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Preface

There has been a need for a textbook in mechanics of materials for students in 2- or

4-year technology programs in engineering, architecture, or building construction.

In addition, students in vocational schools and technical institutes will find in this

book the fundamentals of statics and strength of materials that will be vital in school

and in their professional lives.

This text provides the necessary information required for students of the afore-

mentioned programs to successfully grasp important physical concepts. The mate-

rial has been written in a simple way, with only some knowledge of college algebra

and trigonometry required; no special engineering background or knowledge of

calculus is necessary for understanding this text.

I have taught statics and strength of materials in the engineering program at

Texas State Technical College-Harlingen for the past 15 years, and I have presented

the material here in the same way that I would present it in the classroom. Each

topic is followed by examples so the student can learn the problem solving methods

and apply them in real-world problems. The student will also see a set of practice

problems at the end of each topic. At the end of each chapter, there is a summary

with a set of review questions and problems.

Doing the homework will give the student a much deeper understanding of the

variety of concepts and encourage him/her to continue studying this fascinating

branch of engineering. It goes without saying that the material in this text could also

be a valuable reference for those individuals seeking state licensing in professional

engineering. The students taking this class must not just read the book; they should

take it as a serious and important text, concentrating on each chapter, working on

the problems carefully, analyzing each problem, and trying to relate them to real-

world situations or problems they are currently facing on the job site. This is how to

learn engineering science. They always say that mastery of technical ideas often

means hard work and concentration. Those who are not afraid of a challenge can

excel!

I have organized the chapters in a simple way so the student can easily read and

understand the material. I have avoided using difficult language. In fact, the book is

based on the simplest educational process; I believe that in writing such a technical

book this method must be followed. In Chap. 1, I introduce the basic fundamentals,

definitions in mechanics of materials, and the metric and English systems of units.
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I have shown examples and also included some questions and problems for the

student to work on. Working on engineering problems requires a firm understand-

ing of how to do unit conversions, because the unit conversion is the building block

of engineering science. In Chap. 2, I cover force systems on structures, force

components, equilibrium of forces, and the free body diagram.

Chapter 3 discusses force moments, principle of moments, moment equations for

equilibrium, and application of force moments in engineering. Numerous example

problems are introduced and solved throughout this chapter. Chapter 4 covers the

centroid of an area, and Chap. 5 discusses the moment of inertia of an area, and

many example problems are solved throughout this chapter to clarify this important

concept.

Stress and strain are introduced in Chap. 6, and numerous real-world problems

are solved in all the sections of the chapter. Chapter 7 covers torsion in circular

sections, and discusses how to calculate the transmission of power through a

rotating shaft. In Chap. 8, I explain the shear and bending moment in a beam and

show many example problems for which the student might find applications in

structural engineering and building construction.

Chapter 9 discusses bending stresses in beams and covers the resisting moment

and flexure formulas for beams. In Chap. 10, I explain the columns and slenderness

ratio for compression members. Steel and timber columns are also discussed in this

chapter with example problems.

There are two appendices in this book, A and B. Appendix A shows the beam

diagrams and formulas for helping the students to solve the homework problems.

Appendix B provides information about the centroids and properties of areas. The

students are encouraged to refer to any updated strength of materials or engineering

texts to extract more information about the standard steel or timber, if necessary.

Author decided not to include the tables of properties from the other current

sources, because they may lack data or may be outdated.

In closing, my academic experience teaching mathematics, physics, and engi-

neering courses for 27 years at colleges and universities in Texas, and also my

practice as a professional engineer were the primary impetus for writing this book.

This book will hopefully show how the fundamental concepts of mechanics of

materials can be applied to real-world problems.

I wish to extend my thanks to the staff and faculty at Texas State Technical

College-Harlingen, who provided me guidance, encouragement, and support.

Finally, I am grateful to my loving son Reza, for his help and encouragement in

making this book possible.

I have tried to produce an error-free book, but no doubt some errors still remain.

Please let me know of any that you find. Comments, suggestions, and criticisms are

always welcome from readers.

Harlingen, TX, USA Parviz Ghavami
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Introduction 1

Overview

The importance of a thorough knowledge of fundamentals in any field cannot be
overemphasized. Fundamentals have always been stressed in the learning of new
skills, whether it be football or physics. Similarly, the science of mechanics is
founded on basic concepts and forms the groundwork for further study in the design
and analysis of machines and structures.

Learning Objectives

Upon completion of this chapter, you will be able to define the fundamental terms
used in mechanics of materials, and the English or metric systems of units for
different problems. You will also be able to differentiate vector and scalar
quantities and identify the significance rule of these quantities in the field of
mechanics of materials. Your knowledge, application, and problem solving skills
will be determined by your performance on the chapter test.

Upon completion of this chapter, you will be able to:

• Define mechanics of materials
• Define the fundamental terms used in mechanics
• Identify the main differences in the metric and English systems of units
• Define vector and scalar quantities with some examples

1.1 Mechanics of Materials

Mechanics is defined as the study of the effects of forces on bodies. Statics is the

study of bodies that are at rest or moving with constant velocity while subjected to

force systems. When the changes of shape of the body and the internal state of the

body due to the effects of external force systems become important, the study is

# Springer International Publishing Switzerland 2015
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then known as mechanics of materials or strength of materials. It is essential that the

following basic terms be understood, since they continually recur in all phases of

this technical study.

1.2 Trigonometry

To analyze the forces and work on problems in mechanics of materials or any type

of engineering problems, the student must have a thorough understanding of

algebraic and trigonometric functions and formulas. Solution of mechanics of

materials problems requires such mathematical principles.

1.3 Metric and English Systems of Units

Units are used to define the size of physical quantities. Meter, kilogram, second,

newton, and Kelvin are, respectively, units of length, mass, time, force (weight),

and temperature in the metric system (SI). Foot, slug, second, pound, and degrees

Rankin are, respectively, units of length, mass, time, force (weight), and tempera-

ture in English system.

The metric system (SI) offers major advantages relative to the English system.

For example, the metric system uses only one basic unit for length, the meter,

whereas, the English system uses many basic units for length such as inch, foot,

yard, mile, etc. Also, because the metric system is based on multiples of 10, it is

easier to use and learn.

The metric system of units, today, has been adopted all over the world. However,

the United States is making progress toward the adoption of SI units in order to sell

American products more easily on the world market. Therefore, information about

the conversion factors is provided between the SI and the English system of units.

1.4 Fundamental Terms

Mass

Mass is a measure of the quantity of matter. It is related to the inertia of the body

and is usually considered a constant. The unit of mass in the metric system is

the kilogram.

Force

This term is applied to any action on a body which tends to make it move, change

its motion, or change its size and shape. A force usually produces acceleration. The

unit of force in the metric system is the newton (N) and in the English system,

the pound (lb).

2 1 Introduction



Example 1.1 Convert 75 lb to newtons.

(75 lb) (4.45 N/1 lb)¼ 334 N.

Example 1.2 Convert 150,000 newtons to pounds (lb)

(150,000 N) (1 lb/4.45 N)¼ 3.37� 104 lb

Pressure

Pressure is the external force per unit area. It is calculated by dividing the total

external force acting on a cross-sectional area of a body or substance. The unit of

pressure in the metric system is N/m2 (Pa), and in the English system, lb/in.2 (psi).

Example 1.3 Find the pressure, in metric units, that a hollow cast-iron column

exerts on its foundation shown in Fig. 1.1.

12 in.

20,000 lb

1/4 in.

Fig. 1.1

Solution Outside diameter (OD)¼ 12 in.

Inside diameter (ID)¼ 12� 2(0.25)¼ 11.5 in.

Area of the column (A)¼ π/4(122� 11.52)¼ 9.23 in.2

Pressure (P)¼ Force/Area¼ 20,000 lb/9.23 in.2¼ 2,167 lb/in.2 (psi)

Using conversion factors: 1 kPa¼ 1,000 N/m2¼ 0.145 lb/in.2

(2,167 psi) (1 kPa/0.145 psi)¼ 14,944.83 kPa

Density

This term may refer either to weight or mass density. Weight density is the weight

per unit volume of a body or substance. The unit of weight density in the metric

system is N/m3 and in the English system, lb/ft3. Mass density is the mass per unit

volume of a body or substance. The unit of mass density in the metric system is

kg/m3 and in the English system, slug/ft3.

Weight

Weight is the force with which a body is attracted toward the center of the earth by

gravitational pull. The unit of weight in the metric system is the newton (N), and in

the English system, the pound (lb).
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Example 1.4 Find the weight of a wooden block 20 cm� 15 cm� 10 cm. Assume

the weight density of wood to be

D¼ 227 N/m3.

Find the volume of the block:

V¼width� depth� length¼ 10 cm� 15 cm� 20 cm¼ 3,000 cm3

Using conversion factors: 1 cm3¼ 10�6 m3

(3,000 cm3) (10�6 m3/1 cm3)¼ 0.003 m3

Find the weight of the block:

W¼VD¼ 0.003 m3� 227 N/m3¼ 0.681 N.

Load
This term is used to indicate that a body of some weight is applying a force against

some supporting structure or part of a structure. For example, a load weighing

100 lb is applied on a beam supported at two ends. Or, a beam itself can be

considered a certain load on part of a structure.

Example 1.5 A brick wall 6 in. thick and 8 ft high supports a roof load equal to

1,500 lb/ft of wall. If the reinforced concrete footing of the wall is 1.7 ft deep and

2.5 ft wide, find the pressure between the footing and the soil (Fig. 1.2) (consider

1 ft of the wall).

1500 lb/ft

6 in.

8 ft

1.7 ft

2.5 ft

Fig. 1.2

Solution Weight per unit volume (from the table of structural materials) for brick

and concrete are:

120 lb/ft3 (brick)

150 lb/ft3 (concrete)
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Load on one linear foot of wall:

1:Roofload ¼ 1, 500 lb

2:Brickwall ¼ 6=12 ftð Þ 1 ftð Þ 8 ftð Þ 120 lb=ft3
� � ¼ 480 lb

3:Footing ¼ 1:7ftð Þ 2:5ftð Þ 1ftð Þ 150 lb=ft3
� � ¼ 638 lb

Total load 2, 618 lb

P¼ force/area¼ 2,618 lb/2.5 ft� 1 ft¼ 1,047 lb/ft2.

Moment

The tendency of a force to cause rotation about an axis through some point is known

as moment. Moment (M ) of a force (F) about a given point (O), is the product of the
force and its perpendicular distance r from the line of action between the force and

point O.

The point or axis of rotation is called the center of moments. The perpendicular

distance between the line of action and the center of rotation is called themoment arm.
This can be formulated as:

M ¼ F� r

Moment of Force ¼ Magnitude of Force�Moment Arm

The unit of moment in the metric system is N-m, and in the English system, inch-

pounds (in.-lb) or foot-pounds (ft-lb).

Example 1.6 A 10 ft beam has a load of 600 lb at a distance of 2 ft from the left end

of the beam. Calculate the moment of load about each end point (Fig. 1.3).

2 ft

A B

600 lb

8 ft

10 ft

Fig. 1.3

Solution Moment of force¼ 600 lb� 2 ft¼ + 1,200 ft-lb

Moment of force¼ 600 lb� 8 ft¼�4,800 ft-lb

Notice the sign of moment clockwise (+) and counterclockwise (�).

Example 1.7 Convert 10.94 in.-lb to newton-meters.

Using conversion factors: 1 lb¼ 4.45 N, and 1 in.¼ 0.0254 m

1 in.-lb¼ 0.0254 m� 4.45 N¼ 0.1130 N-m

Therefore, (10.94 in.-lb) (0.1130 N-m/in.-lb)¼ 1.24 N-m
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Couple

Couple is a pair of parallel forces equal in magnitude and opposite in direction.

Their only effect is to produce a moment. The only motion a couple can cause is

rotation (Fig. 1.4). Note that the moment of a couple is equal to the product of one

of its forces F and the perpendicular distance d between the forces

M ¼ F� d

r r

F

F

d

Fig. 1.4

Vector

In general, any quantity that has direction and magnitude is a vector quantity.

Examples include force, weight, displacement, velocity, and acceleration, etc.

Scalar
Scalar quantities are quantities that have magnitude only. They are complete

without a direction. Examples include mass, density, area, volume, distance,

speed, time, temperature, work, power, etc.

1.5 Vector Operations

1.5.1 Multiplication and Division of Vectors by a Scalar

When a vector is multiplied by a scalar quantity, its magnitude will be changed.

Depending on the positive or negative values of the scalar, the magnitude of the

vector will be increased or decreased. In the same manner, we use this operation if

we divide a vector by any positive or negative scalar quantity.

6 1 Introduction



1.5.2 Addition of Vectors

There are two common graphical methods for finding the geometric sum of vectors.

Polygon method

Parallelogram method

Polygon Method

This method is mostly used in applications dealing with the addition of more than

two vectors. Use a ruler and protractor to measure the size (magnitude) and

direction of the vector. Measurements must be done to proper scale. Continue this

process for each vector until you find the magnitude and direction of the resultant

vector (Fig. 1.5).

A

B

R

C

θ

Fig. 1.5

Note that the resultant vector will be drawn with its tail at the origin (starting

point) and its tip joined to the tip of the last vector. Also, the order in which the

vectors are added together has no effect in obtaining the resultant of the vector.

Parallelogram Method

In the parallelogram method, the resultant of only two forces will be obtained, and

the lines of actions of these two forces pass through a common origin. The two

forces form the sides of a parallelogram whose diagonal will be represented as the

resultant of the two forces (Fig. 1.6). In the parallelogram method, vectors A and

B do not depend upon the order in which they are added. The addition of two

vectors is commutative, and we write

Aþ B ¼ Bþ A

A

R

B

Fig. 1.6
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1.5.3 Subtraction of Vectors

Subtraction of vectors A and B is obtained by adding to A the negative vector

B (�B). We write

A� B ¼ Aþ �Bð Þ
In graphical representation, A�B is constructed by connecting the tail of (A) to

the head of (�B).

Subtraction is a special case of addition; therefore, vector addition rules can be

applied to vector subtraction.

Example 1.8 A car is pulled out by two cables as shown (Fig. 1.7). If cable A is

exerting 1,200 lb, find the force exerted by cable B needed to move the car straight

out. Use trigonometric laws to work on the problem.

(Assume that the resultant of forces is directed along the axis of the car.)

1200 lb

A

R

B

55º

25º

Fig. 1.7

Solution Use a triangle rule. Note that the triangle rule, in fact, is half of the

parallelogram rule mentioned earlier. Notice that the resultant of the forces must be

perpendicular to the front of the car to keep the car straight.

Using the triangle rule, the force on cable B can be calculated using the law of

sines. We write

1, 200 lb=sine55� ¼ B= sin 25�

B ¼ 619 lb

55°

100°

25°

A
B
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Chapter Summary

1. The subject of mechanics of materials is concerned with the behavior of deform-

able bodies under the influence of external loads.

2. Fundamental terms such as mass, force, weight, load, density, pressure, moment,

and couple are used in our subject of interest.

3. We presented the metric (SI) and English systems of units both used in engi-

neering problems.

You have learned the major distinction between metric and English systems of

units and the advantages of the metric over the English system in our technolog-

ical world.

4. The concepts of vector and scalar quantities, and how they are applied in

mechanics of materials were covered. Vectors have magnitude and direction,

whereas scalars are only identified by magnitude.

5. Since the vectors have magnitude and direction, they may not be added in the

usual manner. For this purpose, both the polygon and parallelogram methods

were presented.

Review Questions

1. What is mechanics of materials?
2. What is a force?
3. What is a load?
4. What is the moment of a force?
5. What are the major advantages of the metric system?

6. What is a major distinction between scalar and vector quantities?
7. Name some examples of scalar and vector quantities in mechanics of materials.

8. Can vectors be added or subtracted the same way as scalars? Why?

9. What method can be applied to add a number of vectors?

10. What method can only be used for the addition of two vectors?

Problems

1. Convert 12.3 ft to SI units.

2. Convert 25.6 lb to kilograms.

3. Convert 875 in.-lb to newton-meters.

4. Convert 6,000 psi to newtons per square meter.

5. Convert 3.45 lb/ft2 to Pascals (N/m2).

6. Convert 950 N.m to foot-pounds.

7. Convert 3.5 in.3 to mm3.

8. Convert 560 ft2 to m2.

9. Convert lb/ft to N/m.

10. Convert 1.6� 109 kPa to MPa.
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11. Find the moment of the forces in Fig. 1.8 about the given points:

(a) 50,000-N force about point B,

(b) 8,000-N force about point A, and

(c) 10,000-N force about point A.

A B

10,000 N

50,000 N

8000 N

8 m

6 m 4 m

9 m

Fig. 1.8

12. State which of the following are scalars and which are vectors.

(a) Weight

(b) Energy

(c) Volume

(d) Speed

(e) Momentum

(f) Distance

13. Represent graphically (a) a force of 10 lb in a direction 30� north of east, (b) a

force of 50 N in the direction 60� east of north.
14. Find the magnitude and direction of the resultant of the vectors A and B which

are at right angles. (hint: use the Pythagorean theorem.)

(a) A¼ 15 N, B¼ 20 N

(b) A¼ 150 lb, B¼ 250 lb

(c) A¼ 1,500 N, B¼ 3,500 N

15. Add the given vectors in Fig. 1.9 by drawing the appropriate resultant. Use the

parallelogram in (c) and (d).
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a b c d

Fig. 1.9

16. Using the polygon method, add the vectors in Fig. 1.10 (choose appropriate

scale).

A

B

C

D

Fig. 1.10

17. Using the parallelogram law and also trigonometric rules, find the resultant of

the forces on the structure shown (Fig. 1.11).

1500 N

1000 N

60º

30º

Fig. 1.11

18. Find the resultant of forces on the hook shown (Fig. 1.12) (hint: use the law

of cosines.)
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180 N

120 N

135º

Fig. 1.12

19. Using the component method, find the resultant of the concurrent forces shown

in Fig. 1.13 on the structural members A, B, and C.

45º

30º

600 N

500 N

700 N

C

B

A

Fig. 1.13
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20. If an 800-N force is required to remove a nail from piece of wood, find the

horizontal and vertical components of the force (Fig. 1.14).

20º

800 N

Fig. 1.14

Sl prefixes

Multiplication factor Prefixa Symbol

1 000 000 000 000¼ 1012 Tera T

1 000 000 000¼ 109 Giga G

1 000 000¼ 106 Mega M

1 000¼ 103 Kilo k

100¼ 102 Hectob h

10¼ 101 Dekab da

0.1¼ 10–1 Decib d

0.01¼ 10–2 Centib c

0.001¼ 10–3 Milli m

0.000 001¼ 10–6 Micro μ
0.000 000 001¼ 10–9 Nano n

0.000 000 000 001¼ 10–12 Pico p

0.000 000 000 000 001¼ 10–15 Femto f

0.000 000 000 000 000 001¼ 10–18 Atto a

aThe first syllable of every prefix is accented so that the prefix will retain its identity. Thus, the

preferred pronunciation of kilometer places the accent on the first syllable, not the second
bThe use of these prefixes should be avoided, except for the measurement of areas and volumes and

for the nontechnical use of centimeter, as for body and clothing measurements

Problems 13



Principal SI units used in mechanics

Quantity Unit Symbol Formula

Acceleration Meter per second squared . . . m/s2

Angle Radian rad a

Angular acceleration Radian per second squared . . . rad/s2

Angular velocity Radian per second . . . rad/s

Area Square meter . . . m2

Density Kilogram per cubic meter . . . kg/m3

Energy Joule J N ·m

Force Newton N kg ·m/s2

Frequency Hertz Hz s–1

Impulse Newton-second . . . kg m/s

Length Meter m b

Mass Kilogram kg b

Moment of a force Newton-meter . . . N m

Power Watt W J/s

Pressure Pascal Pa N/m2

Stress Pascal Pa N/m2

Time Second s b

Velocity Meter per second . . . m/s

Volume, solids Cubic meter . . . m3

Liquids Liter L 10–3 m3

Work Joule J N m

aSupplementary unit (1 revolution¼ 2π rad¼ 360�)
bBase unit

U.S. customary units and their SI equivalents

Quantity U.S. customary unit SI equivalent

Acceleration ft/s2 0.3048 m/s2

in./s2 0.0254 m/s2

Area ft2 0.0929 m2

in.2 645.2 mm2

Energy ft� lb 1.356 J

Force Kip 4.448 kN

Lb 4.448 N

Oz 0.2780 N

Impulse lb� s 4.448 N� s

Length Ft 0.3048 m

in. 25.40 mm

Mi 1.609 km

Mass oz mass 28.35 g

lb mass 0.4536 kg

Slug 14.59 kg

Ton 907.2 kg

(continued)
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(continued)

Quantity U.S. customary unit SI equivalent

Moment of a force lb� ft 1.356 N�m

lb� in. 0.1130 N�m

Moment of inertia

Of an area in.4 0.4162� 106 mm4

Of a mass lb� ft� s2 1.356 kg�m2

Momentum lb� s 4.448 kg�m/s

Power ft� lb/s 1.356 W

Hp 745.7 W

Pressure or stress lb/ft2 47.88 Pa

lb/in.2 (psi) 6.895 kPa

Velocity ft/s 0.3048 m/s

in./s 0.0254 m/s

mi/h (mph) 0.4470 m/s

mi/h (mph) 1.609 km/h

Volume ft3 0.02832 m3

in.3 16.39 cm3

Liquids gal 3.785 L

qt 0.9464 L

Work ft� lb 1.356 J
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Force Systems on Structures 2

Overview

The task in designing any type of a structure requires a deep understanding of
forces acting on the parts of the structure. For this purpose the designer must study
the types of external forces and take into account the principles of statics. Statics is
mostly concerned with the reaction of the body under the influence of external
forces. Once we understand the nature and effects of forces on the body, then we
will be able to study the material properties of an entire structure under the forces
acting on it and show a proper design for the application of interest.

Learning Objectives

Upon completion of this chapter, you will be able to define different types of forces
(collinear and concurrent) and compute the respective resultants for these types of
force systems by the parallelogram and force triangle methods. You will also be
able to define and compute equilibrium conditions for concurrent force systems and
the concept of a free body diagram. Your knowledge, application, and problem
solving skills will be determined by your performance on the chapter test.

Upon completion of this chapter, you will be able to:

• Define magnitude, direction, line of action, and point of application of force
• Define collinear forces
• Compute resultant of collinear forces
• Define concurrent forces
• Compute resultant of concurrent forces
• Define force parallelogram and its application
• Define force triangle
• Define and compute components of a force
• Define and compute the equilibrium of a concurrent force system
• Define free body and free body diagram

# Springer International Publishing Switzerland 2015

P. Ghavami, Mechanics of Materials, DOI 10.1007/978-3-319-07572-3_2
17



2.1 Collinear Forces

The point of the body where the force is applied is called the point of application of

the force, and the line along which it acts is called its line of action. The sense of the

force, that is, the direction in which it acts, is shown by an arrow. When two forces

F1 and F2 act along the same line, they are called collinear forces (Fig. 2.1).

F1 F2

Fig. 2.1

2.2 Resultant of Collinear Forces

If forces F1 and F2 also have the same direction, the magnitude of their resultant R,
can be obtained by adding the magnitudes of the two forces.

R ¼ F1 þ F2

For example, if F1¼ 200 N and F2¼ 350 N, then

R ¼ 200 þ 350 ¼ 550N

As a general rule, when a force acts to the right, it is considered positive, and

when it acts to the left, it is negative. The rule of determining the resultant of

collinear forces may be stated as follows:

The resultant of any number of forces acting along the same straight line is
their algebraic sum.

Example 2.1 Find the resultant of the collinear force system shown (Fig. 2.2).

25 lb

20 lb 15 lb

10 lb

Fig. 2.2

Solution
R ¼ þ15þ 25� 20� 10 ¼ þ10 lb

Thus, the four given forces may be replaced by a single force of 10 lb acting to

the right (positive direction).
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Example 2.2 Find the resultant of the collinear forces shown (Fig. 2.3).

12 N

10 N

8 N

Fig. 2.3

Solution
R ¼ þ8þ 12� 10 ¼ 10N

Therefore, three given forces may be replaced by a single force of 10 N in the

positive direction (upward). Notice that the resultant of two collinear forces, for

horizontal or vertical directions, can be found by the graphical method discussed

earlier.

Example 2.3 Find the force F that will produce equilibrium for the collinear forces

shown (Fig. 2.4).

315 lb

185 lb

110 lb

F?

424 lb

Fig. 2.4

Solution To establish the equilibrium condition, the sum of the forces on one side

must be equal to the sum of the forces on the other side, i.e., the resultant of the

force system is equal to zero.

185þ 110þ 315� 424� F ¼ 0

Solving algebraically we get,

F ¼ 186 lb
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Practice Problems

1. Find the force F that will produce equilibrium for the system of collinear forces

shown.

F 295 N 184 N 136 N 236 N

Fig. 2.5

2.

3600 lb F F1?

F=F1=F2=F3

F2? F3?

Fig. 2.6

3. Find the resultant of the force systems shown (Figs. 2.7, 2.8, and 2.9) in the x and
y directions.

8 lb
8 lb

10 lb

10 lb

4 lb

Fig. 2.7

4.

15 lb

20 lb10 lb

15 lb

Fig. 2.8
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5.

15 lb

10 lb

8 lb

15 lb

5 lb

10 lb

8 lb

Fig. 2.9

2.3 Concurrent Forces

Concurrent force systems consist of forces whose lines of action pass through a

common point (Fig. 2.10).

F2

F1

F2

F1

F1 F2

Fig. 2.10

2.4 Resultant of Concurrent Forces

A resultant is a single force which can replace two or more concurrent forces and

produce the same effect on the body as the concurrent forces. The resultant will

always act at the point of intersection.

The magnitude and direction of the resultant of concurrent force systems can be

found by trigonometric or graphical techniques. In the trigonometric method, the

law of sines, the law of cosines, and the Pythagorean theorem can be applied. Or it
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can be determined graphically using a parallelogram, polygon laws, or the force

triangle law.

Example 2.4 Two concurrent forces of 30 lb and 40 lb act on a body and make an

angle of 90� with each other as shown (Fig. 2.11). Find the magnitude and direction

of the resultant (a) graphically and (b) mathematically.

R

a bC

F R

PA

α

B

90º

Fig. 2.11

Solution

(a) Graphically: the forces must be drawn to scale. From point A, draw AB

equal to 30 lb to any convenient scale and parallel to force P, as shown in

Fig. 2.11a, b. From B, draw a line BC in the direction of force F and of a

length to represent 40 lb. Then the line AC is the resultant R in magnitude

and direction. By measurement, R is found to be 50 lb. Angle α can be

measured with a protractor. Figure 2.11a shows the graphical solution by

means of force triangle.

(b) Mathematically: using the Pythagorean theorem for the right triangle

constructed of P, F, and R, we have

R2 ¼ P2 þ F2

R ¼ √P2 þ F2 ¼ √9002 þ 1, 6002

R ¼ 50 lb

The angle α that R makes with P may be found from

tan α ¼ BC=AB ¼ F=P ¼ 40=30 ¼ 1:33

α ¼ 53:13�

Example 2.5 Determine the magnitude and direction of the resultant of two

concurrent forces F1¼ 50 N and F2¼ 75 N acting on a body at an angle of 50�

with each other (Fig. 2.12). Use the algebraic method only.
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F2=75 N

F1=50 N

50º

Fig. 2.12

Solution Triangle ABC may be solved for R by using the law of cosines.

Find the angle of θ from the geometry (Fig. 2.13).

Θ ¼ 180� � 50� ¼ 130�

A B

50º

130º

C

R

F1

F2

Fig. 2.13

cos 130� ¼ � cos 50� ¼ � 0:643

R2 ¼ 502 þ 752 � 2 50ð Þ 75ð Þ �0:643ð Þ
¼ 2, 500þ 5, 625þ 4, 821 ¼ 12, 946

R ¼ 113:8N

Angle α may be calculated by the law of sines.

F2= sin α ¼ R= sin θ

sin α ¼ F2=Rð Þ sin θ

But, sin θ¼ sin 130� ¼ sin 50� ¼ 0.7660
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By substituting in the second equation, we get

α ¼ 30:3�

Example 2.6 Determine the resultant of the concurrent forces shown (Fig. 2.14)

using the method of components.

F1=7500 lb

Y

45º

30º

X

F2=11500 lb

Fig. 2.14

Solution Any force may be resolved into two components at right angles to each

other. The components of forces in the x and y directions are determined using

trigonometric functions. The forces or component forces in the x and y directions,
then, are summed into one single force having∑ Fx and∑ Fy direction. This forms

a right triangle with legs equal to∑ Fx and∑ Fy whose hypotenuse is the resultant

force in magnitude and direction of the given system of forces. That is,

Fx ¼ F cos α, Fy ¼ F sin α

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Fx

� �2

þ
X

Fy

� �2
r

tan α ¼ Σy=Σx

Therefore,

X
Fx ¼ F1x þ F2x ¼ 7, 500 cos 45� þ 11, 500 cos 30�

¼ 15, 262:6 lb

24 2 Force Systems on Structures



X
Fy ¼ F1y þ F2y ¼ 7, 500 sin 45� � 11, 500 sin 30�

¼ �446:7 lb

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Fx

� �2

þ
X

Fy

� �2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15; 262:6ð Þ2 þ �446:7ð Þ2

q

R ¼ 15, 269 lb

tan α ¼ Σy=Σx ¼ �446:7=15, 262:6 ¼ �0:0293

where α� 2o with respect to the x axis (should take absolute value)

Example 2.7 Determine the magnitude and direction of the resultant of the three

concurrent forces shown (Fig. 2.15) using the method of components.

X15º30º

45º

F1=130 N

F2=75 N

F3=140 N
Y

Fig. 2.15

Solution

X
Fx ¼ F1x þ F2x þ F3x ¼ 130 cos 15� � 75 cos 30� � 140 cos 45�

¼ �38:4N

X
Fy ¼ F1y þ F2y þ F3y ¼ �130 sin 15� � 75 sin 30� þ 140 sin 45�

¼ 27:8N

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Fx

� �2

þ
X

Fy

� �2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�38:4ð Þ2 þ 27:8ð Þ2

q

R ¼ 47:4N

tan α ¼ ΣFy

� �
= ΣFxð Þ ¼ 27:8=�38:4 ¼ �0:71 takeabsolutevalueð Þ

α ¼ 35:6� respect toxaxisð Þ
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2.5 Components of a Force

The resultant of the forces was previously defined as a single force that will produce

the same effect as two forces. Also, it was stated that two forces with their resultant

form a triangle. The converse of this statement is also true: a force may be replaced

by any two forces which, with the given force, form a triangle.

Problems in mechanics of materials are often simplified by resolving forces into

components in the x and y axes and perpendicular to each other. Figure 2.16 shows a
force F. This force can be resolved into two components F1 and F2 perpendicular to

each other, where their magnitudes can be calculated knowing the magnitude and

direction of the original vector F.

