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Preface

The robustness of a communication network under attacks is of prominent
importance to both civilian service providers and military system operators. In
this monograph, we start with literature overview of the network reliability study
for networks under various attacks and then focus on the robustness of networks
under large-scale physical attacks. In particular, we study the area-attack case,
where each attack kills all the nodes and links that are touched by the attack area.
Such a scenario can be a result of attacks from large-scale power outages or weapons
of massive destruction, and, in general, it belongs to the category of networks under
correlated attacks. Specifically, for the network under consideration, we assume
that the nodes are deployed over a unit area according to a Poisson point process,
and consider both the traditional random network model where each node pair is
connected with a certain probability and the range-limited random network model
where a node pair is connected with a certain probability only if the two nodes
are within a certain range. The attack area is modeled as a small dish with radius
r and randomly located within the unit area. Based on such network and attack
models, we first study the link-level network robustness by investigating the link
loss probability and the expected number of lost links. We then study the network-
wide robustness under an area attack, where we first present four desired properties
for a well-defined robustness measure and accordingly propose a new measure: the
percentage of the surviving end-to-end communication pairs. Simulation results on
a real-world network are given to verify our analytical results.

College Station, Texas, USA Qing Zhou
California, USA Long Gao
China, People’s Republic Ruifang Liu
College Station Texas, USA Shugang Cui
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Chapter 1
Introduction

To design a network that is robust under attacks, the first step is to define a robustness
measure for evaluating the network response under attacks. Such a measure could be
in different forms regarding different attacks. In the next, we first introduce several
attack classifications: small-scale vs. large-scale attacks, physical vs. logical attacks,
random vs. targeted attacks, and geographically concentrated vs. distributed attacks.
Afterwards, we focus on a particular type of large-scale attacks, the area attacks, for
which we investigate the appropriate robustness measure in this monograph.

1.1 Small-Scale Versus Large-Scale Attacks

Here, we first focus on two different attack classes: small-scale attacks vs. large-
scale attacks.

1.1.1 Small-Scale Attacks

Small-scale attacks lead to single or a small amount of failures that are usually in
the form of targeted losses of nodes or links, where the attackers attack on a small
number of pre-determined nodes in order to manipulate certain aspects of the overall
network functionality, such as the connectivity [1] or the maximum flow of the
network [2,3]. Specifically, for the connectivity-oriented one, the attackers target at
maximizing the attack impact by tearing the network into disconnected components.
For the maximum flow oriented ones, the objective for the attackers is to find an
attack strategy to maximize certain utility functions, which leads to the Network
Inhibition Problem (NIP) [4] or the Maximum Flow Network Interdiction Problem
(MFNIP) [5]. In particular, the objective could be minimizing the maximum flow
value in the network graph under the constraint that the total destruction cost is less
than a fixed budget.

Q. Zhou et al., Network Robustness under Large-Scale Attacks, SpringerBriefs in
Computer Science, DOI 10.1007/978-1-4614-4860-0 1, © The Authors 2013
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2 1 Introduction

1.1.2 Large-Scale Attacks

A massive amount failures occur under large-scale attacks, whose initial pattern
could be either targeted or random. Besides the traditional targeted large-scale
attacks, where a large amount of nodes or links are attacked simultaneously, a new
effective form could be started by destroying a small amount of targeted nodes, such
that a spontaneous chain reaction is triggered. Specifically, in a network system with
highly dependent parts [6–8], the balance of loads could be destroyed by attacking
a small fraction of connections, which triggers large-scale cascading failures across
multiple interdependent parts [9–11]. On the other hand, large-scale attacks could
happen in the form of random killings of a significant number of links or nodes in
the network [12], where the function of the overall system leans on the percentage of
surviving devices [13,14]. It has been proved that the survived nodes are connected
almost surely when the attack probability is below a certain critical value; otherwise
the network is broken into disconnected parts with probability one [15, 16].

1.2 Physical Versus Logical Attacks

Another intuitive classification of attacks is to catalog them into physical attacks
and logical attacks.

1.2.1 Physical Attacks

Under physical attacks, parts of the infrastructure are permanently destroyed and
the damaged ones need to be physically replaced in order to recover the function
of the network. One popular form of physical attacks is via bombing. The most
effective bomb against communication networks is the Electromagnetic Pulse
(EMP) bomb [17, 18]; by coupling with electrical systems, the resulting rapidly-
changing electric and magnetic fields produce damaging current and voltage surges
across the communications infrastructure. Another popular source for physical
attacks is natural hazard, such as wild fires, earthquakes, hurricanes, or floods [19],
where the resulting loss depends on the resilience of the corresponding networks.
Besides the communication network, other vulnerable networks physical attacks are
the transportation networks [20–22] and power grids [23, 24].

1.2.2 Logical Attacks

Logical attacks focus on manipulating networking software or information flows,
for which the Internet has been the main target [15, 25], where wide-spread
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failures could be caused by simply inserting virus that spreads along the logical
connections across the network [26–28]. Different from the permanent damages
caused by physical attacks, logical attacks usually cause temporary malfunctions on
the devices, where the system could be automatically recovered after the attacks are
isolated and logically removed [29–31].

1.3 Random Versus Targeted Attacks

From the earlier discussion, we see that the attack patterns could also be divided
into random attacks and targeted attacks, where the random attacks choose targets
uniformly and the targeted attacks choose critical ones to destroy.

