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1
Introduction: What is a
Self-Organizing Map?

André Skupin1 and Pragya Agarwal2
1 Department of Geography, San Diego State University, San Diego,

CA 92182-4493, USA
2 Department of Geomatic Engineering, University College London,

London WC1E6BT, UK

1.1 INTRODUCTION

In the quest to understand and address important issues of the modern era, from environ-
mental degradation to economic development, enormous amounts of geographic data are
being generated. With the increasing adoption of such technologies as hyper-spectral
remote sensing or wireless sensor networks, the growth rate of data volumes continues to
rise. Granularity of geographic data is increasing both in geometric space (i.e. more
features and finer cell sizes), and in attribute space (i.e. more attributes and finer
measurements of attribute values), leaving us with truly n-dimensional data. We are
thus increasingly faced with a data-rich environment, in which traditional inference
methods are either failing or have become obstacles in the search for geographic struc-
tures, relationships, and meaning. With respect to statistical analysis, some problems of
traditional approaches, especially regarding spatial autocorrelation, are increasingly being
addressed (Fotheringham et al., 2000, 2002; Rogerson, 2001). However, many see the
need for a paradigmatic shift in how geographic data are analysed and this push for a new
direction is gaining strength, as indicated by the emergence of such disciplinary labels
as geocomputation (Fischer and Leung, 2001; Longley, 1998; Openshaw and Abrahart,
2000) or geographic data mining (Miller and Han, 2001).

Self-Organising Maps: Applications in Geographic Information Science Edited by Pragya Agarwal and André Skupin
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2 Self-Organising Maps

It is this direction, characterized by intense computation applied to large data sets,
which is explored in this book. Specifically, it addresses a method known as the Kohonen
map or self-organizing map (SOM). It may appear odd to devote a complete volume to a
single technique. Indeed, most books on GIS are either textbooks giving an introduction
to the overall field or are devoted to a particular application domain, like hydrological
modelling. However, those books that explicitly address geo-computation or geographic
data mining tend to cover a multitude of very heterogeneous methods and are thus not
able to explore each approach in great detail. Very few have limited themselves to a
more narrowly defined group of related techniques (Openshaw and Openshaw, 1997).
Furthermore, the SOM method was not developed by GIScientists and an excellent
monograph already exists that is regularly updated (Kohonen, 2001).

This edited volume aims to demonstrate that there is indeed something special about this
method, something that makes it curiously attractive to diverse and sometimes conflicting
interests and approaches in GIScience. Those interested in clustering and classification
will recognize in it elements of k-means clustering, but with an explicit representation
of topological relationships between clusters. Anyone accustomed to dealing with n-
dimensional data through a transformation and reduction of variables, as in principal
components analysis (PCA) or multidimensional scaling, will tend to interpret the SOM
method in that light. The predominantly two-dimensional form of most SOMs means
that cartographers and others involved in geographic visualization can readily envision
its integration within interactive visualization environments. Those struggling to commu-
nicate the results of complex computational procedures to policy-makers and the broader
public may find SOMs to be uniquely accommodating in many circumstances. This
volume intends to provide a common platform for all those facets of current work in
GIScience that pertain to use of SOMs. This is what we hope will separate this volume
from others that only allow an abbreviated discussion of the SOM method as one example
of artificial neural networks (ANNs) due to broader scope and limited space.

This chapter is aimed at answering basic questions about what a SOM is, how it is
created and used, and how it relates to other techniques that readers may be familiar with.
All this is done primarily through plain language explanation and visual illustration, as
opposed to formulas and the language of mathematics. Kohonen’s monograph cannot be
beat in the latter regard and is highly recommended to anyone wanting to delve deeper
into the inner workings of a SOM (Kohonen, 2001). This chapter also discusses important
questions about the relationship between GIScience and the SOM method and finally
provides an overview of the other chapters in this book.

1.2 RELATED METHODS

The SOM is part of a large group of techniques known as artificial neural networks
(ANNs). These have a reputation for performing surprisingly well, while providing little
explanation for how results are exactly arrived at. In fact, ANNs are often seen as
black-box operations. However, at least in the case of the SOM method, the actual
algorithms can be surprisingly simple and the process of self-organization is not beyond
comprehension. One quickly realizes that, apart from seeing the SOM only in the context
of other ANN methods, depending on its purpose and training parameters one could
also interpret it primarily as a clustering or dimensionality reduction technique. In fact,



Introduction 3

the SOM is an ANN method that always performs both clustering and dimensionality
reduction. The separation invoked in this section is designed to more clearly convey
the position of the SOM method in relation to standard statistical and geocomputational
approaches.

1.2.1 Artificial Neural Networks

First, it is important to note that ANNs, also known as computational neural networks
(CNNs) (Fischer, 2001), are by no means simulations of biological neural networks. At
best, one could say that the original idea behind neural computing drew inspiration from
biological counterparts, and that most actual implementations are far removed from that
inspirational source. What artificial and biological neural networks have in common is
that information is not stored in any single location, but rather in a parallel, distributed
form, and that certain mechanisms exist in which new information can be ‘learned’
through changes that potentially affect large portions of the network (i.e. learning rules).

The general structure of an ANN consists of a set of input nodes and a set of output
nodes. Alternatively, these nodes are also known as neurons, processing elements, or
computational units (Fischer, 2001). Multivariate data presented to input nodes gets
processed such that output nodes are activated according to weights that are associated
with each incoming link. Neural network training is largely concerned with setting these
weights. To do this, many neural networks contain one or more layers of hidden nodes
(Figure 1.1). During training, the weights of incoming connections to these nodes are

Figure 1.1 Supervised, feed-forward, neural network trained with multispectral remote
sensing data and known landuse classes

summed up according to a predefined function. Depending on whether its result satisfies
a certain threshold function, an outgoing connection can then be activated. The number
of hidden layers and type of connections are an important basis for categorizing different
ANN types. In addition to the fixed number of layers and fixed network topology found
in many neural networks, there are also neuro-evolutionary models, which use genetic
algorithms to help shape neural networks during training.

A fundamental distinction can be made between supervised and unsupervised neural
networks. In the supervised case, input data presented to the network during training



4 Self-Organising Maps

consist of multivariate data with known outcomes or classifications, i.e. input–output
pairs. For example, one could train a neural network with land use classes and corre-
sponding multispectral signatures (Figure 1.1). Multispectral data will be presented, in
this case, to the input nodes and a land use class is associated with each output node.
During training, weights of hidden layers are iteratively adjusted to establish a good fit
between multi-spectral values and correct land use classes. After training is complete,
new multi-spectral observations can be presented to the input nodes and land use classes
predicted. Most awareness of the power of neural networks within GIScience stems
from the use of supervised models. When training data are both multivariate and multi-
temporal, one can even predict change patterns (Pijanowski et al., 2002). Supervised
neural networks have also been used for purposes other than classification. For example,
regression models could be constructed, when continuous outputs are available.

In unsupervised learning, the input vectors do not correspond to classes known a priori.
Output nodes compete for the input vectors on the basis of certain similarity functions
and the weights of winning nodes are adjusted according the weights of respective input
nodes. Due to this competitive learning procedure, input nodes that are quite similar
are driving adjustments of similar output nodes. At the same time, dissimilarities in the
input data become accentuated. All this supports unsupervised learning’s primary role of
finding major structures, clusters, and relationships in multivariate data.

In addition to the fundamental distinction discussed above, one can also distinguish
neural networks in terms of whether, during training, adjustments made to neuron weights
are only fed forward to the following layers or are also having an effect on preceding
layers. Accordingly, feed-forward and recurrent networks are distinguished. Finally, an
important concept is that of back propagation (Rumelhart and McClelland, 1986), which
is used in feed-forward networks and refers to how errors (i.e. differences between
known outputs and neural network outputs) are minimized by making adjustments to
neuron weights.

Where does the SOM method fall within the overall system of ANNs? The standard
SOM algorithm – the most widely known form and used in many popular software
packages (e.g. SOM_PAK) – involves an unsupervised neural network with competitive
learning and no hidden layers (Figure 1.2). In that traditional form, SOMs have been
especially popular for purposes of clustering and visualization. However, there are also

Figure 1.2 Small SOM trained with multispectral remote sensing data
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supervised variants useful for classification, including Kohonen’s own learning vector
quantization (LVQ) (Kohonen, 2001). In this chapter, and for most of this edited volume,
the standard SOM algorithm is the focus of discussion. For detailed coverage of other
neural networks readers are encouraged to refer to various surveys of this subject (Gurney,
1997; Hertz et al., 1990) as well the growing number of geographically oriented literature
(Fischer, 2001; Openshaw and Openshaw, 1997).

1.2.2 Clustering Methods

Discussion of the SOM method in the geographic literature tends to focus on its clustering
qualities. The basic idea behind clustering is the attempt to organize objects into groupings
based on certain shared characteristics. In spatial clustering, this is typically done in two-
dimensional space and thus understood in terms of geometric proximity. When applied to
feature attributes, clustering may often involve the same Euclidean distance measure, but
the results are interpreted as [dis]similarity. Clustering involves the search for structures
and grouping, and should not be confused with classification, which sorts unknown items
into previously defined categories. Since clustering is the most frequent interpretation
and implementation of the SOM method, it is useful to compare it to some of the more
popular approaches, including hierarchical and k-means clustering. In this chapter, the
three methods are juxtaposed after being applied to a data set of 32 attributes (mostly
derived from population census data) for 50 US States and the District of Columbia
(Figure 1.3).

(a) Hierarchical (c) SOM(b) k-Means

Figure 1.3 Comparing three different clustering techniques applied to demographic data for
US states

Hierarchical clustering is the most widely known technique. It models distance and
similarity relationships between input objects by turning each into a leaf node within
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a binary tree structure. This tree is formed either by subdividing the full data set into
smaller branch nodes until arriving at individual leaf nodes (divisive clustering) or by
merging leaves into larger branch nodes (agglomerative clustering). The exact shape of
the clustering tree is affected by the distance criterion used to evaluate candidate branch
nodes before each merge (e.g. single-linkage) and by the distance measure used (e.g.
Euclidean). The resulting tree structure can be visualized as a dendrogram, a portion
of which is shown in Figure 1.3(a), where the average-linkage criterion and Euclidean
distance measure are used. It can be seen that the hierarchical clustering tree contains
multiple clustering solutions. To allow comparison with the other two methods, one
solution (with nine clusters) is emphasized by applying a cut through the tree at the
appropriate distance level. Horizontal, dashed lines indicated cluster separations. For
example, California, Texas, and Nevada form one cluster, with Nevada joining the other
two only just before the nine-cluster split and not long before New Mexico and Arizona
are merged at a slightly coarser cluster level.

One downside of hierarchical clustering is that feature space partitions can be far from
optimal, since it attempts to compute all possible granularities at once. Compare this with
k-means clustering, which looks for a partition based on a given number of clusters (k).
As in the hierarchical solution, Utah, Hawaii, and Washington, DC are placed into their
own ‘clusters’, but other states are more evenly distributed across the other six clusters
[Figure 1.3(b)]. Like k-means, the standard SOM algorithm also assumes a fixed number
of units and uses the same objective function as k-means clustering. However, it creates
a topologically ordered partition. For example, the nine-cluster solution derives from a
topologically ordered 3 × 3 grid of neurons [Figure 1.3(c)]. Cluster 1 is an immediate
neighbour of cluster 2, while cluster nine is far away from either. Contrast this with the
k-means solution, in which no indication of relationships between the nine clusters is
given. For in-depth coverage of various clustering techniques, readers are referred to the
numerous dedicated volumes on the subject (e.g. Sneath and Sokal, 1973).

1.2.3 Dimensionality Reduction Methods

Creating a topologically ordered partition of n-dimensional data in a form supportive
of low-dimensional presentation implies that the SOM method performs some type
of dimensionality reduction. This is already apparent in the case of the nine-cluster
solution [Figure 1.3(c)], but becomes even more relevant as we move towards larger
SOMs consisting of hundreds and even thousands of neurons. In such cases, a SOM
will allow mapping out of individual, n-dimensional, data vectors in a low-dimensional
display space. It is thus worthwhile to compare the SOM with other dimensionality
reduction techniques. PCA is the most frequently used of these methods. The first two
principal components often express enough of the multivariate structure of a data set
that simple two-dimensional scatter plots are commonly found, illustrated here for the
same demographic data used earlier [Figure 1.4(a)]. Multidimensional scaling (MDS)
is the technique most appropriately fitting into the dimensionality reduction category,
as it attempts to preserve high-dimensional distance orderings in low-dimensional space
(Kruskal and Wish, 1978). While one can choose the output dimensionality as an input
parameter, the two-dimensional form is by far the most common, since it supports
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Figure 1.4 Comparing three different dimensionality reduction techniques applied to
demographic data for US states

many different visualization forms, from traditional print media to interactive exploration
[Figure 1.4(b)].

PCA and MDS employ an object-based conceptualization where the original input
vectors are interpreted as discrete objects and are the sole basis of computation and visual-
ization, which accordingly almost always consists of labelled point features [Figure 1.4(a)
and (b)]. However, the SOM method conceptualizes input vectors not as discrete objects
but as representative samples from an n-dimensional information continuum (Skupin,
2002b). During SOM training those samples drive a topologically ordered tessellated
representation of that continuum. It is then not surprising that most SOM-based visual-
izations are constructed from a uniform cell structure resembling raster geometry. The
field-like conceptualization implemented in SOM makes it easy to map various other
n-dimensional vectors onto a trained SOM, even, and especially, if they were not part of
the training data set. In order to allow for comparison with the PCA and MDS solutions,
the trained SOM is here applied to the same vectors used during training [Figure 1.4(c)].
Notice especially the differences in the placement of outliers, like Utah or Alaska. The
SOM’s topology-preserving mapping makes more efficient use of the available space, at
the cost of higher distortion of relative feature space distances as compared with PCA
and MDS.

1.3 SOM ALGORITHM

Applications of SOM in geographic information science tend to employ the standard
algorithm first described by Kohonen (1990). Therefore, it makes sense to spend
some time in this chapter on introducing that algorithm. However, there already exist
many good, formal descriptions of the algorithm, most notably in Kohonen’s own
monograph Self-Organizing Maps (Kohonen, 2001), and in various journal and conference
proceedings articles. Readers are well advised to refer to those sources for the mathe-
matical foundation and physiological justification of the algorithm. This introductory
chapter instead presents the SOM method using mostly plain language and graphic
illustrations, from pre-processing of training data to using the finished neural network.
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1.3.1 Source data

The SOM method can be and has been applied to hugely diverse data sets, as will be
evident from the collection of chapters in this book. Broadly speaking, one needs data
containing individual items with n-dimensional, quantitative attributes. Raw source data
will often already exist in that form. Well-structured data produced through a census of
human population or multi-channel remote sensing are prime examples. On the other end
of the spectrum, one can even use unstructured data, once they are suitably transformed.
For example, a corpus of scientific articles can be turned into a SOM input data set
after indexing and construction of a vector space model (Skupin, 2002a). From the
analysis of mutual fund performance to classification of human voices, performing these
transformations correctly is a crucial part of every analytical procedure. However, since
the specific steps are highly dependent on the given subject domain, readers are advised
to refer to domain-specific literature.

Pre-processing of n-dimensional vectors resembles typical procedures for other neural
network methods. Two main concerns are the existence of skewed distributions and the
range of values for each attribute. Neural networks tend to be fairly robust, but being
aware of and, if feasible, counteracting the according effects will help to create a more
useful model. When encountering highly skewed variables, logarithmic transformation
is the first and most obvious choice. It is also a good idea to normalize all values of a
given variable to fit into a predefined range, typically between 0 and 1.

1.3.2 Training the neural network

The SOM performs a ‘non-linear, ordered, smooth, mapping of high-dimensional input
data manifolds onto the elements of a regular, low-dimensional array’ of neurons
(Kohonen, 2001, p. 106). Each neuron has associated with it an n-dimensional vector of
the same dimensionality as the input data. For example, if 32 census attributes for each
of the states of the US are used as input, then a 32-dimensional vector is created for each
neuron.

The first step in the creation of a SOM is to determine its size and topology type. The
SOM’s size k is given as the number of neurons to be used in the x and y direction. Thus, a
size of two neurons in x and three neurons in y would yield six neurons, while a 100×100
neuron SOM would consist of 10 000 neurons. Two topology types are frequently used.
The first is the square topology, where each neuron is connected to four neighbouring
neurons. When used for visualization, a 10 ×10 neuron SOM would thus have a square
shape overall [Figure 1.5(a)]. The second, and more frequently encountered, possibility
is the use of a hexagonal topology, with six neighbours to every neuron. Given an equal
number of neurons in x and y one would observe a rectangular shape, with the longer
side along the x-axis [Figure 1.5(b)].

Before training can begin, n weights for each neuron are initialized. In order to
later observe true self-organization, one could assign random values. Alternatively, it is
possible to help the training algorithm along (and shorten training times) by assigning
weights according to a linear estimate, such as the first two principal components derived
from the training data. In some software solutions, this is one of the built-in options for
SOM initialization (Section 1.4).
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(a) Square Topology (b) Hexagon Topology

Figure 1.5 Network size and topology type of a SOM are chosen before training begins.
Notice overall shape difference for SOMs with identical size, but different topology type

Training consists of an iterative process, during which individual input vectors are
presented to the neuron grid, the best-matching (i.e. most similar) neuron vector is found
and weights of that and other neuron vectors are modified. Understanding the nature
of these modifications goes to the heart of understanding self-organization. Once the
best-matching neuron is found, its n weights are modified towards an even better match
with the input vector. In addition, neighbouring neurons up to a certain distance from the
best-matching unit (BMU) are also modified to better fit that input vector. These focal
modifications are over the course of many iterations causing similar input data to be
associated with closely positioned neurons. In the literature, iterations are alternatively
referred to as training steps, runs or cycles.

It is important to understand, especially in comparison with such methods as MDS,
that relationships among input data are at no time directly assessed. Instead, topology
preservation in a SOM is achieved as a quasi by-product of how weights of neuron
vectors are adjusted during training. That is why self-organization is an appropriate
title. A schematic example should serve to illustrate how this works (Figure 1.6). Let
us assume that we were training a 3 × 3 neuron SOM with only four input vectors
(1, 2, 3, 4). In feature space, these four vectors form two distinct clusters (1 and 4;
2 and 3). Starting with the initialized SOM, the first input vector finds the neuron at
location (x = 1; y = 2) to be its BMU. Accordingly, weights of that node are adjusted
towards the input vector. In addition, neurons within a single-neuron neighbourhood are
slightly adjusted [Figure 1.6(b)]. For the next cycle, the second vector is presented to
the neuron lattice, finds the neuron at (x = 3; y = 3) as its BMU, and adjusts weights
for that neuron and its neighbours [Figure 1.6(c)]. Those adjustments cause the third

Figure 1.6 Process of self-organization during SOM training. A 3×3 neuron SOM is trained
with four observations representing two distinct groups in attribute space (See Colour Plate 1)
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vector to be drawn to the vicinity of the previous vector at (x = 3; y = 2). Weights
of its BMU and neighbouring neurons are modified. However, the single-neuron neigh-
bourhood includes neurons that previously underwent modification on account of the
first and second vector. Those neurons now undergo further modifications. Notice how
the neuron at (x = 2; y = 2) becomes a separator between cluster regions, since members
of the two clusters have attempted to pull it in either direction [Figure 1.6(d)]. Finally,
the fourth vector finds its BMU at (x = 1; y = 1). The ensuing weight adjustments finish
the self-organization of the SOM into two distinct clusters [Figure 1.6(e)]. This whole
process would however be repeated many times over when dealing with real data. As
training progresses, an input vector may then be reused and find a BMU that is different
from the previous cycle it was involved in. For example, the first input vector may now
find the neuron at (x = 1; y = 1) to be a better fit. As a rule though, major global relation-
ships will be established early, followed by a distinction of finer structures late during
training.

To look at the training process more formally, let us consider the input data as
consisting of n-dimensional vectors x:

x = ��1� � � � � �n�T ∈ �n (1.1)

Meanwhile, each of k neurons has an associated reference vector mi:

mi = ��i1� � � � ��in�T ∈ �n (1.2)

During training, one x at a time is compared with all mi to find the reference vector mc
that satisfies a minimum distance or maximum similarity criterion. Though a number of
measures are possible, the Euclidean distance is by far the most common:

�x−mc� = min
i

��x−mc�	 (1.3)

The best-matching unit and neurons within its neighbourhood are then activated and
modified:

mi
t +1� = mi
t�+hci
t��x
t�−mi
t�� (1.4)

One of the main parameters influencing the training process is the neighbourhood
function (hci), which defines a distance-weighted model for adjusting neuron vectors.
Two functions are most popular, the linear and the Gaussian model (shown here):

hci
t� = �
t� · e−d2
ci/2
2

i 
t� (1.5)

One can see that the neighbourhood function is dependent on both the distance between
the BMU and the respective neuron (dci) and on the time step reached in the overall
training process (t). The maximum of dci corresponds to the neighbourhood radius, which
is a training parameter determining the set of reference vectors to be modified around
each BMU at a particular time step [Nc
t�]. In the Gaussian model, that neighbourhood’s
size appears as kernel width (�) and is not a fixed parameter. The neighbourhood
radius is used to set the kernel width with which training will start. One typically starts
with a neighbourhood spanning most of the SOM, in order to achieve a rough global
ordering, but kernel width then decreases during later training cycles. Similarly, the initial
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learning rate (�0) is an input parameter, which is then gradually decreased as t progresses
[�(t)]. SOM training stops when a predetermined number of training cycles (tmax) are
completed.

As self-organization progresses during training and neighbourhood radius and training
rate slowly decrease, the SOM gradually settles into a stable configuration (Figures 1.7
and 1.8). One way of visualizing this is to show the weights of a particular variable for
each neuron and observe changes over multiple training cycles. In Figure 1.7 ‘vacant
housing’ as one of 32 census variables is shown on a 20 × 20 neuron SOM, with
snapshots at four time periods. Training begins with randomized weights. Early cycles
establish major global relationships, visible here as an almost linear relationship between
vacant housing and the x-axis after 40 000 cycles. After 80 000 cycles, more detailed
structure emerges, with low values of vacant housing in the centre-left portion of the
SOM. Finer, local structures emerge during the remaining cycles, with training ending
at 100 000 cycles. Alternatively, the training progress could be visualized by plotting
individual training vectors onto the trained SOM at chosen cycling intervals according
to the location of the best-matching unit. These temporal vertices are then linked to form
trajectories (Figure 1.8). With snapshots taken every 10 000 cycles, one can see how the
SOM settles towards the end of training, as indicated by a lack of major movement after
about 80 000–90 000 cycles.

random initialization 40000 training runs 80000 training runs 100000 training runs

Figure 1.7 Changes to the component plane for the variable ‘vacant housing’ during training
of a SOM with demographic data for US states. Higher values indicated by lighter shading

Most of the parameters mentioned here can be specified before beginning the training
process, including the network size, topology type, distance function, neighbourhood
function, neighbourhood radius, total number of training cycles, and training rate. The
ability of directly influencing these parameters constitutes much of the difference between
the various SOM implementations, including those found in commercially available
software.

1.3.3 Using the trained neural network

Once training is finished, the neural network is ready for use. First, it is advisable to
visualize the SOM itself, and sometimes this alone already justifies use of the SOM
method. Another main mode of using a trained SOM is to map individual n-dimensional
features into low-dimensional space by finding the best-matching neuron. For the purpose
of interactive, exploratory analysis, SOM can also be linked to other visualizations,
including geographic maps.
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Figure 1.8 Position changes of three states while training a SOM for a total of 100 000 runs.
Starting with a randomly initialized SOM, each state is recorded once every 10 000 runs

1.3.3.1 Visualizing the SOM

The main methods for visualizing a SOM involve component planes, distortion patterns,
and clustering. Component plane visualization symbolizes neuron weights for individual
variables. For example, with census data one could create separate visualizations for each
input variable, such as population density, percentage of Hispanic population, and so forth.
One of the possible applications is to look for relationships between variables, based
on visual similarity of component planes. The most common approach to component
plane visualization is to apply colour or grey shading, as seen in the visualization of
vacant housing (Figure 1.7). Other possibilities include the use of graduated symbols
for individual variables or the placement of bar charts to show the weights for multiple
variables at each neuron.

While SOM training has the effect of preserving major topological relationships,
geometric proximities can be drastically distorted. This refers particularly to contraction
effects observed for sparsely occupied or empty feature space regions and expanded
representation of high-density regions (Lin et al., 2000). In more general terms, one
can state that low-density and high-density regions in feature space are associated with
marked distortion when they are modelled in the low-dimensional space of topologi-
cally ordered neurons. One common approach is to visualize the degree of distortion,
i.e. the change in relative distance between n-dimensional locations and their low-
dimensional representation, and treat zones of high contraction as a type of cluster
boundary. Identifying these ‘clusters’ can be rather subjective though, especially when
different magnitudes of distortion are encountered in different regions of a SOM, since it
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is up to the human observer to decide when visual structure constitutes a cluster boundary.
The most frequently used method to visualize distortion patterns is the U-matrix method
(Ultsch, 1993), which explicitly symbolizes the n-dimensional distance of neighbouring
neurons.

A third approach to visualizing the SOM itself is to treat each neuron as a distinct
feature possessing an n-dimensional vector, to which traditional cluster techniques, like
hierarchical or k-means, can be applied. Since the neurons are already topologically
ordered, one will find that such n-dimensional clusters tend to form regions in two-
dimensional SOM space. This can be especially useful with high-resolution SOMs, for
example to enable multi-scale, interactive exploration (Skupin, 2002a).

1.3.3.2 Mapping data onto the SOM

Visualizing a SOM means exploring the model itself that one has created through neural
network training. However, applying the model will often involve the mapping of n-
dimensional vectors onto the trained SOM. The bulk of SOM applications are focused
on this aspect of Kohonen’s method. For example, in industrial applications, one could
track a machine part based on various measurable attributes. In an analysis of voting
behaviour of different politicians, one could map individual persons in two dimensions,
as an alternative to MDS, which has traditionally been used for this purpose. Geographic
objects can also be mapped onto a SOM, as shown in Figures 1.3(c) and 1.4(c). Those
figures also illustrate the difference between using a SOM for classification into a
limited number of classes [Figure 1.3(c)] and spatial layout with differentiated locations
for many features [Figure 1.4(c)]. Speaking of clustering, please note that for supervised
classification one should not use the SOM method itself but a related method called
learning vector quantization (Kohonen, 2001).

When input features can be arranged into meaningful sequences, output locations
derived from the locations of best-matching units can be strung together to form trajec-
tories. This has been demonstrated for multi-temporal data, where the same features and
attributes are observed for multiple time periods (Deboeck and Kohonen, 1998; Skupin
and Hagelman, 2005). Other possibilities include the mapping of space–time paths onto a
SOM trained with the attributes of geographic features (see Chapter 6). Even the training
process itself can be visualized via trajectories (Figure 1.8).

1.3.3.3 Linking SOM to other visualizations

In most circumstances, SOMs will not become the sole analytical tool for investigating
an n-dimensional data set. Instead, it constitutes an additional method that will be used in
conjunction with other computational and visual tools. Integration of a SOM with other
forms of representation is becoming increasingly important, especially when dealing
with geographic data, for which a dominant visual form already exists in the form of
geographic maps. Integration of most SOMs with more traditional geographic visualiza-
tions is straightforward since a two-dimensional SOM can be readily represented using
standard GIS data structures. There are obvious advantages to doing this in an interactive
setting, but it can even be useful for static cartographic output (Figure 1.9). Notice how
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Figure 1.9 SOM-based clustering of census data combined with colour design informed
by network topology. Relationships among clusters are indicated by displaying legend
constructed from two-dimensioned SOM geometry (See Colour Plate 2)

the low-dimensional, topologically ordered set of neurons helps with the design and
presentation of a colour legend, in addition to its clustering function.

Side-by-side display of SOM and geographic map in a commercial off-the-shelf GIS
was demonstrated as early as 1998 (Li, 1998), but little progress has been made since. In
fact, most geographic SOM applications still suffer from a lack of imagination regarding
integration, as indicated by the preponderance of run-off-the-mill graphic output from
dedicated SOM software (especially the SOM Toolbox for Matlab) in the GIScience
literature. One example for a different direction is the integration of SOM training and
visualization in the GeoVISTA Studio system (Gahegan et al., 2002). An interactive
approach mostly unexplored is the linking of different SOM solutions, for example
linking a high-resolution SOM to one consisting of a small number of neurons.

1.3.4 Extensions of the SOM method

Beyond the widely used approach presented in the previous sections, numerous extensions
and modifications of the SOM method have been proposed. Most of these have not yet
found their way into end-user SOM implementations, including those described in this
book. Nonetheless, many of these modifications do indeed improve upon Kohonen’s
original method in a number of ways.

One example is the notion of a growing SOM described by Fritzke (1999). Instead
of a fixed network size, this approach provides for the insertion of new nodes into the
neural network in response to specific nodes not satisfying a certain objective function.
For example, one could use the quantization error as such an objective function, i.e.
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how well a given node actually fits those data items for which it has become the best-
matching unit. New nodes would be inserted into the neighbourhood of existing nodes that
have high quantization errors. One could envisage numerous variants of this approach,
for example using an entropy maximization goal instead of the error minimization
described above (Fritzke, 1999). Conversely to the adding of nodes, growing SOMs
may also involve the removal of individual nodes, if some objective criterion is thereby
improved.

A frequently encountered issue with the traditional SOM algorithm is the appearance
of border or edge effects. The most obvious of these is that neurons near the edge
of the SOM come to represent larger portions of the n-dimensional input space. In
other words, there is a large degree of compression or contraction at the edge as
compared with inner neurons. This becomes most obvious during the mapping of
large numbers of vectors onto the SOM, where one frequently observes pronounced
clustering along the edges. Efforts to address this issue include the growing SOM
discussed above and arranging neurons into lattices that are not flat, but curved such
that edges are reduced (e.g. forming a cylinder). Arrangement of neurons on a sphere
would completely eliminate edges, which is why a number of proposals concerning
spherical SOMs have been put forward (Ritter, 1999; Sangole and Knopf, 2002; Wu and
Takatsuka, 2005).

Other proposals have dealt with how the neighbourhood around the best-matching
unit is defined during training. Teuvo Kohonen himself introduced a number of
modifications and new methods building on the original SOM approach, many of
which are documented in his monograph (Kohonen, 2001). For example, learning
vector quantization (LVQ) adapts many of the same principles to provide super-
vised classification. Adaptive subspace SOM (ASSOM) and hierarchically structured
SOMs are other proposals that have received attention in recent years. Bação et al.
(see Chapter 2) discuss a number of SOM variants that are of particular interest to
GIScience.

1.4 SOFTWARE TOOLS FOR SOMs

There are a number of software tools available for SOMs, in the commercial as well as the
public domain. This section will specifically discuss the ones that are commonly employed
in geographical analysis, including by the authors in this volume. This is intended as
a pointer to the various software options available as a resource for GIScientists and
is not meant as a comprehensive, self-help guide to these tools. For this, the reader is
advised to refer to documentation and help files, which tend to be freely downloadable for
public domain software or are included in the licensed versions of commercial software.
Additionally, readers can refer to other volumes, such as Kohonen (2001) and Deboeck
and Kohonen (1998), that include overviews of SOM software. This section also intends
to provide an updated review of some of the software that was included in these previous
volumes, such as SOM_PAK. Most applications described in this book are based on using
public domain software, although a few, such as Bação et al. (Chapter 2), use self-coded
variants of SOM that extend on its basic functionality in order to accommodate the specific
nature of geographic data. In some cases, stand-alone software such as SOM_PAK is
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used in combination with GIS software for data analysis as well as visualization of SOM
output.

1.4.1 Stand-alone Software

One of the most widely used implementations of the basic SOM algorithm is found
in the SOM_PAK program (Kohonen et al., 1996), which is freely available from
the Neural Networks Research Centre of the Helsinki University of Technology
(http://www.cis.hut.fi/research/som_pak/). First made public about 10 years ago, many
researchers had their first practical experience with SOM using this software. While its
command-line interface can at first seem daunting, the involved commands and underlying
methods are actually well explained in the accompanying documentation. The simple user
interface makes it easy to port the software to various hardware platforms. The complete
source code, written in C, is accessible to programmers for noncommercial uses. For
example, one could implement alternative similarity coefficients, since only Euclidean
distance is built in (Skupin, 2003). Novice, nonprogrammer users will be thankful that
executable files for Windows are available for download, because compilation of the
source code can be tricky.

Use of SOM_PAK involves four main steps: map initialization, map training (in
multiple stages if desired), evaluation of quantization error, and visualization. A major
downside to using SOM_PAK is the lack of convenient visualization capabilities beyond
the creation of static output in PostScript format. However, the trained SOMs are stored
in straightforward text files, known as codebook files (.cod), which can easily be read
by other packages. In fact, the codebook format has become a de facto standard for
the distribution of SOMs. Many of the software packages listed below offer respective
import options (e.g. SOMine, Nenet, SOM ToolBox). It also does not take particularly
advanced programming skills to turn the codebook files into something usable within
GIS. For example, many of the figures in this chapter were created by transforming the
content of SOM_PAK’s codebook files into ArcInfo Generate files, before performing
all further transformations inside of ArcGIS.

Viscovery SOMine is a commercial product of Eudaptics Inc. (http://www.eudaptics.de)
that is distributed as a Windows application in several versions, with different
capabilities depending on price. Built around a custom version of the SOM training
algorithm it provides for the training and use of SOMs, including clustering, prediction,
and exploratory visualization, all in a highly interactive environment. Another inter-
esting SOM tool is Nenet (Neural Network Tool), which first became available in
1998, and which provides a full graphical user interface for training and visual-
ization. A limited functionality version remains freely available (http://koti.mbnet.fi/
∼phodju/nenet/Nenet/General.html), but the current status of the full software is
unknown.

1.4.2 Add-In Software and Software Components

When faced with complex exploratory visualization tasks, SOMs are best used in
conjunction with other visualization and analysis tools. As an alternative to stand-alone
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SOM software, one will often find that the addition of SOM capability to existing
analytical tools and integration into existing software development architectures is more
useful.

The SOM Toolbox for Matlab was developed by researchers at the Helsinki University
of Technology in recognition of the large numbers of users performing numerical
modelling and analysis in Matlab. While the latter is a commercial product, the SOM
Toolbox is public-domain software consisting of a large number of Matlab routines
(.m files). Download (http://www.cis.hut.fi/projects/somtoolbox) and installation of the
toolbox is straightforward. Some of the most common training and visualization options
are accessible through a limited graphical user interface, but full functionality and control
over training and visualization require use of Matlab’s command-line interface. The
sequence of training steps is similar to SOM_PAK, though a number of further options
are available. When it comes to visualization, the SOM Toolbox offers an attractive
variety of methods and plenty of opportunity for customization. Low cost, ease of SOM
training and visualization, and a large Matlab user base have made the SOM Toolbox
one of the most popular SOM solutions.

The full potential of the SOM method for interactive, exploratory visualization is
most easily tapped when SOM functionality can be integrated into larger visualization
software architectures. However, SOM component solutions, for example based on
ActiveX or JavaBeans, are still hard to find. One exception is the set of SOM beans
included with GeoVISTA Studio (http://www.geovistastudio.psu.edu), an open-source
visualization software environment developed at Pennsylvania State University (Gahegan
et al., 2002). GeoVISTA Studio comes with a large number of beans, including for data
input, preprocessing, numerical analysis, and visualization. More importantly, it provides
a code-free programming environment, where the flow of data is directed through visual
manipulation of links between different beans. While this process does not involve writing
code directly, previous knowledge of Java and JavaBeans greatly helps and novices need
significant practice to make meaningful use of GeoVISTA Studio. One notable advantage
of the system is that the interactive visualizations constructed through inclusion and
wiring of beans can immediately be tested, even before being deployed as applets or
applications. GeoVISTA Studio’s SOM beans provide training and various visualization
methods, including two- and three-dimensional U-matrix visualizations. Integration with
other methods, such as geographic maps, scatter plot matrices, or parallel coordinate
plots, does not only allow linked selection, but also linked symbolization, where colour
choices are shared among multiple methods.

1.5 GISCIENCE AND SOMS

As a method developed outside of GIScience, it is natural to see the relationship between
the SOM and GIScience primarily as the latter adopting the former to serve specific
analytical purposes. Clustering, visualization, and the range of applications laid out in
the various chapters of this book is indeed impressive. However, this does not have to
be a one-way relationship. GIScientists may offer a unique perspective and contribute
to the further development of this popular neural computing approach. This begins with
the storage and manipulation of trained SOMs leveraging the ability of GIS to handle
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complex geometric and attribute structures. There has so far been little reflection on how
such geographic notions as scale become relevant when dealing with nongeographic data
or how geographic conceptualizations of fields versus discrete objects are manifested in
different spatializations (Skupin, 2002b). The design of SOM-based visualization stands
to gain from traditional cartographic design considerations, for example regarding visual
hierarchies and semiotic variables. Meaningful interaction with large SOMs will benefit
more from semantically driven notions of scale dependence used in cartography than
from the performance-oriented level-of-detail (LOD) approaches common in computer
graphics. The notion of GIScience itself was conceived in recognition of the growing
need to pursue interdisciplinary strategies, and our community is now actively engaging
the SOM method accordingly. This book presents the current state of this endeavour.

1.6 ORGANIZATION OF THE BOOK

The primary aim of this book is to act as a showcase for the valuable role that SOM can
play in geographic analysis. This book is about solving academic, theoretical, and applied
problems and converting interesting computational methods into useful operational tools.
It is also about finding new uses and about providing novel solutions to established
problems. The sequence of chapters reflects this view of SOM as a method of many
colourful facets.

The current chapter provides an introductory overview of principles, algorithms, and
tools associated with the SOM. The method is explored further in Chapter 2 by Bação
et al., who demonstrate multiple SOM variants designed to address the specific nature of
geographic data and problems. In Chapter 3, Koua and Kraak demonstrate the use of SOM
to reveal hidden patterns within an integrated, exploratory visualization environment. In
Chapter 4, Thill et al. describe work with a linguistic database where the SOM method
is used to mine and visualize latent organization rules within the data. That chapter
also demonstrates the development of an integrated environment for exploration of SOM
output within a standard Windows-based GIS platform. Yan and Thill, in Chapter 5, use
SOM as an exploratory data mining tool for spatial interaction data to visualize flows and
movements in space within an interactive environment. An extension to the traditional
notion of space–time paths is presented by Skupin in Chapter 6, where movement across
geographic space is linked to simultaneous movement in n-dimensional attribute space
and visualized as a SOM trajectory. Sester, in Chapter 7, is concerned with issues
of typification in cartographic generalization, where the density-preserving tendencies
of SOM training can be exploited for multi-scale mapping. Hewitson, in chapter 8,
demonstrates the diversity of applications supported by the use of the SOM method
for climate analysis. Kropp and Schellnhuber, in Chapter 9, then introduce an approach
designed to derive global biogeographical prototypes that could be used in climate impact
studies. Doucette et al., in Chapter 10, report on experiments aimed at extracting road
features from high-resolution, multi-spectral imagery. Finally, an epilogue by Goodchild
(Chapter 11) weaves together the diverse strands of SOM applications described in this
book, drawing connections to developments in such areas as exploratory spatial data
analysis (ESDA) and commenting on how the SOM method relates to the state and
future of GIScience.
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2.1 INTRODUCTION

The availability of methods able to perform intelligent data reduction is a central issue in
science generically and GIScience is no exception. The need to transform into knowledge
the massive digital geo-referenced databases has stimulated work in a number of research
areas. It has also led GIScientists to search for new tools, which are able to make sense
of such complexity. The field of knowledge discovery in databases (KDD) has proposed
a number of tools that may help deal with this problem. However, adapting those tools to
the specific context of GIScience remains a research challenge (Openshaw and Openshaw,
1997; Openshaw 1999).

Self-organizing maps (SOMs) have been proposed as a step forward in the improvement
of data reduction tasks (Openshaw and Wymer, 1995) and have been used, with good
results, to address different GIScience problems as we shall see later in this chapter.
In general, these applications are based on the original SOM algorithm, but another
important research problem is to seek ways to adapt the algorithm to the specific needs
and paradigms of GIScience. In fact, the possibilities of altering the original SOM
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algorithm are numerous, and this flexibility can be used to take into account the particular
perspective of GIScience and the special features of geoinformation.

The main objective of this chapter is to present a structured view of the possible
modifications of the original SOM algorithm in order to develop SOM variants which
are relevant to GIScience.

We shall start by reviewing some important parameterizations of the SOM algorithm,
and then proceed to discuss how the different steps of the algorithm may be changed. We
will then review some of the most relevant possible variants. Finally, we will explain in
detail the Geo-SOM variant, together with an example of its application to an artificial
data set and to a geo-referenced data set.

2.2 SOME IMPORTANT PARAMETRIZATIONS OF THE ORIGINAL
SOM ALGORITHM

Although they do not constitute true variants of the original algorithm, some parameter-
ization choices can radically change the way the SOM may be used. We will discuss
three of them, namely: (1) size of the map; (2) output space dimension; and (3) training
schedule.

2.2.1 Size of the Map

There are three major options in terms of the size of the SOM. The first one is to build
very large SOMs in which the number of neurons is greater than the number of input
patterns (Ultsch and Siemon, 1990; Ultsch and Li, 1993). The second and by far the
most common option is to build a medium sized map, smaller than the number of input
patterns, but still large enough to have a few units representing each cluster existing in
the data (Kohonen, 2001). Finally, there is also the possibility of building small maps
where the number of units is drastically smaller than the number of input vectors, usually
with only one unit for each expected cluster (Bação et al., 2004a). The relevance of the
choice of the size of the SOM is such that it can be argued that SOMs of significantly
different sizes constitute different tools, which may be used to perform different tasks.

When opting for a larger map the underlying assumption is that we wish to explore in
detail the underlying distribution of the data. By using more units than input patterns it is
possible to obtain very large U-matrices (Ultsch and Siemon, 1990) on which distances
between input patterns can easily be identified. This can be seen as a strictly exploratory
exercise. The data reduction, in this case, is solely based in projecting the n-dimensional
space onto a one-, two- or three-dimensional (1-, 2- or 3-D) space.

The decision to build a medium sized map can be seen as a compromise, in the sense
that although reducing the number of dimensions and creating clusters, it still enables
the user to understand the basic (or broad) distribution of the data, eventually leading to
further and more severe reductions.

Finally, small maps are used when the user is interested in clustering data without
concerns about the detailed analysis of its distribution. In this case the primary objective
is to form clusters of input patterns which are as similar as possible, aiming at a one step
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substantial data reduction. In this context the U-matrix is of little value, and component
planes (Kohonen, 2001) become more relevant as they allow a simple description of the
resulting clusters.