Y

XF1

F2
F

α

Fig. 2.16

If the angle between F and F1 is α, then by the right triangle relationship,

F1 ¼ F cos α

and

F2 ¼ F sin α

The components F1 and F2 can also be found graphically if they (including force

F) are measured to a proper scale.

Example 2.8 Find the two components of the force F shown (Fig. 2.17) in the

x and y axes, given F¼ 25.8 N. and α¼ 35�.
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X

Y

F2

F1

F
35º

F

α

Fig. 2.17

Solution

F1 ¼ F cos α ¼ 25:8Nð Þ cos 35�ð Þ ¼ 21N

F2 ¼ �F sin α ¼ � 25:8Nð Þ sin 35�ð Þ ¼ �14:8N

Practice Problems

1. Determine the horizontal and vertical components (Fx and Fy) of the following

forces.

Y

X

θ = 25º

F=22.5 lb

Fig. 2.18
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2.

Y

X

F=660 lb

θ = 135º

Fig. 2.19

3.

Y

XF=50 lb

Fig. 2.20
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4.

Y

X

F=1010 N

θ = 22º

Fig. 2.21

5.

Y

X

F=105 lb

θ = 15º

Fig. 2.22
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6.

Y

X

F=220 N

θ = 30º

Fig. 2.23

7.

Y

F=100 N

X

Fig. 2.24
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8.

YF=606 N

X

θ = 20º

Fig. 2.25

9. A 350 lb wooden crate rests on an inclined plane, making an angle of 30� with
the horizontal. Find the magnitudes of the normal force N and force F. These
two forces are, respectively, perpendicular to and parallel to the inclined plane

(Fig. 2.26).

F

W
30º

N

Fig. 2.26

10. Find the magnitude and direction of the resultant of the forces F1 and F2 on the

beam shown (Fig. 2.27).

F2=2500 N

30º

F1=1000 N

Fig. 2.27
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11. Figure 2.28 shows parts of the building structure loaded at each floor level with

the given forces of F1¼ 10,000 lb, F2¼ 20,000 lb, and F3¼ 25,000 lb. Find the

total vertical load acting on the building foundation.

20º

F1

F2

F3

15º

Fig. 2.28

12. Determine the resultant of forces F1¼ 800 N at 45�, F2¼ 1,200 N at 60�, and

F3¼ 1,600 N at 30� by the method of components.

F2=400 lb

F1=600 lb

30º

Fig. 2.29

13. Determine the resultant of two forces shown (Fig. 2.29), using the parallelo-

gram law and force triangle.

14. Two forces of 350 and 150 lb make an angle of 120� with each other as shown

(Fig. 2.30). Find their resultant and the angle it makes with 350 lb force.
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F1=350 lb

F2=150 lb

110º

Fig. 2.30

15. Three concurrent forces of 50, 80, and 110 N shown (Fig. 2.31) are in

equilibrium condition. Find the angles that these forces make with each other

to keep the system in equilibrium.

110 N

50 N

80 N

O
α

γ

β

Fig. 2.31

16. Three current forces shown (Fig. 2.32) act on the bolt. Determine the magni-

tude of the resultant of the forces.

F2=100 N F1=200 N

F3=150 N

22º

70º

Fig. 2.32
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2.6 Equilibrium of Concurrent Force Systems

Equilibrium is a state of balance between opposing forces or actions such that

moving a body in one direction is canceled out by other forces that move the body

in other directions. Or, in mechanics of materials, a body under the action of a

concurrent force system is in equilibrium if the resultant of the force system is equal

to zero. In equation form:

X
Fx ¼ 0

X
Fy ¼ 0

When a system of forces is in an equilibrium state, the force polygon of the

forces in tip-to-tail fashion will be closed (Fig. 2.33).

F3

F3

F4

F4

Y

X

F2

F2
F1

F1

Fig. 2.33

2.7 Equilibrant and the Force Triangle

If two forces are acting on a body, the third force that will hold them in equilibrium

is called the equilibrant, or the balancing force. As an example, the relations among

three forces in equilibrium could be shown by forces F1¼F2¼ 6,000 lb (Fig. 2.34).

These forces are concurrent forces since their lines of action meet at point M. Then,

what is the direction and magnitude of a horizontal force F3 exerted at the same

point M such that F1, F2, and F3 will all be in equilibrium?

F1

F2

F3

M R30º

30º

F1=6 k

F2=6 k

Fig. 2.34
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Force F3, called the equilibrant (or balancing force) of the two forces, is the

closing line of the force triangle MNP shown in Fig. 2.35, with the arrowhead

pointing in such a direction that the arrowheads of all the forces appear to follow

each other around the triangle.

P

N

F2

F3

F1

M

Fig. 2.35

2.8 Mathematical Statement of Equilibrium

In a concurrent force system, equilibrium is met when the summation of the vertical

and horizontal components of all forces are zero.

In equation form:

Rx ¼
X

Fx ¼ 0

Ry ¼
X

Fy ¼ 0

Example 2.9 Find the magnitude and direction of the forces F1 and F2 needed in

order to produce equilibrium in the diagram shown (Fig. 2.36).

Y

x

60º

F3=375 lb

F1

F2

Fig. 2.36
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Solution

x-components y-components

F1x ¼F1 F1y¼ 0

F2x¼ 0 F2y¼�F2

F3x¼� (375 lb) cos 60� F3y ¼ (375 lb) sin 60�

F3x¼� 188 lb F3y¼ 325 lb

Equilibrium conditions:

X
Fx ¼ 0

F1 þ 0þ �188 lbð Þ ¼ 0

and F1¼ 188 lb

X
Fy ¼ 0

0þ �F2ð Þ þ 325 lbþ 0

and F2¼ 325 lb

Example 2.10 Two cables are connected together at point C and loaded as shown

(Fig. 2.37). Determine the tensions in AC and BC. Use the mathematical method

and the idea of a force triangle.

A

45º 30º

B

C

M 3000 lb

Fig. 2.37

Solution X
Fx ¼ 0

BC cos 30� � AC cos 45� þ 0 ¼ 0, or 0:866BC� 0:707AC ¼ 0 ð2:1Þ
X

Fy ¼ 0
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BC sin 30þ AC sin 45� 3, 000 ¼ 0, or 0:5BCþ 0:707AC ¼ 3, 000 ð2:2Þ
Equations (2.1) and (2.2) can be solved simultaneously.

AC ¼ 2, 690 lb

BC ¼ 2, 196 lb

Using the force triangle method, we draw three concurrent vectors tip to tail until

the triangle is closed. In this case the resultant of the forces is zero. AC and BC can

be obtained using the law of sines.

3, 000= sin 75 ¼ AC= sin 60

Solving for AC, we get

AC ¼ 2, 690 lb

and

3, 000= sin 75 ¼ BC= sin 45

BC ¼ 2, 196 lb

2.9 Action and Reaction

According to Newton’s third law, if a particle exerts a force on another particle,

then the second particle exerts a collinear force of equal magnitude and opposite

direction on the first particle. The wall resists the push with an equal and opposite

force, too; this is called a reaction. A body weighing 10 lb rests on a table. The

action force is the downward pull due to the earth’s attraction. The table exerts an

upward reaction N and N¼ 10 lb, as the forces are in equilibrium (Fig. 2.38).

N=10 lb

W=10 lb

Fig. 2.38
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2.10 Newton’s First Law and Free Body Diagram

Newton’s First Law: If a particle is acted on by forces whose resultant is zero, it

remains at rest or will move with constant speed along a straight line. This idea can

be utilized in analysis of actual physical engineering problems. These problems can

simply be converted into an equilibrium system of forces acting on the particle. In

this determination, a free body diagram will be very helpful. A free body diagram is

a diagram that represents all the forces acting on a particle.

As an example, consider a block W hanging from two cables tied together at C

(Fig. 2.39a). To determine the tension in AC and BC, we construct the free body

diagram of the forces shown in Fig. 2.39b.

40 lb

AA C

B
60º

60º

C

B

40 lb

X

Y
a b

Fig. 2.39

Example 2.11 A 300-N weight hangs from a cord tied to two other cables as

shown in Fig. 2.40. Determine the tension in cables A and B.

A

A

a b
Y B

B

X

300 N

300 N

45°

45°
60°

60°

Fig. 2.40

Solution

x-components y-components

Ax¼�A cos 60� Ay¼A sin 60�

Bx¼B cos 45� By¼B sin 45�

Cx¼ 0 Cy¼� 300N
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X
Fx ¼ 0

�A cos 60� þ B cos 45� ¼ 0

X
Fy ¼ 0

A sin 60� þ B sin 45� � 300 ¼ 0

Substituting the values in Eqs. (2.3) and (2.4), we have:

�0:5Aþ 0:707B ¼ 0 ð2:3Þ
0:866Aþ 0:707B� 300 ¼ 0 ð2:4Þ

Solving Eqs. (2.3) and (2.4) simultaneously, we get:

A ¼ 220N

B ¼ 155N

Example 2.12 Determine the tension in cable AB and the compression in the strut

BC shown in Fig. 2.41.

C

A B

θ

1000 N

6′

10′

AB A B

C

BC

Free-Body Diagram Force Triangle

θ

Fig. 2.41
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Solution Draw the free body diagram that includes the tension in the cable,

compression in the strut, and a 1,000-N weight.

Equations of equilibrium:

X
Fx ¼ 0

�AB cos 0þ BC cos 59� ¼ 0 ð2:5Þ
X

Fy ¼ 0

BC sin 59� � 1, 000 ¼ 0 ð2:6Þ
From Eq. (2.6) we find:

BC ¼ 1, 166:6N

Substituting for BC into Eq. (2.5) we get

�ABþ 1, 166:6 cos 59� ¼ 0 and AB ¼ 600:9N

Practice Problems

1. Find the tension in each cable shown (Fig. 2.42).

1000 N

40º 35º

T1 T2

Fig. 2.42

2. For Figs. 2.43 and 2.44, close the force polygon and show the equilibrant as a

balancing force.
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A

C

D

F3

F2

F1

B

Fig. 2.43

A

CD F3

F2

F1B

Fig. 2.44

3. Determine the tension in the cable and the compression in the support shown

(Fig. 2.45).

750 N

T

C

40º

Fig. 2.45
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4. A 50-kg sign is suspended by two cables as shown in Fig. 2.46. Find the tension

in each cable.

A

C

40º 60º

80º

M=50 kg

B

Fig. 2.46

Chapter Summary

1. The forces may apply in the same line of action; these are called collinear forces.

2. The resultant of collinear forces is obtained by adding their magnitudes. The

resultant can be obtained algebraically or graphically.

3. The definition and concept of coplanar concurrent forces.

4. The resultant of concurrent forces can be computed using algebraic or graphical

methods.

5. The definition of components of a force, and how to find them on the x–y plane.
6. The definition the equilibrium of concurrent forces and equilibrium conditions

for these force systems.

7. The free body diagram of the body under influence of force systems.

8. The procedure for how to draw a free body diagram.

9. When a force system is in equilibrium, the force polygon must close.

Review Questions

1. What are collinear forces?
2. What are coplanar concurrent forces?
3. What are the components of a force?
4. What is equilibrium?

5. What is an equilibrant?
6. What is a free body diagram?
7. What is the principle of action–reaction in a force system?
8. What is a force polygon?
9. What is the force triangle in the equilibrium problems?

10. What is the Pythagorean theorem and its application?

42 2 Force Systems on Structures



Problems

1. Determine the resultant of the concurrent force systems shown below.

Y

F1=100 N

F3=200 N

F2=150 N

15º

20º X

Fig. 2.47

2.

Y

F1=50 N

F2=75 N

24º

32º

X

Fig. 2.48
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3.

F1=10 N

F2=30 N

F3=90 N

X

Y

25º

Fig. 2.49

4.

Y

F1=500 lb

F2=800 lb

F3=950 lb

58º

26º

30º X

Fig. 2.50
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5.

Y

F4=180 lb

F2=120 lb

F1=80 lb

F3=110 lb
45º

30º

22º

10º
X

Fig. 2.51

6.

Y

F3=1600 lb

F4=1000 lb

F2=1200 lb
F1=1000 lb

45º38º

36º
X

Fig. 2.52
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7.

Y
F2=270 lb

F3=320 lb

F1=150 lb

45º

28º X

Fig. 2.53

8. Using the law of cosines and the law of sines, find the resultant of the given

force triangle (Fig. 2.54).

65º

F2=150 lb

F1=50 lb

Fig. 2.54

9. Using the method of components, find the resultant of the force system shown

(Fig. 2.55).

X

Y

F3=1200 N

F1=500 NF2=100 N

25º

3

2

Fig. 2.55
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10. Draw a force polygon diagram to show the resultant of the forces shown

(Fig. 2.56).

Y

X

3

6

1

1

F4=350 lbF3=200 lb

F2=150 lb

F1=100 lb

Fig. 2.56

11. A weight of 800 N is tied to the cables below as shown (Fig. 2.57). Find the

tension force in the cables.

800 N

B

T1T2

A C60º 30º

Fig. 2.57

12. For the structure shown below, find the tension on AC and BC (Fig. 2.58).

4000 lb

42 in.

60 in.32 in.

Fig. 2.58

Problems 47



13. Determine the compression in the strut and the tension in the cable shown,

assuming the weight is 1,000 N (Fig. 2.59).

1000 N
B

A

60º

20º

Fig. 2.59

Isaac Newton (1642–1727)

Sir Isaac Newton was born on Christmas Day of 1642 in the hamlet of Woolsthorpe,

England, where his mother managed the farm left by her husband who died

two months before Isaac was born. The baby was frail and sickly, but he somehow

managed to survive and grow stronger, even though he never enjoyed
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excellent health. He was educated at a local school of low educational standards and

as a youth showed no special flair except for an interest in mechanical devices. He

was a curious boy and an average student in the grammar school at Grantham.

Newton did well enough in his subjects to be admitted to Trinity College of

Cambridge in 1661.

When Newton received his bachelor’s degree in April 1665, he had to leave

Cambridge because the university was closed down, and plague was widespread in

the London area. He returned to his home at Woolsthorpe, where he spent the next

two years contemplating the ideas about space and time and motion he had first

considered while at the university.

By the time of his return to Cambridge (in 1667), it is tolerably certain that he

had already firmly laid the foundations of his work in the three great fields with

which his name is forever associated: calculus, the nature of light, and universal

gravitation and its consequences. Newton’s theory of gravitation was based on his

theory that “the rate of fall was proportional to the strength of the gravitational force

and that this force fell off according to the square of the distance from the center of

earth.”

His observation of an apple falling from a tree to the ground while at

Woolsthorpe led Newton to conclude that the earth was pulling on the apple and

the apple on the earth. Newton was the first to speculate that the force that caused

the apple to fall to the ground is the same force that keeps the moon in its orbit

around the earth and the earth in its orbit around the sun. Newton not only unified

and completed the mechanics of Galileo and Kepler, but he showed that the

dynamic motions of the universe can be described by basic mathematical

relationships that are valid anywhere in the universe. Newton’s achievements

dominated science and philosophy for the next two centuries.

At first Newton did not publish his discoveries. He is described by most of his

contemporaries, including Robert Hooke and Huygens, as having had an abnormal

fear of criticism. Later, his astronomer friend Edmond Halley (1656–1742)

recognized his greatness and encouraged him to publish his results. This caused

Newton to begin working on a book explaining his theory of gravitation, as well as

the three laws of motion. He finished the manuscript in 18 months, and it was

published in 1687 at Halley’s expense as the Philosophiae Naturalis Principia
Mathematica (The Mathematical Principles of Natural Philosophy). The book is

usually referred to simply as the Principia.
Written in the form of a series of densely worked geometrical axioms and proofs,

it remains the greatest and most influential scientific work ever written. It offered a

vision of a universe wound up by a cosmic hand and left to run down on its own

with all dynamic motions governed by the law of gravitation. The Principia brought
Newton worldwide fame and ensured his unequalled reputation in the scientific

community.

The Principia is divided into three books. In a prefatory section Newton defines

concepts of mechanics such as inertia, momentum, and force; he then states the

three famous laws of motion, which are:
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Law I A body continues in its state of rest, or of uniform motion in a right line,

unless it is compelled to change that state by forces impressed upon it.

Law II The change (in the quantity) of motion is proportional to the motive power

impressed and is made in the direction of the right line in which that force is

impressed.

In the definition of motion, Newton means the mass times the velocity. Hence

the change in motion, if the mass is constant, is the change in velocity, i.e., the

acceleration.

Law III For every action, there is always an opposite and equal reaction, or the

mutual actions of the two bodies upon each other are always equal and directed to

contrary parts. Although his discoveries were among many made during the

Scientific Revolution, Isaac Newton’s universal principles of gravity found no

parallels in science at the time.

Newton’s legacy to modern science is rivaled only by the work of Albert

Einstein, who in the twentieth century, would overturn Newton’s concept of the

universe, stating that space, distance, and motion were not absolute but relative, and

that the universe was more fantastic than Newton had ever conceived.
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Moment of a Force 3

Overview

A complete study of force systems and their applications requires understanding of
the fundamental concept of moment. We will define the moment of a force and how
to calculate it. The moment of a force is the tendency of the force to produce
rotation about any axis.

Learning Objectives

Upon completion of this chapter, you will be able to define and compute moment of
a force for many systems and to apply the principle of moments to find the resultant
of a non-concurrent force system. You will also be able to define the equilibrium of
parallel forces in a plane, and compute support reactions in beams with the
application of moment of forces. Your knowledge, application, and problem solving
skills will be determined by your performance on the chapter test.
Upon completion of this chapter, you will be able to:

• Define and compute moment of a force with respect to a point
• Identify positive moment or negative moment
• Define the principle of moments
• Identify the unit of moment in different systems of units
• Identify equilibrium of parallel forces in a plane
• Compute support reactions in beams using the application of moment of forces

3.1 Moment of a Force

Moment of a force F about a given point O is the product of the force F and its

perpendicular distance r from the line of action of the force to the center of rotation O.

# Springer International Publishing Switzerland 2015

P. Ghavami, Mechanics of Materials, DOI 10.1007/978-3-319-07572-3_3
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Line of action
of force

Momentarm

90
°

F

OPoint O is the
moment center

r

Fig. 3.1

Moment of force ¼ magnitude of force�moment arm

or

M ¼ F� r,

where

F¼ force

r¼moment arm

Unit of moment in the English system is lb-ft and in the metric system is N.m.

3.2 Sign Convention of a Moment

In the figure shown (Fig. 3.2), it is evident that the 100-lb force tends to rotate about

point A in one direction, and about point B in the opposite direction. Some rule for

the direction of rotation is then necessary.

5′

3′

A

B

100#

Fig. 3.2

Clockwise rotation (+) Counterclockwise rotation (�)
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Momentof 100 lb: forceaboutpointA ¼ þ100 lbð Þ 5ftð Þ
¼ þ500 lb‐ft

Momentof 100 lb: forceaboutpointB ¼ �100 lbð Þ 3 ftð Þ
¼ �300 lb‐ft

Example 3.1 Find the moment of forces F1¼ 500 N and F2¼ 750 N with respect

to point O. Assume r1¼ 2 m and r2¼ 3 m (Fig. 3.3).

r2 r1

F2= 750 N F1= 500 N

O

Fig. 3.3

Solution
Momentof forceF1 : M1 ¼ 500Nð Þ 2mð Þ ¼ 1, 000N:m

Momentof forceF2 : M2 ¼ �750Nð Þ 3mð Þ ¼ �2, 250N:m

Example 3.2 Find the moment of forces shown in Fig. 3.4 with respect to point O.

400 N

600 N

O

.75 m

.6 m

Fig. 3.4

Solution A force of 600 N produces a positive moment about point O, and a force

of 400 N produces a negative moment about point O.

Mo ¼ 600Nð Þ � 0:6mð Þ ¼ 360N:m

Mo ¼ 400Nð Þ � 0:75mð Þ ¼ �300N:m

Example 3.3 Find the moment of force for F¼ 250 lb shown (Fig. 3.5) with

respect to point A and point B.
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A B
3.5 ft2.5 ft

35°

F=250 lb

Fig. 3.5

Solution As mentioned earlier, the moment of a force must be perpendicular to the

moment arm.

Now, we can resolve the force into its x and y components (Fx and Fy) as shown

in Fig. 3.6. Fx, however, does not contribute to the moment of force F, because it is
not perpendicular to the moment arm. In this case, only Fy will contribute to the

calculation of moment of force F.

Y

FX B

35°

F

A

O

Fy

X

Fig. 3.6

Ma ¼ 250 lbð Þ sin 35� 2:5ftð Þ ¼ þ358:5 lb‐ft

Mb ¼ 250 lbð Þ sin 35� 3:5ftð Þ ¼ �501:9 lb‐ft

Example 3.4 A force of 120 N is applied to a pulley (D¼ 45 cm) as shown in

Fig. 3.7. What is the moment of force about the center point O?

F=120 N
D=45 cm

O

Fig. 3.7
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Solution The moment of force, in this case, is negative because it is in the

counterclockwise direction.

Mo ¼ � 120Nð Þ 0:45mð Þ ¼ �54N:m

3.3 Principle of Moments

The principle of moments, called Varignon’s theorem, states that the moment of a

force about a point is exactly equal to the sum of the moments of the components of

that force about the point. This principle is used in calculating the moment of a

force when it is too difficult to calculate the perpendicular distance (see Example

3.3). A variety of structural problems in mechanics of materials can be dealt with

through the principle of moments by using the rectangular components of the force.

Example 3.5 Determine the moment of the 200-N force shown in Fig. 3.8 with

respect to point O.

2 m 3 m

X

Y

1.5 m

O

F=200

30°

Fig. 3.8

Solution The easiest way to solve the problem is to use the principle of moments.

In this case we need to resolve the given 200-N force the along x and y axes. The
components are:

Fx ¼ 200 cos 30� ¼ 173N

Fy ¼ 200 sin 30� ¼ 100N

and the moment of force F, using the principle of moments, is the sum of the

moments of force components about the point O. Then we have:

Mo ¼ 173 � 1:5þ 100� 5 ¼ 760N:m
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3.4 Moment Equation for Equilibrium

The moment equation for equilibrium with respect to a point states that the sum of

the moments of all the forces about that point is equal to zero. In other words, the

resultant moment about that point is zero. That means:

X
M ¼ 0

Example 3.6 The condition of moment equilibrium about a pivot point O (Fig. 3.9)

of two forces F1 and F2 is:

F2 F1

r2 r1

Fig. 3.9

F1 � r1 � F2 � r2 ¼ 0 ð3:1Þ

or

F1 � r1 ¼ F2 � r2 ð3:2Þ
If

F1¼ 180 N

F2¼ 300 N

r1¼ 320 cm

From Eq. (3.2), we get,

r2 ¼ F1 � r1ð Þ=F2 ¼ 180N� 320cmð Þ=300N
¼ 192cm ¼ 1:92m

The principle of moment equilibrium was known thousands years ago, and the

lever was used in the construction of the pyramids as well as in a variety of

ingenious devices and mechanisms.
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Example 3.7 Given a group of parallel forces F1¼ 2,000 lb, F2¼ 5,000 lb,

F3¼ 3,000 lb acting on a beam as shown Fig. 3.10, find:

(a) The resultant of the forces.

(b) The distance of the resultant from point O (left end of the beam) (assume

x1¼ 2 ft, x2¼ 5 ft, and x3¼ 8 ft)

X1 X2
X3

O

F1

F2
F3

R
X

Fig. 3.10

Solution

(a) R¼∑Fy¼F1 +F2 +F3¼ 2, 000 lb + 5, 000 lb + 3, 000 lb¼ 10, 000 lb

The resultant R is also acting downward.

(b) Writing the moment equation for equilibrium, we obtain

X
Mo ¼ Rx ¼ 2, 000 2ð Þ þ 5, 000 5ð Þ þ 3, 000 8ð Þ ¼ 53, 000 lb‐ft

Substituting R¼ 10,000 lb, we have

10, 000x ¼ 53, 000 lb‐ft

and

x ¼ 53, 000 lb‐ft=10, 000 ¼ 5:3ft
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Example 3.8 Figure 3.11 shows a bar AB hanging from the ceiling with two

unknown forces F1 and F2. Determine the forces if the given weight W¼ 600 N.

Assume the system is in equilibrium.

F1 F2

C
BA

3 m 1.5 m

W=600 N

Fig. 3.11

Solution Using the principle of moments for equilibrium for the system of forces

with respect to point B, we obtain

X
Mb ¼ 0

�600 1:5ð Þ þ F1 4:5ð Þ ¼ 0

and

F1 ¼ 600 1:5ð Þ=4:5 ¼ 200N

If we take the moment of forces with respect to point A using moment equilib-

rium conditions, we get

X
Ma ¼ 0

600 3ð Þ � F2 4:5ð Þ ¼ 0

and

F2 ¼ 600 3ð Þ=4:5 ¼ 400N

We can also find F2 knowing that F1 +F2 equals the load (W¼ 600 N) on the bar.
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Practice Problems

1. Determine the moment of given forces with respect to point O in Fig. 3.12.

100 lb

3 in.

2 in.

O

150 lb

Fig. 3.12

2. Determine the moments of the given force F¼ 800 N with respect to point A

and point B (Fig. 3.13).

F=800 N

7 m

A

B

3 m

20°

Fig. 3.13

3. For the non-concurrent forces shown in Fig. 3.14, find (a) the moment of forces

with respect to point A, and (b) the magnitude and direction of the resultant.

200 N 2 m 2 m

1.5 m

400 N

30°

A

800 N

Fig. 3.14
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4. Find the forces F1 and F2 shown in Fig. 3.15 to produce the equilibrium in the

bar system.

100 lb 50 lb

BA

F1

F2

7 ft2 ft1 ft

Fig. 3.15

5. Determine the force F necessary to open the safety valve in the figure shown

(Fig. 3.16). Assume that the suspended weight exerts a 200-N force on the

lever.

O

200 N

0.7 m0.3 m
F

Center of
 rotation

Fig. 3.16

6. Compute the moment of forces with respect to points B and C for the beam

shown in Fig. 3.17. Is this system in equilibrium? Show your proof

mathematically.

3 ft 2 ft 2 ft 2 ft

1000 lb 2000 lb

3000 lb

BA C

Fig. 3.17
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7. A force of 150 N is applied at the end of a 1.5 m lever (Fig. 3.18). Find the

moment of force with respect to point B.

1.5 m

A

B

150 N
30°

Fig. 3.18

8. Compute the moment of forces shown (Fig. 3.19) with respect to point A and

point B. Is this force system in equilibrium? Show your proof mathematically.

3 m 2 m 5 m

10,000 N

6000 N
8000 N

BA

Fig. 3.19

9. Determine (a) the resultant of the forces acting on the structure shown in

Fig. 3.20 and (b) the distance of the resultant force to the point A on the

footing. Assume F¼ 300 N.

2 m

2 m

2 m

500 N

400 N

F= 300 N

A
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Fig. 3.20

10. Figure 3.21 shows a construction crane with a boom of 15 m and a 10,000-N

balancing weight at the other end that is positioned 4 m from the center of the

crane. Determine the amount of the construction load to be lifted to bring the

system into equilibrium.

10,000 N

4 m 15 m

Counter Weight

Fig. 3.21

3.5 Equilibrium of Parallel Coplanar Forces

Forces whose lines of actions are not intersecting each other are called parallel

forces. The resultant of parallel forces which are in equilibrium is equal to zero. In

fact, the equilibrium equations for parallel forces are

X
Fx ¼ 0

X
Fy ¼ 0

X
M ¼ 0

Note that in a parallel force system, the problem cannot be solved without using

the moment equation. That means the first two equations above are necessary for

equilibrium conditions, but are not themselves sufficient. With the moment equa-

tion, the force system equilibrium will be established.

The principle involved in the study and application of parallel forces is best

understood by a simple example. Let’s look at the following beam (Fig. 3.22)

experiencing three forces at points A, B, and C. We can check whether the beam is

in equilibrium.
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40 lb

A
B

C

8 ft 4 ft

120 lb

80 lb

12 ft

Fig. 3.22

The sum of the forces is: 40 + 80� 120¼ 0.

We compute the moment of forces about points A, B, and C as follows:

X
Ma ¼ 8� 120ð Þ � 12� 80ð Þ ¼ 960� 960 ¼ 0

X
Mb ¼ 8� 40ð Þ � 4� 80ð Þ ¼ 320� 320 ¼ 0

X
Mc ¼ 12� 40ð Þ � 4� 120ð Þ ¼ 480� 480 ¼ 0

These results illustrate the principle that the above parallel forces are in equilib-

rium, and that the sum of their moments about any axis through any point is zero. In

other words, if a body is in equilibrium, it must neither translate nor rotate. Then the

conditions for static equilibrium are as follows:

1. The algebraic sum of the forces must be equal to zero.

X
F ¼ 0

2. The algebraic sum of the moments about any axis through any point must be

equal to zero.

X
M ¼ 0

3.6 Applications of Moment of Forces

One of the applications of the moment of forces is to determine the reactions in a

beam-loaded system. The loads can be concentrated or distributed loads. A special

type of distributed load is a uniformly distributed load, or a load with constant

density. Examples of these types of loading will be shown later.
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Example 3.9 Find the reactions of the supports for the beam shown in Fig. 3.23.

RA RB

12 m

F2=6 KNF1=3 KN

A B

4 m 4 m 4 m

Fig. 3.23

Solution By the conditions of equilibrium, the algebraic sum of the moments

about any point is zero. A convenient point to choose would be either the right or

left support, since one of the unknowns will be eliminated. If point A is chosen, then

X
Ma ¼ �RB 12ð Þ þ 6 8ð Þ þ 3 4ð Þ ¼ 0

�12RB ¼ �60

and

RB ¼ 5KN,

but

RA þ RB ¼ 3þ 6 ¼ 9KN first condition forequilibriumð Þ
Solving for RA, we obtain

RA ¼ 9� 5

¼ 4KN

Example 3.10 Compute the magnitude of the reactions for the beam shown in

Fig. 3.24. The supports are a pin support at point A and a roller at end B.
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A B

2500 N 4000 N

2500 N 4000 N

10 M

3 m 3 m 4 m

10 m

RAV

RAh

RBV

Fig. 3.24

Solution The free diagram at the pin (A) shows that there are two reactions here,

RAh and RAv, to be considered.

X
Fx ¼ 0

RAh ¼ 0, there isnohorizontal component

X
Fy ¼ 0

RAv þ RBv � 2, 500� 4, 000 ¼ 0

Rearranging the equation

RAv þ RBv ¼ 6, 500

X
Ma ¼ 0

2, 500 3ð Þ þ 4, 000 6ð Þ � RBv 10ð Þ ¼ 0

Solving for RBv, gives,

RBv ¼ 3, 150N

Substituting into equation ∑ Fy¼ 0, we get

RAv ¼ 3, 350N
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Example 3.11 Find the reactions at A and B exerted by the walls as shown in

Fig. 3.25. Draw the free body diagram and show the forces including the reactions

on the beam.