The uniform target selection for random attacks could be due to many reasons:
e.g., the topology of the networks is unaccessible, where the attackers cannot figure
out the distinctive values of different targets; the attack target is uncontrollable,
where the attackers could only start an attack but cannot control the accuracy of
the attack. Under a random attack, the robustness of a network is usually evaluated
by some statistical measures, which is usually built upon some random network
models. In particular, recent results on studying the World-Wide Web (WWW) [32–
34], the Internet [35], and other large networks [36] indicate that many networks
belong to an inhomogeneous network class known as scale-free networks [15]. One
property of scale-free network models is that their connectivity distribution decays
according to power-law. Meanwhile, scale-free networks show a high tolerance
against random failures, where nodes fail with uniform probabilities. However,
scale-free networks are extremely vulnerable under targeted attacks: When the hub
nodes are attacked, the diameter of the network increases rapidly and many isolated
fragments appear [37].

Targeted attacks try to damage certain components in a network, where people
are interested in identifying the most vulnerable part of a given network to attack
or to protect. For example, one recent study on the vulnerability of the fiber
infrastructure proposed an algorithm to identify the most vulnerable part of the
network by minimizing certain cost functions [38]. One way to make the system
robust against such attacks is to add redundant components around the critical parts
[39, 40].

1.4 Geographically Concentrated Versus Distributed Attacks

Much of traditional research has been focusing on geographically distributed
attacks, where the failures across physical neighbors are usually assumed indepen-
dent [41], especially for the studies on logical attacks [42,43]. In recent years, more
results appear on geographically concentrated failures over fiber-optic networks



4 1 Introduction

[38, 44], wireless mesh networks [45, 46], and overlayed networks [47]. In such
cases, the failures of the attacked nodes and links are correlated as a function of
their geographic locations. Specifically, the attack on a particular node may affect
its geographic neighbors with high probability, but may not affect its neighbors on
the logic connectivity graph.

1.5 Robustness Measure for Area Attacks

In the rest of this monograph, we define and focus on a new type of attacks, i.e.,
the area attack, which is large-scale, random, physical, and geographically concen-
trated. As related works, in [38, 48], the authors studied large-scale geographically-
concentrated failures in the USA fiber backbone network, where the focus is on
identifying the most vulnerable parts of the fiber infrastructure under deterministic
attacks, with the worst-case line segment and circular cuts being investigated as
attack models. However, the results in these works are only applicable over a
deterministic network topology with targeted attacks. We need to establish some
fundamental results over random networks with random attacks, where identifying
appropriate robustness measures is the focus in this monograph.

In earlier works, several measures have been proposed to evaluate the structural
robustness of complex networks, e.g., the size of the giant component [12], the
cluster size distribution [37], the network diameter [37], and the node connectivity
[49]. However, as shown later, these measures may not be suitable for evaluating
network performance under area attacks. For this new type of large-scale correlated
attacks, many new questions rise naturally:

• How does the attack radius affect the link survivability?
• How many links will be destroyed in average by one attack?
• How much is the overall network functionality degraded by the attack?
• What kind of networks is more robustness to area attacks?

All the above questions point to the need of a good robustness measure for a
network under area attacks. In the monograph, we first adopt the average probability
of an arbitrary link being attacked and the expected number of destroyed links to
study the link-level network robustness under area attacks. Then for the network-
wide robustness, we first discuss four desired properties for a well-defined measure
and accordingly propose a new measure based on the percentage of surviving end-
to-end communication pairs. We provide the analytical and simulation results for
both cases of the traditional random network and the random network with limited
communication range (LCR), which show that a LCR random network is more
robust compared with the traditional random network under area attacks.

The rest of the monograph is organized as follows. In Chap. 2, we describe the
network and attack models for the area-attack problems. In Chap. 3, the link-level
network robustness under area attacks is studied in terms of the average probability
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of an arbitrary link being attacked and the expected number of destroyed links for
both the LCR random network model and the traditional random network model. In
Chap. 4, we introduce a new measure of network robustness under area attacks and
compare the robustness performance under the LCR random network model and the
traditional random network model. The simulation results are given in Chap. 5 to
verify our analytical results. Finally, we summarize our conclusions in Chap. 6.



Chapter 2
System Models

In this chapter, we describe the network models and the attack model for the area
attack problem under consideration.

2.1 Network Models

We consider a geographic unit square area W , i.e., W = {(x,y) : 0 ≤ x ≤ 1,0 ≤
y ≤ 1}. In the traditional random network model G(λ , pr) [50], the nodes are
randomly distributed in W with density λ and node pairs are connected randomly
with a probability pr.

In the LCR random network model GLCR(λ , p, l), the nodes are distributed
randomly in the area W with density λ . The underlying connectivity graph is formed
as: If two nodes are located within a distance l, they are connected to each other with
a probability p; there are no connections between nodes that are located further than
l-distance apart. We also assume the periodic boundary condition (PBC) [51] on W
in the LCR random network model to eliminate the boundary effects, i.e., if a node is
located at (x,y), we assume that the node also appears at (x+n,y+m) with n,m∈Z.
The effect of PBC simplification will be later discussed. The difference between the
LCR random network model and the traditional random network model is that the
former one has a range limitation and the latter does not, such that the PBC is not
suitable for the traditional random network model. We assume that p and pr are
large enough to maintain a full connectivity for both network models.

2.2 Attack Model

We model the attack area as a circular disk with radius r and center c(xc,yc), where c
is uniformly distributed within W . We refer to the region being attacked as A (c,r),
in which all the nodes and links are destroyed. We demonstrate an example of the

Q. Zhou et al., Network Robustness under Large-Scale Attacks, SpringerBriefs in
Computer Science, DOI 10.1007/978-1-4614-4860-0 2, © The Authors 2013
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8 2 System Models

Fig. 2.1 A network example,
λ = 100, l = 0.2, p = 0.5, and
r = 0.1

LCR random network under an area attack in Fig. 2.1 (λ = 100, l = 0.2, p = 0.5,
and r = 0.1), where the disk in the center is the attack area, with the dotted line
segments and shadowed nodes touched by the attack area being the destroyed links
and nodes.