2.2.2 Output Space Dimension

The output space can have as many, or even more dimensions than the input space.
Nevertheless, the output space seldom has more than two dimensions, because it is
difficult to visualize high dimensional data. Theoretically, the appropriate dimension
of the map should be defined by the intrinsic dimension of the data (Camastra, 2001;
Fukunaga and Olsen, 1971). The intrinsic dimension of an n-dimensional data set is m
(m < n) if it is possible to represent all the data with only m independent variables, i.e.
if the data lie on an m-dimensional surface. Thus, by using only the intrinsic dimension of
the data we remove redundancy in the number of independent variables used. Estimating
the intrinsic dimension is still a largely unresolved problem in most practical cases. Since
it is difficult to confirm the true dimensionality of the data, and since the possibility of
visualizing the results is very useful, 1-D or 2-D maps are usually preferred.

When the objective is to cluster data based on very small SOMs, the best approach is
to use a 1-D SOM. This is due to the fact that the plasticity (Carpenter and Grossberg
1988) of the 1-D map is much greater than a 2-D SOM (Bação et al., 2004a). This fact
is apparent in the application to the traveling salesman problem (Maenou et al., 1997)
where 1-D SOMs are preferred to 2-D SOMs. The need to closely represent a number of
points that can form complex geometric shapes render inefficient the use of 2-D SOMs.
However, if the objective is to obtain a comprehensive visualization of the input space,
then a 2-D SOM is to be preferred. The rationale is that a higher level of connectivity
will yield a better coverage of the input space.

Finally, it is important to note that any SOM will produce a bias in the representation
of the input space. In fact, the distribution of the classification resources (units) will be
more than proportional in lower density areas. This effect is usually referred to as the
‘magnification effect’ (Claussen, 2003; Cottrell et al., 1998). The quantification of this
effect has proven to be elusive and is still an unresolved issue.

2.2.3 Training Schedule

The first step in building a SOM involves giving initial values to the units. This may be
done using completely random values (which usually leads to slow convergence towards
the general area of the data), or using values obtained from randomly selected input
patterns. This type of initialization will usually produce maps which take a long time to
unfold, or may not unfold at all (Kohonen, 2001). Better maps are usually obtained if
the units are laid out on a 2-D plane and centred near the mean of the input patterns. The
plane may be defined, for example, by the two first eigenvectors of the input patterns.

The counting of training iterations may also vary from one implementation to another.
While in the case of SOM_PAK (Kohonen et al., 1995) each presentation of an input
pattern is counted as an iteration, and the learning parameters are adjusted after each
iteration, most implementations count ‘epochs’ (instead of iterations) presenting the whole
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training data set before adjusting the training parameters. In the latter case, the units may
be updated after each input pattern is presented. This is termed ‘on-line’ or ‘sequential
mode’. Alternatively, changes may be stored and applied only after the whole training
set is presented. This is termed ‘batch mode’.

The way the learning rate and neighborhood radius varies during training can also be
done in different ways. For the SOM to converge to a stable configuration it is necessary
to decrease the learning rate to 0. Although this may be done in many ways, we do not
know of any conclusive analysis of its impact. Some authors have proposed dynamically
changing learning rules that compensate the magnification effect of the standard SOM
(Cottrell et al., 1998). In some applications, particularly in on-line system monitoring,
it is desirable to maintain some plasticity when using the SOM, and so the learning
rate does not converge to 0. The final value of the neighborhood radius can also have
a dramatic effect on the final map. If this radius is allowed to decrease to 0, the final
stages of training will be equivalent to a k-means algorithm, and thus locally optimal. If
instead the radius decreases to 1, then the units will always be pulled away from the local
minima, and on the borders of the map they will be pulled towards the center because
there are no units pulling them outside the map. Both approaches make sense in different
contexts, so care must be taken when choosing these values.

2.3 WAYS TO CHANGE THE ORIGINAL SOM ALGORITHM

Several reviews of the different variants to the standard SOM algorithm (Kangas et al.,
1990; Vesanto, 1999, 2000) have been published. We have identified three main areas
where changes to the basic SOM algorithm can be made:

1. topology and connections between units;
2. matching and voting mechanism (calculation and voting phases);
3. learning rule (update phase).

We shall now proceed to discuss each of these areas individually. However, it is possible
that any single implementation of a SOM will include a combination of changes in these
different areas.

2.3.1 Topology and Connections between Units

In the standard SOM the units form some type of regular grid. Neighboring units in this
grid are influenced by each other, and thus it can be considered that there is a connection
between them. Some variants of SOM alter these connections between neighboring units
or eliminate them altogether.

In the Neural Gas Architecture (NGA) (Martinetz et al., 1993) each unit is completely
independent of the others. Therefore, the units in NGA do not form a distinct output space.
Since there is no output space, this variant cannot be used for mapping or projection
purposes, but it can be used for sampling or clustering. The lack of output space forces
neighborhoods to be calculated in the input space. This means that during the update
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phase of the training algorithm the units are ordered by their distance (in the original
input space) to the winning neuron, and updated accordingly.

Another approach is to maintain connections between units, but relax the constraint
that they form a regular grid, as happens with the Growing Cell networks (Fritzke, 1991).
In this type of neural network units are inserted, one at a time, during the training phase,
according to some established criteria. The resulting network can be quite irregular, and
since the number of connections in each unit depends on how many units were inserted
next to it, no simple output space will be formed. This network gave rise to a family of
related architectures, namely the Growing Neural Gas (Fritzke, 1994) and the Growing
Grid (Fritzke, 1995) that allow connections between units to be established or broken
during training.

Even when the units do form a regular grid, some SOM variants allow growth in the
number of units (Almeida and Rodrigues, 1991) or in the number of dimensions (Bauer
and Villmann, 1997).

Another form of interaction between units, even stronger than that imposed by the
neighborhood effect, is to allow units to receive as inputs the outputs of other units.
This happens in SOMs with feedback used in temporal data analysis (Guimarães et al.,
2002), where units receive as inputs the delayed outputs. This also happens in hierarchical
SOMs, which we will discuss later in this chapter.

2.3.2 Matching and Voting Mechanism (Calculation and Voting Phases)

A large number of variants of the basic SOM relate to the way the matching between
input patterns and units is made, and how the best matching unit (BMU) is selected. A
trivial way to change the matching mechanism is to use metrics other than the standard
Euclidean distance, and many such metrics have been used (Kohonen, 2001). More
interesting variants of the basic SOM can be obtained if the units are allowed to have an
internal structure that is different from the input patterns. In this case, the units cease to
be points in the input space. One such variant is the Adaptive Subspace SOM (ASSOM)
(Kohonen, 2001), where the units, instead of being points in the input space, are whole
subspaces, i.e. subsets (of lower dimensionality) of the original input space. In this case the
matching is done by calculating the distance from the input pattern to the nearest point in
that subspace. In temporal SOMs it is relatively common to find delay elements associated
with the map units, and matching is done using those delays or past activations of the units
(Guimarães et al., 2002). The matching may also be done by finding the fitness of the input
pattern to some given criteria that may be stored in the map units.

In some approaches, only a sub-set of units are searched to find the BMU. This
happens when spatial or temporal restrictions are imposed (Chandrasekaran and Liu,
1998; George, 2000; Kangas, 1990, 1992), when tree structures are used to accelerate
the search, or when certain supervised versions of SOM are used (Buessler et al., 2002;
Ritter et al., 1992).

2.3.3 Learning Rule (Update Phase)

In the basic SOM, each unit is updated according to its distance (in the output space) to the
BMU, and according to its distance in the input space to the input pattern. The distances
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in the input space of units that are neighbors in the output space may vary widely. In
particular, if there are large differences in the density of input patterns throughout the
input space, there will be regions where neighboring units are close to each other, and
others where they are far away. While this is a desirable feature when trying to obtain
good U-matrices (Ultsch et al., 1993), it will make the SOM concentrate the units in areas
with greater density, leaving very few units to map areas of low data density. This will not
be a desirable feature if we want to avoid overspecialization and wish to keep some units
available to detect new features or outliers. This line of thought led to the Visualization
Induced SOM (ViSom) (Yin, 2001), where a repulsion force is introduced between units,
forcing a certain minimum distance between them. It is argued that this approach will
provide a ‘broader view’ of the input space. Clusters will still be detectable in a ViSom
by analyzing variations in the number of patters that are mapped to different units.

The direction in which each of the units is updated is usually that of the input pattern.
One alternative is to move the unit in the direction of the nearest unit, as was proposed
by Lee et al. (2001). This resembles the way nodes are pulled in a fisherman’s net,
and thus this update rule was dubbed ‘fisherman’s rule’. It has been shown (Lee et al.,
2001) that this will improve the convergence speed in the first iterations of the learning
phase. The main reason for this is that, at each learning step, the different units will not
be attracted in exactly the same direction (the direction of the input pattern), but will
instead be pulled in a direction that depends on their immediate neighbors. It is suggested
(Lee et al., 2001) that the fisherman’s rule be used in the first iterations of the training
algorithm, being replaced by the standard rule in the last iterations.

Although the standard SOM is an unsupervised learning algorithm, a number of
supervised variants exist. It can be argued that the calibration mechanism (Kohonen,
2001) is in fact a form of supervised learning, but this does not change the way the
SOM is trained. The most common way of introducing supervised learning in the SOM
training is to change the way units are updated according to the known class of the
input pattern. The well known LVQ algorithm (Kohonen, 2001) is one such case,
where units are attracted to the input pattern if they have the same class, or repelled
if it is different. Other supervised versions of SOM have also been proposed (Buessler
et al., 2002).

Finally, the update rule may also be changed because of the particularities of the input
space or the metric used. Such is the case when binary features are used (Gioiello et al.,
1992; Lobo, 2002; Tanomaru, 1995). In this case, since the only acceptable values for
each attribute are 0 and 1, the smooth adaptation required by the standard rule is not
possible. In Lobo, (2002) two update rules are proposed that require ‘correcting’ a number
of bits proportional to the desired learning rate. A similar adaptation of the learning rate
is required whenever categorical data is used, as shown in Lourenço et al. (2004).

2.4 GEO-VARIANTS – INCLUDING GEOGRAPHIC REASONING IN
THE SOM

In this section we overview some of the applications of SOM variants to GIScience
problems, and will then proceed to cover a selected number of SOM variants which
allow for the inclusion of geography within the workings of the SOM.



Applications of SOM Variants to GIScience 27

In Villmann and Merényi (2001) and Villmann et al. (2003) SOM variants are used to
analyze satellite images. Two different variants are used: the ‘GrowingSOM’ (Bauer and
Villmann, 1997), where the SOM is allowed to grow into an n-dimensional hypercube
topology so as to accurately match the intrinsic dimensionality of the data; and the SOM
with magnification control (Bauer et al., 1996), which tries to distribute the input patterns
evenly amongst the map units. An interesting feature of these papers is their use of color
coding to extract information from 3-D SOMs. Most other utilizations of SOMs in GISience
have used the standard SOM algorithm. These have already been reviewed in Chapter 1.

Next, we discuss variants, which, although in some cases developed for other types of
problems, allow for the possibility to explicitly incorporate geo-references and take into
account the special features of spatial information into the SOM algorithm. One of the
fundamental ideas consists of embedding the first law of geography (Tobler, 1970) into
the SOM. This can be achieved through the classification of geographical neighbors in
similar areas of the output space. A balance between geographical proximity and attribute
proximity should be achieved. Although location can be viewed as just another attribute
of a given entity, we make a clear distinction between location and other attributes due
to the special role that location has in GIScience. In most scientific fields, classification
is solely based on the notion of similarity of attributes, as the idea is to group similar
entities. In GIScience, classification can be seen as a compromise between similarity in
‘attribute space’ and similarity (proximity) in geographic space. We are interested not
only in the characteristics of the entities but also on how they interact in geographic
space. Generally, it is of little interest to group entities that are far apart even if they
have similar attributes. It can be much more informative to evaluate ‘local’ variation, in
other words, assess the degree of similarity of neighboring entities. There are different
ways to accomplish this objective, as we will show.

2.4.1 Hierarchical SOMs

Hierarchical SOMs change the normal interconnections between units. They are used in
applications fields where a structured decomposition into smaller and layered problems
is convenient. One or more than one SOMs are located at each layer, usually operating
on different thematic variables (Figure 2.1).

Hierarchical SOMs (Ichiki et al., 1991; Luttrell, 1989) were extensively used in
speech recognition, where each layer deals with higher units of speech, such as
phonemes, syllables, and word parts (Behme et al., 1993; Jiang et al., 1994; Kempke and
Wichert, 1993).

Hierarchical SOMs can have several lower level partial maps that cluster the data
according to different characteristics and then pass the results to an upper level SOM,
or they may have a lower level global SOM, that acts as a gating mechanism to activate
one of several higher level SOMs that specialize in a certain area of the input space.

In terms of GIScience one can envision the usefulness of hierarchical SOM in applica-
tions like geodemographics. Hierarchical SOMs allow the creation of purpose-specific or
thematic classifications at lower layers which are then composed into a single one. This
can constitute a major advantage as it has been noted that the purpose-specific geodemo-
graphic classifications constitute more powerful tools than general purpose classifications
(Openshaw and Wymer, 1995). For instance, one can envision the creation of different
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Figure 2.1 Structure of a hierarchical SOM

thematic classifications, based on census data, such as ‘age distribution’, ‘employment
characteristics’, ‘housing conditions’ and ‘education levels’. A higher level SOM will take
inputs from each of these thematic SOMs and produce a single classification, for example
grouping entities that are similar both in ‘age distribution’ and ‘education levels’, even
though they might be somewhat different in housing conditions. This higher level SOM
may take a number of different types of input information, from the lower level SOMs.
This information may be, for example, the coordinates of the BMU or the activation
functions of all the units. The exploration of different lower level SOMs can be valuable,
especially if done in a computational environment where dynamic linking between SOMs
can be set up. This way the interactive exploration of the different classifications can
provide insights into the distribution of different geographic features in different thematic
classifications. The higher level SOM allows for a general overview of the classification,
acting as a summary of the lower-level classifications.

2.4.2 Geo-enforced SOM

One simple way of producing quasi-variants and testing spatial effects is through pre-
processing. Instead of altering the basic SOM algorithm the idea is to include spatially
relevant variables which are computed as any other socio-economic variable (Lobo et al.,
2004). This way there are two major operational decisions to be made. The first has to do
with the choice of the spatial variables to use, which depends on the objectives pursued.
The second has to do with the weighting that should be attributed to the geographic
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variables. Once all the variables are normalized the user has the possibility of deciding
how much weight each of the variables will have in the calculations, thus giving more
or less importance to the geographic information.

One example would be to include in the data set the geographic coordinates of the
centroids of the geographic features along with other attributes (Lobo et al., 2004).
This way any clustering solution would be ‘affected’ by the geographic location of the
features, and geographically distant features would be less likely to be in the same cluster.
Another option is to include distance measurements. For instance, we can take distance
measurements of each geographic feature to important centers and include them as
attributes. In Portugal there are two major centers that, due to their economic importance,
influence all the regional development (Lisbon and Oporto Metropolitan Area). If one
is to develop a regional classification, the distance of the different counties to these
important economic centers would help to introduce accessibility information, which
might be relevant. This approach can be seen as a pre-processing strategy and does not
change the actual SOM training algorithm. Thus, we do not consider it a true variant.

2.4.3 Geographical Hypermap

In this approach, we change the matching and voting phase of the SOM algorithm. The
Geographical Hypermap was inspired in the Hypermap architecture which was originally
proposed in Kohonen (1991) for speech recognition. In this architecture the input vector
is decomposed into two distinct parts, a ‘context’ vector and a ‘pattern’ vector. The basic
idea is to treat both parts in different ways. The most common approach is to use the
context part to select the BMU, and then adapt the weights using both parts, separately or
together. However, many other variants exist (Figure 2.2). The Geographical Hypermap
implies that the classification of a specific input vector is learned in the context of its
geographic BMU. In other words, the Geographical Hypermap will force the classification
of input patterns based solely on their geographic location.

In this approach, we change the matching and voting phase of the SOM algorithm.
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Figure 2.2 Example of a Geographical Hypermap seen in the output space

This way, each unit in the SOM will be an average of the non-geographic attributes in the
geographic area it covers. The smoothing effect of this averaging depends on the number
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of units and the density of input patterns. In Figure 2.3 an example of this averaging
process is shown. As can be seen each unit (represented by the large squares) has a
geographic location in the map, and the data patterns (represented by the small dots)
associated with it are defined by the Thiessen polygon around it. This way, the unit’s
characteristics are given by the average value of the set of data patterns in those polygons.
These polygons may include different numbers of data patterns so the averaging is not
of a fixed number of patterns.

Figure 2.3 Example of a Geographical Hypermap seen in the input (geographical) space
(See Colour Plate 3)

2.4.4 Spatial-Kangas Map

This approach is yet another method for changing the matching and voting phase of the
basic SOM. The Spatial-Kangas map introduced in Lobo et al. (2004) is based on the
temporal SOM first presented in Kangas (1992) and commonly known as the Kangas
map. The Spatial-Kangas map extends the underlying principles of the Geographical
Hypermap, in the sense that the BMU is required to be in the geographical neighborhood
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of the input pattern. However, in this approach the requirement that the BMU be the
geographically closest unit is relaxed, requiring only that it be close (within a certain
radius named ‘geographical tolerance’). This is done by dividing the search for the BMU
into two phases: first establish a geographical neighborhood where it is admissible to
search for the BMU (Figure 2.4), and then perform the final search using the non-
geographical components of the input pattern. This can be seen as the separation of the
vector into two different parts; one that carries the geographic context of the pattern, and
the second that provides information for the definition of the BMU within the context.
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Figure 2.4 Spatial-Kangas map structure (Geo-SOM with k > 0)

2.4.5 Geo-SOM

The Geo-SOM (Bação et al., 2004b) constitutes the generalization of the two previous
variants. In fact, the Geographical Hypermap and the Spatial-Kangas map can be seen
as particular instances of a more general concept represented by the Geo-SOM.

The geographic neighborhood where we search for the BMU can be controlled by
a parameter k, defined in the output space, and called geographical tolerance. If we
choose k = 0, then the BMU would necessarily be the unit geographically closer, which
corresponds to a Geographical Hypermap. As k (the geographic tolerance) increases, we
consider ever larger geographical regions when looking for BMUs. In Figure 2.5 we give
an example of how we select the candidates for BMU when considering a geographic
tolerance of 1. Values of k between 1 and the size of the map correspond to different
Spatial-Kangas maps. If we allow k to grow to the size of the map then any unit may be
selected as BMU, regardless of its geographical coordinates, and a standard SOM will
be obtained. It is important to note that although k is called geographic tolerance, it is
defined in the output space, and thus the actual geographic proximity, for a fixed value
of k, depends on the density of units in that area. This means that in areas where there
are many units (areas with a lot of data patterns and variance), a given k will correspond
to small geographic distance, whereas in sparsely represented areas, the same k will
correspond to a larger geographic distance.

When k = 0, the final locations in the input space of the units will be a quasi-
proportional representation of the geographical locations of the training patterns (the
proportionality is not exact due to the already discussed magnification effect), and thus
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Figure 2.5 Example of how candidates for BMU are chosen in a Geo-SOM with a geographic
tolerance of 1. The actual BMU is chosen amongst these using the using the standard SOM
procedure

the units will have local averages of the training vectors. Exactly the same final result
may be obtained by training a standard SOM with only the geographical locations, and
then using each unit as a low pass filter of the non-geographic features. The exact transfer
function (or kernel function) of these filters depends on the training parameters of the
SOM, and is not relevant for this discussion.

Formally, the Geo-SOM may be described by the following algorithm (Bação et al.,
2004b):

Let
X be the set of n training patterns x1, x2, . .xn, each
of these having a set of components geoi and another set ngfi.

W be a p× q grid of units wij where i and j are their
coordinates on that grid, and each of these units having
a set of components wgeoij and another set wngfij.

� be the learning rate, assuming values in]0,1[, initialized
to a given initial learning rate

r be the radius of the neighborhood function h(wij, wmn, r),
initialized to a given initial radius

k be a radius surrounding geographical BMU where the final
BMU is to be searched

f be a logical variable that is true if the units are forced
to remain at fixed geographical locations.
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1 Repeat
2 For m=1 to n

For all wij ∈ W,
4 Calculate dij = � � wgeom − wgeoij � �
5 Select the unit that minimizes dij as the geo-winner Wwinnergeo
6 Select a set W winner of wij such that the distance in the grid

between Wwinnergeo and wij is smaller or equal to k.
7 For all wij ∈ W winner, calculate dij = � � xm - wij� �
9 Select the unit that minimizes dij as the winner Wwinner

10 If f is true, then
11 Update each unit wij∈ W � wngfij = wngfij +

� h �wngfwinner, wngfij� r�� � xm − wij� �
12 Else
13 Update each unit wij∈ W � wij = wij +�h(Wwinner, wij,r)��xm- wij��
14 Decrease the value of � and r
15 Until � reaches 0

The Geo-SOM has the potential to organize the SOM output space according to the
geographic proximities of the input patterns. This way, areas of the geographic map
with similar characteristics will warrant a smaller number of units than the areas of the
map where characteristics differ a lot. One of the potential applications for the Geo-
SOM is to develop homogeneous zones. Homogeneous region building constitutes a data
reduction task, and can be seen as the geographic counterpart of clustering. In fact, as in
clustering, the idea is to reduce the number of entities, while losing the smallest amount
of information, in order to improve the understanding. Detecting homogeneous regions
is in itself knowledge discovery, as it allows the identification of redundancy in the sense
that areas that have similar profiles can be managed as one. Contrary to most zone design
algorithms (Alvanides and Openshaw, 1999; Horn, 1995; Macmillan and Pierce, 1994;
Mehrotra et al., 1998), in which the number of zones is pre-defined, the Geo-SOM can
be viewed as an exploratory technique to build zones, as will be shown in Section 2.6.

2.5 EXPERIMENTAL RESULTS WITH ARTIFICIAL DATA

In order to assist the comprehension of the major characteristics and properties of some
SOM variants, we carry out a set of tests based on artificial data. The objective of
using artificial data is to produce a controlled environment where certain features of
the variants can easily be understood. We constructed an artificial data set with 5000
3-D points, each of which has geographical coordinates (x and y), and a third variable
z that represents a nonspatial attribute. The points follow a uniform distribution in the
geographical coordinates, within the rectangle limited by [(0,0), (20, 15)] (Figure 2.6). In
the nonspatial dimension there are three zones of high spatial autocorrelation, where the
values of z are very similar among neighboring points, with a uniform distribution in the
interval [90, 91] in two zones, and in the interval [10,11] in another. There is also one
area of ‘negative autocorrelation’, where half the data points have z ≈ 10 and the other
half have z ≈ 90. In the rest of the input space z has a uniform distribution in [0,100].
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Figure 2.6 Artificial data set

Five different SOMs were used to process the data: a standard SOM, a Geo-SOM with
k = 0 (which is similar to the Hypermap), a Geo-SOM with k = 1, k = 2 and k = 4. The
k parameter, which we call geographic tolerance, refers to the size of the neighborhood
amongst which the BMU will be searched. In all cases, the SOMs used had 20 × 15
units with ‘bubble’ (rectangular) neighborhood functions. In the first training phase (or
unfolding phase) we used an initial radius of 15, a final radius of 0, an initial � of 0.3,
and 10 epochs. In the second training phase (or fine-tuning phase), we used an initial
radius of 3, a final radius of 0, an initial � of 0.1, and 20 epochs.

In order to get a clear image of the error produced by each one of the tested variants we
decided to separate the error in geographic error and quantization error. The geographic
error computes the average distance between each input pattern and the unit to which it
was mapped. This gives a notion of the geographic displacement of the units relative to
the input patterns they represent. The quantization error provides an assessment of the
distances between input patterns and the unit to which they are mapped in the attribute
space, in this case the z variable. The quantization error provides a measure of the quality
of the representation of z (non-geographical attribute) achieved by each variant.

The results are quite informative in the sense that they allow a very clear distinction
between the behaviors of the different variants. Clearly, the restrictions imposed by Geo-
SOM tend to degrade the quantization error and improve the geographic error. In terms
of quantization error the highest value is observed, as would be expected, in the Geo-
SOM with the smallest geographic tolerance, and decays as k increases, until reaching
the minimum with the standard SOM. Conversely, the geographic error decreases as k
increases. The actual values are shown in Table 2.1.

Table 2.1 Average geographical and quantization errors for the artificial data set

Type of map vs
Type of error

Geo-SOM
k = 0

Geo-SOM
k = 1

Geo-SOM
k = 2

Geo-SOM
k = 4

Standard
SOM

Geographical
error

0.4193 0.8507 1.1800 1.5055 1.6713

Quantization
error

21.0690 12.5902 7.1130 2.4440 0.9030
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The quantization errors shown in the table are averages for all data patterns, and the
individual values vary quite a lot. A close inspection of the way this quantization varies
allows us to identify different clusters, which is one of the main purposes of using these
techniques. If we calculate the average quantization error of the input patterns that are
mapped to each individual unit and plot these values in a color plot, we obtain the results
presented in Figure 2.7. In this figure we plot the quantization error in grayscale as a
function of the geographical coordinates when using Geo-SOMs with k = 0 and k = 2,
and using the standard SOM.

(a)

(b)

Figure 2.7 Maps with the average quantization error per unit (a), and geographical coverage
of those units (b), using the Geo-SOM with k=0 (left), k=2 (center) and the standard SOM
(right)

With k = 0 the Geo-SOM is basically performing local averages. The points where those
averages are calculated follow the geographical distribution of the input patterns, which
in this case means they are evenly distributed. Areas where ‘natural’ clusters exist are
clearly shown by white areas, where the quantization error is low. Areas where there
is less spatial autocorrelation are represented in progressively darker shades of gray,
corresponding to increasing quantization errors. From this map little can be inferred
about how to define regions in those areas. Thus, the choice of k = 0 allows us to
identify only the clearly homogeneous areas.

With k = 2 the Geo-SOM provides interesting insights into the data. Homogenous
areas are still evident, but some new areas with low quantization error appear throughout
the map. The lower right corner (shown as a close up in Figure 2.8), where the data follow
two distinct behaviors is divided (approximately along its diagonal) into two homogenous
areas, one containing each type of data. These are separated by another area that serves
as the border, where the quantization error is quite large. The information conveyed is
that, in this general area, there are subsets of points which share similar values of z.
The added geographic tolerance provided by k = 2 allows the identification of a certain
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degree of homogeneity, which the Geo-SOM (0) was unable to find. As a conclusion,
this map allows us to gain insight into less well structured areas of the data.

High quantization area,
using the Geo-SOM (0),

thus no clustering of
similar points

The Geo-SOM (1), detects
two low quantization
sets of points, thus

clustering two groups of
similar points

in the same area

Subset 1
z ≈10

Subset 2
z ≈ 90

Figure 2.8 Close up of the lower right corner of the Geo-SOM (0) and Geo-SOM (1) in
Figure 2.7 (See Colour Plate 4)

Finally, when using the standard SOM, the map has little information about the
geographical organization of clusters. Since these are defined mostly by non-geographical
attributes, their geographical location is basically meaningless and may lead to errors.
The lower left corner of the map has basically the same configuration as the other corners
even though the data in that corner are significantly different. We may thus conclude that
while the standard SOM may be a good clustering tool, it naturally fails to single out the
geographical information contained in it.

2.6 EXAMPLE OF THE USE OF THE GEO-SOM

In this section the objective is to show examples of how the Geo-SOM can be used to
explore geographic data. Our main concern is not to solve a particular problem but rather
to emphasize the potential of the Geo-SOM as an exploratory tool. Nevertheless, data are
needed so we chose to analyze census data concerning the Portuguese counties in 2001.
These data are publicly available and consist of 70 attribute variables characterizing
each one of the 250 counties of mainland Portugal. The variables include a number of
socio-demographic indicators such as per capita GDP, purchasing power, age distribution
and education levels among others. For the purpose of this analysis all the classification
variables were normalized to a distribution of mean 0 and standard deviation 1. The
normalization is invariant to size as all the variables are measured as ratios of the
population value.
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We will now analyze this dataset using the Geo-SOM. To aid the analysis, we present
a number of visualization instruments, which we developed based on the Geo-SOM, so
as to assist the user in exploring and discovering new patterns in data. The exploration
environment was developed based on ArcView®. ArcView was a valuable tool as it
allowed the swift development of an exploration environment prototype. Relevant in the
development of the prototype was the possibility of linking different files as well as the
opportunity of using multiple dynamically linked windows. The result is an environment
where the user can shift through different windows probing the available information and
building ‘what if’ scenarios.

We will present the results of two Geo-SOMs using different geographic tolerance
parameters (k = 0 and k = 1) with 50 units each.

The process to set-up the visualization environment requires the representation of the
output space (U-matrix and components planes) of the Geo-SOM in ArcView. One of
the advantages of the Geo-SOM over the use of geo-enforced SOMs is the fact that the
resulting U-matrix maintains a structure which is relatively similar to the geographic map.
This way the geographic features from the southern part of the map will be represented
in the bottom of the U-matrix and vice-versa. The representation of the U-matrix in
ArcView was done through the ascription of fictitious coordinates to the Geo-SOM
units, enabling ‘mapping’ of the output space. Once the output space was available in
ArcView we linked the file containing information about the counties with the file of the
output space. This was possible due to the fact that the file of the counties had a field
corresponding to the unit in which each county was classified.

The typical exploration setting includes a window with a components plane super-
imposed on a U-matrix and dynamically linked with a second window which displays
the map of Portugal and a database window where the selected elements are displayed
(Figure 2.9). In Figure 2.9(a) the matrix represents the U-matrix of Geo-SOM (0).

Figure 2.9 Exploration environment developed to support the Geo-SOM
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The squares superimposed on the U-matrix represent a component plane, in this case
the dimension of the square represents the quantization error of that particular unit. In
Figure 2.9(b) the geographical map of Portugal’s mainland is presented together with a
database window where the elements selected in the U-matrix are highlighted.

Using different component planes the user can scan the data looking for unusual
patterns which may help understand the data and their geographic distribution. In
Figure 2.10 an example of the exploring capabilities offered by the Geo-SOM is presented.
In this case, the Geo-SOM (0) was used, and the lower right area of the U-matrix was
selected. The selection made in the U-matrix corresponds to the counties highlighted
in the geographic map, corresponding to three major cities. Additionally, an x,y scatter
chart shows the relation between the proportion of college education individuals and
purchasing power. In this example we show how simple it is to select different units in
the U-matrix and perform additional analysis on the selected individuals.

Figure 2.10 Example of three clusters identified by the Geo-SOM (0) and the possible
interaction between the U-matrix and components plane (a), the geographic map (b) and a
graph showing the distribution of two particular variables of the selected counties (c)

The use of the Geo-SOM (1) is more complex as the values of the different units
do not involve calculations solely based on the geographically closest neighbors. The
workings of the Geo-SOM (1) (and with higher geographic tolerances) can be described
as ‘averages of similar counties’ in the sense that within a geographic tolerance the
Geo-SOM will try to group similar counties. This can be viewed as the possibility of
lessening the geographic constraint providing the Geo-SOM the possibility of clustering
counties with similar profiles and which are located in the same general area. In this case
the results are not contiguous regions but sets of areas with similar characteristics that
are relatively close in geographic terms.
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The following figures present some examples of the type of analysis produced by the
Geo-SOM (1). In Figure 2.11 we focus on the cluster highlighted (and identified by a large
black square), which groups together what can be considered the three most important
industrial areas in the south of the country, especially related to the auto industry. The
other three clusters that are represented in this corner of the U-matrix include Lisbon and
most of the Lisbon Metropolitan Area counties. Also shown are the values of exports
and imports of these three counties. Bearing in mind that the data were standardized to
a mean of 0 and a standard deviation of 0, the values attained by these counties in these
specific variables are quite impressive.

Figure 2.11 Using the Geo-SOM (1) to detect clusters of specific characteristics

In Figure 2.12 we compare the membership of a specific county (Braga) in three different
SOMs: a mildly Geo-enforced SOM (the x, y coordinates of the county’s centroids were
added to the 70 attribute variables), a Geo-SOM (0) and a Geo-SOM (1). In all three
classifications Braga is grouped with different counties. In the Geo-enforced SOM Braga,
which is a district capital, is grouped in a cluster which contains most of the Oporto
Metropolitan Area, as well as two other district capitals (Viseu and Leiria). Both Viseu
and Leiria are located far away from Braga. In the Geo-SOM (0), Braga is grouped
in a geographically contiguous set which includes coastal counties north of Oporto
Metropolitan Area. Finally, in Geo-SOM (1) only two other counties are grouped with
Braga. The contiguous county, Guimarães, can be seen as a twin city as they share a
number of administrative services and a university campus. Viana do Castelo, like Braga,
is also a district capital. This example shows some fundamental differences between the
workings of the different SOM variants. The Geo-enforced SOM clusters with a strong
influence of the attribute variables. In the Geo-SOM (0), however, attribute variables
are less relevant and geographic location becomes central. Finally, in Geo-SOM (1)
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a compromise between attributes and geographic location is achieved. It is probably
pointless to argue about the superiority of any of these variants, as the combination of
the three analyses produces an improved understanding of the problem. Nevertheless,
we argue that from a GIScience perspective it is sensible to use space as a determining
factor in the outcome of clustering.

Figure 2.12 Comparison of the areas clustered together with Braga using three different
SOM variants: (a) a Geo-SOM (1); (b) a Geo-enforced SOM; (c) a Geo-SOM (0)



Applications of SOM Variants to GIScience 41

2.7 CONCLUSIONS

There are many ways in which the standard SOM can be used in GIScience problems.
In this chapter we take a different path, by considering variants to the original algorithm.
We propose a number of variants that explicitly take into account location and space in
the SOM algorithm. A brief explanation of these different SOM variants was presented.
A more detailed explanation of one of the geographically oriented variants, the Geo-
SOM, was given. An example of its application to an artificial data set and an actual
geographically referenced data set was presented. It was shown that in the latter case, this
approach can provide a meaningful insight to the spatial data structure. The Geo-SOM can
be thought of as a method which projects multidimensional data into geographic space.

The Geo-SOM should be seen as an effort to adapt a tool, developed in a different
scientific context, to the specific needs and reasoning of GIScience. Usually, tools are
imported from other areas of knowledge or developed based on specific practical needs
posed by specific problems. The Geo-SOM has a different motivation. The Geo-SOM
constitutes a theoretical effort in the sense that it is the result of the interaction between
a valuable analysis tool (the SOM) and the GIScience perspective of the world. The
fundamental assumption of the Geo-SOM is that in spatial analysis, space should take
the center stage and attribute variables should be analyzed within their spatial context.

There are a number of issues that remain to be explored in the Geo-SOM. The effect
that the relationship between density of input patterns (in the geographic space) and
the distance between them (in the variable space) has on the distribution of the units is
still an open problem. Another interesting issue to address in future developments is the
possibility of using dynamic k values. The idea is to adequate the k parameter according
to the specific spatial autocorrelation index of the area of the input pattern. Operationally,
the Geo-SOM can benefit a lot if a specific visualization and interactive exploration tool
is developed. ArcView served the purposes of prototyping well but there are limitations
which hamper the usefulness of the analysis. Such a tool is currently being developed.

Besides Geo-SOM other variants might be of interest in GIScience, such as the
hierarchical SOM. The flexibility of the original SOM algorithm and its wide range
of application provide the opportunity to adapt the SOM to specific paradigms and
problems of GIScience.

All the programming routines for the architectures presented here are available
(www.isegi.unl.pt/docentes/vlobo/projectos/programas/programas.html).
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3.1 INTRODUCTION

The exploration of patterns and relationships in large and complex geospatial data is a
major research area in geovisualization (MacEachren and Kraak, 2001). In such large
data sets, the extraction of patterns and the discovery of new knowledge may be difficult
as patterns may remain hidden. New approaches in spatial analysis and visualization
are needed, in order to represent the data in a visual form that can better stimulate
pattern recognition and hypothesis generation, and to allow for better understanding of
the geographical processes and support knowledge construction.

More integrated visualization tools are needed for the extraction of patterns and
relationships in data. The integration of feature extraction tools with appropriate user
interfaces is important to support the user’s understanding of underlying structures and
processes in geodata.

Information visualization techniques including multidimensional visualization
techniques from scientific visualization (Nielson et al., 1997), such as graph visualization,
scatterplots, parallel coordinate plots, iconographic displays, dimensional stacking, multi-
dimensional scaling techniques and pixel techniques are increasingly used in combination
with other exploratory data analysis techniques to explore the structure of large geospatial
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data sets. An interesting development in the design of geovisualization environments is
the integration of information visualization and cartographic methods for the exploration
of geospatial data.

This integration of cartographic methods with information visualization techniques can
help provide ways of exploring large geospatial data, and support knowledge construction
by offering interactive visual geospatial displays to explore data, generate hypotheses,
develop problem solutions and construct knowledge (MacEachren, 1994).

The computational analysis offered by advanced algorithms can be combined with
visual analysis methods in a process that can support exploratory tasks. This chapter
explores the self-organizing map (SOM) algorithm for such an integration as a means of
contributing to the analysis of complex geospatial data. Here the algorithm is used for
data mining. Graphical representations such as unified distance matrices, and component
planes display are then used to portray extracted information in a visual form that can
allow better understanding of the structures and the geographic processes. The design of
this visual-computational environment integrates non-geographic information spaces with
maps and other graphics that allow patterns and attribute relationships to be explored,
in order to facilitate knowledge construction. These graphical representations (infor-
mation spaces) combine information visualization techniques and cartographic methods
to improve the interaction and exploration of extracted patterns by offering visualizations
of the structure of the data set (clustering), as well as the exploration of relationships
among attributes.

The proposed framework provides a number of steps that underline data mining and
knowledge discovery methodology, and an understanding of exploratory tasks and visual-
ization operations are used to guide the user in his hypothesis testing, evaluation and
interpretation of patterns from general patterns extracted to specific explorations of
selection attributes and spatial locations.

An application of the method is explored using a socio-demographic data set containing
relationships between geography and economy, in order to provide some understanding of
the complex relationships between socio-economic indicators, locations and, for example,
the burden of diseases. This example of exploration of a data set is used to demonstrate
the integration of the different graphical representations for the exploration of patterns.

3.2 A FRAMEWORK TO SUPPORT EXPLORATORY
VISUALIZATION AND KNOWLEDGE DISCOVERY

3.2.1 Data Mining and Knowledge Discovery

One approach to analyzing large amounts of data is to use data mining and knowledge
discovery methods. In geospatial analysis, data mining tools are applied to extract patterns
from large data sets and help uncover structures in complex data (Openshaw et al.,
1990). The main goal of data mining is to identify valid, novel, potentially useful
patterns in data, and ultimately to understand them (Fayyad et al., 1996). Generally, three
general categories of data mining goals can be identified (Weldon, 1996): explanatory (to
explain some observed events), confirmatory (to confirm a hypothesis), and exploratory
(to analyze data for new or unexpected relationships). Typical tasks for which data
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mining techniques are often used include clustering, classification, generalization and
prediction. These techniques vary from traditional statistics to artificial intelligence and
machine learning. The most popular methods include decision trees (tree induction), value
prediction, and association rules often used for classification (Miller and Han, 2001).
Artificial neural networks are used particularly for exploratory analysis as nonlinear
clustering and classification techniques. For example, unsupervised neural networks such
as the SOM are a type of neural clustering technique, and neural architectures using
backpropagation and feedforward are neural induction methods used for classification
(supervised learning). The algorithms used in data mining are often integrated into KDD
(Knowledge Discovery in Databases), a larger framework that aims at finding new
knowledge from large databases. While data mining deals with transforming data into
information or facts, KDD is a higher-level process using information derived from the
data mining process to turn it into knowledge or integrate it into prior knowledge. This
process is illustrated in Figure 3.1.

Knowledge Discovery in Databases
(KDD)

Data Mining

Data

Information Facts

Knowledge
(Ideas, beliefs)

Interpretation and
integration

Figure 3.1 Data mining and knowledge discovery frameworks

In general, KDD stands for discovering and visualizing the regularities, structures and
rules from data (Miller and Han, 2001), discovering useful knowledge from data (Fayyad
et al., 1996), and finding new knowledge. It consists of several generic steps, namely data
pre-processing, transformation (dimension reduction, projection), data mining (structure
mining) and interpretation/evaluation.

3.2.2 Data Mining and Geospatial Data Analysis

Recent efforts in data mining and KDD have provided a window for the application
of geospatial data mining and knowledge discovery in geovisualization (Gahegan et al.,
2001; Liu et al., 2001; MacEachren et al., 1999; Miller and Han, 2001; Roddick and Lees,
2001; Sibley, 1988; Weijan and Fraser, 1996). Geographic data mining and knowledge
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discovery methods haves been used in geospatial data exploration (Gahegan et al., 2001;
MacEachren et al., 1999; Miller and Han, 2001; Openshaw et al., 1990; Wachowicz,
2000) to discover unexpected correlation and causal relationships, and understand struc-
tures and patterns in complex geographic data. The promises inherent in the development
of data mining and knowledge discovery processes for geospatial analysis include the
ability to yield unexpected correlation and causal relationships. A large proportion
of these applications are directed towards spatio-temporal data mining (Roddick and
Lees, 2001).

3.2.3 Combining Computational Analysis and Visualization for the Exploration
of Geospatial data

The proposed framework explores ways to combine the computational processes provided
by data mining and KDD techniques as described above, with appropriate visualization
techniques to support the exploration of large geospatial data. In this framework, the first
level of the computation provides a mechanism for extracting patterns from the data. The
output of this computational process is depicted using graphical representations. Users
can perform a number of exploratory tasks not only to understand the structure of the
data set as a whole, but also to explore detailed information on individual or selected
attributes of the dataset. Figure 3.2 describes the proposed framework.

We propose two levels of exploratory visualization processes closely related to the
concept of abduction (Gahegan and Brodaric, 2002). These processes are supported by a
number of activities, including selection, analysis, comparison, and the relation of spatial
locations or attributes, starting from the general patterns extracted and moving on to
more user selection and refinement, which allow the exploration of relationships and the
structure of a particular area of interest.

The first level of this framework consists of the visualization of the general structure
of the data set (clustering); the second level focuses on the exploration for knowledge
discovery and hypothesis generation. These two levels of the visualization process
are provided with different representations that can be enhanced using visualization
techniques. The fundamental idea of the integration of different visualization techniques
is centred around four basic visualization goals, the basis for the exploratory visualization
and knowledge discovery process (Weldon, 1996):

• discovering patterns (through similarity representations);
• exploring correlations and relationships for hypothesis generation;
• exploring the distribution of the data set on the map;
• detecting irregularities in the data.