Wall Wall

A B

5000 lb 3000 lb

8 ft8 ft8 ft

Fig. 3.25

Solution X
Fy ¼ 0 1stconditionof equilibriumð Þ

RA þ RB ¼ 5, 000þ 3, 000 ¼ 8, 000 lb:

X
Ma ¼ 0

5, 000 8ð Þ � RB 16ð Þ þ 3, 000 24ð Þ ¼ 0

Solving the equation gives

RB ¼ 7, 000 lb

Substituting into equation ∑ Fy¼ 0, we have

RA ¼ 1, 000 lb

5000 lb 3000 lb

A B

RA RB

8 ft 8 ft 8 ft

Fig. 3.26 Free body diagram
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3.7 Distributed Load Systems

There are many problems in mechanics of materials that deal with certain types of

distributed load. Examples of distributed load are things like roof loads, floor loads,

wind loads, and snow loads. If the load is distributed uniformly along the length, it

is called a uniformly distributed load. Distributed loads can also be non-uniform.

Distributed loads normally are depicted by a diagram, called a load diagram. The

resultant of a distributed load is simply the area of the load diagram (Fig. 3.27).

Uniform load Non-uniform load

a b

Fig. 3.27

Example 3.12 Compute the total amount of the uniformly distributed load shown

in Fig. 3.28.

A B

150 N/m

10 m

RA RB

Fig. 3.28

Solution The density of the load is 150 N/m, and the total amount of the

distributed load is obtained through multiplying the load density by the meters

length of the load distributed on the beam:

Total load ¼ 150N=m� 10m ¼ 1, 500N

Example 3.13 Compute the magnitude of the reactions for the beam shown

(Fig. 2.29) resting on the two end supports and carrying a uniformly distributed

load of 1,000 lb/ft, and an additional concentrated load of 4,000 lb.
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A

1,000#/liner foot

B

BA

12′ 2′ 6′

6′ 6′8′

RA

RA

RB

RB

12,000# 4,000#

4,000#a

b

Fig. 3.29

Solution Take the point B as the center of the moments:

20RA ¼ 1, 000� 12� 14ð Þ þ 4, 000� 6ð Þ
Solving the equation for RA

20RA ¼ 192, 000

RA ¼ 9, 600 lb

Using the 1st equation of equilibrium

RA þ RB ¼ 12, 000þ 4, 000 ¼ 16, 000

Substituting a value for RA into above equation, it gives

RB ¼ 16, 000� 9, 600 ¼ 6, 400 lb:

Practice Problems

1. A beam resting on two end supports carries concentrated loads as shown in

Fig. 3.30. Compute the reactions.
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5 ft 15 ft 10 ft

3000 lb1000 lb

A B

RA RB

Fig. 3.30

2. Compute the magnitude of reactions for the beams shown in Figs. 3.31 and

3.32.

1500 lb 1000 lb

6 ft8 ft 4 ft

A B

RA RB

Fig. 3.31

3.

300 lb/ft 2000 lb

A B

RA RB

6 ft 6 ft 4 ft

Fig. 3.32

4. A beam 12 ft long is supported at the ends as shown in Fig. 3.33. A load of

600 lb is placed 5 ft from the left end. Compute the reactions.
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5 ft

12 ft

600 lb

A B

RA RB

Fig. 3.33

5. What should be the values of the forces R and F for the beam shown in Fig. 3.34

to keep the force system in equilibrium?

5 m 3 m 4 m

200 N

100 N
12 m

F

R

Fig. 3.34

6. Using the principle of moments, determine the values of reactions RA and RB

for the load shown on the beam in Fig. 3.35.

A B

RA RB

4000 lb 8000 lb 10,000 lb

5 ft 3 ft 7 ft 3 ft

Fig. 3.35

7. Determine the reactions RA and RB for the beam shown in Fig. 3.36.
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A B

3 KN/m

6 KN

10 m 4 m

RA RB

Fig. 3.36

8. Determine the reactions RA and RB for the beam shown in Fig. 3.37.

5 ft 10 ft

200 lb
200 lb/ft

RA RB

Fig. 3.37

9. Determine the reactions RA and RB for the beam shown in Fig. 3.38.

1000 N/m

20,000 N 6000 N

2 m 2.5 m 2 m 1.5 m

RA RB

Fig. 3.38

10. Frame A as shown in Fig. 3.39 is loading under a 5,000 N force. Determine the

reactions at the A (pin) and B (roller) supports.
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A

C D

B5000 N

6 m

2.4 m 1.2 m

RA RB

Fig. 3.39

Chapter Summary

1. The moment of a force is a measure of its tendency to rotate a body. It is

calculated by the equation:

M ¼ F� r

with clockwise direction as positive; and counterclockwise direction as negative.

2. The resultant of a force system is:

R ¼
X

Fi

and the resultant moment of a force system is:

M ¼
X

Mi

3. If a body is in equilibrium, the sum of the moments of the system of forces about

any point is zero:

X
Mi ¼ 0

4. For the coplanar parallel force systems, the resultant of forces which is in:

equilibrium is equal to zero. Equations of coplanar forces for equilibrium are

X
Fx ¼ 0
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X
Fy ¼ 0

X
M ¼ 0

5. The free body diagram is very useful in showing all the forces acting on a body.

In fact, it is highly advised to draw a free-body diagram before attempting to

solve problems.

Review Questions

1. What is moment of a force?

2. What is the moment arm?

3. What is the moment center?

4. When can the moment of a force be positive, and when can it be negative?

5. What happens to the resultant of coplanar forces on a body when the body is in

equilibrium?

6. What is the difference between a coplanar parallel force system and a coplanar

non-concurrent force system?

7. What are support reactions of a certain beam?

8. What is the difference between a force and a reaction?

9. How many components of forces must be considered in pin and roller supports?

10. How many types of beam loading are there?

Problems

1. Find the moment of forces shown (Fig. 3.40) with respect to points A and B.

500 N

200 N

2 m

3 m

A

B

30°

Fig. 3.40
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2. A cantilever beam 3 ft long is shown in Fig. 3.41. If a concentrated load of

3,000 lb acts on the free end, calculate the moment of the load with respect to

the fixed point A.

A

3000 lb

3 ft

Fig. 3.41

3. Find the moment force of 20,000 N acting at the top of the tower shown in

Fig. 3.42 with respect to points A and B.

25 m
20

,0
00

 N

10°

5 m5 m

A B

Fig. 3.42

4. A 30 m high structure with a cross section of 20 m� 20 m is exposed to wind

pressure of 5,000 N/m2 as shown in Fig. 3.43. Calculate the overturning

moment of wind force with respect to point A. Assume the weight of the

building is 4� 106 N.
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5000 N/m2

30 m

A

Fig. 3.43

5. Determine the values of reactions RA and RB for the force system on the simply

supported beam shown in Fig. 3.44.

2500 N 1000 N

2 m 6 m 2 m

RA RB

Fig. 3.44

6. Find the horizontal force F necessary to rotate the block about point A as shown

in Fig. 3.45.

F

1 m

1.8 KN

A

2 m

Fig. 3.45
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7. A wheel 1 m in diameter (Fig. 3.46) weighs 150 N with its load. Find the

horizontal force F necessary to start the wheel rolling over an obstruction 30 cm

high (forces act through the center).

30 cm

F

O

W

1 m

Fig. 3.46

8. In the member shown (Fig. 3.47), calculate the value of force F in Newton(s) to

keep the member in equilibrium.

F 20 cm 10 cm 15 cm
50 N75 N

Fig. 3.47

9. Compute the reactions RA and RB at the supports A and B of the beams shown

below (Fig. 3.48).

A B

9 K 12 K

3 ft 3 ft 3 ft

RA RB

Fig. 3.48

10. Find the sum of the moments of forces Cx¼ 7.9 kips, Cy¼ 2.1 kips, C¼ 7.5 in.

and θ¼ 28� shown (Fig. 3.49) with respect to point O (1 kip¼ 1,000 lb).
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O

CX

CY

C

q

Fig. 3.49

Archimedes of Syracuse (287–212 B.C.)

Of all the Greek philosophers who concerned themselves with physical phenomena,

Archimedes of Syracuse was the most notable and was closest to what we now

consider a scientist. Archimedes, the son of the astronomer Phidias, was born at

Syracuse in 287 B.C., and was good friends with King Hieron, the local ruler.

Although few details of his life are known, he is regarded as one of the leading

scientists in classical antiquity. He spent part of his youth in Egypt learning

mathematics from the immediate successors of Euclid.

Archimedes combined theory and experiment in a manner similar to scientific

procedure today, but no body of basic scientific principles resulted from his work.

He was a great experimentalist, a physicist, engineer, inventor, and astronomer.

He tied geometry to mechanics and used geometrical arguments ingeniously to

make his proofs. In mechanics he wrote On the Equilibrium of Planes or The

Centers of Gravity of Planes, a work in two books. He is most famous for his

discovery of the principle of buoyancy (the Archimedes principle), the water snail,

Archimedes screw, a helical pump for raising water for irrigation, and the astro-

nomical cross-staff with which he made accurate celestial observations.
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He is credited with designing innovative machines, such as compound pulleys,

and defensive war machines to protect his native Syracuse from invasion. He

demonstrated his mathematical skill by showing how to deduce geometrically the

number pi (the ratio of the circumference of a circle to its diameter) to any desired

accuracy. He did this by approximating the circumference of a circle with the

perimeter of a circumscribed or inscribed many-sided regular polygon.

He was also one of the first to apply mathematics to physical phenomena,

founding hydrostatics and statics, including an explanation of the principle of the

lever. Unlike Aristotle, whose mechanics is integrated into a theory of physics

which goes so far as to incorporate a system of the world, Archimedes made an

autonomous theoretical science of statics, based on postulates of experimental

origin and afterwards supported by mathematically rigorous demonstrations.

How much Archimedes truly preferred the theoretical to the practical may never

be known. It is clear, however, that in his work there is tension between theory and

application, a tension that still prevails mathematics 22 centuries later. Archimedes

died at the age 75.
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Centroid of an Area 4

Overview

For most of the problems in mechanics of materials, it frequently happens that we
must determine the position of the centroid; this is accomplished most readily by
mathematical methods. This chapter is designed to show what the centroid of an
area is and how to find it. Knowing the centroid of an area is very useful in
structural design, especially when a beam is subjected to loads that cause it to
bend about a neutral axis which passes through the centroid.

Learning Objectives

Upon completion of this chapter, you will be able to define and determine the location
of the centroid of a plane figure, and then use the mathematical concept of moment of
an area to find the centroid of various shapes. Your knowledge, application, and
problem solving skills will be determined by your performance on the chapter test.

Upon completion of this chapter, you will be able to:

• Define center of gravity
• Define and compute the centroid of a simple area
• Define and compute the moment of a simple area with respect to an axis
• Define a composite area
• Compute the moment of a composite area with respect to an axis
• Determine the location of the centroid of a composite area

4.1 Center of Gravity

Imagine that a body is composed of an infinite number of small particles, and each

particle has its own gravitational force that acts towards the Earth’s center. These

forces are assumed to be a parallel force system, and the resultant of these forces

(the weight of the body) will act through a point, the body’s center of gravity.

# Springer International Publishing Switzerland 2015
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4.2 Centroid of an Area

If we assume that a body is very thin with uniform thickness, then the resultant of

forces would be proportional to the area instead of the volume. The location of this

resultant is called the centroid of the area. Location of the centroid is defined by

x and y coordinates from a set a reference axes (Fig. 4.1). The centroid of an area is a

very important point in structural engineering design due to the fact that the bending

of the objects occurs about the neutral axis where the location of the centroid is.

Y

X

X

CG

Y

Fig. 4.1

The position of the centroid for symmetrical shapes will be along the line of

symmetry. Or, if there are two lines of symmetry, the centroid will be at their point

of intersection. We will first show the centroid of a plane area, and then the centroid

of a composite area will be discussed later in this chapter.

For example, the centroid of a symmetrical figure such as a rectangle is the point

of intersection of the diagonals (Fig. 4.2a), and the centroid of a circular area is its

geometrical center, i.e. its center (Fig. 4.2b). The centroid of a triangular area is at a

distance equal to one-third of the perpendicular distance measured from any side to

the opposite vertex (Fig. 4.2c).

b

b

b

1/3 b2/3 b

2/3 h

1/3 h
C

C

CG
2

h

d

d

h

a b c

2

2
h

Fig. 4.2
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4.3 Centroid of Simple Areas

Now we will show you how to find the location of the centroid of some simple

geometrical figures. Most of these figures you already know, but some of these

figures have formulas whose proofs require calculus, which puts them beyond the

scope of this book. However, the student is encouraged to pursue them if he/she is

interested.

Example 4.1 Determine the coordinates of the centroid of the triangular area

shown in Fig. 4.3.

9 cm

3 cm

X

Y

C

6 cm

2 cm

Fig. 4.3

Solution The distance from the centroid to the horizontal side of the triangle is:

h=3 ¼ 9=3 ¼ 3

and the distance from the centroid to the x axis is:

Yc ¼ 3þ 3 ¼ 6cm

The distance from the centroid to the y axis is:

Xc ¼ 2=3 6ð Þ þ 2 ¼ 4cmþ 2cm ¼ 6 cm;

so the coordinates of the centroid are C (6, 6).
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Example 4.2 Locate the centroids of the areas shown in Fig. 4.4.

C

A

B

3 cm

10 cm

4 cm

6 cm

3 
cm

5 cm

5 cm

1 
cm

Y

X

Fig. 4.4

Solution Reading the measurements from Fig. 4.4 for each figure (A, B, C),

we get:

Rectangular figure A:

Xc ¼ �3cm

Yc ¼ �5cm

Rectangular figure B:

Xc ¼ 3cm

Yc ¼ �1:5cm

Circular figure C:

Xc ¼ �5cm

Yc ¼ 5cm
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Example 4.3 Locate the centroids of the areas shown in Fig. 4.5.

180 mm

100 mm

100 mm

150 mm

200 mm

200 mm

50 mm

100 mm

140 mm

Y

C

A

B

X

Fig. 4.5

Solution

Rectangular figure A:

Xc ¼ 90mm

Yc ¼ �70mm

Rectangular figure B:

Xc ¼ �150mm

Yc ¼ �125mm

Circular figure C:

Xc ¼ �200mm

Yc ¼ 200mm
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Example 4.4 Locate the centroid of the right triangle shown in Fig. 4.6.

C

Y

Y
c 

=
 –

2.
3 

in
.

Xc = 3.3 in.

X

4 in.

1 in.

2 in.2 in.

Fig. 4.6

Solution The x and y coordinates of the centroid of the triangle can be found with

respect to the x and y axes.

Xc ¼ 4� 0:667ð Þ ¼ 3:33 in:

Yc ¼ � 1þ 1:33ð Þ ¼ �2:33 in:

Centroid of Quadrant

The quadrant of a circle with a radius r has a centroid. The distance from the

centroid to the x and y axes is shown below (Fig. 4.7).

Xc ¼ 4r= 3πð Þ
Yc ¼ 4r= 3πð Þ

X

Y

Xc = 4r/3π
r

Yc = 4r/3π

Fig. 4.7

84 4 Centroid of an Area



Example 4.5 Locate the centroid of the quadrant shown (Fig. 4.8).

Yc

Xc

Y

75
 m

m

100 mm

50 mm

10
0 

m
m

X

Fig. 4.8

Solution

xc ¼ 100� 4=3πð Þ þ 50mm ¼ 92:4mm

yc ¼ 100� 4=3πð Þ þ 75mm ¼ 117:4mm

Practice Problem

Locate the centroids of the following simple areas.

1.
Y

X
4 in.

8 in.

6 in.

2 in.

2.

Y

20 mm

20 mm

40 mm

40 mm

X
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3.

2 in.

4 in.

6 in.

2 in.

X

4.

300 mm

Y

X
200 mm

500 mm220 mm

Fig. 4.9

5.

200 mm

150 mm100 mm

X

Y

Fig. 4.10
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4.4 Moment of a Simple Area

The concept of moment of an area is used to simplify the calculation of the centroid

of a plane figure. It is defined as the product of the area and the normal distance of

the centroid of the area from a given axis.

The moment of an area can be found with respect to the x axis or the y axis.

Suppose we want to calculate the moment of the rectangular area shown (Fig. 4.11)

with respect to the x axis. Then we multiply the area by the normal distance from the

centroid to the x axis. This mathematically is represented as:

Mx ¼ AYc

Yc

X

Y
Xc

Fig. 4.11

In the same manner, the moment of an area with respect to the y axis is the

product of the area and the normal distance from the centroid to the y axis. This is
also represented as:

My ¼ AXc

The unit for the moment of an area in the English system is in.2� in.¼ in.3, and

in the metric system it is mm2�mm¼mm3. This kind of dimension may not be

conceivable to most of us; it is just a mathematical concept.

Now, to calculate the moment of a simple area, such as a rectangle, triangle,

square, or circle, with respect to the x or y axis, we simply multiply the value of the

area by the centroid normal distance from the axis to get the moment of an area with

respect to the given axis.

Example 4.6 Find the moment of the triangle shown (Fig. 4.12) with respect to the

x and y axes.
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X

Y

20
 m

m

90 mm

30 mm

C

60 mm

YCXC

Fig. 4.12

Solution The area of the triangle is

A ¼ b� h =2 ¼ 60mm� 90mmð Þ= 2 ¼ 2, 700mm2

The distance from the centroid to the base of the triangle is

h=3 ¼ 90=3 ¼ 30mm

and the distance from the centroid to the x axis is

Yc ¼ 30mmþ 30mm ¼ 60mm

Therefore, the moment of the area with respect to the x axis is

Mx ¼ 2, 700mm2 � 60mm ¼ 162, 000mm3

We can repeat the same procedure to find the moment of the area of the above

triangle with respect to the y axis.
The distance from the centroid to the y axis is

Xc ¼ 2=3 60ð Þ þ 20mm ¼ 60mm;

and the moment of area with respect to y axis is

My ¼ 2, 700mm2 � 60mm ¼ 162, 000mm3

Example 4.7 Find the moment of the rectangular area shown (Fig. 4.13) with

respect to the x and y axes.
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20 mm

100 mm

50 mm

50 mm

Y

X

Fig. 4.13

Solution The area of the rectangle is

A ¼ 50mm� 150mm ¼ 7, 500mm2

The moment of the area with respect to the x axis is

Mx ¼ 7, 500mm2
� � �25mmð Þ ¼ �187, 500mm3

And the moment of the area with respect to the y axis is

My ¼ 7, 500mm2
� � �45mmð Þ ¼ �337, 500mm3

Example 4.8 Find the moment of the areas of the circle and the quadrant shown in

Fig. 4.14 with respect to the x and y axes.

3 in.

3 
in

.

3 in.

X

Y

3 in.

5 in.

5 in.

3 in.

Fig. 4.14
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Solution

1. Quadrant: The distance from the centroid to the vertical leg of the quadrant is

4r=3π ¼ 4 3 in:ð Þ=3π ¼ 1:27 in:

and the distance from the vertical leg to the y axis is

Xc ¼ 3 in:þ 1:27 in: ¼ 4:27 in:

The distance from the centroid to the horizontal is the same as

4r=3π ¼ 4 3 in:ð Þ=3π ¼ 1:27 in:

Then

Yc ¼ 1:27 in:

The area of the quadrant is

A ¼ πr2=4 ¼ π 3 in:ð Þ2=4 ¼ 7:07 in:2

And the moment of the area with respect to the x axis is

Mx ¼ 7:07 in:2
� �

1:27 in:ð Þ ¼ 8:98 in:3

And the moment of the area with respect to the y axis is

My ¼ 7:07 in:2
� �

4:27 in:2
� � ¼ 30:2 in:3

2. Circle: The distance from the centroid (center) of the circle to both the x and

y axes is 5 in.

The area of the circle is

A ¼ πr2 ¼ π 3 in:ð Þ2 ¼ 28:3 in:2

Then the moment of the area of the circle with respect to the x and y axes is the
same.

Mx ¼ My ¼ 28: 3 in:2
� �

5 in:ð Þ ¼ 141:4 in:3
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4.5 Moment of a Composite Area

Generally, the moment of an area with respect to any axis is equal to the sum of the

moments of the divided parts of the entire area with respect to the axis. In other

words, if we are looking at the moment of a complicated area, it is logical to divide

it into simple areas, find the moment of each of these areas, and then add all the

moments to obtain the moment of the entire area. The following examples will

clarify this idea.

Example 4.9 Find the moment of the area for the figure shown (Fig. 4.15) with

respect to the x and y axes.

X

Y Y

100 mm

50 mm

50 mm

15
0 

m
m

X

B

A

Fig. 4.15

Solution The total area can be divided into two simple areas A and B. Then we find

each area with its centroid. Rectangle A has the centroid as follows:

Xa ¼ 25mm

Ya ¼ 125mm

and the area of rectangle A is

Aa ¼ 50mm� 150mm ¼ 7, 500mm2

Rectangle B has the centroid as follows:

Xb ¼ 50mm

Yb ¼ 25mm
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and the area of rectangle B is

Ab ¼ 50mm� 100mm ¼ 5, 000mm2

The moments of the area for rectangle A with respect to the x and y axes are

Mx ¼ AaYa ¼ 7, 500mm2 � 125mm ¼ 937, 500mm3

My ¼ AaXa ¼ 7, 500mm2 � 25mm ¼ 187, 500mm3

The moments of the area for rectangle B with respect to the x and y axes are

Mx ¼ AbYb ¼ 5, 000mm2 � 25mm ¼ 12, 500mm3

My ¼ AbXb ¼ 5, 000mm2 � 50mm ¼ 250, 000mm3

and the moments of the composite area with respect to the x and y axes are

Mx ¼ AaYa þ AbYb ¼ 937, 500þ 125, 000 ¼ 1, 062, 500mm3

My ¼ AaXa þ AbXb ¼ 187, 500þ 250, 000 ¼ 437, 500mm3

Example 4.10 Find the moment of the trapezoidal shape shown in Fig. 4.16 with

respect to the x and y axes.

Y

X

2 in.

A

B

3 in.

6 in.

Fig. 4.16
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The total area can be divided into two simple areas A and B. Then we find each

area and its centroid. Rectangle A has the centroid as follows:

Xa ¼ 1:5 in:

Ya ¼ 3:0 in:

and the area of rectangle A is

Aa ¼ 3 in:� 6 in: ¼ 18 in:2

Triangle B has the centroid as follows:

Xb ¼ 1=3 2 in:ð Þ þ 3 in: ¼ 3:67 in:

Yb ¼ 1=3 6 in:ð Þ ¼ 2 in:

and the area of triangle B is

Aa ¼ 2 in:� 6 in:ð Þ=2 ¼ 6 in:2

The moments of the area for rectangle A with respect to the x and y axes are

Mx ¼ AaYa ¼ 18 in:2
� �

3:0 in:ð Þ ¼ 54 in:3

My ¼ AaXa ¼ 18 in:2
� �

1:5 in:ð Þ ¼ 27 in:3

The moments of the area for rectangle B with respect to the x and y axes are

Mx ¼ AbYb ¼ 6 in:2
� �

2 in:ð Þ ¼ 12 in:3

My ¼ AbXb ¼ 6 in:2
� �

3:67 in:ð Þ ¼ 22 in:3

and the moments of the composite area with respect to the x and y axes are

Mx ¼ AaYa þ AbYb ¼ 54 in:3 þ 12 in:3 ¼ 66 in:3

My ¼ AaXa þ AbXb ¼ 27 in:3 þ 22 in:3 ¼ 49 in:3

Example 4.11 Find the moment of an area for the beam cross section shown

(Fig. 4.17) with respect to the x and y axes.
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C

8 in.
X X

Y Y

2 in.

2 in.

2 in.

8 in.

4 in.

2 in.
4 in.

B

2 in.

A

4 in.

3 in.
4 in.

2 in.

Fig. 4.17

Solution The total area can be divided into three simple areas A, B, and C. Then

we find each area with its centroid.

Rectangle A has the centroid as follows:

Xa ¼ 4 in:

Ya ¼ 7 in:

and the area of rectangle A is

Aa ¼ 2 in:� 4 in: ¼ 8 in:2

Rectangle B has the centroid as follows:

Xb ¼ 4 in:

Yb ¼ 4 in:

and the area of rectangle B is

Ab ¼ 2 in:� 4 in:ð Þ ¼ 8 in:2

Rectangle C has the centroid as follows

Xc ¼ 4 in:

Yc ¼ 1 in:

And the area of rectangle C is
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Ac ¼ 2 in:� 8 in:ð Þ ¼ 16 in:2

Notice that areas A, B, and C are all symmetrical with respect to the vertical line

passing through the centroid of the entire area.

The moments of the area for rectangle A with respect to the x and y axes are

Mx ¼ AaYa ¼ 8 in:2
� �

7 in:ð Þ ¼ 56 in:3

My ¼ AaXa ¼ 8 in:2
� �

4 in:ð Þ ¼ 32 in:3

The moments of the area for rectangle B with respect to the x and y axes are

Mx ¼ AbYb ¼ 8 in:2
� �

4 in:ð Þ ¼ 32 in:3

My ¼ AbXb ¼ 8 in:2
� �

4 in:ð Þ ¼ 32 in:3

The moments of the area for rectangle C with respect to the x and y axes are

Mx ¼ AcYc ¼ 16 in:2
� �

1 in:ð Þ ¼ 16 in:3

My ¼ AcXc ¼ 16 in:2
� �

4 in:ð Þ ¼ 64 in:3

and the moments of the composite area with respect to the x and y axes are

Mx ¼ AaYa þ AbYb þ AcYc ¼ 56 in:3 þ 32 in:3 þ 16 in:3 ¼ 104 in:3

My ¼ AaXa þ AbXb þ AcXc ¼ 32 in:3 þ 32 in:3 þ 64 in:3 ¼ 128 in:3

Example 4.12 Find the moment of the composite area shown (Fig. 4.18) with

respect to x and y axes.

X

50 mm

50 mm

20 mm

20 mm X

YY

B

A

Fig. 4.18
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Solution The total area can be divided into two simple areas A and B. Then we find

each area with its centroid. Rectangle A has the centroid as follows:

Xa ¼ 35mm

Ya ¼ 35mm

and the area of rectangle A is

Aa ¼ 70mm� 70mm ¼ 4, 900mm2

Quadrant B has the centroid as follows:

Xb ¼ 70mm� 4r=3π ¼ 70 � 4� 50mm=3π ¼ 48:78mm

Yb ¼ 4r=3π ¼ 21:2mm

and the area of quadrant B is negative:

Ab ¼ �πr2=4 ¼ �π 50mmð Þ2=4 ¼ �1, 963:5mm2

The moments of the area for rectangle A with respect to the x and y axes are

Mx ¼ AaYa ¼ 4, 900mm2 � 35mm ¼ 171, 500mm3

My ¼ AaXa ¼ 4, 900mm2 � 35mm ¼ 171, 500mm3

The moments of the area for quadrant B with respect to the x and y axes are

Mx ¼ AbYb ¼ �1, 963:5mm2 � 21:2mm ¼ �41, 626:2mm3

My ¼ AbXb ¼ �1, 963:5mm2 � 48:78mm ¼ �95, 779:5mm3

and the moments of the composite area with respect to the x and y axes are

Mx ¼ AaYa þ AbYb ¼ 171, 500 � 41, 626:2 ¼ 129, 873:8mm3

My ¼ AaXa þ AbXb ¼ 171, 500� 95, 779:5 ¼ 75, 720:5mm3
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Practice Problems

1. Find the moment of the area shown (Fig. 4.19) with respect to the x axis.

30 in.

5 in.

5 in.

20 in.20 in.

Xc

Yc

Fig. 4.19

2. Find the moment of the area shown (Fig. 4.20) with respect to the x and y axes.

10 mm

50 mm

50 mm

70
 m

m

X

Y

Fig. 4.20
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3. Find the moment of the area shown (Fig. 4.21) with respect to the x and y axes.

2 in.10 in.

2 in.

X

Y

2 in.

8 in.

8 in.

Fig. 4.21

4. Find the moment of the area shown (Fig. 4.22) with respect to the x and y axes.

8 in.

X

Y

2 in.

1 in.

2 in.

4 in.

Fig. 4.22

5. Find the moment of the area shown (Fig. 4.23) with respect to the x and y axes.

100 mm

X

Y 150 mm

50 mm

75 mm

20
 m

m

Fig. 4.23
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4.6 Centroids of Composite Areas

To find the centroid of a composite area, we must calculate the moment of the

composite area as shown in earlier examples. That means we have to follow the

approach by dividing the composite area into simple areas, and then find the

moment of each simple area. Once we add the moments of these areas together,

we get the moment of the composite area with respect to the x or y axis.
Now we can locate the centroid of a composite area, given the moment of a

composite area and also the total area. The rest of the calculation is simply a basic

algebraic operation. The process is shown in the following examples.

Example 4.13 Find the centroid of the T-section shown in Fig. 4.24.

X X

Y

15 in.

15 in.

5 in.

5 in.

Y

A

B

Fig. 4.24

Solution By symmetry, Xc¼ 0, since the y axis is the axis of symmetry. Then

My¼ 0. The centroid of rectangle A is

Ya ¼ 7:5 in:þ 5 in: ¼ 12:5 in:

and the area of rectangle A is

Aa ¼ 5 in:� 15 in: ¼ 75 in:2

The centroid of rectangle B is

Yb ¼ 1=2ð Þ 5 in:ð Þ ¼ 2:5 in:

and the area of rectangle B is

Ab ¼ 5 in:� 15 in: ¼ 75 in:2
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Now we can calculate moment of the composite area:

Mx ¼ AaYa þ AbYb ¼ 75 in:2
� �

12:5 in:ð Þ þ 75 in:2
� �

2:5 in:ð Þ ¼ 1, 125 in:3

and the total area is

Atotal ¼ Aa þ Ab ¼ 75 in:2 þ 75 in:2 ¼ 150 in:2

The centroid of the composite area is

Yc ¼ Mx=Atotal ¼ 1, 125 in:3= 150 in:2 ¼ 7:5 in:

Example 4.14 Find the centroid of the trapezoid area shown (Fig. 4.25) with

respect to the x and y axes.

Y

X

A
B

200 mm

100 mm

100 mm

Fig. 4.25

Solution The total area can be divided into two simple areas A and B. Then we find

each area with its centroid.