Chapter 3
Link-Level Network Robustness to Area Attacks

In this chapter, we study the link-level network robustness to area attacks. We first
derive the average probabilities of an arbitrary link being attacked for both the LCR
random network and the traditional random network. Afterwards, we present the
expected numbers of the destroyed links for both cases.

3.1 Average Probability of an Arbitrary Link being Attacked

In this section, we first present the probability of being attacked for a link with a
given length. Then we derive the average loss probability for an arbitrary link for
both the LCR random network case and the traditional random network case.

As shown in Fig. 3.1 with a given attack area A (c,r), for a particular link L1

with length l1, it is destroyed if the center of the attack area is in the olivary area S.
Therefore, the probability of being attacked for L1 can be expressed as

Pattack(l1) =
|S|
|W | =

(2l1r+πr2)

1
= 2l1r+πr2, (3.1)

where | · | denotes the volume.
Since the nodes and the attack area are uniformly distributed, the network

geometry has a symmetric property, such that the probability of a link being killed
is the same as other links of the same length (by neglecting the boundary effects).

3.1.1 The LCR Random Network Case

In a LCR random network, we assume the PBC on W . We denote fLCR(x) as the
probability density function (PDF) of the link length, and we have

fLCR(x) ·dx (3.2)

Q. Zhou et al., Network Robustness under Large-Scale Attacks, SpringerBriefs in
Computer Science, DOI 10.1007/978-1-4614-4860-0 3, © The Authors 2013
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Fig. 3.1 Single link example

= Pr(A randomly selected link has the length between x and x+ dx) (3.3)

� PLCR(x) (3.4)

Since we assume the PBC along both the x and y directions, the network is
homogeneous. Let us fix one end of a link; and PLCR(x) is equal to the probability of
the other end being located in the ring area centered at the first end along the radius
from x to x+ dx [52], which could be expressed as

PLCR(x) =
2πx ·dx

π l2 , (3.5)

where 2πx · dx is the area of the ring and π l2 is the area of the disk with the
radius of l.

Therefore, we have

fLCR(x) =
2
l2 x, x ∈ [0, l]. (3.6)

Combining (3.1) and (3.6), the average probability of an arbitrary link being
attacked in the LCR random network model is given by

PLCR =

∫
Pattack(x) f (x)dx (3.7)

=
4
3

lr+πr2. (3.8)
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3.1.2 The Traditional Random Network Case

In the traditional random network, there is no local limitation on the link length
and the range of a link length is (0,

√
2). We denote fRN(x) as the PDF of the link

length in the traditional random network. Similar to the LCR random network case,
the average probability of an arbitrary link being attacked in the traditional random
network model is given by

PRN =

∫
Pattack(x) fRN(x)dx (3.9)

=
4+ 2

√
2

15
r+πr2 − 2

3
r log(1+

√
2− 4

3
r) log(

√
2− 1), (3.10)

where fRN(x) is derived in Appendix and is given by

fRN(x) =

⎧⎨
⎩

2πx− 8x2+ 2x3, x ∈ [0,1]

2x(−2arcsin
(
−2+x2

x2

)
− 2+ 4(x2− 1)

1
2 − x2), x ∈

(
1,
√

2
) (3.11)

3.2 The Expected Number of Destroyed Links

In this section, we first derive the expected number of destroyed links in an arbitrary
LCR random network. We then present the result in an arbitrary traditional random
network. Finally, we investigate the case when the network topology is fixed.

3.2.1 The LCR Random Network Case

In the LCR random network, the expected total number of node pairs is given by

Npair = E(CN
2 ) =

λ 2

2
(3.12)

where N is a Poisson random variable with density λ .
The probability that a link exists between two randomly chosen nodes ni and n j

can be expressed as

P(||ni − n j|| ≤ l) =
π l2

|W | p = π l2 p, (3.13)

where ||ni − n j|| is the distance between ni and n j.
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Table 3.1 Notations in the proof of Theorem 3.1

Terms Definition

ΩA The sample space of all possible realizations of the area attack
A A random variable which is drawn from ΩA with the same probability
Am An arbitrary area attack in ΩA

ΩN The sample space of all possible network realizations
N A random network which is drawn from ΩN with the same probability
Ni An arbitrary network realization in ΩN

ΩL The sample space of all possible realizations of the links
L A random link which is drawn from ΩL with the same probability
LN The set of the links in the network N
l j,N An arbitrary link in LN

PN The set of all paths which connect all the communication pairs in the
given network N

p j,N An arbitrary path in PN

Therefore, the expected number of links in the network can be calculated as

NLCR = NpairP(||ni − n j|| ≤ l) =
1
2

π l2 pλ 2. (3.14)

Theorem 3.1. Although the attacks over different links may be correlated, the
expected number of destroyed links in the whole network is given as

Nd LCR = NLCRPLCR, (3.15)

which is the same as the case when each link gets attacked independently.

Proof. First, we define some notations in Table 3.1.
We assume that L and A are independent, and N and A are independent. Let

1{l j,N ,A} denotes an indicator function given as:

1{l j,N ,A} =
{

1, the link l j,N is attacked by A
0, otherwise

(3.16)

The number of the destroyed links in N by an area attack A can be expressed as

∑
l j,N∈LN

1{l j,N ,A}. (3.17)

Therefore the expected number of destroyed links in the network under the area
attack is given as

EN,A

(
∑

l j,N∈LN

1{l j,N ,A}

)
, (3.18)
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which implies that, we count the number of the destroyed links for every possible
network realization and every possible area attack, and then average the number
over the all the possible network realizations and all the possible area attacks.