To enhance the exploration of the graphical representations, visualization and inter-
action techniques, such as brushing, focusing, filtering, browsing, querying, selecting
and linking, are used. Projection techniques such as Sammon’s mapping and principal
components analysis (PCA) are also used to support the different representations. As
with maps, these representations use visual variables in addition to the position property
of the map elements. Multiple views are used to offer alternative and different views of
the data in order to stimulate the visual thinking process that is characteristic of visual
exploration.
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3.2.4 SOM in the Computational Analysis and Visualization Framework

The SOM (Kohonen, 1989) has gained a lot of attention over recent years in geospatial
data exploration and visualization. A wide range of SOM applications in geospatial
analysis have been explored, including geospatial data mining and knowledge discovery
(Gahegan and Brodaric, 2002; Koua, 2002), map projection (Skupin, 2003), and
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Figure 3.3 Data exploration framework: from the computational process, global structure
and patterns can be visualized with graphical representations and maps of similarity results.
Relationships and correlations among the attributes are presented with interactive graphical
representations, maps, and other graphics such as parallel coordinate plots
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classification (Gahegan and Takatsuka, 1999; Gahegan, 2000). The growing interest
in the SOM for data analysis is due partly to its multidimensional data reduction and
topological mapping capabilities. More on this has been discussed in Chapter 1.

The SOM can be a useful KDD method as it follows the probability density function
of underlying data. We use the SOM algorithm as a data mining tool to project input
data into an alternative measurement space, based on similarities and relationships in the
input data, which can aid the search for patterns. As described in Chapter 1, the SOM
adapts its internal structures to the structural properties of the multidimensional input,
such as regularities, similarities and frequencies. These SOM properties can be used to
search for structures in the multidimensional input. Graphical representations are then
used to enable visual data exploration, allowing the user to gain insight into the data,
evaluate, filter, and map outputs.

The proposed framework explores ways of effectively extracting patterns, using data
mining based on the SOM, and of representing the results, using graphical representa-
tions for visual exploration. As presented in Figure 3.3, the data mining stage allows
a clustering (similarity matrix) of the multidimensional input space to be constructed.
From this computational process, the global structure and patterns can be represented
with graphical representations and maps (geographical view) of similarity results. Further
exploration can be carried out on the relationships and correlations among the attributes.
The framework combines spatial analysis, data mining and knowledge discovery methods,
supported by interactive tools that allow users to perform a number of exploratory
tasks in order to understand the structure of the data set as a whole, as well as to
explore detailed information on individual or selected attributes of the data set. Different
representation forms are integrated and support user interaction for exploratory tasks
to facilitate the knowledge discovery process. They include some graphical repre-
sentations based on the SOM, maps, and other graphics such as parallel coordinate
plots.

Cartographic methods support this design for the effective use of visual variables with
which the visualizations are depicted. The graphical representations can be interactively
manipulated using rotation, zooming, panning, and brushing.

3.3 A PROTOTYPICALLY EXPLORATORY GEOVISUALIZATION
ENVIRONMENT

Based on the conceptual framework described above, we have implemented a prototype
geovisualization environment. The visualization environment is intended to contribute
to the analysis and visualization of large amounts of data, as an extension of the many
geospatial analysis functions available in most GIS software. The objective of the tool
is to help uncover structure and patterns that may be hidden in complex geospatial
data sets, and to provide graphical representations that can support understanding and
knowledge construction. The design of the visualization environment incorporates several
graphical representations of SOM output, including a distance matrix representation, two-
dimensional (2-D) and three-dimensional (3-D) projections, 2-D and 3-D surfaces, and
component plane displays.
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3.3.1 Structure of the Integrated Visual-Computational Analysis and
Visualization Environment

We have extended the graphical representations of the SOM training results, to highlight
different characteristics of the computational solution and integrated them with other
graphics into multiple views to allow brushing and linking for exploratory analysis
purposes. There are a number of researches reflecting the interest in dynamic displays
on the part of experts in cartographic data presentation (Cook et al., 1996; Dykes, 1997;
Egbert and Slocum, 1992; Monmonier, 1992). Most often they suggest that brushing
be applied to a map linked with one or more non-geographical presentations, showing
individual values and statistics, and the visualization of neighborhood relationships.
We use multiple views to offer alternative and different views of the data in order to
stimulate the visual thinking process that is characteristic of visual exploration. Carto-
graphic methods support the design for the effective use of visual variables with which
the visualization is depicted. This makes the exploratory geovisualization environment
appropriate for relating the position of the map units and the value at the map units
represented by color coding, and for exploring correlations and relationships. The design
of the interface incorporates several graphical representations that provide ways of repre-
senting similarity (patterns) and relationships, including a distance matrix representation,
2-D and 3-D projections, 2-D and 3-D surfaces, and component plane visualization.

The tool was developed based on the integration of Matlab, the SOM toolbox and
spatial analysis (Martinez and Martinez, 2002). The main functionality of the visualization
system includes pre-processing, the initialization and training of a SOM network, and
visualization. Figure 3.4 describes the structure of the geovisualization system. The pre-
processing consists of transforming primary data and converting them into an appropriate
format. At this stage, input data are transformed and all components and variables of the
data set are normalized. After training the network, the visualization component provides
features for visualizing the data, using different techniques. A link between the different
views is provided for the exploration of relationships.

The SOM network was trained using the SOM toolbox. In the SOM toolbox, the data
set is first put in a Matlab ‘struct’, a data structure that contains all information related to
the data set in different fields for the numerical data (a matrix in which each row is a data
sample and each column a component), strings, as well as other related information. Since
the SOM algorithm uses Euclidean metric distance to measure distances between vectors,
scaling of variables is needed to give equal importance to the variables. Linear scaling
of all variables is used so that the variance of each is equal to 1. Other normalization
methods such as logarithmic scaling and histogram equalization are offered. The original
scale values can easily be returned when needed. Missing data are also handled in the
SOM toolbox. The input vectors x are compared with the reference vectors mi, using
those components that are available in x.

3.3.2 User Interface

The interface integrates the different representations into multiple views, which are used to
simultaneously present interactions between several variables over the space of the SOM,
maps and parallel coordinate plots, and to emphasize visual change detection and the
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Figure 3.4 Structure of the geovisualization environment

monitoring of the variability through the attribute space. These alternative and different
views of the data can help stimulate the visual thinking process that is characteristic of
visual exploration.

The interface design focuses on three important aspects:

• representation forms (map, grid, surface, projection);
• visualization techniques (distance matrix, component planes display, 2-D and 3-D

views of surface plots and projections);
• interaction techniques (brushing, panning, rotation, zooming).
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Because the user develops a mental model of the system, it is important that the design
helps construct a clear image of the system. For perceptual effectiveness (Eick, 1997), the
interface attempts to provide displays in a way that seems natural for interpretation: in a
grid, on a map, on a surface, in a 3-D space, with position showing internal relationships.
Users have the possibility of visually relating information or aggregations of data to
reveal the clustering structure or common visual properties. From the human–computer
interaction (HCI) perspective, a number of interaction strategies can help achieve the
goals of visual exploration. The interface offers interactive filters for changing the relative
positions of elements of the display, changing by rotation the perspective from which
it is seen, and displaying detailed information to have access to actual data values on a
specific data item of interest. Such transformations of views can interactively modify and
augment visual structures, and support the likelihood of emergence (Peuquet and Kraak,
2002). We use different interaction techniques to enhance data exploration, including
brushing and linking, panning, zooming, and rotation.

Users can perform a number of exploratory tasks to understand the structure of the data
set as a whole and to explore detailed information such as correlations and the relation-
ships for selected attributes of the data set. This is intended to guide them in hypothesis
testing, evaluation and interpretation of patterns from general patterns extracted to
specific selection of attributes and spatial locations. Other supportive views are provided
for further exploration of the displays including zooming, panning, rotation and 3-D
view. Figure 3.5 shows the interface of the integrated geovisualization environment. An
important issue in the design of geovisualization environments is to provide ways of
representing similarity (patterns) and relationships in a way that facilitates the perceptual
and cognitive processes involved (MacEachren, 1995). To achieve this goal, cartographic
design principles are needed to provide an effective integration of visual variables used in
the representation forms, while information visualization techniques provide alternatives
for the user interaction necessary to complete the tasks. Bertin’s fundamental six visual
variables (Bertin, 1983) for graphical information processing can serve as the basis for
this integration. These variables (size, value, texture/grain, color, orientation and shape)
can be used, either alone or in combination, to depict different arrangements of objects in
the graphical representations. For example, size is an effective perceptual data-encoding
variable and shape is useful for visual segmentation.

3.3.3 Visual Exploration Support for General Patterns and Clustering

The SOM offers a number of distance matrix visualizations to show the cluster structure.
These techniques show distances between neighboring units. The most widely used
distance matrix technique is the U-matrix (Ultsch and Siemon, 1990). The four goals of
the visualization described in Section 3.2.3 are covered by the different representations
of the data. Similarity (patterns) is represented in the distance matrix representation.
Relationships are viewed in fine detail with the component plane visualization. The
distribution and irregularities are represented in the visualization of the component planes
and in the projections.

The default view in the user interface (Figure 3.5) offers after the data has been loaded
and the SOM network trained the general clustering structure of the data in different
perspectives (maps, projections, unified distance matrix and parallel coordinate plot).
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Figure 3.5 The user interface for the exploratory geovisualization environment in multiple
views with the visualization of component planes (bottom left) and map unit labels (bottom
right). The default view shows the representation of the general patterns and clustering in the
input data: the unified distance matrix showing clustering and distances between positions
on the map (b). Alternative representations of the SOM general clustering of the data with
projection of the SOM results in 3-D space (c); and a map of the similarity coding extracted
from the SOM computational analysis (a), and parallel coordinate plot (d) (See Colour Plate 5)

This general view implements a number of distance matrix visualizations to explore the
SOM results and show the cluster structure and similarity (patterns). The similarity matrix
representation visualizes the distances between the network neurons [represented here by
hexagonal cells in Figure 3.6(a)]. It contains the distances from each unit center to all of
its neighbors. The distance between the adjacent neurons is calculated and presented in
different colorings. A dark coloring between the neurons corresponds to a large distance
and thus represents a gap between the values in the input space. A light coloring between
the neurons signifies that the vectors are close to each other in the input space. Light areas
represent clusters and dark areas cluster separators. This representation can be used to
visualize the structure of the input space and to get an impression of otherwise invisible
structures in a multidimensional data space. The similarity representation shows more
hexagons than the actual number of neurons used in the network, because it shows not
only the distance value at the map units but also the distances between map units.

The SOM unlike other projection methods in general, tries to preserve not the distances
directly but rather the relations or local structure of the input data. While the U-matrix
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Figure 3.6 Similarity matrix representation of the data set (a), PCA projection of SOM results
(b), 2-D surface plot of distance matrix (c) and 3-D surface plot of distance matrix (d)

is a good method for visualizing clusters, it does not provide a very clear picture of
the overall structure of the data space because the visualization is tied to the map grid.
Some projection methods can be used (e.g. Sammon’s mapping, PCA) to give a more
informative picture [Figure 3.6(b)]. The projection of the SOM results provides freely
specified coordinates in 2-D or 3-D space. The third dimension uses the value (or weight)
associated with the map units according to multidimensional attributes. Color, size, types
of markers used as identifiers of map units, and lines for connecting the map units are
used for more interactive exploration.

In the distance matrix [Figure 3.6(a)], countries having similar characteristics based
on the multivariate attributes are positioned close to each other and the distance between
them represents the degree of similarity or dissimilarity. These common characteristics
representations can be regarded as the socio-economic standard for the countries. In
Figure 3.6(b), the projection of the SOM offers a view of the clustering of the data
with data items depicted as colored. The clustering structure can also be viewed in the
interface, as 2-D or 3-D surfaces representing the distance matrix [Figure 3.6(c) and (d)],
using color value to indicate the average distance to neighboring map units.
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In Figure 3.5, the different views on the general structure of the data set are provided.
Alternative representations of the clustering of the data are provided in 2-D and 3-D
projections (using projection methods such as Sammon’s mapping and PCA), 2-D and
3-D surface plots, and parallel coordinate plot [Figure 3.5(d)]. In Figure 3.5(c), the
projection of the SOM offers a view of the clustering of the data with data items depicted
as colored nodes. Similar data items are grouped together with the same type or color
of markers. Size, position and color of markers can be used to depict the relationships
between the data items. This gives an informative picture of the global shape and the
overall smoothness of the SOM in 2-D or 3-D space. Exploration can be enhanced by
interactive rotation, zooming and selection in 3-D view. Connecting the map units with
lines can reveal the shape of clusters and relationships among them. The cluster structure
can also be viewed as 2-D or 3-D surfaces representing the distance matrix [Figure 3.6(c)
and (d)] using color value to indicate the average distance to neighboring map units.
This is an example of spatialization (Fabrikant and Skupin, 2005) that uses a landscape
metaphor to represent the density, shape, and size or volume of clusters. Unlike the
projection in Figure 3.5(c) that shows only the position and clustering of map units,
areas with uniform color are used in the surface plots to show the clustering structure
and relationships among map units. In the 3-D surface [Figure 3.6(d)], color value and
height are used to represent the clustering of map units according to the multidimensional
attributes.

3.3.4 Exploration of Correlations and Relationships

As a second stage of the visualization process, the interface offers options to explore
correlations and relationships in the input data. This is implemented by the component
plane display (Figure 3.7). As discussed above, here the component planes show the values
of different attributes for the different countries. They are used to support exploratory
tasks and to facilitate the understanding of the relationships in the data.

3.4 EXAMPLE EXPLORATION OF GEOGRAPHICAL PATTERNS
USING THE PROTYOTYPE EXPLORATORY
GEOVISUALIZATION ENVIRONMENT

The prototype is used in an example for exploring a data set containing socio-economic
indicators. In this section, the data set is explored, and different visualization techniques
are used to illustrate the exploration of (potential) patterns within the different options of
the interface. This example is used to examine the integration of the different graphical
representations in the user interface.

3.4.1 The Data Set Explored

The prototype was used to explored a socio-economic data set related to geography and
economic development (Gallup et al., 1999) to analyze the complex relationships between
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Figure 3.7 Detailed exploration of the data set using the SOM component visualization:
all the components can be displayed to reveal the relationships between the variables and
the spatial locations (countries). Selected components related to a specific hypothesis (for
example related to economic development at the bottom) can be further explored. Position
of the countries on the SOM map (bottom right)
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geography and macroeconomic growth (e.g. how geography may directly affect growth,
and the effect location of the countries and climate may have on income levels, income
growth, transport costs, disease burdens and agricultural productivity). Additionally,
the relationships between geographic regions, whether located far from the coast, and
population density, population growth, economic growth and the economic policy itself
are other aspects the study of this data set intends to explore. The data set contains 48
variables on the economy, physical geography, population and health of 150 countries
(Tables 3.1 and 3.2).

Table 3.1 Description of the variables of the data set

Variable Description Variable Description Variable Description

gdp50 GDP per
capita in 1950

ciffob95 shipping cost,
1995

pop95 population in
1995

gdp90 GDP per
capita in 1990

tropicar % land in
geographic
tropics

zpolar % land area
in polar
non-desert

gdp95 GDP per
capita in 1995

troppop % population
in geographic
tropics, 1994

zboreal % land area in
boreal regions

gdp65 GDP per
capita in 1965

malfal66 malaria index,
1966

zdestmp temperature
desert

gdpg6590 GDP per
capita growth
from 1965 to
1990

maffal94 malaria index
1994

zdestrp tropical +
subtropical
desert

lnd100 km % land within
100 km coast

lhcpc log
hydrocarbons
per capita,
1993

zdrytemp % land area
within dry
temperature

pop100 km % population
within 100 km
coast

south southern
hemisphere
countries

zwettemp % land area
wet temperate

lnd100cr % land within
100 km coast
or river

landarea land area (sq
km)

zsubtrop % land area in
the subtropics

pop100cr % population
within 100 km
coast or river

open6590 openness,
1965–1990

ztropics % land area in
the tropics

dens65c coastal
population
density, 1965

icrg82 quality of
public
institutions,

zwater water (lakes
and ocean)

dens65i inland
population
density, 1965

newstate timing of
independence

eu Western
Europe

dens95c coastal
population
density, 1995

socialist socialist
country,
1950–1995

safri Sub-Saharan
Africa

dens95i inland
population
density, 1995

lifex65 life
expectancy,
1965 (UN)

sasia south Asia
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Table 3.1 (Continued)

Variable Description Variable Description Variable Description

landlock landlocked syr15651 log years
secondary
schooling, 1965

transit transition
countries

lnadlneu landlocked,
not west and
central Europe

urbpop95 % population
urban, 1995
(world bank)

latam latin America
and Caribbean

airdist km to closest
major port

wardum had external
war, 1960–1985

eseasia east and
southeast Asia

Table 3.2 Countries included in the study

Code Country Code Country Code Country Code Country

AFG Afghanistan ERI Eritrea LBR Liberia RUS Russian
Federation

AGO Angola ESP Spain LBY Libya Arab
Jamahiriya

RWA Rwanda

ALB Albania EST Estonia LKA Sri Lanka SAU Saudi
Arabia

ARE United Arab
Emirates

ETH Ethiopia LSO Lesotho SDN Sudan

ARG Argentina FIN Finland LTU Lithuania SEN Senegal
ARM Armenia FRA France LVA Latvia SGP Singapore
AUS Australia GAB Gabon MAR Morocco SLE Sierra

Leone
AUT Austria GBR United

Kingdom
MDA Moldova,

Republic of
SLV El Salvador

AZE Azerbaijan GEO Georgia MDG Madagascar SOM Somalia
BDI Burundi GHA Ghana MEX Mexico SVK Slovak

Republic
BEL Belgium GIN Guinea MKD The fmr

Yug. Rep.
Macedonia

SVN Slovenia

BEN Benin GMB Gambia MLI Mali SWE Sweden
BFA Burkina

Faso
GNB Guinea

Bissau
MMR Myanmar SYR Syrian Arab

Rep.
BGD Bangladesh GRC Greece MNG Mongolia TCD Chad
BGR Bulgaria GTM Guatemala MOZ Mozambique TGO Togo
BIH Bosnia and

Herze-
govina

HKG Hong Kong MRT Mauritania THA Thailand

BLR Belarus HND Honduras MUS Mauritius TJK Tajikistan
BOL Bolivia HRV Croatia MWI Malawi TKM Turkmenistan
BRA Brazil HTI Haiti MYS Malaysia TTO Trinidad

and Tobago
BWA Botswana HUN Hungary NAM Namibia TUN Tunisia
CAF Central

African
Rep.

IDN Indonesia NER Niger TUR Turkey

CAN Canada IND India NGA Nigeria TWN Taiwan
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CHE Switzerland IRL Ireland NIC Nicaragua TZA Tanzania
CHL Chile IRN Iran NLD Netherlands UGA Uganda
CHN China IRQ Iraq NOR Norway UKR Ukraine
CIV Côte

d’Ivoire
ISR Israel NPL Nepal URY Uruguay

CMR Cameroon ITA Italy NZL New
Zealand

USA United
States

COG Congo JAM Jamaica OMN Oman UZB Uzbekistan
COL Colombia JOR Jordan PAK Pakistan VEN Venezuela
CRI Costa Rica JPN Japan PAN Panama VNM Vietnam
CUB Cuba KAZ Kazakhstan PER Peru YEM Yemen
CZE Czech

Republic
KEN Kenya PHL Philippines YUG Yugoslavia

DEU Germany KGZ Kyrgyz
Republic

PNG Papua New
Guinea

ZAF South Africa

DNK Denmark KHM Cambodia POL Poland ZAR Zaire
DOM Dominican

Republic
KOR Korea PRK Korea Dem.

People’s
Rep.

ZMB Zambia

DZA Algeria KWT Kuwait PRT Portugal ZWE Zimbabwe
ECU Ecuador LAO Lao PDR PRY Paraguay
EGY Egypt LBN Lebanon ROM Romania

3.4.2 Exploration Support for General Patterns and Clustering

In the distance matrix [Figure 3.5(b)], countries having similar characteristics based on
the multivariate attributes are positioned close to each other, and the distance between
them represents the degree of similarity or dissimilarity. For the exploration of the SOM
visualizations, some geographic maps of the data set are represented in Figure 3.8 for
selected attributes: coastal population density, percentage population within 100 km of
coast or river, GDP per capita, distance (km) to closest major port, percentage of land
area in the subtropics, and percentage of land in the geographic tropics.

The U-matrix in Figure 3.6(a) reveals commonalities among countries based on the
multivariate attributes. At the top of the map, we have the poor economies, mostly the
African countries, and at the bottom the rich economies (see Table 3.2).

From this clustering structure, differences can be observed between countries in
different parts of the world. A very striking observation is that the clustering somehow
reflects the geographic location of the countries. This confirms the general hypothesis
suggesting that there is a relationship between the geographic location of the countries and
economic growth (Gallup et al., 1999). Even further clustering that reflects the distinct
geographic regions is obtained with the similarity matrix representation: West Africa,
Southern Africa, the Middle East, Europe, South America, North America (USA and
Canada), and Asia. The European countries are in three different clusters next to each
other and close to USA and Canada.

A few cases do not reflect this geographic relationship. Laos is found in a cluster
with some poor African economies (Central Republic of Africa, Ethiopia, Uganda, Chad,
Burkina Faso, Mali, Niger). This may be because Laos’s economic characteristics are
low compared with those of the other Asian countries and it falls closer to Africa than
Asia in this respect. Other countries that have no obvious characteristics in common with
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Figure 3.8 Some maps were created using ArcGIS and represent selected attributes: coastal
population density, percentage population within 100 km of coast or river, GDP per capita,
distance (km) to closest major (European) port, percentage of land area in the subtropics,
and percentage of land in the geographic tropics

the others in the same geographic region include Mauritania, Yemen, Pakistan, Iran and
Mauritius. South Africa has particular characteristics that position the country far away
from other African countries and closer to the Middle East, Iran and Pakistan, on the one
hand, and close to Bolivia and Paraguay on the other.

The same information provided in the distance matrix can be viewed using 2-D or 3-D
surfaces.

3.4.3 Exploration of Correlations and Relationships

Exploration of relations among attributes and map units is primarily based on the visual-
ization of component planes (Figure 3.7), user selection and interaction from the user
interface (Figure 3.5). Component planes visualization is used to offer a supportive view
that provides exploration of the relationships among different variables for specified
locations. The component planes show the values of different attributes for the different
map units (countries) represented by hexagonal cells (neurons of the SOM network)
and how each input vector varies over the space of the SOM units. In comparison
with geographic maps, patterns and relationships among all the attributes can be easily
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examined in a multiple views using the SOM component planes visualization. Two
variables that are correlated will be represented by similar displays. In Figure 3.7, all
the components are displayed and a selection of some of them can be made for further
analysis. This kind of visual representation (imagery cues) can facilitate visual detection,
and has an impact on knowledge construction (Keller and Keller, 1992).

For this example exploration of relationships and correlations, a summary of the
geographic patterns was made based on the average GDP per capita, total population and
land area, and several key variables that can be related to economic development: the
extent of land in the geographic tropics, the proportion of the population within 100 km
of the coastline or within 100 km of the coastline or ocean-navigable river, the percentage
of population that lives in landlocked countries, the average distance by air (weighted by
country populations) to the closest core economic areas, the density of human settlement
(population per square km) in the coastal region (within 100 km of the coastline) and
the interior (beyond 100 km from the coastline). The tropical countries were defined as
being those that have half or more of the land area in the geographic tropics.

From these patterns the following question can be raised: How great a role has
geographic location of the countries played in economic growth, assuming that economic
policies and institutions are well established?

This complex linkage between geography, demography, health and economic perfor-
mance requires closer examination. Using the component planes visualization, we
examine two geographic correlates of economic development that were outlined by
Gallup et al. (1999) and generate other possible hypotheses that the SOM technique
allows. The countries in the geographic tropics are nearly all poor. Almost all high-
income countries are in the mid and high latitudes. Coastal economies are generally
higher income than the landlocked economies.

From the component plane visualization in Figure 3.7, a simple view of the displays
allows the attributes to be visually related to the spatial locations. Observed correlations
and relationships can help in the understanding of the patterns in the data. To enhance
visual detection of the relationships and correlations, the components can be ordered
so that variables that are correlated are displayed next to each other in a way similar
to the collection maps of Bertin (1981). From the displays in Figure 3.7, relationships
among different variables can be observed in one multiple view. For example the poorest
economies (reference to the 1995 GDP from the data set) have characteristics such as
large proportion of land and population in the geographic tropics, population highly
concentrated in the interior, often landlocked, small proportion of land within 100 km
of the coast or river, located in the southern hemisphere, and often with tropical or
subtropical deserts. Most of these characteristics were identified as closely associated
with low income in general (Gallup et al., 1999). Other common characteristics of these
countries that can be seen as a consequence of the low income are also visualized in
the component planes. The poor countries have low life expectancy, high shipping costs,
and heavy disease burdens of malaria; they are very far from the closest core markets in
Europe, and many have external wars. From these observations, it can be hypothesized
that various aspects of tropical geography and public health are vitally important and
affect economic growth (Bloom and Sachs, 1998). South Asia, Latin America, the eastern
European countries and the former Soviet Union are like Sub-Saharan Africa, with
more concentrated in the interior rather than at the coast. Landlocked countries may be
particularly disadvantaged by their lack of access to the sea. They all have low income
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except those in western and central Europe (integrated into regional European market and
associated low-cost trade). High population density seems to be favorable for economic
development in coastal regions with good access to internal, regional and international
trade. The poorest economies have low urban population density. The urban areas seem
to develop more in the coastal regions.

3.5 CONCLUSION AND DISCUSSION

In this chapter we have presented the implementation of an approach to integrate compu-
tational and visual analysis into the design of a prototype visualization environment
intended to contribute to the analysis of large volumes of geospatial data. This approach
focuses on the application of the SOM algorithm to extract patterns and relationships in
geospatial data, and the visual representation of derived information. We have presented
an application of the SOM algorithm for exploratory visualization, as applied to socio-
economic data sets. The SOM demonstrates important capabilities for features extraction,
clustering and the projection of the data set. The spatial representation of the SOM (grid)
provides opportunities for exploring the attribute space in relation to the spatial locations.
A number of visualization techniques were used to explore ways of supporting exploratory
tasks and knowledge construction.

A user interface was developed to integrate the different graphical representations and
support the exploration process by supporting a number of user activities. The interface
is structured to provide a global view and summary of the data as well as tools for
detailed exploration of relationships and correlations for exploratory analysis purposes.
Interaction was needed to enhance user goal-specific querying and selection from the
general patterns extracted to more specific user selection of attributes and spatial locations
for exploration, hypothesis generation, and knowledge construction. Interactive manipu-
lation (zooming, rotation, panning, filtering and brushing) of the graphical representations
was used provided to enhance user interaction, the objective being to explore ways of
supporting visual exploration and knowledge construction.

As such, the SOM can be used as an effective tool to visually detect correlations
among operating variables in a large volume of multivariate data. New knowledge
can be unearthed through this process of exploration, which can be followed by the
identification of associations between attributes, and finally the formulation and ultimate
testing of hypotheses. Since the SOM represents the spatial clustering of the multivariate
attributes, the visual representation becomes more accessible and easy for exploratory
analysis and knowledge discovery. This kind of spatial clustering makes it possible to
conduct exploratory analyses to help in identifying the causes and correlates of health
problems when overlaid with other data, such as environmental, social, transportation,
and facilities data. Such map overlays have also been important hypothesis-generating
tools in research and policy-making.

The link between the attribute space visualization based on the SOM, the geographical
space with maps representing the SOM results, and other graphics such as parallel
coordinate plots in multiple views offers alternative perspectives for better explo-
ration, evaluation and interpretation of patterns, which ultimately supports knowledge
construction. These aspects will be the focus of a subsequent usability test to characterize
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the overall effectiveness of the representations used in the exploratory geovisualization
environment.
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4.1 INTRODUCTION

The analysis of the modalities of spatial interaction has been a long-standing concern
among spatial scientists because they are known to be the generating force behind many
geographic structures (Gould, 1991) and because of the multiplicity of dimensions along
which they can be examined [Figure 4.1(a)]. Although it is still quite difficult to obtain
data on movement at the elemental level, e.g. at the person, firm, or vehicle level,
many types of aggregate data at a fine geographic resolution have become available.
For instance, the United States Bureau of Transportation Statistics (BTS) coordinates the
conduct of regular surveys of personal travel on long and short distance, such as the
American Travel Survey. The BTS also has responsibility for maintaining geographically
disaggregated databases of commercial trade flows between the United States and Canada.
In the field of domestic air travel, this agency maintains the Airline Origin and Destination
Survey Database Market Table (DB1BMarket), which is derived from a 10 % sample
of all airline itineraries issued quarterly by each airline. Because of its fine geographic
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Figure 4.1 Dimension tube of spatial interaction data and data transformation procedure:
(a) O-D matrices; (b) dyadic matrix

detail (origins and destinations are at the airport level), the DB1BMarket database can
reasonably be expected to conceal a wealth of information that could provide unparalleled
insights into the formation of airline market structures over time and across space.

In fact, with of the availability of large-scale digital spatial interaction databases rich
in attribute information (flow type, transportation mode, timeframe, and others) such
as DB1BMarket, the opportunity exists for researchers to examine the formation of
different types of spatial interactions as well as their interdependencies by exploring
the patterns embedded in the data. Methods of flow data compression and of visual
exploration that have been proposed so far for this purpose have been found to exhibit
serious limitations. In this chapter, a novel exploratory analysis approach is introduced
to extract significant geographic patterns in large spatial interaction flow databases.
The computational method of self-organizing maps (SOMs) is the search engine in this
process. To facilitate the data exploration and knowledge discovery process, an interactive
visual data mining (VDM) environment is proposed, in which various visualization forms
are integrated by implementing a number of interaction techniques. This chapter aims to
illustrate the potential usefulness of this integrated visual and computational approach in
extracting novel geographic structures from large spatial interaction databases, for which
traditional visualization techniques and more conventional data compression techniques
are inherently problematic. Findings presented in this chapter come from the study of air
travel structures extracted from the 2002 DB1BMarket database.

The chapter is organized as follows. Section 4.2 gives a brief overview of some
relevant lines of research on visual exploration and spatial interaction systems. Section 4.3
will present the VDM environment proposed for the exploration of spatial interaction
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databases. A selection of results from the US domestic air transportation case study is
discussed in Section 4.4. Conclusions are presented in Section 4.5.

4.2 THEORETICAL BACKGROUND

4.2.1 Spatial Data and Visual Exploration

The exploration of spatial data involves some synthetic description of the data through
a process of discovery of geographical structures that does not necessitate more than
a few a priori assumptions. As in data mining and knowledge discovery in databases
(Frawley et al., 1991), new knowledge may be acquired through a highly iterative and
interactive process of target data selection, structure extraction/data mining, and evalu-
ation/verification. In geography, the amount of geographically referenced data continues to
accumulate with the spread of information technologies, digital mapping, satellite imagery,
and the global diffusion of geographic information systems (GIS). This certainly provides
us strong rationale to develop a data-driven, inductive approach to geographic analysis and
modeling with the objectives of facilitating the creation of new knowledge and aiding the
processes of scientific discovery and deductive modeling, as argued by Openshaw (1999).

Many methods of exploratory spatial data analysis (ESDA) have strong ties to visual-
ization. In ESDA, visual methods are not only instrumental in verifying and evaluating
results, but also in generating and suggesting patterns and relationships. Data not yet
fully understood can be classified, summarized, and formed into high-level structures on
the basis of which new concepts can be developed for the benefit of more robust spatial
modeling and better spatial theories. Exploring unknown phenomena often requires that
certain intuition and background knowledge be incorporated. Visualization happens to
be a very powerful strategy for getting high-level human intelligence involved in this
process since human vision is extremely effective when it comes to recognizing patterns,
relationships, trends, and anomalies (Bailey and Gatrell, 1995; Wachowicz, 2001).

Whether spatial or not, most common visualization techniques have been developed
for the exploration of univariate or bivariate data sets (Fotheringham, 1999; Fother-
ingham et al., 2000; MacEachren and Kraak, 1997). Recent advances in geographic data
mining and geographic knowledge discovery (Miller and Han, 2001) fully extend the
functionality and applicability of the existing ESDA methods by offering new computa-
tional mechanisms to sift through large geographic databases for meaningful information.
MacEachren et al. (1999) identify some common themes and potentials for the integration
of (geo)visualization methods and computational methods by comparing how both are
used in the search for patterns in large multivariate spatio-temporal environmental
databases. A conceptual framework for this integration is proposed by Wachowicz (2001).

4.2.2 Exploring Interaction Flows

The concept of spatial interaction (SI) is often used to describe the process by which
entities at different locations make any form of contact in the geographic space (Fother-
ingham and O’Kelly, 1989; Roy and Thill, 2004). The entities can be of various natures,
i.e. individuals, vehicles, or organizations. The contacts between interacting entities are
usually expressed in some sort of transfer of people, materials, information, or energy. In
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a general sense, SI can be seen as a general term for describing the movement of people,
goods, capital, or information over space.

Roy and Thill (2004) contend that, in spite of the long history of modeling of SI systems
and of the processes controlling them, there is room for further enhancements. This is
particularly the case when it comes to capturing the role of local contexts, locational
patterns in interaction origins and destinations, and spatial interdependencies in framing
functional relationships between locales. Such endeavor partakes in the broader trend
that has permeated spatial analysis (Fotheringham, 1997) to stress local perspectives. Our
ability to develop new deductive modeling paradigms rests squarely on prior knowledge
of spatial structures embedded in SI data. To this day, this knowledge has primarily
been deductive and little attention has been paid to the exploratory analysis of SI data.
Exploratory techniques to representing spatial interaction data date back to Ullman’s
(1957) seminal analysis of US commodity flows and the Chicago Area Transportation
Study (1959), in which movement is represented by ‘desire lines’ or aggregated to
rectangular flow bands with width proportional to flow magnitudes. Movement and flow
mapping quickly becomes problematic as the size of the spatial system under study
becomes greater than trivially small. The recognition of spatial structures is gravely
hindered by purely visual approaches to the exploration of spatial interaction data to the
point that some form of data compression is advocated to reduce the apparent complexity
found in large flow matrices.

Tobler is one of only a few scholars who have continuously contributed to this field
of visualization and exploration of SI data. In the 1970s and 1980s, he published a series
of papers that ally mathematical modeling and cartographic mapping methods (Tobler,
1976, 1978, 1981, 1987). The approach serves to visualize the surface of net flows
between origins and destinations. The surface is displayed as a field of vectors, which
approximate the gradient of a scalar potential computed from the relative net exchanges
of flows. Tobler refers to this innovative data exploration method as ‘winds of influence’,
by using the earth science analogy of ‘pressure field’ that gives rise to winds. The idea of
‘vector field’ has also been used by some other geographers to analyze both directional
and distance components of movement encapsulated in SI data. For instance, Berglund
and Karlström (1999) conducted a spatial autocorrelation analysis based on the local G
statistic to study the spatial association of flows. Lu and Thill (2003) proposed a more
comprehensive approach to detect hot spots of multi-location events and applied it to the
study of vehicle theft and recovery in Buffalo, NY.

Marble and colleagues (Marble et al., 1995, 1997) also made a significant contribution
to the exploratory analysis of spatio-temporal interregional flows with a new approach
that makes extensive use of scientific visualization. Their approach implements some
dynamic graphics-based tools, which allows the analyst to map various interregional
flows, to examine both total set and subset of the flows, and to compare flow volumes
with selected characteristics of origins and destinations. However, as the authors point out,
cartographic mapping can become unwieldy when the number of pairwise interactions
is very large and multidimensional flow matrices are under examination. To facilitate
the visualization and analysis of geographic structures in interaction flows, Marble and
his colleagues use a typical data projection method, namely, projection pursuit (PP) that
reduces the dimensionality of flow matrices.

In fact, as early as the 1960s, some spatial scientists explored the effectiveness of
reducing the complexity of SI data to uncover essential relationships (or structures) within
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transportation flow matrices. As stated by Smith (1970, p. 411), the intended purpose is to
identify ‘generic locational characteristics of groups of origins, or of groups of destinations,
or of groups of origins and destinations’ that are not readily apparent from the inspection of
flow matrices or maps thereof. Pioneering work was done by Berry (1962, 1966) along this
line of research. He developed three factor analysis (FA) approaches to identify the major
commodity flow patterns of India from 63 36 × 36 commodity flow matrices. The first
approach consists in an R-mode analysis, whereby flow destinations are factored to identify
clusters of destinations with similar profile of incoming flows. The Q-mode analysis accom-
plishes the same for flow origins. The third approach extracts structures among thematic
dimensions (for instance, commodity types) on each origin-destination pair (dyad). Black
(1973) uses the term ‘Dyadic Factor Analysis’ to describe the latter modality of appli-
cation of FA. However, methods like PP and FA can only reduce data complexity in the
thematic dimensionality of the data by identifying a smaller number of latent components
that represent the fundamental structures. Those that can deal with data compression on both
data volume (i.e. cases or observations) and thematic dimensionality are much better suited
to explore the structures embedded in large SI datasets. The emerging geocomputational
paradigm (Openshaw and Abrahart, 2000) and its integration with methods of information
visualization into a new visual data mining (VDM) environment (Ferreira de Oliveira and
Levkowitz, 2003) offers new ways to address the problem of condensed visualization of
essentially relationships within a SI system.

4.3 METHODOLOGY

4.3.1 Limitations of Traditional Data Reduction Methods

In order to identify structures in large geographic databases with high thematic dimen-
sionality, a crucial task is to reduce both the number of attributes (Data Projection) and
the number of cases (Data Quantization) without losing too much useful information. This
means that we need to filter out uninteresting items or attributes to retain essential struc-
tures and group similar cases. A number of conventional multivariate statistical methods
such as FA, principal component analysis (PCA), multidimensional scaling (MDS), PP,
k-means, and hierarchical clustering address this type of needs, but they share some
limitations. To name a few, variables are often expected to be normally distributed; the
assumption of linearity between variables is usually necessary and stationary is often
required. Furthermore, these methods normally look for general or global relationships,
not local structures within data.

These restrictions are hard to overcome in geographically referenced data, which are
usually nonlinear, nonstationary, sparse, of no known distribution, often constituted in
arbitrary geographic units, and available in large volume. In addition, they can only
handle data compression in either data volume or thematic multidimensionality, one at a
time. To achieve both, the only solution is to carry out two separate tasks sequentially:
reducing the number of variables first, and then the number of data items, or the other way
around. The problem with this approach is that the conclusions inferred from the second
step are conditional upon the outcome of the first step. Consequently, dependencies
between spatial structures and other thematic aspects of interaction systems (transport
mode, transportation service providers, and so on) are investigated only in one direction,
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while controlling for the other. This calls for methods in which the two tasks interact
with each other in a single process.

4.3.2 Self-Organizing Maps

The method of SOMs can be considered as a combination of data projection and data
quantization. It is a special kind of competitive neural networks. The principle behind it is
rather simple: neurons in the output layer compete with each other and the winner earns
the right to represent the input data vector on the basis of some measure of dissimilarity
in the attribute space (Kohonen, 2001). SOM allows the winner node, as well as the
nodes in its neighbor, to learn the new input-node match and adapt so that each node
gradually specializes to represent similar inputs. It preserves the natural order in the input
attribute space of the data. As a result, data vectors with more similarity are close to
each other on the feature map grid and essential relationships in the input data set can
be visualized in a condensed form.

The principles of the SOM method are not discussed here as Chapter 1 gives a detailed
account of it. It suffices here to highlight the properties of SOM that make it well suited
for SI data reduction. In comparison with traditional clustering methods, SOM has a big
advantage in that it relies on the continuous ‘learning’ of all input data. This is a radical
departure from the k-means method, which uses only the nearest distance for clustering.
In addition, SOM offers some powerful visualization tools for data exploration (Vesanto,
1999). In fact, the regularly shaped projection grid greatly facilitates the comparison of
different visualization forms. It provides a valid platform for user interaction and control,
which is an essential part of visual exploration in large complex spatial data. Lastly,
probably the most compelling argument in favor of SOM for exploring SI systems is
that it is capable of both data projection and data quantization simultaneously. Many SI
systems, such as the domestic air traffic system, are often constituted in large databases
with high thematic dimensionality and thus both data quantization and data projection are
essential. This enables the exploration of all possible structures, without any preconceived
views on influential relationships. As shown in Figure 4.1, in addition to the geographic
origins and destinations, many SI data are complicated by the third dimension, which
could include flow type, transport mode, transport time, or any other quality or quantity
of SI. In many cases, we are in fact more interested in how groups of origins, groups of
destinations and various interaction attributes work together to shape SI systems in the
geographic space over time.

4.3.3 Visual Data Mining

VDM is a collection of interactive reflective methods that support the exploration of
data sets by dynamically adjusting parameters to display how they affect the information
being presented (Ferreira de Oliveira and Levkowitz, 2003). This emerging area in
exploratory and intelligent data analysis and mining draws on concepts from visualization
and data mining. The effectiveness of visualization techniques in displaying geographic
data provides us a solid base to integrate geovisualization methods with computational
methods and data mining techniques.
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With SOM as the core data mining engine, an integrated approach is developed for
analyzing large SI databases. Following the framework suggested by MacEachren et al.
(1999), a prototype interactive VDM environment is developed using ESRI’s ArcObjects
and Visual Basic, in which different visualization forms are integrated through interaction
forms. Each visualization form can be seen as a different view of the actual SI data. For
instance, a ‘cartographic map’ displays the geographic distributions of flows among sets
of origins and destinations, while a ‘SOM component plane’ identifies the properties of
clustered structures in the input attribute space by means of a two-dimensional grid where
each node takes the value of a selected component of the prototype data. By linking the
component plane and the cartographic map together, it is possible to examine how the
clustered structures detected by SOM are geographically defined. Besides linking, some
other interaction forms are implemented in this VDM environment, including assignment,
color-map manipulation, focusing, and brushing (Figure 4.2).

A loosely coupled integration strategy is used, in which SOM training is conducted
using SOM Toolbox 2 (http://www.cis.hut.fi/projects/somtoolbox/) in UNIX workstation.

Figure 4.2 Selected user interaction forms in the VDM environment. (a) Assignment: allows
the analyst to visualize the passenger volume of different airlines. (b) Color manipulation
on parallel coordinates plots: colors are used to draw the markets that originate in different
geographic regions. (c) Focusing: two scroll bars are used so that the upper bound and lower
bound of passenger flow can be changed dynamically in display. (d) Linking and brushing:
highlighted in the geographic map are the markets represented by the neurons selected in
the component plane (See Colour Plate 10)
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SOM Toolbox 2 is freeware, developed in Matlab 5 (http://www.mathworks.com) by a
research group with the Laboratory of Computer and Information Science at the Helsinki
University of Technology, Finland. In a second stage, training results are brought into
the VDM environment for post-training evaluation and interpretation. In addition to
SOM maps and geographic maps, the prototype VDM environment also includes other
common techniques of exploratory data analysis (Fotheringham et al., 2000) to assist the
understanding of original data and the evaluation of the results, such as scatter plot, star
coordinate plot, and parallel coordinate plot.

