handle the missing correlation, future studies
should explore this issue in more details. We also provided statistical models to test
mediation and moderator models among the effect sizes. Readers may refer to the
work by Shadish (1992, 1996) and Shadish and Sweeney (1991) for the conceptual
theories behind this approach.
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6

Three-level meta-analysis

This chapter reviews issues of nonindependent effect sizes in a meta-analysis and
some of the conventional approaches used to address these issues. A three-level
meta-analysis is then put forward to address the problem of dependence in the
effect sizes. A model and analyses of three-level meta-analysis are introduced.
This chapter also seeks to extend the key concepts of Q statistics, I2, and R2 from
a two-level meta-analysis to a three-level meta-analysis. A structural equation
modeling (SEM) approach to conducting a three-level meta-analysis is intro-
duced. The relationships between a three-level meta-analysis and a multivariate
meta-analysis are described. An example is used to illustrate the procedures in the
R statistical environment.

6.1 Introduction

Most statistical methods used in meta-analyses assume that the effect sizes are inde-
pendent. The assumption of independence among the effect sizes does not seem
plausible in many research settings. When the effect sizes are nonindependent, the
results of conventional meta-analyses conducted on the assumption that effect sizes
are independent are no longer correct. Broadly speaking, there are two types of
dependence—either the conditional sampling covariance matrices of the studies
are known or it is unknown. When the conditional sampling covariance matri-
ces can be estimated from the studies, the multivariate meta-analysis introduced
in Chapter 5 may be used to model the dependence. This chapter focuses on sit-
uations where the conditional sampling covariances matrices cannot be estimated
from the studies.

Meta-Analysis: A Structural Equation Modeling Approach, First Edition. Mike W. -L. Cheung.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/cheung/meta_analysis
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6.1.1 Examples of dependent effect sizes with unknown degree
of dependence

In many research settings, the degree of dependence is unknown. For example, in
a cross-cultural meta-analysis, participants from the same ethnic group may share
similar values, beliefs, and psychological attributes (Fischer and Boer, 2011; Fis-
cher et al., 2012; Hanke and Fischer, 2013). The effect sizes reported by the same
research teams or authors may be more similar to each other than those reported
by other research teams or authors (Cooper, 2010; Shin, 2009). Dependence on the
effect sizes may also be introduced by using the same data sets in different publica-
tions (Shin, 2009). Single-case studies may report multiple effect sizes on the same
subjects (Owens and Ferron, 2012). Studies may also report multiple effect sizes
on similar constructs, over multiple time points or conditions while the correlations
among the effect sizes remain unknown (Van den Bussche et al., 2009).

Let us consider Nguyen and Benet-Martínez (2013) as an example. These authors
extracted 935 correlation coefficients between biculturalism (e.g., behavior, values,
and identity) and adjustment (e.g., life satisfaction and grades) from a total of 141
studies. Schmidt and Hunter (2015) called the multiple effect sizes reported in the
same study as conceptual replication because these effect sizes are also qualified
as the effect sizes in a meta-analysis. As multiple effect sizes have been reported,
it is not reasonable to assume that the effect sizes are independent. On the other
hand, the multivariate meta-analysis introduced in Chapter 5 is not applicable
because there is not enough information to estimate the sampling covariances
among the effect sizes.

Dependence on the data may be introduced by either the researchers conduct-
ing the primary studies or the reviewers doing the meta-analysis. For example, the
researchers conducting the primary studies may collect data from a multisite set-
ting; they may compare different treatment groups against the same control group
or use multiple measures on the same construct. When the summary statistics are
used in a meta-analysis, these effect sizes are not independent.

On the other hand, dependence may also be introduced by the reviewers who con-
ceptualize the meta-analysis. For example, reviewers conducting a cross-cultural
meta-analysis may hypothesize that culture plays an important role on psycholog-
ical processes. It is expected that the effect sizes reported by participants from the
same cultural group may be more similar than the effect sizes from other cultural
groups. When conducting a meta-analysis, studies will be naturally grouped under
cultural groups although the primary studies will have been independently con-
ducted by different researchers (e.g., Fischer and Boer, 2011; Fischer et al., 2012;
Hanke and Fischer, 2013).

6.1.2 Common methods to handling dependent effect sizes

Several strategies have been used to handle the dependent effect sizes (Boren-
stein et al., 2010; Cooper, 2010; Schmidt and Hunter, 2015). They are ignoring
the dependence, averaging the dependent effect sizes within studies, selecting one
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effect size per study, and shifting the unit of analysis. This section reviews some of
these approaches and their associated limitations.

6.1.2.1 Ignoring the Dependence

One incorrect strategy is simply ignoring the dependence and analyzing the data as
if they were independent. A great deal of work has been done on the effects of ignor-
ing the dependence in multilevel modeling (e.g., Hox, 2010; Snijders and Bosker,
2012). The general conclusion is that the fixed-effects parameter estimates, such
as the intercept and the regression coefficients, can be biased. The associated stan-
dard errors (SEs) of the parameter estimates are also likely underestimated. Thus,
the empirical Type I error rates are usually inflated. Researchers may incorrectly
conclude that there is an effect but in fact the significance is due to ignoring the
dependence of the effect sizes. Ignoring the dependence is generally not acceptable
in a meta-analysis (Becker et al., 2004).

6.1.2.2 Averaging the Dependent Effect Sizes within Studies

One approach to addressing the dependence is to average the dependent effect sizes
into a single effect size and to use the average effect sizes in the subsequent anal-
yses. This approach is also known as aggregation. Several procedures have been
suggested on how to average the dependent effect sizes (e.g., Cheung and Chan,
2004, 2008, 2014; Marín-Martínez and Sánchez-Meca, 1999; Rosenthal and Rubin,
1986). One simple method is to weigh the dependent effect sizes equally within a
study. Suppose that there are two dependent effect sizes y1j and y2j with their sam-
pling variances (𝑣1j and 𝑣2j) and their covariance (𝑣12j) in the jth Study. If 𝑣12j is
unknown, an ad hoc estimate based on expert knowledge or other sources may
be used. We may compute an average effect size yj = 0.5(y1j + y2j) with its sam-
pling variance 𝑣j = 0.25(𝑣1j + 𝑣2j + 2𝑣12j) (e.g., Borenstein et al., 2010; Gleser and
Olkin, 1994). There are other more accurate weighting approaches that take the
dependence into account (e.g., Cheung and Chan, 2004, 2008, 2014).

The main advantage of these approaches is that they are easy to apply. After the
averaging, there is only one effect size per study. Conventional meta-analytic tech-
niques can be directly applied. Although these approaches can effectively remove
the dependence among the effect sizes, there are several limitations. First, the statis-
tical power of the tests may be affected because some information on the data will
have been lost. Second, these approaches may limit what research questions can be
addressed in the meta-analysis. For example, the reviewers may want to investigate
the effectiveness of a teaching program on students. While it is common for studies
to report teaching effectiveness based on student reports y1j as well as teacher eval-
uations y2j, if reviewers average the effect sizes reported by students and teachers,
it would not be possible to test the differences between the student reports and the
teacher evaluations.

When averaging the effect sizes within studies, researchers usually calculate an
average effect size for each study by using either a simple average or a weighted
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average. This means that the effect sizes are assumed to be homogeneous within
studies. The differences among the effect sizes within a study are merely due to the
sampling error. This assumption of homogeneity of effect sizes within a study may
be questionable in a meta-analysis. Even though the same samples are used within
the same study, the true population effect sizes within the same study may still vary
because different measures are used.

6.1.2.3 Selecting One Effect Size Per Study

Another approach is to select only one effect size per study. This is also known
as elimination. As there is only one effect size per study, the effect sizes are inde-
pendent. Similar to the problems listed in the averaging approach, the elimination
approach affects the statistical power of the meta-analysis because some effect sizes
have been excluded (Hedges and Pigott, 2001, 2004). Using the previous example
on the effectiveness of a teaching program as an illustration, the reviewers may need
to choose between the teaching effectiveness based on the students’ own reports or
on the teachers’ evaluations as the effect sizes. Moreover, the ability to test study
characteristics using the mixed-effects model is also limited, because not all effect
sizes can be included in the meta-analysis.

6.1.2.4 Shifting the Unit of Analysis

Cooper (2010) proposed an approach called shifting the unit of analysis. The basic
idea is to select the unit of analysis and then apply averaging on the effect sizes
within the units. For example, when an overall estimate of the pooled effect size is
required, the unit of analysis is a study. The dependent effect sizes are first averaged
within studies before the analysis is conducted. As each study contributes only one
effect size, the average effect is calculated based on independent samples. When
study characteristics are being examined, for example, comparing the effects of dif-
ferent gender groups, the dependent effect sizes are averaged within gender groups.
This approach can minimize the effect of dependence.

It is not without limitations, however. Under this approach, issues such as a loss
of information and the assumption of homogeneity within studies in the averaging
process have not been resolved. As different data sets are used to address different
research questions, there is no guarantee that the findings will be consistent. As
noted by Cooper (2010), the process of managing data also becomes complicated
because the data structures have to be changed according to the research questions.

Ahn et al. (2012) reviewed 56 meta-analyses published in eight journals in edu-
cation between 2000 and 2010. Among other findings, one was that in 28 of these
meta-analyses issues relating to dependent effect sizes were encountered because
of multiple measures of the same construct, multiple outcomes or interventions,
multiple time points, or multiple comparison groups. The reported methods used
to address the issue of dependence were (i) averaging the dependent effect sizes
within studies (18 studies), (ii) shifting the unit of analysis (8 studies), and (iii)
selecting one effect size per study and combining this approach with other methods



THREE-LEVEL META-ANALYSIS 183

(5 studies). For those studies that did not mention issues of dependence, it is unclear
whether there was no such issue or whether the issues were ignored.

Scammacca et al. (2013) compared several approaches to handle dependent effect
sizes by using a case study. They found that the estimates of the overall effect sizes
were similar, whereas the estimated indices on heterogeneity varied. As their study
was based on a single data set, further simulation studies may be needed to address
the generalizability of their findings. From these reviews, it is clear that it is quite
often to encounter dependent effect sizes when conducting meta-analyses.

6.2 Three-level model

This section reviews how three-level multilevel models (e.g., Goldstein, 2011;
Raudenbush and Bryk, 2002; Snijders and Bosker, 2012) can be applied to meta-
analysis to address the dependence of the effect sizes. The issues of quantify-
ing the degree of heterogeneity and the explained variance in a mixed-effects
meta-analysis are also discussed.

6.2.1 Random-effects model

The fixed-effects model is a special case of the conventional two-level random-
effects model, while the conventional two-level random-effects model is a special
case of the three-level meta-analysis. To fix the notations, yij be the ith effect size in
the jth cluster. The definition of cluster depends on the data structure and research
questions. For example, yij represents one of the multiple effect sizes in the jth study
(e.g., Nguyen and Benet-Martínez, 2013); it represents one of the studies in the
jth cultural group in a cross-cultural meta-analysis (e.g., Fischer and Boer, 2011;
Fischer et al., 2012; Hanke and Fischer, 2013). In single-case studies, yij represents
one of the measures in the jth subject (Owens and Ferron, 2012). As the most
common type of dependence is multiple effect sizes nested within studies, in this
chapter, we often denote the ith effect size in the jth study for ease of discussion.

The three-level random-effects meta-analysis is depicted as follows:

Level 1: yij = 𝜆ij + eij,
Level 2: 𝜆ij = fj + u(2)ij,
Level 3: fj = 𝛽0 + u(3)j,

(6.1)

where 𝜆ij is the true effect size and eij is the known sampling variance in the ith
effect size in the jth cluster, fj is the true effect size in the jth cluster, 𝛽0 is the aver-
age population effect, and Var(u(2)ij) = 𝜏

2
(2) and Var(u(3)j) = 𝜏

2
(3) are the level-2 and

level-3 heterogeneity variances, respectively. Therefore, 𝛽0 represents the average
effect across all effect sizes, while the study-specific level-2 and level-3 random
effects allow each effect size yij has its own true population effect size.

Similar to the two-level model, the equations can be combined into a single
equation:

yij = 𝛽0 + u(2)ij + u(3)j + eij. (6.2)
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Standard assumptions in multilevel modeling are applied. Random effects at dif-
ferent levels and the sampling error are assumed to be independent:

Cov(u(2)ij, u(3)j) = Cov(u(2)ij, eij) = Cov(u(3)j, eij) = 0. (6.3)

Moreover, the level-2 random effects within the same cluster and the level-3
between-cluster random effects are independent:

Cov(u(2)ij, u(2)kj) = 0 and
Cov(u(3)m, u(3)n) = 0.

(6.4)

On the basis of the above assumptions, it follows that

E(yij) = 𝛽0 and
Var(yij) = Var(u(2)ij) + Var(u(3)j) + Var(eij)

= 𝜏
2
(2) + 𝜏

2
(3) + 𝑣ij.

(6.5)

The covariance of two effect sizes within the same jth cluster is

Cov(yij, ykj) = Cov(u(2)ij + u(3)j + eij, u(2)kj + u(3)j + ekj)
= Cov(u(3)j, u(3)j) as the other terms are zero,
= 𝜏

2
(3).

(6.6)

The covariance of two effect sizes from different clusters is

Cov(yij, ymn) = 0. (6.7)

In plain language, the unconditional sampling variance of the effect size equals
the sum of the level-2 and level-3 heterogeneity and the known sampling variance.
Effect sizes in the same clusters share the same covariance 𝜏2

(3), whereas effect sizes
in different clusters are independent. Readers may refer to Konstantopoulos (2011)
for details.

6.2.1.1 Testing the homogeneity of effect sizes

As with a conventional (two-level) meta-analysis, reviewers may want to test the
hypothesis of the homogeneity of effect sizes. Suppose that there are k clusters with
a maximum of p effect sizes per study; the null hypothesis of the homogeneity of
effect sizes is H0 ∶ 𝜇11 = 𝜇21 = · · · = 𝜇1k = · · · = 𝜇pk. When all of the population
effect sizes are the same under the null hypothesis, there is no cluster effect. Thus,
the conventional Q statistic proposed by Cochran (1954) can be directly applied. It
is defined by using Equation 4.14 as follows:

Q =
n∑
i=1

𝑤i(yi − ̂
𝛽F)2, (6.8)
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where 𝑤 = 1∕𝑣i, 𝛽F =
∑n

i=1 𝑤iyi∕
∑n

i=1 𝑤i, and n is the total number of effect sizes.
Under the null hypothesis, theQ statistic has an approximate chi-square distribution
with (n − 1) degree of freedoms (dfs). It should be noted that this test assumes that
the effect sizes are conditionally independent. The test statistic may not be accurate
when the observed effect sizes are not independent even the null hypothesis is cor-
rect. If the degree of dependence of the effect sizes can be estimated, the modified
Q statistic (Equation 5.6) that takes the dependence into account may be used.

6.2.1.2 Testing H0 ∶ 𝝉2(3) = 0

It is clear that the two-level meta-analysis is a special case of the three-level
meta-analysis by fixing 𝜏

2
(3) = 0. As these two models are nested, we may test the

null hypothesis H0 ∶ 𝜏
2
(3) = 0 by using a likelihood ratio (LR) statistic. If the test

statistic is nonsignificant, we cannot reject the null hypothesis of 𝜏2
(3) = 0. In order

words, the three-level model is not statistically better than the two-level model.
Alternatively, a likelihood-based confidence interval (LBCI) can be constructed on
𝜏

2. If a 95% LBCI does not include 0, the null hypothesis H0 ∶ 𝜏
2
(3) = 0 is rejected

at 𝛼 = 0.05.
Two points of caution should be raised. First, even if the null hypothesis is true,

the test statistic is not distributed as a chi-square distribution with 1 df. As H0 ∶
𝜏

2
(3) = 0 is tested on the boundary, 𝜏2

(3) cannot be negative in theory. The test statistic
is distributed as a 50:50 mixture of a degenerate random variable with all of its
probability mass concentrated at zero and a chi-square random variable with 1 df.
One simple strategy to correct for this bias is to use 2𝛼 instead of 𝛼 as the alpha
level (Pinheiro and Bates, 2000). That is, we may reject the null hypothesis when
the observed p value is larger than 0.10 for 𝛼 = 0.05 (see Section 4.3.2 for details).

Second, it is not advisable to decide between a two-level or a three-level
model by testing H0 ∶ 𝜏

2
(3) = 0. Similar to the choice between a fixed-effects or

a random-effects model in a conventional meta-analysis, the decision should be
based on whether a conditional or an unconditional inference is required (e.g.,
Hedges and Vevea, 1998). If reviewers want to generalize the findings to both
level 2 and level 3, a three-level model should be used even though the test of
H0 ∶ 𝜏

2
(3) = 0 is nonsignificant. If the 𝜏

2
(3) = 0, the model becomes a conventional

two-level meta-analysis.

6.2.1.3 Testing H0 ∶ 𝝉2(2) = 0

We may compare the conceptual differences between the three-level meta-analysis
and conventional approaches, such as aggregation and elimination, in handling
dependent effect sizes. The conventional approaches assume that 𝜏2

(2) = 0. With
this assumption, the multiple effect sizes within the same study are direct replica-
tion of each other. The observed differences are only due to the sampling error. As
they are direct replication of each other, the elimination approach chooses only one
effect size per study. The aggregation approach combines these multiple effect sizes
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with the aim of minimizing the sampling error. Under the three-level meta-analysis,
whether H0 ∶ 𝜏

2
(2) = 0 is an empirical question that can be tested based on the data.

We can test the null hypothesis H0 ∶ 𝜏
2
(2) = 0. 𝜏2

(2) indicates the heterogeneity of
true effect sizes within a cluster. Similar to the case in testing H0 ∶ 𝜏

2
(3) = 0, it is

testing on the boundary. Moreover, it is not advisable to fix 𝜏
2
(2) = 0 even the test

statistic is nonsignificant.

6.2.1.4 Testing H0 ∶ 𝝉2(2) = 𝝉2(3)

Reviewers may sometimes want to compare the magnitude of the heterogeneity
variances between level 2 and level 3. Let us consider cross-cultural research
as an example. Traditionally, researchers have mainly been interested in the
between-cultural variation, for example, the differences between Americans, Chi-
nese, and Japanese. Some researchers, however, argue that the variations within a
culture, which is known as intracultural variation, is also theoretically meaningful
(e.g., Au and Cheung, 2004). If a cross-cultural meta-analysis is conducted by
treating studies as level 2 and cultural groups as level 3, reviewers may want
to test H0 ∶ 𝜏

2
(2) = 𝜏

2
(3). If the null hypothesis is not rejected, the magnitude of

the intracultural variation is similar to that of the between-cultural variation;
otherwise, one is greater than the other.

It should be emphasized that this research hypothesis cannot be tested by using
common methods for handling dependent effect sizes, such as averaging the depen-
dent effect sizes, selecting one effect size per study, and shifting the unit of analysis.
The above null hypothesis can easily be tested in the SEM approach, which is intro-
duced in next section, by imposing an equality constraint on 𝜏

2
(2) and 𝜏

2
(3). Under the

null hypothesis, the difference in the LRs between the models with and without the
constraint has a chi-square distribution with 1 df.

6.2.1.5 Quantifying the degree of the heterogeneity of the effect sizes

Besides the statistical tests, reviewers may want to quantify the heterogeneity of
the effect sizes at both levels. To quantify the heterogeneity of the effect sizes, the
I2 in Section 4.3.3 proposed by Higgins and Thompson (2002) can be extended to
a three-level meta-analysis. We define the I2 at level 2 and level 3 as

I2
(2) =

𝜏
2
(2)

𝜏
2
(2) + 𝜏

2
(3) + �̃�

and

I2
(3) =

𝜏
2
(3)

𝜏
2
(2) + 𝜏

2
(3) + �̃�

,

(6.9)

where �̃� is a typical within-study sampling variance, as discussed in Section 4.3.3.
I2
(2) and I2

(3) can be interpreted as proportions of the total variation of the effect
size due to the level-2 and level-3 between-study heterogeneity, respectively. For
instance, suppose that level 2 refers to multiple measures while level 3 refers to
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studies. I2
(2) and I2

(3) can be interpreted as proportions of the total variation due
to the use of multiple measures within a study and to the between-study effects,
respectively. In a cross-cultural meta-analysis by using cultural groups as the cluster
effect, I2

(2) and I2
(3) can be interpreted as the proportions of the intracultural varia-

tion and the between-cultural variation, respectively. As the sample sizes (�̃�) are
involved in the calculations of I2

(2) and I2
(3), these indices are not estimating any

population parameters. Rather, they are mainly serving as descriptive indices for
the studies included in the meta-analysis.

We may also define two intraclass correlations (ICCs) that involve only the level-2
and level-3 quantities (e.g., Snijders and Bosker, 2012). It can easily be shown that
these ICCs are simply one-to-one transformations of I2

(2) and I2
(3),

ICC(2) =
𝜏

2
(2)

𝜏
2
(2) + 𝜏

2
(3)

=
I2
(2)

I2
(2) + I2

(3)

and

ICC(3) =
𝜏

2
(3)

𝜏
2
(2) + 𝜏

2
(3)

=
I2
(3)

I2
(2) + I2

(3)

.

(6.10)

These two indices can be interpreted as the proportions of the total between-study
heterogeneity of the effect size that are due to the level 2 and the level 3 between
studies. One advantage of the ICCs over I2 is that they are sample size free.
Therefore, they are estimating the population quantities 𝜏

2
(2)∕(𝜏

2
(2) + 𝜏

2
(3)) and

𝜏
2
(3)∕(𝜏

2
(2) + 𝜏

2
(3)).

Although the above indices seem intuitive, there is a lack of studies on the
empirical performance of these indices. This is because quantifying the degree of
heterogeneity is still a new topic in three-level meta-analysis (Cheung, 2014b).
There are a couple of issues that should be addressed in the future. First, there are
several definitions of what constitutes a typical within-study sampling variance
(see Section 4.3.3). It is not clear which definition fits best in a three-level
meta-analysis. Second, 𝑣i and thus �̃� are treated as constants without considering
the cluster effect or the dependency of the data. Calculations of �̃� in a conventional
two-level meta-analysis featured in Section 4.3.3 are directly applied here. Further
studies may investigate whether it is necessary to adjust for the cluster effect when
calculating indices of heterogeneity. Third, ICCs are seldom used in meta-analyses
because they are not defined in a conventional two-level meta-analysis. Whether
ICCs or I2 are better at quantifying the degree of heterogeneity in a three-level
meta-analysis needs to be determined.

6.2.2 Mixed-effects model

The random-effects model can be extended to a mixed-effects model by includ-
ing study-specific characteristics as moderators. Let x be a moderator that can be
either xij for a level-2 moderator or xj for a level-3 moderator. xj (without the i sub-
script) indicates that the value is the same in the jth cluster, whereas xij indicates
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that the value may vary across the effect sizes in the jth cluster. Without the loss
of generality, we use xij in the model notation. The mixed-effect model with one
moderator is

yij = 𝛽0 + 𝛽1xij + u(2)ij + u(3)j + eij. (6.11)

The values conditional at xij are

E(yij|xij) = 𝛽0 + 𝛽1xij,
Var(yij|xij) = 𝜏

2
(2) + 𝜏

2
(3) + 𝑣ij,

Cov(yij, ykj|xij) = 𝜏
2
(3), and

Cov(yij, ymn|xij) = 0.

(6.12)

The interpretations of these terms are similar to those in Equation 6.2 except that
𝜏

2
(2) and 𝜏

2
(3) are now the level-2 and level-3 residual heterogeneity variances after

controlling for the moderator xij.

6.2.2.1 Explained variance

The R2 discussed in Section 4.5.2 can be extended to three-level meta-analysis. We
may define the level-2 R2

(2) and level-3 R2
(3) as

R2
(2) = 1 −

𝜏
2
(2)1

𝜏
2
(2)0

and

R2
(3) = 1 −

𝜏
2
(3)1

𝜏
2
(3)0

,

(6.13)

where 𝜏
2
(2)1 and 𝜏

2
(2)0 are the estimated heterogeneity with predictors and without

predictors at level 2, respectively, and 𝜏
2
(3)1 and 𝜏

2
(3)0 are the estimated heterogene-

ity with predictors and without predictors at level 3, respectively. R2
(2) and R2

(3) can
be interpreted as the percentage of the variance of the heterogeneity that can be
explained by the moderators at level 2 and level 3, respectively. Similar to the con-
ventional three-level model, adding predictors at level 2 (or level 3) may affect
the R2 at the other level. When the estimated R2

(2) and R2
(3) are negative, they are

truncated to zero.
Compared to other approaches to handling dependent effect sizes, such as

aggregation and elimination, the three-level meta-analysis disentangles the effects
(heterogeneity and explained variances) to their corresponding levels. This allows
researchers to investigate which level contributes to the heterogeneity (or explained
variance) of the effect sizes.

6.3 Structural equation modeling approach

In this section, we first review how SEM can be used to model nested data.
The link between the dependence in a multilevel model and the covariance in a
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structural equation model is highlighted. Then, the SEM approach proposed by
Cheung (2014b) to model the three-level meta-analysis is introduced.

6.3.1 Two representations of the same model

There are two equivalent model representations for a conventional two-level
meta-analysis. Table 6.1 shows the data structure arranged in the so-called long
format. One row represents one study. Figure 6.1a shows a structural equation
model of the random-effects meta-analysis. As the rows are independent, only one
variable yi is required to represent the effect sizes. The model-implied mean and
variance are

𝜇i(𝜽)
1×1

= 𝛽0 and

Σi(𝜽)
1×1

= 𝜏
2 + 𝑣i.

(6.14)

It should be noted that there is a subscript i in Σi(𝜽) indicating that the variance
may vary across studies.

Another representation of the same model is to treat subjects (or studies in a
meta-analysis) as variables (Mehta and Neale, 2005). Table 6.2 shows the data
structure arranged in the so-called wide format. Each study is represented by one
variable. When there are k studies, k variables are created to represent the studies.
Figure 6.1b shows the model with three studies. The effect sizes of these studies
are represented by three variables y1, y2, and y3. There are three key features in this
model representation.

First, the expected means labeled 𝛽0 are the same for all studies. Second, the sub-
jects (or studies in the meta-analysis) are independent. Therefore, the covariances
among y1, y2, and y3 are all zero. Third, only one row is used to represent the whole
data set as the number of subjects (or studies in the meta-analysis) is represented by
the variables. The model-implied mean vector and the model-implied covariance
matrix are

𝝁(𝜽)
k×1

= 1
k×1

𝛽0 =
⎡⎢⎢⎣
𝛽0
⋮
𝛽0

⎤⎥⎥⎦ and

𝚺(𝜽)
k×k

= I
k×k

𝜏
2 + Diag(𝑣1, 𝑣2, · · · , 𝑣k)

=
⎡⎢⎢⎢⎣
𝜏

2

0 𝜏
2

⋮ ⋱ ⋱
0 · · · 0 𝜏

2

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
𝑣1
0 𝑣2
⋮ ⋱ ⋱
0 · · · 0 𝑣k

⎤⎥⎥⎥⎦ ,
(6.15)

where 1
k×1

is a k × 1 vector of ones and I
k×k

is a k × k identity matrix. From the

SEM perspective, there is only one subject in this analysis. The model-implied
means and covariance matrix are structured in such a way that there are only two
parameters—𝛽0 and 𝜏

2. As it is difficult and inefficient to maintain such a large
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Table 6.1 Long format data
for a two-level meta-analysis.

Study Effect size

1 y1
2 y2
⋮ ⋮
k yk

(a)

(b)

β0

β0

β0

β0

τ2 + vi

τ2 + v3

τ2 + v2

τ2 + v1

1

y3

y2

1
yi

y1

Figure 6.1 Two representations of a random-effects model.
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Table 6.2 Wide format data for a two-level meta-analysis.

Study Effect size 1 Effect size 2 · · · Effect size k

1 y1 y2 · · · yk

model, this approach is rarely used in SEM except when handling multilevel data
(see Mehta and Neale, 2005; Preacher, 2011). By using variables as subjects, we
may convert a two-level model into a single-level model. We will apply this tech-
nique to model a three-level meta-analysis.

6.3.2 Random-effects model

Now, we treat each cluster as a subject and the effect sizes within clusters as vari-
ables to model the three-level effect sizes in SEM. Suppose that the maximum
number of effect sizes per cluster is p; we create p variables to represent the effect
sizes nested within studies. For example, if the maximum number of effect sizes
per cluster is five, we create five variables. Table 6.3 shows a sample data structure
for this example. There are two effect sizes in Study 1, whereas there are five effect
sizes in Study 2 and only one effect size in Study k.

Table 6.3 Wide format data for a three-level meta-analysis.

Cluster y1 y2 y3 y4 y5

1 y1,1 y2,1 NA NA NA
2 y1,2 y2,2 y3,2 y4,2 y5,2
⋮ ⋮ ⋮ ⋮ ⋮
k y1,k NA NA NA NA

Abbreviation: NA, not available. yi,j represents the ith effect size in the jth
cluster.

There are a few points worth mentioning. First, the variables y1 to y5 are
exchangeable. It does not matter whether a particular effect size, say y1,1, is placed
under y1 or y5 as long as it is placed under Study 1. Second, the incomplete effect
sizes in clusters with fewer than five effect sizes are treated as missing values
and handled using the full information maximum likelihood (FIML) estimation
method. Third, the clusters are independent. Thus, SEM can be used to directly
model the data.

Figure 6.2 shows two equivalent SEM models for a three-level meta-analysis
with two effect sizes per cluster. Figure 6.2a displays the random-effects model
for Equation 6.1 with latent variables. The level-3 study effect in the jth cluster is
represented by the latent variable fj, whereas the ith level-2 random effects in the j
cluster are represented by u(2)ij. The ith known sampling variance in the jth cluster
is represented by 𝑣ij. This model is similar to the conventional CFA model where
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fj represents a general factor and u(2)ij and eij are the specific factor and the mea-
surement error, respectively. The advantage of this model representation is that the
level-2 and level-3 random effects are conceptualized as latent variables in SEM. fj
is the true effect size in the jth cluster, whereas u(2)ij is the random effect because
of using different measures within the jth cluster. The true effect size fj can be used
as an independent or dependent variable in more sophisticated modeling.

Figure 6.2b displays an equivalent model without the latent variables. It mainly
shows the expected means and the covariance structure. One advantage of this

(a)

(b)

1

v1,j

v2,j

1

β0

1 1

τ
2
(2)

τ
2
(2)

τ
2
(3)

1

1

1 fj

u(2)1

u(2)2

y1,j e1,j

e2,jy2,j

τ2
(3) + τ2

(2) + v1,j

τ2
(3) + τ2

(2) + v2,j

τ2
(3)

β0

β0

1

y1,j

y2,j

Figure 6.2 A three-level random-effects model with two studies in the jth cluster.
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approach is that the model can be handled in some multilevel modeling software
packages, for example, SAS (Konstantopoulos, 2011).

Because the variables are exchangeable, the model-implied means for the jth clus-
ter is a p × 1 vector of 𝛽0,

𝝁j(𝜽)
p×1

= 1
p×1

𝛽0 =
⎡⎢⎢⎣
𝛽0
⋮
𝛽0

⎤⎥⎥⎦ . (6.16)

The model-implied covariance matrix for the jth cluster is a p × p matrix of the
sum of three matrices: a p × p matrix with all elements of 𝜏

2
(3) representing the

level-3 heterogeneity, a p × p diagonal matrix with elements of 𝜏2
(2) representing

the level-2 heterogeneity, and a p × p diagonal matrix of known sampling variances
with elements 𝑣ij. That is,

𝚺j(𝜽)
p×p

= 1
p×p

𝜏
2
(3) + I

p×p
𝜏

2
(2) + Vj

p×p

=

⎡⎢⎢⎢⎢⎣
𝜏

2
(3)
𝜏

2
(3) 𝜏

2
(3)

⋮ ⋱ ⋱
𝜏

2
(3) · · · 𝜏

2
(3) 𝜏

2
(3)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
𝜏

2
(2)
0 𝜏

2
(2)

⋮ ⋱ ⋱
0 · · · 0 𝜏

2
(2)

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
𝑣1j
0 𝑣2j
⋮ ⋱ ⋱
0 · · · 0 𝑣kj

⎤⎥⎥⎥⎦ .
(6.17)

It is of interest to review two special cases under the SEM framework. The first
case is when 𝜏2

(3) = 0. The model becomes the conventional two-level meta-analysis
using the wide format representation in SEM. The second case is when 𝜏

2
(2) = 0.

This model assumes that all effect sizes within the study are direct replication of
each other. There is no level-2 heterogeneity but a sampling error.

6.3.3 Mixed-effects model

When there is a high degree of heterogeneity at level 2 and (or) level 3, we may
want to explain the heterogeneity by conducting a mixed-effects meta-analysis.
Figure 6.3 shows two equivalent model representations for a model with a mod-
erator xij in the jth cluster. Figure 6.3a uses a latent variable approach by using
fj and u(2) as the true effect size for the jth cluster and the level-2 study-specific
effect, respectively. Figure 6.3b excludes the latent variables and focuses on the
model-implied mean vectors and the covariance matrix. A phantom variable P with
zero variance is introduced for the purpose of fixing the values of the covariate. The
specific values of xij are imposed via definition variables, while 𝛽1 is the regression
coefficient (e.g., Cheung, 2010). If the moderators are at the cluster level, xij will
be the same at the jth cluster.
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(a)

(b)

x2,j

x1,j
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τ2
(3)

τ2
(2)
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1

β1

1β0

1

τ2
(2)

0

u(2)2

1

0

x1,j

β0

β1

β0

τ2
(3)

τ2
(3) + τ2

(2) + v1,j

τ2
(3) + τ2
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P1

y1,j

y2,j

u(2)1

P

fj

y2,j

y1,j

e2,j

e1,j

Figure 6.3 A three-level mixed-effects model with two studies and one moderator
in the jth cluster.
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Suppose that there is one moderator x; the conditional model-implied means and
the conditional model-implied covariance matrix for the jth cluster are

𝝁j(𝜽|xj)
p×1

= 1
p×1

𝛽0 + x
p×1

𝛽1 =
⎡⎢⎢⎣
𝛽0 + 𝛽1x1j

⋮
𝛽0 + 𝛽1xpj

⎤⎥⎥⎦ and

𝚺j(𝜽|xj)
p×p

= 1
p×p

𝜏
2
(3) + I

p×p
𝜏

2
(2) + Vj

p×p
.

(6.18)

It should be noted that the form of the conditional model-implied covariance matrix
is the same as that of the random-effects model. The only difference is that they are
now the residuals of the heterogeneity after controlling for the moderator x.

6.4 Relationship between the multivariate and the
three-level meta-analyses

Thus far, we have discussed the multivariate meta-analysis and the three-level
meta-analysis as two separate topics. In this section, we are going to compare and
contrast these models. In Section 6.4.1, we show that the three-level meta-analysis
is indeed a special case of the multivariate meta-analysis. In Section 6.4.2, we
discuss under what conditions the multivariate meta-analysis can be fitted using the
three-level meta-analysis when the degree of dependence is unknown. In Section
6.4.3, we combine the multivariate meta-analysis with the three-level model for
the purpose of addressing more complicated research questions involving multiple
effect sizes where the effect sizes are nested within clusters.

6.4.1 Three-level meta-analysis as a special case of the
multivariate meta-analysis

For ease of discussion, we duplicate the random-effects multivariate meta-analysis
in Equation 5.27 as follows:

𝝁i(𝜽) = 𝜷R and
𝚺i(𝜽) = T2 + Vi.

(6.19)

There are three key features in the above multivariate meta-analysis. First, no struc-
ture has been imposed on 𝝁i(𝜽), meaning that the means of different effects can
be different. Second, the off-diagonals of Vi are usually nonzero, meaning that
the observed effect sizes are conditionally dependent. Third, T2 is an unstructured
nonnegative matrix, meaning that the degree of heterogeneity can vary in different
effect sizes with different degree of correlation (covariance).

When we compare the multivariate meta-analysis shown in Figure 5.2b and the
three-level meta-analysis shown in of Figure 6.2b, it becomes apparent that the
three-level meta-analysis is indeed a special case of the multivariate meta-analysis.
As shown in Table 6.2, the effect sizes within a cluster are exchangeable in a
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three-level meta-analysis. That is, it does not matter whether these effect sizes are
placed under y1 or yp within the same cluster. This imposes a particular structure
on the model-implied means and the model-implied covariance matrix.

Specifically, the three-level meta-analysis can be formulated as a special case of
the multivariate meta-analysis by imposing three constraints:

(i) 𝝁i(𝜽)
p×1

= 1
p×1

𝛽0;

(ii) Vj
p×p

is a diagonal matrix; and

(iii) T2

p×p
= 1

p×p
𝜏

2
(3) + I

p×p
𝜏

2
(2) is a compound symmetry matrix.

The first constraint indicates that all of the p population effect sizes are equal under
the three-level model because the effect sizes are exchangeable within a cluster. The
second constraint shows that the p effect sizes are conditionally independent within
a cluster. The third constraint indicates that the variances and the covariances of the
true effect sizes are 𝜏

2
(2) + 𝜏

2
(3) and 𝜏

2
(3), respectively.

The second and the third constraints also highlight the main differences between
a multivariate meta-analysis and a three-level meta-analysis. In the multivariate
meta-analysis, the assumption is that the observed effect sizes are dependent
because of the conditional sampling covariance matrix Vi, whereas the true effect
sizes are also correlated under the structure of T2. On the other hand, in the
three-level meta-analysis, the assumption is that the observed effect sizes are con-
ditionally independent. Thus, Vi is a diagonal matrix. The so-called dependence in
the three-level meta-analysis is due to the true level-2 and level-3 random effects.

Practically speaking, software packages for the multivariate meta-analysis
that allow for the imposition of the above constraints, for example, the
meta() function in the metaSEM package (Cheung, 2014a), may be used
to fit the three-level meta-analysis. After fitting the multivariate meta-analysis
with the above constraints, the estimated heterogeneity covariance matrix is

̂T
2
=
⎡⎢⎢⎢⎣
𝜏

2
V
𝜏

2
C 𝜏

2
V

⋮ ⋱ ⋱
𝜏

2
C · · · 𝜏

2
C 𝜏

2
V

⎤⎥⎥⎥⎦. We may convert the parameter estimates under

the multivariate meta-analysis into the parameter estimates of the three-level
meta-analysis using 𝜏

2
(3) = 𝜏

2
C and 𝜏

2
(2) = 𝜏

2
V − 𝜏

2
C. Researchers may then calculate

the I2
(2) and I2

(3) and ICC2
(2) and ICC2

(3). The meta3() function in the metaSEM
package automatically calculates these indices.

6.4.2 Approximating a multivariate meta-analysis with a
three-level meta-analysis

As discussed in Chapter 5, one critical assumption in multivariate meta-analysis
is that the conditional sampling covariances of the multivariate effect sizes are
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known. Sometimes, the information required to calculate the sampling covariances
is not available. Because of the similarity between a multivariate meta-analysis and
a three-level meta-analysis, some researchers (e.g., Cheung and Chan, 2014; Van
den Noortgate et al., 2013) have suggested conducting a multivariate meta-analysis
with a three-level meta-analysis when the degree of dependence is unknown.
In this section, we discuss how and when a three-level meta-analysis may be
used to analyze the multivariate effect sizes even when the degree of dependence
is unknown.

The three-level model at first appears to be quite restrictive because it assumes
that the p effect sizes have to be exchangeable. Therefore, it is not appropriate to
model distinct multivariate effect sizes such as the standardized mean differences
on SAT-math and SAT-verbal. This is not entirely true. We may include level-2
dummy variables to indicate different types of effect sizes that are being modeled,
that is,

𝝁j(𝜽)
p×1

=
⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 · · · 0 1

⎤⎥⎥⎥⎦
p×p

⎡⎢⎢⎢⎣
𝛽1
𝛽2
⋮
𝛽p

⎤⎥⎥⎥⎦
p×1

, (6.20)

where 𝛽1 to 𝛽p are the average population effect sizes for different types of effect
sizes. If the effect sizes are missing, the correspondent diagonals in the identity
matrix I

p×p
are replaced by 0.

The main challenge is how to model the covariance structure. As we have dis-
cussed earlier, dependence means something slightly different in the context of a
multivariate meta-analysis than it does in a three-level meta-analysis. In a multi-
variate meta-analysis, there are a conditional sampling covariance matrix Vi that
varies across studies and a covariance matrix of the true effect sizes T2 that applies
to all studies. In a three-level meta-analysis, the effect sizes are conditionally inde-
pendent, that is, Vi = Diag(𝑣1, 𝑣2, · · · , 𝑣k), while the dependence is due to the 𝜏

2
(3)

of the true effect sizes in the same cluster.
To model a multivariate meta-analysis using a three-level model, we have to make

a few assumptions. The first one is that the heterogeneity variances are the same
for all effect sizes. In our example, we assume that the degree of heterogeneity
is similar for the SAT-math and SAT-verbal. We may then impose the following
assumptions on the multivariate effect sizes:

(i) Common degree of heterogeneity on the true effect sizes (diagonals of T2):
𝜏

2
V = 𝜏

2
11 = 𝜏

2
22 = · · · = 𝜏

2
pp;

(ii) Common degree of covariance among the true effect sizes (off-diagonals of
T2): 𝜏2

C = 𝜏
2
21 = 𝜏

2
31 = · · · = 𝜏

2
p(p−1); and

(iii) Common degree of conditional covariance among the observed effect sizes
(off-diagonals of all Vi) for all studies: �̆� = 𝑣21 = 𝑣31 = · · · = 𝑣p(p−1).
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It is instructive to show the model-implied covariance matrices for the multivariate
meta-analysis 𝚺Mulj(𝜽) under the above assumptions and the model-implied covari-
ance matrix for the three-level meta-analysis 𝚺3Lj(𝜽) in the j unit together:

𝚺Mulj(𝜽) =
⎡⎢⎢⎢⎣
𝜏

2
V + 𝑣11.j

𝜏
2
C + �̆� 𝜏

2
V + 𝑣22.j

⋮ ⋱ ⋱
𝜏

2
C + �̆� · · · 𝜏

2
C + �̆� 𝜏

2
V + 𝑣pp.j

⎤⎥⎥⎥⎦ and

𝚺3Lj(𝜽) =

⎡⎢⎢⎢⎢⎣
𝜏

2
(3) + 𝜏

2
(2) + 𝑣1.j

𝜏
2
(3) 𝜏

2
(3) + 𝜏

2
(2) + 𝑣2.j

⋮ ⋱ ⋱
𝜏

2
(3) · · · 𝜏

2
(3) 𝜏

2
(3) + 𝜏

2
(2) + 𝑣p.j

⎤⎥⎥⎥⎥⎦
,

(6.21)

where the subscript j on 𝑣i.j indicates that 𝑣i.j varies across the cluster.
The parameters in the multivariate meta-analysis and the three-level meta-

analysis are now related using the following equations:

(i) 𝜏
2
(3) = 𝜏

2
C + �̆�; and

(ii) 𝜏
2
(2) = 𝜏

2
V − 𝜏

2
C − �̆�.

As there are three parameters under a multivariate meta-analysis and there are only
two parameters under a three-level meta-analysis, it is not possible to recover the
original parameters in a multivariate meta-analysis. If we are willing to assume that
�̆� ≈ 0, we may compute 𝜏

2
C and 𝜏

2
V from the above equations.

In practice, some or all of the above assumptions may be wrong. The empiri-
cal performance of the three-level meta-analysis on the multivariate meta-analysis
depends on the degree of violation and sensitivity of these assumptions. Van den
Noortgate et al. (2013) showed that the above approach worked reasonably well
under their settings in a simulation study.