Rectangle A has the centroid as follows:

Xa ¼ 50mm

Ya ¼ 50mm

and the area of rectangle A is

Aa ¼ 100mm� 100mm ¼ 10, 000mm2

Triangle B has the centroid as follows:

Xb ¼ 1=3 100mmð Þ þ 100mm ¼ 133:33mm

Yb ¼ 1=3 100mmð Þ ¼ 33:3mm

and the area of triangle B is
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Ab ¼ 100mm� 100mmð Þ=2 ¼ 5, 000mm2

The moments of the area for rectangle A with respect to the x and y axes are

Mx ¼ AaYa ¼ 10, 000mm2
� �

50mmð Þ ¼ 500, 000mm3

My ¼ AaXa ¼ 10, 000mm2
� �

50mmð Þ ¼ 500, 000mm3

The moments of the area for rectangle B with respect to the x and y axes are

Mx ¼ AbYb ¼ 5, 000mm2
� �

33:3mmð Þ ¼ 166, 500mm3

My ¼ AbXb ¼ 5, 000mm2
� �

133:33mmð Þ ¼ 666, 650mm3

and the total moments of the composite area with respect to the x and y axes are

Mx ¼ AaYa þ AbYb ¼ 500, 000mm3 þ 166, 500mm3 ¼ 666, 500mm3

My ¼ AaXa þ AbXb ¼ 500, 000mm3 þ 666, 650mm3 ¼ 1, 166, 650mm3

And the total area is

Atotal ¼ Aa þ Ab ¼ 10, 000mm2 þ 5, 000mm2 ¼ 15, 000mm2

and the coordinates of the centroid of a trapezoid area are

Xc ¼ My=Atotal ¼ 1, 166, 650mm3=15, 000mm2 ¼ 77:8mm

Yc ¼ Mx=Atotal ¼ 666, 500mm3=15, 000mm2 ¼ 44:4mm

Example 4.15 Find the centroid of angle section (L) shown (Fig. 4.26) with

respect to the x and y axes.

10 in.

3 in.

12 in.

3 in.

Y

X X

Y

A

B

Fig. 4.26
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Solution The total area can be divided into two simple areas A and B. Then we find

each area with its centroid.

Rectangle A has the centroid as follows:

Xa ¼ 1:5 in:

Ya ¼ 9 in:

and the area of rectangle A is

Aa ¼ 3 in:� 12 in: ¼ 36 in:2

Rectangle B has the centroid as follows:

Xb ¼ 5 in:

Yb ¼ 1:5 in:

and the area of the rectangle B is

Ab ¼ 3 in:� 10 in: ¼ 30 in:2

The moments of the area for rectangle A with respect to the x and y axes are

Mx ¼ AaYa ¼ 36 in:2 � 9 in: ¼ 324 in:3

My ¼ AaXa ¼ 36 in:2 � 1:5 in: ¼ 54 in:3

The moments of the area for rectangle B with respect to x and y axes are

Mx ¼ AbYb ¼ 30 in:2 � 1:5 in: ¼ 45 in:3

My ¼ AbXb ¼ 30 in:2 � 5 in: ¼ 150 in:3

and the total moments of the composite area with respect to the x and y axes are

Mx ¼ AaYa þ AbYb ¼ 324 in:3 þ 45 in:3 ¼ 369 in:3

My ¼ AaXa þ AbXb ¼ 54 in:3 þ 150 in:3 ¼ 204 in:3

And the total area is

Atotal ¼ Aa þ Ab ¼ 36 in:2 þ 30 in:2 ¼ 66 in:2
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The two coordinates of the centroid of the L section area are

Xc ¼ My=Atotal ¼ 204 in:3 = 66 in:2 ¼ 3:1 in:

Yc ¼ Mx =Atotal ¼ 369 in:3=66 in:2 ¼ 5:6 in:

Practice Problems

1. Find the centroid W of the beam section shown (Fig. 4.27) with respect to the

x and y axes.

2 in. 10 in.

2 in.

X

Y

2 in.

10 in.

Fig. 4.27

2. Find the centroid of the angle section (L) shown (Fig. 4.28) with respect to the

x and y axes.

5 in.

1/2 in.

1/2 in.

7 in.

Fig. 4.28
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3. Find the centroid of the channel section shown (Fig. 4.29) with respect to the

x and y axes.

1 in.

1 in.

1 in.

4 in.

8 in.

Fig. 4.29

4. Find the centroid of the composite area shown (Fig. 4.30) with respect to the

x and y axes.

45 mm

X

Y
10 mm

20 mm

Fig. 4.30

5. Find the centroid of the composite area shown (Fig. 4.31) with respect to the

x and y axes.

30 mm

30 mm

10 mm

20 mm

Fig. 4.31
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Chapter Summary

1. The center of gravity of a body is an imaginary point at which all its weight

passes through.

2. There is no center of gravity of an area, for an area does not have weight.

3. The centroid of an area is used for the two dimensional shape.

4. The location of the centroid is very important in structural design when the body

undergoes a bending, and bending neutral axis becomes centroidal axis.

5. Moment of an area is the product of the amount of the area and the distance of

the centroid of the area from the axis.

6. The moment of a composite area is equal to sum of the moments of divided area

with respect to the axis.

7. To find the coordinates (x, y) of the centroid of the composite area, we simply

divide the moment of the composite area respect to the axis by the total area.

Review Questions

1. What is the center of gravity of a body?

2. What is the centroid of an area?

3. What is the moment of an area with respect of an axis?

4. What is a composite area?

5. What is the moment of a composite area, and how to calculate it with respect to

the x and y axes?
6. How to calculate the centroid of a composite area with respect to the x and

y axes?
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Problems

1. Find the centroid of the triangle shown (Fig. 4.32) with respect to the x and

y axes.

70 mm

100 mm

100 mm

X

Y

35
 m

m

Fig. 4.32

2. Find the centroid of the rectangle shown (Fig. 4.33) with respect to the x and

y axes.

3 in.

3 in.1 in.

X

Y

4 in.

Fig. 4.33

106 4 Centroid of an Area



3. Find the centroid of the quadrant shown (Fig. 4.34) with respect to the x and

y axes.
4 in.

5 in.

2 in.

Fig. 4.34

4. Find the centroid of the beam section shown (Fig. 4.35) with respect to the x and
y axes.

X

100 mm

100 mm

800 mm

500 mm
Y

Fig. 4.35

5. Find the centroid of the composite area shown (Fig. 4.36) with respect to the

x and y axes.

150 mm

50 mm

120 mm X

Y

50 mm

Fig. 4.36
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6. Find the centroid of the composite area shown (Fig. 4.37) with respect to the

x and y axes.

50 mm

75 mm

100 mm

75 mm

X

Y

Fig. 4.37

7. Find the centroid of the composite area shown (Fig. 4.38) with respect to the

x and y axes.

X

Y

5 m5 m

2 m

3 m

Fig. 4.38

8. Find the centroid of the composite area shown (Fig. 4.39) with respect to the

x and y axes.

20 mm

Y

X

10 mm

Fig. 4.39
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9. Find the centroid of the hollow shape shown (Fig. 4.40) with respect to the x and
y axes.

3 m

1 m
1 m

1 m

10 m

X

Y

8 m

2 m

Fig. 4.40
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Moment of Inertia 5

Overview

When we study equations in mechanics of materials, we use some of the properties
of sections. One of these properties that depends on the size and shape of the
member is called the moment of inertia. Moment of inertia is a mathematical
property of an area that controls resistance to bending, buckling, or rotation of
the member.

Learning Objectives

Upon completion of this chapter, you will be able to calculate the moment of inertia
of an area. Also, you will learn about of one the important properties of an area.
This property is used extensively in structural engineering designs dealing with
bending or rotation of the members. Your knowledge, application, and problem
solving skills will be determined by your performance on the chapter test.

Upon completion of this chapter, you will be able to:

• Define the moment of an area
• Define and calculate the moment of inertia of a simple area
• Define and calculate the moment of inertia using the parallel axis theorem with

respect to an axis other than the centroidal axis
• Calculate the moment of inertia of a composite area

5.1 Moment of Inertia

Themoment of inertia of an area is the capacity of a cross section to resist bending or

buckling. It represents a mathematical concept that is dependent on the size and

shape of the section of the member. The bending axis of a member is also the

centroidal axis; therefore, the ability to locate the centroid of a shape is closely

associated with moment of inertia. Engineers use the moment of inertia to determine

the state of stress in a section, and determine the amount of deflection in a beam.

# Springer International Publishing Switzerland 2015
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The definition of the moment of inertia of an area can be thought of as the sum of

the products of all the small areas and the squares of their distances from the axis

being considered. This gives

X
ay2 with respect to thexaxis

or

X
ax2 with respect to theyaxis

If we represent the moment of inertia by the letter I, then the moment of inertia

with respect to the x axis is

Ix ¼
X

ay2

Similarly, the moment of inertia with respect to the y axis is

Iy ¼
X

ax2

Units

Moment of inertia is expressed in units of length to the fourth power. Although

dimensionally speaking it seems unusual, it is just a mathematical abstract and is an

important property in the design of beams and columns. We will see in the

following examples the methods of calculating the moment of inertia for a given

beam section subjected to bending. If we choose the unit of length as in., then the

unit of the moment of inertia is

in:2 � in:2 ¼ in:4

In the metric system, if the unit of length taken is mm, then the unit of the

moment of inertia is

mm2 �mm2 ¼ mm4

5.2 Moment of Inertia of Simple Areas

Using calculus and integrating equations for an area, we will be able to extract the

exact values for the moment of inertia. Derivation of the moment of inertia

formulas for most commonly used shapes such as rectangle, triangle, and circle

are given in Table 5.1. The radius of gyration (r) of an area in the table represents

the distance from the moment of inertia axis at which the entire area could be

considered without changing its moment of inertia. The radius of gyration is a

property of a shape’s area and is mostly used in column design. It is expressed as
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r ¼ √I=A

J is called the polar moment of inertia and is defined as the moment of inertia

with respect to an axis perpendicular to the plane of the area. In this case, it could be

the Z–Z axis perpendicular to the X–Y plane.

Therefore,

J ¼
X

ar2

where

r2¼ x2 + y2 for any right triangle, and r is the moment arm.

It must be noted here that these formulas are only applicable for an area’s

centroidal axis. However, to find the moment of inertia for an axis other than the

centroidal axis, a different approach which will be discussed later in this chapter

is used.

Example 5.1 Find the value of the moment of inertia for the 6� 14-in. rectangular

beam shown (Fig. 5.1) with respect to the axis passing through its centroid and

parallel to the base.

XX

Y

Y

14 in.

6 in.

Fig. 5.1
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Solution The formula used for moment of inertia of a rectangle with respect to the

axis passing through the centroid and parallel to the base is given in Table 5.1. Then

Ixc ¼ bh3=12

b¼ 6 in. and is the width of the rectangle

h¼ 14 in. and is the depth of the rectangle.

Then the calculation of the moment of inertia with respect to the axis parallel to

base is

Ixc ¼ 6 in:ð Þ 14 in:ð Þ3=12 ¼ 1, 372 in:4

Example 5.2 Find the moment of inertia of the triangular cross section shown

(15-in. base and 9-in. height) with respect to an axis passing through its centroid and

parallel to the base (Fig. 5.2).

X X

15 in.

9 in.

Fig. 5.2

Solution The moment of inertia of a triangle with respect to the axis passing

through the centroid and parallel to the base is given in Table 5.1.

Ixc ¼ bh3=36

b¼ 15 in. and is the base of the triangle

h¼ 9 in. and is the height of the triangle

Then the calculation of the moment of inertia with respect to the axis passing

through the centroid and parallel to the base is

Ixc ¼ 15 in:ð Þ 9 in:ð Þ3=36 ¼ 303:75 in:4
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Example 5.3

Find the moment of inertia of the circular cross section shown with a diameter of

25 mm with respect to an axis passing through its centroid (Fig. 5.3).

Y

X

D= 25 mm

Fig. 5.3

Solution The formula used for moment of inertia of a circular section is given in

Table 5.1. Then

Ixc ¼ πd4=64

where d (diameter) of the circle¼ 25 mm

Using the above formula, we get

Ixc ¼ π 25mmð Þ4=64 ¼ 19, 174:76mm4
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Example 5.4

Find the moment of inertia of the rectangular section shown with respect to the

x and y axes passing through the centroid (Fig. 5.4).

10 mm

5 mm
Y

X

5 mm

10 mm

C

Fig. 5.4

Solution We calculate Ix and Iy in the same manner we did earlier.

The formula used for moment of inertia Ix of a rectangle is given in Table 5.1.

Then

Ixc ¼ bh3=12

b¼ 10 mm and is the width of the rectangle

h¼ 20 mm and is the depth of the rectangle

The calculation of the moment of inertia with respect to the x axis is

Ixc ¼ 10mmð Þ 20mmð Þ3=12 ¼ 6, 666:67mm4

And for Iy, we have

Iyc ¼ hb3=12

Substituting h¼ 20 mm and b¼ 10 mm into the above formula, we get

Iyc ¼ 20mmð Þ 10mmð Þ3=12 ¼ 1, 666:67mm4

Practice Problems

In the following problems, find the moment of inertia with respect to the centroidal

axis of the beam sections shown.
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1. The rectangular cross section shown in Fig. 5.5.

6 in.

2 in.Y

X

2 in.

6 in.

Fig. 5.5

2. The triangular cross section shown in Fig. 5.6.

4 in.

6 in.

XX

Fig. 5.6
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3. The circular cross section shown in Fig. 5.7.

6 
in.

X

Y

Fig. 5.7

4. The semicircular cross section shown in Fig. 5.8.

Y

X

5 in.

Fig. 5.8
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5. The quadrant cross section shown in Fig. 5.9.

Y

X

3 in.

Fig. 5.9

6. The rectangular cross section shown in Fig. 5.10.

12 in.

4 in.

4 in.

X

Y

Fig. 5.10

7. The right triangular shape shown in Fig. 5.11.

8 mm

5 mm10 mm

Y

X
X

Fig. 5.11
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8. The semicircular cross section shown in Fig. 5.12.

10 mm

Y

X

Fig. 5.12

5.3 Parallel Axis Theorem

When it is necessary to find the moment of inertia of an area with respect to any axis

other than the centroidal axis, the parallel axis theorem must be used. This theorem

simply says that the moment of inertia with respect to any axis parallel to its

centroidal axis is equal to its centroidal moment of inertia plus the area times the

square of the distance between two axes. This theorem is also called the transfer

formula (Fig. 5.13).

In equation form:

Ix ¼ Ixc þ Ad2

or

Iy ¼ Iyc þ Ad2

Here Ix and Iy are the moments of inertia of an area with respect to the x and

y axes, respectively. Ixc and Iyc are the moments of inertia with respect to the

centroidal axis. A is the area of the cross section, and d is the perpendicular distance
between the two parallel axes.
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Centroidal axis Y

Xc Xc

X

d

Fig. 5.13

Example 5.5 Find the moment of inertia of the rectangular cross section shown in

Fig. 5.14 with respect to the x axis.

Y

10
0 

m
m

25 mm

80
 m

m

X

XcC

Fig. 5.14

Solution From Table 5.1, the formula for a rectangular cross section with respect

to its centroidal axis is

Ixc ¼ bh3=12

or

Ixc ¼ 25mmð Þ 100mmð Þ3=12 ¼ 2, 083, 333mm4

The area of the rectangle is

A ¼ 25mmð Þ 100mmð Þ ¼ 2, 500mm2
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Therefore,

Ix ¼ Ixc þ Ad2

or

Ix ¼ 2, 083, 333mm4 þ 2, 500mm2
� �

80mmð Þ2 ¼ 18, 083, 333mm4

Example 5.6 Find the moment of inertia of the triangular cross section shown in

Fig. 5.15 with respect to the x axis.

150 mm

60 mm

80 mm

Xc

X

C

Fig. 5.15

Solution From previous examples, we have

Ixc ¼ bh3=36 ¼ 60mmð Þ 150mmð Þ3=36 ¼ 5, 625, 000mm4

A ¼ 60mmð Þ 150mmð Þ=2 ¼ 4, 500mm2

d ¼ 80mm

Therefore,

Ix ¼ Ixc þ Ad2 ¼ 5, 625, 000mm4 þ 4, 500mm2
� �

80mmð Þ2 ¼ 34, 425, 000mm4
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Example 5.7

Find the moment of inertia of the circular cross section shown in Fig. 5.16 with

respect to the x axis.

10 mm

Xc

X

10 mm

Fig. 5.16

Solution From Table 5.1, the formula for a circular cross section with respect to its

centroidal axis is

Ixc ¼ πd4=64 ¼ π 20mmð Þ4=64 ¼ 7, 853:98mm4

A ¼ πr2 ¼ π 10mmð Þ2 ¼ 314:2mm2

d ¼ 10mm

Then

Ix ¼ Ixc þ Ad2

Ix ¼ 7, 853:98mm4 þ 314:2mm2
� �

10mmð Þ2 ¼ 39, 273:98mm4
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Example 5.8

Find the moment of inertia of the triangular cross section shown in Fig. 5.17 with

respect to the y axis.

Y 75 mm

50 mm

25 mm

50 mm

C

Fig. 5.17

Solution From Table 5.1, the formula for a triangular cross section with respect to

its centroidal axis is

Ixc ¼ bh3=36 ¼ 50mmð Þ 75mmð Þ3=36 ¼ 585, 937:5mm4

A ¼ bh=2 ¼ 50mmð Þ 75mmð Þ=2 ¼ 1, 875mm2

d ¼ 75mm

Then

Ix ¼ Ixc þ Ad2

Ix ¼ 585, 937:5mm4 þ 1, 875mm2
� �

75mmð Þ2 ¼ 11, 132, 812:5mm4

Practice Problems

Using the parallel axis theorem, find the moment of inertia of the following cross

sections with respect to the x or y axis, or both axes parallel to the centroidal axis.

1. Triangular cross section shown in Fig. 5.18 with respect to the x and y axes.

5.3 Parallel Axis Theorem 127



Y

X

Xc

15 mm

10 mm

C

Fig. 5.18

2. Rectangular cross section shown in Fig. 5.19 with respect to the x and y axes.

X

10 mm

30 mm

5 mm
Xc

Y

Fig. 5.19

3. Rectangular cross section shown in Fig. 5.20 with respect to the x axis.

Xc

7 in.

4 in.

10 in.

X

Fig. 5.20
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4. Circular cross section shown in Fig. 5.21 with respect to the x and y axes.

Y

3 in.

3 in.

2 in.

Yc

Xc

X

C

Fig. 5.21

5. Semicircular cross section shown in Fig. 5.22 with respect to the x and y axes.

Y

X

5 mm
20 mm

40 mm

Fig. 5.22
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6. Triangular cross section shown in Fig. 5.23 with respect to the y axis.

Y 10 mm

30 mm

20
 m

m

Fig. 5.23

7. Quadrant cross section shown in Fig. 5.24 with respect to x and y axes.

Y

X

3 in.

2 in.

2 in.

3 in.

Fig. 5.24

5.4 Moment of Inertia of Composite Areas

As we discussed earlier in Chap. 4, a composite area is an area that can be divided

into simple areas. Composite areas are frequently used in the construction industry,

such as in I-beams and column cross sections, or other structural members. To

calculate the moment of inertia for a composite area, we simply apply the same type
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of formulations and methodology that we used for simple areas, except that we must

add the moment of inertia of each part to come up with the total moment of inertia

of the entire area, which is the moment of inertia of the composite area.

Example 5.9 Calculate the moment of inertia of the I-beam shown in Fig. 5.25

with respect to the centroidal x axis.

1 in.

1 in.

6 in.

1 in.

8 in. Xc

Fig. 5.25

Solution We divide the entire area into two areas, rectangle A with a width of 6 in.

and depth of 10 in. and area B consisting of two open spaces at the sides of a

vertical web.

For area A:

Ixc ¼ bh3=12 ¼ 6 in:ð Þ 10 in:ð Þ3=12 ¼ 500 in:4

For area B:

Two open spaces are equivalent to a rectangular area with a width of 5 in. and

depth of 8 in. Then the moment of inertia of the new rectangular area is

Ixc ¼ bh3=12 ¼ 5 in:ð Þ 8 in:ð Þ3=12 ¼ 213:3 in:4

So the moment of inertia of the composite area with respect to the x axis is

Ix ¼ 500 in:4 � 213:3 in:4 ¼ 286:7 in:4

Example 5.10 Calculate the moment of inertia of the hollow circular shape shown

in Fig. 5.26 with respect to the centroidal x and y axes.
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Y

6 in.

5 in.

X

Fig. 5.26

Solution There are two methods for calculating the moment of inertia of a hollow

circular area with respect to the centroidal x and y axes.

Method 1 Calculate it directly using the formulation given in Table 5.1.

Ixc ¼ Iyc ¼ π do
4 � di

4
� �

=64

¼ π 6 in:ð Þ4 � 5 in:ð Þ4
h i

=64 ¼ 32:94 in:4

Method 2 The moment of inertia for the outer circle with do¼ 6 in. is

Ixo ¼ π do
4

� �
=64 ¼ π 6 in:ð Þ4=64 ¼ 63:62 in:4

The moment of inertia for the inner circle with di¼ 5 in. is

Ixi ¼ π di
4

� �
=64 ¼ π 5 in:ð Þ4

i
=64 ¼ 30:68 in:4

So the moment of inertia for the composite area with respect to the x axis is

Ix ¼ Ixo � Ixi ¼ 63:62 in:4 � 30:68 in:4 ¼ 32:94 in:4

This matches with the answer from method 1.

Example 5.11 Calculate the moment of inertia for the built-up beam shown in

Fig. 5.27 with respect to the centroidal x axis.
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10 in.

10 in.

5 in.

12 in.
Xc

Fig. 5.27

Solution The moment of inertia of the 10� 12-in. rectangle is

Ixo ¼ bh3=12 ¼ 10 in:ð Þ 12 in:ð Þ3=12 ¼ 1, 440 in:4

The moment of inertia of the 5� 10-in. rectangle is

Ixi ¼ bh3=12 ¼ 5 in:ð Þ 10 in:ð Þ3=12 ¼ 416:67 in:4

So the moment of inertia for the composite area with respect to the x axis is

Ix ¼ Ixo � Ixi ¼ 1, 440 in:4 � 416:67 in:4 ¼ 1, 023:33 in:4

Example 5.12 Calculate the moment of inertia for the channel shown in Fig. 5.28

with respect to the centroidal x axis.

8 in. 1 in.

1 in.

1 in.

3 in.

4 in.

Xc

Fig. 5.28
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1 in.

3 in.

1 in.

1 in.

4 in.

8 in.

C

B

A

Solution The channel can be divided into three areas A, B, and C. Then we can

calculate the moment of inertia of each area with respect to the centroidal x axis of
the channel. For this purpose we use the parallel axis theorem discussed earlier.

Vertical distance dy is the distance from the centroidal x axis of each area to the

channel centroidal axis (xc). Then the total moment of inertia of the composite area is

Ix ¼
X

Ixc þ Ady
2

� �

For area A:

Ixc ¼ bh3=12
¼ 3 in:ð Þ 1 in:ð Þ3=12 ¼ 0:25 in:4

A ¼ 1 in:� 3 in: ¼ 3 in:2

d ¼ 3:5 in:

For area B:

Ixc ¼ bh3=12
¼ 1 in:ð Þ 6 in:ð Þ3=12 ¼ 18 in:4

A ¼ 1 in:� 6 in: ¼ 6 in:2

d ¼ 0
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For area C:

Ixc ¼ bh3=12
¼ 3 in:ð Þ 1 in:ð Þ3=12 ¼ 0:25 in:4

A ¼ 1 in:� 3 in: ¼ 3 in:2

d ¼ 3:5 in:

Then

X
Ixc ¼ :25 2ð Þ þ 18 ¼ 18:5 in:4

X
Ady

2
� � ¼ 3 3:5ð Þ2 � 2

h i
¼ 73:5 in:4

Therefore,

Ix ¼
X

Ixc þ
X

Ady
2

� �

or

Ix ¼ 18:5 in:4 þ 73:5 in:4 ¼ 92 in:4

Practice Problems

For the following figures, calculate the moment of inertia with respect to the

centroidal x axis.

1.

6 in.

20 in.

10 in.

XX

Fig. 5.29
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2.

20 mm

200 mm

X X

Fig. 5.30

3.

X
6 in.

10 in.

10 in.

2 in.

X

Fig. 5.31
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4.

24 mm

24 mm

72 mm

66 mm

18 mm

X X

Fig. 5.32

5.

50 mm

200 mm

150 mm 50 mm 150 mm

XX

Fig. 5.33

Chapter Summary

The moment of inertia is a property of an area. It is a mathematical quantity that

affects the load-carrying capacity of beams and columns. An increase in the

moment of inertia with respect to an axis will produce higher resistance to bending

forces. The unit of inertia is in.4, or mm4. Moments of inertia with respect to the

centroidal x and y axes are
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Ixc ¼
X

Ay2

Iyc ¼
X

Ax2

The moment of inertia of an area with respect to the axis parallel to the centroidal

axis is found using the parallel axis theorem

Ixc ¼ Ixc þ Ad2

Iy ¼ Iyc þ Ad2

Review Questions

1. What is the moment of inertia with respect to the centroidal axis parallel to the

base?

2. What is the moment of inertia of a circular area with respect to the x and y axes
through the centroid?

3. What is the moment of inertia of a triangular shape with respect to the centroidal

axis parallel to the base?

4. What is the parallel axis theorem and when can it be used?

5. What is a composite area?

6. State the procedure for how to calculate the moment of inertia of a

composite area.

Problems

Find the moment of inertia with respect to the centroidal x axis for the following

composite areas.

1 . T-section in Fig. 5.34.

200 mm

100 mm
XX

50 mm

50 mm

Fig. 5.34
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2. Channel section in Fig 5.35.

300 mm

10 mm

10 mm

50 mm

50 mm

X X

Fig. 5.35

3. Trapezoid area in Fig. 5.36.

Xc Xc

6 in.

4 in.

3 in.

C

Fig. 5.36

4. Composite area shown in Fig. 5.37.

yc

3 in.

4 in.

2 in.
10 in.

xC

Fig. 5.37
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5. Composite area shown in Fig. 5.38.

Xc

100 mm

10 mm10 mm

20

20

Fig. 5.38

6. Hollow circular composite area shown in Fig. 5.39.

25 mm

50 mm

XcXc

Fig. 5.39

7. Composite shaded area shown in Fig. 5.40.

40 mm

20 mm

20 mm

XcXc

x10
 m

m

Fig. 5.40
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8. Composite shaded area shown in Fig. 5.41.

Xc
Xc

1 
in.

1/2 in.

1/2 in.

1/2 in.

Fig. 5.41

9. Composite area shown in Fig. 5.42.

Xc Xc

40 mm100 mm

100 mm

30 m

30 m

Fig. 5.42

10. Composite area shown in Fig. 5.43.

5 in.

5 
in

.

1 in.

1 in.

XcXc

Fig. 5.43
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Stress and Strain 6

Overview

Designers of machinery and structures must know the relationship between the
external forces acting on elastic bodies and the internal forces developed due to the
influence of these forces. In this chapter, we will study new technical terms such as
stress, strain, deformation, and modulus of elasticity. These are the concepts that a
designer must take into consideration when dealing with elastic bodies. Both the
analysis and the design of various elements of a structure are involved the determi-
nation of stress and deformation and the selection of proper materials based on the
principles of mechanics of materials.

Learning Objectives

Upon completion of this chapter, you will be able to define and compute tensile or
compressive stress, shear stress, and allowable stress. Also, you will be able to
calculate the deformation (elongation) of elastic bodies subject to external forces
and plot the stress–strain diagrams for different materials, and identify the modulus
of elasticity based on the stress–strain diagrams of materials. Your knowledge,
application, and problem solving skills will be determined by your performance on
the chapter test.

Upon completion of this chapter, you will be able to:

• Define and compute stress under tension or compression
• Define shearing stress and allowable stress in building structures
• Define and calculate deformation (elongation) of different materials
• Define and compute strain under tension or compression
• Define modulus of elasticity and its importance in designing structural members
• Illustrate a stress–strain diagram and its properties

# Springer International Publishing Switzerland 2015

P. Ghavami, Mechanics of Materials, DOI 10.1007/978-3-319-07572-3_6
143



6.1 Simple Stress

When a body is subjected to external forces a system of internal forces is developed.

It is important in engineering mechanics to determine the intensity of these forces

on the various cross section portions of the body, as the resistances to applied

forces depend on these intensities. This intensity is called stress and it is a measure

of the resisting forces. Stress is determined by dividing the total applied load (force)

F, by the total area of loaded cross section A. This is expressed as

σ ¼ F=A

The unit of stress in the metric system is newtons per square meter (N/m2). One

newton per square meter is equivalent to one pascal (Pa). The unit of stress in the

English system is pounds per square inch (psi).

There is, however, another unit in engineering calculations: kilo-pounds, which

is equivalent to 1,000 lb and is abbreviated as kip. In this case, the unit of stress will

be kilo-pounds per square inch, or ksi.

6.2 Components of Stress

The internal resistance F is decomposed into component Fn perpendicular to the

plane (known as normal force) and a force component Ft, parallel to the plane

(known as shear force). The quantities Fn/A and Ft/A represent average normal and

shear forces per unit area. These quantities are called normal stress and shear stress
respectively. In general, normal and shear stresses are not uniformly distributed

over the entire area of interest, and their magnitudes shall be found at any point

within the area. However, in special cases where the components of Fn and Ft are

uniformly distributed over the entire area A, the above equations for normal and

shear stresses can be applied.

6.3 Tensile and Compressive Stresses

Tensile and compressive stresses are normal stresses developed within a body as a

result of external forces. These stresses are axial stresses and act along the longitu-

dinal axis of the member. Their action is in the same direction as the applied force.

In the tensile or compressive stress, the force is applied normal to the cross

section under consideration, however if the transverse force is applied to a member

the internal forces develop in the plane of the cross section and they are called

shearing forces (Fig. 6.1). Since shear distribution in the cross section of the

member is not necessarily uniform, an average shear stress is used. Examples of

shear stress are found in bolts, rivets and pins that are being used for connecting of

various structural members.
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F′ F′

A ABC C
F

F

Fig. 6.1

The relationship between average shear stress in the cross section and the shear

(F) can be expressed as:

τave ¼ F=A

Figure 6.2, shows the rivet connection under tension force F and the shear stress

will be developed in the rivet section connecting the plates. In this case, the force

F is considered as the shear in the rivet section.

F F

Fig. 6.2

6.4 Definitions

The following are the useful terms that are extensively used in engineering gener-

ally, and mechanics of materials especially.

Allowable Stress Allowable stress is the maximum stress that a member can

safely sustain in service. It is also called design stress.
Brittleness Brittleness is the property of a material to fail without exces-

sive deformation

Ductility Ductility is the property of a material that allows the material to

elongate under certain stress without breaking. Some materials

like copper, and gold are relatively more ductile than others.

Elasticity Elasticity is the ability of a material to return to its size and

shape after elastic deformation.

Elastic Limit Elastic limit is the highest value of the stress for which the

material behaves elastically.

Hardness Hardness is the resistance of a material to penetration and

abrasion.

Malleability Malleability is the property of a material with which it deforms

under compressive stress without rupture. It is the tendency that

the material to be hammered or rolled into sheets.
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Plasticity Plasticity is the property of a material with which it deforms

under stress without rupture and not to return to its original size

and shape.

Stiffness Stiffness is the resistance of material to bending or deformation.

Strength Strength of a material is the ability to withstand high forces

without failure. Some materials represent better resistance than

others. For instance, compressive and tensile strengths of steel

are the same, whereas concrete is strong in compression and

weak in tension.