On the other hand, the expected number of links in the network can be expressed
as EN(|LN |). Therefore, we have

EN,A

(
∑

l j,N∈LN

1{l j,N ,A}

)
(3.19)

= EN

(
EA

(
∑

l j,N∈LN

1{l j,N ,A}

))
(3.20)

= EN

(
∑

l j,N∈LN

EA

(
1{l j,N ,A}

))
(3.21)

= EN

(
∑

l j,N∈LN

Pattack

(
xl j,N

))
(3.22)

=
∑N∈ΩN ∑l j,N∈LN

Pattack

(
xl j,N

)

|ΩN | (3.23)

=
limmaxΔi→0 ∑n

i=0

((
∑N∈ΩN

|LN |
) · fRN (ti)Δi ·Pattack(ti)

)
|ΩN | , (3.24)

where xl j,N is the length of l j,N , 0= a0 ≤ t1 ≤ a1 ≤ t2 ≤ a2 ≤ ·· · ≤ an−1 ≤ tn ≤ an = l
is a tagged partition over the range of the link length, Δi = ai − ai−1 is the width of
sub-interval i, ∑N∈ΩN

|LN | is the total number of links in all network realizations,
and fRN(ti)Δi is the probability of the length of an arbitrary link being in (ai−1,ai).
The Riemann sums in (3.24) can be written as

∫
∑N∈ΩN

|LN | · fRN(x) ·Pattack(x)dx

|ΩN | (3.25)

=
∑N∈ΩN

|LN |
|ΩN | ·

∫
fRN(x) ·Pattack(x)dx (3.26)

= EN(|LN |) ·
∫

fRN(x) ·Pattack(x)dx, (3.27)

As such, we prove that Nd LCR = NLCRPLCR, i.e., the expected number of
destroyed links under area attack is the same as the one under link-independent
attacks.

From the above theorem it is clear that, in general, the attacks over different
links are correlated in each area attack realization. However, the expected number
of attacked links, which is averaged over all realizations, is only dependent on PLCR;
the attack correlation between the links is eliminated by the expectation operation.



14 3 Link-Level Network Robustness to Area Attacks

3.2.2 The Traditional Random Network Case

Given the fact that the expected total number of links in the traditional random
network is

NRN = E(CN
2 )pr =

1
2

λ 2 pr, (3.28)

the expected number of destroyed links by a randomly located area attack can be
calculated as

Nd RN = NRNPRN . (3.29)

The above simple relation follows a similar argument to that of Theorem 3.1.

3.2.3 The Fixed Network Case

In the previous analysis of the section, all the measures are expected values over all
possible random realizations of the network topology. In the next, we fix a network
realization, i.e., the geographic locations of all the links and the corresponding
connectivity graph are fixed. We then derive the expected number of destroyed
links only over the random realizations of the attack area. The following result is
applicable to analyzing the performance of a given deterministic network under area
attacks.

Let M be the number of destroyed links in a given network. The expectation of
M over attack locations can be expressed as

E(M) =
∞

∑
i=1

iqi, (3.30)

where qi denotes the probability of a total of i links being attacked.
For a given link, we know that the link is attacked if the center of the attack

area is within the corresponding olivary region around the link as shown in Fig. 3.1.
Therefore, qi can be expressed as

qi =
|Si|
|W | , (3.31)

where |Si| represents the sum area of all the overlapping parts intersected exactly by
i olivary regions around all sets of i links. With the example shown in Fig. 3.2, for i=
1, |S1| denotes the sum area of the shadowed parts that each covers exactly one link,
i.e., |S1| = |S11|+ |S12|+ |S13|+ |S14|; for i = 2, |S2| = |S21|+ |S22|+ |S23|+ |S24|;
and for i = 3, |S3|= |S31|.
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Fig. 3.2 An example of the
overlapping olivary regions

Substituting (3.31) into (3.30), we have

E(M) =
∑N

n=1 |Tn|
|W | , (3.32)

where N is the total number of links and Tn denotes the area of the olivary region
around link n.

For the example in Fig. 3.2, we now illustrate the details on how to calculate
(3.32). Specifically, we have

|T1| = |S11|+ |S21|, (3.33)

|T2| = |S12|+ |S21|+ |S22|+ |S23|+ |S31|, (3.34)

|T3| = |S13|+ |S22|+ |S24|+ |S31|, (3.35)

|T4| = |S14|+ |S23|+ |S24|+ |S31|. (3.36)

Therefore, the expectation (over attack locations) of M in this given network
realization can be expressed as

E(M) =
3

∑
i=1

iqi

= 1 · |S1|
|W | + 2 · |S2|

|W | + 3 · |S3|
|W |

=
|T1|+ |T2|+ |T3|+ |T4|

|W | . (3.37)



Chapter 4
Network-Wide Robustness to Area Attacks

In this chapter, we consider the network-wide robustness to area attacks. We first
give four properties that a good network robustness measure should possess.
We then propose a new measure for network robustness: the percentage of surviving
communication pairs, which can be proven to satisfy the desired four properties.
We further compare other existing network robustness measures against the pro-
posed one. Afterwards, we analyze the robustness of the LCR random network and
the traditional random network.

4.1 Properties of a Good Robustness Measure

Before discussing the properties that a good network robustness measure should
have, we first define the segment size vector. Let S = (s1,s2, . . . ,sk) denotes a
segment size vector for a given network, where si is the number of nodes in the
ith segment and k is the total number of segments. For a network G under attack,
the robustness measure R should at least have the following four properties.

Property 4.1 (Normalization). For the convenience of comparison, we desire 0 ≤
R ≤ 1, where a higher R value implies a more robust network.