On the other hand, Cheung and Chan (2014) used a different model to analyze
multivariate effect sizes within a three-level meta-analysis. These authors assumed
that the level-2 heterogeneity variance was 0, meaning that the effect sizes within
the cluster were perfect replication of each other. The observed differences on the
effect sizes within the study were mainly due to a sampling error. Their preliminary
simulation results showed that this approach works reasonably well. These two
simulation studies seem to suggest that the above approximation works reasonably
well. Further studies may address the empirical performance of these approaches
in various realistic conditions.

6.4.3 Three-level multivariate meta-analysis

When the research questions and data are complicated, it may not be sufficient to
conduct a three-level meta-analysis with only one effect size. For example, multiple
effect sizes may be reported in a cross-cultural meta-analysis where the researchers
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want to separate the between-culture variation (level 3) and the within-culture
variation (level 2). Another example was given by Wilson (2013). Wilson was inter-
ested in conducting a meta-analytic structural equation modeling (MASEM; see
Chapter 7) on a pool of correlation coefficients. As each study may contribute more
than one effect size (correlation coefficient), the effect sizes are nested within stud-
ies. This is similar to the hierarchical dependence discussed by Stevens and Taylor
(2009). To address these questions properly, we may combine the multivariate
meta-analysis (Cheung, 2013) and the three-level meta-analysis (Cheung, 2014b).

Without loss of generality, we assume that there are two effect sizes xij and yij
with their known sampling covariance matrix Vij in the ith set of the effect size
in the jth cluster. We further suppose that there are k clusters with p sets of effect
sizes nested within the studies. We assume that the sets of effect sizes are condi-
tionally independent within a cluster. That is, the set of (xij and yij) and (xkj and ykj)
are conditionally independent. The dependence between them is due to the level-2
variance component of the random effects. Table 6.4 illustrates a sample data set
with a maximum of three sets of effect sizes per cluster. There is only one set of
effect sizes in cluster 1, while there are three sets of effect sizes in cluster 2. There
are incomplete effect sizes in cluster k.

Table 6.4 Two effect sizes nested within k clusters

Cluster y1 x1 y2 x2 y3 x3

1 y1,1 x1,1 NA NA NA NA
2 y1,2 x1,2 y2,2 x2,2 y3,2 x3,2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
k y1,k NA NA x2,k NA NA

Abbreviation: NA, not available.

The model for the ith set of effect sizes xij and yij in the j cluster is

xij = 𝜇x + ux(2)ij + ux(3)j + ex.ij and

yij = 𝜇y + uy(2)ij + uy(3)j + ey.ij, (6.22)

where 𝜇x is the average population effect of xij, ux(2)ij and ux(3)j are the level-2 and
level-3 random effects for xij, ex.ij is the sampling error of xij, and the other quantities
are similarly defined for yij.

To conduct a multivariate three-level meta-analysis, we need to specify both the
mean structure and the covariance structures. The mean structure 𝝁(𝜽) consists of
the fixed effects, such as intercepts and the regression coefficients. Thus, there is
only one mean structure regardless of how many levels there are. In contrast, we
need to specify the level-2 covariance structure 𝚺(2)(𝜽) and the level-3 covariance
structure 𝚺(3)(𝜽) for the variables.
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When there is no direction of prediction imposed between xij and yij, the
model-implied mean structure and the model-implied covariance structures are

𝝁ij𝜽)
2×1

= E
([

xij
yij

])
=
[
𝜇x
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]
,
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2
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2
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2
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2
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(6.23)

where the subscripts (2) and (3) represent the level-2 and level-3 heterogeneity
variance components, respectively. The above model can be extended to models
with predictions or mediators (see Section 5.6).

Once we have specified the model-implied mean structure and the model-implied
covariance structures, we may convert them into a model that takes the nested struc-
ture into account similar to that in Equations 6.16 and 6.17. In this example, there
are p sets of effect sizes and two effect sizes per each set. Thus, the model for the
jth cluster is

𝝁j(𝜽)
2p×1

= 1
p×1

⊗ 𝝁ij(𝜽)
2×1

and

𝚺j(𝜽)
2p×2p

= 1
p×p

⊗ 𝚺(3)j(𝜽)
2×2

+ I
p×p

⊗ 𝚺(2)ij(𝜽)
2×2

+ Diag(V1j,V2j, · · · ,Vpj)
2p×2p

,

(6.24)

where A⊗ B is the Kronecker product between matrices A and B. Suppose that A
m×n

and B
r×s

; A⊗ B =
⎡⎢⎢⎣
a11B · · · a1nB
⋮ ⋱ ⋮

am1B · · · amnB

⎤⎥⎥⎦
mr×ns

.

As far as the author knows, the only SEM package that can fit this model is
the OpenMx package (Boker et al., 2011). Users may have to specify the above
model-implied mean vectors and covariance matrices in OpenMx. Another chal-
lenge is that we still need to know the conditional sampling covariance matrix Vij.
However, studies may not provide enough information to calculate Vij. The correla-
tions among the effect sizes have to be estimated from other sources or imputed. The
empirical performance of this approach remains unclear. Future studies are needed
to determine how useful this model is and what its empirical performance is.

6.5 Illustrations using R

This section demonstrates how to conduct a three-level meta-analysis using the
metaSEM package. How to make comparisons between the conventional two-level
meta-analysis and the three-level meta-analysis is also illustrated. This section also
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demonstrates how to quantify the heterogeneity and explained variance at level 2
and level 3. It should be noted that the statistics reported in the illustrations were
captured by using the Sweave function in R. The numbers of decimal places may
be slightly different for those reported in the selected output and in the text.

The illustrations in this section were based on a data set from Bornmann et al.
(2007). Marsh et al. (2009) reanalyzed the same data set in more detail. Bornmann
et al. (2007) extracted 66 effect sizes from 21 studies of gender differences in the
peer reviews of grant and fellowship applications. The effect size was an odds ratio
that measured the odds of being approved among the female applicants divided by
the odds of being approved among the male applicants. To improve the normality
assumption with regard to the effect sizes, a logarithm was applied to the odds ratio.
If the effect size was positive, female applicants were favored to receive the grant
or fellowship, whereas if it was negative, male applicants were favored to obtain
grant or fellowship.

Bornmann et al. (2007) and Marsh et al. (2009) used a three-level meta-analysis
to handle dependent effect sizes. Level 1 was the authors, whereas levels 2 and 3
were the proposals and studies, respectively. Cheung (2014b) provided the R code
to replicate the results of Table 3 of Marsh et al. (2009). The focus of this section is
how to conduct the analyses in R. Readers should refer to Bornmann et al. (2007)
and Marsh et al. (2009) for substantive interpretations of the results.

6.5.1 Inspecting the data

The data set was stored as Bornmann07 in the metaSEM package. The effect
size and its sampling variance are logOR and v, respectively, while Cluster is
the cluster effect at level 3. The covariates are Year (Year of publication), Type
(Fellowship vs Grants), Discipline (Physical sciences, Life
sciences/biology, Social sciences/humanities, or Multi-
disciplinary), and Country (United States, Canada, Australia,
United Kingdom, or Europe). We inspect the data set by the following
commands. The numbers of effect sizes per cluster varies from 1 to 9.

R> library("metaSEM")
R> ## Show the first few cases in the data set
R> head(Bornmann07)

Id Study Cluster logOR v Year
1 1 Ackers (2000a; Marie Curie) 1 -0.40108 0.01392 1996
2 2 Ackers (2000b; Marie Curie) 1 -0.05727 0.03429 1996
3 3 Ackers (2000c; Marie Curie) 1 -0.29852 0.03391 1996
4 4 Ackers (2000d; Marie Curie) 1 0.36094 0.03404 1996
5 5 Ackers (2000e; Marie Curie) 1 -0.33336 0.01282 1996
6 6 Ackers (2000f; Marie Curie) 1 -0.07173 0.01361 1996

Type Discipline Country
1 Fellowship Physical sciences Europe
2 Fellowship Physical sciences Europe
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3 Fellowship Physical sciences Europe
4 Fellowship Physical sciences Europe
5 Fellowship Social sciences/humanities Europe
6 Fellowship Physical sciences Europe

R>
R> ## Show the last few cases in the data set
R> ## tail(Bornmann07)
R> ## Display the no. of effect sizes per cluster
R> t(aggregate(logOR̃ Cluster, data=Bornmann07, FUN=length))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
Cluster 1 2 3 4 5 6 7 8 9 10 11
logOR 7 7 1 1 5 3 1 3 2 4 1

[,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21]
Cluster 12 13 14 15 16 17 18 19 20 21
logOR 8 1 1 2 3 1 1 1 4 9

6.5.2 Fitting a random-effects model

The syntax for the meta3() function is similar to that of the meta() function.
The arguments y and v are used to specify the effect size and its conditional sam-
pling variance, respectively. The cluster argument is used to specify how the
effect sizes are clustered.

R> ## Model 0: Random-effects model
R> summary( Model0 <- meta3(y=logOR, v=v, cluster=Cluster,

data=Bornmann07, model.name="3 level") )

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept -0.10078 0.04013 -0.17944 -0.02212 -2.51 0.012 *
Tau2_2 0.00380 0.00272 -0.00154 0.00913 1.40 0.163
Tau2_3 0.01414 0.00914 -0.00379 0.03206 1.55 0.122
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 221.3
Degrees of freedom of the Q statistic: 65
P value of the Q statistic: 0

Heterogeneity indices (based on the estimated Tau2):
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Estimate
I2_2 (Typical v: Q statistic) 0.16
I2_3 (Typical v: Q statistic) 0.58

Number of studies (or clusters): 21
Number of observed statistics: 66
Number of estimated parameters: 3
Degrees of freedom: 63
-2 log likelihood: 25.8
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

----------------------- Selected output -----------------------

Before interpreting the results, we should check whether there are any estimation
problems in the analysis. We may check the OpenMx status1 at the end of
the output. If the status is either 0 or 1, the optimization is fine; otherwise, the
results are not trustworthy. If there are problems in the optimization, we may try to
rerun the analysis with the rerun() function (see Section 7.6.3 for an example).
From the above output, there are a total of 66 effect sizes (level 2) nested within
21 clusters (level 3). The Q statistic on the homogeneity of the effect sizes is
Q(df = 65) = 221.2809, p < 0.001. The estimated average population effect
size (with its approximate 95% Wald confidence interval (CI)) is −0.1008
(−0.1794,−0.0221). As the 95% Wald CI does not include 0, this result indicates
that male applicants have a slightly higher chance of obtaining the grants.

The estimated level-2 and level-3 heterogeneity variances are 0.0038 and 0.0141,
respectively. It should be noted that the approximate CIs are based on the Wald test,
while the variances are not likely to be distributed normally unless the sample sizes
are huge. We should avoid interpreting the Wald CIs of the heterogeneity variances.
As it is difficult to interpret how much (or small) the heterogeneity variances are,
we may inspect the I2. Level 2 and level 3 explain 15.68% and 58.39% of the total
variation, respectively, while the remaining 26% is due to the within-study known
sampling variance.

6.5.3 Obtaining the likelihood-based confidence interval

We can obtain an LBCI on the parameter estimates. The LBCI is more accurate than
the CI based on the Wald statistic (see Section 2.4.5). This is particularly useful for
quantifying the uncertainty in 𝜏

2 and I2. We may obtain the LBCI by specifying
the intervals.type="LB" argument in the call.

R> ## Model 0: Random-effects model with LBCI
R> summary( meta3(y=logOR, v=v, cluster=Cluster,

data=Bornmann07, model.name="3 level",
intervals.type="LB") )
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----------------------- Selected output -----------------------

95% confidence intervals: Likelihood-based statistic
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept -0.100778 NA -0.186035 -0.016481 NA NA
Tau2_2 0.003796 NA 0.000821 0.014756 NA NA
Tau2_3 0.014135 NA 0.003397 0.048409 NA NA

Heterogeneity indices (I2) and their 95% likelihood-based CIs:
lbound Estimate ubound

I2_2 (Typical v: Q statistic) 0.0288 0.1568 0.54
I2_3 (Typical v: Q statistic) 0.1795 0.5839 0.84

----------------------- Selected output -----------------------

The estimated level-2 and level-3 heterogeneity variances (with their 95% LBCI)
are 0.0038 (0.0008, 0.0148) and 0.0141 (0.0034, 0.0484), respectively. The level-2
I2
(2) and level-3 I2

(3) with their 95% LBCI are 0.1568 (0.0288, 0.5429) and 0.5839
(0.1795, 0.8436), respectively. The 95% LBCIs are very wide, indicating that the
estimates may vary from sample to sample if we were able to collect new studies
with similar settings for a new meta-analysis.

6.5.4 Testing 𝝉2(3) = 0

As an illustration, we fit a conventional two-level model and compare it against the
three-level model. We fit the two-level model either with the meta() function or
with the meta3() function by applying the constraint of 𝜏2

(3) = 0. After fitting the
two-level model (Model1 in this example), we compare it against the three-level
model (Model0 in this example) with the anova() function.

R> ## Model 1: Testing tau ̂ 2_3 = 0
R> Model1 <- meta3(logOR, v, cluster=Cluster, data=Bornmann07,

RE3.constraints=0, model.name="2 level")
R> ## Alternative approach
R> ## Model1 <- meta(logOR, v, data=Bornmann07, model.name="2 level")
R>
R> anova(Model0, Model1)

base comparison ep minus2LL df AIC diffLL diffdf p
1 3 level <NA> 3 25.80 63 -100.20 NA NA NA
2 3 level 2 level 2 36.02 64 -91.98 10.22 1 0.001389

The LR statistic on comparing the level-3 and level-2 models is 𝜒
2(df = 1)

= 10.2202, p = 0.0014. It indicates that the three-level model is statistically
better than the two-level model. As a reminder, we should still prefer to use the
three-level model even when the test is not statistically significant.
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6.5.5 Testing 𝝉2(2) = 0

We can also test the null hypothesis H0 ∶ 𝜏
2
(2) = 0 by specifying the RE2. con-

straints=0 argument in calling the meta3() function.

R> ## Model 2: Testing tau ̂ 2_2 = 0
R> Model2 <- meta3(logOR, v, cluster=Cluster, data=Bornmann07,

RE2.constraints=0, model.name="tau2_2 EQ 0")
R> anova(Model0, Model2)

base comparison ep minus2LL df AIC diffLL diffdf p
1 3 level <NA> 3 25.80 63 -100.20 NA NA NA
2 3 level tau2_2 EQ 0 2 38.52 64 -89.48 12.72 1 0.000362

The LR statistic on comparing the level-3 model and model with 𝜏
2
(2) = 0 is 𝜒

2

(df = 1) = 12.7187, p = 0.0004. It indicates that the three-level model is statis-
tically better than the model with 𝜏

2
(2) = 0. Therefore, the effect sizes within a

study are not merely direct replication of each other—there are true differences
among them.

6.5.6 Testing 𝝉2(2) = 𝝉2(3)

We test whether the level-2 and the level-3 heterogeneity variances are the same.
We fit a model (Model3 in this example) with the constraint 𝜏2

(2) = 𝜏
2
(3) by using

the same label (e.g., Eq_tau2 in the example) in the RE2.constraints and
RE3.constraints arguments. The value of 0.1 is the starting value in the
example.

R> ## Model 3: Testing tau ̂ 2_2 = tau ̂ 2_3
R> Model3 <- meta3(logOR, v, cluster=Cluster, data=Bornmann07,

RE2.constraints="0.1*Eq_tau2",
RE3.constraints="0.1*Eq_tau2",
model.name="Eq tau2")

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept -0.09602 0.03461 -0.16385 -0.02819 -2.77 0.0055 **
Eq_tau2 0.00738 0.00301 0.00149 0.01328 2.45 0.0141 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Heterogeneity indices (based on the estimated Tau2):
Estimate
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I2_2 (Typical v: Q statistic) 0.35
I2_3 (Typical v: Q statistic) 0.35

----------------------- Selected output -----------------------

By imposing the equality constraint 𝜏2
(2) = 𝜏

2
(3), the common heterogeneity variance

is 0.0074. As 𝜏2
(2) = 𝜏

2
(3), the level-2 I2

(2) and the level-3 I2
(3) are also the same. We

test H0 ∶ 𝜏
2
(2) = 𝜏

2
(3) by comparing the models with and without the constraint.

R> anova(Model0, Model3)

base comparison ep minus2LL df AIC diffLL diffdf p
1 3 level <NA> 3 25.80 63 -100.2 NA NA NA
2 3 level Eq tau2 2 27.16 64 -100.8 1.359 1 0.2437

The LR statistic is 𝜒
2(df = 1) = 1.3591, p = 0.2437. Therefore, we cannot reject

H0 ∶ 𝜏
2
(2) = 𝜏

2
(3). It seems that the heterogeneity variances are similar at both levels.

6.5.7 Testing types of proposals (grant versus fellowship)

There are two types of studies in the data set. They are the applications for either
a grant or a fellowship. We may test whether the effects are the same for them.
First, we show the first 10 cases of Type in the data set. We then create a dummy
variable Type2 with the ifelse() function, where 0 and 1 represent grant and
fellowship, respectively. We conduct a mixed-effects three-level meta-analysis by
specifying the x=Type2 argument.

R> ## Show the first 10 cases of Type
R> Bornmann07$Type[1:10]

[1] Fellowship Fellowship Fellowship Fellowship Fellowship
Fellowship

[7] Fellowship Grant Grant Grant
Levels: Grant Fellowship

R> ## Convert characters into a dummy variable
R> ## Type2=0 (Grant); Type2=1 (Fellowship)
R> Type2 <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0)
R> ## Show the first 10 cases of Type2
R> Type2[1:10]

[1] 1 1 1 1 1 1 1 0 0 0
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R> ## Model 4: Type2 as the covariate
R> summary( meta3(y=logOR, v=v, x=Type2, cluster=Cluster,

data=Bornmann07) )

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept -0.00661 0.03711 -0.07935 0.06613 -0.18 0.85870
Slope_1 -0.19559 0.05416 -0.30175 -0.08943 -3.61 0.00031 ***
Tau2_2 0.00353 0.00243 -0.00123 0.00830 1.45 0.14601
Tau2_3 0.00291 0.00312 -0.00320 0.00902 0.93 0.35107
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explained variances (R2):
Level 2 Level 3

Tau2 (no predictor) 0.00380 0.01
Tau2 (with predictors) 0.00353 0.00
R2 0.06926 0.79

----------------------- Selected output -----------------------

As Type2=0 represents grant, the estimated Intercept is the average effect on
grant. The estimated average effect (with its 95% Wald CI) on grant is −0.0066
(−0.0793, 0.0661). The estimated average difference between fellowship and grant
(Slope_1 in the output) (with its 95% Wald CI) is −0.1956 (−0.3017,−0.0894).
As the 95% Wald CI does not include 0, it is statistically significant at 𝛼 = 0.05.
When compared to grant, male applicants are more likely to get a fellowship than
female participants. The level-2 R2

(2) and level-3 R2
(3) are 0.0693 and 0.7943, respec-

tively. The result indicates that the predictor Type2 is mainly useful in explaining
the level-3 heterogeneity.

6.5.8 Testing the effect of the year of application

Marsh et al. (2009) tested the effect of publication year. These authors hypothe-
sized that year had a quadratic effect on the effect size. Continuous covariates are
usually centered in the analysis to improve the numerical stability of the results
and to facilitate interpretations of the intercept. We may use scale(Year,
center=TRUE, scale=FALSE) to center year in R. After the centering, the
intercept represents the predicted effect size when the moderators are at their mean
values.

As Marsh et al. (2009) standardized year in their analyses, we follow
their practice in this illustration. We use scale(Year, center=TRUE,
scale=TRUE) to standardize year in R. When there are more than one moder-
ators, we combine them with the cbind() function. In the output, Slope_1
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and Slope_2 refer to the regression coefficients for year and its quadratic term,
respectively.

After fitting this model (Model5 in this example), we compare it against the
model without the moderators. Under the null hypothesis that both regression coef-
ficients are zero, the LR statistic has a chi-square distribution with 2 dfs.

R> ## Model 5: Year and Year ̂ 2 as covariates
R> summary( Model5 <- meta3(y=logOR, v=v,

x=cbind(scale(Year), scale(Year) ̂ 2),
cluster=Cluster, data=Bornmann07,
model.name="Model 5") )

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept -0.086273 0.041256 -0.167133 -0.005413 -2.09 0.037 *
Slope_1 -0.000953 0.023652 -0.047310 0.045405 -0.04 0.968
Slope_2 -0.011768 0.006600 -0.024704 0.001167 -1.78 0.075 .
Tau2_2 0.002874 0.002068 -0.001180 0.006927 1.39 0.165
Tau2_3 0.014794 0.009261 -0.003357 0.032946 1.60 0.110
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explained variances (R2):
Level 2 Level 3

Tau2 (no predictor) 0.00380 0.01
Tau2 (with predictors) 0.00287 0.01
R2 0.24301 0.00

----------------------- Selected output -----------------------

R> ## Testing H_0: beta_{Year} = beta_{Year ̂ 2}=0
R> anova(Model5, Model0)

base comparison ep minus2LL df AIC diffLL diffdf p
1 Model 5 <NA> 5 22.38 61 -99.62 NA NA NA
2 Model 5 3 level 3 25.80 63 -100.20 3.419 2 0.181

The estimated regression coefficients (and their 95% CIs) for year and its
quadratic term are −0.0010 (−0.0473, 0.0454) and −0.0118 (−0.0247, 0.0012),
respectively. The level-2 R2

(2) and level-3 R2
(3) are 0.2430 and 0.0000, respec-

tively. When comparing this model to the model without any moderator, the LR
test statistic is 𝜒

2(df = 2) = 3.4190, p = 0.1810. Therefore, we cannot reject
H0 ∶ 𝛽year = 𝛽year2 = 0. There is not enough evidence to support the hypothesis
that year explains the effect size.
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6.5.9 Testing the country effect

We test whether the effect sizes are different across countries or regions. There
are five countries or regions in the data set. As there are five categories, we may
create four dummy variables to represent them. Alternatively, we may create five
indicators (DUSA to DUK) to represent the countries or regions. The value for that
particular country is 1; otherwise, it is 0. As the model with the intercept and the five
indicators is unidentified, we need to fix the intercept at zero. This constraint can be
imposed by using theintercept.constraint=0 argument. The advantage of
this parameterization is that we can estimate the average effect sizes for all countries
or regions. The model is

yij = DUSA𝛽1 + DAus𝛽2 +DCan𝛽3 +DEur𝛽4 + DUK𝛽5 + u(2)ij + u(3)j + eij. (6.25)

R> ## Create indicators for countries
R> USA <- ifelse(Bornmann07$Country=="United States", yes=1, no=0)
R> Aus <- ifelse(Bornmann07$Country=="Australia", yes=1, no=0)
R> Can <- ifelse(Bornmann07$Country=="Canada", yes=1, no=0)
R> Eur <- ifelse(Bornmann07$Country=="Europe", yes=1, no=0)
R> UK <- ifelse(Bornmann07$Country=="United Kingdom", yes=1, no=0)

R> ## Model 6: indicators for country as moderators
R> summary( Model6 <- meta3(y=logOR, v=v, intercept.constraint=0,

x=cbind(USA, Aus, Can, Eur, UK),
cluster=Cluster, data=Bornmann07,
model.name="Model 6") )

----------------------- Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Slope_1 0.00257 0.05978 -0.11459 0.11973 0.04 0.97
Slope_2 -0.02144 0.09266 -0.20305 0.16017 -0.23 0.82
Slope_3 -0.13151 0.10265 -0.33270 0.06968 -1.28 0.20
Slope_4 -0.21851 0.05008 -0.31667 -0.12035 -4.36 1.3e-05 ***
Slope_5 0.05629 0.07905 -0.09864 0.21122 0.71 0.48
Tau2_2 0.00334 0.00235 -0.00127 0.00794 1.42 0.16
Tau2_3 0.00480 0.00448 -0.00399 0.01358 1.07 0.28
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explained variances (R2):
Level 2 Level 3

Tau2 (no predictor) 0.00380 0.01
Tau2 (with predictors) 0.00334 0.00
R2 0.12086 0.66

----------------------- Selected output -----------------------
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R> ## Testing H_0: all countries have the average effect sizes
R> anova(Model6, Model0)

base comparison ep minus2LL df AIC diffLL diffdf p
1 Model 6 <NA> 7 14.18 59 -103.8 NA NA NA
2 Model 6 3 level 3 25.80 63 -100.2 11.62 4 0.02041

The estimated average effect sizes (and their 95% Wald CIs) for United States,
Australia, Canada, Europe, and United Kingdom were 0.0026 (−0.1146,
0.1197), −0.0214 (−0.2031, 0.1602), −0.1315 (−0.3327, 0.0697), −0.2185
(−0.3167,−0.1204), and 0.0563 (−0.0986, 0.2112), respectively. When com-
paring this model to the model without any moderator, the LR test statistic is
𝜒

2(df = 4) = 11.6200, p = 0.0204. Therefore, the null hypothesis on the equality
of population effect sizes is rejected. All of the average effect sizes are non-
significant except that for Europe (−0.2185). The level-2 R2

(2) and level-3 R2
(3) are

0.1209 and 0.6606, respectively. The results suggest that country explains more
heterogeneity at level 3 than at level 2 in terms of percentage.

6.6 Concluding remarks and further readings

This chapter reviewed several common approaches to handling nonindependent
effect sizes in a meta-analysis. A three-level meta-analysis was introduced to
model the dependence by considering both the level-2 and level-3 data structure.
Reviewers are advised to consider the dependence in the effect sizes as a research
opportunity rather than as a statistical problem. When the reviewers include all
effect sizes in the analysis, the number of effect sizes will be larger than the
number of studies. Moreover, both level-2 and level-3 moderators can be entered
into the meta-analysis. In theory, a three-level meta-analysis is more powerful than
conventional approaches to handling the dependence. Reviewers may also explore
new research questions that cannot be addressed in conventional approaches.
Researchers may explore how the heterogeneity be decomposed into different
levels. Readers may refer to Cheung (2014b), Konstantopoulos (2011), and Van
den Noortgate et al. (2013) for more details on the three-level meta-analysis.
As there are only limited simulation studies on the empirical performance of
three-level meta-analysis, it remains unclear how robust it is when the numbers
of level 2 or (and) level 3 units are small or when the true effect sizes are not
normally distributed. More studies should investigate its robustness to violation of
some of these assumptions.

Another promising approach to addressing the issue of dependence effect size
is the robust variance estimation (Hedges et al., 2010a,b; Raudenbush, 2009;
Tanner-Smith and Tipton, 2014; Tipton, 2013). The robust variance estimation
approach corrects the SEs owing to the dependence. As we have shown earlier,
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the conventional two-level meta-analysis can be considered as a three-level
meta-analysis with misspecified covariance structure where 𝜏

2
(3) = 0. The use of

robust statistics to address the covariance structure misspecification is popular in
the SEM literature (e.g., Yuan and Bentler, 2007). Future research may compare
the strengths and limitations of these two approaches to addressing the dependence
in the effect sizes.
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7

Meta-analytic structural
equation modeling

This chapter covers meta-analytic structural equation modeling (MASEM), a tech-
nique that combines meta-analysis and structural equation modeling (SEM) to syn-
thesize correlation or covariance matrices and to fit structural equation models on
the pooled correlation (covariance) matrix. We begin this chapter with a discus-
sion on the need to synthesize existing research findings when SEM is applied as
the methodology in the primary studies. MASEM is then proposed as a statistical
method to synthesize these research findings. Conventional methods based on the
univariate approaches and the generalized least squares (GLS) approach are briefly
reviewed. The fixed- and the random-effects two-stage structural equation model-
ing (TSSEM) are introduced in details. Issues related to conducting MASEM are
discussed. Several examples are used to illustrate the procedures in the R statistical
environment.

7.1 Introduction

As introduced in Chapter 2, SEM is a popular statistical technique to test hypothe-
sized models in the social, educational, and behavioral sciences. What makes SEM
so popular in applied research is that theoretical models can be translated into a
set of interrelated equations involving latent and observed variables. The proposed
models can be path models, confirmatory factor analytic (CFA) models, or general
structural equation models. The proposed models can be empirically tested by the
use of a likelihood ratio (LR) statistic and various goodness-of-fit indices. If the
proposed models are rejected by the test statistics or goodness-of-fit indices, there
is evidence that the proposed models are not consistent with the data; otherwise,
the proposed models are consistent with the collected data.
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© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
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As SEM is so powerful in testing hypothesized models, it may be tempting to
believe that the increase in research findings on a research topic using SEM must
improve our understanding of that topic. However, this may not generally be true
when the research findings are inconsistent even though SEM is used as the method-
ology. For a set of similar constructs, different researchers may propose different
models that are supported by their own data and it is difficult to systematically
compare and synthesize these models. It has been recognized that the statistical
power of the SEM in rejecting incorrect models may not be high enough when the
sample sizes are small. This means that findings supporting different models may
not be directly comparable. Moreover, it has also been found that researchers are
reluctant to consider alternative models (MacCallum and Austin, 2000). As long
as the proposed models are consistent with the researchers’ theories and supported
by the data, most researchers may not consider the need to test and compare alter-
native models. This confirmation bias—the prejudice in favor of the model being
evaluated—hinders research progress (Greenwald et al., 1986). Hence, conducting
more empirical research does not necessarily decrease the uncertainty surround-
ing a particular topic if the findings from that research are inconsistent (National
Research Council, 1992).

7.1.1 Meta-analytic structural equation modeling as a possible
solution for conflicting research findings

The limitations of applying SEM to primary research can be partially addressed by
MASEM, a technique combining meta-analysis and SEM for the purpose of syn-
thesizing research findings in studies using SEM (e.g., Bergh et al. (2014); Landis,
2013; Viswesvaran and Ones, 1995). The basic idea is to synthesize correlation (or
covariance) matrices into a pooled correlation (or covariance) matrix in the first
stage of analysis. In the second stage of analysis, the pooled correlation matrix
is used to fit and compare different structural models supported by the theories.
Several terms for this analysis have been used interchangeably in the literature,
for instance, meta-analytic path analysis (Colquitt et al., 2000), meta-analysis of
factor analysis (Becker, 1996), meta-analytical structural equations analysis (Hom
et al., 1992), path analysis of meta-analytically derived correlation matrices (Eby
et al., 1999), SEM of a meta-analytic correlation matrix (Conway, 1999), path anal-
ysis based on meta-analytic findings (Tett and Meyer, 1993), and model-based
meta-analysis (Becker, 2009). Following Cheung (2002) and Cheung and Chan
(2005b), in this book, we use the generic term meta-analytic structural equation
modeling to describe this class of techniques.

Conventional SEM focuses on primary data, whereas MASEM deals with cor-
relation or covariance matrices from a pool of studies. This allows MASEM to
address research questions that may not feasibly be addressed in conventional SEM
based on the primary data. First, MASEM enables researchers to test the proposed
models across various samples, conditions, and measurements. As the primary
studies have been conducted by different researchers, it is likely that different sam-
ples and measurements were used. If the proposed models still fit the data well
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across studies, this provides strong evidence of the validity of the proposed models.
If the proposed models do not fit the data, the studies may be grouped according to
the study characteristics, such as samples and measurements. The proposed models
can then be fitted within different groups. The study characteristics may be used
to explain the differences in the findings that different models fit the data. Alterna-
tively, a random-effects model recognizing that studies having their own population
correlation matrices may be used to account for the heterogeneity of the studies.
Results on a meta-analysis may provide useful information than a single study with
large sample size (Schmidt and Hunter, 2015).

Let us illustrate the above ideas with two examples. Norton et al. (2013) studied
the factor structure of the Hospital Anxiety and Depression Scale. These authors
identified 10 different factor structures that have been suggested in the literature.
More importantly, these 10 structures were supported by some empirical data. It is
difficult to draw a general conclusion on which model, if any, best fits the avail-
able data. Norton et al. (2013) conducted an MASEM on 28 independent samples
from 21 studies. They found that the bifactor structure consisting of a general dis-
tress factor and anxiety and depression group factors fitted the data best. MASEM
resolved the issue of which factor structure is the best model in describing the factor
structure of the Hospital Anxiety and Depression Scale.

Another example is from Murayama and Elliot (2012). These authors conducted
a meta-analysis on the association between competition and performance. They
found that the average correlation between these two constructs was close to zero.
Theoretically, it is difficult to explain why the correlation between competition and
performance is zero. They proposed two mediators (performance-approach goals
and performance-avoidance goals) to explain this apparent zero correlation. They
argued that the effects from competition to performance via performance-approach
goals and performance-avoidance goals were positive and negative, respectively.
Therefore, the total effect from competition to performance is close to zero.
They tested this hypothesis empirically with MASEM by synthesizing correlation
matrices on studies involving these four variables. A mediation model with
performance-approach goals and performance-avoidance goals as specific medi-
ators (e.g., Cheung, 2007) was fitted on the pooled correlation matrix. They found
that the specific indirect effects were in opposite directions and significant as pre-
dicted by their hypotheses. Therefore, MASEM enabled the researchers to resolve
the issue on why the average correlation in the meta-analysis is close to zero.

There are other examples of the application of MASEM to synthesize studies
in the literature. For example, Cheung (2014a) and Cheung and Chan (2005a)
tested a second-order factor structure on the five-factor model proposed by Dig-
man (1997). Fourteen studies of correlation matrices with a total of 4496 partici-
pants were meta-analyzed using MASEM. It was found that the proposed model
reasonably fits the data using a random-effects model. Steinmetz et al. (2012) syn-
thesized more than 300 correlation matrices on Schwartz’ theory of human values.
They found that three clusters of studies adequately fitted the data and theory.
Dunst and Trivette (2009) synthesized 15 studies with 2900 participants and tested
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the influences of family-centered care on the psychological health of parent and
children. Yufik and Simms (2010) studied the structure of posttraumatic stress dis-
order symptoms by synthesizing 40 studies with 14,827 participants. They found
that the model comprising intrusions, avoidance, hyperarousal, and dysphoria fac-
tors fitted the data best.

Before closing this section, we have to mention a few limitations of MASEM.
Similar to conventional meta-analysis, MASEM is usually based on the summary
statistics (correlation or covariance matrices). As the raw data are usually not avail-
able, techniques involving raw data are generally not feasible in MASEM. These
include, for example, analysis of missing data in subject level data with maxi-
mum likelihood (ML) estimation, analysis of binary or categorical data, robust test
statistics and standard errors (SEs), mixture modeling on subjects, and modeling
nonlinear relationship among variables. If there are problematic data such as miss-
ing data and nonnormal data in the primary studies, it is hard to correct them in
MASEM. In the following sections, we introduce the key concepts in MASEM.

7.1.2 Basic steps for conducting a meta-analytic structural
equation modeling

The steps for conducting an MASEM are basically similar to those for conduct-
ing a meta-analysis. Viswesvaran and Ones (1995) provided an outline on how to
conceptualize an MASEM. Their Table 1 (p. 867) summarizes the key steps as
follows:

(i) identify important constructs and relationships;

(ii) identity different measures used to operationalize each constructs;

(iii) obtain all relevant statistics from the studies;

(iv) conduct psychometric meta-analyses and estimate the true score correla-
tions between the measures;

(v) use factor analysis to test the measurement model;

(vi) estimate the correlations between the constructs by forming composite
scores of different constructs; and

(vii) use path analysis with the estimated true score correlations to test the pro-
posed theory.

Steps (i)–(iii) involve the conceptualization and operationalization of an MASEM,
whereas steps (iv)–(vii) are the statistical steps for conducting an MASEM.
Whether a CFA model, path model, or SEM is conducted depends on the availabil-
ity of the data. If correlation matrices on the item level are available, CFA or SEM
with latent variables may be fitted. If only correlation matrices of the composite
scores are available, a path model may be fitted.
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7.2 Conventional approaches

Both univariate and multivariate methods have been used to conduct MASEM.
The univariate approaches treat the correlation matrix as correlation coefficients
and synthesize them independently, whereas the multivariate approaches consider
the dependence of the correlation coefficients in the correlation matrices. The
most popular approaches in the past were univariate methods in which elements
of correlation matrices are treated as independent within studies. More recently,
there is consensus that researchers should use multivariate methods that take
the dependence among the correlation matrices into account in MASEM (e.g.,
Becker, 2009; Cheung and Chan, 2005b). In this section, we briefly review the
univariate approaches and the generalized least squares (GLS) approach, one of
the multivariate approaches.

7.2.1 Univariate approaches

There are two popular univariate meta-analytic techniques—that of Hedges and
Olkin (1985) and Hunter and Schmidt (1990, 2004). They differ on how to combine
the correlation coefficients and how to test the homogeneity of the correlation
coefficients. To avoid confusion between the original methods proposed by Hedges
and Olkin (1985) and Hunter and Schmidt (1990) in synthesizing correlations
and the current approach in conducting MASEM, we use the terms univariate-r
and univariate-z methods to, respectively, denote the application of Hunter and
Schmidt’s and Hedges and Olkin’s methods to MASEM. Moreover, the current
univariate-r method discussed in this chapter is also a simplified version of the
method proposed by Hunter and Schmidt (1990), because it does not involve
issues such as correction for unreliability or range restriction.

The univariate approaches synthesize the correlation coefficients in a correlation
matrix as if the correlation coefficients were independent. The pooled correlation
matrix is treated as if it was an observed correlation matrix in fitting structural
equation models. There are a couple of issues related to this practice. As the primary
studies have been independently conducted by different researchers, the numbers
of variables involved in the studies are likely to be different. One critical issue for
meta-analysts is to determine how to combine those correlation matrices that are
based on different numbers of variables.

There are usually three methods to handle this problem (e.g., Viswesvaran and
Ones, 1995). The first method is to exclude studies that do not contain all of the
variables in the model (e.g., Hom et al., 1992). The main drawback to this is that the
final number of studies may be sharply reduced. This also limits the generalizability
of the meta-analytic results. The second method is to reduce the number of variables
used in the model in order to include as many studies as possible. The problem
with this approach is that it cannot be used to test complex models as the number
of variables is small.
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The third method, which is the main method used by applied researchers, is to
estimate the elements of the pooled correlation matrix based on different numbers
of studies, that is, pairwise aggregation (e.g., Brown and Peterson, 1993; Premack
and Hunter, 1988). The advantage of this method is that it includes as many studies
as possible. The disadvantage is that the pooled correlation matrix may be nonposi-
tive definite as required in the stage 2 analysis in fitting SEM because each element
in the pooled correlation matrix is based on a different number of studies, or differ-
ent samples (see Section 5.3.2 for the discussion of nonpositive definite matrix). A
related issue that will be elaborated upon later is how to decide the sample size in
fitting structural equation models in the stage 2 analysis.

After obtaining a pooled correlation matrix, the pooled correlation matrix is used
as if it were an observed covariance matrix in fitting structural equation models in
the stage 2 analysis. Four statistical difficulties may occur in the stage 2 analysis.
They involve the following:

(i) choosing the appropriate sample size in SEM;

(ii) a nonpositive definite matrix of the pooled correlation (covariance) matrix;

(iii) the analysis of the correlation matrix; and

(iv) ignoring the sampling variations across studies.

The first difficulty is in deciding on an appropriate sample size to fit the struc-
tural equation models. When there is no missing correlation, all of the correlation
coefficients in the pooled correlation matrix are based on the same sample sizes.
There is no problem about choosing the sample size in fitting structural models
in the stage 2 analysis; it is the sum of the individual sample sizes in the analysis.
However, the pooled correlation matrix is usually formed by averaging across
different studies based on pairwise aggregation. Researchers have to decide on the
appropriate sample size for the analysis in SEM. Researchers have used a variety
of sample sizes such as the arithmetic mean (e.g., Premack and Hunter, 1988), the
harmonic mean (e.g., Colquitt et al., 2000), the median (e.g., Brown and Peterson,
1993), or the total (e.g., Hunter, 1983) of the sample sizes based on the synthesized
correlation coefficients.

Using an example, let us illustrate how to calculate these sample sizes. Sup-
pose that there are three variables of interest in the analysis. The pooled corre-

lation matrix is

x1 x2 x3

x1
x2
x3

⎡⎢⎢⎣
1.0
.6 1.0
.6 .6 1.0

⎤⎥⎥⎦. r̄21, r̄31, and r̄32 are based on the sample sizes

of 200, 500, and 1000, respectively, across studies. Then, the arithmetic mean, the
harmonic mean, and the median are 567, 375, and 500, respectively. The total sam-
ple size is the sum of the sample sizes involved in the studies. The total sample
size can be larger than 1000 because some studies that report r21 and r31 may not
report r32.
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As the Type I error of the chi-square test statistics, the goodness-of-fit indices, the
statistical power, and the SEs of parameter estimates are all dependent on the sam-
ple size used (Bollen, 1990), using different sample sizes in the analysis can lead
to different results and conclusions. If a smaller sample size is used to fit the struc-
tural models, the LR statistic will be too small, whereas the SEs will be too large.
In contrast, if a larger sample size is used, the SEs will be too small, whereas the
LR statistic will be too large. The issue of statistical power is not only a concern of
researchers of SEM (e.g., Kaplan, 1990) but recently also of meta-analysts (Hedges
and Pigott, 2001, 2004). No matter which sample size is used, it is hard to obtain
correct test statistics in testing the whole model and SEs in testing the individual
parameter estimates. The main problem is that all of the suggestions (arithmetic
mean, harmonic mean, median, and total) are simply ad hoc solutions because they
are not based on any strong statistical theories.

On the other hand, some may argue that the choice of the sample size is not critical
at all. As the MASEM is usually based on a large sample size, the LR statistic and
the significance test on the parameter estimates are likely statistically significant
regardless of which sample size we used in fitting the structural models. This is only
partially correct. The objective of a meta-analysis (and MASEM) is not only to test
whether the parameter estimates are statistically significant. Researchers should
pay more attention to the precision of the parameter estimates. The precision is
usually in the form of a confidence interval (CI), which is a function of the sample
size. The choice of the sample size in fitting the structural models has a direct
impact on the length of the CI of the parameter estimates.

The second difficulty is that the input correlation matrix for SEM can be nonpos-
itive definite. As each study may contain a different set of variables, the pooled
correlation matrix from pairwise deletion may be nonpositive definite (Enders,
2010; Wothke, 1993). In such cases, SEM is no longer appropriate. Moreover,
even though the pooled correlation matrix based on pairwise deletion is positive
definite, its statistical properties are still questionable in SEM because different
elements of the pooled correlation matrix are probably based on different samples
(Wothke, 2000).

The third difficulty is ignoring the sampling variation across studies. After pool-
ing the correlation matrices, researchers often use the pooled correlation matrix
as the observed correlation matrix without considering the sampling variances and
covariances of the correlation coefficients. There are sampling variations in indi-
vidual correlation matrices even when they share the same population correlation
matrix. Some estimated pooled correlation coefficients may contain more sampling
variation than others. However, the sampling variation associated with the pooled
correlation matrix is not accurately reflected when fitting SEM under the univari-
ate approaches in which their SEs are ignored. By using a single sample size, the
sampling error of the pooled correlation matrix is primarily determined by the sam-
ple size used in the analysis. Moreover, the covariation among the correlations is
totally ignored in the univariate approaches in spite of the fact that the correlations
are indeed correlated to a certain extent.
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The fourth difficulty is analyzing a correlation matrix instead of a covariance
matrix. It is generally incorrect to analyze the correlation matrix in SEM, although
most published articles using MASEM have treated the pooled correlation matrix
as a covariance matrix. Many SEM experts (e.g., Cudeck, 1989) have warned about
the problems of analyzing the correlation matrix instead of the covariance matrix
in primary research applications of SEM. Specifically, the chi-square statistics and
(or) the SEs of parameter estimates may be incorrect. It should be noted that there
is nothing wrong with the analysis of correlation matrix if the research questions
are related to the standardized variables of the constructs (e.g., Bentler, 2007).
The main issue here is that many researchers incorrectly treat the correlation
matrix as a covariance matrix without using the correct methods to analyze
the data.