Toughness Toughness is the resistance of material to high forces without

breaking.

6.5 Normal Stresses Under Axial Tension or Compression

As we discussed earlier, tensile and compressive internal forces develop in the

structural members when they are under the axial loads. The internal forces will

distribute over the entire cross section and create normal stresses in the cross

section of the member. Figure 6.3 shows the force distribution on the cross section

of the bar directed to the left when the force F is directed to the right.

A A

A′ A′

FFF

Bar under
tension 

Free-body
Diagram

a b

Fig. 6.3

When the member is under tension, the stress is called tensile stress. If the

member is under compression, then the stress is called compressive stress. Tensile
and compressive stresses are called normal stresses, since the force F and the force

distribution are both perpendicular to the cross section of the member (Fig. 6.4).

Normal stress formula σ¼F/A discussed earlier, can be applied for tensile or

compressive stresses conditionally the force F is centrally applied to the cross

section of the member.

F

F F

F

tension

compression

a

b

Fig. 6.4
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Note that the sense of the stress is also important. It cannot be determined from

the sign of the force vector. If the stress is tending to stretch the body or pull it apart,

it is called tension. Any tension is considered positive. If the stress is compressive

or squashing the body, it is called compression and carries a negative sign.

Example 6.1 Tensile forces equal to 5,000 N, are applied to the both sides of bar

shown (Fig. 6.5). Calculate the tensile stress on the cross section of the bar with the

dimensions of 5� 5 mm.

5000 N 5000 N

5 mm

5 mm

Fig. 6.5

Solution
A ¼ 0:005m� 0:005m ¼ 2:5� 10�5 m2

σ ¼ F=A ¼ 5, 000N=2:5� 10�5 m2 ¼ 2� 108N=m2 or 200MPa

Example 6.2 Calculate the tensile stress in a wire 0.2 in. in diameter shown

(Fig. 6.6) when it is subjected to an axial force of 250 lb.

250 lb 250 lb

0.2 in.

Fig. 6.6

Solution
A ¼ π 0:2 in:ð Þ2=4 ¼ 0:0314 in:2

σ ¼ F=A ¼ 250 lb=0:0314 in:2 ¼ 7, 962psi

Example 6.3 Find the tensile stress in each of the solid cylinders shown (Fig. 6.7)

if a mass of 5,000 kg is applied.

5000 kg

D1 = 0.50m

D2 = 0.75m

1

2

Fig. 6.7
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Solution
Load ¼ mass� acceleration due togravity

¼ 5, 000kgð Þ 9:8m=s2ð Þ ¼ 49, 000N

A1 ¼ π 0:5mð Þ2=4 ¼ 0:196m2

A2 ¼ π 0:75mð Þ2=4 ¼ 0:442m2

σ1 ¼ F=A1 ¼ 49, 000N=0:196m2 ¼ 2:5� 105 Pa

σ2 ¼ F=A2 ¼ 49, 000N=0:442m2 ¼ 1:1� 105 Pa

Example 6.4 Calculate the tensile stress in a steel bar 1.5 in.� 1.5 in. cross section

shown (Fig. 6.8) if it is subjected to an axial load of 110 kips.

1.5 in.

1.5 in.
110 kips110 kips

Fig. 6.8

Solution
A ¼ 1:5 in:� 1:5 in: ¼ 2:25 in:2

σ ¼ F=A ¼ 110kips=2:25 in:2 ¼ 48:89ksi or 48, 890psi

Example 6.5 A circular tube with an outside diameter of 40 mm and inside

diameter of 20 mm shown (Fig. 6.9) is under a compressive force of 50,000 N.

Determine the compressive stress in the tube.

20mm
40mm

Fig. 6.9
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Solution The effective area of cross section is the difference between outside

circle area and the inside circle area.

Aeffective ¼ πDo
2=4� πDi

2=4 ¼ π=4� Do
2 � Di

2
� �

¼ π=4� 0:0016m2 � 0:0004ð Þ ¼ 9:4� 10�4m2

σ¼ 50, 000N/9.4� 10� 4m2¼ 5.31� 107 Pa

6.6 Shear Stress

In Sect. 6.3 we discussed tensile and compressive stresses and we called them

normal stresses, because they act perpendicularly to the surface. Shear stresses,
however, are developed in a parallel direction, or tangentially to the surface

(Fig. 6.10).

XX

p

Fig. 6.10

Example 6.6 Figure 6.11 shows two steel plates connected using four ½-in.

diameter bolts. If the tensile load is 20,000 lb, find the average shear stress in the

bolts.

Fig. 6.11

Solution Total areaof bolts ¼ πD2=4
� �� 4 ¼ πD2 ¼ π 0:5 in:ð Þ2 ¼ 0:785 in:2

Total shear stress on the bolts is

τave ¼ F=A
¼ 20, 000 lb=0:785 in:2 ¼ 2:55� 104 psi

Example 6.7 A 400-lb tensile load is carried by a 1.00-in. diameter rivet as shown

in Fig. 6.12. Determine the shear stress in the rivet.
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400 lb
400 lb

Fig. 6.12

Solution
A ¼ πD2=4 ¼ π 1ð Þ2=4 ¼ 0:785 in:2

τ ¼ F=A ¼ 400 lb=0:785 in:2 ¼ 509:3psi

Example 6.8 Calculate the shearing stress in the pins with diameter of½-in. shown

in Fig. 6.13. A tensile load of 250 lb is applied.

250 lb 250 lb

Fig. 6.13

Solution
A ¼ 2� πD2=4

� � ¼ 2� π 1=2ð Þ2=4
h i

¼ 0:393 in:2

τ ¼ F=A ¼ 250 lb=0:393 in:2 ¼ 636:6psi

Example 6.9 Calculate the shearing stress in the bolts with the diameter of ¼ in.

for connecting the plates shown (Fig. 6.14). A tensile load of 10,000 lb is applied.

1/4 in.
1/4 in.

10,000 lb

Fig. 6.14

Solution
A ¼ 4� πD2=4

� � ¼ 4� πð Þ 0:25 in:ð Þ2=4 ¼ 0:196 in:2

τ ¼ F=A ¼ 10, 0001b=0:196 in:2 ¼ 5:09� 104 psi

Shear stress can also be calculated when a force F is applied to punch a hole

through a plate.
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In this case, the shear stress is resisted by a cylindrical area with a diameter equal

to the punch diameter and a height equal to the thickness of the plate.

Example 6.10 A punching machine punches a 1-in. diameter hole through a ¼-in.

plate. Calculate the force needed to punch through the plate. Assume the shear

stress is 25,000 psi.

Solution
A ¼ πð Þ dð Þ plate thicknessð Þ

A ¼ πð Þ 1:00 in:ð Þ 0:25ð Þ ¼ 0:785 in:2

F ¼ τ � A ¼ 25, 000psið Þ 0:785 in:2
� � ¼ 1:96� 104 lb

6.7 Allowable Stress

If a member is loaded beyond its ultimate stress, it will fail or rupture. In engineer-

ing structures, it is essential that the structure not fail. Thus, the design is based on

some lower value called allowable stress or design stress. If, for example, a certain

type of steel is known to have an ultimate strength of 110,000 psi, a lower allowable

stress would be used for design, say 55,000 psi. This allowable stress would allow

only half the load the ultimate stress would allow. Allowable stress values are

different for different materials, and they are tabulated and recommended by the

International Building Code Association.

The ratio of the ultimate stress to the allowable stress is known as the factor of
safety.

factorof safety ¼ ultimate strength = allowablestress

Example 6.11 Determine the required size for a steel rod to support a tensile load

of 50,000 lb if the allowable tensile stress of the steel is 25, 000 psi.

Solution
σ ¼ F=A, or A ¼ F=σ ¼ 50, 000 lb=25, 000psi ¼ 2 in:2

A ¼ πD2=4 ¼ 2 in:2

Solving for D, we have:

D ¼ 1:6 in:

Example 6.12 Compute the required dimension d of a steel column subjected to an

axial compressive load of 3� 106 N (Fig. 6.15). The allowable compressive stress

is 8� 107 Pa.
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40mm

d

250mm

40mm

Fig. 6.15

Solution

Aeff ¼ F=σ ¼ 3� 166N=8� 107 Pa ¼ 0:0375m2 ¼ 3:75� 104mm2

170 d � 80ð Þ ¼ 170d � 13, 600mm2 areaof inside rectangle

Aeff ¼ 250d � 170d � 13, 600ð Þ ¼ 250d � 170d þ 13, 600

¼ 80d þ 13, 600

3:75� 104mm2 ¼ 80d þ 13, 600

d ¼ 23, 900mm2=80mm ¼ 298:8mm

Practice Problems

1. Calculate the tensile stress in a wire 4 mm in diameter when it is subjected to an

axial tensile force of 2,000 N.

2. Calculate the tensile stress in a metal rod with a cross section 0.5 in. by 2.5 in. if

it is under a tensile force of 1,500 lb.

3. Calculate the compressive stress in a circular bar 4 in. in diameter when it is

subjected to an axial compressive force of 50,000 lb.

4. Calculate the axial compressive force on the frame cross section used in the

machine shown in Fig. 6.16 if the compressive stress is 50 MPa.
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1090 mm

30 mm

500 mm

30 mm 500 mm
30 mm

30 mm

30 mm500 mm

Fig. 6.16

5. Calculate the allowable axial tensile load for a steel bar with a cross section

20 mm by 80 mm if an allowable tensile stress of 2� 108 Pa developed in

the bar.

6. A punching machine punches a 0.5-in. diameter hole through a 3/16-in. plate.

If the applied force to punch the hole through the plate is 35,000 lb, calculate

the shear stress developed in the metal plate.

7. Calculate the maximum axial tensile load that can be hung from a steel wire

½ in. in diameter if the allowable axial tensile stress for the steel is 25,000 psi.

6.8 Tensile and Compressive Strain

When a deformable body is subjected to stresses, it undergoes deformation. Defor-

mation is normally accompanied by a geometrical change of the body. In other

words, the dimensions of a body may be elongated or shortened. The total defor-

mation, or change in the shape or size of a body under the force is called elongation,

shown by symbol δ. If, for example, the original length of a rod is L, and after the

rod experiences a tensile force is Lf, the elongation is

δ ¼ L� Lf

In most engineering problems, it will be more meaningful to express the

deformation on a unit basis. Therefore, we use tensile or compressive strain. Strain,

represented by the symbol ε, is defined as the total deformation (δ) of a body

divided by the original length of the body to indicate its unit deformation and is

written as

ε ¼ δ=L

Note that, by definition, strain is a dimensionless quantity. However, it is

common to express strain in units of length divided by units of original length,

such as inches per in or mm/mm.
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Example 6.13 Calculate the total elongation for a certain material 20 m in length if

the strain is 0.00045 mm/mm.

δ ¼ ε� L
¼ 0:00045mm=mmð Þ 20, 000mmð Þ ¼ 9mm

Strain is sometimes used as a synonym for deformation. For example, if the

elongation of a 20-ft rod under a tensile force is 0.15 in. (i.e. δ¼ 0.15 in.), the strain

or deformation is

ε ¼ δ=L ¼ 0:15 in:= 20� 12 in:ð Þ ¼ 0:000625 in:=in:

In this example, the total elongation is 0.15 in. and the deformation (strain) is

0.000625 and has no physical unit, so the strain would be the same whether we are

working with English units or metric units. Figures 6.17 and 6.18 show the applied

force and deformation δ for tensile force and compressive force.

F

δ

l (Orignal length)

Fig. 6.17

F

δ

l (Orignal length)

Fig. 6.18

Example 6.14 A certain metal rod 10.00 m long (unstretched length) is stretched

to 10.01 m. Find the strain.

Solution Deformation or total elongation can be calculated from the previous

formula

δ ¼ 10:01� 10:00 ¼ 0:01m
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and the strain is

ε ¼ δ=L ¼ 0:01m=10m ¼ 0:001 Nophysicalunit!ð Þ
Example 6.15 A 3-m rod is suspended from the ceiling. If the deformation is

2 mm, find the axial strain in the rod.

Solution
ε ¼ δ=L

¼ 2mm=3, 000mm

ε ¼ 0:000667

Practice Problems

1. A telephone wire 100 m long is stretched by a tensile force. Find the tensile

strain if the final length is 100.15 m.

2. A bar 0.500 m long undergoes a deformation of 0.00022 m. Find the strain.

3. Given δ¼ 1.5 in. and L¼ 50 ft, calculate ε.
4. Given δ¼ 0.7 ft and ε¼ 0.00020, calculate L.
5. A column 10 ft long is compressed 1/17 in. Find the strain.

6. A metal bar 0.2 m long is stretched 0.053 mm. Find the strain.

6.9 The Relationship Between Stress and Strain

The relationship between stress and strain exists in most engineering testing of

materials. Experiments show that when a specimen is subjected to tensile stress,

there is a closely proportional increase in strain, such that strain increases in direct

relation to stress as long as stress is kept within certain limits. If the generated stress

exceeds the limiting value, the corresponding strain will no longer be proportional

to the stress. This limiting value is known as the proportional limit.
Robert Hooke (1635–1703), discovered that stress and strain are directly pro-

portional to each other. He plotted the calculated values of stress and strain for

increasing the load and called it a stress–strain diagram, known as Hooke’s law. A
stress–strain diagram shows a linear relationship between stress and strain as long

as the values of stress are not too high (Fig. 6.19). Thomas Young (1773–1829)

found out that the ratio of the stress and strain values remained constant. This

constant is now called Young’s modulus or the modulus of elasticity (E). Note that
the slope of the straight line part of the diagram is known as the modulus of

elasticity of the material.
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Fig. 6.19 Stress-strain diagram

The mathematical relation between stress, strain, and the modulus of elasticity is

expressed by the equation

E ¼ stress=strain: ¼ σ=ε

Modulus of elasticity E is an important property in engineering with which

engineers can predict the behavior of materials. It can be interpreted as the measure

of the stiffness of a material. That means that materials with higher values of

modulus of elasticity are stiffer than others, and they have more ability to resist a

deformation. The value of the modulus of elasticity is constant for a specific

material and can be found in a table for a number of common materials. The unit

for modulus of elasticity in the metric system is expressed in pascals (Pa) or mega-

pascals (MPa) and, in the English system is pounds per square inch (psi).

Example 6.16 A steel rod 1 in. in diameter and 10 in. in length stretches 0.009 in.

when subjected to a tensile load of 16,000 lb. Find the modulus of elasticity.

Solution
A ¼ πD2=4 ¼ π=4ð Þ 1 in:ð Þ2 ¼ 0:7854 in:2

σ ¼ F=A ¼ 16, 000 lb=0:7854 in:2 ¼ 2:04 � 104 psi

ε ¼ δ=L ¼ 0:009 in:=10 in: ¼ 0:0009 in:=in:

and

E ¼ stress=strain: ¼ σ=ε
¼ 2:04� 104 psi=0:0009 in:=in:

E ¼ 2:3� 107 psi

Example 6.17 A 5,000-N weight is hanging from a cable 3 m long. Find the

diameter of the cable if the deformation is 5 mm and E¼ 200,000 MPa.
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Solution
ε ¼ δ=L ¼ 5mm=3, 000mm ¼ 0:001667mm=mm

E ¼ σ=ε

σ ¼ E � ε ¼ 200, 000� 106N=m2
� �

0:001667ð Þ ¼ 3:33� 108 N=m2

A ¼ F=σ ¼ 5, 000N=3:33� 108N=m2 ¼ 1:5� 10�5m2

1:5� 10�5m2 ¼ π=4 d2
� �

d ¼ 4:4� 10�3m or d ¼ 4:4mm

Example 6.18 Find the amount of the strain in a copper bar that is subjected to a

compressive stress of 10,000 psi. Ecopper¼ 1.7� 107 psi.

Solution
ε ¼ σ=E ¼ 10, 000psi=1:7� 107 psi ¼ 0:0006

Example 6.19 A steel bar ½ in. in diameter and 10 in. long is subjected to a tensile

load of 5,000 lb. How much does it stretch? Esteel¼ 2.0� 107 psi.

Solution
A ¼ π=4 D2

� � ¼ π=4 0:5 in:ð Þ2 ¼ 0:196 in:2

σ ¼ F=A ¼ 5, 000 lb=0:196 in:2 ¼ 2:55� 104 psi

ε ¼ σ=E ¼ 2:55� 104 psi=2:0� 107 psi ¼ 0:00127

δ ¼ ε � L ¼ 0:00127� 10 in: ¼ 0:0127 in:

6.10 More Useful Formulas

A more useful formula can be derived using the previous equations.

E ¼ σ=ε ¼ F=Að Þ= δ=Lð Þ
then

E ¼ FL=Aδ

or

δ ¼ FL=AE

We can see that the above formulas could be very useful in calculations and also

that it takes a shorter time to get the problem done.
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Example 6.20 A rectangular aluminum bar 600 mm long with a cross sectional

area of 20� 30 mm is subjected to an axial tensile load of 20,000 N. Find the total

axial deformation. Ealuminum¼ 7� 104 MPa.

Solution Given:

A ¼ 20� 30mm ¼ 600mm2 ¼ 600� 10�6m2

L ¼ 600mm ¼ 0:6m
F ¼ 20, 000N

E ¼ 7� 104MPa ¼ 7� 1010 N=m2

δ ¼ FL=AE ¼ 20, 000N� 0:6m= 600� 10�6m2
� �

7� 1010 N=m2
� �

δ ¼ 2:86� 10�4 m ¼ 0:286mm

Practice Problems

1. A hard plastic bar 20 in. long with a 0.3-in. diameter is subjected to a tensile load

of 1,200 lb. Find the total deformation. Assume that E¼ 5� 105 psi.

2. A steel wire 30 m long stretches 52 mm when subjected to a tensile load of

5,000 N. Find the diameter of the wire. Assume that Esteel¼ 2� 1011 Pa.

3. A 20 -mm diameter aluminum rod 2 m long is subjected to an axial tensile load

of 55,000 N. Find the total deformation. Assume that Ealuminum¼ 7� 104 MPa.

4. A cast iron block 200 mm long with a cross sectional area of 100 mm� 250 mm

is subjected to an axial compressive load. Find the compressive force if the

deformation is 0.0427 mm. Assume that Ecast iron¼ 165 GPa.

5. A steel bar 5 ft long with a cross sectional area of 1.5 in.2 is subjected to an axial

tensile load of 5,000 lb. Calculate the total deformation. Assume that

E¼ 3� 107 psi.

6. An aluminum wire with a 3-mm diameter is subjected to an axial tensile load of

550 N and stretches by 20 mm. Assuming that E¼ 6.9� 1010 Pa, find the length

of the wire.

7. A wire 10 ft long and 0.5 in.2 in cross sectional area is subjected to an axial tensile

load of 5,000 lb and stretches by 0.08 ft. Calculate the modulus of elasticity.

8. A metal wire 3 m long and 0.75 mm in diameter is subjected to a 300-kg mass

and stretches by 15 mm. Find: (a) the stress; (b) the strain; and (c) the modulus of

elasticity.

Chapter Summary

Engineers must first identify the external forces acting on a structural member, and

then calculate the internal resistance, called stress, developed by the member.

Based on this, and other related properties such as strain and the modulus of
elasticity, the designer is able to select the material and design the size and shape

of the member that will properly resist the applied forces.
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The materials used vary in quality and physical and mechanical characteristics.

Hence, it is important that a designer have good knowledge of the properties of the

materials being used. In this chapter, we introduced the concepts of stress, strain,
and deformation, and the relationship between stress and strain in different

materials.

Stress is defined as the force per unit area for a specific material under loading.

The unit of stress in the English system is psi, and in the metric system is Pa, or

MPa. There are three normal stresses: tensile stress, compressive stress, and shear
stress. These may be calculated using the stress formula:

σ ¼ F=A

Strain is defined as the total deformation, or stretching, per unit length of the

member. The formula to calculate the strain is

ε ¼ δ=L

Stress is directly proportional to the strain:

σ ¼ E � ε
This relation is known as Hooke’s law and the proportionality constant is called

the modulus of elasticity (E) of the material. The modulus of elasticity is a measure

of a material’s resistance to deformation. The above linear equation is valid

provided that the stress does not exceed the proportional limit of the material.

The proportional limit is the maximum stress for which stress is proportional to

strain.

Review Questions

1. What is stress?

2. What is strain?

3. What are the units of stress and strain?

4. What is a tensile load?

5. What is a compressive load?

6. What is shear?

7. What is the relation between stress and strain?

8. What is Hooke’s diagram, and where is it valid?

9. What is the modulus of elasticity, and what is meant by it in engineering

problems?

10. What is the allowable stress?

11. What is the ultimate stress?

12. What is the relation between allowable stress and ultimate stress?

13. What is the proportional limit?
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Problems

1. A tie rod 10.0 ft long and 2.2 in. in diameter is subjected to a tensile force of

3,000 lb. Find the stress, strain, and the total deformation. Use

E¼ 2.8� 107 psi.

2. What is the tensile strain in a specimen of material if it is subjected to a tensile

force of 2� 108 N/m2? Use E¼ 1.1� 1011 Pa.

3. A telephone wire 100 m long and 2.5 mm in diameter is subjected to a tensile

force of 400 N. Find the stress, strain, and the modulus of elasticity. Assume

that the final length is 100.30 m after stretching.

4. A 200–mm long metal alloy tube of 40 mm outer diameter and 30 mm inner

diameter is subjected to a compressive load of 30, 000 N. Find the stress, strain,

and final length. Use E¼ 9� 1010 Pa.

5. Find the magnitude of the tensile force acting on a steel bar 1.50 in. in diameter

if the strain in the bar is 0.0015. Use E¼ 3� 107 psi.

6. A rectangular steel bar ¾ in.� 7/8 in. and 20 in. long is subjected to a tensile

load of 3,000 lb. Find the stress, strain, and the total deformation. Use

E¼ 3� 107 psi.

7. A steel cable 50 ft long and 0.5 in. in diameter is subjected to a tensile force and

stretches 0.37 in. Find the stress. Use E¼ 3� 107 psi.

8. A copper wire 5 m long and 2 mm in. diameter is subjected to a tensile load of

600 N, and stretches 12.5 mm. Calculate the modulus of elasticity of the wire.

9. A steel circular cross section of a column is subjected to a tensile load of

500,000 N.

Find the size of the cross section of the column if the allowable stress is

1� 108 Pa.

10. A steel circular cross section with a diameter of 2 in. is subjected to an axial

tensile force. Find the force if the resulting tensile strain is 0.0005.
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Stephen P. Timoshenko (1878–1972)

Stepan Prokopovych Timoshenko was born on December 22, 1878 in the village of

Shpotivka in the Ukrain. Timoshenko’s early life seems to have been a happy one in

pleasant rural surroundings. He studied at a “realnaya” school from 1889 to 1896.

Timoshenko continued his education towards a university degree at the

St. Petersburg Institute of Engineering. After graduating in 1901, he stayed on

teaching in this same institution from 1901 to 1903 and then worked at the

St. Petersburg Polytechnic Institute under Viktor Kyrpychov 1903–1906. His

restlessness and discontent with the educational system extant in Russia at that

time motivated the young Timoshenko to venture out to explore, examine, and

assimilate diverse pedagogical views and cultures in France, Germany, and

England. In 1905 he was sent for 1 year to the University of Göttingen where he

worked under Ludwig Prandtl.

In the fall of 1906 he was appointed to the Chair of Strengths of Materials at the

Kyiv Polytechnic Institute. Thanks to his tormented spirit at this institute,

Timoshenko took the plunge to writing his maiden Russian classic, Strength of
Materials in 1908 (Part I) and 1910 (Part II). From 1907 to 1911 as a professor at

the Polytechnic Institute he did research in the area of finite element methods of

elastic calculations, and did excellent research work on buckling. He was elected

dean of the Division of Structural Engineering in 1909.

In 1911 he was awarded the D. I. Zhuravski prize of St. Petersburg; he went there

to work as a Professor in the Electro-technical Institute and the St. Petersburg

Institute of the Railways (1911–1917). During that time he developed the theory of

elasticity and the theory of beam deflection, and continued to study buckling.

In 1922 Timoshenko moved to the United States where he worked for the

Westinghouse Electric Corporation from 1923 to 1927, after which he became a

faculty professor at the University of Michigan where he created the first bachelor’s

and doctoral programs in engineering mechanics. His textbooks have been

published in 36 languages. His first textbooks and papers were written in Russian;

later in his life, he published mostly in English.
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The following 3 years 1935–1937, Timoshenko teamed up with Gere and Young

for three more books: a condensed guide of strength of materials, elastic stability,

and engineering mechanics. These unique texts explore intricate mathematical

techniques to explain some subtle aspects underlying elasticity and stability to

give new insight into the behavior of solids and structures for engineering design.

From 1936 onward he was a professor at Stanford University.

The year 1953 saw the great Timoshenko epic, The History of Strength of
Materialswith a brief account of the history of the theory of elasticity and structural
mechanics. Tracing the history all the way back to Archimedes, he carries the

reader through the period of Leonardo da Vinci, Galileo, Hooke, Newton, Mariotte,

Bernoulli, Euler, Lagrange, and Coloumb, reaching the end of the eighteenth

century.

This missionary zeal of Timoshenko for writing books for improving teaching

and for guiding practical engineers has played a key role in uplifting technical

education worldwide, but more emphatically in the United States. In 1960 he

moved to Wuppertal (Western Germany) to be with his daughter. He died in

1972 and his ashes are buried in Alta Mesa Memorial Park, Palo Alto, California.
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Torsion in Circular Sections 7

Overview

In the previous chapter, we discussed the fundamental concepts underlying normal
stress, strain, and shear stress in structural members. These stresses are developed
in a body to resist external forces. In this chapter we will study the shear stress in a
circular cross section when it is subjected to torsion. We will learn the concept of
torque, and the twisting action applied to the axis of a member, and then we will
determine the shear stresses developed to resist the application of torque, or
twisting moment.

Learning Objectives

Upon completion of this chapter, you will be able to calculate the torque, or
twisting moment, on a circular section of a shaft and to calculate the torsional
shearing stresses developed on the cross-sectional planes of a shaft. Also, you will
learn how to calculate the transmitting power (in horsepower) developed by a
rotational shaft. Your knowledge, application, and problem solving skills will be
determined by your performance on the chapter test.

7.1 Torque

When a circular bar is subjected to a twisting action it tends to twist; the stresses

developed in the bar are called torsional stresses. In other words, the bar is subjected

to torque, or twisting moment, and is said to be in torsion, or under torsional load.

Torque is expressed in units of length and force. The unit of torque in the English

system is inch-pounds, and in the metric system is newton-meters. The torque on a

shaft is applied through pulleys or gears at different locations of the shaft, and the

amount of the torque at any point on the shaft is the moment of the force along the

axis of the shaft (Fig. 7.1).
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Fig. 7.1 Torsion on a drive shaft

Example 7.1 Determine the torque on the shaft shown in Fig. 7.2 at point A.

350 lb

5 in.

2 in.

A

B

Fig. 7.2

Solution A force of 350 lb is applied to the left of point A. Therefore, to calculate

the torque at point A with respect to the axis of rotation, we simply multiply the

force by the moment arm of 5 in.

T ¼ �350 lb� 5 in: ¼ �1,750 in:‐lb

The negative sign means that the torque is counterclockwise.

Example 7.2 Figure 7.3 depicts the shaft and pulleys on a power train. Determine

the torque at section R-R.
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A
B

R

R

Shaft

Bearing

Driver
pulley

500 in.-lb

3000 in.-lb

Fig. 7.3

Solution The only externally applied torque to the left of section R-R is �500 in.-

lb acting on pulley A.

The applied torque to the right of section R-R is 3,000 in.-lb. Therefore, the total

externally applied torque is

X
T ¼ �500 in:‐lbþ 3,000 in:‐lb ¼ 2,500 in:‐lb

For equilibrium, the above torque (twisting moment) must equal the resisting

moment.

7.2 Torsional Shearing Stress in a Solid Circular Shaft

Let’s take a look at a circular shaft (Fig. 7.4) that is fixed at one end and free at the

other end. When the shaft is subjected to torque, the shearing stresses occur in the

circular cross section of the shaft. The direction of the shearing stress at any point in

the cross section is perpendicular to the radius of the shaft at the point of interest

(Fig. 7.5).
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Torque = Fd

d

F

F

TR

Longitudinal 
axis

Fixed end

Fig. 7.4

d

Fig. 7.5

Consider an infinitesimal area a located on the shaft. It can be shown that the

shear stress on this cross section at a distance r from the center is proportional to

the maximum shear stress developed at the outer surface with a distance c from the

center (c¼ d/2). This is expressed as

τ ¼ τmax r=cð Þ ð7:1Þ
where

τ¼ shear stress on cross section area a
τmax¼max. shear stress at outer surface of the shaft

r¼ distance from cross section area a to the center of shaft

c¼ distance from the outer surface to the center of shaft (c¼ d/2)

From Chap. 6, we know
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F ¼ τ � A ¼ τmax r=cð ÞA ð7:2Þ
where F is shear force over the shaft.

The resisting internal torque is calculated as

T ¼ F� r ð7:3Þ
Substituting from Eq. (7.2) into Eq. (7.3), we obtain an equation for calculating

the maximum shear stress developed on the cross section of the shaft.

T ¼ τmax r=cð ÞA � r ¼ τmax r2=c
� �

A ð7:4Þ
Total torque for entire area,

T ¼
X

τmax=cð Þ Ar2
� � ð7:5Þ

where Ar2¼ polar moment of inertia

Solving for the shear stress (limiting case),

τmax ¼ T � c=J ð7:6Þ
For a solid circular shaft, (c¼ d/2), J¼ π d2/16, and Eq. 7.6 becomes

τmax ¼ 16T=πd3 ð7:7Þ
where τmax is the shearing stress in psi. T is the torque in in.-lb, and d is the

diameter.

These units are all in the English system; in the metric system, we must use the

metric units explained earlier, but the formula is the same.

Limitations

1. For design purposes, the above formula (7.6) is only valid for a solid circular

shaft; for hollow shafts, J must be calculated for inner and outer diameters.

2. Developed shear stresses are assumed to be below the proportional limit, and

shaft materials follow Hooke’s law. Beyond the elastic limit the formula will no

longer be valid.

Example 7.3 A 1,700-lb load is acting on a pulley of diameter 3 ft that is attached

to a solid shaft. Calculate the maximum shearing stress in the shaft. Use the

diameter of the shaft d¼ 4 in.

Solution
T ¼ F � r ¼ 1, 7001b� 3ft� 12=2ð Þ ¼ 30, 600 in:‐lb

d ¼ 4 in:
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τmax ¼ 16T=πd3

¼ 16 30; 600ð Þ= πð Þ 4 in:ð Þ3
τmax ¼ 2, 435psi

Example 7.4 A 20,000-lb load is applied to a pulley 26 in. in diameter on a solid

shaft. Calculate the diameter of the shaft if the maximum shearing stress is

10,000 psi.