Figure 4.3 illustrates the linkage of various visualization forms in the prototype VDM
environment. The linkage of multiple SOM component planes is straightforward as a

Figure 4.3 Framework of the integrated VDM environment. The linkages among different
visualization forms can be implemented mainly through four ways: by position (the position
of data items remains fixed across visualization forms); by color (the same color is used for
the same group of data items); by line (the same data items are connected by explicit lines);
by motion (groups of data items are displayed one after another using animation) (See Colour
Plate 11)



Visual Exploration of Spatial Interaction Data 75

result of the identical positions of the nodes across all these planes. Likewise, various
geographic maps are connected via position as well. In addition, an animation technique
is also used which allows the analyst to examine the step-by-step changes of a flow map
by automatically incrementing either upper or lower bound on the interaction attribute.
Finally, dynamic linking is implemented among different types of visualization forms in
this prototype VDM environment.

4.4 CASE STUDY: US DOMESTIC AIRLINE MARKET

4.4.1 The State of the Industry

Ever since the enactment of the Airline Deregulation Act of 1978, the US domestic
airline industry has changed rapidly from a regulated and stable system to an unregulated,
turbulent, and dynamic situation. Nationwide, the market has become highly concentrated
as the number of major airlines has declined. Although average airfare has dropped,
consumers in markets with high concentration have actually experienced an increase in
airfare and a loss of service due to lack of competition. This is especially the case for
small and middle size communities in the Southeast and the upper Midwest (Goetz and
Sutton, 1997). The recent trend suggests that further consolidation in the US domestic
airline industry is still underway.

Geographers have shown considerable interest for the geography of the US airline
industry post deregulation. Most previous studies were conducted at the point market
level; air travel was aggregated to cities by singling out either the origin or the desti-
nation (Goetz and Sutton, 1997; Vowles, 2000). Results at this level can be very
misleading because they smooth the differences between city-to-city markets. Therefore
travel itineraries1 in terms of pairs of origin and destination cities are more appro-
priate for studying essential geographic relationships in the US domestic airline industry,
since they represent the scale of the actual decision making process. After all, city-
pair markets are the specific products that consumers purchase. Patterns and dynamics
at this level are closer to the reality of the underlying processes of demand and
supply if one seeks to understand the underlying processes of the formation of spatial
interaction.

4.4.2 Data and their Representation

The VDM approach is applied to an SI database, called the Airline Origin and Desti-
nation Survey Market Database (DB1BMarket), which is derived from a 10 % sample
of airline tickets sold quarterly by each large certified air carrier operating scheduled
passenger service in the US (GPO, 2003). Attributes in this database include number of
passengers, airfare, and miles flown. It is the most significant data source for analyzing
structure in the US domestic airline industry. In the next section, data representation of
spatial interaction is briefly discussed. To illustrate the effectiveness of the integrated

1 This notion is different from the route, which is a point-to-point segment of the air transportation system, without any transfer
airport in-between.
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SOM-VDM approach to knowledge discovery, findings from 2002 data are presented in
Section 4.4.3.

SI data are most commonly represented by a matrix construct called an origin-
destination (O-D) matrix [Figure 4.1(a)] where each row is indexed by an origin and
each column by a destination (Black, 2003). Each element of the O-D matrix corre-
sponds to a certain measure of interaction intensity or quality (for example, the flow
volume of a certain type) taking place between the respective origin and destination. The
diagonal elements can be used to represent intra-regional interactions (flows within a
region) or simply be left out if intra-regional relationships are ignored or nonexistent, as
is the case with air travel. Basic O-D matrices can also be transformed into a so-called
dyadic matrix [Figure 4.1(b)]. This representation is more table-like: each row corre-
sponds to an O-D pair while each column represents a particular interaction attribute. A
dyadic matrix is used in this research because multiple O-D matrices need to be handled
at once.

Data in the 2002 DB1BMarket database are transformed into a dyadic matrix wherein
each column containing either the share of the market held by a particular airline (in %)
or the average market airfare charged by this airline (in current $). Airports located in the
same metropolitan area are pooled together. Only markets between the 278 metropolitan
areas in the contiguous US are considered in this study. A total of 34 certified air carriers
operated inside the US in 2002; as a result, there are 68 data fields in the final input data
table.

4.4.3 Results and Discussion

Intensive training and parameter testing were conducted to arrive at the results presented
here. A two-stage training process is followed, namely, a rough training stage followed
by a fine-tuning stage. Both training stages are based on a 10 × 8 hexagonal SOM
lattice. In the rough training stage, the initial neighborhood radius is set to 3, the
initial learning rate is 0.5, and training is conducted over two epochs; in the fine-
tuning training stage, the initial neighborhood radius is reduced to 1, the initial
learning rate is 0.05, and training extends over 20 epochs. In both stages, the final
neighborhood radius of 1 is used, the learning rate function is linear, and similarity
between data vectors is measured by the Euclidian distance. All input variables are
normalized to a [0 1] interval. The reverse normalization procedure is also applied to
the SOM prototype data so that the final results can reflect the actual scale of data
variation.

A critical issue is whether SOM can pick out the structures embedded in the input
SI data. SOM has quite a few visualization methods for detecting the clustered struc-
tures and revealing the overall data shape. Most notably, the very principle of SOM
is based on the projection of each original data vector to a node that is its BMU.
With this property, the structures identified in the output neurons can be assumed true
to the original data as well. In SOM, the technique of ‘distance matrix’ can be used
to visualize the patterns in SOM prototype data qualitatively. In principle, colors (or
other visual variables) can be assigned to each node on a SOM feature map on the
basis of a certain statistic of inter-node distances, e.g. minimum, median, or maximum
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of the distances to its neighbors. In Figure 4.4(a) (U-matrix), the color of map units
(hexagons) denotes the distance of SOM nodes to their respective neighbors. Red corre-
sponds to the largest distance while blue represents the smallest distance. A cluster
of similar markets can often be identified as an area with low distance values delin-
eated by a border of nodes with high values (thus large distances between nodes).
Several clusters can be recognized in Figure 4.4(a). Figure 4.4(c) and (d) (basic distance
matrix) exhibit the same patterns as the U-matrix in (a), except that the mean distance
between each node and its adjacent neighbors is used. They are also smoothed linearly
in order to enhance visual effect (two- and three-dimensional surfaces). This spatial
pattern is more formally revealed in Figure 4.4(b) by the k-means clustering solution
computed on the SOM prototype data. Of all the possible numbers of clusters, the
clustering with k = 9 is reported here since it results in the best Davies–Bouldin
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Figure 4.4 Distance matrices and clusters based on 2002 market share information:
(a) U-matrix; (b) clusters identified by k-means; (c) distance matrix (two-dimensional);
(d) distance matrix (three-dimensional) (See Colour Plate 12)
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index (Davies and Bouldin, 1979). The Davies–Bouldin index is a validity index for
evaluating clustering results. It is a function of the ratio of the sum of within-cluster
difference to between-cluster separation. The lower the index value the better the
clustering.

The SOM method extracts high-level structures marked in the clustering of similar
prototype data of the feature map. Both the U-matrix and the basic distance matrices
suggest that certain structures exist in the US domestic airline market. However, a more
vital question is what factors can be attributed to each cluster. This can be answered by
directly visualizing the distribution of the value and importance of each component with
SOM component planes [Figure 4.5(a)]. SOM prototype data have the exact same number
of components as the number of interaction attributes of each input case. By visually
comparing distance matrices to component planes, we can find out which component
or combination of components contributes the most to a particular cluster. For instance,
cluster 2 identified by k-means is associated with high values of market share held by
US Airways (US airline code). Hence, the nodes that form cluster 2 can be interpreted
as the directional city-pair markets dominated by US Airways. Following this example,
we can mark each cluster in Figure 4.4(b) by certain properties, that is, the components
(airlines) that contribute to it more visibly. These properties are reported in Table 4.1.

(a)

(b)

9N AA AQ AS AX B6 CO DL EV F9 FL G4

HA HP JI MQ N7 NJ NK NW OH OW PN QX

RU SM SY TZ UA US WN XJ YX ZW

9N AA AQ AS AX B6 CO DL EV F9 FL G4

HA HP JI MQ N7 NJ NK NW OH OW PN QX

RU SM SY TZ UA US WN XJ YX ZW

Figure 4.5 SOM component planes (the darker the larger the value): (a) market share;
(b) average airfare
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Table 4.1 Node clusters based on 2002 market share information

Cluster no. Cluster property (airline)

1 America West (HP)
2 US Airways (US)
3 Continental Airlines (CO), Continental Express (RU)
4 Northwest (NW), Mesaba (XJ)
5 Horizon (QX)
6 United (UA)
7 Air Wisconsin (ZW)
8 American (AA), American Eagle (MQ)
9-1 No dominant airlines
9-2 Southwest Airlines (WN)
9-3 Comair (OH)
9-4 Delta Air Lines (DL)
9-5 Delta Air Lines (DL), Atlantic Southeast (EV)

Let us examine more closely the properties of some clusters appearing in Figure 4.4(b)
and Table 4.1. Interestingly, cluster 8 is shared by two airlines, namely, American Airlines
(AA) and American Eagle (MQ). This result should not be a surprise since American
Eagle is a regional affiliate of American Airlines. The same occurs to cluster 3, in which
Continental (CO) and its Continental Express (RU) subsidiary define most heavily,
and cluster 4, where both Northwest (NW) and Mesaba (XJ), a regional affiliate of
Northwest, have high market share. Cluster 7, representing the markets of Air Wisconsin
(ZW, another subsidiary airline of Northwest), is just located below cluster 4 in the
feature map. All these observations indicate that the nodes representing similar markets
are indeed close to each other on the SOM feature map.

The U-matrix also recognizes more detailed structures than the specific 9-means
solution can capture. Cluster 9 could be further divided into five sub-clusters. Cluster
9-1 denotes the markets without any dominant airlines. Cluster 9-2 represents markets
dominated by Southwest (WN) while Comair (OH) has high values of market share in
cluster 9-3. Clusters 9-4 and -5 are dominated by Delta (DL) and Atlantic Southeast
(EV), a regional subsidiary of Delta.

Component planes also successfully capture the magnitude of market share and market
scope of many small airlines, including Allegiant Air (G4), Frontier Airlines (F9), Airtran
Airways (FL), Midway (JI), National (N7), Vanguard (NJ), Spirit (NK), Executive (OH),
Sun Country (SY), Mesaba (XJ), and Midwest (YX). They operate on few markets and
thus, fail to contribute in a meaningful way to any essential relationship embedded in
the SI data. The market share component planes of Aloha Airlines (AQ), Alaska Airlines
(AS), and Hawaii Airlines (HA) also exhibit low values. This is understandable given
that this case study is confined to the markets within the contiguous states, while these
airlines mostly serve the markets in and out of Alaska or Hawaii.

Component planes can also be used to examine the associations among components
(airlines in terms of both market share and average airfare). At first glance, the overall
patterns in Figure 4.5(a) (market share) and Figure 4.5(b) (airfare) may seem quite
different. However, when the attention is on the most meaningful information, close
correspondence exists. Invariably, nodes with high to moderately high market share also
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exhibit rather high fares. This suggests that airlines tend to set high airfare in the markets
where they have dominance. This is consistent with many previous studies and points to
the considerable impact that the level of competition has on the practice of setting fare
in the US domestic markets.

Another interesting observation derived from the analysis of component planes is that
airlines can still charge high fares in some markets even if they have relatively low
market share. For instance, American (AA) has two areas of high airfare as seen in the
component planes [Figure 4.5(b)]: one corresponds to markets that it has high market
share; in the second area American does not but Delta (DL) happens to have high market
share. Collectively American and Delta may have total control of these markets and
thus, both can set high fares. Also notice that Atlantic Southeast (EV) and Air Wisconsin
(ZW, a regional subsidiary of Northwest) charge their customers highest airfare since they
receive relatively very low competition from other airlines in their respective markets.
The markets within cluster 9-1 have the lowest airfare due to the lack of dominance
of any particular airlines. This further proves that high level of competition leads to
low pricing. At last, travelers obviously benefit a lot in markets served by low-fare
airlines, such as Southwest (WN), JetBlue (B6), Vanguard (NJ), Spirit Airlines (NK),
and Airtran Airways (FL), even when these low-fare airlines have relatively low market
share. Thanks to the competition of low-fare airlines, even full-service airlines are forced
to set lower fare in these markets too. The city-pair markets projected at the upper
right-hand corner of component planes are typical examples of the so-called ‘Southwest
effect’.

To further illustrate the effectiveness of the VDM approach, let us take a close look
at all city-pair markets originating in the Buffalo metropolitan area. In Figure 4.6,
these markets are mapped to match with SOM prototype data. At first glance, no
structure is apparent because these markets are scattered all over the entire SOM feature
map without any regularity [Figure 4.6(a)], a reflection of the fact that Buffalo does
not operate as a hub for any airline. Once we add to the SOM map a locational
descriptor of the destinations matched to each output node, i.e. state [Figure 4.6(b)],
and pinpoint airline dominance in component planes [Figure 4.6(c)], patterns in terms
of destinations and airlines emerge. City-pair markets from the Buffalo metropolitan
area to Southeastern states such as Georgia (GA) and Florida (FL) are controlled
by Delta (DL); on the East coast, by US Airways (US); to Southwestern states
such as Texas (TX), by American (AA) and Southwest (WN); to the upper Midwest
by both Northwest (NW) and United (UA); to the Pacific Northwest, by United
(UA). This structure is also confirmed in the geographic map of dominant flows
[Figure 4.6(d)].

Finally, a question of great pertinence to spatial scientists is how structures embedded
in the attribute space are distributed in the actual geographic space. In the prototype
VDM environment, flow maps and SOM feature maps can be directly connected via
dynamic linking and brushing. Figure 4.7 illustrates this functionality. In Figure 4.7(a)
nodes with high values of JetBlue (B6) market share are highlighted on the component
plane. The city-pair markets assigned to these nodes are highlighted on the map of market
served by JetBlue [Figure 4.7(b)]. These markets include the city-pair markets centred on
the area where JetBlue operates most, that is, the New York City region. This example
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Figure 4.6 Markets originating in the Buffalo metropolitan area: (a) hit counts; (b) most
frequent destination state; (c) selected SOM component planes; (d) markets with airline
market share > 50% (See Colour Plate 13)

underscores the ability of SOM in capturing the finer structures embedded in SI data in
addition to essential relationships. This ability afforded by the VDM environment to link
various visualization forms, here flow maps and SOM feature maps, provide us a rather
flexible but powerful way to evaluate and make sense of the results.
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(a) (b)

Figure 4.7 Markets of JetBlue identified by SOM: (a) market share component plane;
(b) flow map (passengers ≥ 20 000) (See Colour Plate 14)

4.5 CONCLUSIONS

When dealing with large SI databases with high dimensionality, it is often a prereq-
uisite to reduce the data complexity before any effective data analysis can be conducted.
The SOM method has the advantage of collapsing origin-destination information and
interaction attribute information simultaneously to retrieve essential and other well-
defined relationships embedded in the data. The consistent geometric properties of
the output of SOM training provide for powerful visualization tools for visual data
exploration, validation and evaluation. In addition, native SOM visualization forms can
advantageously be integrated in an interactive VDM environment, as illustrated in this
study.

Findings from the case study of US domestic air travel suggest that SOM is capable
of identifying clustered structures in large SI data sets. Through SOM training, we are
able to obtain an overview of a large data set. In the US domestic airline industry,
airline carriers tend to serve markets in different US regions in order to reduce direct
competition. In the markets where the level of competition is high, airfare tends to
stay low. The SOM method is also instrumental in uncovering other interesting and
less obvious relationships. For instance, our finding indicates that if in a market
where a major airline serves and its competitor is another major airline, the airfare
usually remains at a relatively high level, while if the competition is from a low-
fare carrier, the price is often driven down significantly. Many of these findings are
confirmed by a number of reports published by US General Accounting Office (GAO).
In summary, all of these suggest that SOM is capable of locating rather localized,
focused, or partial structures as well as essential relationships carried by the entire
dataset.

Finally, our research examines the roles of visualization in the exploration of spatial
interaction data. Visualization is commonly realized by using visual variables to describe
the different kinds of information in the data. Usually only a limited number of visual
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variables can be applied to a single visualization form; otherwise it will become too
complex to comprehend. In many cases, a complex data set often contains so many
clues that it is unlikely to show all of them in one single visualization method. The
idea is, in addition to reducing data complexity, to adopt multiple visualization forms so
that the number of visual variables can be multiplied and information in display can be
greatly increased. In our prototype VDM environment, a variety of visualization methods
are implemented and linked together. As a result, various aspects of spatial interaction
can be cross-examined intensively in order to fully understand the data. The improved
interactivity of visualization is useful since the purpose of data exploration is, after all,
to suggest hypothesis. For instance, linking SOM feature maps with geographic flow
maps simply offers us a way to take a look at how the structures revealed by SOM are
geographically defined. The findings in the case study indicate that it could be a possible
way to incorporate geographic properties with the existing data mining tools without
adding them directly into the algorithms.
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5.1 INTRODUCTION

Until recently, the study of variation within languages, under the general rubric of
dialectology, has been carried out using qualitative research approaches. The main tool
of dialectologists, the geographic concept of isoglosses (boundary lines between regions
in which different variants of a particular linguistic feature are found, such as pail in
one area and bucket in another), has primarily been applied through qualitative and
subjective assessment of the available data (Kretzschmar, 1992; Schneider, 1988). The
digital storage of linguistic databases such as the Linguistic Atlas of Middle and South
Atlantic States (LAMSAS) has enabled a more comprehensive analysis of lexical and
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pronunciation variants in large population groups [Kretzschmar and Schneider, 1996; see
Kretzschmar (1996a) for development of different quantitative analyses].

Linguistic research conducted over several decades indicates that American English
has a strong geographic component (Kurath, 1949; Labov et al., 2006). Field work as
well as carefully crafted statistical tests of spatial autocorrelation point in that direction.
Geography, significantly location, is the primary variable to be considered, because
people tend to talk like the people they talk with: linguistic features must be available to
people before they can decide to use them [see, e.g., the ideas of Saussure, as reported in
Kretzschmar (1998)]. People can only talk like people with whom they have had some
contact, whether personally or, much less importantly, through some passive medium
like reading or listening to the radio or watching television and movies [see Chambers
(1998) on the ‘myth’ that media such as television strongly affect people’s speech]. Social
variables such as education, social circumstances, age, and sex are then influential in
guiding the decisions that people make about the use of the linguistic features available
to them.

While it may be tempting for geographers to do so, we should not be trying to
find well-defined ‘regional dialects’ of English, i.e. a complete set of linguistic features
which is held in common by most or all of the speakers from some geographical area.
Regional differences in speech can be perceived by most people, but previous research
by Heeringa and Nerbonne (2001), Kretzschmar (2003), and others contends that such
neatly compartmentalized sets do not exist. The geographic expression of linguistic
variations is far more complex than can be captured by crisp regional boundaries. The
regional differences that we perceive have so far not been properly characterized in
geographical terms, nor correlated with social, demographic, and economic profiles of
individuals.

Previous methods of quantitative spatial analysis have not extracted meaningful
relationships from the LAMSAS databases for a number of reasons: data are often
sparse, have a skewed distribution and are highly multidimensional (Kretzschmar, 1996a).
This chapter presents a new approach to the spatio-linguistic analysis of the variations
of word usage and pronunciation in the North American Middle and South Atlantic
region that integrates Kohonen’s (2001) data reduction technique of self-organizing maps
(SOMs) and tools of visual data mining in a seamless environment. This approach
to knowledge discovery is well suited to the properties of large multidimensional
linguistic databases and opens new horizons for the reassessment of concepts and
theories that were devised decades ago on the basis of ad hoc qualitative research
techniques.

Section 5.2 gives a brief overview of the study of dialectal variations in American
English. This section also provides a background description of the nature of LAMSAS
data sets, which are the primary source of data in this research, and reviews earlier
efforts at the quantitative analysis of LAMSAS data. Section 5.3 presents the knowledge
discovery environment that was designed to reveal meaningful relationships from the
LAMSAS data sets, using the computational data mining capability of the SOM algorithm
and other interactive visualization tools. The functionality of the system is illustrated in
Section 5.4 on a small set of lexical variations commonly expected to discriminate
major dialectal variations along the eastern seaboard. Conclusions are presented in
Section 5.5.
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5.2 DIALECTOLOGY AND LAMSAS

The American Linguistic Atlas Project (ALAP), sponsored by the American Council
of Learned Societies, was begun in 1929 under the direction of Hans Kurath in New
England (Kurath, 1939–43). ALAP was conceived as a large-scale survey about the
words and pronunciation of everyday American English, and has been extended across
most of the United States with ALAP survey methods. ALAP interviews were conducted
with speakers of different ages and social circumstances, in cities as well as rural areas,
including extensive interviews with African Americans, so the ALAP surveys include a
wide spectrum of American speech. In creating this data set, ALAP adopted an integrated
cultural approach and divided the American English speakers into three cultural ‘types’:
Type I, ‘folk’ speakers, who were old, uneducated, and unconnected with community
affairs; Type II, ‘common’ speakers, who were younger, better educated, and with more
connections in the community; and Type III, ‘cultivated’ speakers, the best educated, well-
connected and high-culturally aware. The primary analytical tools in the main works to
exploit these data (Atwood, 1953; Kurath, 1949; Kurath and McDavid, 1961) were maps
based on isoglosses, boundaries of use by ALAP informants of individual linguistic
features. Weighting adverbs such as ‘regularly’, ‘frequently’, or ‘occasionally’ were
employed with reference to the intensity of the use of a feature, but no quantifying
statements were made.

The LAMSAS is the largest single survey of regional and social differences in spoken
American English (Kretzschmar et al., 1993). Of all the existing regional atlases, so far
it is the only one created as a geographic data library and for which a substantial portion
of linguistic attributes and features have been coded and stored electronically. LAMSAS
consists of interviews, transcribed in fine phonetic notation, with 1162 informants from
483 communities within a region that stretches from New York State south to Georgia
and northern Florida, from the eastern coastline as far west as the borders of Ohio and
Kentucky. Within the communities two speakers were normally selected as representative
of the community because of life-long residence there, one a member of the oldest living
generation with little education or compensating experience, one younger and better
educated with a less insular outlook. Interviews targeted 800 words or short phrases
designed to reveal regional and social differences in everyday vocabulary, grammar,
and pronunciation, through indirect elicitation of responses. Multiple responses from
each speaker were permitted for any given target. Field work was conducted from
1933 to 1974, but was largely complete by 1949. The database of communities and
informants has been geo-coded and can be queried interactively through a map interface
(http://us.english.uga.edu/lamsas/). Each of the questions available in digital form is
independently valuable as a research target since each question sought a particular variable
pronunciation, lexeme, or grammatical point; all questions offer pronunciation evidence,
since responses were recorded in phonetic notation.

While traditional dialectology was descriptive and qualitative, newer methods
embrace quantitative analysis in order to comprehend the complex multidimension-
ality of language variation. Statistical and computational data reduction techniques
not only shed better light on classical linguistic problems, but they also ‘suggest
avenues for exploring the question at more abstract levels, and perhaps for seeking
the determinants of variation’ (Nerbonne and Kretzschmar, 2003, p. 248), which
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is the argument put forth in this chapter. Over the past few years, LAMSAS has been at
the forefront of the computational movement in dialectology, having been subjected
to a variety of inferential statistics and analytical procedures of spatial analysis in
particular (Kretzschmar, 1996a; Kretzschmar and Lee, 1993; Kretzschmar and Light,
1996; Kretzschmar and Schneider, 1996).

Common multivariate statistics, including discriminant analysis, logistic, and log-
linear procedures, have been applied with rather limited success. All yield results, often
indicating interactions between variables (which one might expect from the plurality
of significant univariate tests), but the reliability of the results has been in question.
Some tests have proven sensitive to skewed data sets–and the majority of features in the
LAMSAS data sets occur in skewed proportions. A further problem is that the number
of cells for multivariate analysis by all categories of interest exceeds the number that can
reasonably be attempted given even the large size of the LAMSAS data set. Some tests
have no adequate measures of reliability.

However, spatial-analytic techniques have been applied with great success to LAMSAS
data. Joint-count statistics of given lexical variants were statistically significant in about
three-quarters of normally distributed variants, those elicited from between 20 % and
80 % of all communities (Kretzschmar and Lee, 1993). Further statistical evidence that all
speech has a strong geographic component was obtained by quadrat analysis (Kretzschmar
and Lee, 1993) and density estimation techniques (Kretzschmar and Light, 1996). In the
latter publication, probability maps were created for all lexical variants available. As
with the multiple comparison techniques, density plots generally correspond to isoglosses
posited by traditional, subjective methods, but always reveal more detailed insights than
previously available. Nerbonne and Kleiweg (2003) used multidimensional distances
reflecting dissimilarities between informants on the basis of lexical uses. Hierarchical
clustering of informants according to Ward’s variance minimization criterion produced
dialectal areas that mirror Kurath’s (1949) qualitative geographic partitioning of the
eastern seaboard into three main dialect areas. However, results of the INDSCAL variant
of multidimensional scaling applied to the same data pointed out that boundaries between
adjacent dialect areas are rather soft, instead of crisp (Heeringa and Nerbonne, 2001).
These findings indicate that language variation across the region forms a continuum,
instead of the sharply bounded set of internally coherent dialect regions predicted by
traditional linguistic theory and suggested by the subjective qualitative analyses of Kurath
and other traditional dialectologists.

5.3 DIALECT KNOWLEDGE DISCOVERY SYSTEM

5.3.1 System Design and Implementation

We propose an interactive system of exploratory spatial data analysis (ESDA) to detect
geographic and socio-economic associations in English dialect features. The system
seamlessly integrates multiple functions of dialect knowledge discovery in the linguistic
space, and seeks relationships between significant dialectal structures in the linguistic
space and the distributions in the geographic space; socio-demographic characteristics of
informants can then be associated with distributions in geographic space. The system is
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implemented in the Windows operating system as an application developed using ESRI’s
MapObjects, Visual Basic, and C++.

The core data mining engine consists of Kohonen’s (2001) SOM algorithm. SOM
serves the purpose of reducing the dimensionality of multidimensional linguistic data
sets, identifying latent organization rules, and classifying surveyed informants into larger
features exhibiting similar linguistic features. The computational algorithm of SOM is
integrated with different visualization forms to involve high-level human intelligence and
knowledge at two levels of the process of knowledge discovery. First, visual methods
participate in the verification and the evaluation of significant structures embedded in
the linguistic space as revealed by SOM’s data reduction algorithm. Second, they enable
recognition of relationships between linguistic ‘meta’-structures and patterns displayed
in the geographic and socio-demographic spaces. The visual method of exploration
constitutes a Visual Data Mining (VDM) environment that interactively supports the
process of knowledge discovery.

The hybrid SOM-VDM knowledge discovery environment is designed to answer a
number of specific questions on the linguistic and dialectologic reality in the Middle and
South Atlantic States, including:

1. How are linguistic features (whether words, grammatical constructions, pronunciations,
or combinations of the latter) distributed over geographic areas, if not in relatively
uniform patterns of complementary distribution (e.g. pail in one area, and bucket in
another)?

2. Since individual linguistic features can be shown to have specific distributions in
geographic space, are there some relatively small groups of linguistic features that can
be perceived as most ‘salient’ in our identification of regional differences?

3. What is the congruence between isoglosses posited by traditional, subjective methods
for simple linguistic features (lexical, pronunciation, or grammatical) and the ‘fuzzy’
multidimensional clusters derived from SOMs?

Finally, the function of the VDM to permit association of socio-demographic information
with the results of application of the SOM algorithm may lead to address one further
research question: What is the interaction of social variables such as sex, age, ethnicity,
occupation, and education, with geographic variables?

5.3.2 LAMSAS Data Mining

Word usage and pronunciation vary within all known languages spoken by living human
populations. All linguistic representations of even the most simple aspects of daily life,
such as the item in LAMSAS to elicit the name of the utensil in which one commonly
carries water from a well (i.e. pail or bucket), are characterized by specific lexical variants,
pronunciation variants, and various ways of participation in grammatical constructions.
The combinatorics and multidimensionality of patterns embedded in language data have
been a significant obstacle to the implementation of analytical techniques in dialec-
tology. Lexical data from large surveys such as the LAMSAS also present various other
challenges to conventional quantitative techniques that stem from survey design consider-
ations. The data are multiple response data, so for example some speaker might have said
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both skeeter hawk and snake doctor; thus the same speaker can be marked as positive
in more than one of the lexical files for any item. The data are clearly not normally
distributed. Furthermore, data sets are inherently sparse because of the large number of
lexical variations per word and the selectivity exhibited by informants in their use of
lexical variations [for distributional properties of such language data, see Kretzschmar
and Tamasi (2003)].

The LAMSAS survey design emphasized the indirect elicitation of responses from
informants in order to reduce the formality of the interview situation and increase the
spontaneity of responses. However, as pointed out by Nerbonne and Kleiweg (2003),
different field workers implemented the prescribed design in different ways at different
times, in different locales. The rate of failure to elicit a response for the use of specific
lexical variations strongly depends on the field workers’ own practices. Hence, for each
informant, there are three coding possibilities for each linguistic feature under analysis:
a ‘0’ if the speaker did not use the feature, a ‘1’ if the speaker did use it, and ‘99’ if the
item was not covered with the speaker. The last option is missing data, which turns out to
be a rather frequent and biased occurrence. The inherent properties of the LAMSAS data
set partially or completely invalidates a number of conventional methods of data analysis.
However, the SOM neural network has been shown to be robust while dealing with such
data (Openshaw and Openshaw, 1997). The conceptual and technical foundations of the
application of the SOM algorithm are presented in Chapter 1.

Aside from the contributions in this book, relatively few geographic applications of
SOM have so far been reported in the literature. The SOM algorithm has successfully
been used for the classification of remotely sensed data (Byrne et al., 1994; Chen and
Shrestha, 2000; Hara et al., 1994; Villmann et al., 2003). In all these works, SOM is
used as an unsupervised classifier, working on the multi-spectral information in remotely
sensed data. Openshaw and Wymer (1991) tested an application of the SOM algorithm
against a k-means classification on census data in the UK. Outside the application of
SOM to remotely sensed or census data, a handful of studies of geographic feature
identification have been conducted with the SOM algorithm. An early case study by
Kaski and Kohonen (1996) applied SOM to a data set of 39 welfare statistical indicators
of countries. Himanen et al. (1998) explored the applicability of SOM in identifying daily
travel patterns in a disaggregate travel diary data set. In 2001, Nerbonne and Heeringa
(2001) analyzed similarities between Dutch dialects with the SOM algorithm based on
Levenshtein distances, in which the authors interpreted proximity on the feature map in
relation to geographic proximities of communities surveyed.

Application of the SOM algorithm in a data mining process involves multiple steps,
which are depicted in Figure 5.1. Data, stored in a relational database to facilitate
geovisualization, are passed on to the SOM application. Pre-processing of original data
is necessary before cases are presented to the SOM algorithm for training. Two data
configuration options are available to reflect alternate views on the meaning of missing
information from a linguistic perspective and on the relative importance to impart to
positive and negative answers to the use of each lexical variation. In the first pre-
processing modality, a single input node is associated with each lexical variation: positive,
negative, and missing answers are respectively recoded x, y, and z, where 0 ≤ x ≤ z ≤ y.
This modality allows for flexibility in handling missing data. If it is believed that a
missing answer for a certain lexical variation is likely to signify that it is not used, the
analyst can elect to set z = x. As the degree of confidence in this position drops, z should
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Figure 5.1 SOM data mining process applied to LAMSAS data sets

be increased. For z = �x + y�/2, it is assumed that there is not sufficient information
to make any inference on missing answers; z values greater than (x + y)/2 are very
improbable given the nature of the survey design.

Each lexical variation is decomposed into three input nodes under the second pre-
processing modality, one node for each of the three possible answers (positive, negative,
missing or unreported). A positive answer is coded ‘1’ on the positive node, ‘0’ on the
other two; a negative answer is coded ‘1’ on the negative node and ‘0’ on the other two;
finally, a missing answer is coded ‘0’ on both the positive and negative nodes while
some pre-specified value 0 ≤ z ≤ 1 is assigned to the ‘missing’ node. The adjustable
z value serves to reduce the contribution of missing answers to the training of the SOM
network. At the limit, when z = 0, the network is trained only on positive and negative
answers. This flexible coding has the advantage of not discarding an entire informant’s
data vector just because part of it was not recorded.

The Kohonen output layer generated by the SOM algorithm consists of a square lattice
with variable numbers of rows and columns. Proximity between input and output nodes
is measured by the Euclidean distance. The neighborhood function is taken to include
neighbors in a square region centred on the winning node and shrinking linearly with
the number of iterations in the training process. Weights to winning nodes and their
neighbors are updated at each iteration with an error-adjustment coefficient:

0 < ��t� = e−d2/0�15

4t +1
< 1 (5.1)

where t is time defined as current_iteration/total_iterations and d is the Euclidean distance
between each node in the neighborhood and the input vector whose weights are to be
updated. The number of epochs and initial search radius are inputs supplied by the analyst
at the time of network training.

Once the SOM network has been trained and essential relationships in the linguistic
input data vectors have been identified, output nodes are classified into n number
of regions by means of a clustering algorithm using the centroid method (Sokal and
Michener, 1958). With this algorithm, clusters are considered to be dissimilar in accor-
dance with the squared Euclidean distance between cluster centroids. The data mining
application creates up to 10 partitions of the Kohonen output layer with different numbers
of clusters specified by the user. These solutions are graphically displayed in a sequence
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of color-coded square lattice maps. Other graphical outputs of the application include
the component planes and the U-matrix of the trained network. Non-graphical outputs
include a statistics file with the average U-matrix statistic and the average input–output
quantization error at each iteration, and a report file with estimated weights and the
distribution of linguistic profile of informants mapped to each output node.

5.3.3 Visual Data Mining

One of the problems in attempting to visualize LAMSAS lexical and pronunciation
data is that there is usually so much information that it is impossible to show it all
in a single figure. As the SOM algorithm reduces the dimensionality of a data set, it
permits visualization of essential relationships embedded in the original data as a series
of abstractions (‘meta’-structures) in different graphical forms under the control of the
analyst. When utilized interactively, the multiple visualization forms associated with
the SOM application (feature maps, component planes, and U-matrix map) enhance the
power of the method to discover new knowledge in complex data sets (Vesanto, 1999).
In addition, other visualization techniques can show relationships between linguistic data,
on the one hand, and geographic and social constructs on the other, such as brushing
and focusing, along with dynamic linking. The interactive role of the analyst in the use
of all of the visualization tools associated here with application of the SOM algorithm,
creates a VDM environment that complements computational data mining techniques
such as SOM networks [Ferreira de Oliveira and Levkowitz, 2003; for VDM conceptual
considerations see MacEachren et al. (1999) and Wachowicz (2001)].

The VDM environment developed for the exploration of LAMSAS data sets is sketched
in Figure 5.2. It enables the user to interact dynamically with three sets of linked visual-
ization forms, namely visualization forms associated with the prototype data generated
by the SOM data mining method at en earlier stage (feature maps, component planes, and
U-matrix map), geographic maps of LAMSAS survey informants, and plots and charts

SOM
Visualization

Socio-
demographic

Charts and Plots

GIS Map

User

Figure 5.2 VDM process applied to LAMSAS data sets
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of socio-demographic characteristics of informants (age, gender, ethnicity, educational
attainment, and others). With the power to navigate between these three spaces, the
analyst can explore geographic and social correlates of complex linguistic constructs.
Brushing and focusing techniques are enhanced by dynamic linking of the different types
of visualization forms in the VDM environment. For instance, when the user selects the
nodes belonging to a certain cluster on the SOM feature map, the locations of respondent
mapped to these nodes are highlighted on the GIS map. The reserve linking of selections
is also possible.

5.4 UNDERSTANDING SOUTHERN ENGLISH

The problem with conventional techniques for analysis of the most distinctive regional
variant of American English, Southern English, is that they have yet to get much beyond
mere perceptual description of Southern English (Kretzschmar, 2003). It is generally
accepted that Southern English is somewhere below the Mason–Dixon Line (Preston
1997), but we all tend to mean something different by the label ‘Southern English’. Of
course, it has long been known that there is a great deal of variation in the English spoken
by Southerners, measurably more variation than is found in the North (Kretzschmar,
1996b). The only safe conclusion from such varying perceptions and varying Southern
linguistic features is that Southern English must really be a high-level abstraction, rather
than any specific and systematic collection of linguistic features shared by a community
of speakers. Furthermore, the abstraction is one that even specialists construct somewhat
differently, so that we fool ourselves if we think that we are all talking about the same
thing when we talk about Southern English.

This section is intended to illustrate the application of the knowledge discovery
environment developed around the SOM algorithm to shed new light on the long-standing
debate over Southern English and its geographic imprint. Given the space limitation, no
discussion of socio-demographic correlates will be provided, and the number of input
files and the size of the square lattice have been severely limited. The study is based
on a selection of six lexical data files for input: quarter of (for telling time), pretty day
(for good weather), dog irons (for what you put the wood on in a fireplace), shelf (for
the shelf over a fireplace, a mantel), kindling (for the wood used to start a fire), and
blinds (on a roller, for window privacy). These particular response types are selected for
this experiment because they all have between 100 and 600 occurrences in the data set,
out of 1162 speakers; experience indicates that words with a moderate frequency level,
as opposed to a very high or very low frequency level, work better for finding regional
distributions.

Intensive training and testing of different sets of parameters were conducted to arrive at
the stable and fairly consistent results presented here. We represent each lexical variation
by three input nodes (the second pre-processing modality discussed in Section 5.3.2), so
that the training data consist of 1162 vectors, each being 18-dimensional (6×3). We have
neutralized the impact of missing data by coding ‘0’ the missing node of each lexical
variation. The network is based on a 5 × 5 square lattice and the initial search radius is
commensurably set to 2 to capture enough of the local neighborhood effects and avoid
the effects spanning the entire grid. Training is conducted over 30 epochs, beyond which
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weight stability is achieved. Four clustering schemes of nodes are requested, ranging
from three to six clusters each.

The component planes of each input node are depicted in Figure 5.3. In this figure, the
planes are grouped by the lexical variation they index: in each triplet, the leftmost plane
is for positive responses, the central plane is for negative, and the rightmost plane is for
missing responses. Given the ‘0’ coding on missing nodes, the third component plane
of each lexical variation is uniformly zero. The component planes reveal that each input
vector has its own signature on the output nodes and that there is little redundancy in
the data set. Some similarities exist between occurrence of the words ‘blinds’ and ‘pretty
day’, the former appearing in a subset of cases where the latter is used.

Figure 5.3 Component planes of the node triplets associated with each lexical variation of
the experimental SOM run (See Colour Plate 6)

Let us now consider the three-cluster solution illustrated in Figure 5.4. It is appropriate
for this experiment to consider quartiles for interpretation of weights and thus of the
component words: 75 % or better can be taken as selection of the presence or absence
state of the word; 50–75 % can be taken as a trend for the presence or absence state
of the word; the third number is zero since it stands for missing data whose impact
of network training has been eliminated, and finally, if no number is reported above
50 %, the word should be considered as having no clear-cut trend. Cluster 1 selects for
the lack of usage of any of the words analyzed; dynamic linking between the feature
map and the GIS map indicates that, while the 649 informants associated with these



Geographic Associations in English Dialect 97

Legend

Clusters
Average Cluster

Weights
Quarter of / positive
Quarter of / negative
Quarter of / missing
Pretty day / positive
Pretty day / negative
Pretty day / missing
Dog irons / positive
Dog irons / negative
Dog irons / missing
Shelf / positive
Shelf / negative
Shelf / missing
Kindling / positive
Kindling / negative
Kindling / missing
Blinds / positive
Blinds / negative
Blinds / missing

In
pu

t N
od

es

0.84
0.02
0.00
0.73
0.17
0.00
0.85
0.11
0.00
0.97
0.02
0.00
0.87
0.10
0.00
0.84
0.04
0.00

0.65
0.07
0.00
0.82
0.07
0.00
0.90
0.00
0.00
1.00
0.00
0.00
0.00
0.98
0.00
0.99
0.00
0.00

0.01
0.82
0.00
0.53
0.39
0.00
0.88
0.06
0.00
0.80
0.17
0.00
0.14
0.62
0.00
0.77
0.21
0.00

Figure 5.4 Feature map of the three-cluster solution (See Colour Plate 7)

nodes, that is, informants who use none of the target words, are peppered throughout the
LAMSAS survey area, they are most strongly concentrated south of the Mason–Dixon
Line as well as in Western Pennsylvania. In order to evaluate the significance of cluster
1, we can compare its geographic expression to Kurath’s map of dialect regions, which
he first prepared on the basis of multiple selected lexical isoglosses (Kurath, 1949), and
later largely confirmed through isogloss analysis of pronunciation features (Kurath and
McDavid, 1961). It is clear that the territory where linguistic cluster 1 prevails (Figure 5.5)
does not match any of Kurath’s three primary dialect regions. Its densest pattern roughly
corresponds to dialect subregions labelled 10–13 and 15–18 in Figure 5.6.

Cluster 2 identifies the usage of kindling and the lack of usage of pretty day, dog irons,
shelf, or blinds, and a tendency towards not using quarter of. Only 64 informants are
mapped to this cluster. The majority of these informants live in Georgia, South Carolina,
and Northern Florida, with smaller groups in western Virginia and in the Chesapeake
Bay area, while the rest are scattered as far north as Rochester, NY (Figure 5.7). Once
again, there is no correspondence with Kurath’s dialect regions. However, Georgia, South
Carolina, Northern Florida, and Upstate New York are just the places where one of the
two main LAMSAS field workers (Raven McDavid) conducted interviews. Cluster 2
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Figure 5.5 Geographic distribution of informants mapped to cluster 1 (clear squares)

thus may be influenced by how the survey was conducted, as much as it is associated
with the presence or absence of linguistic features.

Cluster 3 selects for the usage of quarter of, a tendency to use kindling, the lack
of usage of dog irons, shelf, or blinds, and a tendency not to use pretty day. The 449
informants mapped to cluster 3 (Figure 5.8) most often live north of the Mason–Dixon
Line, excluding the western half of Pennsylvania. The geographic area dominated by the
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Figure 5.6 Kurath’s map of dialect regions. Reprinted with permission from Hans Kurath,
A Word Geography of the Eastern United States, Ann Arbor: The University of Michigan
Press, 1949, Figure 3

densest pattern of this cluster encompasses Kurath’s Northern dialect region, but it also
includes Midland regions 7, 8, and 14.