The first three difficulties may be encountered only when pairwise deletion is used
in handling missing correlations, while the fourth difficulty may occur no matter
whether pairwise or listwise deletion is used. Although fewer technical problems
are encountered with listwise deletion than with pairwise deletion, listwise dele-
tion is less popular in MASEM because many studies would be deleted because of
missing correlations. Although the univariate methods suffer from these technical
difficulties and are generally not recommended (e.g., Becker, 2000, 2009; Cheung
and Chan, 2005b), they are still popular in some disciplines because of their ease
of application.

7.2.2 Generalized least squares approach

Besides the univariate methods, another popular multivariate approach is the GLS
approach (Becker, 1992, 1995). We focus on the fixed-effects model here. Readers
may refer to Section 5.3 for the generalization to the random-effects model. Sup-
pose that there are p × p correlation matrices involved in the analysis where p is
the number of variables; the ith sample correlation matrix is Ri, whereas the com-
mon population correlation matrix is PF (assuming a fixed-effects model). It is
more convenient to represent the correlation matrices using the vector notation.
We may stack the nonduplicate columns of the correlation matrix into vectors
using ri = vechs(Ri) and 𝝆F = vechs(PF) (see Section 2.4.2 for explanations of the
vechs() and vech() operators). The model for the ith study is

ri = Xi𝝆F + ei, (7.1)

where Xi is a design matrix of 0 and 1 indicating whether the correlation coeffi-
cients are present or missing and ei is the sampling error. The conditional sampling
covariance matrix ei ∼  (0,Vi) can be estimated by the methods discussed in
Section 3.3.2. We treat Vi as known values in the GLS approach.

Suppose that there are k studies involved in the MASEM; we combine the matri-
ces together into a single model:

r = X𝝆F + e, (7.2)
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where r =
⎡⎢⎢⎢⎣
r1
r2
⋮
rk

⎤⎥⎥⎥⎦, X =
⎡⎢⎢⎢⎣
X1
X2
⋮
Xk

⎤⎥⎥⎥⎦, and e =
⎡⎢⎢⎢⎣
e1
e2
⋮
ek

⎤⎥⎥⎥⎦. As the effect sizes are independent across

studies, the known sampling covariance matrix V for all studies is a block diagonal
matrix:

V = Cov(e) =
⎡⎢⎢⎢⎣
V1
0 V2
⋮ ⋱ ⋱
0 · · · 0 Vk

⎤⎥⎥⎥⎦ . (7.3)

Let us illustrate the above model with an example. Suppose that there are
a total of three variables involved in the analysis. The first study is complete,
whereas variable 2 and variable 3 are missing in Studies 2 and 3, respectively.
The sample correlation vectors are r1 =

[
r21 r31 r32

]T

1
, r2 =

[
r31

]
2
, and

r3 =
[
r21

]
3

where the subscripts represent the studies. The design matrices are

X1 =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦, X2 =
[
0 1 0

]
, and X3 =

[
1 0 0

]
, whereas the sampling

errors are e1 =
[
e21 e31 e32

]T

1
, e2 =

[
e31

]
2
, and e3 =

[
e21

]
3
.

The vector of the parameter estimates and its asymptotic covariance matrix can
be obtained by

�̂�F = (XTV−1X)−1XTV−1r,
̂VF = (XTV−1X)−1

.

(7.4)

To test the homogeneity of all correlation matrices across k studies, the test
statistic

QGLS = (r − X�̂�F)TV−1(r − X�̂�F) (7.5)

is approximately distributed as a chi-square variate with (
∑k

i=1(pi(pi − 1)∕2) −
p(p − 1)∕2) degrees of freedom (dfs) in large samples, where pi is the number of
observed variables in the ith study (see Becker, 1992; Cheung and Chan, 2005b;
Hedges and Olkin, 1985). Readers may refer to Section 5.2 for more details on the
GLS approach.

Becker (1992) proposed a method to fit regression models on the estimated com-
mon correlation matrix R, where �̂�F = vechs(R). As R is used as the input in fitting
regression models, we remove the hat notation here. Assuming that the first vari-
able is the dependent variable and that the remaining variables are the predictors,
PF can be partitioned into

PF =
[

1
P01 P11

]
, (7.6)

where P01 are the correlations between the dependent variable and the predictors
and P11 is the correlation matrix among the predictors.
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Becker (1992) showed that the (population) standardized regression coefficients
𝜷 =

[
𝛽1, 𝛽2,… , 𝛽p−1

]T
of regressing y (the first variable in the correlation matrix)

on x1, x2, …, xp−1 (the remaining variables in the correlation matrix) are given by

𝜷 = P−1
11 P01. (7.7)

By using R as a sample estimate of P, we estimate the standardized regression
coefficients by

̂𝜷 = R−1
11 R01. (7.8)

As ̂𝜷 is a function of R11 and R01, multivariate delta method can be used to obtain
the sampling covariance matrix of ̂𝜷 (see Section 3.4.1). Once we have estimated
Cov( ̂𝜷), statistical inferences and approximate confidence intervals on the on ̂𝜷 can
be performed (also see Card (2012) for an illustration).

The GLS approach seems appealing. There is one major limitation, however.
The models that can be fitted are limited to regression models. When the proposed
models are CFA models or structural equation models, there is no closed form solu-
tion for these models similar to the above regression model. SEM packages are then
required to fit these models.

Some researchers use the GLS approach as the first stage of MASEM in pooling
correlation matrices (e.g., Geyskens et al., 1998; Smith et al., 1999). The pooled
correlation matrix is then treated as the observed covariance matrix in fitting
structural equation models by using conventional SEM packages. Although this
approach addresses the limitation of the GLS approach in fitting regression
models only, it does not address some of the issues discussed in Section 7.2.1. For
example, researchers may use the harmonic mean in fitting the structural models
by treating the pooled correlation matrix as the observed covariance matrix and
ignoring the sampling variations across studies.

As �̂�F and its asymptotic sampling covariance matrix ̂VF are available after
pooling the correlation matrices, Cheung and Chan (2005b) showed how conven-
tional SEM packages can be used to fit structural models on �̂�F by the use of the
weighted least squares (WLS) estimation method with ̂VF as the weight matrix
(see Section 7.3.2 for details). This approach corrects three main limitations of
conventional applications of the GLS approach. First, a single correct sample size
is used. Second, the correlation matrix can be correctly analyzed. Third, it includes
the sampling variations of the pooled correlation matrix in the stage 2 analysis.

7.3 Two-stage structural equation modeling:
fixed-effects models

There are two classes of models in meta-analysis—fixed-effects models and
random-effects models (Becker, 1992, 1995; Hedges and Vevea, 1998; Schmidt
et al., 2009; and see Section 4.4 for a general introduction). Fixed-effects models
are used for conditional inferences based on the selected studies. They are intended
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to draw conclusions on the studies included in the meta-analysis. Researchers
are mainly interested in the studies used in the analysis. The assumption in
fixed-effects models is usually, but not always, that all studies share common
effect sizes. In the context of MASEM, the assumption behind the fixed-effects
model is that the population correlation matrices are assumed equal for all
studies. In this section, we first introduce fixed-effects TSSEM. The extension to
random-effects TSSEM is presented in the next section.

Although other MASEM procedures discussed here also entail two stages (e.g.,
Becker, 1992; Viswesvaran and Ones, 1995), they use different methods in the two
stages of analysis. In the first stage of analysis, conventional meta-analytic tech-
niques are used to synthesize correlation matrices, whereas SEM is only used for
fitting proposed models in the stage 2 analysis. In this book, we use the label of
TSSEM to highlight the fact that SEM is used as the sole statistical framework for
all stages (Cheung, 2002; Cheung and Chan, 2005b).

There are two distinct features in the fixed-effects TSSEM when compared to
the univariate or the GLS approaches. First, multiple-group SEM is used to pool
correlation or covariance matrices in the first stage of the analysis. LR statistic and
goodness-of-fit indices in SEM are used to test the homogeneity of correlation or
covariance matrices. Second, the WLS estimation method is used to weigh the pre-
cision of the pooled correlation or covariance matrix in fitting structural models in
the second stage of analysis. Thus, it allows different elements of the pooled cor-
relation matrix to be weighted differently in fitting the structural equation models.

7.3.1 Stage 1 of the analysis: pooling correlation matrices

As studies are likely to be different in terms of the measures used, correlation
matrices are usually used in MASEM and meta-analysis in general. When the
same measurement is used in all studies and the covariance matrices are available,
meta-analysts may choose between correlation or covariance matrices in conduct-
ing MASEM. Generally speaking, researchers may synthesize correlation matrices
even though the covariance matrices are available. If covariance matrices are syn-
thesized, researchers may address research questions related to the scaling of the
variables. In this chapter, we mainly focus on synthesizing correlation matrices,
while the extensions to analysis of covariance structure are trivial under the TSSEM
approach.

7.3.1.1 Analysis of correlation matrices

The distribution theory of SEM is based on covariance matrices, whereas corre-
lation matrices are usually used in MASEM. It is usually not appropriate to treat
a correlation matrix as a covariance matrix in the analysis (Cudeck, 1989). Let us
illustrate the problems with an example. Suppose that we are fitting the two-factor
CFA model with two indicators per factor displayed in Figure 2.3. When a covari-
ance matrix is analyzed, the total number of pieces of information (nonduplicate
elements in the covariance matrix) is 10 = 4(4 + 1)∕2. The number of parameters



META-ANALYTIC STRUCTURAL EQUATION MODELING 225

is 9. Thus, the df of the model is 1, which is overidentified. The model-implied
covariance matrix is ̂𝚺 = ̂𝚲Φ̂ ̂𝚲T

+ ̂𝚿, where ̂𝚲, Φ̂, and ̂𝚿 are the estimated factor
loadings, the factor covariance matrix, and the covariance matrix of the measure-
ment errors, respectively. The diagonals of ̂𝚺 are close but not necessarily equal to
the variances of the variables.

When a correlation matrix is analyzed as a covariance matrix, at least two issues
arise. As the correlation matrix is used as a covariance matrix, the sample variances
are always ones by definition. Although the diagonals of ̂𝚺 may be very close to
the sample variances (1 here), they may not be exactly 1. If they are not exactly 1,
the model-implied matrix is no longer qualified as a correlation matrix. It is hard to
tell whether the results are still correct. The second issue is about the uncertainty
in the estimation. When a correlation matrix is used as a covariance matrix in the
input, the SEM package counts that there are 10 pieces of information in the data. In
reality, there are only 6 = 4(4 − 1)∕2 pieces of information, because the diagonals
do not carry any useful information. This may lead to incorrect statistical inferences
and SEs.

There are two methods to correctly analyze correlation matrices (or correlation
structures). One method is to analyze the correlation matrix directly by the use of
the WLS estimation method that will be discussed later. The second method, which
is introduced here, is to pretend that the correlation matrix is a covariance matrix
and to take this into account in the estimation. The model of a correlation structure
in a single group analysis is

𝚺(𝜽) = DP(𝜽)D, (7.9)

where 𝚺(𝜽) is the structural model on the covariance matrix, D is a diagonal matrix,
and P(𝜽) is the structural model on the correlation matrix with the constraints that
Diag(P(𝜽)) = 𝟏, where 𝟏 is a vector of ones (Jöreskog, 1978; Jöreskog and Sörbom,
1996).

This model addresses the two aforementioned issues. Because of the constraints
on the diagonals, P(𝜽) is always a correlation matrix. Second, the model always
takes into account the uncertainty in analyzing a correlation matrix as a covariance
matrix. Let us check the df of the model for the CFA model in Figure 2.3. Because
of the constraints on the diagonals, the error variances are not parameters—they
are computed from the constraints. There are only four factor loadings, one factor
correlation, and four scaling variances in D. Thus, there are a total of nine param-
eters. As we are treating the correlation matrix as a covariance matrix, the SEM
package counts that there are 10 pieces of information in the input. The df for this
model is 1.

The first stage of the fixed-effects TSSEM is based on the above approach. The
correlation matrix in the ith study can be decomposed as

𝚺i = DiPiDi, (7.10)

where 𝚺i is the population covariance matrix, Di is a diagonal matrix, and Pi is
the correlation matrix (Cheung and Chan, 2004, 2005b). For example, we may
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decompose the covariance matrix into the correlation matrix and matrices of stan-

dard deviations:
⎡⎢⎢⎣
4.0
1.8 9.0
3.2 6.0 16.0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
2
0 3
0 0 4

⎤⎥⎥⎦
⎡⎢⎢⎣

1
0.3 1
0.4 0.5 1

⎤⎥⎥⎦
⎡⎢⎢⎣
2
0 3
0 0 4

⎤⎥⎥⎦. If the

sample covariance matrix is used as the input, Di represents the standard deviations
of the variables. If the sample correlation matrix is used as a covariance matrix, Di
represents estimates close to an identity matrix, that is, ones. When a covariance
matrix is used in the analysis, the diagonals also carry important information (vari-
ances). These extra parameters Di allow the theory of covariance structure analysis
to apply to the analysis of correlation matrix (Jöreskog, 1978; Jöreskog and Sör-
bom, 1996). The model can be viewed as a special case of a CFA model with Pi as
the correlation matrix of the latent factors, Di as the factor loadings with only diag-
onal elements, and a zero matrix of the variance–covariance matrix of the measure-
ment errors. Under the fixed-effects model with the assumption of the homogeneity
of correlation matrices, we estimate a common correlation matrix ̂PF by imposing
the constraints PF = P1 = P2 = · · · = Pk, where Di may vary across studies. When
there are missing correlations, the missing data are filtered out before the analysis.
After fitting this model, an LR statistic may be used to test the homogeneity of
correlation matrices H0 ∶ P1 = P2 = · · · = Pk (Cheung and Chan, 2005b).

Figure 7.1 shows an example of two studies with three variables. All variables are
complete in Study 1, while x3 is missing in Study 2. To pool the correlation matri-
ces, we may impose the equality constraint 𝜌(1)2,1 = 𝜌

(2)
2,1, while 𝜎

(1)
1 , 𝜎(1)

2 , 𝜎(1)
3 , 𝜎(2)

1 ,

and 𝜎
(2)
2 are freely estimated. If the input matrices are covariances, the estimated

𝜎’s are close to their correspondent standard deviations. If the input matrices are
correlations, they are close to 1.

This approach has several advantages. First, missing or incomplete correlation
elements can be easily handled by the ML method (e.g., Allison, 1987; Muthén

Study 1 Study 2

0.0 0.00.0 0.0 0.0

ρ3,1

ρ2,1

1.01.01.01.01.0

σ1
(1)  σ2

(1)  σ3
(1)  σ1

(2)  σ2
(2)  

x3
(2)x3

(1)x1
(1)

x1
(2)

f1
(1) f2

(1) f3
(1) f1

(2) f2
(2) f3

(2)

x2
(1)

x2
(2)

(1)

(2)
ρ2,1

(1)
ρ3,2

(1)

Figure 7.1 A fixed-effects model of the first stage of the TSSEM approach.
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et al., 1987). When the missing mechanism is missing completely at random
(MCAR) or missing at random (MAR), the parameter estimates using the ML
estimation are unbiased and efficient (see Section 8.2). Second, the asymptotic
covariance matrix of ̂PF, which indicates the precision of the estimates, is routinely
available after the analysis. SEs may be used to test the significance of the
estimated common correlation coefficients or to construct the approximate CIs of
the estimated common correlation or covariance matrices. Third, besides testing
the assumption of the homogeneity of correlation matrices using an LR statistic,
many goodness-of-fit indices, such as root mean square error of approximation
(RMSEA) and standardized root mean square residual (SRMR), may also be used
to test the close or approximate fit of the homogeneity of correlation matrices.

7.3.1.2 Analysis of covariance matrices

When the covariance matrices are available and the scales are comparable across
studies, researchers have the option of synthesizing the covariance matrices. The
model in Equation 7.10 can directly be used to obtain a common covariance matrix
by imposing PF = P1 = P2 = · · · = Pk and DF = D1 = D2 = · · · = Dk. As both the
correlation matrices and the standard deviations are imposed equally, the resultant
matrix is a common covariance matrix 𝚺F under a fixed-effects model. One issue
remains, however. The asymptotic covariance matrix of the elements of the cor-
relation matrix and the standard deviations are estimated separately. In the stage
2 analysis, we need the asymptotic covariance matrix of the pooled covariance
matrix, not the asymptotic covariance matrix of the pooled correlation matrix and
the pooled standard deviations. It is not easy to transform the latter into the asymp-
totic covariance matrix for the pooled covariance matrix.

A better approach is to model the covariance matrix directly. We may fit the model
with the constraint 𝚺F = 𝚺1 = 𝚺2 = · · · = 𝚺k. When there are missing covariances
or variances, they are filtered out before the analysis. After fitting this model, an LR
statistic may be used to test the homogeneity of covariance matrices H0 ∶ 𝚺1 = 𝚺2
= · · · = 𝚺k. Moreover, various goodness-of-fit indices may also be used to evaluate
the approximate fit of the homogeneity of covariance matrices (Cheung and Chan,
2009). The estimated common covariance matrix ̂𝚺F and its asymptotic sampling
covariance matrix ̂VF are estimated after the stage 1 analysis.

7.3.2 Stage 2 of the analysis: fitting structural models

Although we focus on the analysis of correlation matrices and correlation struc-
tures, the same theory applies to the analysis of covariance matrices and covariance
structures. In the stage 1 analysis based on the fixed-effects model, a vector of the
pooled correlation matrix �̂�F = vechs( ̂PF) and its asymptotic sampling covariance
matrix ̂VF = Cov(�̂�F) are estimated. �̂�F from the stage 1 analysis is treated as the
sample correlation vector in the stage 2 analysis, whereas ̂VF is treated as a known
matrix. Therefore, we take out the hat from them, that is, rF = �̂�F and VF = ̂VF. We
will use the notations rF and VF here.
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If all studies are complete in the stage 1 analysis, rF can be treated as observed
correlations in fitting structural models. As there are no missing data, all sample
sizes (arithmetic mean, harmonic mean, median, and total) are the same. There is
no ambiguity in choosing the sample size in fitting the structural models. When
there are missing correlations, however, any choices of the above sample sizes are
not optimal.

Let us illustrate this case with the example in Section 7.2.1. Recall that the pooled

correlation matrix is

x1 x2 x3

x1
x2
x3

⎡⎢⎢⎣
1.0
.6 1.0
.6 .6 1.0

⎤⎥⎥⎦, and the sample sizes for r̄21, r̄31, and r̄32

are 200, 500, and 1000, respectively. The arithmetic mean, the harmonic mean, and
the median are 567, 375, and 500, respectively. If the harmonic mean is used, this
sample size is larger than the actual sample size for r̄21 but smaller than those for
r̄31 and r̄32. As only one sample size can be used in fitting the structural model, it
is unlikely to find the correct sample size. The precisions of some of the pooled
correlation elements are overestimated, whereas the those of the other elements are
underestimated.

To resolve the above problems in the stage 2 analysis, Cheung (2002) and Cheung
and Chan (2005b, 2009) proposed to use the WLS estimation method to fit the struc-
tural equation models. Suppose that we are fitting a structural model on the popu-
lation correlation matrix P(𝜽), the discrepancy function (e.g., Bentler and Savalei,
2010; Fouladi, 2000) for the proposed structural model 𝝆(𝜽) = vechs(P(𝜽)) is

FWLS(𝜽) = (rF − 𝝆F(𝜽))TV−1
F (rF − 𝝆F(𝜽)). (7.11)

The logic of the WLS estimation method is to weigh the correlation elements by
the inverse of its sampling covariance matrix. Different weights are assigned into
the elements in the estimated common correlation matrix depending on their pre-
cisions. For example, the asymptotic variance on r̄21 is larger than those on r̄31 and
r̄32 because r̄21 is based on a smaller sample size (and thus a larger SE). Because VF
is inverted, less weight is given to r̄21 than to r̄32. Therefore, the TSSEM approach
takes the precision of the estimates from the stage 1 analysis into account by using
different weights. This principle is the same as those used in meta-analysis. In fact,
Cheung (2010) demonstrated the equivalence of the WLS estimation function in
SEM to the fixed-effects meta-analysis with the GLS approach. By using the WLS
estimation function, parameter estimates with appropriate SEs, test statistics, and
goodness-of-fit indices can be obtained in the stage 2 analysis.

It is of relevance to explain how Equation 7.11 was implemented in the
metaSEM package (Cheung, 2014b) and in LISREL (Cheung, 2009; Jöreskog
and Sörbom, 1996; Jöreskog et al., 1999). Equation 7.11 was directly implemented
in the metaSEM package without any modifications. That is, the sample size is not
involved in the discrepancy function. The sample size only indirectly affects the
estimation by affecting the value of VF obtained from the stage 1 analysis. After the
optimization, the sample size is used to calculate various goodness-of-fit indices.
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When LISREL is used to conduct the analysis (Cheung, 2009), VF obtained
from the stage 1 analysis has to be multiplied by the total sample size N. This
is because LISREL follows the SEM tradition by using the discrepancy functions
in Equations 2.15 and 2.16. The sample size is multiplied into the minimum of
the discrepancy function in order to calculate the LR statistic in Equation 2.18.
That is,

FWLS(𝜽) = (rF − 𝝆F(𝜽))T(NVF)−1(rF − 𝝆F(𝜽)), and
T = (N − 1)Fmin( ̂𝜽).

(7.12)

As N is inverted in the discrepancy function in the estimation and then N − 1 is
multiplied in calculating the test statistic T , the effect of the sample size is cancelled
out (see Cheung and Chan (2009) for a discussion).

Another issue is how the parameters in the diagonals of the correlation structure
are handled. Special measures have been taken to ensure that the diagonals of the
model-implied matrix are always ones to which a correlation structure is fitted. Let
us illustrate the issues with the model shown in Figure 7.2 (see Section 7.6.1 for a
description of the example). The proposed model is a CFA model of five observed
variables with two latent factors. The reticular action model (RAM) specification
(see Section 2.2.3) of the model is

A =

A C ES E I fAlpha fBeta

A
C
ES
E
I

fAlpha
fBeta

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 𝜆1,1 0
0 0 0 0 0 𝜆2,1 0
0 0 0 0 0 𝜆3,1 0
0 0 0 0 0 0 𝜆4,2
0 0 0 0 0 0 𝜆5,2
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

S =

A C ES E I fAlpha fBeta

A
C
ES
E
I

fAlpha
fBeta

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜓1,1 0 0 0 0 0 0
0 𝜓2,2 0 0 0 0 0
0 0 𝜓3,3 0 0 0 0
0 0 0 𝜓4,4 0 0 0
0 0 0 0 𝜓5,5 0 0
0 0 0 0 0 1 𝜙2,1
0 0 0 0 0 𝜙2,1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and

F =

A C ES E I fAlpha fBeta
A
C
ES
E
I

⎡⎢⎢⎢⎢⎣
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎦
.

(7.13)
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When a covariance structure is fitted, all of the parameters in the above model
are free. The number of nonduplicate elements in the covariance matrix is (15 =
5(5 + 1)∕2), whereas the number of parameters is 11. The model is overidentified
with 4 dfs. No special measures are required. When a correlation structure is fitted,
the diagonals do not carry any information (they are always one). The number of
nonduplicate elements is only (10 = 5(5 − 1)∕2). If we estimate all parameters, the
model is underidentified with −1 df. Therefore, special care has to be taken so that
the correlation structure is identified. The next section discusses two approaches to
fitting correlation structure analysis.

7.3.2.1 Two approaches to fitting correlation structures

As the diagonals of the model-implied correlation matrix have to be one, we need
to discuss how this can be achieved. There are two approaches to ensure that the
diagonals of the model-implied matrix are always ones. The first approach is to
exclude the error variances from the estimation, while the second approach applies
nonlinear constraints on the error variances to ensure that the diagonals of the
model-implied correlation matrix are always ones. We discuss them one by one
here. As indicated in the discrepancy function in Equation 7.11, the diagonals of
the model-implied correlation matrix (variances of the observed variables) are
not involved in the discrepancy function when a correlation structure is analyzed.
This means that the parameters 𝜓1,1 to 𝜓5,5 in the S matrix are not estimable in the
analysis.

The first approach estimates all parameters except the error variances. This
approach works for regression and CFA models. For both the regression and
CFA models, the error variances are not involved in the off-diagonals of the
model-implied correlation matrix. Therefore, we can estimate the other parameters
even without estimating the error variances. After the estimation, we compute the
error variances, for example, 𝜓1,1 to 𝜓5,5 in our previous example, based on the fact
that the diagonals of the model-implied correlation matrix have to be one. In the
metaSEM package, the parameters in the diagonals of the S matrix are replaced
with zero before the analysis. After the analysis, we compute the error variances
again. For example, the error variances of the above model can be computed as

Diag( ̂𝚿) = 𝟏 − Diag( ̂𝚲Φ̂ ̂𝚲T), or

⎡⎢⎢⎢⎢⎣
�̂�1,1
�̂�2,2
�̂�3,3
�̂�4,4
�̂�5,5

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1
1
1
1
1

⎤⎥⎥⎥⎥⎦
− Diag

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣

̂
𝜆1,1 0
̂
𝜆2,1 1
�̂�3,1 0
0 �̂�4,2

0 �̂�5,2

⎤⎥⎥⎥⎥⎥⎦
[

1 �̂�2,1

�̂�2,1 1

] ⎡⎢⎢⎢⎢⎢⎣

̂
𝜆1,1 0
̂
𝜆2,1 1
�̂�3,1 0
0 �̂�4,2

0 �̂�5,2

⎤⎥⎥⎥⎥⎥⎦

T⎞⎟⎟⎟⎟⎟⎠
.

(7.14)

The advantage of this approach is its ease of implementation. Moreover, SEs on
the parameter estimates, except for the error variances, are reported. The disadvan-
tage of this approach is that it does not work for models involving latent or observed
mediators—variables are serving as both independent and dependent variables at
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the same time. This approach also does not work for structural equation models with
directions among the latent variables. It is because the dependent latent variables are
in fact mediators—they are predicted by other latent variables, while they predict
their indicators. The first approach does not work for these models because the error
variances are also involved in the off-diagonals of the model-implied matrix. Thus,
we need to simultaneously estimate both error variances and other parameters.

Let us consider the path model in Figure 7.4 (see Section 7.6.3 for a description
of the example). Job knowledge and Work sample are intermediate mediators; they
are both dependent variables and predictors. Thus, we cannot use the first approach
to exclude the error variances in the estimation. We need to include their error
variances as parameters in the model.

The second approach to fitting correlation structures is to include all parameters
in the model. We apply nonlinear constraints to ensure that the diagonals of the
model-implied matrix are always one. Suppose that the model-implied correlation
matrix is ̂P( ̂𝜽)

p×p
, we may apply the following nonlinear constraints:

Diag( ̂P( ̂𝜽))
p×1

= 1
p×1

, (7.15)

where 𝟏
p×1

is a p × 1 vector of ones. In this example, the variance of Ability is fixed

at 1 as it is an independent variable, whereas the variances of the model-implied
matrix of the other three variables are constrained at 1. Therefore, three nonlinear
constraints are imposed in this example.

When there are latent variables in the model, we also need to ensure that the vari-
ances (not the error variances) of the latent variables are also constrained at 1 (e.g.,
Steiger, 2002). Therefore, both the observed and the latent variables have to be stan-
dardized. It can be shown that the model-implied covariance matrix for all observed
and latent variables is (I − A)−1S((I − A)−1)T under the RAM formulation. We may
impose the following constraints to ensure that all variables are standardized and
have a variance of 1:

Diag((I − A)−1S((I − A)−1)T) = 1. (7.16)

This approach is more general than the previous one. The advantage of this
approach is that it works for all models regardless of whether there are media-
tors. There is one main disadvantage—SEs are not available for the parameter
estimates. This is because SEs may not be accurate when there are nonlinear
constraints. Thus, OpenMx does not report them. This limitation can be addressed
by using either the parametric bootstrap or the likelihood-based confidence interval
(LBCI).

The parametric bootstrap begins by generating B, for example, B = 1000, repli-
cations of data from xi ∼  (rF,VF) (the estimated common correlation vector and
its asymptotic covariance matrix from the stage 1 analysis), where xi is the ith repli-
cation. The correlation structure is then fitted on the correlation vector xi with the
WLS estimation method and with VF as the known sampling covariance matrix.
Therefore, xi may vary across the replications, whereas VF is constant. After each
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replication, ̂𝜽i is estimated. By repeating this process B times, we have B samples
of ̂𝜽. The empirical sampling covariance matrix on 𝜽 can be calculated. If we take
the square root of the diagonal elements of this matrix, they represent the SEs of ̂𝜽.
Although this procedure is intuitive, it is computationally intensive. A better alter-
native is to use the LBCI unless the empirical sampling covariance matrix on ̂𝜽 is
required in further calculations.

All of the aforementioned approaches were implemented in the wls() and
the tssem2() functions in the metaSEM package. The first approach is used
when diag.constraints=FALSE is specified in wls() or tssem2(). If
diag.constraints=TRUE is specified, the second approach is applied. When
intervals.type="LB" is specified, the LBCI is reported; otherwise, the
parametric bootstrap is used to approximate the sampling covariance matrix of the
parameter estimates.

Before closing this section, it is also of importance to discuss some issues of
applying equality constraints in a correlation structure analysis. When we are fitting
covariance structures, both the factor loadings and the error variances are parame-
ters. We sometimes may want to compare whether the factor loadings (or error vari-
ances) are the same across items. For example, we can impose equality constraints
on 𝜆1,1 = 𝜆2,1 = 𝜆3,1 to test the equality of factor loadings or on 𝜓1,1 = 𝜓2,2 = 𝜓3,3
to test the equality of error variances for the model in Figure 7.2. The hypothesis
of equality of factor loadings tests whether the true score variances are the same
for these items, while the hypothesis of equality of error variances tests whether
the variances of the measurement errors are the same for these items. These two
hypotheses can be independently tested in covariance structure analysis. However,
this is not the case in a correlation structure analysis. As the variances of the vari-
ables are constrained at one, the factor loading and the error variance are related
by 1 = 𝜆

2 + 𝜓 . If we impose equality constraints on the factor loadings, we are
also imposing equality constraints on the error variances at the same time and vice
versa. Researchers should be careful when they are specifying equality constraints
on the parameters in the correlation structure analysis.

7.3.2.2 Goodness-of-fit indices

As WLS estimation is used as the estimation method in fitting the structural mod-
els, it is of relevance to discuss how the WLS estimation method might affect
the goodness-of-fit indices in the stage 2 analysis. Both Cheung et al. (2006) and
Cheung and Chan (2009) have noted that the RMSEA and SRMR may indicate the
proposed models are reasonable in fitting the data in the stage 2 analysis, whereas
the comparative fit index (CFI) and Tucker–Lewis index (TLI) may indicate the
other way. Readers may wonder why there is such a discrepancy.

When the model is correctly specified, the test statistics based on the ML and the
WLS estimation methods are asymptotically equal. An baseline model, usually
an independence model, is required to calculate the incremental fit indices, such
as the CFI and TLI (see Equations 2.29 and 2.30). Both CFI and TLI indicate
the model fit improvement comparing to the baseline model. In applied research,
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the independence model is likely wrong, that is, it is misspecified. Yuan and
Chan (2005) showed that there are substantial systematic differences among the
chi-square test statistics derived from different estimation methods when a model
is misspecified. When the test statistic on the independence model based on the
WLS estimation method is larger than that based on the ML estimation method,
the CFI and TLI calculated based on the WLS estimation method will be smaller
than those based on the ML estimation method.

Both RMSEA and SRMR are not affected by the test statistic of the baseline
model. Tentatively, it appears that RMSEA and SRMR are preferable in assessing
the model fit in the stage 2 analysis with the TSSEM approach. As there is only
limited studies on this issue, more studies are required to compare the empirical
performance in CFI and TLI versus RMSEA and SRMR in assessing the model fit
when the WLS estimation is used as the estimation method.

7.3.3 Subgroup analysis

The fixed-effects TSSEM approach assumes that the population correlation matri-
ces are homogeneous. If the population correlation matrices are heterogeneous, the
above approach may not be appropriate. The fixed-effects TSSEM may be modified
to handle the heterogeneity by grouping the studies into relatively homogeneous
subgroups. Then, the fixed-effects TSSEM may be applied to each subgroup. If
the correlation matrices are homogeneous within the subgroups, the grouping vari-
able may be used to explain the heterogeneity. The categorical variable of grouping
variable can be considered as a moderator. It should be noted, however, that if the
number of studies is too small, the test statistic may not be powerful enough to
reject the null hypothesis of the homogeneity of correlation matrices.

Two types of grouping variables should be distinguished—a priori versus ad hoc
(Cheung and Chan, 2005a). A priori moderators are grouping variables accord-
ing to theory and (or) study characteristics, whereas ad hoc moderators may be
found by grouping the studies with the use of cluster analysis or mixture models.
For example, Cheung and Chan (2005a) tested the second-order factor model on a
five-factor model of personality with 14 studies reported by Digman (1997). The
fixed-effects model did not fit the data well. Digman (1997) grouped the studies into
younger (five studies) and adult (nine studies) samples (see Section 7.6.1 for the
illustrations in R). On the basis of the cluster analysis, Cheung and Chan (2005a)
found that a three-cluster solution fitted the data best. As there is no theoretical sup-
port for the ad hoc moderators, the ad hoc moderators should be interpreted with
cautions. A better approach to deal with heterogeneity is to apply a random-effects
approach that will be addressed in the next section.

7.4 Two-stage structural equation modeling:
random-effects models

A fixed-effects model assumes that the population correlation matrices are homo-
geneous. This assumption may not be realistic in applied research. If a fixed-effects
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model applies to heterogeneous data, the estimated SEs are underestimated. This
section extends the above fixed-effects TSSEM to a random-effects TSSEM. The
main difference between a fixed-effects and a random-effects models is on the
stage 1 analysis. The procedures are exactly the same in the stage 2 analysis.
Random-effects models allow studies to have their study-specific correlation
matrices even though the proposed structural models remain the same across
studies (see Becker, 1992; Cheung, 2014a).

7.4.1 Stage 1 of the analysis: pooling correlation matrices

Suppose that P(𝜽) is the proposed correlation structure on the average population
correlation matrix P under a random-effects model, that is, P = P(𝜽), in the analy-
sis. P(𝜽) can be a regression model, a path model, a CFA model, or an SEM. The
random-effects model assumes that each study has its own population correlation
matrix Pi in the ith study. The ith study sample correlation matrix is Ri.

It is more convenient to work with vectors. We may vectorize these matrices
by stacking the off-diagonal elements, that is, 𝝆R = vechs(P) (with the subscript
R indicating that it is based on a random-effects model), 𝝆i = vechs(Pi), and
ri = vechs(Ri). The random-effects model for the ith study is

Level 1: ri = 𝝆i + ei,
Level 2: 𝝆i = 𝝆R + ui,

(7.17)

where ei ∼  (0,Vi) is the known sampling covariance matrix and ui ∼  (0,T2)
is the heterogeneity covariance matrix that has to be estimated.

When we compare the above model with the model in Equation 5.12, we will
notice that the above model is as same as the multivariate meta-analysis model
with 𝜷R = 𝝆R. Under the above model, it is of importance to note that the struc-
tural model P(𝜽) holds across all studies. In other words, the parameters in the
structural model are the same across all studies. The heterogeneity of the effect
sizes is captured by the random effects ui. The random effects are treated as noise
rather than as meaningful signals. Alternative random-effects models on MASEM
are discussed in Section 7.5.3.

Following are the steps required to conduct the first stage of the random-effects
TSSEM. The first step is to estimate the known sampling covariance matrix Vi
in each study via a CFA model outlined in Section 3.3.2. The estimated Vi is
treated as known values in the subsequent analyses. The second step is to conduct
the multivariate meta-analysis on the correlation vectors. Two issues are worth
noting here. First, the number of effect sizes in TSSEM is usually much larger
than the typical applications of a multivariate meta-analysis. For example, it is not
uncommon to synthesize correlation matrices with the dimensions of 5 × 5. In this
example, there are a total of 10 averaged correlation coefficients with 55 elements
in T2. There may not be sufficient data to estimate all of the elements in T2. A
workaround solution is to restrict the structure of T2 to a diagonal matrix. Instead
of estimating all of the elements in T2, we may only estimate 10 variances in T2

in this example (see Section 5.3.1 for the discussion). Second, if T2 = 0 is used,
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the model is equivalent to the GLS approach discussed in Section 7.2.2. It then
becomes a fixed-effects model.

In the analysis, the average correlation matrix �̂�R based on a random-effects
model and its asymptotic sampling covariance matrix ̂VR are estimated, and ̂T

2
.

�̂�R is the vector of the average correlation coefficients, whereas ̂VR indicates the
precision of �̂�R. ̂T

2
shows the heterogeneity of the correlation vectors. As it is

difficult to judge how large or small the degree of heterogeneity is by inspecting
̂T

2
, it is of practical relevance to check the I2 of the correlation coefficients (see

Section 4.3.3). If the I2s on the correlation coefficients are all very small, it is
expected that the results based on the fixed-effects model and the random-effects
model will be similar.

7.4.2 Stage 2 of the analysis: fitting structural models

Similar to the second stage of the fixed-effects TSSEM, the estimated values from
stage 1 are treated as the sample statistics in the stage 2 analysis. Therefore, there
is no hat on them, that is, rR = �̂�R and VR = ̂VR. We will use them as the inputs
in fitting the structural model 𝝆R(𝜽) = vechs(P(𝜽)) in the stage 2 analysis. The dis-
crepancy function in the stage 2 analysis is

FWLS(𝜽) = (rR − 𝝆R(𝜽))TV−1
R (rR − 𝝆R(𝜽)). (7.18)

The analysis is the same as those listed in the second stage of the fixed-effects
TSSEM, except that rF and VF are replaced by rR and VR in the fit function.

It should also be noted that the estimated variance component ̂T
2

is not directly
involved in the above fit function in the stage 2 analysis. As VR is estimated after
controlling for the random effects T2, VR has already taken the random effects into
account. Therefore, VR is usually larger than VF based on a fixed-effects model.
The SEs of the parameter estimates based on a random-effects model are also usu-
ally larger than those based on a counterpart fixed-effects model. Therefore, it is
important to use VR as the weight matrix in a random-effects model. Analyses
and interpretations are similar to those for the fixed-effects model except that the
analyses are based on the average population correlation matrix.

7.5 Related issues

Before moving to the demonstrations with the metaSEM package in R, this section
discusses some issues related to MASEM. We first compare the multiple-group
SEM versus MASEM in analyzing a pool of correlation (or covariance) matri-
ces and then compare and contrast the two fixed-effects models—the TSSEM and
the GLS approaches. After this, we address alternative random-effects models for
MASEM. Finally, we discuss topics such as the use of ML or restricted (or residual)
maximum likelihood (REML) in MASEM, the use of correlation coefficient versus
Fisher’s z score, and the correction for unreliability in MASEM.
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7.5.1 Multiple-group structural equation modeling versus
meta-analytic structural equation modeling

Multiple-group SEM may be used to analyze data with missing data for inde-
pendent groups (e.g., Allison, 1987; Muthén et al., 1987). The general idea is to
partition the data into data sets that contains both complete data and several data sets
with different missing-data patterns. By hypothesizing that the same model holds
across the complete and incomplete data sets, the whole model can be estimated by
applying appropriate equality constraints among different samples.

Let us illustrate the idea with an example. Suppose that we are fitting a
two-factor CFA model with two indicators per factor. x2 and x4 are missing in
some cases. We may partition the data into two samples—Sample 1 is complete

and Sample 2 has missing data. The CFA models in them are Φ(1) =

[
𝜙
(1)
11

𝜙
(1)
21 𝜙

(1)
22

]
,

Λ(1) =
[

1 𝜆
(1)
21 0 0

0 0 1 𝜆
(1)
42

]T

, and Ψ(1) = Diag
[
𝜓

(1)
11 𝜓

(1)
22 𝜓

(1)
33 𝜓

(1)
44

]
and Φ(2) =[

𝜙
(2)
11

𝜙
(2)
21 𝜙

(2)
22

]
,Λ(2) =

[
1 NA 0 0
0 0 1 NA

]T

, and Ψ(2) = Diag
[
𝜓

(2)
11 NA 𝜓

(2)
33 NA

]
,

where Λ, Φ, and Ψ are the factor loadings, factor covariance, and error variance
matrices, respectively, and NA represents the missing parameters. The model in
Sample 1 is identified with 1 df, whereas the model in Sample 2 is not identified
by itself because of the missing values. If we assume that the parameter estimates
are the same in these samples under the assumption of MAR, we may combine the
samples by applying the constraints, namely, 𝜙(1)

11 = 𝜙
(2)
11 , 𝜙(1)

21 = 𝜙
(2)
21 , 𝜙(1)

22 = 𝜙
(2)
22 ,

𝜓
(1)
11 = 𝜓

(2)
11 , and 𝜓

(1)
33 = 𝜓

(2)
33 . The model is then identified with four dfs.

The multiple-group SEM may be applied to conduct MASEM. However, several
issues limit the usefulness of this approach in MASEM. The first issue is that this
approach assumes that a fixed-effects model is used. The use of fixed-effects models
in MASEM may be questionable on theoretical and empirical grounds. The second
issue is that it is challenging to formulate submodels for all patterns of missing data.
The third issue is that the homogeneity of correlation and covariance matrices is
assumed in the proposed model. If the proposed model does not fit the data, it is not
clear whether the misfit should be attributed to the heterogeneity of the correlation
matrices or to the misspecification of the structural equation model or even both.

Multiple-group SEM may also be used to test the measurement invariance (e.g.,
Vandenberg and Lance, 2000) of the instrument across studies. Hafdahl (2001) also
discussed the benefits and limitations of this approach to conducting MASEM for
exploratory factor analysis. For example, we may test the configural invariance
(same pattern of fixed and free factor loadings as the proposed model), the met-
ric invariance (factor loadings are the same across groups), and invariance of the
factor variance–covariance matrices of the data. Some researchers may apply tech-
niques on measurement invariance in MASEM. That is, we may treat the studies as
groups and test whether the measurement is invariant across these studies. There
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are a couple of limitations to this approach. First, covariance rather than correlation
matrices are used in testing measurement invariance. Unless the same measurement
is used in all studies, it may not make sense to use covariance matrices in MASEM.
Second, equality constraints have to be applied in some or all parameters in order
to identify the model when there are missing variables. Some of these models, for
example, the metric invariance, may not be testable.

Another difficulty is that measurement invariance is usually applied to studies
with only a small number of groups. When there are many (heterogeneous) studies
as in MASEM, it may not be reasonable to expect that some models, for example,
the metric invariance, work for all studies. Researchers may need to look for par-
tially measurement invariance (Byrne et al., 1989) by freeing some equality con-
straints on the factor loadings in an ad hoc manner. It is not clear whether the
findings are still interpretable and replicable. Generally speaking, MASEM would
be a better choice than multiple-group SEM to address these issues.

7.5.2 Fixed-effects model: two-stage structural equation
modeling versus generalized least squares

Both the stage 1 analysis of the fixed-effects TSSEM approach (tssem1(...,
method=’FEM’) and the GLS approach discussed in Section 7.2.2 (tssem1
(..., method=’REM’, RE.type=’Zero’) implemented in the meta
SEM package) are assumed to be a fixed-effects model. This section compares and
contrasts these two approaches to conducting a fixed-effects MASEM.