Solution
T ¼ F � r ¼ 20, 000 lb� 26=2 ¼ 260, 00 in:‐lb

d ¼ ?

τmax ¼ 16T=πd3

d ¼ 16T=π τmaxð Þ1=3

d ¼ 16ð Þ 260,000 in:‐lbð Þ= πð Þ 10,000psið Þ½ �1=3

d ¼ 5 in:

Example 7.5 Calculate the torque that must be applied to a solid circular shaft 3 in.

in diameter to develop a maximum shearing stress of 15,000 psi.

Solution
τmax ¼ 16T=πd3

or

T ¼ π d3τmax=16

T ¼ πð Þ 3 in:ð Þ3 15, 000psið Þ=16 ¼ 79, 521:6 in:‐lb

Example 7.6 Calculate the torque that must be applied to a solid circular shaft

12 mm in diameter to develop a maximum shearing stress of 50 MPa.

Solution
T ¼ π d3τmax=16

T ¼ πð Þ 0:012mð Þ3 50� 106 N=m3
� �

=16

T ¼ 16:96N:m

Example 7.7 A 3,000 in.-lb twisting moment is applied to a solid shaft. Calculate

the diameter of the shaft if the maximum shearing stress is 10,000 psi.
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Solution
d ¼ 16T=π τmaxð Þ1=3

¼ 16� 3,000 in:‐lb:=π � 10,000psið Þ1=3
d ¼ 1:15 in:

7.3 Torsional Shearing Stress in a Hollow Circular Shaft

For a hollow circular shaft, we use outer diameter do, and inner diameter di
(Fig. 7.6), and the maximum torsional shearing stress is

τmax ¼ 16T do=π do
4 � di

4
� �

dodi

Fig. 7.6

Example 7.8 Calculate the torque that must be applied to a hollow circular shaft of

6 in. outer diameter and 5 in. inner diameter if the maximum torsional shearing

stress is 15,000 psi.

Solution
τmax ¼ 16T do=π do

4 � di
4

� �

or

T ¼ π do
4 � di

4
� �

τmax=16do
¼ π do

4 � di
4

� �
τmax=16do

¼ π 6ð Þ4 � 5ð Þ4
h i

15; 000ð Þ=16� 6

T ¼ 329, 376:35 in:‐lb
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Example 7.9 Calculate the maximum torsional shearing stress developed on a

hollow circular shaft of 200 mm outer diameter and 150 mm inner diameter if the

applied torque is 10,000 N.m.

τmax ¼ 16T do=π do
4 � di

4
� �

¼ 16 10; 000ð Þ 0:2ð Þ=π 0:2ð Þ4 � 0:15ð Þ4
h i

τmax ¼ 9:3Mpa

Example 7.10 The socket shown (Fig. 7.7) is used to tighten the bolts with an

applied torque.

Use the information shown to calculate the maximum torsional shearing stress

developed on the socket. Use outer diameter of the socket do¼ 1.00 in. and inner

diameter di¼ 0.8 in.

300 lb

10 in.

90º

Fig. 7.7

Solution Given:

do ¼ 1:00 in:
di ¼ 0:8 in:
L ¼ 10 in:
F ¼ 300 lb

T ¼ F� r ¼ 300 lb� 10 in: ¼ 3, 000 in:‐lb

τmax ¼ 16T do=π do
4 � di

4
� �

¼ 16 3; 000ð Þ 1:00ð Þ=π 1ð Þ4 � 0:8ð Þ4
h i

¼ 25, 879psi

Practice Problems

1. Calculate the torque given F¼ 200 N and r¼ 50 cm.

2. Calculate the torque given F¼120 lb and r¼ 7 in.

3. Calculate the maximum torsional shearing stress developed in a shaft 20 in. in

diameter if the applied torque is 100,000 in.-lb.
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4. Calculate the torque that must be applied to a solid circular shaft 3 in. in

diameter if the maximum torsional shearing stress is 12,000 psi.

5. Calculate the torque that must be applied to a solid circular shaft 25 mm in

diameter if the maximum torsional shearing stress is 55 MPa.

6. When 3,000 N.m of torque is applied to a solid circular shaft, it causes a

maximum torsional shearing stress of 60 MPa. Calculate the diameter of the

shaft.

7. When 4,000 N.m of torque is applied to the 85-mm outer diameter of a hollow

circular shaft, it causes a maximum torsional stress of 65 MPa. Find the inner

diameter of the shaft.

8. Calculate the torque that must be applied to a hollow circular shaft of 0.7 in.

outer diameter and 0.4 in. inner diameter if the maximum torsional shearing

stress is 5,000 psi.

9. A hollow circular shaft has a 70-mm outer diameter and a 20-mm inner

diameter. A load of 15,000 N is applied to a 500-mm pulley on the shaft.

Calculate the maximum torsional shearing stress in the shaft.

10. Calculate the maximum torsional shearing stress in a hollow circular shaft of

7 in. outer diameter and 4 in. inner diameter if the applied torque it needs to

resist is 50,000 in.-lb.

7.4 Transmission of Power by a Rotating Shaft

A common objective of rotating shaft design is to transmit the power. When the

torque is applied to a shaft and turns the shaft, work is performed. By definition,

work is the product of the magnitude of the displacement and the component of the

force in the direction of the displacement. This can be expressed as

W ¼ F � x
where x is the distance that a belt or cable moves on the pulley because of applied

torque. Since the applied torque turns the shaft, this linear distance can be modified

to circular distance. Therefore, the above formula for work can be written as

W ¼ T θ

where T is torque applied on the shaft, and θ is angle of rotation in radians.

Power is defined as work done per unit time:

P ¼ W=t

The unit of work in the metric system is N.m or Joule (J). The unit of time is the

second and the unit of power is J/s¼Watt (W). In the English system, the unit of

work is the ft-lb; the unit of time is the second, and the unit of power is ft-lb/s. No
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special name is given to this unit of power. However, the following is the unit

conversion between ft-lb/s and horsepower.

1horsepower hpð Þ ¼ 550ft lb=s ¼ 33, 000ft lb=min

or

1hp ¼ 39, 600 in: lb=min

The work done in one revolution is 2 π T and the new formula for work per

minute is

W=min ¼ 2πT n

or

Power ¼ work=time

T the unit of T is in.-lb, and n is the number of revolutions per min (RPM).

Substituting this information in the formula for power (HP), we get:

HP ¼ 2πT n=396, 000 ¼ T n=63, 025

Note that 39,600 in.-lb per minute is equal to 1 HP.

Example 7.11 A 2-in. diameter steel shaft is operating at 1,800 rpm. Calculate the

maximum horsepower that can be transmitted by this shaft if the allowable shearing

stress is 10,000 psi.

Solution We can calculate the maximum resisting torque from

Tmax ¼ π=16ð Þd3 τall
¼ π=16ð Þ 2ð Þ3 10; 000ð Þ
¼ 15, 708 in:‐lb:

HP ¼ T n=63, 025
¼ 15; 708ð Þ 1; 800ð Þ=63, 025
¼ 449hp

Example 7.12 A 1.5-in. diameter steel shaft is operating at a certain rpm to

transmit 15 hp. Calculate the rpm if the allowable shearing stress is 8,000 psi.
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Solution
Tmax ¼ π=16ð Þd3 τall

¼ π=16ð Þ 1:5ð Þ3 8; 000ð Þ
¼ 5, 301 in:‐lb

n ¼ HP� 63, 025=Tmax

¼ 15� 63, 025=5, 301 ¼ 178rpm

Example 7.13 Design a solid steel shaft to transmit 20 hp at a speed of 1,500 rpm if

the allowable shearing stress is 5 ksi.

Solution
HP ¼ T n=63, 025

T ¼ 20� 63, 025=1, 500 ¼ 840 in:‐lb:

Tmax ¼ π=16ð Þd3 τall
840 ¼ π=16ð Þd3 5; 000ð Þ

d ¼ 0:95 in:

A 1-in. shaft should be used.

Example 7.14 Determine the maximum shearing stress in a 2-in. diameter solid

shaft used to transmit 85 hp at a speed of 1,000 rpm.

HP ¼ T n=63, 025

85 ¼ T 1; 000ð Þ=63, 025
T ¼ 5, 357 in:‐lb

T ¼ π=16ð Þd3 τall
5, 357 ¼ π=16ð Þ 2ð Þ3τall

τall ¼ 3, 410psi

Metric System Problems

As discussed earlier, the unit of power in the metric system is

1W ¼ 1N:m=s ¼ 1J=s

Power was also defined as work per unit time

P ¼ W=min ¼ 2πT n

This equation is valid for both measurement systems, English and metric.

However, there are some changes in terms of metric units that must be done in
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order to make the metric system work. The unit of torque must be N.m, and rpm (n)
will be divided by 60 to become rps. The equation for the metric system, then, is

P ¼ 2πT n=60

where P is in watts, T is in N.m, and n is rpm

Example 7.15 Determine the maximum power that can be transmitted by a 20-mm

solid shaft that is turning at 20 r/s if the allowable shear stress on the shaft is

75 MPa.

Solution
Tmax ¼ π=16ð Þd3 τall

¼ π=16ð Þ 0:02ð Þ3 75� 106
� �

¼ 117:81N:m

P ¼ 2πT n=60
¼ 2π 117:81ð Þ 20� 60ð Þ=60
¼ 14:8kW

Example 7.16 Determine the maximum shearing stress in a 30-mm diameter shaft

that transmits 120 kW of power and is turning at 15 r/s.

P ¼ 2πT n=60
T ¼ P� 60=2π n

¼ 120; 000ð Þ60= 2π � 15� 60ð Þ
¼ 1, 273N:m

Tmax ¼ π=16ð Þd3 τall
τall ¼ 1; 273ð Þ � 16=π 0:03ð Þ3

¼ 240MPa

Chapter Summary

When the torque, or twisting moment, is applied to a circular shaft, it tends to rotate

the shaft. This action causes torsional shear stresses that develop in the shaft. In a

solid circular shaft, these stresses vary linearly from the center of the shaft to a

maximum at the outer surface of the shaft. This is expressed as

τmax ¼ 16T=πd3
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where τmax is the torsional shearing stress in psi or MPa; T is the torque in in-lb

or N.m, and d is the diameter of the shaft in inches or meters. The maximum

resisting torque can be calculated from

Tmax ¼ π=16ð Þd3 τall
where τall is the allowable shearing stress in the shaft. The solid circular shaft can

be designed from

d ¼ 16T=π τallð Þ1=3

The maximum torsional shearing stress in a hollow circular shaft can be calcu-

lated from

τmax ¼ 16T do=π do
4 � di

4
� �

where do is the outer diameter and di is the inner diameter.

Rotating shafts can be used for transmitting power. The unit of transmitting

power in the English system is horsepower (hp) and can be calculated from

HP ¼ T n=63, 025

where T is the applied torque and n is rpm.

Review Questions

1. What is torque?
2. What is the definition of twisting moment?

3. Show the formula that can be used to calculate the twisting moment on a solid

circular shaft.

4. What is the definition of torsional shearing stress in a solid circular shaft?

5. Show the formula that can be used to calculate the torsional shearing stress

given the applied torque on the shaft.

6. How would you calculate the torsional shearing stress in a hollow circular

shaft?

7. How would you calculate the horsepower developed by a rotating shaft?

8. How would you calculate the applied torque on a rotating shaft given the

transmitting power?

9. Show the formula that can be used to calculate the transmitting power in the

metric system of units.

10. What is the difference between rpm and rps, and where can they be applied?
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Problems

1. Determine the developed torque on an automobile engine with 110 hp power at

5,000 rpm.

2. Design a solid circular shaft operating at 2,000 rpm to transmit 10 hp if the

allowable shearing stress is 6,000 psi.

3. Calculate the torque that must be applied to a solid circular shaft 100 mm in

diameter if the maximum torsional shearing stress is 60 MPa.

4. Calculate the maximum torsional shearing stress in a hollow circular shaft 4 in.

outer diameter and 3 in. inner diameter if the developed torque on the shaft is

20,000 in. lb.

5. Calculate the maximum torsional shearing stress in a hollow circular shaft

15 mm outer diameter and 10 mm inner diameter if the developed torque on the

shaft is 15,000 N.mm.

6. Calculate the maximum torsional shearing stress in a 2 in. diameter solid

circular shaft that transmit 30 hp at 500 rpm.

7. A 1½ in. diameter solid circular shaft transmits 15 hp with an allowable

shearing stress of 10,000 psi. Find the rpm.

8. A 50 mm diameter solid circular shaft transmits the power at 400 rpm. Find the

maximum horsepower if the allowable shearing stress is 50 MPa.

9. Calculate the horsepower that a solid circular shaft 5 in. in diameter transmits at

200 rpm if the allowable shearing stress is 7,000 psi.

10. Calculate the developed torque on a hollow solid circular shaft 3 in. outer

diameter and 2 in. inner diameter if the allowable shearing stress is 8,000 psi.
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Shear and Bending Moment in Beams 8

Overview

A beam is one of the most common structural pieces loaded by forces acting
perpendicular to its longitudinal axis. It is supported at its ends, where it supports
the loads. The study of beams is important to a designer; designers must carefully
study the behavior of the beam and choose the material and its dimensions so that
the beam will safely carry the loading. In this chapter we will show how to evaluate
shear force and bending moment in the beam and how to use this determination to
design a beam. Shear force and bending moment are developed internally by
external loading and reactions.

Learning Objectives

Upon completion of this chapter, you will be able to define beam and loading and
calculate shear force and bending moment in the beam at different cross sections.
You will also learn how to construct shear and moment diagrams for various beam
loadings. Your knowledge, application, and problem solving skills will be deter-
mined by your performance on the chapter test.

8.1 Types of Beams

A beam is a member which is long compared to its cross-sectional dimension, and is

loaded by the forces perpendicular to its long dimension. The beam is in equilib-

rium under the action of an applied system of forces and the reactions. Beams can

be classified into types by the number and position of supports.

1. Simply supported beam: If the beam supports at the ends are either pins or

rollers, the beam is called simply supported or a simple beam. Note that there is
no restraint against rotation or translation at the supports (Fig. 8.1).
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Pin support

Span of Beam

A

RA

P

B

RB

Roller support

Fig. 8.1

2. Fixed beam: A beam is called a fixed beam if it is supported by two fixed

supports that do not allow any end rotation or translation as the beam is loaded

(Fig. 8.2).

P

Fig. 8.2

3. Cantilever beam: A beam with a fixed support at one end and the other end

unsupported is called a cantilever beam. Under loading, the fixed support does

not allow rotation or translation (Fig. 8.3).

P

Fig. 8.3

4. Overhanging beam: A beam with one or two supports that are not positioned at

the ends of the beam is called an overhanging beam (Fig. 8.4)

A
P P P

RA

B

RB

Fig. 8.4
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5. Continuous beam: A beam that rests continuously over three or more supports is

called a continuous beam (Fig. 8.5).

A B

P

C D E

PP

RA RB RC RD RE

Fig. 8.5

The simply supported, cantilever, and overhanging beams are grouped as stati-
cally determinant, because their reactions can be calculated using three laws of

equilibrium:

∑Fx¼ 0,∑Fy¼ 0, and∑M¼ 0. The fixed and continuous beams are grouped as

statically indeterminate, because their reactions cannot be calculated only by using
the above equations.

In this case, an additional equation based on the deformation situation of the

beam must be established.

8.2 Types of Loadings

Loads on beams are classified as concentrated or distributed.

1. Concentrated load: This load acts over a short length of a beam and at a definite

point. The unit of concentrated load in the English system is pounds or kips, and

in the metric system is newtons (Fig. 8.6).

Span length

A B

P1 P2

RA RB

Fig. 8.6

2. Distributed load: This load spreads out over a considerable length of a beam.

One form of distributed load is called a uniformly distributed load, which exists

over a partial or the entire length of a beam (Fig. 8.7)
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Span length

A B

(lb/ft , N/m)

RA RB

Fig. 8.7

In this type of loading, the load density is the same for the entire length of

loading. For example, if L¼ 18 ft, and w (density)¼ 300 lb-ft, then the total load is

300 lb-ft� 18 ft¼ 5,400 lb. The unit for load density in the English system is

pounds per linear foot (lb/ft, or kips per linear foot (kips/ft), and in the metric

system is newtons per meter (N/m). If the load is non-uniformly distributed, then

the beam has a varying density. In this case, the distributed load diagram looks like

a triangle (Fig. 8.8) or a trapezoid shape.

Span length

A B

RA RB

Fig. 8.8

In engineering design and applications, the loads may be classified as dead loads
or live loads. Dead loads are permanent static loads which are imposed on a

structure, such as the weight of the structural members, materials, and equipment.

Live loads are movable loads such as vehicles and people or natural forces like ice,

wind, earthquake, snow, or any other impacts that influence motion on a structure.

8.3 Beam Reactions

To analyze and compute the internal forces along the beam, first it is necessary to

find the beam reactions. To determine the beam reactions we must apply the three

laws of equilibrium as we studied earlier. These laws stated:

The algebraic sum of all forces in the horizontal and vertical directions must be equal to

zero. Also, the algebraic sum of moments in respect to any point must be equal to zero.

This, mathematically will be written as:

X
Fh ¼ 0 ð8:1Þ
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X
Fv ¼ 0 ð8:2Þ

X
M ¼ 0 ð8:3Þ

The first and second equations above assure that the beam will not move in the

horizontal or vertical direction. The third law assures that the beam will not rotate

with respect to any point in the plane of action.

Example 8.1 Find the reactions for the simply supported beam AB shown in

Fig. 8.9.

2 m 5 m 3 m

A B

F1 = 2000 N F2 = 4000 N

Fig. 8.9

Solution We write the first law of equilibrium

X
Fh ¼ 0

Rh ¼ 0 at thepin support

(Note: there is no horizontal force at the roller support)

Now we write the second law of equilibrium

X
Fv ¼ 0

RA � F1 � F2 þ RB ¼ 0

RA � 2, 000� 4, 000þ RB ¼ 0

RA þ RB ¼ 6, 000N

The last equation has two unknowns and cannot be solved for reactions RA or RB.

Therefore, we need another equation, which is the equation of equilibrium.

The moment equation with respect to point B is

RA 10ð Þ � 2, 000 8ð Þ � 4, 000 3ð Þ þ RB 0ð Þ ¼ 0

10RA � 16, 000� 12, 000 ¼ 0
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10RA ¼ 28, 000

RA ¼ 2, 800N

Knowing RA¼ 2,800 N, we can calculate RB from

RA þ RB ¼ 6, 000N

and

RB ¼ 3, 200N

Example 8.2 A simply supported beam with a span of 10 ft is under a uniformly

distributed load of 200 lb/ft (Fig. 8.10). Compute the reactions at the supports A and B.

10 ft

200 lb/ft

BA

Fig. 8.10

Solution The total distributed load on the beam is

F ¼ 200 lb=ft� 10ft ¼ 2, 000 lb

We can replace the total uniformly distributed load by an equivalent

concentrated load of 2,000 lb acting at the midspan of the beam. Now we can

consider the beam the same as in the last example for a concentrated load of

2,000 lb (Fig. 8.11).

10 ft

5 ft

RA

A

5 ft

F = 2000 lb

B

RB

Fig. 8.11
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We write the first law of equilibrium

X
Fh ¼ 0

Rh ¼ 0 at thepin support

(Note: there is no horizontal force at the roller support)

Now we write the second law of equilibrium

X
Fv ¼ 0

RA � Fþ RB ¼ 0

RA � 2, 000þ RB ¼ 0

RA þ RB ¼ 2, 000 lb

The last equation has two unknowns and cannot be solved for reactions RA or RB.

Therefore, we need another equation, which is the equation of equilibrium.

The moment equation with respect to point B is

RA 10ð Þ � 2, 000 5ð Þ þ RB 0ð Þ ¼ 0

10RA ¼ 10, 000

RA ¼ 1, 000 lb

Knowing RA¼ 1,000 lb, we can calculate RB from

RA þ RB ¼ 2, 000 lb

and

RB ¼ 1, 000 lb

Example 8.3 Find the reactions for the simply supported beam AB shown

(Fig. 8.12a).
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B

500 N/m  F1= 5000 N

2 m1 m3 m

RA
RB

A

RBRA

A B

F1 = 5000 NF2 = 1500 N

a

b

2.5 m 2 m1.5 m

Fig. 8.12

Solution Now we are dealing with one concentrated load of F1¼ 5,000 N and a

partial, uniformly distributed load of 500 N/m. First, we calculate the total uni-

formly distributed load and then replace it by an equivalent concentrated load.

F2 ¼ 500N=m� 3m ¼ 1, 500N

The beam now has two concentrated loads as shown (Fig. 8.12b) and the

reactions will be calculated the same way we did in Example 8.1.

We write the first law of equilibrium

X
Fh ¼ 0

Rh ¼ 0 at thepin support

(Note: there is no horizontal force at the roller support)

Now we write the second law of equilibrium

X
Fv ¼ 0

RA � F1 � F2 þ RB ¼ 0

RA � 5, 000� 1, 500þ RB ¼ 0

184 8 Shear and Bending Moment in Beams



RA þ RB ¼ 6, 500N

The last equation has two unknowns and cannot be solved for reactions RA or RB.

Therefore, we need another equation, which is the equation of equilibrium.

The moment equation with respect to point B is

RA 6ð Þ � 1, 500 4:5ð Þ � 5, 000 2ð Þ þ RB 0ð Þ ¼ 0

6RA � 6, 750� 10, 000 ¼ 0

6RA ¼ 16, 750

RA ¼ 2, 792N

Knowing RA¼ 2,792 N, we can calculate RB from

RA þ RB ¼ 6, 500N

and

RB ¼ 3, 708N

Example 8.4 A simply supported beam with a span of 20 ft is under a uniformly

distributed load of 1,200 lb/ft and a concentrated load of 5,000 lb (Fig. 8.13a).

Compute the reactions at the supports A and B.

F1 = 5000 lb

A B

RBRA

1200 lb/ft

5 ft 15 ft

B

RA RB

24000 lbF1= 5000 lb

A

b

a

5 ft 5 ft 10 ft

20 ft

Fig. 8.13
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Solution Now we are dealing with one concentrated load of F1¼ 5,000 lb, and a

uniformly distributed load of 1,200 lb/ft. First, we calculate the total uniformly

distributed load and then replace it with an equivalent concentrated load.

F2 ¼ 1, 2001b=ft� 20ft ¼ 24, 000 lb

The beam now has two concentrated loads shown (Fig. 8.13b) and the reactions

will be calculated the same way we did it in Example 8.1.

We write the first law of equilibrium

X
Fh ¼ 0

Rh ¼ 0 at thepin support

(Note: there is no horizontal force at the roller support)

Now we write the second law of equilibrium

X
Fv ¼ 0

RA � F1 � F2 þ RB ¼ 0

RA � 5, 000� 24, 000þ RB ¼ 0

RA þ RB ¼ 29, 000 lb

The last equation has two unknowns and cannot be solved for reactions RA or RB.

Therefore, we need another equation, which is the equation of equilibrium.

The moment equation with respect to point B is

RA 20ð Þ � 5, 000 15ð Þ � 24, 000 10ð Þ þ RB 0ð Þ ¼ 0

20RA � 75, 000� 240, 000 ¼ 0

20RA ¼ 315, 000

RA ¼ 15, 750 lb

Knowing RA¼ 15,750 lb, we can calculate RB from

RA þ RB ¼ 29, 000 lb

and

RB ¼ 13, 250 lb
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Example 8.5 Find the reactions for the overhanging beam shown (Fig. 8.14a).

8000 N/m
30,000 N

3 m

9 m RBRA

A
B C

1 m2 m 2 m1 m

20,000 N

2.5 m0.5 m3 m2 m1 m

A

a

b

B

30,000 N
20,000 N

40,000 N

C

RBRA

Fig. 8.14

Solution Now we are dealing with two concentrated loads F1¼ 20,000 N and

F2¼ 30,000 N, and a partial, uniformly distributed load of 8,000 N/m. First, we

calculate the total uniformly distributed load and then replace it with an equivalent

concentrated load.

F3 ¼ 8, 000N=m� 5m ¼ 40, 000N

The beam now has three concentrated loads as shown (Fig 8.14b) and the

reactions will be calculated the same way we did it in Example 8.1.

We write the first law of equilibrium

X
Fh ¼ 0

Rh ¼ 0 at thepin support

(Note: there is no horizontal force at the roller support)

Now we write the second law of equilibrium

X
Fv ¼ 0
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RA � F1 � F2 � F3 þ RB ¼ 0

RA � 20, 000� 30, 000� 40, 000þ RB ¼ 0

RA þ RB ¼ 90, 000N

The last equation has two unknowns, and cannot be solved for reactions RA or

RB. Therefore, we need another equation, which is the equation of equilibrium.

The moment equation with respect to point B is

RA 6ð Þ � 20, 000 5ð Þ � 30, 000 3ð Þ þ 40, 000 0:5ð Þ þ RB 0ð Þ ¼ 0

6RA � 170, 000 ¼ 0

RA ¼ 28, 333N

Knowing RA¼ 28,333 N, we can calculate RB from

RA þ RB ¼ 90, 000N

and

RB ¼ 61, 667N

Practice Problems
For Problems 1 through 10, calculate the reactions at points A and B for beams

loaded as shown in Figs. 8.15–8.24.

1.

7 ft
B

10,000 lb
5000 lb

A
5 ft 6 ft

18 ft

Fig. 8.15
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2.

12000 N
5000 N

A B

3 m

12 m

6 m3 m

Fig. 8.16

3.

500 N/m
1000 N

BA

10 m
2 m3 m5 m

Fig. 8.17

4.

A B

10,000 lb 1000 lb/ft

5 ft 11 ft

18 ft

2 ft

Fig. 8.18
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5.

5000 lb
2000 lb/ft

A B

5 ft 15 ft

20 ft

Fig. 8.19

6.

3000 N/m
1000 N

BA

1 m

2 m12 m
15 m

Fig. 8.20

7.

3 m 7 m
A B

7000 N/m

10 m

Fig. 8.21

8.

5.00 KN/m

1.5 m

B

F= 4.5 KN
1.5 m 4.5 m

A

Fig. 8.22

190 8 Shear and Bending Moment in Beams



9.

20 ft

BA

5 ft

10 kips 5 kips / ft

15 ft

Fig. 8.23

10.

10 ft

20 kips/ft

BA

6 ft2 ft

Fig. 8.24

8.4 Shear Force

When a beam is subjected to applied forces, internal forces develop in the beam.

Since the beam has supports and the system is in an equilibrium condition, the beam

should resist these internal forces. This type of force is called shear force, or simply

shear. The magnitude of the shear has a direct effect on the magnitude of the shear

stress in the beam, and also on the design and analysis of the structural members.

Shear forces develop along the entire length of the beam, and their magnitude

varies at each cross section of the beam. They actually act perpendicularly to the

longitudinal axis of the beam. Our main objectives in finding the shear in beams are

twofold. First, we have to know the maximum value of the shear in order to design

the beam properly so that it can resist overall shear and will not fail when it is

loaded.

The second objective is to calculate the values of shear along the length of the

beam, so that we can find out where the beam fails under bending and where the

shear value is zero. This will be clearly explained later in the section of shear/

bending moment diagrams.
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8.5 Computation of Shear Force

As mentioned earlier, the designer must first know the magnitude of the shear force

at any section of the beam to get the right picture of beam design. The magnitude of

shear force at any section of the beam is equal to the sum of all the vertical forces

either to the right or to the left of the section. To compute the shear force for any

section of the beam, we simply call the upward forces (reactions) positive and

downward forces (loads) negative. Then, the magnitude of the shear force at any
section of the beam is equal to sum of the reactions minus the sum of the loads to the
left of the section. This can be stated as:

Shear ¼ Reactions� Loads

To understand this concept, let’s try an example.

Example 8.6 Find the shear force at sections C, D, and E for the simply supported

beam shown (Fig. 8.25).

6 ft

10,0005000 lb

B
A C D E

2 ft2 ft

Fig. 8.25

Solution First, we calculate the reactions.

RA þ RB ¼ 15, 000 lb

Using the moment equilibrium equation

RA 10ð Þ � 5, 000 8ð Þ � 10, 000 2ð Þ ¼ 0

10RA ¼ 60, 000

RA ¼ 6, 000 lb

and

RB ¼ 9, 000 lb

Point C We usually represent a shear force by V, and we designate this shear force
at C as Vc.

Vc ¼ þ6, 000� 0 ¼ þ6, 000 lb

Point D
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Vd ¼ þ6, 000� 5, 000 ¼ þ1, 000 lb

Point E

Ve ¼ þ6, 000� 5, 000� 10, 000 ¼ �9, 000 lb

Example 8.7 Compute the shear force (a) at 5 m and (b) at 15 m from the left end

of the beam shown (Fig. 8.26).

20 m

15 m

1000 N/m

5 m

10 m

B
A

Fig. 8.26

Solution First we calculate the reactions.

The beam is loaded with a uniform distributed load of 1,000 N/m. The total

distributed load is

W ¼ 1, 000N=m� 10m ¼ 10, 000N

RA þ RB ¼ 10, 000N

Using the moment equilibrium equation

RA 20ð Þ � 10, 000 5ð Þ ¼ 0

20RA ¼ 50, 000

RA ¼ 2, 500N

and

RB ¼ 2, 500N

then

V5m ¼ þ2, 500N

V15m ¼ þ2, 500� 1, 000N=m 5mð Þ ¼ 2, 500� 5, 000N ¼ �2, 500N

Practice Problems

1. Compute the shear force at (a) 4 ft, (b) 12 ft, and (c) 16 ft from the left end of the

beam shown (Fig. 8.27).
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1000 lb500 lb

4 ft 4 ft8 ft

16 ft

B
A

Fig. 8.27

2. Compute the shear force at (a) 4 ft, (b) 12 ft, and (c) 16 ft from the left end of the

beam shown (Fig. 8.28).

10 m

3 m
1500 N

500 N/m

5 m 3 m

1000 N

B
A

Fig. 8.28

3. Compute the shear force at (a) 2.5 m, (b) 5.5 m, and (c) 6.5 m from the left end of

the beam shown (Fig. 8.29).

5.5 m

1200 N/m500 N

3.5 m 2.5 m
B

A

Fig. 8.29

4. Compute the shear force at (a) 5 ft, (b) 10 ft, and (c) 12 ft from the left end of the

beam shown (Fig. 8.30).

300 lb/ft

12 ft
10 ft 2 ft

500 lb

B
A

Fig. 8.30
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5. Compute the shear force at (a) 1.5 m, (b) 2.5 m, and (c) 3.5 m from the left end of

the beam shown (Fig. 8.31).

3000 N 1500 N 1000 N

1 m 2 m 3 m 2 m

B
A

Fig. 8.31

6. Compute the shear force (a) at 2 m, (b) at 4 m and (c) at 8 m from the left end of

the beam shown (Fig. 8.32).