This property makes the robustness of two different networks comparable.

Property 4.2 (Permutation). If G1 and G2 are two networks with S1 =
(s1,s2, . . . ,sk) and S2 = (sm1 ,sm2 , . . . ,smk ), such that mi ∈ {1,2, . . . ,k}, i ∈
{1,2, . . . ,k}, and mi �= m j, ∀i �= j, we have R(S1) = R(S2).

The permutation property indicates that the measure value R does not change
with the order of the segments in S, which is an intuitive property that a good
network robustness measure should have.

Property 4.3 (Biasing). If G1 and G2 are two networks with S1 = (s1,s2, . . . ,si, . . . ,
s j, . . . ,sk) and S2 = (s1,s2, . . . ,s′i, . . . ,s′j , . . . ,sk), such that si + s j = s′i + s′j and |si −
s j|> |s′i − s′j|, we have R(S1)> R(S2).

Q. Zhou et al., Network Robustness under Large-Scale Attacks, SpringerBriefs in
Computer Science, DOI 10.1007/978-1-4614-4860-0 4, © The Authors 2013
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18 4 Network-Wide Robustness to Area Attacks

With the biasing property, a network with a dominant segment has a greater value
of R than the one with the same number of nodes but several equal-size segments,
which is based on the expectation that a robust network should lead to a dominate
segment instead of several similar-size prices after an attack.

Property 4.4 (Splitting). If G1 and G2 are two networks with S1 =(s1,s2, . . . ,si, . . . ,
sk) and S2 = (s1,s2, . . . ,si1,si2, . . . ,sk), such that si = si1 + si2, we have R(S1) >
R(S2).

The splitting property implies that R decrease if one segment splits into two
segments in a network, which is based on the expectation that a robust network
should lead to a less number of segments after an attack.

4.2 The Percentage of Surviving Communication Pairs

For a network under attacks, if there is at least one multihop path that connects
two nodes, which means there two nodes can still communicate to support a certain
application, we define them as a communication pair. In other words, if these two
nodes are in the same network segment, we say that they construct a communication
pair. Therefore, if we assume that the network is fully connected before the attack,
the percentage of surviving communication pairs after the attack can be expressed as

C(S) =
∑k

i=1 Csi
2

CN
2

, (4.1)

where N is the total number of nodes in the given network; Cx
y is the number of

combinations from “x choose y” such that Csi
2 is the total number of communication

pairs in the ith segment and CN
2 is the total number of communication pairs in the

network before the attack.
In the following, we prove that the above measure in (4.1) satisfies all the

four desired properties introduced in Sect. 4.1. First of all, the proofs of satisfying
Property 4.1 and Property 4.2 are straightforward based on the definition in (4.1).

Property 4.3 (Biasing):

Proof. Given S1 and S2 such that si + s j = s′i + s′j and |si − s j|> |s′i − s′j|, we have

C(S1)−C(S2)

=
Csi

2 +C
s j
2

CN
2

− C
s′i
2 +C

s′j
2

CN
2

=
(si − s j)

2 − (s′i − s′j)2 +(si + s j)
2 − (s′i + s′j)2

2CN
2

> 0, (4.2)

which completes the proof.
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Property 4.4 (Splitting):

Proof. Given S1 and S2 such that si = si1 + si2, we have

C(S1)−C(S2)

=
Csi

2

CN
2

− Csi1
2 +Csi2

2

CN
2

=
s2

i − si − (s2
i1 − si1 + s2

i2 − si2)

2CN
2

> 0, (4.3)

which completes the proof.

4.3 Comparison Against Existing Measures

There are several existing measures on network robustness in the literature: the giant
segment size S̃ [37], the average segment size s [37], the diameter of the network d
[37], and the average shortest path length l̄path [53]. We will show that there existing
measures cannot satisfy all the four properties that we discussed earlier, which are
necessary for being a good network robustness measure.

Specifically, the giant segment size S̃(S) is defined as the number of nodes in the
largest segment, i.e., S̃(S) = max{s1,s2, . . . ,sk}. It is easy to verify that the biasing
and splitting properties cannot hold for S̃(S). Intuitively, from S̃(S), we only know
that all the other segment sizes are less than S̃(S) without the knowledge of local
connectivity robustness in the other segments, which may lead to a wrong inference
on the overall network robustness. In particular, under an attack a network might be
broken into many segments of similar sizes: for example, the exponential network
under random node attacks [37]. In such a scenario, the percentage of surviving
communication pairs could represent the overall network robustness at any different
network scale, while the giant segment size could not. Quantitatively, S̃(S) and C(S)
are related as

C(S)≥ CS̃(S)
2

CN
2

. (4.4)

In general, the above bound is quite loose, which implies that S̃(S) and
C(S) carry dramatically different amounts of information regarding node-to-node
connectivities in the whole network. Especially when the sizes of other segments

are on the same order of S̃(S), C(S) could be several times larger than
CS̃(S)

2
CN

2
. On the

other hand, when the above bound is tight, S̃(S) and C(S) carry similar messages
since from one we could learn about the other.
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Next, we consider the average segment size s(S), which is defined as the average
size of the k segments in the network, i.e.,

s(S) =
1
k

k

∑
i=1

si =
N
k
. (4.5)

It is easy to verify that the biasing property cannot hold for s(S). Similar to S̃(S),
from s(S) we cannot get the knowledge of local connectivity robustness in all the
segments. Quantitatively, the relation between s(S) and C(S) is given by

C(S)≥ kCs(S)
2

CN
2

, (4.6)

where the equality holds when all segments have the same size. This relation could
be proved by using Property 4.2 and Property 4.3, sketched as follows.