One main difference is whether the conditional sampling covariance matrix Vi
has to be estimated. The stage 1 analysis of the TSSEM approach does not involve
estimating the sampling covariance Vi of the correlation vector ri = vechs(Ri). In
the TSSEM approach, the sample correlation matrices are treated as sample statis-
tics with sampling errors. Thus, the TSSEM approach is more stable and accurate.
In contrast, in the GLS approach, it is necessary to estimate the sampling covariance
matrix of the correlation coefficients. IfRi is a 5 × 5 correlation matrix, for example,
Vi is a 10 × 10 matrix with 45 elements. Because of the fact that Vi is estimated
under the GLS approach and a multiple-group SEM is used in the fixed-effects
TSSEM, the test statistics on testing the null hypothesis of the homogeneity of cor-
relation matrices are slightly different. TreatingVi as known values affects the accu-
racy of the estimation, especially when the sample sizes are small. Thus, the GLS
approach does not perform well empirically (e.g., Cheung and Chan, 2005b, 2009).

Several modifications have been made in the attempt to improve the empirical per-
formance of the GLS approach (e.g., Becker and Fahrbach, 1994; Cheung, 2000;
Furlow and Beretvas, 2005; Hafdahl, 2007). The basic idea of these modifications
is to use some estimates that are more stable than Vi. If we assume that the studies
are homogeneous (a fixed-effects model), we may calculate a simple (or weighted
average) correlation matrices (or Fisher’s z scores). These mean correlation matri-
ces (or Fisher’s z scores) are used to derive Vi. As the mean correlation matrices
(or Fisher’s z scores) are based on a much larger sample size, they are much more
stable than a Vi that is based on individual studies.
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Another difference is that an LR statistic and various goodness-of-fit indices are
available in the fixed-effects TSSEM approach. Besides testing the hypothesis on
the exact fit, we may also use the goodness-of-fit indices to evaluate the close or
approximate fit on the correlation matrices. In contrast, only the Q statistic can be
used to evaluate the appropriateness of the fixed-effects model in the GLS approach.

Another key difference between the GLS approach and the fixed-effects TSSEM
approach is how the missing values are handled. The GLS approach does not
assume that the input effect sizes are correlation matrices—they are simply
generic-dependent effect sizes. Suppose that there are 10 correlation coefficients
involved in synthesizing the correlation matrices of five variables. These 10 cor-
relation coefficients are treated as 10 effect sizes in a multivariate meta-analysis.
Thus, some of these correlation coefficients can be arbitrarily missing. Moreover,
the input correlation matrices do not need to be positive definite.

In contrast, the fixed-effects TSSEM approach uses multiple-group SEM to pool
correlation matrices. The unit of the analysis is variables. When there are missing
correlation coefficients, the variables associated with the missing values are also
assumed to be missing. For example, if r21 is missing, we may have to treat either
Variable 1 or Variable 2 as missing. The main advantage of this approach is that the
input matrices are always correlation (or covariance) matrices. This may reduce the
chances of producing nonpositive definite matrix on the pooled correlation matrix.
The disadvantage is that this approach is less flexible in handling missing corre-
lation coefficients. When there are missing correlation coefficients, some of the
correlation coefficients have to be excluded in the analysis. Moreover, the input
correlation matrices have to be positive definite.

In principle, it is possible to modify the fixed-effects TSSEM approach to han-
dle missing correlations in a more flexible manner. There are two such approaches.
For both approaches, the missing correlations are replaced by some valid corre-
lation values, for example, 0. Therefore, the dimensions of the input matrices are
always the same. For the first approach, the equality constraints do not apply to the
elements with missing correlations in the studies. As there is no equality constraint
in those studies, the estimated correlations are the same as the input correlations, for
example, 0 for the missing values. Effectively, the imputed values for the missing
correlations neither affect the estimated common correlation matrix nor contribute
to the test statistic on the homogeneity of correlation matrices. The stand-alone
program to conduct fixed-effects TSSEM with LISREL (Cheung, 2009) uses this
approach to handle missing correlations.

Jak et al. (2013) proposed another approach to address this issue. Similar to the
above approach, the missing correlations are replaced with some valid correlation
values, for example, 0. The missing correlations are filtered out from the analysis
of equality constraints by using a selection matrix. In order to off-set the fact that
“0” is used to represent the missing values, an additional matrix is created in each
group. The elements of this matrix are free when correlation coefficients are miss-
ing; otherwise, they are fixed parameters with 0. The elements of this additional
matrix will off-set the value of the constraints. In other words, the estimated values
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for the pooled correlation matrix are always the same regardless of what values are
used to replace the missing correlations.

These two approaches are more flexible than the approach implemented in the
metaSEM package for handling missing correlations. One issue arises, however.
As the missing values are replaced by some valid correlation values, for example,
0, this imputed value will also be used in calculating the independence model. The
calculated chi-square statistic and the dfs of the independence model may be incor-
rect. This may affect the calculated goodness-of-fit indices, for example, TLI and
CFI, because they use the independence model as the reference model in testing
the homogeneity of the correlation matrices. Special care has to be taken so that
the calculated goodness-of-fit indices are correct.

7.5.3 Alternative random-effects models

As studies are rarely direct replicates of each other, they are likely different in a
number of ways, for example, research design, samples, measures, and time of the
data collected. It is reasonable to expect that studies may have their own population
correlation matrices. Therefore, the random-effects model is usually the preferred
choice in meta-analysis. The random-effects models are well defined in conven-
tional meta-analysis. Suppose that we are analyzing a random-effects meta-analysis
for p × p correlation matrices; the model for the ith study (without any missing
effect size) is

ri = 𝝆R + uri + eri, (7.19)

where ri is the sample correlation vector, 𝝆R is the average population correlation
vector under a random-effects model, T2

r = Cov(uri) is the variance component of
the random effects, and Vri = Cov(eri) is the known sampling covariance matrix of
the sampling error. The random effects uri are defined as the study-specific effects
deviated from the average population correlation vector or the fixed effects. Each
study has its own true effect sizes 𝝆i = 𝝆R + uri.

The situation is more complicated in MASEM. It is because we may define
the random effects in terms of either the average population correlation vector
or the average population parameter vector in the structural model (Cheung and
Cheung, 2010). We introduce them here one by one. Following the literature
on the conventional meta-analysis, we may define the random effects as the
study-specific effects deviated from the average population correlation vector. For
example, Becker (1992); Cheung (2014a), and Section 7.4 in this chapter follow
this practice. This average population correlation vector is used to fit the structural
model 𝝆R = 𝝆(𝜽) in the stage 2 analysis. Therefore, the model for the ith study is

ri = 𝝆(𝜽) + uri + eri. (7.20)

This approach is termed the correlation-based MASEM here because meta-analysis
is applied to the correlation coefficients.

By comparing the two above equations, it is apparent that the structural model is
fitted on the average population correlation vector𝝆R. It should be noted that there is
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no guarantee that the proposed model will also fit well in the true correlation vectors
of the individual studies 𝝆i even the proposed model fits well in the average pop-
ulation correlation matrix 𝝆R. Because of this fact, it is reasonable to question the
usefulness of the structural model fitted on𝝆R. We believe that the correlation-based
MASEM is still useful in MASEM. The main argument to defend the usefulness
of the structural model fitted on 𝝆R is the same as the justifications of the fixed
effects in mixed-effects model and random-effects meta-analysis. There are lots
of examples involving the average effect in the literature, for example, the aver-
age population effect sizes 𝝆R in the random-effects meta-analysis, the average
intercept and slopes in multilevel modeling, and latent growth modeling.

All the fixed effects are in fact the average effects. The average effect may
not apply to any individual study in a meta-analysis, any specific level 2 unit
in a multilevel model, or any particular individual in a latent growth model.
Researchers, however, still find the average effect useful because it gives us an
idea on the typical effect. By considering both the average effect (the fixed effects)
and the variability around the average effect (the variance component of the
random effects), researchers can get an idea on the phenomena being studied. As
the correlation-based MASEM is just yet another example of the fixed effects in
mixed-effects model, arguments for the fixed effects in the mixed-effects models
are also applicable to the correlation-based MASEM. That said, researchers should
also consider the variance component of the random effects when interpreting the
fixed effects.

In terms of statistical analyses, a multivariate meta-analysis is conducted on
the correlation matrices in the first stage of analysis. After the analysis, an average
correlation matrix and its asymptotic covariance matrix are estimated. The average
correlation matrix and its asymptotic covariance matrix are used as input in fitting
the structural models in the second stage of analysis (see Section 7.4 for details).

An alternative model is to consider the parameter estimates or functions of param-
eter estimates as the effect sizes. Several authors have proposed using the intercepts
and regression slopes as the effect sizes in a meta-analysis. Becker and Wu (2007)
compared the univariate and the multivariate approaches to synthesizing regression
coefficients. Paul et al. (2006) described a meta-analysis on using the estimated
intercepts and regression slopes as the effect sizes. The estimated intercepts and
regression slopes were then subjected to a mixed-effects multivariate meta-analysis
by using the study characteristics as moderators. Gasparrini et al. (2012) also pro-
posed a similar approach to synthesize parameter estimates. A generalized linear
model was first fitted in each study. The parameter estimates were then treated as
effect sizes for a multivariate meta-analysis in the second stage of analysis. Hafdahl
(2009) proposed an approach that allows researchers to meta-analyze functions of
correlation elements.

The key assumption of this approach is that the same structural model holds
across all studies. However, the parameters may vary across studies, that is,
𝝆i = 𝝆(𝜽i), where 𝜽i is the true parameter vector in the ith study. Thus, the
model-implied correlation matrices may be different in each study. The estimated
parameter vector based on the samples are ti = ̂𝜽i. As there is a subscript i in 𝜽i
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and ti, the parameters and their sample estimates may vary across studies. The
model for the ith study is

ti = 𝜽R + u
𝜃i + e

𝜃i, (7.21)

where 𝜽R is the average population vector of parameters under a random-effects
model, T2

𝜃
= Cov(u

𝜃i) is the variance component of the random effects, and
V

𝜃i = Cov(e
𝜃i) is the known sampling covariance matrix of the sampling error

estimated from the first stage of the analysis. This approach can be termed the
parameter-based MASEM because meta-analysis is applied to the parameter
estimates or functions of the parameter estimates.

To conduct the parameter-based MASEM, we first fit the correlation structure
𝝆(𝜽i) in each study and obtain the parameter estimates ti with its sampling covari-
ance matrix Vti in the first stage of the analysis. tti are treated as the effect sizes
subjected to a multivariate meta-analysis with the inverse of the asymptotic covari-
ance matrix Vti as the weight. If study characteristics are available, a mixed-effects
multivariate meta-analysis may also be conducted (see Section 5.4 for details).
After the second stage of analysis, we may obtain the average effect on ̂𝜽R and
the heterogeneity variance–covariance matrix ̂T

2
𝜃

on 𝜽
𝜃i.

Comparing to the correlation-based MASEM, the parameter-based MASEM has
several advantages. Research questions may involve functions of the correlation
coefficients. For example, researchers conducting a meta-analysis on a mediation
model may be interested in how the direct effect and the indirect effect as effect
sizes vary across studies. The parameter-based MASEM enables us to empirically
address these research questions. Second, the parameter-based MASEM quanti-
fies the heterogeneity of the parameter estimates across studies. Third, continuous
predictors may be used to model the estimated parameter estimates. This helps to
address why some studies have larger (or smaller) parameter estimates.

It appears that the parameter-based MASEM is always preferable to the
correlation-based MASEM. However, there are a couple of issues limiting the
usefulness of the parameter-based MASEM. First, the parameter-based MASEM
may fail when there are missing effect sizes. As the structural model is fitted in
each study, the presence of missing effect sizes makes this approach difficult to
apply. For example, we need the predictor, mediator, and dependent variable in
order to estimate the indirect and direct effects. If any of these variables are not
reported in the studies, we cannot estimate the required effect sizes. Second, the
parameter-based MASEM may not work for the overidentified models. When the
models are just identified such as the regression models, the models perfectly
reproduce the data. The model-implied correlation matrix is exactly the same
as the sample correlation matrix. When the models are overidentified such as
the CFA or SEM, the proposed models rarely fit the data. The model-implied
correlation matrix may be quite different from the sample correlation matrix. If
the proposed model does not fit the sample correlation matrix well, the validity of
the parameter estimates is questionable. It is not clear whether the meta-analysis
is still appropriate.
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Cheung and Cheung (2010) used an empirical data set to compare these two
approaches under a justidentified model (mediation model). Data from 42 nations
were collected between 1990 and 1993 (World Values Study Group, 1994). The
data set included correlation matrices on three variables. A mediation model from
job autonomy to life satisfaction with job satisfaction as the mediator was proposed
and tested. Under the correlation-based MASEM, the random-effects TSSEM was
fitted. Under the parameter-based MASEM, the direct and the indirect effects were
first estimated in each study. The estimated direct and indirect effects were then
subjected to a multivariate meta-analysis. The results showed that the estimated
fixed effects on the direct and indirect effects were nearly identical, whereas the
variance components were not directly comparable—one was based on correla-
tion coefficients and the other was based on the direct and indirect effects. As this
topic is new to MASEM, more studies are required to address the pros and cons of
these approaches.

7.5.4 Maximum likelihood estimation versus restricted (or
residual) maximum likelihood estimation

In the literature of meta-analysis, the REML is sometimes preferred to the ML
estimation method. It is because the estimated variance component of the random
effects is negatively biased in the ML estimation (see Section 8.1). The estimated
fixed effects are unbiased for the ML estimation even though the sample sizes
are small (Demidenko, 2013). As we only use the estimated fixed effects (average
correlation matrix) in the stage 2 analysis, whether or not the estimated variance
component is (slightly) biased is not a concern in MASEM. Therefore, the ML
estimation should be used in the TSSEM approach.

7.5.5 Correlation coefficient versus Fisher’s z score

The discussion so far has been on pooling correlation matrices and on fitting corre-
lation structure on the pooled correlation matrix. In the literature of meta-analysis,
there are debates on whether the correlation coefficient or its Fisher’s z score should
be used. Fisher’s z score may also be used in MASEM. For example, the correlation
vector can be transformed into a vector of Fisher’s z scores by using the Fisher’s z
transformation with Equation 3.25. The sampling variances of the Fisher’s z scores
can be estimated as 1∕(n − 3), whereas the sampling covariance between zij (the
Fisher’s z score of rij) and zkl (the Fisher’s z score of rkl) can be estimated as

Cov(zij, zkl) =
nCov(rij, rkl)

(n − 3)(1 − r2
ij)(1 − r2

kl)
, (7.22)

whereCov(rij, rkl) is the sampling covariance between rij and rkl and n is the sample
size in the study (Steiger, 1980; see also Section 3.3.2).

Once the vector of Fisher’s z scores and its asymptotic sampling covariance
matrix are available, the GLS approach may be used to synthesize the Fisher’s
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z scores. Hafdahl (2007, 2008) compared several modifications on the use of
the Fisher’s z score in pooling correlation matrices under the assumption of
the homogeneity and heterogeneity of correlation matrices. He found that the
modified approaches generally work well on combining correlation matrices using
the Fisher’s z scores.

Structural equation models may also be fitted on the pooled Fisher’s z scores with
a discrepancy function similar to the one in Equation 7.18 (see Fouladi (2000) for
details). One issue is that it is less intuitive in interpreting the parameter estimates
because the models are based on the Fisher’s z scores rather than on the correlation
coefficients. Therefore, applications of the Fisher’s z score on fitting correlation
matrices are still rare. An alternative approach is to transform the pooled Fisher’s z
scores and its asymptotic covariance matrix back into the correlation vector and its
asymptotic covariance matrix (see Hafdahl (2007) for the proposed conversions).
There are only a limited number of studies addressing the empirical performance of
the Fisher’s z score in MASEM. Further studies may compare whether the Fisher’s
z scores perform better than the correlation matrices in MASEM.

7.5.6 Correction for unreliability

When item-level data are available, there is no need to correct for the unreliability
in MASEM. It is because fitting CFA and SEM on the item-level data will account
for the measurement errors. When MASEM is conducted on the composite scores,
some researchers prefer to apply the correction for unreliability.

There is some controversy over whether it is necessary to correct for attenuation
and the statistical artifacts in a meta-analysis. As the measurements are liable to
contain measurement error, the observed correlation coefficients are usually smaller
than the actual correlations without measurement error. Rosenthal (1991) criticized
the use of correction for attenuations because the corrected values are different
from the typical research findings and the corrected values are not as useful as the
uncorrected values in realistic settings. Other researchers (e.g., Schmidt and Hunter,
2015) argued for correcting for attenuations before combining them. Schmidt and
Hunter (2015) identified 11 artifacts that could be corrected before combining the
correlation coefficients. These include sampling error, error of measurement in the
dependent and independent variables, restriction of range, and so on. However, it is
unlikely that the published articles would include all the information for correction.

One type of measurement error is unreliability, which can be corrected by

rCor =
rxy√
rxx′ryy′

, (7.23)

where rCor is the estimated corrected correlation for the unreliability of measure-
ments, rxy is the observed correlation between variables x and y, and rxx′ and ryy′
are the estimated reliabilities of variables x and y, respectively. As there are usually
more than two variables in MASEM, the above correction applies to all correlation
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coefficients. The correlation matrices corrected for unreliability are then used in
MASEM.

There are several issues associated with this practice. First, not all studies report
information on reliabilities. When values on the reliabilities are missing, some
researchers may have to use the mean reliabilities from all studies. Second, the
correlation matrices corrected for unreliability may be nonpositive definite. If this
happens, the resultant correlation matrices cannot be used in MASEM. Third, the
conditional sampling covariance matrix Vi of rCor is likely to have been under-
estimated. It is because the corrected correlation matrix is treated as an observed
correlation matrix that does not take the uncertainty in estimating the unreliability
into account.

By reviewing several published meta-analyses, Michel et al. (2011) recently
claimed that substantive model conclusions in the psychological literature are
generally unaffected by study artifacts and related statistical corrections. As their
conclusions are based on real examples rather than on computer simulations,
further research may address the effects of unreliability in MASEM.

7.6 Illustrations using R

This section illustrates how to conduct the fixed- and random-effects TSSEM using
the metaSEM package. The examples include a CFA model, regression model,
and path model. The examples also illustrate how to specify the structural equation
models in the stage 2 analysis with the RAM formulation. These examples should
be general enough so that the techniques can be generalized to other models. We
consider the proposed models would fit the data reasonably well if the RMSEA is
close to 0.05. If the RMSEA is larger than 0.10, the proposed model does not fit
the data (Browne and Cudeck, 1993). Moreover, we also use the SRMR to evaluate
the proposed models. The proposed models fit the data reasonably well if SRMR
is smaller than 0.05. The statistics reported in the illustrations were captured by
using the Sweave function in R. The numbers of decimal places may be slightly
different for those reported in the selected output and in the text.

7.6.1 A higher-order confirmatory factor analytic model for the
Big Five model

The objective of this example is to illustrate how to fit a CFA model with the
TSSEM approach. Digman (1997) reported 14 correlation matrices among the
five-factor model. He proposed that agreeableness (A), conscientiousness (C), and
emotional stability (ES) were loaded under a higher-order factor, called Alpha,
whereas extraversion (E) and intellect (I) were loaded under another higher-order
factor, called Beta. The Alpha and Beta factors represent the general personality
of socialization and personal growth. Figure 7.2 displays the higher-order model
with the corresponding elements labeled in the RAM formulation.
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Figure 7.2 A higher-order model for the Big Five model.

The sample sizes of these studies vary from 70 to 1040 with a total sample size of
4496. The data set was stored as an R object called Digman97 in the metaSEM
package, where the correlation matrices and sample sizes were stored as Dig-
man97$data and Digman97$n, respectively. Digman further grouped the stud-
ies under the samples ofChildren, Young adults, andMature adults. They are stored
as the Digman97$cluster. For ease of illustration, these groups are recoded to
younger versus older participants in this demonstration. We begin the illustration
by first fitting a fixed-effects TSSEM. Then, we refit the model by grouping the
studies under younger versus older participants. Finally, we fit a random-effects
TSSEM.

7.6.1.1 Fixed-effects model

We display the content of the first two studies by using the following command:

R> library("metaSEM")
R> ## Display the first two correlation matrices
R> Digman97$data[1:2]

$'Digman 1 (1994)'
A C ES E I

A 1.00 0.62 0.41 -0.48 0.00
C 0.62 1.00 0.59 -0.10 0.35
ES 0.41 0.59 1.00 0.27 0.41
E -0.48 -0.10 0.27 1.00 0.37
I 0.00 0.35 0.41 0.37 1.00
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$'Digman 2 (1994)'
A C ES E I

A 1.00 0.39 0.53 -0.30 -0.05
C 0.39 1.00 0.59 0.07 0.44
ES 0.53 0.59 1.00 0.09 0.22
E -0.30 0.07 0.09 1.00 0.45
I -0.05 0.44 0.22 0.45 1.00

R> ## Display the first two sample sizes
R> Digman97$n[1:2]

[1] 102 149

We conduct the stage 1 analysis of the fixed-effects TSSEM by calling the
tssem1() function with the method="FEM" argument, which is the default
value if this argument is not specified. After the analysis, we display the results
using the summary() function.

R> fixed1 <- tssem1(Digman97$data, Digman97$n, method="FEM")
R> summary(fixed1)
R> ## Alternative approach if you do not want to save "fixed1"
R> ## summary( tssem1(Digman97$data, Digman97$n, method="FEM") )

------------------------ Selected output -----------------------

Coefficients:
Estimate Std.Error z value Pr(>|z|)

S[1,2] 0.3631 0.0134 27.12 < 2e-16 ***
S[1,3] 0.3902 0.0129 30.24 < 2e-16 ***
S[1,4] 0.1038 0.0151 6.88 5.8e-12 ***
S[1,5] 0.0922 0.0151 6.12 9.3e-10 ***
S[2,3] 0.4160 0.0125 33.17 < 2e-16 ***
S[2,4] 0.1352 0.0148 9.14 < 2e-16 ***
S[2,5] 0.1412 0.0149 9.48 < 2e-16 ***
S[3,4] 0.2445 0.0142 17.25 < 2e-16 ***
S[3,5] 0.1382 0.0149 9.30 < 2e-16 ***
S[4,5] 0.4245 0.0124 34.25 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Goodness-of-fit indices:
Value

Sample size 4496.00
Chi-square of target model 1499.73
DF of target model 130.00
p value of target model 0.00
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Chi-square of independence model 4454.60
DF of independence model 140.00
RMSEA 0.18
SRMR 0.16
TLI 0.66
CFI 0.68
AIC 1239.73
BIC 406.31
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

Before interpreting the results, we should check whether there are estimation
problems in the analysis. We check the OpenMx status1 at the end of the out-
put. If the status is either 0 or 1, the optimization is fine; otherwise, the results
are not trustworthy. The test statistic on testing the homogeneity test of the cor-
relation matrix is 𝜒

2(df = 130,N = 4496) = 1499.7340, p < 0.001. On the basis
of the test statistic, the null hypothesis of homogeneity of the correlation matrices
was rejected. Moreover, both the RMSEA and SRMR are very large, indicating
that the proposed model (homogeneity of correlation matrices) did not fit the data
well. The estimates of the S[i, j] represent the element of the pooled correlation (or
covariance) matrix. They can be extracted by using the coef() function:

R> coef(fixed1)

x1 x2 x3 x4 x5
x1 1.00000 0.3631 0.3902 0.1038 0.09225
x2 0.36312 1.0000 0.4160 0.1352 0.14121
x3 0.39018 0.4160 1.0000 0.2445 0.13817
x4 0.10375 0.1352 0.2445 1.0000 0.42451
x5 0.09225 0.1412 0.1382 0.4245 1.00000

As the fixed-effects model does not seem appropriate for this data set, we should
consider either grouping the studies into clusters or using a random-effects model.
As an illustration, we continue to fit the structural model on the pooled correlation
matrix. The structural model in the stage 2 analysis is specified via the RAM for-
mulation (see Section 2.2.3 for more details). The observed variables (A, C, ES, E,
and I) and the latent variables (f_Alpha and f_Beta) are stacked together. Readers
may refer to Figure 7.2 for the corresponding elements in the RAM formulation.

The three matrices (F, A, and S) should be MxMatrix objects. There are three
equivalent approaches to create the MxMatrix objects. The first approach is to use
the mxMatrix() function in the OpenMx package. We need to specify the start-
ing values, free versus fixed parameters, and the labels for the parameters. As this
approach may sound tedious to many new users, we use the other approaches here.
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The second approach is to specify a character matrix with the matrix()
function. After specifying the matrices, we use the as.mxMatrix() function
to convert them into MxMatrix objects. If the elements are numeric, they are
treated as fixed parameters with the values fixed at the given values. If the elements
are characters, they are treated as free parameters. For example, if we specify
0.5*loading1, it is treated as a free parameter with 0.5 as the starting value
and loading1 as the label of the parameter. If the labels are the same, these
parameters will be constrained equally. The third approach is to specify these
matrices via the create.Fmatrix() function to create the F matrix and the
create.mxMatrix() to create the MxMatrix objects. We illustrate these
two approaches in the following examples.

R> ## Define the S matrix that includes both Phi and Psi
R> ## Phi matrix: 2x2 correlation matrix between the latent factors
R> ( Phi <- matrix(c(1,".3*cor",".3*cor",1), nrow=2, ncol=2) )

[,1] [,2]
[1,] "1" ".3*cor"
[2,] ".3*cor" "1"

R> ## Psi matrix: 5x5 diagonal matrix of the error variances
R> ( Psi <- Diag(c(".2*e1",".2*e2",".2*e3",".2*e4",".2*e5")) )

[,1] [,2] [,3] [,4] [,5]
[1,] ".2*e1" "0" "0" "0" "0"
[2,] "0" ".2*e2" "0" "0" "0"
[3,] "0" "0" ".2*e3" "0" "0"
[4,] "0" "0" "0" ".2*e4" "0"
[5,] "0" "0" "0" "0" ".2*e5"

R> ## Create a block diagonal matrix as the S matrix
R> S1 <- bdiagMat(list(Psi, Phi))
R> ## This step is not necessary but useful
R> ## for inspecting the model.
R> dimnames(S1)[[1]] <- c("A","C","ES","E","I","f_Alpha","f_Beta")
R> dimnames(S1)[[2]] <- dimnames(S1)[[1]]
R> S1

A C ES E I f_Alpha f_Beta
A ".2*e1" "0" "0" "0" "0" "0" "0"
C "0" ".2*e2" "0" "0" "0" "0" "0"
ES "0" "0" ".2*e3" "0" "0" "0" "0"
E "0" "0" "0" ".2*e4" "0" "0" "0"
I "0" "0" "0" "0" ".2*e5" "0" "0"
f_Alpha "0" "0" "0" "0" "0" "1" ".3*cor"
f_Beta "0" "0" "0" "0" "0" ".3*cor" "1"
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R> ## Convert it into a MxMatrix class
R> S1 <- as.mxMatrix(S1)
R> ## Lambda matrix: 5x2 factor loadings
R> ## Arrange the data by row
R> ( Lambda <- matrix(c(".3*Alpha_A", 0,

".3*Alpha_C", 0,
".3*Alpha_ES", 0,
0, ".3*Beta_E",
0, ".3*Beta_I"),

nrow=5, ncol=2, byrow=TRUE) )

[,1] [,2]
[1,] ".3*Alpha_A" "0"
[2,] ".3*Alpha_C" "0"
[3,] ".3*Alpha_ES" "0"
[4,] "0" ".3*Beta_E"
[5,] "0" ".3*Beta_I"

R> ## Create a 5x5 of zeros
R> ( Zero5x5 <- matrix(0, nrow=5, ncol=5) )

[,1] [,2] [,3] [,4] [,5]
[1,] 0 0 0 0 0
[2,] 0 0 0 0 0
[3,] 0 0 0 0 0
[4,] 0 0 0 0 0
[5,] 0 0 0 0 0

R> ## Create a 2x7 of zeros
R> ( Zero2x7 <- matrix(0, nrow=2, ncol=7) )

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0

R> ## Define the A matrix
R> A1 <- rbind(cbind(Zero5x5, Lambda),

Zero2x7)
R> ## This step is useful for inspecting the model.
R> dimnames(A1)[[1]] <- c("A","C","ES","E","I","f_Alpha","f_Beta")
R> dimnames(A1)[[2]] <- dimnames(A1)[[1]]
R> A1

A C ES E I f_Alpha f_Beta
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A "0" "0" "0" "0" "0" ".3*Alpha_A" "0"
C "0" "0" "0" "0" "0" ".3*Alpha_C" "0"
ES "0" "0" "0" "0" "0" ".3*Alpha_ES" "0"
E "0" "0" "0" "0" "0" "0" ".3*Beta_E"
I "0" "0" "0" "0" "0" "0" ".3*Beta_I"
f_Alpha "0" "0" "0" "0" "0" "0" "0"
f_Beta "0" "0" "0" "0" "0" "0" "0"

R> ## Convert it into a MxMatrix class
R> A1 <- as.mxMatrix(A1)
R> ## F matrix to select the observed variables
R> ## First 5 elements are observed variables
R> ## Last 2 elements are latent variables
R> F1 <- create.Fmatrix(c(1,1,1,1,1,0,0), name="F1",

as.mxMatrix=FALSE)
R> ## This step is useful for inspecting the model.
R> dimnames(F1)[[1]] <- c("A","C","ES","E","I")
R> dimnames(F1)[[2]] <- c("A","C","ES","E","I","f_Alpha","f_Beta")
R> F1

A C ES E I f_Alpha f_Beta
A 1 0 0 0 0 0 0
C 0 1 0 0 0 0 0
ES 0 0 1 0 0 0 0
E 0 0 0 1 0 0 0
I 0 0 0 0 1 0 0

R> ## Convert it into a MxMatrix class
R> F1 <- as.mxMatrix(F1)

After setting up the required matrices for the structural equation model, we call
the tssem2() function to conduct the stage 2 analysis. The tssem2() function
automatically extract the pooled correlation matrix and its asymptotic sampling
covariance matrix from the fixed1 object regardless of whether it is based on
either a fixed-effects or a random-effects model. As there is no mediator in the
model, we use the diag.constraints=FALSE argument to analyze the cor-
relation structure.

R> fixed2 <- tssem2(fixed1, Amatrix=A1, Smatrix=S1, Fmatrix=F1,
diag.constraints=FALSE)

R> summary(fixed2)

------------------------ Selected output -----------------------

Goodness-of-fit indices:
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Value
Sample size 4496.00
Chi-square of target model 65.06
DF of target model 4.00
p value of target model 0.00
Number of constraints imposed on "Smatrix" 0.00
DF manually adjusted 0.00
Chi-square of independence model 3100.24
DF of independence model 10.00
RMSEA 0.06
SRMR 0.03
TLI 0.95
CFI 0.98
AIC 57.06
BIC 31.42
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

On the basis of the goodness-of-fit indices, the proposed model fits the data
reasonably well with 𝜒

2(df = 4,N = 4496) = 65.0609, p < 0.001, CFI = 0.9802,
RMSEA = 0.0583, and SRMR = 0.0284. Some readers may wonder why the
proposed model fits the data well in the stage 2 analysis even though the homo-
geneity of correlation matrices was rejected in the stage 1 analysis. As the
structural equation model in the stage 2 analysis is only fitted on the basis of the
pooled correlation matrix and its asymptotic covariance matrix, whether or not
the correlation matrices are homogeneous has little impact on the model fit of
the structural models. The SEs of the parameter estimates are likely to have been
underestimated in this case. Readers should be cautious when interpreting the
results of the stage 2 analysis when the homogeneity of the correlation matrices is
rejected in the stage 1 analysis.

7.6.1.2 Fixed-effects model with clusters

As the assumption of the homogeneity of the correlation matrices has not been
met, we group the studies into clusters based on the study characteristics. Dig-
man97$cluster stores the sample characteristics of these studies. For ease of
illustration, we recode the data into younger and older participants.

R> ## Display the original study characteristics
R> Digman97$cluster

[1] "Children" "Children" "Children" "Children"
[5] "Adolescents" "Young adults" "Young adults" "Young adults"
[9] "Mature adults" "Mature adults" "Mature adults" "Mature adults"
[13] "Mature adults" "Mature adults"
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R> ## Convert 3 clusters into 2 clusters
R> ## Younger participants: "Children" and "Adolescents"
R> ## Older participants: "Mature adults"
R> sample <- ifelse(Digman97$cluster %in% c("Children",

"Adolescents"),
yes="Younger participants",
no="Older participants")

R> ## Show the recoded sample
R> sample

[1] "Younger participants" "Younger participants"
[3] "Younger participants" "Younger participants"
[5] "Younger participants" "Older participants"
[7] "Older participants" "Older participants"
[9] "Older participants" "Older participants"
[11] "Older participants" "Older participants"
[13] "Older participants" "Older participants"

The syntax for the fixed-effects TSSEM with clusters is identical to that of
the fixed-effects analysis except for specifying the cluster argument in the
tssem1() function. It should be noted that the cluster argument is ignored
when method="REM" is specified.

R> ## Fixed-effects TSSEM with two clusters
R> fixed1.cluster <- tssem1(Digman97$data, Digman97$n, method="FEM",

cluster=sample)
R> summary(fixed1.cluster)

------------------------ Selected output -----------------------

$'Older participants'
Goodness-of-fit indices:

Value
Sample size 3658.00
Chi-square of target model 823.88
DF of target model 80.00
p value of target model 0.00
Chi-square of independence model 2992.93
DF of independence model 90.00
RMSEA 0.15
SRMR 0.15
TLI 0.71
CFI 0.74
AIC 663.88
BIC 167.50
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------
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------------------------ Selected output -----------------------

$'Younger participants'
Goodness-of-fit indices:

Value
Sample size 838.00
Chi-square of target model 344.18
DF of target model 40.00
p value of target model 0.00
Chi-square of independence model 1461.67
DF of independence model 50.00
RMSEA 0.21
SRMR 0.14
TLI 0.73
CFI 0.78
AIC 264.18
BIC 74.94
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

From the above test statistics and goodness-of-fit indices, the hypothesis of the
homogeneity of the correlation matrices in these two samples was rejected. The
sample type is not sufficient to explain the heterogeneity of the correlation matri-
ces. We do not go on to fit the structural equation models. If a structural equation
model is required to be fitted in the stage 2 analysis, the command is

R> fixed2.cluster <- tssem2(fixed1, Amatrix=A1, Smatrix=S1,
Fmatrix=F1, diag.constraints=FALSE)

R> summary(fixed2.cluster)

7.6.1.3 Random-effects model

We conduct a random-effects TSSEM by specifying the method="REM" argu-
ment in calling the tssem1() function to account for the heterogeneity of the
correlation matrices. The R code is

R> ## Random-effects TSSEM
R> ## There were errors in the analysis.
R> random1 <- tssem1(Digman97$data, Digman97$n, method="REM")
R> summary(random1)

The above analysis encounters errors. As there are five variables in the model,
this led to a total of 10 correlation coefficients in the analysis. If a random-effects
model is fitted, there are 55 elements in the variance component matrix of
the random effects. As there are not enough data to estimate the full variance
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component, a diagonal matrix was used in estimating the variance component. The
default option in the tssem1() function is to estimate the full symmetric vari-
ance component (with the RE.type="Symm" argument). A diagonal variance
component can be requested by specifying the RE.type="Diag" argument.
If RE.type="Zero" is specified, it becomes the GLS approach discussed in
Section 7.2.2.

R> ## Random-effects TSSEM with random effects on the diagonals
R> random1 <- tssem1(Digman97$data, Digman97$n, method="REM",

RE.type="Diag")
R> summary(random1)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 3.95e-01 5.42e-02 2.88e-01 5.01e-01 7.28 3.4e-13
Intercept2 4.40e-01 4.13e-02 3.59e-01 5.21e-01 10.67 < 2e-16
Intercept3 5.45e-02 6.17e-02 -6.64e-02 1.76e-01 0.88 0.3768
Intercept4 9.87e-02 4.62e-02 8.08e-03 1.89e-01 2.13 0.0328
Intercept5 4.30e-01 4.02e-02 3.51e-01 5.08e-01 10.70 < 2e-16
Intercept6 1.29e-01 4.08e-02 4.85e-02 2.09e-01 3.15 0.0016
Intercept7 2.05e-01 4.96e-02 1.08e-01 3.02e-01 4.14 3.5e-05
Intercept8 2.40e-01 3.19e-02 1.77e-01 3.03e-01 7.52 5.7e-14
Intercept9 1.89e-01 4.30e-02 1.05e-01 2.73e-01 4.40 1.1e-05
Intercept10 4.44e-01 3.25e-02 3.80e-01 5.08e-01 13.65 < 2e-16
Tau2_1_1 3.72e-02 1.50e-02 7.81e-03 6.66e-02 2.48 0.0131
Tau2_2_2 2.03e-02 8.43e-03 3.77e-03 3.68e-02 2.41 0.0161
Tau2_3_3 4.82e-02 1.97e-02 9.56e-03 8.69e-02 2.44 0.0145
Tau2_4_4 2.46e-02 1.06e-02 3.79e-03 4.54e-02 2.32 0.0205
Tau2_5_5 1.87e-02 8.25e-03 2.56e-03 3.49e-02 2.27 0.0232
Tau2_6_6 1.83e-02 8.79e-03 1.03e-03 3.55e-02 2.08 0.0378
Tau2_7_7 2.94e-02 1.23e-02 5.39e-03 5.35e-02 2.40 0.0164
Tau2_8_8 9.65e-03 4.88e-03 8.17e-05 1.92e-02 1.98 0.0481
Tau2_9_9 2.09e-02 9.13e-03 3.04e-03 3.88e-02 2.29 0.0218
Tau2_10_10 1.12e-02 5.05e-03 1.26e-03 2.10e-02 2.21 0.0271

Intercept1 ***
Intercept2 ***
Intercept3
Intercept4 *
Intercept5 ***
Intercept6 **
Intercept7 ***
Intercept8 ***
Intercept9 ***
Intercept10 ***
Tau2_1_1 *
Tau2_2_2 *
Tau2_3_3 *
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Tau2_4_4 *
Tau2_5_5 *
Tau2_6_6 *
Tau2_7_7 *
Tau2_8_8 *
Tau2_9_9 *
Tau2_10_10 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 2381
Degrees of freedom of the Q statistic: 130
P value of the Q statistic: 0

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0.95
Intercept2: I2 (Q statistic) 0.91
Intercept3: I2 (Q statistic) 0.94
Intercept4: I2 (Q statistic) 0.89
Intercept5: I2 (Q statistic) 0.90
Intercept6: I2 (Q statistic) 0.85
Intercept7: I2 (Q statistic) 0.91
Intercept8: I2 (Q statistic) 0.77
Intercept9: I2 (Q statistic) 0.87
Intercept10: I2 (Q statistic) 0.84

Number of studies (or clusters): 14
Number of observed statistics: 140
Number of estimated parameters: 20
Degrees of freedom: 120
-2 log likelihood: -110.8
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

The Q statistic on testing the homogeneity test of the correlation matrix is
Q(df = 130) = 2381.0001, p < 0.001. The test statistic is statistically significant
in testing the null hypothesis of the homogeneity of the correlation matrices.
The above output also displays the I2 discussed in Section 4.3.3 that shows the
between-study variation to the total variation. From the output, the minimum
and the maximum I2 are 0.7714 and 0.9487, respectively. These indicate that
there is huge between-study heterogeneity on the correlation coefficients. It is
more appropriate to use the random-effects model than the fixed-effects model on
this data set. The pooled correlation matrix can be obtained using the following
command:

R> ## Extract the fixed-effects estimates
R> (est_fixed <- coef(random1, select="fixed"))
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Intercept1 Intercept2 Intercept3 Intercept4 Intercept5
0.39465 0.44009 0.05454 0.09867 0.42966

Intercept6 Intercept7 Intercept8 Intercept9 Intercept10
0.12851 0.20526 0.23994 0.18910 0.44413

R> ## Convert the estimated vector to a symmetrical matrix
R> ## where the diagonals are fixed at 1 (for a correlation matrix)
R> vec2symMat(est_fixed, diag=FALSE)

[,1] [,2] [,3] [,4] [,5]
[1,] 1.00000 0.3946 0.4401 0.05454 0.09867
[2,] 0.39465 1.0000 0.4297 0.12851 0.20526
[3,] 0.44009 0.4297 1.0000 0.23994 0.18910
[4,] 0.05454 0.1285 0.2399 1.00000 0.44413
[5,] 0.09867 0.2053 0.1891 0.44413 1.00000

The stage 2 analysis for fitting the structural equation model can be conducted
with the tssem2() function. The syntax for the stage 2 analysis is exactly the
same regardless of whether a fixed-effects model, a fixed-effects model with clus-
ters, or a random-effects model is fitted in the stage 1 analysis. This is because
only the pooled correlation matrix and its asymptotic covariance matrix are used in
fitting structural equation models in the stage 2 analysis. The tssem2() handles
this issue automatically.

R> random2 <- tssem2(random1, Amatrix=A1, Smatrix=S1, Fmatrix=F1,
diag.constraints=FALSE)

R> summary(random2)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Alpha_A 0.5726 0.0516 0.4714 0.6737 11.09 < 2e-16 ***
Alpha_C 0.5901 0.0518 0.4885 0.6917 11.38 < 2e-16 ***
Alpha_ES 0.7705 0.0610 0.6508 0.8901 12.62 < 2e-16 ***
Beta_E 0.6934 0.0748 0.5468 0.8400 9.27 < 2e-16 ***
Beta_I 0.6401 0.0689 0.5052 0.7751 9.30 < 2e-16 ***
cor 0.3937 0.0476 0.3004 0.4869 8.28 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Goodness-of-fit indices:
Value

Sample size 4496.00
Chi-square of target model 8.51
DF of target model 4.00
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p value of target model 0.07
Number of constraints imposed on "Smatrix" 0.00
DF manually adjusted 0.00
Chi-square of independence model 514.56
DF of independence model 10.00
RMSEA 0.02
SRMR 0.05
TLI 0.98
CFI 0.99
AIC 0.51
BIC -25.13
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

On the basis of the goodness-of-fit indices, the proposed model fits the data
well with 𝜒

2(df = 4,N = 4496) = 8.5118, p = 0.0745, CFI= 0.9911, RMSEA
= 0.0158, and SRMR= 0.0463. The estimated correlation between the two factors
(labeled cor in the output) is Ŝ[7, 6] = 0.3937, whereas the parameter estimates of
the factor loadings ( ̂A[1, 6] to ̂A[5, 7]; labeled Alpha_A to Beta_I in the output)
are 0.5726, 0.5901, 0.7705, 0.6934, and 0.6401, respectively. All of the parameter
estimates are statistically significant. The lower bound (the column labeled
lbound) and the upper bound (the column labeled ubound) of the 95% Wald CI
are also listed. If an LBCI is required, we may specify intervals.type="LB"
in the call.

As shown in the output, the error variances are not parameters in the model when
the argument diag.constraints=FALSE is specified. Therefore, there is no
estimate on them. The computed error variances are stored in a matrix called Ema-
trix inrandom2$mx.fit. We may request it by using themxEval() function
in the OpenMx package. Moreover, we can also calculate the R2= 1−error vari-
ance, the percentage of the variance explained by the predictors, on the observed
variables.