2 m

2500 N/m 5000 N2000 N

5 m 8 m

B
A

Fig. 8.32

8.6 Shear Diagrams

In the previous section, we computed the value of shear at any section along the

length of a beam. Designing a beam requires the variation of shear at arbitrary

locations on the beam. This important task can be accomplished using a graphical

technique referred to as a shear diagram.
Shear diagrams are graphical representations of the shear force variations over

the length of a beam. The shear diagram shows the magnitude of shear at various

points along a beam and is useful in finding the maximum value of shear when

designing a beam.

The shear diagram is drawn directly underneath the free body diagram of the

beam and will show the variation of shear values over the length of the beam. The

following examples illustrate the construction of shear diagrams for a variety of

beam loadings.

Example 8.8 Construct a shear diagram for the simply supported beam shown

(Fig. 8.33).
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500 lb

2 ft 8 ft

A

A
o o

RA = 400 lb

400 lb

–100 lb

RB = 100 lb

C

C

B

B

Fig. 8.33

Solution First we calculate the reactions. Using the laws of equilibrium, we find

that RA¼ 400 lb and RB¼ 100 lb. Remember, to calculate the shear at any section,

we use the equation

V ¼ R� L

where V is the shear, R is the reaction, and L is the load at the left side of the section.

Now we proceed to calculate the shear from reaction A until we reach a load of

500 lb. We will see that the shear value does not change and follows a horizontal

straight line with a constant value of

V ¼ þ400� 0 ¼ þ400 lb

At the load 500 lb, the shear suddenly passes from positive to negative quantity,

because

V ¼ þ400� 500 ¼ �100 lb

Obviously, the shear goes to zero on the baseline when it suddenly passes from a

positive to a negative quantity. From this point on until it reaches reaction B, the

shear again stays constant on the horizontal line and its value is V¼�100 lb. Notice

that the value of the shear is represented by the distance from the baseline to the

shear diagram (Fig. 8.34).

A
0 0

400 lb

–100 lb

C

zero shear constant shear

constant shear

B

Fig. 8.34
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Example 8.9 Construct a shear diagram for the simply supported beam shown

(Fig. 8.35).

800 lb 400 lb

4 ft 10 ft 6 ft

A B

Fig. 8.35

Solution First, we calculate the reactions. Using the laws of equilibrium, we find

that RA¼ 760 lb and RB¼ 440 lb. Working from the left end, as in the previous

example, the shear values at the following sections are

Vx¼1 ft ¼ 760� 0 ¼ 760 lb

Vx¼5 ft ¼ 760� 800 ¼ �40 lb

Vx¼15 ft ¼ 760� 800� 400 ¼ �440 lb

Plotting the positive shear values above the baseline and the negative shear

values below the baseline results in the graphical representation shown in Fig. 8.36.

800 lb 400 lb

4 ft 10 ft

+ 760 lb

RA = 760 lb RB = 440 lb

– 40 lb

– 440 lb

00

6 ft
A B

Fig. 8.36

Example 8.10 A 14-ft beam is loaded with a uniformly distributed load of 400 lb/ft

as shown (Fig. 8.37). Construct a shear diagram for this beam.

400 lb/ft

14 ft
B

A

Fig. 8.37
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Solution The total load is

400 lb=ft� 14ft ¼ 5, 600 lb

Calculation of reactions gives: RA¼ 2,800 lb and RB¼ 2,800 lb. Working from

the left end as in the previous example, the shear values at the random sections are

Vx¼1 ft ¼ þ2, 800� 1� 400ð Þ ¼ þ2, 400 lb

Vx¼4 ft ¼ þ2, 800� 4� 400ð Þ ¼ þ1, 200 lb

Vx¼7 ft ¼ þ2, 800� 7� 400ð Þ ¼ 0

Vx¼14 ft ¼ þ2, 800� 14� 400ð Þ ¼ �2, 800 lb

Notice that the shear decreases uniformly as x increases. At the center of the span
(x¼ 7 ft) the shear goes to zero. Plotting the positive shear values above the

baseline and the negative shear values below the baseline results in a shear diagram

that resembles a sloping straight line (Fig. 8.38).

400 lb/ft

14 ft

+ 2800 lb

– 2800 lb

0 0
0

BA

Fig. 8.38

Example 8.11 Construct the shear diagram for the cantilever beam loaded as

shown in Fig. 8.39.

1500 N/m
10,000 N

8 m

–10,000

–19000

2 m

Fig. 8.39
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Solution Notice that there is no reaction to the left of the beam. Working from the

left end as in the previous example, the shear values at the random sections are

Vx¼2m ¼ �10, 000N

Vx¼3m ¼ �10, 000N� 1, 500N=m� 1mð Þ ¼ �11, 500N

Vx¼10m ¼ �10, 000N� 1, 500N=m� 6mð Þ ¼ �19, 000N

Vmax ¼ �19, 000N

Plotting the positive shear values above the baseline and the negative shear

values below the baseline results in the graphical representation of the shear values.

Practice Problems

1. For the beams and loadings shown in the following figures, construct the shear

diagrams and find the magnitudes of maximum and minimum shear at the

indicated sections.

6 ft 8 ft14 ft

A

RA RB

B

200 lb/ft

Fig. 8.40

2.

RA RB

BA

20 KN 20 KN

180 cm60 cm 60 cm

Fig. 8.41

3.

10 ft4 ft

100 lb/ft

500 lb300 lb

Fig. 8.42
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4.

20 ft6 ft

A

RA RB

B

300 lb/ft

Fig. 8.43

5.

14 ft8 ft
1200 lb

6 ft

A

RA RB

B

200 lb/ft

Fig. 8.44

6.

8 ft4 ft
500 lb

250 lb/ft

Fig. 8.45

8.7 Bending Moment

In the last two sections, we discussed the shear force and shear diagram and their

important impact on designing a beam. In addition to these, there is another

important internal quantity that must be considered before the design stage can

proceed. This internal quantity is called the bending moment.
The bending moment at any section along the length of a beam is the measure of

the tendency of the beam to bend due to the forces acting on it. The bending moment
will vary, but at any section of a beam is equal to the algebraic sum of the moments
of the forces to either the right or to the left of the section.
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8.8 Computation of Bending Moment

The bending moment at any section along the length of a beam equals the moments

of the reactions minus the moments of the loads to the left of the section under

consideration.

M ¼ MR �ML

Example 8.12 Determine the magnitude of the bending moment at the section 5 m

from the left reaction of the beam shown in Fig. 8.46.

A B

RA RB

4 m 3 m

F= 7 KN

Fig. 8.46

Solution Using the equilibrium law, we can calculate the reaction RA¼ 3 KN, and

RB¼ 4 KN.

Mx¼5m ¼ MR �ML

¼ RA 5ð Þ � F 1ð Þ
¼ 3 5ð Þ � 7 1ð Þ ¼ þ8KN:m

Example 8.13 Determine the magnitude of the bending moment at the sections

0, 4, 6, and 14 ft from the left reaction of the beam shown in Fig. 8.47.

A B

14 ft 400 lb/ft

RA RB

Fig. 8.47
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Solution Using the equilibrium laws, we can calculate the reactions

RA¼RB¼ 2,800 lb.

The total load is

W ¼ 400 lb=ft� 14 ft ¼ 5, 600 lb

Mx¼0m ¼ 0

Mx¼4m ¼ 2, 800 4ð Þ � 400� 4� 2ð Þ ¼ þ8, 000 lb‐ft
Mx¼6m ¼ 2, 800 6ð Þ � 400� 6� 3ð Þ ¼ þ9:600 lb‐ft
Mx¼14m ¼ 2, 800 14ð Þ � 400� 14� 7ð Þ ¼ 39, 200� 39, 200 ¼ 0

Example 8.14 For the beam shown in Fig. 8.48, determine the magnitude of the

bending moment at sections C and D.

A B
C D

5 ft 5 ft 10 ft

500 lb 300 lb

RA RB

Fig. 8.48

Solution Using the equilibrium laws, we can calculate the reactions RA¼ 525 lb

and RB¼ 275 lb.

MC ¼ 525� 5 ¼ 2, 625 lb‐ft
MD ¼ 525� 10� 500� 5 ¼ 2, 750 lb‐ft

Practice Problems

1. For the beam shown in Fig. 8.49, determine the bending moment at sections B

and C.

2 m 4 m 2 m

A B C D

8000 N 5000 N

RB RC

Fig. 8.49
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2. For the beam shown in Fig. 8.50, determine the bending moment at sections C,

D, and E.

A B

RA RB

5 ft 2 ft 2 ft 5 ft

C D E

5000 lb 180 lb/ft

Fig. 8.50

3. For the beam shown in Fig. 8.51, determine the bending moment at sections C

and D.

800 N/m

1000 N

C D

A
B

2 m 2 m 1 m 1 m

RA RB

Fig. 8.51

4. For the uniformly distributed beam shown in Fig. 8.52, determine the bending

moment at sections 6, 10, and 20 ft from the left section of the beam.

A
B

5 ft 15 ft

RA RB

1200 lb/ft

Fig. 8.52
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5. For the simply supported beam with three concentrated loads shown in Fig. 8.53,

determine the bending moment at sections 5, 9, and 18 ft from the left section of

the beam.

20 ft

RA RB

A B

4 ft 8 ft 6 ft 2 ft

900 lb 600 lb 200 lb

Fig. 8.53

6. For the simply supported beam with a uniformly distributed load shown in

Fig. 8.54, determine the bending moment at the sections 10, 15, and 20 m

from the left section of the beam.

A B

15 m

10 m 5 m

2000 N

1500 N/m

RA RB

Fig. 8.54

7. For the beam shown in Fig. 8.55, determine the bending moment at the sections

60, 180, and 250 cm from the left section of the beam. Make sure to do the

conversion into the metric system.

A B

20 KN 20 KN

60 cm 180 cm 60 cm

RA RB

Fig. 8.55
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8. For the beam with a partial, uniformly distributed load shown in Fig. 8.56,

determine the bending moment for the sections at 6 f. and 15 ft from the end.

1000 lb 500 lb/ft

A B
10 ft3 ft

RA RB

Fig. 8.56

9. For the beam with a partial, uniformly distributed load shown in Fig. 8.57,

determine the bending moment for the sections 3 m, 7 m, and 8 m from the end.

A
B

5 m 3 m

RBRA

800 N/m
1000 N

Fig. 8.57

8.9 Bending Moment Diagrams

A bending moment diagram is a diagram that shows the variations of bending

moment values at each cross section along a beam. A bending moment diagram like

the shear diagram discussed earlier is an important item in designing a beam. In

fact, the designer must simultaneously consider the shear and bending moment

diagrams, analyze them, and find out where the bending moment diagram reaches a

maximum point.

8.10 Construction of a Bending Moment Diagram

To construct the bending moment diagram, we calculate the bending moment at the

sections of interest along the beam, and then we draw the diagram below the shear

diagram based on the calculated points of bending moments. The diagram does not

have to be to scale; a good approximation will do the job. Notice that the positive

bending moments are above the baseline, and the negative ones are below. Also,

usually for the beams loaded with concentrated forces, the bending moment dia-

gram is a straight line drawn between the forces.

8.10 Construction of a Bending Moment Diagram 205



Example 8.15 Draw the bending moment diagram for the beam shown in

Fig. 8.58.

A B

600 lb/ft

max M= 19,200 lb ft

16 ft

RA RB

Fig. 8.58

Solution We calculate the reactions:

RA þ RB ¼ 9, 600 lb

RA 16ð Þ � 9, 600 8ð Þ ¼ 0, RA ¼ 4, 800 lb

RA þ RB ¼ 4, 800 lb

Using the method explained previously we compute the values of the bending

moment at several sections in order to construct the bending moment diagram

M ¼ MR �ML

Mx¼2 ft ¼ 4, 800� 2� 600� 2� 1 ¼ 8, 400 lb‐ft
Mx¼4 ft ¼ 4, 800� 4� 600� 4� 2 ¼ 14, 400 lb‐ft
Mx¼8 ft ¼ 4, 800� 8� 600� 8� 2 ¼ 19, 200 lb‐ft maximumvalue!ð Þ
Mx¼16 ft ¼ 4, 800� 16� 600� 16� 8 ¼ 0

We plot the above points and connect them to get the moment diagram. Notice

that the value of maximum bending moment occurs at the section of the beam at

which the shear is zero (this can be proven using the knowledge of calculus).

In this example, the maximum value of the bending moment is at a distance of

8 ft from the RA. This value is 19,200 lb-ft. In designing the beams, the value of the

maximum bending moment is the moment with which we particularly are

concerned.
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Example 8.16 Draw the bending moment diagram for the beam shown in Fig. 8.59

and find the maximum bending moment.

1000 lb/ft

A B

8 ft 12 ft

RA
RB

Max = 35,280 lb ft

Fig. 8.59

Solution We calculate the reactions using the equilibrium laws

RA þ RB 12; 000 lb

RA 20ð Þ � 12, 000 6ð Þ ¼ 0

RA ¼ 3, 600 lb, and RB ¼ 8, 400 lb

Using the method explained previously

M ¼ MR �ML

Mx¼0 ft ¼ 0

Mx¼8 ft ¼ 3, 600� 8 ¼ 28, 800 lb‐ft
Mx¼12 ft ¼ 3, 600� 12 � 4� 1, 000� 2ð Þ ¼ 35, 200 lb‐ft

The maximum bending moment occurs at the section where the shear passes

through zero. To find this point, let us define x as the distance from reaction RA.

Then we have

3, 600� x� 8ð Þ � 1, 000½ � ¼ 0

x ¼ 11:6ft

and

Mmax @x ¼ 11:6ftð Þ ¼ 3, 600� 11:6� 3:6� 1, 000 3:6=2ð Þ
Mmax ¼ 35, 280 lb‐ft

Example 8.17 Draw the shear and moment diagrams for the overhanging beam

shown in Fig. 8.60, and find the maximum bending moment.
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4ft 10ft 800 lb/ft

BA
RA RB

+4640

Zero Shear

9.8ft 4.2ft
3360 lb

Max Moment

Fig. 8.60

Solution Using the laws of equilibrium, we find the reactions

RA ¼ 7, 840 lb

RB ¼ 3, 360 lb

Shear calculations at x¼ 4 ft, and x¼ 14 ft give

Vx¼4 ft ¼ 7, 840� 3, 200 ¼ 4, 640 lb

Vx¼14 ft ¼ 7, 840� 800� 14 ¼ �3, 360 lb

As the shear diagram shows, the shear passes through zero at two points: x¼ 4 ft

and

7, 840� 800x ¼ 0, x ¼ 9:8ft

and

Mmax ¼ 7, 840� 5:8� 800� 9:8� 4:9 ¼ 7, 056 lb‐ft

The moment diagram shows the maximum and minimum value of the bending

moment for above beam.
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Practice Problems

Draw the moment diagram for the following beams and find the location of the

maximum bending moment.

1.

12 ft4 ft

RA RB

400 lb/ft

4000 lb

A B

Fig. 8.61

2.

2 KN 2 KN

2 m 4 m 2 m

RA RB

Fig. 8.62

3.

16 ft

RA RB

600 lb/ft
BA

Fig. 8.63
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4.

1000 N

16m

RA RB

4m
500 N/m

BA

Fig. 8.64

5.

R R

20 ft

4 ft 8 ft
900 lb 600 lb 200 lb

6 ft 2 ft

Fig. 8.65

Chapter Summary

Under different types of loading, internal forces develop in the beam. These forces

are called shear forces. Shear force can be calculated at any arbitrary cross section

of a beam using the sum of the reactions and loads at the left side of the beam. This

was formulated as:

V ¼ R� L

The graphical representation of the shear along the length of the beam is called a

shear diagram. With the help of a shear diagram we can find the value of shear at

any point along the beam. This method is very useful for helping a designer of

beams understand the variations of the shear along the length of a beam.

The calculation of the bending moment and its importance in designing a beam

can be shown with some simple examples. To calculate the bending moment, we

simply take into consideration the moment of all forces (reactions and loads) with

respect to any point to the left side of the point of interest. In fact, the bending
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moment at any section along the length of the beam is the measure of the tendency

of the beam to bend due to the forces acting on it.

Now we can introduce the moment diagram, and we show how important that is

for the designer to calculate both the values of shear and bending moment at any

point along the length of the beam. It can also be proven mathematically or

graphically that the maximum value of the bending moment will occur at the

section where the shear is zero.

Review Questions

1. What is a beam?

2. What are the loads acting on a beam?

3. What are the reactions, and what laws can be applied to calculate them?

4. What is the shear in the beam?

5. How would you calculate the shear at any section of a beam?

6. What is a shear diagram? Explain how important it is in designing beams.

7. What is the bending moment? How would you calculate it at any section of a

beam?

8. What is a bending moment diagram?

9. Where does the bending moment reach maximum value? Explain.

10. Explain how a shear diagram and a bending moment diagram together would

help a designer come up with the best solution for beam design.

Problems

For the beams and loadings shown in the following figures, (a) find the reactions at

the supports; (b) draw the complete shear diagram; and (c) draw the bending

moment diagram and determine the magnitude and location of the maximum

bending moment.

1.

10 ft 10 ft

A B

RA RB

2 kips/ft

Fig. 8.66
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2.

4 ft 4 ft 4 ft

A B

RA RB

4 kips
2 kips

Fig. 8.67

3.

20 kN 20 kN

60 cm 60 cm180 cm

A B

RA RB

Fig. 8.68

4.

A B

5 m 5 m 5 m

20 m

700 N 500 N 300 N 

RA RB

Fig. 8.69
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5.

100 kN

200 kN/ m

3 m 2 m

100 kN 15 m

Fig. 8.70

6.

18 ft2 ft

2 ft
2 ft

2 ft

RA RB

600 lb
300 lb

A B

150 lb/ft

Fig. 8.71

7.

AA B

RA RB

15 m

50 kN/ m

200 kN
5 m

Fig. 8.72

8.

250 lb
100 lb/ft

A B

RA RB

16 ft
2 ft 4 ft 10 ft

Fig. 8.73
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9.

500 lb

100 lb/ft

14 ft

4 ft

Fig. 8.74

10.

50 kN/m

20 kN
30 kN

A B
2 m 12 m 2 m 2 m 2 m

20 m
RA RB

Fig. 8.75
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Bending Stresses in Beams 9

Overview

In the previous chapter we discussed the shear forces and bending moments that
were caused by applying external forces to a beam. Therefore, a beam must resist
these shear forces and bending moments. The beam itself must develop internal
resistance to (1) resist shear forces, referred to as shear stresses; and to (2) resist
bending moments, referred to as bending stresses or flexural stresses. For beam
design purposes, it is very important to calculate the shear stresses and bending
stresses at the various locations of a beam. Since the shear stresses have been
covered earlier, this chapter will only emphasize the bending stresses that are
caused by bending moments.

Learning Objectives

Upon completion of this chapter, you will be able to define the neutral plane, called
the plane of zero bending. You will also learn how to calculate the maximum
bending stress using the flexure formula and compare it with the maximum resisting
moment when the design problem arises. Your knowledge, application, and problem
solving skill will be determined by your performance on the chapter test.

9.1 Introduction

When shear forces and bending moments develop in a beam because of external

forces, the beam will create internal resistance to these forces, called resisting
shearing stresses and bending stresses.

Consider the simply supported beam shown in Fig. 9.1 before it is subjected to

the load. If we look at a short length of the beam between the cross sections A-B and

C-D, we see that these two segments are parallel and of equal lengths. As the beam

is loaded and bends, points A and C move closer together and points B and D are

stretched at the bottom (Fig. 9.2).
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A C

B D

Fig. 9.1

A C

B D

Fig. 9.2

In other words, segment AC shortens and segment BD lengthens. The top of the

beam is in compression and the bottom is in tension. The maximum compression

stress occurs at the upper fiber of the beam; the magnitude of the stress decreases

below the upper fiber, and eventually goes to zero at the neutral plane. The
intersection of the neutral plane with the cross-sectional plane is called the neutral
axis (Fig. 9.3). Also, the maximum tensile stress occurs at the bottom fiber of the

beam and goes to zero at the neutral plane.

Tensile Stress

Compressive
stress

neutral axis

Fig. 9.3

The theory of beams plays an important role in structural design and is used by

the designer as a powerful technique to analyze various structures. In fact, beam

theory gives an accurate and deep understanding of the behavior of a structure. One

of the most useful models of beam theory was developed by Euler and Bernoulli,
known as the Euler–Bernoulli theory of beams. This theory was based on the

following assumptions:

1. The cross section of the beam is infinitely rigid in its own plane.

2. The cross section of the beam remains in the plane after deformation.

3. The cross section of the beam remains normal to the deformed axis of the beam.

It has been assumed that the stress in any fiber does not exceed the proportional

limit of the material, and so it will support Hooke’s law—meaning that the stress is
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proportional to the distance from the neutral plane and the sections A-B and C-D,

before and after bending, remain in a straight line (Fig. 9.4).

As a result, the stress distribution will have a triangular shape. Stress changes

from zero at the neutral axis to either a maximum compressive stress at the top outer

fiber or to a maximum tensile stress at the bottom outer fiber.

A A′

B′ B D D′

neutral axis

C′ C

Fig. 9.4

9.2 Resisting Moment

The next question is how do tension and compression stress resist the externally

applied bending moment. Consider a simple beam subjected to a concentrated load

P (Fig. 9.5). The free-body diagram shows the part of the beam to the left of the

cross section X-X. The reaction R1 creates a clockwise rotation with respect to

point O, which is the bending moment of the section. The next item is the moment

of the stresses on the cross section.

Max 
tension

Max
Compression

tension

Compression
N.A

x neutral
plane

x

a

T

C

o
Y

Y

R1

R2x

x p

R1

Fig. 9.5

If we call the sum of the compressive stresses C and the sum of the tensile

stresses T, then the T-C couple is the resisting moment developed by the beam in

response to the externally applied bending moment (Fig. 9.6).
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Compression(C)

tension(T)

tension

C

C

o

Compression

Fig. 9.6

This resisting moment tends to cause a counterclockwise rotation, and is equal to

the bending moment if the beam is in equilibrium. Mathematically, this can be

written as

R1 � a ¼ C� yþ T � y

This is called the theory of flexure in beams. Knowing the bending moment of

the beam, we will be able to design the beam to resist bending and its resisting

moment is equal to the external bending moment.

9.3 The Flexure Formula

As we mentioned earlier, if the stresses in the beam are lower than the material’s

proportional limit, Hooke’s law can be applied; this means that the strains are

related to the stresses by a constant called the modulus of elasticity. In other words,

the bending stresses caused by bending moments are proportional to the distance

from the neutral axis of the beam. The relationship between the bending moment

(M ) on the cross section, bending stresses (σ), and properties of the cross section,

called the flexure formula, is applied for the purposes of analyzing and designing

beams.

The maximum bending stress at the outer fiber with a distance c from the neutral

axis is proportional to the bending stress at a distance y from the neutral axis.

Figure 9.6 shows maximum tension or compression bending stress at the outer fiber.

This can be written as

σy=y ¼ σmax=c ð9:1Þ
σy ¼ yσmax=c

The internal resisting moment is the sum of the force F times lever arm y about
the neutral axis
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M ¼
X

F:y ð9:2Þ

where

F ¼ aσy a is an infinitesimalareað Þ ð9:3Þ
or

F ¼ aσmax y=cð Þ
and

M ¼
X

aσmax y=cð Þ � y ¼
X

ay2σmax=c ð9:4Þ

or

σmax ¼ Mc=
X

ay2 ¼ Mc=I ð9:5Þ

where I¼∑a y2 is the moment of inertia of a cross section about an x-x axis.
In Eq. 9.5 above, if the stress is in psi, distance is in inches, and themoment of

inertia is in in.4, then the unit of bending moment in the English system is lb-in. If

we precisely look at Eq. 9.5 we will find out that it represents the resisting moment

dealing with the size, material, and shape of the beam cross section. The expression

can be simplified by substituting S¼ I/c, called the section modulus. Then the

formula becomes

M ¼ σ S ð9:6Þ
The section modulus S is an important property of the cross section and can be

considered a measure of the strength of a beam. It is also a characteristic of the

bending capacity and stiffness of a beam cross section. The larger the section

modulus, the smaller the stresses developed in the section for a certain bending

moment. Equation 9.6 shows that the larger the section modulus, the larger the

bending moment developed at the beam cross section for certain compressive or

tensile stresses. Values of section moduli for some cross sectional shapes can be

found in the tables of properties of materials.

Example 9.1 Calculate the maximum bending stress of the beam if the cross-

sectional dimension is 5 in.� 10 in. and the bending moment is 50,000 lb-in.

(Fig. 9.7).
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5 in.

5 in.

5 in.

X axis

neutral
X

Fig. 9.7

Solution We make some assumptions to be able to solve the problem with the

given information.

1. The centroid of a rectangle is at the center of the rectangle; this means that the

neutral axis is at the center.

2. The moment of inertia for a rectangle shape with respect to the centroidal axis

can be found from Chap. 5, and is (1/12) bh3.

Using the flexure formula

σ ¼ Mc=I

I ¼ 1=12ð Þbh3 ¼ 1=12ð Þ 5� 103
� � ¼ 416:67 in:4

σ ¼ 50, 000� 5ð Þ=416:67
σ ¼ 600psi

Example 9.2 A nominal size piece of structural timber 6 in.� 10 in. is subjected to

a vertical loading (Fig. 9.8). Determine the section modulus of the beam if the

maximum bending stress is established.

10
 in

.

6 in.

X X

Fig. 9.8
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Solution Assume that X-X is the axis of bending. Using the definition of the

section modulus as

S ¼ I=c
S ¼ bh3=12

� �
=h=2 ¼ bh3=6

Substituting the given data, we get

S ¼ 5½ð Þ 9½ð Þ2=6 ¼ 82:7 in:3 see tablevalueof structural timbers!ð Þ
Example 9.3 Calculate the maximum bending stress for a steel bar 45 mm in

diameter (Fig. 9.9) if a bending moment of 200 N.m is applied.

45 mm

neutral axis

x x

Fig. 9.9

Solution Use the definition of section modulus as

σ ¼ Mc=I

Calculate the moment of inertia of a circular area

I ¼ πd4=64 ¼ π 0:045mð Þ4=64 ¼ 2� 10�7 m4

σ ¼ Mc=I ¼ 200� 0:0225= 2� 10�7
� � ¼ 23MPa

Example 9.4 Calculate the width of a 10-in. deep rectangular beam with a bending

moment of 120,000 lb-in. Assume that the allowable bending stress is 2,000 psi.

Solution Using the definition of the section modulus as

σ ¼ Mc=I

or

σ ¼ M=S
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and

S ¼ M=σ

S ¼ 120, 000 lb‐in:=2, 000psi

S ¼ 60 in:3

From Example 9.2, we found that the section modulus of a rectangular beam is

S ¼ bh2=6 ¼ 60

Solving for b, it gives:

b ¼ 60� 6=102 ¼ 3:6 in:

Example 9.5 A simply supported timber beam of length of 20 ft carries a uni-

formly distributed load of 300 lb/ft. Determine the maximum bending stress. Use

Example 9.2 for the dimensional size of the beam and assume S¼ 82.7 in.3.

Solution From Appendix A we find the maximum bending moment for a simple

beam with a uniformly distributed load.

M ¼ wl2=8 ¼ 300 20ð Þ2=8 ¼ 15, 000 lb‐ft

The maximum stress is

σ ¼ M=S ¼ 15, 000 lb‐ftð Þ 12ð Þ=82:7 ¼ 2, 176:4psi

Practice Problems

1. Calculate the maximum bending stress on a rectangular beam 12 in.� 20 in. that

has an applied bending moment of 10,000 lb-in.

2. Calculate the maximum bending stress on a square beam 30 mm� 30 mm in

cross section if the maximum bending moment is 2,200 N.m.

3. Calculate the maximum bending stress on a hollow circular cross section of a

beam if the maximum bending moment is 5,000 N.m (Fig. 9.10).

50 mm

30
 m

m

Fig. 9.10
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4. Calculate the maximum bending moment on a 6 in.� 14 in. rectangular beam

with a maximum bending stress of 15,000 psi.

5. Calculate the maximum bending stress on a beam cross section (Fig. 9.11) with a

bending moment of 120,000 lb-in.

4 in.

.5 in.

.5 in.

.5 in.

4.5 in.

Fig. 9.11

6. Calculate the maximum bending stress on a bar (Fig. 9.12) with a circular cross

section of 0.75 in. subjected to a concentrated load of 300 lb.

3 in. 6 in.

300 lb

RBRA

A B

Fig. 9.12

7. Calculate the applied bending moment on a 60 mm� 160 mm rectangular beam

with a maximum bending stress of 20,000 kPa.

8. W 10� 60 simply supported steel beam 20 ft in length carries a uniformly

distributed load of 1,500 lb/ft. Determine the maximum bending stress.

Chapter Summary

When a beam is subjected to external loads, shear forces and bending moments

develop in the beam. Therefore, a beam must resist these external shear forces and

bending moments. The beam itself must develop internal resistance to resist shear

forces and bending moments.

The stresses caused by the bending moments are called bending stresses. For

beam design purposes, it is very important to calculate the shear stresses and

bending stresses at various locations of a beam. The bending stress varies from

zero at the neutral axis to a maximum at the tensile and compressive side of

the beam.
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In the following problems, you might need to refer to the tables of properties of

materials found in the engineering texts to extract the necessary information.

σ ¼ Mc=I

where M is the maximum bending moment on the beam; c is the distance from
the neutral axis to the outside surface of the beam, and I is the moment of inertia of

the area of the beam cross section.

Review Questions

1. What is the flexure formula?
2. What is the neutral axis?
3. What is the neutral plane?
4. How would you calculate bending stress using the flexure formula?

5. How would you calculate the bending moment using the flexure formula?

6. What are the limitations of the flexure formula?

7. What is the section modulus?
8. What is the physical meaning of section modulus?

9. How would you calculate the section modulus of a rectangular beam?

10. What is the value of the section modulus in a beam, given M¼ 150,000 lb-in.

and bending stress σ¼ 1,200 psi?

11. What is the moment inertia of a rectangular beam with cross section of b¼ 4 in.

and h¼ 9 in.?

12. Given the section modulus of a beam S¼ 80 in.3 and the maximum bending

stress σ¼ 1,500 psi, what is the value of the maximum bending moment?

Problems

In the following problems, you might need to refer to the tables of properties of

materials found in the engineering texts to extract the necessary information.

1. A square steel bar 40 mm on each side is subjected to a bending moment of

550 N.m. Determine the maximum bending moment.

2. Calculate the maximum bending moment for a S 10� 35 beam, if the bending

stress is 18,000 psi.

3. Calculate the maximum bending stress for a W 10� 33 beam, 12 ft length, if it

is subjected to a uniformly distributed load of 1,000 lb/ft.
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4. Calculate the maximum bending stress on an 8-in. wide and 18-in. deep beam

with a span of 20 ft (Fig. 9.13) at 7 ft from the left.

16 ft

10,000 lb

4 ftA B

Fig. 9.13

5. Calculate the maximum bending stress for a beam with a cross section of

80 mm� 200 mm. Assume the developed maximum bending moment is

2,000 N.m.