All three dialect clusters identified by the centroid algorithm applied to the trained
network show a geographic focus. This focus is not exclusive or crisp, however. This
result is in agreement with earlier studies that suggested that Kurath’s delineation of
dialect region is more a construct of convenience than a reality, and that the linguistic
space is a continuum (Heeringa and Nerbonne, 2001; Kretzschmar, 1992). The results
from SOM show a Northern plus Midland pattern in cluster 3 (Figure 5.8), and a
Southern plus Midland pattern in cluster 1, which addresses the northern reaches of
Southern English, and especially whether and how Kurath’s Midland region separates
the North from the South. Finally, Southern English is found to be very heterogeneous,
in that cluster 1 is negatively defined by the absence of any of the target features,
not by the presence of particular target features. As a result, communities in Georgia,
South Carolina, and northern Florida may be linguistically as distinct from other southern
communities as they are from northern ones.

The VDM environment is most effective in the comparison of the sequence of clustering
solutions of SOM prototype data, and so the best analysis would examine a sequence
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Figure 5.7 Geographic distribution of informants mapped to cluster 2 (clear squares)

of SOM solutions in detail (especially when more input files and a larger square lattice
is specified). Due to space limitations, we present only one other solution, the feature
map with four clusters (Figure 5.9). Geographic maps of the four clusters are compiled in
Figure 5.10. It can be seen that cluster 4 of the four-cluster solution is generally similar
to cluster 3 of the three-cluster solution; however, the other clusters are configured in
fundamentally different ways. Cluster 1 now roughly corresponds to Kurath’s regions
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Figure 5.8 Geographic distribution of informants mapped to cluster 3 (clear squares)

10 and 11, a West Midland grouping, with more scattered informants to the east and
south. Cluster 2 comes close to a general Southern distribution in its densest pattern, with
scattered informants further north. Cluster 3 has its densest pattern in the East Midland
area, with scattered informants elsewhere. Finally, it should be said that the cluster 4
appears to be less dense and coherent than the others, so that it cannot really be claimed
to be a clear Northern complement to the Southern pattern of cluster 2.
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Figure 5.9 Feature map of the four-cluster solution (See Colour Plate 8)

Comparison of the three-cluster solution with the four-cluster solution validates the
sequential, interactive analysis of the VDM. The clusters for each solution do not appear
to be independent, but instead, when viewed in sequence, reveal different relationships
in the data. Sequential analysis shows that it would be difficult to uphold any strong,
sharp distinction between the South and the North; that the eastern and western parts
of Kurath’s Midland region pattern quite differently; that smaller, more local areas may
emerge from the clustering (such as western Virginia or the Chesapeake); and that the
SOM application is sensitive to aspects of survey design and execution. Just as earlier
quantitative approaches have generally confirmed Kurath’s findings, but at the same
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Figure 5.10 Geographic distribution of informants mapped to the four clusters (clear
squares) of the four-cluster solution (See Colour Plate 9)

time have shown linguistic reality to be more complex than Kurath’s isogloss method
and linguistic model would allow, SOM in this VDM environment offers yet more
opportunities for the skilled analyst to see and understand geolinguistic relationships
in the rich, multidimensional data. Use of the VDM to associate socio-demographic
characteristics with the SOM network adds yet more opportunities.
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5.5 CONCLUSIONS

Linguistic data sets represent a major challenge to spatial scientists and dialectologists
because of the inherent properties of the data collected: data are often sparse, have a skewed
distribution and are highly multidimensional. We proposed in this chapter an integrated
data mining approach that draws on the computational power of the SOM algorithm and the
heuristics of visualization to explore essential relationships in large, geo-referenced data sets
such as LAMSAS. A sample experiment on six lexical variations illustrated the ability of this
framework to go beyond existing methods of data analysis, to modify and enrich previous
understanding of the data and to discover new relationships of interest to dialectologists. The
limited results presented here support the idea that traditional theories on the territoriality
of dialect constructs are not clearly founded on the empirical evidence. Lexical variations
combine to form complex dialectal structures that can be elicited by SOM-based data mining
and explored through interactive visualization techniques.

While our experiments with the analysis of LAMSAS data sets using SOM are
indicative of the usefulness of this approach in linguistic research, limitations are also
apparent. SOM is particularly effective for detecting geographic and spatial clusters that
may not be composed of contiguous locations or coherent patterns, which has usually
not been possible with other techniques. However, one should be fully aware that the
patterns extracted are dependent on the parameterization of the SOM algorithm in the
calculation of the SOM network, as well as on data pre-processing. Therefore, extensive
experimentation is necessary to identify best practices in SOM net training that apply
to a specific application domain. Nonetheless, even the limited experiment presented
here has successfully answered the research questions that we earlier proposed. We have
been able to demonstrate how linguistic features (in this case words, but potentially
and transparently also grammatical constructions, pronunciations, or combinations of the
latter) can be distributed over geographic areas in the LAMSAS survey region, not in
uniform patterns of complementary distribution, but in complex distributions that appear
to change from the different viewpoints of the different cluster solutions. We have,
moreover, demonstrated that individual linguistic features contribute differentially to the
cluster solutions of the SOM algorithm, which speaks to the issue of the salience (or
lack of it) of particular linguistic features or groups of features for regional patterns.
Finally, we have also shown that the ‘fuzzy’ multidimensional clusters derived from the
application of SOM are not wildly different from earlier, more subjective analysis, but
instead enhance and enrich what we already thought we knew with new insights. We
look forward, in another place, to demonstration of the value of association in the VDM
of socio-demographic information with the geographic and spatial clusters.

REFERENCES

Atwood, E.B. (1953). A Survey of Verb Forms in the Eastern United States. Ann Arbor: University
of Michigan Press.

Byrne, W., K. Mastrogiannis and G.F. Meyer. (1994). Classification of Multi-spectral Remote
Sensing Data with Neural Networks: A Comparative Study. IEEE Colloquium on ‘Applications
of Neural Networks to Signal Processing’ (Digest No. 1994/248): 51–52.



Geographic Associations in English Dialect 105

Chambers, J.K. (1998). Myth 15: TV Makes People Sound the Same. In Language Myths, L. Bauer
and P. Trudgill (eds), pp. 123–131. Harmondsworth: Penguin Books.

Chen, C.H. and B. Shrestha. (2000). Classification of Multi-sensor Remote Sensing Images Using
Self-Organizing Feature Maps and Radial Basis Function Networks. International Geoscience
and Remote Sensing Symposium (IGARSS) 2: 711–713.

Ferreira de Oliveira, M.C. and H. Levkowitz. (2003). From Visual Data Exploration to Visual Data
Mining: A Survey. IEEE Transactions on Visualization and Computer Graphics 9(3): 378–394.

Hara, Y., R.G. Atkins, S.H. Yueh, R.T. Shin and J.A. Kong. (1994). Application of Neural
Networks to Radar Image Classification. IEEE Transactions on Geophysics and Remote Sensing
32: 100–111.

Heeringa, W. and J. Nerbonne. (2001). Dialect Areas and Dialect Continua. Language Variation
and Change 13: 375–400.

Himanen, V., T. Järvi-Nykänen and J. Raition. (1998). Daily Travelling Viewed by Self-Organizing
Maps. In Neural Networks in Transport Applications, V. Himanen, P. Nijkmap and A. Reggiani
(eds), pp. 85–110. Aldershot: Ashgate.

Kaski, S. and T. Kohonen. (1996). Exploratory Data Analysis by the Self-organizing Map: Struc-
tures of Welfare and Poverty in the World. In Neural Networks in Financial Engineering,
A.-P. N. Refenes, Y. Abu-Mostafa, J. Moody and A. Weigend (eds), pp. 498–507. World
Singapore: Scientific.

Kohonen, T. (2001). Self-Organizing Maps, 3rd Edn. Berlin: Springer.
Kretzschmar, W.A., Jr. (1992). Isoglosses and Predictive Modeling. American Speech 67:

227–249.
Kretzschmar, W.A., Jr. (1996a). Quantitative Areal Analysis of Dialect Features. Language

Variation and Change 8: 13–39.
Kretzschmar, W.A. Jr. (1996b). Foundations of American English. In Focus on the USA,

E. Schneider (ed.), pp. 25–50. Philadelphia: John Benjamins.
Kretzschmar, W.A., Jr. (1998). Analytical Procedure and Three Technical Types of Dialect. In

From the Gulf States and Beyond: The Legacy of Lee Pederson and LAGS, M. Montgomery and
T. Nunnally (eds), pp. 167–185. Tuscaloosa: University of Alabama Press.

Kretzschmar, W.A., Jr. (2003). Mapping Southern English. American Speech 78: 130–149.
Kretzschmar, W.A., Jr and J. Lee. (1993). Spatial Analysis of Linguistic Data with GIS Functions.

International Journal of Geographical Information Systems 7: 541–560.
Kretzschmar, W.A., Jr and D. Light. (1996). Mapping with Numbers. Journal of English Linguistics

24: 343–357.
Kretzschmar, W.A., Jr and E.W. Schneider. (1996). Introduction to Quantitative Analysis of

Linguistic Survey Data. Thousand Oaks: Sage Publications.
Kretzschmar, W.A., Jr and S. Tamasi. (2003). Distributional Foundations for a Theory of Language

Change. World Englishes 22: 377–401.
Kretzschmar, W.A. Jr, V.G. McDavid, T.K. Lerud and E. Johnson (eds). (1993). Handbook of the

Linguistic Atlas of the Middle and South Atlantic States. Chicago: University of Chicago Press.
Kurath, H. (1939–43). Linguistic Atlas of New England. 3 vols. Providence: Brown University,

for ACLS.
Kurath H. (1949). A Word Geography of the Eastern United States. Ann Arbor: University of

Michigan Press.
Kurath, H. and R. I. McDavid. (1961). The Pronunciation of English in the Atlantic States. Ann

Arbor: University of Michigan Press.
Labov, William, Charles Boberg, and Sherry Ash. (2006). Atlas of North American English:

Phonetics, Phonology and Sound Change. Berlin: Mouton de Gruyter.
MacEachren, A., M. Wachowicz, D. Haug, R. Edsall and R. Masters. (1999). Constructing

Knowledge from Multivariate Spatiotemporal Data: Integrating Geographic Visualization with
Knowledge Discovery in Database Methods. International Journal of Geographic Information
Science 13(4): 311–334.



106 Self-Organising Maps

Nerbonne, J. and W. Heeringa. (2001). Computational Comparison and Classification of Dialects.
Dialectologia et Geolinguistica 9: 69–83.

Nerbonne, J. and P. Kleiweg. (2003). Lexical Distance in LAMSAS. Computers and the Humanities
37: 339–357.

Nerbonne, J. and W.A. Kretzschmar, Jr. (2003). Introducing Computational Techniques in
Dialectology. Computers and the Humanities 37: 245–255.

Openshaw, S. and C. Wymer. (1991). A Neural Net Classifier System for Handling Census Data.
In Neural Networks for Statistical and Economic Data, F. Murtagh (ed.), pp. 73–86. Dublin:
Munotec.

Openshaw, S. and C. Openshaw (1997). Artificial Intelligence in Geography. Chichester: John
Wiley & Sons, Ltd.

Preston, D. (1997). The South: The Touchstone. In Language Variety in the South Revisited,
C. Bernstein, T. Nunnally and R. Sabino (eds), pp. 311–351. Tuscaloosa: University of Alabama
Press.

Schneider, E.W. (1988). Qualitative Methods of Area Delimitation in Dialectology: a Comparison
Based on Lexical Data from Georgia and Alabama. Journal of English Linguistics 21: 175–212.

Sokal, R.R. and C.D. Michener. (1958). A Statistical Method for Evaluating Systematic
Relationships. University of Kansas Science Bulletin 38: 1409–1438.

Vesanto, J. (1999). SOM-Based Data Visualization Methods. Intelligent Data Analysis 3(2):
111–126.

Villmann, T., E. Merenyi and B. Hammer. (2003). Neural Maps in Remote Sensing Image Analysis.
Neural Networks 16(3–4): 389–403.

Wachowicz, M. (2001). GeoInsight: An Approach for Developing a Knowledge Construction
Process Based on the Integration of GVis and KDD Methods. In Geographic Data Mining and
Knowledge Discovery, H. J. Miller and J. Han (eds), pp. 239–259. London: Taylor & Francis.



6
Self-Organizing Maps for

Density-Preserving Reduction of
Objects in Cartographic

Generalization

Monika Sester
Institute for Cartography and Geoinformatics, Leibniz University of Hannover, 30167

Hannover, Germany

6.1 INTRODUCTION AND OVERVIEW ON RELATED WORK

Generalization is a process used for reducing the volume of data of a spatial data
set while preserving important structures. Generalization operations can be distinguished
into selection, simplification, classification, enhancement, aggregation, displacement, and
typification, and are generally employed by cartographers when designing maps in smaller
scales. Depending on the spatial situation, the target scale, the application, and the objects
involved, these operations are applied with different parameters and in different sequences
of the operations.

During the last 40 years, considerable attempts have been made to automate this
process of generalization (Meng, 1997). They have been partly successful in designing
a number of automated operations that allow for solving dedicated problems in gener-
alization. Among those, algorithms for line simplification are very prominent (Douglas
and Peuker, 1973).
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Typification is the process of reducing the number of similar objects while preserving
their spatial arrangement and density. For instance, a group of islands or a group of
buildings can be reduced to a new group with less objects, while preserving the spatial
distribution. The number of objects in the target scale can be determined by analysing
the relation of space needed by the objects in the source scale and the target scale, e.g.
using Töpfer’s ‘radical law’ (Töpfer, 1976), that computes the number of objects from
a function of the quotient of the two scales – typically the square root. It can also be
calculated by considering the black-and-white ratio in the source and target scale, i.e.
the ratio of objects vs background in the map, which should be preserved. The decision
regarding which specific objects to preserve is more difficult. A mere random selection
can lead to the required reduction. However, this will not necessarily preserve the spatial
distribution of the objects, or other constraints that are inherent with the object. In this
chapter there is a concentration of approaches that treat point and polygon objects, but
the typification of linear objects is not treated here. That problem requires different
approaches, as the target function is different, e.g. in the case of reduction of streets the
connectivity of the road network has to be preserved. Typification of point or polygon
objects involves a structure recognition process that determines homogeneous groups of
objects, within which individual objects can then be selected and rearranged according
to the then known underlying structure. This leads to the following steps:

1. a reduction rate is given;
2. the structure of the object distribution is recognized, in terms of identifying groups of

objects with similar characteristics in spatial proximity;
3. a reduction of the number of objects and possibly a rearrangement of those objects is

done within the groups.

The main difficulty in these steps is the determination of the original object structure,
especially the identification of homogeneous structures, i.e. substructures of similar
objects located in relative proximity. To this end, Töpfer (1976) proposes to identify
so called ‘Kleinkomplexe’ (small arrangements) from which representative objects then
can be selected. Anders and Sester (2000) use a clustering approach that is based on
an hierarchical structure of neighbourhood graphs to determine such groups. Regnault
(1996) reduces the problem of generalizing buildings in a settlement area to a one-
dimensional case. He justifies this by the fact that buildings are typically arranged
linearly along roads or streets. After identification of the arrangement of the buildings
using Minimum Spanning Trees, he is able to do the reduction and rearrangement step
by newly positioning the original buildings along the road, taking the old distribution
into account.

As structure recognition is a complicated problem, researchers have sought for
approaches that are able to avoid this recognition process. Müller and Wang (1992)
use a raster based approach by applying morphological operations that emphasize
large objects while reducing small ones. Bjørke (1996) proposes an entropy based
method for feature elimination. Cecconi et al. (2005) used Mesh Simplification
algorithms from Computer Graphics to perform a density preserving reduction of building
objects.

Højholt (1995) first elaborated on the use of Kohonen Self-Organising Feature Maps
for typification, which was later extended by Sester and Brenner (2000). The main
advantage of this approach is the fact that no explicit identification and representation of
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the underlying structure is needed, but it is respected implicitly in the process. Thus, in
the above described list of necessary steps, the second one can be omitted.

In this chapter, the application of SOM to typification will be discussed. The necessary
specifications and adaptations are described which lead to the core typification algorithm,
which is presented and verified with some examples. In Section 6.3, an extension of this
core algorithm for the typification of buildings is outlined in detail. A range of examples
will demonstrate the potential of this approach. An evaluation of the procedure and the
results is given in Section 6.4, and Section 6.5 summarizes and concludes the chapter.

6.2 SOM FOR TYPIFICATION

The principles of self-organizing maps (SOMs) are discussed in Chapter 1. Therefore, in
this section only the adaptations for the application in typification are described.

SOMs have the characteristic that they can approximate the density in the input space:
this means that in areas with many stimuli also many neurons will accumulate, whereas
areas with less objects in input space will also be represented with less neurons. This
characteristic can be exploited beneficially for typification.

The aim of typification is to reduce the number of objects for presentation in a smaller
scale while preserving their spatial distribution and density. In order to apply SOM for
typification, the following assumptions are made: the original objects in the source scale
represent the input space, whereas the reduced number of objects in the target map
represent the neurons in the map space. The reduction rate can be determined using
Töpfer’s radical law and the objects are selected randomly. The objects are points that
represent objects of the same type – this assumption can be partially relaxed, which is
shown in Section 3.

Thus, the map space of the neurons is composed of a subset of the objects in the
input space. This leads to some consequences concerning the structure of the map: the
topology of the neurons is known and given by their neighbourhood. It can be determined
by a Delaunay Triangulation, thus leading to a nonregular grid. The inital weights of the
neurons are the positions of the corresponding original objects. As in the case of typifi-
cation the rearranged neurons will be in the vicinity of the original objects, good approx-
imate values for the position are already given, which leads to the following constraints
and simplifications concerning the selection of the neighbourhood range and function:

• The degree of neighbourhood is set to one, i.e. only the immediate neighbours of the
neurons are considered.

• The movement of the neurons – even in the initial phase – is relatively restricted, i.e.
the neighbourhood function h yields low values also in the beginning of the iteration.

• The topology is not rebuilt, even when in the course of the iterations due to the
movement of the neurons the Delaunay criterion is violated. This is reasonable as the
initial neighbourhood relations have to be preserved.

This approach has been implemented in a program written in C + +. The Gaussian
function was chosen as neighbourhood function h. The parameters needed for the process
are learning rate and number of iterations. Those parameters have been empirically deter-
mined and then fixed for all experiments: the number of iterations is 50, the learning rate
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was reduced linearly with the number of iterations from 1 to 0.001. No pre-processing
steps are needed. The only parameter that has to be specified by the user is the reduction
rate. The input and output format for the objects is ESRI Shapefiles (ESRI, 1998).

In the following, the process as well as the characteristics of the approach are visualized
with the help of several examples. The iterative adaptive process in the course of the
learning is visualized in Figure 6.1: the stimuli, i.e. the original objects, are represented
with small dark dots, the neurons are visualized as light circles.

(a) (b) (c)

(d) (e) (f)

Figure 6.1 Input space with stimuli (dark dots) (a); map space with selected neurons (light
circles), triangulated (b); iterative adaptation of neurons to stimuli (c–e); result of adaptation
process (f) (reduction rate 50 %)

Figure 6.1(a) shows the initial situation of the process, namely the stimuli. From those,
a certain percentage, here 50 %, is selected randomly which then represent the neurons.
These neurons are linked with a Delaunay triangulation [Figure 6.1(b)] from which their
neighbourhood can be determined. In Figure 6.1(c)–(e) it can be observed that during
the iterations the neurons first tend to move towards the centre in order to determine the
coarse structure of the map. In later iteration steps, the local adaptation to the stimuli is
done. The result can be seen in Figure 6.1(f). It is clearly visible that the density and
distribution of the original situation is preserved by resulting high-density areas in the
upper left, as well as the low-density areas in the lower right.
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(a) (b) (c) (d) (e)

Figure 6.2 Typification of a primarily linear structure (reduction rate 70 %): (a) start situation
with dark points as stimule and circles as neurons; (b–d) intermediate situation of neuron
distribution; (e) final distribution of neurons

Figure 6.2 shows that the algorithm reacts to a regular, primarily linear, spatial structure,
consisting of two vertical rows of objects. The random selection of 70 % of the objects
leads to the initial situation in Figure 6.2(a). In the course of the iterations the neurons
adapt to the stimuli. In the end [Figure 6.2(e)] both the linear structure and the different
densities in the original structure are nicely preserved.

The preservation of the regularity in Figure 6.2, i.e. the linear structure, is achieved
only implicitly in the process. It is due to the fact that the distances within the rows are
smaller than those across the rows. This leads to the desired effect that the neurons move
to the closest stimuli in their vicinity. However, given an equally spaced grid of stimuli,
the algorithm cannot preserve this regularity, as the neurons move into the middle of the
neighbouring stimuli (Figure 6.3).

(a) (b) (c)

Figure 6.3 Regular grid structure of objects, which cannot be preserved: initial situation (a);
overlay of initial situation and result (b); result (c)

In Figure 6.4 an example is given that shows three rows of points: whereas the second
and third row are equally spaced, the first row exhibits two different densities. The result
of two executions of the algorithm is shown in the two rows of Figure 6.4; the reduction
rate was 70 %. The result verifies that the different densities can be preserved, even when
there are slight differences in the two experiments. Due to the initial random selection
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(a) (b) (c)

(d) (e)

Figure 6.4 Result of two runs on a data set consisting of three rows of objects with different
spacing (a): initial selection of neurons in runs 1 and 2 (b and d); result of the two runs
(c and e). Note that in the second run one of the neurons in the first row moved to the top
cluster due to the attraction of those stimuli (reduction rate 70 %)

process the approach leads to different results when processed repeatedly. However, the
influence of the selection process is reduced, as it is followed by he rearrangement of
the objects with the SOM.

Figure 6.5 shows a larger data set, where different reduction rates are applied, leading
to representations with less objects {reduction to 60 % [Figure 6.5(b)] and to 40 %

(a) (b) (c)

Figure 6.5 Reduction of a larger data set (a): reduction to 60 % (b) and 40 % (c)
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[Figure 6.5(c)] of the original data set}. In all the representation the structure of the
original data set is represented very well with increasingly less points.

The process described above constitutes the core algorithm applicable for point objects
of similar type. In order to apply it for the generalization of buildings in smaller scales
some adaptations have to be made, which are described in Section 6.3.

6.3 EXTENSION OF CORE ALGORITHM FOR THE
GENERALIZATION OF BUILDINGS IN SMALL SCALE
REPRESENTATIONS

In small scale representations of digital and analogue maps buildings are typically no
longer presented as individual objects but as objects that are placeholders for the original
objects. The core algorithm described in the previous section works on groups of similar
point objects. Buildings are polygon objects of different type and size. In traditional maps
the placeholders are mostly symbols, usually squares, but they can also be individually
shaped buildings, if they exceed certain sizes. Thus the algorithm has to be adopted to
work on non-point objects which, in addition, are no longer of exactly the same type.
Another necessary adaptation relates to the number of objects processed at a time: when a
whole city or even a whole map sheet has to be processed, it makes no sense to apply the
core algorithm to the whole data set but on meaningful partitions, as the generalization
has to act locally. Such a partition can be generated by the road network.

The procedure described in this section is designed for the generalization of
buildings in maps of scales less than 1:25 000. The workflow constitutes the following
steps:

1. partitioning the whole data set into generalization meshes;
2. selection of a target scale and a reduction rate;
3. random selection of buildings from the set of all buildings;
4. conversion of building polygons to their centroids;
5. typification of the selected points using the core typification algorithm;
6. reassignment of building shapes to the rearranged points;
7. resolution of spatial conflicts;
8. optional re-iteration.

In the following, these processing steps will be explained in more detail.

6.3.1 Partitioning into Generalization Meshes

The partitioning is done based on the road network using a topology-building algorithm,
that looks for closed meshes in the given linear street objects. The typification is then
executed for each individual mesh and the resulting typified buildings are merged
to one data set in the end. This leads to the effect that buildings within one street
mesh are generalized separately from buildings in another mesh. Besides speeding up
computing time it is also necessary in order to restrict the movement of the objects
locally.
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6.3.2 Specification of Target Scale and Reduction Rate

The user specifies the target scale of the new object representation, e.g. 1:30 000 or
1:70 000. Furthermore, also the reduction rate can be explicitly given in terms of
percentage of objects to be retained in the target scale (values between 0 and 1, where
1 means to preserve all objects). Although the reduction rate could be determined from
the target scale using Töpfer’s law, it still makes sense to give the user the option to
choose the reduction rate himself. The target scale also determines the size of the building
symbols (0�5×0�5 mm in map).

6.3.3 Random Selection Prioritizing Larger Objects

The goal of typification of buildings is a presentation which is similar to the original
presentation, but with less objects. Human cartographers tend to prioritize large buildings
in the target map. This, however, does not mean that only large buildings should be
presented. A mere random selection treats all objects as equal. Therefore, a prioritization
of large objects was implemented, leading to the desired effect, that typically the large
objects survive. This was achieved using the building size as weight in the random
selection process.

6.3.4 Conversion of Building Polygons to their Centroids

As the core algorithm needs point objects as input, the buildings have to be converted to
points, which is achieved by calculating the centroid as building representatives.

6.3.5 Typification of the Building Centroids

The building centroids are the input to the core algorithm. The only parameter transferred
to the core algorithm is the reduction rate, all the other parameters are set as described
above in section 6.2. The result is a reduced and rearranged set of point objects.

6.3.6 Reassignment of Areal Objects

The result of the typification algorithm in step 5 are the representatives of the buildings
for the new representation in the smaller scale. As they are, however, only point objects,
they have to be assigned areal building objects again. There are different options to do
so, e.g. to use the representative as such and use the shape of the original object. This
could, however, lead to irritations when the object has been shifted considerably in step
5: the map reader would not expect to see a distinct object at a different location. Another
option is to look in the vicinity of the rearranged neurons and take the original building
which is closest. This option was chosen, as it can cope with larger movements of the
neurons and presents that stimulus, that attracted the neuron most.

Then, two cases have to be distinguished depending on a threshold concerning the size
of the building. This threshold corresponds to an area of 0�5 mm ×0�5 mm in the target
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scale: if the original building is smaller than this threshold, it is too small to be legible,
and it is symbolized by a square of 0�5 mm ×0�5 mm. The square is oriented according
to the orientation of the original building. The orientation is the main direction of the
building determined by an algorithm presented by Doytsher (1988). If the building is
larger than the threshold, it is represented in its original shape.

6.3.7 Resolution of Spatial Conflicts

After the assignment of area shapes to the point shaped building centroids, the newly
symbolized objects might get into spatial conflict with each other as well as with other
objects in the map, especially with the roads. Therefore, all the objects are processed
with a displacement procedure developed at the Institute for Cartography and Geoin-
formatics, called PUSH (Sester, 2005). This holistic displacement approach is based
on Least Squares Adjustment. It leads to a minimization of all spatial conflicts while
enforcing legibility constraints in the whole scene. Conflicts are solved by moving
and deforming objects, depending on their object-specific parameters. Thus, in this
process, adequate distances between all the objects are enforced in order to guarantee
legibility.

6.3.8 Optional re-iteration

If the buildings cannot be placed without creating spatial overlaps with each other or with
the neighbouring objects, the reduction rate is diminished by a pre-defined factor (5 %)
and the whole process is repeated. This is done iteratively until a conflict-free solution
is found or a minimal threshold for the reduction is reached.

6.3.9 Examples

The process can be applied to generate small scale maps of buildings. The original
buildings are from cadastre (i.e. scale 1:2000), the roads are from scale 1:25 000.
Figure 6.6 shows how buildings for the target scale 1:50 000 can be automatically gener-
alized: it presents two extracts of a map with the original situation on the left and the
corresponding generalization on the right. It can be seen that the distribution of original
buildings is preserved after the generalization. In that target scale of 1:50 000, almost all
the buildings are replaced by square symbols; only a few are large enough to still be
represented in their original shape.

With this algorithm generalizations for arbitrary target scales can be generated fully
automatically. This is shown in Figure 6.7. Again, the presentations were generated
from cadastral buildings and the streets of the 1:25 000 road network that composed the
generalization meshes. Three different scales were generated and presented in appropriate
sizes: 1:25 000 [Figure 6.7(a)]; 1:50 000 [Figure 6.7(b)]; and 1:75 000 [Figure 6.7(c)].
Observe that for the smaller scale maps the road network would also need a reduction
(not done here).
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(a) (b)

(c) (d)

Figure 6.6 Examples for application of typification for the generalization of buildings:
original situation with cadastral buildings (1:2000) and roads (1:50 000) (a, c) and result of
typification for target scale 1:50 000 (b, d)

6.4 EVALUATION OF THE PROCEDURE AND THE RESULTS

As stated above the examples were all processed with the same parameters. This is an
indication that the results are not sensitive to those values. The initial weights of the
neurons as well as the topology of the net are given with good approximate values, thus
no foldings (‘butterfly effect’) occurred, which are quite frequent in other applications
of SOM. As obvious from the knowledge about the underlying process and visible from
the above examples, the approach works well with randomly distributed objects.

There are some disadvantages of the approach which were also presented and explained
in the examples above. As shown in Figure 6.3, the process cannot guarantee to preserve
strong regularities in the data, e.g. rectangular grids. A human cartographer would simplify
a regular mesh of 4×4 buildings, by a mesh of 3×3; this cannot be achieved with this
method. Regular structures can only be preserved if they are distinctly clustered and
separated (as shown in Figures 6.2 and 6.4).

Furthermore, the approach is not deterministic, which means that different runs of the
algorithm lead to different results. This is due to the random selection of the neurons
at the beginning of the process. However, the results are still reflecting the density and
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(a)

(b)

(c)

Figure 6.7 Automatic generation of different target scales from cadastral building data:
1:25 000 (a); 1:50 000 (b); 1:75 000 (c)
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distribution of the original situation, and thus are in accordance with the goal of the
generalization task.

The visual impression of the results is pleasing, and they are similar to solutions given
in topographic maps. Besides visual comparisons, no systematic evaluation of the results
have been done by the author, mainly due to lack of adequate measures for evaluating the
quality. However, the process has been tested and is now being used for the production
of the map 1:50 000 by two State Mapping Agencies in Germany (in Lower Saxony and
Brandenburg). The results have been evaluated by human cartographers, who in most
cases were satisfied with the results. For their map production only minor corrections
have been done manually (Wodtke, 2004).

Major critiques of the cartographers from the mapping agencies concern issues that are
beyond the scope of the current algorithm and thus are subject to further investigations
and improvements. One topic relates to the handling of objects in densely populated
city centres: a human cartographer would use a space filling mesh instead of presenting
individual buildings, as those tend to be squeezed together by the road network [e.g. in the
meshes north-east of the centre of Figure 6.6(d)]. As the program records the proportion
of object vs background area of each individual generalization mesh, this could be used
as a starting point to decide if a mesh has to be filled with a complete signature or by
individual buildings. A second issue is the use of squared building symbols: in some
cases human cartographers would also employ a rectangular symbol when the original
building resembles more that type of geometric object. In order to extend the current
procedure, the building shape of the original buildings would have to be classified into
square or rectangle and applied accordingly.

The algorithm is run as a batch process. The processing time for a whole map sheet of
a map 1:50 000 (size in reality 20×20 km), containing e.g. 25 110 buildings is processed
in approximately 15 min (on a standard PC with 600 MHz).

6.5 SUMMARY AND OUTLOOK

It has been shown in this chapter that SOM are well suited for reflecting and reproducing
spatial structures. The main characteristics of this approach is that the spatial structures
can be preserved without having to identify them beforehand. This is a great advantage
opposed to other approaches that have to rely on the interpretation of homogeneous
groups before a reduction of the data set can be done. The results are visually pleasing
and convincing, which can be read from the fact that the procedure is currently being
used by the Mapping Agency in Germany for map production.

One limitation of the approach lies in the fact that the preservation of dominantly regular
structures as grid-like building arrangements cannot be guaranteed. A recent approach to
especially recognize and treat grid structures is given by Anders (2006). Furthermore, as
the method incorporates a random selection of objects, it is non-deterministic, i.e. different
runs of the algorithm lead to different results. However, all the results fulfil the demand
that they reflect the spatial distribution of the objects. In general, cartographic gener-
alization is a task for which there typically are no ‘model’ solutions; also the work of
different cartographers leads to (slightly) different results, which, however, can all be
considered as valid (Spiess, 1995).
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The application domain of the current version of the algorithm is urban and suburban
areas, where the underlying prior assumption of the algorithm more or less holds, namely
the presence of groups of similar objects. In rural areas, other approaches might be
necessary that rely on an aggregation and simplification of adjacent buildings in order to
present typical building shapes, e.g. farmhouses (Revell, 2004).

The approach described can be extended to generalize other kinds of objects as well.
It is obvious that all kinds of point objects can be generalized, e.g. wells. For the
generalization of polygonal objects the task is to determine how after the rearrangement
of the objects in the SOM the objects are assigned an area object again. In principle,
a similar procedure can be applied as in the case of buildings, however, there might
be specific problems to solve arising from the fact that larger differences in size might
occur, e.g. in the case of generalizing a set of lakes or islands.
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7.1 INTRODUCTION

Imagine the following scenarios:

(1) You are on holiday driving on a country road somewhere in central Texas. As you
come through a small town, you say to your passenger: ‘You know, I’ve never been
here before, but what I saw for the last couple of miles looked familiar.’ Then, you
give a voice command to the vehicle’s navigation system: ‘Match last ten miles to
similar locations outside of Texas!’ The system responds with a list of five counties,
one of which you recognize: ‘Ah yes, that’s where I spent the summer of ‘93.’

(2) You are a human geographer interested in finding out about differences in how men’s
and women’s life experiences are shaped by their daily spatial routine. You know that
researchers have used positional tracking with GPS (Global Positioning System) to
capture and compare space–time paths. However, you would like to have a convenient
way of directly comparing paths captured in different cities. Luckily, a major GIS
(geographic information system) software company has just released a product that
allows such holistic comparison, generating a display of GPS tracks that looks a lot
like a map, but is not based on geographic space. The direct visual comparison of
male and female tracks will not only inform your research conclusions, but will also
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make for great poster presentations at professional meetings and may even catch the
eye of policy makers.

(3) You are teaching an introductory college course in urban geography. You want to
give your students some experiential sense of the structure of the city of New Orleans.
A popular approach for doing this is to take students on an inexpensive city tour using
public transport. Ideally, you would like to take a bus that starts at the Mississippi
river, and runs northward, crossing the Irish Channel, the Garden District, and Central
City in quick succession. These are three adjacent, yet racially and economically
extremely diverse areas, illustrating the socio-economic patchwork that is typical for
this city. There is just one problem: you and your students are in Philadelphia! To
look for a solution, you start out with a ‘normal’ geographic map display of New
Orleans and draw a line following your chosen path. Then you turn to the same
GIS software product mentioned in the previous scenario. It generates a single ‘map’
showing both your New Orleans path and all the bus lines running in Philadelphia.
From this map, you chose the bus path that provides the best visual match. For a
more authentic New Orleans experience, you have the heat turned up in the bus, even
in the middle of summer. As the bus drives through New Orleans in Philadelphia,
you make sure to point out not only similarities but also differences between the two.

In all of these scenarios, one recognizes elements of contemporary geographic inquiry
and one can imagine certain approaches to partially implement them. However, different
methods for locating geographic features and performing computations on them are here
combined in a novel way. The basic premise of this chapter is that as one moves across
geographic space, one simultaneously passes through an n-dimensional attribute space of
the geographic features encountered along the way. It is posited that explicitly visualizing
these attribute–time paths (ATPs) as trajectories in a spatialization may be of value in
the investigation of moving entities.

First, I will discuss some of the important developments within geographic information
science informing this new way of looking at spatio-temporal trajectories. These range
from early thoughts about time geography to its recent re-emergence in the context
of network accessibility modeling and feminist visualization. On the other hand, these
scenarios only sound viable in the context of such computationally intense methods as
artificial neural networks, Bayesian networks, or genetic algorithms. These methods are
indicative of a growing awareness of a need to deal with high-dimensional attribute
data beyond approaches rooted in the data-poor environment of traditional statistical
inference (Openshaw, 2000). The chapter argues that great synergistic potential may lie
in a combination of time geography with methods designed to deal with high-dimensional
attribute spaces. To that end, I first give a brief overview of some related techniques.
After outlining a methodology aimed at combining space–time paths (STPs) with self-
organizing maps (SOMs), two implementations are discussed and illustrated.

7.2 RELATIONSHIP TO OTHER WORK

The last decade has seen a revived interest in early work on time geography (Häger-
strand, 1970; Pred, 1977), which deals with the movement of individuals in space over
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time. Hägerstrand and his contemporaries laid out the foundations of time geography
with such notions as STPs and prisms, and envisioned a number of interesting applica-
tions of these concepts. However, technologies for detailed capture of STPs and their
computational modeling were either not yet developed or were missing crucial compo-
nents. By the early 1990s GIS had developed to a point were many of the database
requirements and modeling aspirations of time geography could be supported. Harvey
Miller’s work on modeling network accessibility with space–time prisms exemplified this
(Miller, 1991).

It also became possible to deal with large amounts of disaggregate data, for example
travel diaries, including the places of residence, employment, and other activities (Kwan,
2000b). Toward the end of the 1990s, consumer-grade GPS receivers became available
that made it feasible to capture detailed paths of individuals. It is not surprising that, at a
time when many postmodern and feminist geographers looked upon maps, mapmakers,
and mapmaking technology with great suspicion, similar criticism was extended to the
integration of GIS and GPS in the implementation of time geography. Partly designed
as constructive response to rightful social critique of unquestioned use of geospatial
technology, a growing number of geographers have in recent years advanced geographic
information science by actively engaging it from within, mostly under the heading
of participatory GIS. In the context of time geography, Mei-Po Kwan’s work on
the development of ‘feminist visualization’ has been particularly significant (Kwan,
2000a, 2002), and is quite compatible with the methodology described later in this
chapter.

Evidence for the resurgence of time geography can also be found in the evolution
of the concept of ‘geospatial lifelines’ towards real-world application (Sinha and Mark,
2005). As technology for capturing geographic location moves beyond dedicated devices
(i.e. GPS receivers) towards ubiquity (e.g. in mobile phones), STPs will likely become
an integral part of location-based services (Mountain and Raper, 2001).

Apart from the ability to capture STPs, the scenarios described earlier make both overt
and implicit reference to a capacity to assess similarity of STPs. The type of similarity
referred to here is not based on low-dimensional, geometric characteristics, like shape.
Instead, the focus is shifted to the attributes of geographic features. Most efforts at
modeling similarity are purely computational (as opposed to involving a visualization
component) and restricted to the spatial domain, with the temporal domain only gaining
prominence recently (Yuan, 2001). It is still rare to see the attribute domain explicitly
considered. Indeed, while one would expect ‘multidimensional’ modeling to include the
added dimensionality of attributes, it typically refers to the combination of three spatial
dimensions and one temporal dimension (Raper, 2000). In the context of this chapter,
the most important observation is that STPs have rarely been linked to representations
of the attribute domain, even within the growing area of geographic data mining and
knowledge discovery (Miller and Han, 2001).

When looking for visual representations of the attribute domain, the SOM is an obvious
candidate. Most implementations of SOM trajectories involve objects whose attributes
are changing and are therefore changing position with respect to a SOM in which each
neuron has a fixed set of weights, one for each attribute. This has frequently been used in
stock market and other financial analysis (Deboeck and Kohonen, 1998; Kohonen, 2001).
In the context of spatio-temporal data, this approach has been used to depict counties as
trajectories based on multi-year census attributes (Skupin and Hagelman, 2005).
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7.3 METHODOLOGY FOR VISUALIZING MOVEMENT IN
ATTRIBUTE SPACE

As an STP runs through and past features located in geographic space, it can be concep-
tualized as simultaneously passing through and past these same features located in an
n-dimensional attribute space as given by n attributes known for each feature. We
can refer to the resulting trajectory as an ATP. An STP can be easily displayed in
either three-dimensions (within a space–time cube) or two dimensions (when the cube is
viewed orthogonally to the two spatial dimensions). However, an ATP cannot be directly
displayed, since n will typically far exceed the number of available display dimensions.
It is proposed here to first spatialize the attribute data and then project the ATP onto
the spatialization to form a spatialized attribute–time path (SATP). Figure 7.1 illustrates
this schematically with a trajectory traversing an area tessellated by polygonal features.
Attributes of these features are spatialized using any suitable dimensionality reduction
technique (e.g. SOM, MDS, PCA). Since every attribute has only one value for every
polygon, each polygon becomes an individual point object in the spatialization. Polygons
that are actually traversed become SATP vertices in the order of traversal (Figure 7.1).
Notice how polygons E and G form the beginning and end points of the path, but are
actually located relatively close in the spatialization. In other words, the SATP describes
a circular route caused by the relative attribute similarity between those two polygon
features.

D

Space-Time Path Spatialized
Attribute-Time Path

Geographic space in 2D Spatialization in 2D

A
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Figure 7.1 STP transformed into an ATP traversing a spatialization of attributes for polygon
features

When spatializing in two dimensions, the third dimension remains available to represent
time, thus forming a spatialized attribute–time cube (SATC), which we will not deal with
further in this chapter.

The following describes a specific methodology for implementing SATPs, as pursued
in this chapter (Figure 7.2). Spatialization of individual ATPs is based on a single
spatialization derived from a large number of geographic objects and their attributes.
Choosing the geographic type, extent, and granularity of geographic objects is a crucial
first step. Geographic type refers in particular to differences between objects concep-
tualized as points, lines, or areas. One could even spatialize individual cells or pixels,
as provided, for example, by multispectral remote sensing. In this chapter, all examples
are based on polygon objects. Specifically, we completely tessellate a given study area
via administrative or enumeration areas (i.e. counties, census block groups, etc.), thereby
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Figure 7.2 Methodology for creating a SATP using GPS, GIS and SOM

allowing unequivocal association of path vertices with geographic objects. Point and line
objects could of course also be used, within certain proximity constraints. Objects to be
spatialized must at least cover the expected extent of STPs, but one may want to go
much beyond that in order to allow future paths to be easily spatialized, especially since
one of the prime goals of this approach is to facilitate comparison of paths traversing
different geographic areas. The granularity or density of geographic objects must be
matched against characteristics of the captured paths and the purpose for spatializing
them. For example, spatialization of paths based on counties (i.e. STPs spatialized as
temporal sequence of counties) may be interesting for regional analysis. However, this
would likely be too coarse when one wants to link an STP to the visual experience of
someone following it on the ground.

When spatializing geographic objects, it is natural to want to include a great number
of attributes, especially in an exploratory setting. Depending on the specific application,
one may find it useful to include demographic, economic, or physical attributes. Those
choices will often be limited by the actual availability of such attribute data, especially
when dealing with a large geographic extent and fine granularity, as discussed above.
Socio-demographic data, as published by the US Census Bureau, are a rare exception, with
dozens of attributes readily and at little cost available at multiple granularities. That was
the main reason for using census attributes in the experiments described in this chapter.