Proof. Let S0 = (s0
1,s

0
2, . . . ,s

0
k) denote the segment size vector with an increasing

order of the segment sizes, i.e., s0
1 ≤ s0

2 ≤ . . . ≤ s0
k , with (s0

1,s
0
2, . . . ,s

0
k) being a

permutation of (s1,s2, . . . ,sk). By Property 4.2, we have

C(S) =C(S0). (4.7)

At time i, we select the two segments with the smallest size and the biggest size
in Si, and average them as two equal-size segments. We sort and name the newly
generated segment vector with an increasing order of the segment size as Si+1. By
Property 4.3, we have

C(Si)>C(Si+1). (4.8)

We continue this resizing process until time k, when all the segments have the same
size s(S). Therefore, we have

C(S) =C(S0)>C(S1)> .. . >C(Sk) =
kCs(S)

2

CN
2

. (4.9)

Another existing network robustness measure is the network diameter d, which
is defined by the longest shortest path between any pair of nodes of the network, i.e.,

d(S) = max
0≤i, j≤k

(di j), (4.10)

where di j is the shortest path between node i and node j. It is easy to verify that the
biasing and splitting properties cannot hold for d. Intuitively, all the paths between a
particular pair of nodes may not survive after the attack, which leads to an infinitely
large d. Thus, the diameter measure is not suitable to measure a fragmented network.



4.4 Robustness Study 21

Table 4.1 A comparison between the proposed measure and other exist-
ing measures

Normalization Permutation Biasing Splitting

R ✓ ✓ ✓ ✓

S̃ ✕ ✓ ✕ ✕

s ✕ ✓ ✕ ✓

d ✕ ✓ ✕ ✕

l̄path ✕ ✓ ✕ ✕

Finally, we consider the average shortest path l̄path, which is the average of the
shortest distances between every pair of nodes, i.e.,

l̄path(S) =
∑0≤i, j≤k di j

CN
2

. (4.11)

It is easy to verify that the biasing and splitting properties cannot hold for l̄path(S).
Similar to d, l̄path(S) is not suitable to measure a fragmented network.

A comparison between the proposed measure and other existing measures is
given in Table 4.1. The proposed measure is the only one that meets all the four
properties, which makes it a good candidate to measure the network robustness
under area attacks. In the next section, we will compare the robustness of the LCR
random network against the traditional random network in terms of the proposed
measure.

4.4 Robustness Study

In this section, we study the robustness of both the LCR and traditional random
networks with the measure proposed in Sect. 4.2. We first prove that the percentage
of the surviving communication pairs is equal to the average probability that an
arbitrary communication pair survives. We then adopt the latter to conduct the
robustness study. Since such a probability is hard to quantify in general, here
we only derive the lower and upper bounds. The exact analysis is left for our
future work.

Theorem 4.1. The percentage of the surviving communication pairs is equal to the
average probability that an arbitrary communication pair survives, i.e.,

C = Pr(An arbitrary communication pair survives)� PCPS. (4.12)

Proof. Similar to the proof of Theorem 3.1, the notations used in this proof can be
found in Table 3.1.
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We assume that PN and A are independent, and N and A are independent. Let
1{p j,N ,A} denotes an indicator function as

1{p j,N ,A} =
{

1, the path p j,N is not attacked by A
0, otherwise

(4.13)

The percentage of the surviving communication pairs in a given N can be
calculated as

∑p j,N∈PN
1{p j,N ,A}

|PN | . (4.14)

Therefore, the percentage of the surviving communication pairs averaged over
all possible network and area attack realizations and can be expressed as

C =
∑N∈ΩN ∑A∈ΩA

∑p j,N∈PN
1{p j,N ,A}

|PN |
|ΩN | · |ΩA| . (4.15)

The probability that a communication pair that is connected by path p j,N survives
in N can be calculated as

Pp j,N �
∑A∈ΩA

1{p j,N ,A}
|ΩA| . (4.16)

The average probability that an arbitrary communication pair survives can be
expressed as

PCPS = EN,PN (Pp j,N ) (4.17)

= EN(EPN (Pp j,N )) (4.18)

=
∑N∈ΩN

∑p j,N∈PN

∑A∈ΩA
1{p j,N ,A}

|ΩA |
|PN |

|ΩN | (4.19)

=
∑N∈ΩN ∑A∈ΩA

∑p j,N∈PN
1{p j,N ,A}

|PN |
|ΩN | · |ΩA| (4.20)

= C,

where the derivation from (4.19) to (4.20) is due to the fact that A is independent of
PN . Therefore, we proved that C is equal to PCPS.

In the following, we first derive a universal (applicable to both of the two
random network models) upper bound of the average probability that an arbitrary
communication pair survives after the attack, which can be obtained by assuming
that all the nodes outside the attack area are fully connected. The probability of the
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node being out of the attack area is 1−πr2. Thus, the upper bound of the probability
that a communication pair survives after the attack is the probability that the two
ending nodes in the communication pair are both outside the attack area, i.e.,

PCPS ≤ pupper = (1−πr2)2. (4.21)

The lower bound of the probability that an arbitrary communication pair survives
needs to be investigated separately for each of the two network models. In the LCR
random network model, the attack area A (c,r) only affects the disk area D(c,r+ l)
with the center c and radius r+ l. Given the assumption that the network before the
attack is fully connected with the argument of percolation (when λ and p are large
enough), the left-over network outside region D(c,r+ l) is still fully-connected with
high probability [54]. Since the probability that one node being out of D(c,r+ l) is
1−π(r+ l)2, the lower bound of the probability that a communication pair survives
after the attack is the probability that the two ending nodes are both outside D , i.e.,

PLCR
CPS ≥ pLCR

lower = (1−π(r+ l)2)2. (4.22)