S[3, 2]

S[2, 2] = 1.0
S[1, 1]

A[1, 3]

A[1, 2]

S[3, 3] = 1.0
SAT

(Verbal)

Spatial
ability

SAT
(Math)

Figure 7.3 A regression model of math aptitude with spatial ability and verbal
ability as predictors.
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R> ## Extract and display the error variances
R> (Ematrix <- diag(mxEval(Ematrix, random2$mx.fit)))

[1] 0.6722 0.6518 0.4064 0.5192 0.5903

R> ## Calculate the R2 on the variables
R> 1 - Ematrix

[1] 0.3278 0.3482 0.5936 0.4808 0.4097
R> ## Load the library to plot the model
R> library("semPlot")

R> ## Convert the model to semPlotModel object
R> my.plot <- meta2semPlot(random2, latNames=c("Alpha","Beta"))

R> ## Plot the model with labels
R> semPaths(my.plot, whatLabels="path")

R> ## Plot the parameter estimates
R> semPaths(my.plot, whatLabels="est")

7.6.2 A regression model on SAT (Math)

The objective of this example is to demonstrate how to fit a regression model with
the TSSEM approach. Becker and Schram (1994) reported 10 independent samples
(five for males and five for females) from five studies with a total sample size of
538. Their study includes correlations among SAT (Math), SAT (Verbal), and Spa-
tial ability. Becker and Schram (1994) synthesized the correlation matrices and fit
a regression model by using SAT (Math) as the dependent variable and SAT (Ver-
bal) and Spatial ability as the predictors. These 10 studies varied in sample sizes
(18–153). The data set is stored as anR object named Becker94 in the metaSEM
package. Figure 7.3 depicts the model with the parameters labeled in the RAM for-
mulation. In this illustration, we first tested the fixed-effects TSSEM by pooling all
of the studies together and by treating gender as a categorical moderator. Finally,
we fitted the random-effects TSSEM.

7.6.2.1 Fixed-effects model

We first inspect the data by using the following command:

R> ## Display the first two correlation matrices
R> Becker94$data[1:2]

$'Becker (1978) Females'
SAT (Math) Spatial SAT (Verbal)
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SAT (Math) 1.00 0.47 -0.21
Spatial 0.47 1.00 -0.15
SAT (Verbal) -0.21 -0.15 1.00

$'Becker (1978) Males'
SAT (Math) Spatial SAT (Verbal)

SAT (Math) 1.00 0.28 0.19
Spatial 0.28 1.00 0.18
SAT (Verbal) 0.19 0.18 1.00

R> ## Display the first two sample sizes
R> Becker94$n[1:2]

[1] 74 153

R> ## Display the first two sample types
R> Becker94$gender[1:2]

[1] "Females" "Males"

We conduct the first stage of the analysis with a fixed-effects TSSEM by calling
the tssem1() function specifying the method="FEM" argument.

R> fixed1 <- tssem1(Becker94$data, Becker94$n, method="FEM")
R> summary(fixed1)

------------------------ Selected output -----------------------

Goodness-of-fit indices:
Value

Sample size 538.00
Chi-square of target model 62.50
DF of target model 27.00
p value of target model 0.00
Chi-square of independence model 202.61
DF of independence model 30.00
RMSEA 0.16
SRMR 0.16
TLI 0.77
CFI 0.79
AIC 8.50
BIC -107.27
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------
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The OpenMx status1 looks fine. We then check the test of the homogeneity and
the goodness-of-fit indices. The test statistic on testing the homogeneity test of the
correlation matrix is 𝜒2(df = 27,N = 538) = 62.4983, p < 0.001. On the basis of
the test statistic, the null hypothesis of the homogeneity of the correlation matrices
was rejected. Both the RMSEA and the SRMR are very large, indicating that the
proposed model (homogeneity of correlation matrices) does not fit the data. As the
fixed-effects model is not appropriate for this data set, we do not fit the regression
model on the pooled correlation matrix. We illustrate the stage 2 analysis in the
later section of this illustration.

7.6.2.2 Fixed-effects model with clusters

We may test whether or not gender explains the heterogeneity of the correlation
matrices by calling up the following syntax.

R> ## Fixed-effects TSSEM with two clusters
R> fixed.cluster <- tssem1(Becker94$data, Becker94$n, method="FEM",

cluster=Becker94$gender)
R> summary(fixed.cluster)

------------------------ Selected output -----------------------

$Females
Value

Sample size 235.00
Chi-square of target model 42.41
DF of target model 12.00
p value of target model 0.00
Chi-square of independence model 120.42
DF of independence model 15.00
RMSEA 0.23
SRMR 0.21
TLI 0.64
CFI 0.71
AIC 18.41
BIC -23.11
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

------------------------ Selected output -----------------------

$Males
Value

Sample size 303.00
Chi-square of target model 16.13
DF of target model 12.00
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p value of target model 0.19
Chi-square of independence model 82.19
DF of independence model 15.00
RMSEA 0.08
SRMR 0.10
TLI 0.92
CFI 0.94
AIC -7.87
BIC -52.43
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

From the above test statistics and goodness-of-fit indices, the null hypothesis of
the homogeneity of the correlation matrices in these two samples was rejected in
studies of female samples but not in male samples. As there were only five studies
in each group, we should be cautious when interpreting nonsignificant results.

7.6.2.3 Random-effects model

We run a random-effects TSSEM by specifying the method="REM" argument to
account for the heterogeneity on the correlation matrices.

R> ## Random-effects TSSEM
R> ## The OpenMx status was 6.
R> random1 <- tssem1(Becker94$data, Becker94$n, method="REM")
R> summary(random1)

The above analysis encounters errors. The main issue is that the estimated vari-
ance component is nonpositive definite. This problem may be attributed to the
small number of studies. We use a diagonal matrix when estimating the variance
component.

R> ## Random-effects TSSEM with random effects on the diagonals
R> random1 <- tssem1(Becker94$data, Becker94$n, method="REM",

RE.type="Diag")
R> summary(random1)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 3.71e-01 3.69e-02 2.98e-01 4.43e-01 10.05 < 2e-16
Intercept2 4.32e-01 7.73e-02 2.80e-01 5.83e-01 5.59 2.3e-08
Intercept3 2.03e-01 4.65e-02 1.12e-01 2.94e-01 4.36 1.3e-05
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Tau2_1_1 1.00e-10 4.89e-03 -9.59e-03 9.59e-03 0.00 1.00
Tau2_2_2 4.75e-02 2.62e-02 -3.90e-03 9.88e-02 1.81 0.07
Tau2_3_3 5.16e-03 9.75e-03 -1.39e-02 2.43e-02 0.53 0.60

Intercept1 ***
Intercept2 ***
Intercept3 ***
Tau2_1_1
Tau2_2_2 .
Tau2_3_3
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 81.66
Degrees of freedom of the Q statistic: 27
P value of the Q statistic: 2.112e-07

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0.00
Intercept2: I2 (Q statistic) 0.81
Intercept3: I2 (Q statistic) 0.23

Number of studies (or clusters): 10
Number of observed statistics: 30
Number of estimated parameters: 6
Degrees of freedom: 24
-2 log likelihood: -23.64
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

The Q statistic on testing the homogeneity test of the correlation matrix is Q(df
= 27) = 81.6591, p < 0.001. This indicates that the null hypothesis of the
homogeneity of correlation matrices is rejected. From the output, the I2 for the
correlations between SAT (Math) and Spatial ability, between SAT (Math) and
SAT (Verbal), and between Spatial ability and SAT (Verbal) are 0.0000, 0.8052,
and 0.2274, respectively. These indicate that there is not much between-study
variation on the population correlation between SAT (Math) and Spatial ability,
whereas there is heterogeneity on the other population correlation coefficients. A
random-effects model is more appropriate than a fixed-effects model for this data
set. The pooled correlation matrix can be obtained using the following command:

R> vec2symMat( coef(random1, select="fixed"), diag=FALSE )

[,1] [,2] [,3]
[1,] 1.0000 0.3708 0.4316
[2,] 0.3708 1.0000 0.2029
[3,] 0.4316 0.2029 1.0000
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We prepare the necessary matrices to fit the structural equation model. As all
variables are observed, we may skip the F selection matrix. If it is skipped, the
tssem2() function assumes that there are no latent variables. Besides creating
the matrices with the method shown in the example of Digman97, we may also
create the matrices with the create.mxMatrix() function.

R> ## Arrange the data by row
R> A2 <- create.mxMatrix(c(0, "0.2*Spatial2Math", "0.2*Verbal2Math",

0, 0, 0,
0, 0, 0),

type="Full", nrow=3, ncol=3,
byrow=TRUE, name="A2")

R> A2

FullMatrix 'A2'

$labels
[,1] [,2] [,3]

[1,] NA "Spatial2Math" "Verbal2Math"
[2,] NA NA NA
[3,] NA NA NA

$values
[,1] [,2] [,3]

[1,] 0 0.2 0.2
[2,] 0 0.0 0.0
[3,] 0 0.0 0.0

$free
[,1] [,2] [,3]

[1,] FALSE TRUE TRUE
[2,] FALSE FALSE FALSE
[3,] FALSE FALSE FALSE

$lbound: No lower bounds assigned.

$ubound: No upper bounds assigned.

R> ## Only the elements in the lower triangle are required
R> S2 <- create.mxMatrix(c("0.2*ErrVarMath",

0,1,
0,"0.2*CorMathVerbal",1),

type="Symm", byrow=TRUE, name="S2")
R> S2

SymmMatrix 'S2'

$labels
[,1] [,2] [,3]



264 META-ANALYSIS

[1,] "ErrVarMath" NA NA
[2,] NA NA "CorMathVerbal"
[3,] NA "CorMathVerbal" NA

$values
[,1] [,2] [,3]

[1,] 0.2 0.0 0.0
[2,] 0.0 1.0 0.2
[3,] 0.0 0.2 1.0

$free
[,1] [,2] [,3]

[1,] TRUE FALSE FALSE
[2,] FALSE FALSE TRUE
[3,] FALSE TRUE FALSE

$lbound: No lower bounds assigned.

$ubound: No upper bounds assigned.

The stage 2 analysis of fitting the structural model is conducted with the
tssem2() function.

R> random2 <- tssem2(random1, Amatrix=A2, Smatrix=S2,
diag.constraints=FALSE)

R> summary(random2)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Spatial2Math 0.2953 0.0404 0.2161 0.3746 7.30 2.8e-13 ***
Verbal2Math 0.3717 0.0806 0.2138 0.5295 4.61 3.9e-06 ***
CorMathVerbal 0.2029 0.0465 0.1118 0.2941 4.36 1.3e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Goodness-of-fit indices:
Value

Sample size 538
Chi-square of target model 0
DF of target model 0
p value of target model 0
Number of constraints imposed on "Smatrix" 0
DF manually adjusted 0
Chi-square of independence model 130
DF of independence model 3
RMSEA 0
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SRMR 0
TLI -Inf
CFI 1
AIC 0
BIC 0
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

As the proposed model is the regression model, the model is just identified. Thus,
the chi-square statistic on the model is always 0. The other goodness-of-fit indices
are irrelevant. The estimated regression coefficients (with their 95% Wald CIs)
from Spatial ability and SAT (Verbal) to SAT (Math) are 0.2953 (0.2161, 0.3746)
and 0.3717 (0.2138, 0.5295), respectively. The estimated correlation between the
predictors is 0.2029 (0.1118, 0.2941). All the parameter estimates are statistically
significant at 𝛼 = 0.05. We may compute the error variance and the R2 on SAT
(Math) by

R> ## Display the content of the Ematrix
R> mxEval(Ematrix, random2$mx.fit)

[,1] [,2] [,3]
[1,] 0.7301 0 0
[2,] 0.0000 0 0
[3,] 0.0000 0 0

R> ## Error variance on SAT (Math)
R> ## Select the element [1,1] correspondent to SAT (Math)
R> (Ematrix <- mxEval(Ematrix, random2$mx.fit)[1,1])

[1] 0.7301

R> ## R2 on SAT (Math)
R> 1 - Ematrix

[1] 0.2699

The computed error variance on SAT (Math) is 0.7301, whereas the R2 is 0.2699
by considering the joint effect of SAT (Verbal) and Spatial ability.
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S[1, 1] = 1.0
A[2, 1], A2J

A[3, 1], A2W

S[2, 2], ErrVar J

S[3, 3], ErrVarW

S[4,4], ErrVar S
A[4,2], J2S

A[3, 2], J2W   A[4, 3], W2S
Supervisor
rating (4)Ability (1)

Work
sample(3)

Job
knowledge(2)

Figure 7.4 A path model of cognitive ability, job knowledge, work sample, and
supervisor rating.

7.6.3 A path model for cognitive ability to supervisor rating

The purpose of this example is to illustrate how to fit a mediation model with the use
of thediag.constraints=TRUE and intervals.type="LB". Moreover,
we will also illustrate how to create additional matrices to calculate functions of the
parameters. This approach is used to calculate functions such as indirect effects and
their LBCI. Hunter (1983) conducted an MASEM to test a mediator model from
Ability (A) to Supervisor rating (S) on 14 studies with a total sample size of 3975.
There are two intermediate mediators, Job knowledge (J) and Work sample (W),
in the model, whereas there is no direct effect from Ability to Supervisor rating.
Figure 7.4 shows the proposed method with the labels of the parameters. For the
ease of reference, the variables in the figure are also labeled in numbers according
to the orders in the data set and the RAM specification.

7.6.3.1 Fixed-effects model

When there are missing data in the correlation or covariance matrices, it is of impor-
tance to check the patterns of the missing data. Users may also check whether
the matrices are positive definite. We display some sample data for checking the
patterns of missing (or present) data by using thepattern.na() function. More-
over, we may also calculate the accumulative sample sizes with thepattern.n()
function. Users should make sure that there are enough data on each cell.

R> ## Display the correlation matrices
R> Hunter83$data[1:2]

$'Campbell et al. (1973)'
Ability Knowledge Work sample Supervisor

Ability 1.00 0.65 0.48 0.33
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Knowledge 0.65 1.00 0.52 0.40
Work sample 0.48 0.52 1.00 0.23
Supervisor 0.33 0.40 0.23 1.00

$'Corts et al. (1977)'
Ability Knowledge Work sample Supervisor

Ability 1.00 0.53 0.50 0.03
Knowledge 0.53 1.00 0.49 0.04
Work sample 0.50 0.49 1.00 0.18
Supervisor 0.03 0.04 0.18 1.00

R> ## Display the sample sizes
R> Hunter83$n[1:2]

[1] 443 186

R> ## Show the missing data: show.na=TRUE
R> ## Show the present data: show.na=FALSE
R> pattern.na(Hunter83$data, show.na=FALSE)

Ability Knowledge Work sample Supervisor
Ability 13 11 11 12
Knowledge 11 12 10 11
Work sample 11 10 12 11
Supervisor 12 11 11 13

R> ## Display the accumulative sample sizes for each correlation
R> pattern.n(Hunter83$data, Hunter83$n)

Ability Knowledge Work sample Supervisor
Ability 3815 3372 3281 3605
Knowledge 3372 3532 2998 3322
Work sample 3281 2998 3441 3231
Supervisor 3605 3322 3231 3765

There are not too many missing data on the correlation coefficients. We check
whether the matrices are positive definite by using theis.pd() function. It returns
TRUEwhen the input matrix is positive definite. It returns FALSE and NAwhen the
input matrix is not positive definite and some of the elements are NA, respectively.
If one or some of the matrices are not positive definite, the analysis may return an
error, especially for the fixed-effects TSSEM approach.

R> is.pd(Hunter83$data)
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Campbell et al. (1973) Corts et al. (1977)
TRUE TRUE

O'Leary and Trattner (1977) Trattner rt al. (1977)
TRUE TRUE

Vineberg and Taylor (1972) Vineberg and Taylor (1972)
TRUE TRUE

Vineberg and Taylor (1972) Vineberg and Taylor (1972)
TRUE TRUE

Campell et al. (1973) Drauden (1978)
TRUE TRUE

Campbell et al. (1973) Boyles et al. (19??)
TRUE TRUE

Schoon (1979) van Rijn and Payne (1980)
TRUE TRUE

We pool the correlation matrices based on the fixed-effects model.

R> fixed1 <- tssem1(Hunter83$data, Hunter83$n, method="FEM")
R> summary(fixed1)

------------------------ Selected output -----------------------

Coefficients:
Estimate Std.Error z value Pr(>|z|)

S[1,2] 0.5105 0.0127 40.1 <2e-16 ***
S[1,3] 0.4270 0.0141 30.3 <2e-16 ***
S[1,4] 0.2077 0.0160 13.0 <2e-16 ***
S[2,3] 0.5229 0.0131 39.8 <2e-16 ***
S[2,4] 0.2846 0.0158 18.0 <2e-16 ***
S[3,4] 0.2432 0.0163 14.9 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Goodness-of-fit indices:
Value

Sample size 3975.00
Chi-square of target model 263.34
DF of target model 60.00
p value of target model 0.00
Chi-square of independence model 2767.41
DF of independence model 66.00
RMSEA 0.11
SRMR 0.09
TLI 0.92
CFI 0.92
AIC 143.34
BIC -233.93
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------
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The OpenMx status1 looks fine. The test statistic on testing the homogeneity
test of the correlation matrix is 𝜒2(df = 60,N = 3975) = 263.3389, p < 0.001. On
the basis of the test statistic, the null hypothesis on the homogeneity of the corre-
lation matrices was rejected. Both the RMSEA and the SRMR are also very large,
indicating that the proposed model of homogeneity of correlation matrices does not
fit the data. We will fit the structural equation model based on the random-effects
model later.

7.6.3.2 Random-effects model

As there was not enough data to estimate the full variance component, we esti-
mate the variance component based on a diagonal matrix. Moreover, the OpenMx
status1 was 6, indicating that there were estimation issues. We try to improve
the estimation by rerunning the analysis with the rerun() function.

R> random1 <- tssem1(Hunter83$data, Hunter83$n, method="REM",
RE.type="Diag")

R> ## Rerun the analysis
R> random1 <- rerun(random1)
R> summary(random1)

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 5.06e-01 2.79e-02 4.51e-01 5.61e-01 18.14 < 2e-16
Intercept2 4.47e-01 2.47e-02 3.99e-01 4.95e-01 18.09 < 2e-16
Intercept3 2.12e-01 2.52e-02 1.63e-01 2.62e-01 8.41 < 2e-16
Intercept4 5.31e-01 3.47e-02 4.63e-01 5.99e-01 15.28 < 2e-16
Intercept5 2.59e-01 3.95e-02 1.82e-01 3.37e-01 6.56 5.4e-11
Intercept6 2.41e-01 1.69e-02 2.08e-01 2.74e-01 14.27 < 2e-16
Tau2_1_1 6.37e-03 3.52e-03 -5.38e-04 1.33e-02 1.81 0.071
Tau2_2_2 4.41e-03 3.10e-03 -1.66e-03 1.05e-02 1.42 0.155
Tau2_3_3 4.31e-03 2.82e-03 -1.22e-03 9.84e-03 1.53 0.126
Tau2_4_4 1.02e-02 5.40e-03 -3.56e-04 2.08e-02 1.89 0.058
Tau2_5_5 1.39e-02 7.31e-03 -4.55e-04 2.82e-02 1.90 0.058
Tau2_6_6 1.32e-05 1.26e-03 -2.45e-03 2.48e-03 0.01 0.992

Intercept1 ***
Intercept2 ***
Intercept3 ***
Intercept4 ***
Intercept5 ***
Intercept6 ***
Tau2_1_1 .
Tau2_2_2
Tau2_3_3
Tau2_4_4 .
Tau2_5_5 .
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Tau2_6_6
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 314.4
Degrees of freedom of the Q statistic: 60
P value of the Q statistic: 0

Heterogeneity indices (based on the estimated Tau2):
Estimate

Intercept1: I2 (Q statistic) 0.76
Intercept2: I2 (Q statistic) 0.64
Intercept3: I2 (Q statistic) 0.57
Intercept4: I2 (Q statistic) 0.83
Intercept5: I2 (Q statistic) 0.82
Intercept6: I2 (Q statistic) 0.00

Number of studies (or clusters): 14
Number of observed statistics: 66
Number of estimated parameters: 12
Degrees of freedom: 54
-2 log likelihood: -126.3
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

After rerunning the analysis, the OpenMx status1 was fine. The Q statistic on
testing the null hypothesis on the homogeneity test of the correlation matrix is
Q(df = 60) = 314.4232, p < 0.001. This indicates that the null hypothesis on the
homogeneity of correlation matrices is rejected. The range of I2 on the correlation
coefficients is from 0.0041 to 0.8349. A random-effects model is applied to this data
set. The pooled correlation matrix can be obtained by the following command:

R> vec2symMat( coef(random1, select="fixed"), diag=FALSE )

[,1] [,2] [,3] [,4]
[1,] 1.0000 0.5059 0.4469 0.2122
[2,] 0.5059 1.0000 0.5307 0.2591
[3,] 0.4469 0.5307 1.0000 0.2410
[4,] 0.2122 0.2591 0.2410 1.0000

We prepare the necessary matrices to fit the structural model. As all variables are
observed, we skip the F selection matrix.

R> ## Arrange the elements by row
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R> ## Variables are arranged as:
R> ## Ability, Job knowledge, Work sample and Supervisor rating
R> (A3 <- create.mxMatrix(c(0, 0, 0, 0,

"0.1*A2J", 0, 0, 0,
"0.1*A2W", "0.1*J2W", 0, 0,
0, "0.1*J2S", "0.1*W2S", 0),

type="Full", nrow=4, ncol=4, byrow=TRUE))

FullMatrix 'untitled1'

$labels
[,1] [,2] [,3] [,4]

[1,] NA NA NA NA
[2,] "A2J" NA NA NA
[3,] "A2W" "J2W" NA NA
[4,] NA "J2S" "W2S" NA

$values
[,1] [,2] [,3] [,4]

[1,] 0.0 0.0 0.0 0
[2,] 0.1 0.0 0.0 0
[3,] 0.1 0.1 0.0 0
[4,] 0.0 0.1 0.1 0

$free
[,1] [,2] [,3] [,4]

[1,] FALSE FALSE FALSE FALSE
[2,] TRUE FALSE FALSE FALSE
[3,] TRUE TRUE FALSE FALSE
[4,] FALSE TRUE TRUE FALSE

$lbound: No lower bounds assigned.

$ubound: No upper bounds assigned.

R> (S3 <- create.mxMatrix(c(1,"0.1*ErrVarJ",
"0.1*ErrVarW", "0.1*ErrVarS"),

type="Diag"))

DiagMatrix 'untitled1'

$labels
[,1] [,2] [,3] [,4]

[1,] NA NA NA NA
[2,] NA "ErrVarJ" NA NA
[3,] NA NA "ErrVarW" NA
[4,] NA NA NA "ErrVarS"
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$values
[,1] [,2] [,3] [,4]

[1,] 1 0.0 0.0 0.0
[2,] 0 0.1 0.0 0.0
[3,] 0 0.0 0.1 0.0
[4,] 0 0.0 0.0 0.1

$free
[,1] [,2] [,3] [,4]

[1,] FALSE FALSE FALSE FALSE
[2,] FALSE TRUE FALSE FALSE
[3,] FALSE FALSE TRUE FALSE
[4,] FALSE FALSE FALSE TRUE

$lbound: No lower bounds assigned.

$ubound: No upper bounds assigned.

The tssem2() function accepts newly defined matrices in the analysis. In this
example, the indirect effect is Ind = A2J ∗ J2S + A2J ∗ J2W ∗ W2S + A2W ∗
W2S. We define a new matrix called Ind based on the formula. This object
must be placed in the mx.algebras argument when calling up the tssem2()
function. By specifying the intervals.type="LB" argument, the LBCI on
the indirect effect will also be calculated. Moreover, it is necessary to specify the
diag.constraints=TRUE because there are mediators in this model (see the
discussion in Section 7.3.2).

R> random2 <- tssem2(random1, Amatrix=A3, Smatrix=S3,
intervals.type="LB",
diag.constraints=TRUE,

mx.algebras=list(Ind=mxAlgebra(A2J*J2S+A2J*J2W*W2S+A2W*W2S,
name="Ind")))

R> summary(random2)

------------------------ Selected output -----------------------

95% confidence intervals: Likelihood-based statistic
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
A2J 0.5164 NA 0.4629 0.5699 NA NA
A2W 0.2461 NA 0.1629 0.3251 NA NA
J2W 0.3966 NA 0.3002 0.4935 NA NA
J2S 0.2314 NA 0.1382 0.3257 NA NA
W2S 0.1214 NA 0.0544 0.1830 NA NA
ErrVarJ 0.7334 NA 0.6752 0.7857 NA NA
ErrVarW 0.6814 NA 0.6165 0.7381 NA NA
ErrVarS 0.9023 NA 0.8631 0.9315 NA NA
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mxAlgebras objects (and their 95% likelihood-based CIs):
lbound Estimate ubound

Ind[1,1] 0.1429 0.1742 0.2074

Goodness-of-fit indices:
Value

Sample size 3975.00
Chi-square of target model 3.81
DF of target model 1.00
p value of target model 0.05
Number of constraints imposed on "Smatrix" 3.00
DF manually adjusted 0.00
Chi-square of independence model 938.23
DF of independence model 6.00
RMSEA 0.03
SRMR 0.02
TLI 0.98
CFI 1.00

AIC 1.81
BIC -4.47
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

The proposed model fits the data well with 𝜒
2(df = 1,N = 3975) = 3.8132,

p = 0.0509, CFI = 0.9970, RMSEA = 0.0266, and SRMR = 0.0220. As this is a
path model with df = 1, it is expected that the goodness-of-fit indices will be good.

The estimated parameters for A and S are

A J W S
A
J
W
S

⎡⎢⎢⎢⎣
0 0 0 0

0.5164 0 0 0
0.2461 0.3966 0 0

0 0.2314 0.1214 0

⎤⎥⎥⎥⎦
and

A J W S
A
J
W
S

⎡⎢⎢⎢⎣
1 0 0 0
0 0.7334 0 0
0 0 0.6814 0
0 0 0 0.9023

⎤⎥⎥⎥⎦
, respectively. The indirect effect (and

its 95% LBCI) from Ability to Supervisor rating is 0.1742 (0.1429, 0.2074).

7.7 Concluding remarks and further readings

This chapter introduced the key concepts and issues of MASEM. It briefly
reviewed the conceptual issues related to MASEM. Becker (2009) and Viswes-
varan and Ones (1995) provided more thorough treatment on the conceptual
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issues in MASEM. This chapter introduced the fixed- and random-effects TSSEM
approach. The advantages and technical details of the TSSEM approach were also
addressed. Several issues related to MASEM were also addressed. Three examples
were used to illustrate the TSSEM approach in R.
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8

Advanced topics in SEM-based
meta-analysis

This chapter discusses two advanced topics in the structural equation modeling
(SEM)-based meta-analysis. The first topic is the restricted (or residual) maximum
likelihood (REML) estimation. We compare the pros and cons of the maximum
likelihood (ML) estimation against the REML estimation. A graphical model is
proposed to represent the transformation of the REML estimation. How to imple-
ment the REML estimation in SEM to conduct the SEM-based meta-analyses is
introduced. The next topic is how to handle missing values in the moderators in
a mixed-effects meta-analysis. Problems of and common methods on handling
missing values in the moderators in meta-analysis are reviewed. ML estimation
is proposed as a preferred method to handle the missing values. Examples are used
to illustrate these procedures in the R statistical environment.

8.1 Restricted (or residual) maximum likelihood
estimation

There are several estimation methods available in SEM, for example, two-stage
least squares, unweighted least squares, generalized least squares, ML estimation,
and weighted least squares (see Bentler, 2006; Jöreskog and Sörbom, 1996; Muthén
and Muthén, 2012). In the previous chapters, we mainly focus on the ML estimation
method. Under some regularity conditions (e.g., Millar, 2011), ML estimators
have many desirable properties. For instance, they are consistent, asymptotically
unbiased, asymptotically efficient, and asymptotically normally distributed.
Several estimators are also available in meta-analysis (see Section 4.3.1). One of
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the most popular estimator in meta-analysis is the weighted method of moments
proposed by DerSimonian and Laird (1986). Another popular choice is the REML
estimation, which was found to have a good balance between the unbiasedness
and efficiency (Viechtbauer, 2005). This section discusses how REML estimation
can be implemented in univariate, multivariate, and three-level meta-analyses in
the SEM-based meta-analysis. In the following subsections, we first discuss the
problems of the ML estimation method and how the REML estimation method
can be used to address these problems. Then we introduce how to implement the
REML estimation in SEM. This section is primarily based on Cheung (2013).

8.1.1 Reasons for and against the maximum likelihood
estimation

There are two components in a mixed-effects model—the fixed effects and the
variance components of the random effects. One problem of the ML estimator is
that the estimated variance components are negatively biased. The reason of the
bias is due to the fact that the variance components are estimated based on the esti-
mated fixed effects. Let us consider the ML estimator of the variance in normally
distributed data as an example. If we knew the population mean 𝜇, an unbiased
estimator on the variance is

∑n
i=1 (xi − 𝜇)2∕n, where n is the sample size. As we

rarely know the population mean in practice, the ML estimator based on the sam-
ple data is

∑n
i=1 (xi − x̄)2∕n, where x̄ =

∑n
i=1 xi∕n is the sample mean. It is always

true that
∑n

i=1 (xi − x̄)2∕n ≤
∑n

i=1 (xi − 𝜇)2∕n. The equality sign holds only when
x̄ = 𝜇. Therefore, the estimated variance based on the ML estimation is negatively
biased. A well-known unbiased estimator on the variance is

∑n
i=1 (xi − x̄)2∕(n − 1)

that adjusts the uncertainty in estimating x̄ by replacing n with (n − 1). The sit-
uation is more complicated in multilevel modeling or meta-analysis because the
negative bias on the variance component cannot be corrected by a simple scalar
adjustment.

The REML estimation was proposed to minimize the bias on estimating the
variance components. The basic idea of the REML estimation is to break the
analysis into two steps. In the first step, we estimate the variance components of
the random effects on the transformed data (the residuals) so that the fixed-effects
parameters have been removed from the estimation. As the fixed-effects parameters
are not in the model, the variance components can be estimated without bias. In
the second step, we estimate the fixed effects by treating the estimated variance
components as known.

However, REML is not without its own limitations. As the fixed-effects
parameters are removed before estimating the variance components, there is no
fixed-effects estimates in REML estimation. Ad hoc calculations are required
to compute the estimates of the fixed-effects parameters. Therefore, likelihood
ratio (LR) test cannot be applied to compare models involving the fixed-effects
parameters. LR statistic can only be used to compare nested models that are
different on the variance components. Researchers have to switch back to the ML
estimation when the analyses involve comparisons on the fixed effects.
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Although the estimated variance components are negatively biased with the
ML estimation, it should be noted that the estimated fixed effects with the ML
estimation are unbiased even in small samples (Demidenko, 2013). Moreover,
many new statistical developments are based on the ML estimation. It is possible
to combine several techniques using the ML estimation. For example, we may
handle missing data and conduct robust statistics with the ML estimation. “As to
the question ‘ML’ or ‘REML?’,” (Searle et al. 1992, p.255) succinctly summa-
rized that “there is probably no hard and fast answer.” If the estimated variance
components play a critical role in research hypotheses and the sample sizes are
small, ML estimation is not recommended; otherwise, ML estimation can be a
reasonable choice for the analysis.

8.1.2 Applying the restricted (or residual) maximum likelihood
estimation in SEM-based meta-analysis

The rationale behind the REML estimation is to remove the fixed-effects param-
eters before estimating the variance components. A contrast matrix is chosen in
such a way that the fixed-effects parameters are not estimated. As the fixed-effects
parameters are not part of the model, the estimated variance components will not
be biased by treating the fixed-effects estimates as known. Let us consider a typical
mixed-effects meta-analytic model in the ith study,

yi = Xi𝜷 + Ziui + ei, (8.1)

where yi is a vector of effect sizes, Xi is a design matrix for the fixed effects
including a column of one in the first column, 𝜷 is a vector of regression coef-
ficients including the intercept, Zi is a selection matrix of 1 and 0 to select the
random effects, T2 = Var(ui) is the variance component of the random effects, and
Vi = Var(ei) is the known variance–covariance matrix of the sampling error.

The above model is general enough to represent both univariate and multivari-
ate meta-analyses. The model can be slightly modified to include another random
effect for the three-level meta-analysis. If there is only one effect size per study, T2

and Vi are scalars of the heterogeneity variance and the known sampling variance,
respectively. T2 and Vi are matrices of the heterogeneity variance components and
the known covariance matrix of the sampling errors, respectively, in a multivariate
meta-analysis.

As there are k studies, we may stack all studies together. Suppose that the total
number of the stacked effect sizes is ̃k (̃k = k for a univariate meta-analysis); the
model of y

̃k×1
is

y = X𝜷 + Zu + e, or⎡⎢⎢⎢⎣
y1
y2
⋮
yk

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
X1
X2
⋮
Xk

⎤⎥⎥⎥⎦ 𝜷 +
⎡⎢⎢⎢⎣
Z1
0 Z2
⋮ ⋱ ⋱
0 · · · 0 Zk

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
u1
u2
⋮
uk

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
e1
e2
⋮
ek

⎤⎥⎥⎥⎦
(8.2)
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Let G = Var(u) = Diag(T2
,… ,T2) and V = Var(e) = Diag(V1,V2,… ,Vk).

Instead of analyzing y with the ML estimation, we analyze its residuals ỹ,

ỹ
(̃k−p)×1

= A
(̃k−p)×̃k

y
̃k×1

,

= AX𝜷 + A(Zu + e),
(8.3)

where A = I − X(XTX)−1XT with p arbitrary rows removed and I is a k̃ × k̃ iden-
tity matrix, and p is the number of columns in X (Harville, 1977; Patterson and
Thompson, 1971). Several characteristics bear explaining. After the calculations,
the contrast A (without deleting the p arbitrary rows) is a ̃k × ̃k matrix. As the rank
of this matrix is only (k̃ − p), it is not of full rank. Thus, p redundant rows have
to be deleted. Harville (1977) showed that these p rows can be arbitrarily selected
without affecting the results. The common practice is to delete the last p rows.
Therefore, A becomes a (̃k − p) × ̃k matrix after deleting the last p rows. It is of
importance to note that ỹ is now a column vector with (k̃ − p) rows. In practice, the
transpose of it is used in the analysis using the SEM approach. That is, the final data
is a row vector with (k̃ − p) columns of variables. With a slight abuse of notation,
it is assumed that the last p rows of the contrast matrix A have been removed in the
following discussion.
AX𝜷 and A(Zu + e) are the fixed and the random effects, respectively. After the

transformation, the expected value of ỹ, the fixed effects, is

E(ỹ) = (I − X(XTX)−1XT)X𝜷,

= X𝜷 − X(XTX)−1XTX𝜷,

= 𝟎.

(8.4)

The population means of ỹ is always zero regardless of what 𝜷 is. Moreover, 𝜷 is
not estimable by analyzing ỹ. Effectively, the variance components can be estimated
without estimating 𝜷. The expected covariance matrix of ỹ, the variance component
of the random effects, is

Cov(ỹ) = ACov(Zu + e)AT
,

= A𝛀AT
,

(8.5)

where 𝛀 = ZGZT + V. Before the transformation, the between clusters of y are
independent; the between clusters become systematically dependent after the trans-
formation.

Another approach to obtain the REML estimates is to directly analyze the
−2*log-likelihood (LL) of the transformed data. The −2LL function without the
constant term on ỹ is

−2LLREML = log |𝛀| + (y − X𝜶)T𝛀−1(y − X𝜶) + log |XT𝛀−1X|), (8.6)

where 𝜶 = (X𝛀−1X)−1XT𝛀−1y (e.g., Muller and Stewart, 2006, p. 286). There
are two main differences between the −2LL functions in the ML and the REML
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estimations. First, the fixed effects 𝜷 are parameters that have to be estimated in
the −2LL function in the ML estimation (e.g., Equation 2.42), whereas 𝜶 is not
a parameter in the −2LL in the REML estimation. Second, an additional term
log |XT𝛀−1X| is in the −2LL in the REML estimation. It should be noted that there
was a typo in Equation 7 in Cheung (2013). The log operation was missing in
log |XT𝛀−1X| in the equation. The OpenMx package (Boker et al., 2011) can be
used to fit the model with the −2LL (see Cheung, 2013).

Once the variance components ̂G have been estimated, we may compute the
fixed-effects by

̂𝜷REML = (XT ̂𝛀−1
REMLX)

−1XT ̂𝛀−1
REMLy, (8.7)

where ̂𝛀REML = Z ̂GZT + V. Therefore, two steps are required to estimate the vari-
ance components and the fixed effects separately.

8.1.3 Implementation in structural equation modeling

Cheung (2013) showed how the above two approaches to obtain the REML esti-
mates could be implemented in SEM. In this part, we show how the model of ỹ
can be fitted by using the so-called wide format using the first approach in SEM.
Suppose that the model-implied mean vector and model-implied covariance matrix
using the ML estimation are 𝜇(𝜽)

̃k×1
and Σ(𝜽)

̃k×̃k
, respectively. It should be noted that we

are using the wide format here (see Section 6.3.1 for details). There is only one
subject with ̃k variables in the stacked effect size y

̃k×1
.

The model-implied mean vector 𝜇(𝜽) and the model-implied covariance matrix
Σ(𝜽) represent the fixed effects and the variance components of the random effects,
respectively. We do not specify the specific structure here because the structure
depends on the types of meta-analysis. Concrete examples on these models will be
illustrated later.

From the above discussion, we fit a structural equation model using the REML
estimation with the following model-implied mean vector and model-implied
covariance matrix:

𝜇( ̃𝜽)
(̃k−p)×1

= A
(k̃−p)×k̃

𝜇(𝜽)
̃k×1

= 𝟎
(̃k−p)×1

and

Σ( ̃𝜽)
(̃k−p)×(̃k−p)

= A
(k̃−p)×k̃

Σ(𝜽)
̃k×̃k

AT

k̃×(k̃−p)
.

(8.8)

Several issues are worthy to be mentioned here. First, all effect sizes are
stacked together into a single vector of y regardless of whether it is a univariate
meta-analysis or a multivariate meta-analysis. Second, the contrast matrix A

(̃k−p)×̃k
transforms y

̃k×1
to ỹ

(̃k−p)×1
. Third, the means for all variables are zero, while the

model-implied covariance matrix is structured in a particular pattern. Fourth, the
only parameters in this model are the variance components.
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After obtaining the estimated variance components, we may estimate ̂𝜷REML by
fitting another model with the variance component estimated from REML as known
values,

𝜇i(𝜽)
̃k×1

= X𝜷 and

Σi(𝜽)
̃k×̃k

= Z ̃GZT + ̃V,
(8.9)

where ̃G and ̃V are obtained from REML estimation. In this model, the only param-
eters are the fixed effects 𝜷.

8.1.3.1 Univariate meta-analysis

Let us illustrate the univariate random-effects meta-analysis using the SEM
approach. Suppose that there are k studies in a meta-analysis; the model-implied
means and model-implied covariance matrix are

𝝁(𝜽)
k×1

= 𝟏
k×1

𝛽R =
⎡⎢⎢⎣
𝛽R
⋮
𝛽R

⎤⎥⎥⎦ and

𝚺(𝜽)
k×k

= I
k×k

𝜏
2 + Diag(𝑣1, 𝑣2,… , 𝑣k)

k×k

=
⎡⎢⎢⎢⎣
𝜏

2

0 𝜏
2

⋮ ⋱ ⋱
0 · · · 0 𝜏

2

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
𝑣1
0 𝑣2
⋮ ⋱ ⋱
0 · · · 0 𝑣k

⎤⎥⎥⎥⎦ ,
(8.10)

where 𝟏
k×1

is a vector of ones and I
k×k

is an identity matrix. There are only two

parameters, the fixed effects 𝛽R and the random effects 𝜏
2, in this model (see

Section 6.3.1).
Figure 8.1 displays a univariate random-effects meta-analysis with three stud-

ies. Figure 8.1a shows the three studies arranged in the wide format. There are
three variables with only one subject in the analysis. Figure 8.1b displays the same
model by introducing three latent variables 𝜂1 to 𝜂3. The factor loadings are all one
meaning that 𝜂1 to 𝜂3 equal y1 to y3. Although the introduction of 𝜂1 to 𝜂3 seems to
be redundant, these latent variables are useful in explaining what the transformation
means in SEM.

When we apply an REML estimation on y, the model-implied mean vector and
model-implied covariance matrix of ỹ = Ay are

𝝁( ̃𝜽) = 𝟎
(k−1)×1

and

𝚺( ̃𝜽) = A
(k−1)×k

(I𝜏2 + Diag(𝑣1, 𝑣2,… , 𝑣k))
k×k

AT

k×(k−1)
. (8.11)
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Figure 8.1 A univariate random-effects meta-analysis with three studies.

The mean structure is simply fixed at 0 because the fixed-effects parameters are
not involved in the model. After the transformation, there are only k − 1 subjects,
because one row has been removed from A. There is only one parameter, the het-
erogeneity variance 𝜏

2, because 𝑣i is known in this model.
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The contrast matrix A can be considered as a fixed patterned factor loadings
matrix of k latent factors with (k − p) indicators in SEM. Let us illustrate what
the transformation means by using the example in Figure 8.1. As there are
three studies, the transformation matrix without deleting the last row (ỹ3) is

A =
⎡⎢⎢⎣

𝜂1 𝜂2 𝜂3

ỹ1 0.6667 −0.3333 −0.3333
ỹ2 −0.3333 0.6667 −0.3333
ỹ3 −0.3333 −0.3333 0.6667

⎤⎥⎥⎦ (in four decimal places). Figure 8.2

shows the model of ỹ after applying the transformation with the A matrix deleted
the last row. There are a couple of issues worth noting. First, there are only two
studies ỹ1 and ỹ2 after the transformation because the last row ỹ3 is deleted.
Second, the factor loadings from 𝜂 to ỹ are fixed according to the A matrix
without the last row. Third, the effects of the fixed effects 𝛽R (shown in dashed
lines in the figure) is cancelled out by the A matrix or the factor loadings in the
figure. In other words, the means of ỹ1 and ỹ2 are always zero regardless of what
𝛽R is (see Equation 8.4). Therefore, 𝛽R is not estimable in this model. Similar
approaches using the constrained optimization have also been used to analyze
ipsative data, sum of scores of subjects equal a constant, in SEM (e.g., Cheung,
2004, 2006, Cheung and Chan, 2002). These authors found that the ipsatization
process transforms both 𝝁(𝜽) and 𝚺(𝜽) in a systematic way. After imposing the
appropriate constraints, it is possible to recover the original parameter estimates
and their standard errors (SEs) in SEM.

−0.3333

0.6667

βR

−0.3333

τ2 + v1

−0.3333

βR

0.6667

τ2 + v2

τ2 + v3

βR

−0.3333

1

η3

η2
y∼2

η1

y∼1

Figure 8.2 A univariate random-effects meta-analysis with three studies using
REML estimation.
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8.1.3.2 Multivariate meta-analysis

The same idea applies to the univariate meta-analysis can be extended to multivari-
ate meta-analysis. We stack all multivariate effect sizes of the k studies into a single
column vector with Equation 8.2. The model for ỹ is

𝝁(𝜽) = X𝜷 and

𝚺(𝜽) = ZGZT + Diag(V1,V2,… ,Vk)

=
⎡⎢⎢⎢⎣
Z1T

2ZT
1

0 Z2T
2ZT

2
⋮ ⋱ ⋱
0 · · · 0 ZkT

2ZT
k

⎤⎥⎥⎥⎦ +
⎡⎢⎢⎢⎣
V1
0 V2
⋮ ⋱ ⋱
0 · · · 0 Vk

⎤⎥⎥⎥⎦ , (8.12)

where 𝜷 is the vector of the fixed effects including the intercept and T2 is the vari-
ance components of the random effects. It should also be noted that T2 is duplicated
across the k studies. Thus, this model representation is not very efficient for large
data set.