The purpose of preprocessing is to turn raw attribute data into something suitable
for neural network training using the SOM method. This may involve, for example,
logarithmic transformation for highly skewed distributions and normalization of attribute
ranges. After SOM training is completed, the same input data or other data (not illustrated
in Figure 7.2) are mapped onto it to derive point coordinates for each input feature.

GPS is a logical choice for capturing STPs. Among dedicated devices, even consumer-
grade receivers can now capture quasi-continuous paths with great spatial and temporal
resolution. Standard GPS protocols, like NMEA, provide time stamps in Greenwich Mean
Time for every observation. GIS overlay can be used to match an STP to the geographic
objects encountered. This can be based on an exact or proximal match. After extracting
the temporal sequence of objects, their corresponding point locations are found in the
spatialization and linked to form a SATP. Various layers could now be displayed within
the same two-dimensional geometric space that originated with the SOM. Apart from
the SOM and its immediate visual derivatives (e.g. U-matrix, component planes, neuron
clustering), one can display the SATP and the point locations of spatialized geographic
objects simultaneously or in sequence.
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7.4 EXPERIMENT 1: TRAVEL ON INTERSTATE HIGHWAYS

This section describes a first experiment for implementing the methodology laid out
in the previous section. Traveling on US Interstate highways, especially in the western
states, provides ample time for contemplating the geographic space one traverses. While
traveling the United States by car, detailed geographic trajectories were captured by
GPS, totaling over 6000 miles in length. The hardware used consisted of a Compaq iPAQ
PocketPC paired with a CompactFlash GPS card with external antenna and accompanying
software, which stored track coordinates as a text file.

The chosen granularity of geographic base data was at the county level. For each
of the 3140 counties, 40 socio-economic variables from the 1990 census were used,
with a focus on race, marital status, age structure, and housing characteristics. Then a
high-resolution SOM consisting of 10 000 neurons was trained (Figure 7.3). A selection
of 12 of the 40 component planes are shown here. As is typical with this form of
SOM visualization, one can recognize major relationships between variables and one
can also observe how prevalent certain portions of a variable’s range are. For example,
in the population density variable, few neurons have very high values. However, white
population percentage shows high and medium values throughout, except in areas with
large black population percentage and especially in SOM areas with a high percentage
of households with children headed by a female (i.e. single mothers).

Figure 7.3 Several component planes from a 100 × 100 neuron SOM trained with socio-
economic data for all US counties. Lighter shading indicates higher values for a component
layer

A SOM with a relatively large number of neurons allows discerning finer structures
in the input space that would be lost to the aggregating effects of a coarser SOM.
When n-dimensional observations are then mapped onto such a SOM, the resulting
two-dimensional locations are spread throughout the finely grained display space. This
is advantageous whenever geometric operations on individual objects are desired, for
example to place multivariate point symbols or perform selections. Choosing SOM size
in this experiment was thus driven by the goal of ideally establishing a unique two-
dimensional location for each county. Despite the 3:1 neuron-to-county ratio (10 000
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neurons versus 3140 counties), some neurons became associated with multiple counties.
To counter this remaining clustering effect, counties were randomly distributed within
hexagonal polygons spanned around each node in the SOM (Skupin, 2002). This allows
generating unique county coordinates while still maintaining unequivocal links between
neurons and counties.

Figure 7.4 shows one of the GPS tracks, in which a drive from Santa Barbara to
New Orleans via San Francisco was documented with more than 25 000 vertices. GPS
tracks were overlaid with county maps to produce a sequence of traversed counties and
spatialized on the basis of that sequence (Figure 7.5).

Figure 7.4 Experiment 1: Overview Map. Traveling from Santa Barbara to New Orleans, a
track consisting of 25 000+ vertices was captured with a GPS receiver

As different as such cities as San Francisco and New Orleans might be and as far
apart in geographic coordinate space they are, when arriving at one of these from the
other, one realizes that – relative to the rest of the country as expressed by the involved
attributes – one is back to where one started! The proposed method allows to spell this
out, albeit visually, with the two cities appearing as neighbors in the SOM (lower right
corner in main map in Figure 7.5). Notice how some geographically close portions of
the path correspond to relatively compact portions of attribute space. One such region is
entered when crossing from Smith County into Gregg County in Texas (see upper insert
map in Figure 7.5). The path only leaves that region when crossing from St Charles
Parish into Jefferson Parish (not labeled here), just outside New Orleans.

Time stamps provided by GPS allow mapping the amount of time spent at certain
locations, indicated here through graduated circles (Figure 7.6). Despite traversing huge
portions of a very large country, the resulting visualization indicates that most time,
and presumably money, was spent in a limited portion of attribute space (compare also
Figure 7.3).
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Figure 7.5 STP for travel from Santa Barbara to New Orleans projected onto SOM of 3140
counties

Figure 7.6 Visualization of time spent in each county during a multi-day drive from Santa
Barbara to New Orleans

7.5 EXPERIMENT 2: JOURNEY TO WORK

One major goal driving the notion of ATPs and their spatialization has been to allow
exploring possible links between the experience of geographic space and the attributes of
geographic features encountered along a trajectory. Ultimately, one would like to see (in
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a spatialization) trajectories that readily evoke the notion of traveling through attribute
space. However, as one travels across geographic space, one should be able to experience
patterns in attribute space as corresponding patterns in geographic space. County-level
granularity combined with movement on the Interstate highway system (see Section 7.4)
does not really allow this, owing to the large size of counties and the homogenizing
effects of Interstate highway routing.

For the second experiment, much finer granularity and shorter, urban paths were
chosen. Census block groups, which typically contain around 500 persons, provide that
fine granularity, yet their geometry and census attributes are readily available for the
whole country, which allows keeping the geographic extent at the national level. The
census data used here contained 208 671 block groups from the 2000 census, together
with 31 socio-demographic attributes (Table 7.1). Because many of the raw attributes
were to be divided by either population size or household size, those block groups
containing no population or no households were removed, yielding a final input data set

Table 7.1 Experiment 2: Variables for 200000+ census block groups
used as input to SOM training

Variable Normalized by

1 Population size Area
2 White population Population size
3 Black Population size
4 American Indian / Eskimo Population size
5 Asian Population size
6 Hawaiian / Pacific Islander Population size
7 Other Population size
8 Multi-race Population size
9 Hispanic Population size

10 Males Population size
11 Females Population size
12 Age <5 Population size
13 Age 5–17 Population size
14 Age 18–21 Population size
15 Age 22–29 Population size
16 Age 30–39 Population size
17 Age 40–49 Population size
18 Age 50–64 Population size
19 Age ≥65 Population size
20 Median age —
21 Average household size —
22 Households with 1 male Households
23 Households with 1 female Households
24 Households married with children Households
25 Households married without children Households
26 Male head of household with children Households
27 Female head of household with children Households
28 Average family size —
29 Vacant housing units Housing units
30 Owner-occupied housing unit Housing units
31 Renter-occupied housing unit Housing units
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Figure 7.7 Several component planes of a SOM trained with socio-economic attributes for
200 000+ US census block groups. Lighter shading indicates higher values

of 207 933 block groups. Some highly skewed variables were logarithmically scaled and
all variables eventually fitted into a 0–1 range. Given the large number of block groups
and the goal of creating a point location for each of them (as discussed in Section 7.4), a
SOM consisting of 250 000 (500×500) neurons was created (Figure 7.7). Training took
92.5 h (wall clock time) on a 2.8 GHz Xeon PC. Mapping of all 207 933 block groups
onto the trained SOM took another 123 min.

Recent implementations of time-geography concepts have generally focused on urban
environments, with travel on city streets. In deciding on a specific type of path to be
captured, inspiration was drawn from the kind of socially critical analysis pursued by
Mei-Po Kwan (Kwan, 2002). Journey-to-work paths are a particularly worthwhile subject
of inquiry, since the vast majority of employed persons have to travel a certain distance
from their residence to the place of employment. Differences in the mode, duration,
and routing of these paths provide an interesting subject of study, reflecting society’s
organization along lines of gender, race, age, and other factors. Travel mode, duration,
and routing are of course interrelated, as already noted by Hägerstrand: ‘� � � the car-owner,
because of his random access to transport, has much greater freedom to combine distant
bundles than the person who has to walk or travel by public transportation’ (Hägerstrand,
1970). When pursuing the quickest route to work, private vehicles will tend to provide a
more straightforward path and shorter overall travel time than public transport, at least in
the New Orleans metro area. Perhaps more important with respect to the method proposed
in this chapter is that different paths taken between residence and place of employment
may entail differences in the geographic environment experienced en route.

The author’s previous places of residence (Mid-City neighborhood in New Orleans) and
employment (University of New Orleans) were chosen as origin and destination, respec-
tively. Journey-to-work paths were captured using GPS on two subsequent mornings.
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Photos were also taken along the journey, to later allow juxtaposing visual impression
(as one element of en route experience) with attribute space location. On the first day,
a private vehicle was taken and the quickest route through the street network followed
(from here on referred to as ‘private path’). On the next day, public transport with
busses of the Regional Transit Authority was utilized and the path captured (from here
on referred to as ‘public path’). Both tracks were started at approximately the same
time of day (Figure 7.8). As expected, the private track was shorter in both space and
time, running from Mid-City through the Bayou St John neighborhood, then along City
Park and the Mirabeau Gardens neighborhood, reaching the destination within about
18 min. The public path involved taking two buses, one connecting Mid-City with the
Central Business District and the edge of the French Quarter, the second bus running
first parallel to the Mississippi river and then following a straight northward path, toward
Lake Pontchartrain. Following this path took 65 min, including transfers.

Figure 7.8 Experiment 2: Overview of study area. Two different journey-to-work paths were
collected between origin and destination

After intersecting the private and public paths with census block groups, the corre-
sponding sequence of block groups was mapped onto the SOM (Figures 7.9–7.11). A total
of 31 and 12 different block groups were traversed on the public and private path, respec-
tively. In Figure 7.9, block groups are labeled in the order of traversal. The origin in
Mid-City is labeled ‘1’ for both paths and the final vertex as ‘37’ for the public path and
‘13’ for the private path. Note that a new identification is created every time a census
block boundary is crossed. Multiple entries into the same block group are possible,
depending on how block groups and paths are shaped. The resulting duplicate labels
for some block groups are kept in Figure 7.9, in order to allow tracking of the exact
vertex sequence. Figure 7.10 shows both paths together and with respect to the complete
two-dimensional SOM space. Finally, Figure 7.11 seeks to identify some of the specific
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Figure 7.9 Journey-to-work paths traveled with public transport and private vehicle and
visualized on spatialized block groups. Census block groups are labeled in order of traversal.
Neighborhoods are also labeled

Figure 7.10 Journey-to-work paths overlaid on a spatialization of census block groups.
Lighter shading indicates higher values in component planes

attribute patterns common to neighborhoods along the public path. It shows the extreme
diversity of neighborhoods encountered. Summary statistics for urban counties (as used in
the first experiment) tend to hide internal urban heterogeneity. New Orleans, for example,
can best be characterized as a patchwork of often extremely different socio-demographic
zones. The Mid-City origin of the public path is a bit of an exception, as it is actually
quite integrated, thus mirroring a possible summary view of the city. However, once
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Figure 7.11 Visualization of attributes of block groups traversed during journey-to-work
using public transport

moving south along Canal Street, the city’s extremes become more apparent, at first in
terms of gradually increasing percentage of black population. Just before reaching the
CBD, this movement towards the extreme lower right corner of the SOM ends in a
block group with 100 % black population. Entering the CBD corresponds to a large jump
upwards along the SOM’s right edge, followed by traversal of block groups on the edge
of the French Quarter, and so forth.

What both Figure 7.9 and 7.11 illustrate is that named neighborhoods become
manifested as regions in the SOM. For example, along the public path the French
Quarter is the region with by far the highest percentage of white population (left portion
of Figure 7.11), and large proportions of vacant housing, of households consisting of
single males, and of persons in the 30–39 year age range (Figure 7.10). Compare this to
Gentilly Woods, which is a middle-class area, with mixed racial composition and mostly
owner-occupied housing. Traversing a geographic path means to either move within one
of the neighborhoods or to move between them. Moving between named neighborhoods
can occur rapidly, as seen when entering the CBD coming from Mid-City (see left portion
of Figure 7.9), or it can involve intermediate block groups. Examples for the latter are
seen in vertex ‘23’ linking Faubourg-Marigny and New Marigny or vertex ‘29’ between
New Marigny and Gentilly.

7.6 CONCLUSIONS

This chapter argues that adding an attribute space representation to the mix of Häger-
strand’s original ideas with GPS, GIS, and geographic visualization may be an interesting
and useful endeavor. While the early examples shown here are meant to illustrate the
potential of this approach, they also convey a sense of the issues to be explored in
future work. One of these relates to the choice of geographic data with which STPs
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are to be matched in order to generate ATPs. While both examples used census data,
the methodology accommodates other types of data. For example, when mapping out
hiking trails in attribute space, one would want to focus on physical attributes, such as
vegetation cover or slope steepness. With the emergence of wireless sensor networks, the
on-the-fly ‘re-routing’ of ATPs based on changes in environmental factors (e.g. temper-
ature, humidity) may become a valuable option. Today, hikers may look at Web sites
displaying loops of NEXRAD data. Tomorrow, they might also see a looped animation
of an SATP, possibly indicating a slow drift towards a danger zone.

For much of this chapter, SATPs were treated (processed, stored, visualized) similar
to STPs. Of course, there are important differences that remain to be investigated. For
example, with STPs the notion of bundles (Hägerstrand, 1970) has tangible, common
sense implications. In a bundle, different STPs meet in geographic space for a period of
time, the persons associated with them are enabled to directly communicate and interact.
Similarly, making a phone call establishes a temporary bundle of trajectories in the
virtual space of the phone system. But how are we to interpret a bundle of SATPs? What
does it mean when two people moving through different cities are ‘meeting’ in attribute
space? Assuming that a sufficiently rich set of attributes drives the creation of a spatial-
ization, SATP bundles may correspond to similar impressions and experiences. In turn,
similar (or different) experiences may become manifested in similar (or different) social
attitudes.

Whether or nor these speculations about SATPs hold true remains to be seen. In this
context, it may be worthwhile linking ATPs and their spatialized form to the investigation
of activity spaces. Similarly, one might ask to what degree such notions as domains or
constraints (e.g. those shaping space–time prisms) are transferable to ATPs, thereby
answering recent calls to rethink the concept and implications of individual accessibility
in the light of technological advances and societal change (Kwan and Weber, 2003).
In approaching any of these issues, a major aim of future spatializations must be to
incorporate multiple paths taken by multiple persons in multiple geographic areas, which
was not demonstrated in this chapter. Such ability to visually compare paths covering
separate study sites would truly demonstrate the usefulness of this method for time
geography.

Some might argue that using a SOM for deriving a spatialization from only the
non-spatial attributes of geographic features ignores important spatial relationships
(e.g. topology, distance in geographic space) that may be very relevant for under-
standing a given domain. That is a valid argument, whenever such relationships are
indeed ignored during training and use of a SOM. This is the case when individual
geographic features are visualized as points in a spatialization or when trajectories are
generated for features that are spatially fixed, but whose attributes are changing over
time (Skupin and Hagelman, 2005). However, the ATPs described in this chapter are
different in that neighboring vertices within a path correspond to topologically connected
features in geographic space. Therefore, the length of a line segment in the spatialization
gives some indication of spatial autocorrelation. Due to the distortion of n-dimensional
proximities, this is only a rough approximation and quite dependent on the exact param-
eters of the spatialization method. The exact nature of the relationship between spatial
autocorrelation and proximity in a spatialization is an interesting subject for future
research.
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8.1 INTRODUCTION

8.1.1 Synoptic Climatology

The climate system, a complex interaction of the atmosphere with the terrestrial and
ocean sub-systems, operates on a multitude of timescales from seconds to millennia, and
spatially from the molecular to global scales. However, in terms of societal experience
of the climate system, the synoptic scale is the dominant scale of concern; the scale of
the major atmospheric pressure systems that condition the weather experienced on a day-
by-day basis. The climate, in this context, is the aggregation of daily synoptic weather.
A climatology, the characteristic state of the climate system, has a strict definition of
the 30 year mean behaviour of some given parameter. However, in common practice
climatologies of different variables will often span a wide range of time periods.

Of particular interest to the climate research community are the dynamics of the
climate system, historical variability and trend, and projecting the future evolution of the
climate. The latter issue is particularly pertinent on the short term (days to months) for
management of societal activities, and on longer time frames in the context of human
induced climate change and the resulting impacts on natural and societal systems. For
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those activities where society is strongly impacted by the climate, and where resources
limit response options, society can be said to be vulnerable – a persistent state for most
of the developing nations of the world. Research activity addressing these issues is a
major consumer of global computing capacity, with climate simulation being one of the
single biggest users of supercomputers, and reflects the intrinsic dependence of society
on the climate system.

While the dynamics of instantaneous synoptic fields is well understood, the analysis
of the long term collection of synoptic events that make up the climate presents a major
challenge, be it analysis of historical data or the output from simulations of climate
models; data volumes are very large and multidimensional, there is significant spatial
and temporal autocorrelation, yet each weather event is a unique permutation across
some continuum of states. Conventionally time–space averaging is often as far as the
analysis of such large data sets goes. Beyond this the classical approaches are based on
techniques such as Empirical Orthogonal Functions (EOFs), cluster analysis, or other
similar (usually linear) approaches in order to generalize and gain insight into the data
space.

8.1.2 Self-organizing Maps for Climate Analysis

Self-organizing maps (SOMs) bring a new approach to the analysis of climate data that
circumvents many of the shortcomings of more traditional approaches. The first use of
SOMs in this manner is likely to have been the application of SOMs to evaluate seasonal
cycles in a graduate thesis (Main, 1997). In subsequent years there have been only a few
studies employing SOMs in climate work (Cavazos, 1999, 2000; Hudson, 1998), and
SOMs had little visibility in the climate community. In 2002 Hewitson and Crane (2002)
published an article exploring the utility of SOMs in climate studies, showing a number
of applications amenable to SOM analysis. Since then the technique has begun to see a
broader adoption in a number of climate applications, adding value for a broad range of
topics spanning the analysis of present day climate dynamics, interpolation of precipitation
data, inference on climate change processes, climate model validation, and development
of regional climate change scenarios. The increased adoption of the technique has, in part,
been due to the unique attributes of SOMs that compensate for shortcomings in more
traditional techniques. In particular the SOM has proven to be exceptionally valuable by
allowing a powerful insight into the structure and characteristics of the n-dimensional
data space. Techniques such as EOFs [or Principal Component Analysis (PCA) in the
language of other disciplines] are powerful in reducing the dimensionality of a system,
but are problematic to interpret, while imposing a linear filter on the processing of the
data. The interpretation difficulty in PCA is that it reduces the data to spatial patterns of
variance which are not always readily explainable in terms of physical process. Reusch
et al. (2005) comprehensively compare the use of PCA and SOMs in an application to
climatologically data, and demonstrate how PCA, even with component rotation, can
fail to adequately extract the known spatial patterns, while mixing patterns into single
components. In contrast, the SOMs-based analyses are shown to be more robust isolating
patterns with correct attribution of variance. With PCA, it was difficult, if not impossible,
to detect pattern mixing without prior knowledge of the patterns being mixed.
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Similarly, cluster analysis, while commonly used and valuable in some respects, suffers
from widely variable results simply as a function of the chosen cluster algorithm (e.g.
Key and Crane, 1986), and is less conducive to visualization or examining the continuum
of data.

While a SOM implicitly allows clustering, the SOM does not in principle cluster
the data, but rather finds a representative subset of the continuum as characterized
by the source data with the clustering being a post-processing step of mapping data
to associated nodes. This attribute of spanning the continuum in particular makes the
procedure attractive to climate research. Furthermore, relative to other methodologies,
the procedure is intuitive, interpretable in terms of the native characteristics of the data,
places no assumptions of linearity, and generates results that are robust across a wide
range of generalizations of the data space as the SOM matrix size is changed. More than
just facilitating a valuable representation of the data space the SOM can make possible
powerful analyses, such as examining the temporal evolution of the n-dimensional system.
As with any methodology new to a discipline, adoption of the technique requires some
demonstrable improvement over established approaches. Nonetheless, in many cases the
simple notion of finding generalized archetypes of the data set, along with the advantages
as outlined above, is often enough to convey the concept to new users, and SOM papers
and conference presentations in the climate arena are becoming relatively common.

A particular attribute in the SOM analysis of atmospheric fields is the inherent nature of
the SOM to span the data space and thus facilitate the visualization of the continuum. With
the most dissimilar atmospheric states being located on the most distal nodes of the SOM
array, and similar stated on adjacent nodes, the projections of the high-dimensional space
onto the SOM node array affords great clarity into the behaviour of the high-dimensional
system. A potential limitation of SOMs in this regard is that a regular two-dimensional
array of SOM nodes provides four vertices. The SOM characteristically places the most
opposing states of the data space onto the vertices, representing the primary modes of
the data space. The remaining modes of the atmosphere are then mapped as transitions
between these principal vertices. Thus there is a possible constraint with only four
vertices; where significantly more than four primary modal states of circulation exist,
these would be forced to be located in the transition nodes between the vertices leading to
less coherent mapping of the data vectors to the archetype states. With most atmospheric
data this does not appear to be too problematic in practice, and univariate fields do
appear to form a relatively simple continuum without distinct disjuncture in the data
space. However, with other forms of climate data or with multivariate combinations this
could be a problem, leading to a reduction in the clarity of archetypes.

Some exploratory work to investigate this problem has been undertaken with a toroidal
SOM array, as offered in the SOM Toolbox for Matlab1 or as used by Ultsch (2003).2

In this approach the ends of the two-dimensional node array are wrapped to form a
continuous surface. This, however, presents significant visualization difficulties, and
does not appear to improve the final SOM mapping, at least in this application arena.
More useful, although still somewhat problematic for visualization, has been to use
n-dimensional arrays of the SOM nodes. A three-dimensional array of nodes would offer

1 See http://www.cis.hut.fi/projects/somtoolbox/
2 Available online at http://www.mathematik.uni-marburg.de/∼databionics/downloads/papers/ultsch03maps.pdf
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eight vertices, and a four-dimensional array, 16 vertices, etc. The three-dimensional array
with eight vertices readily accommodates the characteristics of most climate data and
may still be fairly easily visualized as a set of two-dimensional layers. However, within
the climate community this is still exploratory and published results remain focused on
the use of two-dimensional node arrays.

For the remainder of this chapter a number of SOM applications with climate data are
explored, demonstrating typical use and how the SOM adds valuable insight. Common
to each application is the analysis of the continuum of space–time fields of atmospheric
variables. In most cases these are gridded fields of, for example, sea level pressure on a
time interval of, say, 6 or 12 h. In some cases the data spans decades, in others it may
only be one season. In each case the SOM is used with a number of specific objectives
in mind, such as:

• Identifying the archetypes representative of the continuum of events.
• Evaluating and comparing the frequency of occurrence and characteristics of the

archetypes between two data sets or time periods – in effect comparing the two-
dimensional histogram of archetypes as represented by the SOM node array.

• Investigating the time-evolution of the climate system in the reduced dimensionality
of the SOM node array.

• Using associations between SOM-derived archetypes and variables at other spatial
scales.

• Exploring the characteristics of the data probability distribution function as represented
by the SOM.

With the assumption that readers are cognizant of the basic SOM conceptual approach
(detailed explanation of the SOM concept is left to Chapter 1), the balance of this
chapter now presents examples of how the SOMs can be used to gain insight into the
climate system. Five applications are focused on, each presenting a different use of
the SOM:

(1) assessing the variability of circulation modes;
(2) temporal trajectories of seasonal evolution;
(3) downscaling local climate response to synoptic scale circulation;
(4) evaluating stationarity of circulation modes;
(5) conditioning spatial interpolation synoptic circulation modes.

8.2 APPLICATION EXAMPLES IN CLIMATE STUDIES

8.2.1 Analysis of Circulation Variability

One of the classic arenas of climate analysis is the sub-discipline of ‘synoptic clima-
tology’; defined first by Barry and Perry (1973) as ‘obtaining insight into local or regional
climates by examining the relationship of weather elements, individually or collectively,
to atmospheric circulation processes.’ Foundational to this approach is the creation of
weather types – generalized characteristic weather states – for relating to other variables,
be it precipitation or even more indirect responses to atmospheric forcing such as storm
surge or pollution episodes.
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In this example we use the SOM to assess the circulation controls on precipitation
in central Pennsylvania, USA, following the study by Hewitson and Crane (2002). The
source data in this example are gridded fields of January sea level pressure (SLP) spanning
1958–1997, with a data grid every 12 h over a domain spanning the eastern continental
USA. Expressing each 12-h grid as a row vector, this creates a matrix of 2480 rows
spanning 40 years.

The SOM is first used to assess the archetypal circulation modes for the region. A
SOM matrix of 5 × 7 nodes is established, allowing for 35 archetypes. Different node
array sizes were explored but all show the same broad patterns (as shown to be robust
in Crane and Hewitson, 2003). The 5×7 array is analogous to using 35 clusters in more
traditional methodologies and other synoptic studies over this domain have used a similar
number of synoptic types (e.g. Comrie 1992).

The node vectors are intialized with the diagonals related to the first two eigenvectors
of the data set, and then trained with the 40-year time series of data. The implementation
used the basic freeware package SOM_PAK v3.2.3 The training parameters were a
learning rate of 0.05 (parameter ‘alpha’ in SOM_PAK), with an initial update radius of
5 (the smaller of the two array dimensions) reducing to 1 by the end of the training.
The training ran for 250 000 iterations (∼ 100 × the number of data vectors), although
the SOM converged on a stable solution rapidly. After training each node represents
an archetype, with all nodes spanning the circulation continuum. As each node vector
is, in fact, a spatial grid, these can be mapped. Figure 8.1 shows the identified January
archetype circulation patterns on each node.

Using the trained SOM a wide range of further analyses may now be undertaken, a few
of which are discussed here with full details found in Hewitson and Crane (2002). One
of the first useful steps is to assess the histogram of circulation by mapping each data
grid in the 40-year time series to the SOM, and determining the frequency of occurrence
on each node. After undertaking this mapping a number of two-dimensional plots of the
node array may be created. For example, Figure 8.2(a) shows the histogram of the full
40 years of data, with Figure 8.2(c) and (d) showing the histograms for low and high
precipitation months, and Figure 8.2(b) showing the trend over 40 years of frequency of
occurrence on each node.

The analysis gives insight into the historical nature of the circulation that is not
readily accessible through traditional methodologies. With Figure 8.1 as a reference, from
Figure 8.2(a) it can be clearly seen that January has two nominally preferential modes
of the circulation, one characterized by high pressure to the southeast of the domain,
and one with a continental high-pressure system with a low pressure to the north-east.
However, the frequency distribution across the nodes is not exceptionally varied, with
the frequency of occurrence showing an approximately 2:1 range from the most frequent
to the least frequent node. Figure 8.2(c) and (d) show the histogram associated with
a particularly wet and dry January, respectively, where greater disparity in frequency
of occurrence is apparent. The two years differ strongly in the projection on the SOM
array, with the dry year showing a strong preferential occurrence of nodes associated
with strong high-pressure systems – systems that do not produce much precipitation.

3 http://www.cis.hut.fi/hynde/lvq/
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Figure 8.1 The 5×7 array of SOM node vectors of January sea-level pressure (SLP) for the north-east United States. Blues represent relatively
low pressure, while reds indicate high pressure. The plot to the right displays the mean precipitation (mm) for each synoptic state represented in
the SOM array. (After Hewitson and Crane, 2002) (See Colour Plate 15)
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Figure 8.2 Histograms of the node frequencies of the SOM matrix in Figure 8.1.
(a) Frequency of occurrence (%) over 40 years. (b) The trend expressed as the change
in mean frequency of occurrence (days) over 40 years. (c, d) Frequency of occurrence (%)
for the dry 1978 (c) and wet 1981 (d) Januaries

Notice also that in each of the two example years there are a number of nodes with zero
frequency of occurrence.

From this analysis it is also relatively simple to take all days mapping to a node and
determine the mean associated precipitation at a location. In this example this has been
done (Figure 8.1) for precipitation of an observing station in the central region of the
domain, effectively identifying the precipitation that is characteristically generated by
each circulation mode. In this case it is found that the precipitation is not always related
to the most frequent modes of circulation.

With this knowledge in hand it is illuminating to consider Figure 8.2(b), the trend in
frequency of occurrence. The strongest change over the 40-year period is the positive
trend for the nodes in the lower right of the SOM node array. These circulation modes
are also characterized by the lowest precipitation. On the basis of this it would be
reasonable to infer that over the 40-year period one would anticipate a reduction in
January precipitation for the region. However, contradicting this inference is the fact that
the January precipitation of the region is actually increasing (not shown) over the time
period. The apparent contradiction is readily explained by the fact that the nature of the
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precipitation that arises from a given circulation mode is itself changing. Thus, in this
case, the low precipitation modes which are increasing in frequency have themselves a
positive trend over time in the amount of precipitation received from these modes.

This is a valuable insight that is in line with physical understanding of global warming,
where the primary response is anticipated to be a more moist atmosphere, and a strength-
ening of the mid-latitude high pressure systems – the mode of circulation represented
by the increasing frequency modes in the SOM. These results thus add to the ever
growing accumulation of indicators for climate change, and are in accord with physical
understanding of how this is likely to be manifest.

8.2.2 Time Evolution of the Seasonal Climate

Following the above it is apparent that a logical extension to the analysis of circulation
modes is the temporal evolution of the system. In this approach one may use the mapping
of each data time slice (in the above example, daily data) and the associated node
coordinates to map the trajectory of the climate evolution across the SOM node array –
effectively mapping the time evolution and trajectory of the high dimensionality data
space in a two-dimensional projection that is more readily interpretable. Main (1997)
undertook such an analysis to inter-compare different Global Climate Model (GCM)
simulations of the climate system. Hewitson and Crane (2002) extended the basic idea to
evaluate the transition matrix of the SOM nodes, while Gutowski et al. (2004) followed
with a SOM-based diagnosis of, in this case, the somewhat problematic precipitation fields
produced by a Regional Climate Model (RCM). This latter application is discussed here.

Precipitation is a derived quantity in GCMs and RCMs; the basic thermodynamic
state of the simulated atmosphere is used with relatively crude parameterization schemes
to determine the generated precipitation. This is a particular weak attribute of climate
models in general. Complicating the already (by necessity) simplistic parameterization
issue is the difficulty in evaluating the model precipitation, especially when convective
precipitation is a significant component of the total. SOMs offer a particularly valuable
means of assessing this, and especially the seasonal development of the precipitation
fields that, arguably, should be a primary attribute well simulated by a model if the
model is to be deemed credible.

While there are a range of methods for examining the dimensionality space of models
(e.g. Govindan et al., 2002), Gutowski et al. (2004) effectively use SOMs to examine the
time series of observed precipitation fields spanning the continental USA compared with
the equivalent precipitation derived from a RCM simulation. Using 10 years of monthly
precipitation fields the SOM effectively maps the range of seasonal mean precipitation
fields (not shown). Following this, the centroid coordinates on the SOM node array for
each month are determined, i.e. the centroid of the node coordinates for all Januaries,
all Februaries, etc. This gives the projection of mean seasonal position from the high-
dimensional data space onto the two-dimensional SOM array. Following the evolution
of months maps the mean seasonal trajectory in time of the observed climate system on
the one hand, and of the simulated climate on the other.

Figure 8.3(a) shows the respective observed and simulated seasonal cycles across the
Sammon map (Kohonen, 1995; Sammon, 1969) of the SOM node array. Apparently,
the simulated data diverges strongly from the observed climate during winter months,
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Figure 8.3 Seasonal evolution across the SOM node array. (a) Sammon map of the SOM
node array, and the seasonal trajectory for the observed (VEMAP) and simulated (RegCM2)
precipitation fields as defined by the centroid of each month’s frequency distribution. (b) Inter-
centroid distance between the observed and simulated data. (From Gutowski et al., 2004,
Diagnosis and attribution of a seasonal precipitation deficit in a US regional climate simulation.
J. Hydrometeorol., 5: 230–242)

and least during the summer. The divergence between the observed and simulated mean
state is shown in Figure 8.3(b). The insight given through mapping the data onto a
SOM is valuable, and the degree of divergence between the data sets, and the nature of
the divergence in moving through the seasonal cycle, is now readily apparent. Whether
viewed in the form of inter-centroid distances, or as a trajectory across the SOM array,
this contrasting of the data is not readily achieved through the traditional techniques
used by the climate modelling community. For example, the maximum divergence in
November identifies a climate seasonal state where the climate model clearly struggles to
capture the changing nature of the dynamics as the climate system transitions into the core
winter processes. This provides a valuable diagnostic insight for the model developer.

8.2.3 Climate Downscaling

One of the greatest challenges facing climate change research is to translate the knowledge
of future climate change at the global scale to how this may manifest at the regional scale
of relevance. For example, to say that the globe is warming by, say, 3 �C over the next 100
years is next to useless for a water resource manager in a catchment area, or for developing
agricultural response policies in a region, or for assessing future changes in extreme events
to which a locality may be vulnerable (e.g. tropical storms). The primary tool for projecting
futureclimatechanges is theGCM;unfortunately theGCMhasaspatial resolution toocoarse
to allow for skill in simulating the local scale features of interest. However, the synoptic
scale circulation of the atmosphere largely conditions local climate. Hence the concept of
downscaling,usingcross-scale relationships to infer localclimate responsefromthesynoptic
scale, has become a standard approach to translate GCM-simulated climate change at the
synoptic scale to the spatial resolution of relevance.
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Downscaling requires some form of cross-scale function. A regression type function
in principle satisfies this; however, this ignores the fact that some of the local climate
is a stochastic response only partly conditioned by the synoptic scale, and is not an
exact causal response to synoptic scale features alone. Consequently, regression-based
approaches to downscaling underestimate the variance.

The SOM provides a valuable approach to compensate for the limitations of regression
(and other) downscaling techniques: by characterizing the continuum of synoptic states
using observed historical data, one may then derive for each sub-space (each node
archetype) of the continuum a probability distribution function of the observed local
climate response – a response distribution conditioned by synoptic state. Using the
SOM to determine the synoptic scale archetypes, and associating the local response to
these provides the means to condition the stochastic response arising from other factors
not represented in the continuum of synoptic circulation. To generate a downscaled
local climate response one then maps the future climate synoptic circulation state
simulated by the GCM to the SOM node array, and for the given node, stochasti-
cally sample the associated probability distribution function (PDF) of the local climate
response.

In an application focused on Africa, one of the regions of the world most vulnerable
to climate change, Hewitson and Crane (2005, 2006) apply a SOM-based downscaling
approach to generate scenarios of local climate change. The SOM is initially trained on
a multivariate suite of atmospheric variables at the synoptic scale. The variables chosen
reflect the thermodynamic and kinematic state of the atmosphere in three dimensions for
a 1500 km × 1500 km domain centred on the local target region of interest (a 10 km ×
10 km area) – effectively characterizing the synoptic scale state of the atmosphere. After
training with 25 years of historical daily data the SOM distinguishes the continuum
of states into 35 archetypes (using a 5 × 7 node array). For each node the associated
values of daily precipitation are then determined using all the days mapping to the
node, and the precipitation values used to construct the PDF response to the synoptic
state associated with the node. The approach is very effective in isolating the range of
precipitation responses. Figure 8.4 shows the PDF derived from just two of the nodes
of the SOM array, nodes on the opposing ends of one diagonal of the SOM node
array.

In the downscaling application the GCM simulation data of the future climate is mapped
to the SOM trained on the historical data. For each day of the GCM-simulated climate
the associated SOM node is identified, and from the PDF associated with this node
a random value of precipitation selected. This approach provides temporal sequencing
that is consistent with the synoptic scale forcing, while the stochastic element maintains
appropriate variance arising from local scale forcing unrelated to the synoptic scale. In
practice this is very effective. Figure 8.5(b) shows the climate change projection using
the native GCM grid cell precipitation for southern Africa, and showing the effect of the
GCM low spatial resolution. Remembering that individual grid cells taken in isolation
are not the skilful attribute in a GCM, this is of little value to the regional resource
manager, policy developer or impacts researcher. However, Figure 8.5(a) shows results
of SOM-based downscaling from the synoptic scale circulation fields to all 10 km×10 km
target locations over South Africa and Namibia. Of note is the high spatial resolution,
and significantly, that even if these were area averaged to the GCM grid scale, the results
are different.
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synoptic scale circulation. (a) PDF related to circulation conducive to rainfall. (b) PDF related
to circulation leading to dry conditions

Figure 8.5 SOM-based downscaling (a) and raw GCM (b) precipitation anomalies of climate
change projections for the period 2071–2100 over South Africa (See Colour Plate 16)
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Remembering that the GCM precipitation parameterization is relatively crude and
results in a commensurately low-resolution climate change projection, the downscaled
solution offers a valuable enhancement. The downscaling is inherently consistent with
the foundational thermodynamic and kinematic fields of the GCM in that it is constrained
by the real world response to the range of dynamic states, and, as such, presents a more
robust and credible solution for the climate change projection.

8.2.4 Stationarity

Based on the example presented in the previous section it appears that there is a funda-
mental weakness to downscaling: implicit in the use of atmosphere archetypes with
related local climate response is the assumption that the relationship between the large
scale and local scale in the future remains constant – that the relationship is statistically
stationary. This cannot be demonstrated in advance, and raises a degree of uncertainty
over the validity of the downscaled data. However, it is arguable that if the full suite of
synoptic scale forcing variables are included in the SOM, if the local-scale factors (land
use practice, etc.) remain nominally the same, and if the historical data used to train
the SOM spans the range of natural variability, then the stationarity question is not a
problem. To some degree this is unlikely to be the case.

In the downscaling example used above the variables used effectively encompass the
dominant synoptic forcing on precipitation. Further, the local forcing attributes such as
topography or land use are either a constant or unknown, and thus already accommodated
or else intractable. This leaves for examination the question of whether the cross-scale
relationship is stable, in that do the future circulation states fall within the realm of the
historical data; in essence, that future climate change is dominantly in terms of changes
in frequency of occurrence, persistence, and temporal sequencing of pre-existent events.
Assessing the stationarity of the climate forcing thus resolves to assessing whether the
n-dimensional envelope of the current climate contains the envelope of the simulated
future climate, or at least does so to an acceptable degree.

Using a data set that characterizes the current climate envelope, a simple test of the
future climate envelope in relation to the current climate is to determine the percentage
of occurrences by which the future climate data exceed the, say, 90th percentile distance
from the centroid of the current climate data space. The 90th (or other) percentile is
used as one anticipates that some percentage of the historical climate events are unique
and not characteristic of the mean climate envelope. However, in n-dimensions this is
not a readily tractable task as the shape of the climate envelope is not necessarily some
simple spherical shape amenable to defining – in reality this is likely some complex
shape.

The SOM offers a valuable solution here; each node in a SOM trained on the current
climate represents some finite, relatively homogenous, sub-space of the full data space.
Mapping the future climate onto the SOM will map each future climate data vector to
some node of the SOM array. Since the node represents a relatively homogenous sub-
space of the current climate, the error with which the future climate data maps to this
node is a reflection of the degree of agreement with the archetype represented by the
node, and which can then be compared with the error of the current climate mapping to
the nodes.
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To approach the question of stationarity we train a SOM with 30 years of daily
data over a 1500 km × 1500 km spatial window for the current climate. For each node
we then determine the 90th percentile of the Euclidean distance from the node vector
for all days mapping to the node. Then, simulated daily data for the future climate
are mapped to the SOM. For a given node the number of occurrences is determined
where the Euclidean distance between each future climate day mapping to the node
and the node vector exceeds the 90th percentile distance of the days in the control
climate. This exceedance factor then represents the degree to which the future climate
envelope (for this node-defined subspace) can be said to be non-overlapping with the
present day climate envelope. Accumulated over all nodes the exceedance factor gives
an estimate of the overall non-overlap between the future and present day climate
envelopes. Hewitson and Crane (2006) use this approach to assess the stationarity of
three global climate model simulations of future climate, and demonstrate a degree of
non-stationarity. Even so, it is shown that this does not preclude the validity of the
climate projection, but rather puts a conservative constraint on the degree of the climate
projection.

Using the SOM analysis as outlined above, a high exceedance factor indicates potential
stationarity problems for any downscaling – and potential problems for the region
concerned! Furthermore, by examining the exceedance factor according to each node
the non-stationarity of the future climate can be attributed to particular synoptic states,
allowing further diagnosis of the dynamics underlying the change in climate. The above
analysis may also be extended to all 1500 km × 1500 km windows over the globe, the
results of which can be used to generate a global spatial plot of the non-stationarity of
the simulated future climate, alerting the researcher to regions where the downscaling
may be tractable, or problematic.

Applying this stationarity test to the future climate simulations from different GCMs
gives (encouraging) results showing notable agreement between the GCMs. While there
are regionally dependent differences, in general the GCMs indicate future climate station-
arity to not be a large problem for much of the mid-latitudes, but there are some regions
of the tropics that are cause for concern – unfortunately the tropics contain some of the
more vulnerable regions to climate change.

8.2.5 SOM-based Conditional Interpolation

One of the more notable difficulties in any climate analysis is the problem of irregularly
spaced point observations. Much of the climate system is monitored through weather
stations measuring the basic weather variables such as temperature and precipitation.
These observations reflect the local response to the synoptic scale forcing. However, the
distribution of stations is highly variable, and their degree of spatial representivity largely
unquantified. Traditionally, interpolation techniques such as Kriging (e.g. Biau et al.,
1999) or Cressman (1959) are used to spatially interpolate from the station point specific
observations, but can additionally introduce extrapolation beyond the magnitude bounds
of the observed data. These techniques have inherent a number of assumptions about the
data, some of which are highly questionable. For example, interpolation of precipitation in
such a manner assumes a continuous response surface; in fact precipitation is a bounded
continuum – positive precipitation over some given area but bounded by zero. A second
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problematic assumption is that the interpolation parameters are constant in time – again
an assumption likely to be wrong.

Hewitson and Crane (2005) investigate these issues in greater depth, but we review here
how SOMs are used to manage these difficulties. This example uses station data across
South Africa, a region characterized by strong climate gradients with a station presence
that is highly variable in space and time; in other words a region highly problematic for
interpolation.

The approach to interpolation begins with determining, using SOMs, the time-
dependent inter-station interpolation parameters. For each of the ∼ 3000 stations a SOM
array of nodes is trained using the daily data for the station in question, and also all
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Figure 8.6 SOM derived archetype precipitation fields in relation to a recording station
in the centre of the domain and its neighbours. Darker shades are higher precipitation,
and the boxed numbers on each node reflect the frequency of occurrence (%) of days.
Node (x = 5, y = 2) is the dry state across the entire region, and hence has a very
high frequency of occurrence in comparison with the other nodes. (From Hewitson and
Crane, 2005).
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station neighbours within a finite radius (0�75� used). Each day’s observations are thus
a vector of station precipitation values for all stations within the radius, and each node
in the trained SOM reflects an archetypical spatial pattern of precipitation around the
target station in question. Figure 8.6 shows the maps of archetype spatial patterns of
precipitation as reflected by each SOM node. Of significance here is that the inter-station
relationships are highly variable and conditional on the state of the atmosphere.