6. A steel bar of 0.7� 1.8 in. rectangular cross section creates a bending stress of

σ¼ 30,000 psi. Calculate the maximum bending moment developed on

the beam.

7. Calculate the maximum tensile and compressive bending stress for the beam

shown below (Fig. 9.14) if the applied bending moment is 110,000 N.m.

5 in.

7 in.

X-axis
Centroidal

1.5 in.

1.5 in.

Fig. 9.14

8. Calculate the maximum bending stress for a hollow steel pipe with the

dimensions shown (Fig. 9.15) subjected to a concentrated load of 30,000 lb.

Assume the span of the pipe is 40 in. (OD¼ 5.5 in., ID¼ 3.0 in.).

30,000 lb

13 ft 17 ft
A B

Fig. 9.15
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9. Calculate the maximum bending stress for a round steel rod 20 mm in diameter

if it is subjected to an applied bending moment of 320 N.m.

10. For the I-section beam shown (Fig. 9.16), calculate the maximum tensile and

compressive stress if the beam is acted upon by a bending moment of

100,000 lb-ft.

Centroidal
axis

1  in.

1  in.

1 in.

8 in.

8 in.

Fig. 9.16
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Columns 10

Overview

Structural members that are subjected to axial compressive loads are called
columns; their lengths are several times greater than their cross-sectional
dimensions. Columns have wide application in the construction industry and are
very important in overall design for buildings and bridges. Columns can bend
under compressive axial loading, and they might be subject to eccentric axial
loading. This phenomenon is called buckling; this means that the column has lost
its stability by buckling. In this chapter the buckling of a column as a result of
bending action due to axial compressive loads will be discussed.

Learning Objectives

Upon completion of this chapter, you will be able to define columns and calculate
the slenderness ratio for timber and steel columns. You will also be able to calculate
the allowable load for timber and steel columns. Your knowledge, application, and
problem solving skill will be determined by your performance on the chapter test.

10.1 Introduction

A column is a structural member subjected to an end load whose action line

parallels that of the member and whose length is generally ten or more times its

least lateral dimension. The most common materials for columns are steel, wood,

aluminum, and concrete. Normally, the stronger the material, the larger the load the

column can carry. Shorter columns have more load-carrying capacity than longer

columns.

Generally, all axially loaded columns are called compressive members. There

are other structural members that carry compressive loads, but they are not neces-

sarily columns, such as pillars and piers. The size of the column is another factor

that has an effect on the load-carrying capacity of the column. End connections of

the column have an effect on the load-carrying capacity of the column. End
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connections of a column are classified as pinned and fixed connections (Fig. 10.1).

Columns with fixed end connections have higher load-carrying capacities.

l l

Pinned
end

Fixed
end

Fig. 10.1

10.2 Slenderness Ratio

The slenderness ratio is a very important quantity in the design process of compres-

sion members. The slenderness ratio is equal to the length of the compression

member divided by the least radius of gyration of the cross section. It is shown by L/
r, where L is length of the member and r is the least radius of gyration of the cross

section.

It is written as

r ¼ √I=A

In order to get the least radius of gyration, we have to choose the smallest

moment of inertia, either Ix or Iy in the formula.

For low-carbon steel, a short compression member is one that has a slenderness

ratio below about 40; for aluminum–magnesium alloys, any compression member

that has a slenderness ratio below 10 is considered a short compression member.

Example 10.1 Calculate the slenderness ratio of a compression member 8 ft long

with the cross section shown (Fig. 10.2).
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2 in. 2 in.

1.5 in.

1.5 in. X

Y

Fig. 10.2

Solution The formula for the slenderness ratio is

r ¼ √I=A

The moment of inertia of the cross section with respect to the x axis is

Ix ¼ ð1=12Þbh3 ¼ 1=12ð Þ 4ð Þ 3ð Þ2 ¼ 9 in:4

The moment of inertia of the cross section with respect to the y axis is

Iy ¼ ð1=12Þbh3 ¼ 1=12ð Þ 3ð Þ 4ð Þ2 ¼ 16 in:4

The area of the rectangular shape is

A ¼ bh ¼ 4� 3 ¼ 12 in:2

We use the smallest value of moment of inertia in the calculation of the radius of

gyration

r ¼ √I=A ¼ √9=12 ¼ 0:87 in:

And the slenderness ratio is L/r¼ (8� 12)/0.87¼ 111

Example 10.2 Calculate the slenderness ratio of a solid circular bar 30 in. long and

2 in. in diameter.

Solution The formula for the slenderness ratio is

r ¼ √I=A

The moment of inertia of the circular area is the same with respect to the x axis
and the y axis.

Ix ¼ Iy ¼ π=64 dð Þ4 ¼ π=64 2ð Þ4 ¼ 0:79 in:4
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The area of the rectangular shape is

A ¼ π d2=4 ¼ 3:14 in:2

and

r ¼ √I=A
¼ √0:79=3:14 ¼ 0:502 in:

The slenderness ratio is L/r¼ (40)/0.502¼ 79.75

Example 10.3 Calculate the slenderness ratio of an angle 1,000 mm long

designated as 64� 64� 6.4 mm.

Solution Referring to the tables of properties for angles, we find that

rx¼ ry¼ 19.5 mm

And the slenderness ratio is

L=r ¼ 1, 000=19:5 ¼ 51:3

Practice Problems

1. Calculate the slenderness ratio of a rectangular bar 2 in.� 75 in. and 20 in. long.

2. Calculate the slenderness ratio of a solid circular bar 30 in. long with a diameter

of 1½ in.

3. Calculate the slenderness ratio of an angle 750 mm long designated as

51� 52� 9.6 mm.

4. Calculate the slenderness ratio of a W-shaped steel beam 20 m long designated

as W 300� 4.90 mm.

5. Calculate the slenderness ratio of a hollow circular section of a compression

member 5 m long (Fig. 10.3).

350 mm

400 mm
Y

X

Fig. 10.3
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10.3 Failure in Columns

Columns can be classified as three types: short, long, and intermediate (Fig. 10.4).

Failure in short columns is distinguished by the crushing (yielding) of material, due

to the stresses developed in the material which are greater than the yielding stress.

Long column fails are due to buckling, meaning that the column actually defects

laterally and bends near the middle of its length. Buckling in long columns occurs at

stresses below the yielding stress of the material. Failure in intermediate columns is

a combination of material yielding and buckling. Buckling in intermediate columns

takes place at higher stresses.

Long
Buckling
Failure

Intermediate
(Yielding & Buckling)

Short
(Yielding Failure)

a b c

Fig. 10.4

Leonhard Euler (1707–1783), Swiss mathematician, derived a formula for a

slender column that shows how the critical load would cause buckling in this type of

column. The formula is the Euler equation and was named after him for his great

contribution to column theory. Today it is still used as the basis for the analysis and

design of slender columns. The Euler equation is expressed as

Pe ¼ π2EI=L2 ð10:1Þ
where

Pe¼ the critical load or the Euler buckling load, lb or N.

E¼ the modulus of elasticity of the material, psi or MPa

I¼ the smallest moment of inertia of the cross section, in.4 or mm4

L¼ the length of the column between the hinges, in. or mm

The Euler formula is used to precisely predict the buckling load if the buckling

stress is less than the proportional limit of the material. For the purpose of

comparison, the Euler formula can be expressed in terms of buckling stress using

Eq. 10.1 and substituting Ar2 for the moment of inertia, I.

Pe=A ¼ π2EI
� �

= L=rð Þ2
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or

σe ¼ π2E
� �

= L=rð Þ2 ð10:2Þ
The Euler equation has some limitations in the fact that it is only used if buckling

occurs, as stresses on a column are low and in the material’s elastic region.

Example 10.4 Calculate the critical load using the Euler formula for a 250-mm

long rectangular steel bar 15 mm by 4 mm, to be used as a pin-connected compres-

sion member. Assume the modulus of elasticity for steel is 200� 103 MPa.

Solution First, we must find out if the Euler formula can be used for this problem.

In other words, the compression member must be a slender column.

Calculate the moment of inertia Ix and Iy to find out which one is smaller.

Ix ¼ 1=12 15ð Þ 4ð Þ3 ¼ 80mm4

and

Iy ¼ 1=12 4ð Þ 15ð Þ3 ¼ 1, 124mm4

Ix is smaller than Iy.
The area is A¼ 15� 4¼ 60mm2

The radius of gyration is

r ¼ √I=A
¼ √80=60 ¼ 1:15mm

The slenderness ratio is

L=r ¼ 250mm=1:15mm ¼ 217

Since 217> 150 (steel), the compression member is a slender column, and the

Euler formula can be applied.

Pe ¼ π2EI=L2

¼ π2 � 200� 103 � 80
� �

= 250ð Þ2 ¼ 2, 527N

Example 10.5 Calculate the smallest value of the slenderness ratio for a given

column with a modulus of elasticity of 15� 106 psi and critical buckling stress of

20,000 psi so that the Euler equation can be applied with some accuracy.
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Solution The buckling stress equation is written as

σe ¼ π2E
� �

= L=rð Þ2

or

L=rð Þ2 ¼ π2E
� �

=σe

L=r ¼ π√E=σe
¼ π √15� 106=20, 000

� � ¼ 28:5

Practice Problems

1. Calculate the critical Euler buckling stress for a W 12� 40 steel column 24 ft in

length with a modulus of elasticity of 3� 107 psi.

2. Using the Euler formula, calculate the critical load of a 1.5-in. diameter steel rod

3 ft long used as a compression member. Assume end conditions are pinned-

connected and the modulus of elasticity is 3� 107 psi.

3. Using the Euler formula, calculate the critical buckling stress for a W-shaped

16� 26 steel column 16 ft long with a modulus of elasticity of 3� 107 psi.

4. Calculate the critical Euler buckling stress for a steel pipe column 6 in. in

diameter and 20 ft long. The proportional limit for steel is 34,000 psi.

5. Calculate the critical Euler buckling stress for a steel rod ¾ in. in diameter and

6 ft long. The proportional limit for steel is 34,000 psi.

10.4 Timber Columns

Simple, solid, square or rectangular wood columns are the most frequently used

types of timber in the construction industry today. Round cross-sectional columns

are also classified as simple solid columns, but are used less frequently. The other

types of timber columns are spaced columns and built-up columns.

In this section, we only discuss the simple, solid square or rectangular cross

section. The most widely used design code for the analysis and design of timber

columns is recommended by the National Forest Products Association (NFPA),

under the National Design Specification for Wood Construction.

10.5 Allowable Stress in Timber Columns

The long column (slender column) is defined by the L/d ratio, where L is the actual

length of the column, and d is the smallest dimension of the column cross section.

The slenderness ratio for a simple solid timber column is limited to L/d¼ 50.

For timber columns, the allowable axial compressive stress is given by the

formula
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σall ¼ 0:3E= L=dð Þ2

where

E¼ the modulus of elasticity of timber, psi

L¼ actual length of the column, in.

d¼ the least dimension of the column, in.

The above equation is basically the same as the Euler equation, except for the

new definition of L/d for a timber column. This ratio is limited to 50 or less.

Example 10.6 Determine the allowable axial compressive stress for a

pin-connected 4� 8 timber column of Douglas fir that is 10 ft long. The table

value of allowable stress is (sc¼ 1,050 psi).

Solution
L=d ¼ 10 12ð Þ=3:5 ¼ 34:3 < 50 OK

[Note that the dressed value of 4� 8 Douglas structural timber is 3½� 7¼.]

Now we must calculate a factor called K to find out if the column can perform as

a slender one.

K ¼ 0:671√E=sc ¼ 0:671√1, 700, 000=1, 050 ¼ 27

For longer columns (K� L/d� 50)

Since 27< 34.3< 50, it is a slender column and we use

σall ¼ 0:3E= L=dð Þ2
¼ 0:3 1; 700; 000ð Þ= 34:3ð Þ2
¼ 433psi < 1, 050psi OK

Example 10.7 Determine the allowable axial compressive load for a

pin-connected 6� 6 timber column of Hem-fir that is 20 ft long. The table value

of allowable stress is (sc¼ 875 psi). E¼ 1,400,000 psi.

Solution
L=d ¼ 20� 12=5:5 ¼ 43:6 < 50 OK

Now we must calculate a factor called K to find out if the column can perform as

a slender one.

K ¼ 0:671√E=sc ¼ 0:671√1, 400, 000=875 ¼ 26:8

For longer columns (K� L/d� 50)
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Since 26.8< 43.6< 50, it is a slender column and we use

σall ¼ 0:3E= L=dð Þ2
¼ 0:3 1; 400; 000ð Þ= 43:6ð Þ2
¼ 221psi < 875psi

Chapter Summary

Here is a brief summary of what you have learned in this chapter.

Columns are generally considered as compression members and classified as

short, intermediate, and long (slender). Columns fail due to a type of bending called

buckling. In short and intermediate columns, the buckling occurs due to inelastic

bending. In long columns, the buckling occurs due to an elastic bending.

The Euler equation is used for calculating the buckling critical load and is

expressed as

Pe ¼ π2EI=L2

The Euler formula is limited to the proportional limit of the material.

The critical stress is

σe ¼ π2E
� �

= L=rð Þ2

L/r is called the slenderness ratio. For a steel slender column, the slenderness

ratio is above 150.

For timber columns, the allowable stress based on the Euler formula is given as

σall ¼ 0:3E= L=dð Þ2

The codes limit L/d to 50 or less.

Review Questions

1. What is a compression member?
2. What is the radius of gyration?
3. What is the slenderness ratio and its importance in column issues?

4. What are the compression member categories?

5. How does a short compression member fail?

6. How does an intermediate compression member fail?

7. What is the Euler formula, its applications, and limitations?

8. What is the critical load for steel slender compression members?

9. What formula would you use to calculate the allowable stress for timber

columns?

10. What is the ratio L/d in timber columns?
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Problems

1. What is the slenderness ratio of a solid circular bar 30 in. long and 2 in. in

diameter?

2. Calculate the slenderness ratio of a rectangular bar 1.5 in.�¾ in. and

20 in. long.

3. Calculate the compressive stress of a hollow circular machine part ¾ in. long

and made of steel with an outer diameter of 4 in. and an inner diameter of 2 in.

Use 80,000 lb as a compressive force.

4. What is the slenderness ratio of a steel beam 12 ft long and designated as W

10� 12?

5. Calculate the critical Euler buckling stress for a W 12� 58 steel column 20 ft in

length with a modulus of elasticity of 3� 107 psi.

6. Using the Euler formula, calculate the critical load of a 2-in. diameter steel rod

4 ft long used as a compression member. Assume end conditions are pinned-

connected and the modulus of elasticity is 3� 107 psi.

7. Using the Euler formula, calculate the critical buckling stress for a W 14� 22

shape steel column 12 ft long with a modulus of elasticity of 3� 107 psi.

8. Calculate the critical Euler buckling stress for a steel pipe column of 5 in. outer

diameter, 3 in. inner diameter, and 15 ft long. The proportional limit for steel is

34,000 psi.

9. Calculate the critical Euler buckling stress for a steel rod ½-in. in diameter and

8 ft long. The proportional limit for steel is 34,000 psi.

10. Determine the allowable axial compressive stress for a pin-connected 4� 10

timber column of Douglas fir that is 12 ft long. The table value of allowable

stress is (sc¼ 1,050 psi).
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Appendix A. Shears, Moments and Deflections

1. Simple beam—uniformly distributed load

x
l

l
2 2

l
R R

V

VShear

Moment

Mmax

wl

Total Equiv. Uniform Load =wl

R ¼ V ¼ wl

2

Vx ¼ w
1

2
� x

� �

Mmax at centerð Þ ¼ wl2

8

Mx ¼ wx

2
l� xð Þ

Δmax at centerð Þ ¼ 5wl4

384El

Δx ¼ wx

24El
l3 � 2lx2 þ x3
� �

2. Simple beam—load increasing uniformly to one end

x

0.5774 l

R1 R2

V2

V1

Mmax

W

Shear

Moment

l TotalEquiv:UniformLoad

¼ 16W

9
ffiffiffi
3

p ¼ 1:03W

R1 ¼ V1 ¼ W

3

R2 ¼ V2 ¼ Vmax ¼ 2W

3

Vx ¼ W

3
�Wx2

l2

Mmax atx ¼ 1ffiffiffi
3

p ¼ 0:557 l

� �

¼ 2Wl

9
ffiffiffi
3

p ¼ 0:128Wl

Mx ¼ Wx

3l2
l2 � x2
� �

Δmax at X ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffi
8

15

rs
¼ 0:519 l

0
@

1
A ¼ 0:0130

Wl3

El

Δx ¼ WX

180Ell2
3X4 � 10l2X2 þ 7l4
� �

(continued)

# Springer International Publishing Switzerland 2015

P. Ghavami, Mechanics of Materials, DOI 10.1007/978-3-319-07572-3
237



(continued)

3. Simple beam—load increasing uniformly to center

Mmax

R

V

Shear

Moment

V

x
l

l l
22

R

W

TotalEquiv:UniformLoad ¼ 4W

3

R ¼ V ¼ W

2

VX whenX <
l

2

� �
¼ W

2l2
l2 � 4X2
� �

Mmax at centerð Þ ¼ Wl

6

MX whenX <
l

2

� �
¼ WX

1

2
� 2X2

3l2

� �

Δmax atcenterð Þ ¼ Wl2

60El

Δx whenx <
l

2

� �
¼ wx

480Ell2
5l2 � 4x2
� �2

4. Simple beam—uniform load partially distributed

l
b

wb

Shear

Moment

a

a+ w

x

c

R1

R1

R2

V1

Mmax

V2

R1 ¼ V1 max:whena < cð Þ ¼ wb

2l
2cþ bð Þ

R2 ¼ V2 max:whena > cð Þ ¼ wb

2l
2aþ bð Þ

Vx(when x> a and< (a + b)) =R1�w(x� a)

Mmax atx ¼ aþ R1

w

� �
¼ R1 aþ R1

2w

� �
Mx(when x< a) =R1x

Mx whenx > aand < aþ bð Þð Þ
¼ R1x� w

2
x� að Þ2

Mx(when x> (a+ b)) =R2(l� x)
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(continued)

5. Simple beam—uniform load partially distributed at one end

l
a

w

R1

R1

R2

V2

V1

x

Mmax

Shear

Moment

wa
R1 ¼ V1 ¼ Vmax ¼ wa

2l
2l� að Þ

R2 ¼ V2 ¼ wa2

2l
Vx(when x< a) =R1�wx

Mmax at x ¼ R1

w

� �
¼ R2

1

2w

Mx when x < að Þ ¼ R1x� wx2

2

Mx(when x> a) =R2(l� x)

Δx when x < að Þ ¼ wx

24Ell

a2 2l� að Þ2 � 2ax2 2l� að Þ þ lx3
� �

Δx when x > að Þ ¼ wa2 l� xð Þ
24Ell

4xl� 2x2 � a2
� �

6. Simple beam—uniform load partially distributed at each end

Shear

Moment

Mmax

V2

R1

R1
w1

w1a
w2c

R2

V1

l
a b

x

c

—

R1 ¼ V1 ¼ w1a 2l� að Þ þ w2c
2

2l

R2 ¼ V2 ¼ w2c 2l� cð Þ þ w1a
2

2l

Vx(when x< a) =R1�w1x

Vx(when a< x< (a+ b)) =R1�w1a

Vx(when x> (a+ b)) =R2 +w2(l� x)

Mmax at x ¼ R1

w1

, when R1 < w1a

� �
¼ R2

1

2w1

Mmax at x¼ l�R2

w2

,when R2<w2c

� �
¼ R2

2

2w2

Mx when x < að Þ ¼ R1x� w1x
2

2

Mx when a < x < aþ bð Þð Þ ¼ R1x� w1a

2
2x� að Þ

Mx when x > aþ bð Þð Þ ¼ R2 l� xð Þ � w2 l� xð Þ2
2
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(continued)

7. Simple beam—concentrated load at center

l

l l

P

x

RR

Mmax

V

V

2

Shear

Moment

2

Total Equiv. UniformLoad = 2P

R =V= 2P

Mmax at point of loadð Þ ¼ Pl

4

Mx whenx <
1

2

� �
¼ Px

2

Δmax at point of loadð Þ ¼ Pl3

48 El

Δx when x <
1

2

� �
¼ Px

48El
3l2 � 4x2
� �

8. Simple beam—concentrated load at any point

x
P

Shear

Moment

Mmax

ba

R2

V2

R1

V1

l
TotalEquiv:UniformLoad ¼ 8Pab

l2

R1 ¼ V1 ¼ Vmax whena < bð Þ ¼ Pb

l

R2 ¼ V2 ¼ Vmax whena > bð Þ ¼ Pa

l

Mmax at point of loadð Þ ¼ Pab

l

Mx whenx < að Þ ¼ Pbx

l

Δmax atx¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a aþ2bð Þ

3

r
, when a>b

 !

¼Pab aþ2bð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a aþ2bð Þp

27Ell

Δa at point of loadð Þ ¼ Pa2b2

3Ell

Δx whenx < að Þ ¼ Pbx

6Ell
l2 � b2 � x2
� �

9. Simple beam—two equal loads symmetrically placed

R
a

PP

X

R

V

V

a

Shear

l

Mmax

Moment

TotalEquiv:UniformLoad ¼ 8Pa

l

R =V=P

Mmax(between loads) =Pa

Mx(when x< a) =Px

Δmax at centerð Þ ¼ Pa

24El
3l2 � 4a2
� �

Δmax when a ¼ l
3

� � ¼ Pl3

28El

Δx when x < að Þ ¼ Px

6El
3la� 3a2 � x2
� �

Δx whena < x < l� að Þð Þ ¼ Pa

6El
3lx� 3x2 � a2
� �
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(continued)

10. Simple beam—two equal concentrated loads unsymmetrically placed

Shear

Moment

M1
M2

V1

V2

R1 R2

PP

a b

x l
R1 ¼ V1 ¼ Vmax whena < bð Þ ¼ P

l
l� aþ bð Þ

R2 ¼ V2 ¼ Vmax whena > bð Þ ¼ P

l
l� aþ bð Þ

Vx whena < x < l� bð Þð Þ ¼ P

l
b� að Þ

M1(=Mmaxwhen a> b) =R1a

M2(=Mmaxwhen a> b) =R2b

Mx(when x< a) =R1x

Mx(when a< x< (l� b)) =R1x�P(x� a)

11. Simple beam—two unequal concentrated loads unsymmetrically placed

Shear

Moment

M1
M2

V1

V2

R1 R2

P1 P2

a b

x
l

R1 ¼ V1 ¼ P1 l� að Þ þ P2b

l

R2 ¼ V2 ¼ P1aþ P2 l� bð Þ
l

Vx(when a< x< (l� b)) =R1�P1

M1(=MmaxwhenR1<P1) =R1a

M2(=MmaxwhenR2<P2) =R2b

Mx(when x< a) =R1x

Mx(when a< x< (l� b)) =R1x�P1(x� a)

12. Beam fixed at one end, supported at other—uniformly distrubted load

Shear

Moment

V1

V2

x

3
8

4

wl

M1

Mmax

R1

l

l
l

R2

–
–

Total Equiv. UniformLoad =wl

R1 ¼ V1 ¼ 3wl

8

R2 ¼ V2 ¼ Vmax ¼ 5wl

8
Vx=R1�wx

Mmax ¼ wl2

8

M1 atx ¼ 3

8
l

� �
¼ 9

128
wl2

Mx ¼ R1x� wx2

2

Δmax atx ¼ l

16
1þ

ffiffiffiffiffi
33

p� �
¼ 0:422 l

� �
¼ wl4

185El

Δx ¼ wx

48El
l3 � 3lx2 þ 2x3
� �
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(continued)

13. Beam fixed at both ends—uniformly distributed loads

Shear

Moment

V

V

RR

2

0.211l

2

wl

l l

x

M1

Mmax

l

– –

TotalEquiv:UniformLoad ¼ 2wl

3

R ¼ V ¼ wl

2

Vx ¼ w 1
2
� x

� �
Mmax at endsð Þ ¼ wl2

12

M1 at centerð Þ ¼ wl2

24

Mx ¼ w

12
6lx� l2 � 6x2
� �

Δmax atcenterð Þ ¼ wl4

384El

Δx ¼ wx2

24El
l� xð Þ2

14. Beam fixed at both ends—concentrated load at center

Shear

Moment

V

V

RR

P

2 2
l l

x

Mmax

Mmax

l

4
l

– –

–

Total Equiv. UniformLoad =P

R ¼ V ¼ P

2

Mmax at centerandendsð Þ ¼ Pl

8

Mx whenx <
l

2

� �
¼ P

8
4x� 1ð Þ

Δmax atcenterð Þ ¼ Pl3

192El

Δx whenx <
l

2

� �
¼ Px2

48El
3l� 4xð Þ

15. Beam fixed at both ends—concentrated load at any point

l

P
x

a b

R2R1

V2

V1

Ma

M2
M1

Shear

Moment

R1 ¼ V1 ¼ Vmax whena < bð Þ ¼ Pb2

l3
3aþ bð Þ

R2 ¼ V2 ¼ Vmax whena > bð Þ ¼ Pb2

l3
aþ 3bð Þ

M1 ¼ Mmax whena < bð Þ ¼ Pab2

l2

M2 ¼ Mmax whena > bð Þ ¼ Pa2b

l2

Ma atpointof loadð Þ ¼ 2Pa2b2

l3

Mx whenx < að Þ ¼ R1x� Pab2

l2

Δmax whena > batx ¼ 2al

3aþ b

� �
¼ 2Pa3b2

3El 3aþ bð Þ2

Δa atpointof loadð Þ ¼ Pa3b3

3Ell3

Δx whenx < að Þ ¼ Pb2x2

6Ell3
3al� 3ax� bxð Þ
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16. Cantilevered beam—load increasing uniformly to fixed end

Moment

Shear

x

W

R

V

Mmax

l
TotalEquiv:UniformLoad ¼ 8

3
W

R =V=W

Vx ¼ W x2

l2

Mmax at fixedendð Þ ¼ Wl

3

Mx ¼ Wx3

3l2

Δmax at freeendð Þ ¼ Wl3

15El

Δx ¼ W

60Ell2
x5 � 514xþ 4l5
� �

17. Cantilevered beam—uniformly distributed load

Moment

Shear

x

wl

R

V

Mmax

l Total Equiv. UniformLoad = 4wl

R =V=wl

Vx=wx

Mmax at fixedendð Þ ¼ wl2

2

Mx ¼ wx
3
2

2

Δmax at freeendð Þ ¼ wl4

8El

Δx ¼ w

24El
x4 � 4l3xþ 3l4
� �

18. Beam fixed at one end, free to deflect vertically but not rotate at other—uniformly

distributed load

R

l

Moment

Shear

0.423 l

x
wl

V

Mmax

M1

M1

TotalEquiv:UniformLoad ¼ 8

3
wl

R =V=wl

Vx=wx

M1 atdeflectedendð Þ ¼ wl2

6

Mmax at fixedendð Þ ¼ wl2

3

Mx ¼ w

6
l2 � 3x2
� �

Δmax atdeflectedendð Þ ¼ wl4

24El

Δx ¼
w l2 � x2
� �2
24El
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(continued)

19. Cantilevered beam—concentrated load at any point

Moment

Shear

R

P

ba

V

Mmax

l
x TotalEquiv:UniformLoad ¼ 8Pb

L
R =V=P

Mmax(at fixed end) =Pb

Mx(when x> a) =P(x� a)

Δmax at freeendð Þ ¼ Pb2

6El
3l� bð Þ

Δa atpointof loadð Þ ¼ Pb3

3El

Δx whenx < að Þ ¼ Pb2

6El
3l� 3x� bð Þ

Δx whenx > að Þ

¼ P l� xð Þ2
6El

3b� l� xð Þ
20. Cantilevered beam—concentrated load at free end

Moment

Shear

P

R

V

Mmax

l

x

Total Equiv. UniformLoad = 8P

R =V=P

Mmax(at fixed end) =Pl

Mx=Px

Δmax at freeendð Þ ¼ Pl3

3El

Δx ¼ P

6El
2l3 � 3lx2 þ x3
� �

21. Beam fixed at one end, free to deflect vertically but not rotate at other—concentrated load

at deflected end

l

l

P

x R

V

2

M

Mmax

Mmax

Shear

Moment

Total Equiv. UniformLoad = 4P

R =V=P

Mmax atbothendsð Þ ¼ Pl

2

Mx ¼ P
l

2
�x

� �

Δmax atdeflectedendð Þ ¼ Pl3

12El

Δx ¼ P l� xð Þ2
12El

lþ 2xð Þ

Reproduced courtesy of the American Institute of Steel Construction
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Appendix B. Centroids and Properties
of Areas

Table B.1

Figure Area

Location Of

centroid

Moment

of Inertia

Ix

Section modulus
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b

x
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y
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y ¼ h

2
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a

a

x
CG
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2
a4
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6

h

b

x

y2

y1
CG

bh
2 y1 ¼

h

3

y2 ¼
2h

3

bh3

36
s1 ¼ Ix

y1
¼ bh2

12

s2 ¼ Ix
y2

¼ bh2
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Table B.1 (continued)

Figure Area

Location Of

centroid

Moment

of Inertia

Ix

Section modulus

Sx

h

b

x

y2

y1

CG

bh

2

y1 ¼ h
3

y2 ¼ 2h
3

bh3

36
s1 ¼ bh2

12

s2 ¼ bh2

24

d-2rx

y

y
CG

r

πr2 or
πd2

4

y ¼ r or

y ¼ d
2

πr4

4
or

πd4

64

πr3

4
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πd3

32

-r

-r

x

y

y
CG

r

πr2

2
y ¼ r πr4

8
πr3

8

x

r

CG

ry2

y1

πr2

2
y ¼ 0:05756r
y ¼ 0:4244r

0.1098r4 s1¼ 0.1907r3

s2¼ 0.25886r3

x

r

y3

y2

πr3

4
y ¼ 0:05756r
y ¼ 0:4244r

0.0649r4 s1¼ 0.0953r3

s2¼ 0.1293r3
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Table B.2 Approximate values of the modulus of elasticity E of typical structural materials

Material

Modulus of elasticity E

Kips/in.2 kN/cm2

Steel 30,000 20,700

Wrought iron 28,000 19,300

Brass 15,000 10,300

Cast iron 11,000 7,500

Aluminum 10,000 7,000

Concrete (in compression) 3,000–5,000 2,000–3,400

Timber 1,760 1,200

Granite 1,280 880

Limestone 900 600

Brick 400 280

Plexiglass 400 280

Rubber 1.0 0.7

Table B.1 (continued)

Figure Area

Location Of

centroid

Moment

of Inertia

Ix

Section modulus

Sx

X
D

X
CG

d

t

y-D/2

y-D/2

π
4
D2 � d2
� �

y ¼ D
2

πD3t
8

a πD2

4

aThis formula holds for t much smaller than D
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