In order to obtain the lower bound for the random network case, we take an
arbitrary path that connects two nodes, and assume that the communication pair
is destroyed as long as the path is destroyed by the attack. Like in Sect. 3.1, the
probability that the path is destroyed can be expressed as

ppath(lpath) = πr2 + 2lpathr, (4.23)

where lpath is the length of the path.
Therefore, the lower bound of the probability that a link with length lpath survives

after the attack for the random network case is given by

pRN
lower(lpath) = 1− ppath(lpath) = 1−πr2− 2lpathr. (4.24)

Thus, the lower bound of the average probability that an arbitrary link survives
after the attack can be written as

PRN
CPS ≥ pRN

lower = E(plower(lpath)) = 1−πr2− 2E(lpath)r, (4.25)

with

E(lpath) = 0.5214× logλ
logλ p

, (4.26)

where 0.5214 is the expected link length in the traditional random network model
(see the proof in the Appendix), and logλ

logλ p is the average number of hops for a
particular communication pair connection when λ is large [55].
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Simulation Results

In this chapter, we present the simulation results of this monograph. In the first part,
we present the simulation results to evaluate both the link-level and network-wide
robustness of the LCR random network under area attacks and compare it against
that of the traditional random network. In the second part, we show the simulation
results on a fiber plant of a major network provider [56]. We first assume that the
topology information of this fiber network is known and show the expected number
of attacked links by using the theoretical result of the fixed network case. Then
without knowing the detail information about this fiber network but only some high-
level statistical information, such like the node number, the link number, and the link
length, we present the results by assuming that the fiber network is a LCR random
network and a traditional random network, respectively.

In this chapter, the traditional random network G(λ , pr) is assumed to have the
same density λ with the LCR random network, and the connection probability pr is
set to be

pr = pπ l2, (5.1)

which makes the expected numbers of links for both network models the same in
order to have a fair comparison.

In Fig. 5.1, we draw the average probability of an arbitrary link being attacked for
different values of attack area radius in both LCR and traditional random network
cases. The system parameters are set as λ = 180, l = 0.15, and p = 0.2,0.8. In
the figure, the theoretical results for LCR random networks and traditional random
networks are based on the results given in (3.8) and (3.10). The simulation results
are obtained as follows: We first generate a large number of network realizations;
for each network realization, we simulate a large number of area attacks; and the
results are obtained by averaging the numbers of destroyed links over all realizations
of network and area attacks. There are several observations from this figure: (i) The
average probability of an arbitrary link being attacked in the LCR random network
is roughly one half of that in the traditional random network, which means that the
LCR network is more robustness than the traditional random network under area
attacks. This is because that the traditional random network has more long links

Q. Zhou et al., Network Robustness under Large-Scale Attacks, SpringerBriefs in
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Fig. 5.1 Average loss probability for an arbitrary link, p = 0.2,0.8

than the LCR random network, which are more vulnerable to area attacks; (ii) the
average probabilities of an arbitrary link being attacked in both cases are on the
order of r2 and are independent of the link connection probability p, which matches
the theoretical results given in (3.8) and (3.10); (iii) there exists a gap between the
simulation result and the theoretical result, which is caused by the boundary effect:
When the center of the attack area is close to the boundary of W, part of the attack
area is outside W, which is still counted in (3.1) but not considered in the calculation
of PLCR and PRN.

In Fig. 5.2, we draw the theoretical and simulation results for the expected
number of attacked links in the LCR random networks based on (3.15), where the
simulation parameters are set as λ = 180, l = 0.15, and p = 0.2,0.5,0.8. From the
figure, we see that there is a gap between the theoretical and simulation results,
which is caused by the boundary effect as we discussed above. In Fig. 5.3, we draw
the theoretical and simulation results for the expected number of attacked links in
the traditional random networks based on (3.29). The simulation parameters are the
same as in Fig. 5.2. Compared with the results in Fig. 5.2, the expected numbers of
attacked links in the traditional random networks are much larger than the ones in
the LCR random networks.

In Fig. 5.4, we draw the theoretical and simulation results for the expected
number of attacked links in one realization of the LCR random network. The
simulation parameters are the same as in Fig. 5.2. In this figure, the gap between
the theoretical and simulation results is also caused by the boundary effect in the
theoretical calculation: When a link is close to the boundary of W , part of the
olivary region around the link is outside W , which is still counted in the theoretical
calculation of Tn in (3.32).



5 Simulation Results 27

Fig. 5.2 Expected number of attacked links in LCR random networks, λ = 180, l = 0.15, p =
0.2,0.5,0.8

Fig. 5.3 Expected number of attacked links in the traditional random network, λ = 180, l =
0.15, p = 0.2,0.5,0.8

In Fig. 5.5, we draw the simulated percentage of surviving communication pairs
after an area attack, along with the theoretical upper and lower bounds, where the
simulation parameters are set as λ = 180, p = 0.35, and l = 0.15. From the figure,
we see that the simulation result for the LCR random network is close to the upper
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Fig. 5.4 Expected number of attacked links in a given network

Fig. 5.5 Percentage of the surviving communication pairs, λ = 180, p = 0.35, l = 0.15

bound. The robustness for the traditional random network is worse than that of the
LCR random network, with about 80 % communication pairs failed when the attack
radius is 0.3. Another observation is that the lower bounds of the two models are
very loose, which could be explained by the derivations of the lower bounds in
Sect. 4.4.
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Fig. 5.6 The fiber backbone of Level 3 Communications operated by a major US network provider

In Fig. 5.6, we show the fiber backbone of Level 3 Communications [56], which
is a major US network service provider. There are totally 170 nodes connected
by more than 240 links. In the following part of the simulation, we consider the
area [−30,25]× [−10,15] as the network area, to avoid the invalid attack on the
spare region. In Fig. 5.7, we present the simulation result of the expected number of
attacked links of the fixed network case on this fiber network by assuming that the
topology information is known. The result shows that the theoretical result derived
in the fixed network case matches the simulation results on this fiber network.