Using the SOM-based disaggregation of the inter-station relationships of precipitation,
subsequent interpolation can be intelligently designed to accommodate these day-to-day
changes in inter-relationships. The results when applied to interpolation of the station
data onto a regular grid are startling; when comparing the station observation data with
the SOM-derived conditionally interpolated data and also the interpolated data from
a commonly used interpolation scheme (Cressman, 1959), the conditional interpolation
shows large improvements in quality of the interpolated product. For example, considering
if the interpolated value is wet when it should be dry, the conditional interpolation
overestimates wet states by only 0.8 %, while the Cressman scheme overestimates wet
states by 48.4 % largely as a consequence of the inherent assumptions outlined earlier.

The SOM, in this application, thus proves to be very beneficial, notably because
it allows the development of interpolation parameters that span the continuum of a
very complex inter-station relationship function. The subsequent interpolated results are
arguably far closer to reality (which is unknown in its full detail) than any of the other
of the commonly used interpolated precipitation data sets in common use.

8.3 CONCLUSIONS

The examples used above express some generic aspects of the application of SOMs in
climate analysis. The SOM, however, is finding more and more applications and a full
range of other uses of the SOM for climate analysis is not covered here. For example,
Crane and Hewitson (2003) use the SOM to define regional boundaries of climate systems,
and use this as a basis to scale up from point observations. Tennant and Hewitson (2002)
use SOMs to explore the dynamic controls on intra-seasonal variability of precipitation.
Meanwhile, Eckert et al. (1996) used SOMs to classify members of ensemble forecasts.
In this approach multiple forecasts are generated with a climate model, each with slightly
different initialization conditions to allow one to explore the envelope of possible climate
evolutions inherent in a chaotic system. The SOM is then used to group the individual
forecasts (ensemble members) to identify characteristic climate evolution pathways.

Common to these and other applications in climate research is the attractiveness of the
SOM in ease of application and accessible visualization of a number of attributes of a
complex multidimensional system. In particular, the SOM results seem, at least in climate
applications, to be particularly robust in the face of choices over node array dimen-
sions, training iterations (including resilience to over-training), and choice of training
parameters. Crane and Hewitson (2003) and Reusch et al. (2005) expand on these issues.

Implicit in many of the applications presented here are elements of cluster analysis,
but the underlying approach to the analysis is often fundamentally different. In particular
is the acknowledgement that the climate system is a continuum, with no categorical
states. As such, SOM provides an effective means to reduce the very large data volume
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representing the possible state-space of the climate system into readily interpretable
modes that represent the continuum.

Frequently the SOM is used as a means for further analysis. In much the same way
EOFs are used to perform dimensionality reduction, SOMs achieve the same result with
distinct advantages of interpretability, and re-representing the data in a way such as to
facilitate a broad range of additional analysis; for example temporal evolution, frequency
of occurrence, and of growing importance, the comparison and evaluation of data sets
that do not necessarily have a 1:1 correspondence. This latter issue is one of growing
importance where climate models are used to simulate the climate behaviour, but where
a simulated day in the model may have no direct correspondence to a given day in the
observed world. The task then is to assess how, for example, the days of January in the
model compare with the days of January in the real world. By mapping the days into the
data space represented by a SOM, these forms of assessments can be readily undertaken.

In other forms SOMs present a distinctly new approach to problems, such as the
downscaling example above, and especially the issue of stationarity that is becoming a
growing concern on a number of fronts in climate change research.

SOMs are thus proving viable, valuable, and are growing in popularity among clima-
tologists. The number of presentations and journal papers including some application of
SOMs is increasing, and SOMs are increasingly being taught as part of graduate climate
curricula. In short, the future for SOMs as a core methodological tool in climate research
looks positive, and a strong increase in usage and visibility in the literature is anticipated
in years to come.
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9
Prototyping Broad-Scale Climate and
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9.1 INTRODUCTION

In earth systems science processing and interpretation of large amounts of data has become
one of the most important research tasks. Machine learning techniques such as artificial
neural networks (ANNs) have several advantages in this context, not only because they
are able to replicate the computational power of their biological examples. Other essential
attributes are their ability to represent nonlinear relationships, their adaptive capacity if
new information is fed in, and their robustness in handling noisy data. On the downside
ANNs need large amounts of homogeneous data and the operator has to provide plausible
explanations about why they approximate a solution.

In geosciences, climate, and biogeographical research neural networks can improve
the knowledge background fundamentally, in particular for data rich situations. The main
ANN applications are pattern recognition, forecasting, or a combination of both. The
most common ANNs are supervised algorithms, e.g. the feedforward network (multi-
layer perceptron) with backpropagation learning rule. Özesmi and Özesmi (1999) and
Aitkenhead et al. (2004) apply this network type for regional habitat identification and
structuring. A similar approach is used by Moldenhauer and Lüdeke (2002) and Grieger
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(2002) for prediction of terrestrial net primary production and reconstruction of paleo-
biomes, respectively, by using high resolution climate data as training data. Recently, this
network type was also used for risk assessments. Ermini et al. (2005), for instance, apply
it for an assessment of landslide susceptibility by using lithology, slope angle, and land
cover data as training input, whilst Hanewinkel et al. (2004) utilise it for the identifi-
cation of forest stands susceptible to wind throw. ARTMAP networks, which are based on
adaptive resonance theory, are a further class of ANNs also used for regional vegetation
classification (Carpenter et al., 1999). Unlike these widely used ANN types, the self-
organising map (SOM) is quite different (for details of the algorithm cf. Chapter 1).
SOMs are inspired by their biological example: the brains of mammals. In areas of the
brain neocortex the neurons are organised in ways that reflect some physical character-
istics of signals stimulating them (Bauer et al., 1996). Signals received from adjacent
peripheral receptor fields are also processed in neighbouring domains, which is similar
to a topology preserving mapping. The SOM extracts in a self-supervised, nonlinear
and topology preserving way the essential structural information from numerical data,
as opposed to memorising all of it (Kohonen, 2001). It seeks for samples with similar
attributes and in an ideal case it forms topologically ordered groups of archetypal pattern
by approximation of the density of the data set. These features of SOMs are of specific
interest when a classification scheme is not known a priori. SOMs are used by Malmgren
and Winter (1999) and Kropp (1999a) to detect regional or global climate zonation
schemes, by Foody (1999) for a regional classification of vegetation, whilst Crane and
Hewitson (2003) apply them to perform an up-scaling and clustering of station precipi-
tation data to regional patterns. Kropp et al. (2006b) have used them to assess vulnerability
of German communities to weather extremes.

Here we use SOMs to examine the relationships between climate, soils, and globally
distributed vegetation clusters, since Epstein et al. (2002) assert that temperature, precip-
itation, and the moisture regime are major controls over the distribution of vegetation.
Nevertheless, the estimation of a necessary and sufficient number of classes and global
distribution of ecosystem complexes and climate typologies is still a challenging task,
since the majority of approaches differ widely and mainly use a priori assumptions about
the class structure and number.

The concept of ecosystem structuring, i.e. biogeography, was founded by Alexander
von Humboldt. Early concepts of biographic regions were based on patterns of species
(flora and fauna) and higher taxa distribution, although on land ecogeographic clusters
are often defined by their dominant vegetation. In practice, the definition of ecosystem
complexes is difficult. For instance, can a forest definition be based on a threshold
for the percentage of canopy closure, or should only trees be considered as woody
vegetation >5 m height? Such questions imply that any kind of structuring depends
on its purposes, e.g. on specific questions, the size of region observed, and also on
the background of the analyst. These difficulties may be one reason why vegetation
classifications differ. Very early on, climate was related to these kinds of classification
issues. However, static model approaches employing biogeographical classifications are
limited with the hypothesis of ‘dynamic equilibrium’ (climax hypothesis), i.e. they assume
a quasi-equilibrium in both climate and vegetation. Nevertheless, it is often mentioned
that climate and vegetation interact closely (cf. Bailey, 1995; Eyre, 1963; Jäger, 1997;
Mckenzie et al., 2003; Simmons, 1979). Thus, the construction of static vegetation
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models follows a very simple algorithm in order to assess potential climate impacts: the
boundaries of actual natural phenomena are recorded – normally the vegetation – and
subsequently related to climatic isolines (e.g. Tivy, 1996; Walter and Breckle, 1991a). An
example which is in major use today is the famous Köppen (1918) scheme, which related
climate and vegetation based on a finite set of rules, i.e. limit values for monthly means
of temperature and precipitation and named these clusters (between 15 and 35 types)
regarding to dominant vegetation types. Thornthwaite (1948) developed a classification
scheme based on annual pattern of soil-moisture conditions regarded as depending in a
sophisticated manner on the monthly input of rain and on the output of evapotranspiration
indicated by temperature. In contrast, Holdridge’s Life Zone Classification (37 life zones)
depicts major types of global climate to terrestrial ecosystems using simple functions of
measured bioclimatic variables (Holdridge, 1947).

These approaches have successively been extended including simple ecophysiological
rules, but they are still equilibrium models. Examples are the so-called plant functional
type (PFT) models. PFT aggregates the variety of species into characteristic functional
groups, mostly representing their physiognomic and morphologic features and defines
bioclimatic envelopes. One of the earliest of these models was developed by Box (1981),
who defined 90 PFTs. Their distribution depends on eight climate variables, for instance,
moisture or frost frequency. More recent examples are the so-called BIOME1-2 models
developed originally by Prentice et al. (1992). The distribution of 17–19 biomes is
predicted on a highly resolved spatial scale (0�5� ×0�5�) as a function of environmental
constraints, such as cold tolerance, chilling, heating and moisture requirements. These
biomes are also based on PFTs. Extended versions of this model type consider compe-
tition between plant functional types and biogeochemical fluxes (BIOME3-4, Haxeltine
and Prentice, 1996; Kaplan et al., 2003). The latest generation of vegetation models
(DGVMs) are dynamic and integrate nutrient cycles and behaviour of vegetation in
response to climate (cf. Foley et al., 1996; Friend et al., 1997; Roelandt, 2001; Sitch
et al., 2003; Woodward et al., 1998). The coupling with climate models (AGCMs)
allows to model vegetation’s response to climate change in a transient mode. Criticism
is expressed regarding these approaches from distinct sides. Roelandt (2001) mentions
that small scale and long-term prognoses rapidly increase computational costs, so that
they are rather unsuitable for such tasks. An alternative approach prefers earth system
models of intermediate complexity, but biogeographers criticise that these models involve
over-simplification (Cramer et al., 2001). Concerning these discussions some questions
clearly remain:

• Almost all vegetation models assume a strong response to climatic constraints, but
how large is this influence with respect to the formation of vegetation clusters? Is it
possible to relate a structuring in climate data to vegetation mappings which implies a
local self-controlling of climate and vegetation?

• How many biogeographical units (classes, biomes, PFTs, etc.) are sufficient for the
discussion of an ecogeographical organisation on the global scale? The current classi-
fications are a mix between heuristic and empirical knowledge. Also, the most recent
models discuss this question only in passing.

• Finally, what are the implications of an ANN model for future vegetation modelling
and how can it be used to analyse the impacts of regional global warming?
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Using high-resolution climate data as training data, we have tackled these questions with
SOMs. The analytical approach presented also involves an algorithm providing a quanti-
tative measure for the topological ordering (SOMTOP model). The topology reveals an
additional level of information, which is highly relevant for neighbourhood sensitive
classification tasks. This approach supplies a number of objectified classes as well as an
optimal dimension for data representation by identifying inherent feature types hidden
in the training data. The clusters obtained are related to the broad-scale distribution of
ecosystem complexes and are used to estimate the regional impact of climate change.

We start with a description of the methodology in Section 9.2. Data exploration
and statistical measures valuable to assess the quality of obtained results are reported
in Section 9.3. The results and implications regarding their links to biome types are
presented in Section 9.4. Subsequently we highlight the ANN results in the scope of
climate change. In Section 9.5 we outline out the advantages of ANN in climate and
vegetation modelling and suggest further extensions of this approach. We conclude with
a summary and a general outlook (Section 9.6).

9.2 METHODOLOGICAL CONCEPT AND DATA

9.2.1 The SOMTOP Neural Network Model

We implement a neural network consisting of: (i) a SOM (SOM-, cf. Chapter 1); and
(ii) an algorithm providing a quantitative measure of the distortion of neighbourhoods
(-TOP, cf. Section 9.2.1.2). This method together with additional optimisation criteria
(cf. Section 9.3) reduces a flood of data to the essential information, a problem which
occurs frequently both in geographical investigations as well in technical applications.
Although the SOM per se is topology preserving, errors may be caused by the stochastic
training process and unsuitable training parameters or grid configurations, particularly if
the dimensions of training data and SOM differ. The topographical product is employed to
quantify such errors. Especially regarding the form of the SOM arrays several different
strategies are proposed with respect to the choice of the grid configuration. Usually
rectangular or hexagonal grids are applied. If the dimension is equal for each direction
the map is called d-cubic. In a hexagonal grid each node has six immediate neighbours,
in a rectangular array four. This holds, in particular, for grids with cyclic boundary
conditions, e.g. toroid maps. For maps of planar topology the number of adjacent nodes
is less at the border of the network. This may increase the probability of topology errors.
The choice of the network topology depends mainly on the training data set, e.g. d-
cubic grids or boundless toroid maps does not favour a specific direction as much as a
rectangular one. Thus, for these maps it may be difficult to find a stable orientation in
the data space, which implies that a rectangular grid configuration can be advantageous
for heterogeneous data. A further point is related to the number of nodes. Some authors
find the use of small SOMs problematical (e.g. Ultsch and Mörchen, 2005), since the
topology preservation is of little use and the number of nodes is considered as equal
to the number of clusters expected to be found in the data set (similar to k-means
clustering, i.e. the number of classes is defined a priori). However, the analytical strategy
of the SOMTOP has quite a different background. The topographical product makes it
possible to determine the accuracy of the topology preservation independent of the size
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of the SOM grid. Thus, small grids can be used for analytical purposes, and in particular,
computing time can be saved.The number of classes will be fixed after several network
runs and additional statistical tests (cf. Section 9.3 and the following).

9.2.1.1 Data and learning process

The training data comprises 62 483 items (land cover excluding Antarctica) made up
of 37 input variables (dimensions), i.e. for a resolution of 0�5� × 0�5�, representing a
global climate for the mid-twentieth century. For each grid cell the monthly means of
temperature, precipitation and sunshine hours were calculated from historical weather
records – obtained from 7000 weather stations worldwide (CLIMATE2.1, W. Cramer,
pers and communication, Leemans and Cramer, 1991). The means are associated with
the respective grid cell if the empirical data at least cover 5 years during the period
between 1930 and 1969 otherwise they are interpolated. The sunshine hours are converted
into values of photosynthetically active radiation (PAR). The database is topography
sensitive, i.e. the dependence of temperature on elevation is considered by application
of an adiabatic lapse rate of 0�6�C/100 m. In order to suppress the influence of different
seasonality between the northern and southern hemisphere, the data set for the southern
hemisphere is shifted by 6 months. The 37th component of the data set characterises
the soil-moisture properties in terms of water storage capacity, based on information
from the FAO soil maps (Fao/Unesco, 1974). The grid cells are geo-referenced, but
this information is not used during the network training. The data are investigated in
detail with respect to the questions provided in Section 9.1 by feeding them into SOM
networks characterised by different size and network geometry. The SOMs require no
further ex ante knowledge in contrast to supervised network training [e.g. Grieger (2002)
uses climate variables obtained from ECHAM3 runs and data for 11 predefined biomes
to train a feedforward ANN in order to relate unknown climate data to biomes].

The input data manifold V comprises the elements �i = �v1 v2 � � � vd�
T � i ∈

�1� � � � � 62483�, where d = 37 denotes the dimensionality of the data vectors (input
vectors). The different SOMs used employ a set of neurons (nodes) A, which are arranged
in a regular network of dimensionality d′ ≤ d� d′ ∈ N. The synaptic strength of a neuron
j ∈ A is given by its associated reference vector 	j = �w1 w2 � � �wd�

T . For a more detailed
description of the SOM algorithm we refer to Chapter 1 (cf. also Kohonen, 2001). During
the SOM’s iterative formation process the input data from the continuous input space V
is mapped randomly onto the discrete network A (output space):


V→A � � ∈ V �−→ j��� ∈ A (9.1)

Learning can be terminated if certain quality criteria are approached, in accordance
with the requirements of the user. Here we have two aims: first, a most representative
data description with respect to the mapping error; and secondly, a topology preserving
embedding.

9.2.1.2 Measurement of topology distortions

In the course of the learning process there may be topological (neighbourhood) distortions
due to the randomness of the training process and the discrepancy between the topology



160 Self-Organising Maps

(a) (b)

2 1

i

i’ i’j

j

i

V A

V
n (j) = i
1

A
n (j) = i
2

V
n (j) = i’
2

A
n (j) = i’
1

Figure 9.1 (a) Topology distortion of a two-dimensional map. Due to the twisted map two
nodes (black bullets) become neighbours which are clearly separated in a planar network.
(b) Measurement of the distances from point j to the next neighbours of order one and two,
if the points lying in R

2 are mapped onto R
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of the input data and the neural network [cf. Figure 9.1(a)]. Thus, the latter has to be
considered when discussing the quality of the results. Typically this context is neglected
and only 2-d SOM are applied, which may be related to the problem of visualising high-
dimensional SOMs. But the a priori assumption that the training data can be represented
by a 2-d SOM can lead to misinterpretations, in particular in cases where topology
preservation is important. Climatic zones as well as vegetation are characterised by
typical neighbourhood relationships, e.g. the tundra is adjacent to the ice desert but not
to tropical rainforests. Consequently, a proper choice of the training parameters and
a well-defined SOM array are essential in order to minimise the error caused by the
stochastic training process and to achieve a sound result (Ritter and Schulten, 1988). In
general the higher the degree of neighbourhood preservation the higher is the accuracy of
the mapping. The quantitative measure employed to assess the quality of the topological
ordering in the course of the learning process is the so-called topographical product
(Bauer and Pawelzik, 1992). It provides a measure of topology distortions in maps
between spaces of possibly different dimensionality. According to Bauer and Pawelzik
(1992), two distance ratios first have to be defined:

Q1�j� k� =
DV �	j�	nA

k �j��

DV �	j�	nV
k �j��

(9.2)

and

Q2�j� k� = DA�j�nA
k �j�


DA�j�nV
k �j�


(9.3)

where nV
k �j� and nA

k �j� denote the kth order (next) neighbour of the point j in the input
and output space, respectively [cf. Figure 9.1(b)]. The distance between the points is
measured in the input space (DV ) and output space (DA) by using the node coordinates j
and and the reference vectors (	j). For an illustration refer to the neighbours of j shown
in Figure 9.1(b). In the R

2 it is given by nV
1 �j� = i and in the R

1 by nA
1 �j� = i′. For the

distance ratio measured in V we obtain Q1�j� 1� > 1, because DV �j� i′� > DV �j� i�. For
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the output space A, it follows analogously that Q2�j� 1� < 1, indicating the neighbourhood
distortion as a consequence of the mapping from R

2 to R
1. Only when Q1 = Q2 = 1

do the points in the output and input space coincide and the topology is preserved. In
order to suppress effects of local magnification factors the logarithm of the product of
the combined ratios [Equations (9.2) and (9.3)] is averaged, i.e.:

P = 1
N�N −1�

⎧⎨
⎩

N∑
j=1

N−1∑
k=1

log

[
k∏

l=1

Q1�j� l�Q2�j� l�

] 1
2k

⎫⎬
⎭ (9.4)

The topographical product P measures the preservation of the neighbourhood for all
orders between the neural units j in the output space A and the weight vectors pointing
into the input space V. If P > 0 the dimension is too large, if P < 0 it is too small and
if �P� approaches zero the output space A matches approximately the topology of the
training data.

The importance of neighbourhood distortions can be illustrated for a few SOM array
configurations with only a small number of nodes. Figure 9.2 shows a cube (dotted
line) with a stochastically distributed scatter-plot of 120 points around each corner.
Considering the neighbourhood relationships it is possible to distinguish which network
type fits the data distribution best. For a linear chain of eight nodes [Figure 9.2(a)]
two nodes at the end of the network represent neighboured data, although they are not

(a) 1-d, 8 (b) 2-d, 4 × 2

(c) 3-d, 2 × 2 × 2 (d) 3-d, 2 × 2 × 23 000 5 000

Figure 9.2 Possible optimum solutions achieved by a 1-d (a) and 2-d (b) network for the
scatter-plot shown in (c,d). Neighbourhood distortions are indicated by the arrows. Learning
progress of a 2×2×2 SOM (solid lines) after 3000 and 5000 iterations (cf. Table 9.1)
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adjacent nodes. A 4×2 network fits better than the linear network, but again non-adjacent
nodes represent neighboured data clusters [Figure 9.2(b)]. For a linear network (dashed
line) and a 2 × 2 × 2 network (solid line) the adaptation process is shown in detail in
Figure 9.2(c,d) (solid line). Obviously the 3-d network provides the best representation of
the input data. Concerning the 2×2×2×2 network (not shown), geometric considerations
make clear that this is not a suitable solution. The accuracy of mapping can be measured
properly by the topographical product P (Table 9.1), which shows that a linear chain,
the two- and four-dimensional networks are unsuitable to represent the training data. In
the presented approach P is calculated regularly during the convergence phase in order
to assess the training results (cf. Section 9.3).

Table 9.1 Topographical product for the training of certain networks on the described data
set for certain network geometries. Five runs carried out for each network configuration. The
results show that a 2×2×2 network is a suitable solution

d′
A Network geometry Topographical product P Number of iterations

1 8 −0�076945±0�009546 15 120±29
2 4×2 −0�038619±0�009297 9 280±13
3 2×2×2 0�001960±0�000298 17 890±34
4 2×2×2×2 0�128865±0�069812 13 264±298

9.3 STATISTICAL TESTING AND SENSITIVITY ANALYSIS

As outlined above, a major goal of the examinations was to ensure optimum categorisation
under the precondition of the best data generalisation (approximation of the probability
density function). In addition, we want to identify the smallest total number of nodes
necessary to best represent the data under topological considerations. As we discuss in
detail below, training of SOMs and the calculation of the topographical product and
mapping error at intervals are adequate strategies to provide this information, but for
large databases and high dimensional data input the computational costs are very high.
Therefore preprocessing is necessary to decide the range in which SOMTOP simula-
tions have to be performed. First, we test whether the 37-dimensional data space can
be embedded in a space of a clearly smaller dimension. In general, the data vector
for each 0�5� × 0�5� grid cell represents a complex climate and soil pattern, implying
that it also could include dependent information. Thus, one can assume that the data
really lies on a a sub-manifold characterised by d′ 	 d, which offers several advan-
tages. It is cheaper to store information in lower dimensions, data visualisation is only
intuitive in two or three dimensions, and fewer features reduce the complexity of an
underlying model (degrees of freedom). But the reduction of dimensions is far from
trivial. Initially we employ two methods to estimate an upper and lower border for the
embedding space. Principal component analysis (PCA) is a linear strategy to determine
the intrinsic dimension of a database. It can provide a clue for the upper border of the
embedding dimension (see e.g. Joliffe, 1986). Using PCA yields d′

PCA = 4 (Eigenvalues:
� = 21�3� 8�1� 3�3� 1�0, explaining 91% of the overall variance) for the dimension of
the embedding space. The PCA result additionally shows a pronounced variance in one
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direction, so we employ rectangular SOM grids. For consideration of nonlinear inhomo-
geneities, scaling analysis is used additionally to determine the capacity dimension (fractal
dimension) of the database, which can indicate the lower border. Analysis after Grass-
berger and Procaccia (1983) yields d′

GP = 1�8. Considering these results we have to carry
out network simulations for a one- to four-dimensional output space. An iterative strategy
can save additional computing time. Concerning the empirical and theoretical approaches
discussed in Section 9.1, it seems evident that we have to search for a classification
scheme within an interval of �15 � � � 90
. Several grid configurations were tested for each
dimension and improper networks were excluded from the further analysis.1

In total, we performed five runs each for 24 array configurations on a massive parallel
computing system (Power 3-based IBM SP-2). The time point for finalisation of the
learning process is estimated by calculating both the topographical product and the
quantisation error at intervals during the convergence phase, i.e. first-time after l · 10
learning steps, where l indicates the number of training vectors. When the difference
quotient becomes approximately constant the learning process is terminated. Table 9.2
shows some of the calculations for P making clear that for any number of nodes the 2-d
case is topologically the best. Additional statistical tests are applied in order to estimate
which total number of nodes provides an adequate classification (cf. Kropp, 1999b),
because neither the topographical product nor the quantification error are sufficient
criteria to achieve the goals defined above. Therefore, a sensitivity analysis is carried
out to compare the solutions found for several network topologies and total number of
nodes by examining the scattering of vectors between the classes. By calculating the
joint probability that each data vector was sorted into the same class for the different
runs performed for a defined grid form one can decide whether the solution is ‘stable’ or
‘unstable’. Assuming that a classification exists in the database, the algorithm identifies
the clusters (global minimum) only in the case of an optimum configured network array.
Such a strategy produces maps as presented in Figure 9.3. For instance, the outcomes

Table 9.2 Examples for results of the topographic product for different network geometries
(five runs for each network geometry, overall simulations are performed for 24 network
configurations) providing an overview of efficiency and precision of this approach

d′
A Network geometry Topographical product P Optimum solutions

1 16 −0�0223±0�0012
2 4×4 0�0076±0�0019 ←−
3 4×2×2 0�0215±0�0031
4 2×2×2×2 0�0628±0�0047
1 20 −0�0291±0�0025
2 5×4 −0�0026±0�0013 ⇐�
3 5×2×2 0�0189±0�0023
1 24 −0�0257±0�0004
2 6×4 −0�0055±0�0019 ←−
3 4×3×2 0�0135±0�0021
4 3×2×2×2 0�0418±0�0025

1 With the help of the topographical product it is easy to decide which grid configurations are suitable. For instance, within
the group of two-dimensional arrays a network of 10×2 nodes has an approximately ‘linear’ structure what can be measured
by P.
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4 × 2 × 2

5 × 4

6 × 4

0 1

Figure 9.3 Normalised joint probability that for five runs the data vectors are mapped on
the same class (node) calculated for different network geometries. Black indicates no whilst
light grey indicates complete coincidence between the learning results. For the 5×4 network
the transition zones (regions with vector fluctuations) are the smallest
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indicate that 4 × 2 × 2 and 6 × 4 arrays are inappropriate representations, because the
areas showing distinct attributions of data vectors are large. Considering additionally the
results of P, strong evidence is provided that a 5×4 = 20 node network supplies a suitable
classification of climate and soil data (Table 9.2 and Figure 9.3). Only in this case the
transition zones indicating the class borders (in ecogeography described as intermediate
habitats or ecotones) are small. Further examinations are carried out, e.g. the comparison
of density distributions in the proximity of the discriminating hyperplanes with equal
distributions (cf. Kropp, 1999b) in order to assess the class separation showing also that
the 2-d, 5 × 4 case is the most suitable solution. Therefore, a detailed analysis of the
categorisation with respect to the questions outlined in Section 9.1 is carried out on the
basis of this network geometry.

9.4 GLOBAL PROTOTYPES OF CLIMATE AND THEIR
RELATIONSHIP TO VEGETATION

After the training process we obtain an associated node (class) number for each grid cell.
By using the geo-coordinates for each 0�5� × 0�5� cell we get a geographically explicit
map of the data categorisation as determined by the SOM, although the geographic
reference was not used during the learning process (Figure 9.4). The categories are
intuitively well distributed regarding their climatological characteristics. This is supported
by the topological ordering on the network (Figure 9.4, inset), i.e. tropical regimes are
neighboured by other tropical divisions and not by polar regimes. However, comparing
Figure 9.4 with thematic maps representing the vegetation distribution or vegetation
models similarities and differences can be observed (for further results, cf. Kropp,
1999b). Thus, a detailed analysis is required. Regarding the number of generalised
classes/vegetation types the BIOME model shows the best agreement with the learning
results obtained by SOM training. For comparison an output of 19 biomes is used. Statis-
tical tests show the different nature of the two approaches. The BIOME model is driven
by ecogeographically motivated functions in which climate plays an important role. The
SOMTOP algorithm learns only with respect to the statistical properties of the input
data. Therefore the classification achieved by the neural method is characterised by an
average variance for each variable and cluster which is approximately 26% smaller than
for the corresponding biome types. In the following, similarities and differences between
the neural and the process based approach will be examined by the discussion of two
examples. The first one is located in the polar zone, which is divided by biogeographers
into the biome types ‘tundra’ and ‘ice-desert’. Focusing on the tundra biome (dark grey
areas, node 1, in Figure 9.4) empirical investigations have estimated their northern limit
along the 2�C July isotherm (Aleksandrova, 1977). The average July temperature of the
border cells detected by the SOMTOP model was 3�9 ± 1�9�C. The southern borderline
of the tundra is placed along the 10�C July isotherm (Walter and Breckle, 1991b). The
neural model has fixed the transition zone at the 9�7 ± 1�6�C line. The latter indicates
that the results obtained by an autonomous learning algorithm are reasonably close to
the empirical values. However, further examinations are necessary regarding the tundra
structuring of the BIOME model [Figure 9.5(a)]. In this model, the Tibetan and parts
of the Andean highlands as well as the tundra itself are associated with the biome type
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Figure 9.4 Global distribution of classes (represented by the different nodes) obtained after
simulation with the SOMTOP algorithm. The topological arrangement of the classes on the
network is shown by the inset. The colour coding used in the inset corresponds to that shown
on the map and the node numbers are equivalent to the class numbers used in the text. The
additional number indicates the quantity of associated input vectors (See Colour Plate 17)

‘tundra’, whereas the SOMTOP model has separated highlands and tundra in two different
classes (nodes 1 and 4) [Figure 9.5(a), inset]. But which of these two categorisations
is more appropriate with respect to the ecogeographic ordering? From a climatological
point of view one can argue that a variety of differences are observable between the
tundra regions and the Tibetan and Andean highlands, which the latter characterised by
the absence of the polar night, a significantly higher annual precipitation (233 mm vs
492 mm), and a higher annual mean temperature (−13�4 vs −1�5�C). Literature surveys
support these facts, e.g. Walter and Breckle (1991b) have mentioned that an adaptation
of vegetation to these environmental constraints is probable. In addition, empirical inves-
tigations for Tibet indicate that most plants are more closely related to the vegetation of
the surrounding areas than to the tundra vegetation (Walter and Breckle, 1991b). This is
not surprising, because plants migrated from the neighbouring deserts and semi-deserts
to the Tibetan plateau after the last glacial period of the Pleistocene. Thus, according
to these arguments and the additional support of the SOMTOP results this structuring
should be revised in process models.

The second example focuses on habitats in the tropical regions [Figures 9.4 and 9.5(b)].
Although the SOMTOP model has produced a very good classification reflecting the
transition from rainforests via seasonal rainforests and tropical dryforests to savanna and
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Figure 9.5 Comparison between SOMTOP categorisations and biome types in the arctic and
tropics domain. (a) For class #1 (SOMTOP) and the ‘tundra’ biome – the inset represents
the highlands (node 4), and (b) for the aggregated rainforest division: SOMTOP classes #15
and #16; BIOME ‘tropical rainforest’ (horizontal hatched) and ‘seasonal rainforest’ (vertically
hatched). Focusing on the single archetypes some larger differences are apparent in South
America (regarding the SOMTOP classification in these regions compare with Figure 9.4)
(See Colour Plate 18)

desert, in terms of the quality of separation of the classes it is weaker, as for the previous
discussed example. Consequently a more in-depth analysis is required of how well the
network has approximated the density distribution of the data and whether there exists
ambiguity with respect to no-man’s land between the two classes. Additional measures
were defined and calculated in order to assess the point density in the boundary areas
between neighbouring classes (cf. Figure 9.4, inset; Kropp, 1999b). The results show
that for nine of the 31 network edges the defined criteria are not sufficient (for details
cf. Kropp, 1999b). Thus, we have to ask whether additional evidence can be drawn from
the feature spectra assessing the quality of the class segmentation. For explanation we
compare one of these nine cases, i.e. the separation of the two neighboured classes #15
and #16. The results indicate that the SOMTOP approach allows a subtle classification
which depends in this case on only a few prominent features [Figure 9.6(a)]. For the
two discussed categories which can be related to the vegetation types ‘tropical rainforest’
(class #15) and ‘seasonal rainforest’ (class #16) the temperature, radiation pattern, and the
value for the water storage capacity of soils are more or less equivalent [Figure 9.6(a)].
But the rainfall patterns show markedly different seasonality [Figure 9.6(a)]. Looking
into details the averaged monthly minimum precipitation amounts to 200 mm and the
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Figure 9.6 (a) Significance (weight on the representing node vector) of the monthly means
for temperature, precipitation, radiation and water storage capacity of soils for classes repre-
sented by nodes 15 and 16 (tropical zones); cf. Figure 9.4. (b) Climatological diagram of class
#15 and (c) of class #16. Light grey indicates the temperature, medium grey the precipitation,
black the insolation, and the boxed cross the water storage capacity of soils (Wa). Ta is the
average monthly mean temperature, Pa the averaged annual sum of precipitation, and Ia the
average monthly mean radiation for the grid cells associated with the respective classes

averaged annual precipitation is 2800 mm for class #15 with two peaks in spring and fall
[Figure 9.6(b)]. Together with a monthly mean temperature of about 25�1�C these are
typical conditions for the existence of tropical rainforests (e.g. Malaysian archipelago,
Columbian coast, Amazonian and Congo basins). In comparison class #16 is characterised
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by an annual precipitation of about 2000 mm and a monthly mean temperature of 24�7�C,
but shows only one rainy season and a short dry season in winter (Pmin ≤ 50 mm)
[Figure 9.6(c)]. In general, these conditions are sufficient for the existence of rainforests,
but the short dry season has the consequence that one can observe so-called ‘seasonal
rainforests’ (for a detailed discussion of the distribution of rainforests, see e.g. Park, 1995;
Tivy, 1996; Walter and Breckle, 1991c; Whitmore, 1999). Considering the significance
of the input variables on the node vectors [Figure 9.6(a)] the distinction between classes
#15 and #16 seems somewhat astonishing, because the SOMTOP approach is able to
detect climatic features with respect to their seasonality very sensitively, even though
it uses only an integral measure (i.e. Euclidean distance) to distinguish the differences
between clusters. Nevertheless the class separation is logical with respect to empirical
results.

Exploring the output of the BIOME model for these regions for the aggregated case
[Figure 9.5(b)] it is different only with respect to a tiny fraction. Looking into detail,
i.e. differentiating between the two classes, the spatial distribution of the biome types
‘tropical rainforest’ and ‘seasonal rainforest’ in particular differs to those of classes #15
and #16 mainly in South America and Africa, whereas in SE Asia both are entirely equiv-
alent. These differences are related to an underestimation of the precipitation component,
especially its seasonality, by the BIOME model. This has led to an association of
dryer regions to the corresponding biomes. In contrast the SOMTOP approach has
delivered a clear-cut class separation with respect to this feature (Figure 9.6). This
outcome is supported by empirical investigations on climatic constraints for the occur-
rence of rainforest (see above). Here the SOMTOP approach has provided a more precise
classification, matching exactly the climatological limits of rainforest distribution.

9.4.1 Assessing the Impacts of Climate Change

It now seems feasible to predict the impacts of climate change on the basis of the classi-
fication scheme obtained above. We have applied ECHAM3 climate change scenarios
(IS92a, 2 × CO2), using the anomalies (Cubasch et al., 1996) and calculating the class
membership to the climate categories based on the trained network. This examination
suggests which regions could be affected the by impacts of climate change, i.e. vegetation
change. In comparison with other approaches this strategy has several advantages: (i) the
regional impacts can be computed fast and easily; and (ii) other climate variables apart
from temperature can also be taken into account in an assessment. We illustrate potential
impacts again for the example of the Tibetan highlands. Figure 9.7 shows that approxi-
mately 20 % of the highlands change the class membership (hatched areas). Two-thirds of
these regions become more arid and therefore are associated with the Central Asian deserts
(Figure 9.4, node 9) (mean temperature increases about 4�2�C, but precipitation increases
only about 5.9 mm). These regions are located in the north and north-western parts of
the Tibetan plateau. One-third of the highlands, mainly located at the eastern margins,
becomes warmer and more humid and is associated with class #10 (cf. Figure 9.4). Here
the temperature increases about 3�5�C, but the precipitation by about 57.5 mm. Figure 9.4
shows that the affected regions vary in width between 50 km and 200 km. Comparing this
with the impact in other regions (e.g. arctic zones) this value can expand to 300–500 km
(Kropp, 1999b). This implies – under the assumption of a linear change – that vegetation
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Figure 9.7 Magnified representation of the Tibetan plateau (node 4, cf. Figure 9.4). The
hatched areas are sensitive to climate change. The arrow indicates the Qaidam depression,
which is more arid and is therefore clearly separated from the highland areas

requires migration rates between 500 m year−1 and 2000 m year−1 for adaptation. Yet it
might be that shift rates of approximately 5 km year−1 are necessary in some regions.
However, this is only the half the story, because migrating species must take advantage of
gaps in the existing vegetation. Delcourt and Delcourt (1991) have estimated migration
rates between 120 m year−1 and 170 m year−1 for the last post-glacial period, Clark
(1998) for trees less than 1000 m year−1, the IPCC (1997) projects a shift rate of about
7 km year−1 for some species, while Malcolm et al. (2002) estimate > 1000 m year−1 for
plant species to keep pace with human induced global warming during the twenty-first
century. Thuiller (2007) estimated that plant and animals are shifting northwards approx-
imately 6 km per decade. However, temperature increase changes might be even larger
as it is currently assumed. The extreme summer in Europe 2003 showed what might
happen (Rebetez et al., 2006). Obviously there is some uncertainty about the migration
rates, which undoubtedly depend on the observed species, but the SOM results are in
reasonable correspondence with these studies.

9.5 DISCUSSION

As shown, the SOMTOP methodology offers a variety of advantages for data rich
research in climatology and biogeography. It fits ideally the necessities of the ‘geo-
cybernetic enterprise’ which needs smart and advanced methods for understanding the
complexity of the entire earth system (cf. e.g. Bunde et al., 2002; Kallache et al., 2005;
Kropp and Scheffran, 2007; Schellnhuber and Kropp, 1998). Employing the advan-
tages of process based model approaches and neural networks in an intelligent and
effective way could fundamentally extend the model family in earth systems science.
In particular, the SOMTOP approach might fill the gap between high-resolution models
(e.g. AGCM/DGVMs) and earth system models of intermediate complexity. This holds
especially if more detailed and homogeneous information can be used for network
training, e.g. about the biological constraints of the biome/PFT existence, competition
and/or dominance.
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As reported, objective knowledge can be derived from data, which will substantially
improve our understanding of the ordering of climate and vegetation. Strong evidence
is provided that the large-scale distribution of ecosystems is mainly determined by an
‘abiotic’ climate and soil inventory. Nevertheless, discussion will continue about what
this classification has to do with the output of BIOME models. Biogeographers (e.g.
Cramer et al., 2001) mention that a variety of processes and phenomena have to be taken
into account when estimating vegetation types and their distribution which is one goal
of modern vegetation models. The BIOME model, as introduced here, is based in its
start-up setting on long-term climate means and parameters characterising soil properties.
These inputs are used to calculate the modern vegetation cover on earth and sets the
baseline for climate impact studies. Comparing the biome structuring and SOMTOP
classification this implies that also the BIOME model is simply forced by climate and
that ecogeographically motivated rules potentially play a minor role, i.e. dominance,
competition, or other physiological information might be over-interpreted with respect
to the biome formation. Obviously such details are not necessary for the decision of the
distribution of broad-scale ecosystem complexes. However, SOMTOP supports the more
than century-old insight that equilibrium vegetation and climate are closely connected.
Further analytical efforts (for details see Kropp, 1999b) have shown that gradients can
be detected in the database used. In a variety of cases they exist only with respect
to single variables, but the SOMTOP approach is able to determine such gradients
sensitively. In the context of global vegetation distribution one can speculate about the
genesis of these gradients, since at first glance the climate space should be continuous.
Thus, the question regarding the source of the structuring is not finally resolved. Such a
classification may be a result of a self-control of the local biosphere/climate system, i.e.
equilibrium vegetation has a significant influence on climate such that gradients emerge
leading to temporarily stable situations. The latter could have serious consequences, since
vegetationally stabilised climate margins may be highly vulnerable to land use change.
This conjecture clearly requires some further examination.

9.6 SUMMARY

The objective of this study was to examine the structuring in spatially resolved climate
and soil databases and relate the deduced knowledge to common model approaches using
vegetation classifications on the global scale. The SOMTOP architecture we use consists
of a SOM and an algorithm allowing assessment and control of the topology preservation
during the simulations. The major advantages of the method are threefold: (i) it needs no
ex ante assumptions about a hidden classification scheme; (ii) small SOM networks can
be applied which considerably reduces computing time; and (iii) an effective dimension
can be calculated for a high-dimensional database.

By using these features the SOMTOP approach becomes an attractive alternative for
ecogeographical studies, since it allows high accuracy mappings. As shown, the outlined
results are crucial to enlighten the major forcing factors for global broad scale ecosystem
complex formation and distribution. SOMTOP provides objective interpolation of 20
climate and soil classes. Detailed examinations make clear that these findings are in a
good accordance with empirical and model results. For example, for certain transition
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zones an intriguing coincidence with other approaches was shown, providing strong
evidence that climate is indeed the dominant factor for the formation of ecosystem
complexes. Differences can also be well motivated either from a statistical or from an
ecogeographic point of view. According to these results the classification scheme can be
considered as equivalent for vegetation structuring on the global scale. For example, it
can be shown that in the tropics only a few key variables, such as seasonality and amount
of precipitation, are relevant for the classification scheme. This underlines the sensitivity
of the method presented here. Finally, the SOMTOP results could prove useful in various
ways for vulnerability studies. With the help of climate change scenarios, regions can be
identified which are most susceptible to climate change, i.e. where a vegetation change
may result.

Summing up, we feel that the results obtained allow new insights in biogeography.
The philosophy of using available data for an autonomous, objective and self-organised
systems analysis opens a promising road towards further progress in a system-based
examination of vegetation distribution and climate change impacts, in particular for data
rich situations. The approach reduces uncertainties, i.e. regarding the question of the
extent to which vegetation clusters are meaningful on the global scale. This knowledge
should be considered in process based vegetation models. The method presented here is
open for further applications, e.g. it can be coupled to a global circulation model for a
subsequent computation of characteristic climates. Further, it can be used as emulator,
e.g. for the calculation of a reference climate which may be used as input for other
models.