Now, we fit a model on the transformed residuals ỹ using the REML estimation.
The model-implied mean vector and the covariance matrix are

𝝁( ̃𝜽)
(̃k−p)×1

= 𝟎
(̃k−p)×1

and

𝚺( ̃𝜽)
(̃k−p)×(̃k−p)

= A
(k̃−p)×k̃

(ZGZT + Diag(V1,V2,… ,Vk))
k×k

AT

k̃×(k̃−p)
,

(8.13)

where k̃ is the number of rows in ỹ and p is the number of rows deleted. As Vi is
known, the only parameter in this model is G = Diag(T2

,… ,T2).

8.1.3.3 Three-level meta-analysis

As a three-level meta-analysis also consists of fixed effects and random effects, the
above approach can be extended to the three-level meta-analysis (Cheung, 2014b).
Suppose that there are k clusters with a maximum of m effect sizes per study; the
model-implied means and model-implied covariance matrix for the jth cluster are

𝝁j(𝜽)
m×1

= 𝟏
m×1

𝛽R and

𝚺j(𝜽)
m×m

= 𝟏
m×m

𝜏
2
(3) + I

m×m
𝜏

2
(2) + Vj

m×m

=

⎡⎢⎢⎢⎢⎣
𝜏

2
(3)
𝜏

2
(3) 𝜏

2
(3)

⋮ ⋱ ⋱
𝜏

2
(3) · · · 𝜏

2
(3) 𝜏

2
(3)

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣
𝜏

2
(2)
0 𝜏

2
(2)

⋮ ⋱ ⋱
0 · · · 0 𝜏

2
(2)

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
𝑣1j
0 𝑣2j
⋮ ⋱ ⋱
0 · · · 0 𝑣mj

⎤⎥⎥⎥⎦ .

(8.14)
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As there are k clusters, we need to stack all effect sizes together before applying
the transformation. The model-implied mean vector and model-implied covariance
matrix for all studies are

𝝁(𝜽) =
⎡⎢⎢⎢⎣
𝝁1(𝜽)
𝝁2(𝜽)
⋮

𝝁k(𝜽)

⎤⎥⎥⎥⎦ and

𝚺(𝜽) =
⎡⎢⎢⎢⎣
𝚺1(𝜽)

0 𝚺2(𝜽)
⋮ ⋱ ⋱
0 · · · 0 𝚺k(𝜽)

⎤⎥⎥⎥⎦ .
(8.15)

Now, we apply the contrast matrix A on y. The model of the residuals ỹ is

𝝁( ̃𝜽)
(̃k−p)×1

= A
(k̃−p)×k̃

𝝁(𝜽)
̃k×1

= 𝟎
(̃k−p)×1

and

𝚺( ̃𝜽)
(k̃−p)×(k̃−p)

= A
(̃k−p)×̃k

𝚺(𝜽)
k̃×k̃

AT

̃k×(̃k−p)
.

(8.16)

Although the above model looks complicated, there are only two parameters, 𝜏2
(2)

and 𝜏
2
(3), in the model.

8.1.3.4 Issues related to implementing the restricted maximum likelihood
estimation

In the above discussion, we mainly focused on the models without any study char-
acteristics. It is easy to extend the above models to the mixed-effects meta-analyses
by including the study characteristics in the design matrix X. The estimated vari-
ance components are then the estimated variance component of the residual het-
erogeneity. The fixed effects including the regression coefficients can be estimated
by Equation 8.9 .

As discussed in the above subsections, there are two equivalent approaches
to implementing the REML estimation in SEM. One approach is to analyze the
transformed data by removing the fixed effects. The other approach is to directly
fit the −2LL. This chapter mainly focuses on analyzing the transformed data
because only the implied mean and implied variance–covariance matrix are
required. The models still look like structural equation models on the transformed
data. The REML estimation is basically the same as the ML estimation by
imposing the transformation matrix A as the fixed pattern of factor loadings. There
is one main limitation of analyzing the transformed data, however. The input data
is a k̃ − p columns of variables with one row (or subject) in SEM. Mehta and
Neale (2005) has also warned that this approach is not very efficient when subjects
are treated as variables in handling nested data. The situation may become even
worse in implementing REML estimation because there are constraints in the
model-implied covariance matrix. Nonconvergent solutions may occur. Similar
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issues also occur in the constrained optimization of ipsative data (e.g., Cheung,
2004, 2006). On the other hand, the approach based on the −2LL is more stable.
The main limitation is that most SEM packages cannot implement arbitrary fitting
functions. Moreover, analysis using the −2LL does not look like a structural
equation model any more. Future research may explore how to better implement
the REML estimation in SEM.

8.2 Missing values in the moderators

No matter how good the design of an experiment is, it is the rule rather than the
exception to have missing or incomplete data. The presence of missing data intro-
duces a considerable challenge to researchers and methodologists in various dis-
ciplines. This applies equally well to meta-analysis. Cooper and Hedges (2009,
p. 565) have called missing data “perhaps the most pervasive practical problem
in research synthesis, which obviously influences any statistical analyses.” The
main problem is that most statistical analyses were developed to handle complete
data. When there are missing data, the missing data have to be handled before the
analyses.

There are several types of missing data in a meta-analysis, for example, incom-
plete effect sizes in a multivariate meta-analysis (see Section 5.1.2) and publica-
tion bias. This section focuses on another type of missing data—missing values
in the moderators in a mixed-effects meta-analysis. The first part of this section
introduces different types of missing mechanisms and how they can be applied
in a meta-analysis. The second part discusses some common methods and mod-
ern methods to handle missing data. Finally, we introduce how the SEM-based
meta-analysis can be used to handle missing values in the moderators.

8.2.1 Types of missing mechanisms

The modern theory of missing data was developed by Rubin (1976). Rubin (1976)
defined three types of missingness mechanism. The missingness on a variable, Y ,
is said to be missing completely at random (MCAR) if the missingness is unre-
lated to the value of Y itself or to the values of any other variables in the model.
For example, a participant forgets to report his or her salary by mistake. Another
example is that there are three long questionnaires: A, B, and C, where A is essen-
tial. If participants are required to complete all three versions, the data quality may
be compromised because of participant fatigue. We may improve the data quality
by using the so-called planned missingness (Graham et al., 1996). All participants
are required to complete questionnaire A. Half of the participants are randomly
chosen to complete questionnaire B, while the other half are required to complete
questionnaire C. Therefore, there are systematically missing data in either ques-
tionnaires B or C. A third example is in longitudinal studies. After conducting a
cross-sectional study, we randomly select 20% of the participants for a follow-up
study because of the limited resource. In these three examples, the missingness of
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the data is not related to neither the values of the missing data nor other variables.
Therefore, it is called MCAR.

The assumption of MCAR is rather strong in applied research. A considerably
weaker assumption is missing at random (MAR). MAR means that the missing-
ness on Y is unrelated to the value of Y after controlling for other variables in the
analysis. For example, a participant fails to report his or her salary (a missing datum
on Y) because he or she has a low (or high) educational level (another variable).
In a longitudinal study, participants are selected for a follow-up study only if their
pretest scores exceed a cutoff value. Therefore, the missing values at posttest scores
are related to the pretest scores. Whether the missingness is MAR or not depends
on the presence of other variables. When there are more and more variables in the
model, it is more likely that the missingness is MAR.

If the missing mechanism is neither MCAR nor MAR, it is not missing at ran-
dom (NMAR). The missingness on Y is said to be NMAR if the missingness on
Y is related to the value of Y itself even after controlling for other variables in the
model. For example, a participant fails to report his or her salary because his or her
income is very high (or low). In a longitudinal study, a participant drops out from a
follow-up study on the effectiveness of a training program because he or she finds
that the training is not effective. Therefore, the missing data on the follow-up are
those with low training effectiveness.

Rubin’s definitions have been directly adopted for meta-analysis (e.g., Cheung,
2008; Pigott, 2001, 2009, 2012; Sutton, 2000; Sutton and Pigott, 2005). When we
are applying these definitions in the context of missing values in the moderators,
MCAR means that the missing values in a moderator is unrelated to the value of
that moderator or other variables. MAR means that the missing values of a modera-
tor can be related to other variables, for instance, the effect size or other moderator
in the model, while NMAR means that the missing values in a moderator is related
to the value of that moderator. As researchers are not very likely to fail to report
a study characteristic, for example, mean age of the participants, because of the
value of that moderator, Sutton and Pigott (2005, p. 235) stated that “the assumption
that [study-level characteristics] are MCAR or MAR may be reasonable and stan-
dard missing-data methods may suffice in some situations.” It should be noted that
the missingness on the effect sizes, for example, a correlation coefficient between
job satisfaction and performance, is likely to be NMAR. If the effect sizes are
nonsignificant, they are less likely to be reported or published. This is known as
publication bias (Rothstein et al., 2005), which is beyond the scope of this chapter.

8.2.2 Common methods to handling missing data

Enders (2010) provided a thorough treatment on the conventional and modern
methods to handling missing data in general. Pigott (2009, 2012) also provided a
summary in the context of meta-analysis. The common methods include listwise
deletion, pairwise deletion, and mean substitution; the modern methods include
multiple imputation (MI) and full information maximum likelihood (FIML or ML)
estimation.
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Listwise deletion (also known as complete-case analysis) excludes cases with
missing values. Suppose that we are conducting a mixed-effects meta-analysis with
three study characteristics as moderators; any study with missing values is deleted
before the analysis. The main advantage is its ease to apply. Therefore, it is usually
the default option in most statistical packages. There are two main disadvantages
of this method. The first problem is that the sample size (or number of studies) is
sharply reduced. This is more noticeable when there are lots of moderators in the
analysis. The second problem is that it relies on the assumption of MCAR of the
missing data. If the data are not MCAR, the parameter estimates can be biased.

Another conventional method is pairwise deletion (also known as available-case
analysis). It attempts to keep as many data as possible by deleting the missing data
on an analysis-by-analysis basis. Using the previous example as an illustration, we
may conduct three separate mixed-effect meta-analyses by using one moderator at
a time. As the patterns of missing values may be different in the moderators, the
studies used in the analyses may also be different. Although the number of studies
is retained as many as possible, there are a few drawbacks. The main issue is that
it limits the potential of including several moderators in the same analysis. As the
moderators are included one-by-one in the analyses, it is not possible to test and
compare their relative contributions.

A third method is mean substitution or similar techniques. Researchers may
replace the missing values with their correspondent means or predicted values
from other variables. Although these methods may utilize all available cases in the
analysis, there is one main problem—the means or predicted values are treated as
observed data. The estimated SEs are likely underestimated. Thus, the empirical
Type I error is inflated and the confidence intervals (CIs) are too short.

8.2.3 Maximum likelihood estimation

As full information (in contrast to limited information) is usually assumed in the
ML estimation, some researchers argue that we should call it ML estimation rather
than FIML estimation. In the SEM community, ML estimation may be used to
refer to analysis of summary statistics (means and covariance matrix). Therefore,
SEM users usually call the applications of ML estimation to individuals as FIML
estimation (see Section 2.4.1). We use the term FIML here to emphasize that raw
data, not the summary statistics, are used in the analysis.

Nearly all the empirical studies so far support the contention that both MI and
FIML perform better than conventional methods such as listwise deletion, pair-
wise deletion, and mean imputation in handling missing data when the missingness
is either MCAR or MAR (see, e.g., Cheung (2007) and Enders (2010) for some
empirical findings on a comparison of methods of handling missing covariates in
the context of a latent growth model and a regression analysis). When the missing-
ness is NMAR, none of the above methods is unbiased (Schafer, 1997). However,
the bias of the FIML is still less than that resulting from listwise deletion, pairwise
deletion, and mean substitution (e.g., Jamshidian and Bentler, 1999; Muthén et al.,
1987). Therefore, the MI and FIML are usually recommended for handling missing



292 META-ANALYSIS

data (e.g., Enders, 2010; Graham, 2009; Little, 1992; Schafer and Graham, 2002).
We introduce these two methods in more details.

Besides the above advantages, there are also other benefits of using the ML (FIML
or MI) estimation to handling missing values in the moderators in a meta-analysis.
In order to calculate the percentage of variance explained or R2, the studies must be
the same in calculating 𝜏

2
0 and 𝜏

2
1 (see Section 4.5.2). Studies with missing values in

the moderators have to be deleted in calculating 𝜏
2
0 . When we are testing multiple

moderators, it is likely that more studies have to be deleted because of the missing
values in the moderators. It is difficult to test several moderators simultaneously.
If we use the ML estimation, we can keep all studies in the analysis. This makes
it feasible to compare the relative contributions of the moderators by testing all
moderators simultaneously.

Both the MI and FIML are based on the principle of ML estimation. The main
difference is on the implementations. MI generates multiple samples of imputation
to obtain the ML estimates, while the FIML obtain the ML estimates by direct
optimization of the LL. Compared with MI, FIML has at least three advantages
(Cheung, 2014b). First, the results based on MI are asymptotically equivalent to
those based on FIML. That is, they are equal when the number of imputations in
MI approaches infinity. It is generally advised that three to five imputations are
considered sufficient to obtain excellent results using MI (e.g., Schafer and Olsen,
1998). However, Graham et al. (2007) showed that many more imputations are
required. They suggested requiring m imputations based on the fraction of missing
information (𝛾). They recommended that researchers use m= 20, 20, 40, 100, and
>100 imputations for data with 𝛾 = 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. On the
basis of their simulations results, they concluded that FIML is superior to MI in
terms of power for testing small effect sizes (unless one has a sufficient number of
imputations).

Second, conducting MI for multilevel data is still challenging (e.g., van Buuren
and Groothuis-Oudshoorn, 2011). More importantly, how to apply MI on univari-
ate, multivariate, and three-level meta-analytic data remains unclear. Lastly, FIML
is more robust than MI when the data are nonnormal (Yuan et al., 2012). Specifi-
cally, the performance of FIML is less biased and more efficient than that of MI.
Therefore, we focus on the FIML in this chapter.

The basic idea of FIML estimation is to analyze the data at the subject level. A
filter or selection matrix is used to select the variables observed in each subject.
Therefore, the numbers of variables used for each subject can be different. More
importantly, no cases with missing values are excluded (see Enders (2010) for more
details). FIML handles missing values on the dependent variables. For example,
Section 5.1.2 discusses how multivariate meta-analysis handles missing effect sizes
with the ML estimation. The model in Figure 5.2a explicitly shows that the multiple
effect sizes y1,j and y2,j are considered as dependent variables. Therefore, missing
values are handled by FIML in the SEM framework.

On the other hand, cases with missing values on the independent variables
(or moderators in a meta-analysis) will be deleted before the analysis. We may
“trick” the SEM program to treat the predictors as dependent variables with latent
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variables (e.g., Enders, 2010). This is similar to the model in Figure 5.2a. Some
SEM packages, for example, Mplus, do this automatically by estimating the means
and variances of independent variables with missing values (see Section 9.2.4 for
an illustration in Mplus).

Figure 8.3 shows a univariate mixed-effects meta-analysis with a moderator xi
in the ith study. As xi is an independent variable, we create a latent variable 𝜂i to
trick the SEM program that xi is a dependent variable. The factor loading from 𝜂i
to xi is fixed at 1, while the error variance of xi is set at 0. As 𝜂i is an independent
variable, we have to estimate its mean and variance. By using this setup, the mean
and variance of 𝜂i are exactly the same as those for xi. In other words, 𝜂i is equivalent
to xi exception that xi is a dependent variable and 𝜂i is an independent variable. 𝛽1
is the regression coefficient by regressing the true effect size fi on 𝜂i.

β1μx

1

1

τ2

0

vi

β0

σ2
x

yi

xiηi

1

fi

Figure 8.3 A univariate random-effects meta-analysis with a moderator.

When there is no missing values in xi, this model is equivalent to the mixed-effects
meta-analysis shown in Figure 4.6. As the model in Figure 8.3 requires additional
latent variables to represent the moderators, it makes the model specification more
complicated. Researchers seldom use this model unless there are lots of missing
values in the predictors. When there are missing values in the moderators, however,
the results between the models in Figures 8.3 and 4.6 can be different depending
on the amount of missing values in the moderators.

We can extend the univariate model to multivariate model. Figure 8.4 displays
a multivariate meta-analysis with two effect sizes per study (y1,i and y2,i in the ith
study); xi is the moderator with missing values. A latent variable 𝜂i is created to
represent the moderator xi. As 𝜂i is a variable, we estimate its mean and variance.
𝛽1,1 and 𝛽2,1 are the regression coefficients by regressing the true effect sizes f1,i
and f2,i on 𝜂i, respectively.

The above approach can be extended to handle missing values in moderators in
a three-level meta-analysis. As the moderators are treated as variables rather than
as a design matrix, the models are different depending on whether the moderators
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Figure 8.4 A multivariate random-effects meta-analysis with two effect sizes per
study and a moderator.

are level-2 or level-3 variables. Figure 8.5 shows a three-level meta-analysis with
a level-3 moderator xj. As xj is the same for all effect sizes in the j cluster, there is
only one observed variable xj and one latent variable 𝜂j in the model. We regress
the true effect size fj on 𝜂j at the jth cluster.

Figure 8.6 displays a three-level meta-analysis with a level-2 moderator. As the
value of the moderator varies across the effect sizes in the jth cluster, x1,j and x2,j
are created to store the level-2 moderator. Moreover, 𝜂1,j and 𝜂2,j are also created to
represent the latent variables for x1,j and x2,j, respectively. It should be noted that
𝜂1,j only predicts its correspondent effect size y1,j.

8.3 Illustrations using R

This section demonstrates how to use R to implement the techniques discussed in
this chapter. The first part illustrates how to analyze meta-analytic models with the
REML estimation, while the second part shows how to handle missing values in
the moderators in a mixed-effects meta-analysis. As the data sets have been intro-
duced in previous chapters, they are not repeated here. The statistics reported in the
illustrations were captured by using the Sweave function in R. The numbers of
decimal places may be slightly different from those reported in the selected output
and in the text.
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Figure 8.5 A three-level meta-analysis with two studies and a level-3 moderator
in the jth cluster.

8.3.1 Restricted (or residual) maximum likelihood estimation

The metaSEM package (Cheung, 2014a) has implemented functions to conduct
meta-analysis using the REML estimation. The reml() function can be used
to conduct univariate and multivariate meta-analyses, while the reml3() func-
tion conducts three-level meta-analysis using the REML estimation. The syntax of
reml() and reml3() are similar to those of meta() and meta3() functions
using the ML estimation. For comparisons, we also report the parameter estimates
using the ML estimation. It should be noted that both reml() and reml3() only
estimates the variance components of the random effects. If we want to estimate
the fixed effects, we need to use meta() or meta3() functions by treating the
estimated variance components as known values.

8.3.1.1 Univariate meta-analysis

We illustrate the analyses using a data set from Jaramillo et al. (2005). The data
set includes 61 studies on the relationship between organizational commitment
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Figure 8.6 A three-level meta-analysis with two studies and a level-2 moderator
in the jth cluster.

and salesperson job performance. The effect size was a correlation coefficient (see
Section 4.7.2 for the analyses using the ML estimation). As the sampling distribu-
tion of the heterogeneity variance is hardly normally distributed unless the number
of studies is huge, it is preferred to use a likelihood-based confidence interval
(LBCI) to a Wald CI when investigating the heterogeneity variance.

R> ## Request LBCI: intervals.type="LB"
R> summary( jaramillo1 <- reml(y=r, v=r_v, intervals.type="LB",

data=Jaramillo05) )
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------------------------ Selected output -----------------------

95% confidence intervals: Likelihood-based statistic
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Tau2_1_1 0.0174 NA 0.0108 0.0283 NA NA

Number of studies (or clusters): 61
Number of observed statistics: 60
Number of estimated parameters: 1
Degrees of freedom: 59
-2 log likelihood: -159.7
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

The 𝜏2
REML with its 95% LBCI is 0.0174 (0.0108, 0.0283), while the 𝜏

2
ML with its

95% LBCI is 0.0170 (0.0106, 0.0276). The 𝜏
2
REML is only slightly larger than that

of 𝜏2
ML.

To calculate the estimate of the fixed effects, we extract the heterogeneity
variance and treat it as a known value in calling the meta() function with the
RE.constraints argument.

R> summary( meta(y=r, v=r_v, data=Jaramillo05,
RE.constraints=coef(jaramillo1)) )

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 0.1866 0.0195 0.1484 0.2248 9.57 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------ Selected output -----------------------

The estimated average correlation with its 95% Wald CI based on the REML esti-
mation is 0.1866 (0.1484, 0.2248), while the estimated average correlation using
ML estimation is 0.1866 (0.1487, 0.2245). The estimated fixed effects and their
Wald CIs are nearly identical under both REML and ML estimation methods.

8.3.1.2 Multivariate meta-analysis

We illustrate the multivariate meta-analysis using a data set from the World Val-
ues Survey II (World Values Study Group, 1994). It included standardized mean
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difference (SMD) between males and females on life satisfaction (SMDlife_sat) and
life control (SMDlife_con) in 42 nations. Positive values on the effect sizes indicate
that males have higher scores than females do (see Section 5.7.2 for the analyses
using ML estimation).

R> summary( wvs1 <- reml(y=cbind(lifesat, lifecon),
v=cbind(lifesat_var, inter_cov, lifecon_var),
data=wvs94a) )

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Tau2_1_1 0.004936 0.001831 0.001346 0.008525 2.70 0.00704 **
Tau2_2_1 0.004060 0.001751 0.000628 0.007492 2.32 0.02041 *
Tau2_2_2 0.008694 0.002631 0.003538 0.013851 3.30 0.00095 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of studies (or clusters): 42
Number of observed statistics: 82
Number of estimated parameters: 3
Degrees of freedom: 79
-2 log likelihood: -299.3
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

The estimated variance component ̂T
2

using the REML and the ML estimation

are

[
0.0049
0.0041 0.0087

]
and

[
0.0047
0.0039 0.0084

]
, respectively. The estimated vari-

ance component using the REML is again slightly larger than that using the ML
estimation.

To estimate the fixed effects, we need to extract the variance component and con-
vert it into a matrix. The estimated variance component is treated as known values
in calling the meta() function.

R> ## Extract the variance component of the random effects
R> ( RE <- vec2symMat(coef(wvs1)) )

[,1] [,2]
[1,] 0.004936 0.004060
[2,] 0.004060 0.008694

R> summary( meta(y=cbind(lifesat, lifecon),
v=cbind(lifesat_var, inter_cov, lifecon_var),
RE.constraints=RE, data=wvs94a) )
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------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 0.00124 0.01401 -0.02623 0.02870 0.09 0.93
Intercept2 0.06885 0.01701 0.03551 0.10218 4.05 5.2e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------ Selected output -----------------------

The estimated average effect sizes for SMDlife_sat and SMDlife_con (and their
95% Wald CIs) using the REML estimation are 0.0012 (−0.0262, 0.0287) and
0.0688 (0.0355, 0.1022), respectively, while the average effect sizes for SMDlife_sat
and SMDlife_con (and their 95% Wald CIs) using the ML estimation are 0.0013
(−0.0258, 0.0285) and 0.0688 (0.0359, 0.1018), respectively. The results are
nearly identical for both estimation methods.

8.3.1.3 Three-level meta-analysis

We illustrate the analyses using a data set from Bornmann et al. (2007) and Marsh
et al. (2009). It consisted of 66 effect sizes from 21 studies of gender differences in
the peer reviews of grant and fellowship applications. The effect size was a (log)
odds ratio that measured the odds of being approved among the female applicants
divided by the odds of being approved among the male applicants. If the effect
size was positive, a female applicant was favored to receive the grant or fellow-
ship, whereas if it was negative a male applicant was favored to obtain grant or
fellowship. When we ran the analysis, the OpenMx status1 was “6,” indicat-
ing that the optimality conditions could not be reached. We reran the analysis with
the rerun() function. It was then fine.

R> Bornmann1 <- reml3(y=logOR, v=v, cluster=Cluster, data=Bornmann07)
R> ## The OpenMx status1 is 6. We rerun the model.
R> summary( Bornmann2 <- rerun(Bornmann1) )

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Tau2_2 0.00375 0.00268 -0.00151 0.00901 1.40 0.16
Tau2_3 0.01608 0.01040 -0.00430 0.03647 1.55 0.12

Number of studies (or clusters): 66
Number of observed statistics: 65
Number of estimated parameters: 2
Degrees of freedom: 63
-2 log likelihood: -89.1
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OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

The estimated level-2 heterogeneity variance 𝜏
2
(2) using the REML and the ML

estimation are 0.0038 and 0.0038, respectively, while the estimated level-3 het-
erogeneity variance 𝜏

2
(3) using the REML and the ML estimation are 0.0161 and

0.0141, respectively. The estimated heterogeneity variances are similar under these
two estimation methods.

We extract the heterogeneity variances as anR object RE that stores 𝜏2
(2) and 𝜏2

(3) as
a vector. We then estimate the fixed effects by treating the estimated heterogeneity
variances as known values.

R> ## Extract the level-2 and level-3 heterogeneity variances
R> ( RE <- coef(Bornmann2) )

Tau2_2 Tau2_3
0.003753 0.016085

R> summary(meta3(y=logOR, v=v, cluster=Cluster, data=Bornmann07,
RE2.constraints=RE[1], RE3.constraints=RE[2]))

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept -0.1010 0.0417 -0.1828 -0.0192 -2.42 0.016 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

------------------------ Selected output -----------------------

The estimated average effect sizes (and their 95% Wald CIs) using the REML and
ML estimation are −0.1010(−0.1828,−0.0192) and −0.1008(−0.1794,−0.0221),
respectively. Both estimates are very close to each other.

8.3.2 Missing values in the moderators

The metaSEM package has only implemented FIML estimation to handle miss-
ing values in the moderators for the three-level meta-analysis via the meta3X()
function. When there are missing values in the moderators for univariate and multi-
variate meta-analyses, studies with missing values will be deleted before the analy-
sis. Future versions of the metaSEM package will implement the FIML estimation
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for the univariate and multivariate meta-analyses. In this section, we demonstrate
how the FIML estimation can be implemented in the OpenMx package. We first
illustrate how to handle missing values in the moderators in the univariate and
multivariate meta-analyses. Then we show how to use the meta3X() function to
handle missing values in the moderators in three-level meta-analysis. Readers may
refer to Enders (2010) for the empirical findings on various approaches in handling
missing data.

8.3.2.1 Univariate meta-analysis

In this example, we conduct a mixed-effects meta-analysis by using the individual-
ism (IDV in the data set Jaramillo05) as a moderator. We artificially create 20
missing values out of 61 studies under the assumption of MCAR. Then we analyze
the data by using listwise deletion and FIML estimation.

R> library(metaSEM)
R> ## Set seed for replication
R> set.seed(1000000)
R> ## Create a copy of data
R> my.df1 <- Jaramillo05[, c("r", "r_v", "IDV")]
R> ## Create 20 missing data out of 61 studies with MCAR
R> my.df1$IDV[sample(1:61, 20)] <- NA
R> my.df1$IDV

[1] 48 NA 91 67 91 91 NA 53 91 NA 91 NA 46 18 91 91 NA 89 NA NA 80 NA
[23] 91 91 NA 91 91 NA NA NA 20 NA 91 90 91 NA 91 NA 80 91 91 89 91 91
[45] 91 91 91 91 91 91 NA 91 91 NA 91 NA 38 91 NA 91 NA

R> ## Center the moderator
R> my.df1$IDV <- scale(my.df1$IDV, scale=FALSE)

R> ## Run the analysis by using the listwise deletion (the default)
R> summary( meta(y=r, v=r_v, x=IDV, data=my.df1) )

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 0.180848 0.024316 0.133190 0.228506 7.44 1e-13
Slope1_1 -0.001702 0.001201 -0.004056 0.000651 -1.42 0.15632
Tau2_1_1 0.017789 0.005373 0.007257 0.028320 3.31 0.00093

Intercept1 ***
Slope1_1
Tau2_1_1 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 245.1
Degrees of freedom of the Q statistic: 40
P value of the Q statistic: 0

Explained variances (R2):
y1

Tau2 (no predictor) 0.02
Tau2 (with predictors) 0.02
R2 0.00

Number of studies (or clusters): 41
Number of observed statistics: 41
Number of estimated parameters: 3
Degrees of freedom: 38
-2 log likelihood: -34.79
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

------------------------ Selected output -----------------------

As shown in the above output, there were only 41 studies in the analysis with
the listwise deletion. The estimated slope and its SE and p value for the listwise
deletion are −0.0017 (SE = 0.0012) and p = 0.1563, respectively.

We fit the model in Figure 8.3 that handles missing values in the moderator. The
following OpenMx code may be used to conduct the analysis. The variables are
arranged as r (the observed effect size), IDV (the moderator), f (the true effect
size), and eta (the latent variable forIDV). The A1matrix specifies the fixed factor
loadings and the regression coefficient (𝛽1 in Figure 8.3 and Slope1_1 in the R
code). The S1 matrix specified the symmetric covariance matrix of the variables.
The known sampling variance 𝑣i is fixed via the definition variable with the label
data.r_v. The heterogeneity variance of the true effect size and the variance of
IDV areTau2_1_1 andVarIDV, respectively. The intercept of the true effect size
and the mean of IDV are Intercept1 and MeanIDV, respectively. A selection
matrix F1 is required to select the observed variables r and IDV.

R> ## Create an A matrix for the asymmetric paths
R> A1 <- matrix(c(0,0,1,0,

0,0,0,1,
0,0,0,"0*Slope1_1",
0,0,0,0), byrow=TRUE, ncol=4)

R> dimnames(A1) <- list(c("r","IDV","f","eta"),
c("r","IDV","f", "eta"))

R> A1

r IDV f eta
r "0" "0" "1" "0"
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IDV "0" "0" "0" "1"
f "0" "0" "0" "0*Slope1_1"
eta "0" "0" "0" "0"

R> ## Convert the A matrix into mxMatrix class
R> A1 <- as.mxMatrix(A1)
R> ## Create an S matrix for the covariance matrix among variables
R> S1 <- mxMatrix("Symm", nrow=4, ncol=4, values=0, byrow=TRUE,

free=c(FALSE,
FALSE, FALSE,
FALSE, FALSE, TRUE,
FALSE, FALSE, FALSE, TRUE),

labels=c("data.r_v",
NA, NA,
NA, NA, "Tau2_1_1",
NA, NA, NA, "VarIDV"),

name="S1")
R> S1@labels

[,1] [,2] [,3] [,4]
[1,] "data.r_v" NA NA NA
[2,] NA NA NA NA
[3,] NA NA "Tau2_1_1" NA
[4,] NA NA NA "VarIDV"

R> ## Create an M matrix for the means
R> M1 <- matrix(c(0,0,"0*Intercept1","300*MeanIDV"), nrow=1)
R> dimnames(M1)[[2]] <- c("r","IDV","f","eta")
R> M1

r IDV f eta
[1,] "0" "0" "0*Intercept1" "300*MeanIDV"

R> M1 <- as.mxMatrix(M1)
R> ## Create an F matrix to selecting the observed variables
R> F1 <- create.Fmatrix(c(1,1,0,0), name="F", as.mxMatrix=FALSE)
R> dimnames(F1) <- list(c("r","IDV"), c("r","IDV","f","eta"))
R> F1

r IDV f eta
r 1 0 0 0
IDV 0 1 0 0

R> F1 <- as.mxMatrix(F1)
R> ## Create an mx model
R> uni.MCAR <- mxModel("MCAR",
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mxData(my.df1, type="raw"),
A1, S1, F1, M1,
mxExpectationRAM("A1","S1","F1","M1",

dimnames=c("r","IDV","f","eta")),
mxFitFunctionML())

R> ## Run the analysis
R> summary(mxRun(uni.MCAR))

------------------------ Selected output -----------------------

free parameters:
name matrix row col Estimate Std.Error lbound ubound

1 Slope1_1 A1 3 4 -0.001578 0.001103
2 Tau2_1_1 S1 3 3 0.016009 0.004029
3 VarIDV S1 4 4 386.805744 85.148006
4 Intercept1 M1 1 f 0.185984 0.019106
5 MeanIDV M1 1 eta -0.134300 3.048705

observed statistics: 102
estimated parameters: 5
degrees of freedom: 97
-2 log likelihood: 303.4
number of observations: 61

------------------------ Selected output -----------------------

The estimated slope and its SE and p value for the FIML estimation is −0.0016
(SE = 0.0011) and p = 0.1525, respectively. The results are similar to those with
listwise deletion in this example.

8.3.2.2 Multivariate meta-analysis

This example extends the univariate meta-analysis to the multivariate meta-analysis
with missing values in the moderator. We fit the model in Figure 8.4 with the sample
data set wvs94a. As there are already a few missing values in GNP, we do not need
to introduce new missing values to the data. The variables in the model are arranged
as lifesat, lifecon, gnp, f1 (the true effect size of lifesat), f2 (the true
effect size of lifecon), and eta (the latent variable for gnp).

The A2 matrix specifies the fixed factor loadings and the regression coefficients
Slope1_1 and Slope2_1. The S2 matrix specifies the symmetric covariance
among the variables. The known conditional sampling covariance matrix between
lifesat and lifecon are imposed via the definition variables with the labels
data.lifesat_var, data.inter_cov, and data.lifecon_var, while
the covariance matrix of the random effects are Tau2_1_1, Tau2_2_1, and
Tau2_2_2.
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R> ## Create a copy of the original data by excluding the country
R> my.df2 <- wvs94a[, -1]
R> ## Center the predictor
R> my.df2$gnp <- scale(my.df2$gnp/10000, scale=FALSE)
R> ## Create the matrix for regression coefficients
R> A2 <- matrix(c(0,0,0,1,0,0,

0,0,0,0,1,0,
0,0,0,0,0,1,
0,0,0,0,0,"0*Slope1_1",
0,0,0,0,0,"0*Slope2_1",
0,0,0,0,0,0), byrow=TRUE, ncol=6)

R> dimnames(A2) <- list(c("lifesat","lifecon","gnp","f1",
"f2","eta"),

c("lifesat","lifecon","gnp","f1","f2","eta"))
R> ## Display the content of A2
R> A2

lifesat lifecon gnp f1 f2 eta
lifesat "0" "0" "0" "1" "0" "0"
lifecon "0" "0" "0" "0" "1" "0"
gnp "0" "0" "0" "0" "0" "1"
f1 "0" "0" "0" "0" "0" "0*Slope1_1"
f2 "0" "0" "0" "0" "0" "0*Slope2_1"
eta "0" "0" "0" "0" "0" "0"

R> ## Convert A2 into mxMatrix class
R> A2 <- as.mxMatrix(A2)
R> ## Symmetric matrix for the variables
R> S2 <- mxMatrix("Symm", nrow=6, ncol=6, byrow=TRUE, values=0,

free=c(FALSE,
FALSE,FALSE,
FALSE,FALSE,FALSE,
FALSE,FALSE,FALSE,TRUE,
FALSE,FALSE,FALSE,TRUE,TRUE,
FALSE,FALSE,FALSE,FALSE,FALSE,TRUE),

labels=c("data.lifesat_var",
"data.inter_cov","data.lifecon_var",
NA,NA,NA,
NA,NA,NA,"Tau2_1_1",
NA,NA,NA,"Tau2_2_1","Tau2_2_2",
NA,NA,NA,NA,NA,"VarGNP"),

name="S2")
R> S2@labels

[,1] [,2] [,3] [,4] [,5]
[1,] "data.lifesat_var" "data.inter_cov" NA NA NA
[2,] "data.inter_cov" "data.lifecon_var" NA NA NA
[3,] NA NA NA NA NA
[4,] NA NA NA "Tau2_1_1" "Tau2_2_1"
[5,] NA NA NA "Tau2_2_1" "Tau2_2_2"
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[6,] NA NA NA NA NA
[,6]

[1,] NA
[2,] NA
[3,] NA
[4,] NA
[5,] NA
[6,] "VarGNP"

R> ## Create the vector for means
R> M2 <- matrix(c(0,0,0,"0*Intercept1","0*Intercept2","0*MeanGNP"),

nrow=1)
R> dimnames(M2)[[2]] <- c("lifesat","lifecon","gnp","f1","f2","eta")
R> M2

lifesat lifecon gnp f1 f2 eta
[1,] "0" "0" "0" "0*Intercept1" "0*Intercept2" "0*MeanGNP"

R> M2 <- as.mxMatrix(M2)
R> ## Create a selection matrix
R> F2 <- create.Fmatrix(c(1,1,1,0,0,0), name="F2",

as.mxMatrix=FALSE)
R> dimnames(F2) <- list(c("lifesat","lifecon","gnp"),

c("lifesat","lifecon","gnp","f1","f2","eta"))
R> F2

lifesat lifecon gnp f1 f2 eta
lifesat 1 0 0 0 0 0
lifecon 0 1 0 0 0 0
gnp 0 0 1 0 0 0

R> F2 <- as.mxMatrix(F2)
R> ## Create a model
R> multi.MCAR <- mxModel("MCAR",

mxData(my.df2, type="raw"),
A2, S2, F2, M2,
mxExpectationRAM("A2","S2","F2","M2",
dimnames=c("lifesat","lifecon","gnp",

"f1","f2","eta")),
mxFitFunctionML())

R> summary(mxRun(multi.MCAR))

------------------------ Selected output -----------------------

free parameters:
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name matrix row col Estimate Std.Error lbound ubound
1 Slope1_1 A2 4 6 -0.022600 0.014734
2 Slope2_1 A2 5 6 -0.035986 0.017494
3 Tau2_1_1 S2 4 4 0.004311 0.001654
4 Tau2_2_1 S2 4 5 0.003244 0.001536
5 Tau2_2_2 S2 5 5 0.007247 0.002298
6 VarGNP S2 6 6 0.915137 0.211776
7 Intercept1 M2 1 f1 0.001467 0.013532
8 Intercept2 M2 1 f2 0.068946 0.016058
9 MeanGNP M2 1 eta 0.004477 0.156339

observed statistics: 121
estimated parameters: 9
degrees of freedom: 112
-2 log likelihood: -64.4
number of observations: 42

------------------------ Selected output -----------------------

The estimated regression coefficients and their SEs in predicting the average
flife_sat and flife_con are −0.0226 (SE = 0.0147) and −0.0360 (SE = 0.0175), respec-
tively. Both the parameter estimates and their SEs are similar to those listed in
Section 5.7.2; however, the SEs appear to be slightly smaller for those based on the
FIML estimation.

8.3.2.3 Three-level meta-analysis

This example demonstrates how to use the meta3X() function to handle missing
values in the moderators in a three-level meta-analysis. We used the data set from
Bornmann et al. (2007) and Marsh et al. (2009) that has also been used in Section
6.5. We first create some missing values in Type with the assumption of MCAR.

R> ## Set seed for replication
R> set.seed(1000000)
R> ## Create a copy of Type
R> ## "Fellowship": 1; "Grant": 0
R> Type_MCAR <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0)
R> ## Create 17 missing values out of 66 studies with MCAR
R> Type_MCAR[sample(1:66, 17)] <- NA
R> ## Display the content
R> Type_MCAR

[1] 1 NA 1 1 1 1 NA 0 0 0 NA 0 NA 0 0 1 1 NA NA 1 NA 1
[23] 0 NA 1 0 1 1 1 1 NA 1 NA 1 NA NA 0 0 NA 0 0 NA 0 0
[45] 0 1 1 1 0 0 1 0 1 0 0 NA 0 NA 0 0 0 0 0 0 0 NA
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We conduct a mixed-effects meta-analysis with Type_MCAR as the moderator.
When there are missing values in the moderators, these data will be excluded from
the analysis.

R> summary( meta3(y=logOR, v=v, cluster=Cluster, x=Type_MCAR,
data=Bornmann07) )

------------------------ Selected output -----------------------

Coefficients:
Estimate Std.Error lbound ubound z value Pr(>|z|)

Intercept -0.004845 0.039344 -0.081959 0.072268 -0.12 0.90
Slope_1 -0.210901 0.053462 -0.315685 -0.106117 -3.94 8e-05
Tau2_2 0.004468 0.005493 -0.006298 0.015234 0.81 0.42
Tau2_3 0.000929 0.003365 -0.005666 0.007524 0.28 0.78

Intercept
Slope_1 ***
Tau2_2
Tau2_3
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q statistic on the homogeneity of effect sizes: 151.6
Degrees of freedom of the Q statistic: 48
P value of the Q statistic: 1.116e-12

Explained variances (R2):
Level 2 Level 3

Tau2 (no predictor) 0.00427 0.01
Tau2 (with predictors) 0.00447 0.00
R2 0.00000 0.94

Number of studies (or clusters): 20
Number of observed statistics: 49
Number of estimated parameters: 4
Degrees of freedom: 45
-2 log likelihood: 13.14
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.

------------------------ Selected output -----------------------

The syntax of the meta3X() function is similar to that of the meta3X() func-
tion except for two differences. As the moderators are treated as variables rather
than as a design matrix in meta3X(), there are separate arguments for the level-2
moderators (x2) and the level-3 moderator (x3). Moreover, there are also two
arguments av2 and av3 for the auxiliary variables at level 2 and level 3, respec-
tively. Auxiliary variables are variables that are predictive to the missing values
or correlated with the variables with missing values. The estimation will be more
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efficient by including the auxiliary variables (see Enders (2010) for details). As
Type_MCAR is a level-2 moderator, we specify the argument x2=Type_MCAR.

R> summary( meta3X(y=logOR, v=v, cluster=Cluster, x2=Type_MCAR,
data=Bornmann07) )

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept -0.01063 0.03977 -0.08858 0.06731 -0.27 0.7892
SlopeX2_1 -0.17532 0.05826 -0.28952 -0.06113 -3.01 0.0026 **
Tau2_2 0.00303 0.00268 -0.00223 0.00829 1.13 0.2583
Tau2_3 0.00368 0.00428 -0.00471 0.01208 0.86 0.3896
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Explained variances (R2):
Level 2 Level 3

Tau2 (no predictor) 0.00380 0.01
Tau2 (with predictors) 0.00303 0.00
R2 0.20091 0.74

Number of studies (or clusters): 21
Number of observed statistics: 115
Number of estimated parameters: 7
Degrees of freedom: 108
-2 log likelihood: 49.76
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

The estimated regression coefficients and their SEs for the listwise deletion and
the FIML estimation are −0.2109 (SE = 0.0535) and −0.1753 (SE = 0.0583),
respectively. The estimated R2

(2) for the listwise deletion and the FIML estimation
are 0.0000 and 0.2009, respectively, while the estimated R2

(3) for the listwise
deletion and the FIML estimation are 0.9361 and 0.7394, respectively. The results
are similar for these two approaches in this empirical example.

8.4 Concluding remarks and further readings

This chapter discussed the pros and cons of the ML and REML estimation and how
the REML estimation could be implemented in SEM. A graphical model was pro-
posed to show how the transformation matrix in the REML estimation could be con-
sidered as the fixed patterned factor loadings in SEM. This helps to formulate the
REML estimation as a constrained confirmatory factor analytic model in SEM. This



310 META-ANALYSIS

chapter also introduced the FIML estimation to handle missing value in the moder-
ators in the SEM-based meta-analysis. The metaSEM and OpenMx packages were
demonstrated to handle missing data in univariate, multivariate, and three-level
meta-analyses. Although FIML and MI are generally preferred to handle missing
data in applied research, limited studies have addressed the empirical performance
of these techniques in meta-analysis. Future research should fill this research gap
by comparing the performance of FIML and other methods in meta-analysis.
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9

Conducting meta-analysis with
Mplus

Most users of structural equation modeling (SEM) are familiar with at least one
popular SEM package, such as Mplus, LISREL, or EQS. This chapter illustrates
how to analyze the meta-analytic models introduced in previous chapters with
Mplus. We show how Mplus can be used to conduct univariate, multivariate, and
three-level meta-analyses using a transformed variables approach. Although we
use Mplus in this chapter, the proposed transformed variables approach can also be
applied to other SEM packages to conduct some of the SEM-based meta-analysis.