In Fig. 5.8, we draw the expected number of attacked links in the fiber network
of Level 3 Communications and compare it with the theoretical results by assuming
that the network is a LCR random network. The parameters are set as λ = 170, p =
0.137, which are derived from the node number and the link number of this
network. We assume that the communication range of the LCR random network
is the length of the link that is longer than 90 % of the total number of the links
in this fiber network. Thus we have that the communication range l′ = 4.6 and
the normalized communication range in the LCR random network model can be
calculated as l = l′/50 = 0.092. We observe that the simulation result on this fiber
network matches the theoretical result very well and the result is not sensitive to
the changing of l′. However, in Fig. 5.9, the simulation result on the fiber network
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Fig. 5.7 The expected number of attacked links in the fiber network of Level 3 Communications
and the results of the fixed network case

Fig. 5.8 Expected number of attacked links in the fiber network of Level 3 Communications and
the results of the LCR random network



5 Simulation Results 31

Fig. 5.9 Expected number of attacked links in the fiber network of Level 3 Communication and
the results of the traditional random network

does not match with the theoretical results under the assumption that the network
is a traditional random network with the same parameters. Therefore, we conclude
that the LCR random network model matches this fiber network, and without the
exact knowledge of the node locations and the topology of a network, but only the
high-level statistic information, such like the node number, the link number, and
the normalized communication range, is enough to predict the expected number of
attacked links in this real-world network to an area attack.



Chapter 6
Conclusion

In this monograph, we first started with an literature overview of the network
reliability study for networks under various attacks and introduced the concept of
area attacks, under which all of the nodes and links in a certain area are destroyed.
For both the LCR and traditional random networks, we first studied the link-level
robustness by deriving the average probability that an arbitrary link is attacked and
the expected number of attacked links. We then studied the network-wide robustness
under an area attack, where we gave four key properties that a good measure should
have and accordingly proposed a new measure based on the percentage of surviving
communication pairs. Simulation results showed that the LCR random network is
more robust than the traditional random network under area attacks.
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Appendix

In this Appendix, we derive fRN(x) and prove that the expected path length in the tra-
ditional random network is 0.5214. We assume that two nodes n1(A,C) and n2(B,D)
are randomly located in W . Thus, the length of link n1n2 is

√
(A−B)2 +(C−D)2,

where A, B, C, and D are independently and identically distributed (i.i.d.) with the
following PDF

fA(a) =

{
1, a ∈ [0,1]
0, otherwise

(A.1)

We define a new random variable T as A−B, with the PDF given by

fT (t) =
∫

fA(a) fA(a− t)da

=

∫ 1

0
1 · fa(a− t)da

=

{
1+ t, t ∈ [−1,0]

1− t, t ∈ [0,1]
(A.2)

Define Y as Y = T 2 = (A−B)2. We have

P(Y � y) = P(t2 � y)

= P(−√
y � t �√

y)

=

∫ √
y

−√
y

fT (t)dt

=

∫ √
y

0
fT (t)dt +

∫ 0

−√
y

fT (t)dt

=
∫ √

y

0
1− tdt+

∫ 0

−√
y
1+ tdt
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=

(
t − t2

2

)
|
√

y
0 +

(
t +

t2

2

)
|0−√

y

=
√

y− y
2
+
√

y− y
2

= 2
√

y− y. (A.3)

Thus, the PDF of Y is given by

fY (y) = (2
√

y− y)′

= y−
1
2 − 1, y ∈ [0,1]. (A.4)

We denote Z = (A − B)2 + (C − D)2. From (A.4), the PDF of Z can be
expressed as

fZ(z) =
∫ +∞

−∞
fY (y) fY (z− y)dy. (A.5)

When z ∈ [0,1],

fZ(z) =
∫ z

0
(y−

1
2 − 1)((z− y)−

1
2 − 1)dy

= π − 4z
1
2 + z. (A.6)

When z ∈ [1,2],

fZ(z) =
∫ 1

z−1
(y−

1
2 − 1)((z− y)−

1
2 − 1)dy

= −2arcsin

(−2+ z
z

)
− 2+ 4(z− 1)

1
2 − z. (A.7)

Let X denote the length of the link n1n2; thus X =
√
(A−B)2 +(C−D)2 =

√
Z

and we have

P(X � x) = P(
√

z � x)

= P(0 � z � x2)

=
∫ l2

0
fZ(z)dz. (A.8)

When x ∈ [0,1],

P(X � x) =
∫ x2

0
π − 4z

1
2 + zdz. (A.9)
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By taking the derivative of (A.9), we obtain the following PDF of the length for
link n1n2 with x ∈ [0,1]:

fRN(x) = fX (x) = 2πx− 8x2+ 2x3. (A.10)

When x ∈ [1,
√

2],

P(X � x) =
∫ 1

0
π − 4z

1
2 + zdz

+

∫ t2

1
−2arcsin

(−2+ z
z

)
− 2+ 4(z− 1)

1
2 − zdz. (A.11)

By taking the derivative of (A.11), we obtain the following PDF of the length for
link n1n2 with x ∈ [1,

√
2]:

fRN(x) = fX (x) = 2x

(
−2arcsin

(−2+ x2

x2

)
− 2+ 4(x2− 1)

1
2 − x2

)
. (A.12)

With numerical integration, the expectation of X is obtained as 0.5214.
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