SOMTOP can significantly improve our knowledge background, in particular where
topographical information is essential. The advantages of the methodology will be used
in future work directed mainly to the analysis of spatio-temporal climate data. Using the
the SOMTOP algorithm it may be feasible to detect changes in a climate regime by the
topographical product, e.g. for annual databases.
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10.1 INTRODUCTION

The extraction of geospatial features from remotely sensed imagery remains the primary
means to create or update geospatial databases. Presently, most feature extraction or
updating is done manually by humans in typical production settings. Given the labor
costs involved with manual extraction, efforts to automate extraction to some extent have
been the subject of considerable research activity. The growing availability of high spatial
resolution imagery further drives the demand for timely and increasingly accurate feature
data. The volume of high (spatial and spectral) resolution imagery collected by a growing
number of space borne sensors has overwhelmed traditional manual image analysis and
extraction processes. Detailed road networks represent a feature type in high demand
for use in GIS databases. A pressing need exists for robust automated road extraction
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algorithms. The goal of this work is to leverage self-organising learning principles toward
automating road centerline extraction from high spatial resolution images.

In this chapter we present a compilation of work that considered the application of
self-organising map (SOM) learning principles towards the road extraction problem.
A distinctive aspect of this approach versus others was the use of SOM node-based
representations to perform the ‘organisational’ analysis of road networks in remotely
sensed images. Node regions in images were used to represent a higher level of abstraction
for ‘perceptual organisation’ versus image pixels. In recent years, there has been an
increase in research activity to better identify and demonstrate aspects of perceptual
organisation in computer vision (Jacobs and Lindenbaum, 2003). Analogies have often
been drawn between neurobiological learning and self-organising learning principles
(Haykin, 1999; Kohonen, 2001). To that end, our interest was to explore how SOM
principles could bring new insight to the problem of automated road extraction.

The sections are laid out in chronological order of how the research evolved. Material is
excerpted from earlier published works (Agouris et al., 2001a; Doucette, 2002; Doucette
et al., 1999, 2000, 2001, 2004). Section 10.2 provides a synopsis of road extraction
methods in the literature. Section 10.3 is an overview of our early work with the original
SOM algorithm for application to the road extraction problem. Section 10.4 describes
modifications made to the updating process of original SOM. Section 10.5 describes how
the node neighborhood mechanism of the SOM was modified to construct road topology.
Section 10.6 represents a culmination of our automated road extraction work with SOM
principles, in which spectral information is leveraged into the analysis.

10.2 A SYNOPSIS OF ROAD EXTRACTION METHODS

Automated road extraction methodology has traditionally modeled roads according to
image properties related to edges, geometry, radiometry, and texture. At high spatial
resolution (e.g. 1 m per pixel or better), spectral content takes on more significance.
Although color aerial imagery has long been available at sub meter spatial resolutions,
acquisition is costly and time consuming. However, the reality of space borne multi-
spectral imagery at spatial resolutions of 1 m per pixel or better is presumably inevitable.

Road extraction strategies in the literature are often categorised according to their
degree of automation. In this chapter, methods will be classified into two operational
modes: on-line or off-line. In either mode, human oversight is usually required to some
extent. On-line methods are designed to assist the human operator on a ‘per road segment’
basis. For example, a human operator marks start and end (or more) points between two
road intersections to initialise the algorithm. The process is repeated for each road
segment, with manual editing performed as needed for each segment extracted. Well
known genres of on-line methods include road trackers (Barzohar et al., 1997; Mckeown
and Denlinger, 1988; Vosselman and Knecht, 1995) and snakes (Gruen and Li, 1997;
Trinder and Li, 1995). By contrast, off-line methods typically require a one-time initial-
isation of algorithm parameters. Automatic extraction is performed over the entire scene
of interest without interruption, followed by manual editing (Baumgartner et al., 1999;
Doucette et al., 2004; Harvey, 1999; Havercamp, 2002; Hinz and Baumgartner, 2003;
Price, 2000; Shackelford and Davis, 2003). When (outdated) GIS data exist, ‘update’
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strategies are used as a means of guiding an off-line extraction (Agouris, 2001b; Bordes
et al., 1997; Doucette et al., 1999; Walter and Fritsch, 1998; Zhang et al., 2001). Recent
works that provide a broad overview of the state of the art in road extraction research
include Saleh (2004) and Mena (2003).

The road extraction algorithm presented in this chapter is an off-line strategy.
Off-line algorithms are less constrained by computational complexity than on-line
algorithms. Because on-line methods require recurrent human inputs in real-time, they
must be computationally fast to maintain efficient interaction with a human operator. The
degree of computational complexity of an on-line algorithm is therefore dependent upon
the capabilities of the computing hardware. By contrast, off-line algorithms can be more
computationally complex because they do not require continual real-time attention. This
allows off-line algorithms to address the more difficult extraction problems found with
more complex images (e.g. more urban versus rural). Off-line extraction methods that use
a bottom-up approach can be generally broken down into three stages of computational
complexity: (1) low-level detection that generates initial hypotheses for candidate road
components, (2) mid-level grouping of road components, and (3) high-level reasoning for
road network completion. The complexity of implementation increases with each stage.

10.3 SELF-ORGANISED MAPPING OF ELONGATED REGIONS

In high spatial resolution imagery, roads manifest as elongated regions (ERs). Early work
with the original SOM (Kohonen, 1982) was based on mapping the medial axes of ERs
from which to derive road centerlines. This was accomplished by fitting a SOM network
to the input space (i.e. road pixels) onto a SOM network space (i.e. a one-dimensional
chain of nodes). This mapping could then be used as a delineated road centerline suitable
as GIS input.

Figure 10.1 demonstrates a one-dimensional SOM network fitting of a synthesised
ER curving from the upper left to lower right. The input is the (x, y) coordinates for
each point sample in the ER. Random initialisation of a 10 node SOM chain is shown
in Figure 10.1(a). Node ordering progresses in figure 10.1b and 10.1c, and refinement
and convergence is achieved in figure 10.1d. The SOM neighborhood function begins
with a simple step function of two nodes on either side of a winning node (i.e. ordering
phase). Over time, the neighborhood function shrinks to one node, and then to zero (i.e.
refinement and convergence). Similarly, the learning rate function approaches zero over
time to promote a stabilised convergence. Convergence is declared when the cumulative
updates to the node adjustments fall below an empirically set threshold.

Applying the original SOM technique to update existing GIS roads and rivers is
demonstrated in Figure 10.2. The existing GIS data are shown as white lines super-
imposed on a high spatial resolution multispectral image in Figure 10.2(a). A single river
feature is in the upper left, and the remaining features are roads. A maximum likelihood
classification (MLC) of the multispectral image was performed to create input spaces for
road and river pixels. The road input space is shown in Figure 10.2(b). Classification
errors were left in the input space, since the objective was to determine the extent to
which the SOM could tolerate noise. One-dimensional SOMs were used for linear road
sections. However, in order to map road intersections, a two-dimensional SOM topology
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Figure 10.1 A one-dimensional SOM to fit an elongated region: (a) random initialisation;
(b) after a few iterations; (c) ordering achieved; (d) convergence. (Reproduced from Doucette
et al., Self-Organised Clustering for Road Extraction in Classified Imagery, ISPRS Journal of
Photogrammetry and Remote Sensing, 55(5–6), pp. 347–358. Copyright 2001, Elsevier)

was needed (e.g. ‘cross’ or ‘t’ shapes). Figure 10.2(c) shows the results of using one- and
two-dimensional SOMs to map the medial axes of the input spaces.

This SOM application was representative of an off-line update method, where existing
GIS information is used to initialise the SOM. However, significant limitations existed,
which included: (1) requiring initialisation of the SOM relatively close to the features of
interest in the input space; (2) high sensitivity to noise in the input space; (3) approximate
estimation of the number of nodes to be used in the SOM network; and (4) the requirement
for a MLC classification to create an input space for roads. In work that followed, several
important modifications to the original SOM algorithm were implemented to mitigate
these limitations.

10.4 THE WINNER-TAKE-ALL APPROACH

The original SOM algorithm is based on competitive learning principles. When a SOM
network neighborhood of competing nodes is collapsed to zero, the result is the degenerate
case referred to as a ‘winner-take-all’ (WTA) network. An analogous situation exists



SOM Principles and Automating Road Extraction 181

Figure 10.2 Early results from SOM for road extraction: (a) image overlaid with coarse
resolution vector data (white lines); (b) classified road pixels; (c) SOM convergence for
one- and two-dimensional road components. (Reproduced from Doucette et al., Automated
Extraction of Linear Features from Aerial Imagery Using Kohonen Learning and GIS Data,
Lecture Notes in Computer Science, Springer-Verlag, Portland, ME, Volume 1737, pp. 20–33.
Copyright 1999, Springer-Verlag)

with the traditional iterative clustering techniques of K-means (MacQueen, 1967), the
Generalised Lloyd Algorithm (Lloyd, 1982), the Linde–Buzo–Gray algorithm (Linde
et al., 1980), and vector quantisation (Gersho and Gray, 1992). The term ‘cluster center’
used in the context of traditional clustering techniques is synonymous with use of the
term ‘node’ (also neuron) for the SOM. In this chapter, the term ‘node’ is used for either
case for consistency. Traditional clustering algorithms use a ‘batch’ updating technique,
in that all input samples and nodes are visited before each update. By contrast, the SOM
uses sequential updating, i.e. one sample at a time per node update.

The K-means algorithm can be viewed essentially as a batch-updating WTA version
of the SOM algorithm as demonstrated by Lutrell (1989). The K-means can also be
configured with a SOM style neighborhood function, transforming it into a ‘batch map’
(Kohonen, 1993). The main advantages we considered for preferring a K-means updating
approach over the original SOM include: (1) no learning rate parameter required, (2) no
sensitivity to the order in which samples are presented, and (3) convergence is generally
faster more reliable (Doucette et al., 2001).

10.4.1 The K-means Approach

With a K-means approach, topological relationships among nodes (e.g. neighborhood
function) are not used as with the original SOM. Our strategy was to define topological
relationships among nodes after K-means convergence. A description of this strategy is
provided in Section 10.5. With this strategy in mind, finding appropriate node conver-
gence patterns suitable for constructing road topologies was needed. For example, the
median statistic was less sensitive to noise than the mean for mapping the medial axes
of elongate regions. The tradeoff was that the accuracy of the median is limited to the
nearest half pixel, and the median required more computation time [e.g. O(N·log N) for
the median versus O(N) for the mean]. Finally, the fact that the median could not be
calculated in a sequential updating procedure (such as in the original SOM), necessitated
the use of a batch updating method. Therefore, a median calculation was substituted for
the mean in the K-means algorithm.
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10.4.2 Node Validation

Automating node validation is the classic problem of determining how many nodes
are needed to adequately represent an input space when using an iterative clustering
method. In addition to node quantity, the convergence patterns from iterative clustering
are dependent upon node initialisation in the input space. This problem was addressed
by applying the node merging technique of the ISODATA (iterative self-organising
data analysis technique) algorithm (Hall and Ball, 1965). ISODATA is an extension of
K-means in which node merging and splitting is allowed. For example, nodes that move
within some empirically defined minimum spacing between each other from one update
to the next, are merged (e.g. one of them is deleted).

The goal of node merging was to establish a node convergence pattern suitably spaced
for road centerline construction. Node merging enabled nodes to be better distributed
along the medial axes of elongated regions, as opposed to off-axis representations. For
example, Figure 10.3 shows node convergence patterns before and after node merging.
The input space is represented by the white elongated regions (with omission noise
introduced). In Figure 10.3(b), nodes 12, 14, 16, and 18 have been deleted via merging.
The dotted polygons are the Voronoi regions associated with each node. The input
samples contained within each node’s Voronoi region are closest to that node.

Figure 10.3 Node merging for noisy elongated regions (white pixels): (a) prior to merge;
(b) after merge (nodes deleted: 12, 14, 16, and 18)

To further facilitate suitable node spacing at convergence, a regular grid pattern was
used for node initialisation. The initial grid spacing was set slightly larger than the node
merging threshold. To speed up convergence time, nodes that did not win competitions
(i.e. dead nodes) were automatically identified and eliminated after each iteration.

10.4.3 The SORM Algorithm

The self-organised road mapping (SORM) algorithm (Doucette et al., 2001), represented
the integration of several modifications to the original SOM for application toward
automated road extraction. The following description of the SORM algorithm is excerpted
from Doucette et al. (2004). It is an adaptation of the K-means algorithm as defined by
Tou and Gonzalez (1974).



SOM Principles and Automating Road Extraction 183

• Step 1 (Initialisation). Initialise K nodes, c1, c2� � � � � cK , in the input (raster) space.
The nodes are arranged as a regular grid, with node spacing defined by �grid. The
node spacing is an empirically derived quantity that is based on the approximate width
of roads. Its value can be preset and adjusted automatically, or modified manually at
run time.

• Step 2 (Determine sample–node associations). At the nth iteration, determine which
node each sample vector x (x and y coordinates of raster samples) is closest to
according to:

x ∈ Sj�n� if ��x − cj�n��� < ��x − ci�n��� �i = 1�2� � � � �K and i �= j� (10.1)

where Sj�n� represents the set of samples whose closest node is cj�n�. Ties are resolved
by the order rule. If Sj�n� is less than a minimum threshold number of samples
(determined empirically), then node cj�n� is deleted.

• Step 3 (Update node positions). Compute the median of the samples associated with
each node from step 2, and let each median represent the updated location of the node
according to:

cj�n+1� =
⎧⎨
⎩

sort�x��Nj+1�/2� if Nj is odd
1
2

[
sort�x�Nj/2 + sort�x��Nj/2�+1

]
� if Nj is even

⎫⎬
⎭ �j = 1� 2� � � � �K�

(10.2)
where Nj is the number of samples in Sj�n�, sort(x) represents the sorted samples for
a given node, and x ∈ Sj�n�. The median statistic is used because it is less sensitive to
noise than the mean.

• Step 4 (Node pruning). Let the Euclidean distance between any two nodes i and j be
defined by dij , and a minimum distance allowance between nodes be defined by �min.
If dij ≤ �min, then nodes i and j, are ‘merged’ (e.g. by deleting or ‘pruning’ node j). If
node pruning occurs, then return to step 2.

• Step 5 (Convergence test). Iterate from step 2 until all node positions remain unchanged
such that:

cj�n+1� = cj�n� �j = 1� 2� � � � �K� (10.3)

10.4.4 Techniques for Speeding up Convergence

The computational requirements for iterative optimisation techniques such as clustering
can be substantial. The computational complexity of the SORM algorithm is O(mNKT),
where m is the number of dimensions of the input space, N is the number of samples,
K is the number of nodes, and T is the number of iterations needed for convergence.
‘Early stopping’ is perhaps the simplest technique used to speed up convergence. This
can be accomplished either by raising the stopping criterion threshold, or limiting
the number of iterations T to some maximum, Tmax. Since it is not uncommon for
small node adjustments to fluctuate needlessly during the latter stages of network
refinement, early stopping is a practical idea. However, the challenge is to avoid premature
stopping.

Focused searching of the input space represented a more sophisticated approach for
algorithm speed-up. For example, step 2 of the SORM algorithm consisted of NK possible



184 Self-Organising Maps

distance calculations, which accounted for a significant bottleneck. Two focused searching
techniques were investigated in this work: (1) local space searching; and (2) node activity
searching. In both cases, the goal was to confine the search of the input space to local
regions.

10.4.4.1 Local space searching

The objective of local space searching was to reduce the sample space searched for
any given node. The brute force approach was to determine node–sample distances for
all of the input space samples. The local space search considered only those samples
defined in a local neighborhood of the closest nodes for a given node. This is similar
in principle to the ‘shortcut winner search’ (Kohonen, 2001), but applied to the SORM
algorithm. In local space searching, the neighborhood sample set was determined by
a node–sample association index established from the previous iteration. Therefore,
one complete iteration through the input space was required. To determine the closest
neighboring nodes to a given node, the inter-node distances had to be calculated after each
iteration. The computational complexity of the inter-node calculation was O� 1

2 �K2 −K��,
which turned out to be inconsequential compared with the NK calculation when N was
much larger than K.

10.4.4.2 Node activity searching

The goal of node activity searching was to avoid re-visitation to regions of nodes that
had quickly settled into position. Nodes that showed little or no sign of adjustment
between successive updates were flagged as being temporarily ‘inactive’. These were
usually nodes that settled into stable positions faster than others, which was dictated
by the distribution of the input space. Only the ‘active’ nodes, along with their
neighbors, were considered in the NK calculation of step 2 of SORM. Neighboring
nodes, which could be active or inactive, were included to allow for their adjustment
relative to the adjustments made by active nodes. This mechanism allowed for temporarily
inactive nodes to be reactivated. The local neighborhood nodes were identified in a
manner identical to that of local space searching. The activity threshold was determined
empirically.

The reduction of the SORM step 2 calculations went from NK to NKactive, where Kactive
is the number of active nodes, plus the nodes in the activity neighborhoods. Initially,
node activity was high, and so no algorithm speed-up was apparent. However, as node
activity levels receded over time, algorithm acceleration became apparent. As in local
space searching, node activity searching could only occur after the first iteration, and
inter-node distances had to be calculated for each iteration. The kind of speed-up from
activity searching differed from local space searching, in that it was an acceleration
effect. By contrast, the speed-up in local space search is essentially constant with each
iteration. In general, algorithm speed-up could be substantial as the number of nodes used
increased. However, convergence results could vary considerably depending upon initial
conditions.
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10.5 DEFINING NODE TOPOLOGY IN THE INPUT SPACE

The original SOM algorithm uses a predefined network topology among nodes, which is
preserved as it maps an input space. However, it is also possible to define the topological
relationships among the nodes in the input space instead of in the network (Kangas
et al., 1990; Kohonen, 2001). The adaptability allowed by defining network topology
in the input space proved to be better suited for constructing road network topology.
Topological relationships among nodes were defined by metrics derived from the input
space. The input space metrics were used in a fuzzy inference model, which was used
to validate the construction of node topologies that were consistent with road networks
(Agouris et al., 2001a; Doucette, 2002).

10.5.1 Input Space Metrics for Node Topology

The three primary input space metrics that were used to guide topology construction
among the nodes were proximity, link angle, and orientation angle. Node proximity is
simply the Euclidean distance between two given nodes in the input space. The link angle
is the geometric angle formed between two given nodes. The node orientation angle is
measured from the spatial distribution of pixels contained within a single node’s Voronoi
region. A derivative metric is the deflection angle, which is a measure of the difference
between orientation and link angles for two given nodes. For example in Figure 10.4, for
two nodes i and j, with orientation angle 	i for node i, and link orientation angle 	L, a
deflection angle between node i and 	L is defined as:

i	D = �	i −	L� (10.4)

where �0� ≤ i	D ≤ 90��.
Similarly for node j, the deflection measure, j	D, is computed in the same manner for

the same node link.

node i

node j

i θD

Vi

Vj

θi

θL

Figure 10.4 The deflection angle between node orientation and node link
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The orientation angle is derived from the input space for a given Voronoi set Vi,
of image pixels associated with node i. Two different orientation angle measures were
investigated: principal component and Hough transform.

10.5.1.1 Principal component orientation

This value is derived from the principle component transformation calculation, defined as:

	P = 1
2

tan−1

(
2
xy


2
x −
2

y

)
(10.5)

The standard deviations 
x and 
y, are in x and y directions of the pixels contained in
Voronoi set Vi, for node i, and 
xy is the covariance.

10.5.1.2 Hough transform orientation

The Hough transform (HT) is used to determine the maximum pixel count occurring on
a straight line within Voronoi pixel set Vi for node i. The HT scans are run locally for
each node’s Voronoi pixel set in the input space. The HT scans occur over a radial range
defined by � (e.g. maximum dimension for a given Voronoi region), and angular range of
	 (e.g. 0 to 180�) (Gonzalez and Woods, 2002). The resolution of the HT is determined
by radial and angular quantisation intervals (�� and �	, respectively).

The computational complexity of the HT is O��	�, and depending upon selection
of �� and �	, computation of the HT orientation angle, 	H , can be considerably more
expensive than the principal component angle computation, 	P . However, 	H is generally
less sensitive to outliers than 	P . In effect, the HT orientation is comparable with the
mode angle, where the principal component orientation to the mean angle. The HT
quantisation parameters (�� and �	) are determined empirically.

10.5.2 Node Topology Construction

A fuzzy inference system based on fuzzy set theory (Zadeh, 1965) was developed to
model node topologies that were consistent with road network topology. Fuzzy modeling
was used as a convenient tool to develop smooth similarity measures, rather than using
hard thresholds. The process referred to as ‘fuzzy organisation of elongated regions’
(FOrgER) represented a weighted graph-theoretic method for linking nodes into progres-
sively larger curvilinear components and networks (Doucette, 2002). The motivation
for FOrgER originated from Gestalt grouping principles (e.g. proximity, continuity,
context, and closure) used to link nodes into distinctive features (Zahn, 1971). A concep-
tually similar fuzzy-based implementation for grouping road components is in Steger
et al. (1997).

FOrgER captured the relationships defined among the node proximity, link, and orien-
tation metrics in fuzzy membership functions. The objective of FOrgER was to use fuzzy
inference rules to construct and validate node topology from low level to high level
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grouping. An example of fuzzy inference rules using proximity and deflection angles
metrics for low level grouping, was:

1. If (Deflect Angle i is small) AND (Deflect Angle j is small) AND (Proximity is close),
then (LinkStrength i:j is high).

2. If (Deflect Angle i is large) OR (Deflect Angle j is large), AND (Proximity is close),
then (Link Strength i:j is possible).

3. If (Deflect Angle i is large) AND (Deflect Angle j is large), AND (Proximity is close),
then (Link Strength i:j is low).

4. If (Proximity is far) then (Link Strength i:j is improbable).

In mid level grouping, link angles were tested between successive links for continuity
of direction. Contextual validation for a given link was tested against the strength of
neighboring links. An example of fuzzy inference rules to validate a link between nodes
i and j with node neighbors h and k on either side, was:

1. If (Link Strength h_i is high) AND (Link Strength j_ k is high), then (Link Strength
i_ j is high).

2. If (Link Strength h_i is high) OR (Link Strength j_k is high), then (Link Strengthi
i_ j is possible).

3. If (Link Strength h_i is low) AND (Link Strength j_k is low), then (Link Strength
i_ j is low).

In high level grouping, a network closure process tested the linking of end nodes of linked
network components. Closure analysis was performed mainly for road intersections,
bridging gaps caused by occlusions in the image (e.g. tree shadows), and sharp bends in
roads.

10.6 INTEGRATING AUTOMATED SPATIAL AND SPECTRAL
ANALYSIS

Integrating spatial and spectral information into the road extraction process led to the
final algorithm modification called ‘self-supervised road classification’ (SSRC). The
operational flow of the entire procedure is shown in Figure 10.5. The approach integrates
processes consisting of: (1) edge analysis (low level process); (2) self-organisation (mid
level process); (3) topology construction (mid and high level processes); and (4) spectral
analysis (low level process).

The first process consists of identifying candidate road centerline pixels in an image
through edge analysis. In the second process, a node-based representation of the candidate
centerline pixels is generated via the SORM algorithm (described earlier). In the third
process, road topology is constructed by linking the SORM nodes in the input space using
a fuzzy grouping model (FOrgER). The fourth process is a refinement feedback loop in
which spectral information for roads is derived from the SORM nodes. The procedure
has the option to iterate as desired to refine road extraction results.
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Figure 10.5 The operational flow that integrates spatial and spectral analysis processes for
road extraction

10.6.1 Edge Analysis

The edge analysis process finds candidate road centerline pixels based on the technique
of anti-parallel edge detection (Nevatia and Ramesh, 1980; Zlotnick and Carnine, 1993).
Candidate centerline pixels are detected from a single layer image with the ‘anti-parallel
edge centerline extractor’ (ACE) algorithm (Doucette et al., 2004). ACE uses the Canny
technique to extract edges, and the Sobel technique to determine edge orientation. The
resulting Canny and Sobel images are scanned to detect the centerlines of elongated
regions. The input parameters for ACE are: (1) minimum and maximum feature width
(wmin and wmax); (2) maximum allowed deflection angle between anti-parallel edge
orientations (
max); and (3) minimum number of pixels required per connected component
(ccmin). The deflection angle (
) between edge orientations is calculated as:


 = �180� − ��p −�q�� (10.6)

where �p and �q are the gradient orientation angles at pixels p and q, respectively.
Figure 10.6 demonstrates the edge analysis, self-organisation, and topology construction

processes with an image. Figure 10.6(a) is a 1 m per pixel multispectral image of suburban
streets. To enhance the contrast of the roads for a single layer representation, the multi-
spectral image was preprocessed with a principal component analysis (PCA). The second
principal component layer (PC2) was empirically selected as the single layer input for
the ACE algorithm. Figure 10.6(b) shows the results from ACE using parameters of
wmin = 5 m, wmax = 15 m, 
max = 45�, and ccmin = 3 pixels.

It is clear from these results that ACE is effective to the extent that: (1) roads can
be described by anti-parallel edges; and (2) anti-parallel edges are exclusive to roads.
Errors result when these assumptions break down, which is to be expected from remotely
sensed imagery. Therefore, the goal of ACE is to use low level analysis to generate initial
hypotheses for the locations of roads. The goal of topology construction is to manage the
errors generated by ACE through the higher level processing.

10.6.2 Self Organisation and Topology Construction

The ACE results of Figure 10.6(b) were used as the input space for the SORM algorithm.
Figure 10.6(c) shows the SORM node convergence pattern. The links between nodes in
Figure 10.6(d) were the result of the topology construction process from the FOrgER
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Figure 10.6 Spatial analysis processes applied to extract roads: (a) 1 m per pixel image
of suburban streets; (b) edge analysis results from ACE algorithm; (c) self-organised node
convergence pattern from SORM algorithm; (d) topology construction results from FOrgER
algorithm. (Reproduced with permission of the American Society for Photogrammetry and
Remote Sensing, from Doucette et al., 2004)

algorithm. The automated road extraction performance was evaluated quantitatively
against manually extracted roads. The primary metric used for the evaluation was the
quality, Q, which is defined as Q = tp/�tp+fp+fn�, where tp = true positives, fp = false
positives, and fn = false negatives (Wiedemann et al., 1998). Q represents a normalised
measure of omission and commission errors, and takes on values between 0 and 1. For
the image in Figure 10.6, the road extraction quality went from Q = 0�29 for ACE in
Figure 10.6(b), to Q = 0�67 for topology construction in Figure 10.6(d).

10.6.3 Spectral Analysis

A goal of spectral analysis is to automate the process of training sample selection
and refinement for roads. Training samples from the image are gathered from spatial
neighborhoods centered on each node, and for all nodes. Spectral statistics (mean and
variance) for the road class are derived from these training samples. Spectral statistics
for non-road classes are derived from a K-means clustering. This result provides for a
multi-class spectral distribution of the non-road candidate classes.
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A maximum likelihood classification (MLC) is then performed to spectrally separate
roads from non-roads. Because the MLC is automatically or ‘self’ supervised, the accuracy
of the classification is not assessed in the conventional sense. Rather, the objective here is
to provide sufficient separation between only roads and non-roads, for subsequent spatial
analysis of the classification results.

This is followed by automatic morphological filtering applied to the road class to fill
gaps and reduce noise. With the road class in hand, the ACE and topology construction
process can be repeated to further refine the results, i.e. the self-supervised road classifi-
cation (SSRC) feedback loop in Figure 10.5. The assessment of the final road extraction
results demonstrates the extent to which spectral separation is sufficient.

The two scenes in Figure 10.7 present results from a sample demonstration of the
SSRC approach for automating road extraction. Both scenes represent a 1 m per pixel
multispectral image of suburban street networks. To demonstrate the effects of different
levels of occlusion, Figure 10.7(b) contained considerably more tree shadows than
Figure 10.7(a). The road centerlines extracted from SSRC (following two iterations)

Figure 10.7 Results from SSRC: (a, b) road extraction results overlaid on scenes (white
lines); (c, d) human delineated ground truth used for algorithm evaluation. (Reproduced
with permission of the American Society for Photogrammetry and Remote Sensing, from
Doucette et al., 2004)
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are depicted as white lines superimposed on the images in Figure 10.7(a) and (b).
Figure 10.7(c) and (d) shows the manually extracted roads for comparison.

Experiments showed significant increases in road centerline extraction performance
through two SSRC iterations. For the scene in Figure 10.7(a), the road extraction quality
metric went from 0.67 (prior to running SSRC), to 0.83 on the first SSRC iteration, and
0.87 on the second. For the scene in Figure 10.7(b), the quality metric improved from 0.08,
to 0.37, to 0.63 through two iterations (Doucette et al., 2004). Dramatic improvement
of the quality metric was tangible evidence to validate the potential benefits from the
SSRC approach. Further observations revealed that the quality metric generally stabilised
after two iterations of SSRC. Open research questions include: (1) determining how
to modify parameters between iterations; and (2) establishing optimal convergence for
SSRC iterations.

A limitation of the current method is that it assumes roads possess a spectrally unique
signature throughout the input image. This signature can be confounded by errors intro-
duced by topology construction, shadowing effects from trees and buildings, or variations
in road composition. For example, a bimodal spectral signature for the road class could
result if dirt and paved roads occur within the same scene. In this event, the spectral
classifier would need to use an appropriate bimodal distribution model for roads to avoid
suboptimal classification results. For future research consideration, we speculate that
a supervised neural network classifier (e.g. radial basis function) may provide better
results than statistical methods (e.g. MLC) to deal with effects from multimodal spectral
signatures.

10.7 SUMMARY

The extraction of geospatial features from remotely sensed imagery remains the primary
means to create or update geospatial databases. The growing availability of high spatial
and spectral resolution imagery is driving a pressing need for robust automated image
analysis algorithms. In this chapter we presented a compendium of work that considered
the application of SOM learning principles toward the problem of automating road
extraction.

Early work considered application of the original SOM algorithm. The objective was
to use SOM topology that could represent elongated regions (ERs) by a mapping of their
medial axes. In high spatial resolution imagery, the medial axis of an ER corresponded
to a road centerline. This SOM application had significant limitations, which included
high sensitivity to initial conditions and noise.

The self-organising road map (SORM) algorithm included modifications to the original
SOM. The most important variation was the adoption of a batch updating K-means
method. The K-means algorithm was shown to be essentially a winner-take-all (WTA)
batch version of the SOM. The simpler K-means algorithm provided less sensitivity to
network initialisation. The median statistic was used in place of the mean to better deal
with noise in the input space. The classic problem of node validation was addressed with
on-the-fly node pruning and merging. The use of a regular grid for node initialisation in
the input space promoted good distribution of nodes, and fast convergence. Techniques
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for speeding up convergence that were explored included local space searching and node
activity searching.

Further modifications considered a variant of the original SOM that allowed node
neighborhoods to adapt to the input space. Node metrics in the input space were used in a
fuzzy inference system to construct and validate node topologies that were consistent with
road network. Creation of fuzzy membership functions and inference rules were motivated
by the Gestalt grouping principles of proximity, continuity, context, and closure.

The final version of SOM adaptations culminated with the self-supervised road classifi-
cation (SSRC) algorithm. The goal of SSRC was to improve upon SORM-based extraction
by incorporating spectral information into the process automatically. Training samples
were automatically gathered from road topology nodes. The spectral statistics were used in
a maximum likelihood classification. The entire process would repeat with edge analysis
of the new road class. Experiments with images demonstrated significant increases in
road centerline extraction performance over the first two iterations of SSRC. Determining
how to establish optimal convergence remained an open research question.

A distinctive aspect of this SOM-based approach to road extraction was the use of
node representations upon which to base topology construction. Node regions in images
were useful in representing a higher level of abstraction for perceptual organisation.
Self-organisation principles allowed for a dynamic partitioning of node regions, versus
using fixed partitioning methods of the image space. Limitations of using SOM principles
included sensitivity to the initial conditions, and relatively high computational require-
ments. An objective for future research is more detailed sensitivity analysis among the
different processes of edge analysis, self-organisation, topology construction, and spectral
analysis.
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Epilogue: Intelligent Systems
for GIScience: Where Next?

A GIScience Perspective

Michael Goodchild
NCGIA, University of California, Santa Barbara, CA 93106, USA

The self-organizing map (SOM) algorithm was originally designed to explore complex
multidimensional data spaces describing objects that may or may not be located in
geographic space, and whose locations may or may not be known. The subject matter
of GIScience is thus only a small subset of the subject matter of SOM, since GIScience
starts with the assumption that all objects of interest are georeferenced, and goes on
to address fundamental issues underlying such information: its nature, representation,
storage, handling, analysis, visualization, and modeling (for a recent review of the
definitions and content of GIScience see Mark, 2003).

The chapters of this book have explored many facets of what is clearly a complex
relationship between SOM and GIScience. In Chapter 2, Bação et al. show how the
basic SOM algorithm can be modified to recognize location explicitly, and used to solve
certain longstanding problems in GIScience, including regionalization and service area
design, through modifications to the basic algorithm. Other authors see SOM in much
the same way as its originator and early proponents, as a method for exploring complex
multidimensional data sets, and for operationalizing the fundamental scientific task of
classification. If the basic objects of analysis are georeferenced, then classes can be
mapped, as Kropp and Schellnhuber do, for example, in Chapter 9.

Other authors see SOM as a means of spatializing data, in other words organizing
objects in a space defined by their similarities, in effect enlisting SOM as a technique for
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adding locational references to data that are not inherently spatial, and thus extending the
techniques of GIScience to spaces other than the geographic. Such applications represent
a remarkable implementation of Tobler’s First Law of Geography (Tobler, 1970), namely
the empirical tendency for objects that are nearby in geographic space to be more similar
than objects that are distant in geographic space, by insisting that an information space
created by spatialization have the properties that we as humans recognize to be true
of geographic space. Montello et al. (2003) have proposed a First Law of Cognitive
Geography, based on the observation that people think things are more similar if they are
near each other, a finding that provides direct support for the logic of spatialization as a
tool for visualizing complex multidimensional data sets.

Many years ago Tobler and Wineberg (1971) provided yet another motivation for
techniques like SOM that position objects in a readily visualized space. Their interest
lay in the locations of ancient settlements in Cappadocia, some of which were known
and some unknown. Measures of interaction between settlements were available, in the
form of counts of the numbers of tablets found in one settlement that mentioned another
settlement. On the basis that interaction would decline systematically with distance once
appropriate normalizations had been applied, Tobler and Wineberg were able to use
metric scaling methods to estimate the missing locations.

In the late 1960s and early 1970s social scientists were just beginning to appreciate
the power of digital computers to support a vast range of new, more complex, and more
powerful methods of analysis. Before that time, methods of analysis were essentially
manual, with the aid of printed tables of standard statistical distributions, electric calcu-
lators, and mechanical sorting machines. Multivariate methods such as factor analysis had
been invented many decades previously, but their methods were fundamentally compro-
mised by the lack of powerful machines to do the necessary matrix inversions. Rigid
assumptions, such as the normality of distributions, had to be imposed to make analysis
tractable, whether or not they were supported by the data; and metrics such as variance
were preferred over possibly more useful alternatives simply because they made the
analysis feasible with the computational resources of the time.

Today, of course, we are blessed with an abundance of techniques that exploit cheap,
powerful computing capabilities to do things with data that were scarcely conceivable
before 1970. We also have geographic information systems that make it easy to acquire,
store, analyze, and visualize georeferenced information. More fundamentally, perhaps,
these new methods have shifted the paradigms of science significantly, towards larger data
sets, and a greater emphasis on the exploratory methods and induction over confirmatory
methods and deduction, as the chapters in this book make clear. All of this is consistent
with a widespread belief that the simple problems of science have been solved, and
that further progress will require a new kind of science that emphasizes collaboration
between disciplines, fueled by a search for elusive patterns in complex, multidimensional
data sets.

A similar series of transitions are evident in the evolution of GIS. In the early days
of the 1960s and 1970s, the focus of developers was on the data structures needed to
represent the contents of maps in computers, and in the simplest kinds of analysis –
measurement of area, for example. Later, the functionality of GIS expanded to include
a substantial fraction of the known methods of spatial analysis, such as metrics for
the measurement of spatial autocorrelation, tests of the randomness of point patterns,
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methods of spatial interpolation, and methods of density estimation (Longley et al.,
2005). The ideas of exploratory spatial data analysis (ESDA) originated in the late 1980s
and early 1990s, and were implemented in specialized packages such as Regard (Anselin,
1999; Unwin, 1994) and more recently GeoDa (Anselin et al., 2006; geoda.uiuc.edu).
However, even today the mainstream GIS products support only a small fraction of
these ideas.

Essentially, ESDA seeks to create an intuitive, easy-to-use interface to geographic
information that encourages exploration, and makes it possible for users to discover
patterns and anomalies in data that would not otherwise be apparent. As such, the tests of
its success seem to have much in common with other mainstream software environments,
and little with traditional GIS, which is known for its complexity and the long training
needed to extract useful results. Indeed, ESDA may resemble the kinds of GIS-derived
products that are now available in the general marketplace, such as Google’s Keyhole
(http://earth.google.com/) whose user interfaces have more of the look and feel of a
video game than a piece of software designed for serious scientific research, and on
which designers expect users to move from complete ignorance to mastery in a few
minutes, rather than years.

With this background, it is possible to see a little further into the future of SOM and
GIScience. Tools such as SOM, suitably adapted for regionalization, zone design, or
classification, or simply for the exploration and visualization of structure within massive
data sets, would be valuable additions to the GIS toolbox, and would help in a more
general process of moving to simpler, more intuitive user interfaces. At the same time,
they raise issues of fundamental significance that are logically part of the GIScience
research agenda: what are the appropriate methods of representation of SOM inputs and
results; what are the appropriate designs of user interfaces and visualization methods; how
should one deal with time, dynamics, and uncertainty; what is the appropriate approach
to effects of scale; and how can SOM results be made available for further analysis as
part of the GIS database? A strong thread running through the chapters of this book
suggests that SOM provides more than a single addition to the spatial analytic toolbox,
but instead reflects an entirely new paradigm for ESDA and spatial data mining. If so,
does this suggest that it should be implemented in a stand-alone toolbox rather than as
part of GIS functionality, and how does the general trend in the GIS software industry
to component ware impact this issue? In short, the advent of SOM, and the thinking that
lies behind the chapters of this book, raise important questions for GIScience and add
significantly to the GIScience research agenda.
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Plate 1 Process of self-organization during SOM training. A 3 × 3 neuron SOM is trained
with four observations representing two distinct groups in attribute space (See Figure 1.6)

Plate 2 SOM-based clustering of census data combined with colour design informed
by network topology. Relationships among clusters are indicated by displaying legend
constructed from two-dimensioned SOM geometry (See Figure 1.9)



Plate 3 Example of a Geographical Hypermap seen in the input (geographical) space (See
Figure 2.3)

High quantization area,
using the Geo-SOM (0),

thus no clustering of
similar points

The Geo-SOM (1), detects
two low quantization
sets of points, thus

clustering two groups of
similar points

in the same area

Subset 1
z ≈10

Subset 2
z ≈ 90

Plate 4 Close up of the lower right corner of the Geo-SOM (0) and Geo-SOM (1) in
Figure 2.7 (See Figure 2.8)



Plate 5 The user interface for the exploratory geovisualization environment in multiple views
with the visualization of component planes (bottom left) and map unit labels (bottom right).
The default view shows the representation of the general patterns and clustering in the input
data: the unified distance matrix showing clustering and distances between positions on the
map (b). Alternative representations of the SOM general clustering of the data with projection
of the SOM results in 3-D space (c); and a map of the similarity coding extracted from the
SOM computational analysis (a), and parallel coordinate plot (d) (See Figure 3.5)



Plate 6 Component planes of the node triplets associated with each lexical variation of the
experimental SOM run (See Figure 5.3)
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Plate 7 Feature map of the three-cluster solution (See Figure 5.4)
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Plate 8 Feature map of the four-cluster solution (See Figure 5.9)



  
Cluster 1 Cluster 2

  
Cluster 3 Cluster 4

Plate 9 Geographic distribution of informants mapped to the four clusters (clear squares)
of the four-cluster solution (See Figure 5.10)



(a) (b)

(d)(c)

Plate 10 Selected user interaction forms in the VDM environment. (a) Assignment: allows
the analyst to visualize the passenger volume of different airlines. (b) Color manipulation:
colors are used to draw the markets that originate in different geographic regions. (c) Focusing:
two scroll bars are used so that the upper bound and lower bound of passenger flow can be
changed dynamically in display. (d) Linking and brushing: highlighted in the geographic map
are the markets represented by the neurons selected in the component plane (See Figure 4.2)



By position
By line

By position
By motion

Plate 11 Framework of the integrated VDM environment. The linkages among different
visualization forms can be implemented mainly through four ways: by position (the position
of data items remains fixed across visualization forms); by color (the same color is used
for the same group of data items); by line (the same data items are connected by explicit
lines); by motion (groups of data items are displayed one after another using animation) (See
Figure 4.3)
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Plate 12 Distance matrices and clusters based on 2002 market share information: (a)
U-matrix; (b) clusters identified by k-means; (c) distance matrix (two-dimensional); (d)
distance matrix (three-dimensional) (See Figure 4.4)
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Plate 13 Markets originating in the Buffalo metropolitan area: (a) hit counts; (b) most
frequent destination state; (c) selected SOM component planes; (d) markets with airline
market share > 50% (See Figure 4.6)



(a) (b)

Plate 14 Markets of JetBlue identified by SOM: (a) market share component plane; (b) flow
map (passengers ≥ 20 000) (See Figure 4.7)
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Plate 16 SOM-based downscaling (a) and raw GCM (b) precipitation anomalies of climate
change projections for the period 2071–2100 over South Africa (See Figure 8.5)

Plate 17 Global distribution of classes (represented by the different nodes) obtained after
simulation with the SOMTOP algorithm. The topological arrangement of the classes on the
network is shown by the inset. The colour coding used in the inset corresponds to that shown
on the map and the node numbers are equivalent to the class numbers used in the text. The
additional number indicates the quantity of associated input vectors (See Figure 9.4)



Plate 18 Comparison between SOMTOP categorisations and biome types in the arctic and
tropics domain. (a) For class #1 (SOMTOP) and the ‘tundra’ biome – the inset represents
the highlands (node 4), and (b) for the aggregated rainforest division: SOMTOP classes #15
and #16; BIOME ‘tropical rainforest’ (horizontal hatched) and ‘seasonal rainforest’ (vertically
hatched). Focusing on the single archetypes some larger differences are apparent in South
America (regarding the SOMTOP classification in these regions compare with Figure 17) (See
Figure 9.5)
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