9.1 Introduction

Mplus (Muthén and Muthén, 2012) provides a unified framework to conduct data
analyses using a latent variable modeling approach. It combines SEM, multilevel
models, mixture modeling, survival analysis, latent class models, categorical vari-
ables, missing data analysis, item response theory models, robust test statistics, and
Bayesian analysis into a single statistical modeling framework. The main strength
of a unified framework to conduct data analysis is that some of these techniques can
be combined together to address the research questions. For example, researchers
may handle the missing data with maximum likelihood (ML) estimation method
and the nonnormal data with robust statistics in the same analysis. It will be ben-
eficial to methodologists and applied researchers if meta-analytic models can also
be integrated as part of the SEM framework. The combination of meta-analysis
and SEM allows researchers to easily apply advanced statistical methods (see Che-
ung (2008) for a discussion). For example, researchers may apply ML estima-
tion to handle missing values in the moderators in a mixed-effects meta-analysis
(see Section 8.2.3); Bayesian approach may also be used in the Mplus framework

Meta-Analysis: A Structural Equation Modeling Approach, First Edition. Mike W. -L. Cheung.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/cheung/meta_analysis
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(Muthén and Muthén, 2012). Mplus was chosen for the illustrations in this chapter
because of its capability to handle random slopes andmultilevel data, whereas other
SEMpackageswithout the random slopes or definition variables can only be used to
conduct fixed-effects meta-analyses.We first introduce the univariate meta-analysis
in the next section. Then we extend the methods to multivariate meta-analysis and
three-level meta-analysis.

9.2 Univariate meta-analysis

Chapter 4 shows how a univariate meta-analysis can be analyzed as a structural
equation model using the definition variables. Specifically, we fix the known sam-
pling variance in a meta-analysis as the measurement error variance using the def-
inition variable implemented in the OpenMx package (Boker et al., 2011). As
most SEM packages do not have the definition variables, this approach cannot
be used in other SEM packages. Cheung (2008) proposed an alternative model to
conduct meta-analyses in SEM. In this section, we first show how a fixed-effects
meta-analysis can be analyzed in Mplus.

9.2.1 Fixed-effects model

A fixed-effects model in Equation 4.5 is repeated here for the ease of reference,

yi = 𝛽F + ei, (9.1)

where yi is the effect size, Var(ei) = 𝑣i is the known sampling variance in the ith
study, and 𝛽F is the common effect size under the fixed-effects model. As most
SEM packages do not allow fixing values at the subject level, it is not trivial to
implement the fixed-effects model in SEM. Cheung (2008) noticed that we may
transform the known sampling variances to a common value of 1 bymultiplying the
above model by

√
𝑤i = 1∕

√
𝑣i. This approach is termed the transformed variables

approach here.
The fixed-effects model in Equation 9.1 based on the transformed variables

approach is √
𝑤iyi =

√
𝑤i𝛽F +

√
𝑤iei,

ỹi =
√
𝑤i𝛽F + ẽi,

(9.2)

where ỹi =
√
𝑤iyi and ẽi =

√
𝑤iei. Under this model parameterization,

√
𝑤i is a

predictor without the intercept. It is easy to show that the sampling variance of ẽi
is distributed with a known variance of 1:

Var(ẽi) =
√
𝑤iVar(ei)

√
𝑤i,

= 𝑤i𝑣i,

= 1 as 𝑤i = 1∕𝑣i.
(9.3)
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Now, the transformed error ẽi is independent and identically distributed (i.i.d.) with
a unit variance. Ordinary least squares (OLS) and SEM can be directly applied to
analyze the data. The weighted least squares (WLS) fit function in Equation 4.6
can be rewritten as an OLS fit function,

FOLS =
k∑

i=1

(
ỹi −

√
𝑤i𝛽F

)2
, (9.4)

where k is the number of studies. Several researchers, for example, Kalaian and
Raudenbush (1996) and Raudenbush et al. (1988), suggested this “trick” to conduct
a meta-analysis with conventional regression software.
The parameter estimates based on an OLS regression are equivalent to those in

a meta-analysis with the WLS fit function. However, the standard errors (SEs)
reported by the OLS regression are incorrect. The correct SE (SEcorrect) can be
obtained by SEcorrect = SEreported∕

√
MSe, where SEreported is the reported SE and

MSe is the mean square error (see Hedges and Olkin, 1985). The reason for the
correction is that the error variance is assumed to be fixed at 1. However, the error
variance is still estimated in aWLS or an OLS regression. It is rarely to be exactly 1.
By using the above correction factor, we adjust the SE by fixing the error variance
to the known value. The above model can be implemented in Mplus or other SEM
packages to conduct a fixed-effects model. As we can fix Var(ẽi) = 1 in the SEM
packages, the reported SEs in SEM are already correct without the correction.
In a conventional fixed-effects meta-analysis represented by a graphical model

(see Figure 4.4), there is only one parameter for the intercept, which is usually
represented by an triangle. Figure 9.1 shows a fixed-effects meta-analysis based on
the transformed variables approach in Mplus. There are some issues that required
further elaborations. First, the error variance of ỹi is fixed at 1. This ensures that
the reported SE is correct without any correction. Second,

√
𝑤i is considered as

an independent variable in the model. Therefore, the mean and variance of
√
𝑤i

are estimated in the analysis. To simplify the figures, the means, variances, and
covariances of the independent variables, for example,

√
𝑤i of the transformed

constants, are not shown in this chapter. Third, the estimated common effect 𝛽F is
represented by the regression coefficient from

√
𝑤i to ỹi. As the intercept of ỹi is

explicitly fixed at 0, there is no intercept represented by the triangle in the figure.

βF

1

y~iwi

Figure 9.1 A univariate fixed-effects meta-analytic model in Mplus.

We illustrate the analysis with the example of Jaramillo et al. (2005), which
has been used in Section 4.7.2. The data file was exported as a plain text file
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Jaramillo05.dat. The effect size was a correlation coefficient indicating the
relationship between organizational commitment and salesperson job performance.
The following box shows the first few cases in Jaramillo05.dat. The vari-
ables are id, r, r_v, IDV, OC_alpha, and JP_alpha (see the original data in
Section 4.7.2). The missing values are represented by the * symbol in the data set.

1 0.02 0.00558212379888268 48 0.87 0.89
2 0.12 0.00418710068965517 91 0.82 *
3 0.09 0.001756902875 91 0.83 0.76
4 0.2 0.00509171270718232 67 * 1
5 0.08 0.00632846769230769 91 0.83 *
6 0.04 0.005537792 91 0.83 *

The following Mplus code was used to conduct a fixed-effects meta-analysis.
As

√
𝑤i is considered as a variable, we need to declare it in USEVARIABLES

ARE w2;. We calculate
√
𝑤i = 1∕

√
𝑣i and ỹi =

√
𝑤iyi using w2=SQRT

(r_v**(-1)); and r=w2*r;, respectively. The mean and variance of the
transformed effect size r are fixed at 0 and 1 using [r@0.0]; and r@1.0;,
respectively. The common effect size is estimated by regressing the transformed
effect size on

√
𝑤i with r ON w2;.

TITLE: Fixed-effects model
DATA: FILE IS Jaramillo05.dat;
VARIABLE: NAMES id r r_v IDV OC_alpha JP_alpha;

USEVARIABLES ARE r w2; ! Use both r and w2 in the analysis
MISSING ARE *; ! Define missing values

DEFINE: w2 = SQRT(r_v**(-1)); ! Weight for transformation
r = w2*r; ! Transformed r

MODEL:
[r@0.0]; ! Intercept fixed at 0
r@1.0; ! Error variance fixed at 1
r ON w2; ! Common effect estimate beta_F

OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------
MODEL FIT INFORMATION

Number of Free Parameters 1

Loglikelihood

H0 Value -225.750
H1 Value -138.581

mailto:r@0.0
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Information Criteria

Akaike (AIC) 453.499
Bayesian (BIC) 455.610
Sample-Size Adjusted BIC 452.464

(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

R ON
W2 0.194 0.008 24.428 0.000

Intercepts
R 0.000 0.000 999.000 999.000

Residual Variances
R 1.000 0.000 999.000 999.000

------------------------ Selected output -----------------------

The estimated common effect 𝛽F is 0.194 (SE= 0.008), p < 0.001. This seems to
suggest that there is a weak correlation coefficient between organizational commit-
ment and salesperson job performance. It should be noted that the SE is underes-
timated when the effect sizes are heterogeneous. As shown in the next analysis, a
random-effects model is more appropriate for this data set.

9.2.2 Random-effects model

We extend the above fixed-effects model to a random-effects model. The random-
effects model in Equation 4.15 based on the transformed variables approach is

Level 1: ỹi = fi
√
𝑤i + ẽi,

Level 2: fi = 𝛽R + ui,
(9.5)

where fi is the true effect size in the ith study, 𝛽R is the average population effect
size under a random-effects model, and ui ∼  (0, 𝜏2) is the heterogeneity variance
that has to be estimated.
Figure 9.2 shows the random-effects meta-analysis in Mplus. In this model spec-

ification, fi is a random slope by regressing ỹi on
√
𝑤i, meaning that fi may vary

across subjects (studies in a meta-analysis). fi is a latent variable representing the
true effect size in a meta-analysis. As fi is a random variable, it has its own mean
(the average effect 𝛽R under a random-effects model) and variance (the hetero-
geneity variance 𝜏

2). Random slopes analysis, as that implemented in Mplus, is
required to conduct the random-effects meta-analysis using the transformed vari-
ables approach.
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fi

1

βR

τ2

y~iwi

fi1

Figure 9.2 A univariate random-effects meta-analytic model in Mplus.

The followingMplus code shows how to analyze a random-effects meta-analysis.
w2 is similarly defined as that in the fixed-effects meta-analysis.We specify ANAL-
YSIS: TYPE=RANDOM; to request the random slopes analysis. Moreover, we
specify f | r ON w2; to define the random slopes f that is the regression slope
from w2 to r (the transformed effect size). Then, we specify the mean [f*] and
the variance f* of f.

TITLE: Random-effects model: Single level approach
DATA: FILE IS Jaramillo05.dat;
VARIABLE: NAMES id r r_v IDV OC_alpha JP_alpha;

USEVARIABLES ARE r w2; ! Use both r and w2 in the analysis
MISSING ARE *;

DEFINE: w2 = SQRT(r_v**(-1)); ! Weight for transformation
r = w2*r; ! Transformed r

ANALYSIS: TYPE=RANDOM; ! Use random slopes analysis
ESTIMATOR=ML; ! Use ML estimation

MODEL:
[r@0.0]; ! Intercept fixed at 0
r@1.0; ! Error variance fixed at 1
f | r ON w2; ! f: Study specific random effects
f*; ! var(f): taû2
[f*]; ! mean(f): Average effect size beta_R

OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

Instead of using a single-level model as shown in Cheung (2008), Bengt Muthén
(personal communication, May 2, 2011) also suggested an equivalent model
specification using the two-level model. The following Mplus code may also
be used to analyze the above random-effects model. The syntax ANALYSIS:

mailto:r@0.0
mailto:r@1.0
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TYPE=TWOLEVEL RANDOM; requests a two-level model with random slopes.
The model in Equation 9.5 can be directly implemented as a two-level model.

TITLE: Random-effects model: Two-level approach
DATA: FILE IS Jaramillo05.dat;
VARIABLE: NAMES id r r_v IDV OC_alpha JP_alpha;

USEVARIABLES ARE r w2; ! Use both r and w2 in the analysis
MISSING ARE *;
WITHIN=ALL; ! All variables are within
CLUSTER=id; ! id is the cluster label

DEFINE: w2 = SQRT(r_v**(-1)); ! Weight for transformation
r = w2*r; ! Transformed r

ANALYSIS: TYPE=TWOLEVEL RANDOM; ! Use random slopes analysis
! Use two-level model

ESTIMATOR=ML; ! Use ML estimation

MODEL:
%WITHIN% ! Within model
[r@0.0]; ! Intercept fixed at 0
r@1.0; ! Error variance fixed at 1
f | r ON w2; ! f: Study specific random effects

%BETWEEN% ! Between model
f*; ! var(f): taû2
[f*]; ! mean(f): Average effect size beta_R

OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------
MODEL FIT INFORMATION

Number of Free Parameters 2

Loglikelihood

H0 Value -133.494

Information Criteria

Akaike (AIC) 270.987
Bayesian (BIC) 275.209
Sample-Size Adjusted BIC 268.917

(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

Means

mailto:r@0.0
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F 0.187 0.019 9.654 0.000

Intercepts
R 0.000 0.000 999.000 999.000

Variances
F 0.017 0.004 4.119 0.000

Residual Variances
R 1.000 0.000 999.000 999.000

------------------------ Selected output -----------------------

The estimated average effect 𝛽R under a random-effects model is 0.187
(SE = 0.019), p < 0.001. The estimated heterogeneity variance 𝜏

2 is 0.017.
It is usually difficult to interpret the degree of heterogeneity based on 𝜏

2. The
following example illustrates how to calculate the Q statistic and I2 to quantify the
heterogeneity of effect sizes (Cheung, 2008).
In the above analyses, we fixedVar(ẽi) = 1 in order to avoid the need of adjusting

the SE. We may free this constraint in order to calculate the Q statistic and I2. Let
us explain the rationale. The Q statistic in Equation 4.14 can be rewritten as

Q =
k∑

i=1
𝑤i

(
yi − 𝛽F

)2
,

=
k∑

i=1

(√
𝑤iyi −

√
𝑤i𝛽F

)2
,

=
k∑

i=1

(
ỹi −

√
𝑤i𝛽F

)2
.

(9.6)

Therefore, the Q statistic is
Q = k�̂�2

ẽi
, (9.7)

where �̂�
2
ẽi
=
(∑k

i=1
(
ỹi −

√
𝑤i𝛽F

)
2
)
∕k is the estimated error variance of ẽi. It

should be noted that k instead of (k − 1) is used because the ML estimation is used
as the estimation method in SEM.
Once we have estimated the Q statistic, we can also calculate the I2 (Higgins and

Thompson, 2002) (see Section 4.3.3 for details),

I2 = 1 − k − 1
Q

. (9.8)

As I2 is a function of �̂�2
ẽi
, an approximate Wald confidence interval (CI) can be

constructed on I2 using the delta method (see Section 3.4.1). However, the con-
structed CI is not accurate unless the number of studies is very large. Readers should
be cautious when interpreting the Wald CI. The following Mplus code shows the
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analysis. The estimated error variance of ẽi is labeled as var in r (var);. It
can be used as a variable for further calculations. We define two new functions of
parameters with NEW(Q I2).

TITLE: Calculate the Q statistic and the heterogeneity indices
DATA: FILE IS Jaramillo05.dat;
VARIABLE: NAMES id r r_v IDV OC_alpha JP_alpha;

USEVARIABLES ARE r w2; ! Use both r and w2 in the analysis
MISSING ARE *;

DEFINE: w2 = SQRT(r_v**(-1)); ! Weight for transformation
r = w2*r; ! Transformed r

ANALYSIS: ESTIMATOR=ML; ! Use ML estimation

Model:
r ON w2;
[r@0.0]; ! Intercept fixed at 0
r (var); ! Estimated error variance

MODEL CONSTRAINT:
NEW(Q I2); ! Define functions of parameters

! There are 61 studies.
Q = 61*var; ! Q statistic
I2 = 1-60/Q; ! I2 index

OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------
MODEL RESULTS

Two-Tailed
Estimate S.E. Est./S.E. P-Value

R ON
W2 0.194 0.019 10.356 0.000

Intercepts
R 0.000 0.000 999.000 999.000

Residual Variances
R 5.564 1.007 5.523 0.000

New/Additional Parameters
Q 339.389 61.454 5.523 0.000
I2 0.823 0.032 25.716 0.000

------------------------ Selected output -----------------------

The Q statistic to test the homogeneity of effect sizes is Q(df = 60) = 339.389,
p < 0.001. The I2 index is 0.823, indicating that 82% of the variation is due to the
between-study variation, whereas 18% of it is due to the within-study sampling
variance.

mailto:r@0.0
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9.2.3 Mixed-effects model

A random-effects model can be extended to a mixed-effects model by including
moderators in the analysis. Suppose that there is a study characteristic zi in the ith
study; the mixed-effects model on the transformed effect size is

Level 1: ỹi = fi
√
𝑤i + ẽi,

Level 2: fi = 𝛽0 + 𝛽1zi + ui,
(9.9)

where 𝛽0 is the intercept when zi = 0, 𝛽1 is the regression coefficient, and
Var(ui) = 𝜏

2 is the residual heterogeneity after controlling for zi. Figure 9.3 shows
the model with one moderator. fi is regressed on zi in Figure 9.3. The trick of the
transformed variables approach is to treat the random slope as the true effect size fi.
Once the true effect size is available, we may use it as either a predictor or a depen-
dent variable in further statistical modeling. It should be noted that the predictors,√
𝑤i and zi, are correlated; however, this correlation is not shown in the figure.

fi

β1

1

β0

τ2

ỹiwi

fi

zi

1

Figure 9.3 A univariate mixed-effects meta-analytic model in Mplus.

The following Mplus code shows how to conduct a mixed-effects meta-analysis
with two moderators, OC_alpha and JP_alpha. The regression coefficients are
specified via f ON OC_alpha JP_alpha;.

TITLE: Mixed-effects model: OC_alpha and JP_alpha as the predictors
DATA: FILE IS Jaramillo05.dat;
VARIABLE: NAMES id r r_v IDV OC_alpha JP_alpha;

USEVARIABLES ARE r OC_alpha JP_alpha w2;
MISSING ARE *;

DEFINE: w2 = SQRT(r_v**(-1)); ! Weight for transformation
r = w2*r; ! Transformed r
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ANALYSIS: TYPE=RANDOM; ! Use random slope analysis
ESTIMATOR=ML; ! Use ML estimation

MODEL:
[r@0.0]; ! Intercept fixed at 0
r@1.0; ! Error variance fixed at 1
f | r ON w2; ! f: Study specific random effects
f*; ! var(f): taû2
[f*]; ! beta_0
f ON OC_alpha JP_alpha; ! beta_1 and beta_2

OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------
*** WARNING
Data set contains cases with missing on x-variables.
These cases were not included in the analysis.
Number of cases with missing on x-variables: 26
1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS

SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 35

Number of dependent variables 1
Number of independent variables 3
Number of continuous latent variables 1

MODEL FIT INFORMATION

Number of Free Parameters 4

Loglikelihood

H0 Value -80.082

Information Criteria

Akaike (AIC) 168.164
Bayesian (BIC) 174.385
Sample-Size Adjusted BIC 161.895

(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

F ON
OC_ALPHA 0.131 0.459 0.286 0.775

mailto:r@0.0
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JP_ALPHA 0.804 0.430 1.869 0.062

Intercepts
R 0.000 0.000 999.000 999.000
F -0.576 0.502 -1.148 0.251

Residual Variances
R 1.000 0.000 999.000 999.000
F 0.019 0.006 3.313 0.001

------------------------ Selected output -----------------------

The estimated regression coefficients with their SEs and p values for OC_Alpha
and JP_Alpha are 0.131 (SE= 0.459), p = 0.775 and 0.804 (SE= 0.430),
p = 0.062, respectively. The estimated regression coefficient for JP_Alpha is
marginally significant. Although there were 61 studies in the data set, 26 studies
were excluded in the analysis because of the missing values in the predictors
(OC_Alpha and JP_Alpha). We will demonstrate how to handle the missing
values in the predictors using the full information maximum likelihood (FIML)
estimation later.
One of the strength of SEM is its ease to specify equality constraints on the param-

eters. For example, we may impose an equality on both regression coefficients by
specifying f ON OC_alpha (1); and f ON JP_alpha (1);.

TITLE: Mixed-effects model: OC_alpha and JP_alpha
! with equal coefficients

DATA: FILE IS Jaramillo05.dat;
VARIABLE: NAMES id r r_v IDV OC_alpha JP_alpha;

USEVARIABLES ARE r OC_alpha JP_alpha w2;
MISSING ARE *;

DEFINE: w2 = SQRT(r_v**(-1)); ! Weight for transformation
r = w2*r; ! Transformed r

ANALYSIS: TYPE=RANDOM; ! Use random slope analysis
ESTIMATOR=ML; ! Use ML estimation

MODEL:
[r@0.0]; ! Intercept fixed at 0
r@1.0; ! Error variance fixed at 1
f | r ON w2; ! f: Study specific random effects
f*; ! var(f): taû2
[f*]; ! beta_0
f ON OC_alpha (1); ! beta_1=beta_2
f ON JP_alpha (1);

OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI
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------------------------ Selected output -----------------------
MODEL FIT INFORMATION

Number of Free Parameters 3

Loglikelihood

H0 Value -80.579

Information Criteria

Akaike (AIC) 167.158
Bayesian (BIC) 171.824
Sample-Size Adjusted BIC 162.456

(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

F ON
OC_ALPHA 0.486 0.295 1.647 0.100
JP_ALPHA 0.486 0.295 1.647 0.100

Intercepts
R 0.000 0.000 999.000 999.000
F -0.604 0.507 -1.190 0.234

Residual Variances
R 1.000 0.000 999.000 999.000
F 0.019 0.006 3.327 0.001

------------------------ Selected output -----------------------

The estimated regression coefficient under the equality constraint is 0.486
(SE= 0.295), p = 0.100, which is not statistically significant. We may calculate
a likelihood ratio (LR) statistic to test the equality constraint by calculating the
difference on the −2∗log-likelihoods (labeled H0 value in the output) between
the models with and without the constraint: −2(−80.579 + 80.082) = 0.994. The
degrees of freedom (dfs) for the test statistic is the difference of the numbers of
free parameters (labeled Number of Free Parameters in the output). The
LR statistic is not significant with Δ𝜒2(df = 1) = 0.994, p = 0.319.

9.2.4 Handling missing values in moderators

When a mixed-effects meta-analysis is conducted, studies with missing values
in the moderators are deleted before the analysis. FIML may be used to handle
the missing moderators in the SEM framework (see Section 8.2.3 for details).
Specifically, we need to include the moderators as part of the model by estimating
their means and covariance matrices. As the moderators are now considered as
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dependent variables in the analysis, the moderators are assumed to be distributed
with a multivariate normal distribution. The following Mplus code is used to
handle the missing moderators.

TITLE: Mixed-effects model: OC_alpha and JP_alpha as the predictors
DATA: FILE IS Jaramillo05.dat;
VARIABLE: NAMES r r_v IDV OC_alpha JP_alpha;

USEVARIABLES ARE r OC_alpha JP_alpha w2;
MISSING ARE *;

DEFINE: w2 = SQRT(r_v**(-1)); ! Weight for transformation
r = w2*r; ! Transformed r

ANALYSIS: TYPE=RANDOM; ! Use random slope analysis
ESTIMATOR=ML; ! Use ML estimation

MODEL:
[r@0.0]; ! Intercept fixed at 0
r@1.0; ! Error variance fixed at 1
f | r ON w2; ! f: Study specific random effects
f*; ! var(f): taû2
[f*]; ! beta_0
f ON OC_alpha JP_alpha; ! beta1 and beta2

! Treat OC_alpha and JP_alpha as observed variables
! by estimating their means and variances
[OC_alpha*];
[JP_alpha*];
OC_alpha*;
JP_alpha*;

OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------
SUMMARY OF ANALYSIS

Number of groups 1
Number of observations 61

Number of dependent variables 1
Number of independent variables 3
Number of continuous latent variables 1

MODEL FIT INFORMATION

Number of Free Parameters 9

Loglikelihood

H0 Value -5.369
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Information Criteria

Akaike (AIC) 28.739
Bayesian (BIC) 47.737
Sample-Size Adjusted BIC 19.424

(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

F ON
OC_ALPHA 0.243 0.361 0.672 0.501
JP_ALPHA 0.579 0.348 1.664 0.096

JP_ALPHA WITH
OC_ALPHA 0.001 0.001 0.876 0.381

Means
OC_ALPHA 0.849 0.008 108.032 0.000
JP_ALPHA 0.864 0.011 81.220 0.000

Intercepts
R 0.000 0.000 999.000 999.000
F -0.519 0.392 -1.326 0.185

Variances
OC_ALPHA 0.003 0.001 5.195 0.000
JP_ALPHA 0.004 0.001 4.277 0.000

Residual Variances
R 1.000 0.000 999.000 999.000
F 0.015 0.004 3.976 0.000

------------------------ Selected output -----------------------

From the above results, all 61 studies are used in the analysis. The means and
covariance matrix between OC_Alpha and JP_Alpha are also estimated.
Although the regression coefficient on JP_Alpha is still nonsignificant, its SE is
slightly smaller than that based on only 35 studies.

9.3 Multivariate meta-analysis

When there are more than one effect sizes per study, researchers may want to con-
duct a multivariate meta-analysis to account for the dependence among the effect
sizes. The SEM approach discussed in Chapter 5 uses definition variables to fix the
known sampling covariance matrix. As Mplus does not have definition variables,
Cheung (2013) extended the transformed variables approach to conduct multivari-
ate meta-analyses in Mplus.
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9.3.1 Fixed-effects model

Suppose that there are p effect sizes per study involved in a multivariate
meta-analysis; the fixed-effects model for the ith study is

yi = Xi𝛽F + ei, (9.10)

where yi is the pi × 1 vector of the observed effect sizes, Xi is a pi × p design matrix
with 0 and 1 to select the observed effect sizes, 𝛽F is a p × 1 vector of popula-
tion effect sizes, and ei is a pi × 1 vector of the known sampling error. When all
effect sizes are complete, pi = p. When the sample sizes are reasonably large, ei is
assumed to be multivariate normally distributed with a mean vector of zero and a
known covariance matrix Vi, that is, ei ∼  (0,Vi).
Similar to the analysis of a univariate meta-analysis, we transform the effect sizes

in such a way that the known sampling errors become i.i.d. First, we calculate

a transformation matrix W1∕2
i = V−1∕2

i by taking the Cholesky decomposition on
the inverse of the known sampling covariance matrix Vi. Applying the Cholesky
decomposition on a covariance matrix is similar to taking a square root on a vari-
ance. The fixed-effects model on the transformed effect sizes for the ith study is

W1∕2
i yi = W1∕2

i Xi𝛽F +W1∕2
i ei,

ỹi = ̃Xi𝛽F + ẽi,
(9.11)

where ỹi = W1∕2
i yi, ̃Xi = W1∕2

i Xi, and ẽi = W1∕2
i ei. It should be noted that the

parameter vector 𝛽F are the same after the transformation.
After the transformation, the variance of ẽi is

Var(ẽi) = W1∕2
i Var(ei)(W

1∕2
i )T,

= W1∕2
i Vi(W

1∕2
i )T,

= I as Wi = VT
i ,

(9.12)

where I is an identity matrix with i.i.d. of a known variable of 1. Before the
transformation, the multivariate effect sizes are distributed with a known sampling
covariance matrix Vi. After the transformation, the transformed effect sizes are
conditionally independent and with a known variance of 1.
As the transformed effect sizes are conditionally independent with a known vari-

ance of 1, Cheung (2013) suggested to stack the transformed effect sizes together
for the ease of analysis. Figure 9.4a shows a multivariate meta-analysis with two
effect sizes. x̃1

2×1
and x̃2

2×1
are the transformed design matrix in estimating the inter-

cepts. Unlike the univariate meta-analysis, we cannot use
√
𝑤1 and

√
𝑤2 to repre-

sent the transformed matrix. It is because the sampling covariance between these
two effect sizes is also involved in calculatingW1∕2

i . There are three key features in
this model. First, the multivariate effect sizes are stacked together. Therefore, there
is only one column of ỹi

2×1
regardless of how many effect sizes per study there are.
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Figure 9.4 Multivariate fixed-effects meta-analytic models in Mplus.

Second, the number of “subjects” are double of that of the number of studies when
there is no missing effect sizes. Third, the sampling error variance is fixed at 1 after
applying the transformation.
The above approach, however, is not appropriate for the random-effects model.

We introduce a better approach here. This approach uses one row to represent one
study. Let us illustrates the model with two effect sizes per study. After the trans-
formation, the fixed-effects model is[

ỹ1,i
ỹ2,i

]
= 𝛽F,1

[
x̃1,1
0

]
+ 𝛽F,2

[
x̃1,2
x̃2,2

]
+
[
ẽ1,i
ẽ2,i

]
, (9.13)

where

[
x̃1,1 x̃1,2
0 x̃2,2

]
= W1∕2

i Xi. It should be noted that there is 0 inW
1∕2
i because of

the Cholesky decomposition. We may treat ỹ1,i, ỹ2,i, x̃1,1, x̃1,2, and x̃2,2 as variables.
Figure 9.4b shows the model. As the regression coefficients of both regressing ỹ1,i
on x̃1,2 and regressing ỹ2,i on x̃2,2 are 𝛽F,2, an equality constraint is required to ensure
that these two paths are the same. When there are p effect sizes per study in the
meta-analysis, p(p + 1)∕2 variables on the transformed design matrix are required.
The analysis may become complicated and tedious when p is large and with incom-
plete effect sizes. It should be noted that the number of “subjects” is the same as
that of the number of studies under this approach.
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These two models are equivalent for the fixed-effects model. It appears that it is
easier to implement the model in Figure 9.4a. However, these two models are dif-
ferent for the random-effects model in which the true effect sizes may vary across
studies. The model in Figure 9.4a treats the transformed effect sizes as indepen-
dent; therefore, we may stack the transformed effect sizes and treat them as one
single variable. This is not correct for the random-effects model. It is because the
constraint of the true effect sizes will not be imposed when the model in Figure 9.4a
is extended to the random-effects model. Therefore, we will only apply the model
in Figure 9.4b in the following discussion.
For the univariate meta-analyses, we used the built-in functions to apply the trans-

formation inMplus. This does not work for themultivariatemeta-analyses.We need
to transform the multivariate effect sizes before exporting the data for analysis in
Mplus. We illustrate the multivariate meta-analysis with a data set from the World
Values Survey II (World Values Study Group, 1994) in Section 5.7.2. The effect
sizes are the standardized mean difference (SMD) between males and females on
life satisfaction (SMDLS) and life control (SMDLC) for each country.
The following R code demonstrates how to apply the transformation on the mul-

tivariate effect sizes. As there is no missing effect size, the calculations are straight-
forward. If there are missing effect sizes, the calculations are more tedious because
we have to exclude the rows of data with missing effect sizes (see Cheung (2013,
Appendix B) for an illustration). The followingR code illustrates how to transform
the effect sizes for Figure 9.4b.

R> library(metaSEM)
R> ## Select the effect sizes
R> y <- wvs94a[, c("lifesat","lifecon")]
R> ## Convert it into a column of effect sizes
R> y <- matrix(t(y), ncol=1)
R> ## Prepare the design matrix
R> X <- matrix(rep(c(1,0,0,1), nrow(wvs94a)), ncol=2, byrow=TRUE)
R> ## Convert the known sampling covariance matrix into
R> ## a block diagonal matrix
R> V <- matrix2bdiag(wvs94a[, c("lifesat_var","inter_cov",

"lifecon_var")])
R> ## Calculate the transformation matrix
R> W0.5 <- chol(solve(V))
R> ## Calculate the transformed effect size
R> y_new <- W0.5 %*% y
R> ## Calculate the transformed design matrix
R> X_new <- W0.5 %*% X
R> ## Center gnp and divide it by 10000 to improve numerical

stability
R> ## Prepare the gnp
R> gnp <- scale(wvs94a$gnp/10000, scale=FALSE)
R> ## Convert y into one row per study
R> y2 <- matrix(c(t(y_new)), ncol=2, byrow=TRUE)
R> ## Convert X into one row per study
R> x2 <- matrix(c(t(X_new)), ncol=4, byrow=TRUE)



CONDUCTING META-ANALYSIS WITH MPLUS 331

R> my.wide <- cbind(y2, x2, gnp)
R> ## Add the variable names for ease of reference
R> ## W0.5 = [y1f1, y1f2]
R> ## [0 , y2f2]
R> colnames(my.wide) <- c("y1", "y2", "y1f1", "y1f2",

"y2f1", "y2f2", "gnp")
R> ## Display the first few cases
R> head(my.wide)

y1 y2 y1f1 y1f2 y2f1 y2f2 gnp
[1,] -0.8638851 0.8933552 16.74449 -5.667836 0 15.50759 -0.8527838
[2,] 1.5185353 0.1653192 19.66342 -6.345139 0 18.58993 -0.5997838
[3,] 0.2898198 1.1698049 16.74893 -5.578365 0 15.78971 -0.7787838
[4,] -0.7218254 3.2903210 27.23667 -7.289699 0 25.70662 0.4642162
[5,] 1.9122124 3.8052864 22.39287 -7.715437 0 20.89603 -0.8217838
[6,] 0.0181645 0.8482849 21.26301 -9.180409 0 19.08188 0.5202162

R> ## Write it as a plain text for Mplus
R> ## y2f1 is excluded in my.wide since it contains only 0.
R> ## Missing values are represented by *
R> write.table(my.wide[,-5], "wvs94a.dat", sep=" ", na="*",

row.names=FALSE,
col.names=FALSE)

The data file was exported as a plain text called wvs94.dat. The variables are
the two transformed effect sizes (y1 and y2), the three elements of the transformed
design matrix x̃1,1 (y1f1), x̃1,2 (y1f2), and x̃2,2 (y2f2), and GNP. As x̃2,1 (y2f1)
is always 0, we exclude it from the analysis. The following Mplus code shows how
to analyze a fixed-effects multivariate meta-analysis.

TITLE: Fixed-effects model
DATA: FILE IS wvs94a.dat;
VARIABLE: NAMES y1 y2 y1f1 y1f2 y2f2 GNP;

USEVARIABLES ARE y1 y2 y1f1 y1f2 y2f2;
MISSING ARE *;

MODEL:
y1 ON y1f1; ! beta_{F,1} in the figure
y1 ON y1f2 (1); ! beta_{F,2} in the figure
y2 ON y2f2 (1); ! beta_{F,2} in the figure

[y1@0.0]; ! Intercept fixed at 0
[y2@0.0]; ! Intercept fixed at 0

y1@1.0 ! Error variance fixed at 1
y2@1.0 ! Error variance fixed at 1

y1 WITH y2@0; ! Covariance fixed at 0
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OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------
MODEL FIT INFORMATION

Number of Free Parameters 2

Loglikelihood

H0 Value -202.206
H1 Value -156.495

Information Criteria

Akaike (AIC) 408.412
Bayesian (BIC) 411.887
Sample-Size Adjusted BIC 405.624
(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

Y1 ON
Y1F1 0.010 0.008 1.156 0.248
Y1F2 0.071 0.008 8.392 0.000

Y2 ON
Y2F2 0.071 0.008 8.392 0.000

Y1 WITH
Y2 0.000 0.000 999.000 999.000

Intercepts
Y1 0.000 0.000 999.000 999.000
Y2 0.000 0.000 999.000 999.000

Residual Variances
Y1 1.000 0.000 999.000 999.000
Y2 1.000 0.000 999.000 999.000

------------------------ Selected output -----------------------

The estimated common effects with their SEs and p values for SMDLS and SMDLC
are 0.010 (SE= 0.008), p = 0.248 and 0.071 (SE= 0.008), p < 0.001, respectively.
Only the estimated common effect on SMDLC is statistically significant. As the
estimates are based on the fixed-effects model, readers should be cautious if the
fixed-effects model is not appropriate.
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9.3.2 Random-effects model

A fixed-effects model can be extended to a random-effects model by using random
slopes analysis. The random-effects model on the transformed effect sizes for the
ith study is

Level 1: ỹi = ̃Xif i + ẽi,
Level 2: f i = 𝛽R + ui,

(9.14)

where f i is the vector of the true effect sizes in the ith study, 𝛽R is the vector of
the average population effects under a random-effects model, and ui ∼  (0,T2)
is the heterogeneity variance–covariance matrix of the random effects that has to
be estimated. Figure 9.5 displays a random-effects model with two effect sizes per
study. The regression slopes from the transformed design matrix (three variables)
to the transformed effect sizes ỹi are f1,i and f2,i, respectively. These slopes are
considered as random variables with their own means (the average effects 𝛽R,1
and 𝛽R,2 under a random-effects model) and covariance matrix (the heterogeneity
covariance matrix).
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Figure 9.5 A multivariate random-effects meta-analytic model in Mplus.

The following Mplus code shows how to conduct a random-effects model with
two effect sizes. We specify the covariance between the random effects using f_LS
WITH f_LC*;.

TITLE: Random-effects model
DATA: FILE IS wvs94a.dat;



334 META-ANALYSIS

VARIABLE: NAMES y1 y2 y1f1 y1f2 y2f2 GNP;
USEVARIABLES ARE y1 y2 y1f1 y1f2 y2f2;
MISSING ARE *;

ANALYSIS: TYPE=RANDOM;
ESTIMATOR=ML; ! Use ML estimation

MODEL:
f_LS | y1 ON y1f1;
f_LC | y1 ON y1f2;
f_LC | y2 ON y2f2;

[y1@0.0]; ! Intercept fixed at 0
[y2@0.0]; ! Intercept fixed at 0

y1@1.0 ! Error variance fixed at 1
y2@1.0 ! Error variance fixed at 1

y1 WITH y2@0; ! Covariance fixed at 0

f_LS*; ! taû2_11 in the figure
f_LC*; ! taû2_22 in the figure
f_LS WITH f_LC*; ! taû2_21 in the figure

[f_LS*]; ! beta_{R,1} in the figure
[f_LC*]; ! beta_{R,2} in the figure

OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------
MODEL FIT INFORMATION

Number of Free Parameters 5

Loglikelihood

H0 Value -161.898

Information Criteria

Akaike (AIC) 333.797
Bayesian (BIC) 342.485
Sample-Size Adjusted BIC 326.827
(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

F_LS WITH
F_LC 0.004 0.002 2.332 0.020
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Y1 WITH
Y2 0.000 0.000 999.000 999.000

Means
F_LS 0.001 0.014 0.097 0.922
F_LC 0.069 0.017 4.092 0.000

Intercepts
Y1 0.000 0.000 999.000 999.000
Y2 0.000 0.000 999.000 999.000

Variances
F_LS 0.005 0.002 2.684 0.007
F_LC 0.008 0.003 3.316 0.001

Residual Variances
Y1 1.000 0.000 999.000 999.000
Y2 1.000 0.000 999.000 999.000

------------------------ Selected output -----------------------

The estimated average effect sizes with their SEs and p values for SMDLS and
SMDLC are 0.001 (SE = 0.014), p = 0.922 and 0.069 (SE = 0.017), p < 0.001
respectively. The estimated average effect size for SMDLC is significant, while the
one for SMDLS is nonsignificant with 𝛼 = 0.05. The SEs of the random-effects
model were larger than those of the fixed-effects model. The estimated variance

component of the heterogeneity for ̂SMDLS and ̂SMDLC is

[
0.005
0.004 0.008

]
. The

results are similar to those in Section 5.7.2.
A multivariate approach is usually preferable to a univariate approach in testing

research hypotheses. In a multivariate meta-analysis, we may test the null hypoth-
esis that both SMDLS = 0 and SMDLC = 0. This test is preferable to two separate
tests because the multivariate test takes the correlation between the effect sizes into
account. We can easily conduct this test in Mplus by using the following code.

TITLE: Random-effects model: Fix population effect at 0
DATA: FILE IS wvs94a.dat;
VARIABLE: NAMES y1 y2 y1f1 y1f2 y2f2 GNP;

USEVARIABLES ARE y1 y2 y1f1 y1f2 y2f2;
MISSING ARE *;

ANALYSIS: TYPE=RANDOM;
ESTIMATOR=ML; ! Use ML estimation

MODEL:
f_LS | y1 ON y1f1;
f_LC | y1 ON y1f2;
f_LC | y2 ON y2f2;

[y1@0.0]; ! Intercept fixed at 0
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[y2@0.0]; ! Intercept fixed at 0

y1@1.0 ! Error variance fixed at 1
y2@1.0 ! Error variance fixed at 1

y1 WITH y2@0; ! Covariance fixed at 0

f_LS*; ! taû2_11 in the figure
f_LC*; ! taû2_22 in the figure
f_LS WITH f_LC*; ! taû2_21 in the figure

[f_LS@0]; ! beta_{R,1} fixed at 0
[f_LC@0]; ! beta_{R,2} fixed at 0

OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------
MODEL FIT INFORMATION

Number of Free Parameters 3

Loglikelihood

H0 Value -171.123

Information Criteria

Akaike (AIC) 348.246
Bayesian (BIC) 353.459
Sample-Size Adjusted BIC 344.064
(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

F_LS WITH
F_LC 0.004 0.002 2.149 0.032

Y1 WITH
Y2 0.000 0.000 999.000 999.000

Means
F_LS 0.000 0.000 999.000 999.000
F_LC 0.000 0.000 999.000 999.000

Intercepts
Y1 0.000 0.000 999.000 999.000
Y2 0.000 0.000 999.000 999.000
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Variances
F_LS 0.005 0.002 2.656 0.008
F_LC 0.013 0.004 3.681 0.000

Residual Variances
Y1 1.000 0.000 999.000 999.000
Y2 1.000 0.000 999.000 999.000

------------------------ Selected output -----------------------

We compare this model against the model without fixing the average population
effect sizes at 0. The LR statistic is −2(−171.123 + 161.898) = 18.45, which is
significant withΔ𝜒2(df = 2) = 18.45, p < 0.001. Therefore, at least one effect size
is different from zero.

9.3.3 Mixed-effects model

A random-effects model can be extended to a mixed-effects model by including
study characteristics as moderators. Suppose that there is a study characteristic zi
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Figure 9.6 A multivariate mixed-effects meta-analytic model in Mplus.
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in the ith study; the mixed-effects model on the transformed effect sizes in the ith
study is

Level 1: ỹi = ̃Xif i + ẽi,
Level 2: f i = 𝛽0 + 𝛽1zi + ui,

(9.15)

where 𝛽0 is the vector of the intercepts when zi = 0, 𝛽1 is the vector of regression
coefficients, and ui ∼  (0,T2) is the residual heterogeneity variance–covariance
matrix of the random effects after controlling for zi.
Figure 9.6 shows a mixed-effects model with one moderator zi. As zi directly

predicts the true effect sizes f i, there is no transformation applied to zi. It should
be reminded that all the predictors, zi and x̃, are correlated in the analysis. The
structural model on the average true effect sizes for this model is[

f1,i
f2,i

]
=
[
𝛽1,0
𝛽2,0

]
+
[
𝛽1,1
𝛽2,1

]
zi +

[
u1,i
u2,i

]
. (9.16)

The following Mplus code shows a mixed-effects meta-analysis using GNP as a
moderator. To improve the numerical stability and interpretations, gross national
product (GNP) has been centered and divided by 10,000 before exporting the data
set.

TITLE: Mixed-effects model
DATA: FILE IS wvs94a.dat;
VARIABLE: NAMES y1 y2 y1f1 y1f2 y2f2 GNP;

USEVARIABLES ARE ALL;
MISSING ARE *;

ANALYSIS: TYPE=RANDOM;
ESTIMATOR=ML; ! Use ML estimation

MODEL:
f_LS | y1 ON y1f1;
f_LC | y1 ON y1f2;
f_LC | y2 ON y2f2;

[y1@0.0]; ! Intercept fixed at 0
[y2@0.0]; ! Intercept fixed at 0

y1@1.0 ! Error variance fixed at 1
y2@1.0 ! Error variance fixed at 1

y1 WITH y2@0; ! Covariance fixed at 0

f_LS*; ! taû2_11 in the figure
f_LC*; ! taû2_22 in the figure
f_LS WITH f_LC*; ! taû2_21 in the figure

[f_LS*]; ! beta_10
[f_LC*]; ! beta_20
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f_LS ON GNP; ! beta_11
f_LC ON GNP; ! beta_21

OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------
MODEL FIT INFORMATION

Number of Free Parameters 7

Loglikelihood

H0 Value -141.277

Information Criteria

Akaike (AIC) 296.554
Bayesian (BIC) 307.830
Sample-Size Adjusted BIC 285.952

(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

F_LS ON
GNP -0.024 0.015 -1.571 0.116

F_LC ON
GNP -0.037 0.018 -2.073 0.038

F_LS WITH
F_LC 0.004 0.002 2.137 0.033

Y1 WITH
Y2 0.000 0.000 999.000 999.000

Intercepts
Y1 0.000 0.000 999.000 999.000
Y2 0.000 0.000 999.000 999.000
F_LS 0.001 0.015 0.089 0.929
F_LC 0.071 0.017 4.119 0.000

Residual Variances
Y1 1.000 0.000 999.000 999.000
Y2 1.000 0.000 999.000 999.000
F_LS 0.005 0.002 2.559 0.011
F_LC 0.007 0.002 3.026 0.002

------------------------ Selected output -----------------------
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The estimated regression coefficients with their SEs and p values from GNP on
SMDLS and SMDLC are−0.024 (SE = 0.015), p = 0.116 and−0.037 (SE = 0.018),
p = 0.038, respectively. Only the regression coefficient on SMDLC is statistically
significant.

9.3.4 Mediation and moderation models on the effect sizes

Themediation model on the true effect sizes discussed in Section 5.6.2 can be fitted
in Mplus. Suppose that the true effect sizes f1,i and f2,i and the observed variable zi
are the dependent variable, themediator, and the independent variable, respectively;
the mediation model on the transformed variables is

Measurement model:

[
ỹ1,i
ỹ2,i

]
2×1

= ̃X
2×2

[
f1,i
f2,i

]
2×1

+
[
ẽ1,i
ẽ2,i

]
2×1

and

Structural model:

[
f1,i
f2,i

]
=
[
𝛽1,0
𝛽2,0

]
+
[
0 𝛽1,2
0 0

] [
f1,i
f2,i

]
+
[
𝛾1
𝛾2

]
zi +

[
u1,i
u2,i

]
, (9.17)
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Figure 9.7 A mediation model with two effect sizes in Mplus.
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where Cov
([

ẽ1,i
ẽ2,i

])
=
[
1 0
0 1

]
is the known conditional sampling covariance

matrix of the transformed errors and Cov
([

u1,i
u2,i

])
=
[
𝜏
2
1,1 0
0 𝜏

2
2,2

]
is the residual

heterogeneity covariance matrix.
Figure 9.7 shows the model. The measurement model is used to handle the con-

ditional sampling covariance matrix between the effect sizes, while the structural
model is used to model the direct and indirect effects. Under the above model spec-
ification, the direct effect from zi to the true effect size f1,i is 𝛾1, while the indirect
effect via the true effect size f2,i is 𝛾2𝛽1,2. The total effect is 𝛾2𝛽1,2 + 𝛾1. We may
label the parameters and define new functions of the parameters (the direct, indi-
rect, and total effects) in Mplus. Approximate SEs and CIs on these effects are
automatically calculated based on the delta method.

TITLE: Mediation model on the "true" effect sizes
DATA: FILE IS wvs94a.dat;
VARIABLE: NAMES y1 y2 y1f1 y1f2 y2f2 GNP;

USEVARIABLES ARE ALL;
MISSING ARE *;

ANALYSIS: TYPE=RANDOM;
ESTIMATOR=ML; ! Use ML estimation

MODEL:
f_LS | y1 ON y1f1;
f_LC | y1 ON y1f2;
f_LC | y2 ON y2f2;

[y1@0.0]; ! Intercept fixed at 0
[y2@0.0]; ! Intercept fixed at 0

y1@1.0 ! Error variance fixed at 1
y2@1.0 ! Error variance fixed at 1

y1 WITH y2@0; ! Covariance fixed at 0

f_LS*; ! taû2_11
f_LC*; ! taû2_22

[f_LS*]; ! beta_10
[f_LC*]; ! beta_20

f_LS ON GNP (gamma_1); ! gamma_1
f_LC ON GNP (gamma_2); ! gamma_2
f_LS ON f_LC (beta_12); ! beta_12

MODEL CONSTRAINT: ! Define new functions of parameters
NEW (ind, dir, total);
ind=gamma_2*beta_12; ! Indirect effect
dir=gamma_1; ! Direct effect
total=ind+dir; ! Total effect
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OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------

MODEL FIT INFORMATION

Number of Free Parameters 7

Loglikelihood

H0 Value -141.277

Information Criteria

Akaike (AIC) 296.554
Bayesian (BIC) 307.830
Sample-Size Adjusted BIC 285.952
(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

F_LS ON
F_LC 0.480 0.168 2.859 0.004

F_LS ON
GNP -0.006 0.015 -0.421 0.674

F_LC ON
GNP -0.037 0.018 -2.073 0.038

Y1 WITH
Y2 0.000 0.000 999.000 999.000

Intercepts
Y1 0.000 0.000 999.000 999.000
Y2 0.000 0.000 999.000 999.000
F_LS -0.033 0.017 -1.900 0.057
F_LC 0.071 0.017 4.119 0.000

Residual Variances
Y1 1.000 0.000 999.000 999.000
Y2 1.000 0.000 999.000 999.000
F_LS 0.003 0.001 2.171 0.030
F_LC 0.007 0.002 3.026 0.002

New/Additional Parameters
IND -0.018 0.011 -1.657 0.097
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DIR -0.006 0.015 -0.421 0.674
TOTAL -0.024 0.015 -1.571 0.116

------------------------ Selected output -----------------------

The estimated indirect, direct, and total effects with their SEs are −0.018(SE =
0.011), −0.006(SE = 0.015), and −0.024(SE = 0.015), respectively. None of them
is statistically significant at 𝛼 = 0.05 using the Wald test.
We can fit the moderating model discussed in Section 5.6.3 inMplus. The models

are

Measurement model:

[
ỹ1,i

ỹ2,i

]
= ̃X

[
f1,i
f2,i

]
+
[
ẽ1,i
ẽ2,i

]
,

Structural model:

[
f1,i
f2,i

]
=
[
𝛽1,0
𝛽2,0

]
+
[
0 𝛽1,2
0 0

] [
f1,i
f2,i

]
+
[
𝛾1
0

]
zi

+ zi

[
0 𝜔1,2
0 0

] [
f1,i
f2,i

]
+
[
u1,i
u2,i

]
.

(9.18)

Figure 9.8 displays the graphical model. Using the notation in Mplus, the small
filled circle represents the interaction between the observed variable zi and the latent
variable f2,i. Therefore, 𝜔1,2 is the regression coefficient of the moderating effect.
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Figure 9.8 A moderation model with two effect sizes in Mplus.
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From the above equations, the equation for f1,i is

f1,i = 𝛽1,0 + 𝛾1zi + (𝛽1,2 + 𝜔1,2zi)f2,i + u1,i. (9.19)

The following Mplus code shows how to analyze the moderating model. We
define the interaction effect between fLC andGNP usingomega | f_LC XWITH
GNP;. Numerical integration is required to analyze this model. We specify 100
points for the integration using INTEGRATION=100;. As there are four pro-
cessors in my server, we may speed up the analysis by using all processors with
PROCESSORS=4;. This process is still computational intensive. It may take some
time to complete.

TITLE: Mediation model on the "true" effect sizes
DATA: FILE IS wvs94a.dat;
VARIABLE: NAMES y1 y2 y1f1 y1f2 y2f2 GNP;

USEVARIABLES ARE ALL;
MISSING ARE *;

ANALYSIS: TYPE=RANDOM;
ESTIMATOR=ML; ! Use ML estimation
ALGORITHM=INTEGRATION;
PROCESSORS=4; ! Use 4 processors to speed up the analysis
INTEGRATION=100; ! Number of points for integration
CHOLESKY=ON; ! Ensure the variances are positive definite

MODEL:
f_LS | y1 ON y1f1;
f_LC | y1 ON y1f2;
f_LC | y2 ON y2f2;

[y1@0.0]; ! Intercept fixed at 0
[y2@0.0]; ! Intercept fixed at 0

y1@1.0 ! Error variance fixed at 1
y2@1.0 ! Error variance fixed at 1

y1 WITH y2@0; ! Covariance fixed at 0

f_LS*; ! taû2_11
f_LC*; ! taû2_22

[f_LS*]; ! beta_10
[f_LC*]; ! beta_20

f_LC WITH GNP; ! Covariance between predictors

omega | f_LC XWITH GNP; ! Interaction between f_LC and GNP

f_LS ON GNP f_LC omega;
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OUTPUT: SAMPSTAT;
CINTERVAL(symmetric); ! Wald CI

------------------------ Selected output -----------------------
*** WARNING
Data set contains cases with missing on variables used to define
interactions. These cases were not included in the analysis.
Number of such cases: 5
1 WARNING(S) FOUND IN THE INPUT INSTRUCTIONS

MODEL FIT INFORMATION

Number of Free Parameters 10

Loglikelihood

H0 Value -192.133

Information Criteria

Akaike (AIC) 404.267
Bayesian (BIC) 420.376
Sample-Size Adjusted BIC 389.122

(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

F_LS ON
F_LC 0.471 0.170 2.776 0.006
OMEGA 0.072 0.171 0.421 0.674

F_LS ON
GNP -0.010 0.018 -0.580 0.562

F_LC WITH
GNP -0.035 0.018 -1.888 0.059

Y1 WITH
Y2 0.000 0.000 999.000 999.000

Means
GNP 0.000 0.158 0.000 1.000
F_LC 0.070 0.018 3.895 0.000

Intercepts
Y1 0.000 0.000 999.000 999.000
Y2 0.000 0.000 999.000 999.000
F_LS -0.029 0.019 -1.563 0.118
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Variances
GNP 0.919 0.214 4.301 0.000
F_LC 0.009 0.003 3.119 0.002

Residual Variances
Y1 1.000 0.000 999.000 999.000
Y2 1.000 0.000 999.000 999.000
F_LS 0.003 0.001 2.047 0.041

------------------------ Selected output -----------------------

The estimated regression equation for the average f1,i is

f̂1,i = −0.029 − 0.010GNP + (0.471 + 0.072GNP)f2,i.

The estimatedmoderating effect with its SE is 0.072 (SE= 0.171), p = 0.674. There
is no evidence in justifying the moderating effect.

9.4 Three-level meta-analysis

When multiple effect sizes are reported in a study, we cannot assume that the effect
sizes are independent. If the conditional sampling covariance matrix can be esti-
mated, we may use the multivariate meta-analysis to model the dependence. If the
degree of dependence is unknown, we can apply a three-level meta-analysis to con-
duct the analysis by taking the unknown degree into account (see Chapter 6 and
Cheung (2014) for details). The transformed variables approach can be applied to
the three-level meta-analysis in Mplus. We illustrate how to conduct a three-level
random-effects and mixed-effects models in this section.

9.4.1 Random-effects model

A three-level meta-analysis of the transformed effect size of the ith effect size in
the jth cluster is

Level 1: ỹij = 𝜆ij
√
𝑤ij + ẽij,

Level 2: 𝜆ij = fj + u(2)ij,
Level 3: fj = 𝛽0 + u(3)j,

(9.20)

where ỹij =
√
𝑤ijyij is the transformed effect size,

√
𝑤ij = 1∕√𝑣ij is the transfor-

mation variable, ẽij =
√
𝑤ijeij is the transformed residual, 𝜆ij is the true effect size,

Var(eij) = 𝑣ij is the known sampling variance for the ith effect size in the jth clus-
ter, fj is the true effect size in the jth cluster, 𝛽0 is the average population effect,
and Var(u(2)ij) = 𝜏

2
(2) and Var(u(3)j) = 𝜏

2
(3) are the level-2 and level-3 heterogeneity

variances, respectively.
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The key feature of this approach is that the known sampling variance 𝑣ij is trans-
formed into a known variance of 1. After the transformation, 𝜆ij is considered as a
random slope at level 2; fj is a random slope at level 3. Both the level-2 and level-3
variances of the random slopes are estimated. There is only one fixed effect, which
is 𝛽0.
We illustrate the three-level meta-analysis using the data set fromBornmann et al.

(2007), which was also used in Section 6.5. The effect size was a log odds ratio that
measured the odds of being approved among the female applicants divided by the
odds of being approved among the male applicants. The data file was exported as a
plain text Bornmann07.dat. The following R code was used to export the data.

R> library(metaSEM)
R> ## Select the relevant variables to export
R> my.df <- Bornmann07[, c(3,1,4:6)]
R> ## Standardize "year"
R> my.df$Year <- scale(my.df$Year)
R> Fellow <- ifelse(Bornmann07$Type=="Fellowship", yes=1, no=0)
R> D_Phy <- ifelse(Bornmann07$Discipline=="Physical sciences",

yes=1, no=0)
R> D_Life <- ifelse(Bornmann07$Discipline=="Life sciences/biology",

yes=1, no=0)
R> D_Soc<- ifelse(Bornmann07$Discipline==

"Social sciences/humanities",
yes=1, no=0)

R> D_Mul <- ifelse(Bornmann07$Discipline=="Multidisciplinary",
yes=1, no=0)

R> C_USA <- ifelse(Bornmann07$Country=="United States", yes=1, no=0)
R> C_Aus <- ifelse(Bornmann07$Country=="Australia", yes=1, no=0)
R> C_Can <- ifelse(Bornmann07$Country=="Canada", yes=1, no=0)
R> C_Eur <- ifelse(Bornmann07$Country=="Europe", yes=1, no=0)
R> C_UK <- ifelse(Bornmann07$Country=="United Kingdom", yes=1, no=0)
R> my.df <- cbind(my.df, Fellow, D_Phy, D_Life, D_Soc, D_Mul,

C_USA, C_Aus, C_Can, C_Eur, C_UK)
R> ## Show a few cases
R> head(my.df)

Cluster Id logOR v Year Fellow D_Phy D_Life
1 1 1 -0.40108 0.01391692 -0.08020158 1 1 0
2 1 2 -0.05727 0.03428793 -0.08020158 1 1 0
3 1 3 -0.29852 0.03391122 -0.08020158 1 1 0
4 1 4 0.36094 0.03404025 -0.08020158 1 1 0
5 1 5 -0.33336 0.01282103 -0.08020158 1 0 0
6 1 6 -0.07173 0.01361189 -0.08020158 1 1 0
D_Soc D_Mul C_USA C_Aus C_Can C_Eur C_UK

1 0 0 0 0 0 1 0
2 0 0 0 0 0 1 0
3 0 0 0 0 0 1 0
4 0 0 0 0 0 1 0
5 1 0 0 0 0 1 0
6 0 0 0 0 0 1 0



348 META-ANALYSIS

R> ## Write to an external file
R> write.table(my.df, "Bornmann07.dat", row.names=FALSE,

col.names=FALSE, na="NA", sep="\t")

To conduct a three-level meta-analysis in Mplus, we need to specify the level
2 (ID) and the level 3 (Cluster) in the cluster command. The ID is just a
unique label for each effect size, while the Cluster is a label on how the effect
sizes are nested. Moreover, we specify the three-level modeling with random slopes
using ANALYSIS: TYPE=THREELEVEL RANDOM;.

TITLE: Random-effects model
DATA: FILE IS Bornmann07.dat;
VARIABLE: NAMES Cluster ID y v Year Fellow D_Phy D_Life D_Soc D_Mul

C_USA C_Aus C_Can C_Eur C_UK;

USEVARIABLES y w2; ! Use both y and w2 in the analysis
cluster = Cluster ID; ! Level 2: ID; Level 3: Cluster
within = y w2; ! Define within level variables

DEFINE: w2 = SQRT(v**(-1)); ! Define the transformation weight
y = w2*y; ! Transform the effect size

! Use three-level modeling
ANALYSIS: TYPE=THREELEVEL RANDOM; ! Activate random slope analysis

ESTIMATOR = ML;

MODEL: %WITHIN%
[y@0.0];
y@1.0;
f | y ON w2; ! Define random slope

%BETWEEN ID% ! Level 2 variance
f*; ! Optional; default model

%BETWEEN Cluster% ! Level 3 variance
f*; ! Optional; default model

OUTPUT: SAMPSTAT;
TECH1 TECH8;

------------------------ Selected output -----------------------
MODEL FIT INFORMATION

Number of Free Parameters 3

Loglikelihood

H0 Value -119.470

mailto:y@0.0
mailto:y@1.0
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Information Criteria

Akaike (AIC) 244.939
Bayesian (BIC) 251.508
Sample-Size Adjusted BIC 242.064

(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

Within Level

Intercepts
Y 0.000 0.000 999.000 999.000

Residual Variances
Y 1.000 0.000 999.000 999.000

Between ID Level

Variances
F 0.004 0.003 1.395 0.163

Between CLUSTER Level

Means
F -0.101 0.040 -2.511 0.012

Variances
F 0.014 0.009 1.546 0.122

------------------------ Selected output -----------------------

The estimated average effect with its SE based on the three-level model is
−0.101(SE = 0.040), p = 0.012. The result shows that there is a slight favor to
male applicants. The estimated level-2 and level-3 heterogeneity variances, 𝜏2(2)
and 𝜏

2
(3), are 0.004 and 0.014, respectively.

As there are two variance components, it is of interest to test the null hypoth-
esis H0 ∶ 𝜏

2
(2) = 𝜏

2
(3). This hypothesis is particularly relevant in cross-cultural

meta-analysis where 𝜏
2
(2) and 𝜏

2
(3) represent the intracultural and between-cultural

variations, respectively. We use the following Mplus code to test the equality
constraint.

TITLE: Random-effects model: taû2_3=taû2_2
DATA: FILE IS Bornmann07.dat;
VARIABLE: NAMES Cluster ID y v Year Fellow D_Phy D_Life D_Soc D_Mul

C_USA C_Aus C_Can C_Eur C_UK;

USEVARIABLES y w2;
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cluster = Cluster ID; ! Level 2: ID; Level 3: Cluster
within = y w2; ! Define within level variables

DEFINE: w2 = SQRT(v**(-1));
y = w2*y;

! Use three-level modeling
ANALYSIS: TYPE=THREELEVEL RANDOM; ! Activate random slope function

ESTIMATOR = ML;

MODEL: %WITHIN%
[y@0.0];
y@1.0;
f | y ON w2; ! Define random slope

%BETWEEN ID% ! Level 2 variance
f* (1); ! taû2_3=taû2_2

%BETWEEN Cluster% ! Level 3 variance
f* (1); ! taû2_3=taû2_2

OUTPUT: SAMPSTAT;
TECH1 TECH8;

------------------------ Selected output -----------------------
MODEL FIT INFORMATION

Number of Free Parameters 2

Loglikelihood

H0 Value -120.149

Information Criteria

Akaike (AIC) 244.298
Bayesian (BIC) 248.678
Sample-Size Adjusted BIC 242.381
(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

Within Level

Intercepts
Y 0.000 0.000 999.000 999.000

Residual Variances
Y 1.000 0.000 999.000 999.000

mailto:y@0.0
mailto:y@1.0
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Between ID Level

Variances
F 0.007 0.003 2.455 0.014

Between CLUSTER Level

Means
F -0.096 0.035 -2.775 0.006

Variances
F 0.007 0.003 2.455 0.014

------------------------ Selected output -----------------------

The pooled estimate on the level-2 and level-3 heterogeneity variances is 0.007. The
LR statistic on testing the equality constraint is −2(−120.149 + 119.470) = 1.358
which is not significant with Δ𝜒2(df = 1) = 1.358, p = 0.244.

9.4.2 Mixed-effects model

A three-level random-effects meta-analysis can be extended to a mixed-effects
model by using study characteristics as moderators. The mixed-effects model of
the transformed effect sizes of the ith effect size in the jth cluster is

Level 1: ỹij = 𝜆ij
√
𝑤ij + ẽij,

Level 2: 𝜆ij = fj + u(2)ij,
Level 3: fj = 𝛽0 + 𝛽1zj + u(3)j,

(9.21)

where zj is a moderator in the jth cluster. Now, 𝜏2(2) and 𝜏
2
(3) represent the level-2 and

level-3 residual heterogeneity after controlling for zj, respectively. If themoderators
are level-2 variables, we include them in the level-2 model; otherwise, we include
them in the level-3 model.
The following Mplus code demonstrates how to conduct a mixed-effects model

with a predictor Fellow, which is a level-2 moderator. Fellow is an indicator
for the type of applications. If the type is fellowship, it is 1; if it is grant, it is 0. As
Fellow is a level-2 variable, it is defined in BETWEEN = (ID) Fellow;.

TITLE: Mixed-effects model: Fellow as the predictor
DATA: FILE IS Bornmann07.dat;
VARIABLE: NAMES Cluster ID y v Year Fellow D_Phy D_Life D_Soc D_Mul

C_USA C_Aus C_Can C_Eur C_UK;

USEVARIABLES y Fellow w2;
cluster = Cluster ID; ! Level 2: ID; Level 3: Cluster
within = y w2; ! Define within level variables
BETWEEN = (ID) Fellow; ! Fellow is a level-2 variable
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DEFINE: w2 = SQRT(v**(-1));
y = w2*y;

! Use three-level modeling
ANALYSIS: TYPE=THREELEVEL RANDOM; ! Activate random slope function

ESTIMATOR = ML;

MODEL: %WITHIN%
[y@0.0];
y@1.0;
f | y ON w2; ! Define random slope

%BETWEEN ID% ! Level 2 variable
f ON Fellow;

%BETWEEN Cluster% ! Level 3 variance
f*; ! Optional, default model

OUTPUT: SAMPSTAT;
TECH1 TECH8;

------------------------ Selected output -----------------------
MODEL FIT INFORMATION

Number of Free Parameters 4

Loglikelihood

H0 Value -115.381

Information Criteria

Akaike (AIC) 238.763
Bayesian (BIC) 247.521
Sample-Size Adjusted BIC 234.928
(n* = (n + 2) / 24)

MODEL RESULTS
Two-Tailed

Estimate S.E. Est./S.E. P-Value

Within Level

Intercepts
Y 0.000 0.000 999.000 999.000

Residual Variances
Y 1.000 0.000 999.000 999.000

mailto:y@0.0
mailto:y@1.0
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Between ID Level

F ON
FELLOW -0.196 0.054 -3.611 0.000

Residual Variances
F 0.004 0.002 1.454 0.146

Between CLUSTER Level

Means
F -0.007 0.037 -0.178 0.859

Variances
F 0.003 0.003 0.933 0.351

------------------------ Selected output -----------------------

The estimated intercept with its SE is −0.007(SE = 0.037), p = 0.859. This indi-
cates that there is no evidence on the gender difference on grant. The estimated
regression slope with its SE is −0.196(SE = 0.054), p < 0.001. Thus, there is a
significant difference between the log odds ratios on fellowship and grant.

9.5 Concluding remarks and further readings

This chapter introduced the transformed variables approach to conduct the SEM-
based meta-analyses in Mplus. After applying the transformation, Mplus can be
used to analyze univariate, multivariate, and three-level meta-analyses. Both fixed-
and random-effects models can be used in the analyses. Other SEM packages, such
as LISREL (Jöreskog and Sörbom, 1996) and EQS (Bentler, 2006), may be used to
conduct a fixed-effects meta-analysis using the transformed variables approach or
a multiple-group approach using the WLS estimation (Cheung, 2010). Recently,
Palmer and Sterne (2014) showed how the SEM-based meta-analyses could be
implemented in Stata. Stata users may refer to their work for more details.
There are many potential applications and extensions of using Mplus to conduct

meta-analysis. For example, FIML and robust statistics can be used to handle miss-
ing predictors and nonnormal data. A more recent development is the integration
of Bayesian inferences in Mplus (Muthén and Asparouhov, 2012). Bayesian statis-
tics is an alternative choice to conducting meta-analysis (e.g., Mak et al., 2009;
Bujkiewicz et al., 2013; Sutton and Abrams, 2001). By applying the transformed
variables approach, researchers can conduct a Bayesian meta-analysis inMplus. As
Mplus has only recently been introduced as a software to conduct meta-analyses
(Cheung, 2008, 2013), more studies should explore how to apply Mplus to conduct
meta-analysis.
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Appendix A

A brief introduction to R,
OpenMx, and metaSEM
packages

This appendix provides a short introduction to the R statistical environment
(R Development Core Team, 2014), the OpenMx package (Boker et al., 2011),
and the metaSEM package (Cheung, 2014). R is a statistical environment for
data manipulation, calculations, and graphical display. It provides a complete
system for statistical analyses and statistical programming. Many state-of-the-art
statistical techniques have been implemented in R via packages. Readers can
easily download and apply these techniques. If you are not familiar with R,
you may get it started by reading some books in R, for example, Adler (2010),
Dalgaard (2008), and Zuur et al. (2009). There is an updated list of books in R
available at http://www.r-project.org/doc/bib/R-books.html. Moreover, there are
also lots of free resources available to learning R in the R Web site. Readers
are strongly recommended to go through at least An Introduction to R which
is available at http://cran.r-project.org/doc/manuals/r-release/R-intro.html. This
appendix is based on R (3.1.1), metafor (1.9-3), OpenMx (2.0.0-3654), and
metaSEM (0.9-0). The output format may be slightly different from the version
that you are using. The Web sites for the software are

(i) R: http://www.r-project.org/;

(ii) OpenMx: http://openmx.psyc.virginia.edu/; and

(iii) metaSEM: http://courses.nus.edu.sg/course/psycwlm/Internet/metaSEM/.
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A.1 R

R can be used interactively or noninteractively in batch mode. The batch mode is
usually for routine analyses and programming. We only focus the interactive mode
here.R comes with a standard command line interface for inputs and outputs. Many
new users may find it more convenient to use a graphical user interface, such as
RStudio. Users may call R by typing R in the terminal in Unix-like systems or
clicking the R icon in Windows-like systems. The following are a few features
in R:

1. Everything after # is considered as comments and ignored by R. It is always
a good practice to document the analyses using comments;

2. Everything is an object in R. We may store the results via the <- assign
operator for further processing; and

3. Everything is case sensitive in R; x and X are different objects.

We illustrate R with a few examples:

R> ## Assign 10 to x
R> x <- 10
R> ## Display the content of x
R> x

[1] 10

R> ## Multiply 5 to x, store it as X,
R> ## and display the content of X using ()
R> ( X <- 5*x )

[1] 50

R> ## x and X are different in R
R> x

[1] 10

Most of the operators inRwere built for vectorization.R usually runs faster for vec-
torized objects. Moreover, the syntax is also more compact by using vectorization.

R> ## x is a vector of data
R> ## c() is used to combine the data
R> ( x <- c(5, 6, 9, 10) )
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[1] 5 6 9 10

R> ## Square the data in x
R> (x ̂ 2)

[1] 25 36 81 100

R> ## Create another vector of data
R> ( y <- c(5, 9, 8, 11) )

[1] 5 9 8 11

R> ## Multiply the elements one by one
R> ( x*y )

[1] 25 54 72 110

Data frames are usually used to represent data in statistical analyses. The columns
and rows represent the variables and subjects, respectively. Many functions in R
read data frames as inputs. For example, we may create a data frame and use the
data for further analyses. y=y in the following example means that we create a
variable named y in the data frame copied from the data y. If we use k=y, the
content of y will be copied to a variable named k in the data frame.

R> ## Create a data frame called my.df1
R> ( my.df1 <- data.frame(y=y, x=x) )

y x
1 5 5
2 9 6
3 8 9
4 11 10

R> ## Get the summary of the data
R> summary(my.df1)

y x
Min. : 5.00 Min. : 5.00
1st Qu.: 7.25 1st Qu.: 5.75
Median : 8.50 Median : 7.50
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Mean : 8.25 Mean : 7.50
3rd Qu.: 9.50 3rd Qu.: 9.25
Max. :11.00 Max. :10.00

R> ## Calculate the covariance matrix of the variables
R> cov(my.df1)

y x
y 6.25 4.500
x 4.50 5.667

R> ## Calculate the means of the variables
R> ## apply(): apply the function either by rows or by columns
R> ## MARGIN: "1" for by rows and "2" for by columns
R> ## FUN: name of the function
R> apply(my.df1, MARGIN=2, FUN=mean)

y x
8.25 7.50

We conduct a regression analysis with the lm() (linear model) function by regres-
sion y on x. We provide two arguments to the lm() function. The first argument
ỹxmeans that y is modeled by x that specifies a linear relationship between x and
y, while the second argument data=my.df1 supplies the data. After the analysis,
we plot the data with the plot() function and draw the best fitted line with the
abline() function.

R> ## Conduct a simple regression by regressing y on x
R> my.lm <- lm(ỹx, data=my.df1)
R> ## Get the summary
R> summary(my.lm)

Call:
lm(formula = y ̃ x, data = my.df1)

Residuals:
1 2 3 4

-1.265 1.941 -1.441 0.765

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.294 3.780 0.61 0.61
x 0.794 0.486 1.63 0.24

Residual standard error: 2 on 2 degrees of freedom
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Multiple R-squared: 0.572, Adjusted R-squared: 0.358
F-statistic: 2.67 on 1 and 2 DF, p-value: 0.244

R> ## Get the regression coefficient
R> coef(my.lm)

(Intercept) x
2.2941 0.7941

R> ## Figure A.1
R> ## Plot the data on y against x
R> plot(ỹx, data=my.df1)
R> ## Draw the best fitted line using the my.lm object
R> abline(my.lm)

When the basic functions in R are not sufficient for the analyses, we may extend
the power of R by installing packages. Packages store functions and data sets for
similar analyses. The Comprehensive R Archive Network (CRAN) repository fea-
tures more than 6100 contributed packages at the time of writing. They can be
installed using the install.packages() function. We can also update the
installed packages using the update.packages() function. As the OpenMx
and metaSEM packages are not available in the CRAN repository yet, readers
many refer to the Web sites of OpenMx and metaSEM on how to install them.
As an example, we install the metafor package (Viechtbauer, 2010) and use it
to calculate the standardized mean difference (SMD) for two studies. Each row

x

y
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6 7 8 95 10

Figure A.1 A plot of y against x with the best fitted regression line.
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represents one study. The calculated effect size and its sampling variance are called
yi and vi, respectively.

R> ## We only need to install it once.
R> install.packages("metafor")

R> ## Load the library before use
R> library("metafor")
R> ## Prepare a dataset
R> ## Study ID in the meta-analysis
R> Study <- c("Author (2012)", "Author (2014)")
R> ## Means of the treatment group
R> m1i <- c(12, 14)
R> ## SDs of the treatment group
R> sd1i <- c(4, 5)
R> ## Sample sizes of the treatment group
R> n1i <- c(40, 50)
R> ## Means of the control group
R> m2i <- c(10, 11)
R> ## SDs of the control group
R> sd2i <- c(4, 5)
R> ## Sample sizes of the control groups
R> n2i <- c(40, 50)
R> ## Create a data frame
R> ( my.df2 <- data.frame(Study=Study, m1i=m1i, sd1i=sd1i, n1i=n1i,

m2i=m2i, sd2i=sd2i, n2i=n2i) )

Study m1i sd1i n1i m2i sd2i n2i
1 Author (2012) 12 4 40 10 4 40
2 Author (2014) 14 5 50 11 5 50

R> ## Calculate the SMD
R> escalc(measure="SMD", m1i=m1i, sd1i=sd1i, n1i=n1i,

m2i=m2i, sd2i=sd2i, n2i=n2i, data=my.df2)

Study m1i sd1i n1i m2i sd2i n2i yi vi
1 Author (2012) 12 4 40 10 4 40 0.4952 0.0515
2 Author (2014) 14 5 50 11 5 50 0.5954 0.0418

R provides a comprehensive help manual. There are several functions helping
users to search the appropriate manuals.

R> ## Read the help manual on the log() function
R> help(log)
R> ?log
R> ## Run the examples in the manual
R> example(log)
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R> ## Search the relevant functions with log()
R> help.search("log")
R> ## Start the html browser
R> help.start()

A.2 OpenMx

As the metaSEM package is based on the OpenMx package, it is helpful to learn
a bit the syntax of the OpenMx package. The OpenMx package is a matrix opti-
mizer that can be used to fit general structural equation models. We illustrate the
basic idea with a simple regression model. We use the RAM formulation for model
specifications (see Section 2.2.3). The variables are arranged as x and y in the
model specification.

R> ## Load the library
R> library("OpenMx")
R> ## Sample covariance matrix
R> ( my.cov <- matrix(c(4.5, 2.0, 2.0, 3.6), nrow=2, ncol=2,

dimnames=list(c("x","y"), c("x","y"))) )

x y
x 4.5 2.0
y 2.0 3.6

R> ## Sample means of the variables
R> my.means <- c(5, 7)
R> ## Add the names for the means
R> names(my.means) <- c("x", "y")
R> my.means

x y
5 7

R> ## Prepare the matrices in the RAM formulation
R> ## A matrix: asymmetric matrix representing regression
R> ## coefficients and factor loadings
R> ## type: type of the matrix; "Full": full matrix
R> ## free: whether the parameters are free or fixed
R> ## values: starting values for free parameters and fixed values
R> ## for fixed parameters
R> ## labels: labels of the parameters; they are constrained equally
R> ## if the labels are the same
R> ## byrow: whether the data are arranged by row (or by column)
R> ## name: name of the matrix
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R> A1 <- mxMatrix(type="Full", nrow=2, ncol=2,
free=c(FALSE, FALSE,

TRUE, FALSE),
values=0,
labels=c(NA, NA,

"beta1", NA),
byrow=TRUE,
name="A1")

R> ## S matrix: symmetric matrix representing variance covariance of
R> ## the variables
R> ## type: "Symm" means symmetric matrix
R> S1 <- mxMatrix(type="Symm", nrow=2, ncol=2,

values=c(1, 0,
0, 1),

free=c(TRUE, FALSE,
FALSE, TRUE),

labels=c("VarX", NA,
NA, "ErrorVarY"),

byrow=TRUE,
name="S1")

R> ## M matrix: mean vector of the variables
R> M1 <- mxMatrix(type="Full", nrow=1, ncol=2,

free=c(TRUE, TRUE),
values=c(0, 0),
labels=c("meanx", "beta0"),
name="M1")

R> ## F matrix: a selection matrix to select the observed variables
R> ## type: "Iden" means identity matrix
R> F1 <- mxMatrix(type="Iden", nrow=2, ncol=2, name="F1")
R> ## Create a model
R> ## The sample size is 100.
R> reg.model <- mxModel("Simple Regression",

mxData(observed=my.cov, type="cov",
numObs=100, means=my.means),

A1, S1, M1, F1,
mxExpectationRAM(A="A1", S="S1",

F="F1", M="M1",
dimnames = c("x","y")),
mxFitFunctionML())

R> ## Run the analysis
R> reg.fit <- mxRun(reg.model, silent=TRUE)

R> ## Display the results
R> summary(reg.fit)

------------------------ Selected output -----------------------

free parameters:
name matrix row col Estimate Std.Error lbound ubound

1 beta1 A1 2 1 0.4444 0.07801
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2 VarX S1 1 1 4.5000 0.63960
3 ErrorVarY S1 2 2 2.7111 0.38534
4 meanx M1 1 x 5.0000 0.21213
5 beta0 M1 1 y 4.7778 0.42338

observed statistics: 5
estimated parameters: 5
degrees of freedom: 0
-2 log likelihood: 445.6
saturated -2 log likelihood: 445.6
number of observations: 100
chi-square: 1.745e-09
chi-square degrees of freedom: 0
chi-square p-value: 0

------------------------ Selected output -----------------------

A.3 metaSEM

The metaSEM conducts meta-analyses by formulating meta-analytic models as
structural equation models. There are two main types of analyses in the package—
SEM-based meta-analyses, for example, univariate, multivariate, and three-level
meta-analyses, and meta-analytic structural equation modeling with the two-stage
structural equation modeling (TSSEM) approach. This section shows how to read
external data for a meta-analysis.
When we are conducting a meta-analysis, the data are likely externally stored

in some formats such as Excel. Users can save the data in comma-separated val-
ues (CSV) format. For example, the metaSEM package includes a sample data set
Becker83. The data set includes studies on sex differences in conformity using
the fictitious norm group paradigm reported by Becker (1983). As an illustration,
we exported the data to an external file named Becker83.csv. The content of
the file is displayed as follows.

"study","di","vi","percentage","items"
1,-0.33,0.03,25,2
2,0.07,0.03,25,2
3,-0.3,0.02,50,2
4,0.35,0.02,100,38
5,0.69,0.07,100,30
6,0.81,0.22,100,45
7,0.4,0.05,100,45
8,0.47,0.07,100,45
9,0.37,0.05,100,5
10,-0.06,0.03,100,5

Suppose that the data file is stored in the same directory as the R session; we can
read the file with the following syntax. If the file is stored in a different directory, we
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need to specify the directory. Please note that the path is specified differently for
Windows-like systems. Instead of using "d:\abc\def" in Windows-like sys-
tems, we have to use either "d:\\abc\\def" or "/d/abc/def".

R> ## Load the library
R> library("metaSEM")
R> ## Display the current directory
R> getwd()
R> ## Set the working directory to /mydirectory/R/data/
R> ## in Unix-like systems
R> # setwd("/mydirectory/R/data/")
R> ## Set the working directory to D:\mydirectory\R\data
R> ## in Windows-like systems
R> # setwd("D:\\mydirectory\\R\\data")
R> # setwd("/D/mydirectory/R/data")
R>
R> ## Read the data in CSV format
R> ( my.df3 <- read.csv("Becker83.csv") )

study di vi percentage items
1 1 -0.33 0.03 25 2
2 2 0.07 0.03 25 2
3 3 -0.30 0.02 50 2
4 4 0.35 0.02 100 38
5 5 0.69 0.07 100 30
6 6 0.81 0.22 100 45
7 7 0.40 0.05 100 45
8 8 0.47 0.07 100 45
9 9 0.37 0.05 100 5
10 10 -0.06 0.03 100 5

R> ## Mixed-effects meta-analysis with log(items) as the predictor
R> summary( meta(y=di, v=vi, x=log(items), data=my.df3) )

------------------------ Selected output -----------------------

95% confidence intervals: z statistic approximation
Coefficients:

Estimate Std.Error lbound ubound z value Pr(>|z|)
Intercept1 -3.20e-01 1.10e-01 -5.35e-01 -1.05e-01 -2.92 0.0036
Slope1_1 2.11e-01 4.51e-02 1.23e-01 2.99e-01 4.68 2.9e-06
Tau2_1_1 1.00e-10 2.01e-02 -3.94e-02 3.94e-02 0.00 1.0000

Intercept1 **
Slope1_1 ***
Tau2_1_1
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



366 META-ANALYSIS

Q statistic on the homogeneity of effect sizes: 30.65
Degrees of freedom of the Q statistic: 9
P value of the Q statistic: 0.0003399

Explained variances (R2):
y1

Tau2 (no predictor) 0.08
Tau2 (with predictors) 0.00
R2 1.00

Number of studies (or clusters): 10
Number of observed statistics: 10
Number of estimated parameters: 3
Degrees of freedom: 7
-2 log likelihood: -4.208
OpenMx status1: 0 ("0" or "1": The optimization is considered fine.
Other values indicate problems.)

------------------------ Selected output -----------------------

When we are conducting TSSEM, the data are usually in the format of correlation
(or covariance) matrices. The data are more complicated than conventional
meta-analyses. The metaSEM package provides three functions (readFull-
Mat(), readStackVec(), and readLowTriMat()) to read correlation
matrices stored externally. For example, the metaSEM package includes a sample
data set Hunter83 that has been used in Section 7.6.3. The correlation matrices
of this data set are stored as lower triangle matrices stacked together in a file
Hunter83.txt. When there are missing values, they are represented by NA in
the file. Part of the content of Hunter83 is displayed as follows.

1
.47 1
.35 .49 1
.15 .27 .19 1
1
.39 1
NA NA NA
.28 .39 NA 1
1
.33 1
NA NA NA
.29 .25 NA 1
1
NA NA
.51 NA 1
.29 NA .27 1
1
NA NA
.69 NA 1
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.40 NA .38 1
NA
NA 1
NA .72 1
NA .05 .32 1
1
.62 1
.50 .62 1
NA NA NA NA

We read this file using the readLowTriMat() function in the metaSEM pack-
age. As the analyses have been illustrated in Section 7.6.3, the output are not listed
here.

R> library("metaSEM")
R> ## Read lower triangle matrices
R> ## no.var: no. of variables for the lower triangle matrices
R> my.df4 <- readLowTriMat("Hunter83.txt", no.var=4)
R> ## Add the variable names to improve readability
R> my.df4 <- lapply(my.df4, function(x)

{dimnames(x) <- list(c("A","K","W","S"),
c("A","K","W","S"))

x})
R> ## Sample sizes for the studies
R> my.n4 <- c(443,186,292,233,368,360,380,366,456,78,384,59,160,210)
R> #### Random-effects model with diagonal elements only
R> ## First stage analysis
R> random1 <- tssem1(my.df4, my.n4, method="REM", RE.type="Diag")
R> ## rerun to remove error code
R> random1 <- rerun(random1, silent=TRUE)
R> summary(random1)
R> A2 <- create.mxMatrix(c(0, 0, 0, 0,

"0.1*A2J", 0, 0, 0,
"0.1*A2W", "0.1*J2W", 0, 0,
0, "0.1*J2S", "0.1*W2S", 0),
type="Full", nrow=4, ncol=4, byrow=TRUE)

R> S2 <- create.mxMatrix(c(1,"0.1*Var_J",
"0.1*Var_W", "0.1*Var_S"),
type="Diag")

R> ## Second stage analysis
R> ## Model without direct effect from Ability to Supervisor
R> ## diag.constraints=TRUE is required as there are mediators
R> summary( tssem2(random1, Amatrix=A2, Smatrix=S2,

intervals.type="LB", diag.constraints=TRUE) )
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38–9
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two-stage structural
equation modeling
(TSSEM), 224–7, 234–5

R statistical environment, 357–62
see also illustrations using R

RAM see reticular action model
random-effects model
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effect sizes heterogeneity, 92–3,
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estimation, 88–90, 131–2
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heterogeneity variance, 87–8
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maximum likelihood (ML)
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meta-analytic structural equation
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233–5, 239–42, 253–8,
261–5, 268–73

mixed-effects model, 96–9
Mplus, 317–21, 333–7, 346–51
multivariate meta-analysis,

127–34, 137–8, 147–8,
157–60, 333–7

restricted maximum likelihood
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sampling covariances, 133–4
structural equation modeling

approach, multivariate
meta-analysis, 137–8

structural equation modeling
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meta-analysis, 189–93

structural equation modeling
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meta-analysis, 101–2

three-level meta-analysis, 183–7,
189–93, 202–3, 346–51
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233–5, 253–8, 261–5,
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univariate meta-analysis, 87–93,
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317–21
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(UMM), 87–8
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variance component structure,
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variance component testing, 90–2,
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regression model
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equation modeling
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likelihood estimation

repeated measures (RM)
effect sizes, 53–5, 65–6,

69–71
illustrations using R, 69–71
structural equation modeling

(SEM), 65–6
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restricted maximum likelihood
estimation (REML),
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(MLE), 242
multivariate meta-analysis, 287
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